Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans

Dissertation

zur Erlangung des Doktorgrades der Geowissenschaftlichen Fakultät der Albert-Ludwigs-Universität Freiburg i. Br.

vorgelegt von

Ralf GERTISSER

2001

CD-ROM-VERSION 1.0 (12/2001)

Dekan:	Professor Dr. Jan Behrmann
Referent:	Professor Dr. Jörg Keller
Korreferent:	Professor Dr. Jürgen Otto

Tag der Beschlußfassung des Promotionsausschusses: 12.07.2001

It is recommended that reference to all or part of this thesis should be made in the following way:

Gertisser, R. (2001): Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. PhD Thesis, Universität Freiburg, Germany, 382 pp. Die vorliegende Dissertation entstand am Institut für Mineralogie, Petrologie und Geochemie (IMPG) der Universität Freiburg im Rahmen eines durch die Deutsche Forschungsgemeinschaft unterstützten Gemeinschaftsvorhabens zur Desaster-Forschung am Hochrisiko-Vulkan Merapi (Indonesien), an dem verschiedene geowissenschaftliche Institutionen in Deutschland und Indonesien unter der Leitung des GeoForschungsZentrums in Potsdam und des Volcanological Survey of Indonesia (VSI) in Bandung teilnehmen.

Die Bearbeitung des außergewöhnlichen und interessanten Themas ermöglichte mir Prof. Jörg Keller, dem ich für die Betreuung der Arbeit, die angenehme Arbeitsatmosphäre, zahlreiche wertvolle Hinweise und die ständige Diskussionsbereitschaft zu besonderem Dank verpflichtet bin. Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (Projekt KE 136/31) im Rahmen des interdisziplinären Projekts MERAPI finanziell gefördert, für dessen Leitung und Koordinierung ich Prof. Jochen Zschau (GeoForschungsZentrum, Potsdam) danken möchte.

Herrn Prof. Jürgen Otto danke ich herzlich für die kurzfristige Übernahme des Korreferats.

Mein besonderer Dank gilt darüber hinaus Dr. Bernd Kromer (Universität Heidelberg) und Prof. Pieter Grootes (Leibniz Labor, Universität Kiel) für die Durchführung der zahlreichen Radiokarbondatierungen sowie Prof. Muharrem Satir (Universität Tübingen) für die freundliche Übernahme der Isotopenbestimmungen.

Dave Whitford stellte freundlicherweise unpublizierte Pb-Isotopendaten aus seiner Dissertation zur Verfügung und Haraldur Sigurdsson zwei Glasstandards (KN-18, KE-12) für die Elektronenmikrosondenmessungen. Beiden sei an dieser Stelle herzlich gedankt.

Nelia Dunbar danke ich für die Überlassung unpublizierter Daten vulkanischer Glasstandards und nützliche Hinweise zur Volatilenbestimmung in vulkanischen Gläsern mit Hilfe der Elektronenmikrosonde.

Danken möchte ich auch allen Mitarbeitern und Angestellten des IMPG der Universität Freiburg, insbesondere Frau Dr. Hiltrud Müller-Sigmund für die Einführung in die Geheimnisse der Elektronenmikrosonde und viele nützliche Tips für die Analytik; Hildegard Schlegel, Isolde Schmidt und Sigrid Hirth-Walter für die Durchführung geochemischer Analysen; Norbert Kindler für die Unterstützung bei der Probenaufbereitung und Klaus Fesenmeier für die exzellenten Dünnschliffe.

Für die Mithilfe bei der Probenaufbereitung danke ich Michael Marks, Gregor Schwinn, Marika Vespa, Arno Wamsler und Thorsten Werle. Marika Vespa stellte auch die REM-Aufnahmen am Kristallographischen Institut her und half bei den QUILF-Berechnungen. Mein Dank gilt weiterhin dem Volcanological Survey of Indonesia und den im Laufe der Jahre wechselnden Direktoren Dr. Wimpy S. Tjetjep, Dr. R. Sukhyar und Dr. A. Djumarma Wirakusumah für die logistische Unterstützung bei den Feldeinsätzen am Merapi.

Dem früheren Leiter des Volcano Technology Research Centers (BPPTK) in Yogyakarta, Dr. Mas Atje Purbawinata, und seinem Nachfolger Dr. Syamsul Rizal Wittiri sowie allen Mitarbeitern des BPPTK danke ich herzlich für die Gastfreundschaft und großzügige Unterstützung während der Geländekampagnen.

Dr. Arnold Brodscholl half bei kleineren und größeren Problemen vor Ort. Auch ihm sei für die Gastfreundschaft und Unterstützung jeglicher Art gedankt.

Für die Koordinierung der Feldeinsätze und gemeinsamen Geländekampagnen danke ich Lothar Schwarzkopf (GEOMAR, Kiel). Mein Dank gilt darüber hinaus Prof. Hans-Ulrich Schmincke, Dr. Armin Freundt und Lothar Schwarzkopf für die Möglichkeit gemeinsamer Geländebegehungen am Merapi während der Geländesaison 1997.

Danken möchte ich auch Matthias Siebenschock, der an den Voruntersuchungen zu diesem Projekt im Rahmen des 1. Merapi Decade Volcano International Workshop 1995 in Yogyakarta teilnahm.

Stellvertretend für alle, die mich während der Feldeinsätze am Merapi als Fahrer und lokale Führer unterstützten und wesentlich zu einer erfolgreichen Geländearbeit am Merapi beitrugen, möchte ich an dieser Stelle Sutisna, Dedi und Budi danken. Budi entwickelte sich darüber hinaus zu einem guten Geländeassistenten und Hobbygeologen.

Danken möchte ich auch Mary-Ann del Marmol, Supriyati Andreastuti, Chris Newhall, Guy Camus, Alain Gourgaud und Pierre Vincent für die großzügige Überlassung unpublizierter Daten über die Geologie des Merapi sowie Ian Smith für den Gedankenaustausch über die Geochemie des Merapi während der IUGG-Konferenz 1999 in Birmingham.

Chris Newhall, Sutikno Bronto, Supriyati Andreastuti und Barry Voight danke ich für den Gedankenaustausch und die zahlreichen Diskussionen während der Merapi-Exkursion im Rahmen des IAVCEI-Kongresses 2000 auf Bali.

Gemeinsame Geländebegehungen mit Supriyati Andreastuti im Anschluß an die IAVCEI-Konferenz halfen zusätzlich einige Unklarheiten zu beseitigen.

Zu guter Letzt danke ich dem gesamten deutschen Merapi-Team für die angenehme Zusammenarbeit während der vergangenen Jahre.

Inhalt

Kurzfassung	IX
Abstract	XI
Kapitel 1 Allgemeine Einführung	1
Kapitel 2 Geologische Grundlagen und Rahmenbedingungen	5
Regionale Geologie und geologisch-tektonischer Rahmen	5
Plattentektonischer Rahmen	5
Tektonik, Geologie und Vulkanismus des Sundabogens	7
Geologie von Java	10
Die vulkanische Tätigkeit und geologische Entwicklung des Merapi: Grundlager	n und Stand der
Forschung	14
Die rezente und historische Aktivität des Merapi: Eruptionstypen und Risikoaspekte	14
Die geologische Entwicklung des Merapi: Stand der Forschung	19

Kapitel 3

Die geologische Entwicklung des Merapi: I. Ablagerungstypen und		
Eruptionsmechanismen		
Lavadome und Lavaströme		
Pyroklastische Ströme	27	
Pyroklastische Fallablagerungen		
Vulkanische Schlammströme (Lahars) und Schuttlawinen	33	

Kapitel 4 Die geologische Entwicklung des Merapi: II. Stratigraphie und Chronologie......36

Beschreibung und Dokumentation holozäner pyroklastischer Ablagerungen des Merapi	38
Gebiet A (SSE-Sektor)	38
Gebiet B (S-Sektor)	41
Gebiet C (S- / SSW-Sektor)	45
Gebiet D (Gendol Hills; SW-Sektor)	50
Gebiet E (SW-Sektor)	52
Gebiet F (W-NW-Sektor)	57

Gebiet G (N-Sektor)	67
Gebiet H (NE-Sektor)	77
Gebiet I (E-Sektor)	79
Stratigraphische Korrelationen.	79
Radiokarbondatierungen	
Implikationen für die holozäne geologische Entwicklung des Merapi	

Die geologische Entwicklung des Merapi: III. Tephrafallablagerungen großer holozäner Eruptionen des Merapi	87
Vorkommen und lithologische Beschreibung der Tephralagen	88
Petrographie und Geochemie	90
Verbreitung, Mächtigkeit und Korngrößenverteilung	91
Abschätzung physikalischer Eruptionsparameter	96
Tephravolumen	96
Eruptionssäulenhöhe, Masseneruptionsrate und Magnitude	98
Alterseinstufung der Tephralagen	101
Implikationen für die Risikoabschätzung und mittel- bis langfristige Eruptionsvorhersage	am
Merapi	103

Kapitel 6

Petrographie und Mineralogie	105
Petrographie und Mineralbestand der Merapivulkanite	105
Mineralogie und Strukturen innerhalb von Einzelkörnern	107

Kapitel 7

Haupt-	und Spure	nelementgeoch	emie der l	Laven und I	Pyroklastite de	es Merapi114
--------	-----------	---------------	------------	-------------	-----------------	--------------

14
16
21
21
23
26
28
30
33
38
40

Kapitel 8	
Isotopengeochemie und Petrogenese der Merapi-Vulkanite	142
Frühere Arbeiten	143
Isotopenzusammensetzungen der Merapi-Vulkanite	144
Sr-, Nd- und Pb-Isotopenverhältnisse	144
Sauerstoff-Isotope	146
Isotopische Variationen mit Elementgehalten	151
Der Merapi im regional-geologischen Kontext	152
Implikationen der Isotopendaten für die Petrogenese der Merapimagmen	158
Zusammenfassung und Schlußfolgerungen	166

Die geochemische Entwicklung des Merapi während der letzten 2000 Ja	hre168
Die Emintionstötigkeit des Mereni wöhrend der letzten 2000 Jehre	160

Die Eruptionstatigkeit des Merapi wahrend der letzten 2000 Jahre	169
Geochemische Variationen	171
Ein Modell zur Entstehung der zyklischen geochemischen Variationen innerhalb de	er Merapi-
High-K-Serie	175
Der Übergang zur historischen und rezenten Ausbruchsperiode	180
Zusammenfassung und Schlußfolgerungen	

Kapitel 10

Mineralchemie der Merapi-Vulkanite	184
Plagioklas	184
Pyroxene	189
Klinopyroxen	189
Die Klinopyroxene des Merapi im Wo-En-Fs-Klassifikationsdiagramm	190
Chemische Variationen der "normalen" Klinopyroxeneinsprenglinge des Merapi	192
Chemische Zusammensetzungen der Klinopyroxen-Xenokristalle	
Orthopyroxen	200
Olivin	202
Amphibole	203
Oxide	208
Fe-Ti-Oxide	208
Chromspinell	211

Kapitel 11

Glaszusammensetzungen und Entgasung der Merapimagmen	214
Petrographische Beschreibung der Glaseinschlüsse und Matrixgläser	214
Petrographie der Glaseinschlüsse	
Kristallinität und Gefüge der Matrixgläser	216

Hauptelementgeochemie der Glaseinschlüsse und Matrixgläser	
Geochemische Variationen	
Implikationen der Glaszusammensetzungen für die Magmenentwicklung	
Volatilengehalt und Entgasung der Merapimagmen	
Petrologische Methode	
Petrologische Abschätzung der Entgasung der Merapimagmen	
Volatilenzusammensetzung von Glaseinschlüssen und Matrixgläsern	
Verhältnisse leichtflüchtiger Elemente	229
Zusammenfassung und Schlußfolgerungen	

Kapitei 12 Intensive Parameter und Kristallisationsbedingungen der Meranimagmen	234
intensive i urumeter und inistambationsbedingungen der vierupindgmennigen	
Lithostatischer Druck	.234
Druckabschätzung unter Verwendung von Phasengleichgewichten zwischen Fe-Ti-Oxiden, Pyroxenen,	
Olivin und Quarz (QUILF)	.235
Klinopyroxen-Geobarometrie	.236
Amphibolstabilität und Aluminium-in-Hornblende-Geobarometrie	238
Magmatische Temperaturen	.243
Sauerstoff-Fugazität	.245
Silika-Aktivität	.247
H2O-Gehalt	.248
Zusammenfassung und Schlußfolgerungen	.250

Kapitel 13

Resümee	
Anhang	257
Annang	

367.Bibliographie

Kurzfassung

Der Vulkan Merapi, im Mittelabschnitt des Sundabogens in Zentraljava (Indonesien) gelegen, gehört zu den aktivsten Vulkanen Indonesiens.

Durch Domkollaps ausgelöste Glutlawinen (Nuées ardentes) des Merapi-Typs sind kennzeichnend für die rezente und historische Aktivität des Vulkans. In den holozänen stratigraphischen Abfolgen des Merapi dominieren Ablagerungen pyroklastischer Ströme, die auf explosive Eruptionen und den Kollaps vertikaler Eruptionssäulen zurückgeführt werden können, für die am ehesten vulkanianische oder – bei gesteigerter Aktivität und offenem Vulkanschlot – (sub)plinianische Entstehungsmechanismen in Frage kommen. Ebenso charakteristisch sind pyroklastische Fallablagerungen, die eine Vielzahl einzelner, einige wenige Zentimeter bis mehrere Zehner Zentimeter mächtige Grobaschen- und Bimslapillilagen in den holozänen stratigraphischen Abfolgen des Merapi bilden und zusammen mit pyroklastischen Strom-, Surge- und Laharablagerungen die unteren Vulkanhänge bedecken. Einige weitverbreitete Fallablagerungen (Tephralagen Paten 1, Paten 2, Trayem, Jurangjero 1, Jurangjero 2) können als tephrostratigraphische Leithorizonte zur Korrelation pyroklastischer Ablagerungen über große Bereiche des S-, W- und NW-Sektors bis zu einer Entfernung von 20 km vom Merapigipfel herangezogen werden. Diese dokumentieren große subplinianische Ausbrüche des Merapi (VEI 3- und 4-Ereignisse) während des jüngeren Holozäns (< 4000 Jahre v.h.), die sich grundlegend von den dombildenden Eruptionen des 20. Jahrhunderts unterscheiden und diese in Intensität und Magnitude um ein Vielfaches übersteigen.

Zusammen mit den im Verlauf dieser Arbeit ermittelten 86 neuen Radiokarbonaltern liegen nun nahezu 150 Radiokarbondatierungen für den Merapi vor, die bis etwa 12000 ¹⁴C-Jahre v.h. zurückreichen. Annähernd 90 % der durchgeführten Radiokarbondatierungen liefern Alter von weniger als 2000 Jahren v.h. und implizieren eine nahezu kontinuierliche Aktivität des Merapi während dieses Zeitraums, die lediglich zwischen ca. 550 und 700 sowie zwischen 1150 und 1300 ¹⁴C-Jahren v.h. von Phasen reduzierter vulkanischer Aktivität unterbrochen wird. Die jüngsten datierten pyroklastischen Stromablagerungen auf der E-Seite des Merapi deuten an, daß die durch einen eventuellen Kollaps der Westflanke verursachte Blockierung der Ausbreitung pyroklastischer Ströme nach Osten 1590 \pm 40 ¹⁴C-Jahre v.h. (420-537 AD) effektiv wurde, und damit ca. 300 Jahre jünger ist, als bisher angenommen. Mit die ältesten datierten Ablagerungen des Merapi finden sich in den tiefen Erosionsrinnen im SW- Sektor des Vulkankomplexes und lassen möglicherweise auf ein frühes Kollapsereignis am Merapi vor mehr als 8380 ± 230 ¹⁴C-Jahre v.h. schließen.

Die Förderprodukte des Merapi weisen Variationen zwischen 50.1 und 57.3 Gew.% SiO₂ (H₂O-frei normierte Proben mit LOI < 2.5 Gew.%) auf und umfassen Basalte und basaltische Andesite kalkalkalischer (Medium-K) und high-K-kalkalkalischer (High-K) Affinität. Stratigraphische und chronologische Untersuchungen zeigen, daß die älteren holozänen Produkte der Medium-K-Serie und die jüngeren der High-K-Serie angehören und der Übergang von der Medium-K- zur High-K-Serie vor ca. 1800-1900 Jahren stattgefunden hat. Dies zeigt einen allgemeinen Entwicklungstrend hin zu K-reicheren Magmen in der holozänen Eruptionsgeschichte des Merapi an, der mit der Förderung von High-K-Magmen in der rezenten Periode des ausgehenden 19. und 20. Jahrhunderts seine Fortsetzung findet.

Spurenelementcharakteristika und isotopische Variationen deuten auf die Herkunft der basischen Ausgangsmagmen der beiden magmatischen Serien aus einer heterogenen, durch Fluide und partielle Schmelzen aus der abtauchenden Platte (basaltische ozeanische Kruste und / oder subduzierte Sedimente) in unterschiedlichem Maß überprägten, MORB-ähnlichen Mantelquelle. Mischungsberechnungen zeigen, daß der subduktionsbedingte Eintrag von Sedimenten des Indischen Ozeans in den Mantelkeil oberhalb der subduzierten Platte und bereits weniger als 2 % Sedimentanteil in der "Mantel-Sediment-Mischung" ausreichen, um die radiogenen Isotopenzusammensetzungen der Merapivulkanite zu erklären. Ein geringfügig höherer Sedimentanteil ist erforderlich, um die geochemischen und isotopischen Charakteristika der Magmen der Merapi-High-K-Serie zu erzeugen.

Die geringen MgO-Gehalte und niedrigen Konzentrationen an kompatiblen Spurenelementen (Ni, Co, Cr) in den am wenigsten differenzierten Merapimagmen zeigen, daß deren Zusammensetzungen bereits durch Fraktionierungsprozesse während des Magmenaufstiegs zur Oberfläche beeinflußt sind. Aluminiumreiche, salitische und salitisch-diopsidische Klinopyroxenkerne, forsteritreiche Olivinkristalle und darin eingeschlossene Chromspinelle stellen Frühkristallisate der Merapimagmen bei hohen Drücken dar und reflektieren die frühesten Differentiationsstadien primärer Mantelschmelzen am Merapi.

Die geochemischen Variationen innerhalb der beiden magmatischen K-Serien des Merapi können im wesentlichen durch fraktionierte Kristallisation und Magmenmischungsprozesse in einem krustalen Magmareservoir erklärt werden. Die radiogenen und Sauerstoffisotopenverhältnisse der Merapi-Vulkanite schließen eine wesentliche Rolle der Kontamination der Magmen mit Krustenmaterial aus dem subvulkanischen Basement in Form von AFC- oder anderen Assimilationsprozessen während des Aufstiegs oder der Zwischenspeicherung in einem krustalen Magmareservoir aus. Die detaillierte Dokumentation der nahezu kontinuierlichen Eruptionstätigkeit des Merapi seit dem Beginn der Förderung von Magmen der High-K-Serie vor ca. 1800-1900 Jahren zeigt, daß die geochemische Entwicklung des Vulkans während der vergangenen ca. 2000 Jahre durch magmatische Zyklen mit hohen Eruptionsraten gekennzeichnet ist, die im Anschluß an eine Phase scheinbar reduzierter vulkanischer Aktivität mit der Förderung differenzierter Magmen beginnen und auf ein komplexes Wechselspiel verschiedener Prozesse wie die fraktionierte Kristallisation, die Entleerung und Wiederauffüllung eines krustalen Magmareservoirs durch einströmende basische Magmen aus tieferen Bereichen sowie Mischungen zwischen diesen und höher differenzierten Magmen in der Magmakammer, hindeuten.

Phasengleichgewichte und mineralchemische Daten implizieren präeruptive Temperaturen zwischen 920 und 1050 °C, Sauerstoff-Fugazitäten zwischen 0.6 und 2.2 logarithmischen Einheiten oberhalb des FMQ-Puffers und einen Druckbereich von mehr als ca. 4 kbar für die Kristallisation der Merapimagmen. Letzterer deutet auf die Existenz eines Hauptmagmareservoirs am Merapi in einem mittleren bis unteren Bereich der "quasi-kontinentalen" Kruste Javas. Das Vorkommen von Amphibolkristallen ohne Reaktionssäume in den Bimskomponenten explosiver Eruptionen und solche mit relativ geringmächtigen Reaktionssäumen infolge der Instabilität von Amphibol unter oberflächennahen Bedingungen in den rezenten und holozänen Lavadomkomponenten implizieren das Fehlen eines langlebigen, oberflächennahen Magmareservoirs außerhalb des Stabilitätsfeldes von Amphibol, in dem aufsteigende Magmen über längere Zeiträume zwischengespeichert werden. Untersuchungen an Schmelzeinschlüssen in ausgewählten rezenten und holozänen Förderprodukten suggerieren primär magmatische H₂O-Gehalte von maximal 6.4 Gew.% in den Merapimagmen, die damit bei den angenommenen Kristallisationsbedingungen wasseruntersättigt sind. Hohe H₂O-Gehalte sind ausschließlich in den Schmelzeinschlüssen der Bimsklasten explosiver Eruptionen erhalten, während die der Lavadom-, Blumenkohl- und Brotkrustenkomponenten aus Lavadom- oder Eruptionssäulenkollaps-Nuées ardentes ihr H₂O weitestgehend verloren haben und keine primären magmatischen H₂O-Gehalte mehr aufweisen.

Unterschiede im Eruptionsstil zwischen effusiver (dombildender) und explosiver ((sub)plinianischer) Aktivität am Merapi sind nicht auf systematische primäre Unterschiede im präeruptiven Magmasystem zurückzuführen, sondern scheinen vielmehr durch unterschiedliche Entgasungsgeschichten während des Magmenaufstiegs verursacht zu sein. Die Bildung von Lavadomen erfolgt durch die Extrusion präeruptiv bereits weitestgehend entgaster Magmen, die auf extensive Entgasungsprozesse und das Entweichen der Gase durch die Seitenwände des Vulkanschlotes (magmatische Entgasung in einem offenen System) während des langsamen Aufstiegs dieser Magmen hindeuten. Demgegenüber bleiben die primären magmatischen H₂O-Gehalte in den Bimsproben explosiver Ausbrüche aufgrund der assoziierten hohen Magmenaufstiegsraten weitestgehend erhalten und es scheint, daß die magmatische Entgasung bis zur Fragmentierung der Schmelze in einem eher geschlossenen System erfolgt. Merapi volcano, situated in the central part of the Sunda arc in Central Java (Indonesia), is one of the most active volcanoes of Indonesia.

The recent and historical activity of Merapi is characterized by glowing avalanches resulting from the collapse of an andesitic lava dome (Merapi-type nuées ardentes). The Holocene stratigraphic record reveals the importance of pyroclastic flows, related to explosive eruptions and the collapse of vertical eruption columns generated by vulcanian or (sub)plinian-type eruptions. Widespread pyroclastic-fall deposits are equally prominent among the Holocene volcanic products of Merapi. In the stratigraphic record tephra-fall deposits form distinct strata of coarse ash and pumiceous lapilli ranging in thickness from more than one to a few tens of centimeters. They are separated from each other by finer grained ash deposits of tephra-fall or ash-cloud origin and locally by coarser overbank pyroclastic-flow, surge and lahar deposits, which form an extensive pyroclastic apron around the volcano. A few widespread tephra-fall deposits (tephra layers Paten 1, Paten 2, Trayem, Jurangjero 1, Jurangjero 2) are sufficiently distinctive to serve as tephrostratigraphic marker horizons, allowing the lateral correlation of pyroclastic successions in the southern, western and northwestern sector of the volcano to distances of 20 km from the central vent. These deposits record large subplinian eruptions of Merapi (VEI 3 and VEI 4 events) during Middle to Late Holocene times (< 4000¹⁴C years BP), which differ fundamentally from the dome-forming eruptions of the 20th century. VEI 4 eruptions as described in this thesis are an order of magnitude larger than any recorded historical eruption of Merapi except for the possible VEI 4 eruptive events of 1872.

86 radiocarbon ages were obtained during the course of this study. As a whole, nearly 150 radiocarbon ages are now available for Merapi volcano. The new data extend the radiocarbon record of Merapi back to c. 12000 ¹⁴C years BP. Approximately 90 % of the available radiocarbon data yield ages < 2000 years BP indicating an almost continuous activity of Merapi during this period of time, interupted only by periods of apparently reduced volcanic activity about 550-700 and 1150-1300 ¹⁴C years BP. The youngest dated pyroclastic-flow deposit on the eastern slopes of Merapi suggests that the blockage of pyroclastic flows to the east - possibly caused by a somma-forming eruption - became effective not until c. 1590 ± 40 ¹⁴C years BP and therefore c. 300 years later than previously thought. Some of the oldest dated deposits of Merapi occur in the deeply dissected valleys on the southwestern flank of the volcanic complex and hint at a possible early flank collapse and somma-forming event more than 8380 ± 230 ¹⁴C years BP.

The volcanic products of Merapi volcano range in composition from 50.1 to 57.3 wt.% SiO_2 and comprise basalts and basaltic andesites of calc-alkaline (medium-K) and high-K-calc-alkaline (high-K) affinity. The stratigraphy of the Middle to Late Holocene pyroclastic deposits indicates that the magmatic evolution trough time changed from an older medium-K to a younger high-K series, indicating a general evolution towards K-enriched magmas during the Holocene eruptive history of Merapi volcano. The radiocarbon record suggests that the medium-K to high-K transition occurred 1800-1900 ¹⁴C years BP. The eruption of high-K magmas during the recent period (since 1883 AD) reflects a continuation of this general evolutionary trend.

Incompatible trace element systematics and isotopic variations indicate the derivation of the parental magmas of either magmatic series from a heterogeneous, MORB-like mantle source contaminated by fluids and partial melts from the subducted slab (basaltic oceanic crust / subducted sediments). Mixing calculations show that the subduction-related addition of less than 2 % of marine sediments from the Indian Ocean into the mantle wedge above the subducted slab (two-component mixing) can explain the radiogenic isotope compositions of the

volcanic products of Merapi. A slightly higher sediment input is required to account for the geochemical and isotopic characteristics of the magmas of the high-K series.

The low MgO contents and concentrations of compatible trace elements (Ni, Co, Cr) in the least evolved rock types at Merapi show that fractional crystallization processes affected the compositions of these magmas en route to the surface. Alumina-rich, salitic and salitic-diopsidic clinopyroxene cores, forsteritic olivine crystals and inclusions of chromian spinel represent early crystallizing phases of the Merapi magmas at high pressure and reflect the earliest stages of differentiation of primary mantle-derived melts at Merapi.

The geochemical variations within the medium-K and high-K series can be readily explained by fractional crystallization and magma mixing processes within a crustal magma chamber. The radiogenic and oxygen isotope compositions and the lack of systematic correlations between isotopic ratios and indices of differentiation, such as SiO₂, preclude a significant role of crustal contamination by AFC-type or other assimilation processes during ascent or magma storage in a crustal magma reservoir. The detailed documentation of the eruptive history of Merapi – since the beginning of the eruption of high-K magmas 1800-1900 ¹⁴C years BP – shows that the geochemical evolution over the last c. 2000 years is characterized by systematic cyclic variations. Each magmatic cycle is characterized by a high eruption rate and starts with the eruption of highly differentiated rock types after a period of apparently reduced volcanic activity. Overall, the systematic cyclic variations record a complex interplay of several magmatic processes, such as fractional crystallization, tapping and replenishment of a crustal magma reservoir.

Phase equilibria and mineral compositions imply pre-eruptive temperatures of 920-1050 °C, oxygen fugacities of 0.6-2.2 log units above FMQ and a pressure of more than 4 kbar for the crystallization of the Merapi magmas. The latter hints at a major magma storage at Merapi in a middle to lower part of the "quasi-continental" crust of Java. The existence of amphibol crystals without reaction rims in the pumiceous clasts of explosive eruptions and amphiboles with thin reaction rims due to the instability of amphibole at shallow depths in the recent and Holocene dome components preclude the existence of a shallow magma reservoir outside the stability field of amphibole at Merapi, where ascending magmas are stored over considerable periods of time. Studies of melt inclusions in selected recent and Holocene eruptive products suggest maximum primary melt water contents of 6.4 wt.%, implying that the Merapi magmas are undersaturated with respect to water at the assumed conditions of crystallization. High water contents are exclusively preserved in the melt inclusions of the products from explosive (subplinian) eruptions. In contrast, melt inclusions in dense dome fragments as well as juvenile blocks with breadcrust or cauliform external morphologies from dome-collapse or fountain-collapse nuées ardentes indicate water leakage and do not represent primary pre-eruptive melt water contents.

Differences between effusive (dome-forming) and explosive (subplinian) eruptive style at Merapi volcano are not related to systematic primary differences in the pre-eruptive magma system, but may be acquired upon variable degassing conditions during magma ascent and eruption. The formation of lava domes results from the extrusion of largely degassed magma, which hints at extensive open-system degassing and loss of volatiles in the conduit during slow magma ascent. Instead, probably because of fast ascent rates, primary melt water contents are largely preserved in the pumice clasts of explosive eruptions, indicating that magmatic degassing up to fragmentation approaches rather closed-system conditions.

Kapitel 1 Allgemeine Einführung

Das letzte Jahrzehnt des ausgehenden 20. Jahrhunderts wurde von der UNESCO zur Internationalen Dekade zur Reduktion von Naturkatastrophen (International Decade for Natural Desaster Reduction, IDNDR) erklärt. Als Beitrag zur IDNDR wurden zu Beginn der Dekade von der IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior) insgesamt 16 Hochrisiko-Vulkane für intensive internationale und interdisziplinäre Forschungs- und Überwachungsprojekte vorgeschlagen, die aufgrund der Häufig-keit und Art ihrer vulkanischen Aktivität ein besonders hohes Risiko für die in der Umgebung lebende Bevölkerung darstellen (Abb. 1.1).

Abb. 1.1. Übersichtkarte der Dekadenvulkane.

Der 2961 m hohe Vulkan Merapi in Zentraljava (Indonesien) gehört zu den aktivsten und potentiell gefährlichsten Vulkanen Javas. Dies liegt neben der ständigen vulkanischen Aktivität, die gekennzeichnet ist durch länger andauernde Perioden der Lavadombildung und kurzen, zum Teil explosiven Phasen, die zur Zerstörung des existierenden Lavadoms und die für den Merapi typischen Block- und Aschenströme (Merapi-Typ Nuées ardentes) führen (Abb. 1.2), vor allem an der räumlichen Nähe zu der nur 25 km entfernten Großstadt Yogya-karta, und den ca. 3 Millionen Menschen, die in unmittelbarer Nähe des Vulkans leben. Die

hohe Bevölkerungsdichte führt dazu, daß bereits kleinere vulkanische Ereignisse zu einer potentiellen Gefahr für die in der Umgebung des Vulkans lebende Bevölkerung werden oder – wie beim Ausbruch vom 22. November 1994 – katastrophale Auswirkungen haben können. Um diese Gefahr zu verringern, das Verständnis vulkanologischer Prozesse und Mechanismen zu vertiefen und verbesserte Strategien und Methoden zur Gefährdungsabschätzung und Vorhersage zukünftiger Eruptionen des Vulkans zu entwickeln, nehmen seit Mitte der 90er Jahre deutsche und indonesische Wissenschaftler verschiedener geowissenschaftlicher Teildisziplinen im Rahmen des internationalen Dekadenvulkanprojekts am Projekt MERAPI (Mechanism Evaluation, Risk Assessment, Prediction Improvement) unter Leitung des GeoForschungsZentrums in Potsdam und des Vulkanologischen Dienstes von Indonesien (VSI) teil.

Abb. 1.2. Pyroklastischer Strom (Nuée ardente) vom 22. November 1994. Der Ausbruch forderte 66 Todesopfer und zerstörte das Dorf Turgo 6 km südlich des Merapigipfels.

Die vorliegende Dissertation ist ein Beitrag zum deutsch-indonesischen Projekt MERAPI. Ziel der Arbeit ist es, zu einem vertieften Verständnis der Eruptionsprozesse des Merapi aus der Dynamik der Magmenentwicklung beizutragen. Dabei sollen die Mechanismen explosiver Eruptionen auf die Entwicklung chemischer und physikalischer Parameter im präeruptiven Magmasystem zurückgeführt werden. Das Erstellen einer stratigraphischen Abfolge mittels Detailprofilen in den tiefen Erosionsrinnen unter Verwendung von Markerhorizonten und Querkorrelationen und die Datierung der explosiven Eruptionen und Ruhezeiten dienen hierbei als Grundlage für die Rekonstruktion der Eruptionsgeschichte des Vulkans sowie einer zeit-integrierten Analyse der physikalischen und chemischen Parameter des präeruptiven Magmasystems des Merapi. Die Kenntnis der vulkanischen Aktivität und magmatischen Prozesse in der Vergangenheit des Vulkans sollen einen Beitrag zur mittel- bis langfristigen Risikoabschätzung und Eruptionsvorhersage am Merapi leisten.

Die Dissertation ist in insgesamt 13 Kapitel unterteilt. Im Anschluß an dieses Einführungskapitel folgt in Kapitel 2 ein Überblick über die regional-geologischen und tektonischen Rahmenbedingungen für den Merapi und dessen Stellung innerhalb des Sundabogens. Hinzu kommt eine Zusammenfassung der rezenten und historischen Eruptionstätigkeit und dem daraus resultierenden Gefährdungspotential für die in der unmittelbaren Umgebung ansässige Bevölkerung. Es folgt eine ausführliche Darstellung des Forschungsstandes bezüglich der allgemeinen geologischen und strukturellen Entwicklung des Gesamtvulkankomplexes. Die Kapitel 3, 4 und 5 beinhalten die Ergebnisse der im Rahmen dieser Arbeit durchgeführten vulkanologischen, stratigraphischen und chronologischen Untersuchungen am Merapi. Kapitel 3 gibt einen Überblick über die am Merapi auftretenden Ablagerungen und Eruptionstypen. In Kapitel 4 folgt eine Beschreibung der holozänen stratigraphischen Abfolgen des Vulkans. Zusätzlich werden 86 neue Radiokarbondatierungen, die im Verlauf dieser Arbeit durchgeführt wurden, vorgestellt und deren Bedeutung für die geologische Gesamtentwicklung des Vulkankomplexes diskutiert. Kapitel 5 dient der Beschreibung und Charakterisierung großer explosiver Eruptionen des Merapi während des Holozäns, die sich grundlegend von den dombildenden Eruptionen des 20. Jahrhunderts unterscheiden und bei der Risikoabschätzung und Beurteilung des Gefährdungspotentials künftiger Eruptionen des Vulkans berücksichtigt werden müssen. In Kapitel 6 folgt ein Überblick über die Petrographie und Mineralogie der in dieser Arbeit untersuchten Merapiproben. In Kapitel 7 wird die Geochemie der Merapiprodukte auf der Basis von 195 neuen RFA-Gesamtgesteinsanalysen an insgesamt 185 Proben des Gesamtkomplexes und 25 hochpräzisen ICP-MS-Spurenelementanalysen ausgewählter Proben diskutiert. Die Unterscheidung von zwei magmatischen Serien am Merapi - Medium-K versus High-K – ist eines der wesentlichen Ergebnisse der geochemischen Untersuchungen. Die Isotopengeochemie und Petrogenese der Merapimagmen sind Gegenstand der Ausführungen in Kapitel 8. Die präsentierten Sr-, Nd-, Pb- und O-Isotopendaten stellen eine erste detaillierte isotopengeochemische Untersuchung der Förderprodukte des Merapi dar. Einer der Schwerpunkte der Untersuchungen liegt in der isotopengeochemischen Charakterisierung der Gesteine der Medium-K- und High-K-Serie, die Aufschluß über die magmengenetischen Prozesse gibt, die zur Entstehung der beiden Magmaserien geführt haben. Die isotopischen Daten umfassen zusätzlich Sauerstoffisotope von Plagioklasseparaten sowie radiogene (Sr, Nd, Pb) und stabile (O) Isotopenverhältnisse lokaler Sedimente und Krustenxenolithe. In Kapitel 9 werden die zeitlichen geochemischen Variationen während der letzten 2000 Jahre innerhalb der High-K-Serie des Merapi beschrieben und ein Modell zur Erklärung der beobachteten zyklischen Variationen aus der Dynamik der Magmenentwicklung vorgeschlagen. Eine genauere Charakterisierung des Magmasystems des Merapi erfolgt in den Kapiteln 10, 11 und 12. Eine Zusammenfassung der Mineralchemie der Merapi-Vulkanite findet sich in Kapitel 10. Die Hauptelement- und Volatilengehalte (F, S, Cl, H₂O*) von Schmelzeinschlüssen und Matrixgläsern und die Entgasung der Merapimagmen werden in Kapitel 11 diskutiert. Die Mineralparagenesen und chemischen Zusammensetzungen von Mineralphasen, Matrixgläsern und Schmelzeinschlüssen in den Merapimagmen bilden die Grundlage für die Berechnung magmatischer Variablen, wie Druck, Temperatur, Sauerstoff-Fugazität, Silika-Aktivität und H₂O-Gehalt, auf der Basis von mineralchemischen Daten und Gleichgewichten zwischen verschiedenen Mineralphasen bzw. Mineralphasen und koexistierender Schmelze in Kapitel 12. Ein Resümee der wichtigsten Ergebnisse dieser Arbeit rundet die vorliegende Dissertation in Kapitel 13 ab.

Geologische Grundlagen und Rahmenbedingungen

Der Vulkankomplex des Merapi, 25 km nördlich der Großstadt Yogyakarta in Zentraljava gelegen, ist einer von zahlreichen Vulkanen, die das Subduktionszonensystem des indonesischen Inselbogens kennzeichnen.

Im ersten Teil dieses Grundlagenkapitels werden die geologisch-tektonischen Rahmenbedingungen für den Merapi vorgestellt und dessen Stellung innerhalb des Sundabogens beschrieben. Einem Abriß über die Geochemie der vulkanischen Gesteine des Sundabogens und speziell des Java-Bali-Sektors folgt eine Zusammenfassung des geologischen Aufbaus der Insel Java. Ein kurzer Überblick über die Geologie und Krustenzusammensetzung Zentraljavas schließt den ersten Teil des Kapitels ab. Letztere ist von besonderer Bedeutung, da die Merapimagmen während des Aufstiegs mit der unterlagernden Kruste reagiert haben und die Magmenzusammensetzungen dadurch beeinflußt sein könnten.

Im zweiten Teil folgt eine Beschreibung der rezenten und historischen Tätigkeit des Merapi unter besonderer Berücksichtigung der Häufigkeit und Typen explosiver Eruptionen und dem daraus resultierenden Gefährdungspotential für die in der unmittelbaren Umgebung ansässige Bevölkerung. Eine ausführliche Darstellung des heutigen Kenntnisstandes der allgemeinen geologischen und strukturellen Entwicklung des Gesamtvulkankomplexes des Merapi schließt dieses Einführungskapitel ab.

Regionale Geologie und geologisch-tektonischer Rahmen

Plattentektonischer Rahmen

Der Vulkankomplex des Merapi liegt im Mittelabschnitt des Sundabogens, einem Gebiet, das seit dem ausgehenden Paläozoikum durch konvergente Tektonik und Subduktionsprozesse charakterisiert ist (Katili, 1975). Er ist einer der zahlreichen quartären Vulkane, die den aktiven vulkanischen Bogen des indonesischen Archipels kennzeichnen.

Indonesien weist insgesamt 76 historisch aktive und mehr als 100 Vulkane mit Eruptionen während der letzten 10000 Jahre auf (Simkin & Siebert, 1994). Die Häufigkeit aktiver Vulkane Indonesiens ist Ausdruck eines aktiven Subduktionszonensystems, das sich von Sumatra im Westen über Java und die kleinen Sundainseln zur Bandasee und weiter nach Norden über die

Inselgruppe der Molukken, Halmahera und Sangihe zu den südlichen Ausläufern des philippinischen Archipels erstreckt (Abb. 2.1).

Subduktionsprozesse und die damit verbundene Bildung und Entwicklung magmatischer Inselbögen kennzeichnen weitestgehend die Geologie des indonesischen Archipels seit dem ausgehenden Paläozoikum. Die auf diese Weise entstandenen magmatischen Bögen sind heute in Form linear angeordneter vulkanisch-plutonischer Komplexe und damit assoziierter Sedimente nachweisbar, deren Maximalalter von Sumatra (Jungpaläozoikum) zum Bandabogen (Jungtertiär) abnehmen. Die geologische Entwicklung des indonesischen Archipels seit dem Mesozoikum ist somit gekennzeichnet durch eine nach Osten fortschreitende Verlagerung einer Reihe von Subduktionszonen, die mit einem kretazischen bis alttertiären Inselbogen im Bereich von Sumatra, Java und Kalimantan einsetzt und im frühen bis mittleren Tertiär durch einen Inselbogen in Ost-Java, Sumbawa, Flores, Wetar und Süd-Sulawesi fortgesetzt wird. Der Bandabogen scheint sich erst im Jungtertiär gebildet zu haben (Katili, 1975; Hamilton, 1979).

Abb. 2.1. Tektonische Übersichtskarte des indonesischen Inselbogens.

Das Subduktionszonensystem Indonesiens gliedert sich in die Bereiche des Sundabogens, des Bandabogens sowie des Sangihe- und Halmaherabogens (Abb. 2.1).

Der Sundabogen erstreckt sich über mehr als 4000 km vom Norden Sumatras zur Insel Flores. Er ist Ausdruck der nordgerichteten Subduktion der Indisch-Australischen Platte unter die Eurasische Platte. Im Bereich von Sumatra führt die Bewegungsrichtung der abtauchenden Platte schräg zur Tiefseerinne zur Entstehung der Trans-Sumatra-Störung, die parallel zur Kette der aktiven Vulkane in Sumatra verläuft und, ähnlich der San Andreas-Störung in Kalifornien, durch eine erhöhte Erdbebentätigkeit gekennzeichnet ist (Kimberly et al., 1998). Im Gegensatz dazu verläuft die Konvergenz in Java und dem östlichen Sundabogen nahezu senkrecht zum magmatischen Bogen. Die überfahrende Platte wird in Sumatra von jungpaläozoischen, mesozoischen und tertiären Gesteinen, ähnlich denen der malaiischen Halbinsel, aufgebaut, welche unterhalb von Java vermutlich fehlen (Hamilton, 1979; Edwards et al., 1993).

Der Sundabogen geht östlich von Flores in den Bandabogen über, der die morphologische Verlängerung des Sundabogens darstellt. Die Subduktionszone setzt sich in diesem Bereich zunächst für weitere 1500 km nach Osten fort, bis sie entgegen dem Uhrzeigersinn nach Norden umbiegt. Abgesehen von dieser Umbiegung, stellt der Bandabogen in einer weiteren Hinsicht eine ungewöhnliche Subduktionszone dar. Im Gegensatz zum Sundabogen, wo ozeanische Lithosphäre der Indisch-Australischen Platte subduziert wird, befindet sich der Bandabogen im Stadium der Kollision eines Inselbogens auf der überfahrenden Platte mit den Schelfbereichen des nach Norden driftenden australischen Kontinents auf der subduzierenden Platte (Hamilton, 1979). Die Kollision des Bandabogens mit dem passiven australischen Kontinentalrand erfolgte vor ca. 3 bis 5 Millionen Jahren (Vroon et al., 1995).

Nördlich des Bandbogens schließen sich der Sangihebogen (Morrice et al., 1983) und der Halmaherabogen (Morris et al., 1983) an, die sich bis zu den südlichen Ausläufern des Philippinenbogens erstrecken. Die zwischen Sangihe- und Halmaherabogen gelegene Molukkensee verengt sich im Zuge der Kollision der beiden magmatischen Bögen. Gleichzeitig scheinen Reste ozeanischer Lithosphäre im Bereich der Molukkensee ostwärts unter den Halmahera- und westwärts unter den Sangihebogen subduziert zu werden (Hamilton, 1979).

Tektonik, Geologie und Vulkanismus des Sundabogens

Der Sundabogen umfaßt von Westen nach Osten die Inseln Sumatra, Java, Bali, Lombok, Sumbawa und Flores (Hamilton, 1979). Der quartäre Vulkanismus des Sundabogens wird verursacht durch die Subduktion der ozeanischen Indisch-Australischen Platte, die mit einer Geschwindigkeit von ca. 6 cm/Jahr (Hamilton, 1979) unter die Eurasische Platte subduziert wird. Im Bereich von Java und Bali kann die Benioff-Zone von der ca. 6 bis 7 km tiefen Tiefseerinne südlich der Inseln bis zu einer Tiefe von ca. 650 km unterhalb der Javasee nachgewiesen werden. Die Geometrie der abtauchenden Platte zeigt ein relativ flaches Einfallen bis ca. 100 km Tiefe in den ersten ca. 200 km nördlich der Tiefseerinne und ein mit ca. 65° steileres Abtauchen nördlich davon (Hamilton, 1979).

Entlang der Subduktionszone des Sundabogens ändert sich neben der Zusammensetzung und Mächtigkeit der überfahrenden Eurasischen Platte auch das Alter der subduzierten Indisch-Australischen Platte (Abb. 2.2).

Im Bereich von Sumatra wird ozeanische Lithosphäre, die jünger als 100 Millionen Jahre alt ist, unter eine ca. 25 km mächtige, aus jungpaläozoischen bis tertiären Gesteinen aufgebaute, reife kontinentale Kruste subduziert (Katili, 1975; Whitford et al., 1977; Whitford et al., 1979; Edwards et al., 1993; Gaparon et al., 1994).

Abb. 2.2. Tektonische Karte des Sundabogens nach Edwards et al. (1993). Dargestellt ist die Änderung der Zusammensetzung und Mächtigkeit der überfahrenden Platte sowie die Dauer des Subduktionsvorgangs in den verschiedenen Abschnitten.

Im Unterschied dazu wird im Java-Sektor und östlichen Sundabogen ältere ozeanische Lithosphäre subduziert. Während die überfahrende Platte in Java aus einer ca. 20 km mächtigen und geologisch relativ jungen, im wesentlichen aus jungkretazischen und tertiären Gesteinen aufgebauten, "quasi-kontinentalen" Kruste besteht (Edwards et al., 1993), die in ihrer seismischen Geschwindigkeitsstruktur zwischen typischer ozeanischer und kontinentaler Kruste liegt (Abb. 2.3), weist die überfahrende Platte im östlichen Sunda- und Bandabogen einen in Bezug auf Zusammensetzung und Mächtigkeit eher ozeanischen Charakter auf (Katili, 1975; Hamilton, 1979; Edwards et al., 1993; Gasparon et al., 1994).

Mit dem Charakter der Kruste scheint ebenfalls eine Änderung der vulkanischen Förderprodukte entlang des Sundabogens einherzugehen. Auf Sumatra dominieren SiO₂-reiche, felsische Gesteine, wie z.B. die rhyodazitischen bis rhyolithischen Toba-Tuffe (Chesner & Rose, 1991), die möglicherweise den Einfluß der Kontamination mit kontinentaler Kruste anzeigen. Im Gegensatz dazu herrschen auf Java und den kleinen Sundainseln basische und intermediäre vulkanische Gesteine vor (Hamilton, 1979). Dieser Bereich des Sundabogens ist eines der klassischen und oft zitierten Beispiele für die Zunahme des K₂O-Gehalts der Inselbogenvulkanite mit zunehmender Entfernung von der Tiefseerinne bzw. der Tiefe der abtauchenden Lithosphärenplatte (Whitford, 1975a, b; Whitford & Nicholls, 1976; Whitford et al., 1979; Nicholls et al., 1980; Hutchison, 1982; Edwards et al., 1993). Im Java-Bali-Sektor des Sundabogens liegen die vulkanischen Zentren, die Gesteine der tholeiitischen Serie fördern, der Tiefseerinne am nächsten und ca. 100 bis 150 km oberhalb der Benioff-Zone. Nördlich davon schließt sich, ca. 150 bis 250 km über der Benioff-Zone, die Hauptvulkanfront der kalkalkalischen und high-K-kalkalkalischen Vulkane an, zu denen auch der Merapi gehört. Kreiche, leucitführende (high-K-alkalische) Gesteine treten im Norden von Java auf. Beispiel hierfür ist der Vulkan Muriah in Zentraljava, der sich über der, in diesem Bereich ca. 370 km tiefen, subduzierten Platte gebildet hat (Abb. 2.4). Mit der Zunahme des K₂O-Gehalts ist eine Erhöhung der ⁸⁷Sr/⁸⁶Sr-Verhältnisse verbunden, die damit tendenziell mit der Tiefe der Benioff-Zone ansteigen (Whitford, 1975b). Innerhalb der kalkalkalischen Gesteine des Sundabogens treten relativ große Unterschiede in den ⁸⁷Sr/⁸⁶Sr-Verhältnissen auf, die zur Unterscheidung einer "normalen" Kalkalkali-Assoziation mit ⁸⁷Sr/⁸⁶Sr-Verhältnissen führt (Whitford, 1975b).

Abb. 2.3. Seismisches N-S-Profil durch das Subduktionssystem des Sundabogens im Bereich von Zentraljava. Zahlenangaben sind P-Wellengeschwindigkeiten in km/s. Der Schnitt ist ca. 13-fach überhöht (nach Hamilton, 1979).

Die tholeiitischen bis high-K-kalkalkalischen vulkanischen Gesteine des Sundabogens weisen typische Inselbogensignaturen mit hohen Al_2O_3 - (> 13 Gew.%) und geringen TiO₂-Gehalten (< 1.2 Gew.%) (Perfit et al., 1980), LILE- und LREE-Anreicherung gegenüber den HREE und

HFSE, negative Nb-Anomalien, niedrige Ce/Pb-Verhältnisse (2-10) und hohe Ba/La-Verhältnisse (> 13) auf (Wheller et al., 1987; Stolz et al., 1990; Edwards et al., 1994). Die high-K alkalischen Laven sind ebenso durch niedrige TiO₂-Gehalte ähnlich denen typischer Inselbogenvulkanite gekennzeichnet. Allerdings weisen sie geringere LILE/HFSE- und LREE/HFSE-Verhältnisse, nur geringe Nb-Anomalien, erhöhte Ce/Pb-Verhältnisse (5-35) und variable Ba/La-Verhältnisse (3-72) auf (Stolz et al., 1990; Edwards et al., 1994; Foden & Varne, 1980; Varne & Foden, 1986).

Abb. 2.4. Geochemie ausgewählter quartärer Vulkane von Java und Bali (nach Nicholls et al., 1980).

Geologie von Java

Die im Vergleich zu Sumatra junge Kruste Javas wird überwiegend aus oberkretazischen und alttertiären Gesteinen aufgebaut. Diese werden von jungtertiären (neogenen) marinen Sedimenten überlagert, welche die Basis vieler der quartären Vulkane Javas bilden (Hamilton, 1979). Hinweise, die auf die Existenz alter kontinentaler Kruste hindeuten, fehlen. Die präeozänen Gesteine Javas bestehen aus einer Mélange, die u.a. Grünschiefer, Amphibolite, Eklogite, Serpentinite, Peridotite, Gabbros, Pillowbasalte, Radiolarite, pelagische Kalke, Pelite, Siltite, Tonschiefer und Konglomerate umfaßt und in wenigen Gebieten in SW- und Zentraljava aufgeschlossen ist. Diese Gesteine werden von eozänen Flachwasser- und kontinentalen Sedimenten

überlagert, die in Zentraljava in den Gebieten des Seraju-Beckens sowie der West-Progo- und Djiwo-Berge aufgeschlossen sind (van Bemmelen, 1949).

Die quartären Vulkane Javas sind überwiegend in einer medialen Zone entlang der Insel angeordnet. Im Norden der Insel treten einige junge, jedoch nicht mehr aktive Vulkane hinzu, die aus K-reichen, SiO₂-untersättigten Gesteinen aufgebaut sind. Der Gürtel aktiver, vorwiegend kalkalkalischer Vulkane wird unterlagert von älteren vulkanischen und vulkanoklastischen Gesteinen, in die oligozäne und neogene marine Sedimente und kleinvolumige plutonische Gesteine eingeschaltet sind. Insgesamt deutet das Vorkommen vorwiegend basischer und intermediärer Magmen auf das Fehlen einer felsischen kontinentalen Kruste unter den rezenten Vulkanen Javas hin. Das Vorhandensein ausschließlich oberkretazischer und alttertiärer Einheiten im Bereich des rezenten magmatischen Bogens scheint diesen Befund zu stützen. Java wird demnach von einer Kruste mit typischer kontinentaler Mächtigkeit aufgebaut, die sich jedoch erst in geologisch relativ junger Zeit durch Akkretion und Magmatismus infolge von Subduktionsprozessen gebildet und bisher keinen vollständig felsischen oder kontinentalen Charakter entwickelt hat. Die von Westen nach Osten abnehmenden Sr-Isotopenverhältnisse der "normalen" kalkalkalischen vulkanischen Gesteine Javas (Whitford, 1975b) deuten zudem auf eine mächtigere und SiO₂-reichere kontinentale Kruste im Westen Javas.

Abb. 2.5. Karte von Zentral- und Ostjava mit den wichtigsten geomorphologischen und strukturellen Einheiten (nach van Bemmelen, 1956).

Die Geologie von Zentraljava wird durch die strukturellen Einheiten der südlichen Küstenebene mit den Karangbolong-Bergen, der Süd-Seraju-Kette und West-Progo-Berge, der Südlichen Berge, den westlichen Ausläufern der Solo-Zone, der Nord-Seraju-Kette und der nördlichen Küstenebene geprägt (Abb. 2.5), die überwiegend aus Gesteinen des Tertiärs aufgebaut und teilweise von jüngeren alluvialen Ablagerungen überlagert werden. Prätertiäre Gesteine treten lediglich lokal begrenzt, z.B. in der Süd-Seraju-Kette, auf (van Bemmelen, 1949; 1956).

Viele der großen Stratovulkane Zentral- und Ostjavas erheben sich über der Tiefebene der Solo-Zone. Diese wird, unter einer z.T. mächtigen alluvialen Bedeckung, von Gesteinen tertiären und prätertiären Alters aufgebaut. Die ältesten Gesteinsformationen der Solo-Zone (Oberkreide und Alttertiär) sind u.a. in den Djiwo-Bergen bei der Stadt Klaten in Zentraljava aufgeschlossen (van Bemmelen, 1949).

Abb. 2.6. SIR-C/X-SAR-Satellitenbild P-45750 von Zentraljava (aufgenommen am 10.10.1994) mit den Vulkanen Merapi, Merbabu und Telomoyo, die entlang einer NNW-SSEstreichenden Störungszone angeordnet sind. Der Bildausschnitt umfaßt eine Fläche von 65 x 33 km.

Der Vulkan Merapi, am westlichen Ende der Solo-Zone gelegen, wird unterlagert von marinen Sedimenten jungtertären (neogenen) Alters (van Bemmelen, 1956). Er ist der jüngste einer Reihe vulkanischer Zentren, die sich vom Ungaran im Norden über die Vulkane Telomoyo und Merbabu zum Merapi erstrecken (Abb. 2.5, 2.6, 2.7). Die Aneinanderreihung dieser Vulkane ist Ausdruck der Fortsetzung einer regionalen, NNW-SSE-streichenden Störungszone (van Bemmelen, 1949; 1956), die südlich von Yogyakarta die, aus miozänen marinen Sedimenten aufgebauten Südlichen Berge des östlichen Zentraljavas entlang des Opak-Flusses unterbricht (Abb. 2.5).

Abb. 2.7. Übersichtskarten von (a) Zentraljava und (b) Merapi und Umgebung.

Abb. 2.7 zeigt eine Übersichtskarte von Zentraljava mit der Lage des Merapi und eine topographische Detailkarte der unmittelbaren Umgebung des Vulkans. Diese enthält topo-

graphische Merkmale wie Flußtäler und Berge sowie eine Reihe von geographischen Bezeichnungen und Ortsnamen, auf die in dieser Arbeit Bezug genommen wird. Dazu werden in vielen Fällen die indonesischen Begriffe *Gunung* (Berg, Hügel), *Kali* (Fluß), *Desa* (Dorf) und *Candi* (Tempel) oder die Abkürzungen *G*. für Gunung und *K*. für Kali verwendet. Abb. 2.7.b bildet die Grundlage für die in in den folgenden Kapiteln dargestellten thematischen Karten, bei denen aus Übersichtsgründen auf einen Teil der geographischen Informationen verzichtet wurde.

Die vulkanische Tätigkeit und geologische Entwicklung des Merapi: Grundlagen und Stand der Forschung

Die rezente und historische Aktivität des Merapi: Eruptionstypen und Risikoaspekte

Der Merapi gehört zu den aktivsten Vulkanen Indonesiens. Die rezente Aktivität ist gekennzeichnet durch länger andauernde Phasen der Lavadombildung durch die Extrusion hochviskoser Magmen und kurzen, zum Teil explosiven Phasen, die zum Kollaps des existierenden Lavadoms und die für den Merapi typischen kleinvolumigen pyroklastischen Ströme (Nuées ardentes) führen, die nur in wenigen Fällen Distanzen von mehr als 10 km von der Ausbruchsstelle erreichen. Beim letzten dieser Ausbrüche im Juli 1998 enstanden mehrere Nuées ardentes, die ca. 6.5 km den Westhang des Merapi hinunterflossen (Schwarzkopf & Schmincke, 2000).

Weitere nennenswerte Eruptionen während des letzten Jahrzehnts ereigneten sich in den Jahren 1992, 1994, 1996 und 1997. Während der überwiegende Teil der rezenten pyroklastischen Ströme auf den Südwest- und Westsektor des Merapi beschränkt ist, breiteten sich die pyroklastischen Ströme des Ausbruchs vom November 1994 zum ersten Mal seit dem Beginn des 20. Jahrhunderts wieder in südlicher Richtung aus. Die materialreiche, basale Gesteinslawine (Block- und Aschenstrom) folgte dabei im wesentlichen dem Tal des Boyong-Flusses und kam im Bereich der Ortschaft Kaliurang 6 km vom Merapigipfel entfernt zum Stillstand.

Die ältesten Überlieferungen über die Eruptionstätigkeit des Merapi berichten von einem heftigen Ausbruch des Vulkans um das Jahr 1006 AD, bei dem *"die Umgebung von Magelang und Djokjakarta in eine Wüste verwandelt wurde und u. a. der Baraboedoer nach und nach beinahe vollständig unter Asche begraben wurde"* (Hartmann, 1934a). Aus dem 14. und 15. Jahrhundert sind insgesamt 9 Ausbrüche überliefert, die allerdings nicht mit Sicherheit dem Merapi zugeordnet werden können. Die ersten zuverlässigen Berichte und Aufzeichnungen über die Ausbrüche des Merapi stammen aus der Mitte des 16. Jahrhunderts. Die Besteigung des Merapi durch die ersten Europäer im Jahr 1786 liefert die ersten direkten Beobachtungen

über den Vulkan und die ersten detaillierten Beschreibungen der Beschaffenheit und Morphologie des Gipfelbereichs des Merapi, der zu dieser Zeit aus dem Pasarbubar-Krater bestand, dessen Kraterrand im S und SW von einem jungen Lavadom bedeckt wurde (Hartmann, 1935a). Dieser folgt eine nahezu lückenlose Dokumentation der Eruptionstätigkeit des Merapi und der damit verbundenen Veränderungen des Vulkangipfels im 19. und vor allem im 20. Jahrhundert.

Seit dem Beginn direkter Beobachtungen im Jahr 1786 wird deutlich, daß viele der Eruptionen des Merapi im 19. Jahrhundert und nahezu sämtliche Ausbrüche des 20. Jahrhunderts mit Lavadomen im Gipfelbereich assoziiert sind, die sich über längere Zeiträume aufbauen und durch kurze, zum Teil explosive Phasen vernichtet werden.

Die ersten detaillierten Beschreibungen der Eruptionstätigkeit des Merapi finden sich in den Arbeiten von Junghuhn (1853-1854) und Verbeek & Fennema (1896). Systematische Beobachtungen existieren seit der ersten Hälfte des 20. Jahrhunderts mit wichtigen Beiträgen u.a. von Escher (1933a, b), Hartmann (1934a, 1934b, 1935a, 1935b, 1936); Kemmerling (1921), Neumann van Padang (1933, 1936), Reck (1931, 1935) und Taverne (1925, 1933). Erste Zusammenfassungen der historischen Ausbrüche des Merapi sind den Arbeiten von van Bemmelen (1949) und Neumann van Padang (1951) zu entnehmen. Eine umfassende Synthese der vorhandenen Informationen über den Merapi für den Zeitraum von 1768 bis 1998 findet sich in Voight et al. (2000).

Van Bemmelen (1949) faßt die Aktivität des Merapi seit dem Beginn des 19. Jahrhunderts zusammen. In diesem Zeitraum wechseln Perioden der Zerstörung des Gipfelbereichs durch explosive Ausbrüche mit Phasen effusiver Tätigkeit und Bildung von Lavadomen, die nach und nach die entstandenen Krater wieder verfüllen. Für den Zeitraum von 1800 bis 1948 wechseln 1-7 Jahre andauernde Perioden vulkanischer Aktivität mit scheinbaren Ruhephasen von 1-12 Jahren.

Eine nahezu kontinuierliche Aktivität des Merapi zeigt sich über das gesamte 20. Jahrhundert. Phasen eruptiver Tätigkeit umfassen die Zeiträume von 1902-04, 1905, 1906-07, 1908, 1909-13, 1915, 1920-21, 1922, 1924, 1930-31, 1933-35, 1939-40, 1942-43, 1944-45, 1948-49, 1953-58, 1961, 1967-1969, 1971, 1972-90 und 1992-93 (Simkin & Siebert, 1994). Hinzu kommen die Ausbrüche seit dem Jahr 1994 (s. vorige Seite).

Von den 69 historischen Eruptionen zwischen 1548 und 1992 wurden mindestens 29 von pyroklastischen Strömen (Nuées ardentes) begleitet, für die der Merapi bekannt geworden ist (Abb. 2.8).

Viele dieser Ausbrüche zerstörten Besiedlungen und mindestens 11 dieser Eruptionen forderten Todesopfer unter der in der unmittelbaren Umgebung des Vulkans lebenden Bevölkerung. Die größte Katastrophe des 20. Jahrhunderts ereignete sich während des Ausbruchs von 1930, bei dem 13 Dörfer total und weitere 29 teilweise zerstört wurden und 1369 Menschen starben (Simkin & Siebert, 1994).

Abb. 2.8. Überblick über die historischen Eruptionen des Merapi (Simkin & Siebert, 1994).

Der Begriff Nuée ardente wurde von Lacroix (1904, 1930) zur Beschreibung der Eruption der Montagne Pelée 1902 eingeführt. Demnach sind Nuées ardentes heiße pyroklastische Ströme, die aus zwei Teilen bestehen: eine basale materialreiche heiße Gesteinslawine, die dem Gelände folgt und auf Täler und Erosionsrinnen beschränkt ist und darüber eine die basale Gesteinslawine verdeckende Aschenwolke.

Macdonald (1972) unterscheidet bei den Nuées ardentes drei Typen: die Nuées vom Pelée-Typ, die mit einer gerichteten Explosion und einer Nadel aus zähflüssiger Lava assoziiert sind; die Nuées vom Saint-Vincent-Typ, die durch Zusammenfallen einer vertikalen Eruptionssäule aus einem offenen Krater entstehen, und die Nuées oder Glutlawinen vom Merapi-Typ, die beim gravitativen Kollaps eines Lavadoms entstehen. Äquivalente Bezeichnungen sind Nuées peléennes d'explosion dirigée (Lacroix, 1904; 1930), Nuées ardentes d'explosions vulcanienne (Lacroix, 1904) bzw. Nuées ardentes d'avalanche (Lacroix, 1904).

Bardintzeff (1984) unterscheidet bei den durch rein gravitativen Domkollaps ausgelösten Glutlawinen solche des Merapi-Typs im engeren Sinne, die kein frisches (juveniles) Glas enthalten und von einem bereits festen Dom abbrechen, von denen des Arenal-Typs, die aufgeschäumtes Glas enthalten und mit einem kollabierenden Dom aus im Innern noch flüssigen Lavablöcken assoziiert sind.

Lacroix (1904, 1930)	Macdonald (1972)	Charakteristika der Ablagerungen	Entstehungs- mechanismus
Nuées ardentes d'avalanche	Merapi-type Nuée ardentes	eckige lithische Klasten (cognate lithics)	Domkollaps
Nuées ardentes d'explosions vulcaniennes	St. Vincent-type Nuée ardentes	Lith. Klasten; Brotkru- stenbomben; Schlacken	Eruptionssäulen- bzw. Fontänenkollaps
Nuées peléennes d'explosion dirigée	Glowing clouds by directed blasts	s.o.	Gerichtete Druckwelle

Tab. 3.1. Klassifikation der Nuees ardentes des Merapi anhand der historischen Erup
--

Aus den überlieferten historischen Berichten läßt sich ableiten, daß der überwiegende Teil der Nuées ardentes am Merapi am ehesten dem Saint-Vincent- und Merapi-Typ von Macdonald (1972) entsprechen (Tab. 3.1).

So beschreibt Hartmann (1934a) die Entstehung von Saint-Vincent-Typ Nuées ardentes bei dem größten historischen Ausbruch des Merapi im Jahre 1872 wie folgt: "Unter heftigen Knallen und Schlägen, die von Sausen und Zischen begleitet waren, stieg eine gewaltige dunkelgraue Wolke von dem Gipfel auf. Feuersäulen lohten empor. Zu gleicher Zeit sah man graue bis rotbraune Wolken über den Vulkan hinunterrollen, welche innerhalb kurzer Frist den Merapi in einen Dunst von Asche und Sand hüllten". Weitere Ausbrüche dieser Art fanden u.a. in den Ausbruchsperioden der Jahre 1822-23, 1832-36, 1837-38(?), 1846-48, 1849(?), 1933-34, 1939-41, 1942-45, 1953-56(?), 1961(?), 1967-69(?), 1972-74, 1976-79, 1980-84(?) und 1994-98 statt (Voight et al., 2000).

Klassische Beispiele für durch Domkollaps enstandene Nuées ardentes am Merapi sind die Ausbrüche in den Jahren 1942-1943 (Francis, 1993), obgleich die erste Beschreibung dieses Phänomens auf Escher's (1933a) Interpretation der Domkollapsereignisse aus den Jahren 1921-22 zurückgeht, der diese Nuées ardentes beschrieb als einen "*Typ, der aus Lawinen aus Lavablöcken besteht, die bereits erhärtet aber immer noch heiß sind, die beim Herabstürzen in zahllose Stücke und Asche zerbrechen und so eine Glutwolke bilden"*. Weitere Ausbrüche im 19. und 20. Jahrhundert, die mit Domkollaps-Nuées ardentes assoziiert sind, ereigneten sich u.a. in den Ausbruchsperioden der Jahre 1832-36, 1837-38, 1846-48, 1849, 1862-64, 1865-1871, 1902-04, 1909-13, 1930-31, 1933-34, 1939-41, 1953-56, 1957-59, 1961, 1967-69, 1972-74, 1976-79, 1980-84, 1984-91, 1992-93, 1994-98 (Voight et al., 2000).

Beschreibungen von Nuées ardentes des Pelée-Typs (Tab. 3.1) finden sich lediglich in den Berichten von Grandjean (1931) und Escher (1933b) über die Eruptionsereignisse in den Jahren 1930-31. Allerdings bestreiten Kemmerling (1932) und Neumann van Padang (1933) das Auftreten von Nuées ardentes des Pelée-Typs bei diesen Ausbrüchen.

Abb. 2.9. Gefährdungskarte des Merapi-Vulkans (nach Purbawinata et al., 1996).

Insgesamt stellen die pyroklastischen Ströme (Nuées ardentes) die größte Gefahr für die Bewohner der unteren Merapihänge dar. Besonders gefährdete Gebiete sind der SW- und W-Sektor des Vulkans (Abb. 2.9), die das Hauptablagerungsgebiet der historischen pyroklastischen Ströme darstellen. Allerdings können schon geringe Veränderungen der Morphologie des Gipfelbereichs und der Lage des Lavadoms die Richtung der durch Domkollaps ausgelösten pyroklastischen Ströme beeinflussen, so daß diese – bei Ausbrüchen im 19. Jahrhundert und zuletzt im Jahr 1994 – die Südhänge des Merapi hinunterflossen. Während die materialreichen basalen Gesteinslawinen der Nuées ardentes weitestgehend auf die Täler und Erosionsrinnen beschränkt sind, beruhen die katastrophalen Auswirkungen dieser Eruptionen oft auf Druckwellen (Surges), die den heißen Block- und Aschenströmen vorauseilen und sich über topographische Barrieren hinweg ausdehnen können. Eine solche Druckwelle zerstörte beim Ausbruch vom November 1994 die Ortschaft Turgo am Rand des Boyong-Tales. Nur wenige der pyroklastischen Ströme (Nuées ardentes) des 20. Jahrhunderts sind mehr als 10 km die Hänge des Merapi hinuntergeflossen. In größeren Entfernungen stellen vulkanische Schutt- und Schlammströme (Lahars), welche die frisch sedimentierten, unverfestigten Ablagerungen der primären pyroklastischen Ströme mitreißen, eine der prinzipiellen und potentiellen Gefahren dar (Abb. 2.9).

Die geologische Entwicklung des Merapi: Stand der Forschung

Das heutige Bild des Merapi-Vulkans wird geprägt durch den 2961 m hohen aktiven Kegel, der als nahezu perfekter Stratovulkan über der Tiefebene um Yogyakarta aufragt.

Abb. 2.10. Ausschnitt aus dem SIR-C/X-SAR-Satellitenbild P-45750 von Zentraljava (Abb. 2.6) mit einigen morphologischen und strukturellen Merkmalen des Merapikomplexes. Der Bildausschnitt umfaßt eine Fläche von ca. 20 x 11 km.

Aus östlicher und nördlicher Richtung erkennt man, daß dieser Vulkankegel einem älteren, nur noch reliktisch erhaltenen Vulkankomplex aufsitzt, der in einer Art Somma-Wall den aktiven Vulkanbau umgibt. Weitere morphologische Merkmale sind eine Reihe markanter, steil aufragender Hügel im Südsektor (Gunung Turgo, Gunung Plawangan) und Nordostsektor (Gunung Bibi) des Vulkankomplexes (Abb. 2.10).

Abb. 2.11. Morphologische und vulkanologische Interpretation der Struktur des Merapi (nach van Bemmelen, 1956).

Van Bemmelen (1949; 1956) beschrieb als erster die aus einer älteren Vulkanruine und einem jüngeren Kegel bestehende Gesamtstruktur des Merapi (Abb. 2.11) und führte für die beiden Vulkankomplexe die Begriff<u>e Old Merapi</u> un<u>d New Merapi</u> ein. Überdies postulierte er einen, mit einer paroxysmalen Eruption in Zusammenhang stehenden, Kollaps der Westflanke des älteren Vulkanbaus, die entlang einer groß angelegten Störungszone ("Kukusan-Störung"; Abb. 2.10, 2.11) nach Westen abrutschte (Abb. 2.12). Der rezente Kegel des New Merapi bildete sich im Anschluß an dieses vulkanische Großereignis auf den Überresten des älteren Vulkanbaus, dessen Relikte heutzutage auf der Ost- und Nordseite des Gesamtkomplexes erhalten und aufgeschlossen sind.

Nachfolgende Untersuchungen haben die frühen Arbeiten von van Bemmelen (1949; 1956) in vielerlei Hinsicht ergänzt und wichtige stratigraphische Details hinzugefügt (Abb. 2.13).

So unterscheiden del Marmol (1989) und Newhall et al. (2000) neben New und Old Merapi im Sinne von van Bemmelen (1949; 1956), ein noch früheres Stadium in der Entwicklung des

Merapi, das die südlich des Merapigipfels aus dem Somma-Wall aufragenden Hügel des Gunung Turgo und Gunung Plawangan (Abb. 2.10) umfaßt und als <u>Very Old Merapi</u> (del Marmol, 1989) oder <u>Proto-Merapi</u> (Newhall et al., 2000) bezeichnet wird. Gunung Bibi, eine markante Erhebung im NE-Sektor des Merapi (Abb. 2.10), ordnen die Autoren dem Old-Merapi-Stadium zu (Abb. 2.13).

Abb. 2.12. Geologische Übersichtskarte des Merapi und geologischer Schnitt durch den Westsektor des Vulkans (nach van Bemmelen, 1949).

Berthommier (1990) und Camus et al. (2000) unterscheiden insgesamt vier Hauptstadien in der geologischen Entwicklung des Merapi (Abb. 2.13). Die Altersangaben sind der Arbeit von Camus et al. (2000) entnommen.

<u>Ancient Merapi</u> (40000 bis 14000 Jahre v.h.) umfaßt neben Gunung Turgo und Gunung Plawangan, ältere Ablagerungen des eigentlichen Vulkankegels des Merapi, die u.a. auf der Nordflanke des Vulkans aufgeschlossen sein sollen. Ancient Merapi entspricht damit dem Proto-Merapi- und Teilen des Old Merapi-Stadiums von Newhall et al. (2000).

Abb. 2.13. Verschiedene Interpretationen der Gesamtstratigraphie des Merapi.

<u>Middle Merapi</u> (14000 bis 2200 Jahre v.h.) wird von zwei mächtigen Lavasequenzen (Batulawang-Serie, Gadjah Mungkur-Serie) aufgebaut. Die ältere Batulawang-Serie wird durch die Kukusan-Störung (Abb. 2.10, 2.11), die von den Autoren als Abschnitt einer Avalanche Caldera interpretiert wird, abgeschnitten und gehört damit zum Old Merapi im Sinne von van Bemmelen (1949; 1956), del Marmol (1989) und Newhall et al. (2000). Die Gadjah Mungkur-Serie bildet einen jüngeren Kegel innerhalb der angenommenen Caldera und kann aus diesem Grund mit dem New-Merapi-Stadium von van Bemmelen (1949; 1956), del Marmol (1989) und Newhall et al. (2000) korreliert werden.

<u>Recent Merapi</u> (2200 Jahre v.h. bis 1786 AD) und <u>Modern Merapi</u> (seit 1786 AD) überlagern die Lavasequenzen des Middle-Merapi-Stadiums und sind die wesentlichen Einheiten, die den aktiven Kegel oder New Merapi (van Bemmelen, 1949, 1956; del Marmol, 1989; Newhall et al., 2000) aufbauen.

Berthommier (1990) und Camus et al. (2000) geben ein Alter von 40000 \pm 18000-15000 Jahren (U-Th-Ungleichgewichtsdatierung) für den Beginn der eigentlichen Merapiaktivität (Ancient Merapi) an. Den Autoren zufolge überlagern die Förderprodukte des Ancient Merapi

die älteren Einheiten des <u>Gunung Bib</u>i, der mit einem Alter von 0.67 ± 0.25 ka (K-Ar-Datierung) die Überreste eines älteren Vulkanbaus (<u>Prä-Merapi</u>) repräsentiert.

Abb. 2.14. Geologische Übersichtskarte des Merapi (vereinfacht und verändert nach Wirakusumah et al., 1989). Zusammengestellt vom Autor unter Berücksichtigung neuerer Daten von del Marmol (1989), Berthommier (1990), Camus et al. (2000) und Newhall et al. (2000). Abb. 2.14 zeigt eine modifizierte Version der geologischen Karte des Merapi von Wirakusumah et al. (1989), welche die neueren stratigraphischen und chronologischen Ergebnisse von del Marmol (1989), Berthommier (1990), Camus et al. (2000) und Newhall et al. (2000) berücksichtigt. Gegenüber der Originalkarte wurden die geologischen Grenzen beibehalten und lediglich die Einheiten des Gunung Bibi bzw. Prä-Merapi (Berthommier, 1990; Camus et al., 2000) und Proto-Merapi (nach Newhall et al., 2000) von den Einheiten des Old Merapi abgegrenzt.

Die Interpretation des Gunung Bibi als Relikte eines älteren Vulkanbaus (Berthommier, 1990; Camus et al., 2000) ist nicht unumstritten und muß sicherlich als vorläufig angesehen werden, da diese letztlich auf einer einzigen K-Ar-Altersdatierung eines möglicherweise alterierten Basalts basiert. Tatsächlich interpretieren Newhall et al. (2000) Gunung Bibi als laterales Eruptionszentrum des jüngeren Old-Merapi-Stadiums. So lange keine neuen Altersbestimmungen das verfügbare Alter widerlegen, wird in dieser Arbeit zunächst der Interpretation von Berthommier (1990) und Camus et al. (2000) gefolgt und Gunung Bibi als ein Relikt eines Prä-Merapi-Vulkans angesehen.

Generell lassen sich somit insgesamt vier stratigraphische Haupteinheiten am Merapi unterscheiden: (1) Gunung Bibi (Prä-Merapi); (2) Proto-Merapi; (3) Old Merapi und (4) New Merapi (Abb. 2.14).

Gunung Bibi (Prä-Merapi, nach Berthommier, 1990; Camus et al., 2000) sowie Gunung Turgo und Gunung Plawangan (Proto-Merapi), repräsentieren die Überreste der ältesten Einheiten des Merapi. Der überwiegende Teil des Vulkankomplexes wird von den Ablagerungen des Old Merapi und New Merapi eingenommen (Abb. 2.14).

Die in den frühen Arbeiten von van Bemmelen (1949; 1956) postulierte paroxysmale Eruption, die zur Zerstörung des Old Merapi führte, stellt eine der markanten Einschnitte in der Merapientwicklung dar und markiert per Definition das Ende des Old Merapi und den Beginn der Aktivität des New Merapi.

Allerdings ist die vulkanologische Interpretation dieses Ereignisses bis heute umstritten. Van Bemmelen (1949; 1956) nahm einen Kollaps bzw. ein Abgleiten der Westflanke des Old Merapi an und interpretierte die 20 km südwestlich des Merapigipfels gelegenen Gendol Hills und die daran angrenzenden Hügel (Gunung Soropaten, Gunung Ukir, Gunung Sari, Gunung Pring, Gunung Guling) als infolge des Abgleitens der Westflanke gefaltete Ablagerungen des Old Merapi (Abb. 2.12). Berthommier (1990) und Camus et al. (2000) griffen van Bemmelen's Idee auf und deuten die Gendol Hills als Ablagerungen einer Schuttlawine (debris avalanche) des kollabierenden Vulkanbaus in Analogie zu den Ereignissen am Mount St. Helens im Jahr 1980. Wirakusumah et al. (1989) und Newhall et al. (2000) bestreiten diese Interpretation und ordnen die Gendol Hills älteren (tertiären) vulkanischen Formationen zu, die in keinerlei Beziehung zum Merapi stehen. Gestützt wird diese Hypothese u.a. durch ein neues K-Ar-
Alter von 3.44 ± 0.09 Ma eines hornblendeführenden Andesits des Gunung Guling (Lanphere, unpubliziert; zit. in Newhall et al., 2000).

Neben der vulkanologischen Deutung wird auch das Alter des Old-Merapi-Kollapses kontrovers diskutiert (Abb. 2.13). Aufbauend auf den Ideen von van Hinloopen Labberton (1922) brachte van Bemmelen (1949; 1956) dieses Ereignis mit dem Niedergang des Mataram-Staates in Zentraljava in Zusammenhang und datierte folglich den Kollaps des Old Merapi auf das Jahr 1006 AD. Diese Hypothese wurde von Djumarma et al. (1986) in Frage gestellt, später jedoch von del Marmol (1989) wieder aufgegriffen und unter Berücksichtigung neuer archäologischer Erkenntnisse bezüglich der Verlagerung der Mataram-Kultur nach Ostjava auf das Jahr 928 AD zurückdatiert. Berthommier (1990) und Camus et al. (2000) geben auf der Basis stratigraphischer und geochronologischer Untersuchungen einen Zeitraum zwischen 2200 und 6700 Jahren v.h. für den vermuteten Sektorkollaps an. Newhall et al. (2000) hingegen vermuten mehrere Kollapsereignisse des Old Merapi, die möglicherweise eine oder mehrere Schuttlawinen im Süd- und Westsektor hinterließen und letztendlich den Somma-Wall auf der Ostseite des Merapi bildeten. Die Bildung eines frühen Borobudur-Sees durch die Aufstauung des Kali Progo vor etwa 3400¹⁴C-Jahren v.h. deutet auf einen möglichen frühen Kollaps des Merapi hin. Das jüngste Kollapsereignis, das zur Bildung des Somma-Walls des Old Merapi beitrug und das Ende des Old-Merapi-Stadiums markiert, ereignete sich den Autoren zufolge ca. 1900 ¹⁴C-Jahre v.h. (entsprechend dem Alter des jüngsten datierten pyroklastischen Stroms im E- bzw. SE-Sektor des Merapi) und verhinderte die weitere Ausbreitung pyroklastischer Ströme in östlicher Richtung. Leider konnten keine Schuttlawinen-Ablagerungen dieses Alters im Westsektor des Merapi gefunden werden, so daß der entscheidende Beweis für diese Hypothese fehlt. Somit bleibt letztendlich die Existenz des Somma-Walls selbst der einzig zwingende Hinweis auf einen Kollaps eines älteren Vulkanbaus am Merapi.

Die geologische Entwicklung des Merapi: I. Ablagerungstypen und Eruptionsmechanismen

In dem vorangegangenen Kapitel wurde der heutige Kenntnisstand bezüglich der geologischen Gesamtentwicklung des Merapi ausführlich dargestellt. In diesem und den beiden folgenden Kapiteln werden die Ergebnisse der eigenen Geländebeobachtungen und –untersuchungen am Merapi vorgestellt und diskutiert.

Zunächst werden in diesem Kapitel die wichtigsten Typen vulkanischer Ablagerungen am Merapi beschrieben und klassifiziert. Die pyroklastischen Strom- und Fallablagerungen beziehen sich im wesentlichen auf die jüngere, holozäne Eruptionsgeschichte des Vulkans (Kapitel 4), für die diese Ablagerungen und die daraus abgeleiteten Eruptionsmechanismen charakteristisch sind.

Lavadome und Lavaströme

Die rezente Tätigkeit des Merapi ist durch die Extrusion hochviskoser Magmen und die Bildung von Lavadomen im Gipfelbereich (2961 m ü. NN) gekennzeichnet (Abb. 3.1). Lavaströme entstehen ebenfalls im Zentralkrater des Merapigipfels und können einige wenige Kilometer die Hänge des Merapi hinunterfliessen.

Abb. 3.1. Der Lavadom des Merapi im Oktober 1995.

Nebenkrater und Flankenausbrüche sind – zumindest während des New Merapi-Stadiums – nicht bekannt. Lavaströme dominieren die Stratigraphie des Merapi vom Gipfel bis hinunter zu einer Höhe von ca. 1000-1200 m ü. NN, in der eine deutliche Verflachung der Hangneigung im Übergang zu den von pyroklastischen Ablagerungen dominierten mittleren und unteren Hängen des Vulkans (1000-200 m ü. NN) eintritt.

Auf der Nord- und Ostseite des Merapi sind mächtige basaltandesitische Lavasequenzen des Somma-Walls aufgeschlossen, die die Morphologie der oberen Vulkanhänge prägen und dem klassischen Old Merapi von van Bemmelen (1949) bzw. der Batulawang-Serie von Berthommier (1990) und Camus et al. (2000) entsprechen (Kapitel 2).

Im Gipfelbereich des Merapi treten im Bereich des Pasarbubar-Kraters am Gadjah Mungkur und Gunung Pusunglondon (Abb. 2.7) mächtige Lavaströme ähnlich denen der Batulawang-Serie auf. Diese von Berthommier (1990) und Camus et al. (2000) als Gadjah-Mungkur-Serie bezeichneten Laven werden, den Autoren zufolge, von der angenommenen Avalanche Caldera des Old-Merapi-Kollapses abgeschnitten und damit dem New-Merapi-Stadium zugeordnet. Demgegenüber ordnen van Bemmelen (1949) und Wirakusumah et al. (1989) diese dem Old Merapi zu.

An der Basis von Gunung Turgo und Gunung Plawangan (Abb. 2.7) treten mächtige Abfolgen von Lavaströmen basaltischer Zusammensetzung auf. Diese sind die einzig "echten" Basaltvorkommen am Merapi. Die gesamte, tektonisch unwesentlich beanspruchte Lavasequenz fällt nach Norden zum eigentlichen Merapikegel ein, was darauf hindeutet, daß es sich bei den beiden Hügeln um die Relikte eines älteren Vulkanbaus mit Zentrum südlich des Merapi handeln könnte.

Im Sattel zwischen dem Merapi und dem nördlich angrenzenden Vulkan Merbabu sind entlang der, auf den unteren südlichen Merbabuhängen verlaufenden, Straße von Tlatar nach Jrakah und Selo basaltische Lavaströme aufgeschlossen, die eindeutig dem Merbabu zugeordnet werden können. Diese werden von pyroklastischen Abfolgen überlagert, die vorwiegend vom Merapi, teilweise aber auch vom Merbabu stammen könnten.

Pyroklastische Ströme

Durch explosive Eruptionen oder gravitativen Lavadomkollaps entstandene pyroklastische Ströme und damit assoziierte Ablagerungen sind kennzeichnend für die rezente und historische Aktivität des Merapi (Kapitel 2), ebenso wie für die weiter zurückreichende holozäne vulkanische Tätigkeit des Vulkans.

Die Ablagerungen pyroklastischer Ströme finden sich überwiegend in den Akkumulationsfächern der mittleren und unteren Merapihänge zwischen 700 und 1000 m ü. NN und einer Entfernung von bis zu 10 km vom Merapigipfel. Lediglich kleinere pyroklastische Ströme werden – wie zuletzt bei den Ausbrüchen 1992 und 1997 – auf den oberen, steileren Hängen in einer Entfernung bis zu 4 km vom Eruptionszentrum abgelagert.

Während in den tiefen Erosionsrinnen und Radialtälern mehrere Meter mächtige Ablagerungen talfüllender pyroklastischer Ströme dominieren, finden sich auf den topographischen Hochlagen geringmächtige Ablagerungen pyroklastischer Ströme (Overbank-Fazies) in Wechsellagerung mit pyroklastischen Fall- und Surgeablagerungen. In größeren Entfernungen bis etwa 20 km vom Eruptionszentrum sind Lahar- und geringmächtige Tephralagen in die pyroklastischen Ström- und Surgeablagerungen eingeschaltet. In der Schwemmlandebene am Fuße des Merapi finden sich dünne Aschenfall- und möglicherweise Surgelagen zwischen den vorherrschenden Ablagerungen vulkanischer Schlammströme sowie alluvialer und fluviatiler Sedimente.

Die Verbreitung der durch Domkollaps verursachten pyroklastischen Ströme hängt wesentlich von der Lage des Lavadoms und der Morphologie des Zentralkraters ab. So liegt das Hauptablagerungsgebiet der rezenten pyroklastischen Ströme dieses Typs im Südwest- und Westsektor des Vulkans. Allerdings kann bereits eine geringe Veränderung der Lage des Lavadoms die Richtung der durch Domkollaps ausgelösten pyroklastischen Ströme beeinflussen, so daß diese, wie im Jahr 1954, die NW-Flanke oder, wie in den Jahren 1904-06 und 1994, die Sbzw. SSE-Hänge des Merapi hinunterfliessen können.

Die Richtung der mit dem Kollaps einer vertikal gerichteten Eruptionssäule in Zusammenhang stehenden pyroklastischen Ströme hängt weitestgehend vom Mikrorelief in der Gipfelregion, auf dem das Material zuerst auftrifft, ab.

Sämtliche pyroklastischen Ströme des Merapi folgen den engen und tiefen Radialtälern, die in die pyroklastischen und alluvialen Akkumulationsfächer eingeschnitten sind und hinterlassen mächtige talfüllende Ablagerungen kleinvolumiger pyroklastischer Ströme oder Nuées ardentes. Komplexe, z.T. diskordante Lagerungsverhältnisse lassen erkennen, daß sich die Talverläufe in der Eruptionsgeschichte des Merapi durch Verfüllung mit pyroklastischem Material und nachfolgenden Erosionsprozessen mehrmals verlagert haben.

Sämtliche pyroklastischen Ströme können die natürlichen Begrenzungen der Täler überfliessen und sich auf den flachen morphologischen Rücken ausbreiten. Die Ablagerungen dieser Overbank-Ströme sind in der Regel geringmächtiger, besser sortiert und feinkörniger als die entsprechenden Ablagerungen in den Tälern. Lithologisch sind sie durch allgemein weniger als 1 m mächtige sandige Grobaschen- und Lapillilagen gekennzeichnet, die häufig Holzkohle führen. Teilweise treten Schräg- und Kreuzschichtungen auf, die einen turbulenten Lateraltransport anzeigen. Andere weisen eine planare Schichtung auf und sind lediglich durch das Auftreten von durch den Lateraltransport eingeregelten und in vielen Fällen verkohlten Pflanzenresten als pyroklastische Stromablagerungen zu deuten.

Assoziierte Ablagerungen der diese Ströme begleitenden Aschenwolken sind generell feinkörniger als die zugehörigen materialreichen basalen Gesteinslawinen der eigentlichen pyroklastischen Ströme und hinterlassen geringmächtige Fein- bis Grobaschenlagen in den stratigraphischen Abfolgen. Die mit den pyroklastischen Strömen assoziierten Druckwellen oder Surges breiten sich unabhängig von der Topographie über einen weiteren Bereich als die materialreichen Block- und Aschenströme aus, die in vielen Fällen auf die Täler beschränkt sind. Aufgrund ihrer erhöhten Mobilität und Ausbreitungsgeschwindigkeit finden sich diese Surge-Lagen im Aufschluß gelegentlich an der Basis der zugehörigen Block- und Aschenstromablagerungen.

Das Feinmaterial der die pyroklastischen Ströme begleitenden Aschenwolke kann als pyroklastische Surge oder als Aschenfall abgelagert werden. Im zuerst genannten Fall können die Aschenablagerungen schräg- und kreuzgeschichtet sein und Reste angesengter oder verkohlter Pflanzenteile beinhalten. Letztere können, z.B. aufgrund von Luftfeuchtigkeit oder Niederschlägen während der Eruption, akkretionäre Lapilli führen.

Тур	Essentielle Komponenten		Eruptionsmechanismus
А	50 cm	dichte bis wenig porŏse Lava- domkomponenten (Blöcke), glasig bis hochkristallin, eckig, z.T. mit säuligen Abkühlungs- klüften	Lavadomkollaps (gravitativ)
В	CEN?	dunkle, glasreiche, poröse, blumenkohlartige Kom- ponenten, gerundet, teilweise mit, durch Hitzeoxidation, rotgefärbten Rändern	vulkanianisch Fontänenkollaps (explosiv)
с	BO	dunkle, glasreiche, porõse Brotkrusten-Komponenten, eckig bis kantengerundet	Fontänenkollaps (explosiv)
D		helle, glasreiche, hochporöse bzw. stark aufgeschäumte Bimskomponenten, stark ge- rundet während des Lateral- transports	Fontânen- oder Eruptionssäulenkollaps (explosiv)

Tab. 3.1. Pyroklastische Ströme (Nuées ardentes) am Merapi.

■ Abb. 3.2. (S. 30) Charakteristische Ablagerungen verschiedener Typen pyroklastischer Ströme (Nuées ardentes) am Merapi (Tab. 3.1):

(a) <u>Typ A.</u> Aufschlußbild des pyroklastischen Stroms (*pf*) vom November 1994 im Oberlauf des Kali Boyong (S-Sektor). Man beachte die überlagernden Ablagerungen eines vulkanischen Schlammstroms (*lh*), der unmittelbar nach der Platznahme des pyroklastischen Stroms in der Regenzeit einsetzte. Länge des Werkzeugs: 25 cm.

(b) <u>Typ B.</u> Pyroklastischer Strom mit charakteristischen blumenkohlartigen Komponenten in einem Aufschluß im Oberlauf des Kali Boyong (S-Sektor). Länge des Werkzeugs: 25 cm.

(c) <u>Typ C</u>. Pyroklastischer Strom (*pf*) von (?)1822/1872 mit charakteristischen Brotkrustenkomponenten in einem Aufschluß oberhalb des Merapi-Golfplatzes (S-Sektor). Man beachte den oxidierten Topbereich der Ablagerung. Länge des Hammers: 40 cm.

(d) <u>Typ D.</u> Pyroklastischer Strom mit überwiegend hellen Bimskomponenten in einem Aufschluß im Tal des Kali Apu (N-Sektor). Länge des Hammers: 40 cm.

Aschenfallablagerungen mehrerer, zeitlich assoziierter pyroklastischer Ströme können Mächtigkeiten von einigen Zehner Zentimetern erreichen und als stratigraphische Leithorizonte am Merapi verwendet werden (Andreastuti et al., 2000).

Aufgrund der hohen Erosionsraten bleibt jedoch lediglich ein geringer Prozentsatz dieser, aus der Aschenwolke pyroklastischer Ströme sedimentierten, Aschenablagerungen in den stratigraphischen Abfolgen erhalten. Obwohl im gleichen Maße der Erosion ausgesetzt und oftmals ähnlich rasch abgetragen und umgelagert, ermöglichen die in vielen Fällen reliktisch erhaltenen Ablagerungen primärer talfüllender pyroklastischer Ströme in den tiefen Erosionsrinnen des Merapi eine vollständigere Erfassung der historischen, pyroklastische Ströme produzierenden Eruptionen.

Aufgrund charakteristischer Lithologien lassen sich insgesamt vier Typen pyroklastischer Ströme (Nuées ardentes) am Merapi unterscheiden (Tab. 3.1; Abb. 3.2).

<u>Typ A</u> (Tab. 3.1) ist gekennzeichnet durch Blöcke und Lapilli überwiegend dichter Lavadomkomponenten (cognate lithics) in einer grobkörnigen Aschenmatrix. In Fällen, in denen diese Blöcke noch heiß zur Ablagerung gelangen, können säulige Abkühlungsklüfte entstehen und die Blöcke *in-situ* fragmentieren. Der lithologische Begriff "Block- und Aschenablagerung" beschreibt wohl am besten die Ablagerungen dieser für die rezente (und weiter zurückreichende) Merapiaktivität charakteristischen pyroklastischen Ströme, während die dafür oft verwendeten Bezeichnungen "Merapi-Typ-Nuée ardente" (Macdonald, 1972) und "Nuées ardente d'avalanche" (Lacroix, 1904) bereits deren Entstehung durch gravitativen Lavadomkollaps implizieren. Abb. 3.2.a zeigt ein Beispiel typischer talfüllender Block- und Aschenablagerungen dieses Typs pyroklastischer Ströme. <u>Typ B (Tab. 3.1)</u> weist fast ausschließlich dunkle und glasreiche blumenkohlartige juvenile Komponenten bis zu 100 cm Durchmesser auf, die plastisches Verhalten während und nach der Ablagerung zeigen können und statistisch verteilt in einer aus kleineren Lapilli und Asche bestehenden Matrix angeordnet sind. Lediglich zwei pyroklastische Ströme dieses Typs konnten in den jungholozänen stratigraphischen Abfolgen des Merapi dokumentiert werden; zum einen im Tal des Kali Apu im N-Sektor und zum anderen im Oberlauf des Kali Boyong im S-Sektor des Merapi (Abb. 3.2.b). Der zuletzt genannte Strom konnte mit der Radiokarbonmethode auf 232 \pm 17 Jahre v.h. datiert werden. Ähnliche Ablagerungen werden vom Vulkan Arenal (Costa Rica) beschrieben (Cole et al., 2000).

<u>Typ C</u> (Tab. 3.1) ist durch die Häufigkeit dunkler, glasreicher juveniler Brotkrustenkomponenten (Blöcke / Bomben bis max. 100 cm Durchmesser) charakterisiert, die, wie die juvenilen Komponenten der pyroklastischen Ströme von Typ B, plastische Verformungen während oder nach der Platznahme anzeigen können. Ein gut dokumentiertes Beispiel für diesen Typ pyroklastischer Ströme stellen die Ablagerungen der Eruption von 1930 oder 1969 (Newhall, pers. Mitteilung) im SW-Sektor des Merapi dar. Eine lithologisch ähnliche Ablagerung auf den Hochflächen (interfluves) des S-Sektors (Abb. 3.2.c) steht vermutlich mit den Eruptionsereignissen von 1822 oder 1872 in Zusammenhang (Newhall et al., 2000).

<u>Typ D</u> (Tab. 3.1) zeichnet sich durch charakteristische, helle, glasreiche, überwiegend gerundete und stark aufgeschäumte (bimsartige) juvenile Komponenten aus. Ablagerungen dieses Typs pyroklastischer Ströme sind häufig und charakteristisch für die jungholozäne vulkanische Aktivität des Merapi. Viele solcher Ströme konnten in den stratigraphischen Abfolgen des Merapi dokumentiert und mit Hilfe der Radiokarbonmethode datiert werden (Kapitel 4). Abb. 3.2.d zeigt ein Beispiel dieser durch Bimskomponenten charakterisierten pyroklastischen Ströme aus dem Tal des Kali Apu im N-Sektor des Merapi. Clarke & Voight (2000) beschreiben ähnliche "Bimsströme" am Vulkan Soufrière Hills auf Montserrat.

Die Entstehung der pyroklastischen Ströme der Typen B, C und D wird auf den Kollaps meist niedriger, kurzlebiger und vertikal gerichteter Eruptionssäulen oder -fontänen zurückgeführt, für die, wie am Arenal (Cole et al., 2000) und auf Montserrat (Clarke & Voight, 2000), am ehesten vulkanianische Eruptionsmechanismen in Frage kommen. Diese können, bei länger andauernder und gesteigerter Aktivität sowie offenem Schlot, in (sub)plinianische Phasen übergehen (Tab. 3.1). Die Begriffe "Saint-Vincent-Typ Nuée ardente" (Macdonald, 1972) und "Nuées ardente d'explosions vulcanienne" (Lacroix, 1904) implizieren die Entstehung relativ kleinvolumiger pyroklastischer Ströme durch den Kollaps vertikaler Eruptionsfontänen und können zur Charakterisierung der hier beschriebenen pyroklastischen Ströme der Typen B, C und D am Merapi herangezogen werden.

Alle hier beschriebenen Typen pyroklastischer Ströme des Merapi enthalten unterschiedliche Anteile lithischer Komponenten, die während des Transports aufgenommen oder während explosiver Phasen ausgestoßen wurden und in vielen Fällen die Durchschlagung präexistierender Lavadome oder Schloträumungsphasen anzeigen.

Pyroklastische Fallablagerungen

Pyroklastische Fallout-Ablagerungen finden sich häufig unter den jungen, holozänen Ablagerungen des Merapi und können als ebenso typisch für die Aktivität des Merapi angesehen werden, wie die kleinvolumigen pyroklastischen Ströme oder Nuées ardentes.

In den stratigraphischen Abfolgen bilden diese einzelne, einige wenige Zentimeter bis mehrere 10er Zentimeter mächtige Grobaschen- und Lapillilagen, die zusammen mit pyroklastischen Strom- und Laharablagerungen die unteren Hänge des Merapi bedecken und die Akkumulationsfächer der mittleren und unteren Merapihänge aufbauen. Diese Tephralagen werden getrennt durch feinere Aschenlagen, die teilweise ebenfalls einzelne Fallereignisse darstellen, in vielen Fällen jedoch aus der Aschenwolke pyroklastischer Ströme sedimentiert wurden.

Viele dieser Tephralagen führen helle, stark aufgeschäumte, schlackige oder bimsartige juvenile Komponenten und unterschiedliche Anteile hellgrauer oder dunkler, z.T. oxidierter lithischer Komponenten.

Bimsreiche Tephralagen, die Mächtigkeiten von wenigen Zentimetern bis max. ca. 50 cm erreichen können, finden sich in sämtlichen Sektoren des Vulkans und stellen aufgrund ihrer weiten Verbreitung wichtige tephrostratigraphische Leithorizonte am Merapi dar (Gertisser & Keller, 1998a, b, 2000a, b; Andreastuti et al., 2000).

Die markantesten dieser Tephralagen können über größere Entfernungen, vor allem im W-Sektor des Merapi, lateral korreliert werden. Einige wenige dieser Fallout-Lagen wurden nach ihrer Typlokalität benannt (Kapitel 4), da sie entweder zur lateralen Korrelation von pyroklastischen Einheiten herangezogen oder für weiterführende geochemische und petrologische Untersuchungsmethoden verwendet wurden.

Viele der am Merapi auftretenden Bimsfallablagerungen sind die Produkte explosiver, subplinianischer Eruptionen (Gertisser & Keller, 2000a, b; Andreastuti et al., 2000). Wichtige Details und physikalische Parameter einiger großer explosiver Eruptionen des Merapi während der vergangenen 4000 Jahre werden ausführlich in Kapitel 5 diskutiert.

Vulkanische Schlammströme (Lahars) und Schuttlawinen

Ablagerungen vulkanischer Schlammströme und fluviatile Umlagerungen primärer pyroklastischer Ablagerungen sind häufig beobachtete Phänomene in den rezenten und holozänen Abfolgen des Merapi.

Abb. 3.3. Vulkanische Schutt- und Schlammströme am Merapi: (a) Fluviatile Verlagerungen (*fl*) im oberen Bereich der Ablagerung eines primären pyroklastischen Stroms (*pf*) im Tal des Kali Apu (N-Sektor). (b) Verhärtete, verwitterungsresistente und aschenreiche Schlammstromablagerungen südlich von Cepogo (E-Sektor). Ablagerungen dieser Art finden sich in allen Sektoren des Merapi und erfordern eine Anhäufung großer Volumina vulkanischer Aschen auf den oberen Vulkanhängen. Eine ähnliche Ablagerung im N-Sektor (Lokalität G-7; Kapitel 4) wurde auf 315 ± 25 Jahre v.h. datiert. (c) Von Lahars zerstörter Tempel (Candi Morangan) westlich des Kali Gendol (S-Sektor). (d) Grobkörnige Schlammstromablagerungen im Boyong-Tal (S-Sektor) mit ehemals von Bäumen und Bambusgewächsen verfüllten Hohlformen (Pfeile). Länge des Werkzeugs: 25 cm. (e-f) Lobenförmige Ablagerung eines möglicherweise heiß abgelagerten Schuttstroms im Boyong-Tal (e) mit geklüfteten und während der Platznahme fragmentierten Komponenten (f). Länge des Hammers: 40 cm. Ähnliche Ablagerungen finden sich im Apu-Tal (N-Sektor).

Vulkanische Schutt- und Schlammströme oder Lahars können an allen Flanken des Merapi entstehen, in neuerer Zeit jedoch besonders häufig im Süd- und Westsektor, dem Hauptablagerungsgebiet der rezenten pyroklastischen Ströme (Lavigne et al., 2000).

Lahars am Merapi werden durch heftige Regenfälle ausgelöst, welche die frisch sedimentierten unverfestigten Ablagerungen der primären pyroklastischen Ströme mitreißen und vulkanische Schutt- und Schlammströme produzieren, welche die Flußtäler unterhalb ca. 500 m ü. NN verfüllen. Bei Ausbrüchen in der Regenzeit können die vulkanischen Schlammströme unmittelbar nach einem Eruptionsereignis einsetzen (Abb. 3.2.a). Näher am Vulkan finden sich häufig fluviatile Ablagerungen in die primären pyroklastischen Ablagerungen eingeschaltet, die durch die Verlagerung pyroklastischer Ablagerungen durch episodisch wasserführende Flüsse entstehen.

Lahars am Merapi reichen von grobkörnigen Schuttströmen mit hoher Sedimentkonzentration bis zu extrem sedimentbefrachteten Flüssen mit erhöhtem Wasseranteil und niedrigerer Sedimentkonzentration (hyperconcentrated flows). Im allgemeinen nimmt die Sedimentkonzentration der Lahars mit zunehmender Entfernung vom Vulkan ab, so daß sich die Lahars in Entfernungen von mehr als 20 km in sedimentarme und wasserreiche Schlammströme (indon. "banjirs") umformen.

In den stratigraphischen Abfolgen des Merapi finden sich eine Reihe unterschiedlich ausgebildeter vulkanischer Schutt- und Schlammströme sowie fluviatile Umlagerungen primärer pyroklastischer Ablagerungen. Einige Beispiele sind in Abb. 3.3 illustriert.

Das Auftreten von Schuttlawinen (debris avalanches) und deren Ablagerungen infolge des Flankenkollapses eines älteren Vulkanbaus (Old Merapi) ist aufgrund der Gesamtstruktur und des Fehlens paroxysmaler plinianischer Eruptionen am Merapi zwar fast zwangsläufig gefordert, dennoch konnten bis heute keine Schuttlawinenablagerungen am Merapi identifiziert werden, die einem solchen Ereignis zugeordnet werden können (s. Diskussion in Kapitel 2 dieser Arbeit und Newhall et al., 2000). Newhall et al. (2000) beschreiben Schuttlawinenablagerungen im Boyong-Tal, die nach der Eruption von 1994 für eine kurze Zeit durch Erosion freigelegt wurden und den Autoren zufolge einen kleineren Sektorkollaps des New Merapi vor weniger als 1130 ± 50 ¹⁴C-Jahren v.h. anzeigen.

Kapitel 4 Die geologische Entwicklung des Merapi: II. Stratigraphie und Chronologie

Obwohl bereits mehrere Arbeiten über die geologische Entwicklung des Merapi vorliegen (van Bemmelen, 1949, 1956; Bahar, 1984; del Marmol, 1989; Berthommier, 1990; Andreastuti, 1999; Andreastuti et al., 2000; Camus et al., 2000; Newhall et al., 2000), sind erste detaillierte tephrostratigraphische Untersuchungen über die jüngere Entwicklungsgeschichte des Vulkans erst in neuerer Zeit erschienen (Berthommier, 1990; Gertisser & Keller, 1998a, c, 2000a, b; Andreastuti, 1999; Andreastuti et al., 2000; Camus et al., 2000; Newhall et al., 2000a.

Die Arbeiten von Berthommier (1990) und Camus et al. (2000) konzentrieren sich auf die gesamte geologische und strukturelle Entwicklung des Merapi und stellen einige große Eruptionsereignisse in der jüngeren Entwicklungsgeschichte des Vulkans heraus. Newhall et al. (2000) geben einen Überblick über die Gesamtentwicklung des Vulkankomplexes und diskutieren dessen pyroklastische Ablagerungen der vergangenen 10000 Jahre. Die Arbeit von Newhall et al. (2000) beinhaltet darüber hinaus eine erste umfassende Aufstellung von Radiokarbondatierungen pyroklastischer Ablagerungen des Merapi. Andreastuti (1999) und Andreastuti et al. (2000) liefern ein detailliertes tephrostratigraphisches Gerüst mit insgesamt 18 Tephraformationen für die letzten 3000 Jahre der Merapiaktivität.

In diesem Kapitel wird die holozäne Eruptionsgeschichte des Merapi anhand der Ablagerungen ausgewählter Aufschlüsse und stratigraphischer Profile aus den verschiedenen Sektoren des Vulkans diskutiert. Dazu wurden diese in insgesamt neun im Uhrzeigersinn angeordnete Bereiche (A-I) (Abb. 4.1) eingeteilt.

Die stratigraphischen Untersuchungen werden ergänzt durch 86 neue Radiokarbondatierungen, die nicht nur ein "absolutes" Zeitgerüst für die stratigraphischen Abfolgen auf den Hochflächen (interfluves) liefern, sondern darüber hinaus eine zeitliche Einordnung der Ablagerungen talfüllender pyroklastischer Ströme in den Flanken der tiefen Erosionsrinnen des Merapi ermöglichen, die wichtige Informationen über Internstruktur, Aufbau und Alter des eigentlichen Vulkankegels liefern.

Die unkalibrierten C-14-Alter sind in den Abbildungen 4.2-4.42 und Tab. A2.1 des Anhangs aufgeführt. Die kalibrierten Altersbereiche (1 -Vertrauensintervall) in Kalenderjahren sind in Tab. A2.1 aufgelistet.

Die Unterscheidung einer älteren Medium-K- (> 1800-1900 Jahre v.h.) und jüngeren High-K-Serie (< 1800-1900 Jahre v.h.) stellt ein zusätzliches Kriterium zur zeitlichen und stratigraphischen Einordnung der jungen (holozänen) Förderprodukte des Merapi dar. Angaben zum geochemischen Charakter (Medium-K (MK) *versus* High-K (HK)) einzelner Einheiten finden sich in den Abbildungen 4.2-4.41. Bei den direkt datierten pyroklastischen Strömen wurde auf eine Angabe des geochemischen Charakters verzichtet. Pyroklastische Ströme, die älter als 1800-1900 Jahre sind, weisen Medium-K-Affinität, die jüngeren Ströme High-K-Affinität auf.

Abb. 4.1. Übersichtskarte der Lage der stratigraphischen Profile und Probenpunkte.

Die stetige Veränderung der Aufschlußverhältnisse am Merapi, sei es durch die dichte tropische Vegetation, die innerhalb kürzester Zeit bestehende Aufschlüsse überwuchert, oder Baumaßnahmen von Strassen oder Sabodämmen, die neue Aufschlüsse schaffen können, erfordert eine genaue Dokumentation der bestehenden Aufschlußsituation.

Zu diesem Zweck werden die in diesem Kapitel beschriebenen Aufschlüsse, stratigraphischen Sektionen und Probenentnahmestellen für viele der im Rahmen dieser Arbeit durchgeführten Altersbestimmungen mittels der Radiokarbonmethode nach Möglichkeit durch Photos oder geologische Skizzen ergänzt.

Beschreibung und Dokumentation holozäner pyroklastischer Ablagerungen des Merapi

Gebiet A (SSE-Sektor)

Aus Gebiet A (Abb. 4.1) im SSE-Sektor des Vulkans werden Geländebeobachtungen aus dem Tal des Kali Woro (Lokalität A-1; Abb. 4.2), einem der großen Flußtäler des Merapi, sowie der Ortschaft Deles (Lokalität A-2; Abb. 4.3) beschrieben.

Abb. 4.2 zeigt verschiedene Ablagerungen im Woro-Tal in einer Höhe von ca. 950 m ü. NN und einer Entfernung von etwa 7.5 km vom Merapigipfel. Die jüngsten Ablagerungen im Woro-Tal bilden ca. 15-20 m mächtige Block- und Aschenablagerungen talfüllender pyroklastischer Ströme (Abb. 4.2.a), die aufgrund historischer Berichte (Voight et al., 2000) den Eruptionsereignissen der Jahre 1904-06 zugeordnet werden können. Die Ablagerungen stellen ein typisches Beispiel für Domkollaps-Nuées ardentes am Merapi dar (Typ A; Tab. 3.1). In den Abbildungen 4.2.b-c und 4.2.d-e sind Beispiele und Abfolgen älterer Ablagerungen pyroklastischer Ströme im Woro-Tal dargestellt, die mit Hilfe von Radiokarbondatierungen zeitlich eingeordnet werden konnten.

Aufgrund fehlender stratigraphischer Beziehungen läßt sich die Qualität der ermittelten C-14-Alter für diese, wie auch für weitere pyroklastische Ablagerungen "isolierter" Aufschlüsse nur bedingt abschätzen, was unmittelbar die Frage nach der Verläßlichkeit von C-14-Datierungen für die Altersbestimmung pyroklastischer Ablagerungen am Merapi insgesamt aufwirft.

Prinzipiell liefert Holz aus den äußersten Bereichen von Bäumen, die in einem Bodenhorizont unterhalb der zu datierenden Ablagerung gewurzelt haben, das zuverlässigste und dem eigentlichen Eruptionsereignis naheliegendste Alter. Die ¹⁴C-Datierung organischer Substanz, die nicht aus solchen Bereichen stammt und bereits eine gewisse Zeitspanne vor der Eruption nicht mehr am Kohlenstoffaustausch mit der Atmosphäre teilgenommen hat, liefert höhere Alter als das eigentliche Eruptionsereignis. Darüber hinaus können pyroklastische Ströme und Lahars Holzkohle älterer Ablagerungen aufnehmen, was zu erheblichen Abweichungen der Alter innerhalb einer Ablagerung führen kann. Systematische Alterverfälschungen, z.B. aufgrund von Kontamination durch die Beimengung altersfremden Kohlenstoffs in der zu datierenden Substanz, führt zu scheinbaren ¹⁴C-Altern, die beträchtlich von denen der unkontaminierten Proben abweichen können. Häufige Ursachen hierfür sind Durchwurzelung, Infiltration durch Huminsäuren oder anthropogene Störungen. Besondere Vorsicht ist zudem in Gebieten mit aktivem Vulkanismus geboten, da die Pflanzen in der Umgebung von vulkanischen Gasaustritten ¹⁴C-freies Kohlendioxid assimilieren, welches zu einer signifikanten Altersüberhöhung führen kann (Bruns et al., 1980; Saupé et al., 1980; Rubin et al., 1987). Die Zersetzung von Kalk durch frische Huminsäuren hat einen vergleichbaren Effekt auf die ¹⁴C-Konzentration des Boden-CO₂ und damit auf das Alter eines Bodens (Geyh, 1983).

Die im Rahmen dieser Arbeit durchgeführten Radiokarbondatierungen am Merapi liefern fast ausnahmslos mit der Stratigraphie übereinstimmende Alter, so daß die im vorigen Abschnitt diskutierten grundsätzlichen Probleme der Radiokarbonmethode keine wesentliche Rolle bei den datierten Proben gespielt haben dürften und davon ausgegangen werden kann, daß auch die Alter derjenigen Proben, bei denen eine stratigraphische Kontrolle nicht möglich ist, unverfälscht und daher signifikant sind. Darüber hinaus ergaben die Datierungen verschiedener Proben aus einer Ablagerung generell übereinstimmende Ergebnisse innerhalb der analytischen Ungenauigkeit, welches ebenfalls für die Verläßlichkeit der durchgeführten Radiokarbondatierungen spricht.

In Abb. 4.3 ist ein in der Ortschaft Deles aufgenommenes stratigraphisches Profil dargestellt, das pyroklastische Ablagerungen 1965 \pm 47 Jahre v.h. umfaßt. Obwohl keine der dargestellten Tephralagen über einen größeren Bereich korreliert werden konnte, bestätigt das Auftreten der Jrakah- und Plalangan-Tephra (Andreastuti, 1999) und ein C-14-Alter von 1650 \pm 50 Jahre v.h. direkt oberhalb der Plalangan-Tephra (Andreastuti, 1999; Andreastuti et al., 2000), das in dieser Arbeit ermittelte C-14-Alter an der Basis der Abfolge (Andreastuti, pers. Mitteilung).

Abb. 4.3. Stratigraphisches Profil in Deles, SSE-Sektor. *Jra* Jrakah-Tephra, *Pla* Plalangan-Tephra (Andreastuti, 1999; Andreastuti et al., 2000). Zeichenerklärungen in Anhang 7.

Gebiet B (S-Sektor)

In diesem Abschnitt werden ausgewählte Aufschlüsse und stratigraphische Abfolgen aus Gebiet B (Abb. 4.1) des Merapi-Südsektors zwischen ca. 950 und 1050 m ü. NN und einer Entfernung von ca. 5 bis 12 km vom Merapigipfel beschrieben (Abb. 4.4-4.7). Ein kleiner Aufschluß westlich des Merapi-Golfplatzes bei Plosorejo (Abb. 4.4), ca. 12 km

südlich des Merapigipfels gelegen, zeigt eine Abfolge mehrerer junger (421 ± 85 Jahre v.h.) Domkollaps-Nuées ardentes (Typ A; Tab. 3.1). Das ermittelte Radiokarbonalter des ältesten dieser pyroklastischen Ströme impliziert ein Eruptionsalter zwischen 1430 und 1630 AD.

Abb. 4.4. Stratigraphisches Profil in Plosorejo, S-Sektor. Zeichenerklärungen in Anhang 7.

Einen ähnlichen Eruptionszeitraum umfassen die pyroklastischen Ablagerungen am Ortsausgang von Kaliadem unterhalb des dortigen Campingplatzes, die in Abb. 4.5 ausführlich beschrieben sind. Im Hangenden der Abfolge finden sich die Ablagerungen eines markanten pyroklastischen Stroms von Typ C (Tab. 3.1), der durch das Auftreten brotkrustenartiger Komponenten charakterisiert ist und eines der jüngsten Eruptionsereignisse im Südsektor des Merapi darstellt. Die Ablagerungen dieses pyroklastischen Stroms bedecken weite Bereiche zwischen den Tälern des Kali Kuning und Kali Gendol (Abb. 2.7, 4.1). Lithologisch ähnliche (korrelierbare) Ablagerungen finden sich als junge Talverfüllungen im Gendol-Tal in einer Höhe von ca. 750 m ü. NN. Nach historischen Überlieferungen scheinen die genannten Ablagerungen mit den Eruptionsereignissen aus den Jahren 1822 oder 1872 in Zusammenhang zu stehen (Newhall, pers. Mitteilung).

Abb. 4.5. Stratigraphisches Profil in Kaliadem, S-Sektor. Zeichenerklärungen in Anhang 7.

In den Abbildungen 4.6 und 4.7 sind ausgewählte stratigraphische Profile entlang der Straße Ngrangkah-Pelem-Kinarejo, ca. 5 km südlich des Merapigipfels, dargestellt. Die pyroklastischen Abfolgen in diesem Bereich umfassen einen Zeitraum von weit mehr als 1600 Jahren und stellen damit die ältesten Ablagerungen auf den Hochflächen des Merapi-Südsektors dar.

Abb. 4.6. Ausgewähltes stratigraphisches Profil in Pelem (Kinarejo), S-Sektor. Zeichenerklärungen in Anhang 7.

Das im Detail beschriebene Profil in Pelem (Abb. 4.6) zeigt eine Abfolge mehrerer bimsreicher Tephralagen mit eingeschalteten Bodenhorizonten und Ablagerungen pyroklastischer Ströme, von denen zwei mit Hilfe der Radiokarbonmethode auf 701 \pm 35 bzw. 1614 \pm 36 Jahre v.h. datiert werden konnten.

Abb. 4.7. Korrelation pyroklastischer Ablagerungen entlang der Straße Ngrangkah-Pelem-Kinarejo, S-Sektor. Zeichenerklärungen in Anhang 7.

Damit korrelierbare Einheiten in den Lokalitäten B-3 (1) und B-3 (3) (Abb. 4.7) liefern übereinstimmende Alter innerhalb des analytischen Fehlers. Zusätzliche C-14-Alter vermutlich korrelierbarer oder zumindest zeitlich assoziierter Ablagerungen aus dem Gebiet um Kinarejo sind in Tab. A2.1 im Anhang aufgeführt. Diese umfassen ein Radiokarbonalter von 780 \pm 23 Jahre v.h. (Probe M97-035) für die jüngere, und Alter von 1639 \pm 23 (Probe M96-036) bzw. 1796 \pm 86 Jahre v.h. (Probe M96-115) für die ältere der beiden, in den Abbildungen 4.6 und 4.7 dargestellten, datierten Ablagerungen.

Am Top der Abfolge von Lokalität B-3 (2) (Abb. 4.6) findet sich eine markante und im W-Sektor des Merapi weitverbreitete Tephraeinheit, die durch alternierende Bimslapilli- und Grobaschenlagen gekennzeichnet ist und nach ihrer Typlokalität Jurangjero als <u>Jurangjero 2-</u><u>Tephra</u> bezeichnet wird. Häufig findet sich ein humusreicher Bodenhorizont an der Basis dieser Einheit. Das Gebiet von Kinarejo stellt den südlichsten Punkt der Verbreitung dieser Fallout-Ablagerung dar, deren Minimalalter an dieser Stelle mit Hilfe einer in Lokalität B-3 (3) (Abb. 4.7) datierten überlagernden Einheit auf etwas mehr als 271 ± 59 Jahre v.h. festgelegt werden kann.

Die Alter der Tephralagen in den unteren Profilabschnitten der Ngrangkah-Pelem-Kinarejo-Abfolgen (Abb. 4.7) sind weniger gut definiert. Da die pyroklastischen Abfolgen, relativ zu der von Kinarejo nach Ngrangkah steil abfallenden Straße, nur leicht nach Süden einfallen, sind die stratigraphisch tiefsten Einheiten an der Basis des am südlichsten gelegenen Profils B-3 (1) in Ngrangkah aufgeschlossen. Diese Beobachtung ist konsistent mit dem Auftreten von Tephralagen mit Medium-K-Affinität im unteren Bereich des Ngrangkah-Profils, wie z.B. der an dieser Stelle ca. 40 cm mächtigen bimsreichen <u>Pelem-Tephra</u> an der Basis der Abfolge, die Alter von mehr als 1800 bis 1900 Jahre implizieren. Demgegenüber finden sich pyroklastische Ablagerungen der High-K-Serie, wie z.B. die lokal auftretende <u>Kinarejo-Tephra</u>, ausschließlich unter den jüngeren Ablagerungen der Ngrangkah-Pelem-Kinarejo-Abfolgen (Abb. 4.7).

Gebiet C (S- / SSW-Sektor)

Weiter westlich liefern die pyroklastischen Ablagerungen im Bereich des Kali Kuning und beiderseits des Boyong-Tals (S-Sektor) sowie im Tal des Kali Bedok (SSW-Sektor) (Gebiet C; Abb. 4.1) wichtige stratigraphische Detailinformationen (Abb. 4.8-4.13).

Abb. 4.8 zeigt die Abfolge pyroklastischer Ströme, Surgelagen und Laharablagerungen auf der E-Seite der Sidorejo-Brücke über das Kuning-Tal (nach Bronto & Sayudi, 1995).

Mit zwei neuen Altersbestimmungen, die im Rahmen dieser Arbeit durchgeführt wurden, ist es nun möglich, die Ablagerungssequenz stratigraphisch und zeitlich einzuordnen. Die ermittelten C-14-Datierungen liefern stratigraphisch konsistente Alter von 389 ± 23 Jahre v.h. für eine sandige fluviatile Lage oder möglicherweise primäre Surge-Ablagerung nahe der Basis des Profils sowie 296 ± 38 Jahre v.h. für den überlagernden pyroklastischen Strom.

Diese Alter bestätigen die überwiegend jungen Alter pyroklastischer Stromablagerungen auf den topographischen Hochflächen des S-Sektors (vgl. Lokalitäten B-1 und B-2), obwohl mit Ausnahme des pyroklastischen Stroms am Top der Kaliadem-Abfolge (Abb. 4.5), keiner dieser pyroklastischen Ströme mit historisch überlieferten Eruptionen in Zusammenhang gebracht oder über größere Distanzen korreliert werden kann.

In den Abbildungen 4.9-4.13 sind verschiedene Aufschlüsse im Bereich des Kali Boyong zwischen 680 und 1150 m ü. NN und einer Entfernung zwischen 5 und 12 km vom Merapigipfel dargestellt.

Abb. 4.8. Stratigraphisches Profil an der Sidorejo-Brücke, Kali Kuning, S-Sektor (nach Bronto & Sayudi, 1995). Neue C-14-Datierungen ergaben ein Alter von 389 ± 23 Jahre v.h. für eine sandige Einheit im unteren Bereich der Abfolge (*Fluviatil ?/Pyr. Surge 1*) und ein Alter von 296 ± 38 Jahre v.h. für den überlagernden pyroklastischen Strom (*Pyr. Strom 2*). Eine detaillierte lithologische Beschreibung des Profils findet sich in Bronto & Sayudi (1995). Zeichenerklärungen in Anhang 7.

Aufschlüsse beiderseits des Boyong-Tals bei der Ortschaft Kemiri (Abb. 4.9) zeigen Abfolgen junger pyroklastischer Ströme im S-Sektor des Merapi in einer Entfernung von etwa 12 km vom Merapigipfel. Die stratigraphische Abfolge auf der W-Seite des Kali Boyong (Abb. 4.9.a) wurde von Bronto & Sayudi (1995) dokumentiert und mit einem Radiokarbonalter von 470 \pm 80 Jahre v.h. (*pf 3*) zeitlich fixiert. Eine C-14-Datierung des pyroklastischen Stroms an der Basis des Profils (*pf 1*), die im Rahmen dieser Arbeit durchgeführt wurde, liefert ein dazu widersprüchliches Alter von 294 \pm 38 Jahre v.h., was auf eine Altersverfälschung bei einer der beiden datierten Proben hindeutet.

Auf der E-Seite des Kali Boyong (Abb. 4.9.b) finden sich beiderseits der Straße u.a. die mehrere Meter mächtigen Ablagerungen eines klassischen, talfüllenden pyroklastischen Stroms des Merapi-Typs (*pf 1*) (Typ A; Tab. 3.1). Radiokarbondatierungen von Holzkohleproben aus den Aufschlüssen auf beiden Straßenseiten liefern identische Alter von 620 ± 40 bzw. 625 ± 55 Jahre v.h. für diese Ablagerung, deren Verbreitung offensichtlich auf die heutige E-Seite des Boyong-Tals beschränkt ist.

Abb. 4.9. Ablagerungen pyroklastischer Ströme in Kemiri, Kali Boyong, S-Sektor: (a) Schematisches stratigraphisches Profil auf der W-Seite des Kali Boyong (nach Bronto & Sayudi, 1995). Eine Radiokarbondatierung des untersten pyroklastischen Stroms (*pf 1*) ergab ein Alter von 294 \pm 38 Jahre v.h. Bronto & Sayudi (1995) geben ein C-14-Alter von 470 \pm 80 Jahre v.h. für einen der überlagernden pyroklastischen Ströme (*pf 3*) an. (b) Block- und Aschenstromablagerungen klassischer Domkollaps-Nuées ardentes (Typ A; Tab. 3.1) auf der E-Seite des Kali Boyong.

Der Bau einer neuen Straße unterhalb der Ortschaft Turgo in das Tal des Kali Boyong in den Jahren 1996-97 ermöglichte für kurze Zeit detaillierte Einblicke in den geologischen Aufbau der westlichen Talflanke des Kali Boyong (Abb. 4.10). Die aufgeschlossene Sektion beinhaltet pyroklastische Ströme, vulkanische Schuttströme und fluviatile Ablagerungen, die in einem Zeitraum von mehr als 1146 \pm 20 Jahre v.h. bis weniger als 362 \pm 56 Jahren v.h. abgelagert wurden. Das höhere der beiden Alter entspricht in etwa dem der ältesten, in den Flanken des Boyong-Tals aufgeschlossenen und datierten pyroklastischen Ablagerungen des eigentlichen Merapikegels, für die ein Alter von 1324 \pm 23 Jahre v.h. (Probe M97-020) (Tab. A2.1) ermittelt wurde.

Die Datierungen pyroklastischer Ablagerungen auf der Hochfläche westlich des Boyong-Tals (Abb. 4.11) nahe der Lokalität C-3 (Abb. 4.10) ergaben Alter 547 ± 55 Jahre v.h., die darauf hindeuten, daß es sich hierbei um Overbank-Ablagerungen der jüngeren, in Abb. 4.10 dokumentierten, pyroklastischen Ströme handeln könnte.

Abb. 4.11. Stratigraphisches Profil auf der Hochfläche westlich des Kali Boyong, südlich von Turgo, S-Sektor. Die stratigraphische Position entspricht dem oberen Bereich von Abb. 4.10. Zeichenerklärungen in Anhang 7.

Abb. 4.12. Ablagerungen pyroklastischer Ströme im Unterlauf des Kali Boyong, S-Sektor.

Abb. 4.13. Schematische Aufschlußskizze im Oberlauf des Kali Boyong, S-Sektor. Dargestellt sind die Ablagerungen älterer pyroklastischer Ströme der Typen B (*pf 1*) und D (*pf 2*) (Tab. 3.1), die auf 232 ± 17 bzw. 124 ± 37 Jahre v.h. datiert wurden. Diese werden diskordant von den Ablagerungen des pyroklastischen Stroms von 1994 (*pf 3*) abgeschnitten und, wie diese, von einem jüngeren Lahar (*lh*) überlagert. Zeichenerklärungen in Anhang 7.

In den Abbildungen 4.12 und 4.13 sind Beispiele junger Ablagerungen, die das Boyong-Tal verfüllen, dargestellt. Diese zeigen komplexe Lagerungsverhältnisse, die durch die sukzessive Verfüllung des Tals und anschließende Erosions- und Umlagerungsprozesse der primären pyroklastischen Ablagerungen verursacht werden. Insgesamt weisen diese Ablagerungen relativ junge Alter von einigen wenigen hundert Jahren auf (Abb. 4.12, 4.13; Tab. A2.1).

Weitere Holzkohleproben für die C-14-Datierung wurden westlich des Boyong-Flusses im Tal des Kali Bedok (SSW-Sektor) entnommen. Die durchgeführten Datierungen pyroklastischer Stromablagerungen in den Talflanken sowie junger talfüllender pyroklastischer Ströme im Bedok-Tal zwischen 730 und 1050 m ü. NN ergaben Alter von 438 \pm 17, 1432 \pm 22 bzw. 3453 \pm 33 Jahre v.h. (Tab. A2.1).

Gebiet D (Gendol Hills; SW-Sektor)

Die Gendol Hills und die daran angrenzenden Hügel (G. Pring, G. Sari, G. Ukir, G. Soropaten, G. Guling) bilden eine Reihe niedriger Hügel, die sich ca. 20 km südwestlich des Merapigipfels

unmittelbar aus der Tiefebene um Yogyakarta erheben (Abb. 2.7, 4.1) und deren Entstehung seit den frühen Arbeiten von van Bemmelen (1949, 1956) immer wieder mit dem Merapi in Zusammenhang gebracht wurde (Berthommier, 1990; Camus et al., 2000). Andere Autoren bestreiten hingegen einen direkten Bezug zum Merapi und ordnen die Hügelkette älteren (tertiären) vulkanischen Formationen Zentraljavas zu (Newhall et al., 2000), eine Hypothese die durch ein neues K-Ar-Gesamtgesteinsalter eines hornblendeführenden Andesits des G. Guling von 3.44 ± 0.09 Ma (Lanphere, unpubliziert; zit. in Newhall et al., 2000) bestätigt wird.

Interessant ist der Neubefund über das Auftreten pyroklastischer Ablagerungen des Merapi in diesem Bereich, die bei einer Entfernung von ca. 20 km vom Eruptionszentrum substantielle explosive Eruptionen des Merapi anzeigen.

Abb. 4.14. Stratigraphisches Profil in der Ortschaft Lempong, Gendol Hills, SW-Sektor. Die dargestellte Lempong-Tephra (< 550 ± 30 Jahre v.h.) überlagert die älteren (tertiären) Ablagerungen der Gendol Hills und findet sich im gesamten Gebiet der Gendol Hills und der angrenzenden Hügel (G. Pring, G. Sari, G. Ukir, G. Soropaten, G. Guling). Zeichenerklärungen in Anhang 7.

Neben der möglichen Anlagerung jüngerer pyroklastischer Ströme an die Gendol Hills findet sich im gesamten Gebiet der Hügelkette eine durchschnittlich 15-20 cm mächtige charakteristische Abfolge von Aschen- und Bimslapillilagen (Lempong-Tephra), die das gesamte Gebiet

der Gendol Hills überschüttet und auch auf der dem Merapi abgewandten Seite westlich der Hügelkette in vergleichbarer Mächtigkeit auftritt (Abb. 4.14).

Ein Radiokarbonalter aus einer unterlagernden Ablagerung liefert ein Maximalalter von 550 ± 30 Jahren v.h. für die Lempong-Tephra, die eine vergleichsweise große Eruption des Merapi im 14. oder 15. Jahrhundert darstellt (Tab. A2.1).

Gebiet E (SW-Sektor)

Der SW-Sektor (Gebiet E; Abb. 4.1) des Merapi mit seinen tief eingeschnittenen Flußtälern des Kali Krasak, Kali Bebeng, Kali Batang, Kali Putih / Sat und Kali Blongkeng (Abb. 2.7, 4.1) ist das Hauptablagerungsgebiet der Domkollaps-Nuées ardentes des 20. Jahrhunderts. Trotz der hohen Sedimentationsraten der rezenten pyroklastischen Ströme sind in diesem Bereich einige der ältesten pyroklastischen Ablagerungen des eigentlichen Vulkankegels aufgeschlossen. In den Abbildungen 4.15 und 4.16 sind die pyroklastischen Ablagerungen und stratigraphischen Profile der Lokalität E-1 (Kali Batang; 820 m ü. NN) bzw. der ca. 1 km nördlich davon gelegenen Lokalität E-2 (Jurangjero / Kali Putih; 970 m ü. NN) dargestellt.

In beiden Abfolgen treten charakteristische Tephralagen auf, die zur Korrelation der beiden Profile herangezogen werden können. Diese umfassen die <u>Jurangjero 1-Tephra</u> (Selokopo-Tephra von Andreastuti (1999) und Andreastuti et al. (2000) (Andreastuti, pers. Mitteilung)) und <u>Jurangjero 2-Tephra</u>, die nach ihrer Typlokalität Jurangjero (Lokalität E-2) benannt wurden und an dieser Stelle durch mehrere C-14-Alter über- bzw. unterlagernder pyro-klastischer Ablagerungen zeitlich fixiert werden können (Abb. 4.16).

Zusätzliche Radiokarbondatierungen im W-NW-Sektor ermöglichen eine genauere zeitliche Einordnung dieser beiden wichtigen tephrostratigraphischen Leithorizonte im S-, SW- und W-NW-Sektor des Merapi (Kapitel 5). Diese deuten darauf hin, daß das ermittelte C-14-Alter von 525 ± 46 Jahre v.h. im Hangenden der Jurangjero 2-Tephra in der Lokalität E-2 (Abb. 4.16) zu hoch ist, was am Alter der Probe selbst liegen kann oder durch eine systematische Altersverfälschung der datierten Probe zu erklären ist.

An der Basis der Kali-Batang-Abfolge finden sich die mehrere Meter mächtigen Ablagerungen eines pyroklastischen Stroms des Merapi-Typs (Typ A; Tab. 3.1), der mit Hilfe der Radiokarbonmethode auf 2260 ± 30 Jahre v.h. datiert werden konnte. Dieser weist wie der basale pyroklastische Strom der Jurangjero-Abfolge Medium-K-Affinität auf, was zusammen mit der ähnlichen lithologischen und petrographischen Ausbildungsform beider Ströme darauf hindeutet, daß es sich um die Ablagerungen eines einzigen pyroklastischen Stroms oder zumindest zeitlich assoziierter pyroklastischer Ströme handelt.

Abb. 4.15. Stratigraphisches Profil im Tal des Kali Batang, SW-Sektor. Zeichenerklärungen in Anhang 7.

Abb. 4.16. Stratigraphisches Profil in Jurangjero / Kali Putih, SW-Sektor. Zeichenerklärungen in Anhang 7.

Abb. 4.17. Stratigraphisches Profil nahe des Kali Blongkeng, SW-Sektor. Leiter als Maßstab. Zeichenerklärungen in Anhang 7.

Damit würde die Jurangjero-Abfolge (Abb. 4.16), die eine der vollständigsten und am besten dokumentierten jungholozänen pyroklastischen Sequenzen am Merapi darstellt, eine Zeitspanne von mehr als 2000 Jahren umfassen. Zusammen mit dem Kali-Batang-Profil in Lokalität E-1, stellt die jungholozäne pyroklastische Abfolge in Jurangjero (Lokalität E-2) eine der wenigen Lokalitäten am Merapi dar, in der der Übergang von der älteren Medium-K- zu der jüngeren High-K-Serie direkt aufgeschlossen ist.

Die Jurangjero-Abfolge beinhaltet neben einer Reihe geringmächtiger Aschen- und Lapillilagen weitere charakteristische Bimstephren. Die jüngere <u>Baturduwur-Tephra</u> besteht aus zwei Bimslapillilagen mit High-K-Affinität und einer eingeschalteten dünnen Aschenlage, die in einer Zeitspanne zwischen 1643 \pm 55 und 1426 \pm 40 ¹⁴C-Jahren v.h. eruptiert wurde. Im

Gegensatz dazu gehört die ältere (> 1643 ± 55 ¹⁴C-Jahre v.h.), durch drei aufeinanderfolgende markante Bimslapillilagen gekennzeichnete<u>, Baturngisor-Tephra</u> der Medium-K-Serie an (Abb. 4.16).Westlich der Lokalität E-2 (Jurangjero / Kali Putih) findet sich nahe des Kali Blongkeng auf ca. 720 m ü. NN eine weitere Abfolge junger Pyroklastite des Merapi (Abb. 4.17), die sich mit den Ablagerungen in den zuvor beschriebenen Lokalitäten korrelieren läßt. Das Auftreten der Tephralagen Jurangjero 1 und Jurangjero 2 zeigt, daß an dieser Stelle lediglich die jüngeren Einheiten der Lokalitäten E-1 und E-2 aufgeschlossen sind. Die Jurangjero 2-Tephra wird in diesem Aufschluß direkt von einer mehrere Meter mächtigen Fließeinheit eines Block- und Aschenstroms überlagert, der mit der Radiokarbonmethode auf 242 ± 28 Jahre v.h. datiert werden konnte und ein Eruptionsereignis im 17. oder 18. Jahrhundert anzeigt (Tab. A2.1).

Abb. 4.18. Abfolge mächtiger pyroklastischer Ströme (*pf*) der High-K-Serie und zwischengeschalteter Tephralagen (*t*) bei Kaligesik, Kali Bebeng, SW-Sektor. Maßstab: 2 m.

In einer Höhe von 820 m ü. NN ist im Bebeng-Tal bei Kaligesik, ca. 7.5 km vom Merapigipfel, eine weitere Sequenz junger pyroklastischer Ströme im SW-Sektor des Merapi dokumentiert. Einer der 1-3 m mächtigen Block- und Aschenströme, die lediglich von geringmächtigen Tephralagen bzw. fluviatilen Ablagerungen getrennt werden, wurde auf 342 ± 22 Jahre v.h. datiert (Abb. 4.18). Dies entspricht einem Eruptionsalter zwischen 1490 und 1640 AD (Tab. A2.1).

Näher am Vulkan wurden weitere Holzkohleproben zur Datierung und zeitlichen Einordnung der pyroklastischen Abfolgen im Bebeng-Tal entnommen. Wie in den anderen, tief eingeschnittenen Radialtälern des Merapi zeigen sich auch im Tal des Kali Bebeng komplexe Lagerungsverhältnisse der pyroklastischen Ablagerungen, die die Erstellung einer Detailstratigraphie nahezu unmöglich erscheinen lassen. Erosionsreste pyroklastischer Ströme in den Talflanken des Kali Bebeng, ca. 1050 bis 1200 m ü. NN, konnten mit Hilfe darin eingeschlossener organischer Substanz datiert werden. Die C-14-Datierungen dieser pyroklastischen Ströme ergaben Alter von 3218 ± 71 , 5819 ± 54 bzw. 8380 ± 230 Jahre v.h. (Tab. A2.1).

Die datierten pyroklastischen Ströme im Bebeng-Tal gehören damit zu den ältesten Ablagerungen des Merapikegels. Dies ist ein wesentlicher Neubefund für den Merapi, da bisher davon ausgegangen wurde, daß im SW- bzw. W-Sektor des Merapi Ablagerungen von weniger als 1900 Jahren v.h. vorherrschen und die hohen Sedimentationsraten der jüngeren und rezenten vulkanischen Tätigkeit ältere Ablagerungen in diesem Gebiet weitestgehend unter sich begraben haben (Newhall et al., 2000).

Gebiet F (W-NW-Sektor)

In den Abbildungen 4.19-4.28 sind ausgewählte stratigraphische Profile aus dem W-NW-Sektor des Merapi (Gebiet F; Abb. 4.1) zwischen dem Lamat-Tal im Süden und dem Kali Pabelan bzw. Kali Apu im Norden dargestellt. Diese befinden sich in einer Höhe zwischen 670 und 1030 m ü. NN und einer Entfernung von 5 bis 12 km vom Merapigipfel.

Abb. 4.19. zeigt einen der vielen Aufschlüsse entlang der Straße von Dukun nach Keningar südlich des Kali Senowo (Abb. 2.7, 4.1). Die helle Tephralage im oberen Bereich der Abfolge ist die Jurangjero 2-Tephra, die an dieser Stelle von zwei im W-NW-Sektor weitverbreiteten pyroklastischen Strömen unterlagert wird. Zwischen diesen tritt eine dünne fluviatile Sandbzw. Grobaschenlage auf, die eine kurze Ruhephase bzw. Eruptionsunterbrechung zwischen den beiden pyroklastischen Stromereignissen anzeigt. Beide Ströme weisen typische dunkle (glasreiche) Blöcke auf, die akzessorisch Olivin und gelegentlich große Amphibolkristalle mit charakteristischen Reaktionssäumen aufweisen und die Wiedererkennung und Identifikation dieser Fließeinheiten im Gelände erleichtern.

Lithologisch ähnliche pyroklastische Stromablagerungen finden sich im gleichen stratigraphischen Niveau (zwischen der Jurangjero 2-Tephra im Hangenden und der Jurangjero 1-Tephra im Liegenden) beiderseits des Senowo-Tals in Kajangkoso (Lokalität F-2) und im Bereich der Ortschaft Muntuk (Lokalitäten F-3 und F-4) (Abb. 4.20-4.22). Die Mächtigkeiten und Komponentengrößen dieser korrelierbaren Ablagerungen variieren allerdings beträchtlich über relativ kurze Distanzen. So ist die pyroklastische Stromablagerung im Kali-Senowo-Profil (Lokalität F-3; Abb. 4.21) durch eine grobe Block- und Aschenstrom-Fazies und eine Mächtigkeit von ca. 2.5 m charakterisiert, die in eine feinerkörnige und geringmächtige Overbank-Fazies im Muntuk-Profil (Lokalität F-4; Abb. 4.22) übergeht.

Im Liegenden der Jurangjero 1-Tephra treten im W-NW-Sektor weitere markante Bimstephren auf, die in den stratigraphischen Abfolgen im SW- und S-Sektor des Merapi nicht vorkommen. Die <u>Trayem-Tephra</u>, benannt nach ihrer Typlokalität in der Ortschaft Trayem (Lokalität F-5; Abb. 4.23), findet sich im Liegenden der Jurangjero 1-Tephra in nahezu allen Aufschlüssen auf den Hochflächen zwischen den Tälern des Kali Senowo und des Kali Apu (Abb. 4.20, 4.21, 4.22, 4.23, 4.25, 4.27, 4.28). Mit einer maximal beobachteten Mächtigkeit von 52 cm in einer Entfernung von 5 km vom Merapigipfel stellt sie die mächtigste Bimsfallablagerung des Merapi und gleichzeitig einen der wichtigsten tephrostratigraphischen Leithorizonte im W-NW-Sektor dar. Die Datierung eines Bodenhorizonts direkt an der Basis der Einheit (Lokalität F-6; Abb. 4.24) impliziert ein Maximalalter von 1047 ± 36 Jahre v.h. und ein tatsächliches (kalbriertes) Eruptionsalter zwischen 984 und 1022 AD für die Trayem-Tephra.

Die Trayem-Tephra läßt sich mit Einheit 15 der stratigraphischen Sektion M (Candi Duwur-Candi Lumbung-Candi Pendem) von Newhall et al. (2000) korrelieren (Newhall, pers. Mitteilung). Diese streicht direkt oberhalb des Tempelbodens des Candi Lumbung aus (Newhall et al., 2000), einem kleinen Hindu-Tempel am Kali Trising nahe der Lokalität F-8 (Abb. 4.26), der wie viele der großen und kleinen buddhistischen und hinduistischen Tempel in Zentraljava in einem Zeitraum zwischen 732 und 928 AD erbaut wurde (Newhall et al., 2000). Dieser Befund belegt eindrucksvoll die Überschüttung und mögliche Zerstörung kleiner Tempelanlagen in der Umgebung des Merapi bereits kurze Zeit nach deren Erbauung durch substantielle explosive Eruptionen des Vulkans.

Die Trayem-Tephra entspricht vermutlich der Temusari-Tephra von Andreastuti (1999) und Andreastuti et al. (2000) (Andreastuti, pers. Mitteilung). Allerdings stimmt weder die zeitliche Einordnung (s. oben) noch die Verbreitung der Trayem-Tephra (Kapitel 5) mit dieser überein.

Im Liegenden der Trayem-Tephra tritt in einigen Profilen des W-NW-Sektors (Abb. 4.21, 4.23, 4.28) eine weitere markante, relativ schlecht sortierte Bimstephra – <u>Gowoksabrang-Tephra</u> – auf, die lokal korreliert und geochemisch der High-K-Serie zugeordnet werden kann. Diese wird in der Typlokalität F-10 (Abb. 4.28) von einem pyroklastischen Strom der Medium-K-Serie unterlagert, der mit einem Alter von 1947 \pm 105 Jahren v.h. einer der jüngsten Ablagerungen der Medium-K-Serie des Merapi darstellt.

In einem stratigraphisch tieferen Niveau finden sich zwei weitere weitverbreitete Tephralagen im W-NW-Sektor des Merapi, die nach ihrem Vorkommen in der Ortschaft Paten (Abb. 4.27) als <u>Paten 1-Tephra</u> und <u>Paten 2-Tephra</u> bezeichnet wurden. Die verfügbaren Radiokarbondatierungen aus den stratigraphischen Abfolgen und Aufschlüssen in Kajangkoso / Kali Senowo (Lokalität F-2; Abb. 4.20) und Candi Asu / Kali Trising (Lokalität F-8; Abb. 4.26) implizieren Alter zwischen 2264 ± 73 und 4153 ± 37 Jahre v.h. für die Eruption der beiden Tephralagen, die geochemisch der Medium-K-Serie zugeordnet werden können. Das höhere der beiden Alter liefert nicht nur ein Maximalalter für die Paten 1-Tephra, sondern auch für den überwiegenden Teil der pyroklastischen Abfolgen auf den morphologischen Rücken (interfluves) im Westsektor des Merapi.

Abb. 4.19. Stratigraphisches Profil nahe der Ortschaft Beruttegal, unterhalb Keningar, W-NW-Sektor. Maßstab: 1m. Zeichenerklärungen in Anhang 7.

Abb. 4.20. Pyroklastische Abfolge in der südlichen Talflanke des Kali Senowo bei Kajangkoso, W-NW-Sektor. Maßstab: 1m. Zeichenerklärungen in Anhang 7.
Kapitel 4

Abb. 4.21. Stratigraphisches Profil der nördlichen Talflanke des Kali Senowo unterhalb Muntuk, W-NW-Sektor. Länge des Werkzeugs: 25 cm. Zeichenerklärungen in Anhang 7.

Abb. 4.22. Stratigraphisches Profil in der Ortschaft Muntuk, W-NW-Sektor. Maßstab und Spatenlänge: 1m. Zeichenerklärungen in Anhang 7.

Abb. 4.23. Stratigraphisches Profil in der Ortschaft Trayem, W-NW-Sektor (Typlokalität der Trayem-Tephra). Zeichenerklärungen in Anhang 7.

Abb. 4.24. (a) Aufschlußbild und (b) geologische Skizze der pyroklastischen Ablagerungen im Tal des Kali Mangu, W-NW-Sektor. Gezeigt wird die Überlagerung von Trayem- und Paten 2-Tephra. Eine C-14-Datierung von Holzkohlepartikeln aus dem Paläobodenhorizont unterhalb der Trayem-Tephra liefert ein Maximalalter von 1047 \pm 36 Jahre v.h. für dieselbe. Länge des Werkzeugs: 25 cm.

Abb. 4.25. Stratigraphisches Profil auf der nördlichen Talseite des Kali Pabelan, W-NW-Sektor. Maßstab: 1 m. Zeichenerklärungen in Anhang 7.

Kapitel 4

■ Abb. 4.26. (S. 66 oben) Detailansicht der Tephralagen Paten 1 und Paten 2 in einem Aufschluß am Kali Trising nahe Candi Asu. Für den Paläoboden an der Basis der Paten 1-Tephra wurde ein Alter von 4153 ± 37 ¹⁴C-Jahre v.h. ermittelt. Länge des Werkzeugs: 25 cm.

Abb. 4.27. (S. 66 unten) Stratigraphisches Profil in der Ortschaft Paten, W-NW-Sektor (Typlokalität der Tephralagen Paten 1 und Paten 2). Zeichenerklärungen in Anhang 7.

Abb. 4.28. Stratigraphisches Profil in Gowoksabrang, W-NW-Sektor. Das Profil stellt die Typlokalität der Gowoksabrang-Tephra dar. Zeichenerklärungen in Anhang 7.

Gebiet G (N-Sektor)

Das Gebiet G (Abb. 4.1) umfaßt den Bereich des Apu- und Pabelan-Tals sowie Aufschlüsse entlang der Straße von Tlatar nach Jrakah und Selo im N-Sektor des Merapi.

Das stratigraphische Profil G-1 (Abb. 4.29) zeigt eine Abfolge von pyroklastischen Strom-, Surge- und geringmächtigen Bimsfallablagerungen nahe der Ortschaft Klakah. Mehrere C-14-Datierungen verschiedener Holzkohleproben aus dem pyroklastischen Strom am Top der Sequenz liefern identische Alter von 952 ± 52 , 989 ± 51 bzw. 1005 ± 45 Jahren v.h., die einen Eruptionszeitraum zwischen 1000 und 1170 AD implizieren. Mit Ausnahme der vorläufig als Klakah 2-Tephra bezeichneten Tephralage im Liegenden des genannten pyroklastischen Stroms, weisen sämtliche stratigraphisch tieferen Bimsfallablagerungen dieser Abfolge, inklusive der <u>Klakah 1-Tephra</u>, einem lokalen Markerhorizont im Merapi-N-Sektor, Medium-K-Affinität und damit Alter von mehr als 1800-1900 Jahre v.h. auf.

Abb. 4.29. Stratigraphisches Profil bei Klakah, N-Sektor. Zeichenerklärungen in Anhang 7.

Keine dieser Ablagerungen konnte erfolgreich mit Bimstephren in den stratigraphischen Sektionen des W-NW-Sektors korreliert werden. Eine mögliche Ausnahme bildet die High-K-Tephra Klakah 2, die anscheinend im gleichen stratigraphischen Niveau wie die Trayem-Tephra auftritt und auf der Basis der verfügbaren Radiokarbondatierungen und der beobachteten Gesamtmächtigkeit im Klakah-Profil (Lokalität G-1) mit dieser korrelieren könnte.

Abb. 4.30. (a) Aufschlußbild und (b) Skizze von pyroklastischen Stromablagerungen im Pabelan-Tal nahe der Ortschaft Klakah, N-Sektor.

In einem "isolierten" Aufschluß im Pabelan-Tal nahe der Lokalität G-1 sind zwei lithologisch ähnliche pyroklastische Ströme von Typ D (Tab. 3.1) aufgeschlossen (Abb. 4.30). Beide enthalten Bimskomponenten und hellgraue lithische Komponenten bis zu 15 cm Durchmesser, die in einer hellgrauen Aschenmatrix angeordnet sind. Eine dünne fluviatile Zwischenlage deutet auf eine gewisse Ruhephase zwischen der Ablagerung der beiden Ströme. Die geochemischen Analysen der Bimskomponenten zeigen eine Medium-K-Zusammensetzung für den älteren der beiden pyroklastischen Ströme (*pf 1*), während der stratigraphisch höhere Strom (*pf 2*) der High-K-Serie angehört. Die durchgeführten Radiokarbondatierungen implizieren ein Alter von 1815 \pm 34 Jahre v.h. für den älteren der beiden Ströme, der damit die jüngste datierte Ablagerung der Merapi-Medium-K-Serie darstellt, und ein Alter von 1772 ± 21 Jahre v.h. für den überlagernden pyroklastischen Strom. Aus den C-14-Altern ergeben sich kalibrierte Eruptionsalter zwischen 135 und 245 AD für die ältere sowie zwischen 240 und 325 AD für die jüngere der beiden Ablagerungen.

Abb. 4.31. Ablagerungen talfüllender pyroklastischer Ströme in einem Seitental des Kali Apu, N-Sektor. Der unterste pyroklastische Strom (*pf 1*) wurde auf 1905 \pm 110 Jahre v.h. datiert.

Abb. 4.31. zeigt einen Aufschluß mit einem pyroklastischen Strom der High-K-Serie in einem Seitental des Kali Apu (Lokalität G-3). Mit einem C-14-Alter von 1905 ± 110 Jahre v.h. stellt dieser pyroklastische Strom die älteste, in dieser Arbeit datierte Ablagerung der Merapi-High-K-Serie dar. Aufgrund der großen analytischen Ungenauigkeit ergibt sich ein vergleichsweise großes kalibriertes Zeitintervall zwischen 5 und 245 AD, das teilweise mit dem kalibrierten Eruptionsalter des scheinbar jüngeren pyroklastischen Stroms der Medium-K-Serie in Lokalität G-2 (Abb. 4.30) überlappt.

Aufschlüsse beiderseits des Apu-Tals bei Tlogolele (Abb. 4.32, 4.33) zeigen Abfolgen junger pyroklastischer Ströme in einer Entfernung von etwa 6.5 km vom Merapigipfel.

Abb. 4.32. (S. 71 oben) (a) Aufschlußbild und (b) geologische Skizze der pyroklastischen Einheiten auf der Südseite des Kali Apu nahe der Ortschaft Tlogolele, N-Sektor. Die C-14-Alter von 361 ± 22 Jahre v.h. (*pf 2*) und 385 ± 65 Jahre v.h. (*pf 1*) liefern Minimal- und Maximalalter für die zwischengeschaltete Jurangjero 2-Tephra. Länge des Werkzeugs: 25 cm.

■ Abb. 4.33. (S. 71 unten) Aufschlußbilder der pyroklastischen Einheiten auf der Nordseite des Kali Apu nahe Tlogolele, N-Sektor. (a) Pyoklastischer Strom (*pf*), datiert auf 338 ± 29 Jahre v.h., überlagert die Jurangjero 2-Tephra. *Fl* fluviatile Ablagerungen. Länge des Werkzeugs: 25 cm. (b) Abfolge mehrerer pyroklastischer Ströme der High-K-Serie, stratigraphisch unterhalb von (a).

Die stratigraphische Einordnung dieser Sequenzen ist durch das Auftreten der Jurangjero 2-Tephra gegeben (Abb. 4.32, 4.33.a). Der überlagernde pyroklastische Strom in der Lokalität G-4 (*pf 2*) südlich des Kali Apu (Abb. 3.32) wurde auf 361 \pm 22 Jahre v.h. datiert; die entsprechende Ablagerung auf der N-Seite des Tals (Abb. 4.33.a) auf 338 \pm 29 Jahre v.h. Zusammen mit einem Radiokarbondatierung einer Surge-Ablagerung (*pf 1*) im Liegenden der Jurangjero 2-Tephra in Lokalität G-4 (Abb. 4.32), die ein Alter von 385 \pm 65 Jahre v.h ergab, liefern die genannten Alter den engsten Zeitrahmen für die Eruption der Jurangjero 2-Tephra. Ältere Ablagerungen pyroklastischer Ströme (Abb. 4.33.b) finden sich auf der N-Seite des Apu-Tals in unmittelbarer Nähe des in Abb. 4.33.a dargestellten Aufschlusses.

Abb. 4.34 zeigt verschiedene Aufschlüsse im Tal des Kali Apu in einer Höhe von 1270 m ü. NN und einer Entfernung von etwa 4 km vom Merapigipfel. Die jüngsten pyroklastischen Ablagerungen im Apu-Tal bilden die wenige 10er Meter mächtigen talfüllenden Block- und Aschenablagerungen der Domkollaps-Nuées (Typ A; Tab. 3.1) aus dem Jahr 1954 (Abb. 4.34.a). In den Abbildungen 4.34.b und 4.34.c sind Beispiele älterer pyroklastischer Ströme in den Flanken des Apu-Tals dargestellt, deren komplexe und z.T. diskordante Lagerungsverhältnisse erkennen lassen, daß sich die Talverläufe in der Eruptionsgeschichte des Vulkans durch Verfüllung mit pyroklastische Strom 3 (*pf 3*) (Abb. 4.34.b) stellt ein klassisches Beispiel der bimsreichen Fontänenkollaps-Nuées von Typ D am Merapi dar (Tab. 3.1), der in einem weiteren Aufschluß in der südlichen Talflanke des Kali Apu etwa 1 km flußaufwärts von älteren pyroklastischen und fluviatilen Ablagerungen unterlagert wird (Abb. 4.34.c).

Weitere Datierungen pyroklastischer Ströme im Apu-Tal ergaben Alter von 883 ± 24 bzw. 1634 ± 23 Jahre v.h. und sind in Tab. A2.1 aufgeführt.

In den Talflanken des Juweh-Tals unterhalb der Ortschaft Jrakah (Abb. 4.35, 4.36) sind pyroklastische Abfolgen der letzten ca. 1000 Jahre aufgeschlossen. Die meisten der datierten pyroklastischen Ströme enthalten Bimskomponenten und entsprechen damit den FontänenkollapsNuées von Typ D (Tab. 3.1). Am Top der Abfolgen finden sich charakteristische, verhärtete, verwitterungsresistente und aschenreiche Schlammstromablagerungen (*lh*), die reichlich Pflanzenmaterial führen und mit der Radiokarbonmethode auf 315 ± 25 Jahre v.h. datiert werden konnten. Ähnliche (? zeitgleiche) Schlammstromablagerungen finden sich in allen Sektoren des Merapi (s. Abb. 3.3.b).

Abb. 4.34. Pyroklastische Ablagerungen im Kali Apu bei Setabelan, N-Sektor: (a) Erosionsreste der Block- und Aschenströme des Jahres AD 1954. (b) Ablagerungen älterer pyroklastischer Ströme in der Talflanke des Kali Apu. Der pyroklastische Strom 3 (pf 3) stellt die Verfüllung eines Paläotals dar. (c) In einem weiteren Aufschluß im Apu-Tal wird der gleiche Strom (pf 3) von älteren pyroklastischen Strömen und fluviatilen Ablagerungen unterlagert.

Kapitel 4

Abb. 4.35. Pyroklastische Abfolgen in der nördlichen Talflanke des Kali Juweh, N-Sektor: (a) Überblick und (b) Detailansicht der obersten Ablagerungen der Kali-Juweh-Abfolge.

Junge Ablagerungen bimsreicher Fontänenkollaps-Nuées treten in weiteren Flußtälern des Merapi-N-Sektors auf. Ein Beispiel eines solchen pyroklastischen Stroms der High-K-Serie aus dem Ladon-Tal wurde auf 372 ± 19 Jahre v.h. datiert (Tab. A2.1; Probe M98-093). Nahe der Ortschaft Patran (Abb. 4.37), zwischen Jrakah und Selo auf den unteren Hängen des nördlich an den Merapi angrenzenden Vulkans Merbabu gelegen, sind pyroklastische Abfolgen des (?) Merapi aufgeschlossen, deren Basis ein basaltischer Lavastrom des Merbabu bildet. Eine C-14-Datierung eines dunklen, humusreichen Paläobodens im unteren Bereich des Profils (Abb. 4.38) ergab ein Alter von 11792 ± 90 Jahre v.h.. Dieses Alter stellt das bisher höchste bekannte C-14-Alter am Merapi dar.

Abb. 4.36. Skizze der Ablagerungen in der südlichen Flanke des Juweh-Tals, N-Sektor.

Weiter östlich bei der Ortschaft Cangkol findet sich eine Abfolge mehrerer Bimstephren, die von braunen Aschentuffen und Verwitterungshorizonten getrennt werden (Abb. 4.38). Keine dieser Fallablagerungen konnte erfolgreich mit den Tephralagen im Westsektor des Merapi korreliert werden. Aufgrund des Fehlens organischer Substanz zur Radiokarbondatierung kann lediglich die geochemische Charakterisierung der Tephralagen zu einer groben zeitlichen Einordnung der Sequenz herangezogen werden. Diese impliziert Alter von mehr als 1800-1900 Jahren v.h. für die stratigraphisch tieferen Tephralagen der Medium-K-Serie und Alter von weniger als 1800-1900 Jahre für die High-K-Tephren im oberen Bereich des Aufschlusses.

▲ Abb. 4.37. (S. 76 oben) (a) Aufschlußbild und (b) geologische Skizze der Ablagerungen in der Ortschaft Patran, N-Sektor. Die Lokalität befindet sich auf den unteren Hängen des nördlich an den Merapi angrenzenden Vulkans Merbabu, so daß möglicherweise einige der pyroklastischen Einheiten vom Merbabu stammen. Die C-14-Datierung des dunklen, humusreichen Paläobodens im unteren Bereich der Abfolge ergab ein Alter von 11792 ± 90 Jahre v.h. Dieses Alter stellt das bisher höchste bekannte C-14-Alter am Merapi dar.

■ Abb. 4.38. (S. 76 unten) (a) Aufschlußbild und (b) Skizze pyroklastischer Ablagerungen bei Cangkol westlich Selo, N-Sektor. Die aufgeschlossene Sequenz umfaßt mehrere Bimstephren (helle Lagen), getrennt durch braune Aschentuffe und Verwitterungshorizonte (braune / dunkle Bereiche). Die stratigraphisch tieferen Einheiten weisen Medium-K-, die stratigraphisch höheren High-K-Charakter auf. Der Übergang von der Medium-K- zur High-K-Serie ist markiert.

Gebiet H (NE-Sektor)

Im NE-Sektor des Merapi liegen lediglich in begrenztem Umfang stratigraphische Informationen vor, die allerdings für die Gesamtentwicklung des Merapi von fundamentaler Bedeutung sind.

In den Abbildungen 4.39 und 4.40 sind die Ablagerungen talfüllender pyroklastischer Ströme im NE-Sektor des Merapi in der Nähe der Ortschaft Cepogo (Abb. 2.7, 4.1) dargestellt.

Der in Abb. 4.39 abgebildete aschenreiche pyroklastische Strom im Tal des Kali Gandul ist ca. 5 m mächtig und besteht aus überwiegend dichten andesitischen Komponenten mit bis zu 80 cm Durchmesser in einer feinkörnigen Aschenmatrix. Der High-K-Charakter der juvenilen Komponenten stützt das Datierungsergebnis einer aus diesem Strom entnommenen Holzkohleprobe, das ein Alter von 1590 \pm 40 Jahre v.h für diesen Strom impliziert. Dieser pyroklastische Strom stellt damit die jüngste bisher dokumentierte Ablagerung eines pyroklastischen Stroms im E-Sektor des Merapi dar und ist ca. 300 Jahre jünger als die bisher beschriebene jüngste Ablagerung eines pyroklastischen Stroms im E-Sektor des Vulkans (Newhall et al., 2000).

Der in Abb. 4.40 dargestellte Block- und Aschenstrom nahe Sambirego besteht aus dichten, grauen, holokristallinen (90 %) und dunklen (glasreichen), schlackigen (10 %) Komponenten mit bis zu 2 m Durchmesser, die in einer feinkörnigen, rötlich angewitterten Aschenmatrix angeordnet sind. Die Datierung einer Holzkohleprobe aus diesem Strom liefert ein vergleichsweise hohes, mit dem Medium-K-Charakter der Ablagerung konsistentes Alter von 3568 \pm 30 ¹⁴C-Jahre v.h. Dieser pyroklastische Strom stellt damit eine der ältesten dokumentierten Ablagerungen auf der E-Seite des Merapi dar.

Abb. 4.39. (S. 78 oben) Aufschlußbild eines talfüllenden pyroklastischen Stroms der High-K-Serie im Kali Gandul nahe der Ortschaft Ngringin, NE-Sektor. Eine C-14-Datierung an Holzkohlepartikel aus dem pyroklastischen Strom ergab ein Alter von 1590 \pm 40 Jahre v.h. Maßstab: 1 m.

■ Abb. 4.40. (S. 78 unten) Aufschlußbild eines talfüllenden pyroklastischen Stroms der Medium-K-Serie in Sambirego (Cepogo), NE-Sektor. Eine C-14-Datierung an Holzkohlepartikel aus dem pyroklastischen Strom ergab ein Alter von 3568 ± 30 Jahre v.h.

Gebiet I (E-Sektor)

Die oberen Hänge der Ostflanke des Merapi werden von mächtigen Abfolgen basaltandesitischer Laven des Somma-Walls aufgebaut, die dem klassischen Old Merapi von van Bemmelen (1949, 1956) und der Batulawang-Serie von Berthommier (1990) und Camus et al. (2000) entsprechen (Abb. 4.41.a).

Diese werden von relativ geringmächtigen pyroklastischen Ablagerungen überlagert, die u.a. in der Ortschaft Gumuk aufgeschlossen sind (Abb. 4.41.b). Obwohl aufgrund fehlender tephrostratigraphischer Korrelationen sowie des Fehlens datierbaren organischen Materials keine genaue Alterseinstufung für diese Ablagerungen vorgenommen werden kann, deutet der High-K-Charakter der Bimskomponenten der markanten <u>Gumuk-Tephra</u> auf ein Alter von weniger als 1800 bis 1900 Jahre v.h. für zumindest den oberen Bereich der abgebildeten, die Lavaströme des Somma-Walls überlagernden, pyroklastischen Sequenz.

Stratigraphische Korrelationen

Fazieswechsel über kurze Distanzen, limitierte Aufschlußverhältnisse, ähnliche Zusammensetzungen der Förderprodukte aufeinanderfolgender Eruptionen, hohe Sedimentationsraten und die rasche Erosion primärer pyroklastischer Ablagerungen erschweren in vielen Fällen laterale Korrelationen und damit das Erstellen einer detaillierten Stratigraphie an aktiven Vulkanen. Der Merapi bildet in dieser Hinsicht keine Ausnahme.

So lassen sich die Ablagerungen talfüllender pyroklastischer Ströme nur in wenigen Fällen erfolgreich über größere Distanzen oder in die angrenzenden Flußtäler korrelieren. Assoziierte Ablagerungen der die pyroklastischen Ströme begleitenden Aschenwolken zeichnen sich im allgemeinen durch eine größere Verbreitung aus. Einige dieser Ablagerungen wurden von Andreastuti (1999) und Andreastuti et al. (2000) als Leithorizonte für stratigraphische Korrelationen verwendet.

Abb. 4.41. Ablagerungen des Merapi im E-Sektor bei Gumuk: (a) Lavaströme des Somma-Walls (Old Merapi) in der Talflanke des Kali Genting. (b) Überlagernde pyroklastische Sequenzen in der Ortschaft Gumuk. Maßstab: 1 m. Zeichenerklärungen in Anhang 7.

In dieser Arbeit konnten einige weitverbreitete Bimsfallablagerungen des Merapi identifiziert werden (Abb. 4.2-4.41), die als stratigraphische Leithorizonte verwendet werden können, und die Korrelation pyroklastischer Einheiten über größere Gebiete vor allem im S-, W- und NW-Sektor des Vulkans ermöglichen. Die wichtigsten dieser Markerhorizonte sind die Tephralagen Jurangjero 2, Jurangjero 1, Trayem, Paten 2 und Paten 1, die Korrelationen pyroklastischer Ablagerungen auf den morphologischen Rücken (interfluves) zwischen der Lokalität Kinarejo (B-3) im S-Sektor und der Lokalität Klakah (G-1) im N-Sektor des Merapi ermöglichen (Abb. 4.42). Über geringere Entfernungen korrelierbare Tephrafallablagerungen, wie z.B. die ausschließlich im W-NW-Sektor auftretende Gowoksabrang-Tephra (Abb. 4.21, 4.23, 4.28) oder die im Gebiet der Gendol Hills auftretende Lempong-Tephra (Abb. 4.14), können lokal für stratigraphische Korrelationen herangezogen werden.

Wo diese stratigraphischen Leithorizonte fehlen, wie z.B. im Nord- und Ostsektor des Vulkans, kann die geochemische Zusammensetzung einen Anhaltspunkt zur stratigraphischen Einordnung einzelner Ablagerungen oder pyroklastischer Sequenzen am Merapi liefern. So sind die älteren Einheiten innerhalb einer stratigraphischen Abfolge bei einem gegebenem SiO₂-Gehalt generell durch niedrigere K₂O-Gehalte als die stratigraphisch jüngeren Ablagerungen gekennzeichnet (Abb. 4.2-4.41) und ermöglichen die Unterscheidung einer älteren Medium-K-Serie und einer jüngeren High-K-Serie unter den holozänen pyroklastischen Ablagerungen des Merapi (Kapitel 7).

Die verfügbaren Radiokarbonalter implizieren Alter von mehr als 1800-1900 Jahren v.h. für die Förderprodukte der Medium-K-Serie und Alter von weniger als 1800-1900 Jahre für die Gesteine der High-K-Serie. Die Hauptelementzusammensetzung, wie sie einfach und schnell mit Hilfe der Röntgenfluoreszenzanalyse bestimmt werden kann, liefert damit ein nützliches Kriterium zur ungefähren zeitlichen Einordnung pyroklastischer Ablagerungen am Merapi.

Radiokarbondatierungen

Diese Arbeit beinhaltet 86 neue Radiokarbondatierungen pyroklastischer Ablagerungen am Merapi (Tab. A2.1). Zusammen mit den Daten von Berthommier (1990), Andreastuti (1999), Andreastuti et al. (2000), Camus et al. (2000) und Newhall et al. (2000) liegen damit nun fast 150 Radiokarbondatierungen für den Merapi vor, weit mehr als für die meisten anderen Vulkane weltweit.

Mit den Ergebnissen der im Rahmen dieser Arbeit durchgeführten Radiokarbondatierungen reichen die C-14-Alter am Merapi bis etwa 12000 Jahre v.h., das heißt, bis ins oberste Pleistozän zurück (Abb. 4.43). Ein Alter von 11792 ± 90 Jahre v.h. eines Paläobodenhorizonts aus der stratigraphischen Abfolge in Patran (Lokalität G-9) stellt das bisher höchste bekannte C-14-Alter für den Merapi dar. Der überwiegende Teil der aufgeschlossenen und datierten pyroklastischen Ablagerungen des Merapi ist allerdings erheblich jünger. Annähernd 90 % der durchgeführten Radiokarbondatierungen liefern Alter von weniger als 2000 ¹⁴C-Jahren v.h. und implizieren eine hohe und nahezu kontinuierliche Tätigkeit des Merapi während dieses Zeitraums (Abb. 4.43). Diese wird ausführlich in Kapitel 9 diskutiert.

Proben in chronologischer Reihenfolge

Abb. 4.43. Radiokarbondatierungen am Merapi (diese Arbeit).

Implikationen für die holozäne geologische Entwicklung des Merapi

Die im Rahmen dieser Arbeit durchgeführten stratigraphischen und chronologischen Untersuchungen liefern einen wesentlichen Beitrag zur holozänen Eruptionsgeschichte des Merapi. Die neuen Radiokarbondatierungen vervollständigen und ergänzen die bisherigen stratigraphischen Arbeiten am Merapi und ermöglichen darüber hinaus eine Überprüfung und Neubewertung der bestehenden Modelle zur zeitlichen Einordnung des angenommenen Flankenkollapses des Old Merapi. Eines der wesentlichen morphologischen und strukturellen Merkmale des Old Merapi ist ein ausgeprägter, mehr als 3 km weiter, hufeisenförmiger Somma-Wall ähnlich dem des Mount St. Helens, dessen Existenz auf ein Abrutschen der Westflanke des Old-Merapi-Vulkans hindeutet. Solche Kollapsereignisse führen zur Bildung von Schuttströmen und Schuttlawinen (debris avalanches), die charakteristische Ablagerungen am Fuße der kollabierten Vulkanbauten hinterlassen (Ui, 1983; Siebert, 1984; Francis et al., 1985; Ui et al., 2000).

Am Merapi ist bisher eine Schuttlawinenablagerung dokumentiert, die mit einem Teilkollaps des New Merapi vor weniger als 1130 ± 50 ¹⁴C-Jahren v.h. in Zusammenhang gebracht wird (Newhall et al., 2000). Schuttlawinenablagerungen, die eindeutig einem Kollaps des Old Merapi zugeordnet werden können, fehlen und erlauben zum jetzigen Zeitpunkt lediglich eine indirekte Datierung eines solchen Ereignisses.

Unter der Annahme, daß die Bildung des Somma-Walls die weitere Ausbreitung pyroklastischer Ströme nach Osten verhindert hat, datieren Newhall et al. (2000) das jüngste von möglicherweise mehreren Kollapsereignissen des Old Merapi mit Hilfe der jüngsten pyroklastischen Ströme auf der SE- bzw. E-Seite des Vulkans auf ca. 1900 Jahre v.h.. Das scheinbare Fehlen von Schuttlawinenablagerungen dieses Alters im W-Sektor des Merapi führen die Autoren auf die hohe Sedimentakkumulation und die mögliche Überschüttung solcher Ablagerungen in diesem Bereich zurück. Diese Hypothese wird durch das scheinbare Nichtvorhandensein von Ablagerungen 1900 Jahre v.h. im W-Sektor des Merapi untermauert (Newhall et al., 2000).

Die stratigraphischen Untersuchungen und Radiokarbondatierungen dieser Arbeit erlauben eine Neubewertung der zeitlichen Einordnung des Old-Merapi-Kollapses, die folgende Punkte berücksichtigen muß:

- Die relativ hohen Alter der pyroklastischen Abfolgen auf den morphologischen Rücken (interfluves) auf der W-Seite des Merapi, die insgesamt bis 4153 \pm 37 ¹⁴C-Jahre v.h. zurückreichen, und in den Bereichen des Kali Batang (Lokalität E-1) und Jurangjero / Kali Putih (Lokalität E-2) im SW-Sektor Alter bis 2260 \pm 30 ¹⁴C-Jahren v.h. aufweisen.
- Das Vorkommen mit der ältesten Ablagerungen des eigentlichen Vulkankegels (8380 ± 230 ¹⁴C-Jahre v.h.) in relativ großer Höhe (ca. 1200 m ü. NN) im SW-Sektor des Merapi (Kali Bebeng).
- Das Fehlen von Schuttlawinenablagerungen auf der W-Seite des Merapi.
- Ein Alter von 1590 ± 40 ¹⁴C-Jahre v.h. f
 ür die j
 üngste datierte Ablagerung einer Domkollaps-Nuée ardente im E- bzw. NE-Sektor des Merapi (Lokalit
 ät H-1).

Der Argumentation von Newhall et al. (2000) folgend, könnte das in dieser Arbeit ermittelte jüngste Radiokarbonalter eines pyroklastischen Stroms im NE-Sektor des Merapi darauf hindeuten, daß die Blockierung der Ausbreitung pyroklastischer Ströme nach Osten durch einen Kollaps der Westflanke bzw. die Bildung des Somma-Walls nicht schon vor 1900 ¹⁴C-Jahren v.h. (Newhall et al., 2000), sondern erst nach 1590 \pm 40 ¹⁴C-Jahre v.h. (420-537 AD) effektiv

wurde. Damit wäre das jüngste Kollapsereignis des Old Merapi ca. 300 Jahre jünger als von Newhall et al. (2000) angenommen.

Ein solch junges Kollapsereignis des Old Merapi steht im Widerspruch zum anscheinenden Fehlen entsprechender Schuttlawinenablagerungen auf der W-Seite des Merapi. Dieser Befund ist insofern ungewöhnlich, da die teilweise kontinuierlichen pyroklastischen Abfolgen im SW-bzw. W-Sektor des Merapi, anders als von Newhall et al. (2000) angenommen, bis ca. 2200 14 C-Jahre v.h., teilweise sogar bis > 4000 14 C-Jahre v.h. zurückreichen und dadurch eventuell vorhandene Schuttlawinenablagerungen nicht notwendigerweise, wie von Newhall et al. (2000) vermutet, durch jüngere Ablagerungen überschüttet oder verdeckt sein müssen.

Tab. 4.1. Zusammenstellung möglicher Kollapsereignisse am Merapi. Weitere Erläuterungen im Text.

Alter			Referenz	Hinweise / Voraussetzungen					
(¹⁴ C-Ja	hre v	.h.)							
> 8380	±	230	Gertisser & Keller (1998c) Diese Arbeit	Älteste Ablagerungen im SW-Sektor des Merapi, falls diese als Ablagerungen des Post-Kollaps- oder New Merapi-Stadiums interpretiert werden					
3430	±	50	Newhall et al. (2000)	Aufstauung des Kali Progo und Bildung eines frühen Borobudur-Sees					
< 1590	±	40	Diese Arbeit	Jüngste Ablagerungen pyroklastischer Ströme im E-Sektor des Merapi ¹⁾					
< 1130	±	50	Newhall et al. (2000)	Schuttlawinenablagerungen im Boyong-Tal					

1) nach Newhall et al. (2000) ca. 1900 ¹⁴C-Jahre v.h.

Ein alternatives Modell sähe ein sehr viel älteres Kollapsereignis vor, das zur Zerstörung des Old Merapi-Vulkans und letztlich zur Bildung des Somma-Walls geführt hat (Gertisser & Keller, 1998c). Interpretiert man in einem solchen Szenarium die ältesten datierten Ablagerungen im Bebeng-Tal (SW-Sektor) als Produkte des Post-Kollaps- oder New Merapi-Stadiums, würde dies ein Alter > 8380 \pm 230 14 C-Jahre v.h. für einen frühen Kollaps des Old Merapi implizieren. Eine solche Interpretation steht im Einklang mit den Vorstellungen van Bemmelen's (1956), nach denen lediglich der Gunung Patukalapalap (Abb. 2.7, 2.12) als Rücken des Old Merapi aus den umgebenden Produkten des New Merapi innerhalb der Avalanche Caldera des Merapi herausragt.

Eine zwingende Voraussetzung für dieses Modell ist, daß es sich bei den beschriebenen ältesten Ablagerungen im SW-Sektor des Vulkankegels tatsächlich um Ablagerungen des New Merapi und nicht um Relikte des Prä-Kollaps- oder Old Merapi-Vulkans handelt, was aufgrund der Lage der Probenpunkte ebenfalls denkbar wäre. Das Modell setzt weiterhin voraus, daß sich pyroklastische Ströme nach dem angenommenen Kollapsereignis, ebenso wie im Anschluß an den – von Newhall et al. (2000) vermuteten – frühen Kollaps des Merapi, der zur Bildung eines frühen Borobudur-Sees durch die Aufstauung des Kali Progo vor etwa 3400¹⁴C- Jahren v.h. geführt hat, weiterhin nach Osten ausbreiten konnten. Der eigentliche Old Merapi-Vulkan wäre demnach weitestgehend auf die Lavasequenzen der Batulawang-Serie (Bahar, 1984; Berthommier, 1990) auf den oberen Hängen des E-Sektors beschränkt und die vermuteten jüngeren Kollapsereignisse vor ca. 3400 Jahren und 1900 (Newhall et al., 2000) bzw. 1590 (diese Arbeit) Jahren, ebenso wie der jüngste Kollaps vor weniger als 1130 Jahren, formal dem New Merapi-Stadium zuzuordnen (Tab. 4.1).

Kapitel 5

Die geologische Entwicklung des Merapi: III. Tephrafallablagerungen großer holozäner Eruptionen des Merapi

Neben pyroklastischen Strömen und deren Ablagerungen findet sich eine Vielzahl von Tephralagen unter den holozänen Ablagerungen des Merapi, die aufgrund ihrer relativ weiten Verbreitung und guten Sortierung als Fallout-Ablagerungen interpretiert werden. In den stratigraphischen Abfolgen bilden diese einzelne, einige wenige Zentimeter bis mehrere 10er Zentimeter mächtige Grobaschen- und Bimslapillilagen, die zusammen mit pyroklastischen Strom- und Laharablagerungen die unteren Hänge des Merapi bedecken. Diese Tephralagen werden getrennt durch feinere Aschenlagen, die teilweise ebenfalls Fallereignisse darstellen, in vielen Fällen jedoch aus der Aschenwolke pyroklastischer Ströme sedimentiert wurden. Lokal finden sich Einschaltungen gröberer und schlecht sortierter Ablagerungen pyroklastischer Ströme, Surges und vulkanischer Schlammströme. Viele der pyroklastischen Ströme können, ebenso wie eingeschaltete Paläobodenhorizonte, mit der Radiokarbonmethode datiert werden und ermöglichen die Bestimmung von Minimum- bzw. Maximalalter zeitlich assoziierter, unterbzw. überlagernder Fallablagerungen.

Im allgemeinen erschwert die Aufschlußsituation, das relativ schlechte Erhaltungspotential der pyroklastischen Ablagerungen sowie die relativ geringen mineralogisch-petrographischen und geochemischen Variationen der Merapiprodukte laterale Korrelationen zwischen verschiedenen stratigraphischen Sektionen. Dennoch konnten einige weitverbreitete Fallablagerungen identifiziert werden, die als tephrostratigraphische Leithorizonte dienen und die Korrelation pyroklastischer Ablagerungen über große Bereiche des S-, W- und NW-Sektors bis zu einer Entfernung von ca. 20 km vom Merapigipfel erlauben (Gertisser & Keller, 1998b).

Neben der Bedeutung für die Erstellung einer detaillierten Gesamtstratigraphie für den Merapi (Kapitel 4) können aus der Verbreitung und Korngrößenverteilung der markantesten Bims- und Aschenlagen wichtige Rückschlüsse auf die Eruptionsdynamik großer holozäner Ausbrüche des Merapi gezogen werden, die sich fundamental von den dombildenden Eruptionen des 20. Jahrhunderts unterscheiden, und bei der Risikoabschätzung und Beurteilung des Gefährdungspotentials zukünftiger Eruptionen des Vulkans berücksichtigt werden müssen. Fünf Tephrafallablagerungen großer holozäner Eruptionen werden in diesem Kapitel im Detail beschrieben. Im einzelnen sind dies die Tephralagen Paten 1, Paten 2, Trayem, Jurangjero 1 und Jurangjero 2 (Kapitel 4).

Vorkommen und lithologische Beschreibung der Tephralagen

Die im Detail untersuchten Tephrafallablagerungen finden sich in vielen der stratigraphischen Sektionen im S-, SW-, W- und NW-Sektor des Merapi (Kapitel 4).

Abb. 5.1. Weitverbreitete pyroklastische Fallablagerungen (tephrostratigraphische Leithorizonte) im Westsektor des Merapi: (a) Tephralage Jurangjero 2, ca. 6 km westlich des Merapigipfels in der Ortschaft Krinjing (7° 31.876' S / 110° 23.346' E). Maßstab: 1 m. (b) Tephralagen Jurangjero 1 und Trayem in einem Aufschluß nahe der Ortschaft Krogowanan im W-NW-Sektor, 11 km vom Merapigipfel (7° 31.701' S / 110° 20.565' E), Länge des Werkzeugs: 25 cm. (c) Tephralagen <u>Paten 1</u> und <u>Paten 2</u> in einem Straßenanschnitt in der Nähe des Kali Mangu, nahe der Lokalität F-6 (Abb. 4.24), 12 km nordwestlich des Merapi. Länge des Werkzeugs: 25 cm.

Die Jurangjero 2-Tephra (Abb. 5.1), benannt nach ihrem Vorkommen in der Lokalität Jurangjero / Kali Putih (Abb. 4.16), bildet eine mehrere 10er Zentimeter mächtige Lage alternierender Bimslapilli- und Grobaschenlagen. Die Abfolge beginnt mit wenigen Zentimeter mächtigen hellgrauen Bimslapillilagen und zwischengeschalteten 1 bis 4 cm mächtigen Aschenlagen, die von einer mächtigeren (10-20 cm), aus hellgrauen juvenilen Bimslapilli bestehenden und schlecht sortierten Bimslapillilage überlagert werden. Obgleich die Sortierung innerhalb der einzelnen Lagen auf den ersten Blick relativ schlecht erscheint, deutet die ausgedehnte Verbreitung der gesamten pyroklastischen Einheit auf einen Ursprung als Fallout-Ablagerung. Die Einheit ist im Gelände anhand der Wechselfolge von Bimslapilli- und Aschenlagen leicht zu identifizieren. Charakteristisch ist das Auftreten eines mehrere Zentimeter mächtigen dunklen, humusreichen Paläobodenhorizonts an der Basis der Einheit.

Die Jurangjero 1-Tephra (Abb. 5.1) – im Liegenden der Jurangjero 2-Tephra in verschiedenen stratigraphischen Sektionen vorkommend – bildet eine maximal 16 cm mächtige, gut sortierte Bimsfallablagerung. Die juvenilen Komponenten bestehen aus hellgrauen aufgeschäumten Bimslapilli. Charakteristisch ist das häufige Vorkommen lithischer Komponenten bestehend aus oxidierten Lava- bzw. Domfragmenten (10-20 Vol.%), welche die Identifikation der Einheit im Gelände ermöglicht. Typisch ist weiterhin das Auftreten von mehrere Zentimeter mächtigen, hellgrauen, möglicherweise phreatomagmatischen Feinaschenlagen an der Basis und am Top der eigentlichen Bimsfallablagerung.

Die <u>Trayem-Tephra</u> (Abb. 5.1) bildet eine markante Bimstephra im W- und NW-Sektor des Merapi. Mit einer maximalen beobachteten Mächtigkeit von 52 cm in einer Entfernung von 5 km vom Eruptionszentrum östlich der Typlokalität Trayem (Abb. 4.23) stellt sie die mächtigste Bimsfallablagerung des Merapi dar. Die insgesamt gut sortierte Einheit besteht aus hellen amphibolführenden Bimslapilli, sowie grauen andesitischen (10-25 Vol.%) und untergeordnet oxidierten lithischen Komponenten (ca. 1 Vol.%). Im oberen Drittel unterteilt eine eingeschaltete helle, ca. 1-2 cm mächtige Aschenlage die Bimslapillilagen. Weiterhin finden sich unverkohlte Pflanzenreste in der Ablagerung. Diese Charakteristika bieten neben der Überlagerung einer mehrere Zentimeter mächtigen, aus überwiegend oxidierten lithischen Komponenten bestehenden, laminierten Grobaschenlage lithologische Kriterien zur Identifikation der Ablagerung im Gelände.

Mit einer maximalen beobachteten Mächtigkeit von 27 cm ist die, nach der Typlokalität Paten (Abb. 4.27) benannte <u>Paten 2-Tephra</u> (Abb. 5.1) ein wichtiger Leithorizont im W-NW-Sektor des Merapi. Die relativ gut sortierte Bimstephra besteht überwiegend aus verwitterten, gelblichen Bimslapilli und grauen andesitischen lithischen Komponenten (ca. 10 Vol.%). Im oberen Bereich der Ablagerung finden sich zwei ca. 1-3 cm mächtige hellbraune bis graue, z.T. violette Aschenlagen eingeschaltet, die für diese Einheit charakteristisch sind (Abb. 5.1).

Im Liegenden der Paten 2-Tephra, und im allgemeinen zusammen mit dieser aufgeschlossen, bildet die <u>Paten 1-Tephra</u> (Abb. 5.1) die älteste der weitverbreiteten tephrostratigraphischen

Leithorizonte im W-NW-Sektor des Merapi. Diese stellt eine normal gradierte Bimsfallablagerung dar, die, wie die überlagernde Paten 2-Tephra, aus verwitterten gelblichen Bimslapilli und untergeordnet grauen andesitischen lithischen Komponenten besteht. Ein mächtiger Paläobodenhorizont bildet die Basis der Paten 1-Tephra und damit der gesamten Abfolge der hier beschriebenen tephrostratigraphischen Leithorizonte.

Petrographie und Geochemie

Die in diesem Kapitel beschriebenen Tephralagen des Merapi zeigen ähnliche mineralogische Zusammensetzungen. Die juvenilen Bimskomponenten bestehen einheitlich aus Plagioklas, Klinopyroxen, Amphibol, Titanomagnetit und untergeordnet Orthopyroxen.

Die geochemischen Variationen der Merapiprodukte, inklusive der Tephralagen, wird ausführlich in Kapitel 7 diskutiert. An dieser Stelle wird daher nur kurz auf die Hauptelementgeochemie der juvenilen Komponenten aus den hier beschriebenen fünf Bimsfallablagerungen eingegangen, da diese eines der fundamentalen Kriterien zur Unterscheidung und zeitlichen Einordnung (Kapitel 4) der einzelnen Tephralagen liefert und gleichzeitig die Problematik der Gesamtgesteinsanalysen an glasreichem Probenmaterial des Merapi verdeutlicht.

Tab. 5.1.	Repräsentative	Gesamtgesteinsanal	ysen juveniler	Komponenten	der	untersuchten
Tephralag	gen.					

Tephra-Lage	Probe	Hauptelementgeochemie (Gew.%)											
		SiO ₂	TiO ₂	$Al_2O_3\\$	Fe ₂ O ₃ *	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	LOI	Summe
Jurangjero 2	M97-0782	52.81	0.75	19.44	8.27	0.20	2.82	8.68	3.43	2.01	0.32	1.15	99.87
Jurangjero 1	M96-075	53.87	0.71	18.87	8.13	0.19	3.03	8.55	3.43	2.04	0.29	1.06	100.17
Trayem	M97-053	54.12	0.74	18.92	8.19	0.19	2.91	8.49	3.47	2.15	0.30	1.08	100.56
Paten 2	M98-035	50.42	0.84	21.28	8.37	0.18	2.57	8.39	3.22	1.10	0.29	3.68	100.34
Paten 1	M98-042	50.73	0.80	21.25	7.80	0.17	2.20	8.06	3.07	1.10	0.31	4.69	100.18

Repräsentative Hauptelementanalysen juveniler Komponenten der verschiedenen Tephralagen sind in Tab. 5.1 dargestellt. Insgesamt zeigen diese Komponenten nur geringe Variationen im Hauptelementgehalt und weisen basaltische bis basaltandesitische Zusammensetzungen auf. Größere Variationen zeigen sich vor allem im Al₂O₃- und K₂O-Gehalt einzelner Lagen. So sind die drei jüngeren Tephralagen (Jurangjero 2, Jurangjero 1, Trayem) durch relativ niedrige Al₂O₃-Gehalte (< 20 Gew.%) und hohe K₂O-Gehalte (> 2 Gew.%) gekennzeichnet. Demgegenüber weisen die beiden älteren Tephren (Paten 2, Paten 1) relativ hohe Al₂O₃-Gehalte (> 21 Gew.%) bei vergleichsweise niedrigen K₂O-Konzentrationen (< 1.3 Gew.%) auf.

Abb. 5.2. K₂O-SiO₂-Variationsdiagramm der fünf tephrochronologischen Leithorizonte. Alle Analysen normiert auf 100 Gew.% (H₂O-frei).

Die Unterschiede in den K₂O-Konzentrationen erlauben die Zuordnung der Tephralagen Jurangjero 2, Jurangjero 1 und Trayem zur High-K- und die Tephralagen Paten 2 und Paten 1 zur Medium-K-Serie (Abb. 5.2). Weiterhin zeigen sich erhebliche Unterschiede im Verwitterungsgrad zwischen den drei jüngeren und den beiden älteren Tephralagen. Mit Glühverlustwerten (LOI) von ca. 1 Gew.% zeigen die jüngeren Tephralagen (Jurangjero 2, Jurangjero 1, Trayem), wenn überhaupt, lediglich einen geringen Verwitterungsgrad an, während die älteren Lagen (Paten 2, Paten 1) mit Glühverlustwerten > 3.5 Gew.% einen erheblichen Hydratisierungsgrad des vulkanischen Glases aufweisen (Tab. 5.1). Der erhöhte Verwitterungsgrad der Bimsklasten der älteren Tephralagen zeigt sich bereits makroskopisch im Gelände und scheint primär eine Funktion der Zeitspanne zu sein, der die Tephraablagerungen der intensiven tropischen Verwitterung am Merapi ausgesetzt sind (Kapitel 7).

Verbreitung, Mächtigkeit und Korngrößenverteilung

Die Bimslapilli- und Aschenlagen der fünf identifizierten, weitverbreiteten Tephrafallablagerungen bilden charakteristische elliptische Ausbreitungs- bzw. Ablagerungfächer auf der windabgewandten Seite des Vulkans. Die stratigraphische Abfolge dieser Fallablagerungen ist gegeben durch die Überlagerung von zwei oder drei der Lagen in verschiedenen stratigraphischen Sektionen im Westsektor des Merapi (Kapitel 4; Gertisser & Keller, 1998a).

Abb. 5.3. Isopachenkarten der tephrostratigraphischen Leithorizonte des Merapi.

Abb. 5.3. (Fortsetzung).

Abb. 5.4. Isoplethenkarten der tephrostratigraphischen Leithorizonte des Merapi.

Abb. 5.4. (Fortsetzung).

Obgleich die generell schlechten Aufschlußverhältnisse am Merapi sichere Querkorrelationen erschweren, konnten die relativ mächtigen Tephralagen zuverlässig bis zur 5 bzw. 10 cm Isopache auskartiert werden. Die in Abb. 5.3 dargestellten Isopachenkarten geben die minimale Verbreitung der verschiedenen Tephralagen an. Neben den Isopachenkarten wurden bei vier dieser Ablagerungen Isoplethenkarten aus der durchschnittlichen Korngröße der jeweils fünf größten Bimsklasten, z.T. auch der fünf größten lithischen Komponenten einer Lokalität erstellt. Die entsprechenden Karten sind in Abb. 5.4 dargestellt.

Abschätzung physikalischer Eruptionsparameter

Aus der Verbreitung sowie der Mächtigkeits- und Korngrößenverteilung der Tephralagen lassen sich neben dem Volumen der Ablagerung verschiedene physikalische Parameter einer Eruption berechnen.

Neben der Höhe der Eruptionssäule sind dies u.a. die Masseneruptionsrate und die Magnitude einer Eruption. Diese ermöglichen die Angabe eines VEI-Wertes (Volcanic Explosivity Index) und damit einer Maßzahl für die Größe und Intensität dieser älteren Eruptionen des Merapi, die einen direkten Vergleich mit den beobachteten historischen und rezenten Ausbrüchen ermöglicht.

Tephravolumen

Aus der Verbreitung und Mächtigkeitsverteilung einer Bimsfallablagerung läßt sich deren Volumen bestimmen. Voraussetzung hierfür ist eine exponentielle Abnahme der Mächtigkeit der Fallablagerung mit der Entfernung vom Eruptionszentrum, eine Annahme, die für viele Fallablagerungen zutrifft (Thorarinsson, 1954; Pyle, 1989). Die exponentielle Mächtigkeitsabnahme zeigt sich z.B. durch eine lineare Korrelation in einem Diagramm des natürlichen Logarithmus der Mächtigkeit aufgetragen gegen die zweite Wurzel der in der entsprechenden Isopache eingeschlossenen Fläche. Durch Integration der Isopachendaten läßt sich für Tephralagen, die durch exponentielle Mächtigkeitsabnahme charakterisiert sind, das Volumen berechnen (Pyle, 1989; Fierstein & Nathenson, 1992). Das auf diese Weise ermittelte Volumen stellt in den überwiegenden Fällen das Minimalvolumen einer Fallablagerung dar, da die Rate der exponentiellen Abnahme bis zum distalen Ende der Ablagerung (Mächtigkeit = 0) extrapoliert wird, die Mächtigkeit in den distalen, nicht kartierten Bereichen jedoch nicht notwendigerweise exponentiell abnimmt, und die Mächtigkeitsabnahme in diesen Bereichen oftmals geringer ist als in den proximalen Bereichen einer Fallablagerung (vgl. Rose, 1993).

Abb. 5.5. Variation der Mächtigkeit und maximalen Bimsklasten und lithischen Komponenten der Trayem-Tephra mit der Entfernung vom Eruptionszentrum.

Abb. 5.5 verdeutlicht die exponentielle Mächtigkeitsabnahme der Merapi-Tephren entlang der Ausbreitungsachse am Beispiel der Trayem-Tephra. Lediglich die am weitesten von der Ausbreitungsachse entfernt liegenden Probenpunkte fallen aus dem Gesamttrend heraus.

Eine weitestgehend exponentielle Mächtigkeitsabnahme zeigt sich auch durch eine lineare Korrelation in einem Diagramm des natürlichen Logarithmus der Mächtigkeit gegen die zweite Wurzel der in der entsprechenden Isopache eingeschlossenen Fläche, für diejenigen Tephralagen, bei denen mehr als zwei Isopachen konstruiert werden konnten (Abb. 5.6). Für die anderen Eruptionen basiert die Volumenabschätzung lediglich auf zwei Isopachen, so daß von einer größeren Ungenauigkeit des Ergebnisses auszugehen ist (Abb. 5.6).

Die nach der Methode von Pyle (1989) ermittelten Volumina der fünf untersuchten Merapi-Tephren sind in Tab. 5.2 aufgeführt.

Insgesamt reichen die berechneten Gesamtvolumina von 0.07 km³ (Jurangjero 1-Tephra) bis 0.28 km³ (Jurangjero 2-Tephra), wobei an dieser Stelle noch einmal darauf hingewiesen sei, daß es sich hierbei um die jeweiligen Mindestvolumina handelt. Außerdem ist anzumerken, daß das Integrationsergebnis einen bestimmten Volumenanteil (< 40 % nach Pyle, 1995) jenseits der

letzten kartierten Isopache beinhaltet, da die Tephralagen lediglich im proximalen Bereich bis maximal 20 km vom Eruptionszentrum auskartiert werden konnten.

Abb. 5.6. Diagramm des natürlichen Logarithmus der Mächtigkeit gegen die zweite Wurzel der in der entsprechenden Isopache eingeschlossenen Fläche für die verschiedenen Tephralagen.

Eruptionssäulenhöhe, Masseneruptionsrate und Magnitude

Aus der Verbreitung der größten Bimsklasten und lithischen Komponenten lassen sich nach den theoretischen Modellen von Sparks (1986) und Carey & Sparks (1986) grundlegende Parameter explosiver Eruptionen, wie die maximale Eruptionsäulenhöhe und Masseneruptionsrate abschätzen (Tab. 5.2).

Die Bestimmung der Eruptionssäulenhöhen erfolgte je nach Tephralage aus der Verbreitung der größten Bimsklasten, in zwei Fällen auch aus der Verbreitung der größten lithischen Komponenten. Abb. 5.7 zeigt Diagramme der "Crosswind range" aufgetragen gegen die "Downwind range" für theoretische Isoplethen von Klasten mit einem Durchmesser von 0.8, 1.6 und 3.2 cm und einer Dichte von 2.5 g/cm³ (Carey & Sparks, 1986). Diese beiden Parameter ergeben eine bestimmte Kombination aus Eruptionssäulenhöhe und Windgeschwindigkeit für die

jeweilige Geometrie der Isoplethen. Ohne Windeinfluß (0 m/s) ergeben sich kreisförmige Isoplethen um das Eruptionszentrum (Winkelhalbierende in Abb. 5.7).

Abb. 5.7. Diagramme der "Crosswind range" aufgetragen gegen die "Downwind range" für die Isoplethen von Klasten mit einem Durchmesser von 0.8, 1.6 und 3.2 cm und einer Dichte von 2.5 g/cm³, basierend auf dem theoretischen Modell von Carey & Sparks (1986). *Diagonale Linien* sind Linien gleicher Windgeschwindigkeit in m/s. *Horizontale Linien* geben die maximale Eruptionssäulenhöhe in km an. Weitere Erläuterungen im Text.

Die Isoplethendaten von Bimsklasten und Lithics für vier der kartierten Tephralagen des Merapi (Jurangjero 1, Trayem, Paten 2, Paten 1) sind in Abb. 5.7 dargestellt. Die durch eine Dichte von 1.25-1.50 g/cm³ charakterisierten Bimsklasten der Merapiablagerungen wurden dabei in das Diagramm des entsprechenden hydraulischen Äquivalents einer Komponente mit einer Dichte 2.5 g/cm³ eingetragen.

Insgesamt ergeben sich aus den Isoplethendaten der vier Tephralagen Eruptionssäulenhöhen zwischen 12 und 15 km (Tab. 5.2). Die aus mehreren Isoplethen einer Ablagerung ermittelten Eruptionssäulenhöhen liefern vergleichbare und damit konsistente Werte für die entsprechende Eruption (Abb. 5.7).

Die entsprechenden Masseneruptionsraten variieren zwischen 3.7 x 10^6 und 8.9 x 10^6 kg/s (Tab. 5.2).

Bei einem angenommenen Anteil lithischer Komponenten von 25 Gew.% ergeben sich für die Gesamtmasse der Bimsfallablagerungen Werte zwischen 1.1×10^{11} und 3.6×10^{11} kg (Tab. 5.2).

Tephra-Lage	Volumen (km ³) ¹⁾	Max. Eruptionssäulenhöhe (km) ²⁾	Masseneruptionsrate (kg/s) ³⁾	Magnitude (kg) ⁴⁾	VEI ⁵⁾
Jurangjero II	0.28	n.b.	n.b.	n.b.	4
Jurangjero I	0.07	15	$8.9*10^{6}$	$1.1*10^{11}$	3
Trayem	0.16	14	$6.8*10^{6}$	2.8*10 ¹¹	4
Paten II	0.23	13	$5.1*10^{6}$	3.6*10 ¹¹	4
Paten I	0.13	12	$3.7*10^{6}$	2.0*10 ¹¹	4

Tab 5.2. Eruptionsparameter explosiver Eruptionen des Merapi.

(1) Volumenberechnung nach der Methode von Pyle (1989); (2) Abschätzung der maximalen Eruptionssäulenhöhen nach dem Modell von Carey & Sparks (1986) unter Verwendung der 0.8, 1.6 und 3.2 cm Isoplethen der lithischen Komponenten (Abb. 5.8); (3) Berechnung der Masseneruptionsrate (<u>Mass D</u>ischarge <u>Rate</u>): MDR=(H/0.274)⁴ (Barberi et al., 1995); (4) Berechnung der Masse der gesamten Falleinheit (Magnitude) mit einem angenommenen Anteil lithischer Komponenten von 25 Gew.%; (5) Zuweisung des VEI (<u>V</u>olcanic <u>E</u>xplosivity Index) auf der Basis des Tephravolumens; n.b.: nicht bestimmt.

Unter Berücksichtigung der ermittelten Parameter lassen sich die hier beschriebenen Ausbrüche des Merapi qualitativ und quantitativ als subplinianische Eruptionen charakterisieren, die per Definition durch Magnituden von ca. 10^{11} kg, Intensitäten (Masseneruptionsraten) von ca. 10^{6} kg/s und Eruptionssäulenhöhen < 20 km gekennzeichnet sind (Cioni et al., 2000).

Abb. 5.8 zeigt einen Vergleich der beschriebenen Merapieruptionen mit Literaturdaten pleistozäner und rezenter plinianischer Eruptionen (Carey & Sigurdsson, 1989). Generell zeigt sich eine positive Korrelation zwischen Magnitude und Masseneruptionsrate bei plinianischen Eruptionen, die nach Carey & Sigurdsson (1989) auf einen Zusammenhang zwischen Eruptionsrate und Größe des Magmenreservoirs hindeutet. Die subplinianischen Merapieruptionen fallen in den Bereich der von Carey & Sigurdsson (1989) zusammengestellten plinianischen Eruptionen (Abb. 5.8a). Ein ähnliches Bild zeigt sich bei einem Vergleich von Eruptionssäulenhöhe und Magnitude plinianischer Eruptionen (Abb. 5.8b). Auch hier liegen die subplinianischen Eruptionen des Merapi im allgemeinen Trend plinianischer Eruptionen. Eruptionssäulenhöhe und Magnitude klassifizieren dabei die Merapieruptionen als VEI 3- und 4-Ereignisse (Newhall & Self, 1982). Diese Zuordnung ist weitestgehend konsistent mit den in Tab. 5.2 präsentierten VEI-Werten, die auf den Volumina der Tephraablagerungen basieren. Ablagerungen mit einem Volumen von 0.01-0.1 km³ entsprechen dabei VEI 3-Ereignissen (Jurangjero 1), während Ablagerungen mit einem Volumen von 0.1-1 km³ ein VEI-Wert von 4 zugewiesen werden kann (Jurangjero 2, Trayem, Paten 2, Paten 1).

Abb. 5.8. Diagramm der (a) Masseneruptionsrate und (b) Eruptionssäulenhöhe gegen die Gesamtmasse (Magnitude) der Merapieruptionen (Quadrate) im Vergleich zu verschiedenen pleistozänen und rezenten plinianischen Eruptionen (Kreise) (Carey & Sigurdsson, 1989).

Es ist bemerkenswert, daß die hier beschriebenen VEI 4-Eruptionen sämtliche überlieferten historischen und rezenten Ausbrüche des Merapi, mit Ausnahme der möglichen VEI 4-Ereignisse des Jahres 1872 (Abb. 2.8; Simkin & Siebert, 1994), um eine Größenordnung übertreffen und damit explosive Eruptionen in der jüngeren Eruptionsgeschichte des Vulkans dokumentieren, deren Intensität und Magnitude die der rezenten dombildenden Eruptionen um ein Vielfaches übersteigt.

Alterseinstufung der Tephralagen

Der überwiegende Teil der pyroklastischen Fallablagerungen des Merapi ist aufgrund des Fehlens organischer Substanz nicht direkt mit der Radiokarbonmethode datierbar. Mögliche Ausnahmen bilden die relativ mächtige Trayem-Tephra, in der Reste unverkohlter Pflanzen auftreten oder Fallablagerungen, die mit pyroklastischen Strömen und deren begleitenden Aschenwolkenablagerungen assoziiert sind.

Trotz dieser Schwierigkeiten lassen sich die Alter der hier beschriebenen Fallablagerungen relativ gut durch die jeweilige stratigraphische Position und die Datierung unter- bzw. überlagernder Paläobodenhorizonte und Ablagerungen pyroklastischer Ströme, die häufig organisches Material zur ¹⁴C-Datierung beinhalten, zeitlich eingrenzen. Die für die Datierung der fünf tephrostratigraphischen Leithorizonte wichtigen Altersbestimmungen sind in Tab. 5.3 zusammengefaßt.

Tab. 5.3. ¹⁴C-Altersbestimmungen zur zeitlichen Eingrenzung der fünf tephrostratigraphischen Leithorizonte des Merapi (aktualisiert nach Gertisser & Keller, 2000b).

Proben Nr.	Labor Nr.	Methode	¹⁴ C Alter (Jahre v.h	.)	Kalibriertes ¹² (Kalenderjahre (1 Fehlerbe	⁴ C-Alter e AD/BC) ereich)	Datiertes Material	Ablagerung	Lokalität	Sektor
M99-026	Hd-20793	konv.	$361 \pm$	22	1480 AD -	1625 AD	Holzkohle	Pyr. Strom	K. Apu	Ν
M99-027	Hd-21193	konv.	$385 \pm$	65	1445 AD -	1635 AD	Holzkohle	Pyr. Strom	K. Apu	W-NW
M98-065	KIA 7007	AMS	762 \pm	26	1260 AD -	1284 AD	Holzkohle	Pyr. Strom	Kali Senowo	W-NW
M98-033	KIA 7006	AMS	1047 \pm	36	984 AD -	1022 AD	Holzkohle	Paläosol	Kali Mangu	W-NW
M99-031	Hd-20775	konv.	$2264 \ \pm$	73	400 BC -	205 BC	Holzkohle	Pyr. Strom	Kajangkoso/K. Senowo	W-NW
M99-032	KIA 8585	AMS	$3868 \ \pm$	47	2459 BC -	2211 BC	Holzkohle	Paläosol	Kajangkoso/K. Senowo	W-NW
M98-082	KIA 7008	AMS	$4153 \hspace{0.15cm} \pm \hspace{0.15cm}$	37	2872 BC -	2601 BC	Holzkohle	Paläosol	Candi Asu/K. Trising	W-NW

Kalibrierung der konventionellen ¹⁴C-Alter nach Stuiver & Reimer (1993) und Stuiver et al. (1998). Die Kalibrationsintervalle umfassen das Gesamtintervall aus mehreren Schnittpunkten mit der ¹⁴C-Kalibrationskurve. Die konventionellen (konv.) Analysen wurden von Dr. B. Kromer (Institut für Umweltphysik, Universität Heidelberg), die AMS-Datierungen von Prof. P.M. Grootes (Leibniz Labor für Altersbestimmung und Isotopenforschung, Universität Kiel) durchgeführt.

Abb. 5.9. Chronologie und Alterseingrenzung der tephrostratigraphischen Leithorizonte des Merapi (aktualisiert nach Gertisser & Keller, 2000b). Eine neue ¹⁴C-Datierung von 385 \pm 65 Jahre v.h. (Tab. 5.3, A2.1) ersetzt das bisherige Maximalalter der Jurangjero 2-Tephra von 458 \pm 32 Jahre v.h. (Gertisser & Keller, 2000b).

Die ¹⁴C-Datierungen ergeben einen engen Zeitrahmen zwischen 361 ± 22 und 385 ± 65 ¹⁴C Jahre v.h. für die Eruption der J<u>urangjero 2-Tephra</u> (Abb. 5.9), deren Alter durch mehrere Datierungen in verschiedenen stratigraphischen Profilen sehr gut eingegrenzt ist.

Die unterlagernde Jurangjero 1-Tephra eruptierte vermutlich eine relativ kurze Zeit vor 762 \pm 26¹⁴C Jahre v.h. (Abb. 5.9). Das Maximalalter dieser Lage ist weniger gut definiert und wird lediglich durch die unterlagernd<u>e Trayem-Tephra</u> eingegrenzt, die zwischen 762 \pm 26 und 1047 \pm 36¹⁴C Jahren v.h. abgelagert wurde. Das tatsächliche Eruptionsalter der Trayem-Tephra liegt jedoch mit Sicherheit näher an dem zuletzt genannten Alter, das von einem Paläoboden direkt an der Basis der Tephralage stammt.

Ein ¹⁴C-Alter von 2264 \pm 73 Jahren v.h. von einem pyroklastischen Strom oberhalb der <u>Paten</u> <u>2-Tephra</u> liefert ein Minimalalter für die beiden ältesten korrelierbaren Fallablagerungen. Eine ¹⁴C-Datierung im Hangenden der <u>Paten 1-Tephra</u> deutet auf ein Minimalalter von 3868 \pm 47 ¹⁴C Jahren v.h. für diese Tephralage. Ein ¹⁴C-Alter von 4153 \pm 37 ¹⁴C Jahren v.h. eines mächtigen Paläobodenhorizonts an der Basis der Paten 1-Tephra liefert nicht nur ein Maximalalter für die älteste der lateral korrelierbaren Einheiten (Paten 1-Tephra), sondern auch für den überwiegenden Teil der pyroklastischen Abfolgen auf den morphologischen Rücken (interfluves) im Westsektor des Merapi.

Implikationen für die Risikoabschätzung und mittel- bis langfristige Eruptionsvorhersage am Merapi

Die in diesem Kapitel beschriebenen subplinianischen Eruptionen gehören mit zu den größten explosiven Ausbrüchen des Merapi während des jüngeren Holozäns und sind für eine Risikoabschätzung und Beurteilung des Gefährdungspotentials künftiger Eruptionen des Vulkans von fundamentaler Bedeutung. Tephrafallablagerungen einer Reihe von Eruptionen ähnlicher Größenordnung konnten lokal in den stratigraphischen Sektionen identifiziert werden. Einige davon wurden nach ihrer Typlokalität benannt und sind in Kapitel 4 dieser Arbeit dokumentiert. Die in diesem Kapitel beschriebenen Ablagerungen explosiver Eruptionen stellen daher lediglich eine Auswahl großer explosiver Eruptionen des Merapi während des Holozäns dar, aus deren Ausbreitungscharakteristika wichtige physikalische Eruptionsparameter bestimmt werden können.

Eine der wichtigsten Erkenntnisse ist, daß die vulkanische Aktivität des Merapi in der jüngeren Vergangenheit (< 4000 Jahre) durch große explosive Eruptionen gekennzeichnet ist, die sich fundamental von den dombildenden Eruptionen und den damit assoziierten kleinvolumigen Block- und Aschenströmen des 20. Jahrhunderts unterscheiden. Diese explosive Tätigkeit, welche die rezente Aktivität um Größenordnungen übersteigt, manifestiert sich darüber hinaus in der Häufigkeit pyroklastischer Ströme in den jungholozänen stratigraphischen Abfolgen des

Merapi, die mit dem Kollaps vertikal gerichteter Eruptionssäulen oder –fontänen in Zusammenhang stehen (Kapitel 3 & 4).

Unter Berücksichtigung der ermittelten Tephravolumina und physikalischen Eruptionsparameter lassen sich die in diesem Kapitel dokumentierten jungholozänen Ausbrüche des Merapi qualitativ und quantitativ als subplinianische Eruptionen charakterisieren, denen VEI-Werte von 3 und 4 zugewiesen werden können. VEI 4-Ereignisse, wie in diesem Kapitel beschrieben, übersteigen sämtliche überlieferten historischen und rezenten Ausbrüche des Merapi mit Ausnahme der möglichen VEI 4-Ereignisse des Jahres 1872 (Simkin & Siebert, 1994) um mindestens eine Größenordnung und dokumentieren explosive Eruptionen in der jüngeren Eruptionsgeschichte des Vulkans, deren Intensität und Magnitude die der rezenten Eruptionen um ein Vielfaches übersteigt.

Kapitel 6 Petrographie und Mineralogie

Die Petrographie der Laven des Merapi wurde von del Marmol (1989) ausführlich beschrieben. In diesem Kapitel wird die Petrographie der in dieser Arbeit untersuchten Merapiproben kurz zusammengefaßt und die darin auftretenden Mineralparagenesen sowie die Strukturen innerhalb einzelner Mineralkörner beschrieben und charakterisiert.

Petrographie und Mineralbestand der Merapivulkanite

Gemäß ihrer geochemischen Zusammensetzung handelt es sich bei den Förderprodukten des Merapi um Basalte (< 52 Gew.% SiO_2) und basaltische Andesite (52-57 Gew.% SiO_2) (Kapitel 7).

Bei dem überwiegenden Teil der untersuchten Proben handelt es sich um basaltische Andesite, welche die vorherrschenden Gesteine am Merapi darstellen. Obgleich einige der jüngeren Merapiprodukte SiO₂-Gehalte < 52 Gew.% aufweisen können und damit formal als Basalte zu bezeichnen sind, läßt sich festhalten, daß "Basalte im engeren Sinne" im wesentlichen auf das Proto-Merapi-Stadium (Gunung Turgo, Gunung Plawangan) beschränkt sind, und der Gesamt-komplex des Merapi – inklusive der Laven des Sommawalls – von basaltischen Andesiten aufgebaut wird. Del Marmol (1989) beschreibt ein weiteres Vorkommen von Basalten am Gunung Bibi (Prä-Merapi). Zwei in dieser Arbeit durchgeführte geochemische Analysen zeigen allerdings, daß am Bibi auch SiO₂-reichere Gesteine auftreten (Kapitel 7).

Sämtliche Merapigesteine zeigen ähnliche petrographische Eigenschaften und spiegeln damit die geringen Variationen in den Gesamtgesteinszusammensetzungen wider. Die Merapigesteine sind porphyrisch bis glomeroporphyrisch mit Einsprenglingsgehalten bis max. 50-55 Vol.%. Die Einsprenglingskristalle (> 0.3 mm), Mikrophänokristalle (0.03-0.30 mm) und Mineralaggregate sind in einer feinkörnigen, mikrokristallinen oder glasigen Grundmasse angeordnet. Letztere führt zu vitropyrischen Gefügen in schnell abgekühlten Merapimagmen. In vielen Fällen verleihen kleine, leistenförmige Plagioklasmikrolithe, die noch vor der vollständigen Erstarrung in den abgeschreckten Merapimagmen gewachsen sind, der Grundmasse ein hyalopilitisches Gefüge. In den höher viskosen Laven können die Plagioklasmikrolithe durch den Fließvorgang eine bevorzugte Orientierung erhalten und dem Gestein ein trachytisches Gefüge verleihen.

Abb. 6.1. Mineralbestand der Merapiprodukte in Abhängigkeit der Gesamtgesteinsgeochemie.

In sämtlichen Merapigesteinen bilden Plagioklas und Klinopyroxen die vorherrschenden Einsprenglingsphasen, wobei Plagioklas immer überwiegt. In den basischen Gesteinen des Proto-Merapi kommt Olivin als Hauptgemengteil hinzu und kann modal Klinopyroxen als zweithäufigste Einsprenglingsphase neben Plagioklas ablösen. In den mafischen Gesteinen der jüngeren Perioden dominieren Plagioklas und Klinopyroxen über Olivin, der akzessorisch in einigen Proben vorkommt, in den Laven des Somma-Walls jedoch fehlt. Orthopyroxen tritt als Einsprenglingsphase in den SiO₂-reicheren Merapigesteinen auf und ersetzt Olivin als Einsprenglingsmineral in Gesteinen mit mehr als ca. 54 Gew.% SiO₂ (Abb. 6.1). Gelegentlich koexistieren Mikrophänokristalle von Olivin und Orthopyroxen in Gesteinen mit ca. 52-54 Gew.% SiO₂. In wenigen Fällen fehlen sowohl Olivin als auch Orthopyroxen. Bezüglich der auftretenden Fe-Mg-Silikate (Olivin, Klinopyroxen, Orthopyroxen) lassen sich insgesamt fünf Gesteinstypen am Merapi unterscheiden (Tab. 6.1).

	Gesteinstyp	Mineralparagenese
(1)	Basalt	plag, cpx, ol , ± ti-mt
(2)	Olivinführende Bas. Andesite	plag, cpx, ± ol , ti-mt, (amph)
(3)	"Ein-Pyroxen"-Bas. Andesite	plag, cpx, ti-mt, (amph)
(4)	"Zwei-Pyroxen"-Bas. Andesite	plag, cpx, opx, ti-mt, (amph)
(5)	Olivinführende "Zwei-Pyroxen"-Bas. Andesite	plag, cpx , \pm opx , \pm ol , ti-mt, (amph)

Tab. 6.1. Gesteinstypen am Merapi.

Mit Ausnahme der Basalte des Proto-Merapi kann darüber hinaus in sämtlichen Merapigesteinen Amphibol als akzessorischer (< 1 Vol.%), Neben- (1-5 Vol.%) oder Hauptgemengteil (> 5 Vol.%) hinzukommen (Abb. 6.1). Titanomagnetit, die einzige primär magmatische Fe-Ti-Oxidphase in den Merapigesteinen, findet sich häufiger in den jüngeren und höher differenzierten Merapiprodukten und kommt in den Proto-Merapi-Basalten lediglich untergeordnet vor.

Zusätzlich zu den genannten Haupt- und Nebengemengteilen tritt in nahezu allen Merapigesteinen akzessorisch Apatit auf.

Darüber hinaus finden sich Chromspinelle als Einschlüsse in Olivineinsprenglingen der Basalte des Proto-Merapi und Cristobalit als Porenfüllung in den Laven des Somma-Walls und Komponenten einiger holozäner pyroklastischer Ströme. Weder Chromspinell noch Cristobalit wurden bisher am Merapi beschrieben.

In der Grundmasse der Merapigesteine kommen in den mikrokristallinen Varietäten leistenförmige Plagioklasmikrolithe sowie Klinopyroxen- und Titanomagnetitkristalle als wesentliche Bestandteile vor.

Häufig treten glomerophyrische Aggregate aus Plagioklas, Klinopyroxen, untergeordnet Orthopyroxen bzw. Olivin und Titanomagnetit in den Merapigesteinen auf. Die Zwischenräume zwischen den sperrig gestellten Kristallen werden dabei häufig von braunem Glas ausgefüllt und ergeben ein intersertales Gefüge. Die Minerale in den glomerophyrischen Aggregaten sind texturell identisch mit den übrigen Einsprenglingsphasen der jeweiligen Probe.

Mineralogie und Strukturen innerhalb von Einzelkörnern

Einsprenglinge von Plagioklas sind das auffallendste Kennzeichen der Merapilaven im Dünnschliff. Die Korngröße der Einsprenglinge beträgt maximal einige wenige Millimeter. Größere Plagioklase finden sich gelegentlich in den basaltischen Laven von Gunung Turgo und Gunung Plawangan (Proto-Merapi). Die Strukturen innerhalb einzelner Plagioklaskristalle in den Merapilaven sind vielfältig und zeigen nahezu die gesamte Spanne von Eigenschaften, wie sie für Andesite typisch sind. Die Plagioklase können hypidiomorph bis idiomorph in Form längsprismatischer Kristalle ausgebildet, gerundet und resorbiert oder gebrochen und von Rissen durchsetzt sein. Zwillingsbildungen nach dem Albit- und untergeordnet nach dem Karlsbader-Gesetz sind häufig und charakteristisch. Ein komplexer Zonarbau ist ein wesentliches Kennzeichen vieler Plagioklaseinsprenglinge des Merapi. Neben normalem Zonarbau mit anorthitreichen Kern- und albitreicheren Randzusammensetzungen findet sich, wenn auch seltener, inverser Zonarbau mit umgekehrter Abfolge. Häufig treten Rekurrenzen, d.h. Zonen mit nach außen hin wieder erhöhten Anorthitgehalten auf. Wiederholungen dieser Erscheinungen führen zu oszillierenden Zonierungen innerhalb der meisten in den Merapilaven auftretenden Plagioklaskristalle. Daneben finden sich gelegentlich - vor allem in den Lavadomkomponenten - klare und in weiten Bereichen homogen zusammengesetzte und unzonierte Kristalle oder Kristallbruchstücke. Charakteristisch für viele der Plagioklaseinsprenglinge sind feinste glasführende Einschlüsse. In Kristallen, in denen diese Einschlüsse in bestimmten Regionen oder Zonen konzentriert sind, entstehen mit winzigen Einschlüssen durchstäubte Zonen ("dust zones") und Siebstrukturen ("sieve textures"). Diese Zonen können in der Nähe der Ränder der Kristalle und parallel zu den Kristallflächen angeordnet sein und sind in der Regel von einem dünnen, einschlußfreien und albitreichen Anwachssaum umgeben. Gelegentlich können die einschlußreichen Zonen den gesamten Kristallkern erfassen, ein Effekt, der allerdings auch durch die Schnittlage des jeweiligen Kristalls bedingt sein kann. Die beschriebenen Siebtexturen sind ein häufiges Kennzeichen von Plagioklaseinsprenglingen in Andesiten und können als Folge von Magmenmischungsprozessen (Tsuchiyama, 1985; Dungan & Rhodes, 1978) oder der schnellen adiabatischen Druckabnahme während des Magmenaufstiegs (Nelson & Montana, 1992) interpretiert werden.

Farblose bis blaßgrüne Einsprenglinge Ca-reicher Klinopyroxene finden sich in sämtlichen Merapiprodukten. Die Klinopyroxeneinsprenglinge weisen im allgemeinen Korngrößen von einigen wenigen Millimetern auf. Die beobachteten maximalen Durchmesser liegen bei mehr als 5 mm. In der Regel sind die Klinopyroxenkristalle idiomorph in Form gedrungen prismatischer Kristalle ausgebildet. Kristalline Einschlüsse von Plagioklas, Titanomagnetit und Apatit sowie rundliche bis unregelmäßig geformte Einschlüsse von meist bräunlichem Glas sind häufig und charakteristisch. Die Klinopyroxeneinsprenglinge sind überwiegend unzoniert oder weisen vergleichsweise geringe chemische Variationen auf. Chemische Inhomogenitäten innerhalb einzelner Klinopyroxenkristalle können dadurch zustande kommen, daß die verschiedenen Flächen des wachsenden Kristalls etwas unterschiedlich zusammengesetzte Substanz anlagern, wodurch eine Gliederung des Kristalls in chemisch und optisch verschiedene Sektoren erfolgen kann (Abb. 11.13). Etwas häufiger finden sich diskontinuierlich zonierte Klinopyroxenkristalle mit chemisch unterschiedlich zusammengesetzten Kern- und Randbereichen, wobei letztere in ihrer Zusammensetzung mit den übrigen Klinopyroxeneinsprenglingen der jeweiligen Probe übereinstimmen (Abb. 6.2.a-b). Dieser Befund legt eine Interpretation dieser Kerne als Xenokristalle nahe, die in einem früheren Stadium unter veränderten physikalisch-chemischen Bedingungen in den Merapimagmen gebildet wurden. Die Klinopyroxenkerne können leicht resorbiert sein, so daß die ursprüngliche Kornform und geradlinige Korngrenzen noch weitestgehend erhalten sind (Abb. 6.2.a) oder durch Resorptionsvorgänge bereits so stark "zersetzt" sein, daß nur noch reliktische Kerne mit buchtigen oder zerlappten Korngrenzen vorliegen (Abb. 6.2.b). Dieses Phänomen findet sich teilweise auch bei den Klinopyroxeneinsprenglingen, die im Kontakt mit der umgebenden Schmelze stehen (Abb. 6.2.c), und könnte ebenso, wie die in vielen der holozänen und rezenten Lavadomkomponenten des Merapi beobachteten Ummantelungen von Klinopyroxen um früher kristallisierte Orthopyroxenkristalle, auf einen Temperaturanstieg infolge von Magmenmischungen mit einem einströmenden heißen und basischen Magma hindeuten.

(a) Photo und Skizze eines diskontinuierlich zonierten Klinopyroxenkristalls mit großem salitischen Kernbereich (Probe M97-045);

(b) BSE-Bild und Skizze eines diskontinuierlich zonierten Klinopyroxenkristalls mit reliktischem salitisch-diopsidischen Kern (Probe M98-002);

(c) BSE-Bild eines resorbierten Klinopyroxeneinsprenglingskristalls mit buchtigen Korngrenzen (Pfeil) aus Probe M95-011. <u>Orthopyroxen</u> tritt akzessorisch oder als Nebengemengteil in Form von Mikrophänokristallen in den SiO₂-reicheren Gesamtgesteinszusammensetzungen des Merapi auf. Im Dünnschliff zeichnen sich die farblosen bis leicht bräunlich gefärbten Orthopyroxene durch ihren charakteristischen rosafarbenen bis grünlichen Pleochroismus aus, wie er für Hypersthene typisch ist. Die Orthopyroxenkristalle sind in der Regel idiomorph ausgebildet und liegen in Form langprismatischer Mikrophänokristalle vor. Im allgemeinen sind die Orthopyroxene recht homogen zusammengesetzt. Zonierungen sind, soweit überhaupt vorhanden, gering und überwiegend normal mit ansteigendem Fe/Mg-Verhältnis vom Kern zum Rand. Gelegentlich können die Orthopyroxene von Klinopyroxenkristallen umgeben sein, die sich offensichtlich um diese gebildet haben.

Einsprenglinge von <u>Olivin</u> finden sich relativ selten und nur akzessorisch in den SiO₂-ärmeren basaltischen Andesiten der jüngeren Entwicklungsstadien des Merapi, während sie in den basaltischen Laven von Gunung Turgo und Gunung Plawangan einen Hauptbestandteil darstellen. Olivin bildet überwiegend farblose, einschlußfreie und idiomorphe bis hypidiomorphe Einsprenglings- oder Mikrophänokristalle mit Korngrößen bis zu 1 mm und homogenen Zusammensetzungen oder normalem Zonarbau mit ansteigendem Fe/Mg-Verhältnis vom Kern zum Rand. Typisch für die Olivine der Proto-Merapi-Basalte ist der an unregelmäßigen Rissen in den Kristallen beginnende Abbau zu gelblich bis bräunlichem Iddingsit und das Auftreten dünner Oxidationsränder aus Hämatit. Fo-reiche Olivine, die gelegentlich in den basaltischen Laven des Proto-Merapi vorkommen und nicht im Gleichgewicht mit der umgebenden Schmelze stehen, werden als Xenokristalle gedeutet. Diese können kleine Kristalle chromreicher Spinelle (sog. Picotite) beinhalten (Abb. 6.3).

Abb. 6.3. BSE-Bild eines Fo-reichen Olivinkristalls mit Einschlüssen chromführender Spinelle (helle Kristalle) in einer Basaltprobe des Proto-Merapi (M96-052).

<u>Amphibol</u> tritt akzessorisch, als Neben- oder Hauptgemengteil in vielen der untersuchten Merapiproben auf, kann allerdings auch, wie z.B. in einigen Proben des rezenten Dommaterials und den Laven des Proto-Merapi, fehlen. Die Merapi-Amphibole bilden durchweg hell- bis dunkelbraun pleochroitische, längsprismatische Kristalle, die überwiegend Korngrößen im Millimeterbereich aufweisen. Die Amphibolkristalle sind überwiegend unzoniert oder weisen geringfügig nomale Zonierungen mit erhöhten Fe/Mg-Verhältnissen im Randbereich auf. In einigen wenigen Fällen können, ähnlich wie bei den Klinopyroxenen, abrupte bzw. diskontinuierliche Änderungen der Zusammensetzung innerhalb einzelner Amphibolkristalle beobachtet werden.

Abb. 6.4. Dünnschliffphoto eines für die rezenten Domlaven typischen Amphibolkristalls mit einem Reaktionssaum aus einem feinkörnigen Gemenge aus Fe-Ti-Oxid, Plagioklas, Klinopyroxen und Orthopyroxen.

Idiomorphe Amphibolkristalle im Gleichgewicht mit der umgebenden Schmelze finden sich ausschließlich in den stark aufgeschäumten, bimsartigen Komponenten aus den in den vorangegangenen Kapiteln beschriebenen (sub)plinianischen Fallablagerungen und durch Eruptionssäulenkollaps entstandenen pyroklastischen Strömen (Typ D, Tab. 3.1). In einigen Proben des rezenten Dommaterials und der älteren (holozänen) Förderprodukte des Merapi fehlt Amphibol als Einsprenglingsphase, in anderen bilden akzessorisch auftretende Amphibole Megakristalle mit maximalen Korngrößen von mehr als 50 mm in einem Domfragment aus dem Block- und Aschenstrom vom November 1994 im Kali Boyong. In diesen Fällen sind die Amphibolkristalle randlich stets in ein feinkörniges Gemenge aus Fe-Ti-Oxid, Plagioklas, Klinopyroxen und Orthopyroxen oder Olivin zersetzt (Abb. 6.4), wahrscheinlich eine Folge der Entwässerung der koexistierenden Schmelze während des nahezu adiabatischen Aufstiegs des Magmas von einem tiefen Reservoir (Rutherford & Hill, 1993). In mehreren der älteren Ablagerungen lassen sich Amphibole mit Reaktionssäumen aus überwiegend feinkörnigem Titanomagnetit beobachten, die im Gegensatz zu den oben genannten Amphibolzerfallsprodukten auf syn- oder posteruptive Oxidationsvorgänge zurückgeführt werden können (Garcia & Jacobson, 1979). Die Bedeutung der Amphibole und deren unterschiedliche Ausbildungsformen und Zerfallsreaktionen für das Magmasystem des Merapi wird ausführlich in Kapitel 12 diskutiert.

<u>Titanomagnetit</u> bildet in den Merapigesteinen im allgemeinen hypidiomorphe bis xenomorphe Mikrophänokristalle und Einsprenglinge bis ca. 0.5 mm Durchmesser. Darüber hinaus treten Titanomagnetitkristalle häufig in Form von Einschlüssen in den übrigen Einsprenglingsphasen und in der Grundmasse der Merapilaven auf. Während der überwiegende Teil der Titanomagnetitkristalle am Merapi homogen zusammengesetzt ist, finden sich in den Laven des Somma-Walls und einigen der jüngeren pyroklastischen Ströme Titanomagnetite mit Entmischungserscheinungen in Form zahlreicher, sich kreuzender Entmischungslamellen (Abb. 6.5) oder anders gestalteter Einlagerungen einer entmischten Oxidphase. Im überwiegenden Teil der untersuchten Proben sind Entmischungslamellen ilmenitreicher Zusammensetzungen der Mischungsreihe Hämatit-Ilmentit (Abb. 6.5.a) enthalten. Darüber hinaus treten in einigen Fällen Titanomagnetitkristalle mit lamellaren Entmischungen einer Spinellphase der Mischungsreihe Magnetit-Ulvøspinell (Abb. 6.5.b) auf. Beide Entmischungsphänomene entstehen während der langsamen Abkühlung der Laven im Subsolidusbereich und zeigen Oxidationsvorgänge während der Abkühlung der Laven (Buddington & Lindsley, 1964) bzw. die Existenz einer Mischungslücke entlang der Mischungsreihe Magnetit-Ulvøspinell (Vincent et al., 1957; Lindsley, 1981; Price, 1981) an. Eine chemische Charakterisierung der Titanomagnetite und entmischten Oxidphasen erfolgt in Kapitel 10.

Abb. 6.5. Lamellare Entmischungserscheinungen in Titanomagnetit: (a) Entmischungen einer rhomboedrischen Phase der Mischungsreihe Hämatit-Ilmentit (Probe M98-107); (b) Entmischungen einer Spinellphase der Mischungsreihe Magnetit-Ulvøspinell (Probe M96-167).

<u>Apatit</u> ist eines der allgegenwärtigen akzessorischen Minerale in den Merapivulkaniten und tritt häufig in der Grundmasse, als Mikrophänokristall oder Einschluß in Klinopyroxen oder

anderen Einsprenglingsphasen in Form kleiner, farbloser, längsprismatischer, nadeliger oder hexagonaler Kristalle auf.

In den Olivineinsprenglingen mit Fo-reichen Kernen in den Basalten des Proto-Merapi konnten zum ersten Mal am Merapi <u>Cr-führende Spinelle</u> (Picotite) in Form kleiner hypidiomorpher oder oktaedrischer Einschlüsse nachgewiesen werden (Abb. 6.3). Eine Diskussion der chemischen Variationen und Kristallisationsgeschichte dieser Chromspinelle findet sich in Kapitel 10.

Abb. 6.6. Sekundär gebildeter Cristobalit in einem Blasenhohlraum einer Lavakomponente aus einem holozänen pyroklastischen Strom (Probe M96-167).

In den Blasenhohlräumen einzelner Lavaproben des Somma-Walls (M96-070, M98-105) und einer Komponente aus einem jüngeren pyroklastischen Strom (M96-167) konnte (metastabil) gebildeter <u>Cristobalit</u> als sekundäre Hohlraumfüllung identifiziert werden. Dieser bildet charakteristische gedrungene und oft würfelige Kristalle, die von unregelmäßig geformten Rissen durchzogen werden (Abb. 6.6).

Kapitel 7

Haupt- und Spurenelementgeochemie der Laven und Pyroklastite des Merapi

In diesem Kapitel wird die Hauptelement- und Spurenelementgeochemie der Merapi-Vulkanite untersucht und in den Kontext der geochemischen Entwicklung des Gesamtkomplexes gestellt. Neben Analysen von Laven der älteren Einheiten des Merapi (Gunung Bibi, Proto-Merapi, Merapi-Somma) steht die geochemische Charakterisierung der stratigraphisch gut untersuchten und datierten holozänen pyroklastischen Ablagerungen des Merapi im Vordergrund. Dabei wird die geochemische Analytik von Lavadomkomponenten älterer Block- und Aschenströme ergänzt durch die geochemische Charakterisierung von Bimsklasten, die überwiegend aus pyroklastischen Fallablagerungen des Merapi stammen und in den bisherigen Arbeiten weitestgehend unberücksichtigt blieben.

Die Diskussion der Geochemie der Merapiprodukte basiert auf 195 neuen RFA-Gesamtgesteinsanalysen an insgesamt 185 Proben des Gesamtkomplexes sowie 25 hochpräzisen ICP-MS-Spurenelementbestimmungen ausgewählter Proben, die im Verlauf dieser Arbeit angefertigt wurden. Sämtliche Analysen und eine Beschreibung der Proben finden sich zusammengefaßt in Anhang A3 und A4.

Frühere Arbeiten

Erste detaillierte Untersuchungen über die Geochemie der Förderprodukte des Merapi finden sich in den Arbeiten von Kerinec (1982), Bahar (1984), del Marmol (1989), Berthommier (1990), Camus et al. (2000) und Andreastuti et al. (2000). Die Ergebnisse dieser Arbeiten zeigen einen geringen Variationsbereich im SiO₂-Gehalt der Merapimagmen, die basaltische bis andesitische Zusammensetzungen aufweisen. Kerinec (1982) gibt einen SiO₂-Variationsbereich von 52 bis 57 Gew.% für die Merapigesteine an. Bahar (1984) und del Marmol (1989) beschreiben eine etwas größere Variation zwischen 49 und 57 bzw. 59 Gew.% SiO₂. Berthommier (1990) und Camus et al. (2000) geben eine Gesamtvariation von 49.7 bis 60.6 Gew.% SiO₂ an, weisen jedoch darauf hin, daß 90 % der Proben zwischen 52 und 57 Gew.% SiO₂ liegen und somit basaltandesitischer Zusammensetzung sind.

Legt man die Arbeiten von Kernic (1982), Bahar (1984), Berthommier (1990) und Camus et al. (2000) zugrunde, so weist der im allgemeinen zur Charakterisierung magmatischer Gesteinsserien an aktiven Kontinentalrändern und Inselbögen verwendete K₂O-Gehalt der Merapimagmen einen relativ großen Variationsbereich ohne systematische Variationen mit dem SiO₂-Gehalt auf. Im K₂O-SiO₂-Klassifikationsdiagramm von Peccerillo & Taylor (1976) ist der überwiegende Teil dieser Proben der high-K-kalkalkalischen Serie zuzuordnen, während einige wenige Proben mit niedrigeren K₂O-Gehalt und damit ungewöhnlichen Charakter aufweisen (Abb. 3.1 in Berthommier, 1990). Im Gegensatz dazu weist del Marmol (1989) auf den mit ca. 2.0 Gew.% konstanten K₂O-Gehalt und damit ungewöhnlichen Charakter der High-Alumina-Basalte und Andesite des Merapi hin, die aufgrund der Lage im AFM-Diagramm nach Irvine & Baragar (1971) einem typischen kalkalkalischen Differentiationstrend folgen (Abb. VI.1 in del Marmol, 1989).

In der Gesamtentwicklung des Merapi scheinen basaltische Gesteine im wesentlichen auf die Bereiche des Gunung Turgo und Gunung Plawangan (Proto-Merapi) beschränkt zu sein, während die übrigen vulkanischen Produkte des Merapi, inklusive der rezenten Domlaven und pyroklastischen Ströme überwiegend basaltandesitischer Zusammensetzung sind (Kerinec, 1982; Bahar, 1984; del Marmol, 1989; Berthommier, 1990; Camus et al., 2000).

Der Versuch einer genaueren zeitlichen geochemischen Entwicklung des Merapi wurde von Bahar (1984) und Berthommier (1990) unternommen. Nach Bahar (1984) läßt sich ein genereller Anstieg des SiO₂-Gehalts zwischen dem Proto- oder Ancient-Merapi-Stadium und den jüngeren Einheiten des Merapi beobachten. Die Entwicklung des New Merapi seit dem angenommenen Kollaps des Old Merapi scheint ebenso durch eine generelle Zunahme des SiO₂-Gehalts gekennzeichnet zu sein. Auf der Basis einer detaillierten Stratigraphie der Lavasequenzen dieser Periode postuliert Bahar (1984) drei magmatische Zyklen, die durch allmählich ansteigende SiO₂-Gehalte und eine abrupte SiO₂-Abnahme in den finalen Stadien gekennzeichnet sind. Der letzte dieser Zyklen beginnt nach Bahar (1984) mit der Eruption von 1872 (53 Gew.% SiO₂) und ist durch einen leichten, aber kontinuierlichen SiO₂-Anstieg charakterisiert, der lediglich durch die Förderprodukte der Ausbrüche von 1930 und 1954 unterbrochen wird.

Andreastuti (1999) und Andreastuti et al. (2000) unterscheiden insgesamt drei Eruptionszyklen oder Epochen (2990-1960 Jahre v.h.; 1960-780 Jahre v.h.; < 780 Jahre v.h.) während der letzten 3000 Jahre der Merapiaktivität, die jeweils durch eine plötzliche Änderung des SiO₂-Gehaltes der Förderprodukte gekennzeichnet sind. Nach diesen Autoren ist eine neue Epoche durch eine deutliche Veränderung in Richtung geringerer SiO₂-Gehalte gekennzeichnet. Die jüngste, von Andreastuti (1999) und Andreastuti et al. (2000) definierte Epoche umfaßt die rezente Tätigkeit des Merapi seit 1883.

In diesem Kapitel wird zunächst auf die allgemeinen geochemischen Variationen der Förderprodukte des Merapi und deren magmengenetische Implikationen eingegangen. Die magmatische Entwicklung des Vulkans während der vergangenen 2000 Jahre wird ausführlich in Kapitel 9 diskutiert.

Einteilung und Klassifikation der Merapi-Vulkanite

Insgesamt wurden im Verlauf dieser Arbeit 195 neue geochemische Analysen an 185 Gesamtgesteinsproben des Merapi durchgeführt. Von den analysierten Bimsklasten aus verschiedenen holozänen pyroklastischen Fallablagerungen des Merapi weisen 25 Proben erhöhte Glühverlustwerte (LOI) von mehr als 2.5 Gew.% infolge sekundärer Hydratisierung des vulkanischen Glases auf. Aufgrund der leichten Mobilisation der Alkalien in Alterationsprozessen ist bei diesen Proben besondere Sorgfalt bei der Einteilung und Klassifikation im "Total Alkali-SiO₂"-(Le Bas et al., 1986) und K₂O-SiO₂-Diagramm (Le Maitre et al., 1989) geboten. In den folgenden Abbildungen sind die Proben mit LOI > 2.5 Gew.% daher mit offenen Symbolen gesondert gekennzeichnet.

Abb. 7.1. TAS-Klassifikationsdiagramm (Le Bas et al., 1986) der Merapigesteine. Alle Analysen normiert auf 100 Gew.%, H_2O -frei.

Die in dieser Arbeit untersuchten Merapiproben weisen einen, im Vergleich zu den publizierten Daten (Kerinec, 1982; Bahar, 1984; del Marmol, 1989; Berthommier, 1990; Camus et al., 2000), ähnlichen Variationsbereich im SiO₂-Gehalt auf. Dieser beträgt bei den H₂O-frei normierten Proben zwischen 48.3 und 57.3 Gew.% SiO₂. Berücksichtigt man lediglich Proben mit LOI < 2.5 Gew.%, so variieren die Merapigesteine zwischen 50.1 und 57.3 Gew.% SiO₂, wobei mehr als 90 % der Proben SiO₂-Gehalte zwischen 52 und 57 Gew.% SiO₂ aufweisen und damit basaltandesitischer Zusammensetzung sind.

Im "Total Alkali-SiO₂"-Diagramm (Le Bas et al., 1986) (Abb. 7.1) fallen die Merapiproben in Abhängigkeit des SiO₂-Gehalts in den Übergangsbereich zwischen Basalt und Trachybasalt bzw. basaltischem Andesit und basaltischem Trachyandesit. Generell läßt sich eine relativ große Variation in den Alkalien bei einem gegebenen SiO₂-Gehalt sowie eine positive Korrelation der Alkalien mit steigendem SiO₂-Gehalt beobachten. Die alterierten Proben (LOI > 2.5 Gew.%) sind durch vergleichsweise geringe Gesamtalkaliengehalte gekennzeichnet und liegen im unteren Bereich der untersuchten Merapiproben.

Im K₂O-SiO₂-Diagramm von Le Maitre et al. (1989) (Abb. 7.2) zeigt sich, daß die Variation der Gesamtalkalien im wesentlichen auf Unterschiede in den K₂O-Gehalten der Merapiproben zurückzuführen ist.

Abb. 7.2. K₂O-SiO₂-Klassifikationsdiagramm (Le Maitre et al., 1989) der Merapigesteine. Alle Analysen normiert auf 100 Gew.%, H₂O-frei.

Abb. 7.3. K_2O (Gew.%) gegen SiO₂ (Gew.%) für die Förderprodukte der verschiedenen stratigraphischen Einheiten des Merapi. Die Felder für die Medium-K- und High-K-Serie sind von Abb. 7.2 abgeleitet.

.

Insgesamt sind die Merapigesteine durch mittlere bis hohe K_2O -Gehalte gekennzeichnet und gehören damit, wie in Abb. 7.2. ersichtlich, zwei verschiedenen magmatischen Serien an, die sich deutlich in ihrem K_2O -Gehalt unterscheiden.

Dieser Befund behält auch dann noch seine Gültigkeit, wenn die alterierten Proben (LOI > 2.5 Gew.%), die generell die geringsten K₂O-Gehalte sämtlicher Merapiprodukte aufweisen, unberücksichtigt bleiben. Ohne diese Proben sind die beiden Magmaserien durch K₅₅-Werte (K₂O-Gehalt bei 55 Gew.% SiO₂) von 1.67 Gew.% (Medium-K-Serie) bzw. 2.14 Gew.% (High-K-Serie) gekennzeichnet.

Der Nomenklatur von Le Maitre et al. (1989) folgend werden in dieser Arbeit für die zwei verschiedenen magmatischen Serien am Merapi die Begriffe <u>Medium-K</u>-Serie und <u>High-K</u>-Serie verwendet. Äquivalent sind die Bezeichnungen Kalkalkali-Serie und High-K-Kalkalkali-Serie in der Klassifikation von Peccerillo & Taylor (1976).

In Abb. 7.3 ist der K₂O-Gehalt der untersuchten Proben aus den verschiedenen stratigraphischen Einheiten des Merapi gegen den SiO₂-Gehalt aufgetragen. Daraus wird ersichtlich, daß die analysierten Laven des Somma-Walls (van Bemmelen's Old Merapi), von einer Probe abgesehen, der Medium-K-Serie angehören. Unter den holozänen Produkten finden sich neben Gesteinen der Medium-K-Serie solche mit High-K-Affinität. Es ist bemerkenswert, daß viele der untersuchten Bimsklasten, die in das Feld der Medium-K-Serie fallen, zu den alterierten Proben gehören, die unter Umständen keine primären K₂O-Gehalte mehr aufweisen. Die möglichen Auswirkungen und Stoffumsätze von Verwitterungs- und Alterationsprozessen aufgrund der intensiven tropischen Verwitterung am Merapi werden weiter unten gesondert diskutiert. Wie auch immer, einige der Bimsproben der Medium-K-Serie sind nicht alteriert und damit Beweis genug für eine magmatische Entstehung der Medium-K-Serie. Detaillierte stratigraphische und chronologische Untersuchungen zeigen, daß die älteren holozänen Produkte im allgemeinen der Medium-K-Serie und die jüngeren der High-K-Serie angehören (Kapitel 4) und der Übergang von der Medium-K- zur High-K-Serie vor ca. 1800-1900 Jahren stattgefunden hat (Gertisser & Keller, 2000c). Dies deutet auf einen allgemeinen Entwicklungstrend hin zu K-reicheren Magmen in der holozänen Eruptionsgeschichte des Merapi, der mit der Förderung von High-K-Magmen in der rezenten Periode des ausgehenden 19. und 20. Jahrhunderts seine Fortsetzung findet.

Von den beiden vermutlich ältesten Einheiten des Merapi können die Gesteine des Gunung Bibi (Prä-Merapi) problemlos der Medium-K-Serie zugeordnet werden. Schwieriger scheint die Klassifikation und Einteilung der Laven des Proto-Merapi. Zwar fallen die untersuchten Proben von Gunung Turgo und Gunung Plawangan formal in das Feld der High-K-Serie, dennoch scheint aufgrund weiterer geochemischer Charakteristika, wie z.B. den vergleichsweise hohen Ba-Gehalten, keine direkte magmengenetische Beziehung mit den übrigen Merapigesteinen vorzuliegen und damit das Konzept der zwei K-Serien, welche die jüngere Entwicklungsgeschichte des Merapi auszeichnen, nicht direkt auf die Gesteine des Proto-Merapi anwendbar zu sein.

Die Begriffe Medium-K- und High-K-Serie werden in dieser Arbeit daher nicht für die Gesteine des Proto-Merapi verwendet und beziehen sich ausschließlich auf die jüngeren Ablagerungen des Merapi.

Abb. 7.4. AFM-Diagramm der Merapigesteine. Nur Proben mit LOI < 2.5 Gew.% sind berücksichtigt. Die Trennlinien zwischen den Feldern für kalkalkalische (*CA*) und tholeiitische Gesteine (*TH*) sind von Kuno (1968) und Irvine & Baragar (1971). *FeO** Gesamteisen als FeO.

In Abb. 7.4 sind die Merapiproben im AFM-Diagramm dargestellt. Zusätzlich sind die Trennlinien zwischen dem kalkalkalischen und tholeiitischen Feld nach Kuno (1968) und Irvine & Baragar (1971) eingetragen. Die Merapigesteine fallen in das Feld der Kalkalkaligesteine direkt unterhalb der beiden eingezeichneten Trennlinien. Die Merapigesteine zeigen keine Fe-Anreicherung in den frühen Entwicklungsstadien und folgen einem typischen kalkalkalischen Differentiationstrend mit Anreicherung der Alkalien bei gleichzeitiger FeO*- und MgO-Abnahme. Geochemische Unterschiede zwischen den Gesteinen der Medium-K- und High-K-Serie sind in dieser Darstellung nicht ersichtlich.

Allgemeine geochemische Variationen

Hauptelemente

Wie bereits erwähnt zeigen die Merapigesteine bezüglich des SiO₂-Gehalts nur geringe Variationen zwischen ca. 50 und 57 Gew.% SiO₂ und umfassen damit im wesentlichen basaltische (< 52 Gew.% SiO₂) und basaltandesitische (52-57 Gew.% SiO₂) Zusammensetzungen. Weitaus größere Variationen sind in den K₂O-Gehalten der Merapiprodukte zu beobachten, die die Unterscheidung von zwei magmatischen Gesteinsserien mit primär unterschiedlichen K₂O-Gehalten erlauben.

Bezüglich Al_2O_3 (> 18 Gew.%) und TiO₂ (< 1.2 Gew.%) weisen die Merapiproben Signaturen typischer Inselbogenvulkanite auf, die allgemein durch hohe Al_2O_3 (> 16 Gew.%) und geringe TiO₂-Gehalte (< 1.3 Gew.%) gekennzeichnet sind (Gill, 1981). Der MgO-Gehalt beträgt bei dem weitaus größten Teil der Merapigesteine zwischen 2 und 4 Gew.% und übersteigt nur in wenigen der SiO₂-ärmeren Zusammensetzungen 4 Gew.%.

In Abb. 7.5 sind die Hauptelementdaten der Merapigesteine aus Tab. A4.1 (normiert auf 100 Gew.%, H₂O-frei) in gewöhnlichen Harker-Variationsdiagrammen dargestellt. Dabei sind die Gesteine der Medium-K- und High-K-Serie durch unterschiedliche Symbole gekennzeichnet. Die alterierten Proben (LOI > 2.5 Gew.%) sind mit offenen Kreisen dargestellt.

Im allgemeinen unterscheiden sich die Gesteine der Medium-K- und High-K-Serie nicht in den Konzentrationen der übrigen Hauptelementoxide bei einem bestimmten SiO₂-Gehalt. Innerhalb beider K-Serien nehmen mit steigendem SiO₂-Gehalt TiO₂, Fe₂O₃*, MgO und CaO ab, während Na₂O und K₂O (Abb. 7.2) zunehmen. Der Al₂O₃-Gehalt der Merapigesteine weist generell Werte > 18 Gew.% auf und zeigt eine erhebliche Streuung ohne eindeutige Variationen mit dem SiO₂-Gehalt. Extrem hohe Al₂O₃-Werte (> 21 Gew.%) treten ausschließlich bei den Proben mit mehr als 2.5 Gew.% LOI auf. Diese weisen gleichzeitig die geringsten K₂O-Gehalte sämtlicher Merapigesteine auf (Abb. 7.2). Die P₂O₅-Gehalte der Merapimagmen (nicht dargestellt) variieren zwischen ca. 0.17 und 0.40 Gew.% und zeigen keine systematischen Variationen mit dem SiO₂-Gehalt.

Insgesamt zeigen die Hauptelementoxide innerhalb beider K-Serien Variationen, wie sie typisch sind für die Differentiation "kalkalkalischer" Inselbogenserien. Die linearen An- bzw. Abreicherungstrends von TiO₂, Fe₂O₃*, MgO, CaO, Na₂O und K₂O mit steigendem Differentiationsgrad sind konsistent mit einer durch fraktionierte Kristallisation kontrollierten Entwicklung der Merapimagmen.

Abb. 7.5. Hauptelementvariationen gegen SiO₂ (Gew.%). Symbole wie in Abb. 7.1.

Eine Änderung der Steigung oder sogar eine Umkehrung der Trends bestimmter Elemente im Differentiationsverlauf, die auf Änderungen der kristallisierenden Mineralvergesellschaftung oder der Zusammensetzung einzelner fraktionierender Mineralphasen hindeuten, sind nicht zu beobachten und aufgrund der insgesamt ähnlichen mineralogischen und petrographischen Merkmale der Merapiprodukte (Kapitel 6) auch nicht zu erwarten. Aufgrund dieses Befunds läßt sich nicht ausschließen, daß Mischungen unterschiedlich zusammengesetzter Magmen ebenfalls eine Rolle spielen, die Fraktionierungstrends überprägen und zumindest in gewissem Umfang zu den beobachteten geochemischen Variationen der Merapigesteine beitragen.

Spurenelemente

In Abb. 7.6 sind die Konzentrationen ausgewählter Spurenelemente der Merapigesteine aus Tab. A4.1 gegen SiO₂ (Gew.%) aufgetragen. Im Vergleich zu den Hauptelementvariationen zeigen sich bei den Spurenelementen im allgemeinen breitere geochemische Trends und eine stärkere Streuung der Daten. Inkompatible Spurenelemente, wie Rb, Ba und Zr zeigen eine lineare positive Korrelation mit SiO₂, während Elemente, wie V, Co und Cr aufgrund ihres kompatiblen Verhaltens eine Abreicherung mit zunehmendem SiO₂-Gehalt erfahren. Die Sr-Gehalte der Merapimagmen (nicht dargestellt) betragen zwischen ca. 450 und 600 ppm und zeigen keine systematischen Variationen mit dem SiO₂-Gehalt.

Rb und Ba zeigen eine erhebliche Variation über den SiO₂-Bereich der Merapimagmen und korrelieren positiv mit dem K₂O-Gehalt. Das ähnliche geochemische Verhalten von Rb, Ba und K manifestiert sich in erhöhten Rb- und Ba-Gehalten in den Gesteinen der High-K-Serie und entsprechend niedrigeren Konzentrationen dieser Elemente in den Produkten der Medium-K-Serie. Die niedrigsten Rb- und Ba-Konzentrationen finden sich wiederum bei den Proben mit mehr als 2.5 Gew.% LOI (Abb. 7.7). Zr (ca. 70-130 ppm) zeigt eine tendenzielle Anreicherung mit steigendem SiO₂-Gehalt, wobei sich die Gesteine der Medium-K-Serie nicht von denen der High-K-Serie unterscheiden.

Trotz einer gewissen Streuung der Daten zeigen von den kompatiblen Spurenelementen V (ca. 300-100 ppm) und Co (ca. 30-5 ppm) eine nahezu lineare Abnahme mit steigendem SiO₂-Gehalt. Die Gesamtvariation von Cr (< 5-105 ppm) hingegen verläuft weniger einheitlich. Während ein Teil der Proben einen linearen Abreicherungstrend mit zunehmendem SiO₂-Gehalt aufweist, zeigt ein anderer Teil der Proben einen eher konkaven Trend mit einer großen Variation bei den basischen Zusammensetzungen sowie niedrigen und nahezu konstanten Cr-Gehalten in den basaltischen Andesiten (Abb. 7.6). Die Ni-Gehalte der Merapimagmen liegen überwiegend nahe oder bereits unterhalb der Nachweisgrenze der Röntgenfluoreszenzanalyse und erreichen lediglich in einigen wenigen mafischen Zusammensetzungen Konzentrationen von mehr als 10 ppm.

Abb. 7.6. Spurenelementvariationen gegen SiO_2 (Gew.%). Man beachte die "anomalen" Ba-Gehalte der gekennzeichneten Gesteine des Proto-Merapi. Symbole wie in Abb. 7.1.

Im allgemeinen sind die Merapigesteine durch geringe MgO-, Ni- und Cr-Gehalte gekennzeichnet. Höchstwerte von ca. 5 Gew.% MgO, 50 ppm Ni und 100 ppm Cr in den Basalten des Merapi zeigen, daß diese keine primären Mantelschmelzen, sondern bereits in gewissem Maße differenzierte Magmen darstellen.

Abb. 7.7. Rb (ppm) und Ba (ppm) gegen K₂O (Gew.%) der Merapiproben. Symbole wie in Abb. 7.1.

Abb. 7.8. Cr (ppm) gegen SiO₂ (Gew.%) der Merapiproben. I Fraktionierungstrend; II Mischungstrend. Symbole wie in Abb. 7.1.

Im großen und ganzen bestätigen die beobachteten Spurenelementvariationen innerhalb der beiden K-Serien, trotz der allgemein größeren Streuung der Daten, die Folgerungen, die aus der Hauptelementgeochemie gezogen wurden und lassen sich im wesentlichen durch Prozesse der fraktionierten Kristallisation erklären. Dafür spricht neben den linearen positiven Korrelationen der inkompatiblen Spurenelemente (z.B. Rb, Ba, Zr) mit SiO₂, vor allem der gekrümmte, konkave Trend von Cr mit einer starken Abreicherung in den mafischen Zusammensetzungen und nahezu konstanten Cr-Gehalten in den höher differenzierten Gesteinen (Abb. 7.8). Einen Hinweis auf die mögliche Bedeutung von Magmenmischungsprozessen liefern bestimmte Proben intermediärer Zusammensetzung, die durch anomal hohe Cr-Gehalte gekennzeichnet und entlang eines linearen Abreicherungstrends in einem Diagramm des Cr-Gehalts gegen SiO₂ angeordnet sind (Abb. 7.8).

Verteilungsmuster inkompatibler Spurenelemente in normierten Multielementdiagrammen

Abb. 7.9 zeigt die Spurenelementverteilungsmuster ausgewählter Merapiproben in MORBnormierten Multielementdiagrammen. Dazu wurden die in Tab. A4.2 aufgeführten ICP-MS-Analysen verwendet. Insgesamt sind 29 Elemente dargestellt, deren Inkompatibilität in Bezug auf eine typische Mantelmineralogie von links nach rechts abnimmt (Sun & McDonough, 1989). Da die Merapigesteine keine primären Mantelschmelzen darstellen, haben die absoluten Spurenelementgehalte aufgrund der Anreicherung durch Differentiationsprozesse lediglich eine eingeschränkte Bedeutung. Nichtsdestoweniger bleiben die Verteilungsmuster der inkompatiblen Spurenelemente in den Multielementdiagrammen signifikant.

Insgesamt zeigen sämtliche Merapigesteine ähnliche Spurenelementverteilungsmuster. Diese sind gekennzeichnet durch eine vergleichsweise starke Anreicherung der LIL-Elemente, inklusive U, Th und Pb, und in geringerem Maße der LREE (La, Ce) gegenüber den HREE und vor allem den HFS-Elementen, wie z.B. Zr, Hf, Nb, Ta und Ti.

Insgesamt ergeben sich somit für subduktionsbezogenen Magmatismus typische Spurenelementverteilungsmuster mit positiven LILE- und negativen Nb, Ta und Ti-Anomalien (z.B. Hawkesworth et al., 1993; Thirlwall et al., 1994).

Die relative Verarmung der HFS-Elemente wird dabei im allgemeinen auf die Existenz residualer HFSE-führender Phasen in der Magmenquelle (z.B. Green, 1981), die Überprägung des Mantelkeils durch LILE-reiche und HFSE-arme Fluide aus der subduzierten Platte (Tatsumi et al., 1986), die Verarmung der Mantelquelle durch frühere partielle Aufschmelzungsereignisse (McCulloch & Gamble, 1991; Woodhead et al., 1993) oder eine Kombination dieser Prozesse zurückgeführt.

Die Spurenelementverteilungsmuster ausgewählter Proben aus den verschiedenen stratigraphischen Einheiten des Merapi zeigen auf den ersten Blick keine wesentlichen Unterschiede (Abb. 7.9).

Abb. 7.9. N-MORB-normierte Spurenelementkonzentrationen der Merapiproben aus verschiedenen stratigraphischen Einheiten des Vulkans. Die Normierungswerte stammen von Sun & McDonough (1989).

Eine gewisse Ausnahme bilden jedoch die basaltischen Gesteine des Proto-Merapi, die im Gegensatz zu den Proben der jüngeren Perioden durch vergleichsweise hohe Ba-Gehalte gekennzeichnet sind. Die Folge ist eine für die Proto-Merapigesteine charakteristische positive "Ba-Anomalie", die bei den übrigen Merapiproben nicht auftritt.

Abgesehen davon scheinen Unterschiede in den Absolutgehalten verschiedener Spurenelemente vielmehr vom Differentiationsgrad der einzelnen Proben und deren geochemischer Affinität bzw. K-Serien-Zugehörigkeit abzuhängen.

Seltene Erden (REE)

Die Merapigesteine sind durch insgesamt geringe REE-Gehalte zwischen 55 und 105 ppm charakterisiert. Die geringsten REE-Gehalte weist dabei die Basaltprobe (M96-052) des Proto-Merapi auf, während die etwas höher differenzierten jüngeren Basalte und basaltischen Andesite des Merapi durch REE-Konzentrationen von mehr als etwa 90 ppm charakterisiert sind (Tab. 7.1).

Tab. 7.1. Zusammenstellung der REE-Konzentrationen (ppm) ausgewählter Merapiproben aus Tab. A4.2. Die Proben sind nach steigendem SiO₂-Gehalt (normiert) angeordnet. *B* Basalt; *BA* Basaltischer Andesit; *MK* Medium-K-Serie; *HK* High-K-Serie.

Probe Gesteinstyp Serie	M96-052* E -	M97-068 B/BA HK	M95-011 BA HK	M96-137 BA MK	M96-075 BA HK	M97-053 BA HK	M96-167 BA HK	M96-073 BA MK	M98-0532 BA MK	M96-142 BA HK
Hauptelemente (Gew.%, normiert)										
SiO ₂ K ₂ O	50.73 1.26	51.83 1.98	52.73 1.99	54.2€ 1.61	54.36 2.06	54.40 2.16	54.51 2.3(54.66 1.71	55.12 1.80	55.80 2.24
REE (ppm)										
La Ce	10.0 19.4	17.3 34.6	17.2 34 5	16.1 33 5	18.7 38 (18.4 36.2	18.7 36.2	16.5 35.3	16.3 33.6	20.2 39.0
Pr	2.48	4.28	4.18	4.16	4.38	4.40	4.08	4.41	4.2	4.79
Nd	10.6	18.0	17.8	18.0	18.1	16.8	17.1	17.6	18.1	19.9
Sm	2.65	4.33	4.34	4.24	4.01	4.19	3.93	4.22	4.12	4.57
Eu	0.94	1.36	1.34	1.39	1.33	1.27	1.14	1.40	1.44	1.38
Gd	2.69	3.65	4.13	3.89	3.85	3.70	3.36	4.20	4.29	4.20
Tb	0.403	0.627	0.588	0.577	0.584	0.570	0.519	0.624	0.615	0.622
Dy	2.57	3.45	3.46	3.55	3.62	3.30	3.2€	3.90	3.71	3.88
Ho	0.527	0.724	0.708	0.749	0.780	0.722	0.678	0.845	0.769	0.837
Er	1.49	1.93	2.11	2.18	2.15	1.98	1.95	2.29	2.17	2.32
Tm	0.243	0.318	0.314	0.353	0.345	0.282	0.304	0.382	0.358	0.386
Yb	1.47	2.01	2.22	2.16	2.12	1.99	1.93	2.24	2.34	2.35
Lu	0.227	0.330	0.325	0.349	0.358	0.325	0.326	0.385	0.371	0.379
REE	55.60	92.93	93.29	91.28	98.32	94.16	93.47	94.28	92.38	104.88
[La/Yb] N	4.85	6.19	5.57	5.37	6.31	6.65	6.96	5.29	5.00	6.17
[La/Sm] N	2.43	2.58	2.57	2.46	3.01	2.84	3.08	2.53	2.55	2.86
[Gd/Yb] N	1.51	1.50	1.54	1.49	1.50	1.54	1.44	1.55	1.52	1.48
Eu/Eu*	1.07	1.02	0.95	1.03	1.02	0.97	0.94	1.01	1.04	0.95

* Basalt, Proto-Merapi (Gunung Plawangan)

Abb. 7.10. Chondrit (C1)-normierte REE-Diagramme der Merapiproben aus verschiedenen stratigraphischen Einheiten des Vulkans. Die Normierungswerte stammen von Sun & McDonough (1989).

Chondrit-normierte REE-Diagramme für die Merapigesteine sind in Abb. 7.10 dargestellt. Für alle analysierten Proben ergeben sich ähnliche Verteilungsmuster mit einer Anreicherung der LREE (42-86 mal chondritisch) gegenüber den HREE (9-15 mal chondritisch) und chondritnormierten La/Yb-Verhältnissen von 4.9-7.0 (Tab. 7.1). Die Anreicherung der LREE relativ zu den MREE zeigt sich in den chondrit-normierten La/Sm-Verhältnissen, die zwischen 2.4 und 3.1 variieren. Demgegenüber verdeutlichen konstante chondrit-normierte Gd/Yb-Verhältnisse die flachliegenden Trends bei den MRE- und HRE-Elementen. Obwohl Plagioklas die wich-tigste Fraktionierungsphase in den Merapimagmen darstellt, tritt keine Eu-Anomalie auf (Tab. 7.1). Dies deutet auf eine relativ hohe Sauerstoff-Fugazität in den Merapimagmen hin, da Eu im zweiwertigen Zustand bevorzugt in das Kristallgitter von Plagioklas eingebaut wird und damit eine Abreicherung im Vergleich zu den anderen REE in der Schmelze erfahren würde.

Wie bei den MORB-normierten Spurenelementdiagrammen zeigen sich auch bei den REE-Verteilungsmustern keine prinzipiellen Unterschiede zwischen Proben aus den verschiedenen stratigraphischen Einheiten des Merapi. Unterschiede in den Absolutgehalten der REE scheinen auch hier vielmehr vom Differentiationsgrad der einzelnen Proben sowie deren geochemischer Affinität bzw. K-Serien-Zugehörigkeit beeinflußt zu sein (Tab. 7.1).

Geochemische Veränderungen glasreicher vulkanischer Gesteine durch Alterationsprozesse

Aus den geochemischen Klassifikations- und Variationsdiagrammen ist ersichtlich, daß sich die Konzentrationen bestimmter Elemente, wie z.B. Kalium und Aluminium, in Proben mit erhöhtem Glühverlust > 2.5 Gew.%, z.T. deutlich von denen unalterierter Proben unterscheiden. In Abb. 7.3. wurde gezeigt, daß es sich bei diesen alterierten Proben ausschließlich um poröse, glasreiche Bimskomponenten pyroklastischer Fallablagerungen handelt, die relativ anfällig für sekundäre Hydratisierungs- und Verwitterungsprozesse sind. Diese Proben weisen mit die geringsten K₂O-Gehalte der untersuchten Merapiproben auf und fallen damit formal in das Feld der Medium-K-Serie. In den nächsten Abschnitten wird versucht die möglichen Auswirkungen und Stoffumsätze von Verwitterungs- und Alterationsprozessen aufgrund der intensiven tropischen Verwitterung am Merapi abzuschätzen und damit die Zugehörigkeit der alterierten Bimsproben zu einer der beiden K-Serien neu zu bewerten. Die Kenntnis der geochemischen Affinität dieser Proben ist von besonderer Bedeutung für die Interpretation des zeitlichen Auftretens von Gesteinen einer bestimmten K-Serie in den holozänen stratigraphischen Abfolgen des Merapi.

In Abb. 7.11 sind die Al_2O_3 -, Na_2O - und K_2O -Gehalte gegen den Glühverlust (LOI), einem Maß für den Alterations- bzw. Hydratisierungsgrad der untersuchten Bimsproben, aufgetragen. Deutlich erkennbar sind eine ausgeprägte positive Korrelation zwischen Al_2O_3 und dem

Glühverlust sowie abnehmende Na₂O- und K₂O-Gehalte mit steigenden Glühverlustwerten. Diese Beobachtung deutet auf eine Anreicherung von Al₂O₃ bei gleichzeitiger Abreicherung der Alkalien in Abhängigkeit des Grades der Alteration. Insgesamt sind die Proben mit dem höchsten Glühverlust am stärksten abgereichert an Na₂O und K₂O und weisen gleichzeitig die relativ höchsten Al₂O₃-Gehalte auf.

Abb. 7.11. K_2O gegen SiO₂ sowie Al₂O₃, Na₂O und K₂O gegen den Glühverlust (LOI) für die untersuchten Bimsproben des Merapi.

Die beobachteten geochemischen Veränderungen wirken sich demnach am deutlichsten in Proben mit Glühverlustwerten > 2.5 Gew.% aus.

Die Auswirkungen der Alterationsprozesse auf verschiedene Elementkonzentrationen können durch Extrapolation der entsprechenden Elementgehalte auf einen angenommenen Glühverlustwert primärer, nicht hydratisierter Magmen abgeschätzt und korrigiert werden.

Abb. 7.12. SiO₂ und K₂O gegen LOI für Bimsproben mit LOI > 2.5 Gew.%. Die gestrichelten Linien sind Extrapolationen auf einen LOI-Wert von 1.0 Gew.% parallel zu der ermittelten "Least-squares"-Regressionsgerade durch den gesamten Datensatz.

Abb. 7.13. K₂O-SiO₂-Diagramm der gemessenen und korrigierten alterierten Bimsproben.

In Abb. 7.12 sind die gemessenen SiO₂- und K_2O -Gehalte der alterierten Bimsproben gegen den Glühverlust aufgetragen. Beide Elemente weisen eine negative Korrelation mit dem Glüh-
verlust auf. Die vorgeschlagene Korrektur der gemessenen SiO₂- und K₂O-Gehalte auf einen angenommenen Glühverlustwert von 1.0 Gew.% erfolgt durch Extrapolation der einzelnen Datenpunkte entlang Linien konstanter Steigung, die aus der "Least-squares"-Regressionsgerade durch den gesamten Datensatz ermittelt wurde und berücksichtigt damit primär vorhandene Unterschiede der entsprechenden Elementkonzentrationen in den jeweiligen Proben. Das angewendete Korrekturverfahren führt zu einer Verschiebung der Proben hin zu höheren SiO₂- und K₂O-Gehalten (Abb. 7.13). Es ist bemerkenswert, daß sämtliche Proben nach wie vor in das Feld der Medium-K-Serie fallen und damit insgesamt eine Medium-K-Affinität bzw. magmengenetische Zuordnung dieser Proben zur Medium-K-Serie anzeigen.

Zusammenfassend läßt sich festhalten, daß sekundäre Prozesse zwar erhebliche Auswirkungen auf die Zusammensetzung glasreicher Vulkanite bzw. Bimsklasten haben, diese jedoch nicht die Zugehörigkeit bzw. Zuordnung alterierter Proben zu einer der beiden K-Serien beeinflußt.

Geochemische Charakterisierung der Gesteine der Medium-K- und High-K-Serie: Implikationen für die Genese der Merapimagmen

In den vorangegangenen Kapiteln wurde gezeigt, daß sämtliche Merapiprodukte für Inselbögen typische Spurenelementcharakteristika aufweisen. Darüber hinaus wurde festgestellt, daß die Merapigesteine ohne weiteres in zwei verschiedene Gesteinsserien (Medium-K-Serie, High-K-Serie) eingeteilt werden können, die sich vor allem in den Konzentrationen fluid-mobiler Elemente, wie z.B. K, Rb und Ba, unterscheiden und deren Entstehung letztlich magmatischen Ursprungs ist.

In diesem Kapitel werden die ICP-MS-Spurenelementdaten der rezenten und holozänen Förderprodukte (Tab. A4.2) herangezogen, um ein vollständigeres Bild der geochemischen Unterschiede zwischen den Gesteinen der Medium-K- und High-K-Serie zu erhalten. Dazu werden neben den Konzentrationen inkompatibler Spurenelemente in Gesteinen vergleichbaren Differentiationsgrades die Verhältnisse inkompatibler Spurenelemente verwendet, die in erster Annäherung unabhängig vom Differentiationsgrad der Magmen sind und letztlich die Spurenelementverhältnisse in der Quellregion der jeweiligen Magmen charakterisieren.

In Abb. 7.14 sind MORB-normierte Spurenelementdiagramme ausgewählter rezenter und holozäner Proben der Medium-K- und High-K-Serie dargestellt, die einen ähnlichen Differentiationsgrad bzw. SiO₂-Gehalt (54-56 Gew.%) aufweisen (Tab. 7.1). Die Verteilungsmuster zeigen für beide Serien typische Inselbogensignaturen und trotz weitestgehender Ähnlichkeiten geringe jedoch signifikante Unterschiede zwischen den beiden K-Serien.

So sind in den High-K-Gesteinen die (normierten) LILE-Konzentrationen geringfügig höher und die negativen Nb- und Ta-Anomalien etwas stärker ausgeprägt als bei den Proben der Medium-K-Serie.

Abb. 7.14. N-MORB-normierte Spurenelementkonzentrationen von Proben ähnlichen Differentiationsgrades der Medium-K- und High-K-Serie. Die Normierungswerte stammen von Sun & McDonough (1989).

Abb. 7.15. Chondrit (C1)-normierte REE-Diagramme von Proben ähnlichen Differentiationsgrades der Medium-K- und High-K-Serie. Die Normierungswerte stammen von Sun & McDonough (1989).

Abb. 7.16. Chondrit (C1)-normierte Verhältnisse von La/Sm gegen La/Yb für ausgewählte Proben der Medium-K- und High-K-Serie.

Abb. 7.17. Prozentuale Anreicherung bzw. Abreicherung petrologisch relevanter Spurenelemente in der High-K-Serie im Vergleich zur Medium-K-Serie bei einem SiO₂-Gehalt von 55 Gew.%.

Aus den REE-Verteilungsmustern (Abb. 7.15) lassen sich etwas höhere LREE-Gehalte in den Proben der High-K-Serie im Vergleich zu denen der Medium-K-Serie erkennen.

Dieser Sachverhalt wird deutlicher in Abb. 7.16, in der die chondrit-normierten La/Sm- gegen die La/Yb-Verhältnisse der gleichen Proben beider Serien aufgetragen sind. Beide Verhältnisse sind höher in den Gesteinen der High-K-Serie und zeigen, daß diese im Vergleich zu der Medium-K-Serie durch eine stärkere Anreicherung der LREE (La) gegenüber den MREE (Sm) und HREE (Yb) charakterisiert sind.

Insgesamt zeichnen sich bei einem gegebenem SiO₂-Gehalt die Gesteine der High-K-Serie im Vergleich zu denen der Medium-K-Serie durch erhöhte Konzentrationen an fluid-mobilen Elementen (wie z.B. K, Rb, Sr, Ba, U, Pb) sowie erhöhte LREE-Konzentrationen (La, Ce, Pr, Nd, Sm) aus. Hinzu kommen höhere Gehalte an Th, einem Element, das im allgemeinen nicht in wässrigen Fluiden mobilisiert wird. Demgegenüber scheinen in den Gesteinen der High-K-Serie die Konzentrationen der mittleren und schweren seltenen Erden (inklusive Y) sowie der HFS-Elemente (wie z.B. Zr, Hf, Nb, Ta) relativ zu denen der Medium-K-Serie ähnlich bzw. eher leicht niedriger zu sein (Abb. 7.17). Abb. 7.17 beinhaltet zusätzlich Analysen von B, dessen Konzentrationen in einigen ausgewählten Proben beider Serien bestimmt wurde. Die B-Gehalte der Merapigesteine betragen zwischen 10 und 20 ppm (Tab. A4.2) und weisen allgemein höhere Werte in den High-K-Gesteinen (17-20 ppm) als in den Medium-K-Gesteinen (10-16 ppm) auf.

Tab. 7.2. Durchschnittliche Spurenelementverhältnisse der rezenten und holozänen (Gesteine
der Medium-K- und High-K-Serie (Tab. A4.2).	

Elementverhältnis	MedK-Serie	High-K-Serie	Elementverhältnis	MedK-Serie	High-K-Serie
K/Rb	321	347	Ce/Nb	8.8	11.6
Ba/Rb	10.7	10.1	Ce/Pb	2.2	2.1
Ba/La	27.4	27.7	Th/Nb	1.5	2.3
Ba/Th	79.6	70.5	Th/U	4.5	5.2
Ba/Nb	116	162	Zr/Nb	27.2	28.8
La/Sm	3.9	4.2	Zr/Hf	41.8	40.1
La/Yb	7.4	8.7	Ta/Nb	0.08	0.08
La/Nb	4.3	5.8	B/Be	17.8	18.1

Die Verhältnisse inkompatibler Spurenelemente (Tab. 7.2), die innerhalb der beiden magmatischen Serien nur geringe Variationen aufweisen, stellen die beschriebenen geochemischen Unterschiede zwischen den beiden K-Serien noch einmal heraus. Darüber hinaus können diese Verhältnisse, da sie durch Fraktionierungsprozesse weitestgehend unverändert bleiben, zur Charakterisierung der geochemischen Zusammensetzung der Magmenquelle herangezogen werden. Insbesondere wird an dieser Stelle auf die erhöhten LILE (inkl. Th)/HFSE- und LREE/HFSE-Verhältnisse in der High-K-Serie und die in beiden Serien ähnlichen HFSE-Verhältnisse (z.B. Ta/Nb, Zr/Nb, Zr/Hf) aufmerksam gemacht (Tab. 7.2), die eine magmengenetische Beziehung zwischen den beiden Serien ausschließen und letztendlich die Abstammung der basischen Ausgangsmagmen der beiden K-Serien aus geochemisch unterschiedlichen Magmenquellen erfordern.

Es wird heute allgemein akzeptiert, daß die basaltischen Magmen in Inselbögen durch partielle Aufschmelzung des Mantels oberhalb der subduzierten Platte entstehen. Entscheidend in diesem Szenarium ist die Beteiligung von Fluiden und / oder partiellen Schmelzen (sog. Subduktionszonenkomponenten) der abtauchenden ozeanischen Lithosphärenplatte, welche die Zusammensetzung des Mantelkeils beeinflussen, zur Erniedrigung der Solidustemperatur des Mantelperidotits führen und schließlich die partielle Schmelzbildung auslösen (Wilson, 1989; und darin aufgeführte Referenzen).

Die typischen gezackten Spurenelementverteilungsmuster (Abb. 7.9, 7.14) und die hohen LILE/HFSE- und LREE/HFSE-Verhältnisse der Merapivulkanite sind klare Indizien für die Beteiligung wässriger Fluide und partieller Schmelzen der subduzierten ozeanischen Lithosphäre in der Quellregion der Merapimagmen.

Abb. 7.18. Zr/Nb vs. Ta/Nb für die High-K- und Medium-K-Serie des Merapi (exkl. der Laven des Somma-Walls) im Vergleich zu typischen MORB- und OIB-Werten (Sun & McDonough, 1989).

Die Beobachtung, daß die Vulkanite der High-K- relativ zu denen der Medium-K-Serie durch erhöhte LILE- und LREE-Konzentrationen gekennzeichnet sind, impliziert eine durch solche Subduktionszonenkomponenten vergleichsweise stärker angereicherte oder beeinflußte Man-

telquelle für die Gesteine der High-K-Serie. Der Grad der partiellen Aufschmelzung im Mantel könnte als weiterer Faktor hinzukommen, der die Gehalte inkompatibler Elemente in den primären Magmen der jeweiligen magmatischen Serie bestimmt. So könnte eine höhere Fluidkomponente in der Quelle der High-K-Magmen gleichzeitig zu erhöhten Schmelzgraden im Mantel und damit zu der vergleichsweise niedrigen Konzentration immobiler Spurenelemente in der High-K- relativ zur Medium-K-Serie führen (Abb. 7.17).

Die in den beiden K-Serien ähnlichen Verhältnisse immobiler Spurenelemente, von denen angenommen wird, daß sie nicht von der abtauchenden Platte (basaltische Kruste oder Sedimente) stammen, wie z.B. Ta/Nb, Zr/Nb und Zr/Hf (Tab. 7.2), sind ein weiterer indirekter Beweis für die unterschiedlich starke subduktionsbedingte Überprägung der entsprechenden Mantelquelle. Ferner deuten diese auf eine, in Bezug auf diese Elementverhältnisse, homogene Zusammensetzung des Mantelkeils vor der einsetzenden Subduktion und den damit verbundenen metasomatischen Veränderungen im Mantel. Die im Vergleich zu Ozeaninselbasalten erhöhten Zr/Nb-Verhältnisse in den Merapivulkaniten, die in etwa typischen MORB-Werten entsprechen, und die relativ zu OIB und MORB erhöhten Ta/Nb-Verhältnisse (Abb. 7.18) implizieren darüber hinaus, zusammen mit den im Vergleich zu MORB geringen Konzentrationen an HFS-Elementen und schweren seltenen Erden (HREE) (Abb. 7.9, 7.14), eine MORB-ähnliche oder durch frühere Schmelzextraktionen sogar verarmte (relativ zur MORB-Quelle) Mantelquelle vor der einsetzenden subduktionsbedingten Kontamination durch Komponenten der abtauchenden ozeanischen Lithosphärenplatte.

Geochemie der Laven des Proto-Merapi

In den vorangegangenen Kapiteln wurde bereits kurz auf die Problematik der Einordnung der basaltischen Gesteine des Proto-Merapi in den Gesamtkomplex eingegangen und deren, im Vergleich zu den übrigen Merapigesteinen, ungewöhnlich hohen Ba-Gehalte erwähnt.

Die basalen Laven der beiden markanten Hügel Gunung Turgo und Gunung Plawangan im Südsektor des Merapi sind aus einer weiteren Sicht ungewöhnlich, da sie die einzigen Basaltvorkommen im engeren Sinne und gleichzeitig die am wenigsten differenzierten Magmen am Merapi darstellen. Überhaupt sind die geologische Interpretation dieser Hügel, die Stellung in der Gesamtentwicklung des Merapi und die genetischen Beziehungen zu den übrigen Einheiten des Vulkans nach wie vor unklar (s. Diskussion in Newhall et al., 2000). Obwohl bis zum heutigen Zeitpunkt keine detaillierten geochemischen Untersuchungen der Proto-Merapi-Gesteine vorliegen, scheint Übereinstimmung darin zu bestehen, die Basalte von Gunung Turgo und Gunung Plawangan als Ausgangsmagmen, aus denen sich die höher differenzierten Merapimagmen entwickelt haben, anzusehen (del Marmol, 1989; Berthommier, 1990). In Tab. 7.3 sind die Verhältnisse inkompatibler Spurenelemente aus Tab. 7.2 für die untersuchten Basaltproben des Proto-Merapi angegeben.

Elementverhältnis	Basalte Proto-Merapi	Elementverhältnis	Basalte Proto-Merapi
K/Rb	495	Ce/Nb	12.1
Ba/Rb	20.4	Ce/Pb	1.4
Ba/La	42.4	Th/Nb	2.6
Ba/Th	100.2	Th/U	6.3
Ba/Nb	261	Zr/Nb	31.4
La/Sm	3.8	Zr/Hf	37.3
La/Yb	7.0	Ta/Nb	0.08
La/Nb	6.1	B/Be	-

Tab. 7.3. Spurenelementverhältnisse der Basalte des Proto-Merapi (Tab. A4.2).

Ein Vergleich mit den jüngeren Merapigesteinen (Tab. 7.2) offenbart durchaus übereinstimmende Werte für bestimmte Spurenelementverhältnisse innerhalb der analytischen Ungenauigkeit (z.B. La/Sm, La/Yb, Ta/Nb, etc.). Allerdings lassen sich auch Unterschiede in den Spurenelementverhältnissen zwischen den Proto-Merapi-Laven und den jüngeren Gesteinen der Medium-K- und High-K-Serie erkennen, die sogar deutlich größer sind als diejenigen zwischen den beiden K-Serien. So weisen die Proto-Merapi-Laven im Vergleich zu den beiden Magmaserien deutlich erhöhte Verhältnisse, wie z.B. K/Rb, Ba/Rb, Ba/La, Ba/Th und Ba/Nb auf. Diese Elementverhältnisse sollten während der fraktionierten Kristallisation nahezu unverändert bleiben, da sich alle diese Elemente ähnlich inkompatibel verhalten und nicht in die Kristallgitter der in Frage kommenden fraktionierenden Mineralphasen eingebaut werden. Dieser Sachverhalt zeigt, daß die im allgemeinen höher differenzierten Gesteine der jüngeren stratigraphischen Einheiten des Merapi nicht durch fraktionierte Kristallisation aus den Basalten des Proto-Merapi entstanden sein können und schließt eine einfache magmengenetische Beziehung zwischen Proto-Merapi und den jüngeren Einheiten des Merapi aus.

Aus der geführten Diskussion geht hervor, daß sich die Spurenelementcharakteristika der Laven von Gunung Turgo und Gunung Plawangan deutlich von denen der übrigen Förderprodukte des Vulkans unterscheiden. Dieser Befund könnte darauf hindeuten, daß die Proto-Merapi-Basalte eine eigenständige Gruppe von Magmen am Merapi repräsentieren, die keine direkte genetische Beziehung mit den übrigen Förderprodukten des Vulkans aufweisen.

Die Existenz eines unabhängigen Magmasystems für das Proto-Merapi-Stadium, das offensichtlich während der jüngeren Merapiaktivität nicht reaktiviert wurde, könnte frühere und bestehende Interpretationen zur Entstehung von Gunung Turgo und Gunung Plawangan stützen, die diese als Erosionsreste eines älteren Vulkankegels mit einem Eruptionszentrum südlich des heutigen Merapigipfels ansehen (Newhall et al., 2000).

Zusammenfassung und Schlußfolgerungen

Die wichtigsten Ergebnisse der in diesem Kapitel beschriebenen geochemischen Untersuchungen der Merapigesteine lassen sich wie folgt zusammenfassen:

▷ Die Merapigesteine zeichnen sich insgesamt durch einen relativ geringen Variationsbereich zwischen 50.1 und 57.3 Gew.% SiO₂ aus (H₂O-frei normierte Proben mit LOI < 2.5 Gew.%) und umfassen damit basaltische und basaltandesitische Zusammensetzungen.

"Basalte im engeren Sinne" sind auf das Proto-Merapi-Stadium (G. Turgo, G. Plawangan) beschränkt, während der überwiegende Teil des Vulkankomplexes (Somma-Wall; holozäne und rezente Pyroklastitserien und Lavadome) von basaltischen Andesiten aufgebaut wird.

Charakteristisch für den Merapi ist das Auftreten von zwei magmatischen Serien, die sich deutlich in ihrem K_2O -Gehalt unterscheiden und nach der Nomenklatur von Le Maitre et al. (1989) als <u>Medium-K</u>-Serie bzw. <u>High-K-Serie</u> bezeichnet werden. Der Medium-K-Serie gehören die Förderprodukte des Gunung Bibi, die Laven des Somma-Walls und die älteren holozänen Förderprodukte an, während die jüngeren holozänen und rezenten Laven und Pyroklastite der High-K-Serie zugeordnet werden können. Obwohl die Basalte des Proto-Merapi formal in das Feld der High-K-Serie fallen, scheint das Konzept der zwei K-Serien nicht direkt auf das Proto-Merapi-Stadium anwendbar zu sein.

Die geochemische Entwicklung innerhalb der beiden magmatischen Serien kann allgemein durch Prozesse der fraktionierten Kristallisation erklärt werden, die in gewissem Maße durch Mischungen unterschiedlich zusammengesetzter Magmen überprägt werden können.

Alterationsprozesse führen zu erheblichen geochemischen Veränderungen (z.B. Verringerung der Alkaliengehalte) in Gesteinen mit mehr als 2.5 Gew.% LOI, beeinflussen jedoch nicht die geochemische Affinität bzw. K-Serien-Zugehörigkeit dieser Proben.

Sämtliche Merapiprodukte sind gekennzeichnet durch Anreicherungen der LIL-Elemente, inklusive U, Th und Pb, und in geringerem Maße der LREE (La, Ce) gegenüber den HREE und vor allem den HFS-Elementen, wie z.B. Zr, Hf, Nb, Ta und Ti, wie sie typisch sind für Inselbogenmagmen. Im Vergleich zu den Produkten der Medium-K-Serie sind die Gesteine der High-K-Serie generell stärker angereichert an LIL-Elementen (inkl. Th) und LREE und weisen ähnliche oder leicht niedrigere HREE- und HFSE-Konzentrationen auf. Die erhöhten LILE (inkl. Th)/HFSE- und LREE/HFSE-Verhältnisse in der High-K-Serie sowie die in beiden Serien konstanten HFSE-Verhältnisse (Ta/Nb, Zr/Nb, Zr/Hf) erfordern die Abstammung der basischen Ausgangsmagmen beider Serien aus einer, durch Fluide und partielle Schmelzen aus der abtauchenden Platte unterschiedlich stark überprägten MORB-ähnlichen- oder durch frühere Aufschmelzungsprozesse vergleichsweise verarmten, ursprünglich weitestgehend homogenen Mantelquelle.

Die Basalte des Proto-Merapi stellen eine eigenständige Gruppe von Magmen am Merapi dar, deren Spurenelementcharakteristika sich deutlich von denen der übrigen Förderprodukte des Vulkans unterscheiden. Dies impliziert, daß die jüngeren und höher differenzierten Merapimagmen nicht durch einfache Fraktionierungsprozesse aus den Basalten des Proto-Merapi entstanden sein können. Die Existenz eines unabhängigen Magmasystems für das Proto-Merapi-Stadium könnte frühere und bestehende Interpretationen zur Entstehung von Gunung Turgo und Gunung Plawangan stützen, die diese als Erosionsreste eines eigenständigen älteren Vulkankegels mit einem Eruptionszentrum südlich des heutigen Merapigipfels ansehen (Newhall et al., 2000).

Isotopengeochemie und Petrogenese der Merapi-Vulkanite

Die Diskussion der Haupt- und Spurenelementgeochemie der Merapivulkanite hat gezeigt, daß am Merapi zwei magmatische Serien auftreten, die sich deutlich in ihrer geochemischen Zusammensetzung unterscheiden und letztlich unterschiedlichen Magmenquellen entstammen. In diesem Kapitel werden die Sr-, Nd-, Pb- und Sauerstoffisotopenzusammensetzungen der Merapivulkanite untersucht und in den regional-geologischen Kontext eingeordnet. Ein Schwerpunkt liegt in der isotopengeochemischen Charakterisierung der Gesteine der Medium-K- und High-K-Serie, die letztlich Aufschluß über die magmengenetischen Prozesse geben soll, die zur Entstehung der beiden Magmaserien geführt haben.

Bisher liegen keine systematischen isotopengeochemischen Arbeiten über den Merapi vor. Die in diesem Kapitel präsentierten neuen Sr-, Nd-, Pb- und O-Isotopendaten stellen somit eine erste detaillierte isotopengeochemische Untersuchung der Laven und Pyroklastite des Merapi dar. Insgesamt wurden im Rahmen dieser Arbeit 20 Gesamtgesteinsproben des Merapi auf Sr-, Nd- und O-Isotope und ein Teil davon auf Pb-Isotope untersucht. Zusätzlich wurden bei einigen dieser Proben die Sauerstoffisotopenverhältnisse an Plagioklasseparaten ermittelt.

Hinzu kommen radiogene- und Sauerstoffisotopenzusammensetzungen repräsentativer Gesteine des sedimentären Basements sowie der in den Merapimagmen auftretenden Krustenxenolithe, deren Existenz auf eine Rolle der Kruste in der Genese der Merapimagmen hindeutet. Zu diesem Zweck wurden zwei karbonathaltige Gesteinsproben (MX99-1, MX99-2) der tertiären Formationen Zentraljavas ("lokale Sedimente"), von denen angenommen wird, daß sie den Merapi direkt unterlagern, isotopengeochemisch untersucht. Neben regional-geologischen Aspekten (Kapitel 2) deutet die Häufigkeit karbonatischer Krustenxenolithe in den Merapivulkaniten auf die Existenz eines karbonatischen sedimentären Basements an der Basis des Merapi. Sämtliche dieser Karbonatxenolithe wurden von den Merapimagmen kontaktmetamorph überprägt und liegen als Kalksilikate vor, von denen eine weitere Probe (MX-6) für die isotopengeochemischen Untersuchungen ausgewählt wurde.

Die Durchführung der Isotopenmessungen erfolgte am Isotopenlabor des Instituts für Mineralogie, Petrologie und Geochemie der Universität Tübingen durch Herrn Prof. M. Satir.

Eine genaue Beschreibung der analytischen Methoden und eine Abschätzung der analytischen Ungenauigkeit findet sich in Anhang A1.

Die verfügbaren Literaturwerte und eigenen Analysenergebnisse sind in den Tabellen 8.1 bis 8.5 zusammengestellt.

Frühere Arbeiten

Wie bereits erwähnt liegen bisher keine systematischen isotopengeochemischen Untersuchungen über den Merapi vor.

Frühere isotopengeochemische Arbeiten beschränken sich auf einige wenige Analysen des rezenten Dommaterials und vereinzelte Isotopenbestimmungen an Laven der älteren Entwicklungsstadien des Merapi, die im Rahmen regionaler Untersuchungen durchgeführt wurden. Publizierte Isotopenwerte für Gesteine des Merapi sind den Arbeiten von Whitford (1975a, b), Whitford et al. (1981), Whitford & Jezek (1982) und McDermott & Hawkesworth (1991) zu entnehmen, die im Rahmen regionaler Studien entlang des Sundabogens eine begrenzte Anzahl von Proben des Merapi auf Sr-, Nd- und Pb-Isotope untersucht haben. Sr-, Nd- und Pb-Isotopendaten weiterer vier Merapiproben finden sich in del Marmol (1989). Demgegenüber sind Sauerstoffisotopenwerte für den Merapi nicht bekannt. Die Variationsbereiche der publizierten Isotopenwerte für den Merapi finden sich zusammengefaßt in Tab. 8.1.

Referenz*	⁸⁷ Sr/ ⁸⁶ Sr	¹⁴³ Nd/ ¹⁴⁴ Nd	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb
(1)	siehe (2)	n.a.	18.710 - 18.789	15.645 - 15.736	38.988 - 39.253
(2)	0.705050 - 0.705940	n.a.	n.a.	n.a.	n.a.
(3)	0.704980	0.512800	n.a.	n.a.	n.a.
(4)	0.705490 - 0.705812	0.512683 - 0.512746	18.607 - 18.851	15.667 - 15.719	38.950 - 39.300
(5)	0.705040 - 0.705760	n.a.	18.695 - 18.719	15.629 - 15.647	38.914 - 38.957

Tab. 8.1. Variationsbereich publizierter Isotopenverhältnisse des Merapi.

* (1) Whitford (1975a); (2) Whitford (1975b); (3) Whitford et al. (1981); (4) del Marmol (1989); (5) McDermott & Hawkesworth (1991); *n.a.* nicht analysiert.

Insgesamt reichen die publizierten ⁸⁷Sr/⁸⁶Sr-Isotopenverhältnisse des Merapi von 0.7050 bis 0.7059 (Whitford, 1975a, b; Whitford et al., 1981; del Marmol, 1989; McDermott & Haw-kesworth, 1991). Damit lassen sich die Gesteine des Merapi der "normalen" und "anomalen" Kalkalkali-Assoziation des Sundabogens von Whitford (1975b) zuordnen.

Die wenigen publizierten ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse variieren zwischen 0.51268 und 0.51275 (Whitford et al., 1981; del Marmol, 1989).

Bei den Pb-Isotopen stehen relativ konstante Verhältnisse ($^{206}Pb/^{204}Pb$ 18.70-18.72; $^{207}Pb/^{204}Pb$ 15.63-15.65; $^{208}Pb/^{204}Pb$ 38.91-38.96) aus McDermott & Hawkesworth (1991), einem größeren Variationsbereich ($^{206}Pb/^{204}Pb$ 18.61-18.85; $^{207}Pb/^{204}Pb$ 15.67-15.72; $^{208}Pb/^{204}Pb$ 38.95-39.30) aus den Arbeiten von Whitford (1975a) und del Marmol (1989) gegenüber.

Isotopenzusammensetzungen der Merapi-Vulkanite

Sr-, Nd- und Pb-Isotopenverhältnisse

Die ⁸⁷Sr/⁸⁶Sr-Verhältnisse der untersuchten Merapiproben reichen von 0.70501 bis 0.70583 und zeigen eine negative Korrelation mit den ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen, die zwischen 0.51267 und 0.51277 variieren (Tab. 8.2, 8.3).

Probe	Serie	⁸⁷ Sr/ ⁸⁶ Sr	¹⁴³ Nd/ ¹⁴⁴ Nd	²⁰⁶ Pb/ ²⁰⁴ Pb*	²⁰⁷ Pb/ ²⁰⁴ Pb*	²⁰⁸ Pb/ ²⁰⁴ Pb*	δ ¹⁸ Ο (‰)*		
Rezente Domlave	n und pyro	klastische Ströme							
M96-142	НК	0.705737 ± 11	0.512723 ± 10	18.773	15.714	39.195	+ 6.7		
M97-068	НК	0.705711 ± 11	0.512671 ± 09	18.727	15.671	39.038	+ 6.3		
Juvenile Komponenten holozäner pyroklastischer Ströme									
M96-073	MK	0.705392 ± 11	0.512774 ± 09	18.757	15.695	39.138	+ 6.3		
M96-137	MK	0.705277 ± 11	0.512758 ± 07	18.727	15.681	39.015	+ 6.8		
M96-167	HK	0.705625 ± 11	0.512711 ± 09	18.760	15.678	39.098	+ 6.0		
M97-021	HK	0.705741 ± 11	0.512712 ± 09	18.769	15.685	39.125	+ 6.7		
M97-031	HK	0.705696 ± 10	0.512701 ± 10	18.766	15.684	39.117	+ 7.0		
M97-0392	HK	0.705663 ± 10	0.512714 ± 11	18.763	15.688	39.130	+ 6.2		
M98-0532	MK	0.705353 ± 10	0.512759 ± 10	-	-	-	+ 7.3		
M98-066	HK	0.705826 ± 09	0.512675 ± 10	18.780	15.699	39.175	+ 6.6		
M98-096	HK	0.705643 ± 10	0.512686 ± 10	18.775	15.702	39.178	+ 6.5		
Juvenile Kompone	enten holoz	äner Fallablagerung	gen						
M96-102	НК	0.705536 ± 09	0.512742 ± 09	-	-	-	+ 6.9		
M96-163	MK	0.705155 ± 10	0.512754 ± 08	-	-	-	+ 8.3		
M97-053	HK	0.705658 ± 10	0.512678 ± 09	-	-	-	+ 7.0		
M98-030	HK	0.705725 ± 10	0.512721 ± 06	-	-	-	+ 7.1		
M98-031	НК	0.705561 ± 09	0.512735 ± 09	-	-	-	+ 7.5		
Laven Merapi-Sol	mma								
M95-026	МК	0.705260 ± 11	0.512727 ± 09	18.784	15.716	39.208	+ 6.4		
M96-056	MK	0.705275 ± 11	0.512765 ± 10	18.771	15.709	39.170	+ 6.6		
M98-047	MK	0.705014 ± 09	0.512712 ± 09	18.740	15.689	39.110	+ 6.9		
M98-107	MK	0.705169 ± 10	0.512722 ± 10	18.781	15.715	39.215	+ 6.9		

Tab. 8	8.2. Sr-, I	Nd-, P	b- und	O-	lsotope	enverhä	ltnisse (der vul	lkaniscl	hen	Gestei	ine d	les I	Merap)i.
--------	--------------------	--------	--------	-----------	---------	---------	-----------	---------	----------	-----	--------	-------	-------	-------	-----

* Fehlerangaben zu den Pb- und O-Isotopenbestimmungen finden sich in Anhang A1.

Variationen in den Sr- und Nd-Isotopenverhältnissen der Merapi-Vulkanite werden am deutlichsten bei einem Vergleich zwischen den Gesteinen der Medium-K- und High-K-Serie (Tab. 8.3). Läßt man die Gesteine des Somma-Walls, die formal der Medium-K-Serie angehören, außer Betracht, so zeigen sich generell höhere ⁸⁷Sr/⁸⁶Sr- und geringere ¹⁴³Nd/¹⁴⁴Nd-

Verhältnisse in der High-K- relativ zur Medium-K-Serie. Diese ausgeprägte Anti-Korrelation wird weniger offensichtlich, wenn die vier analysierten Lavaproben des Somma-Walls berücksichtigt werden, von denen drei durch vergleichsweise niedrige ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse zwischen 0.51271 bis 0.51273 gekennzeichnet sind und teilweise mit den Gesteinen der High-K-Serie zusammenfallen (Tab. 8.3).

Abb. 8.1. Histogramm der ⁸⁷Sr/⁸⁶Sr-Verhältnisse der Gesteine der Medium-K- und High-K-Serie.

In Abb. 8.1 sind die Sr-Isotopenverhältnisse der Merapigesteine in einem Histogramm dargestellt. Darin wird eine bimodale Verteilung der ⁸⁷Sr/⁸⁶Sr-Verhältnisse offensichtlich, wobei die Gesteine der High-K-Serie im Vergleich zu denen der Medium-K-Serie durch erhöhte ⁸⁷Sr/⁸⁶Sr-Verhältnisse gekennzeichnet sind. Innerhalb der Medium-K-Serie markieren die dunkleren Grautöne die Laven des Somma-Walls, die sich bezüglich der ⁸⁷Sr/⁸⁶Sr-Verhältnisse nicht von den holozänen Gesteinen der Medium-K-Serie unterscheiden. Insgesamt variieren die ⁸⁷Sr/⁸⁶Sr-Verhältnisse zwischen 0.70501 und 0.70539 in der Medium-K-Serie und zwischen 0.70554 und 0.70583 in der High-K-Serie. Abb. 8.1 zeigt, daß die ⁸⁷Sr/⁸⁶Sr-Verhältnisse nicht kontinuierlich von der Medium-K- zur High-K-Serie ansteigen, sondern jede der beiden Serien

durch klar abgegrenzte und relativ einheitliche ⁸⁷Sr/⁸⁶Sr-Verhältnisse charakterisiert ist. Zwischen den beiden Serien tritt in einem Bereich zwischen 0.7054 und 0.7055 eine Lücke in den ⁸⁷Sr/⁸⁶Sr-Verhältnissen auf, welche die Gesteine der Medium-K-Serie von denen der High-K-Serie abgrenzt. Dieser Bereich stimmt mit dem Übergang von der "normalen" zur "anomalen" Kalkalkali-Serie des Sundabogens (Whitford, 1975b) überein.

Tab. 8.3. Variationsbereiche der Sr-, Nd-, Pb- und O-Isotopenverhältnisse der Gesteine der Medium-K- und High-K-Serie.

Isotopensystem	Medium-K Serie	Medium-K Serie*	High-K Serie
⁸⁷ Sr/ ⁸⁶ Sr	0.70501 - 0.70539	0.70516 - 0.70539	0.70554 - 0.70583
143 Nd/ 144 Nd	0.51271 - 0.51277	0.51275 - 0.51277	0.51267 - 0.51274
²⁰⁸ Pb/ ²⁰⁴ Pb	39.02 - 39.22	39.02 - 39.14	39.04 - 39.20
²⁰⁷ Pb/ ²⁰⁴ Pb	15.68 - 15.72	15.68 - 15.70	15.67 - 15.71
²⁰⁶ Pb/ ²⁰⁴ Pb	18.73 - 18.78	18.73 - 18.76	18.73 - 18.78
¹⁸ O (‰) (Gesamtgestein)	6.3 - 8.3	6.3 - 8.3	6.0 - 7.5

* exklusive der Laven des Somma-Walls

Die in dieser Arbeit ermittelten Pb-Isotopenverhältnisse der Merapigesteine zeigen insgesamt nur geringe Variationen (Tab. 8.2, 8.3). So liegen die ²⁰⁶Pb/²⁰⁴Pb-Verhältnisse zwischen 18.73 und 18.78 und damit in etwa im Bereich der publizierten ²⁰⁶Pb/²⁰⁴Pb-Verhältnisse (Tab. 8.1). In absoluten Zahlen ähnlich geringe, relativ betrachtet jedoch etwas größere Variationen zeigen sich in den einigermaßen radiogenen ²⁰⁷Pb/²⁰⁴Pb-Verhältnissen, die Werte zwischen 15.68 und 15.72 erreichen, und den ebenfalls radiogenen ²⁰⁸Pb/²⁰⁴Pb-Verhältnissen, die zwischen 39.02 und 39.22 variieren. Trotz der geringen Unterschiede lassen sich ausgeprägte positive lineare Korrelationen zwischen den verschiedenen Pb-Isotopenverhältnissen erkennen. Im Vergleich zu den Ergebnissen von McDermott & Hawkesworth (1991) zeigen die in dieser Arbeit ermittelten Pb-Isotopenverhältnisse des Merapi einen höheren Variationsbereich sowie insgesamt höhere Werte (Tab. 8.1). Im Gegensatz zu den ⁸⁷Sr/⁸⁶Sr- und ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen zeigen sich keine prinzipiellen Unterschiede in den Pb-Isotopenverhältnissen zwischen den Gesteinen der Medium-K- und High-K-Serie (Tab. 8.2, 8.3).

Sauerstoff-Isotope

Die ¹⁸O-Werte der Merapigesamtgesteinsproben reichen von +6.0 bis +8.3 ‰ relativ zu SMOW (Tab. 8.2, 8.3) und liegen damit leicht oberhalb typischer Werte für Basalte mittelozeanischer Rücken, die weltweit relative konstante ¹⁸O-Verhältnisse von +5.7 \pm 0.2 ‰ relativ zu SMOW aufweisen (Harmon & Hoefs, 1995), sind jedoch für Inselbögen vergleichsweise niedrig. Die erhöhten Sauerstoffisotopenverhältnisse der Merapigesteine relativ zu MORB könnten auf Assimilation von Nebengestein während des Magmenaufstiegs oder der Zwischenspeicherung in einem krustalen Magmenreservoir hindeuten. Weiter unten wird allerdings gezeigt, daß die ¹⁸O-Werte der Gesamtgesteinsproben durch Niedrig-Temperatur-Alterationseffekte verändert sind, und diese vor allem die Sauerstoffisotopenverhältnisse hochporöser Bimsklasten beeinflußt haben. Die Folge sind insgesamt noch geringere primäre Sauerstoffisotopenverhältnisse in den Merapimagmen. Bereits ohne diese Einschränkungen deuten die ¹⁸O-Werte auf ähnliche Variationsbereiche innerhalb der beiden K-Serien (Medium-K-Serie: +6.3 bis +8.3 ‰; High-K-Serie: +6.0 bis +7.5 ‰) (Tab. 8.3).

Sekundäre Prozesse, wie z.B. Hydratisierung und Verwitterung, können zu einem beträchtlichen Anstieg der ¹⁸O-Verhältnisse, vor allem in feinkörnigen, porösen und glasreichen vulkanischen Gesteinen führen. Taylor (1968) und Taylor & Turi (1976) zeigten, daß felsische Vulkanite eine deutliche ¹⁸O-Anreicherung erfahren können, die auf hydrothermale Austauschprozesse bei niedrigen Temperaturen oder Hydratisierung durch meteorische Wässer zurückgeführt werden kann.

Abb. 8.2. ¹⁸O-Werte (‰ SMOW) der Gesamtgesteinsproben und analysierten Plagioklase gegen LOI (Gew.%).

Generell läßt sich eine ausgeprägte positive Korrelation zwischen den ¹⁸O-Werten und dem Glühverlust (LOI) bei den Gesamtgesteinsproben des Merapi beobachten (Abb. 8.2). Dieser

Befund legt eine Erhöhung der ¹⁸O-Werte der Merapigesteine durch sekundäre Alterationsprozesse nahe. Einfache Verwitterungsprozesse scheinen dabei nicht primär für die Erhöhung der ¹⁸O-Werte in den Merapigesteinen verantwortlich zu sein, da selbst bei der Probe mit dem höchsten Glühverlust von knapp 8 Gew.% (M96-169) keine Tonmineral-Peaks im RDA-Spektrum nachweisbar sind. Vielmehr scheinen Hydratisierungs- und Sauerstoffaustauschprozesse zwischen Grundwasser und der glasigen Grundmasse der Merapigesteine und vor allem der porösen Bimsklasten, die besonders anfällig für derartige Alterationsprozesse sind (Kapitel 7), zur Erhöhung der ¹⁸O-Werte beizutragen.

Tab. 8.4. ¹⁸O-Werte (‰ SMOW) für Gesamtgesteinsproben und komagmatische Plagioklase.

Probe	Serie	δ^{18} O (‰) w.r.	$\delta^{18}O$ (‰) plag.	Δδ ¹⁸ Ο (‰)*	LOI (Gew.%)
M06 127	MK			0.2	0.28
M90-137		+ 0.8	+ 6.3	0.5	0.58
M97-033	нк	+ 7.0	+ 0.8	0.2	1.08
M98-030	НК	+ 7.1	+ 6.6	0.5	2.07
M98-031	НК	+ 7.5	+ 6.6	0.9	2.49
M96-163	МК	+ 8.3	+ 7.0	1.3	4.24

* ${}^{18}O$ (‰) = ${}^{18}O$ Gesamtgestein (*w.r.* whole rock) - ${}^{18}O$ Plagioklas (plag.)

Abb. 8.3. (a) ¹⁸O-Werte (‰ SMOW) für Gesamtgesteinsproben und komagmatische Plagioklase als Funktion des Glühverlusts (Gew.%) des Gesamtgesteins. Die gestrichelte Linie markiert den maximalen ¹⁸O-Wert der analysierten Plagioklase. (b) Differenz zwischen den ¹⁸O-Werten (‰ SMOW) des Gesamtgesteins und den komagmatischen Plagioklasen in Abhängigkeit des Glühverlusts (Gew.%) des Gesamtgesteins.

Da Plagioklas weniger anfällig für sekundäre Alterationsprozesse als vulkanisches Glas ist, wurden bei sechs Proben zusätzlich zum Gesamtgestein die Sauerstoffisotopenverhältnisse von Plagioklasseparaten ermittelt. Im Gegensatz zu den Gesamtgesteinsproben sind die komagmatischen Plagioklase durch relativ konstante ¹⁸O-Verhältnisse zwischen +6.5 und +7.0 ‰ relativ zu SMOW charakterisiert (Tab. 8.4) und zeigen keine oder, wenn überhaupt, lediglich eine schwache positive Korrelation mit dem Alterationsgrad bzw. Glühverlust (Abb. 8.2). Es ist bemerkenswert, daß die höchsten ¹⁸O-Verhältnisse der analysierten Plagioklase in der am stärksten alterierten Probe vorkommen. Unterschiede zwischen den ¹⁸O-Verhältnissen von Plagioklasen aus Gesteinen der beiden K-Serien sind nicht zu beobachten (Medium-K-Serie: +6.5 bis +7.0 ‰; High-K-Serie: +6.6 bis +6.8 ‰) (Tab. 8.4).

Abb. 8.4. ¹⁸O-Werte (‰ SMOW) gegen LOI (Gew.%) der Merapi-Gesamtgesteinsproben. Die dünnen gestrichelten Linien sind Extrapolationen auf einen LOI-Wert von 1.0 Gew.% parallel zu der ermittelten "Least-squares"-Regressionsgerade durch den gesamten Datensatz. Die horizontale gestrichelte Linie markiert den maximalen ¹⁸O-Wert der analysierten Plagioklase. Symbole wie in Abb. 8.2.

In Abb. 8.3 sind die ¹⁸O-Werte der Plagioklasseparate zusammen mit den entsprechenden Gesamtgesteinanalysen dargestellt. Im Vergleich zu der jeweiligen Gesamtgesteinszusammensetzung weisen die Plagioklasseparate um 0.2 bis 1.3 ‰ niedrigere ¹⁸O-Werte auf (Tab. 8.4, Abb. 8.3). Taylor & Turi (1976) konnten zeigen, daß in unalterierten Proben, bei denen Grundmasse und Einsprenglingsminerale im Gleichgewicht sind, der Unterschied in den ¹⁸O-Verhältnissen zwischen Gesamtgestein und Plagioklas ca. 0.2 und 0.5 ‰ betragen und die Werte der Gesamtgesteinsproben generell über denen der Plagioklase liegen sollten. Bei den frischen Merapiproben beträgt die Differenz zwischen Gesamtgestein und Plagioklas 0.2 bis

0.3 ‰, während diese bei den Proben mit erhöhtem Glühverlust einen Maximalwert von 1.3 ‰ erreicht. Diese Resultate zeigen damit eindeutig den Einfluß der Hydratisierung von vulkanischem Glas in alterierten Bimsproben des Merapi, deren ¹⁸O-Verhältnisse somit keine magmatischen, sondern durch sekundäre Prozesse erhöhte, Werte darstellen.

Die primären magmatischen Sauerstoffisotopenverhältnisse der Merapimagmen können aus den Werten der Plagioklasseparate oder den Gesamtgesteinsanalysen abgeschätzt werden, wenn bei den zuletzt genannten die Effekte der Alterationsprozesse berücksichtigt werden. Die ¹⁸O-Werte der Plagioklasseparate legen maximale magmatische Sauerstoffisotopenverhältnisse von ungefähr +7.0 ‰ (SMOW) für den Merapi nahe (Abb. 8.3). Eine Abschätzung der primären magmatischen Sauerstoffisotopenverhältnisse aus den Gesamtgesteinsanalysen erfordert, wie bereits erwähnt, eine Quantifizierung und anschließende Korrektur der Niedrig-Temperatur-Alterationseffekte, die mit einer ähnlichen Methode, wie in Kapitel 7 beschrieben, erfolgen kann (Abb. 8.4).

Die Extrapolation der gemessenen ¹⁸O-Verhältnisse der alterierten Gesamtgesteinsproben auf einen Glühverlustwert von 1.0 Gew.% impliziert magmatische ¹⁸O-Verhältnisse von maximal +7.0 ‰ (SMOW) und damit identische maximale ¹⁸O-Verhältnisse für die Merapimagmen, wie sie aus den Plagioklasanalysen abgeleitet werden können (Abb. 8.4).

Man könnte sogar weiter argumentieren, daß selbst der ¹⁸O-Wert der Plagioklase der am stärksten alterierten Probe (M96-163) bereits durch Alterationseffekte beeinflußt ist, da die Extrapolation des Gesamtgesteinswertes ein etwas niedrigeres ¹⁸O-Verhältnis von ca. +6.7 bis +6.8 ‰ (SMOW) für diese Probe andeutet (Abb. 8.4). Die Extrapolation der Gesamtgesteinsdaten auf LOI-Werte < 1.0 Gew.% würde die maximalen magmatischen ¹⁸O-Verhältnis von +6.8 ‰ (SMOW) limitieren (Abb. 8.4).

Aus der geführten Diskussion ergeben sich damit für die Merapimagmen primäre ¹⁸O-Verhältnisse zwischen +6.0 und maximal +7.0 ‰ (SMOW) und einen ähnlichen Variationsbereich für die Gesteine der Medium-K- und High-K-Serie. Dieser Befund ist von fundamentaler Bedeutung, belegt er doch, daß die isotopischen Unterschiede zwischen den Gesteinen der Medium-K- und High-K-Serie nicht durch unterschiedliche Grade der Krustenkontamination in einem oberflächennahen Krustenniveau verursacht sein können, da ein solcher Prozeß zu einer deutlichen Veränderung der Sauerstoffisotopenverhältnisse führen würde.

Daraus folgt, daß die isotopischen Charakteristika der beiden K-Serien eher durch die Kontamination der entsprechenden Magmenquelle mit einer Krustenkomponente verursacht sind, da ein solcher Prozeß die Sauerstoffisotopenverhältnisse nahezu unverändert läßt (James, 1981).

Trotz dieses Befundes bleibt festzuhalten, daß die ¹⁸O-Werte der Merapigesteine insgesamt leicht oberhalb typischer MORB-Werte liegen, und damit eine gewisse, wenn auch geringe Krustenkontamination primärer Mantelschmelzen, wie sie bereits durch das Vorkommen von Krustenxenolithen angedeutet wurde, nicht ausgeschlossen werden kann.

Isotopische Variationen mit Elementgehalten

In dem vorangegangenen Kapitel wurden die Variationen der verschiedenen Isotopenverhältnisse in den Merapigesteinen und die isotopischen Unterschiede zwischen der Medium-Kund High-K-Serie aufgezeigt, die sich vor allem in den ⁸⁷Sr/⁸⁶Sr- und ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen manifestieren.

Abb. 8.5. Isotopenverhältnisse der Merapi-Vulkanite gegen SiO₂ (Gew.%). Die gestrichelte Linie im ¹⁸O-SiO₂-Diagramm markiert die vermuteten maximalen primären ¹⁸O-Verhältnisse der Merapimagmen. Symbole wie in Abb. 8.2.

Dies impliziert eine generelle Korrelation zwischen den ⁸⁷Sr/⁸⁶Sr- bzw. ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen und Elementen, wie z.B. K, Rb, Ba und Th, oder Elementverhältnissen, wie z.B. Ba/Nb und Th/Nb, welche die geochemischen Unterschiede der beiden Serien bestimmen.

In Abb. 8.5 sind die verschiedenen Isotopenverhältnisse gegen den SiO₂-Gehalt der untersuchten Proben aufgetragen. Wie zuvor, sind die Gesteine der Medium-K- und High-K-Serie gesondert gekennzeichnet. Offensichtlich sind die deutlich unterschiedlichen ⁸⁷Sr/⁸⁶Sr-Verhältnisse und weniger stark ausgeprägte Unterschiede in den ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen zwischen den beiden K-Serien. Innerhalb der einzelnen Serien lassen sich keine systematischen Variationen der Isotopenverhältnisse mit zunehmendem Differentiationsgrad erkennen. Besonders auffällig sind die konstanten ⁸⁷Sr/⁸⁶Sr-Verhältnisse in den Gesteinen der High-K-Serie, die sich über den gesamten Variationsbereich der Merapiprodukte erstrecken. Die Pb- und Sauerstoffisotopenverhältnisse zeigen größere Streuungen unabhängig vom SiO₂-Gehalt oder Differentiationsgrad der untersuchten Proben.

Zusammengefaßt zeigt das Fehlen systematischer Variationen der Isotopenverhältnisse mit dem Differentiationsgrad der Gesteine, daß Krustenkontamination in Form von AFC-Prozessen (DePaolo, 1981) keine wesentliche Rolle in der Entwicklung der Merapimagmen gespielt hat. Eine entscheidende Beobachtung ist, daß die Isotopenverhältnisse während der Entwicklung und Differentiation der Merapimagmen anscheinend nicht verändert werden. Dieser Befund legt die Übereinstimmung der isotopischen Zusammensetzungen differenzierter und primitiver basischer (primärer) Magmen nahe, die letztlich die Isotopenverhältnisse in der Quellregion widerspiegeln.

Unterschiede in der Isotopenzusammensetzung von Gesteinen der Medium-K- und High-K-Serie reflektieren demnach solche Unterschiede und implizieren die Abstammung der Medium-K- und High-K-Magmen aus isotopisch unterschiedlichen Magmenquellen.

Der Merapi im regional-geologischen Kontext

In Abb. 8.6 sind die ⁸⁷Sr/⁸⁶Sr- und ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse der untersuchten Merapi-Proben zusammen mit den verfügbaren Literaturwerten dargestellt. Die Gesteine der Medium-K- und High-K-Serie des Merapi definieren einen allgemeinen negativen Trend und liegen, wie viele Inselbogenvulkanite, deutlich unterhalb des MORB-Feldes und in einem Bereich zwischen diesem und dem Feld für Sedimente des Indischen Ozeans. Ebenfalls enthalten sind die Isotopenzusammensetzungen der untersuchten Krustenxenolithe und Sedimente der lokalen oberen Kruste (Tab. 8.5), die im Rahmen dieser Arbeit bestimmt wurden. Diese weisen im Vergleich zu den Merapigesteinen eine deutlichere "krustale" Zusammensetzung auf, ohne jedoch die hohen ⁸⁷Sr/⁸⁶Sr-Verhältnisse der marinen Sedimente des Indischen Ozeans zu erreichen. Mit ⁸⁷Sr/⁸⁶Sr 0.70501 und ¹⁴³Nd/¹⁴⁴Nd 0.51267 weisen die Merapiproben im

Vergleich zur "Bulk Earth"-Zusammensetzung leicht erhöhte Werte auf und fallen damit in einen relativ eng begrenzten Bereich im rechten oberen Quadranten des Sr-Nd-Isotopendiagramms.

Abb. 8.6. ¹⁴³Nd/¹⁴⁴Nd *vs.* ⁸⁷Sr/⁸⁶Sr-Diagramm für die Gesteine der Medium-K- und High-K-Serie des Merapi. Zum Vergleich sind repräsentative Felder für MOR- und Ozeaninsel-Basalte (St. Paul, Maskarenen, Kerguelen, Heard Island) des Indischen Ozeans, vulkanische Gesteine von Java (exklusive Merapi) und Sedimente des Indischen Ozeans eingezeichnet. Zusätzlich dargestellt sind Einzelanalysen von Krustenxenolithen und Sedimenten der lokalen oberen Kruste (diese Arbeit).

Datenquellen: MORB Indischer Ozean (Hamelin & Allègre, 1985; Ito et al., 1987; Rehkämper & Hofmann, 1997); OIB Indischer Ozean (White & Hofmann, 1982; Hamelin et al., 1985; Dosso et al., 1988; Barling & Goldstein, 1990; Yang et al., 1998); Java (Whitford et al., 1981; Edwards et al., 1993); Sedimente des Indischen Ozeans (Ben Othman et al., 1989; Gasparon & Varne, 1998); Literaturdaten Merapi (Whitford et al., 1981; del Marmol, 1989).

Die Merapigesteine überlappen teilweise das Feld der Ozeaninsel-Basalte des Indischen Ozeans, scheinen jedoch bei einem gegebenen ¹⁴³Nd/¹⁴⁴Nd-Verhältnis durch vergleichsweise hohe ⁸⁷Sr/⁸⁶Sr-Verhältnisse gekennzeichnet zu sein. Ein Vergleich der Merapiproben mit vulkanischen Gesteinen angrenzender Vulkane von Java zeigt ein ähnliches Bild und verdeutlicht die,

bei einem gegebenen ¹⁴³Nd/¹⁴⁴Nd-Verhältnis, ungewöhnlich hohen ⁸⁷Sr/⁸⁶Sr-Verhältnisse, die ein besonderes Merkmal des Merapi zu sein scheinen. Dieser Sachverhalt wird noch offensichtlicher in Abb. 8.7, in der ein vergrößerter Ausschnitt des Sr-Nd-Isotopendiagramms dargestellt ist und die Merapidaten im Vergleich zu den in Abb. 8.6 dargestellten Sr- und Nd-Isotopenverhältnissen verschiedener Inselbogenvulkanite von Java (Whitford et al., 1981; Edwards et al., 1993) zeigt. Bemerkenswert sind neben der Lage der Merapiproben rechts bzw. oberhalb der Mantellinie, die relativ hohen ⁸⁷Sr/⁸⁶Sr-Verhältnisse der Merapigesteine im Vergleich zu den analysierten Java-Vulkaniten von Edwards et al. (1993). Die publizierten Java-Proben von Whitford et al. (1981) erweitern den ⁸⁷Sr/⁸⁶Sr-Variationsbereich der Java-Vulkanite von Edwards et al. (1993) zu radiogeneren Zusammensetzungen, die weitestgehend dem Variationsbereich der in dieser Arbeit untersuchten Merapi-Vulkanite entsprechen. Allerdings weisen die Merapi-Vulkanite im Verhältnis zu den Daten von Whitford et al. (1981) vergleichsweise hohe ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse auf, was ihre außergewöhnliche Lage außerhalb des allgemeinen Trends der Java-Vulkanite bestimmt.

Abb. 8.7. Vergrößerter Ausschnitt des ¹⁴³Nd/¹⁴⁴Nd *vs.* ⁸⁷Sr/⁸⁶Sr-Diagramms. Dargestellt sind die Gesteine des Merapi im Vergleich zu Vulkaniten von Java (exklusive Merapi) (Whitford et al., 1981; Edwards et al., 1993) und der Mantellinie (mantle array) (schematisch nach DePaolo & Wasserburg, 1976). *TH* Tholeiitische Serie, *CA* Kalkalkali-Serie, *HKCA* High-K-Kalkalkali-Serie; *SH* Shoshonitische Serie (Edwards et al., 1993).

Probe	⁸⁷ Sr/ ⁸⁶ Sr	¹⁴³ Nd/ ¹⁴⁴ Nd	²⁰⁶ Pb/ ²⁰⁴ Pb*	²⁰⁷ Pb/ ²⁰⁴ Pb*	²⁰⁸ Pb/ ²⁰⁴ Pb*	$\delta^{18}O(\%)^*$		
Krustenxenolithe und Sedimente der lokalen oberen Kruste								
MX-6	0.706507 ± 09	0.512154 ± 09	19.728	15.750	41.440	+ 11.5		
MX99-1	0.707350 ± 09	0.512564 ± 09	18.989	15.660	39.865	+ 20.5		
MX99-2	0.706932 ± 09	0.512749 ± 10	18.720	15.637	39.209	+ 18.9		

Tab. 8.5. Sr-, Nd-, Pb-und O-Isotopenverhältnisse des sedimentären Basements des Merapi.

* Fehlerangaben zu den Pb- und O-Isotopenbestimmungen finden sich in Anhang A1.

Abb. 8.8. ²⁰⁷Pb/²⁰⁴Pb *vs.* ²⁰⁶Pb/²⁰⁴Pb-Diagramm für die Gesteine der Medium-K- und High-K-Serie des Merapi. Zum Vergleich sind repräsentative Felder für MOR- und Ozeaninsel-Basalte (St. Paul, Crozet, New Amsterdam, Maskarenen, Kerguelen, Heard Island) des Indischen Ozeans, vulkanische Gesteine von Java (exklusive Merapi) und Sedimente des Indischen Ozeans eingetragen. Zusätzlich dargestellt sind Einzelanalysen von Krustenxenolithen und Sedimenten der lokalen oberen Kruste (diese Arbeit). *NHRL* Northern Hemisphere Reference Line (Hart, 1984).

Datenquellen: MORB Indischer Ozean (Dupré & Allègre, 1983; Hamelin & Allègre, 1985; Ito et al., 1987; Rehkämper & Hofmann, 1997); OIB Indischer Ozean (Dosso et al., 1979; Dupré & Allègre, 1983; Hamelin et al., 1985; Dosso et al., 1988; Barling & Goldstein, 1990; Yang et al., 1998); Java (Whitford, 1975a; Edwards et al., 1993); Sedimente des Indischen Ozeans (Ben Othman et al., 1989; Gasparon & Varne, 1998); Literaturdaten Merapi (Whitford, 1975a; del Marmol, 1989; McDermott & Hawkesworth, 1991).

Abb. 8.9. Vergrößerter Ausschnitt des ²⁰⁷Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb-Diagramms. Dargestellt sind die Gesteine des Merapi im Vergleich zu Vulkaniten von Java (exklusive Merapi) (Whitford et al., 1981; Edwards et al., 1993) und Sedimenten des Indischen Ozeans (Ben Othman et al., 1989; Gasparon & Varne, 1998). *TH* Tholeiitische Serie, *CA* Kalkalkali-Serie, *HKCA* High-K-Kalkalkali-Serie; *SH* Shoshonitische Serie (Edwards et al., 1993).

Wie bereits beschrieben, zeigen die in dieser Arbeit ermittelten Pb-Isotopenverhältnisse der Merapigesteine insgesamt nur geringe Variationen. Die ²⁰⁶Pb/²⁰⁴Pb-Verhältnisse variieren zwischen 18.73 und 18.78 und liegen damit am oberen (radiogenen) Ende typischer MOR-Basalte des Indischen Ozeans (Abb. 8.8, 8.10).

Die ²⁰⁷Pb/²⁰⁴Pb-Verhältnisse (15.68-15.72) und ²⁰⁸Pb/²⁰⁴Pb-Verhältnisse (39.02-39.22) des Merapi liegen deutlich oberhalb typischer MORB-Werte im Bereich der Java-Vulkanite und Sedimente des Indischen Ozeans, welche die Merapigesteine in Diagrammen von ²⁰⁷Pb/²⁰⁴Pb und ²⁰⁸Pb/²⁰⁴Pb gegen ²⁰⁶Pb/²⁰⁴Pb generell überlappen (Abb. 8.8-8.11). Im ²⁰⁸Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb-Diagramm (Abb. 8.10) fallen die Merapigesteine in das Feld der Ozeaninsel-Basalte des Indischen Ozeans, während sie im ²⁰⁷Pb/²⁰⁴Pb-²⁰⁶Pb/²⁰⁴Pb-Diagramm (Abb. 8.8) nur teilweise mit diesem überlappen. Im Vergleich zu den Ergebnissen von McDermott & Hawkesworth (1991) zeigen die neu ermittelten Pb-Isotopendaten des Merapi generell höhere (radiogenere) Werte, liegen jedoch im allgemeinen Trend der Java-Vulkanite von Whitford (1975a). Gegenüber den Merapigesteinen scheinen insbesondere die tholeiitischen und shoshonitischen Gesteine Javas (Edwards et al., 1993) durch generell weniger radiogene ²⁰⁷Pb/²⁰⁴Pb- und ²⁰⁸Pb/²⁰⁴Pb-Verhältnisse und letztere zusätzlich durch unterschiedliche, d.h. horizontale Trends in den Diagrammen von ²⁰⁷Pb/²⁰⁴Pb und ²⁰⁸Pb/²⁰⁴Pb gegen ²⁰⁶Pb/²⁰⁴Pb gekennzeichnet zu sein (Abb. 8.9, 8.11). Im Gegensatz dazu definieren die Merapigesteine relativ steile Trends in Diagrammen von ²⁰⁷Pb/²⁰⁴Pb bzw. ²⁰⁸Pb/²⁰⁴Pb gegen ²⁰⁶Pb/²⁰⁴Pb (Abb. 8.8-8.11).

Abb. 8.10. ²⁰⁸Pb/²⁰⁴Pb *vs.* ²⁰⁶Pb/²⁰⁴Pb-Diagramm für die Gesteine der Medium-K- und High-K-Serie des Merapi. Zum Vergleich sind repräsentative Felder für MOR- und Ozeaninsel-Basalte (St. Paul, Crozet, New Amsterdam, Maskarenen, Kerguelen, Heard Island) des Indischen Ozeans, vulkanische Gesteine von Java (exklusive Merapi) und Sedimente des Indischen Ozeans eingetragen. Zusätzlich dargestellt sind Einzelanalysen von Krustenxenolithen und Sedimenten der lokalen oberen Kruste (diese Arbeit). *NHRL* Northern Hemisphere Reference Line (Hart, 1984). Datenquellen s. Abb. 8.8.

Die Abbildungen 8.12 und 8.13 zeigen die Beziehung zwischen den ⁸⁷Sr/⁸⁶Sr-, ¹⁴³Nd/¹⁴⁴Ndund ²⁰⁶Pb/²⁰⁴Pb-Verhältnissen der Merapivulkanite. Wiederum wird offensichtlich, daß die Merapigesteine, wie auch die übrigen vulkanischen Gesteine von Java nicht mit dem MORB-Feld überlappen, sondern in den ⁸⁷Sr/⁸⁶Sr-, ¹⁴³Nd/¹⁴⁴Nd- und ²⁰⁶Pb/²⁰⁴Pb-Verhältnissen in Richtung der Sedimente des Indischen Ozeans verschoben sind.

Abb. 8.11. Vergrößerter Ausschnitt des ²⁰⁸Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb-Diagramms. Dargestellt sind die Gesteine des Merapi im Vergleich zu Vulkaniten von Java (exklusive Merapi) (Whitford et al., 1981; Edwards et al., 1993) und Sedimenten des Indischen Ozeans (Ben Othman et al., 1989; Gasparon & Varne, 1998). *TH* Tholeiitische Serie, *CA* Kalkalkali-Serie, *HKCA* High-K-Kalkalkali-Serie; *SH* Shoshonitische Serie (Edwards et al., 1993).

Es ist bemerkenswert, daß die Merapigesteine in beiden Diagrammen nur randlich mit den Ozeaninsel-Basalten des Indischen Ozeans überlappen und im allgemeinen in einen Bereich zwischen diesen und den Sedimenten des Indischen Ozeans fallen. Gleichzeitig sind die Gesteine der High-K-Serie aufgrund der höheren ⁸⁷Sr/⁸⁶Sr- und niedrigeren ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse im Vergleich zu denen der Medium-K-Serie stärker in Richtung der Sedimente des Indischen Ozeans verschoben.

Implikationen der Isotopendaten für die Petrogenese der Merapimagmen

Die Häufigkeit von Krustenxenolithen in den Merapigesteinen zeigt, daß Wechselwirkungen der Merapimagmen mit der Kruste während des Aufstiegs oder der Zwischenspeicherung in einem oberflächennahen Magmareservoir zwar stattgefunden haben, aber anscheinend keine wesentlichen Auswirkungen auf die Isotopenzusammensetzungen der Merapimagmen haben.

Abb. 8.12. ⁸⁷Sr/⁸⁶Sr *vs.* ²⁰⁶Pb/²⁰⁴Pb der Gesteine der Medium-K- und High-K-Serie des Merapi mit repräsentativen Feldern für MOR- und Ozeaninsel-Basalte (St. Paul, Crozet, New Amsterdam, Maskarenen, Kerguelen, Heard Island) des Indischen Ozeans, vulkanische Gesteine von Java (exklusive Merapi) und Sedimente des Indischen Ozeans. Zusätzlich dargestellt sind Einzelanalysen von Krustenxenolithen und Sedimenten der lokalen oberen Kruste (diese Arbeit).

Datenquellen: MORB Indischer Ozean (Dupré & Allègre, 1983; Hamelin & Allègre, 1985; Ito et al., 1987; Rehkämper & Hofmann, 1997); OIB Indischer Ozean (Dupré & Allègre, 1983; Hamelin et al., 1985; Barling & Goldstein, 1990; Yang et al., 1998); Java (Whitford, 1975a; Whitford et al., 1981; Edwards et al., 1993); Sedimente des Indischen Ozeans (Ben Othman et al., 1989; Gasparon & Varne, 1998); Literaturdaten Merapi (Whitford, 1975a; Whitford et al., 1989; McDermott & Hawkesworth, 1991).

Die allgemein niedrigen magmatischen Sauerstoffisotopenverhältnisse sämtlicher Merapiprodukte und das Fehlen systematischer Korrelationen zwischen den Isotopenverhältnissen und SiO₂ schließen eine oberflächennahe Kontamination mit Krustenmaterial und die Möglichkeit von AFC-Prozessen als wesentliche Faktoren in der Entwicklung der Merapimagmen aus. Dies deutet darauf hin, daß die Isotopenzusammensetzungen der Merapimagmen letztendlich die Isotopenverhältnisse in der Quellregion reflektieren, die ihrerseits eine Mischung verschiedener Komponenten darstellt.

Abb. 8.13. ¹⁴³Nd/¹⁴⁴Nd *vs.* ²⁰⁶Pb/²⁰⁴Pb der Gesteine der Medium-K- und High-K-Serie des Merapi mit repräsentativen Feldern für MOR- und Ozeaninsel-Basalte (Maskarenen, Kerguelen, Heard Island) des Indischen Ozeans, vulkanische Gesteine von Java (exklusive Merapi) und Sedimente des Indischen Ozeans. Zusätzlich dargestellt sind Einzelanalysen von Krustenxenolithen und Sedimenten der lokalen oberen Kruste (diese Arbeit). Unterschiede im ²⁰⁶Pb/²⁰⁴Pb-Variationsbereich für MORB und OIB im Vergleich zu Abb. 8.12 resultieren aus dem Fehlen von ¹⁴³Nd/¹⁴⁴Nd-Daten bei Proben, bei denen Analysen von ⁸⁷Sr/⁸⁶Sr vorhanden sind.

Datenquellen: MORB Indischer Ozean (Hamelin & Allègre, 1985; Ito et al., 1987; Rehkämper & Hofmann, 1997); OIB Indischer Ozean (Hamelin et al., 1985; Barling & Goldstein, 1990; Yang et al., 1998); Java (Whitford, 1975a; Whitford et al., 1981; Edwards et al., 1993); Sedimente des Indischen Ozeans (Ben Othman et al., 1989; Gasparon & Varne, 1998); Literaturdaten Merapi (Whitford, 1975a; Whitford et al., 1981; del Marmol, 1989).

Eine dieser Komponenten bildet der Mantelkeil über der subduzierten Lithosphärenplatte, der gewöhnlich isotopisch ähnlich zusammengesetzt ist wie die Quelle der MOR-Basalte (Perfit et al., 1980), in bestimmten Fällen allerdings geochemische und isotopische Ähnlichkeiten mit der Quelle von Ozeaninsel-Basalten aufweisen kann (Morris & Hart, 1983). Die weiteren Komponenten sind subduktionsbezogen und umfassen die basaltische ozeanische Kruste sowie subduzierte Sedimente der abtauchenden Lithosphärenplatte. Mischungen der genannten

Komponenten in der Quellregion von Inselbogenmagmen können durch verschiedene Prozesse verursacht werden, wie z.B. (1) die Mischung zwischen Mantel und subduzierten Sedimenten, (2) die metasomatische Überprägung des Mantelkeils durch freigesetzte Fluide von der basaltischen ozeanischen Kruste und / oder subduzierten Sedimenten, (3) die Überprägung des Mantelkeils durch partielle (silikatische) Schmelzen der basaltischen ozeanischen Kruste und / oder subduzierter Sedimente oder (4) Mischungen verschiedener Mantelreservoire mit unterschiedlichen isotopischen und geochemischen Charakteristika, z.B. durch die Infiltration von Schmelzen.

Die isotopischen Charakteristika der Merapivulkanite zeigen, daß diese einer heterogenen Mantelquelle entstammen. Der Eintrag von Komponenten aus der subduzierten Platte kann die Isotopenzusammensetzung der Mantelquelle und schließlich die isotopische Signatur der daraus abgeleiteten primären Mantelschmelzen verändern. Das Ausmaß dieser subduktionsbedingten Veränderungen hängt allerdings stark von der angenommenen isotopischen Zusammensetzung des unmodifizierten Mantels ab, dem aufgrund gewöhnlicher Subduktionszonengeometrien im allgemeinen die Charakteristika einer MORB-Quelle zugeschrieben werden, der jedoch in bestimmten Fällen - z.B. durch metasomatische Prozesse innerhalb des Mantels geochemische und isotopische Eigenschaften aufweisen kann, die eher einer "angereicherten" OIB-ähnlichen Quelle ähneln. Dieser Sachverhalt wird bei der Betrachtung der Sr- und Nd-Isotopenverhältnisse der Merapivulkanite offensichtlich, die sich deutlich von MOR-Basalten unterscheiden und zumindest teilweise mit den Ozeaninselbasalten des Indischen Ozeans zusammenfallen (Abb. 8.6). Im Falle einer angenommenen MORB-ähnlichen unmodifizierten Mantelquelle erfordert die Generation der isotopischen Signaturen der Merapigesteine eine deutliche subduktionsbedingte isotopische Veränderung der Mantelquelle, während im Falle eines stärker angereicherten Mantelkeils mit relativ hohen ⁸⁷Sr/⁸⁶Sr- und niedrigen ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen zwar nach wie vor die Beteiligung einer Subduktionszonenkomponente in der Genese der Merapimagmen gefordert werden muß, diese allerdings nicht notwendigerweise zu einer wesentlichen isotopischen Veränderung der Mantelquelle führen muß.

Für den Merapi deuten die geringen Konzentrationen inkompatibler Spurenelemente, wie z.B. Ti, Zr, Hf, Ta, Nb und die schweren seltenen Erden (HREE), die nicht von der subduzierten Platte (basaltische Kruste oder Sedimente) stammen, auf die Existenz eines MORB-ähnlichen oder sogar verarmten (relativ zur MORB-Quelle) Mantelkeils vor der einsetzenden subduktionsbedingten Kontamination durch Komponenten der abtauchenden Platte (Kapitel 7).

Im regional-geologischen Kontext liefern MORB-ähnliche ³He/⁴He-Verhältnisse in Mantelxenolithen des Vulkans Bukit Telor auf Sumatra (Gasparon et al., 1994) und Inselbogentholeiite mit hohen ¹⁴³Nd/¹⁴⁴Nd- und niedrigen ⁸⁷Sr/⁸⁶Sr-Verhältnissen auf Flores (Stolz et al., 1990) und Java (Edwards et al., 1993; Abb. 8.7) weitere Hinweise für die Existenz eines MORB-ähnlichen Mantelkeils im Bereich des gesamten Sundabogens. Die negative Korrelation zwischen den Sr- und Nd-Isotopenverhältnissen parallel zur Mantellinie und die Verschiebung weg vom MORB-Feld in Richtung der Sedimente des Indischen Ozeans (Abb. 8.6, 8.7) sind daher konsistent mit der Einbeziehung solcher Sedimente in der Genese der Merapimagmen, deren Sr- und Nd-Isotopenzusammensetzungen einer Mischung aus zwei Komponenten - MORB-Mantel und Sedimente des Indischen Ozeans - zugeschrieben werden können. Neben den niedrigen Ce/Pb- und hohen Th/Nb-Verhältnissen (Tab. 7.2) im Vergleich zu MORB (Ce/Pb 25, Th/Nb 0.05; Sun & McDonough, 1989) untermauern vor allem die Pb-Isotopenverhältnisse der Merapimagmen diese Interpretation. Insbesondere sind es die im Vergleich zu den MOR-Basalten des Indischen Ozeans hohen ²⁰⁷Pb/²⁰⁴Pb- und ²⁰⁸Pb/²⁰⁴Pb-Verhältnisse, die im Bereich der Sedimente des Indischen Ozeans liegen, sowie die linearen und steilen Trends in Diagrammen von ²⁰⁷Pb/²⁰⁴Pb bzw. ²⁰⁸Pb/²⁰⁴Pb gegen ²⁰⁶Pb/²⁰⁴Pb (Abb. 8.8-8.11), welche die Beteiligung subduzierter Sedimente in der Genese der Merapimagmen anzeigen. Da die Mischung zweier Komponenten, z.B. MORB und Sedimente, in den Pb-Isotopendiagrammen durch eine Gerade beschrieben wird, scheint dieses Modell allerdings eine relativ radiogene Zusammensetzung der MORB-Komponente und eine eher spezifische Sedimentzusammensetzung zu erfordern (Abb. 8.8-8.11).

Nichtsdestoweniger bleibt die Kontamination einer ursprünglich MORB-ähnlichen Mantelquelle mit subduzierten Sedimenten der abtauchenden Lithosphärenplatte der wahrscheinlichste Prozeß, der die isotopischen Zusammensetzungen bzw. die Magmenquelle(n) des Merapi und möglicherweise weiterer Vulkane Javas wesentlich beeinflußt (Abb. 8.12, 8.13).

Ein solches Modell ist jedoch nicht unumstritten. So folgern Gasparon and Varne (1998) in einer allgemeinen Evaluation der Krustenassimilation *versus* subduktionsbedingtem Sedimenteintrag im westlichen Sundabogen, daß die Assimilation von Krustenmaterial durch aufsteigende Schmelzen, welche aus dem "Indischen Ozean-Typ" Mantelkeil stammen, die radiogenen Isotopenverhältnisse der vulkanischen Gesteine besser erklärt als die Kontamination der Mantelquelle durch subduzierte Sedimente. Sie stützen ihre Argumente u.a. auf geophysikalische Evidenzen, die eher für Akkretion als Subduktion der Sedimente sprechen und die geringen ¹⁰Be-Werte, die andeuten, daß postmiozäne Sedimente nicht vom derzeitigen Vulkanismus rezykliert werden. Darüber hinaus erscheint der Befund konsistent mit der Variation der Krustenmächtigkeit und Zusammensetzung entlang des Inselbogens und der scheinbar gekoppelten räumlichen Verteilung der Sr-, Nd- und Pb-Isotopenverhältnisse in den mafischen Vulkaniten des Sundabogens.

Während die Assimilation von Krustenmaterial durch aufsteigende Magmen für viele der Sundabogenvulkane nicht ausgeschlossen werden kann, scheint dieser Prozeß zumindest am Merapi nur eine untergeordnete Rolle zu spielen und der Einfluß subduktionsbedingten Sedimenteintrags zu überwiegen. Zwar weist Hamilton (1979) darauf hin, daß im Bereich von Java lediglich eine geringmächtige Bedeckung pelagischer Sedimente mit der subduzierenden

163

Platte in die Tiefseerinne transportiert wird, dennoch scheint zumindest ein geringes Volumen dieser Sedimente mit der ozeanischen Lithosphärenplatte subduziert zu werden. Plank & Langmuir (1998) zeigen, daß vor Java eine durchschnittlich 200-400 m mächtige Sedimentbedeckung in Richtung der Tiefseerinne transportiert wird. Diese beträgt weniger als 1 km in der westlichen Tiefseerinne Javas, während die östliche Tiefseerinne nahezu frei von Sedimenten ist. Der überwiegende Teil der quartären Sedimente, die sich vor der Küste Javas akkumulieren, werden zwar dem Akkretionskeil hinzugefügt, allerdings verbleiben durchschnittlich 300 m Sediment, die entlang der Java-Tiefseerinne subduziert und eventuell dem Mantelkeil zugeführt werden. Auch die Tatsache, daß die Sundabogenvulkanite durchweg geringe bis nicht nachweisbare ¹⁰Be-Konzentrationen aufweisen (Tera et al., 1986; Edwards et al., 1993), kann nicht als Argument gegen die Rezyklierung subduzierter Sedimente am Merapi aufgeführt werden, da es bei der momentanen Geometrie der abtauchenden Platte und einer angenommenen Subduktionsgeschwindigkeit von 6 cm/Jahr (Hamilton, 1979) knapp 6 Millionen Jahre dauern würde, bis die subduzierten Sedimente eine Tiefe von ca. 180 km unterhalb des Merapi erreichen, und ¹⁰Be damit aufgrund der generell geringen Konzentrationen und kurzen Halbwertszeit von 1.5 x 10⁶ Jahren (Yiou & Raisbeck, 1972) kaum mehr nachgewiesen werden kann.

In Abb. 8.14 sind Mischungskurven zwischen einer durchschnittlichen MORB-Mantel-Zusammensetzung und ausgewählten Zusammensetzungen oberkretazischer Tiefseetone des Indischen Ozeans (Gasparon & Varne, 1998) in einem Diagramm von ¹⁴³Nd/¹⁴⁴Nd gegen ²⁰⁶Pb/²⁰⁴Pb dargestellt. Die Ergebnisse zeigen, daß die Merapigesteine, wie auch die übrigen Vulkanite von Java, entlang möglicher Mischungskurven zwischen einer MORB-Quelle und bestimmten Sedimentkompositionen fallen. Darüber hinaus illustrieren die Mischungsberechnungen, daß lediglich geringe Sedimentanteile von 2 % in der "Mantel-Sediment-Mischung" notwendig sind, um die ²⁰⁶Pb/²⁰⁴Pb- bzw. ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse der Merapimagmen zu erzeugen, und ein geringfügig höherer Sedimentanteil in der Mantelquelle ausreicht, um die Magmen der High-K-Serie zu generieren. Dieses Resultat ist konsistent mit den generell höheren ⁸⁷Sr/⁸⁶Sr- und niedrigeren ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen in den Gesteinen der High-K-Serie relativ zu denen der Medium-K-Serie (Abb. 8.6, 8.7), die ebenfalls auf eine etwas höhere Sedimentkomponente in der Quelle der High-K-Magmen hindeuten.

Zuletzt soll noch einmal auf die Sauerstoffisotopenverhältnisse der Merapivulkanite eingegangen werden, deren niedrige Werte entscheidend sind für die Interpretation, daß die Krustenkomponente in den Merapimagmen – charakterisiert durch hohe ⁸⁷Sr/⁸⁶Sr- und Pb-Isotopenverhältnisse und niedrige ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse – im wesentlichen durch den subduktionsbedingten Eintrag von Sedimenten in den Mantelkeil oberhalb der subduzierten Platte vor der Magmenbildung und nicht durch die Assimilation von Krustenmaterial während des Aufstiegs der Magmen verursacht wird. Wie in Abb. 8.14 gezeigt wurde, können bereits geringe Sedimentmengen zu erheblichen Veränderungen der Sr-, Nd- und Pb-Isotopenverhältnisse in der Mantelquelle führen, während sich ein solcher Prozeß, aufgrund der ähnlichen Sauerstoffkonzentrationen in den beiden Komponenten, nur unwesentlich auf die Sauerstoffisotopenverhältnisse in der Quelle auswirkt (James, 1981). Die im Vergleich zu den MOR-Basalten des Indischen Ozeans hohen ⁸⁷Sr/⁸⁶Sr- und ähnlichen magmatischen ¹⁸O-Verhältnisse der Merapivulkanite untermauern damit die zuvor aufgestellte Hypothese der Quellenkontamination durch subduzierte Sedimente.

Abb. 8.14. ¹⁴³Nd/¹⁴⁴Nd *vs.* ²⁰⁶Pb/²⁰⁴Pb der Gesteine der Medium-K- und High-K-Serie des Merapi mit repräsentativen Feldern für MOR-Basalte des Indischen Ozeans, vulkanische Gesteine von Java (exklusive Merapi) und Sedimente des Indischen Ozeans. Zusätzlich dargestellt sind Mischungskurven zwischen einer durchschnittlichen Zusammensetzung des MORB-Mantels und typischen Sedimentzusammensetzungen des Indischen Ozeans. Die Zahlen entlang der Mischungskurven entsprechen dem prozentualen Sedimentanteil in der Mischung. Datenquellen wie in Abb. 8.13.

Grundlagen der Mischungsberechnungen: MORB-Mantel: Pb = 0.03 ppm, Nd = 0.73 ppm (beide 0.1 x N-MORB von Sun & McDonough, 1989), ${}^{206}Pb/{}^{204}Pb = 17.966$, ${}^{143}Nd/{}^{144}Nd = 0.513075$; Sediment-A: Pb = 18 ppm, Nd = 51.9 ppm, ${}^{206}Pb/{}^{204}Pb = 18.772$, ${}^{143}Nd/{}^{144}Nd = 0.512228$; Sediment-B: Pb = 20 ppm, Nd = 30.6 ppm, ${}^{206}Pb/{}^{204}Pb = 18.891$, ${}^{143}Nd/{}^{144}Nd = 0.512115$.

Abb. 8.15. ¹⁸O *vs.* ⁸⁷Sr/⁸⁶Sr der Gesteine der Medium-K- und High-K-Serie des Merapi, MOR-Basalte des Indischen Ozeans, Ozeaninselbasalte, Krustengesteine von Java und Sedimente des Indischen Ozeans.

Man beachte das im Vergleich zu den ¹⁸O-Werten der karbonathaltigen Sedimentproben niedrige ¹⁸O-Verhältnis der xenolithischen Kalksilikatprobe, das darauf hindeutet, daß deren

¹⁸O-Verhältnis durch Isotopenaustausch mit den Merapimagmen deutlich verringert wurde und damit nicht mehr das ursprüngliche Sauerstoffisotopenverhältnis anzeigt.

Zusätzlich dargestellt ist eine typische Mischungskurve zwischen einer durchschnittlichen Zusammensetzung des MORB-Mantels und Sedimenten des Indischen Ozeans. Die Zahlen entlang der Mischungskurve entsprechen dem prozentualen Sedimentanteil in der Mischung. Die horizontale Linie bei ¹⁸O = +7.0 ‰ (SMOW) markiert die angenommene Obergrenze der magmatischen ¹⁸O-Verhältnisse der Merapivulkanite (Abb. 8.3, 8.4).

Datenquellen: MORB Indischer Ozean (Ito et al., 1987); OIB: ⁸⁷Sr/⁸⁶Sr-Variation wie in Abb. 8.6; ¹⁸O-Variation (Harmon & Hoefs, 1995).

Grundlagen der Mischungsberechnungen: MORB-Mantel: Sr = 9 ppm (0.1 x N-MORB von Sun & McDonough, 1989), 87 Sr/ 86 Sr = 0.702991, 18 O = +5.75 ‰ (SMOW); Sediment-A: Sr = 126 ppm, 87 Sr/ 86 Sr = 0.71643, 18 O (angenommer Wert) = +16 ‰ (SMOW).

In Abb. 8.15 ist ein Ausschnitt einer typischen Mischungskurve zwischen einer durchschnittlichen MORB-Mantel-Zusammensetzung und einem oberkretazischen Tiefseeton (Sediment-A in Abb. 8.14) des Indischen Ozeans (Gasparon & Varne, 1998) in einem Diagramm von ¹⁸O gegen ⁸⁷Sr/⁸⁶Sr dargestellt. Wie in Abb. 8.14 bereits für die ²⁰⁶Pb/²⁰⁴Pb- und ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse gezeigt wurde, reicht ein Anteil von ca. 1-2 % Sediment aus, um die ⁸⁷Sr/⁸⁶Sr-Verhältnisse der Mantelquelle so zu erhöhen, daß sie für den Merapi typische Werte erreichen. Darüber hinaus ist ersichtlich, daß die unterschiedlichen Sr-Isotopenverhältnisse in der High-K- und Medium-K-Serie ebenfalls durch eine etwas stärker "angereicherte" Quelle im Falle der High-K-Serie erklärt werden können.

Allerdings verdeutlichen die Mischungsberechnungen in Abb. 8.15 auch, daß die magmatischen Sauerstoffisotopenverhältnisse der Merapivulkanite (ca. +6.0 bis +7.0 ‰ (SMOW)) leicht oberhalb der Mischungskurve liegen und somit etwas höhere Werte aufweisen, als durch die Mischung zwischen MORB-Mantel und Sediment vorhergesagt werden. Diese leichte Erhöhung der ¹⁸O-Verhältnisse der Merapivulkanite relativ zu einer möglichen "Mantel-Sediment-Mischung" sowie typischen MORB-Werten könnte auf eine gewisse Kontamination in der Kruste hindeuten, welche die ¹⁸O-Verhältnisse der primären Ausgangsmagmen der beiden K-Serien geringfügig beeinflußt.

Zusammenfassung und Schlußfolgerungen

Die in diesem Kapitel präsentierten neuen Sr-, Nd-, Pb- und O-Isotopendaten stellen eine erste detaillierte isotopengeochemische Untersuchung der Laven und Pyroklastite des Merapi dar und liefern fundamentale Hinweise zur Genese und Evolution der Merapimagmen als Beispiel für die Petrogenese kalkalkalischer und high-K-kalkalkalischer Inselbogenserien.

➢ Die Variationen in den Sr-, Nd- und Pb-Isotopenverhältnissen der Merapivulkanite sind konsistent mit der Beteiligung einer Krustenkomponente in der Genese der Merapimagmen. Insbesondere sind dies (1) die negative Korrelation zwischen den ⁸⁷Sr/⁸⁶Sr- und ¹⁴³Nd/¹⁴⁴Nd-Verhältnissen parallel zur Mantellinie und deren Verschiebung weg vom MORB-Feld in Richtung typischer Krustenzusammensetzungen und (2) die radiogenen Pb-Isotopenzusammensetzungen, die außerhalb typischer MORB-Werte und im Bereich der Sedimente des Indischen Ozeans liegen.

Die Sauerstoffisotopenverhältnisse der Gesamtgesteinsproben variieren von +6.0 bis +8.3 % relativ zu SMOW. Die starke positive Korrelation zwischen ¹⁸O und LOI und die im allgemeinen geringeren ¹⁸O-Verhältnisse der komagmatischen Plagioklasseparate deuten auf eine Erhöhung der Sauerstoffisotopenverhältnisse durch Niedrig-Temperatur-Alteration des vulkanischen Glases. Korrigierte Sauerstoffisotopenverhältnisse der Gesamtgesteinsproben und ¹⁸O-Werte der Plagioklase implizieren primäre ¹⁸O-Verhältnisse der Merapimagmen zwischen +6.0 und maximal +7.0 ‰ (SMOW) leicht oberhalb typischer Mantelwerte und begrenzen damit die Möglichkeit der Krustenkontamination während des Aufstiegs der Merapimagmen. Gleichzeitig belegt das Fehlen systematischer Variationen der Isotopenver➢ Die niedrigen ¹⁸O-Verhältnisse der Merapivulkanite in Kombination mit den niedrigen ¹⁴³Nd/¹⁴⁴Nd- bzw. hohen ⁸⁷Sr/⁸⁶Sr- und Pb-Isotopenverhältnissen deuten vielmehr darauf hin, daß die Krustenkomponente in den Merapimagmen im wesentlichen durch den subduktionsbedingten Eintrag von Sedimenten des Indischen Ozeans in den Mantelkeil oberhalb der subduzierten Platte vor der Magmenbildung und nicht durch die Assimilation von Krustenmaterial während des Aufstiegs der Magmen verursacht wird. Mischungsberechnungen zeigen, daß bereits weniger als 2 % Sedimentanteil in der "Mantel-Sediment-Mischung" ausreichen, um die radiogenen Isotopenzusammensetzungen der Merapivulkanite zu erklären.

Im Vergleich zur Medium-K-Serie sind die Gesteine der High-K-Serie durch höhere ⁸⁷Sr/⁸⁶Sr- bzw. niedrigere ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse gekennzeichnet, während sich die Sauerstoffisotopenverhältnisse in den beiden Serien nicht unterscheiden. Letztere Beobachtung belegt, daß die isotopischen Unterschiede zwischen den Gesteinen der Medium-K- und High-K-Serie nicht durch unterschiedliche Grade der Krustenkontamination in einem oberflächennahen Krustenniveau verursacht sein können, da ein solcher Prozeß zu einer deutlichen Veränderung der Sauerstoffisotopenverhältnisse führen würde, sondern vielmehr auf eine stärker "angereicherte" Mantelquelle im Falle der High-K-Serie zurückgeführt werden können. Diese Interpretation ist konsistent mit den geochemischen Unterschieden zwischen den beiden magmatischen Serien (Kapitel 7) und den durchgeführten Mischungsberechnungen, die zeigen, daß bereits ein geringfügig höherer Sedimentanteil in der Mantelquelle ausreicht, um die Magmen der High-K-Serie zu generieren.

Kapitel 9

Die geochemische Entwicklung des Merapi während der letzten 2000 Jahre

Klassische Variationsdiagramme verschiedener Haupt- und Spurenelemente ohne eine genaue stratigraphische Zuordnung der dargestellten Proben, erlauben lediglich eine allgemeine Abschätzung der Prozesse, die die beobachteten geochemischen Variationen verursacht und die Zusammensetzungen der Magmen beeinflußt haben könnten. Die auf diese Weise dargestellten geochemischen Variationen, von z.B. einem initialen basaltischen Magma zu einem resultierenden andesitischen Magma, überdecken jegliche Art irregulärer oder zyklischer Variationen innerhalb einer stratigraphischen Abfolge oder Eruptionssequenz.

Variationen in der geochemischen Zusammensetzung von Magmen können über unterschiedlich lange Zeitintervalle erfolgen (Newhall, 1979; Gill, 1981).

"Kurzzeitige geochemische Variationen" können z.B. innerhalb einer Eruption oder eines Eruptionszyklus auftreten. Mögliche Ursachen hierfür sind Zonierungen oder Inhomogenitäten in einem Magmareservoir kurz vor der Eruption oder Differentiationsprozesse, die während einer Eruption stattfinden.

"Mittelfristige geochemische Variationen" sind solche, die innerhalb einer Sequenz von Laven oder Pyroklastiten auftreten, die in einem Zeitraum von mehreren Jahren bis mehreren tausend Jahren gefördert wurden. Variationen dieser Art können auf eine Reihe von Prozessen, wie fraktionierte Kristallisation, Magmenmischungen, Assimilation von Krustenmaterial oder eine Kombination dieser Prozesse, zurückgeführt werden. Eine häufige Beobachtung innerhalb solcher Eruptionssequenzen ist eine generelle Zunahme des Differentiationsgrades der Förderprodukte mit der Zeit (z.B. Katsui et al., 1975; Rose et al., 1977; White & McBirney, 1979; Luhr & Carmichael, 1980; Martin & Rose, 1981), auch wenn periodisch eine Umkehrung dieser allgemeinen Entwicklung auftreten kann. Im allgemeinen werden diese geochemischen Variationen durch die fortschreitende Differentiation eines Magmas infolge fraktionierter Kristallisation erklärt, die in einigen Fällen von Magmenmischungsprozessen überlagert werden können.

"Langfristige geochemische Variationen" sind Variationen, die über die Gesamtentwicklung eines Vulkankomplexes erfolgen. Mögliche Ursachen hierfür sind Veränderungen der physikalischen Bedingungen bei der Magmengenese oder Unterschiede in der Zusammensetzung der Magmenquelle(n). Am Merapi können die geochemischen Unterschiede zwischen dem Proto-
Merapi-Stadium und den jüngeren Entwicklungsstadien des Vulkans sowie der Übergang von der Medium-K- zur High-K-Serie vor ca. 1800-1900 Jahren (Gertisser & Keller, 2000c) im Sinne solcher langfristigen Variationen interpretiert werden.

In diesem Kapitel werden die zeitlichen geochemischen Variationen innerhalb der High-K-Serie des Merapi (< 2000 Jahre) beschrieben und ein Modell zur Entstehung dieser Variationen aus der Dynamik der Magmenentwicklung vorgeschlagen. Per Definition handelt es sich um Variationen mittlerer Zeitdauer innerhalb einer Sequenz pyroklastischer Ablagerungen des Merapi. Die nahezu kontinuierliche Eruptionstätigkeit während des betrachteten Zeitraums und deren detaillierte Dokumentation (Kapitel 4) liefert eine außergewöhnliche und seltene Möglichkeit zur Rekonstruktion der zeitlichen geochemischen Variationen in der magmatischen Entwicklung eines aktiven Andesitvulkans. Darüber hinaus geben die vorhandenen Radiokarbondatierungen einen Hinweis auf die Zeitdauer der beobachteten geochemischen Veränderungen und ursächlichen magmatischen Prozesse im subvulkanischen Magmasystem des Vulkans.

Die Eruptionstätigkeit des Merapi während der letzten 2000 Jahre

Die Stratigraphie der mittel- bis spätholozänen pyroklastischen Abfolgen des Merapi (Kapitel 4) deutet auf eine starke und nahezu kontinuierliche Eruptionstätigkeit des Vulkans während der letzten 2000 Jahre. Viele dieser Eruptionen sind mit pyroklastischen Strömen assoziiert, die zum Teil auf gravitative Domkollapsereignisse zurückgeführt werden können, häufiger jedoch mit explosiven Phasen und dem Kollaps meist niedriger Eruptionssäulen in Zusammenhang stehen (Kapitel 3). Der überwiegende Teil dieser pyroklastischen Ströme breitete sich in südlicher, westlicher oder nördlicher Richtung aus und hinterließ mächtige Ablagerungen talfüllender pyroklastischer Ströme in den tiefen Erosionsrinnen der genannten Sektoren. Viele dieser Ablagerungen enthalten organische Substanz, die eine direkte Datierung des entsprechenden Eruptionsereignisses ermöglicht.

In Abb. 9.1 sind sämtliche Radiokarbonalter < 2000 Jahre, die im Rahmen dieser Arbeit ermittelt wurden, in chronologischer Reihenfolge dargestellt. Insgesamt fallen knapp 90 % der durchgeführten Datierungen in diesen sehr jungen Bereich (Abb. 4.43). Von den dargestellten Radiokarbonaltern entfallen wiederum ca. 90 % auf pyroklastische Ströme und damit assoziierte Ablagerungen. Die verbleibenden Proben stammen aus Paläobodenhorizonten, fluviatilen Lagen oder Ablagerungen vulkanischer Schlammströme, die in die primären pyroklastischen Ablagerungen eingeschaltet sind (Tab. A2.1). Die vorhandenen Radiokarbondatierungen dokumentieren damit ca. 70 Eruptionen des Merapi während der vergangenen 2000 Jahre, die mit pyroklastischen Strömen assoziiert sind. Es erübrigt sich fast zu sagen, daß diese Zahl ein absolutes Minimum der explosiven Eruptionen des Vulkans während dieses Zeitraums darstellt.

Proben in chronologischer Reihenfolge

Abb. 9.1. Radiokarbondatierungen (< 2000 Jahre v.h.) des Merapi in chronologischer Reihenfolge. Man beachte den Übergang von der Medium-K- zur High-K-Serie vor ca. 1800-1900 Jahren.

Insgesamt belegt Abb. 9.1 eine starke und nahezu kontinuierliche Eruptionstätigkeit des Merapi während der vergangenen 2000 Jahre. Phasen reduzierter vulkanischer Aktivität oder sogar Unterbrechungen dieser fast lückenlosen Tätigkeit treten, abgesehen von einem sehr jungen Bereich vor ca. 200 Jahren, lediglich zwischen ca. 550 und 700 ¹⁴C-Jahren v.h. und – vielleicht deutlicher erkennbar – zwischen 1150 und 1300 ¹⁴C-Jahren v.h. auf.

Es stellt sich die Frage, ob es sich bei diesen Episoden um tatsächliche Ruhephasen bzw. Phasen geringerer vulkanischer Tätigkeit oder lediglich um einen Effekt unvollständiger Probennahme handelt. Für den Zeitraum zwischen ca. 550 und 700 ¹⁴C-Jahren v.h. konnte ein Eruptionsereignis direkt datiert werden. Ob weitere, nicht datierte Ablagerungen explosiver Eruptionen aus den stratigraphischen Sektionen (Kapitel 4) in dieses Zeitintervall fallen, kann zum jetzigen Zeitpunkt nicht verifiziert werden. Für den Zeitraum zwischen 1150 und 1300 ¹⁴C-Jahren v.h. scheint es bemerkenswert, daß lediglich eines der veröffentlichten Radio-karbonalter von Andreastuti et al. (2000), Camus et al. (2000) und Newhall et al. (2000) in diesen Zeitraum fällt.

Zusammenfassend deuten die Ergebnisse der stratigraphischen und chronologischen Untersuchungen damit auf eine nahezu kontinuierliche Eruptionstätigkeit des Merapi während der vergangenen 2000 Jahre hin. Dabei scheinen länger andauernde Phasen gesteigerter und weitestgehend kontinuierlicher Tätigkeit mit relativ kurzen Episoden zwischen ca. 550-700 und 1150-1300 ¹⁴C-Jahren v.h. mit deutlich reduzierter vulkanischer Aktivität und geringerer Eruptionshäufigkeit zu wechseln.

Geochemische Variationen

Die in diesem Kapitel beschriebenen zeitlichen geochemischen Variationen innerhalb der High-K-Serie des Merapi beruhen ausschließlich auf der geochemischen Zusammensetzung direkt datierter primärer pyroklastischer Ablagerungen, wie in Abb. 9.1 dargestellt.

In Abb. 9.2 sind die Konzentrationen ausgewählter Haupt- und Spurenelemente der High-K-Magmen des Merapi als Funktion der Zeit dargestellt. Zyklische Variationen lassen sich im SiO₂-Gehalt und weiteren Haupt- und Spurenelementkonzentrationen erkennen.

Bevor auf eine Interpretation dieser Zyklen eingegangen wird, soll zunächst gezeigt werden, daß die beobachteten Variationen real sind und nicht durch andere Effekte verursacht oder entscheidend beeinflußt sind. Viele der pyroklastischen Ströme am Merapi beinhalten z.B. Anteile lithischer Komponenten in Form von Fragmenten älterer Lavadome oder älterer Vulkanite, die während des Transportvorgangs aufgenommen wurden ("accidental lithics"). Bei den klassischen Domkollaps-Nuées ardentes können diese die Unterscheidung von dichten juvenilen Komponenten ("cognate lithics") erschweren und zu statistischen Fehlern bei der Probennahme führen. Dies erfordert eine besonders sorgfältige Probennahme bei diesem Typ pyroklastischer Ströme, die sich vor allem an den vorherrschenden Lithologien und *in-situ* fragmentierten Blöcken mit säuligen Abkühlungsklüften orientieren kann. Diesbezüglich weniger problematisch sind die Ablagerungen von Fontänenkollaps-Nuées ardentes, die durch schlackige oder bimsartige juvenile Komponenten des eruptierenden Magmas gekennzeichnet sind.

Ein eventuell größeres Probem stellen mögliche geochemische Variationen innerhalb eines Eruptionsereignisses dar. Wie bereits erwähnt können kurzzeitige Variationen während eines Eruptionszyklus zu geochemischen Inhomogenitäten innerhalb einzelner Ablagerungen führen. Am Merapi scheinen Variationen dieser Art allerdings nur eine geringe Bedeutung zu haben. So dokumentieren Bardintzeff (1984), Berthommier (1990) und Hammer et al. (2000) nur geringfügige Variationen innerhalb rezenter Eruptionszyklen bzw. Lavadomstadien. Mögliche Inhomogenitäten innerhalb älterer Ablagerungen wurden durch die geochemische Analyse mehrerer Proben aus einer Ablagerung getestet.

0

Abb. 9.2. Variationen ausgewählter Haupt- und Spurenelemente der High-K-Magmen des Merapi als Funktion der Zeit. Kompositionelle Trends von intermediären zu basischen Magmenzusammensetzungen innerhalb magmatischer Zyklen (gestrichelte Linien) sind schematisch im SiO₂-Diagramm eingetragen. Weitere Erläuterungen im Text.

Abb. 9.2. (Fortsetzung).

So wurde beispielsweise durch die Analyse verschiedener Proben (M96-091, M97-068, M97-068D, M98-026) aus einem pyroklastischen Strom des 20. Jahrhunderts (? 1930/1969) eine nur geringe Variation im SiO₂-Gehalt zwischen 51.6 und 51.9 Gew.% (normiert, H_2O -frei)

festgestellt. Ähnlich geringe geochemische Variationen, die in vielen Fällen im Bereich der analytischen Unsicherheit liegen, wurden in einer Reihe weiterer Ablagerungen dokumentiert (Tab. A3.1, A4.1). Folglich sollten die geochemischen Variationen innerhalb einer Ablagerung die beobachteten zyklischen Trends nicht signifikant beeinflussen.

Der Einsprenglingsgehalt einer Probe und die Akkumulation von Mineralphasen könnten ebenso das Ergebnis der Gesamtgesteinsanalytik und damit die beobachteten zeitlichen Variationen beeinflussen. Die Akkumulation von Einsprenglingsphasen ist sicherlich mitentscheidend für die beobachtete Streuung bei verschiedenen Haupt- und Spurenelementen in den geochemischen Variationsdiagrammen (Kapitel 7). Nichtsdestoweniger reflektieren die Unterschiede im SiO₂-Gehalt der Gesamtgesteinsproben letztendlich Unterschiede im Differentiationsgrad der jeweiligen Probe. Dies wird bei der Betrachtung der geochemischen Zusammensetzungen der entsprechenden Matrix- oder Grundmassengläser offensichtlich, die systematisch mit der Gesamtgesteinszusammensetzung variieren (Kapitel 11).

Zusammenfassend läßt sich somit festhalten, daß die beobachteten zyklischen Variationen innerhalb der High-K-Serie des Merapi signifikant sind und letztendlich magmatischen Ursprungs sein müssen.

Bei den Hauptelementen lassen sich systematische zyklische Variationen für SiO₂, TiO₂, Fe₂O₃*, MgO, CaO, Na₂O, und K₂O erkennen (Abb. 9.2). Weniger eindeutig sind Variationen im Al₂O₃-Gehalt (nicht dargestellt). Die SiO₂-Gehalte reichen von ca. 52.8 bis 56.1 Gew.% und umfassen damit den gesamten Variationsbereich der jüngeren Merapiprodukte.

Insgesamt lassen sich drei Zyklen unterscheiden, die jeweils durch abnehmende SiO₂-Gehalte gekennzeichnet sind. Perioden, in denen der Differentiationsgrad der Förderprodukte zunimmt, sind ebenfalls zu beobachten. Diese sind auf die Zeiträume reduzierter vulkanischer Aktivität zwischen den magmatischen Zyklen beschränkt (Abb. 9.1). Die übrigen Hauptelemente korrelieren positiv (Na₂O, K₂O) oder negativ (TiO₂, Fe₂O₃*, MgO, CaO) mit dem SiO₂-Gehalt.

Die Spurenelementkonzentrationen (Abb. 9.2) zeigen die gleichen zyklischen Variationen wie die Hauptelemente. Obwohl die Streuung der Daten aufgrund der analytischen Ungenauigkeit für bestimmte Elemente sowie des porphyrischen Charakters der Proben im allgemeinen größer ist als bei den Hauptelementen, lassen sich insgesamt ähnliche Trends wie bei den Hauptelementen beobachten. Die Variationen inkompatibler Spurenelemente (Rb, Ba, Zr) mit SiO₂ gleichen denen der Alkalien, während kompatible Spurenelemente (V, Co) ähnliche Trends wie TiO₂, Fe₂O₃*, MgO und CaO definieren. Systematische Variationen im Sr-Gehalt (nicht dargestellt) sind weniger offensichtlich und, wenn überhaupt, lediglich im ersten Zyklus zu vermuten.

Die beobachteten Gesamtvariationen der Spurenelementkonzentrationen sind, wie bei den Hauptelementen, in jedem der drei Zyklen ähnlich. Eine Zunahme der Gehalte inkompatibler Spurenelemente mit der stratigraphischen Höhe in Gesteinen mit ähnlichem Differentiationsgrad ist nicht zu beobachten.

Ein Modell zur Entstehung der zyklischen geochemischen Variationen innerhalb der Merapi-High-K-Serie

In den vorangegangenen Abschnitten wurde gezeigt, daß die geochemische Entwicklung des Merapi während der vergangenen 2000 Jahre durch die Förderung von High-K-Magmen sowie systematische zyklische Variationen gekennzeichnet ist.

Tab. 9.1. Stratigraphische Sequenz durch die datierten, prähistorischen pyroklastischen Ablagerungen des Merapi während der letzten 2000 Jahre. SiO₂ (Gew.%) entstammt den normierten, H₂O-freien Gesamtgesteinsanalysen.

Gesteinsprobe	¹⁴ C-Probe	Zyklus	Konv. ¹⁴	C-A	lter	SiO ₂ (Gew.%)
M97-045	M97-044	III	232	±	17	52.87
M97-075	M97-074	III	234	±	27	52.52
M98-021	M98-020	III	253	±	32	53.35
M97-067	M97-066	III	292	±	26	54.53
M96-067	M96-064	III	342	±	22	54.28
M97-034	M99-037	III	362	±	56	54.47
M98-094	M98-093	III	372	±	19	53.84
M96-018	M96-020	III	421	±	85	55.56
M99-016	M99-015	III	463	±	36	56.06
M99-0131	M99-012*	Inter-Zyklus- Aktivität	620	±	40	54.54
M98-059	M98-058	II	704	±	24	53.02
M98-096	M98-0952	II	735	±	20	53.65
M98-066	M98-065	II	762	±	26	52.95
M97-036	M97-035	II	780	±	23	54.32
M99-019	M99-018	II	880	±	32	54.01
M97-047	M97-046	II	883	±	24	54.85
M96-097	M96-0941	II	952	±	52	54.28
M96-167	M96-100	II	989	±	51	54.51
M97-031	M97-026	II	1146	±	20	56.12
	? Inte	r-Zyklus-Aktivit	ät			
M97-021	M97-020	Ι	1324	±	23	52.81
M97-0392	M97-973	Ι	1532	±	25	53.12
M98-050	M98-0492	Ι	1590	±	40	54.13
M98-006	M97-070	Ι	1614	±	36	53.89
M97-019	M97-018	Ι	1634	±	23	54.78
M96-134	M96-772	Ι	1643	±	55	54.34
M99-251	M99-024	Ι	1739	±	25	54.26
M97-009	M97-007	Ι	1772	±	21	55.72
M97-014	M97-013	Ι	1905	±	110	56.09

*eine zweite Probe (M98-0152) ergab ein C-14-Alter von 625 ± 55 Jahre v.h.

In Kapitel 7 und 8 wurden die allgemeinen geochemischen Variationen innerhalb der zwei am Merapi auftretenden magmatischen Serien im wesentlichen auf fraktionierte Kristallisation und Magmenmischungsprozesse zurückgeführt und eine wesentliche Rolle der Assimilation von Krustenmaterial in der Entwicklung der Merapimagmen ausgeschlossen. Es kann daher davon ausgegangen werden, daß die fraktionierte Kristallisation und Magmenmischungen die entscheidenden Prozesse sind, welche die beobachteten zyklischen Variationen der Förderprodukte der vergangenen 2000 Jahre verursacht haben. Ein weiterer wichtiger Faktor scheint die Eruptionsrate zu sein, die indirekt mit beiden Prozessen in Verbindung steht.

Abb. 9.3. Modell zur Entstehung der zyklischen geochemischen Variationen der vergangenen 2000 Jahre innerhalb der High-K-Serie aus der Dynamik der Magmenentwicklung und den zugrunde liegenden Prozessen im Magmasystem des Merapi. Die geochemischen Variationen der rezenten Tätigkeit seit 1883 sind in Abb. 9.5 dargestellt. Weiterführende Erklärungen finden sich im Text. *FC* fraktionierte Kristallisation; *T* Tapping; *M* Mixing.

Prinzipiell muß ein geeignetes Modell für die Entstehung der beobachteten geochemischen Variationen in der Lage sein, (1) die Entstehung hochdifferenzierter Magmen in Zeiten vergleichsweise geringer vulkanischer Tätigkeit (Inter-Zyklus-Aktivität) und (2) die Förderung kontinuierlich SiO₂-ärmerer Magmen in Perioden hoher vulkanischer Aktivität (Intra-Zyklus-Aktivität) zu erklären (Tab. 9.1).

In Abb. 9.3 sind die beobachteten zyklischen Variationen schematisch für das Verhalten inkompatibler Elemente (z.B. SiO_2) dargestellt und die möglichen magmatischen Prozesse, die zu den beobachteten geochemischen Variationen geführt haben könnten, aufgeführt.

Die ersten geförderten Magmen der High-K-Serie weisen einen hohen Differentiationsgrad auf und leiten einen ersten magmatischen Zyklus ein, der durch die Förderung schrittweise SiO₂ärmerer Zusammensetzungen gekennzeichnet ist. Dies impliziert, daß die geochemischen Variationen des ersten Zyklus aus einem Magmareservoir entstanden sind, das für einen längeren Zeitraum inaktiv war und dadurch die Differentiation von basaltischen zu basaltandesitischen Magmen ermöglichte. Ein ähnliches Szenarium zeigt sich für die darauffolgenden Zyklen, die ebenfalls nach einer Phase offensichtlich reduzierter vulkanischer Aktivität mit der Eruption hochdifferenzierter Magmen beginnen.

Tab. 9.2. Fraktionierungsmodelle für die Hauptelementoxide. *F* Residuale Schmelzfraktion; ΣR^2 Summe der quadratischen Abweichungen der einzelnen Hauptelementoxide zwischen der beobachteten und berechneten Zusammensetzung des Tochtermagmas. Die für die Berechnungen verwendeten Mineralzusammensetzungen entsprechen den durchschnittlichen Zusammensetzungen im jeweiligen Stamm-Magma. Amphibol wurde nicht berücksichtigt.

	Fraktionierungsschritt			Subtrahierte Mineralphasen					F	$\sum \mathbf{R}^2$
				plag	opx	cpx	ti-mt	ap		
Zyklus I	Zyklus II	M97-021	M97-031	4.5	0.8	3.2	1.3	0.2	0.900	0.095
Zyklus II	Zyklus III	M98-059	M99-016	5.6	1.3	1.8	1.2	0.2	0.899	0.065

Tab. 9.3. Rayleigh-Fraktionierungsmodelle für ausgewählte Spurenelemente (Verteilungskoeffizienten Mineral-Schmelze von Gill (1981)).

	Fraktionier	Differenz zw. beobachteter und berechneter Elementkonzentration im Tochtermagma							
				Rb	Ba	Sr	Zr	V	Co
Zyklus I	Zyklus II	M97-021	M97-031	-4	31	69	1	60	3
Zyklus II	Zyklus III	M98-059	M99-016	-2	19	40	-4	71	2

Es wurde bereits angedeutet, daß die fraktionierte Kristallisation einer der wichtigsten Prozesse in der Entwicklung der Merapimagmen darstellt. Diese Hypothese wurde mit Hilfe von konventionellen Massenbilanzberechnungen für die Hauptelementoxide und einfachen Rayleigh-Fraktionierungsmodellen für die Entwicklung ausgewählter Spurenelemente getestet. Die Ergebnisse der Haupt- und Spurenelementmodellierungen für die Differentiation der terminalen Basalte eines früheren Zyklus zu den initialen basaltischen Andesiten des darauffolgenden Zyklus sind in den Tabellen 9.2 und 9.3 aufgeführt. Die Ergebnisse der Hauptelementmodellierungen (Tab. 9.2) zeigen, daß die beobachteten Elementvariationen zwischen den basischen und höher differenzierten Merapimagmen prinzipiell durch die fraktionierte Kristallisation von Plagioklas, Klinopyroxen, Orthopyroxen, Titanomagnetit und untergeordnet Apatit erklärbar sind, und die Entfernung von ca. 10 % Kumulaten (plag > cpx > opx, mt > ap) von einem basischen Stamm-Magma ungefähr 90 % residuale Schmelze basaltandesitischer Zusammensetzung produzieren kann.

Die Spurenelementberechnungen (Tab. 9.3) zeigen je nach Element etwas abweichende Konzentrationen zwischen der beobachteten und berechneten Zusammensetzung des Tochtermagmas, stimmen jedoch im großen und ganzen mit den Hauptelementmodellen überein. Die vorhergesagte fraktionierende Mineralvergesellschaftung steht im Einklang mit dem modalen Mineralbestand der Merapivulkanite und der Dominanz von Plagioklas und Klinopyroxen in den Merapigesteinen.

Das Modell liefert damit einen weiteren Anhaltspunkt für die Differentiation der Merapimagmen durch die fraktionierte Kristallisation als einen der wesentlichen Prozesse. Einer der überzeugendsten Beweise für die fortschreitende Differentiation der Merapimagmen durch die fraktionierte Kristallisation liefert jedoch die Förderung intermediärer Magmen in Perioden anscheinend geringer vulkanischer Aktivität zwischen den magmatischen Zyklen (Abb. 9.1, 9.2; Tab. 9.1).

Insgesamt scheint also eine Kombination aus geringen Eruptionsraten und ausbleibenden Intrusionen basischer Magmen aus tieferen Bereichen, die Differentiation der in der Magmakammer befindlichen Magmen in Phasen reduzierter vulkanischer Aktivität zu ermöglichen und zu einer thermischen und chemischen Zonierung innerhalb des Magmareservoirs zu führen (z.B. Rice, 1981; Sparks et al., 1984).

Intrusionen basischer Magmen aus tieferen Bereichen in das vorhandene Magmareservoir könnten die Eruption hochdifferenzierter Magmen im Anschluß an eine längere Ruhephase auslösen (z.B. Huppert & Sparks, 1980) und den Beginn eines neuen magmatischen Zyklus einleiten. Die Förderung schrittweise SiO₂-ärmerer Magmen im Verlauf eines magmatischen Zyklus reflektiert die chemische Zonierung in der Magmakammer, die vor dem jeweiligen Eruptionszyklus durch Fraktionierungsprozesse in einer Phase reduzierter vulkanischer Aktivität entstanden ist. Dieser Vorgang erfordert eine hohe Eruptionsrate, um die thermischen Gradienten in der Magmakammer, die für die beobachteten geochemischen Variationsmuster erforderlich sind, zu erhalten. Einsetzende Mischungsprozesse zwischen einströmenden basischen und differenzierten Magmen in der Magmakammer können ebenso zur geochemischen Variation beitragen. Basische Magmen, deren Förderung zu Beginn durch die Existenz differenzierter Magmen im oberen Bereich der Magmakammer verhindert wird, können gegen Ende eines Zyklus eruptiert werden.

Proben in chronologischer Reihenfolge

Abb. 9.4. Radiokarbondatierungen und zyklische Aktivität des Merapi während der letzten 2000 Jahre.

Insgesamt scheint die Förderung zunehmend SiO₂-ärmerer Magmen im Verlauf eines magmatischen Zyklus demnach eine Kombination aus der Entleerung einer chemisch zonierten Magmakammer und möglichen Mischungsprozessen zwischen einströmenden basischen und höher differenzierten Magmen in der Magmakammer zu reflektieren.

Die Intrusion basischer Magmen in das vorhandene Magmareservoir könnte einen neuen Eruptionszyklus auslösen, zur "Wiederauffüllung" (replenishment) des Magmareservoirs beitragen und einen maßgeblichen Faktor darstellen, der die Zyklizität und Eruptionshäufigkeit des Merapi beeinflußt.

Das vorgeschlagene Modell für die vulkanologische und magmatische Entwicklung des Merapi während der vergangenen 2000 Jahre ist in Abb. 9.4 zusammengefaßt.

Der Übergang zur historischen und rezenten Ausbruchsperiode

Erste Berichte und Aufzeichnungen über Vulkanausbrüche, die eindeutig dem Merapi zugeordnet werden können, reichen bis in die Mitte des 16. Jahrhunderts zurück. Eine vollständigere Dokumentation der Eruptionstätigkeit des Vulkans existiert allerdings erst seit dem ausgehenden 18. und beginnenden 19. Jahrhundert (Kapitel 2). Trotz teilweise detaillierter Beschreibungen dieser Eruptionen ist es heute in vielen Fällen nicht mehr möglich, die Ablagerungen im Gelände einem bestimmten überlieferten Eruptionsereignis zuzuordnen.

Tab. 9.4. SiO₂-Gehalt (normiert, H₂O-frei) der Förderprodukte der rezenten Ausbruchsperiode des Merapi.

Jahr der Eruption	Herkunft der Probe	Anzahl der Proben	SiO ₂ -Gehalt (Gew.%)
1998	Pyr. Strom	2	55.3
1994	Pyr. Strom	3	55.4-55.8
1992	Lavadom / Lavastrom	1	55.6
1957	Lavadom / Lavastrom	1 (2 Analysen)	55.3-55.6
1954	Pyr. Strom	1	55.2
1930/1969 (?)	Pyr. Strom	3 (4 Analysen)	51.6-51.9
1904-1906	Lavadom / Lavastrom	1 (2 Analysen)	54.8-55.0
	Pyr. Strom (Kali Woro)	2	53.7-54.4
1883	Lavadom / Lavastrom	2	55.5-55.8
1822/1872 (?)	Pyr. Strom	2	52.1-52.7

Die in diesem Kapitel aufgezeigten zyklischen Variationen der datierten, prähistorischen Förderprodukte des Merapi umfassen einen Zeitraum zwischen 1905 ± 19 und 232 ± 17 Jahren v.h. (Tab. 9.1). Für das jüngste konventionelle Radiokarbonalter von 232 ± 17 Jahren v.h. ergibt sich, unter Berücksichtigung des 1 -Fehlerintervalls, ein kalibriertes Eruptionsalter zwischen 1655 und 1795 AD (Tab. A2.1). Ein markanter pyroklastischer Strom mit charakteristischen Brotkrustenkomponenten, der den gesamten Südhang des Merapi zwischen Kali Kuning und Kali Gendol bedeckt, könnte dann eines der folgenden Eruptionsereignisse darstellen. Die Ablagerungen dieses Stroms stellen die jüngsten pyroklastischen Stromablagerungen auf den topographischen Hochflächen des Südsektors dar (Abb. 4.5) und können aufgrund von historischen Beschreibungen mit den Eruptionsereignissen der Jahre 1822 oder 1872 korreliert werden (Newhall et al., 2000). Die geochemischen Analysen zweier Brotkrustenkomponenten (Proben M95-011; M98-1081) implizieren eine basische Zusammensetzung der juvenilen Komponente dieses pyroklastischen Stroms (52.1 bis 52.7 Gew.% SiO₂) (Tab. 9.4). Es wird daher angenommen, daß diese Eruption eine Fortsetzung und möglicherweise eines der terminalen Eruptionsereignisse des beschriebenen dritten magmatischen Zyklus (Abb. 9.1, 9.2; Tab. 9.1) darstellt.

Die weiterführende magmatische Entwicklung des Merapi seit dem ausgehenden 19. Jahrhundert wurde von Bahar (1984) und Berthommier (1990) untersucht. Die Ergebnisse wurden bereits in Kapitel 7 kurz beschrieben und sollen an dieser Stelle nicht noch einmal wiederholt werden. Es sei jedoch angemerkt, daß viele der Ablagerungen des 20. Jahrhunderts von den Autoren nicht berücksichtigt und kurzzeitige Variationen daher nicht aufgelöst werden konnten.

Ein detaillierteres Bild der magmatischen Entwicklung seit 1883 findet sich in den Arbeiten von Andreastuti (1999) und Andreastuti et al. (2000). Danach scheinen sich die allgemeinen Entwicklungstrends hin zu SiO₂-ärmeren Zusammensetzungen in Form magmatischer Zyklen fortzusetzen. Andreastuti (1999) und Andreastuti et al. (2000) berichten über eine Abnahme des SiO₂-Gehalts in den Zeiträumen von 1883 bis 1930, 1940 bis 1953 und möglicherweise zwischen 1984 und 1994 und postulieren magmatische Zyklen in der rezenten Eruptionsperiode des Merapi, die zwischen 10 und 100 Jahre andauern.

Abb. 9.5. Diagramm des SiO_2 -Gehalts (normiert, H_2O -frei) aufgetragen gegen das Ausbruchsjahr einiger der rezenten Förderprodukte des Merapi. Die Proben, die den Eruptionsereignissen des Jahres 1930 zugeordnet wurden, stammen von einem pyroklastischen Strom im SW-Sektor des Merapi, der durch das Auftreten von Brotkrustenkomponenten charakterisiert ist und aufgrund historischer Berichte mit der Eruption von 1969 in Zusammenhang stehen könnte (Newhall, pers. Mitteilung). Die Geochemie der untersuchten Proben erlaubt jedoch

auch eine Zuordnung zu den Eruptionsereignissen des Jahres 1930, deren Förderprodukte durch basische Zusammensetzungen gekennzeichnet sind (z.B. Andreastuti et al., 2000). Die in dieser Arbeit untersuchten Proben der rezenten Ausbruchsperiode (Tab. 9.4) ergeben zumindest für die Periode zwischen 1883 und 1930 (Abb. 9.5) ein ähnliches Bild, auch wenn angemerkt werden muß, daß der Datensatz bei weitem nicht alle Eruptionsereignisse dieses Zeitraums umfaßt und die Zuordnung der 1930er Ereignisse nicht eindeutig geklärt ist. Unabhängig davon scheinen die Förderprodukte des Merapi seit Mitte des 20. Jahrhunderts im großen und ganzen durch relativ homogene und für die Gesamtentwicklung des Vulkankomplexes vergleichsweise SiO₂-reiche Zusammensetzungen gekennzeichnet zu sein, die möglicherweise den Beginn eines neuen "mittelfristigen" magmatischen Zyklus anzeigen.

Zusammenfassung und Schlußfolgerungen

Die Aktivität des Merapi während der vergangenen 1800 bis 1900 Jahre ist charakterisiert durch die Förderung K-reicher Magmen mit High-K-Affinität. Die geochemische Entwicklung zeichnet sich durch systematische zyklische Variationen aus, die ein komplexes Wechselspiel verschiedener magmatischer Prozesse anzeigen und letztlich mit unterschiedlichen Eruptionsraten in Verbindung stehen. Die wichtigsten Punkte sind:

Die geochemische Entwicklung des Merapi während der letzten 2000 Jahre ist gekennzeichnet durch magmatische Zyklen, die etwa 300 (Zyklus III) bis 600 Jahre (Zyklus I) andauern und jeweils mit der Eruption hochdifferenzierter basaltandesitischer Magmen (56-57 Gew.% SiO₂) beginnen und mit der Förderung basischer Magmen (52-53 Gew.% SiO₂) enden.

Jeder der magmatischen Zyklen zeichnet sich durch eine hohe Förder- bzw. Eruptionsrate aus und beginnt im Anschluß an eine ca. 150 Jahre andauernde Phase reduzierter vulkanischer Aktivität ("Inter-Zyklus-Aktivität").

Die Entwicklung der höher differenzierten, basaltandesitischen Magmen kann durch fraktionierte Kristallisation aus den basischen Magmen erklärt werden. Die Assimilation von Krustenmaterial spielt dabei keine wesentliche Rolle.

Die geringen Eruptionsraten in den Phasen reduzierter vulkanischer Aktivität und das Ausbleiben neuer Pulse basischer Magmen aus tieferen Bereichen ermöglichen die Differentiation der in der Magmakammer befindlichen Magmen und führen zur Ausbildung einer chemischen Zonierung im Magmareservoir des Merapi. Magmen, die während dieser Phasen gefördert werden, zeichnen sich durch intermediäre Zusammensetzungen aus und reflektieren die fortschreitende Differentiation der Magmen.

Ein neuer magmatischer Zyklus, möglicherweise eingeleitet durch das Einströmen basischer Magmen aus tieferen Bereichen in das vorhandene Magmareservoir, ist gekennzeichnet durch die Förderung hochdifferenzierter Magmen zu Beginn und schrittweise SiO₂-ärmerer Magmen im Verlauf des Zyklus, die ein Spiegelbild der chemischen Zonierung in der Magmakammer sind. Einsetzende Mischungsprozesse zwischen den einströmenden basischen und differenzierten Magmen in der Magmakammer können ebenso zur geochemischen Zonierung beitragen. Die Förderung basaltischer Magmen, die zu Beginn durch die Existenz differenzierter Magmen im oberen Bereich der Magmakammer verhindert wird, kann gegen Ende eines Zyklus erfolgen.
➢ In der rezenten Periode seit 1883 scheinen sich die zyklischen Variationen fortzusetzen. Allerdings sind die beobachteten Zyklen kürzer als in prähistorischer Zeit. Die relativ konstanten und SiO₂-reichen Zusammensetzungen der Förderprodukte des ausgehenden 20. Jahrhunderts könnten den Beginn eines neuen "mittelfristigen" magmatischen Zyklus markieren.

Kapitel 10 Mineralchemie der Merapi-Vulkanite

In diesem Kapitel werden die Zusammensetzungen der Mineralphasen in den Merapi-Vulkaniten anhand repräsentativer Proben (Tab. 10.1) beschrieben und diskutiert. Neben der Untersuchung mineralchemischer Variationen in unterschiedlich differenzierten Gesteinen aus den verschiedenen stratigraphischen Einheiten werden Unterschiede in der Mineralchemie der Medium-K- und High-K-Magmen des Merapi aufgezeigt. Hinzu kommen Untersuchungen der Variationen im Mineralchemismus innerhalb einer Probe und Zonierungen bzw. Elementverteilungen innerhalb einzelner Einsprenglingskristalle, welche die mineralchemischen Studien abrunden und schließlich in Kapitel 12 zur Quantifizierung der intensiven Parameter und Kristallisationsbedingungen der Merapimagmen herangezogen werden.

Die Mineralanalytik erfolgte mit einer Elektronenmikrosonde vom Typ CAMECA SX 100 am Institut für Mineralogie, Petrologie und Geochemie der Universität Freiburg. Eine detaillierte Beschreibung der analytischen Methoden und Meßbedingungen findet sich in Anhang A1. Die Mineralanalysen sind in Anhang A5 (Tab. A5.2-8) aufgeführt.

Plagioklas

Plagioklas ist bei weitem die häufigste Einsprenglings- und Grundmassenphase und allgegenwärtig in den Merapi-Vulkaniten. Die Zusammensetzungen von Plagioklaseinsprenglingen wurden in mehreren Proben aus den verschiedenen stratigraphischen Einheiten des Merapi bestimmt (Tab. 10.1). Repräsentative Analysen, welche die Gesamtvariationen der Plagioklaszusammensetzungen innerhalb der untersuchten Proben umfassen, sind in Tab. A5.2 aufgelistet.

Insgesamt variieren die Plagioklaszusammensetzungen in den Merapigesteinen zwischen An_{30} und An_{95} (Abb. 10.1). Die basaltischen Andesite der jüngeren stratigraphischen Einheiten (Merapi-Somma, holozäne und rezente Förderprodukte) umfassen generell die gesamte Variationsbreite der am Merapi auftretenden Plagioklaszusammensetzungen, während in den Basalten des Proto-Merapi albitreiche Zusammensetzungen (An < 65 mol%) fehlen. Die Or-Gehalte der Plagioklase weisen stark gekrümmte negative Korrelationen mit den An-Gehalten auf und erreichen maximale Werte von ca. 8 mol% in den albitreichsten Zusammensetzungen

(Andesin), während die Bytownite und Anorthite nahezu keine Or-Komponente beinhalten (Abb. 10.1).

Tab. 10.1. Ausgewählte Proben für die mineralchemischen Untersuchungen und analysierte Mineralphasen (graue Felder). *Helle Felder* Mineral in der Probe nicht vorhanden; *n.a.* Mineral in der Probe vorhanden, aber nicht analysiert.

Probe	Serie	Plag	Ol	Cpx	Opx	Oxide	Amph		
Rezente Domlaven / pyr. S	Ströme								
M95-011/M98-1081	HK								
M96-142/145	HK								
M97-068	HK								
Juvenile Komponenten ho	Juvenile Komponenten holozäner pyr. Ströme								
M96-137/M98-0991	MK								
M96-167	HK								
M97-009	HK	n.a.							
M97-045	HK								
M97-0392	HK								
M98-002	HK	n.a.					n.a.		
M98-0532	MK	n.a.					n.a.		
M98-059	HK	n.a.					n.a.		
M98-066	HK	n.a.							
M98-096	HK								
Juvenile Komponenten h	Juvenile Komponenten holozäner Fallablagerungen								
M96-075	HK								
M96-102	HK	n.a.							

M96-102	HK	n.a.			
M96-163	MK				
M97-053	НК				
M98-031	НК	n.a.			

Laven Merapi-Somma

M95-026	MK				n.a.
M96-056	MK				
M96-070	MK				
M98-048	MK	n.a.			n.a.
M98-105	MK				n.a.
M98-107	МК	n.a.			

Laven G. Turgo, G. Plawangan (Proto-Merapi)

M95-028	-	n.a.	n.a.	n.a.		
M96-052	-					

Abb. 10.1. Plagioklaszusammensetzungen der Förderprodukte aus den verschiedenen stratigraphischen Einheiten des Merapi. An (mol%) = 100*(Ca/(Na+K+Ca)); Or (mol%) = 100*(K/(Na+K+Ca)).

Gleichzeitig scheinen bei einem gegebenen An-Gehalt die Gesteine der High-K-Serie im Vergleich zu denen der Medium-K-Serie durch geringfügig höhere Or-Gehalte gekennzeichnet zu sein, was möglicherweise direkt mit dem K-reicheren Charakter der High-K-Magmen in Zusammenhang steht (Abb. 10.2).

Abb. 10.2. Plagioklaszusammensetzungen der Medium-K- und High-K-Serie des Merapi. Dargestellt sind die rezenten und holozänen Förderprodukte ohne die Laven des Somma-Walls. An (mol%) = 100*(Ca/(Na+K+Ca)); Or (mol%) = 100*(K/(Na+K+Ca)).

In vielen Fällen sind die geochemischen Variationen innerhalb einer Probe und teilweise sogar innerhalb einzelner Plagioklaskristalle ähnlich groß wie die Gesamtvariation der Plagioklaszusammensetzungen am Merapi. Im allgemeinen treten die höchsten An-Gehalte in den Kernbereichen der Plagioklaseinsprenglinge auf, die insgesamt um mehr als 30 mol% variieren können, innerhalb einzelner Proben jedoch geringere Variationen aufweisen. Schließt man die Randzusammensetzungen mit ein, die im allgemeinen albitreicher als die entsprechenden Kernzusammensetzungen sind, so können die Plagioklaszusammensetzungen innerhalb einzelner Proben Unterschiede von bis zu 60 mol% Anorthit aufweisen. Es ist klar, daß diese Variationen nicht allein durch die fraktionierte Kristallisation der basaltandesitischen Magmen des Merapi in einem geschlossenen System verursacht sein können, sondern zusätzliche Prozesse erfordern, wie z.B. die Kristallisation unter sich verändernden Druckbedingungen oder variablem Wasserpartialdruck, die Aufnahme von Plagioklas-Xenokristallen, Mischungen unterschiedlich differenzierter Magmen oder die Entfernung eines Teils der Plagioklaseinsprenglinge, so daß der Einsprenglingsgehalt innerhalb einer Probe nicht der gesamten Plagioklaspopulation entspricht. Obwohl eine Beurteilung der relativen Bedeutung der einzelnen Prozesse schwierig ist, deuten doch die variablen und komplexen Zonierungsmuster der Plagioklaseinsprenglinge auf den Einfluß von einem oder mehreren dieser Prozesse in der Kristallisationsgeschichte der Merapimagmen hin.

Abb. 10.3. Repräsentative Zonierungsmuster von Plagioklaseinsprenglingen in den Merapivulkaniten.

Typische Zonierungsmuster von Plagioklaseinsprenglingen in den Merapiprodukten sind in Abb. 10.3 dargestellt.

In einigen Proben treten klare und einschlußfreie Plagioklaseinsprenglinge auf, die durch große, homogen zusammengesetzte und anorthitreiche Kernbereiche (An 90 mol%) sowie dünne albitreichere Randzonen gekennzeichnet sind (Abb. 10.3.a, e). Diese Plagioklaskristalle machen, soweit überhaupt vorhanden, lediglich einen geringen Anteil an der Plagioklaspopulation einer Probe aus und werden als Xenokristalle interpretiert.

Weitaus häufiger sind komplex zonierte Plagioklaskristalle, deren An-Gehalt Variationen bis zu 40 mol% aufweisen kann (Abb. 10.3.b-d, f-l). Im allgemeinen sind diese Plagioklase durch höhere An-Gehalte in den Kernbereichen und albitreichere Randzusammensetzungen gekennzeichnet, weisen jedoch komplexe Zonierungsmuster zwischen den Kern- und Randbereichen auf, die durch systematische, unregelmäßige oder oszillatorische Variationen im An-Gehalt charakterisiert sind und Änderungen der physikalischen und chemischen Bedingungen während des Kristallwachstums anzeigen.

Ein weiterer Typ von Plagioklaseinsprenglingen ist durch weite, relativ anorthitarme Kernbereiche und anorthitreiche Zonen oder Bänder in der Nähe der Kristallränder gekennzeichnet, die von feinsten Glaseinschlüssen durchsiebt (sog. "dust zones") und randlich wiederum von dünnen albitreicheren Anwachssäumen umgeben sind (Abb. 10.3.g, l).

Ähnliche Ausbildungsformen und Strukturen einzelner Plagioklaskristalle werden von Tsuchiyama (1985) und Dungan & Rhodes (1978) als Folge von Magmenmischungen und von Nelson & Montana (1992) als Folge der schnellen adiabatischen Druckabnahme während des Magmenaufstiegs interpretiert.

Beide Prozesse treten mit Sicherheit am Merapi auf und führen zu ähnlichen Ausbildungsformen und Strukturen, so daß letztlich nicht eindeutig zwischen diesen Prozessen unterschieden werden kann.

Pyroxene

Klinopyroxen

Nach Plagioklas ist (Ca-reicher) Klinopyroxen die zweithäufigste Mineralphase in den Merapigesteinen und allgegenwärtig in den untersuchten Proben. Neben typischen <u>Klinopyroxeneinsprenglingen</u> finden sich reliktisch erhaltene Klinopyroxenkerne (Kapitel 6), die sich in ihrer Zusammensetzung deutlich von den übrigen Einsprenglingen derselben Probe unterscheiden, offensichtlich nicht unter den gleichen physikalisch-chemischen Bedingungen wie diese gebildet wurden und als <u>Xenokristalle</u> interpretiert werden. Ausgewählte Analysen von Klinopyroxeneinsprenglingen und Xenokristallen finden sich in Tab. A5.3.

Die Klinopyroxene des Merapi im Wo-En-Fs-Klassifikationsdiagramm

Insgesamt zeigen die Klinopyroxene des Merapi eine relativ geringe Variationsbreite bezüglich der Komponenten Wollastonit (Wo), Enstatit (En) und Ferrosilit (Fs) im Pyroxen-Klassi-fikationsdiagramm (Abb. 10.4).

Abb. 10.4. Zusammensetzungen Ca-reicher Klinopyroxene des Merapi im Wo-En-Fs-Klassifikationsdiagramm. Gefüllte, grau eingefärbte Kreise: Klinopyroxenkerne (Xenokristalle); Offene Kreise: "normale" Klinopyroxeneinsprenglinge. Felder für Augit, Salit und Diopsid nach Poldervaart & Hess (1951). Ebenfalls dargestellt sind die analysierten Orthopyroxene (gefüllte, schwarz eingefärbte Kreise) im System Wo-En-Fs und Olivineinsprenglinge (Dreiecke) im System Forsterit (Fo)-Fayalit (Fa).

Abb. 10.5. Pyroxenklassifikationsdiagramm zur Unterscheidung von charakteristischen Klinopyroxen-Xenokristallen in Form reliktisch erhaltener Kerne und "normalen" Klinopyroxeneinsprenglingen in den Merapivulkaniten. Folgende Typen von Xenokristallen lassen sich unterscheiden: (a1) <u>Salit</u> (repräsentatives Beispiel: Probe M97-045); (b1) <u>Salit-Diopsid</u> (repräsentatives Beispiel: Probe M98-002) und (c1) <u>Diopsid</u> (einzig dokumentiertes Beispiel: Probe M95-011). Man beachte die Übereinstimmung der Zusammensetzung der Ummantelung der reliktischen Kerne (a1-c1) mit den übrigen Klinopyroxeneinsprenglingen derselben Probe (a2c2). Die dunkelgrauen Felder markieren den jeweiligen Gesamtvariationsbereich der identifizierten Xenokristall-Typen.

Nach der Klassifikation von Morimoto (1988) umfassen die Klinopyroxene des Merapi augitische (Wo < 45) und diopsidische (Wo > 45) Zusammensetzungen. Nach der in dieser Arbeit verwendeten Nomenklatur von Poldervaart & Hess (1951) sind sie als Augite, Salite und Diopside zu bezeichnen (Abb. 10.4). Pigeonit konnte in keiner der untersuchten Proben nachgewiesen werden.

Mit Wo 39-51, En 34-50 und Fs 4-19 liegen die Klinopyroxenzusammensetzungen des Merapi in einem für Klinopyroxene aus Inselbogenvulkaniten typischen, eng begrenzten Zusammensetzungsbereich im Pyroxen-Klassifikationsdiagramm (Gill, 1981). Aus Abb. 10.4 wird offensichtlich, daß die "normalen" Klinopyroxeneinsprenglinge eine noch geringere Gesamtvariation zwischen Wo 39-47, En 37-47 und Fs 7-19 aufweisen und überwiegend in das Feld der Augite, seltener in das der Salite fallen.

Die Unterscheidung zwischen augitischen und salitischen Klinopyroxenzusammensetzungen erscheint auf den ersten Blick eher willkürlich, so daß der Begriff Augit wohl am ehesten für die Charakterisierung der Klinopyroxeneinsprenglinge am Merapi geeignet ist.

Demgegenüber sind die auftretenden Klinopyroxen-Xenokristalle, die in einzelnen Proben der rezenten und holozänen Förderprodukte beobachtet werden können, in Bezug auf die quadrilateralen Komponenten durch insgesamt höhere Wo- und teilweise höhere En- bzw. niedrigere Fs-Gehalte als die "normalen" Klinopyroxeneinsprenglinge gekennzeichnet und damit salitischer oder diopsidischer Zusammensetzung (Abb. 10.4).

Im Gegensatz zu den "normalen" Klinopyroxeneinsprenglingen ist die Unterscheidung zwischen salitischen und diopsidischen Zusammensetzungen für die Klinopyroxen-Xenokristalle durchaus signifikant, da sie mit wesentlichen Veränderungen in den Konzentrationen weiterer Elemente einhergeht.

Somit lassen sich in Bezug auf die quadrilateralen Komponenten drei Typen von Klinopyroxen-Xenokristallen, die in Form reliktisch erhaltener Klinopyroxenkerne in den Merapivulkaniten vorkommen, unterscheiden (Abb. 10.5): (1) <u>Salit</u> (Abb. 10.5.a1), (2) <u>Salit-Diopsid</u> (Abb. 10.5.b1) und (3) <u>Diopsid</u> (Abb. 10.5.c1). Die Übereinstimmung der Klinopyroxenzusammensetzungen der Ummantelungen dieser Kerne mit denen der übrigen Klinopyroxeneinsprenglinge derselben Probe (Abb. 10.5.a2-c2) stützen die Interpretation dieser Kerne als Xenokristalle.

Chemische Variationen der "normalen" Klinopyroxeneinsprenglinge des Merapi

In den vorangegangenen Abschnitten wurden die relativ einheitlichen Zusammensetzungen der Klinopyroxeneinsprenglinge des Merapi bezüglich der quadrilateralen Komponenten aufgezeigt. Ähnlich geringe Variationen zeigen sich in den Mg-Zahlen (Mg# = $100*Mg/(Mg+Fe^{2+})$) der "normalen" Klinopyroxeneinsprenglinge, die Werte zwischen 73 und 84 erreichen.

In Abb. 10.6 ist die Mg-Zahl der Klinopyroxene gegen die Mg# des entsprechenden Gesamtgesteins aufgetragen. Insgesamt zeigen sich keine prinzipiellen Unterschiede zwischen den Klinopyroxenzusammensetzungen verschiedener Proben. Im allgemeinen weisen die Klinopyroxeneinsprenglinge Fe/Mg-Verhältnisse im Gleichgewicht mit der entsprechenden Gesamtgesteinszusammensetzung auf, falls die Verteilungskoeffizienten für Fe und Mg zwischen Klinopyroxen und Schmelze nicht wesentlich von den publizierten Werten (Grove et al., 1982; Lindsley, 1983; Baker & Eggler, 1987) abweichen. Dies impliziert die Kristallisation der Klinopyroxene in den Merapimagmen an bzw. nahe der Liquidustemperatur in einer der Gesamtgesteinszusammensetzung entsprechenden Schmelze.

Abb. 10.6. Mg# der "normalen" Klinopyroxeneinsprenglinge in Abhängigkeit der Mg# des Gesamtgesteins, die mit einem angenommenen Fe₂O₃/FeO-Verhältnis von 0.3 berechnet wurde. Gleichgewichtskurven für $K_D = (X_{FeO}/X_{MgO})_{Cpx}/(X_{FeO}/X_{MgO})_{Schmelze} = 0.2$ und 0.3, die dem Variationsbereich der publizierten K_D -Werte (Thompson, 1974; Grove et al., 1982; Lindsley, 1983; Baker & Eggler, 1987) entsprechen, sind ebenfalls dargestellt.

Während die Klinopyroxene der Medium-K- und High-K-Magmen einen ähnlichen Variationsbereich bezüglich der Fe/Mg-Verhältnisse aufweisen, sind erhöhte Wo-Gehalte (> 44 mol% bzw. > 44.5 mol%, falls die Medium-K-Laven des Somma-Walls mitberücksichtigt werden) und damit salitische Zusammensetzungen offensichtlich auf die Klinopyroxene der High-K-Serie beschränkt (Abb. 10.7). Hohe Wo-Gehalte in den Klinopyroxeneinsprenglingen des Merapi stehen damit offenbar direkt mit dem K-reicheren Charakter der Magmen der High-K-Serie in Zusammenhang.

Die meisten Klinopyroxeneinsprenglinge in den Merapilaven sind unzoniert oder weisen lediglich geringe Variationen mit überwiegend normalen, teilweise auch inversen Zonierungsmustern auf.

Abb. 10.7. Wo-Gehalt (mol%) *vs.* Mg# (100*Mg/(Mg+Fe²⁺)) der Klinopyroxeneinsprenglinge der Medium-K- und High-K-Magmen. Die Klinopyroxene der High-K-Magmen erweitern das Spektrum der am Merapi auftretenden Klinopyroxenzusammensetzungen hin zu Wo-reicheren (> 44 mol%) Zusammensetzungen. Die Laven des Somma-Walls sind nicht berücksichtigt.

In Bezug auf die nicht-quadrilateralen Komponenten sind die Klinopyroxeneinsprenglinge des Merapi durch relativ geringe Gehalte an Al_2O_3 (1.2-4.3 Gew.%), Na_2O (0.2-0.5 Gew.%) und TiO₂ (0.2-0.8 Gew.%) gekennzeichnet. Eine Ausnahme bilden die Klinopyroxene der Proto-Merapi-Basalte, die deutlich höhere Al_2O_3 -Konzentrationen bis zu 6.4 Gew.% aufweisen und in ihrer Zusammensetzung damit den salitischen Klinopyroxen-Xenokristallen der jüngeren Merapiprodukte ähneln.

Chemische Zusammensetzungen der Klinopyroxen-Xenokristalle

Im Pyroxenklassifikationsdiagramm (Abb. 10.4) wurde gezeigt, daß salitische und diopsidische Klinopyroxenzusammensetzungen, mit Ausnahme einiger weniger Einsprenglinge der High-K-Serie, welche die Augit-Salit-Grenze überschreiten können, auf die reliktisch erhaltenen Klinopyroxenkerne oder Xenokristalle beschränkt sind, die gelegentlich in den jüngeren Merapilaven auftreten. Dabei wurden drei charakteristische Typen von Xenokristallen – (1) Salit, (2) Salit-Diopsid und (3) Diopsid – unterschieden und repräsentative Beispiele aus den Proben M97-045, M98-002 und M95-011 im Pyroxenklassifikationsdiagramm (Abb. 10.5) dargestellt. Zonierungsmuster und Elementverteilungsbilder derselben Pyroxenkerne und deren Anwachssäume, die sich in ihrer Zusammensetzung deutlich von den Kernzonen unterscheiden und mit den übrigen Klinopyroxeneinsprenglingen der jeweiligen Probe übereinstimmen, sind in Abb. 10.8-10.13 dargestellt.

Abb. 10.8. Zonierungsmuster eines Klinopyroxenkristalls mit einem Al-reichen, salitischen Xenokristall-Kern (Probe M97-045). Die Elementgehalte sind in Kationen pro Formeleinheit (6 Sauerstoffatome) angegeben. Beide, Klinopyroxenkern und –rand, sind nahezu Cr-frei.

Abb. 10.9. Qualitative Elementverteilungsbilder des Klinopyroxenkristalls aus Abb. 10.8. Helle Grautöne zeigen hohe, dunkle Grautöne niedrige Elementkonzentrationen an.

Diese verdeutlichen die relativ homogenen Zusammensetzungen der Klinopyroxenkerne und deren Ummantelungen sowie den diskontinuierlichen Wechsel der Klinopyroxenkompositionen.

Im Vergleich zu den Anwachssäumen und Einsprenglingen derselben Probe sind die salitischen Pyroxenkerne (Abb. 10.8, 10.9) durch geringere Gehalte an Si, Mg, Fe²⁺, Mn und Na sowie erhöhte Konzentrationen von Al_{tot}, Al^{IV}, Al^{VI}, Ti, Fe³⁺ und Ca pro Formeleinheit gekennzeichnet.

Die salitisch-diopsidischen Xenokristalle (Abb. 10.10, 10.11) weisen im Vergleich zu den Anwachssäumen und Einsprenglingen derselben Probe geringere Gehalte an Si, Ti, Fe²⁺, Mn und Na sowie erhöhte Gehalte an Al_{tot}, Al^{IV}, Al^{VI}, Cr (!), Mg und Ca pro Formeleinheit auf. Unterschiede in den Fe³⁺-Konzentrationen sind nicht signifikant.

Die Pyroxenkerne diopsidischer Zusammensetzung (Abb 10.12, 10.13) sind im Vergleich zu den Ummantelungen und Einsprenglingen derselben Probe durch auffallend geringe Gehalte an Al_{tot}, Al^{IV} und Al^{VI}, niedrigere Ti-, Fe³⁺-, Fe²⁺-, Mn- und Na-Konzentrationen sowie höhere Gehalte an Cr (!), Mg, Ca und weniger deutlich Si pro Formaleinheit charakterisiert.

Das Auftreten der Salite, Salit-Diopside und Diopside in den Kernbereichen "normaler", augitischer Klinopyroxeneinsprenglinge zeigt ein frühes Kristallisationsstadium für diese Klinopyroxene an.

Abb. 10.10. Zonierungsmuster eines Klinopyroxenkristalls mit einem Al-reichen, salitischdiopsidischen Xenokristall-Kern (Probe M98-002). Die Elementgehalte sind in Kationen pro Formeleinheit (6 Sauerstoffatome) angegeben. Man beachte die erhöhten Cr-Gehalte im Kern.

Abb. 10.11. Qualitative Elementverteilungsbilder des Klinopyroxenkristalls aus Abb. 10.10. Helle Grautöne zeigen hohe, dunkle Grautöne niedrige Elementkonzentrationen an.

Am häufigsten finden sich salitische (Proben: M96-167, M97-0392, M97-045, M98-1081) und salitisch-diopsidische Klinopyroxenkerne (Proben: M97-0681, M98-002, M98-0532, M98-0991), während eine diopsidische Kernzusammensetzung nur in einem Fall (Probe: M95-011) dokumentiert werden konnte.

Die auffallendsten kompositionellen Charakteristika der salitischen und salitisch-diopsidischen Pyroxenkerne sind die im Vergleich zu den "normalen" Klinopyroxeneinsprenglingen des Merapi hohen Al₂O₃-Gehalte von bis zu 6.2 Gew.% in den salitisch-diopsidischen Zusammensetzungen (M98-002) und 8.6 Gew.% in den Saliten (M98-1081), welche eine Kristallisation unter Hochdruckbedingungen (Thompson, 1974) anzeigen.

Einer der wesentlichen kompositionellen Unterschiede zwischen den beiden Al-reichen Pyroxenvarietäten betrifft deren Chromgehalt. Während die Salite nahezu Cr-frei sind, zeichnen sich die salitisch-diopsidischen Klinopyroxene durch Cr_2O_3 -Gehalte bis maximal 0.4 Gew.% aus.

Zusammen mit den allgemein höheren MgO- sowie niedrigeren FeO-Gehalten und den daraus resultierenden höheren Mg-Zahlen deutet dieser Befund auf die Bildung der salitischdiopsidischen Klinopyroxenkerne in einem, im Vergleich zu den Saliten, basischeren und heißeren Magma bei weitestgehend ähnlichen Druckbedingungen.

Abb. 10.12. Zonierungsmuster eines Klinopyroxenkristalls mit diopsidischem Xenokristall-Kern (Probe M95-011). Die Elementgehalte sind in Kationen pro Formeleinheit (6 Sauerstoffatome) angegeben. Man beachte die erhöhten Cr-Gehalte im Kernbereich.

Abb. 10.13. Qualitative Elementverteilungsbilder des Klinopyroxenkristalls aus Abb. 10.12. Helle Grautöne zeigen hohe, dunkle Grautöne niedrige Elementkonzentrationen an.

Im Gegensatz zu den Al-reichen, salitischen und salitisch-diopsidischen Hochdruck-Klinopyroxenen deuten die geringen Al₂O₃-Gehalte der diopsidischen Klinopyroxenkerne aus Probe M95-011 auf eine Bildung bei vergleichsweise niedrigem Druck. Insgesamt lassen die im Vergleich zu den Klinopyroxeneinsprenglingen derselben Probe hohen (Si-), Cr-, Mg- und Ca-Konzentrationen sowie niedrigen Gehalte an Ti, Fe und Na auf eine Kristallisation dieser Klinopyroxene in einem basischeren Magma und vergleichsweise hohen Temperaturen (Thompson, 1974) schließen. Der diskontinuierliche Übergang zu den umgebenden Klinopyroxenen könnte auf sich plötzlich ändernde physikalisch-chemische Bedingungen im Magmasystem (z.B. infolge von Magmenmischungsprozessen) zurückgeführt werden.

Orthopyroxen

Orthopyroxen tritt akzessorisch oder als Nebengemengteil im überwiegenden Teil der Förderprodukte des Merapi auf. Ausnahmen bilden die Basalte des Proto-Merapi, in denen keine Orthopyroxeneinsprenglinge vorkommen und einige der SiO₂-ärmeren basaltischen Andesite der jüngeren Entwicklungsstadien, die Olivin anstelle von Orthopyroxen führen können. Die Orthopyroxeneinsprenglinge und Mikrophänokristalle in den Merapivulkaniten zeigen nur geringe Variationen (Tab. A5.4; Abb. 10.4) und sind als Bronzite und Hypersthene (Poldervaart, 1947) oder generell als Enstatite (Morimoto, 1988) zu bezeichnen. Über das gesamte Spektrum der untersuchten Proben variieren die Orthopyroxene von En 62-71, Fs 26-35 und Wo 2-4. Die Orthopyroxenkristalle sind in der Regel unzoniert oder weisen leichte normale Zonierungsmuster mit Mg-reicheren Kern- und Fe-reicheren Randzusammensetzungen auf. Die Mg# der Orthopyroxene des Merapi variiert zwischen 66 und 76 (Abb. 10.14). Im Vergleich zu den Klinopyroxenen derselben Probe weisen die Orthopyroxene stets niedrigere Mg-Zahlen auf. Darüber hinaus sind die Orthopyroxene zu Fe-reich, um mit einer Schmelze, die der jeweiligen Gesamtgesteinszusammensetzung entspricht, im Gleichgewicht zu stehen, sofern die Verteilungskoeffizienten von Fe und Mg zwischen Orthopyroxen und Schmelze den erwarteten Werten (Lindsley 1983, Baker & Eggler, 1987) entsprechen.

Abb. 10.14. Mg# (100*Mg/(Mg+Fe²⁺)) der Orthopyroxene in Abhängigkeit der Mg# des Gesamtgesteins, die mit einem angenommenen Fe₂O₃/FeO-Verhältnis von 0.3 berechnet wurde. Gleichgewichtskurven für $K_D = (X_{FeO}/X_{MgO})_{Opx}/(X_{FeO}/X_{MgO})_{Schmelze} = 0.2$ und 0.3 (Lindsley, 1983; Baker & Eggler, 1987) sind ebenfalls dargestellt.

Die im Vergleich zu den Klinopyroxenen niedrigeren Mg-Zahlen der Orthopyroxene innerhalb einer Probe und das Vorkommen von Orthopyroxen in Form von Mikrophänokristallen sind konsistent mit einer frühen Kristallisation von Klinopyroxen, gefolgt von Orthopyroxen. Die Fe-reichen Kompositionen der Orthopyroxene im Vergleich zur Gesamtgesteinszusammensetzung stützen diesen Befund und implizieren, daß die Orthopyroxene nicht am Liquidus, sondern wahrscheinlich in einer Fe-reicheren Schmelze unterhalb der Liquidustemperatur gebildet wurden.

Olivin

Olivin tritt als Hauptbestandteil ausschließlich in den Laven des Proto-Merapi auf. In den Förderprodukten der jüngeren Entwicklungsstadien kommt Olivin gelegentlich akzessorisch in Form von Mikrophänokristallen in Gesteinen mit weniger als 54 Gew.% SiO₂ vor. Die gemessenen Olivinzusammensetzungen in den Merapiprodukten sind in Tab. A5.5 aufge-

listet und zusammen mit den analysierten Pyroxenen in Abb. 10.4 dargestellt.

Abb. 10.15. Zonierungsmuster von Olivineinsprenglingen in den Merapi-Vulkaniten: (a-b) Basalt, Proto-Merapi; (c-d) olivinführende basaltische Andesite, Merapi-rezent.

Die Olivinzusammensetzungen in den Merapigesteinen variieren zwischen Fo_{60} und Fo_{87} , wobei Fo-Gehalte > 80 mol% auf die Basalte des Proto-Merapi beschränkt sind. Die Olivine sind in der Regel unzoniert oder normal zoniert mit Mg-reichen Kernbereichen und Fereicheren Rändern und Variationen im Fo-Gehalt bis knapp 20 mol% innerhalb einzelner Kristalle (Abb. 10.15). In den Proto-Merapi-Basalten finden sich neben homogen zusammengesetzten Olivineinsprenglingen mit Fo 73, solche mit Mg-reichen Kernbereichen (Fo 87) und dünnen, Fe-reicheren Anwachssäumen (Fo 72-73) (Abb. 10.15.a-b). Roeder & Emslie (1970) zeigten, daß der Verteilungskoeffizient von Fe und Mg zwischen Olivin und basaltischer Schmelze ($K_D = (X_{FeO}/X_{MgO})_{Ol}/(X_{FeO}/X_{MgO})_{Schmelze}$) ca. 0.30 beträgt. Damit läßt sich bei bekannter Olivinzusammensetzung das Fe/Mg-Verhältnis der im Gleichgewicht befindlichen Schmelze oder umgekehrt diejenige Olivinzusammensetzung ermitteln, die von einer Schmelze mit einem bestimmten Fe/Mg-Verhältnis auskristallisieren würde.

Für die Basalte des Proto-Merapi beträgt die Olivinzusammensetzung im Gleichgewicht mit einer Schmelze, die eine ähnliche Zusammensetzung wie das Gesamtgestein ($Fe_2O_3/FeO = 0.3$) aufweist, ca. 75 mol% Forsterit und entspricht damit in etwa den auftretenden Randzusammensetzungen der Olivineinsprenglinge.

Die Fo-reichen Olivinkerne (Fo 87) sind demnach als Xenokristalle zu interpretieren, die von einer nahezu primären basaltischen Schmelze auskristallisiert sind und anschließend in die höher differenzierten Magmen des Proto-Merapi inkorporiert wurden.

Zusammen mit den Al-reichen, salitischen und salitisch-diopsidischen Klinopyroxenkernen dokumentieren die Fo-reichen Olivine und die darin eingeschlossenen Chromspinelle (Abb. 6.3) frühe, durch Olivin-, Spinell- und Klinopyroxenfraktionierung gekennzeichnete Differentiationsstadien primärer Mantelschmelzen am Merapi.

Die fraktionierte Kristallisation von Mg-reichem Olivin, Cr-führendem Spinell und Al-reichem Klinopyroxen vor der Eruption der primitivsten Merapimagmen wird als wesentlicher Prozeß betrachtet, der die Konzentration kompatibler Spurenelemente, wie Ni und Cr, in der residualen Schmelze beeinflußt und schließlich die niedrigen Gehalte dieser Elemente in den am wenigsten differenzierten Magmen am Merapi verursacht (Kapitel 7).

Obwohl in vielen kontinentalen Inselbögen primäre Magmenzusammensetzungen fehlen und ähnliche Differentiationsprozesse zur Erklärung der niedrigen Konzentrationen kompatibler Spurenelemente in den primitivsten Laven gefordert werden müssen (z.B. Gill, 1981), scheinen direkte (petrographische) Hinweise für diese frühesten Entwicklungsstadien primärer Mantelschmelzen nur in wenigen Fällen erhalten und selten dokumentiert zu sein.

Amphibole

Amphibol ist ein wichtiger Bestandteil vieler Merapigesteine. In den rezenten und holozänen Lavadomkomponenten tritt Amphibol akzessorisch oder als Nebengemengteil auf. Die Basalte des Proto-Merapi sind amphibolfrei.

Die gemessenen Amphibolzusammensetzungen in den Merapiprodukten sind in Tab. A5.6 aufgelistet und zusammen mit den übrigen Fe-Mg-Silikaten in Abb. 10.16 dargestellt. Sämtliche Amphibole des Merapi sind durch $(Ca+Na)_B$ 1.0 und $Na_B < 0.5$ gekennzeichnet und damit als Ca-Amphibole in der Klassifikation von Leake et al. (1997) zu bezeichnen.

Abb. 10.16. Zusammensetzungen der Fe-Mg-Silikate des Merapi im System Ca-Mg-(Fe+Mn). Die Fo-reichen Olivin-Xenokristalle der Proto-Merapi-Basalte und die salitischen, salitischdiopsidischen und diopsidischen Klinopyroxenkerne der jüngeren Förderprodukte des Merapi sind nicht dargestellt. Man beachte, daß Olivin und Orthopyroxen in den Merapimagmen im allgemeinen nicht koexistieren und nur in wenigen der untersuchten Proben im Gleichgewicht stehen. Symbole für die Amphibole wie in Abb. 10.17.

Die Merapi-Amphibole weisen zwischen 5.6 und 6.3 Si-Atome pro Formeleinheit (auf der Basis von 23 Sauerstoffatomen) und Mg-Zahlen zwischen 62 und 84 auf. Mit Ca_B 1.5, $(Na+K)_A$ 0.5 und Ti < 0.5 handelt es sich überwiegend um Mg-Hastingsite (Al^{VI} < Fe³⁺) und teilweise um Pargasite (Al^{VI} > Fe³⁺) (Leake et al., 1997), eine Unterteilung, die allerdings stark von den angenommenen Fe₂O₃/FeO-Verhältnissen bzw. Fe³⁺-Gehalten der Amphibole abhängt (Abb. 10.17.a).

In Abb. 10.17.b ist Al^{IV} gegen Na+K pro Formeleinheit der Amphibole aufgetragen. Insgesamt variiert Al^{IV} zwischen 1.7 und 2.4 und Na+K zwischen ca. 0.7 und 1.0 Kationen pro Formeleinheit. Damit liegen die Merapi-Amphibole im generellen Trend und am oberen Ende der Amphibole des Alëutenbogens, überlappen jedoch mit den Amphibolen des Spurr-Vulkans, die bezüglich der Al^{IV}- und Alkaliengehalte Kumulaten und Xenolithen der lokalen unteren Kruste oder des oberen Mantels ähneln (Nye & Turner, 1990 und darin aufgeführte Referenzen).

Die Ca+Al^{IV}-Gehalte der Merapi-Amphibole variieren zwischen ca. 3.4 und 4.4 Kationen pro Formeleinheit und weisen eine starke negative Korrelation mit Si+Na+K auf (Abb. 10.17.c). Dies zeigt die Bedeutung des gekoppelten Austauschs zwischen Ca+Al^{IV} und Si+Na (K) als einer der wichtigsten Austauschprozesse in den Merapi-Amphibolen.

Zusätzlich zu den Hauptelementen wurden die Gehalte von Fluor und Chlor in den Merapi-Amphibolen bestimmt.

Abb. 10.17. Nomenklatur und Zusammensetzungen der Amphibole des Merapi: (a) Klassifikationsdiagramm für Ca-Amphibole nach Leake et al. (1997); (b) Al^{IV} vs. Na+K der Merapi-Amphibole im Vergleich zu Amphibolen der Alëuten; (c) Diagramm von Ca+Al^{IV} vs. Si+Na+K der Merapi-Amphibole.

Die Konzentrationen von maximal 0.6 Gew.% (Fluor) bzw. 0.2 Gew.% (Chlor) aufweisen, was weniger als ca. 0.30 Fluor bzw. 0.04 Chlor pro 23 Sauerstoffatome entspricht (Abb. 10.18). Betrachtet man sämtliche analysierten Amphibole, so lassen sich insgesamt keine systematischen Variationen zwischen Fluor bzw. Chlor und weiteren Zusammensetzungsparametern, wie z.B. X_{Fe} (Fe²⁺/(Mg+Fe²⁺)) beobachten (Abb. 10.18), obgleich einzelne Amphibolkristalle kontinuierliche Zonierungen mit relativ Fe²⁺ (X_{Fe})- und F-armen Kernzonen sowie Fe²⁺ (X_{Fe})- und F-reicheren Randbereichen, d.h. eine positive Korrelation zwischen Fe²⁺ (X_{Fe}) und Fluor, aufweisen können.

Abb. 10.18. (a) Fluor (pro Formeleinheit) und (b) Chlor (pro Formeleinheit) vs. X_{Fe} der Merapi-Amphibole.

Dieser Sachverhalt zeigt, daß systematische Zonierungen in den Merapi-Amphibolen durchaus vorhanden sind, obwohl der überwiegende Teil der Amphiboleinsprenglinge in den Merapi-Vulkaniten im allgemeinen homogen zusammengesetzt und unzoniert ist.

Abb. 10.19. BSE-Bild, ausgewählte Elementverteilungsbilder und Zonierungsmuster von Ti, Fe^{2+} , Mg und F eines diskontinuierlich zonierten Amphibolkristalls aus Probe M97-0392.

In wenigen Fällen treten, ähnlich wie bei den Klinopyroxenen, diskontinuierlich zonierte Amphibolkristalle auf, die durch eine abrupte Änderung der Zusammensetzung gekennzeichnet sind (Abb. 10.19). Allgemeine kompositionelle Merkmale dieser Amphibole sind Fe²⁺-reiche und Mg-arme Kernbereiche sowie Fe²⁺-arme und Mg-reiche Randzusammensetzungen. Die resultierende inverse Fe/Mg-Zonierung in diesen Amphibolen kann auf Magmenmischungsprozesse (z.B. Sakuyama, 1979) zwischen einem höher differenzierten Magma, in dem die Amphibolkerne kristallisierten, und einem heißeren, basischen Magma oder eine Erhöhung der Sauerstoff-Fugazität (Hammarstrom & Zen, 1986) zurückgeführt werden. Auch in diesen Amphibolkristallen korreliert Fluor positiv mit dem Fe²⁺-Gehalt, so daß erhöhte Konzentrationen beider Elemente in den Kernbereichen dieser Amphibole auftreten. Läßt man die für den Merapi ungewöhnlichen invers zonierten Amphibolkristalle außer Betracht, so zeigen die Merapi-Amphibole im großen und ganzen relativ geringfügige Variationen unabhängig von der Zusammensetzung des entsprechenden Gesamtgesteins. Dies läßt darauf schließen, daß sämtliche Amphibole des Merapi unter ähnlichen Bedingungen gebildet wurden. Die relativ hohen Al^{IV}- und Na+K-Gehalte deuten auf eine Kristallisation der Amphibole bei relativ hohen Temperaturen (Hammarstrom & Zen, 1986). Darüber hinaus deuten petrographische Charakteristika und die im allgemeinen niedrigeren Mg-Zahlen im Vergleich zu den Klinopyroxenen der entsprechenden Probe auf eine relativ späte Kristallisation der Merapi-Amphibole.

Oxide

Fe-Ti-Oxide

Titanomagnetit ist die einzige primär magmatische Fe-Ti-Oxid-Phase in den Merapivulkaniten und findet sich als Nebengemengteil oder akzessorisch in sämtlichen Merapiprodukten mit Ausnahme der Proto-Merapi-Basalte, in denen Titanomagnetit gelegentlich fehlt.

Im überwiegenden Teil der untersuchten Merapiproben sind die Titanomagnetiteinsprenglinge und Mikrophänokristalle homogen zusammengesetzt und unentmischt. Dagegen finden sich in einigen Lavaproben des Somma-Walls und vereinzelten Proben holozäner pyroklastischer Ströme Titanomagnetitkristalle mit < 1 μ m bis 10 μ m breiten Entmischungslamellen (Abb. 6.5) unterschiedlicher Zusammensetzung.

Die unentmischten Titanomagnetite der Merapigesteine zeigen in der Regel nur geringe Variationen bezüglich der Komponenten TiO₂, FeO und Fe₂O₃ über das Gesamtspektrum der untersuchten Merapiproben (Abb. 10.20). Innerhalb einer Probe sind die Titanomagnetitkristalle ebenfalls einheitlich zusammengesetzt. Wesentliche Variationen in der Zusammensetzung innerhalb einzelner Kristalle sind genausowenig zu beobachten, wie prinzipielle Unterschiede zwischen den Titanomagnetiteinsprenglingen der Medium-K- und High-K-Serie.

Die unentmischten Titanomagnetite des Merapi weisen zwischen 7.0 und 13.2 Gew.% TiO₂ und einen Ulvøspinellanteil zwischen 21.3 und 38.7 mol% auf. Die Al₂O₃-, Cr₂O₃-, MgO- und MnO-Gehalte zeigen etwas größere Variationen und betragen 1.3 bis 5.8 Gew.%, < 0.25 Gew.%, 0.7 bis 3.9 Gew.% bzw. 0.4 bis 1.4 Gew.% (Tab. A5.7).

Wie bereits erwähnt, können die Titanomagnetitkristalle in einzelnen Proben lamellare Entmischungen zeigen, ein Phänomen, das vor allem in den Laven des Somma-Walls beobachtet werden kann. Zusätzlich zu diesen entmischten Titanomagnetitkristallen kommen in einigen Proben (z.B. M96-167, M98-105) auch unentmischte Titanomagnetite vor (Tab. A5.7; Abb. 10.21).

Abb. 10.20. Zusammensetzungen der Titanomagnetite des Merapi im System TiO_2 -FeO-Fe₂O₃. (a) Merapi-gesamt; (b) rezente Förderprodukte; (c) juvenile Komponenten holozäner pyroklastischer Ströme; (d) juvenile Komponenten holozäner pyroklastischer Fallablagerungen; (e) Laven des Somma-Walls; (f) basaltische Laven des Proto-Merapi.

Neben vereinzelten Proben mit lamellaren Entmischungen einer Spinellphase (Mt-Usp_{ss}) (Abb. 10.21.a-b) finden sich im überwiegenden Teil der Proben Entmischungslamellen ilmenitischer Zusammensetzung (Hem-Ilm_{ss}) (Abb. 10.21.c-d). Beide Entmischungsphänomene entstehen während der langsamen Abkühlung der Laven im Subsolidusbereich. Erstere dokumentieren die Existenz einer Mischungslücke entlang der Mischungsreihe Magnetit-Ulvøspinell, die unterhalb einer Temperatur von etwa 600 °C, möglicherweise jedoch erst unterhalb 500 °C einsetzt (Vincent et al., 1957; Lindsley, 1981; Price, 1981), während das Auftreten von Ilmenitentmischungen Oxidationsvorgänge während der Abkühlung der Laven anzeigt (Buddington & Lindsley, 1964), die zur Oxidation der Fe₂TiO₄-Komponente des Titanomagnetits führen (Lindsley, 1991).

Abb. 10.21. Entmischungen primär magmatischer Titanomagnetite: (a-b) Entmischung einer Spinellphase (Mt-Usp_{ss}); (c-d) Entmischung einer rhomboedrischen Phase (Hem-Ilm_{ss}). Dargestellte Proben: (a) M96-167; (b) M98-105; (c) M96-070; (d) M98-107. Weitere Erläuterungen im Text.

In Proben, in denen homogene Titanomagnetite neben solchen mit Entmischungen einer Spinellphase (Mt-Usp_{ss}) auftreten, liegen die Zusammensetzungen der homogenen Titanomagnetitkristalle im TiO₂-FeO-Fe₂O₃-System stets zwischen denen der Titanomagnetit-Wirtskristalle und den darin enthaltenen Entmischungslamellen (Abb. 10.21.a-b). Dies zeigt, daß die Entmischungsvorgänge mit großer Wahrscheinlichkeit von initialen magmatischen Titanomagnetitzusammensetzungen mit Usp₂₇ bis Usp₂₈ (M96-167) bzw. Usp₃₁ bis Usp₃₅ (M98-105) ausgehen, die weitestgehend den homogenen Titanomagnetitzusammensetzungen der übrigen Merapiproben entsprechen, und schließlich zur Entstehung TiO₂-reicher (> 18 Gew.%) und ulvøspinellreicher Entmischungslamellen sowie TiO₂-armen (< 4 Gew.%) und magnetitreichen Wirtskristallen führen (Abb. 10.21.a-b; Tab. A5.7).

Im Gegensatz zu den Proben, in denen Verwachsungen zweier Spinellphasen der Mischungsreihe Magnetit-Ulvøspinell vorkommen, scheint die oxidative Entmischung einer rhomboedrischen Phase der Mischungsreihe Hämatit-Ilmentit sämtliche Titanomagnetitkristalle einer Probe erfaßt zu haben, so daß in diesen Proben keine homogenen, primär magmatischen Titanomagnetiteinsprenglinge mehr vorliegen. In den Proben, in denen entmischte Titanomagnetitkristalle und darin enthaltene Ilmenitlamellen analysiert wurden, liegen relativ TiO₂arme (< 10 Gew.%) und magnetitreiche (Usp < 28 mol%) Wirtskristalle sowie fast reine Ilmenitlamellen (44-50 Gew.% TiO₂; 81-93 mol% Ilmenit-Komponente) vor (Abb. 10.21.c-d; Tab. A5.7).

Chromspinell

Neben typischen, nahezu chromfreien Fe-Ti-Oxiden der Titanomagnetit-Ulvøspinell- und Hämatit-Ilmenit-Serie, wie sie in vielen Inselbogenvulkaniten vorkommen, treten in den basaltischen Laven des Proto-Merapi chromführende Spinelle (Picotite) als Einschlüsse in Olivineinsprenglingen auf (Abb. 6.3).

Diese Chromspinelleinschlüsse sind variabel zusammengesetzt und weisen deutlich unterschiedliche Gehalte an z.B. Cr_2O_3 (6.0-44.4 Gew.%), Al_2O_3 (4.5-16.5 Gew.%), Fe_2O_3 (10.5-55.9 Gew.%) und MgO (2.3-11.4 Gew.%) auf. Ausgeprägte Variationen zeigen sich darüber hinaus in den molaren Cr/(Cr+Al)-, Mg/(Fe+Mg)-, $Al/(Al+Cr+Fe^{3+})$ - und $Fe^{3+}/(Al+Cr+Fe^{3+})$ -Verhältnissen, die Werte von 0.44-0.68, 0.13-0.54, 0.10-0.32 bzw. 0.13-0.80 erreichen (Tab. A5.8) und die Unterscheidung von insgesamt drei Chromspinelltypen am Merapi zulassen (Abb. 10.22; Tab. 10.2).

Die am häufigsten vorkommenden Chromspinelle (Typ I) sind durch hohe Cr_2O_3 -, Al_2O_3 - und MgO- sowie geringe Fe_2O_3 -Gehalte gekennzeichnet und weisen darüber hinaus die höchsten Mg/(Fe+Mg)-, Al/(Al+Cr+Fe³⁺)- und niedrigsten Fe³⁺/(Al+Cr+Fe³⁺)-Verhältnisse der untersuchten Chromspinelle auf.

Abb. 10.22. Zusammensetzungen der Chromspinelleinschlüsse und Titanomagnetiteinsprenglinge in den Basalten des Proto-Merapi. Zum Vergleich sind zusätzlich Chromspinelle des Lassen Peak (Clynne, 1999) dargestellt.

Mineral		Ti-Magnetit		
	Typ I	Typ II	Typ III	
TiO ₂	0.54	1.78	0.89	8.96
Al ₂ O ₃	15.14	6.97	4.49	2.14
Cr_2O_3	44.41	20.58	6.86	0.14
Fe ₂ O ₃	10.56	38.18	55.82	49.12
FeO	18.04	28.34	28.50	38.13
MnO	0.25	0.31	0.47	0.44
MgO	10.71	3.57	2.33	0.68
Summe	99.66	99.73	99.35	99.61
Ti	0.013	0.048	0.025	0.254
Al	0.578	0.294	0.196	0.095
Cr	1.138	0.582	0.201	0.004
Fe(3)	0.258	1.028	1.554	1.393
Mg	0.517	0.190	0.128	0.038
Fe(2)	0.489	0.848	0.882	1.202
Mn	0.007	0.009	0.015	0.014
Summe	3.000	3.000	3.000	3.000
Cr/(Cr+Al)	0.663	0.664	0.506	0.041
Mg/(Mg+Fe(2))	0.514	0.183	0.127	0.031
Al/(Al+Cr+Fe(3))	0.293	0.154	0.100	0.064
Fe(3)/(Al+Cr+Fe(3))	0.131	0.540	0.797	0.933

Tab. 10.2. Repräsentative Analysen der identifizierten Chromspinelltypen und Titanomagnetiteinsprenglinge in den Proto-Merapi-Basalten. Man beachte den kompositionellen Übergang von den primitivsten Chromspinellen (Typ I) zu den Titanomagnetiten.

Demgegenüber sind die Chromspinelle von Typ III durch vergleichsweise geringe Cr_2O_3 -, Al_2O_3 - und MgO- und hohe Fe₂O₃-Gehalte sowie niedrige molare Mg/(Fe+Mg)-, $Al/(Al+Cr+Fe^{3+})$ - bzw. hohe Fe³⁺/(Al+Cr+Fe³⁺)-Verhältnisse charakterisiert und fallen zwischen die Chromspinelle von Typ I und die nahezu chromfreien Titanomagnetiteinsprenglinge derselben Probe. Die Zusammensetzungen der Chromspinelle von Typ II liegen zwischen denen der zuvor genannten Chromspinelle der Typen I und III (Abb. 10.22; Tab. 10.2).

Zusammengefaßt deuten die verschiedenen Chromspinelle unterschiedliche Stadien der frühen Kristallisationsgeschichte der Merapimagmen an.

Die am wenigsten entwickelten Chromspinelle mit der höchsten Mg# (Typ I), die gleichzeitig die höchsten Cr_2O_3 - und Al_2O_3 -Gehalte sowie die niedrigsten Fe_2O_3 -Konzentrationen aufweisen, deuten auf ein frühes magmatisches Stadium mit der Kristallisation Cr- und Al-reicher Spinelle in vergleichsweise großer Tiefe, da der Einbau von Aluminium in das Kristallgitter von Spinell im wesentlichen vom Druck abhängt.

Mit abnehmender Mg# in den Chromspinellen (Typ II) nehmen, bei unveränderten Cr/(Cr+Al)-Verhältnissen, die Gehalte an Cr, Al und die Al/(Al+Cr+Fe³⁺)-Verhältnisse ab, während die Fe³⁺/(Al+Cr+Fe³⁺)-Verhältnisse ansteigen. Dies könnte eine Fortsetzung der Kristallisationsprozesse in geringerer Tiefe während des Magmenaufstiegs anzeigen, die der Schmelze neben anderen Elementen auch Chrom entziehen.

Die Abnahme der Cr/(Cr+Al)-Verhältnisse bei nahezu unveränderten Al-Gehalten in den am weitesten entwickelten Chromspinellen (Typ III) implizieren eine Weiterführung der Kristallisationsvorgänge bei relativ konstanten "mittleren" Druckverhältnissen.

Kapitel 11 Glaszusammensetzungen und Entgasung der Merapimagmen

Schmelzeinschlüsse in Einsprenglingskristallen können wichtige Informationen über verschiedene Parameter des präeruptiven Magmasystems eines Vulkans liefern. Die geochemischen Hauptelementzusammensetzungen von Schmelzeinschlüssen erlauben z.B. Rückschlüsse auf frühere Stadien der Magmenentwicklung und Magmakammerprozesse, wie die fraktionierte Kristallisation und Magmenmischungen, welche die Zusammensetzung einer Schmelze verändert haben könnten. Die Gehalte an volatilen Elementen wie H₂O, Fluor, Schwefel und Chlor beeinflussen eine Reihe von Eigenschaften silikatischer Schmelzen, wie z.B. Liquidustemperatur, Kristallisationsabfolge und Viskosität. Der H₂O-Gehalt ist bei weitem der wichtigste Parameter, der die potentielle Explosivität und damit das Eruptionsverhalten eines Vulkans bestimmt. Schmelzeinschlüsse in Einsprenglingskristallen können Hinweise auf die Volatilenkonzentration eines Magmas vor der Extrusion geben. Darüber hinaus ermöglicht ein Vergleich mit den nach einer Eruption im Magma verbliebenen Volatilen eine Abschätzung des Grades der syneruptiven Entgasung und schließlich des Einflusses leichtflüchtiger Elemente auf das Eruptionsverhalten eines Vulkans.

Für die Bestimmung der Hauptelement- und Volatilenkonzentrationen (F, S, Cl) von Schmelzeinschlüssen und Matrixgläsern mit der Elektronenmikrosonde (EMS) wurden insgesamt 17 Proben ausgewählt, die eine Reihe verschiedener Lithologien, wie z.B. dichte Lavadomkomponenten, brotkrustenartige Komponenten und stark aufgeschäumte Bimsklasten aus verschiedenen pyroklastischen Strom- und Fallablagerungen der rezenten und holozänen Eruptionsperiode des Merapi, umfassen.

Petrographische Beschreibung der Glaseinschlüsse und Matrixgläser

Petrographie der Glaseinschlüsse

Glaseinschlüsse in den Merapilaven finden sich vor allem in Klinopyroxen- und Plagioklaseinsprenglingen, seltener in Amphibol, Orthopyroxen und Titanomagnetit. Die Größe der Einschlüsse variiert von < 10 μ m bis 50 μ m und erreicht in wenigen Fällen mehr als 100 μ m. Der Durchmesser des überwiegenden Teils der Einschlüsse beträgt zwischen 10 und 30 μ m. Plagioklas enthält generell die meisten Einschlüsse, die oft entlang der Kristallflächen angeordnet sind. Allerdings sind die Einschlüsse in der Regel relativ klein, so daß in nur wenigen Fällen Schmelzeinschlüsse in Plagioklaskristallen analysiert werden konnten. Die besten Einschlüsse für die EMS-Analysen finden sich in Klinopyroxeneinsprenglingen. Im allgemeinen treten mehrere, regellos verteilte Einschlüsse in einem Kristall auf. Die Einschlüsse bestehen vorwiegend aus hellbraunem und in selteneren Fällen aus farblosem Glas. Dabei deutet die hellbraune Farbe möglicherweise auf eine gewisse posteruptive Oxidation des zweiwertigen Eisens. Die Formen der Glaseinschlüsse sind vielfältig und reichen von rundlichen, kantengerundeten, ovalen und unregelmäßigen bis hin zu teilweise elongierten Formen (Abb. 11.1).

Abb. 11.1. Glaseinschlüsse (*GI*) in einem Klinopyroxenkristall, umgeben von blasigem Bimsglas (Probe: M97-053; Trayem-Tephra). Der unregelmäßig geformte Einschluß im oberen Bereich des Kristalls enthält ein bis zwei relativ große primäre Gasblasen und einen gleichzeitig eingeschlossenen Titanomagnetitkristall (heller Kristall). Der rundliche Einschluß in der Mitte des Kristalls hat einen Durchmesser von ca. 50 μ m und enthält neben frischem Glas eine kleine Kontraktionsgasblase ("shrinkage vesicle"; "vapor contraction bubble"). Der kleinere Einschluß in der rechten unteren Hälfte des Kristalls zeigt eine unregelmäßigere Form und enthält neben einer kleinen Gasblase zwei kleine Apatitkristalle (helle Kristalle).

Viele der Glaseinschlüsse enthalten frisches Glas, was auf eine schnelle Abkühlung während der Eruption hindeutet (Dunbar & Kyle, 1993). Andere wiederum sind teilweise entglast und häufig durch kleine, oft nadelige Kristallphasen an der Grenze zwischen dem Schmelzeinschluß und dem umgebenden Mineral gekennzeichnet, die Kristallisationsvorgänge nach dem Einschließen der Schmelze anzeigen. Kristalle, die gleichzeitig mit der Schmelze eingeschlossen wurden, können ebenso beobachtet werden. Generell handelt es sich dabei um Apatit oder Titanomagnetit (Abb. 11.1). Viele der untersuchten Einschlüsse enthalten eine, selten mehrere

kleine Gasblasen. Diese können primären Ursprungs sein und z.B. eine separate Fluidphase anzeigen, die zusammen mit der Schmelze eingeschlossen wurde oder sich beim Erreichen der Sättigungsgrenze während des Magmenaufstiegs gebildet hat. Bei dem überwiegenden Teil der auftretenden Gasblasen handelt es sich jedoch mit großer Wahrscheinlichkeit um sogenannte Kontraktionsgasblasen ("shrinkage vesicles"; "vapor contraction bubbles"), die durch Unterschiede im Kontraktionsverhalten zwischen dem umgebenden Mineral und dem Schmelzeinschluß bei der Abkühlung entstanden sind und im allgemeinen nur einen geringen Volumenanteil (<< 5 %) des gesamten Einschlusses ausmachen (Abb. 11.1). Im Gegensatz dazu deuten größere Gasblasen und Gasblasenvolumina in einigen Schmelzeinschlüssen auf extensive Kristallisationsvorgänge entlang der Einschlußränder oder die Freisetzung von Volatilen als Folge der Druckabnahme während des Magmenaufstiegs (Roedder, 1984). Einige der Glaseinschlüsse, vor allem der untersuchten Lavadomfragmente, werden von Rissen durchzogen, die häufig in das umgebende Mineral und seltener bis in den Bereich des umgebenden Matrixglases reichen. In nur einem Fall konnten sogenannte "hourglass inclusions" (Anderson, 1991) beobachtet werden, die durch eine Kapillare mit der externen Schmelze verbunden sind und möglicherweise keine primären Schmelzeinschlüsse darstellen.

Kristallinität und Gefüge der Matrixgläser

Die Grundmassengläser in den Merapiprodukten zeigen erhebliche Variationen in der Kristallinität und umfassen feinkörnige, mikrokristalline oder glasige Varietäten, die im allgemeinen aus hellbraunem oder farblosem Glas bestehen. In der Grundmasse der Domlaven finden sich häufig Plagioklas- oder Alkalifeldspatmikrolithe (Hammer et al., 2000), während in den Bimskomponenten große mikrolithfreie Matrixglasbereiche auftreten. Im Gegensatz zu den blasenreichen, hochporösen Bimsklasten, sind die Domlaven generell dicht oder nur gering porös.

Abb. 11.2 vergleicht die Gefügemerkmale von Komponenten verschiedener Typen pyroklastischer Ströme am Merapi (Tab. 3.1). Typische Domlaven können variable Porositäten und überwiegend unregelmäßig geformte Blasenhohlräume aufweisen, sind in vielen Fällen jedoch dicht oder durch geringe Porositäten gekennzeichnet (Abb. 11.2.a). Die Grundmasse der abgebildeten Probe aus dem pyroklastischen Strom von 1994 (Typ A) weist kleine, unregelmäßig geformte Blasenhohlräume (< 5 μ m) auf und besteht aus bräunlichem Glas, das reich an Plagioklasmikrolithen (40-50 Vol.%) ist. Hinzu kommen kleinere Kristalle von Pyroxenen und Oxiden. Abb. 11.2.b zeigt typische Merkmale einer blumenkohlartigen Komponente aus einem pyroklastischen Strom vom Typ B. Die Grundmasse besteht auch in diesem Fall aus bräunlichem Glas. Die Porosität dieser Komponenten ist im allgemeinen deutlich höher als bei den typischen Domlaven. Grundmassenmikrolithe (vorwiegend Plagioklas) sind charakteristisch und deutlich weniger häufig als in den dichten Domkomponenten. Brotkrustenkomponenten aus pyroklastischen Strömen vom Typ C enthalten größere mikrolithfreie Matrixglasbereiche und sind durch vergleichsweise hohe Porositäten und relativ große und rundliche Blasenhohlräume charakterisiert (Abb. 11.2.c). Juvenile Komponenten der pyroklastischen Ströme von Typ D (Abb. 11.2.d) sind hochporös und weisen überwiegend mikrolithfreie, teilweise aber auch mikrolithführende Matrixglasbereiche auf. Die Blasenhohlräume sind im allgemeinen rundlich und erreichen Durchmesser bis zu 100 µm.

Abb. 11.2. BSE-Bilder der Gefüge verschiedener Komponenten der am Merapi auftretenden pyroklastischen Ströme (Tab. 3.1): (a) Dichte, mikrolithreiche Lavadomkomponente; (b) blumenkohlartige Komponente mit vielen leistenförmigen Plagioklaskriställchen in einer glasig ausgebildeten Matrix; (c) Brotkrusten- und (d) Bimskomponete mit großen Blasenhohlräumen und nahezu mikrolithfreien Grundmassenbereichen. *Dunkle Kristalle* Feldspäte; *helle Kristalle* Pyroxene, Oxide und Apatit. Man beachte den unterschiedlichen Maßstab von Abb. 11.2.d.

In Abb. 11.3 sind BSE-Bilder typischer Lithologien (sub)plinianischer Bimsfallablagerungen des Merapi dargestellt. Diese sind allgemein durch eine hochporöse Grundmasse gekenn-

zeichnet. Die Blasenhohlräume sind relativ groß, häufig und lediglich durch dünnwandiges Bimsglas voneinander getrennt. Abb. 11.3.b zeigt einen etwas größeren Ausschnitt einer Bimsprobe aus der Jurangjero 1-Tephra und verdeutlicht den mikrolithfreien bis mikrolitharmen Charakter der Bimsgläser. Im Vergleich zu den Bimskomponenten der pyroklastischen Ströme (Abb. 11.2.d) ist die Matrix der Bimsklasten aus den Tephrafallablagerungen durch eine noch höhere Porosität gekennzeichnet.

Abb. 11.3. BSE-Bilder der Matrix von Bimskomponenten (sub)plinianischer Tephrafallablagerungen am Merapi: (a) Trayem-Tephra; (b) Jurangjero 1-Tephra. Die hellen Kristalle sind Pyroxene (Abb. 11.3.a) und nadelige Apatitkristalle (Abb. 11.3.b). Man beachte die unterschiedlichen Maßstäbe.

Hauptelementgeochemie der Glaseinschlüsse und Matrixgläser

Geochemische Variationen

Die durchschnittlichen Hauptelementzusammensetzungen der Glaseinschlüsse und Matrixoder Grundmassengläser der untersuchten Merapiproben sind in Tab. 11.1 und Tab. 11.2 zusammengestellt.

Sämtliche Glaseinschlüsse weisen im Vergleich zu der entsprechenden Gesamtgesteinszusammensetzung deutlich höhere SiO₂-Gehalte auf und sind überwiegend dazitischer Zusammensetzung (normiert, H₂O-frei) (Abb. 11.4). Auffallend sind die teilweise hohen Alkalien- und vor allem K₂O-Gehalte vieler Glaseinschlüsse (Abb. 11.4, Tab. 11.1). Die durchschnittlichen SiO₂-Gehalte reichen von ca. 61.8 bis 69.6 Gew.% SiO₂ (normiert, H₂O-frei), was insgesamt der Gesamtvariation der Einschlüsse in den Klinopyroxeneinsprenglingen entspricht. Die durchschnittlichen Zusammensetzungen der Glaseinschlüsse in den übrigen Einsprenglingsphasen liegen zwischen diesen Extremwerten und variieren zwischen 63.2 Gew.% SiO₂ (Einschlüsse in Magnetit) und 66.3 bis 68.1 Gew. SiO_2 (Einschlüsse in Amphibol). Im AFM-Diagramm (Abb. 11.5) sind die Glaseinschlußzusammensetzungen im Vergleich zu den Gesamtgesteinsproben in Richtung höherer Alkaliengehalte und geringeren MgO- und FeO-Konzentrationen verschoben und zeigen damit den vergleichsweise hohen Differentiationsgrad der Glaseinschlüsse an.

Abb. 11.4. TAS-Klassifikationsdiagramm (Le Bas et al., 1986) der durchschnittlichen Glaseinschluß- und Matrixglaszusammensetzungen (Tab. 11.1, 11.2) im Vergleich zu den Gesamtgesteinsproben. Alle Analysen normiert auf 100 Gew.%, H₂O-frei. Die Felder für sämtliche Glas-Einzelmessungen (Tab. A6.1, A6.2) sind ebenfalls dargestellt.

Die durchschnittlichen Zusammensetzungen der Matrixgläser (Tab. 11.2) in den untersuchten Merapiproben reichen von 64.7 bis 73.9 Gew.% SiO₂ (normiert, H₂O-frei) und sind demnach dazitischer oder rhyolithischer Zusammensetzung (Abb. 11.4). Generell zeigen die Matrixgläser ähnliche oder leicht erhöhte SiO₂-Gehalte (normiert, H₂O-frei) im Vergleich zu den Glaseinschlüssen der entsprechenden Probe (Tab. 11.1) und folglich deutlich höhere SiO₂-Gehalte als die jeweilige Gesamtgesteinszusammensetzung (Abb. 11.4, 11.5, 11.6).

Die Alkaliengehalte einiger Matrixgläser sind ebenfalls relativ hoch, ohne jedoch die höchsten Werte der Glaseinschlüsse zu erreichen (Abb. 11.4). Die höchsten SiO₂-Gehalte (72.4 bis 73.9 Gew.%) in den beiden untersuchten Proben aus dem pyroklastischen Strom von 1994 (M96-142, M96-145) verdeutlichen den hohen Differentiationsgrad der Merapi-Domlaven und reflektieren gleichzeitig die Entwicklungstrends der Merapimagmen hin zu SiO₂-reichen, dazitischen bis rhyolithischen Schmelzen.

Abb. 11.5. AFM-Diagramm der durchschnittlichen Glaseinschluß- und Matrixglaszusammensetzungen (Tab. 11.1, 11.2) im Vergleich zu den Gesamtgesteinsproben. Die Felder für sämtliche Glas-Einzelmessungen sind ebenfalls dargestellt. Die Trennlinien zwischen den Feldern für kalkalkalische (*CA*) und tholeiitische Gesteine (*TH*) sind von Kuno (1968) und Irvine & Baragar (1971). *FeO** Gesamteisen als FeO.

Es ist weiterhin bemerkenswert, daß die Zusammensetzungen der Gesamtgesteinsproben und entsprechenden Matrixgläser im allgemeinen systematisch variieren und hohe SiO₂-Gehalte der Gesamtgesteinsproben mit hohen SiO₂-Gehalten in der Matrix einhergehen, wobei letztere allerdings etwas größere SiO₂-Variationen aufweisen (Abb. 11.6). Im AFM-Diagramm (Abb. 11.5) zeigen sich keine prinzipiellen Unterschiede zwischen den durchschnittlichen Matrixglas- und Glaseinschlußzusammensetzungen.

Abb. 11.6. Vergleich des SiO₂-Gehalts von Matrixgläsern (Durchschnittswerte) und Gesamtgesteinsproben. Alle Analysen normiert auf 100 Gew.%, H₂O-frei.

Implikationen der Glaszusammensetzungen für die Magmenentwicklung

Die geochemischen Zusammensetzungen der untersuchten Schmelzeinschlüsse und Matrixgläser der Merapi-Vulkanite zeigen sehr viel größere Variationen und deutlich höhere Differentiationsgrade als die Gesamtgesteinsproben, deren basaltische bis andesitische Zusammensetzungen durch die hohe Kristallinität und den porphyrischen Charakter der Gesteine gepuffert werden.

Die residualen Gläser der Matrix der Merapiproben weisen dazitische bis rhyolithische Zusammensetzungen auf und verdeutlichen die Differentiation der Merapimagmen hin zu SiO₂reichen, hochviskosen Magmen, die in der jüngeren Eruptionsgeschichte des Merapi in Form dazitischer bis rhyolithischer Lavadome extrudieren.

Die höchsten SiO₂-Gehalte finden sich in den mikrolithreichen Matrixgläsern der dichten Lavadomkomponenten des pyroklastischen Stroms von 1994, deren hohe SiO₂-Gehalte auf die durch syneruptive Entgasungsprozesse hervorgerufene Kristallisation von Grundmassephasen (Hammer et al., 2000) zurückgeführt werden können.

Im Gegensatz zu den Gesamtgesteinszusammensetzungen sind die Matrixgläser der Merapivulkanite generell durch hohe K_2O/Na_2O -Verhältnisse > 1.0 gekennzeichnet, die vermutlich direkt mit der (syn- und posteruptiven) Kristallisation Na-reicher Feldspäte in Zusammenhang stehen.

Tab. 11.1. Durchschnittlicher Hauptelement- und Volatilengehalt von Glaseinschlüssen ausgewählter Merapiproben. Alle Angaben in Gew.%. *n* Anzahl der Hauptelementanalysen (in Klammer: Analysen inkl. F, S, Cl); *SD* Standardabweichung (Gesamtdatensatz in Tab. A6.1).

Rezente Domlaven und pyroklastische Ströme M95-011 3 cpx 4 (3) 66.09 0.56 15.36 4.04 0.15 0.65 2.20 4.59 5.67 0.18 99.49 0.061 0 SD 0.61 0.08 0.11 0.57 0.05 0.09 0.15 0.57 0.70 0.04 0.31 0.007 0 plag 4 (2) 66.11 0.53 15.41 3.81 0.20 0.67 2.26 4.94 5.45 0.13 99.50 0.067 0.067	0.0260.3260.0050.0190.0240.3320.0060.0290.0200.317
M95-011 3 cpx 4 (3) 66.09 0.56 15.36 4.04 0.15 0.65 2.20 4.59 5.67 0.18 99.49 0.061 0 SD 0.61 0.08 0.11 0.57 0.05 0.09 0.15 0.57 0.70 0.04 0.31 0.007 0 plag 4 (2) 66.11 0.53 15.41 3.81 0.20 0.67 2.26 4.94 5.45 0.13 99.50 0.067 0.067	0.0260.3260.0050.0190.0240.3320.0060.0290.0200.317
SD 0.61 0.08 0.11 0.57 0.05 0.09 0.15 0.57 0.70 0.04 0.31 0.007 (plag 4 (2) 66.11 0.53 15.41 3.81 0.20 0.67 2.26 4.94 5.45 0.13 99.50 0.067 0	0.0050.0190.0240.3320.0060.0290.0200.317
plag 4 (2) 66.11 0.53 15.41 3.81 0.20 0.67 2.26 4.94 5.45 0.13 99.50 0.067 (0.0240.3320.0060.0290.0200.317
	0.020 0.317
SD 0.06 0.06 0.24 0.43 0.08 0.09 0.09 0.14 0.55 0.04 0.51 0.012 0	0.020 0.317
M96-142 1 cpx 10 (9) 67.04 0.52 15.72 2.67 0.17 0.33 1.54 5.04 5.59 0.14 98.76 0.057 (0.006 0.048
M06145 = 1 arr 6 (6) 67.56 0.42 16.08 2.74 0.10 0.22 1.42 4.58 5.72 0.18 0.012 0.074 (7.56) 0.74 0.17 0.18 0.12 0.074 (7.56) 0.18 0	0.000 0.048
SD 154 0.06 0.90 0.17 0.07 0.03 0.10 0.50 0.13 0.09 0.12 0.022 ($0.018 \ 0.018$
M97-068 3 cmx 23 (12) 61 16 0.66 17 48 4 54 0 14 1 10 2 76 5 50 5 31 0 26 98 92 0 086 (0.02 0.020
SD 1.01 0.10 0.52 0.56 0.05 0.17 0.46 0.31 0.47 0.03 0.89 0.019 (0.006 0.015
Juvenile Komponenten holozäner pyroklastischer Ströme	
M96-137 1 cpx 11 (11) 67.81 0.38 15.83 4.15 0.10 0.64 2.58 3.02 4.09 0.06 98.65 0.090 (0.019 0.326
SD 1.32 0.10 0.56 0.22 0.05 0.18 0.11 0.80 0.31 0.03 0.75 0.027 (0.005 0.032
M97-0392 4 cpx 14 (14) 62.76 0.63 17.15 3.60 0.17 1.09 2.37 4.17 4.69 0.22 96.86 0.063 (0.031 0.322
SD 1.40 0.08 0.49 0.35 0.04 0.10 0.35 0.77 0.32 0.05 1.28 0.021 (0.010 0.018
plag 2 (2) 64.53 0.58 16.29 3.23 0.19 0.96 2.39 3.27 5.20 0.26 96.90 0.049 (0.023 0.313
SD 0.16 0.02 0.63 0.14 0.12 0.01 0.00 0.21 0.03 0.13 0.78 0.016 0	0.001 0.037
mt 1 (1) 59.69 0.79 16.40 4.45 0.16 0.97 2.50 4.57 4.63 0.22 94.39 0.033 (0.022 0.293
SD	
M97-045 2 cpx 3 (3) 62.75 0.46 18.44 4.03 0.09 1.26 2.50 3.51 5.67 0.38 99.08 0.137 (0.034 0.312
SD 0.64 0.01 0.39 0.33 0.03 0.15 0.25 0.04 0.16 0.04 0.13 0.017 0	0.004 0.013
M98-0532 1 cpx 6 (6) 68.11 0.55 16.83 2.58 0.06 0.85 1.94 3.28 3.78 0.22 98.19 0.034 (0.029 0.299
SD 0.48 0.07 0.30 0.14 0.03 0.03 0.12 0.30 0.05 0.02 0.30 0.003 0	0.004 0.018
M98-059 I cpx 5 (5) 64.18 0.55 17.66 4.03 0.17 0.77 1.79 4.11 5.70 0.24 99.19 0.093 0	0.030 0.347
M00.066 1 mr = 5 (5) (4.42) 0.(1 17 41 4.12) 0.16 0.75 0.59 0.20 0.19 0.05 0.32 0.030 0.044 (5) 0.04	0.000 0.030
M198-000 1 cpx 5 (5) 64.43 0.01 17.41 4.13 0.16 0.75 2.38 3.56 5.15 0.21 98.99 0.044 (SD 0.60 0.03 0.97 0.26 0.05 0.14 0.24 0.49 0.03 0.97 0.012 ($0.029 \ 0.369$
M98.096 4 cmv 5 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.052 (5) 67.10 0.41 16.51 1.46 0.13 0.82 1.92 3.92 3.90 0.20 96.37 0.058 (5) 0.12 0.91	0.005 0.005
SD 0.55 0.07 0.17 0.31 0.03 0.07 0.10 0.11 0.30 0.03 0.71 0.022 (0.005 0.031
plag 2 (2) 65.16 0.34 16.93 3.79 0.21 0.99 2.46 3.54 5.29 0.20 98.92 0.030 (0.014 0.317
SD 0.01 0.03 0.35 0.20 0.02 0.04 0.03 0.44 0.06 0.01 0.40 0.007 0	0.001 0.004
M98-0991 1 cpx 6 (6) 65.22 0.57 17.21 4.70 0.16 0.79 1.91 3.88 4.40 0.24 99.06 0.054 (0.024 0.304
SD 0.61 0.07 0.48 0.28 0.04 0.06 0.31 0.28 0.25 0.05 0.61 0.026 0	0.002 0.013
Juvenile Komponenten holozäner Fallablagerungen	
M96-075 4 cpx 20 (18) 63.62 0.40 16.57 2.95 0.16 0.66 2.38 3.44 3.94 0.20 94.31 0.022 0	0.020 0.326
SD 0.90 0.07 0.48 0.29 0.07 0.15 0.31 0.37 0.22 0.06 0.70 0.006 0	0.004 0.018
M96-157 4 cpx 1 (1) 62.96 0.51 16.78 3.87 0.15 0.78 2.43 2.76 4.85 0.36 95.46 0.085 (0.020 0.286
SD	
opx 2 (2) 63.51 0.57 16.60 4.39 0.18 0.89 2.69 3.10 4.44 0.20 96.57 0.076 (0.023 0.288
SD 0.27 0.04 0.09 0.08 0.00 0.01 0.06 0.01 0.01 0.03 0.23 0.013 0	0.002 0.004
plag 3 (3) 63.23 0.38 16.61 4.39 0.18 1.19 2.76 2.50 4.84 0.37 96.64 0.074 0	$0.025 \ 0.301$
M0(1/2) = 4 (4) (4.72) 0.40 1(.25) 2.20 0.14 1.20 2.7(-2.19) 2.7(-0.16) 0.55 0.055 (.15) 0.05 0.14 1.20 0.7(-2.19) 0.16 0.55 0.055 0	0.007 0.050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.030 0.314
M07.052 4 orv 20 (17) 65.26 0.52 16.26 2.42 0.14 0.40 2.20 2.87 2.55 0.16 0.50 0.010 0.	0.016 0.326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.010 0.320
amph 5 (0) 65.37 0.53 16.10 2.55 0.17 0.56 2.38 4.37 3.74 0.21 95.98 n.a.	n.a. n.a.
SD 0.98 0.04 0.31 0.08 0.05 0.05 0.07 0.16 0.14 0.14 1.11 -	
M98-031 4 cpx 3 (3) 64.29 0.44 15.78 3.37 0.16 0.91 2.36 4.02 4.61 0.24 96.16 0.053 (0.025 0.301
SD 0.71 0.03 0.20 0.71 0.07 0.11 0.37 0.13 0.31 0.00 0.24 0.010 (0.005 0.018
amph 2 (2) 65.44 0.56 16.79 3.53 0.18 0.81 2.34 4.11 4.70 0.20 98.66 0.040 (0.030 0.324
SD 0.12 0.05 0.20 0.03 0.01 0.03 0.10 0.12 0.03 0.01 0.04 0.002 0	0.004 0.012

* Probentyp: (1) Dichte Domkomponenten; (2) Blumenkohlartige Komponenten; (3) Brotkrustenkomponenten; (4) Bimsartige Komponenten holozäner pyroklastischer Ströme und Fallablagerungen.

Tab. 11.2. Durchschnittlicher Hauptelement- und Volatilengehalt von Matrixgläsern ausgewählter Merapiproben. Alle Angaben in Gew.%. *n* Anzahl der Hauptelementanalysen (in Klammer: Analysen inkl. F, S, Cl); *SD* Standardabweichung (Gesamtdatensatz in Tab. A6.1).

Probe	Тур*		n	SiO ₂	TiO ₂	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na ₂ O	K20	P ₂ O ₅	Summe	F	S	Cl
Rezente Domlaven und pyroklastische Ströme																	
M95-011	3	20	(5) SD	66.49 0.34	0.52 0.06	15.39 0.15	3.70 0.27	0.13 0.04	0.69 0.06	2.19 0.14	4.64 0.37	$\begin{array}{c} 5.44 \\ 0.66 \end{array}$	0.17 0.05	99.36 0.28	0.067 0.005	$0.004 \\ 0.002$	0.261 0.020
M96-142	1	6	(4) SD	71.56 0.55	0.39 0.08	13.22 0.26	2.50 0.10	0.11 0.06	0.22 0.03	1.22 0.05	4.15 0.22	5.32 0.15	0.10 0.04	98.80 0.44	0.053 0.016	0.003 0.002	0.232 0.055
M96-145	1	5	(5) SD	73.47 0.22	0.32 0.02	12.26 0.09	2.62 0.11	0.11 0.03	0.23 0.01	1.23 0.03	3.55 0.14	5.52 0.11	0.12 0.09	99.42 0.38	$\begin{array}{c} 0.065\\ 0.006\end{array}$	$\begin{array}{c} 0.002\\ 0.001 \end{array}$	0.251 0.006
M97-068	3	32	(15) SD	64.67 0.46	$\begin{array}{c} 0.61 \\ 0.06 \end{array}$	15.94 0.23	4.31 0.15	0.18 0.06	$\begin{array}{c} 0.88\\ 0.06 \end{array}$	2.33 0.11	4.65 0.14	5.39 0.10	0.25 0.04	99.21 0.53	$0.069 \\ 0.007$	$\begin{array}{c} 0.002\\ 0.001 \end{array}$	0.235 0.025
Juvenile K	ompone	nten	holozä	ner pyrok	lastisch	er Ström	е										
M96-137	1	7	(7) SD	68.75 0.50	0.38 0.04	14.94 0.33	4.06 0.28	0.16 0.05	0.63 0.05	2.20 0.04	3.76 0.49	4.11 0.19	0.06 0.03	99.04 0.27	$\begin{array}{c} 0.088\\ 0.009 \end{array}$	$\begin{array}{c} 0.003\\ 0.001 \end{array}$	0.206 0.039
M97-0392	4	14	(14) SD	63.95 0.84	0.43 0.04	17.18 0.29	4.21 0.31	0.19 0.02	$\begin{array}{c} 1.06 \\ 0.06 \end{array}$	1.99 0.24	4.23 0.52	4.71 0.27	0.32 0.10	98.28 0.87	0.064 0.013	0.013 0.003	0.265 0.031
M97-045	2	3	(3) SD	65.60 0.11	0.41 0.01	16.34 0.14	4.03 0.18	0.22 0.02	0.95 0.02	2.08 0.07	4.74 0.12	4.63 0.10	0.37 0.05	99.39 0.42	0.047 0.007	$\begin{array}{c} 0.008 \\ 0.005 \end{array}$	0.255 0.009
M98-0532	1	7	(7) SD	70.71 0.67	0.43 0.04	15.61 0.70	1.98 0.10	0.07 0.02	0.65 0.09	1.73 0.14	4.07 0.14	4.06 0.16	0.17 0.03	99.47 0.56	0.053 0.023	0.003 0.002	0.226 0.029
M98-059	1	4	(4) SD	67.95 0.33	0.40 0.03	15.91 0.10	3.55 0.09	0.15 0.06	0.64 0.03	1.58 0.09	3.14 0.07	5.31 0.04	0.18 0.03	98.80 0.42	0.053 0.004	0.004 0.001	0.278 0.020
M98-066	1	7	(7) SD	68.08 0.59	0.48 0.05	15.80 0.18	3.76 0.11	0.14 0.04	0.57 0.03	1.43 0.11	3.16 0.21	5.57 0.11	0.18 0.03	99.17 0.55	0.024 0.007	0.003 0.001	0.236 0.041
M98-096	4	4	(4) SD	64.43 0.38	0.53 0.07	17.21 0.29	4.97 0.29	0.22 0.02	$\begin{array}{c} 1.10 \\ 0.08 \end{array}$	2.44 0.15	3.37 0.20	5.11 0.11	0.19 0.08	99.57 0.18	0.059 0.005	$0.008 \\ 0.004$	0.274 0.018
M98-0991	1	3	(3) SD	68.57 0.88	0.41 0.04	15.37 0.76	4.06 0.14	0.14 0.05	0.54 0.09	1.66 0.10	3.70 0.24	4.82 0.06	0.21 0.03	99.47 0.54	0.051 0.027	0.002 0.001	0.218 0.024
Juvenile K	ompone	nten	holoză	iner Falla	ıblagerı	ingen											
M96-075	4	20	(17) SD	65.82 0.43	0.43 0.04	16.78 0.16	3.43 0.17	0.20 0.07	$\begin{array}{c} 1.00\\ 0.06 \end{array}$	3.01 0.15	3.91 0.44	4.37 0.15	0.23 0.06	99.17 0.31	0.031 0.008	0.006 0.003	0.271 0.030
M96-157	4	5	(5) SD	64.10 0.90	0.58 0.02	16.77 0.33	4.68 0.40	0.21 0.04	1.13 0.06	2.93 0.11	3.42 0.54	$\begin{array}{c} 4.68 \\ 0.06 \end{array}$	0.34 0.05	98.84 0.32	0.063 0.019	0.012 0.008	0.275 0.016
M96-163	4	5	(5) SD	67.84 1.70	0.45 0.09	16.38 0.92	3.34 0.14	0.14 0.05	1.10 0.30	2.90 0.73	3.37 0.91	3.69 0.51	0.20 0.10	99.40 0.50	0.045 0.014	0.005 0.002	0.220 0.049
M97-053	4	17	(13) SD	67.57 0.56	0.53 0.04	16.37 0.18	2.78 0.14	0.15 0.04	0.74 0.04	2.61 0.09	4.32 0.24	4.09 0.13	0.15 0.07	99.31 0.63	0.032 0.008	0.004 0.002	0.291 0.024
M98-031	4	7	(7) SD	65.87 1.25	0.50 0.07	16.85 0.51	3.86 0.61	0.21 0.03	0.93 0.20	2.66 0.34	3.53 0.28	4.92 0.18	0.24 0.10	99.56 0.42	0.076 0.017	0.006	0.269 0.018

* Probentyp: (1) Dichte Domkomponenten; (2) Blumenkohlartige Komponenten; (3) Brotkrustenkomponenten; (4) Bimsartige Komponenten holozäner pyroklastischer Ströme und Fallablagerungen.

Viele der analysierten Glaseinschlüsse in den Merapi-Vulkaniten weisen einen ähnlichen oder etwas geringeren Differentiationsgrad als die entsprechenden Matrixgläser auf und fallen damit teilweise in den Bereich einer hypothetischen Schmelzentwicklungslinie zwischen Gesamtgesteins- und Matrixglaszusammensetzung.

Einige der untersuchten Schmelzeinschlüsse sind jedoch durch vergleichsweise hohe Alkalienund vor allem hohe K₂O-Gehalte gekennzeichnet, die z.T. über denen der entsprechenden Matrixgläser liegen und damit im "Ungleichgewicht" mit den Gesamtgesteins- und Matrixglaszusammensetzungen stehen (Anderson, 1976; Halsor, 1989). Zusammen mit den hohen Differentiationsgraden deuten die genannten geochemischen Charakteristika dieser Schmelzeinschlüsse am Merapi möglicherweise auf den Einfluß von Mischungen zwischen basischen und höher differenzierten Magmen in deren Genese.

Volatilengehalt und Entgasung der Merapimagmen

Petrologische Methode

Die petrologische Methode ist der einzige methodische Ansatz zur Abschätzung der Freisetzung volatiler Elemente prähistorischer Eruptionen, deren Gas-Partikel-Gemisch nicht die Stratosphäre erreicht oder nicht durch einen Säureniederschlag in Eiskernen nachweisbar ist (Anderson, 1974; Devine et al., 1984; Anderson et al., 1989; Sigurdsson, 1990).

Abb. 11.7. Schematische Darstellung des Prinzips der petrologischen Methode zur Abschätzung präeruptiver Volatilengehalte und syneruptiver magmatischer Entgasung durch die Differenz zwischen dem Volatilengehalt in Schmelzeinschlüssen und Matrixglas.

Die Methode basiert auf der Differenz der Volatilenkonzentrationen zwischen silikatischen Glaseinschlüssen in Einsprenglingskristallen (präeruptiver Volatilengehalt) und Matrixglas (posteruptiver Volatilengehalt) und kann bei bekanntem geförderten Magmenvolumen (DRE) zur Abschätzung der Gesamtmenge freigesetzter volatiler Elemente während einer Eruption herangezogen werden.

Glas- oder Schmelzeinschlüsse in Einsprenglingskristallen können Hinweise auf die Volatilenkonzentration eines Magmas vor der Extrusion oder den präeruptiven Volatilengehalt eines Magmas geben. Voraussetzung hierfür ist, daß zwischen dem Zeitpunkt des Einschließens und der Eruption ein geschlossenes System vorliegt, so daß die ursprünglichen Volatilenkonzentrationen der eingeschlossenen Schmelze erhalten bleiben (Anderson et al., 1989; Hervig et al., 1989; Westrich & Gerlach, 1992). Koexistierende Matrixgläser stellen die nach wie vor flüssigen und teilweise entgasten Bestandteile eines Magmas nach der Eruption dar und geben damit einen Hinweis auf den nach der Eruption im Magma verbliebenen gelösten Volatilengehalt (Abb. 11.7).

Die gleichzeitige Untersuchung von Glaseinschlüssen und koexistierenden Matrixgläsern erlaubt damit eine Abschätzung der syneruptiven Entgasungsgeschichte eines Magmas und kann zudem Informationen über den Einfluß volatiler Komponenten und magmatischer Entgasungsprozesse auf das Eruptionsverhalten eines Vulkans liefern.

Die petrologische Methode ermöglicht im allgemeinen lediglich eine Mindestabschätzung des präeruptiven Volatilengehalts eines Magmas und der magmatischen Entgasung während einer Eruption, da (1) die fortschreitende Kristallisation zwischen dem Zeitpunkt des Einschließens der Schmelze und der Eruption, (2) die magmatische Entgasung vor dem Einschließen der Schmelzfraktion, (3) die Entgasung intrusiver bzw. nicht eruptierender Magmen, (4) der Einfluß Cl-, S- und F-haltiger Mineralphasen, die durch Abbaureaktionen zum Volatilenbudget beitragen können und (5) das Vorhandensein einer freien bzw. überschüssigen Gasphase in der Magmakammer nicht berücksichtigt bzw. mit der Methode nicht erfaßt werden (Devine et al., 1984; Sigurdsson, 1990; Westrich & Gerlach, 1992; Gerlach et al., 1994).

Petrologische Abschätzung der Entgasung der Merapimagmen

Volatilenzusammensetzung von Glaseinschlüssen und Matrixgläsern

Die mit der Elektronenmikrosonde ermittelten Gehalte der leichtflüchtigen Elemente Fluor, Schwefel und Chlor in den Glaseinschlüssen und entsprechenden Matrixgläsern der untersuchten Merapiproben sind in Tab. 11.1 und Tab. 11.2 zusammengestellt.

Die durchschnittlichen Fluorkonzentrationen in den Glaseinschlüssen der untersuchten Proben variieren zwischen 200 und 1370 ppm und zeigen damit einen etwas größeren Variationsbereich als die durchschnittlichen Matrixglaszusammensetzungen, die ähnliche F-Gehalte zwischen 240 und 880 ppm aufweisen. Der maximal beobachtete Fluorgehalt einzelner Glaseinschlüsse beträgt 1560 ppm, gemessen in Probe M97-045. Im allgemeinen liegen die Fluorgehalte jedoch unterhalb 1000 ppm und zeigen ähnliche Konzentrationen in den Einschlüssen und Matrixgläsern (Abb. 11.8). Abb. 11.9 vergleicht die durchschnittlichen Fluorgehalte von

Glaseinschlüssen und Matrixgläsern innerhalb einzelner Proben. Fast alle Proben liegen in der Nähe der Winkelhalbierenden, die identische Fluorkonzentrationen in Glaseinschlüssen und Matrixgläsern einer Probe anzeigt. Dabei können die Fluorgehalte der Einschlüsse höher oder niedriger als diejenigen des entsprechenden Matrixglases sein.

Abb. 11.8. Histogramme der F-, S- und Cl-Gehalte von Glaseinschlüssen (*GI*) und Matrixgläsern.

Im Gegensatz zu Fluor zeigen sich bei den Schwefelgehalten trotz der insgesamt geringen Konzentrationen deutliche Unterschiede zwischen Glaseinschlüssen und Matrixgläsern. Die durchschnittlichen Schwefelgehalte in den Glaseinschlüssen betragen zwischen 140 und 340 ppm und erreichen Werte von maximal 500 ppm (Probe M97-0392) in einzelnen Einschlüssen. Im Vergleich zu diesen sind die Schwefelkonzentrationen in den Matrixgläsern der untersuchten Merapiproben durchweg niedriger (durchschnittlich 20 bis 130 ppm; maximal 210 ppm) und zeigen keine signifikante Überschneidung mit den Schwefelgehalten der Glaseinschlüsse (Abb. 11.8, 11.9).

Wie bei Schwefel, so zeigen sich auch bei den Chlorgehalten signifikante Unterschiede zwischen Glaseinschlüssen und Matrixgläsern. Generell reichen die durchschnittlichen Chlorkonzentrationen sämtlicher untersuchter Glaseinschlüsse der Merapimagmen von 2860 bis 3690 ppm, die einzelner Einschlüsse von 2520 bis 4550 ppm (Abb. 11.8). Im Gegensatz dazu weisen die koexistierenden Matrixgläser generell niedrigere Chlorkonzentrationen auf, wobei die durchschnittlichen Chlorgehalte zwischen 2060 und 2910 ppm, und die Chlorkonzentrationen einzelner Matrixglasmessungen zwischen 1410 und 3300 ppm variieren (Abb. 11.8). Ein Vergleich der durchschnittlichen Chlorgehalte der Glaseinschlüsse mit denen der Matrixgläser der entsprechenden Probe zeigt, daß die Einschlüsse generell höhere Chlorgehalte aufweisen (Abb. 11.9). Die teilweise hohen Standardabweichungen für Einschlüsse und Matrixgläser verdeutlichen die substantielle Variation der Chlorkonzentrationen innerhalb der einzelnen Merapiproben.

Abb. 11.9. Durchschnittliche F-, S-, Cl- und H_2O^* -Gehalte von Glaseinschlüssen (*GI*) (Tab. 11.1), aufgetragen gegen die durchschnittliche Konzentration des jeweiligen Elements in den Matrixgläsern (Tab. 11.2) der entsprechenden Probe.

Die Gesamtvolatilengehalte der Merapimagmen können aus der Summe der EMS-Messungen der Gläser abgeschätzt werden (Volatilenkonzentration = 100 Gew.% - analytische Summe der

Hauptelementoxide). Diese reichen von durchschnittlich 0.5 bis 5.7 Gew.% (max. 6.8 Gew.%) in den analysierten Glaseinschlüssen und von 0.4 bis 1.7 Gew.% (max. 2.6 Gew.%) in den Matrixgläsern (Tab. 11.1, 11.2). Insgesamt deuten die geringen F-, S- und Cl-Gehalte darauf hin, daß es sich bei den leichtflüchtigen Elementen zum überwiegenden Teil um H₂O handelt, dessen Löslichkeit in SiO₂-reichen vulkanischen Gläsern deutlich höher als z.B. diejenige von CO_2 ist (Silver et al., 1990). Die H₂O-Konzentrationen können damit annähernd durch die Gleichung: H₂O* = Gesamtvolatile - (F+S+Cl) abgeschätzt werden. Ein Vergleich verschiedener analytischer Methoden zur Bestimmung des H₂O-Gehalts vulkanischer Gläser (Devine et al., 1995) zeigt, daß die durch die Differenz der EMS-Analysen ermittelten H₂O-Konzentrationen generell gut mit denen direkter Analysemethoden (z.B. FTIR) übereinstimmen, obgleich die analytische Ungenauigkeit der EMS-Messungen größer ist und im allgemeinen mehr als 0.5 Gew.% beträgt.

Die durchschnittlichen analytischen Summen der Matrixglasanalysen (Tab. 11.2) reichen in vielen Fällen nahe an 100 Gew.% heran, was auf insgesamt geringe H_2O^* -Konzentrationen in diesen Gläsern hindeutet. Im Gegensatz dazu weisen Glaseinschlüsse in einzelnen Proben deutlich geringere durchschnittliche analytische Summen auf, die H_2O^* -Gehalte bis zu 5.3 Gew.% anzeigen. Die geringsten analytischen Summen implizieren maximale H_2O^* -Gehalte in den Schmelzeinschlüssen von ca. 6.4 Gew.% (Probe M97-053; Glaseinschlüsse in Klinopyroxen). Insgesamt zeigen die Glaseinschlüsse in den Merapiproben große Unterschiede in den H_2O^* -Gehalten, die zum Teil erheblich höher sind als in den Matrixgläsern der entsprechenden Probe (Abb. 11.9).

Es ist beachtenswert, daß hohe H_2O^* -Gehalte ausschließlich in Bimsklasten aus (sub)plinianischen Fallablagerungen und pyroklastischen Strömen (M96-075, M96-157, M96-163, M97-0392, M97-053, M98-031, M98-096) dokumentiert sind. Demgegenüber weisen Schmelzeinschlüsse in dichten Lavadomkomponenten sowie in Blumenkohl- und Brotkrustenkomponenten aus Lavadom- oder Eruptionssäulenkollaps-Nuées ardentes (M95-011, M96-137, M96-142, M96-145, M97-045, M97-068, M98-0532, M98-059, M98-066; M98-0991) deutlich geringere und nicht primäre H_2O^* -Gehalte zwischen 0.1 und 1.5 Gew.% auf und haben einen Großteil ihres ursprünglichen H_2O^* -Gehalts verloren. Es ist bemerkenswert, daß keine eindeutige Korrelation zwischen dem H_2O^* -Gehalt und den leichtflüchtigen Elementen F, S und Cl besteht. Dies bedeutet, daß die Prozesse, die für die hohen oder niedrigen H_2O^* -Gehalte in den Schmelzeinschlüssen verantwortlich sind, keine systematischen Auswirkungen auf die Konzentration von F, S oder Cl haben. Das Fehlen systematischer Korrelationen könnte auch darauf zurückgeführt werden, daß S, Cl und möglicherweise auch F beim Einschließen der Schmelze bereits zu einem gewissen Grad in einer Gasphase enthalten waren.

Zusammengefaßt zeigen die Ergebnisse der EMS-Analytik, daß die Matrixgläser (posteruptiver Zustand) im allgemeinen stärker entgast sind als die Schmelzeinschlüsse (präeruptiver Zustand). Die Unterschiede in den Konzentrationen volatiler Elemente in den Glaseinschlüssen und Matrixgläsern innerhalb einer Probe sind offensichtlich für Schwefel und Chlor und weniger eindeutig im Falle von Fluor.

Verhältnisse leichtflüchtiger Elemente

In Abb. 11.10 sind Verhältnisse leichtflüchtiger Elemente gegen spezifische Elementkonzentrationen in den Glaseinschlüssen und Matrixgläsern der untersuchten Merapiproben aufgetragen. Die dargestellten Verhältnisse stellen wie die Elementkonzentrationen Durchschnittswerte der einzelnen Proben dar (Tab. 11.1, 11.2). Für einen besseren Vergleich zwischen Glaseinschlüssen und Matrixgläsern der gleichen Probe sind die Elementverhältnisse zusätzlich in Tab. 11.3 aufgeführt.

Abb. 11.10.a-d zeigt die durchweg geringeren Schwefel- und Chlorgehalte der Matrixgläser relativ zu den Schmelzeinschlüssen. Weiterhin sind die Matrixgläser im Vergleich zu den Glaseinschlüssen durch höhere F/S- und Cl/S-Verhältnisse gekennzeichnet. Die vergleichsweise geringen S- und Cl-Gehalte in den Matrixgläsern relativ zu den Schmelzeinschlüssen belegen den volatilen Charakter beider Elemente.

Probe Typ		F/S		Cl/S		Cl/F		
		GI (cpx)	Matrix	GI (cpx)	Matrix	GI (cpx)	Matrix	
Rezente Dom	laven und p	vyroklastische Ströme	2					
M95-011	3	2.3	19.7	12.9	77.7	5.6	3.9	
M96-142	1	3.1	27.4	16.9	109.9	6.1	4.6	
M96-145	1	4.3	36.3	18.4	142.2	4.5	3.9	
M97-068	2	4.4	41.4	15.8	135.6	3.7	3.4	
Juvenile Kon	ıponenten h	olozäner pyroklastis	cher Ströme					
M96-137	1	12.5	37.6	47.1	89.1	3.8	2.4	
M97-0392	4	2.2	5.3	11.2	22.4	5.9	4.4	
M97-045	2	4.1	7.2	9.3	37.6	2.3	5.5	
M98-0532	1	1.2	19.5	10.4	89.6	9.0	5.1	
M98-059	1	3.4	17.2	12.2	88.8	4.1	5.2	
M98-066	1	1.6	10.7	13.3	107.9	8.9	10.7	
M98-096	4	2.2	8.8	14.5	40.0	7.1	4.6	
M98-0991	1	2.2	22.2	12.5	95.4	6.6	5.6	
Juvenile Kon	ıponenten h	olozäner Fallablage	rungen					
M96-075	4	1.1	6.9	16.7	58.3	16.0	9.4	
M96-157	4	4.3	7.1	14.3	33.6	3.4	4.8	
M96-163	4	1.9	10.0	10.9	45.3	5.9	5.1	
M97-053	4	1.3	8.5	21.6	77.9	17.9	9.7	
M98-031	4	2.1	15.3	12.2	54.0	5.9	3.7	

Tab. 11.3. Durchschnittliche Verhältnisse leichtflüchtiger Elemente in Glaseinschlüssen in Klinopyroxeneinsprenglingen und Matrixgläsern der entsprechenden Probe.

Abb. 11.10. Durchschnittliche Verhältnisse leichtflüchtiger Elemente gegen spezifische Elementkonzentrationen in Glaseinschlüssen (offene Symbole, wie Abb. 11.9) und Matrixgläsern (ausgefüllte Symbole) der untersuchten Merapiproben.

Gleichzeitig zeigen die höheren Cl/S-Verhältnisse in den Matrixgläsern den vergleichsweise volatileren Charakter bzw. die stärkere magmatische Entgasung von S relativ zu Cl. Ferner deuten die erhöhten F/S-Verhältnisse in den Matrixgläsern darauf hin, daß sich S auch im Vergleich zu F deutlich volatiler verhält und in einem größeren Umfang syneruptiv freigesetzt wird.

Abb. 11.11.e-f zeigt die Cl/F-Verhältnisse relativ zu Cl und F für Einschlüsse und Matrixgläser. Wie bereits erwähnt sind die Cl-Gehalte in den Matrixgläsern durchweg niedriger als in den Schmelzeinschlüssen. Betrachtet man die geringen Cl-Gehalte in den Matrixgläsern als Kennzeichen entgaster Magmen, so scheint es, als würden die Cl/F-Verhältnisse während des Entgasungsprozesses aufgrund des volatileren Verhaltens von Cl relativ zu F überwiegend abnehmen (Abb. 11.11.e; Tab. 11.3). Trotz der höheren analytischen Ungenauigkeit im Falle von F, läßt sich eine deutliche negative Korrelation zwischen den Cl/F-Verhältnissen und den F-Gehalten in Glaseinschlüssen und Matrixgläsern feststellen. Gleichzeitig scheinen die Matrixgläser bei vergleichbaren F-Gehalten durch geringere Cl/F-Verhältnisse gekennzeichnet zu sein (Abb. 11.11.f). Geringe Cl/F-Verhältnisse sind demnach ein anscheinend generelles Kennzeichen entgaster Magmen am Merapi und implizieren den volatileren Charakter von Cl relativ zu F. Lediglich bei einigen wenigen Proben sind die Cl/F-Verhältnisse in den Matrixgläsern höher als in den entsprechenden Glaseinschlüssen (Tab. 11.3).

Abb. 11.11. Durchschnittliche F/S- gegen Cl/F-Verhältnisse in Glaseinschlüssen und Matrixgläsern der untersuchten Merapiproben.

Die Beobachtung, daß die Einschlüsse und Matrixgläser mit den geringsten Cl/F-Verhältnissen gleichzeitig die höchsten F-Gehalte aufweisen, deutet ferner darauf hin, daß F während der fortschreitenden Kristallisation in der residualen Schmelze angereichert wird. Das unter-

schiedliche Verhalten von F und Cl ist konsistent mit den Ergebnissen experimenteller Untersuchungen, die zeigen, daß sich Cl bevorzugt in der Fluid- oder Gasphase konzentriert, während F eher in der residualen silikatischen Schmelze angereichert wird (Shinohara et al., 1989; Webster, 1990).

Insgesamt implizieren die Glaseinschluß- und Matrixglasdaten, daß die Merapimagmen in einem offenen System in der Reihenfolge S > Cl > (F) entgasen. Abb. 11.11 verdeutlicht diese Abfolge des Grades der Entgasung durch die generelle Abnahme der Cl/F-Verhältnisse bei gleichzeitiger deutlicher Zunahme der F/S-Verhältnisse im Verlauf der magmatischen Entgasung. Die geringen Schwefel- und allgemein variablen Volatilenkonzentrationen in den untersuchten Schmelzeinschlüssen deuten überdies darauf hin, daß präeruptive Entgasungsprozesse deren Konzentrationen an leichtflüchtigen Elementen beeinflußt haben und diese damit keine primären Gehalte mehr darstellen.

Zusammenfassung und Schlußfolgerungen

Die in diesem Kapitel präsentierten Hauptelement- und Volatilenzusammensetzungen von Schmelzeinschlüssen und Matrixgläsern in den Merapivulkaniten haben weitreichende Implikationen für die geochemische Entwicklung und Entgasungsgeschichte der Merapimagmen. Wichtige Punkte sind:

➤ Die Matrixgläser der Merapi-Domlaven stellen, wie die der übrigen Merapiprodukte, hochdifferenzierte, dazitische bis rhyolithische Schmelzen dar, deren hohe K₂O/Na₂O-Verhältnisse im Vergleich zu den Gesamtgesteinszusammensetzungen durch die Kristallisation Na-reicher Feldspatmikrolithe erklärt werden können.

> Die untersuchten Schmelzeinschlüsse umfassen überwiegend dazitische Zusammensetzungen (normiert, H_2O -frei) und weisen ähnliche oder etwas niedrigere Differentiationsgrade sowie in einigen Fällen höhere Alkalien- bzw. K₂O-Gehalte als die entsprechenden Matrixgläser auf. Diese zeigen neben dem Einfluß der fraktionierten Kristallisation die Bedeutung von Mischungsprozessen zwischen basischen und höher differenzierten Magmen in deren Genese.

Die Volatilenkonzentrationen in den Schmelzeinschlüssen des Merapi reichen von durchschnittlich 200-1370 (max. 1560) ppm Fluor, 140-340 (max. 500) ppm Schwefel und 2860-3690 (max. 4550) ppm Chlor. Die Matrixgläser weisen Volatilengehalte von durchschnittlich 240-880 ppm Fluor, 20-130 ppm Schwefel und 2060-2910 ppm Chlor auf. Prinzipielle Unterschiede in den Fluor-, Schwefel- und Chlorkonzentrationen von Schmelzeinschlüssen und Matrixgläsern unterschiedlicher Lithologien (Lavadomkomponenten, Komponenten von Eruptionssäulenkollaps-Nuées ardentes, Bimsklasten (sub)plinianischer Fallablagerungen) lassen sich nicht beobachten. Während sich Schwefel und Chlor durchweg volatil verhalten und in der Fluid- oder Gasphase konzentriert werden, verhält sich Fluor eher inkompatibel und reichert sich bevorzugt in der residualen silikatischen Schmelze an. Zusammengefaßt zeigen die Glaseinschluß- und Matrixglasdaten, daß die Merapimagmen in einem offenen System in der Reihenfolge S > Cl > (F) entgasen.

→ Die aus der EMS-Analytik an Schmelzeinschlüssen abgeschätzten magmatischen H_2O -Gehalte der Merapimagmen liegen bei maximal 6.4 Gew.%. Hohe H_2O -Gehalte finden sich ausschließlich in Bimsklasten aus (sub)plinianischen Fallablagerungen und pyroklastischen Strömen. Schmelzeinschlüsse in Einsprenglingskristallen dichter Lavadomkomponenten sowie Blumenkohl- und Brotkrustenkomponenten aus Lavadom- oder Eruptionssäulenkollaps-Nuées ardentes weisen keine ursprünglichen, primär magmatischen H_2O -Gehalte mehr auf.

Kapitel 12

Intensive Parameter und Kristallisationsbedingungen der Merapimagmen

Die Mineralparagenesen und chemischen Zusammensetzungen von Mineralphasen, Matrixgläsern und Schmelzeinschlüssen in den Merapimagmen ermöglichen die Berechnung magmatischer Variablen, wie Druck, Temperatur, Sauerstoff-Fugazität, Silika-Aktivität und H₂O-Gehalt auf der Basis von mineralchemischen Daten und Gleichgewichten zwischen verschiedenen Mineralphasen bzw. Mineralphasen und koexistierender Schmelze.

In diesem Kapitel werden die Ergebnisse der Berechnungen und Abschätzungen dieser Parameter, die wesentlich die Kristallisationsbedingungen der Merapimagmen charakterisieren, für insgesamt 23 Proben des gesamten Vulkankomplexes vorgestellt. Diese umfassen juvenile Komponenten verschiedener Typen pyroklastischer Ströme (Kapitel 3), Bimsklasten einiger der holozänen Bimsfallablagerungen sowie repräsentative Proben der Laven des Somma-Walls und stellen somit einen repräsentativen Querschnitt der Förderprodukte der jüngeren Entwicklungsstadien des Merapi dar.

Lithostatischer Druck

Von allen wichtigen intensiven Parametern eines Magmas, die auf der Basis von Phasengleichgewichten und mineralchemischen Daten ermittelt werden können, ist die Bestimmung des lithostatischen Drucks sicherlich mit den größten Schwierigkeiten und Unsicherheiten behaftet. Das Fehlen geeigneter Geobarometer erschwert in vielen Fällen eine verläßliche Druckabschätzung für Gesteine der Kalkalkali- und High-K-Kalkalkaliserie, wie sie für den Merapi typisch sind. Aus diesen Gründen basieren die wenigen systematischen Untersuchungen über die Druckbedingungen bzw. das Kristallisationsniveau der Merapimagmen ausschließlich auf Vergleichen der Merapigesteine mit experimentell untersuchten Kristallisationsbedingungen ähnlich zusammengesetzter Gesteine oder geophysikalischen Untersuchungsmethoden, die in vielen Fällen die Lage eines Magmareservoirs eingrenzen können. So gibt del Marmol (1989) auf der Basis eines Vergleichs der Merapigesteine mit einem High-Alumina-Basalt von Atka (Alëuten), dessen Kristallisationsbedingungen von Baker & Eggler (1983) experimentell untersucht wurden, einen Druck von ca. 5 kbar für die Basalte und 2-5 kbar für die Kristallisation der basaltischen Andesite des Merapi an, entsprechend einem Magmareservoir in 7-17 km Tiefe. Demgegenüber postulieren Ratdomopurbo (1995) und Ratdomopurbo & Poupinet (2000) aufgrund seismischer Untersuchungen ein oberflächennahes Magmenreservoir, das sich ca. 1.5 bis 2.5 km unterhalb des Merapigipfels befinden soll. Beauducel (1998) hingegen modelliert Änderungen des Deformationsfeldes des Merapi in der Zeit von November 1996 bis März 1997 mit einem Magmareservoir in 8.5 \pm 0.4 km Tiefe unterhalb des Gipfels. Bei einer angenommenen Gesteinsdichte von 2.8 g/cm³ würde dies einem Druck von ca. 2.4 kbar entsprechen.

In dieser Arbeit wird versucht, das Kristallisationsniveau der Merapimagmen durch Anwendung und Vergleich verschiedener Geobarometer und Phasengleichgewichte einzugrenzen. Neben der Anwendung von QUILF-Gleichgewichten (Lindsley & Frost, 1992) erfolgt eine Druckabschätzung unter Verwendung der Klinopyroxen-Barometrie nach Nimis (1999) und der Aluminium-in-Hornblende-Barometrie nach Johnson & Rutherford (1989).

Druckabschätzung unter Verwendung von Phasengleichgewichten zwischen Fe-Ti-Oxiden, Pyroxenen, Olivin und Quarz (QUILF)

Eine Möglichkeit zur Abschätzung der Druckbedingungen für die Kristallisation der Merapimagmen bieten die chemischen Zusammensetzungen von Fe-Ti-Oxiden und koexistierenden Fe-Mg-Silikaten in den Merapigesteinen unter Verwendung des Gleichgewichts QUILF (Frost et al., 1988; Lindsley et al., 1990; Frost & Lindsley, 1992; Lindsley & Frost, 1992):

 SiO_2 (Quarz) + 2Fe₂TiO₄(Ulvöspinell) = 2FeTiO₃ (Ilmenit) + Fe₂SiO₄ (Fayalit)

und zahlreichen, daraus abgeleiteten Gleichgewichtsreaktionen zwischen den Phasen Titanomagnetit, Ilmenit, Augit, Pigeonit, Orthopyroxen, Olivin und Quarz im System Fe-O-MgO-CaO-TiO₂-SiO₂ (Lindsley & Frost, 1992).

Die beste Möglichkeit zur Druckbestimmung im QUILF-System bietet die Gleichgewichtsreaktion $Fe_2SiO_4 + SiO_2 = Fe_2Si_2O_6$ der Paragenese Quarz, Olivin und Orthopyroxen (Frost & Lindsley, 1992), die in den Merapigesteinen jedoch nicht vorhanden ist. Eine zumindest ungefähre Druckabschätzung mit der QUILF-Methode kann jedoch auch durch die Gleichgewichtsparagenese von Orthopyroxen, Augit, Titanomagnetit und Olivin erfolgen (Tab. 12.1), die in zwei der untersuchten Merapiproben (M97-0392, M98-0991) vorliegt. Allerdings liegt der absolute Fehler bei Verwendung dieser Paragenese in den besten Fällen bei ± 1.5 kbar für einzelne Analysen der beteiligten Mineralphasen (Frost & Lindsley, 1992).

Für die Druckberechnung wurden Olivin- und Orthopyroxen-Mikrophänokristalle, homogene Titanomagnetiteinsprenglinge und die Zusammensetzung der Randbereiche von Klino-

pyroxeneinsprenglingen verwendet. Die Berechnungen mit der QUILF-Methode ergeben für die Probe M97-0392 einen Druck von 6.1 ± 1.7 kbar, während für die Probe M98-0991 ein Druck von 5.2 ± 2.7 kbar ermittelt wurde.

Tab. 12.1. QUILF-relevante Paragenesen und daraus berechnete intensive Parameter.

Gesteinsbezeichnung	Paragenese	Fixierte Parameter	Berechnete Parameter
Olivinführende Bas. Andesite	cpx, ol, ti-mt	Р	T, fO_2 , $aSiO_2$
"Zwei-Pyroxen"-Bas. Andesite	cpx, opx, ti-mt	Р	T, min. fO_2 , max. fO_2
		P, T, <i>f</i> O ₂	aSiO ₂
Olivinführende "Zwei-Pyroxen"-Bas. Andesite	cpx, opx, ol, ti-mt	(P)	(P), T, fO_2 , $aSiO_2$

Es ist offensichtlich, daß aufgrund der methodisch bedingten Unsicherheiten und großen Fehlerbereiche dieser Druckberechnungen die erzielten Ergebnisse für sich allein betrachtet zunächst nur einen Anhaltspunkt für das tatsächliche Kristallisationsniveau der Merapimagmen liefern und durch weitere Methoden überprüft werden müssen.

Klinopyroxen-Geobarometrie

Eine Abschätzung der Druckbedingungen für die Kristallisation der Merapimagmen kann z.B. auch über die Druckabhängigkeit der Kristallstruktur bzw. des Volumens der Elementarzelle und der Größe des M1-Platzes magmatischer Klinopyroxene erfolgen (Nimis, 1995; 1999).

Bei bekannter chemischer Zusammensetzung lassen sich die Kristallstrukutur und das Volumen von Elementarzelle und M1-Platz von Klinopyroxenen in wasserfreien ultrabasischen und basischen magmatischen Systemen nach dem Modell von Nimis (1995) berechnen. Bei bekannter Gleichgewichtstemperatur können zusätzlich die Effekte der thermischen Ausdehnung bzw. Kompressibilität berücksichtigt werden. Dies ermöglicht die Anwendung des Geobarometers auf wasserhaltige magmatische Systeme sowie intermediäre bis saure vulkanische Gesteine (Nimis, 1999).

In der Praxis erleichtert das Computerprogramm CPXBAR (Nimis, 1999) die Anwendung des Geobarometers. Dieses enthält u.a. Kalibrierungen für Klinopyroxene im Gleichgewicht mit tholeiitischer Schmelze (TH-Formulierung), die mit Ausnahme Na-armer (Na₂O < 1.5 Gew.%) Zusammensetzungen, Basalte bis Dazite gemäß der TAS-Klassifikation (Le Bas et al., 1986) umfaßt sowie für Klinopyroxene im Gleichgewicht mit Schmelzen mild alkalischer Zusammensetzung (MA-Formulierung). Nach Nimis (1999) liefern beide Kalibrierungen bei

Drücken bis zu 10 kbar vergleichbare Resultate für eine gegebene Klinopyroxenzusammensetzung. Da den Merapigesteinen die für tholeiitische Serien typische Fe-Anreicherung fehlt und die Lage im AFM-Diagramm eher den Gesteinen der mild alkalischen Serie entspricht (Abb. 7.4), wird für eine erste Abschätzung der Druckbedingungen der Merapigesteine die MA-Kalibrierung verwendet, deren geschätzter Fehlerbereich bei ca. 2.0 kbar liegt (Nimis, 1999).

Abb. 12.1. Druckabschätzung für die Merapigesteine unter Verwendung des Klinopyroxenbarometers von Nimis (1999). Dargestellt sind die Klinopyroxene der in den Tabellen 12.2 und 12.3 aufgelisteten Proben.

Die Druckabschätzungen wurden für 23 Merapiproben unter Verwendung der in den Tabellen 12.2 und 12.3 aufgelisteten Kristallisationstemperaturen durchgeführt. Diese umfassen Gesteine der rezenten und holozänen Ausbruchsperiode sowie einige Lavaproben des Somma-Walls. Die erzielten Resultate sind in Abb. 12.1 dargestellt.

Der nach der Methode von Nimis (1999) berechnete Druckbereich für die Merapimagmen reicht von etwas weniger als 2.0 kbar bis knapp 9.0 kbar. Innerhalb dieses Variationsbereichs häufen sich die Werte in einem Bereich zwischen ca. 4.0 und 5.5 kbar, der bei einer angenommenen Gesteinsdichte von 2.8 g/cm³, auf ein Magmareservoir in ca. 14-19 km Tiefe hindeutet. Der statistische Mittelwert sämtlicher Analysen beträgt 4.9 ± 1.4 kbar.

Amphibolstabilität und Aluminium-in-Hornblende-Geobarometrie

Das Vorkommen oder Fehlen gewisser Mineralphasen kann wichtige Rückschlüsse auf die Kristallisationsbedingungen eines Magmas zulassen. So kann z.B. das Auftreten von Amphibol, einem zumindest in den rezenten Merapiprodukten eher seltenen Mineral, bereits wichtige Informationen über die Bildungsbedingungen der Merapimagmen liefern.

Abb. 12.2. Experimentell bestimmtes PT-Diagramm für Andesite nach Eggler & Burnham (1973), Green (1982) und Cloos (1994) und vermutetes Stabilitätsfeld für die amphibolführenden Merapimagmen. Die Pfeile zeigen die Überschreitung der "Amphibol-out"-Kurve durch (1) Temperaturerhöhung und (2) Druckentlastung.

Der Stabilitätsbereich von Amphibol in vulkanischen Gesteinen basaltischer, andesitischer und rhyolithischer Zusammensetzung wurde in einer Reihe von Experimenten untersucht (Eggler, 1972a, b; Eggler & Burnham, 1973; Merzbacher & Eggler, 1984; Rutherford et al., 1985; Rutherford & Devine, 1988; Rutherford & Hill, 1993). Unter Verwendung experimenteller Phasendiagramme und bekannter Kristallisationstemperatur läßt sich der Druckbereich der amphibolführenden Merapimagmen grob eingrenzen. Die Koexistenz von Plagioklas kann dabei eine Obergrenze des möglichen Druckbereichs markieren (Abb. 12.2).

Bei angenommenen Kristallisationstemperaturen der Merapimagmen von > 920 °C (Tab. 12.2, 12.3) deutet das Auftreten von Amphibol auf einen Minimaldruck von 4 kbar bzw. eine Tiefe von mehr als 14 km für die Kristallisation der amphibolführenden Merapimagmen. Gleichzeitig begrenzt das Vorhandensein von Plagioklas den Druck auf weniger als ca. 12 kbar (Abb. 12.2). Eine Temperatur von weniger als 920 °C für die Amphibolkristallisation am Merapi – eine plausible Annahme, da Amphibol in den Merapimagmen wahrscheinlich nie eine Liquidusphase darstellt (Kapitel 10) – würde die Stabilität von Amphibol bei Drücken von weniger als 4 kbar ermöglichen.

Eine Abschätzung des Kristallisationsniveaus der Merapimagmen kann darüber hinaus über die Druckabhängigkeit des Aluminiumgehalts von Amphibolen erfolgen. Hammarstrom & Zen (1986) und Hollister et al. (1987) zeigten eine lineare Korrelation zwischen dem absoluten Aluminiumgehalt in magmatisch gebildeten Amphibolen und der Kristallisationstiefe (Druck). Dies bildete die Grundlage für die Einführung eines empirischen Aluminium-in-Hornblende-Barometers, welches später von Johnson & Rutherford (1989) und Schmidt (1992) experimentell kalibriert wurde. Die Anwendung des Geobarometers erfordert Amphibol im Gleichgewicht mit Biotit, Plagioklas, Quarz, Sanidin, Titanit, Magnetit/Ilmenit und Epidot (Hammarstrom & Zen, 1986). Sind jedoch Al-puffernde Phasen wie die Feldspäte in den Merapigesteinen vorhanden, kann das Barometer auch bei einer nicht vollständig vorliegenden Mineralparagenese, wie von Hammarstrom & Zen (1986) gefordert, angewendet werden (Johnson & Rutherford, 1989).

Die Gesamtaluminiumgehalte der Amphibole des Merapi variieren zwischen ca. 10.5 und 15.7 Gew. % Al_2O_3 bzw. zwischen 1.82 und 2.72 Kationen (Al^T) pro Formeleinheit, berechnet auf der Basis von 23 Sauerstoffatomen.

Nach der Formel von Johnson & Rutherford (1989) ergibt sich daraus ein Druckbereich von ca. 4 bis 8 kbar für die Kristallisation der Amphibole des Merapi. Dies deutet auf ein Kristallisationsniveau der Merapimagmen in einem mittleren bis unteren Bereich der "quasi-kontinentalen" Kruste Javas bzw. im Bereich der Kruste-Mantel-Grenze.

Während in den aufgeschäumten, bimsartigen Komponenten der (sub)plinianischen Bimsfallablagerungen und pyroklastischen Ströme von Typ D (Tab. 3.1) idiomorphe Amphibolkristalle im Gleichgewicht mit der koexistierender Schmelze vorkommen, sind die Amphiboleinsprenglinge in sämtlichen amphibolführenden Lavadomkomponenten und Domkollaps-Nuées ardentes (Typ A, Tab. 3.1) der holozänen und rezenten Ausbruchsperiode sowie in den amphibolführenden Komponenten pyroklastischer Ströme der Typen B und C (Tab. 3.1) nicht mehr stabil und reagieren mit der umgebenden Schmelze zu einem feinkörnigen Gemenge aus Fe-Ti Oxid, Plagioklas, Klinopyroxen und Orthopyroxen, die in einem Reaktionssaum die Amphibolkristalle umgeben (Abb. 6.4). Der Amphibolzerfall spiegelt Veränderungen der physikalisch-chemischen Bedingungen im Magmasystem des Merapi wider, die letztlich zur Überschreitung der "Amphibol-out"-Kurve (Abb. 12.2) führen. Aus Abb. 12.2 ist offensichtlich, daß die Temperatur ein wesentlicher Faktor ist, der die Amphibolstabilität beeinflußt und eine Erhöhung der Temperatur letztlich zum Ungleichgewicht zwischen Amphibol und der umgebenden Schmelze führen kann. Das Einströmen eines aufsteigenden basischen Magmapulses in ein höher differenziertes Magmareservoir und die Vermischung dieser basischen mit höher differenzierten (? andesitischen) Magmen, in denen sich die Amphibolkristalle gebildet haben, sind wahrscheinliche Prozesse, die im subvulkanischen Magmasystem des Merapi ablaufen und zum Anstieg der magmatischen Temperaturen und damit zum Amphibolzerfall beitragen können. Der im allgemeinen geringe H₂O-Gehalt dieser basischen Magmen könnte zusätzlich zur Instabilität der Amphibole beitragen.

Die Druckentlastung und damit verbundene Entwässerung während des nahezu adiabatischen Aufstiegs eines Magmas von einem tiefen Reservoir können ebenso zur Instabilität von Amphibol und den damit verbundenen Reaktionssäumen führen. Rutherford & Hill (1993) verwenden die Breite dieser Reaktionssäume um Amphibolkristalle zur Abschätzung von Magmenaufstiegsraten am Mount St. Helens. Bei langsamen Aufstiegsraten oder der Zwischenspeicherung eines Magmas in einem oberflächennahen Krustenniveau außerhalb des Amphibolstabilitätsfeldes und entsprechend langen Reaktionszeiten bilden sich dicke Reaktionssäume, während bei schnellem Magmenaufstieg die Bildung von Reaktionssäumen ausbleibt. Druckentlastungsexperimente (Rutherford & Hill, 1993) zeigen, daß die Bildung von Reaktionssäumen um Amphibolkristalle innerhalb von Tagen erfolgen kann. Während innerhalb von 4 Tagen noch keine Reaktionssäume entstehen, bilden sich Reaktionssäume mit einer Breite von 10 µm innerhalb von 10 Tagen und solche mit einer Breite von 35 µm innerhalb von 20 Tagen. Die von Rutherford & Hill (1993) aus der Breite der Reaktionssäume ermittelten Zeiträume für den Magmenaufstieg rezenter Dazite am Mount St. Helens sind in Abb. 12.3 dargestellt. Die Reaktionssäume in den Mount St. Helens Daziten weisen generell geringe Mächtigkeiten < 50 µm auf. Unter Annahme konstanter Reaktionszeiten können die Daten durch die dargestellte lineare Regressionsgerade (Korrelationskoeffizient $R^2 = 0.99$) extrapoliert werden (Abb. 12.3).

Wie bereits erwähnt, sind die Amphibole in keiner der untersuchten rezenten und holozänen Lavadomkomponenten des Merapi mehr stabil. Die Variation der Breite der Reaktionssäume zwischen verschiedenen Proben ist dabei im allgemeinen größer als die Variation innerhalb eines Dünnschliffs. Die nahezu vollständige oder komplette Ersetzung von Amphibolen durch Oxide, Pyroxene und Plagioklas ist selten und stets auf kleine Amphibolkristalle beschränkt. Die Breite der Reaktionssäume variiert zwischen einigen wenigen 10er μ m bis zu einigen 100 μ m und erreicht in wenigen Proben (M98-059, M99-0991) Maximalwerte von ca. 600 μ m. Falls die Amphibole bei einem Druck 4 kbar in einem Magmenreservoir in einer Tiefe von 14 km kristallisiert sind und die beobachteten Ausbildungsformen und Strukturen der Amphibolkristalle, wie von Rutherford & Hill (1993) beschrieben, deren Zerfall während des
Magmenaufstiegs von diesem angenommenen Reservoir zur Oberfläche dokumentieren, ergeben sich daraus einige interessante Implikationen für die Dynamik des oberflächennahen Magmasystems des Merapi.

Abb. 12.3. Diagramm der Breite der durch Amphibolzerfall entstandenen Reaktionssäume als Funktion der Reaktionszeit für Dazite des Mount St. Helens (Rutherford & Hill, 1993). Die dargestellte Regressionsgerade kann bei angenommenen konstanten Reaktionszeiten zur Extrapolation der Daten verwendet werden.

Es ist offensichtlich, daß die Amphibole in dem angenommen tiefen Magmenreservoir stabil sind. Der Amphibolzerfall setzt wahrscheinlich bei Drücken von weniger als 3 kbar oder einer Tiefe von weniger als ca. 10 km ein, bei der die Merapimagmen beginnen ihre Wassersättigung zu erreichen und die einsetzende Bildung von Gasblasen den H₂O-Gehalt der Magmen reduziert (s. Kapitel "H₂O-Gehalt"). Mit den Ergebnissen von Rutherford & Hill (1993) lassen sich aus der Breite der Reaktionssäume um die Amphibolkristalle die Aufenthaltsdauer der Merapimagmen außerhalb des Amphibolstabilitätsfeldes und durchschnittliche Magmenaufstiegsraten am Merapi abschätzen.

Amphibole ohne Reaktionssäume in den Förderprodukten explosiver Eruptionen implizieren eine Aufstiegsdauer von einigen wenigen Tagen sowie hohe Aufstiegsraten von etwa 100 m/h ohne längere oberflächennahe Zwischenspeicherung der Magmen. Amphibole in den untersuchten rezenten und holozänen Lavadomkomponenten und pyroklastischen Strömen der Typen A, B und C weisen Reaktionssäume mit Breiten von einigen 10er µm bis ca. 350-400

µm und im Extremfall ca. 600 µm auf. Dies impliziert für diese Magmen eine Aufenthaltsdauer außerhalb des Amphibolstabilitätsfeldes von mehreren Tagen bis wenigen Monaten und durchschnittliche Aufstiegsraten von deutlich weniger als 10 m/h. Die tatsächlichen Aufstiegsraten können durchaus höher gewesen sein, falls die Magmen während des Aufstiegs oberflächennah zwischengespeichert wurden.

Die Übertragung der von Rutherford & Hill (1993) an den Daziten des Mount St. Helens kalibrierten Aufstiegsraten auf den Merapi unterliegt der Unsicherheit möglicher unterschiedlicher Reaktionsgeschwindigkeiten der Amphibole. Die geschätzten Aufstiegsraten hängen zudem entscheidend von dem angenommenen Druck bzw. der Tiefe ab, bei der die Amphibolstabilitätskurve überschritten wird. Der für die Berechnungen verwendete Druck von 3 kbar ist sicherlich ein oberer limitierender Wert für den Beginn des Amphibolzerfalls in den Merapimagmen und die daraus berechneten Aufstiegsraten damit Maximalwerte. Demgegenüber ist die vermutete Verweildauer der Merapimagmen außerhalb des Amphibolstabilitätsfeldes besser zu fassen und weniger von den angenommenen Rahmenbedingungen abhängig.

Mit Hilfe der in den Merapigesteinen beobachteten Ausbildungsformen und Strukturen der Amphiboleinsprenglinge läßt sich somit die Existenz eines oberflächennahen Magmareservoirs außerhalb des Amphibolstabilitätsfeldes, in dem aufsteigende Magmen über längere Zeiträume (> 6 Monate?) zwischengespeichert werden, weitestgehend ausschließen. Diese Beobachtung schließt allerdings nicht notwendigerweise die zumindest kurzfristige oberflächennahe Speicherung aufsteigender Magmen aus. Tatsächlich deutet das Auftreten unterschiedlich breiter Reaktionssäume um Amphibole in ein und derselben Probe auf die periodische Vermischung relativ schnell aufgestiegener Magmen mit solchen, die eine relativ kurze Zeit oberflächennah und außerhalb des Amphibolstabilitätsfeldes gespeichert wurden. Andere Amphibolkristalle weisen Reaktionssäume auf, die durch einen abrupten Wechsel in der Kristallinität charakterisiert sind, was gegen eine gleichmäßige und kontinuierlich ablaufende Zerfallsreaktion spricht. Einige der Druckbestimmungen an den Klinopyroxenen könnten ebenfalls auf ein Kristallisationsniveau in einer geringen Krustentiefe hindeuten.

Viele der holozänen Förderprodukte des Merapi, insbesondere solche explosiver Eruptionen, weisen idiomorphe Amphibole ohne Reaktionssäume auf. Dies deutet auf relativ schnelle Aufstiegsraten für diese Magmen ohne oberflächennahe Zwischenspeicherung und zeigt, daß das von Ratdomopurbo (1995) und Ratdomopurbo & Poupinet (2000) postulierte oberflächennahe Magmenreservoir – falls überhaupt vorhanden – nicht als Zwischenspeicher für diese Merapimagmen dienen kann.

Das offensichtliche Fehlen eines langlebigen oberflächennahen Magmenreservoirs am Merapi steht im Gegensatz zum Vulkan Galeras, wo mineralchemische und strukturelle Kennzeichen auf ein oberflächennahes Magmenreservoir außerhalb des Stabilitätsfeldes von Amphibol hindeuten (Calvache & Williams, 1997).

Magmatische Temperaturen

Das Fehlen von Ilmenit als Einsprenglingsphase in den Förderprodukten des Merapi, ein häufig beobachtetes Phänomen TiO_2 -armer Inselbogenvulkanite (z.B. Gill, 1981), verhindert die Berechnung der Kristallisationstemperaturen der Merapimagmen auf der Basis koexistierender Fe-Ti-Oxide (Buddington & Lindsley, 1964).

Die Berechnung der magmatischen Temperaturen erfolgte daher mit Hilfe von Klinopyroxen-Orthopyroxen- bzw. Klinopyroxen-Olivin-Gleichgewichten unter Verwendung des Computerprogramms QUILF (Tab. 12.1; Andersen et al., 1993).

Der Vorteil der QUILF-Methode gegenüber anderen Methoden liegt in der Möglichkeit, die Endglieder und chemischen Potentiale der beteiligten Phasen unter Verwendung konsistenter thermodynamischer Lösungsmodelle zu berechnen sowie der großen Anzahl der insgesamt 59 zur Verfügung stehenden Gleichgewichtsreaktionen (Frost & Lindsley, 1992). Zusätzlich können mit der QUILF-Methode nicht nur intensive Parameter mit bekannten Mineralzusammensetzungen bestimmt, sondern auch theoretische Gleichgewichtszusammensetzungen fehlender oder reequilibrierter Phasen berechnet werden (Frost & Lindsley, 1992; Lindsley & Frost, 1992).

So wurde bei den Merapiproben, die neben Klinopyroxen weder Olivin noch Orthopyroxen führen ("Ein-Pyroxen"-Basaltische Andesite: M96-075, M97-053, M98-031, M98-096) eine nicht fixierte, hypothetische Orthopyroxenzusammensetzung in das Computerprogramm QUILF eingegeben und eine theoretische Gleichgewichtszusammensetzung berechnet, die anschließend für die Bestimmung der Temperatur und weiterer intensiver Parameter verwendet wurde.

Probe	Ablagerungstyp	T (°C)	$aSiO_2$	FMQ*
M95-011	Pyr. Strom (Typ C)	962 ± 16	0.69 ± 0.01	1.26 ± 0.21
M97-0392	Pyr. Strom (Typ D)	1032 ± 26	0.63 ± 0.05	1.53 ± 0.12
M97-045	Pyr. Strom (Typ B)	920 ± 18	0.63 ± 0.03	0.97 ± 0.12
M97-068	Pyr. Strom (Typ C)	961 ± 21	$0.59 ~\pm~ 0.08$	1.18 ± 0.14
M98-002	Pyr. Strom (Typ A)	930 ± 18	0.58 ± 0.03	0.78 ± 0.10
M98-059	Pyr. Strom (Typ A)	942 ± 21	0.63 ± 0.03	0.95 ± 0.27
M98-066	Pyr. Strom (Typ A)	958 ± 11	$0.70~\pm~0.05$	1.26 ± 0.22
M98-0991	Pyr. Strom (Typ A)	1048 ± 24	0.65 ± 0.04	1.84 ± 0.14
M98-1081	Pyr. Strom (Typ C)	987 ± 21	$0.68 ~\pm~ 0.05$	$1.18 ~\pm~ 0.12$

Tab. 12.2. Abschätzung von Kristallisationstemperatur, Silika-Aktivität und Sauerstoff-Fugazität olivinführender basaltischer Andesite des Merapi unter Verwendung von QUILF-Gleichgewichten.

* $FMQ = \log fO_2$ relativ zum FMQ-Puffer

Tab.	12.3. <i>A</i>	Absch	nätzung von Kri	stallisationst	emperatur,	, Sili	ka-Aktivi	ität uno	l Sauerstoff-F	uga-
zität	Opx-	und	Cpx-führender	basaltischer	Andesite	des	Merapi	unter	Verwendung	von
QUII	LF-Gle	ichge	wichten.							

Probe	Ablagerungstyp	T (°C)	aSiO ₂	FMQ (Min)*	FMQ (Max)*
M95-026	Lava, Merapi-Somma	998 ± 18	0.59 ± 0.13	$0.63 ~\pm~ 0.08$	0.85 ± 0.26
M96-056	Lava, Merapi-Somma	1027 ± 23	$0.53 \ \pm \ 0.12$	1.14 ± 0.24	1.56 ± 0.11
M96-075**	Bimsfallablagerung	984 ± 21	$0.55 ~\pm~ 0.02$	1.69 ± 0.10	$2.16~\pm~0.04$
M96-102	Bimsfallablagerung	1022 ± 22	$0.51 \hspace{.1in} \pm \hspace{.1in} 0.01$	1.52 ± 0.07	$2.08 ~\pm~ 0.18$
M96-137	Pyr. Strom (Typ A)	1038 ± 18	$0.50 ~\pm~ 0.03$	1.40 ± 0.05	$1.56~\pm~0.06$
M96-142	Pyr. Strom (Typ A)	1007 ± 12	0.57 ± 0.07	1.09 ± 0.21	$1.38 ~\pm~ 0.18$
M96-163	Bimsfallablagerung	991 ± 13	$0.58 \hspace{0.2cm} \pm \hspace{0.2cm} 0.02$	1.57 ± 0.20	$2.23 ~\pm~ 0.14$
M96-167	Pyr. Strom (Typ A)	1000 ± 23	$0.58 ~\pm~ 0.03$	1.44 ± 0.15	$2.02 \ \pm \ 0.29$
M97-009	Pyr. Strom (Typ A)	986 ± 18	0.65 ± 0.01	1.47 ± 0.20	$2.12 ~\pm~ 0.02$
M97-053**	Bimsfallablagerung	$929 ~\pm~ 16$	$0.52 \ \pm \ 0.05$	1.55 ± 0.01	$2.21 ~\pm~ 0.14$
M98-031**	Bimsfallablagerung	996 ± 22	$0.50 ~\pm~ 0.05$	1.66 ± 0.01	$1.89 ~\pm~ 0.05$
M98-048	Lava, Merapi-Somma	1033 ± 12	$0.50 ~\pm~ 0.11$	$0.78 \hspace{0.2cm} \pm \hspace{0.2cm} 0.05$	$1.04 \ \pm \ 0.16$
M98-0532	Pyr. Strom (Typ A)	1048 ± 20	$0.46 ~\pm~ 0.06$	1.08 ± 0.14	$1.45 ~\pm~ 0.23$
M98-096**	Pyr. Strom (Typ D)	$1042 \ \pm \ 19$	$0.42 ~\pm~ 0.04$	1.31 ± 0.12	$1.67 ~\pm~ 0.08$

* $FMQ = \log fO_2$ relativ zum FMQ-Puffer; ** Cpx-führende 'Ein-Pyroxen'-Andesite, Abschätzung der intensiven Parameter unter Verwendung einer berechneten (hypothetischen) Orthopyroxengleichgewichtszusammensetzung

Sämtliche Berechnungen mit der QUILF-Methode wurden bei einem festgelegten Druck von 5 kbar durchgeführt (s. Kapitel "Lithostatischer Druck").

Die Bestimmungen der Temperaturen wurden mit den nahezu konstanten Zusammensetzungen der Einsprenglingsminerale und Mikrophänokristalle durchgeführt. Die berechneten Temperaturen reflektieren damit Kristallisationstemperaturen deutlich unterhalb der Liquidustemperatur und eine relativ kurze Zeitspanne vor der Eruption.

Die berechneten Kristallisationstemperaturen der Merapimagmen variieren insgesamt zwischen ca. 920 °C und 1050 °C (Tab. 12.2, 12.3) und umfassen damit den Gesamtbereich der maximalen thermischen Stabilität von Amphibol in andesitischen Schmelzen (940-970 °C bei 59 Gew.% SiO₂; Luhr & Carmichael, 1980). Die höchsten ermittelten Kristallisationstemperaturen liegen im Bereich der maximalen thermischen Stabilität von Amphibol in basaltischen Schmelzen (1050 °C bei 50 Gew.% SiO₂; Luhr & Carmichael, 1980).

Mit SiO₂-Gehalten von ca. 52-57 Gew.% würde die maximale thermische Stabilität von Amphibol in den Merapimagmen daher irgendwo zwischen 940 °C und 1050 °C liegen und damit im Bereich der ermittelten Pyroxen-Pyroxen- bzw. Pyroxen-Olivin-Gleichgewichtstemperaturen.

Wie bereits erwähnt wurden die Temperaturberechnungen bei einem angenommenen Druck von 5 kbar durchgeführt. Ein lithostatischer Druck von weniger als 5 kbar würde zu geringfügig niedrigeren Temperaturen führen. Allerdings ist die Druckabhängigkeit der verwendeten Geothermometer gering und die Abweichungen von den aufgeführten Werten nicht signifikant.

Sauerstoff-Fugazität

Das Fehlen von Ilmenit als eigenständige Einsprenglingsphase in den Merapiprodukten verhindert die Anwendung von Fe-Ti-Oxid-Geothermometern (Buddington & Lindsley, 1964) zur Berechnung der Sauerstoff-Fugazität der Merapimagmen.

Die Mineralparagenesen der Merapigesteine erlauben jedoch die Berechnung von fO_2 mit der QUILF-Methode, wie in Tab. 12.1 dargestellt und in den folgenden Abschnitten erläutert.

Abb. 12.4. Schematische Darstellung des Prinzips der Bestimmung des fO_2 -Variationsbereichs (relativ zum FMQ-Puffer) von Merapigesteinen der Paragenese Klinopyroxen, Orthopyroxen und Titanomagnetit bei konstantem Druck. Man beachte den Effekt unterschiedlicher Titanomagnetitzusammensetzungen innerhalb einer Probe (nach Lindsley & Frost, 1992).

Bei den olivinführenden Merapigesteinen kann die Sauerstoff-Fugazität direkt mit Hilfe von Gleichgewichten zwischen Olivin, Klinopyroxen und Titanomagnetit bestimmt werden. Bei den olivinfreien Gesteinen (Mineralparagenese: cpx, opx, ti-mt) wäre eine direkte Bestimmung von fO_2 nur möglich, wenn Druck und aSiO₂ fixiert oder unabhängig bestimmt werden können (z.B. unter Verwendung der Gleichgewichtsreaktion FeSiO₃ (opx) + 1/6O₂ (Gas) = 1/3Fe₃O₄ (ti-mt) +SiO₂ (Schmelze)). Ohne vorige Festlegung der genannten Parameter kann lediglich der Variationsbereich der Sauerstoff-Fugazität, bei dem diese Mineralparagenese stabil ist, abgeschätzt werden. Voraussetzung hierfür ist, daß die Zusammensetzung des analysierten Titanomagnetits der Gleichgewichtszusammensetzung dieser Paragenese entspricht. In diesem Fall wird der Minimalwert der Sauerstoff-Fugazität (min. fO_2) durch denjenigen fO_2 -Wert bestimmt, bei dem Orthopyroxen und Titanomagnetit zu Klinopyroxen, Olivin und Ilmenit reagieren würden. Der mögliche Maximalwert der Sauerstoff-Fugazität (max. fO_2) wäre

derjenige, bei dem Titanomagnetit der Gleichgewichtsparagenese zu Ilmenit reagieren würde (Lindsley & Frost, 1992). Das Prinzip dieser Methode zur Abschätzung der Sauerstoff-Fugazität in den olivinfreien Merapigesteinen ist schematisch in (Abb. 12.4) dargestellt.

Abb. 12.5. Log fO_2 gegen die Temperatur für (a) olivinführende und (b) Opx-führende (olivinfreie) basaltische Andesite des Merapi.

Die fO_2 -Werte der Merapimagmen sind in Tab. 12.2 und 12.3 als logarithmische Einheiten relativ zum FMQ-Puffer angegeben. Die Position relativ zum FMQ-Puffer ist dabei unabhängig von der angenommenen Temperatur, da eine Veränderung der Temperatur zu einer Verschiebung der logarithmischen fO_2 -Werte parallel zu der entsprechenden Sauerstoffpufferreaktion führen würde.

In Abb. 12.5 sind die berechneten fO_2 -Werte der Merapimagmen zusammen mit den ermittelten Temperaturen (Tab. 12.2, 12.3) und dem Verlauf des FMQ-Puffers dargestellt. Dabei wurden bei den olivinfreien Merapigesteinen (Abb. 12.5.b) jeweils die durchschnittlichen Minimal- und Maximalwerte der Sauerstoff-Fugazität berücksichtigt.

Die berechneten fO_2 -Werte der olivinführenden Merapigesteine reichen von ca. 0.78 bis 1.84 logarithmischen Einheiten oberhalb des FMQ-Puffers, während die olivinfreien Gesteine durch einen geringfügig größeren fO_2 -Variationsbereich zwischen 0.63 und 2.23 logarithmischen Einheiten oberhalb des FMQ-Puffers gekennzeichnet sind (Tab. 12.2, 12.3).

Die erzielten fO_2 -Werte für die Merapimagmen liegen damit in einem für Kalkalkaligesteine typischen Bereich (ca. 1-2 log. Einheiten oberhalb FMQ; Frost & Lindsley, 1992) und stimmen gut mit dem aus der Verschiebung der Peak-Position der S K -Linie ((S K) = 2.1-2.8 x 10³ Å, relativ zu FeS) in Schmelzeinschlüssen ermittelten Oxidationsgrad der Merapimagmen überein. Diese Methode impliziert fO_2 -Werte von ca. 1.5 bis 2 logarithmischen Einheiten oberhalb FMQ und einen Sulfatanteil von ca. 60 bis 80 % am Gesamtschwefel (Carroll & Rutherford, 1988) in den Schmelzeinschlüssen des Merapi (Anhang A1).

Silika-Aktivität

Die Bestimmung der Silika-Aktivität wurde in den olivinführenden Merapigesteinen gleichzeitig mit der Berechnung der Temperatur und Sauerstoff-Fugazität unter Verwendung von QUILF-Gleichgewichten zwischen Pyroxenen, Olivin und Titanomagnetit bei gegebenem Druck durchgeführt (Tab. 12.1).

In den olivinfreien Gesteinen erfolgte die Berechnung der Silika-Aktivität mit Hilfe von Orthopyroxen im Gleichgewicht mit Titanomagnetit bei einem angenommenen Druck von 5 kbar und den zuvor berechneten und fixierten Temperaturen und Sauerstoff-Fugazitäten (Tab. 12.1).

Die Ergebnisse der Berechnungen sind in Tab. 12.2 bzw. 12.3 aufgelistet. Bei einem angenommenen Druck von 5 kbar reichen die berechneten Werte der Silika-Aktivität der Merapischmelzen von ca. 0.42-0.70.

Im Gegensatz zu den Temperatur- und fO_2 -Berechnungen hängen die berechneten Werte von aSiO₂ stark von dem angenommenen Gleichgewichtsdruck ab. Ein lithostatischer Druck von weniger als 5 kbar würde zu erhöhten Werten im Vergleich zu den angegebenen Silika-Aktivitäten führen.

H₂O-Gehalt

Der H₂O-Gehalt ist einer der wichtigsten Parameter, der Faktoren, wie Liquidustemperatur, Kristallisationsabfolge, Viskosität und potentielle Explosivität andesitischer Magmen beeinflußt und letztendlich das Eruptionsverhalten eines Vulkans wesentlich mitbestimmt.

Ein H₂O-Gehalt von mindestens 3 Gew.% ist für die Kristallisation von Amphibol im System Andesit-H₂O-CO₂ erforderlich (z.B. Eggler & Burnham, 1973; Baker & Eggler, 1983; Luhr, 1990), obwohl unter bestimmten Bedingungen bereits 2 Gew.% H₂O in der Schmelze zur Amphibolsättigung ausreichen (Luhr, 1992).

Die präeruptiven Volatilengehalte der Merapimagmen können in erster Annäherung aus der Summe der EMS-Messungen der Schmelzeinschlüsse abgeschätzt werden (Volatilenkonzentration = 100 Gew.% - analytische Summe). Unter Berücksichtigung der in Tab. 10.1 aufgeführten Durchschnittswerte der einzelnen Proben reichen diese von 0.5 bis 5.7 Gew.%, wobei die geringen F-, S- und Cl-Gehalte darauf hindeuten, daß es sich dabei – neben einem nicht quantifizierten Anteil an CO_2 – zum überwiegenden Teil um Wasser handelt. Einzelne Schmelzeinschlüsse weisen Gesamtvolatilengehalte bis zu 6.8 Gew.% auf (Tab. A6.1).

Tab. 12.4. H_2O -Gehalte der Merapimagmen, berechnet über die Austauschreaktionen von Albit (Ab) und Anorthit (An) zwischen Plagioklas und Grundmasse nach dem Modell von Housh & Luhr (1991).

Probe	Plagioklasrandzusammensetzungen (Mol.% Anorthit)	H ₂ O (Ab) (Gew.%)	H ₂ O (An) (Gew.%)	H ₂ O () (Gew.%)
M95-011	$39 \pm 5 \ (n = 24)$	2.3	2.7	2.5
M96-075	$58 \pm 5 \ (n = 18)$	2.7	3.0	2.9
M96-137	$49 \pm 8 \ (n = 20)$	1.5	1.5	1.5
M96-142	$44 \pm 9 \ (n = 17)$	1.2	0.9	1.0
M96-163	$59 \pm 3 \ (n = 06)$	3.0	2.6	2.8
M97-0392	$50 \pm 2 \ (n = 07)$	2.3	1.9	2.1
M97-045	$58 \pm 2 \ (n = 12)$	3.2	2.9	3.1
M97-053	$51 \pm 3 \ (n = 18)$	3.3	3.7	3.5
M97-068	$43 \pm 5 (n = 26)$	2.6	2.7	2.6
M98-096	$57 \pm 2 \ (n = 08)$	1.7	1.9	1.8

Der H₂O-Gehalt der Merapimagmen kurz vor der Eruption kann mit Hilfe von Gleichgewichten zwischen Plagioklas und Schmelze (Housh & Luhr, 1991) abgeschätzt werden. Hierzu wurden die berechneten Temperaturen (Tab. 12.2, 12.3), ein Druck von 5 kbar, die durchschnittlichen Plagioklasrandzusammensetzungen, die je nach Probe zwischen An₃₉ und An_{59} variieren können (Tab. 12.4) und die in Tab. 10.2 aufgelisteten, durchschnittlichen Matrixglaszusammensetzungen der jeweiligen Probe verwendet.

Die Methode liefert H_2O -Konzentrationen von bis zu 3.7 Gew.% in den Merapimagmen (0.9-3.3 Gew.% über die Austauschreaktion der Albit- und 1.5-3.7 Gew.% über die Austauschreaktion der Anorthitkomponente) (Tab. 12.4).

Von den untersuchten Proben weisen die Bimsklasten der (sub)plinianischen Fallablagerungen (M96-075, M96-163, M97-053) die höchsten H₂O-Gehalte auf (2.8-3.5 Gew.% H₂O), während die dichten Lavadomkomponenten (M96-137, M96-142) aus Domkollaps-Nuées ardentes (Typ A, Tab. 3.1) mit Werten von durchschnittlich 1.0-1.5 Gew.% die niedrigsten H₂O-Gehalte, kurz vor der Extrusion als Lavadom, aufweisen. Die Komponenten von pyro-klastischen Strömen der Typen B, C und D (Tab. 3.1), die mit explosiven Eruptionen in Zusammenhang stehen (M95-011, M97-0392, M97-045, M97-096, M98-096), liegen mit Werten von durchschnittlich 1.8 bis 3.1 Gew.% H₂O zwischen den zuerst genannten Ablagerungstypen.

Es sei an dieser Stelle angemerkt, daß das Modell von Housh & Luhr (1991) stark temperaturabhängig ist und Gleichgewichtsbedingungen zwischen Plagioklasrand- und Matrixglaszusammensetzungen erfordert. Dies bedeutet, daß Magmenmischungen diese Variablen deutlich beeinflussen können. Die Druckabhängigkeit des Modells hingegen ist bei den hier in Frage kommenden Druckbereichen vernachlässigbar. Ein lithostatischer Druck von weniger als die angenommenen 5 kbar würde, aufgrund der Verringerung der vermuteten Gleichgewichtstemperaturen, zu etwas höheren berechneten H₂O-Gehalten führen.

Die mit dem Modell von Housh & Luhr (1991) ermittelten H₂O-Gehalte der Merapimagmen kurz vor der Eruption sind ähnlich oder etwas geringer als die aus den EMS-Messungen der Schmelzeinschlüsse abgeleiteten präeruptiven H₂O-Konzentrationen, die früheren Stadien der Magmenentwicklung entsprechen. Dieser generelle Befund trifft allerdings nur bedingt für die untersuchten Lavadomfragmente zu, deren Schmelzeinschlüsse in Bezug auf H₂O weitest-gehend entgast sind (Kapitel 11).

Insgesamt deuten die erzielten Ergebnisse darauf hin, daß (1) die Merapi-Lavadome die Extrusion weitestgehend entgaster Magmen darstellen und (2) Unterschiede im Eruptionsverhalten (effusiv vs. explosiv) zumindest teilweise durch unterschiedliche präeruptive H₂O-Gehalte unmittelbar vor der Eruption verursacht sein können. Darüber hinaus implizieren die mit der Methode von Housh & Luhr (1991) ermittelten H₂O-Gehalte, daß (3) die hohen H₂O-Gehalte früherer Stadien der Magmenentwicklung, wie sie aus den Zusammensetzungen von Schmelzeinschlüssen in Einsprenglingskristallen abgeleitet wurden, in den Bimskomponenten weitestgehend konserviert werden. Mögliche Erklärungen hierfür sind die vermutlich kurzen Aufstiegszeiten aus der Tiefe (in Übereinstimmung mit den beobachteten Gleichgewichtsbeziehungen zwischen Amphibol und Schmelze) und kurzen Abkühlungszeiten, die zu einer raschen Erstarrung der Schmelzeinschlüsse führen. Die Zusammensetzungen einzelner Schmelzeinschlüsse implizieren H₂O-Konzentrationen (Gesamtvolatile - (F+S+Cl)) bis zu 6.4 Gew.% in den Merapimagmen (Kapitel 11). Diese erscheinen auf den ersten Blick recht hoch, können jedoch durchaus als realistisch angesehen werden. So beschreiben Sisson & Layne (1993) H₂O-Gehalte von bis zu 6.2 Gew.% in Glaseinschlüssen basaltischer Andesite der 1974er Eruption des Vulkans Fuego in Guatemala. Self & King (1996) geben maximale H₂O-Gehalte von 7 Gew.% für Schmelzeinschlüsse in basaltischen Andesiten, die 1963 bei der Eruption des Gunung Agung auf der Insel Bali (Indonesien) gefördert wurden, an.

Die Wasserlöslichkeit einer silikatischen Schmelze einer bestimmten Zusammensetzung wird weitestgehend vom Druck und weit weniger stark von der Temperatur beeinflußt. Bei den gegebenen Temperaturen und einem angenommenen Druck von 4 kbar, entsprechend dem Mindestdruck aus der Aluminium-in-Hornblende-Barometrie, ergeben sich für die Schmelzzusammensetzungen der untersuchten Merapiproben Wasserlöslichkeiten zwischen 7.3 und 7.6 Gew.% (Burnham & Davis, 1974). Mit H₂O-Gehalten von maximal 6.4 Gew.% sind sämtliche untersuchten Schmelzzusammensetzungen des Merapi bei den angenommenen Temperaturen und einem Druck von 4 kbar H₂O-untersättigt und würden bei Drücken von weniger als 3 kbar die Wassersättigung erreichen.

Zusammenfassung und Schlußfolgerungen

Die in diesem Kapitel ermittelten intensiven Parameter der Merapimagmen und deren Implikationen für das Magmasystem des Vulkans sich wie folgt zusammenfassen lassen:

Die Anwendung verschiedener Geobarometer impliziert einen Druck von mehr als 4 kbar für die Kristallisation der Merapimagmen. Dies deutet auf ein Kristallisationsniveau von mehr als 14 km Tiefe und die Existenz eines Hauptmagmareservoirs am Merapi in einem mittleren bis unteren Bereich der "quasi-kontinentalen" Kruste Javas.

Amphibole im Gleichgewicht mit der umgebenden Schmelze in den aufgeschäumten Komponenten explosiver Eruptionen und Amphibolkristalle mit relativ geringmächtigen Reaktionssäumen infolge des Amphibolzerfalls unter oberflächennahen Bedingungen in den rezenten und holozänen Lavadomkomponenten implizieren das Fehlen eines langlebigen, oberflächennahen Magmareservoirs außerhalb des Amphibolstabilitätsfeldes am Merapi, in dem aufsteigende Magmen über längere Zeiträume zwischengespeichert werden. Die beobachteten Ausbildungsformen und Strukturen der Amphibolkristalle deuten zudem auf prinzipielle Unterschiede in den Aufstiegsraten zwischen effusiven (dombildenden) und explosiven (plinianischen) Eruptionstypen.

Die Kristallisationstemperaturen der Merapimagmen variieren zwischen ca. 920 °C und 1050 °C, die Werte der ermittelten Silika-Aktivitäten zwischen 0.42 und 0.70 und die berechneten Sauerstoff-Fugazitäten zwischen 0.6 und 2.2 logarithmischen Einheiten oberhalb des FMQ-Puffers. Die fO_2 -Werte der Merapimagmen liegen damit in einem für Kalkalkaligesteine typischen Bereich von 1-2 logarithmischen Einheiten oberhalb FMQ.

Gleichgewichte zwischen Plagioklasrand- und Matrixglaszusammensetzungen liefern H₂O-Konzentrationen in den Merapimagmen zwischen durchschnittlich 1.0 und 3.5 Gew.% unmittelbar vor der Eruption. Für die Bimsklasten (sub)plinianischer Fallablagerungen ergeben sich die höchsten H₂O-Gehalte (2.8-3.5 Gew.% H₂O), während für die dichten Lavadomkomponenten aus Domkollaps-Nuées ardentes die niedrigsten H2O-Gehalte von durchschnittlich 1.0-1.5 Gew.% ermittelt wurden. Diese Werte sind im allgemeinen ähnlich oder etwas niedriger als die aus den EMS-Messungen der Schmelzeinschlüsse abgeleiteten magmatischen H₂O-Gehalte weiter zurückliegender Stadien der Magmenentwicklung – soweit diese in den Schmelzeinschlüssen erhalten sind – und implizieren (1) die zumindest teilweise Entgasung der Merapimagmen noch vor der Eruption während des Magmenaufstiegs, (2) die Bildung von Lavadomen am Merapi durch die Extrusion präeruptiv weitestgehend entgaster Magmen, (3) Unterschiede im Eruptionsverhalten (effusiv versus explosiv), die zumindest teilweise auf unterschiedliche H₂O-Gehalte unmittelbar vor der Eruption zurückgeführt werden können und (4) die weitestgehende Erhaltung der hohen H₂O-Gehalte von max. 6.4 Gew.% in den Schmelzeinschlüssen der Bimskomponenten explosiver Eruptionen infolge einer Kombination aus hohen Aufstiegs- und raschen Abkühlungsraten.

Kapitel 13 Resümee

Die Rekonstruktion der vulkanologischen und geochemischen Vorgeschichte eines Vulkans ist die Basis für jede weitere Arbeit zur Einschätzung des Gefährdungspotentials und nach wie vor die wichtigste Methode zur Abschätzung der langfristigen Wahrscheinlichkeit des Auftretens bestimmter Eruptionstypen. Aus dem früheren Ausbruchsverhalten eines Vulkans und der Kenntnis grundlegender magmatischer Prozesse lassen sich wichtige Rückschlüsse ziehen, da ein ähnliches Eruptionsverhalten auch bei zukünftigen Ausbrüchen zu erwarten ist.

Die vorliegende Dissertation stellt einen wichtigen Beitrag zur mittel- bis langfristigen Risikoabschätzung und Eruptionsvorhersage am Hochrisiko-Vulkan Merapi dar. Die Grundlagen hierfür bilden eine detaillierte Rekonstruktion der holozänen Eruptionsgeschichte und geochemischen Entwicklung des Vulkans, eine genaue Untersuchung magmengenetischer Prozesse sowie eine sorgfältige Analyse verschiedener physikalischer und chemischer Parameter des präeruptiven Magmasystems und deren Einfluß auf das Eruptionsverhalten des Vulkans.

Der Merapi ist einer der aktivsten und gefährlichsten Vulkane in Java. Die rezente vulkanische Tätigkeit ist gekennzeichnet durch länger andauernde Dombildungsperioden und kurzen, z.T. phreatisch beeinflußten Domkollapsphasen, die zu den für den Merapi typischen Block- und Aschenströmen (Merapi-Typ-Nuées ardentes) führen. Ähnliche Eruptionsmechanismen können aus den Ablagerungen prähistorischer Ausbrüche in den holozänen stratigraphischen Abfolgen des Merapi abgeleitet werden. Häufiger jedoch sind pyroklastische Ströme, die durch blumenkohl-, brotkrusten- oder bimsartige Komponenten charakterisiert sind und auf den Kollaps meist niedriger, kurzlebiger und vertikal gerichteter Eruptionssäulen oder -fontänen zurückgeführt werden können, für die am ehesten vulkanianische oder – bei gesteigerter Aktivität und offenem Vulkanschlot – (sub)plinianische Eruptionsmechanismen in Frage kommen (Kapitel 3). Ebenso charakteristisch für die holozöne Eruptionstätigkeit des Merapi sind pyroklastische Fallablagerungen, die eine Vielzahl einzelner, einige wenige Zentimeter bis mehrere 10er Zentimeter mächtige Grobaschen- und Bimslapillilagen in den stratigraphischen Abfolgen bilden und zusammen mit pyroklastischen Strom-, Surge- und Laharablagerungen die unteren Vulkanhänge bedecken. Einige weitverbreitete Fallablagerungen können als tephrostratigraphische Leithorizonte zur Korrelation pyroklastischer Ablagerungen über große Bereiche des S-, W- und NW-Sektors bis zu einer Entfernung von 20 km vom Merapigipfel herangezogen werden. Neben der Bedeutung für die Erstellung einer detaillierten Gesamtstratigraphie für den Merapi (Kapitel 4) können aus der Verbreitung und Korngrößenverteilung einiger markanter Bimstephren wichtige Rückschlüsse auf die Eruptionsdynamik großer holozäner Ausbrüche des Merapi gezogen werden, die sich fundamental von den dombildenden Eruptionen des 20. Jahrhunderts unterscheiden und unter Berücksichtigung der ermittelten physikalischen Eruptionsparameter qualitativ und quantitativ als subplinianische Eruptionen bzw. VEI 3- und 4-Ereignisse (Newhall & Self, 1982) zu charakterisieren sind. VEI 4-Eruptionen, wie in Kapitel 5 dieser Arbeit beschrieben, übertreffen sämtliche überlieferten historischen und rezenten Ausbrüche des Merapi, mit Ausnahme der möglichen VEI 4-Ereignisse des Jahres 1872 (Simkin & Siebert, 1994), um mindestens eine Größenordnung und sind für eine Risikoabschätzung und Beurteilung des Gefährdungspotentials künftiger Eruptionen des Vulkans von entscheidender Bedeutung.

Zusammen mit den im Verlauf dieser Arbeit ermittelten 86 neuen Radiokarbonaltern liegt nun eine beeindruckende Zahl von fast 150 Radiokarbondatierungen für den Merapi vor. Mit den Ergebnissen der in dieser Arbeit durchgeführten Altersbestimmungen reichen die C-14-Alter am Merapi bis etwa 12000 Jahre v.h., d.h. bis ins oberste Pleistozän zurück. Allerdings liefern annähernd 90 % der durchgeführten Radiokarbondatierungen Alter von weniger als 2000 ¹⁴C-Jahren v.h. Nur vereinzelte Radiokarbonalter erweitern den Zeitrahmen datierter pyroklastischer Ablagerungen am Merapi bis ins oberste Pleistozän und reflektieren damit die weitestgehende Überschüttung älterer Ablagerungen durch die hohe Tephraproduktion und Sedimentakkumulation des Merapi finden sich in den tiefen Erosionsrinnen des SW-Sektors des Vulkankomplexes. Diese erlauben zusammen mit den jüngsten Altern pyroklastischer Stromablagerungen auf der E-Seite des Vulkans eine kritische Überprüfung der bestehenden Modelle zum angenommenen Flankenkollaps des Old Merapi und liefern darüber hinaus einen möglichen Ansatzpunkt für eine Neubewertung des Auftretens und der zeitlichen Einordnung möglicher Kollapsereignisse am Merapi, wie in Kapitel 4 diskutiert.

Geochemisch sind die Merapigesteine durch relativ geringe Variationen im SiO₂-Gehalt und basaltische bis basaltandesitische Zusammensetzungen gekennzeichnet. Während "Basalte im engeren Sinne" im wesentlichen auf das Proto-Merapi-Stadium (G. Turgo, G. Plawangan) beschränkt sind, wird der größte Teil des Vulkankomplexes (G. Bibi, Somma-Wall, holozäne und rezente Pyroklastitserien und Lavadome) überwiegend von basaltischen Andesiten aufgebaut (Kapitel 6 & 7). Ein wesentlicher Neubefund dieser Arbeit ist die Unterscheidung von zwei magmatischen Serien am Merapi, die sich deutlich in ihrem K₂O-Gehalt unterscheiden und – der Nomenklatur von Le Maitre et al. (1989) folgend – als Medium-K-Serie bzw. High-K-Serie bezeichnet werden. Der Medium-K-Serie gehören neben den älteren holozänen Förderprodukten (> 1800-1900⁻¹⁴C-Jahre v.h.) die Laven des Somma-Walls und die geochemisch ähnlichen Gesteine des Gunung Bibi an. Dieser Sachverhalt könnte die Interpretation von Newhall et al. (2000) stützen, die Gunung Bibi als laterales Förderzentrum des jüngeren Old Merapi-Stadiums ansehen, obgleich angemerkt werden muß, daß letztlich nur eine sorgfältige

Altersbestimmung diese Hyothese verifizieren könnte (s. Diskussion in Kapitel 2). Die jüngeren holozänen Laven und Pyroklastitserien (< 1800-1900¹⁴C-Jahre v.h.) weisen durchweg High-K-Affinität auf und implizieren einen allgemeinen Entwicklungstrend hin zu Kreicheren Magmen in der holozänen Eruptionsgeschichte des Merapi, der mit der Förderung von Magmen der High-K-Serie in der rezenten Periode des ausgehenden 19. und 20. Jahrhunderts seine Fortsetzung findet. Zeitlich fällt der Übergang von der Medium-K- zur High-K-Serie mit dem jüngsten, von Newhall et al. (2000) postulierten, Kollaps des Old Merapi zusammen. Dieser Befund impliziert auf den ersten Blick einen direkten Zusammenhang zwischen der magmatischen und strukturellen Entwicklung des Vulkans. Allerdings deuten die im Rahmen dieser Arbeit ermittelten Alter der jüngsten pyroklastischen Stromablagerungen auf der Merapi-E-Seite auf ein ca. 300 Jahre jüngeres Alter eines solchen Ereignisses, so daß kein direkter Zusammenhang zwischen dem Übergang von der Medium-K- zur High-K-Serie und möglichen Kollapsereignissen am Merapi besteht. Die Basalte des Proto-Merapi fallen formal ebenfalls in das Feld der High-K-Serie der Merapi-Vulkanite, weisen jedoch Spurenelementcharakteristika auf, die sich deutlich von den übrigen Förderprodukten des Vulkans unterscheiden und eine einfache magmengenetische Beziehung mit den jüngeren Gesteinen des eigentlichen Vulkankegels ausschließen. Dieser Befund läßt auf die Existenz eines unabhängigen Magmasystems für das Proto-Merapi-Stadium schließen und untermauert damit frühere und bestehende Interpretationen zur Entstehung von Gunung Turgo und Gunung Plawangan, die diese als Erosionsreste eines eigenständigen älteren Vulkankegels mit einem Eruptionszentrum südlich des heutigen Merapikomplexes ansehen (Newhall et al., 2000).

Mit die interessantesten Aspekte der geochemischen und isotopengeochemischen Untersuchungen am Merapi betreffen sicherlich die Ursachen säkularer Variationen in den Magmenzusammensetzungen und magmatischer Zyklen sowie die Einflüsse magmatischer Prozesse auf den Eruptionsstil. Geochemische Variationen am Merapi erfolgen über unterschiedlich lange Zeiträume (Kapitel 9) und können weitestgehend auf Prozesse innerhalb krustaler Magmakammern und Unterschiede in der Quellregion der Merapimagmen erklärt werden. Die geochemischen Unterschiede zwischen dem Proto-Merapi-Stadium und den jüngeren Entwicklungsstadien des Vulkans und der Übergang von Magmen der Medium-K-Serie zu solchen der High-K-Serie vor ca. 1800-1900 Jahren können im Sinne langfristiger geochemischer Variationen über die Gesamtentwicklung des Vulkankomplexes interpretiert und auf kompositionelle Unterschiede in der Mantelquelle zurückgeführt werden, welche die geochemischen Zusammensetzungen der primären Mantelschmelzen und Ausgangsmagmen der differenzierten Merapimagmen bestimmen (Kapitel 8), und durch den subduktionsbedingten Eintrag von Sedimenten des Indischen Ozeans in den Mantelkeil oberhalb der subduzierten Platte verursacht werden. Die mittelfristigen geochemischen Variationen innerhalb der beiden K-Serien des Merapi können im wesentlichen durch Prozesse der fraktionierten Kristallisation basaltischer Inselbogenmagmen, die aus dem Mantelkeil oberhalb der subduzierten Platte stammen, in einem krustalen Magmareservoir erklärt werden. Die Kontamination der Magmen mit Krustenmaterial aus dem subvulkanischen Basement in Form von AFC- oder anderen Assimilationsprozessen während des Aufstiegs oder der Zwischenspeicherung in einem krustalen Magmareservoir spielt dabei keine wesentliche Rolle. Die detaillierte Dokumentation der nahezu kontinuierlichen Eruptionstätigkeit des Merapi seit dem Beginn der Förderung von Magmen der High-K-Serie vor ca. 1800-1900 Jahren zeigt, daß die geochemische Entwicklung des Vulkans während der vergangenen ca. 2000 Jahre durch magmatische Zyklen gekennzeichnet ist, die nach einer Phase reduzierter vulkanischer Aktivität mit der Förderung differenzierter Magmen beginnen und auf ein komplexes Wechselspiel verschiedener Prozesse wie die fraktionierte Kristallisation, die Entleerung und Wiederauffüllung eines krustalen Magmareservoirs durch einströmende basische Magmen aus tieferen Bereichen sowie Mischungen zwischen diesen und höher differenzierten Magmen in der Magmakammer, hindeuten (Kapitel 9). Ähnliche zyklische Variationen, wie sie in der jungholozänen Eruptionsgeschichte des Merapi beobachtet werden können, setzen sich in der rezenten Periode seit 1883 fort.

Die Anwendung verschiedener Geobarometer und das Auftreten von Amphibolkristallen ohne Reaktionssäume deuten auf einen Druck von mehr als ca. 4 kbar für die Kristallisation der Merapimagmen und die Existenz eines Hauptmagmareservoirs am Merapi innerhalb des Amphibolstabilitätsfeldes und einem mittleren bis unteren Niveau der "quasi-kontinentalen" Kruste Javas. Gleichgewichtsamphibole in den Bimskomponenten explosiver Eruptionen und Amphibolkristalle mit relativ geringmächtigen Reaktionssäumen infolge des Amphibolzerfalls unter oberflächennahen Bedingungen in den rezenten und holozänen Lavadomkomponenten implizieren das Fehlen eines langlebigen, oberflächennahen Magmareservoirs außerhalb des Stabilitätsfeldes von Amphibol in dem aufsteigende Magmen über längere Zeiträume zwischengespeichert werden. Die beobachteten Ausbildungsformen und Strukturen der Amphibolkristalle deuten zudem darauf hin, daß die Magmenaufstiegsrate einer der kontrollierenden Faktoren effusiver (dombildender) *versus* explosiver ((sub)plinianischer) Eruptionstätigkeit am Merapi darstellt (Kapitel 12).

Die präeruptiven Bedingungen am Merapi, wie sie aus den Untersuchungen an Schmelzeinschlüssen, mineralchemischen Daten und Gleichgewichten zwischen verschiedenen Mineralphasen bzw. Mineralphasen und koexistierender Schmelze abgeschätzt werden können, sind ähnlich für Proben effusiver und explosiver Eruptionstätigkeit des Merapi (Lavadomkomponenten, Komponenten von Eruptionssäulenkollaps-Nuées ardentes, Bimsklasten (sub)plinianischer Eruptionen) (Kapitel 11 & 12). Unterschiede im Eruptionsstil am Merapi lassen sich daher nicht auf systematische primäre Unterschiede im präeruptiven Magmasystem zurückführen, können jedoch durch magmatische Entgasungsprozesse während des Magmenaufstiegs zustande kommen. Der Wassergehalt ist sicherlich der weitaus wichtigste Parameter, der die potentielle Explosivität und damit das Eruptionsverhalten eines Vulkans bestimmt. Die EMS- Analytik an Schmelzeinschlüssen impliziert H₂O-Gehalte von maximal 6.4 Gew.% für die Merapimagmen, die damit bei den angenommenen Kristallisationsbedingungen (s. vorige Seite) H₂O-untersättigt sind und bei Drücken von weniger als 3 kbar ihre Wassersättigung erreichen (Kapitel 11). Hohe H₂O-Gehalte sind ausschließlich in den Schmelzeinschlüssen von Bimsklasten (sub)plinianischer Fallablagerungen und pyroklastischen Strömen erhalten, während die Schmelzeinschlüsse in den Einsprenglingskristallen dichter Lavadomkomponenten, sowie Blumenkohl- und Brotkrustenkomponenten aus Lavadom- oder Eruptionssäulenkollaps-Nuées ardentes ihr H₂O weitestgehend verloren haben und keine primären magmatischen H₂O-Gehalte mehr aufweisen. Gleichgewichte zwischen Plagioklasrand- und Matrixglaszusammensetzungen ermöglichen die Abschätzung des präeruptiven H2O-Gehalts der Merapimagmen unmittelbar vor der Eruption und deuten zudem systematische Unterschiede zwischen effusiven und explosiven Eruptionstypen am Merapi an (Kapitel 12), die auf unterschiedliche Entgasungsgeschichten während des Magmenaufstiegs hindeuten. Bei einem insgesamt ähnlichen Grad der magmatischen Entgasung für Proben effusiver und explosiver Eruptionen am Merapi deuten die niedrigen präeruptiven H₂O-Gehalte der Proben effusiver (dombildender) Eruptionen auf extensive Entgasungsprozesse und das Entweichen der Gase durch die Seitenwände des Vulkanschlotes während des langsamen Aufstiegs der Magmen (magmatische Entgasung in einem offenen System). Demgegenüber bleiben die primären magmatischen H₂O-Gehalte in den Bimsproben explosiver Eruptionen vermutlich aufgrund hoher Aufstiegsraten weitestgehend erhalten und es scheint, daß die magmatische Entgasung bis zur Fragmentierung der Schmelze in einem annähernd geschlossenen System erfolgt. Es ist wahrscheinlich, daß ähnliche Prozesse bei dem häufig beobachteten Wechsel zwischen effusiver (dombildender) und explosiver (plinianischer) Eruptionstätigkeit an aktiven Andesitvulkanen eine wesentliche Rolle spielen.

Anhang

Anhang 1 Analytische Methoden	258
Anhang 2	
Radiokarbondatierungen	
Anhang 3	
Probenverzeichnis	272
Anhang 4	
Geochemische Daten	
Anhang 5	
Mineralchemische Daten	
Anhang 6	
Glasanalysen	
Anhang 7	
Standardlegende zu den stratigraphischen Profilen (Kapitel 4)	

Anhang 1 Analytische Methoden

Radiokarbondatierungen	
Geochemische Gesamtgesteinsanalytik	
Röntgenfluoreszenzanalytik	
ICP-MS-Analytik	
Isotopengeochemische Untersuchungen	
Elektronenmikrosondenanalytik (EMS)	
Mineralanalytik	
Glasanalytik	
Hauptelemente	
Volatile (F, S, Cl)	

Radiokarbondatierungen

Die dichte tropische Vegetation auf den mittleren und unteren Merapihängen sorgt für reichlich organische Substanz in den pyroklastischen Ablagerungen des Vulkans, die für eine Altersbestimmung mit der Radiokarbonmethode verwendet werden kann.

Insgesamt wurden 86 Radiokarbondatierungen an organischem Material (i.d.R. Holzkohle) in den pyroklastischen Ablagerungen des Merapi und darin eingeschalteten Paläobodenhorizonten durchgeführt. Beim überwiegenden Teil des zu datierenden Probenmaterials handelt es sich um dünne Äste oder dickere Stämme nicht näher bestimmter Bäume oder Bambusgewächse. Bei der Beprobung dickerer Baumstämme wurde darauf geachtet, die Proben nach Möglichkeit den äußersten Partien zu entnehmen, um ein dem Eruptionsalter möglichst nahekommendes Radiokarbonalter zu erhalten. In wenigen Fällen wurden mehrere Proben aus einer Ablagerung datiert, um neben der stratigraphischen Kontrolle eine weitere Beurteilungsgrundlage für die Qualität der erhaltenen Radiokarbonalter zu erhalten. Bei dem analysierten Probenmaterial aus Paläobodenhorizonten handelt es sich überwiegend um kleine (< 1-2 cm) Holzkohlepartikel, die regellos in den Bodenhorizonten verteilt sind. In einem Fall (Probe M96-168) wurde eine Gesamtbodenprobe eines dunklen, humusreichen Paläobodens analysiert.

Je nach Probenmenge wurden die entnommenen Proben mit der konventionellen Radiokarbonmethode am Institut für Umweltphysik der Universtät Heidelberg durch Dr. B. Kromer (78 Proben; Labor-Nr. <u>Hd</u>; Tab. A2.1) oder mit der AMS-Methode am Leibniz Labor für Altersbestimmung und Isotopenforschung der Universität Kiel durch Prof. P.M. Grootes (8 Proben; Labor-Nr. <u>KIA</u>; Tab. A2.1) datiert.

Stellvertretend sind die am Leibniz-AMS-Labor durchgeführten Probenaufbereitungs- und Meßmethoden im folgenden Abschnitt zusammengefaßt.

Für die AMS-¹⁴C-Analytik wurden feinste Holzkohlepartikel aus der jeweiligen Gesamtprobe heraussortiert und mit 1 % HCl, 1 % NaOH und wieder 1 % HCl bei 60 °C extrahiert. Die Verbrennung erfolgte bei 900 °C in einer mit CuO und Silberwolle gefüllten Quarzampulle. Das entstandene CO₂ wurde anschließend mit H₂ bei 600 °C über einem Eisenkatalysator zu Graphit reduziert und das Eisen-Graphit-Gemisch in einen Probenhalter für die AMS-Messung gepreßt. Die ¹⁴C-Messungen wurden mit Hilfe des gleichzeitig durch AMS gemessenen ¹³C/¹²C-Verhältnisses auf Isotopenfraktionierungen korrigiert, das zusätzlich die Effekte während der Graphitisierung und der im Massenspektrometer auftretenden Isotopenfraktionierung enthält. Die analytische Unsicherheit im ¹⁴C-Ergebnis berücksichtigt Zählstatistik, Stabilität der AMS-Anlage und die Unsicherheit im subtrahierten Nulleffekt. Bei jeder Probe wurde neben dem Laugenrückstand auch die Huminsäurefraktion datiert. Bei signifikanten Abweichungen (> 2) der beiden Alter wurde in Abhängigkeit des erzielten Ergebnisses entweder das Alter des Laugenresidues oder der Huminsäurefraktion zur Umrechnung in Kalenderjahre berücksichtigt (Grootes, pers. Mitteilung).

Zur Kalibrierung der konventionellen ¹⁴C-Alter gemäß Stuiver & Pollach (1977) wurden die Computer-Programme CALIB rev 3.0 (Stuiver & Reimer, 1993), INTCAL98 und CALIB rev 4.0 (Stuiver et al., 1998) verwendet (Kromer, pers. Mitteilung; Grootes, pers. Mitteilung). Die auf der Basis des 1 -Fehlerintervalls ermittelten kalibrierten ¹⁴C-Altersbereiche sind in Tab. A2.1 aufgeführt. Im Falle mehrerer Schnittpunkte der ermittelten ¹⁴C-Alter mit der ¹⁴C-Kalibrationskurve ergeben sich mehrere mögliche Zeitintervalle für das tatsächliche Eruptionsalter in Kalenderjahren und einzelne Bereiche innerhalb des Gesamtintervalls, die formal nicht für ein ¹⁴C-Alter in Frage kommen. Da im allgemeinen keine externen Hinweise vorliegen, welches der Subintervalle wahrscheinlicher ist, sind in Tab. A2.1 ausschließlich die jeweiligen Gesamtintervalle der kalibrierten ¹⁴C-Altersbereiche angegeben.

Geochemische Gesamtgesteinsanalytik

Röntgenfluoreszenzanalytik

Die Bestimmung der Konzentration der Hauptelemente (SiO₂, TiO₂, Al₂O₃, Fe₂O₃*, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅) sowie ausgewählter Spurenelemente (Sc, V, Cr, Co, Ni, Rb, Sr, Ba, Pb, Th, Zr, Nb, Hf, Y, Ta, U) an insgesamt 185 Gesamtgesteinsproben erfolgte mittels <u>Röntgenfluoreszenzanalyse</u>.

Dafür stand im Verlauf der Arbeit zunächst ein Philips-Röntgenspektrometer vom Typ PW 1450/20 und später ein Röntgenspektrometer vom Typ PW 2404 am Institut für Mineralogie, Petrologie und Geochemie der Universität Freiburg (IMPG) zur Verfügung. Die in dieser Arbeit berücksichtigten Analysenergebnisse wurden allesamt mit dem neuen Spektrometer PW 2404 ermittelt.

Zur Vorbereitung für die chemische Analyse wurden die Proben zunächst von Verwitterungskrusten befreit und mehrfach mit destilliertem Wasser ausgewaschen. Anschließend wurden die Gesteine im Achatgefäß der Scheibenschwingmühle analysenfein gemahlen und im Trockenschrank bei 105°C getrocknet.

Zur Bestimmung der Hauptelemente wurden Schmelzpräparate aus 1.0000 ± 0.0001 g Probenpulver und 4.0000 ± 0.0001 g Schmelzmittel (MERCK A12: 66 % Li₂B₄O₇; 34 % LiBO₂) hergestellt. Die Spurenelementanalytik erfolgte mit Preßpräparaten aus 4.0000 ± 0.0001 g Probenpulver und 1.0000 ± 0.0001 g Preßwachs (HOECHST-Mikropulver).

Als Referenzproben dienten die international gebräuchlichen Standards BCR, DR-N, W-1 und AGV. Die Nachweisgrenze und analytische Ungenauigkeit beträgt ca. 0.1 Gew.% für die Hauptelemente und 1-10 ppm für die Spurenelemente. Die mit der RFA erhaltenen Ta- und U-

Konzentrationen liegen ausnahmslos unterhalb der Nachweisgrenze und werden in dieser Arbeit nicht berücksichtigt.

Zur Bestimmung des Glühverlusts (Loss on Ignition; LOI) wurden ca. 1 g Probensubstanz für 2 bis 3 Stunden auf 1050°C erhitzt. Die in Tab. A4.1 aufgelisteten Glühverlustwerte beinhalten den Gesamteffekt aus Entwässerung (Gewichtsverlust) und Oxidation (Gewichtszunahme). Überwiegt der Effekt der Oxidation, so resultieren daraus negative LOI-Werte (Tab. A4.1).

ICP-MS-Analytik

Die Bestimmung weiterer 43 Spurenelemente (Tab. A1.1, A4.2), inklusive der Seltenen Erden (Rare Earth Elements; REE), an ausgewählten Merapiproben erfolgte mittels <u>ICP-MS</u> (Inductively Coupled Plasma Mass Spectrometry).

Tab. A1.1. Spurenelementbestimmungen und Nachweisgrenzen der ICP-MS-Analytik (Morel, pers. Mitteilung). *NG (ppm)* Nachweisgrenze in ppm.

Element	NG (ppm)	Element	NG (ppm)	Element	NG (ppm)	Element	NG (ppm)
As	0.23	Er	0.02	Nb	0.05	Tb	0.01
Ba	5	Eu	0.02	Nd	0.15	Th	0.05
Be	0.9	Ga	0.13	Ni	8	Tm	0.01
Bi	0.05	Gd	0.07	Pb	0.6	U	0.05
Cd	0.15	Ge	0.08	Pr	0.02	\mathbf{V}	1.5
Ce	0.05	Hf	0.04	Rb	0.8	\mathbf{W}	0.1
Со	0.3	Но	0.01	Sb	0.1	Y	0.05
Cr	5	In	0.09	Sm	0.06	Yb	0.03
Cs	0.1	La	0.05	Sn	0.3	Zn	4
Cu	5	Lu	0.01	Sr	4	Zr	0.5
Dy	0.03	Мо	0.15	Та	0.01		

Die Messungen wurden auf kommerzieller Basis am Centre National de la Recherche Scientifique (CNRS) in Nancy (Frankreich) durchgeführt. Die analytische Ungenauigkeit liegt in Abhängigkeit des jeweiligen Elements und dessen Konzentration in der entsprechenden Gesteinsprobe zwischen < 5 % und < 20 % (Morel, pers. Mitteilung). Die Nachweisgrenzen der gemessenen Elemente sind in Tab. A1.1 aufgeführt.

An 10 weiteren Merapi-Gesamtgesteinsproben wurde zusätzlich Bor mittels <u>Absorptions-spektrometrie</u> gemessen. Die Analysen wurden ebenfalls in Nancy am Centre National de la Recherche Scientifique (CNRS) durchgeführt. Die Nachweisgrenze für die Bor-Analysen beträgt 1 ppm. Der relative analytische Fehler liegt bei den gegebenen Bor-Konzentrationen zwischen 10 % und 15 % (Morel, pers. Mitteilung).

Isotopengeochemische Untersuchungen

Die Bestimmung radiogener Isotope (Sr, Nd, Pb) und Sauerstoffisotope an Gesamtgesteinsproben und Mineralseparaten wurde freundlicherweise von Herrn Prof. M. Satir am Institut für Mineralogie, Petrologie und Geochemie der Universität Tübingen übernommen.

Die Fehlerangaben (2 -Vertrauensintervall) der in dieser Arbeit durchgeführten Sr- und Nd-Isotopenbestimmungen sind in den Tabellen 8.2 und 8.5 aufgeführt. Die relativen Standardabweichungen für die Pb- und O-Isotopenmessungen folgen in diesem Kapitel.

Mehrfachmessungen des Sr-Standards NBS-987 ergaben ein 87 Sr/ 86 Sr-Verhältnis von 0.710278 \pm 0.000016 (2 , n = 10). Die in den Merapiproben gemessenen Sr-Isotopenverhältnisse wurden auf den Referenzwert dieses Standards von 0.710248 korrigiert.

Analysen des Ames Nd-Standards ergaben ein 143 Nd/ 144 Nd-Verhältnis von 0.512136 ± 0.000008 (2 , n = 5) und stimmen mit dem zertifizierten Wert dieses Standards überein.

Die relativen Standardabweichungen (2) für die Pb-Isotopenmessungen liegen bei weniger als 0.003 % (Proben: M95-026, M96-056, M96-073, M96-137, M96-142, M96-167, M97-021, M97-031, M97-068, M97-0392) und, mit Ausnahme der kalk-silikatischen Probe MX-6, bei weniger als 0.01 % (Proben: M98-047, M98-066, M98-096, M98-107, MX99-1, MX99-2). Die gemessenen Pb-Isotopenverhältnisse sind für eine Massenfraktionierung von 0.1 % pro Masseneinheit korrigiert.

Die Sauerstoffisotopenverhältnisse sind als ¹⁸O-Werte in Promille (‰) relativ zu VSMOW (Standard Mean Ocean Water) angegeben und beziehen sich auf einen Referenzwert von 9.6 ‰, gemessen an dem Quarzstandard NBS-28, der mit einem Meßfehler von weniger als 0.1 ‰ reproduziert wurde. Für die Sauerstoffisotopenbestimmungen wurden generell 2 bis 3 Messungen pro Probe durchgeführt. Sämtliche Proben liefern reproduzierbare Werte innerhalb eines Meßfehlers von 0.1 bis 0.2 ‰. Die jeweiligen Mittelwerte sind in den Tabellen 8.2, 8.3, 8.4 und 8.5 aufgeführt. Für die karbonathaltigen Proben (MX99-1, MX99-2) wurde der nicht-karbonatische Anteil getrennt vom karbonatischen Anteil analysiert. Die für diese Proben angegebenen ¹⁸O-Werte entsprechen denen des nicht-karbonatischen Anteils.

Eine ausführliche und detaillierte Beschreibung der eingesetzten Analysenmethoden zur Bestimmung radiogener und stabiler Isotope im Isotopenlabor der Universität Tübingen findet sich in Hegner et al. (1995a, b).

Elektronenmikrosondenanalytik (EMS)

Quantitative Mineral- und Glasanalysen wurden an einer Elektronenmikrosonde vom Typ CAMECA SX 100 mit internem PAP-Korrekturprogramm (Pouchou & Pichior, 1991) am Institut für Mineralogie, Petrologie und Geochemie der Universität Freiburg durchgeführt.

Mineralanalytik

Die Bestimmung der Hauptelementkonzentrationen der verschiedenen Mineralphasen erfolgte routinemäßig mit einer Beschleunigungsspannung von 15 kV, einem Probenstrom von 20 nA und fokussiertem Elektronenstrahl. Die Meßzeit betrug 20 sec auf der Peak-Position des entsprechenden Elements, zuzüglich jeweils 10 sec für Messungen des interferenzfreien Untergrundes beiderseits des gemessenen Peaks.

Für die Messung von Fluor und Chlor in Amphibol wurde zur Verbesserung der Zählstatistik und zur Erhöhung der Nachweisgrenze aufgrund der geringen Elementkonzentrationen ein erhöhter Probenstrom von 80-100 nA, eine verlängerte Meßzeit von 100 sec auf der Peak-Position sowie eine entsprechend längere Meßzeit des interferenzfreien Untergrundes gewählt. Die Kalibrierung der einzelnen Elemente wurde an natürlichen, international gebräuchlichen Mineralstandards vorgenommen und durch Kontrollmessungen natürlicher Minerale bekannter Zusammensetzung überprüft.

Glasanalytik

Hauptelemente

Die Bestimmung der Hauptelementzusammensetzung von Matrixgläsern und Schmelzeinschlüssen in den Merapigesteinen erfolgte mit einer Beschleunigungsspannung von 15 kV und einem Probenstrom von 10 nA. Um Na-Verlust vorzubeugen wurde die Meßzeit für Na auf 10 sec auf der Peak-Position verringert. Die Meßzeit für die übrigen Hauptelemente blieb gegenüber den Mineralanalysen unverändert.

Die Glasanalysen wurden routinemäßig mit einem aufgeweiteten Elektronenstrahl mit 10-20 μ m Durchmesser durchgeführt. Bei kleineren Schmelzeinschlüssen mußte teilweise mit einem Elektronenstrahldurchmesser von 5 μ m gearbeitet werden.

An den Merapigläsern durchgeführte Kontrollmessungen mit einem Probenstrom von 10 nA und einem aufgeweiteten Elektronenstrahl von 10 µm Durchmesser ergaben keine signifikante zeitabhängige Verringerung der Intensität der Na K -Linie im Bereich der gewählten Meßzeiten.

Wie bei der Mineralanalytik wurden zur Kalibrierung einzelner Elemente international übliche Referenzmaterialien bzw. Mineralstandards verwendet. Die Kalibrierungen wurden anschließend durch Kontrollmessungen an vulkanischen Glasstandards überprüft. Am IMPG standen hierfür ein rhyolithisches Glas (VG-568) aus dem Yellowstone-Park (USA) sowie ein Basaltglas (VG-2) vom Juan de Fuca Ridge zur Verfügung. Meßbedingungen mit einer Beschleunigungsspannung von 15 kV, einem Probenstrom von 10 nA und einem Elektronenstrahldurchmesser von 10 µm führen dabei zu einer gleichbleibenden Zählrate bzw. Intensität der Na K -Linie in den genannten Glasstandards während des gesamten Meßintervalls.

Volatile (F, S, Cl)

Die Bestimmung der Chlor-, Fluor- und Schwefelgehalte in Matrixgläsern und Schmelzeinschlüssen erfolgte mit einer Beschleunigungsspannung von 15 kV und, wie bei der Messung der Hauptelemente, einem aufgeweiteten Elektronenstrahl. Aufgrund der zu erwartenden geringen Konzentrationen der oben genannten Elemente wurde zur Verbesserung der Zählstatistik und zur Erhöhung der Nachweisgrenze ein erhöhter Probenstrom von 80 nA und deutlich verlängerte Meßzeiten von 100 sec auf der Peak-Position sowie entsprechend längere Meßzeiten auf den interferenzfreien Untergrundpositionen verwendet. Die gewählten Meßbedingungen mit erhöhtem Probenstrom und deutlich verlängerten Meßzeiten führen zu keiner signifikanten zeitabhängigen Verringerung der Intensitäten der K -Linien von Chlor, Fluor und Schwefel.

Die Kalibrierung der Volatilelemente erfolgte mit den natürlichen Mineralstandards Scapolith (Cl), F-Phlogopit (F) und Troilit (S).

Abb. A1.1. Darstellung der Position der S K -Linien reiner Sulfid- bzw. Sulfatphasen und des Prinzips der Verschiebung der S K -Linie als Funktion des Verhältnisses von Sulfid (S²⁻) zu Sulfat (S⁶⁺) in vulkanischem Glas.

Da die Peak-Position der S K -Linie in vulkanischen Gläsern in Abhängigkeit des Verhältnisses von Sulfid (S²⁻) zu Sulfat (S⁶⁺) variiert (Carroll & Rutherford, 1988), wurde zur Bestimmung der Schwefelkonzentrationen in den Merapigläsern zunächst die Lage des Schwefel-Peaks in den zu messenden Glaseinschlüssen ermittelt. Vor der Analyse unbekannter Gläser wurde die sin -Position des Schwefel-Peaks des reinen Sulfidstandards in Übereinstimmung mit der ermittelten Peak-Position der S K -Linie des zu analysierenden Glases verschoben. Das Prinzip der Verschiebung der S K -Linie als Funktion des gelösten Sulfid zu Sulfat-Verhältnisses ist schematisch in Abb. A1.1 dargestellt. Unter der Annahme, daß die Verschiebung der Wellenlänge ((S K)) proportional zum Sulfatanteil des gelösten Schwefels ist, kann dieser nach der folgenden Gleichung abgeschätzt werden (Carroll & Rutherford, 1988):

% Sulfat am Gesamtschwefel = $(S K)_{Glas} / (S K)_{Sulfat} \times 100$

Die Verschiebung der Peak-Position der S K -Linie relativ zu FeS in Glaseinschlüssen verschiedener Proben und die daraus berechneten Sulfatanteile in den jeweiligen Gläsern sind in Tab. A1.2 aufgeführt.

Tab. A1.2. Ermittelte Peak-Position der S K -Linie verschiedener Glaseinschlüsse relativ zu FeS und berechnete Sulfatanteile am Gesamtschwefel in den jeweiligen Gläsern.

Probe	Min.	$\sin\!\theta \left(\mathrm{Glas} ight)^{1)}$	$\Delta \lambda \left(\mathbf{S} \mathbf{Ka} \right)^{2}$	% S ⁶⁺ in GI ³⁾
M96-075	cpx	0.61394	$2.1 \mathrm{x} 10^3 \mathrm{\AA}$	60.0
M97-392	cpx	0.61389	$2.6 \text{x} 10^3 \text{ Å}$	74.3
M97-045	cpx	0.61391	$2.4 \text{x} 10^3 \text{ Å}$	68.6
M97-053	cpx	0.61387	$2.8 \text{x} 10^3 \text{ Å}$	80.0
M97-053	cpx	0.61392	$2.3 \text{x} 10^3 \text{ Å}$	65.7
M98-066	срх	0.61388	2.7x10 ³ Å	77.1

(1) PET-Kristall, Spektrometer 2; (2) (S Ka) = (S Ka)_{FeS} - (S Ka)_{Glas}; (3) nach Carroll & Rutherford (1988)

Die Verifizierung der Kalibrierungen erfolgte durch Mehrfachmessungen des comenditischen Glasstandards KN-18 und des pantelleritischen Glases KE-12 (Tab. A1.3), die freundlicherweise von Haraldur Sigurdsson (University of Rhode Island) zur Verfügung gestellt wurden.

Tab. A1.3. Referenzwerte für Cl, F und S verschiedener Glasstandards.

Standard	Gesteinstyp	Cl (ppm)	F (ppm)	S (ppm)	Referenzen
KN-18	Comendit (Kenia)	3700	6400	-	Devine et al. (1984, 1995) Dunbar (pers. Mitteilung)
KE-12	Pantellerit (Kenia)	3300	4200	-	Devine et al. (1995) Dunbar (pers. Mitteilung)

Tab. A1.4. Literaturwerte und eigene EMS-Analysen der Cl-, F- und S-Gehalte der Glasstandards VG-2 und VG-568. *n* Anzahl der Analysen; *b.d.* (below detection limit) unterhalb der Nachweisgrenze.

Standard	n	Cl (ppr	Cl (ppm)		F (ppm)			S (ppm)	
VG-2 (Basalt - Juan de Fuca Ridge)									
Thordarson et al. (1996): Cameca Trace Routine	134	291 ±	52				1348 ±	62	
Thordarson et al. (1996): CSIRO Trace Routine	139	316 ±	19	300	±	72	1365 ±	29	
Dixon et al. (1991)	19						1340 ±	80	
Diese Arbeit	21	320 \pm	18	312	±	41	1350 \pm	75	
VG-568 (Rhyolith – Yellowstone)									
Referenzwert (Smithsonian Institution)		1300							
Dunbar (pers. Mitteilung)	22	960 ±	120	1840	±	540			
Diese Arbeit	19	1224 ±	53	1829	±	63	b.d	l.	

Zusätzlich wurden Kontrollmessungen dieser Elemente in den Glasstandards VG-568 (Rhyolith-Yellowstone) und VG-2 (Basalt-Juan de Fuca Ridge) durchgeführt. Vergleichswerte für VG-568 wurden freundlicherweise von Nelia Dunbar (New Mexico Institute of Mining and Technology) zur Verfügung gestellt. Durch Mehrfachmessungen erhaltene Cl-, F- und S-Gehalte für VG-2 sind der Arbeit von Thordarson et al. (1996) entnommen. Weitere S-Analysen entstammen der Arbeit von Dixon et al. (1991). Die Daten sind in Tab. A1.4 zusammengefaßt.

Auf der Basis von Mehrfachmessungen an den Glasstandards KN-18, KE-12, VG-568 und VG-2 wird die relative analytische Ungenauigkeit auf weniger als 5 % für Cl und S sowie weniger als 15 % für F geschätzt.

Anhang 2 Radiokarbondatierungen

 Tab. A2.1. Radiokarbondatierungen-Merapi.
 268

Proben-Nr.	Labor-Nr.	Konv. 14C-Alter (Jahre v.h.)] ((Kalibriertes 14C-Alter (Kalenderjahre AD/BC) (1s-Fehlerbereich)	Datiertes Material	Ablagerungstyp	Lokalität (Kap. 4)	Ortsbezeichnung	Sektor
M98-102	Hd-20761	$124 \pm$	37	1680 AD - 1955 AD	Holzkohle	Pyroklastischer Strom	C-6	Kali Boyong	S
M97-049	Hd-20142	$127\ \pm$	27	1685 AD - 1955 AD	Holz	Lahar	-	Kali Senowo	W-NW
M97-044	Hd-20536	$232~\pm$	17	1655 AD - 1795 AD	Holzkohle	Pyroklastischer Strom	C-6	Kali Boyong	S
M97-074	Hd-20042	234 ±	27	1650 AD - 1795AD	Holzkohle	Pyroklastischer Strom	-	Jurangjero / Kali Putih	SW
M98-024	Hd-20542	$242~\pm$	28	1650 AD - 1790 AD	Holzkohle	Pyroklastischer Strom	E-3	Kali Blongkeng	SW
M98-020	Hd-20617	$253\ \pm$	32	1645 AD - 1665 AD	Holzkohle	Pyroklastischer Strom	A-1	Kali Woro	SSE
M97-024	Hd-20626	$254\ \pm$	29	1645 AD - 1665 AD	Holzkohle	Pyroklastischer Strom	C-4	Kali Boyong	S
M96-120	Hd-20208	$271\ \pm$	59	1525 AD - 1790 AD	Holzkohle	Pyroklastischer Strom	В-3	Pelem-Kinarejo	S
M96-076	Hd-20202	$286\ \pm$	46	1525 AD - 1660 AD	Holzkohle	Pyroklastischer Strom	-	Jurangjero / Kali Putih	SW
M97-066	Hd-20772	$292\ \pm$	26	1530 AD - 1650 AD	Holzkohle	Pyroklastischer Strom	-	J'jero-Monument	SW
M95-003	Hd-19259	$294~\pm$	38	1525 AD - 1660 AD	Holzkohle	Pyroklastischer Strom	C-2	Kemiri / W Kali Boyong	S
M95-007	Hd-21059	$296~\pm$	38	1525 AD - 1650 AD	Holzkohle	Pyroklastischer Strom	C-1	Sidorejo / Kali Kuning	S
M99-038	Hd-20733	$308\ \pm$	24	1525 AD - 1645 AD	Holzkohle	Pyroklastischer Strom	-	Kali Boyong	S
M99-0361	Hd-21110	$315\ \pm$	25	1520 AD - 1645 AD	Holz,	Lahar	G-7/8	Kali Juweh	Ν
M97-073	Hd-20232	$327~\pm$	35	1490 AD - 1640 AD	Holzkohle	Pyroklastischer Strom	C-5	Kali Boyong	S
M99-023	Hd-20731	$338\ \pm$	29	1490 AD - 1640 AD	Holzkohle	Pyroklastischer Strom	G-5	Kali Apu	Ν
M96-064	Hd-18806	$342 \pm$	22	1490 AD - 1640 AD	Holzkohle	Pyroklastischer Strom	E-4	Kaligesik / Kali Bebeng	SW
M99-021	Hd-20770	$344~\pm$	23	1490 AD - 1635 AD	Holzkohle	Pyroklastischer Strom	F-7	Kali Pabelan	W-NW
M99-026	Hd-20793	$361\ \pm$	22	1480 AD - 1625 AD	Holzkohle	Pyroklastischer Strom	G-4	Kali Apu	Ν
M99-037	Hd-20734	$362\ \pm$	56	1450 AD - 1640 AD	Holzkohle	Pyroklastischer Strom	C-3	Kali Boyong	S
M98-093	Hd-20534	$372~\pm$	19	1475 AD - 1620 AD	Holzkohle	Pyroklastischer Strom	-	Kali Ladon	Ν
M99-027	Hd-21193	$385~\pm$	65	1445 AD - 1635 AD	Holzkohle	Pyroklastischer Strom	G-4	Kali Apu	Ν
M96-015	Hd-19329	$389\ \pm$	23	1460 AD - 1615 AD	Holzkohle	Pyr. Surge (? fluviatil)	C-1	Sidorejo / Kali Kuning	S
M96-020	Hd-19313	$421\ \pm$	85	1430 AD - 1630 AD	Holzkohle	Pyroklastischer Strom	B-1	Plosorejo	S
M97-062	Hd-19637	$433~\pm$	37	1440 AD - 1480 AD	Holzkohle	Pyroklastischer Strom	B-2	Kaliadem	S

Tab. A2.1. Radiokarbondatierungen-Merapi.

269

Tab. A2.1. (Fortsetzung).

Proben-Nr.	Labor-Nr.	Konv. 14C-Alter (Jahre v.h.)		Kalibriertes 14C-Alter (Kalenderjahre AD/BC) (1s-Fehlerbereich)	Datiertes Material	Ablagerungstyp	Lokalität (Kap. 4)	Ortsbezeichnung	Sektor
M96-1722	Hd-19692	$438~\pm$	17	1445 AD - 1460 AD	Holzkohle	Pyroklastischer Strom	-	Kali Bedok	SSW
M99-006	Hd-20769	$458~\pm$	28	1435 AD - 1450 AD	Holzkohle	Pyroklastischer Strom	F-2	Kajangkoso / Kali Senowo	W-NW
M96-080	Hd-20059	$458~\pm$	32	1430 AD - 1450 AD	Holzkohle	Pyroklastischer Strom	E-2	Jurangjero / Kali Putih	SW
M99-015	Hd-20896	$463\ \pm$	36	1430 AD - 1450 AD	Holzkohle	Pyroklastischer Strom	G-8	Kali Juweh	Ν
M96-041	Hd-19700	$525 \pm$	46	1405 AD - 1440 AD	Holzkohle	Pyroklastischer Strom	E-2	Jurangjero / Kali Putih	SW
M97-023	Hd-19646	547 \pm	55	1330 AD - 1435 AD	Holzkohle	Pyroklastischer Strom	C-4	Kali Boyong	S
M97-037	KIA 3802	$550\ \pm$	30	1333 AD - 1424 AD	Holzkohle	? verwitt. pyr. Strom	D-1	Tirto / Gendol Hills	SW
M99-012	Hd-20898	$620\ \pm$	40	1300 AD - 1400 AD	Holzkohle	Pyroklastischer Strom	C-2	Kemiri / E Kali Boyong	S
M98-0152	Hd-20762	$625\ \pm$	55	1300 AD - 1395 AD	Holzkohle	Pyroklastischer Strom	C-2	Kemiri / E Kali Boyong	S
M97-069	Hd-20703	$701~\pm$	35	1285 AD - 1300 AD	Holzkohle	Pyroklastischer Strom	B-3	Pelem-Kinarejo	S
M98-058	Hd-20537	704 \pm	24	1285 AD - 1300 AD	Holzkohle	Pyroklastischer Strom	F-1	Beruttegal	W-NW
M96-079	Hd-18869	$706 \pm$	22	1290 AD - 1300 AD	Holzkohle	Pyr. Strom/Pyr. Surge	E-2	Jurangjero / Kali Putih	SW
M98-952	Hd-20535	$735~\pm$	20	1280 AD - 1290 AD	Holzkohle	Pyroklastischer Strom	G-7	Kali Juweh	Ν
M96-112	Hd-19324	750 \pm	67	1235 AD - 1300 AD	Holzkohle	Pyroklastischer Strom	B-3	Pelem-Kinarejo	S
M98-065	KIA 7007	$762 \pm$	26	1260 AD - 1284 AD	Holzkohle	Pyroklastischer Strom	F-3	Kali Senowo	W-NW
M97-035	Hd-19691	$780\ \pm$	23	1245 AD - 1285 AD	Holzkohle	Pyroklastischer Strom	-	Pelem-Kinarejo	S
M99-014	Hd-20773	$795~\pm$	21	1225 AD - 1280 AD	Holzkohle	Pyroklastischer Strom	G-8	Kali Juweh	Ν
M98-022	Hd-20717	$808~\pm$	50	1195 AD - 1280 AD	Holzkohle	Pyroklastischer Strom	-	Kali Woro	SSE
M97-032	Hd-20157	$867~\pm$	21	1165 AD - 1220 AD	Holzkohle	Pyroklastischer Strom	C-3	Kali Boyong	S
M99-018	Hd-20742	$880\ \pm$	32	1070 AD - 1215 AD	Holzkohle	Pyroklastischer Strom	G-8	Kali Juweh	Ν
M97-046	Hd-20149	$883~\pm$	24	1075 AD - 1215 AD	Holzkohle	Pyroklastischer Strom	-	Kali Apu	Ν
M99-020	Hd-20743	$905~\pm$	39	1040 AD - 1210 AD	Holzkohle	Pyroklastischer Strom	G-7	Kali Juweh	Ν
M96-941	Hd-18813	$952~\pm$	52	1025 AD - 1170 AD	Holzkohle	Pyroklastischer Strom	G-1	Klakah	Ν
M97-033	Hd-20041	$953\ \pm$	28	1025 AD - 1160 AD	Holzkohle	Pyroklastischer Strom	C-3	Kali Boyong	S
M99-017	Hd-20768	$970~\pm$	24	1025 AD - 1155 AD	Holzkohle	Pyroklastischer Strom	G-8	Kali Juweh	Ν

Tab. A2.1. (Fortsetzung).

Proben-Nr.	Labor-Nr.	Konv. 14C-Alter (Jahre v.h.)		Kalibriertes 14C (Kalenderjahre 4 (1s-Fehlerbereic	E-Alter AD/BC) h)	Datiertes Material	Ablagerungstyp	Lokalität (Kap. 4)	Ortsbezeichnung	Sektor
M97-001	Hd-20716	$1005 \pm$	45	1000 AD -	1035 AD	Holzkohle	Pyroklastischer Strom	G-1	Klakah	N
M98-033	KIA 7006	$1047 \pm$	36	984 AD -	1022 AD	Holzkohle	Paläoboden	F-6	Kali Mangu	NW
M97-026	Hd-19689	$1146~\pm$	20	890 AD -	960 AD	Holzkohle	Pyroklastischer Strom	C-3	Kali Boyong	S
M97-020	Hd-19716	$1324~\pm$	23	670 AD -	700 AD	Holzkohle	Pyroklastischer Strom	-	Kali Boyong	S
M96-783	Hd-20200	$1426~\pm$	40	605 AD -	660 AD	Holzkohle	Pyroklastischer Strom	E-2	Jurangjero / Kali Putih	SW
M97-651	Hd-20151	$1432\ \pm$	22	610 AD -	650 AD	Holzkohle	Pyroklastischer Strom	-	Kali Bedok	SSW
M96-158	Hd-19304	$1448 \pm$	171	430 AD -	770 AD	Holzkohle	Paläoboden	-	Tanen	SW
M97-973	Hd-20540	$1532\ \pm$	25	480 AD -	600 AD	Holzkohle	Pyroklastischer Strom	G-6	Kali Apu	Ν
M96-111	Hd-19270	$1577 \pm$	41	430 AD -	550 AD	Holzkohle	Pyroklastischer Strom	B-3	Pelem-Kinarejo	S
M99-033	Hd-21194	$1585~\pm$	75	410 AD -	560 AD	Holzkohle	Pyroklastischer Strom	G-6	Kali Apu	Ν
M98-0492	KIA 12101	$1590\ \pm$	40	420 AD -	537 AD	Holzkohle	Pyroklastischer Strom	H-1	Ngringin / K. Gandul	NE
M97-070	Hd-20692	$1614\ \pm$	36	415 AD -	530 AD	Holzkohle	Pyroklastischer Strom	B-3	Pelem-Kinarejo	S
M97-018	Hd-19653	$1634\ \pm$	23	415 AD -	435 AD	Holzkohle	Pyroklastischer Strom	-	Kali Apu	Ν
M96-036	Hd-20552	$1639\ \pm$	23	405 AD -	430 AD	Holzkohle	Pyr. Surge	-	Pelem-Kinarejo	S
M96-772	Hd-18812	$1643 \pm$	55	385 AD -	450 AD	Holzkohle	Pyroklastischer Strom	E-2	Jurangjero / Kali Putih	SW
M99-034	Hd-20760	$1670~\pm$	113	245 AD -	540 AD	Holzkohle	Fluviatile Ablagerung	G-6	Kali Apu	Ν
M99-024	Hd-20771	$1739\ \pm$	25	260 AD -	345 AD	Holzkohle	Pyroklastischer Strom	G-5	Kali Apu	Ν
M97-007	Hd-20541	$1772\ \pm$	21	240 AD -	325 AD	Holzkohle	Pyroklastischer Strom	G-2	Kali Pabelan	Ν
M96-115	Hd-20210	$1796~\pm$	86	100 AD -	380 AD	Holzkohle	? verwitt. pyr. Strom	-	Pelem-Kinarejo	S
M97-005	Hd-20209	$1815\ \pm$	34	135 AD -	245 AD	Holzkohle	Pyroklastischer Strom	G-2	Kali Pabelan	Ν
M96-053	Hd-19282	$1859\ \pm$	35	125 AD -	230 AD	Holzkohle	Pyroklastischer Strom	-	Jrakah	Ν
M99-022	Hd-21192	$1865\ \pm$	80	70 AD -	245 AD	Holzkohle	Pyroklastischer Strom	F-7	Kali Pabelan	W-NW
M97-013	Hd-19659	$1905~\pm$	110	5 AD -	245 AD	Holzkohle	Pyroklastischer Strom	G-3	Kali Apu	Ν
M98-0771	Hd-20199	$1947 \pm$	105	50 BC -	210 AD	Holzkohle	Pyroklastischer Strom	F-10	Gowoksabrang	W-NW
M96-057	Hd-18815	$1965~\pm$	47	5 AD -	115 AD	Holzkohle	Pyroklastischer Strom	A-2	Deles	SSE
M98-029	KIA 12100	$2260\ \pm$	30	388 BC -	214 BC	Holzkohle	Pyroklastischer Strom	F-6	Kali Batang	SW

Tab. A2.1. (Fortsetzung).

Proben-Nr.	Labor-Nr.	Konv. ¹⁴ C-Alter (Jahre v.h.)		Kalibriertes ¹⁴ C- (Kalenderjahre A (1 -Fehlerbereic	Alter AD/BC) h)	Datiertes Material	Ablagerungstyp	Lokalität (Kap. 4)	Ortsbezeichnung	Sektor
M99-031	Hd-20775	2264 ±	73	400 BC -	205 BC	Holzkohle	Pyroklastischer Strom	F-2	Kajangkoso / Kali Senowo	W-NW
M96-149	Hd-18820	$3218~\pm$	71	1525 BC -	1410 BC	Holzkohle	Pyroklastischer Strom	-	Kali Bebeng	SW
M96-173	Hd-19252	$3453~\pm$	33	1855 BC -	1685 BC	Holzkohle	Pyroklastischer Strom	-	Kali Bedok	SSW
M98-052	Hd-20549	$3568\ \pm$	30	1945 BC -	1835 BC	Holzkohle	Pyroklastischer Strom	H-2	Sambirego / Cepogo	NE
M99-032	KIA 8585	$3868\ \pm$	47	2459 BC	2211 BC	Holzkohle	Paläoboden	F-2	Kajangkoso / Kali Senowo	W-NW
M98-082	KIA 7008	4153 ±	37	2872 BC -	2601 BC	Holzkohle	Paläoboden	F-8	Candi Asu / Kali Trising	W-NW
M97-040	Hd-19763	$5819\ \pm$	54	4775 BC -	4605 BC	Holzkohle	Pyroklastischer Strom	-	Kali Bebeng	SW
M96-081	KIA 3801	8380 ±	230	7575 BC -	7047 BC	Holzkohle	Pyroklastischer Strom	-	Kali Bebeng	SW
M96-168	Hd-18870	$11792~\pm$	90	11945 BC -	11655 BC	Org. Mat.	Paläoboden	G-9	Patran	Ν

Anhang 3 Probenverzeichnis

 Tab. A3.1. Probenverzeichnis.
 273

Tab. A3.1. Probenverzeichnis.

Rezente Domlaven und pyroklastische Ströme

1	M95-011	Brotkrustenkomponente. Pyroklastischer Strom (?1822/1872), Merapi-Golfplatz, S-Sektor.
2	M96-091	Brotkrustenkomponente. Pyroklastischer Strom (?1930/1969), Jurangjero-Monument, SW-Sektor.
3	M96-141	Block. Pyroklastischer Strom 1994, südöstlich Kali Bebeng, SW-Sektor.
4	M96-142	Block. Pyroklastischer Strom 1994, südöstlich Kali Bebeng, SW-Sektor.
5	M96-143	Bimskomponente. Rezent (nicht anstehend), südöstlich Kali Bebeng, SW-Sektor.
6	M96-145	Block. Pyroklastischer Strom 1994, Kali Bebeng, SW-Sektor.
7	M96-187	Lavastrom 1883, Merapi-Gipfel
8	M96-188	Lavastrom 1883, Merapi-Gipfel
9	M96-189	Lavadom 1992, Merapi-Gipfel
10	M96-190	Lavadom 1957, Merapi-Gipfel
11	M96-191	Lavastrom 1906, Merapi-Gipfel
12	M97-068	Brotkrustenkomponente. Pyroklastischer Strom (?1930/1969), Jurangjero-Monument, SW-Sektor.
13	M98-003a	Block. Pyroklastischer Strom Juli 1998, Kali Putih, SW-Sektor.
14	M98-003b	Block. Pyroklastischer Strom Juli 1998, Kali Putih, SW-Sektor.
15	M98-0231	Block. Pyroklastischer Strom 1904-06. Kali Woro (Lokaliät A-1), SSE-Sektor.
16	M98-0232	Block. Pyroklastischer Strom 1904-06. Kali Woro (Lokaliät A-1), SSE-Sektor.
17	M98-026	Brotkrustenkomponente. Pyroklastischer Strom (?1930/1969), Jurangjero-Monument, SW-Sektor.
18	M98-078	Block. Pyroklastischer Strom 1954, Kali Apu (Lokaliät G-6), N-Sektor.

19 M98-1081 Brotkrustenkomponente. Pyroklastischer Strom (?1822/1872), Kali Opak, oberhalb Merapi-Golfplatz, S-Sektor.

Juvenile Komponenten holozäner pyroklastischer Ströme

20	M95-018	Block. Pyroklastischer Strom (entspricht M98-059), Keningar, W-NW-Sektor.
21	M96-018	Block. Pyroklastischer Strom 1, Plosorejo (Lokalität B-1), S-Sektor.
22	M96-019	Block. Pyroklastischer Strom 2, Plosorejo (Lokalität B-1), S-Sektor.
23	M96-060	Block. Pyroklastischer Strom, Buludadi, SSE-Sektor.
24	M96-066	Block. Pyroklastischer Strom 1, Kaligesik, Kali Bebeng (Lokalität E-4), SW-Sektor.
25	M96-067	Block. Pyroklastischer Strom 2, Kaligesik, Kali Bebeng (Lokalität E-4), SW-Sektor.
26	M96-073	Lapilli/Block. Basaler pyroklastischer Strom, Kali Batang (Lokaliät E-1), SW-Sektor.
27	M96-097	Lapilli. Pyroklastischer Strom am Top der Abfolge, Klakah (Lokaliät G-1), N-Sektor.
28	M96-134	Lapilli. Graue sandige Lage (pyr. Strom, Overbank-Fazies), Jurangjero (Lokaliät E-2), SW-Sektor.
29	M96-137	Block. Basaler pyroklastischer Strom, Jurangjero (Lokaliät E-2), SW-Sektor.
30	M96-154	Block. Pyroklastischer Strom, Gumuk (Lokaliät I-1), E-Sektor.
31	M96-167	Block. Talfüllender pyroklastischer Strom, Klakah (Lokaliät G-1), N-Sektor.
32	M97-006	Lapilli. Pyroklastischer Strom 1, Kali Pabelan (Lokaliät G-2), N-Sektor.
33	M97-009	Lapilli. Pyroklastischer Strom 2, Kali Pabelan (Lokaliät G-2), N-Sektor.
34	M97-014	Gerundete, bimsartige Komponente. Pyroklastischer Strom, Kali Apu (Lokaliät G-3), N-Sektor.
35	M97-019	Lapilli. Pyroklastischer Strom, Kali Apu, N-Sektor.
36	M97-021	Block. Pyroklastischer Strom, Kali Boyong, S-Sektor.
37	M97-031	Block. Pyroklastischer Strom 1, Kali Boyong (Lokaliät C-3), S-Sektor.
38	M97-034	Block. Pyroklastischer Strom 4, Kali Boyong (Lokaliät C-3), S-Sektor.
39	M97-036	Bimslapilli. Pyroklastischer Strom (Overbank-Fazies), Kinarejo, S-Sektor.
40	M97-0392	Gerundete, bimsartige Komponente. Pyroklastischer Strom, Kali Apu (Lokaliät G-6), N-Sektor.
41	M97-041	Block. Pyroklastischer Strom, Kali Bebeng, SW-Sektor.
42	M97-045	Blumenkohlartige Komponente. Pyroklastischer Strom, Kali Boyong (Lokalität C-6), S-Sektor.
43	M97-047	Block. Pyroklastischer Strom, Kali Apu, N-Sektor.
44	M97-054	Block. Basaler pyroklastischer Strom, Trayem (Lokalität F-5), W-NW-Sektor
45	M97-055	Lapilli. Pyroklastischer Strom, Straße nach Babadan, Alter unbekannt, W-NW-Sektor.
46	M97-067	Block. Pyroklastischer Strom, Jurangjero-Monument, SW-Sektor.
47	M97-075	Schlacke. Vulkanische Breccie, hydroth. alterierte Komponenten, Jurangjero, Kali Putih, SW-Sektor.
48	M97-096	Blumenkohlartige, gerundete Komponente. Pyroklastischer Strom, Kali Apu, N-Sektor.
49	M98-002	Block. Pyroklastischer Strom (entspricht M98-059), oberhalb Keningar W-NW-Sektor.
50	M98-006	Lapilli. Graue sandige Lage (pyr. Strom, Overbank-Fazies), Kinarejo (Lokalität B-3), S-Sektor.

Tab. A3.1. (Fortsetzung).

 M98-008b Lapilli. Gleiche Einheit wie M98-008a. M98-013 Brotkrustenkomponente. Pyroklastischer Strom, Kali Gendol, S-Sektor. 	
53 M98-013 Brotkrustenkomponente. Pyroklastischer Strom, Kali Gendol, S-Sektor.	
54 M98-016 Block. Pyroklastischer Strom, Kali Boyong, Kemiri (Lokalität C-2 (b)), S-Sektor.	
55 M98-021 Block. Pyroklastischer Strom 1. Kali Woro (Lokalität A-1 (b)), SSE-Sektor.	
56 M98-050 Block. Pyroklastischer Strom, Ngringin, Kali Gandul (Lokalität H-1), NE-Sektor.	
57 M98-0531 Block. Pyroklastischer Strom, Sambirego-Cepogo (Lokalität H-2), NE-Sektor.	
58 M98-0532 Block. Gleiche Einheit wie M98-0531.	
59 M98-059 Block. Pyroklastischer Strom 2, Beruttegal, unterhalb Keningar (Lokalität F-1), W-NW-	Sektor.
60 M98-066 Block. Pyr. Strom, unterhalb Jurangjero 2-Tephra, Kali Senowo (Lokalität F-3), W-NW	-Sektor.
61 M98-072 Lapilli. Pyroklastischer Strom (entspricht M98-066), Muntuk, W-NW-Sektor.	
62 M98-0772 Block. Basaler pyroklastischer Strom, Gowoksabrang (Lokalität F-10), W-NW-Sektor.	
63 M98-094 Bimskomponente / Block. Junger pyroklastischer Strom, Kali Ladon, N-Sektor.	
64 M98-096 Bimskomponente. Pyroklastischer Strom 3, Kali Juweh (Lokalität G-7), N-Sektor.	
65 M98-0991 Block. Basaler pyroklastischer Strom, Jurangjero, Kali Putih (Lokalität E-2), SW-Sektor	
66 M98-0992 Block. Gleiche Einheit wie M98-0991.	
67 M98-100 Lapilli. Markanter pyr. Strom (Overbank-Fazies), Jurangjero, Kali Putih (Lokalität E-2)	, SW-Sektor.
68 M98-103 Block. Pyroklastischer Strom, oberer Kali Boyong, S-Sektor.	
69 M99-0131 Block. Pyroklastischer Strom, Kali Boyong, Kemiri (Lokalität C-2 (b)), S-Sektor.	
70 M99-016 Bimskomponente. Pyr. Strom, oberhalb pf 3, südliche Talseite Kali Juweh (Lokalität G-8	3), N-Sektor.
71 M99-019 Bimskomponente. Pyr. Strom, unterhalb pf 3, südliche Talseite Kali Juweh (Lokalität G-	8), N-Sektor.
72 M99-0251 Block. Pyr. Strom 1, nördl. Talseite Kali Apu, bei neuem Sabodamm (Lokalität G-5 (b)).	, N-Sektor.

Juvenile Komponenten holozäner Fallablagerungen

73	M96-032	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
74	M96-038	Bimslapilli. Bimsfallablagerung, Kinarejo, S-Sektor.
75	M96-040	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
76	M96-074	Bimslapilli. Bimsfallablagerung, Kali Batang (Lokalität E-1), SW-Sektor.
77	M96-075	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Kali Batang (Lokalität E-2), SW-Sektor.
78	M96-088	Bimslapilli. Bimsfallablagerung (Lempong-Tephra), Gunung Gendol (Lokalität D-1), SW-Sektor.
79	M96-090	Bimslapilli. Bimsfallablagerung (Lempong-Tephra), Gunung Gendol Lokalität D-1), SW-Sektor.
80	M96-098	Bimslapilli. Fall- / Surge-Lagen an der Basis des obersten pyr. Stroms, Klakah (Lok. G-1), N-Sektor.
81	M96-102	Bimslapilli. Bimsfallablagerung, Ngarangkah-Kinarejo (Lokalität B-3), S-Sektor.
82	M96-1031	Bimslapilli. Bimsfallablagerung (untere Bimslage), Ngarangkah-Kinarejo (Lokalität B-3), S-Sektor.
83	M96-1032	Bimslapilli. Bimsfallablagerung (obere Bimslage), Ngarangkah-Kinarejo (Lokalität B-3), S-Sektor.
84	M96-107	Bimslapilli. Bimsfallablagerung unterhalb M96-1031, Ngarangkah-Kinarejo (Lokalität B-3), S-Sektor.
85	M96-108	Bimslapilli. Bimsfallablagerung (Kinarejo-Tephra), Ngarangkah-Kinarejo (Lokalität B-3), S-Sektor.
86	M96-110	Bimslapilli. Bimsfallablagerung (Pelem-Tephra), Ngarangkah-Kinarejo (Lokalität B-3), S-Sektor.
87	M96-116	Bimslapilli. Bimsfallablagerung, Kinarejo, S-Sektor.
88	M96-117	Bimslapilli. Bimsfallablagerung, Kinarejo, S-Sektor.
89	M96-123	Bimslapilli. Bimsfallablagerung, Jurangjero-Monument, Kali Puth, SW-Sektor.
90	M96-124	Bimslapilli. Bimsfallablagerung, Jurangjero-Monument, Kali Puth, SW-Sektor.
91	M96-125	Bimslapilli. Bimsfallablagerung, Jurangjero-Monument, Kali Puth, SW-Sektor.
92	M96-129	Bimslapilli. Bimsfallablagerung (Baturngisor-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
93	M96-130	Bimslapilli. Bimsfallablagerung (Baturngisor-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
94	M96-131	Bimslapilli. Bimsfallablagerung, Jurangjero, Kali Puth (Lokalität E-2), SW-Sektor.
95	M96-153	Bimslapilli. Bimsfallablagerung, Kali Batang (Lokalität E-1), SW-Sektor.
96	M96-157	Bimslapilli. Bimsfallablagerung (Gumuk-Tephra), Gumuk (Lokalität I-1), E-Sektor.
97	M96-159	Bimslapilli. Bimsfallablagerung, Tanen, nördlich Kali Blongkeng, SW-Sektor.
98	M96-162	Bimslapilli. Bimsfallablagerung, Klakah (Lokalität G-1), N-Sektor.
99	M96-163	Bimslapilli. Bimsfallablagerung (Klakah 1-Tephra), Klakah (Lokalität G-1), N-Sektor.
100	M96-164	Bimslapilli. Bimsfallablagerung (Klakah 2-Tephra), Klakah (Lokalität G-1), N-Sektor.
101	M96-165	Bimslapilli. Bimsfallablagerung, Klakah (Lokalität G-1), N-Sektor.

Tab. A3.1. (Fortsetzung).

102	M96-166	Bimslapilli. Bimsfallablagerung (Klakah 2-Tephra), Klakah (Lokalität G-1), N-Sektor.
103	M96-169	Bimslapilli. Bimsfallablagerung, Patran (Lokalität G-9), N-Sektor.
104	M96-181	Bimslapilli. Bimsfallablagerung nahe der Basis, Cangkol / W Selo (Lokalität G-10), N-Sektor.
105	M96-182	Bimslapilli. Bimsfallablagerung (strat. über M96-181), Cangkol / W Selo (Lokalität G-10), N-Sektor.
106	M96-185	Bimslapilli, Bimsfallablagerung, Plalangan, N-Sektor.
107	M97-002	Bimslapilli. Bimsfallablagerung, Klakah (Lokalität G-1), N-Sektor.
108	M97-003	Bimslapilli. Bimsfallablagerung, Klakah (Lokalität G-1), N-Sektor.
109	M97-004	Bimslapilli. Bimsfallablagerung, Klakah (Lokalität G-1), N-Sektor.
110	M97-025	Bimslapilli. Basale Bimsfallablagerung, westlich Kali Boyong (Lokalität C-4), S-Sektor.
111	M97-048	Bimslapilli. Bimsfallablagerung (Lempong-Tephra), Lempong (Lokalität D-1), SW-Sektor.
112	M97-052	Bimslapilli. Bimsfallablagerung (Gowoksabrang-Tephra), Trayem (Lokalität F-5), W-NW-Sektor.
113	M97-053	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Trayem (Lokalität F-5), W-NW-Sektor.
114	M97-057	Bimslapilli. Bimsfallablagerung (Lempong-Tephra), Tirto, Gendol Hills (Lokalität D-1), SW-Sektor.
115	M97-063	Bimslapilli. Bimsfallablagerung nahe der Basis, Kaliadem (Lokalität B-2), S-Sektor.
116	M97-071	Bimslapilli. Bimsfallablagerung, Kinarejo (Lokalität B-3), S-Sektor.
117	M97-072	Bimslapilli. Bimsfallablagerung, Kinarejo (Lokalität B-3), S-Sektor.
118	M97-076	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
119	M97-077	Bimslapilli. Bimsfallablagerung (Top-Einkeit Jjero 2-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
120	M97-0781	Bimslapilli. Bimsfallablagerung (untere Lage Jjero 2-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
121	M97-0782	Bimslapilli. Bimsfallablagerung (mittlere Lage Jjero 2-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
122	M97-0783	Bimslapilli. Bimsfallablagerung (obere Lage Jjero 2-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
123	M97-082	Bimslapilli. Bimsfallablagerung (Top-Einheit Jjero 2-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
124	M97-089	Bimslapilli. Bimsfallablagerung unterhalb GowoksTephra, Trayem (Lokalität F-5), W-NW-Sektor.
125	M97-090	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Trayem (Lokalität F-5), W-NW-Sektor.
126	M97-0921	Bimslapilli. Bimsfallablagerung (untere Lage Jjero 2-Tephra), Muntuk (Lokalität F-4), W-NW-Sektor.
127	M97-0922	Bimslapilli. Bimsfallablagerung (mittl. Lage Jjero 2-Tephra), Muntuk (Lokalität F-4), W-NW-Sektor.
128	M97-0923	Bimslapilli. Bimsfallablagerung (obere Lage Jjero 2-Tephra), Muntuk (Lokalität F-4), W-NW-Sektor.
129	M97-098	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Straße nach Stapelan, W-NW-Sektor.
130	M97-100	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Straße nach Wonogiri, W-NW-Sektor.
131	M97-104	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), bei Candimulyo, W-NW-Sektor.
132	M97-1071	Bimslapilli. Bimsfallablagerung (Paten 1-Tephra), westlich Kapuhan, W-NW-Sektor.
133	M97-1072	Bimslapilli. Bimsfallablagerung (Paten 2-Tephra), westlich Kapuhan, W-NW-Sektor
134	M98-025	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Kali Blongkeng (Lokalität E-3), SW-Sektor
135	M98-027	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Krinjing, W-NW-Sektor.
136	M98-028	Bimslapilli. Bimsfallablagerung (Jurangjero 1-Tephra), Krinjing, W-NW-Sektor.
137	M98-030	Bimslapilli. Bimsfallablagerung (mittlere Einheit Jjero 2-Tephra), oberhalb Keningar, W-NW-Sektor.
138	M98-031	Bimslapilli. Bimsfallablagerung (Baturduwur-Tephra), Jurangjero (Lokalität E-2), SW-Sektor.
139	M98-034	Bimslapilli. Bimsfallablagerung (Paten 1-Tephra), Kali Mangu, W-NW-Sektor.
140	M98-035	Bimslapilli. Bimsfallablagerung (Paten 2-Tephra), Kali Mangu, W-NW-Sektor.
141	M98-036	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Kali Mangu, W-NW-Sektor.
142	M98-037	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Sawangan, W-NW-Sektor.
143	M98-038	Bimslapilli. Bimsfallablagerung (Klakah 1-Tephra), Klakah (Lokalität G-1), N-Sektor.
144	M98-039	Bimslapilli. Bimsfallablagerung (entspricht M96-162), Klakah (Lokalität G-1), N-Sektor
145	M98-042	Bimslapilli. Bimstallablagerung (Paten I-Tephra), oberhalb Kapuhan, W-NW-Sektor.
146	M98-043	Bimslapilli. Bimstallablagerung (Paten 2-Tephra), oberhalb Kapuhan, W-NW-Sektor.
147	M98-044	Bimslapilli. Bimstallablagerung (Trayem-Tephra), oberhalb Kapuhan, W-NW-Sektor.
148	M98-056	Bimsiapilli. Bimstallablagerung (Jurangjero I-Tephra), Petung (Selosari), W-NW-Sektor.
149	M98-057	Bimsiapilli. Bimstallablagerung (Trayem-Tephra), Petung (Selosari), W-NW-Sektor.
150	M98-0601	Bimsiapilli. Bimstallablagerung (untere Lage Jjero 2-Tephra), Krinjing, W-NW-Sektor.
151	M98-0602	Bimsiapilli. Bimstallablagerung (mittlere Lage Jjero 2-Tephra), Krinjing, W-NW-Sektor.
152	M98-0603	Bimsiapini. Bimsianabiagerung (obere Lage Jjero 2-Tephra), Krinjing, W-NW-Sektor.
153	M08-0604	Dinisiapini. Bimsianabiagerung (Top-Einneit Jjero 2-Tepnra), Krinjing, W-NW-Sektor.
154	M08.064	Dinisiapini, Dinisianadiagerung (Paten 1-repira), Krinjing, W-NW-Sektor.
100	14198-064	Dimsiapini. Dimsianadiagerung (Trayem-Tepnra), Krinjing, W-NW-Sektor.

Tab. A3.1. (Fortsetzung).

156	M98-067	Bimslapilli. Bimsfallablagerung (? GowoksabrTephra), Kali Senowo (Lokalität F-3), W-NW-Sektor.
157	M98-068	Bimslapilli. Bimsfallablagerung (? Paten 1-Tephra), Kali Senowo (Lokalität F-3), W-NW-Sektor.
158	M98-074	Bimslapilli, Bimsfallablagerung (Trayem-Tephra), Trayem (Lokalität F-5), W-NW-Sektor.
159	M98-080	Bimslapilli. Bimsfallablagerung (Paten 1-Tephra), Tlatar-Candi Asu (Lokalität F-8), W-NW-Sektor.
160	M98-081	Bimslapilli. Bimsfallablagerung (Paten 2-Tephra), Tlatar-Candi Asu (Lokalität F-8), W-NW-Sektor.
161	M98-083	Bimslapilli. Bimsfallablagerung (Jurangjero 2-Tephra), Kinarejo (Lokalität B-3), S-Sektor.
162	M98-098	Bimslapilli. Bimsfallablagerung (Paten 2-Tephra), unterhalb Tanen, Straße nach Muntilan, SW-Sektor.
163	M98-109	Bimslapilli. Bimsfallablagerung (Paten 1-Tephra), Kali Mangu, Lulang, W-NW-Sektor.
164	M98-110	Bimslapilli. Bimsfallablagerung (Paten 2-Tephra), Kali Mangu, Lulang, W-NW-Sektor.
165	M98-111	Bimslapilli. Bimsfallablagerung (Trayem-Tephra), Kali Mangu, Lulang, W-NW-Sektor.

Laven Merapi-Somma

166	M95-025	Lavastrom, Taleinschnitt westlich Gunung Ijo, NE-Sektor.
167	M95-026	Lavastrom, Taleinschnitt östlich Gunung Bibi, NE-Sektor.
168	M96-034	Lavastrom, Kali Gendol bei Kaliadem, S-Sektor.
169	M96-055	Lavastrom, oberhalb Cangukrejo (Merapi-Somma), E-Sektor.
170	M96-056	Lavastrom, Kali Woro (Merapi-Somma), SSE-Sektor.
171	M96-070	Lavastrom, Weg zum Gunung Kendil (Merapi-Somma), SSE-Sektor.
172	M96-071	Lavastrom, Weg zum Gunung Kendil (Merapi-Somma), SSE-Sektor.
173	M96-072	Lavastrom, Weg zum Gunung Kendil (Merapi-Somma), SSE-Sektor.
174	M98-047	Lavastrom, Gumuk-Kali Genting / Merapi-Somma (Lokaliät I-1), E-Sektor.
175	M98-048	Lavastrom, Gumuk-Kali Genting / Merapi-Somma (Lokaliät I-1), E-Sektor.
176	M98-105	Lavastrom, Gunung Pusunglondon, Merapi-Gipfel
177	M98-106	Lavastrom, Gunung Pusunglondon, Merapi-Gipfel
178	M98-107	Lavastrom, Gunung Batulawang, Merapi-Gipfel

Laven G. Turgo, G. Plawangan (Proto-Merapi)

179	M95-028	Lavastrom, Gunung Turgo, S-Sektor.
180	M96-049	Lavastrom, Gunung Turgo, S-Sektor.
181	M96-050	Lavastrom, Gunung Plawangan, S-Sektor.
182	M96-051	Lavastrom, Gunung Plawangan, S-Sektor.
183	M96-052	Lavastrom, Gunung Plawangan, S-Sektor.

Laven G. Bibi (Prä-Merapi)

184	M96-061	Lavastrom, Gunung Bibi, NE-Sektor.
185	M96-175	Lavastrom, Gunung Bibi, NE-Sektor.

Krustenxenolithe und Sedimente der lokalen oberen Kruste

186	MX-6	Kalksilikat. Krustenxenolith, rezente pyroklastische Ströme Merapi, Kali Apu, N-Sektor.
187	MX99-1	Karbonathaltiges Sedimentgestein (Miozän). "Wonosari Beds", Southern Mountains, SE Imogiri.
188	MX99-2	Karbonathaltiges Sedimentgestein / Kalk-Mergel (Eozän), Djiwo Hills, S Klaten.
Anhang 4 Geochemische Daten

Tab. A4.1. RFA-Gesamtgesteinsanalysen-Merapi	
Tab. A4.1. ICP-MS-Analysen ausgewählter Merapigesteine	

Erläuterungen verwendeter Abkürzungen (Anhang 4):

- $Fe_2O_3{}^* \ \ Gesamteisen \ als \ Fe_2O_3$
- b.d. (below detection limit) unterhalb der Nachweisgrenze
- n.a. nicht analysiert

Einheit	Rezente Donna	aven and pyre		ome						
RefNr. (A3)	1	2	3	4	5	6	7	8	9	10(1)
Probe	M95-011	M96-091	M96-141	M96-142	M96-143	M96-145	M96-187	M96-188	M96-189	M96-190
Hauntelemente	(Gew %)									
s:0	52.00	51.00	55 20	55 00	52 11	55 01	55.02	55 61	55 61	55 70
310 ₂	52.88	51.99	33.20	33.88	33.11	33.21	55.95	55.04	55.01	33.78
1102	0.80	0.87	0.73	10.05	0.82	0.74	0.70	0.70	0.74	0.70
AI_2O_3	18.01	18.07	18.90	19.05	19.06	18.92	18.72	18.97	19.00	19.25
Fe ₂ O ₃ *	9.32	9.55	7.58	7.45	8.71	7.60	1.13	/.08	7.57	/.51
MnO	0.20	0.21	0.20	0.18	0.21	0.20	0.19	0.19	0.20	0.19
MgO	3.50	3.56	2.43	2.44	2.94	2.44	2.60	2.60	2.39	2.45
CaO	9.39	9.60	8.30	8.13	9.04	8.29	8.17	8.24	8.17	8.25
Na ₂ O	3.30	3.37	3.80	3.76	3.55	3.83	3.61	3.69	3.85	3.63
K_2O	2.00	2.02	2.22	2.25	2.00	2.21	2.20	2.28	2.24	2.25
P_2O_5	0.29	0.30	0.30	0.31	0.30	0.30	0.31	0.30	0.30	0.31
LOI	0.07	0.22	0.79	0.24	0.60	0.25	0.12	-0.01	0.25	0.16
Summe	100.35	100.34	100.51	100.37	100.34	99.98	100.28	100.28	100.31	100.47
Spurenelemente	(ppm)									
Sc	14	18	17	12	15	14	12	13	13	11
V	183	231	149	130	185	153	110	157	150	132
• C•	22	17	149	130	105	133	110	21	10	132
Co	18	21	10	42	9	13	10	14	10	44
Ni	10	21 b.d	10 h.d	b d	bd	bd	, bd	14	11 b.d	b d
Dh	47	51	5.u.	52 52	5.u.	5.u.	0.u.	4	5.u.	5.U.
KU Sa	47 572	571	560	55	552	50	562	53	560	55
51 D-	375	5/1	500	505	555	537	542	544	500	509
ва	445	457	532	539	519	540	543	557	533	552
Pb	15	22	26	19	23	26	25	13	28	19
Th	6	11	15	8	12	13	7	7	12	9
Zr	93	96	119	113	105	119	118	107	121	110
Nb	b.d.	b.d.	b.d.	2	b.d.	1	2	3	1	2
Hf	3	5	5	4	5	5	4	4	5	4
Y	29	30	30	28	30	31	29	21	31	27
Einheit	Dereste Devel	arian und num	klastische Str	öme						
Einneit	Rezente Domla	aven und pyro	skiastische Sti	onic						
Einneit Ref. Nr. (A3)	10(2)		11(2)	12(1)	12(2)	13	14	15	16	17
RefNr. (A3)	10(2)	11(1) M96-191	11(2)	12(1) M97-068	12(2) M97-068D	13 M98-003a	14 M98-003b	15 M98-0231	16 M98-0232	17 M98-026
Einneit RefNr. (A3) Probe	10(2) M96-190D	11(1) M96-191	11(2) M96-191D	12(1) M97-068	12(2) M97-068D	13 M98-003a	14 M98-003b	15 M98-0231	16 M98-0232	17 M98-026
RefNr. (A3) Probe Hauptelemente	(Gew.%)	11(1) M96-191	11(2) M96-191D	12(1) M97-068	12(2) M97-068D	13 M98-003a	14 M98-003b	15 M98-0231	16 M98-0232	17 M98-026
RefNr. (A3) Probe Hauptelemente SiO ₂	(Gew.%) 55.42	11(1) M96-191 55.12	11(2) M96-191D 54.88	12(1) M97-068 51.85	12(2) M97-068D 51.55	13 M98-003a 55.51	14 M98-003b 55.61	15 M98-0231 54.73	16 M98-0232 54.01	17 M98-026 51.73
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂	(Gew.%) 55.42 0.72	11(1) M96-191 55.12 0.72	11(2) M96-191D 54.88 0.75	12(1) M97-068 51.85 0.87	12(2) M97-068D 51.55 0.89	13 M98-003a 55.51 0.74	14 M98-003b 55.61 0.74	15 M98-0231 54.73 0.77	16 M98-0232 54.01 0.80	17 M98-026 51.73 0.88
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃	(Gew.%) 55.42 0.72 19.33	11(1) M96-191 55.12 0.72 19.37	11(2) M96-191D 54.88 0.75 19.30	12(1) M97-068 51.85 0.87 18.53	12(2) M97-068D 51.55 0.89 18.53	13 M98-003a 55.51 0.74 19.23	14 M98-003b 55.61 0.74 19.34	15 M98-0231 54.73 0.77 19.42	16 M98-0232 54.01 0.80 19.35	17 M98-026 51.73 0.88 18.66
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	(Gew.%) 55.42 0.72 19.33 7.60	11(1) M96-191 55.12 0.72 19.37 7.72	11(2) M96-191D 54.88 0.75 19.30 7.83	12(1) M97-068 51.85 0.87 18.53 9.65	12(2) M97-068D 51.55 0.89 18.53 9.80	13 M98-003a 55.51 0.74 19.23 7.59	14 M98-003b 55.61 0.74 19.34 7.60	15 M98-0231 54.73 0.77 19.42 8.07	16 M98-0232 54.01 0.80 19.35 8.41	17 M98-026 51.73 0.88 18.66 9.74
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	(Gew.%) 55.42 0.72 19.33 7.60 0.19	11(1) M96-191 55.12 0.72 19.37 7.72 0.19	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19	12(1) M97-068 51.85 0.87 18.53 9.65 0.21	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21	13 M98-003a 55.51 0.74 19.23 7.59 0.19	14 M98-003b 55.61 0.74 19.34 7.60 0.19	15 M98-0231 54.73 0.77 19.42 8.07 0.19	16 M98-0232 54.01 0.80 19.35 8.41 0.19	17 M98-026 51.73 0.88 18.66 9.74 0.21
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO	(Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100 38	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100 36	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100 24	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100 36	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100 54	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100 77	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100 48	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07
RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11
RefNr. (A3) Probe BiO2 TiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O P2O5 LOI Summe Spurenelemente	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 21 216
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 21 216 20
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a. n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a. n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 21 216 20 22
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a. n.a. n.a. n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d.	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a. n.a. n.a. n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 1 1	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 21 216 20 22 4
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe <i>Spurenelemente</i> Sc V Cr Co Ni Rb	Rezente Domini 10(2) M96-190D 'Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a. n.a. n.a. n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 1 53	14 M98-003b 555.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 21 216 20 22 4
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr	Rezente Domini 10(2) M96-190D (Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 1 53 539	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53 545	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 48 557
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Rezente Domini 10(2) M96-190D (Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 1 53 539 522	14 M98-003b 555.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53 545 509	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 4 8 557 496
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Rezente Domini 10(2) M96-190D (Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558 18	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425 16	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 1 53 539 522 20	14 M98-003b 555.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53 545 509 20	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497 19	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530 16	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 4 8 557 496 16
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Rezente Domini 10(2) M96-190D (Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558 18 6	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425 16 8	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 13 13 13 539 522 20 6	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53 545 509 20 5	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497 19 5	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530 16 5	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 4 48 557 496 16 4
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Rezente Domini 10(2) M96-190D Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	11(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558 18 6 108 108	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425 16 8 90	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 13 13 13 539 522 20 6 108	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53 545 509 20 5 108	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497 19 5 101	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530 16 5 96	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 4 8 557 496 16 4 88
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Rezente Domini 10(2) M96-190D Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	II(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558 18 6 108 2	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425 16 8 90 b.d.	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 13 13 539 522 20 6 108 4	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 14 12 1 53 545 509 20 5 108 3	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497 19 5 101 4	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530 16 5 96 3	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 4 8 557 496 16 4 48 88 3
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Rezente Domini 10(2) M96-190D Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	II(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558 18 6 108 2 4 4	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425 16 8 90 b.d. 3	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 13 13 13 539 5222 20 6 108 4 4 4	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 12 1 53 545 509 20 5 108 3 4	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497 19 5 101 4 3	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530 16 5 96 3 4	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 216 20 22 4 4 8 557 496 16 16 4 88 3 3
RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Rezente Domini 10(2) M96-190D (Gew.%) 55.42 0.72 19.33 7.60 0.19 2.40 8.31 3.78 2.16 0.31 0.16 100.38 (ppm) n.a.	II(1) M96-191 55.12 0.72 19.37 7.72 0.19 2.62 8.40 3.62 2.12 0.31 0.16 100.36 11 137 21 6 b.d. 51 568 558 18 6 108 2 4 28	11(2) M96-191D 54.88 0.75 19.30 7.83 0.19 2.53 8.44 3.73 2.13 0.31 0.16 100.24 n.a.	12(1) M97-068 51.85 0.87 18.53 9.65 0.21 3.90 9.58 3.20 1.98 0.29 0.31 100.36 19 209 23 25 2 46 560 425 16 8 90 b.d. 3 29	12(2) M97-068D 51.55 0.89 18.53 9.80 0.21 3.78 9.66 3.27 1.99 0.30 0.31 100.30 0.31 100.30 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	13 M98-003a 55.51 0.74 19.23 7.59 0.19 2.44 8.34 3.85 2.24 0.31 0.09 100.54 12 144 13 13 13 13 13 539 522 20 6 108 4 4 24	14 M98-003b 55.61 0.74 19.34 7.60 0.19 2.40 8.31 3.85 2.25 0.31 0.06 100.67 13 148 14 12 1 53 545 509 20 5 108 3 4 23	15 M98-0231 54.73 0.77 19.42 8.07 0.19 2.64 8.72 3.68 2.09 0.30 0.14 100.77 14 151 21 13 2 50 548 497 19 5 101 4 3 25	16 M98-0232 54.01 0.80 19.35 8.41 0.19 2.83 8.97 3.60 2.04 0.30 -0.03 100.48 14 173 19 15 3 49 550 530 16 5 96 3 4 22	17 M98-026 51.73 0.88 18.66 9.74 0.21 3.69 9.69 3.29 1.99 0.30 -0.07 100.11 21 216 20 22 4 4 8 557 496 16 48 88 3 3 3

Tab. A4.1. RFA-Gesamtgesteinsanalysen-Merapi.

Einheit			J	uvenile Kom	ponenten holo	zäner pyrokla	stischer Strön	ne		
RefNr. (A3)	18	19		20	21(1)	21(2)	22	23	24	25
Probe	M98-078N	198-1081		M95-018	M95-018D	M96-018	M96-019	M96-060	M96-066	M96-067
Hauptelemente (Gew.%)		_							
SiO	55 27	52.08		53 29	52.93	55 19	53 64	56 14	52.90	54 33
TiO ₂	0.73	0.85		0.80	0.83	0.74	0.77	0.69	0.80	0.73
Al2O3	19.23	18.94		18.75	18.84	18.97	18.76	19.08	18.88	18.85
Fe ₂ O ₃ *	7.61	9.41		9.00	9.12	7.36	8.74	7.10	8.96	8.41
MnO	0.19	0.21		0.20	0.20	0.18	0.19	0.18	0.19	0.19
MgO	2.42	3.45		3.39	3.26	2.39	3.38	2.39	3.40	2.90
CaO	8.31	9.56		9.12	9.20	8.36	8.88	8.16	9.12	8.70
Na ₂ O	3.76	3.35		3.35	3.43	3.80	3.49	3.83	3.28	3.52
K ₂ O	2.27	1.93		2.05	2.05	2.09	2.04	1.89	2.04	2.14
P_2O_5	0.30	0.30		0.28	0.30	0.26	0.29	0.26	0.29	0.32
LOI	0.23	-0.06		0.15	0.15	0.94	0.49	0.34	0.59	0.33
Summe	100.31	100.01		100.38	100.31	100.28	100.67	100.05	100.46	100.42
Spurenelemente	(ppm)									
Sc	16	20		18	na	12	17	12	12	11
v	160	212		195	n a	147	179	122	170	167
Cr	12	19		34	n a	17	23	16	66	38
Co	12	22		18	n.a.	13	13	8	11	13
Ni	3	5		2	n.a.	2	2	b.d.	b.d.	2
Rb	59	47		50	n.a.	57	47	52	49	53
Sr	577	581		541	n.a.	546	531	548	560	606
Ba	525	524		521	n.a.	531	537	489	467	486
Pb	20	17		18	n.a.	18	16	18	22	17
Th	6	6		7	n.a.	2	7	10	9	8
Zr	111	89		90	n.a.	98	86	105	92	96
Nb	2	3		3	n.a.	3	3	b.d.	b.d.	b.d.
Hf	3	3		3	n.a.	4	3	4	3	4
Y	20	20		25	n.a.	21	23	27	27	27
Einheit	Juvenile Komp	ponenten holo	zäner pyrokla	stischer Strö	me					
Einheit Ref. Nr. (A3)	Juvenile Komp	ponenten holo	zäner pyrokla	stischer Strö	me 30	31	32	33	34	35
Einheit RefNr. (A3) Probe	Juvenile Komp 26 M96-073	27 M96-097	zäner pyrokla 28 M96-134	29 M96-137	me 30 M96-154	31 M96-167	32 M97-006	33 M97-009	34 M97-014	35 M97-019
Einheit RefNr. (A3) Probe	Juvenile Komp 26 M96-073	27 M96-097	zäner pyrokla 28 M96-134	29 M96-137	me 30 M96-154	31 M96-167	32 M97-006	33 M97-009	34 M97-014	35 M97-019
Einheit RefNr. (A3) Probe <i>Hauptelemente (</i>	Juvenile Komp 26 M96-073 Gew.%)	27 M96-097	zäner pyrokla 28 M96-134	29 M96-137	me 30 M96-154	31 M96-167	32 M97-006	33 M97-009	34 M97-014	35 M97-019
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂	Juvenile Komp 26 M96-073 Gew.%) 54.50	27 M96-097 54.15	zäner pyrokla 28 M96-134 54.22	29 M96-137 54.12	30 M96-154 53.93	31 M96-167 54.41	32 M97-006 56.25	33 M97-009 55.35	34 M97-014 55.99	35 M97-019 54.47
Einheit RefNr. (A3) Probe <i>Hauptelemente (</i> SiO ₂ TiO ₂	Juvenile Komp 26 M96-073 <i>Gew.%)</i> 54.50 0.86 0.86	27 M96-097 54.15 0.74	28 28 M96-134 54.22 0.78	29 M96-137 54.12 0.80	me 30 M96-154 53.93 0.92 10.92	31 M96-167 54.41 0.75	32 M97-006 56.25 0.66	33 M97-009 55.35 0.67	34 M97-014 55.99 0.69	35 M97-019 54.47 0.74
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 20	27 M96-097 54.15 0.74 19.20	zäner pyrokla 28 M96-134 54.22 0.78 19.06	29 M96-137 54.12 0.80 18.77	me 30 M96-154 53.93 0.92 18.36 60	31 M96-167 54.41 0.75 18.72	32 M97-006 56.25 0.66 19.57	33 M97-009 55.35 0.67 19.00	34 M97-014 55.99 0.69 18.87	35 M97-019 54.47 0.74 18.94
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20	27 M96-097 54.15 0.74 19.20 8.05 0.20	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.10	29 M96-137 54.12 0.80 18.77 8.47 0.18	me 30 M96-154 53.93 0.92 18.36 8.69 0.18	31 M96-167 54.41 0.75 18.72 8.31 0.18	32 M97-006 56.25 0.66 19.57 7.04 0.17	33 M97-009 55.35 0.67 19.00 7.40 0.18	34 M97-014 55.99 0.69 18.87 7.33 0.20	35 M97-019 54.47 0.74 18.94 7.88
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20 2.75	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82	29 M96-137 54.12 0.80 18.77 8.47 0.18 2.17	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 2.26	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.04	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.27	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.20	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CoO	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20 2.75 8.50	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K-O	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 193	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.25
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Komp 26 M96-073 <i>Gew.%</i>) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100 00	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100 52	28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100 53	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100 14	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100 15	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100 23	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100 35	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100 33
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe <i>Spurenelemente</i>	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm)	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 .51 173	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 22	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 1	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 7	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 2.04	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Pu	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d.	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d.	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d.	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 20	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 2.77	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 22 7	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 55 55 55 55 55 55 19.00 55 55 19.00 55 55 19.00 7.40 19.00 10.0	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d.	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d.
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb C ₂	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 (12)	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 500	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 39 522	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 55 57 2.7	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2.57 5.52	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 540 540 540 540 540 540 540 540	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 55 55	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 65 (22)	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr P ₂ O	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 610	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 8.00 54 580 54 54 580 54 54 580 54 57 580 54 54 580 54 54 580 54 54 580 54 54 580 54 580 580 580 580 580 580 580 580	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 39 530 400	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 (205	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 563	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 502	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 65 603 (05	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 545
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Ba Db	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528 487 10	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 559 22	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 580 542 15	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 39 530 409 10	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 495 10	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 561 19	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 503 14	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551 19	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 65 603 605 2.26	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 542
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Tb	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528 487 19	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 559 28 12	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 580 542 15 22	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 39 530 409 19 5	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 495 19 4	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 561 18	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 503 14	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551 18 2	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 65 603 605 26 14	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 542 26
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th 7r	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528 487 19 13 110	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 559 28 12 90	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 580 542 15 3 92	Stischer Strö 29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 39 530 409 19 50	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 495 19 4 102	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 561 18 6 91	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 503 14 4 106	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551 18 2 20	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 65 603 605 26 14 105	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 542 26 5
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528 487 19 13 119 1	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 559 28 12 99 b.d.	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 580 542 15 3 92 2	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 39 530 409 19 5 99 92	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 495 19 4 102 5	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 561 18 6 91 2	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 503 14 4 106 b d	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551 18 2 90 2	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 65 603 605 26 14 105 b.d.	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 542 26 5 88 98 b.d.
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528 487 19 13 119 1 5	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 559 28 12 99 b.d. 5	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 580 542 15 3 92 2 3	29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 39 530 409 19 5 99 3 3 3	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 495 19 4 102 5 4	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 561 18 6 91 2 3	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 503 14 4 106 b.d. 4	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551 18 2 90 2 3	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 100 b.d. 603 605 26 14 105 b.d. 5	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 542 26 5 545 542 26 5 98 b.d. 3
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Juvenile Komp 26 M96-073 Gew.%) 54.50 0.86 18.85 8.28 0.20 2.75 8.50 3.77 1.71 0.28 0.30 100.00 (ppm) 12 183 12 9 b.d. 46 528 487 19 13 119 1 5 31	27 M96-097 54.15 0.74 19.20 8.05 0.20 2.55 8.72 3.60 2.25 0.31 0.75 100.52 14 170 10 12 b.d. 60 610 559 28 12 99 b.d. 5 29	zäner pyrokla 28 M96-134 54.22 0.78 19.06 8.04 0.19 2.82 8.56 3.57 2.27 0.26 0.76 100.53 15 173 24 16 b.d. 57 580 542 15 3 92 2 3 25	Stischer Strö 29 M96-137 54.12 0.80 18.77 8.47 0.18 3.17 8.75 3.61 1.61 0.27 0.38 100.14 15 165 57 17 3 99 530 409 19 5 33 23	me 30 M96-154 53.93 0.92 18.36 8.69 0.18 3.36 8.39 3.57 2.04 0.29 0.42 100.15 21 216 17 23 7 55 576 495 19 4 102 5 4 23	31 M96-167 54.41 0.75 18.72 8.31 0.18 2.94 8.39 3.57 2.30 0.27 0.16 99.98 15 194 17 16 2 57 563 561 18 6 91 2 3 24	32 M97-006 56.25 0.66 19.57 7.04 0.17 2.37 7.36 3.52 1.93 0.26 1.10 100.23 10 109 12 7 1 52 548 503 14 4 106 b.d. 4 26	33 M97-009 55.35 0.67 19.00 7.40 0.18 2.42 8.07 3.73 2.23 0.30 0.84 100.19 19 181 27 11 8 55 590 551 18 2 90 2 3 21	34 M97-014 55.99 0.69 18.87 7.33 0.20 2.29 7.90 3.85 2.41 0.28 0.53 100.35 13 149 13 10 b.d. 655 603 605 26 14 105 b.d. 5 27	35 M97-019 54.47 0.74 18.94 7.88 0.18 2.65 8.44 3.60 2.28 0.25 0.91 100.33 12 179 30 7 b.d. 52 545 542 26 5 545 542 26 5 98 b.d. 3 26

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Komp	onenten holo	zäner pyrokla	stischer Ströi	ne					
RefNr. (A3) Probe	36 M97-021	37 M97-031	38 M97-034	39 M97-036	40 M97-0392	41 M97-041	42(1) M97-045	42(2) M97-045D	43 M97-047	44 M97-054
Hobe	NI)7-021	W197-051	W177-054	W177-050	M1)7-0572	W177-041	MJ7-045	M)7-045D	W1)7-047	M1)7-054
Hauptelemente ('Gew.%)									
SiO ₂	52.85	55.62	54.78	53.65	52.86	57.27	53.02	52.62	55.06	56.04
T_1O_2	0.88	0.71	0.75	0.77	0.87	0.66	0.84	0.86	0.71	0.69
Al_2O_3	18.57	18.63	18.89	18.99	18.80	18.80	18.96	19.17	18.91	18.80
Fe ₂ O ₃ *	9.09	/.3/	8.38	8.09	8.78	6.92	9.01	9.14	8.02	/.34
MnO	0.18	0.19	0.18	2.00	2.20	0.17	0.20	0.20	0.19	0.18
MgO CaO	9.41	2.37	2.90	2.90	5.20 8.04	2.20	0.33	9.41	2.75	2.40
NaoO	3 36	3.80	3 59	3 43	3 48	3.83	3 32	3 45	3.56	3.68
K ₂ O	1.98	2.38	2.32	2.06	2.14	1.98	1.98	1.98	2.23	2.20
P2O5	0.25	0.25	0.27	0.29	0.24	0.27	0.30	0.30	0.30	0.26
LOI	0.42	1.34	-0.08	1.50	0.55	0.53	0.10	0.10	-0.07	0.45
Summe	100.49	100.45	100.48	100.26	100.05	100.45	100.38	100.45	100.32	100.36
Spurenelemente	(ppm)									
So.	(PP.10)	12	16	14	11	11	16	n 0	10	11
V	223	12	10	14	211	03	10	n a.	180	116
v Cr	79	152	78	100	211	93	71	n a.	109	140
Co	19	0	19	10	13	6	15	n a	16	13
Ni	5	h d	3	15	2	h d	h d	n a	3	h d
Rh	49	67	47	57	55	47	46	n a	53	61
Sr	514	593	549	576	543	535	556	n.a.	607	522
Ba	488	604	503	506	498	505	477	n.a.	558	544
Pb	26	22	12	27	24	13	15	n.a.	9	19
Th	6	14	6	14	13	4	5	n.a.	4	7
Zr	83	105	96	101	86	116	94	n.a.	90	95
Nb	2	b.d.	2	b.d.	b.d.	1	b.d.	n.a.	b.d.	2
Hf	3	5	3	6	5	4	3	n.a.	3	4
Y	23	26	24	28	28	27	29	n.a.	26	26
Einheit	Juvenile Komp	onenten holo	zäner pyrokla	stischer Ströi	ne					
Einheit Ref -Nr (A3)	Juvenile Komp	oonenten holo	zäner pyrokla	stischer Ströi	me	50	51	52	53	54
Einheit RefNr. (A3) Probe	Juvenile Komp 45 M97-055	oonenten holo 46 M97-067	zäner pyrokla 47 M97-075	stischer Strön 48 M97-096	me 49 M98-002	50 M98-006	51 M98-008a	52 M98-008b	53 M98-013	54 M98-016
Einheit RefNr. (A3) Probe	Juvenile Komp 45 M97-055	oonenten holo 46 M97-067	zäner pyrokla 47 M97-075	stischer Strön 48 M97-096	me 49 M98-002	50 M98-006	51 M98-008a	52 M98-008b	53 M98-013	54 M98-016
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (Juvenile Komp 45 M97-055 (Gew.%)	00000000000000000000000000000000000000	zäner pyrokla 47 M97-075	48 48 497-096	me 49 M98-002	50 M98-006	51 M98-008a	52 M98-008b	53 M98-013	54 M98-016
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77	54.77 0 80	zäner pyrokla 47 M97-075 52.41 0.70	48 48 497-096 54.10	ne 49 M98-002 52.82	50 M98-006 53.76	51 M98-008a 52.76	52 M98-008b 53.04	53 M98-013 52.86	54 M98-016 54.30
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂ TiO ₂ Al-O:	Juvenile Komp 45 M97-055 "Gew.%) 53.02 0.77 18.72	54.77 0.80	zäner pyrokla 47 M97-075 52.41 0.79 18 62	48 48 497-096 54.10 0.79	ne 49 M98-002 52.82 0.82 18.96	50 M98-006 53.76 0.82	51 M98-008a 52.76 0.83 18 86	52 M98-008b 53.04 0.82	53 M98-013 52.86 0.84	54 M98-016 54.30 0.81
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂ TiO ₂ Al ₂ O ₃ E ₂ O ₂ *	Juvenile Komp 45 M97-055 <i>Gew.%</i>) 53.02 0.77 18.72 8.92	54.77 0.80 8 64	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18	48 M97-096 54.10 0.79 18.86 8 62	ne 49 M98-002 52.82 0.82 18.96 8.97	50 M98-006 53.76 0.82 18.96 8 34	51 M98-008a 52.76 0.83 18.86 9.12	52 M98-008b 53.04 0.82 19.39 8 64	53 M98-013 52.86 0.84 19.40 8.85	54 M98-016 54.30 0.81 18.99 8 14
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Komp 45 M97-055 <i>Gew.%</i>) 53.02 0.77 18.72 8.92 0.19	46 M97-067 54.77 0.80 18.52 8.64 0.18	2äner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19	48 M97-096 54.10 0.79 18.86 8.62 0.18	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20	50 M98-006 53.76 0.82 18.96 8.34 0.19	51 M98-008a 52.76 0.83 18.86 9.12 0.20	52 M98-008b 53.04 0.82 19.39 8.64 0.20	53 M98-013 52.86 0.84 19.40 8.85 0.20	54 M98-016 54.30 0.81 18.99 8.14 0.19
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33	46 M97-067 54.77 0.80 18.52 8.64 0.18 3.06	2äner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33 9.13	00000000000000000000000000000000000000	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Juvenile Komp 45 M97-055 (Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm)	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm)	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d.	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 2	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d.	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 3	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d. 50	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 180 38 18 2 50	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d. 50 561	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 2 50 560	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 548	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53 537
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d. 50 561 467	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 2 50 560 473	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561 472	48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581 414	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558 507	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544 562	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 548 515	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558 476	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546 461	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53 537 580
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 <i>(ppm)</i> 16 205 20 21 b.d. 50 561 467 18	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 180 38 18 2 50 560 473 25	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561 472 17	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581 414 16	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558 507 20	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544 562 19	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 548 515 19	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558 476 18	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546 461 18	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53 537 580 18
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Juvenile Komp 45 M97-055 <i>Gew.%)</i> 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 <i>(ppm)</i> 16 205 20 21 b.d. 50 561 467 18 6	54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 2 50 560 473 25 6	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561 472 17 5	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581 414 16 9	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558 507 20 5	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544 562 19 6	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 548 515 19 6	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558 476 18 6	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546 461 18 4	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 537 580 18 5
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d. 50 561 467 18 6 93	Somenten holo 46 M97-067 54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 250 560 473 25 6 95	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561 472 17 5 92	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581 414 16 9 95	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558 507 20 5 91	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544 562 19 6 90	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 515 19 6 89	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558 476 18 6 97	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546 461 18 4 91	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53 537 580 18 5 89
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d. 50 561 467 18 6 93 b.d.	Second content holo 46 M97-067 54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 25 6 95 3	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561 472 17 5 92 b.d.	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581 414 16 9 95 b.d.	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558 507 20 5 91 2	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544 562 19 6 90 2	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 548 515 19 6 89 3	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558 476 18 6 97 3	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546 461 18 4 91 3	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53 537 580 18 99 2
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Komp 45 M97-055 Gew.%) 53.02 0.77 18.72 8.92 0.19 3.33 9.13 3.38 2.07 0.28 0.32 100.14 (ppm) 16 205 20 21 b.d. 50 561 467 18 6 93 b.d. 3	Bonenten holo 46 M97-067 54.77 0.80 18.52 8.64 0.18 3.06 8.49 3.71 1.99 0.28 0.01 100.45 18 180 38 18 25 66 95 3 4	zäner pyrokla 47 M97-075 52.41 0.79 18.62 9.18 0.19 3.62 9.18 3.46 2.06 0.29 0.29 100.08 14 200 70 21 2 49 561 472 17 5 92 b.d. 3	stischer Strön 48 M97-096 54.10 0.79 18.86 8.62 0.18 3.20 8.79 3.48 1.73 0.26 0.20 100.22 15 166 23 11 b.d. 38 581 414 16 9 95 b.d. 4	ne 49 M98-002 52.82 0.82 18.96 8.97 0.20 3.17 9.17 3.42 2.04 0.30 0.08 99.95 17 207 25 19 3 51 558 507 20 5 91 2 3	50 M98-006 53.76 0.82 18.96 8.34 0.19 2.81 8.70 3.65 2.27 0.27 0.47 100.24 16 203 15 16 3 55 544 562 19 6 90 2 3	51 M98-008a 52.76 0.83 18.86 9.12 0.20 3.26 9.17 3.39 2.06 0.30 0.26 100.22 18 199 17 18 3 48 548 515 19 6 89 3 3 3	52 M98-008b 53.04 0.82 19.39 8.64 0.20 2.90 9.08 3.62 2.03 0.31 0.23 100.27 16 200 12 17 3 49 558 476 18 6 97 3 3 3	53 M98-013 52.86 0.84 19.40 8.85 0.20 3.07 9.33 3.53 2.02 0.30 0.07 100.47 17 188 15 16 1 46 546 461 18 4 91 3 3 3	54 M98-016 54.30 0.81 18.99 8.14 0.19 2.77 8.66 3.67 2.10 0.25 0.28 100.16 13 192 15 16 4 53 537 580 18 5 89 2 3

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Kom	ponenten holo	zäner pyrokla	stischer Ströi	ne					
RefNr. (A3)	55	56	57	58	59	60	61	62	63	64
Probe	M98-021	M98-050	M98-0531	M98-0532	M98-059	M98-066	M98-072	M98-0772	M98-094	M98-096
Hauptelemente	(Gew.%)									
SiO ₂	53.47	54.14	54.58	54.39	52.92	53.06	52.86	53.94	53.67	53.29
TiO ₂	0.81	0.81	0.84	0.82	0.81	0.81	0.81	0.84	0.76	0.78
Al ₂ O ₃	19.24	19.05	19.02	18.59	18.86	18.97	18.96	18.76	19.00	18.64
Fe ₂ O ₃ *	8.58	8.29	8.07	7.87	9.00	8.95	8.93	8.62	8.38	8.55
MnO	0.20	0.20	0.19	0.19	0.20	0.20	0.20	0.17	0.20	0.20
MgO	2.96	2.77	2.73	2.68	3.17	3.23	3.19	3.60	2.80	3.22
CaO	9.06	8.72	8.49	8.28	9.08	9.23	9.15	8.43	8.89	8.86
Na ₂ O	3.54	3.62	3.78	3.81	3.42	3.41	3.46	3.16	3.56	3.45
K ₂ O	2.05	2.14	1.73	1.77	2.06	2.05	2.06	1.60	2.12	2.05
P_2O_5	0.30	0.29	0.28	0.27	0.30	0.30	0.29	0.26	0.31	0.29
LOI	0.17	0.10	0.64	1.77	0.30	0.27	0.33	1.06	0.21	0.81
Summe	100.38	100.13	100.35	100.45	100.10	100.48	100.24	100.44	99.90	100.14
Spurenelemente	e (ppm)									
Sc	16	13	13	15	17	18	17	18	16	15
V	185	160	171	177	194	203	203	182	172	171
Cr	18	16	15	23	16	15	15	39	14	14
Co	16	15	16	15	17	18	19	21	16	15
Ni	b.d.	2	b.d.	3	2	3	3	10	1	b.d.
Rb	49	52	40	43	50	51	51	40	53	51
Sr	536	564	520	518	551	557	559	502	586	583
Ba	475	596	483	437	516	506	527	436	495	473
Pb	18	17	17	17	19	19	20	17	20	19
Th	6	6	5	6	5	5	5	5	7	6
Zr	95	89	111	112	90	90	91	96	98	98
Nb	3	2	4	3	2	2	3	3	3	3
Hf	3	4	4	4	3	3	3	3	4	3
Y	25	23	25	23	23	20	21	20	23	26
Einheit	Juvenile Kom	ponenten holo	zäner pyrokla	stischer Ströi	ne					
Einheit RefNr. (A3)	Juvenile Kom	ponenten holo 66	zäner pyrokla 67	ustischer Ströi 68	ne 69	70	71	72		73
Einheit RefNr. (A3) Probe	Juvenile Komp 65 M98-0991	ponenten holo 66 M98-0992	zäner pyrokla 67 M98-100	68 M98-103	ne 69 M99-0131	70 M99-016	71 M99-019M	72 199-0251		73 M96-032
Einheit RefNr. (A3) Probe Hauptelemente (Juvenile Komj 65 M98-0991 (Gew.%)	ponenten holo 66 M98-0992	zäner pyrokla 67 M98-100	68 M98-103	ne 69 M99-0131	70 M99-016	71 M99-019M	72 499-0251	_	73 M96-032
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂	Juvenile Kom 65 M98-0991 (Gew.%) 54.12	ponenten holo 66 M98-0992 53.84	zäner pyrokla 67 M98-100 52.52	1stischer Strön 68 M98-103 52.67	ne 69 M99-0131 54.78	70 M99-016 55.90	71 M99-019N 53.59	72 499-0251 54.10	_	73 M96-032 54.07
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84	ponenten hold 66 M98-0992 53.84 0.84	2äner pyrokla 67 M98-100 52.52 0.88	68 M98-103 52.67 0.83	ne 69 M99-0131 54.78 0.80	70 M99-016 55.90 0.68	71 M99-019N 53.59 0.74	72 199-0251 54.10 0.74	_	73 M96-032 54.07 0.71
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01	ponenten hold 66 M98-0992 53.84 0.84 18.93	52.52 0.88 18.62	68 M98-103 52.67 0.83 18.85	ne 69 M99-0131 54.78 0.80 19.12	70 M99-016 55.90 0.68 19.51	71 M99-019N 53.59 0.74 18.82	72 499-0251 54.10 0.74 18.99	_	73 M96-032 54.07 0.71 18.78
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	Juvenile Komy 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59	ponenten hold 66 M98-0992 53.84 0.84 18.93 8.58	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36	68 M98-103 52.67 0.83 18.85 9.07	ne 69 M99-0131 54.78 0.80 19.12 8.03	70 M99-016 55.90 0.68 19.51 7.19	71 M99-019N 53.59 0.74 18.82 8.14	72 499-0251 54.10 0.74 18.99 8.10		73 M96-032 54.07 0.71 18.78 8.25
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Komy 65 M98-0991 (<i>Gew.%</i>) 54.12 0.84 19.01 8.59 0.18	53.84 0.84 18.93 8.58 0.19	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19	68 M98-103 52.67 0.83 18.85 9.07 0.20	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19	70 M99-016 55.90 0.68 19.51 7.19 0.17	71 M99-019N 53.59 0.74 18.82 8.14 0.19	72 499-0251 54.10 0.74 18.99 8.10 0.19	_	73 M96-032 54.07 0.71 18.78 8.25 0.19
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO	Juvenile Komy 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01	53.84 0.84 18.93 8.58 0.19 3.00	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Juvenile Kom 65 M98-0991 (<i>Gew.%</i>) 54.12 0.84 19.01 8.59 0.18 3.01 8.82	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75		73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61	ponenten hold 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58	-	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Juvenile Kom 65 M98-0991 (<i>Gew.%</i>) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64	ponenten hold 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12		73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Juvenile Kom 65 M98-0991 (<i>Gew.%</i>) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27	ponenten hold 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29		73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Kom 65 M98-0991 (<i>Gew.%</i>) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26	ponenten hold 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18		73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 65 M98-0991 (<i>Gew.%</i>) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm)	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87	22 mer pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191 14	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 181	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191 14 19	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18	zäner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 181 18 18	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191 14 19 3	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2	22 mer pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 181 18 18 18 b.d.	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d.
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191 14 19 3 40	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 181 18 18 18 8 54	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 e (ppm) 17 191 14 19 3 40 545	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 18 18 18 18 54 541	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191 14 19 3 40 545 405	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537 462	22iner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535 540	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560 463	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542 576	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555 597	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 18 18 18 18 18 54 541 496	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553 546	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560 491
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 e (ppm) 17 191 14 19 3 40 545 405 16	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537 462 16	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535 540 20	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560 463 20	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542 576 20	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555 597 16	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 18 18 18 18 18 54 541 496 18	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553 546 19	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560 491 16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 e (ppm) 17 191 14 19 3 40 545 405 16 5	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537 462 16 4	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535 540 20 5	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560 463 20 2	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542 576 20 6	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555 597 16 6	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 18 18 18 18 18 54 541 496 18 3	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553 546 19 1	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560 491 16 2
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 r (ppm) 17 191 14 19 3 40 545 405 16 5 102	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537 462 16 4 101	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535 540 20 5 88	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560 463 20 2 93	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542 576 20 6 92	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555 597 16 6 105	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 188 18 b.d. 54 541 496 18 3 91	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553 546 19 1 90	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560 491 16 2 93
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 e (ppm) 17 191 14 19 3 40 545 405 16 5 102 4	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537 462 16 4 101 4	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535 540 20 5 88 3	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560 463 20 2 93 3	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542 576 20 6 92 2	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555 597 16 6 105 b.d.	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 188 18 b.d. 54 541 496 18 3 91 3	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553 546 19 1 90 2	_	73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560 491 16 2 93 1
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Kom 65 M98-0991 (Gew.%) 54.12 0.84 19.01 8.59 0.18 3.01 8.82 3.61 1.64 0.27 0.26 100.37 e (ppm) 17 191 14 19 3 40 545 405 16 5 102 4 4	ponenten holo 66 M98-0992 53.84 0.84 18.93 8.58 0.19 3.00 8.81 3.59 1.63 0.27 0.19 99.87 16 177 13 18 2 40 537 462 16 4 101 4 3	22äner pyrokla 67 M98-100 52.52 0.88 18.62 9.36 0.19 3.54 9.11 3.40 2.10 0.25 0.02 99.98 21 264 22 26 13 54 535 540 20 5 88 3 3	68 M98-103 52.67 0.83 18.85 9.07 0.20 3.24 9.17 3.41 2.07 0.30 0.36 100.15 17 204 16 22 4 45 560 463 20 2 93 3 3	ne 69 M99-0131 54.78 0.80 19.12 8.03 0.19 2.73 8.62 3.73 2.19 0.25 0.00 100.43 16 203 13 17 3 55 542 576 20 6 92 2 3	70 M99-016 55.90 0.68 19.51 7.19 0.17 2.22 7.55 3.78 2.47 0.25 1.01 100.72 16 138 35 9 1 61 555 597 16 6 105 b.d. 3	71 M99-019N 53.59 0.74 18.82 8.14 0.19 2.83 8.89 3.57 2.16 0.28 1.04 100.27 11 181 188 18 b.d. 54 541 496 18 3 91 3 3	72 499-0251 54.10 0.74 18.99 8.10 0.19 2.85 8.75 3.58 2.12 0.29 0.18 99.88 17 204 16 8 4 62 553 546 19 1 90 2 3		73 M96-032 54.07 0.71 18.78 8.25 0.19 3.05 8.66 3.39 2.07 0.31 1.17 100.64 11 102 19 7 b.d. 50 560 491 16 2 93 1 3

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen						
RefNr. (A3)	74	75	76	77	78	79	80	81(1)	81(2)	82(1)
Probe	M96-038	M96-040	M96-074	M96-075	M96-088	M96-090	M96-098	M96-102	M96-102D	M96-1031
Hauptelemente	(Gew.%)									
SiOa	51 54	53 78	52.81	53 87	52.51	52.10	54 23	51.87	51.67	53 79
TiO ₂	0.80	0.73	0.75	0.71	0.82	0.85	0.70	0.81	0.79	0.73
Al ₂ O ₃	20.38	19.27	20.47	18.87	18.95	19.10	19.09	20.44	19.74	20.08
Fe ₂ O ₃ *	8.38	8.20	7.68	8.13	8.87	9.26	7.62	8.24	8.47	7.39
MnO	0.19	0.20	0.19	0.19	0.20	0.20	0.19	0.20	0.19	0.19
MgO	2.77	3.10	2.33	3.03	3.21	3.38	2.35	2.47	2.77	2.18
CaO	8.99	8.66	8.23	8.55	9.10	9.11	8.16	8.86	8.99	8.03
Na ₂ O	3.26	3.33	3.43	3.43	3.36	3.30	3.56	3.35	3.25	3.50
K ₂ O	1.70	2.03	1.38	2.04	2.02	2.00	2.26	1.74	1.74	1.50
P_2O_5	0.30	0.29	0.34	0.29	0.30	0.30	0.30	0.31	0.30	0.32
LOI	2.00	1.08	2.75	1.06	0.86	0.67	1.58	1.63	2.09	2.66
Summe	100.31	100.66	100.37	100.17	100.19	100.25	100.04	99.91	100.00	100.38
Spurenelemente	(ppm)									
Sc	14	14	12	13	14	16	13	14	13	10
v	169	162	141	168	189	240	174	182	174	136
Cr	24	22	11	28	10	10	10	11	24	3
Co	15	11	8	15	14	20	13	13	13	11
Ni	b.d.	3	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.	b.d.
Rb	42	48	36	49	42	52	62	47	43	39
Sr	583	568	553	562	461	554	596	594	579	550
Ba	478	501	391	484	474	475	552	455	466	425
Pb	20	18	26	19	23	25	27	28	15	26
Th	13	7	15	7	10	13	15	14	6	12
Zr	92	9/	120	99	90	99	105	103	89	121
	D.d.	D.d. 2	1	D.d. 2	D.d.	1	1	D.d.	D.d.	D.d.
v	4	25	30	26	25	29	29	29	28	29
1	50	25	50	20	25	2)	2)	2)	20	2)
T 1 1	x ·1 xz									
Einheit	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen						
Einheit RefNr. (A3)	Juvenile Kom 82(2)	ponenten holo 83	zäner Fallabla 84	agerungen 85	86(1)	86(2)	87	88	89	90
Einheit RefNr. (A3) Probe	Juvenile Kom 82(2) M96-1031D	ponenten holo 83 M96-1032	zäner Fallabla 84 M96-107	agerungen 85 M96-108	86(1) M96-110	86(2) M96-110D	87 M96-116	88 M96-117	89 M96-123	90 M96-124
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (Juvenile Kom 82(2) M96-1031D (Gew.%)	ponenten holo 83 M96-1032	zäner Fallabla 84 M96-107	agerungen 85 M96-108	86(1) M96-110	86(2) M96-110D	87 M96-116	88 M96-117	89 M96-123	90 M96-124
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76	ponenten holo 83 M96-1032 53.25	zäner Fallabla 84 M96-107 51.40	85 M96-108	86(1) M96-110 50.00	86(2) M96-110D 50.36	87 M96-116 52.33	88 M96-117 52.93	89 M96-123 54.13	90 M96-124 53.23
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂ TiO ₂	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68	53.25 0.74	zäner Fallabla 84 M96-107 51.40 0.91	85 M96-108 52.03 0.78	86(1) M96-110 50.00 1.02	86(2) M96-110D 50.36 0.91	87 M96-116 52.33 0.79	88 M96-117 52.93 0.76	89 M96-123 54.13 0.75	90 M96-124 53.23 0.72
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95	53.25 0.74 20.37	zäner Fallabla 84 M96-107 51.40 0.91 20.01	85 M96-108 52.03 0.78 20.16	86(1) M96-110 50.00 1.02 19.66	86(2) M96-110D 50.36 0.91 20.29	87 M96-116 52.33 0.79 19.83	88 M96-117 52.93 0.76 18.64	89 M96-123 54.13 0.75 18.30	90 M96-124 53.23 0.72 19.27
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95	85 M96-108 52.03 0.78 20.16 8.20	86(1) M96-110 50.00 1.02 19.66 10.13	86(2) M96-110D 50.36 0.91 20.29 9.19	87 M96-116 52.33 0.79 19.83 8.36	88 M96-117 52.93 0.76 18.64 8.78	89 M96-123 54.13 0.75 18.30 8.50	90 M96-124 53.23 0.72 19.27 8.10
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17	85 M96-108 52.03 0.78 20.16 8.20 0.19	86(1) M96-110 50.00 1.02 19.66 10.13 0.19	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17	87 M96-116 52.33 0.79 19.83 8.36 0.19	88 M96-117 52.93 0.76 18.64 8.78 0.20	89 M96-123 54.13 0.75 18.30 8.50 0.19	90 M96-124 53.23 0.72 19.27 8.10 0.19
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 5.57 5.58 5.59 5.58 5.58 5.58 5.59 5.58 5.58 5.58 5.59 5.58 5.58 5.59 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.59 5.58 5.58 5.59 5.58 5.58 5.58 5.59 5.58 5.58 5.59 5.59 5.58 5.59 5.58 5.59 5.58 5.59 5.59 5.59 5.58 5.59 5.59 5.59 5.59 5.59 5.59 5.58 5.59	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.51	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.21
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O D CaO	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.21	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.22	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.20	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.20	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 2.20	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.22	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.22	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LO	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.00	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 2.21	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 0.30	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 0.30 1.52
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 1.03 0.62	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.60	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 0.30 1.34	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 0.30 1.34 100.43	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 ·(ppm)	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 0.30 1.34 100.43	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 ·(ppm) 13	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 · (ppm) 13 107	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 16 183	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 16 183 20	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 13	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 1	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18	85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 161	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Bb	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 28	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 133 12 11 b.d. 28	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 52	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 2 20	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 29	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 161 16 10 b.d.	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 16 183 20 18 b.d.	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 b.d.	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d.
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb S ₂	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 38 54	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 500	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 30 520 520	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 552	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 16 10 b.d. 56	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 16 183 20 18 b.d. 52 572	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 21 12 b.d. 56	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 38 544 407	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317	agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 30 539 232	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 211	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 16 10 b.d. 56 576 478	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 16 183 20 18 b.d. 52 573 477	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 21 12 b.d. 561 474	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 38 544 407 21	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407 27	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317 14	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467 21	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 300 539 328 23	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 311 23	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 16 10 b.d. 56 576 478 17	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 100.53 16 183 20 18 b.d. 52 573 477 22	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 21 12 b.d. 561 561 474	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 38 544 407 21 8	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407 27 12	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317 14 4	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467 21 9	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 300 539 328 23 11	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 311 23 12	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 16 10 b.d. 56 576 478 17 8	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 100.53 16 183 20 18 b.d. 52 573 477 22 9	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 21 12 21 12 5.61 474 419 <i>A</i>	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474 20 9 9 9 9 9 16 16 16 15 15 15 16 16 16 16 16 16 16 16 16 16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 38 544 407 21 8 114	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407 27 12 116	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317 14 4 98	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467 21 9 92	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 30 539 328 23 11 94	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 311 23 12 97	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 16 10 b.d. 56 576 478 17 8 89	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 100.53 16 183 20 18 b.d. 52 573 477 22 9 94	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 b.d. 56 561 474 19 4 93	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474 20 9 9
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 (ppm) 13 107 21 6 b.d. 38 544 407 21 8 114 b.d.	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407 27 12 116 2	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317 14 4 98 2	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467 21 9 b.d.	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 30 539 328 23 11 94 1	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 311 23 12 97 2	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 16 10 b.d. 56 576 478 17 8 89 b.d.	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 100.53 16 183 20 18 b.d. 52 573 477 22 9 94 1	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 b.d. 56 561 474 19 4 93 1	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474 20 9 94 22
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 c(ppm) 13 107 21 6 b.d. 38 544 407 21 8 114 b.d. 4	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407 27 12 116 2 5 5	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317 14 4 98 2 4	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467 21 9 92 b.d. 4	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 30 539 328 23 11 94 1 5	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 311 23 12 97 2 7	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 161 16 10 b.d. 56 576 478 17 8 89 b.d. 3	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 100.53 16 183 20 18 b.d. 52 573 477 22 9 94 1 4	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 21 12 21 12 24 56 561 474 19 4 93 1 3	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474 20 9 94 2 4
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Juvenile Kom 82(2) M96-1031D (Gew.%) 53.76 0.68 19.95 7.30 0.18 2.28 7.90 3.48 1.52 0.31 2.77 100.11 c(ppm) 13 107 21 6 b.d. 38 544 407 21 8 114 b.d. 4 26	ponenten holo 83 M96-1032 53.25 0.74 20.37 7.51 0.19 2.21 8.21 3.50 1.43 0.33 2.62 100.36 12 133 12 11 b.d. 38 560 407 27 12 116 2 5 29	zäner Fallabla 84 M96-107 51.40 0.91 20.01 8.95 0.17 3.06 8.54 3.30 1.34 0.30 2.33 100.30 12 190 27 18 b.d. 26 528 317 14 4 98 2 4 31	Agerungen 85 M96-108 52.03 0.78 20.16 8.20 0.19 2.57 8.84 3.27 1.81 0.30 2.09 100.25 14 186 17 9 b.d. 50 590 467 21 9 92 b.d. 4 29	86(1) M96-110 50.00 1.02 19.66 10.13 0.19 3.60 8.88 3.07 1.22 0.28 1.87 99.93 15 256 45 20 2 30 539 328 23 11 94 1 5 32	86(2) M96-110D 50.36 0.91 20.29 9.19 0.17 3.07 8.54 3.06 1.24 0.30 3.21 100.34 13 209 13 17 b.d. 28 553 311 23 12 97 2 7 32	87 M96-116 52.33 0.79 19.83 8.36 0.19 2.77 8.85 3.40 1.84 0.30 1.61 100.26 11 161 166 100 b.d. 566 5766 478 17 8 89 b.d. 3 28	88 M96-117 52.93 0.76 18.64 8.78 0.20 3.21 8.81 3.34 2.00 0.32 1.53 100.53 100.53 100.53 16 183 20 18 b.d. 52 573 477 22 9 94 1 4 28	89 M96-123 54.13 0.75 18.30 8.50 0.19 3.06 8.67 3.18 2.00 0.30 1.34 100.43 14 112 21 12 b.d. 56 561 474 19 4 93 1 3 26	90 M96-124 53.23 0.72 19.27 8.10 0.19 2.77 8.69 3.40 2.01 0.30 1.53 100.20 15 159 23 16 b.d. 53 584 474 20 9 94 2 4 26

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Komp	ponenten holo	zaner Fallabla	igerungen						
RefNr. (A3)	91	92	93	94	95	96	97	98	99	100
Probe	M96-125	M96-129	M96-130	M96-131	M96-153	M96-157	M96-159	M96-162	M96-163	M96-164
Hauptelemente	(Gew.%)									
SiO ₂	53.15	51.02	54.86	52.77	51.54	52.88	50.83	54.02	51.40	51.86
TiO ₂	0.72	0.87	0.67	0.82	0.91	0.83	0.93	0.74	0.73	0.84
Al ₂ O ₃	19.10	20.16	19.72	19.34	19.26	19.26	19.54	20.13	21.46	19.31
Fe ₂ O ₃ *	8.20	9.02	7.01	8.49	9.26	8.49	9.50	7.17	7.56	8.48
MnO	0.19	0.19	0.18	0.19	0.18	0.19	0.18	0.18	0.17	0.20
MgO	2.90	3.05	2.25	2.88	3.44	2.82	3.43	2.00	2.56	3.02
CaO	8.83	8.59	7.80	8.78	9.14	8.68	9.20	7.68	7.69	9.30
Na ₂ O	3.34	3.10	3.48	3.43	3.19	3.45	3.13	3.50	3.09	3.36
K ₂ O	1.99	1.17	1.62	1.94	1.84	2.03	1.68	1.48	1.25	1.82
P_2O_5	0.31	0.29	0.29	0.28	0.25	0.28	0.25	0.30	0.25	0.29
LOI	1.31	3.08	2.56	1.30	1.21	1.41	1.70	2.97	4.24	1.46
Summe	100.03	100.55	100.44	100.22	100.23	100.31	100.38	100.17	100.40	99.93
Spurenelemente	(ppm)									
Sc	12	15	11	9	14	12	15	12	13	14
v	160	198	100	143	221	195	192	122	154	200
Cr	17	10	22	10	19	10	25	4	5	20
Co	17	11	7	8	17	16	24	7	9	14
Ni	b.d.	b.d.	b.d.	b.d.	3	b.d.	3	b.d.	b.d.	b.d.
Rb	50	31	43	55	44	55	41	42	38	48
Sr	583	516	547	581	522	589	535	558	511	582
Ba	473	321	464	571	434	560	416	413	402	476
Pb	18	24	12	27	17	26	33	28	24	26
Th	6	13	2	11	9	12	9	15	13	12
Zr	95	88	111	98	82	100	86	116	107	97
Nb	2	b.d.	2	b.d.	b.d.	b.d.	b.d.	2	b.d.	b.d.
Hf	4	5	4	5	3	5	3	6	5	5
Y	28	28	27	28	25	29	26	30	27	29
Einheit	Juvenile Komp	ponenten holo	zäner Fallabla	igerungen						
Einheit RefNr. (A3)	Juvenile Komp	ponenten holo	zäner Fallabla	igerungen	105	106	107	108	109	110
Einheit RefNr. (A3) Probe	Juvenile Komp 101 M96-165	102 M96-166	zäner Fallabla 103 M96-169	104 M96-181	105 M96-182	106 M96-185	107 M97-002	108 M97-003	109 M97-004	110 M97-025
Einheit RefNr. (A3) Probe	Juvenile Komp 101 M96-165	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169	ngerungen 104 M96-181	105 M96-182	106 M96-185	107 M97-002	108 M97-003	109 M97-004	110 M97-025
Einheit RefNr. (A3) Probe <i>Hauptelemente</i>	Juvenile Komp 101 M96-165 (Gew.%)	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169	104 M96-181	105 M96-182	106 M96-185	107 M97-002	108 M97-003	109 M97-004	110 M97-025
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.02	102 M96-166 52.65	2äner Fallabla 103 M96-169 44.79	ngerungen 104 M96-181 56.08	105 M96-182 52.97	106 M96-185	107 M97-002 51.08	108 M97-003 52.34	109 M97-004 52.75	110 M97-025 53.18
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 10.50	102 M96-166 52.65 0.83	zäner Fallabla 103 M96-169 44.79 0.90 22.75	ngerungen 104 M96-181 56.08 0.65	105 M96-182 52.97 0.77	106 M96-185 53.09 0.80	107 M97-002 51.08 0.91	108 M97-003 52.34 0.78	109 M97-004 52.75 0.78 20.36	110 M97-025 53.18 0.74
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Ea:O.*	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77	102 M96-166 52.65 0.83 19.24 8 50	zäner Fallabla 103 M96-169 44.79 0.90 23.75 0.04	104 M96-181 56.08 0.65 18.84 6 01	105 M96-182 52.97 0.77 19.27 & 20	106 M96-185 53.09 0.80 18.81 8.54	107 M97-002 51.08 0.91 19.27 9.42	108 M97-003 52.34 0.78 19.93 & 21	109 M97-004 52.75 0.78 20.36 7.55	110 M97-025 53.18 0.74 19.13 8,52
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MrO	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19	52.65 0.83 19.24 8.50 0.18	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16	104 M96-181 56.08 0.65 18.84 6.91 0.18	105 M96-182 52.97 0.77 19.27 8.29 0.19	106 M96-185 53.09 0.80 18.81 8.54 0.19	107 M97-002 51.08 0.91 19.27 9.42 0.18	108 M97-003 52.34 0.78 19.93 8.21 0.18	109 M97-004 52.75 0.78 20.36 7.55 0.18	110 M97-025 53.18 0.74 19.13 8.53 0.19
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MaO	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88	52.65 0.83 19.24 8.50 0.18 2.97	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 177	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1 42	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100 35	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100 44	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100 18	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100 33	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm)	52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15	52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 r (ppm) 15 197	52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16
Einheit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 10 11 10 10 10 10 10 10	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d.	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d.	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d.	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d.	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d.	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d.	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d.	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d.	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d.
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38	00000000000000000000000000000000000000	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 55.08 55.08 55.08 18.94 55.08 10.55 18.84 55.08 18.84 55.08 18.84 10.18 10.28 10.45 10.018 10.18 10.18 10.18 10.18 10.18 10.28 10.18 10.18 10.18 10.18 10.28 10.45 100.18 10.18 10.18 10.28 10.18 10.18 10.28 10.45 100.18 10.18 10.18 10.18 10.28 10.45 100.18 10.18	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 531	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 512	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 (152)	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr P ₂ O P ₂ O Sr P ₂ O Sr Sr	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 42	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504	104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 551	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 235	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 666 277	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 201	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500 373 22	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 549 474	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504 145 27	Ingerungen 104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 551 452	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584 508	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570 450	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 338 22	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 566 566 577	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 384	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598 451
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Tt	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500 373 22 12	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 549 474 16	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504 145 27 15	agerungen 104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 551 452 17	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584 508	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570 450 18	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 338 23 23	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 566 377 26 12	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 384 24	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598 451 18
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th 7-	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500 373 22 13 102	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 549 474 16 3 02	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504 145 27 15 72	104 104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 551 452 17 8 102	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584 508 15 5	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570 450 18 11	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 338 23 12 04	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 566 377 26 13 114	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 384 24 21	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598 451 18 9 9
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500 373 22 13 109 4	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 549 474 16 3 92	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504 145 27 15 73 b.d	104 104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 551 452 17 8 103 b.4	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584 508 15 5 91 b.d.	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570 450 18 11 85	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 338 23 12 94 2	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 566 377 26 13 114 2	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 384 24 12 115 2	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598 451 18 9 9
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500 373 22 13 109 4 6	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 549 474 16 3 92 b.d. 28	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504 145 27 15 73 b.d. 6	agerungen 104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 00 b.d. 48 551 452 17 8 103 b.d.	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584 508 15 5 91 b.d. 2	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570 450 18 11 85 b.d. 2	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 338 23 12 94 2 94 2 7	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 566 377 26 13 114 2 7	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 384 24 125 3 3 4 2 15 3 3 4 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598 451 18 9 99 90 b.d.
Einheit RefNr. (A3) Probe Hauptelementer SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Juvenile Komp 101 M96-165 (Gew.%) 53.05 0.93 19.50 8.77 0.19 2.88 8.02 3.21 1.47 0.30 2.02 100.35 (ppm) 15 197 10 13 b.d. 38 500 373 22 13 109 4 6 30	Jonenten holo 102 M96-166 52.65 0.83 19.24 8.50 0.18 2.97 8.78 3.38 2.21 0.24 1.41 100.39 14 177 28 15 b.d. 49 549 474 16 3 92 b.d. 325	zäner Fallabla 103 M96-169 44.79 0.90 23.75 9.04 0.16 2.88 7.98 2.43 0.36 0.35 7.79 100.44 11 299 45 28 b.d. 11 504 145 27 15 73 b.d. 6 29	agerungen 104 M96-181 56.08 0.65 18.84 6.91 0.18 2.37 8.06 3.61 1.77 0.28 1.45 100.18 12 117 11 10 b.d. 48 551 452 17 8 103 b.d. 4 27	105 M96-182 52.97 0.77 19.27 8.29 0.19 2.85 8.92 3.39 1.97 0.28 1.29 100.19 11 139 31 10 b.d. 49 584 508 15 5 91 b.d. 3 29	106 M96-185 53.09 0.80 18.81 8.54 0.19 3.14 9.20 3.47 2.01 0.27 0.74 100.26 14 185 26 23 b.d. 51 570 450 18 11 85 b.d. 3 28	107 M97-002 51.08 0.91 19.27 9.42 0.18 3.25 8.90 3.15 1.37 0.27 2.52 100.33 15 216 11 13 b.d. 35 513 338 23 12 94 2 7 31	108 M97-003 52.34 0.78 19.93 8.21 0.18 2.54 8.42 3.29 1.42 0.28 2.58 99.98 12 145 10 7 b.d. 36 566 377 26 13 114 2 7 30	109 M97-004 52.75 0.78 20.36 7.55 0.18 2.35 7.83 3.36 1.26 0.39 3.49 100.29 10 104 10 25 b.d. 30 453 384 24 125 3 36 25 25 25 25 25 25 25 25 25 25	110 M97-025 53.18 0.74 19.13 8.53 0.19 2.94 8.92 3.29 1.97 0.31 1.02 100.20 12 168 16 12 b.d. 49 598 451 18 9 99 90 b.d. 4

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen						
RefNr. (A3)	111	112	113	114	115	116	117	118	119	120
Probe	M97-048	M97-052	M97-053	M97-057	M97-063	M97-071	M97-072	M97-076	M97-077	M97-0781
Hauptelemente ((Gew.%)									
SiO	52 52	52.97	54.12	52 48	53 25	51.20	53 69	54 32	52 45	53 24
TiO ₂	0.79	0.81	0.74	0.80	0.77	0.84	0.72	0.70	0.78	0.75
	18.90	19.15	18.92	18.87	18 99	20.37	20.30	19.11	18.96	19.35
Fe ₂ O ₃ *	8.83	8.32	8.19	8.97	8.55	8.80	7.44	7.79	8.89	8.31
MnO	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.20	0.20	0.20
MgO	3.33	2.80	2.91	3.44	3.09	2.61	2.24	2.58	3.27	2.82
CaO	9.03	9.02	8.49	9.14	8.83	8.88	8.27	8.32	9.18	8.88
Na ₂ O	3.34	3.43	3.47	3.33	3.38	3.21	3.42	3.49	3.32	3.43
K ₂ O	2.03	2.01	2.15	2.03	2.03	1.69	1.46	2.15	1.91	2.03
P_2O_5	0.28	0.28	0.30	0.28	0.30	0.30	0.32	0.29	0.31	0.32
LOI	0.92	1.19	1.08	0.70	0.81	2.14	2.30	1.29	0.91	0.73
Summe	100.17	100.16	100.56	100.23	100.19	100.23	100.35	100.25	100.18	100.05
Spurenelemente	(ppm)									
S _C	14	14	9	18	12	13	10	13	13	11
v	210	169	170	210	186	188	118	142	189	167
, Cr	14	15	25	15	15	12	12	10	67	10
Co	15	10	6	15	13	11	6	8	16	11
Ni	1	b.d.	2	b.d.	b.d.	b.d.	5	b.d.	3	b.d.
Rb	53	55	60	53	55	46	39	59	43	56
Sr	559	578	585	552	599	598	570	574	586	581
Ва	443	513	544	475	484	421	404	564	455	509
Pb	23	27	24	23	27	25	26	28	19	27
Th	15	8	13	13	14	13	13	12	7	14
Zr	98	93	94	97	97	95	110	102	98	100
Nb	1	b.d.	2	b.d.	b.d.	b.d.	1	b.d.	2	b.d.
Hf	6	6	6	6	6	6	7	6	3	6
Y	31	29	28	29	29	30	30	28	30	28
Einheit	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen						
Einheit Ref -Nr (A3)	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen	125	126	127	128	129	130
Einheit RefNr. (A3) Probe	Juvenile Kom 121 M97-0782	ponenten holo 122 M97-0783	zäner Fallabla 123 M97-082	124 M97-089	125 M97-090	126 M97-0921	127 M97-0922	128 M97-0923	129 M97-098	130 M97-100
Einheit RefNr. (A3) Probe	Juvenile Kom 121 M97-0782	ponenten holo 122 M97-0783	zäner Fallabla 123 M97-082	agerungen 124 M97-089	125 M97-090	126 M97-0921	127 M97-0922	128 M97-0923	129 M97-098	130 M97-100
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (Juvenile Kom 121 M97-0782 Gew.%)	ponenten holo 122 M97-0783	zäner Fallabla 123 M97-082	agerungen 124 M97-089	125 M97-090	126 M97-0921	127 M97-0922	128 M97-0923	129 M97-098	130 M97-100
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂	Juvenile Kom 121 M97-0782 <i>Gew.%</i>) 52.81	ponenten holo 122 M97-0783 53.02	zäner Fallabla 123 M97-082 53.48	124 M97-089 53.60	125 M97-090 52.81	126 M97-0921 53.52	127 M97-0922 53.47	128 M97-0923 53.44	129 M97-098 53.79	130 M97-100 52.93
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂ TiO ₂	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75	ponenten holo 122 M97-0783 53.02 0.78	zäner Fallabla 123 M97-082 53.48 0.76	124 M97-089 53.60 0.75	125 M97-090 52.81 0.80	126 M97-0921 53.52 0.73	127 M97-0922 53.47 0.73	128 M97-0923 53.44 0.73	129 M97-098 53.79 0.72	130 M97-100 52.93 0.74
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile Kom 121 M97-0782 <i>Gew.%)</i> 52.81 0.75 19.44 0.27	ponenten holo 122 M97-0783 53.02 0.78 19.46 2.52	zäner Fallabla 123 M97-082 53.48 0.76 18.92	124 M97-089 53.60 0.75 19.41	125 M97-090 52.81 0.80 19.35	126 M97-0921 53.52 0.73 19.16	127 M97-0922 53.47 0.73 19.07	128 M97-0923 53.44 0.73 19.06 9.20	129 M97-098 53.79 0.72 19.11	130 M97-100 52.93 0.74 19.57
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	Juvenile Kom 121 M97-0782 <i>Gew.%)</i> 52.81 0.75 19.44 8.27 0.20	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.10	124 M97-089 53.60 0.75 19.41 8.25 0.20	125 M97-090 52.81 0.80 19.35 8.58 0.10	126 M97-0921 53.52 0.73 19.16 8.31 0.10	127 M97-0922 53.47 0.73 19.07 8.27 0.10	128 M97-0923 53.44 0.73 19.06 8.39 0.10	129 M97-098 53.79 0.72 19.11 8.10 0.220	130 M97-100 52.93 0.74 19.57 8.26 0.20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.12	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.80	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.96	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.80	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.03	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.62	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72
Einheit RefNr. (A3) Probe <i>Hauptelemente (</i> SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO C ₂ O	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8 78	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.20	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40
Einheit RefNr. (A3) Probe <i>Hauptelemente (</i> SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO CaO Na ₂ O	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100 45	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100 46	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100 13	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (cmm)	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm)	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12	124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 200	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 8	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 5.4	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.4	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 8 2	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 52	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 8 2 54	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 200 14 b.d. 50	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11 1 55	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12 b.d. 52	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 1 48	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d.
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 500	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 54 54	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 200 14 b.d. 50 576	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11 1 55 55 272	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12 b.d. 52 585	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 1 48 587	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 54 598 500	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 200 14 b.d. 50 576 470	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11 1 55 572 401	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12 b.d. 52 585 465	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 148 587 478	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49 582 471
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471 29	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454 25	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515 31	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479 27	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 2 54 598 500 24	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14 b.d. 50 576 479 14	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11 1 55 572 491 2.6	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12 b.d. 52 585 465 25	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 148 587 478 20	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49 582 471
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471 29 14	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454 25 15	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515 31 14	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479 27 13	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 54 598 500 24 13	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14 b.d. 50 576 479 14 6	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 100.13 14 163 29 11 1 55 572 491 26 14	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12 b.d. 52 585 465 25 12	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 148 587 478 20 9	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49 582 471 19
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471 29 14 108	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454 25 15 109	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515 31 14 101	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479 27 13 103	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 2 54 598 500 24 13 99	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14 b.d. 50 576 479 14 6 92	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11 1 55 572 491 26 14 100	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 12 b.d. 52 585 465 25 12 92	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 148 587 478 20 9 95	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 175 18 13 b.d. 49 582 471 19 12 295
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471 29 14 108 2	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454 25 15 109 3	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515 31 14 101 b.d.	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479 27 13 103 b.d.	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 54 598 500 24 13 99 b.d.	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14 b.d. 50 576 479 14 6 92 1	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 100.13 14 163 29 11 1 55 572 491 26 14 100 b.d.	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 100 12 b.d. 52 585 465 25 12 92 b.d.	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 117 20 11 117 48 587 478 20 9 95 b.d.	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49 582 471 19 12 95 b.d.
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471 29 14 108 2 7	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454 25 15 109 3 7	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515 31 14 101 b.d. 6	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479 27 13 103 b.d. 6	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 54 598 500 24 13 99 b.d. 6	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14 b.d. 50 576 479 14 6 92 1 3	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 100.13 14 163 29 11 1 55 572 491 26 14 100 b.d. 6	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 100 12 b.d. 52 585 465 25 12 92 b.d. 6	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 117 20 11 117 20 11 1 48 587 478 20 9 95 b.d. 3	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49 582 471 19 12 95 b.d. 4
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Juvenile Kom 121 M97-0782 Gew.%) 52.81 0.75 19.44 8.27 0.20 2.82 8.68 3.43 2.01 0.32 1.15 99.87 (ppm) 11 140 26 8 b.d. 52 556 471 29 14 108 2 7 31	ponenten holo 122 M97-0783 53.02 0.78 19.46 8.53 0.20 2.94 8.92 3.46 2.01 0.31 0.82 100.45 10 185 10 12 b.d. 52 538 454 25 15 109 3 7 33	zäner Fallabla 123 M97-082 53.48 0.76 18.92 8.55 0.19 3.13 9.01 3.33 2.04 0.31 0.74 100.46 12 157 14 9 b.d. 55 599 515 31 14 101 b.d. 6 30	Agerungen 124 M97-089 53.60 0.75 19.41 8.25 0.20 2.83 8.52 3.46 2.02 0.30 1.18 100.52 11 166 16 12 1 53 585 479 27 13 103 b.d. 6 29	125 M97-090 52.81 0.80 19.35 8.58 0.19 2.89 8.85 3.38 1.96 0.29 1.21 100.31 13 158 10 8 2 54 598 500 24 13 99 b.d. 6 30	126 M97-0921 53.52 0.73 19.16 8.31 0.19 2.86 8.78 3.34 2.02 0.31 0.84 100.06 15 182 20 14 b.d. 50 576 479 14 6 92 1 3 27	127 M97-0922 53.47 0.73 19.07 8.27 0.19 2.89 8.86 3.49 2.04 0.31 0.83 100.13 14 163 29 11 1 55 572 491 26 14 100 b.d. 6 30	128 M97-0923 53.44 0.73 19.06 8.39 0.19 2.93 8.84 3.42 2.03 0.30 1.05 100.37 14 185 10 0.37 14 185 10 12 b.d. 52 585 465 25 12 92 b.d. 6 29	129 M97-098 53.79 0.72 19.11 8.10 0.20 2.63 8.29 3.50 2.12 0.31 1.65 100.42 11 117 20 11 117 20 11 117 20 11 117 20 9 9 95 b.d. 3 29	130 M97-100 52.93 0.74 19.57 8.26 0.20 2.72 8.40 3.36 2.02 0.32 1.98 100.49 13 175 18 13 b.d. 49 582 471 19 12 95 b.d. 4 28

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen						
RefNr. (A3)	131	132	133	134	135	136(1)	136(2)	137	138	139
Probe	M97-104	M97-1071	M97-1072	M98-025	M98-027	M98-028	M98-028D	M98-030	M98-031	M98-034
Hauptelemente ((Gew.%)									
SiO ₂	53.35	51.42	47.36	53.57	54.36	53.52	53.42	52.13	51.70	50.56
TiO ₂	0.73	0.80	0.94	0.76	0.71	0.75	0.75	0.78	0.84	0.78
Al ₂ O ₃	19.08	20.86	21.94	19.01	19.09	19.28	19.23	19.02	18.77	21.97
Fe ₂ O ₃ *	8.10	8.10	9.64	8.39	7.80	8.21	8.19	8.49	8.38	7.64
MnO	0.20	0.18	0.17	0.20	0.20	0.19	0.19	0.20	0.20	0.17
MgO	2.72	2.50	2.83	2.97	2.48	2.92	2.90	2.80	3.09	2.06
CaO	8.41	8.25	8.67	8.72	8.23	8.53	8.49	8.72	9.23	7.88
Na ₂ O	3.39	3.28	2.79	3.44	3.50	3.46	3.45	3.39	3.35	3.10
K_2O	2.06	1.23	0.81	2.02	2.20	2.03	2.02	1.99	1.90	1.07
P ₂ O ₅	0.35	0.28	0.34	0.30	0.31	0.30	0.29	0.31	0.26	0.35
LOI	2.05	3.38	4.80	0.96	1.67	1.23	1.23	2.07	2.49	4.82
Summe	100.44	100.30	100.30	100.34	100.55	100.41	100.15	99.90	100.21	100.40
Spurenelemente	(ppm)									
Sc	14	8	12	15	10	14	n.a.	15	14	11
V	174	155	278	166	143	158	n.a.	187	193	158
Cr	26	13	105	23	17	16	n.a.	10	18	12
Co	15	10	27	15	13	15	n.a.	18	14	10
Ni	1	b.d.	b.d.	2	b.d.	1	n.a.	3	2	1
Rb	58	33	21	51	55	50	n.a.	52	52	30
Sr	553	586	584	561	562	537	n.a.	591	575	538
Ba	482	370	258	614	589	558	n.a.	580	534	338
Pb	12	27	29	20	21	20	n.a.	21	25	25
111 7r	100	100	14	05	04	02	n.a.	100	04	06
Nh	100	100 h.d	h d	33	34	33	n a	100	94 b.d	5
Hf	4	6	6.u.	3	3	3	n.a.	3	5	5
Y	29	29	29	23	26	24	n.a.	20	29	21
					-				-	
Einhait	Invenile Vem	nononton hold	göner Fellehl							
Einheit	Juvenile Kom	ponenten holo	zäner Fallabla	agerungen						
Einheit RefNr. (A3)	Juvenile Kom	ponenten holo	222 pzäner Fallabla 142	ngerungen 143	144	145	146	147	148	149
Einheit RefNr. (A3) Probe	Juvenile Kom 140 M98-035	ponenten holo 141 M98-036	ozäner Fallabla 142 M98-037	agerungen 143 M98-038	144 M98-039	145 M98-042	146 M98-043	147 M98-044	148 M98-056	149 M98-057
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (Juvenile Kom 140 M98-035 (Gew.%)	ponenten holo 141 M98-036	ozäner Fallabla 142 M98-037	agerungen 143 M98-038	144 M98-039	145 M98-042	146 M98-043	147 M98-044	148 M98-056	149 M98-057
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂	Juvenile Kom 140 M98-035 (Gew.%) 50.42	ponenten hold 141 M98-036 52.86	22äner Fallabla 142 M98-037 52.89	ngerungen 143 M98-038 54.51	144 M98-039 53.65	145 M98-042 50.73	146 M98-043 50.59	147 M98-044 52.99	148 M98-056 53.44	149 M98-057 53.57
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (SiO ₂ TiO ₂	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84	ponenten hold 141 M98-036 52.86 0.74	52.89 0.74	ngerungen 143 M98-038 54.51 0.70	144 M98-039 53.65 0.73	145 M98-042 50.73 0.80	146 M98-043 50.59 0.83	147 M98-044 52.99 0.74	148 M98-056 53.44 0.75	149 M98-057 53.57 0.75
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28	ponenten hold 141 M98-036 52.86 0.74 19.43	52.89 0.74 19.39	143 143 143 143 143 143 143 143 143 143	144 M98-039 53.65 0.73 20.25	145 M98-042 50.73 0.80 21.25	146 M98-043 50.59 0.83 21.57	147 M98-044 52.99 0.74 19.39	148 M98-056 53.44 0.75 19.14	149 M98-057 53.57 0.75 19.16
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21	52.89 0.74 19.39 52.89 0.74 19.39 8.22	agerungen 143 M98-038 54.51 0.70 19.85 7.22	144 M98-039 53.65 0.73 20.25 7.08	145 M98-042 50.73 0.80 21.25 7.80	146 M98-043 50.59 0.83 21.57 8.17	147 M98-044 52.99 0.74 19.39 8.17	148 M98-056 53.44 0.75 19.14 8.26	149 M98-057 53.57 0.75 19.16 8.22
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20	143 M98-038 54.51 0.70 19.85 7.22 0.18	144 M98-039 53.65 0.73 20.25 7.08 0.18	145 M98-042 50.73 0.80 21.25 7.80 0.17	146 M98-043 50.59 0.83 21.57 8.17 0.17	147 M98-044 52.99 0.74 19.39 8.17 0.20	148 M98-056 53.44 0.75 19.14 8.26 0.19	149 M98-057 53.57 0.75 19.16 8.22 0.20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 0.18	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 2.71	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 2.00	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 2.85	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 2.22	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 2.40	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 2.51	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 2.55	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 2.40	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 2.07	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 2.12	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 8.48	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 2.46	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 2.47
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K O	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.00	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.00
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O PrOc	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1,42
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O Ka ₂ O P ₂ O ₅ LOI Summa	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100 24	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100 15	zäner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100 32	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O Ka ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm)	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Kom 140 M98-035 'Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 12	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni	Juvenile Kom 140 M98-035 'Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.4	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.4	143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 12	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b 4	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b 4	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb	Juvenile Kom 140 M98-035 'Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 143 40	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 2 30	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 51
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48 548	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 1 40 551	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 51 51	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 51 559
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546 348	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566 559	22äner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48 548 599	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 1 40 551 463	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531 492	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552 318	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539 334	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567 562	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 511 543 539	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 519 559 589
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546 348 23	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566 559 21	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48 548 599 22	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 12 143 40 551 463 20	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531 492 23	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552 318 24	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539 334 24	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567 562 21	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 51 543 539 21	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 51 559 589 20
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546 348 23 7	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566 559 21 6	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48 548 599 22 7	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 12 143 40 551 463 20 5	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531 492 23 7	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552 318 24 8	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539 334 24 7	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567 562 21 6	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 51 543 539 21 6	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 51 559 589 20 6
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546 348 23 7 101	ponenten holo 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566 559 21 6 94	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48 548 599 22 7 95	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 12 143 400 551 463 20 5 105	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531 492 23 7 132	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552 318 24 8 108	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539 334 24 7 99	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567 562 21 6 95	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 51 543 539 21 6 96	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 51 559 589 20 6 92
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546 348 23 7 101 5	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566 559 21 6 94 3	zäner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 11 153 15 12 b.d. 48 548 599 22 7 95 3	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 12 12 1 40 551 463 20 5 105 3	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531 492 23 7 132 5	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552 318 24 8 108 5	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539 334 24 7 99 5	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567 562 21 6 95 2	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 51 543 539 21 6 96 3	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 51 559 589 20 6 92 3
Einheit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Kom 140 M98-035 (Gew.%) 50.42 0.84 21.28 8.37 0.18 2.57 8.39 3.22 1.10 0.29 3.68 100.34 (ppm) 12 139 11 14 1 27 546 348 23 7 101 5 4	ponenten hold 141 M98-036 52.86 0.74 19.43 8.21 0.20 2.71 8.62 3.40 1.99 0.31 1.68 100.15 11 143 16 13 b.d. 47 566 559 21 6 94 3 4	22aner Fallabla 142 M98-037 52.89 0.74 19.39 8.22 0.20 2.64 8.40 3.51 2.00 0.32 2.00 100.32 111 153 15 12 b.d. 48 548 599 22 7 95 3 4	agerungen 143 M98-038 54.51 0.70 19.85 7.22 0.18 2.22 8.26 3.55 1.57 0.31 2.08 100.46 10 130 12 12 143 40 551 463 20 5 105 3 4	144 M98-039 53.65 0.73 20.25 7.08 0.18 2.00 7.73 3.40 1.47 0.30 3.70 100.47 9 107 14 10 b.d. 40 531 492 23 7 132 5 4	145 M98-042 50.73 0.80 21.25 7.80 0.17 2.20 8.06 3.07 1.10 0.31 4.69 100.18 12 126 13 11 1 30 552 318 24 8 108 5 5	146 M98-043 50.59 0.83 21.57 8.17 0.17 2.29 8.25 3.12 1.15 0.33 4.08 100.55 13 158 11 12 2 30 539 334 24 7 99 5 5	147 M98-044 52.99 0.74 19.39 8.17 0.20 2.64 8.48 3.42 2.01 0.32 1.78 100.15 11 149 13 13 b.d. 51 567 562 21 6 95 2 3	148 M98-056 53.44 0.75 19.14 8.26 0.19 2.85 8.60 3.46 2.01 0.30 1.23 100.22 14 160 17 15 1 51 543 539 21 6 96 3 4	149 M98-057 53.57 0.75 19.16 8.22 0.20 2.77 8.58 3.47 2.09 0.31 1.42 100.54 13 158 15 b.d. 519 589 20 6 92 3 3

Tab. A4.1. (Fortsetzung).

Einheit	Juvenile Kom	ponenten holo	ozäner Fallabl	agerungen						
RefNr. (A3)	150	151	152	153	154	155	156	157	158	159
Probe	M98-0601	M98-0602	M98-0603	M98-0604	M98-063	M98-064	M98-067	M98-068	M98-074	M98-080
Hauptelemente ((Gew.%)									
SiO	53 54	53 52	53 35	53 31	51.52	52.76	52 78	53.01	54 44	51 53
TiO ₂	0.78	0.76	0.78	0.77	0.84	0.75	0.83	0.77	0.72	0.77
	19.26	19.22	19.21	19.08	20.01	19.54	19.82	19.70	18.97	21.59
$Fe_2O_3^*$	8.47	8.35	8.62	8.51	8.60	8.24	8.34	8.16	7.84	7.54
MnO	0.20	0.20	0.20	0.20	0.20	0.20	0.18	0.18	0.19	0.18
MgO	2.79	2.74	2.90	2.94	2.70	2.71	2.66	2.75	2.57	2.10
CaO	8.88	8.77	9.01	9.09	9.25	8.66	8.57	8.45	8.40	7.87
Na ₂ O	3.51	3.51	3.47	3.46	3.48	3.38	3.49	3.29	3.53	3.07
K ₂ O	2.08	2.10	2.04	2.05	1.78	1.96	2.09	1.40	2.21	1.11
P_2O_5	0.31	0.32	0.33	0.31	0.31	0.31	0.25	0.29	0.30	0.32
LOI	0.50	0.60	0.69	0.54	1.61	1.91	1.43	2.46	1.38	4.27
Summe	100.31	100.09	100.59	100.25	100.30	100.41	100.44	100.45	100.56	100.35
Spurenelemente	(ppm)									
Sc	13	13	13	15	13	13	15	13	12	12
v	164	161	161	167	163	154	177	132	157	163
Cr	104	12	101	13	105	16	13	152	137	105
Co	12	15	15	15	13	10	15	13	15	10
Ni	b.d.	b.d.	b.d.	b.d.	b.d.	2	1	b.d.	3	1
Rb	51	51	50	50	43	50	50	35	58	33
Sr	575	574	576	577	569	578	532	501	582	566
Ba	535	578	569	549	488	580	587	402	611	404
Pb	20	19	19	19	20	22	22	17	21	25
Th	6	6	6	6	7	7	7	6	7	8
Zr	97	98	97	96	90	95	90	98	98	114
Nb	3	3	3	3	3	3	2	4	3	5
Hf	3	4	3	3	3	3	3	3	3	5
Y	26	25	26	27	27	24	23	23	22	18
E: 1	·						T	avan Marani (Somma	
Einneit	Juvenile Kom	ponenten holo	ozaner Falladi	agerungen			L	aven Merapi-	Johnna	
Einneit Ref. Nr. (A3)	Juvenile Kom	ponenten holo		agerungen	164	165		166	167	168
Einneit RefNr. (A3) Probe	Juvenile Kom 160 M98-081	161 M98-083	162 M98-098	163 M98-109	164 M98-110	165 M98-111		166 M95-025	167 M95-026	168 M96-034
Einheit RefNr. (A3) Probe	Juvenile Kom 160 M98-081	161 M98-083	162 M98-098	163 M98-109	164 M98-110	165 M98-111		166 M95-025	167 M95-026	168 M96-034
Einheit RefNr. (A3) Probe <i>Hauptelemente</i> (Juvenile Kom 160 M98-081 (Gew.%)	ponenten holo 161 M98-083	162 M98-098	163 M98-109	164 M98-110	165 M98-111		166 M95-025	167 M95-026	168 M96-034
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂	Juvenile Kom 160 M98-081 <i>Gew.%</i>) 51.44	52.56	162 M98-098 48.27	163 M98-109 48.75	164 M98-110 48.75	165 M98-111 53.10		166 M95-025 53.45	167 M95-026 55.50	168 M96-034 51.99
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂	Juvenile Kom 160 M98-081 (Gew.%) 51.44 0.80	52.56 0.81	162 M98-098 48.27 0.86	163 M98-109 48.75 0.84	164 M98-110 48.75 0.88	165 M98-111 53.10 0.76		166 M95-025 53.45 0.85	167 M95-026 55.50 0.78	168 M96-034 51.99 0.89
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile Kom 160 M98-081 (Gew.%) 51.44 0.80 21.35 7.00	52.56 0.81 0.75	162 M98-098 48.27 0.86 22.16	163 M98-109 48.75 0.84 22.55	164 M98-110 48.75 0.88 22.22	165 M98-111 53.10 0.76 19.12		166 M95-025 53.45 0.85 19.26	167 M95-026 55.50 0.78 18.33	168 M96-034 51.99 0.89 18.68
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ *	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.10	52.56 0.81 18.79 52.256 0.81 18.79 8.75	162 M98-098 48.27 0.86 22.16 8.56 0.17	163 M98-109 48.75 0.84 22.55 8.16 0.17	164 M98-110 48.75 0.88 22.22 8.66 0.18	165 M98-111 53.10 0.76 19.12 8.35 0.20		166 M95-025 53.45 0.85 19.26 9.05 0.10	167 M95-026 55.50 0.78 18.33 8.33 0.17	168 M96-034 51.99 0.89 18.68 9.67
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27	52.56 0.81 18.79 52.25 0.81 18.79 8.75 0.20	48.27 0.86 22.16 8.56 0.17	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.40	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.70		166 M95-025 53.45 0.85 19.26 9.05 0.19 2.12	167 M95-026 55.50 0.78 18.33 8.33 0.17 2.41	168 M96-034 51.99 0.89 18.68 9.67 0.20 2.74
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CcO	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.00	52.56 0.81 18.79 8.75 0.20 3.22 0.04	48.27 0.86 22.16 8.56 0.17 2.45 8 30	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.03	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.25	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8 80	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09	52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38	48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17	52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99	48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P-O5	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29	52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73	52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100 31	52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 90 86	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100 66	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100 20	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100 35	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i>	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 20
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 (ppm) 13 169	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 176	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 2.5	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 15	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 220 222
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 (ppm) 13 169 14	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 176 10	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 225 31	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 1.5 1.5	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 220 222 34
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Nii	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 (ppm) 13 169 14 14 2	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 20	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 10	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 176 10 23	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 , 1 22 , 1 22 31 22 , 1 22 , 1 22 , 1 22 , 1 22 31 22 , 1 22 , 1 22 31 22 , 1 22 31 22 31 22 31 22 31 22 31 22 31 22 31 22 31 22 31 22 31 22 31 22 31 22 31 31 22 31 22 31 32 31 32 32 31 32 32 31 32 32 32 31 32 32 32 31 32 31 32 32 31 32 32 31 32 32 31 32 32 31 32 32 31 32 32 31 32 32 31 32 32 31 32 32 31 32 31 32 31 32 32 31 32 32 31 32 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 31 32 31 32 31 32 31 32 31 32 31 32 31 31 32 31 31 32 31 32 31 31 32 31 32 31 32 31 32 31 32 31 32 31 31 31 31 31 31 31 31 31 31	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 21	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 222 34 25
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Bb	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13 169 14 14 2 26	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 40 3 40 40 40 40 40 40 40 40 40 40	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 26	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 1 25	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 222 34 25 6 77
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13 169 14 14 2 36 507	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 50 50 50 50 50 50 50 50 50 50	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 400 22 400 22 400 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 26 26 26 20 20 20 20 20 20 20 20 20 20	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 26 5	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 1 25 518	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 51 574		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 489	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 222 34 25 6 37
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13 169 14 14 2 36 507 418	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 580 511	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 26 558 265	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 1 25 518 279	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 222 34 25 6 37 560 425
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 (ppm) 13 169 14 14 2 36 507 418 14	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 580 511 20	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306 22 23 24 25 24 25 24 25 24 25 24 25 24 22 23 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 26 26 20 20 20 20 20 20 20 20 20 20	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 176 10 23 5 26 558 265 26	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 1 25 518 279 24	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553 20		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492 18 18	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 222 34 25 6 37 560 425
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 (ppm) 13 169 14 14 2 36 507 418 14 5	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 580 511 20 6	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306 22 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 25 5.5 24 5.5 24 5.5 5.5 24 5.5 5.5 24 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 26 558 265 26 7	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 225 31 22 1 25 518 279 24 6	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553 20 6		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383 16	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492 18 6	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 200 222 34 25 6 37 560 425 77
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13 169 14 14 2 36 507 418 14 5 109	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 9.04 3.38 1.99 99.86 16 191 20 16 3 49 580 511 20 6 96	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306 22 5.94	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 265 265 26 7 98	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 225 31 22 1 25 518 279 24 6 91	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553 20 6 93		166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383 16 1 94	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492 18 6 92 18	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 202 222 34 25 6 37 560 425 17 290
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13 169 14 14 2 366 507 418 14 5 109 4	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 580 5111 20 6 96 3	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306 22 5 94 4	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 265 265 26 7 98 6	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 225 31 225 518 279 24 6 91 5	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553 20 6 93 2 2		Ice 166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383 16 1 94 2	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492 18 6 92 3	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 222 34 25 6 37 560 425 17 290 22
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf	Juvenile Kom 160 M98-081 <i>Gew.%)</i> 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 <i>(ppm)</i> 13 169 14 14 2 366 507 418 14 5 109 4 4 4	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 580 5111 20 6 3 3 3 3 3 3 3 3 3 3 3 3 3	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306 22 5 94 4 4	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 1766 10 23 5 265 265 265 26 7 98 6 4 4	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 1 25 518 279 24 6 91 5 4	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553 20 6 93 2 3		Ice 166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383 16 1 94 2 3	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492 18 6 92 3 3 3	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 200 222 34 25 6 37 560 425 17 2 90 22 33
Einneit RefNr. (A3) Probe Hauptelemente (SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Juvenile Kom 160 M98-081 (Gew.%) 51.44 0.80 21.35 7.88 0.19 2.27 8.09 3.09 1.17 0.29 3.73 100.31 (ppm) 13 169 14 14 2 36 507 418 14 5 109 4 4 23	ponenten hold 161 M98-083 52.56 0.81 18.79 8.75 0.20 3.22 9.04 3.38 1.99 0.33 0.79 99.86 16 191 20 16 3 49 580 511 20 6 96 3 3 27	162 M98-098 48.27 0.86 22.16 8.56 0.17 2.45 8.39 2.88 0.92 0.32 5.67 100.66 11 255 24 25 b.d. 22 488 306 22 5 94 4 4 30	163 M98-109 48.75 0.84 22.55 8.16 0.17 2.24 7.93 2.93 0.89 0.35 5.40 100.20 13 176 100 23 5 26 558 265 26 558 265 26 7 98 6 4 17	164 M98-110 48.75 0.88 22.22 8.66 0.18 2.49 8.35 2.95 0.96 0.34 4.59 100.34 13 225 31 22 1 25 518 279 24 6 91 5 4 22	165 M98-111 53.10 0.76 19.12 8.35 0.20 2.79 8.70 3.42 2.04 0.31 1.41 100.19 12 167 19 15 1 574 553 20 6 93 2 3 25		Ice Metapr. 166 M95-025 53.45 0.85 19.26 9.05 0.19 3.12 8.89 3.47 1.64 0.26 0.17 100.35 17 186 18 19 4 37 547 383 16 1 94 2 3 20	167 M95-026 55.50 0.78 18.33 8.33 0.17 3.41 8.44 3.43 1.71 0.21 0.10 100.41 22 225 15 21 7 46 488 492 18 6 92 3 3 14	168 M96-034 51.99 0.89 18.68 9.67 0.20 3.74 9.66 3.33 2.03 0.30 -0.09 100.40 202 222 34 25 6 37 560 425 17 560 425 17 2 90 22 33 21

Tab. A4.1. (Fortsetzung).

Einheit	Laven Merapi-	Somma								
RefNr. (A3)	169	170	171	172	173	174	175	176	177	178
Probe	M96-055	M96-056	M96-070	M96-071	M96-072	M98-047	M98-048	M98-105	M98-106	M98-107
Hauptelemente	(Gew.%)									
SiO.	5/ 10	55 41	54 56	56 60	52 12	55 58	55 11	5/ 08	54.95	55 70
TiO ₂	0.92	0.76	0.80	0.73	0.90	0.79	0.81	0.84	0.83	0.69
	18.48	18 69	18.57	18 75	18 76	18.45	18.41	18.86	18.84	18 54
FeaOa*	8 70	8.07	8 70	7 51	9.31	7 79	8 43	8.07	7 99	7 44
MnO	0.17	0.18	0.18	0.16	0.19	0.17	0.19	0.19	0.19	0.15
MgO	3 39	3 17	3 30	2.26	3.72	2.56	2.73	2.73	2.66	2.28
CaO	8.57	8 43	8 4 5	8.01	9.38	8.08	8 44	8 37	8 27	8.04
Na ₂ O	3.45	3.59	3.45	4.00	3.41	3.67	3.95	3.86	3.84	3.97
K2O	1.78	1.67	1.67	1.72	1.49	1.88	1.81	1.78	1.80	1.73
P2O5	0.26	0.22	0.27	0.24	0.24	0.32	0.27	0.28	0.29	0.24
LOI	0.36	0.29	0.42	0.49	-0.02	1.03	0.09	0.12	0.23	1.14
Summe	100.27	100.47	100.36	100.49	99.80	100.33	100.55	100.08	99 88	99 90
Summe	100.27	100.47	100.50	100.47	<i>))</i> .00	100.55	100.55	100.00	<i>))</i> .00	<i>)).)</i> 0
Spurenelemente	e (ppm)									
Sc	19	13	15	11	20	16	14	12	13	19
V	214	179	192	135	245	162	165	128	166	205
Cr	17	41	38	11	27	13	21	11	18	12
Co	24	13	15	15	26	17	16	12	16	20
Ni	9	b.d.	b.d.	3	9	3	3	1	2	4
Rb	39	33	38	40	33	47	46	35	43	46
Sr	525	516	514	497	528	506	494	547	508	557
Ва	358	458	364	418	378	495	458	493	488	479
Pb	14	12	12	16	16	18	14	22	17	17
Th	2	4	5	3	3	6	6	8	7	6
Zr	109	100	103	104	83	115	112	107	112	112
Nb	4	b.d.	b.d.	3	2	4	4	4	4	4
HI	3	3	3	4	3	4	4	5	4	4
Ĭ	17	25	20	17	19	18	20	20	25	22
T: 1 1/	Y D . 14						I	orrow C. Dihi		
Einneit	Laven Proto-M	erapi					L	aven G. Bibi		
Einneit RefNr. (A3)	Laven Proto-M	180(1)	180(2)	181	182	183		184	185	
Einneit RefNr. (A3) Probe	179 M95-028	180(1) M96-049	180(2) M96-049D	181 M96-050	182 M96-051	183 M96-052		184 M96-061	185 M96-175	
Einneit RefNr. (A3) Probe	Laven Proto-M 179 M95-028 (Gew %)	180(1) M96-049	180(2) M96-049D	181 M96-050	182 M96-051	183 M96-052	-	184 M96-061	185 M96-175	
Einneit RefNr. (A3) Probe Hauptelemente	Laven Proto-M 179 M95-028 (Gew.%)	180(1) M96-049	180(2) M96-049D	181 M96-050	182 M96-051	183 M96-052		184 M96-061	185 M96-175	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.02	erapi 180(1) M96-049 50.73 0.07	180(2) M96-049D 50.81	181 M96-050 50.37	182 M96-051 50.15	183 M96-052 50.30		184 M96-061 54.65	185 M96-175 56.49	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 10.78	erapi 180(1) M96-049 50.73 0.97 20.10	180(2) M96-049D 50.81 0.97 20.11	181 M96-050 50.37 1.09	182 M96-051 50.15 1.07	183 M96-052 50.30 0.92		184 M96-061 54.65 0.74	185 M96-175 56.49 0.72	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ E ₂ O *	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 0.52	180(1) M96-049 50.73 0.97 20.10	180(2) M96-049D 50.81 0.97 20.11 0.46	181 M96-050 50.37 1.09 18.68	182 M96-051 50.15 1.07 18.54	183 M96-052 50.30 0.92 19.17 0.00		184 M96-061 54.65 0.74 19.23	185 M96-175 56.49 0.72 18.71	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MrO	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13	180(1) M96-049 50.73 0.97 20.10 9.44 0.14	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14	181 M96-050 50.37 1.09 18.68 10.12 0.14	182 M96-051 50.15 1.07 18.54 10.48 0.17	183 M96-052 50.30 0.92 19.17 9.90 0.17		184 M96-061 54.65 0.74 19.23 8.02 0.10	185 M96-175 56.49 0.72 18.71 7.45 0.17	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.00	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO C ₂ O	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1 59	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summo	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100 16	180(1) 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100 00	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm)	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a.	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27		184 184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269	state 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a.	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293		184 184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a.	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64		184 184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a.	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31		184 184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 14	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a.	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d.	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41	180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 14 38	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a.	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30		184 184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537	lange 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 14 38 559	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537 496	lange 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 266 50 25 14 38 559 515	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445 484	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446 496	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539 485		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515 479	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544 451	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537 496 21	lange 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 266 50 25 14 38 559 515 20	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445 484 16	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446 496 16	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539 485 17		184 184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515 479 21 	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544 451 33	
Enneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537 496 21 2 5 5 5 5 5 5 5 5 5 5 5 5 5	Iso(1) 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 266 50 25 266 50 25 266 50 25 266 50 25 14 38 559 515 20 b.d.	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445 484 16 6 52	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446 496 16 4	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539 485 17 4		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515 479 21 11	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544 451 33 13	
Einneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nu	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537 496 21 2 79	lange 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 266 50 25 266 50 25 266 50 25 266 50 25 14 38 559 515 20 b.d. 76	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445 484 16 6 79	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446 496 16 4 84 84	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539 485 17 4 69 27		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515 479 21 11 96	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544 451 33 130	
Enneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Uf	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537 496 21 2 79 2 2	lange 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 266 50 25 266 50 25 266 50 25 266 50 25 14 38 559 515 20 b.d. 76 2	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445 484 16 6 79 b.d.	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446 496 16 4 84 b.d.	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539 485 17 4 69 2 2 2 2 2 2 2 2 2 2 2 2 2		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515 479 21 11 96 b.d.	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544 451 33 130 3 5	
Enneit RefNr. (A3) Probe Hauptelemente SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ * MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI Summe Spurenelemente Sc V Cr Co Ni Rb Sr Ba Pb Th Zr Nb Hf Y	Laven Proto-M 179 M95-028 (Gew.%) 50.20 1.03 19.78 9.53 0.13 3.19 9.72 3.19 1.97 0.28 1.14 100.16 e (ppm) 23 269 54 27 14 41 537 496 21 2 79 2 3 20 20 20 20 20 20 20 20 20 20	lange 180(1) M96-049 50.73 0.97 20.10 9.44 0.14 3.09 9.92 3.20 1.77 0.25 0.39 100.00 25 266 50 25 266 50 25 266 50 25 266 50 25 266 50 25 14 38 559 515 20 b.d. 76 2 3 10	180(2) M96-049D 50.81 0.97 20.11 9.46 0.14 3.09 9.94 3.20 1.77 0.25 0.39 100.13 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a	181 M96-050 50.37 1.09 18.68 10.12 0.14 4.28 9.26 3.18 1.83 0.28 1.40 100.62 16 259 94 26 15 38 445 484 16 6 79 b.d. 3 28	182 M96-051 50.15 1.07 18.54 10.48 0.17 4.25 9.44 3.09 1.75 0.27 1.21 100.41 14 268 65 27 11 35 446 496 16 4 84 b.d. 3 20	183 M96-052 50.30 0.92 19.17 9.90 0.17 4.91 10.24 3.11 1.41 0.21 -0.08 100.26 27 293 64 31 46 30 539 485 17 4 69 2 2 2 4 4 6 3 4 4 5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5		184 M96-061 54.65 0.74 19.23 8.02 0.19 3.07 7.68 3.36 1.50 0.23 1.65 100.32 14 162 10 16 2 40 515 479 21 11 96 b.d. 5	185 M96-175 56.49 0.72 18.71 7.45 0.17 2.58 8.09 3.59 1.59 0.29 0.71 100.40 14 149 10 12 b.d. 50 544 451 33 130 3 5 20	

Anhang 4

Einheit	Rezente Domlaven u. pyr. Ströme			Juvenile Komponenten holozäner pyroklastischer Ströme					
RefNr. (A3)	1	4	12	26	29	31	36	37	40
Probe	M95-011	M96-142	M97-068	M96-073	M96-137	M96-167	M97-021	M97-031	M97-0392
11000	1199 011	1170 112	11) / 000	1190 075	MI)0 137	11/0 10/	1177 021	11197 031	11)7 03)2
Spurenelemente	e (ppm)								
As	3.22	3.66	3.21	1.97	3.07	4.74	5.52	4.72	3.98
B*	17	17	17	n.a.	15	n.a.	n.a.	19	20
Ва	439	522	431	478	445	533	531	602	515
Be	0.93	0.98	1.13	1.14	0.86	1.04	0.77	1.24	0.93
Bi	0.09	0.07	0.01	0.01	0.08	0.01	0.15	0.03	0.12
Cd	0.08	0.18	0.04	0.16	0.18	0.03	0.18	0.13	0.18
Ce	34.5	39.0	34.6	35.3	33.5	36.2	33.1	40.4	31.6
Co	21.6	14.2	27.8	16.3	18.7	20.0	23.6	16.9	21.9
Cr	11.7	8.2	16.0	5.6	5.5	8.3	12.6	9.2	8.9
Cs	2.91	3.18	2.46	2.30	2.65	3.38	3.28	4.19	3.03
Cu	39.8	25.1	39.8	27.1	36.8	38.7	65.2	28.3	48.7
Dy	3.46	3.88	3.45	3.90	3.55	3.26	3.56	3.54	3.41
Er	2.11	2.32	1.93	2.29	2.18	1.95	1.92	2.00	2.01
Eu	1.34	1.38	1.36	1.40	1.39	1.14	1.31	1.37	1.31
Ga	21.0	20.8	20.5	20.8	21.1	20.6	21.4	20.8	20.4
Gd	4.13	4.20	3.65	4.20	3.89	3.36	3.58	3.49	3.37
Ge	1.58	1.30	1.37	1.63	1.34	1.56	1.58	1.52	1.69
Hf	2.15	2.74	2.14	2.54	2.45	2.13	2.06	2.45	2.12
Ho	0.708	0.837	0.724	0.845	0.749	0.678	0.741	0.767	0.701
In	0.08	0.11	0.10	0.07	0.07	0.07	0.10	0.08	0.11
La	17.2	20.2	17.3	16.5	16.1	18.7	16.8	20.3	15.6
Lu	0.325	0.379	0.330	0.385	0.349	0.326	0.312	0.352	0.345
Mo	1.05	1.22	0.92	0.93	1.12	1.16	0.83	1.26	1.19
Nb	3.30	4.06	2.94	4.17	3.65	2.77	2.85	3.27	2.73
Nd	17.8	19.9	18.0	17.6	18.0	17.1	17.0	18.6	16.2
Ni	3.1	0.8	2.6	1.6	1.6	2.3	4.6	3.0	2.9
Pb	15.7	19.8	14.8	13.0	19.6	15.7	24.3	13.8	18.2
Pr	4.18	4.79	4.28	4.41	4.16	4.08	4.07	4.74	3.91
Rb	46.8	52.4	45.7	42.5	40.6	58.1	49.4	64.5	48.7
Sb	0.16	0.27	0.20	0.20	0.21	0.20	0.28	0.32	0.21
Sm	4.34	4.57	4.33	4.22	4.24	3.93	4.17	4.40	4.15
Sn	1.56	1.08	1.03	0.76	1.21	0.78	1.35	0.78	1.09
Sr	600	546	603	532	552	600	555	614	569
Та	0.23	0.34	0.21	0.34	0.31	0.20	0.21	0.25	0.20
Tb	0.588	0.622	0.627	0.624	0.577	0.519	0.568	0.526	0.606
Th	7.23	8.04	6.16	5.92	5.98	6.91	6.56	8.91	6.68
Tm	0.314	0.386	0.318	0.382	0.353	0.304	0.322	0.319	0.358
U	1.29	1.43	1.02	1.29	1.28	1.44	1.37	1.71	1.49
V	222	156	249	200	199	229	249	186	272
W	0.82	0.99	0.73	0.67	0.74	0.91	0.97	1.23	0.91
Y	23.0	23.9	22.8	24.1	22.3	22.7	22.5	22.3	22.4
Yb	2.22	2.35	2.01	2.24	2.16	1.93	2.02	2.17	2.10
Zn	104.5	92.8	100.9	94.7	93.5	93.2	99.7	94.1	99.6
Zr	86	107	83	107	99	89	83	99	85

Tab. A4.2. ICP-MS-Analysen¹⁾ ausgewählter Merapigesteine.

(1) Bor-Analysen mittels Absorptionsspektrometrie

Anhang 4

Einheit	Holozäne pyro	klastische Str	öme	Juvenile Komp	oonenten holo	zäner Fallabla	agerungen		
RefNr. (A3)	58	60	64	77	99	100	113	119	120
Probe	M98-0532	M98-066	M98-096	M96-075	M96-163	M96-164	M97-053	M97-077	M97-0781
Spurenelemente	e (ppm)								
As	3.30	3.97	3.94	4.36	3.60	3.85	3.85	3.62	3.94
B*	16	19	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ва	439	506	535	525	411	477	512	457	486
Be	0.88	0.89	1.12	1.03	1.15	1.13	1.29	0.83	0.71
Bi	0.01	0.01	0.14	0.17	0.11	0.20	0.11	0.13	0.22
Cd	0.09	0.15	0.17	0.18	0.19	0.16	0.12	0.02	0.19
Ce	33.6	36.4	36.5	38.0	31.5	36.0	36.2	35.7	38.6
Co	16.6	20.4	19.8	17.1	18.3	18.9	18.8	19.2	18.8
Cr	3.3	4.9	9.7	9.2	6.2	24.5	6.6	5.7	6.0
Cs	4.17	4.87	5.17	3.41	2.61	2.84	3.15	2.43	2.74
Cu	20.8	35.0	16.0	37.2	36.4	32.3	29.0	40.4	37.9
Dy	3.71	3.77	4.07	3.62	3.25	3.86	3.30	3.54	3.68
Er	2.17	2.12	2.21	2.15	1.96	2.14	1.98	2.08	2.13
Eu	1.44	1.37	1.40	1.33	1.18	1.35	1.27	1.30	1.31
Ga	20.7	20.0	19.8	20.1	21.4	20.9	20.3	19.9	20.6
Gd	4.29	3.96	4.00	3.85	3.73	4.17	3.70	3.69	3.84
Ge	1.11	0.96	1.10	1.50	1.62	1.61	1.50	1.41	1.62
Hf	2.74	2.24	2.32	2.23	2.23	2.21	2.01	2.17	2.58
Но	0.769	0.732	0.747	0.780	0.718	0.791	0.722	0.739	0.785
In	0.03	0.04	0.05	0.08	0.10	0.12	0.09	0.09	0.10
La	16.3	18.4	19.0	18.7	15.6	18.0	18.4	17.9	18.8
Lu	0.371	0.323	0.338	0.358	0.339	0.358	0.325	0.339	0.360
Mo	1.00	1.05	1.03	1.14	0.95	1.04	0.97	0.92	0.98
Nb	4.12	3.10	3.25	3.31	3.38	2.92	2.85	3.18	3.55
Nd	18.1	18.8	19.1	18.1	16.4	18.9	16.8	18.3	19.1
Ni	2.8	3.1	4.1	2.3	1.7	3.3	1.4	0.1	0.1
Pb	14.7	18.5	18.9	19.6	15.1	18.9	17.6	16.7	19.6
Pr	4.20	4.24	4.37	4.38	4.00	4.53	4.40	4.27	4.63
Rb	44.0	47.4	50.8	50.3	38.7	45.2	52.7	44.1	48.0
Sb	0.20	0.21	0.28	0.25	0.19	0.17	0.25	0.16	0.22
Sm	4.12	4.37	4.27	4.01	3.92	4.68	4.19	4.27	4.70
Sn	0.99	0.90	1.11	1.13	1.09	1.09	0.78	0.89	1.03
Sr	547	565	584	570	533	611	586	588	624
Та	0.31	0.24	0.25	0.27	0.25	0.22	0.21	0.22	0.26
Tb	0.615	0.595	0.636	0.584	0.536	0.600	0.570	0.581	0.615
Th	5.07	6.77	6.68	7.61	5.35	7.33	6.86	6.94	8.26
Tm	0.358	0.361	0.340	0.345	0.322	0.341	0.282	0.337	0.348
U	1.34	1.51	1.46	1.57	1.06	1.35	1.22	1.22	1.56
v	197	220	211	193	194	224	207	205	206
W	0.85	0.91	1.08	1.00	0.76	0.99	0.91	0.77	0.94
Y	24.6	22.1	22.3	22.1	21.2	23.4	22.6	22.5	23.3
Yb	2.34	2.16	2.12	2.12	2.00	2.06	1.99	2.01	2.10
Zn	99.9	92.7	96.7	92.7	92.1	98.1	95.2	93.5	102.6
Zr	115	87	91	90	95	90	88	89	94

Einheit	Laven Merapi-S	Somma				Laven Proto-M	erapi
RefNr. (A3)	167	170	172	174	178	179	183
Probe	M95-026	M96-056	M96-071	M98-047	M98-107	M95-028	M96-052
Spurenelement	e (ppm)						
As	3.45	3.45	2.77	3.41	3.02	1.70	2.36
B*	n.a.	10	n.a.	12	n.a.	n.a.	n.a.
Ba	451	454	430	434	458	474	437
Be	1.01	0.81	0.63	1.25	1.13	0.17	0.67
Bi	0.01	0.06	0.05	0.03	0.06	0.05	0.03
Cd	0.12	0.18	0.14	0.12	0.13	0.10	0.11
Ce	29.1	28.2	31.7	38.0	41.1	23.3	19.4
Co	21.4	19.1	13.3	17.0	22.2	31.0	29.3
Cr	11.2	6.2	7.1	5.9	7.2	124.1	49.0
Cs	1.91	1.83	1.87	2.09	4.11	0.94	2.30
Cu	44.6	31.2	22.2	32.8	64.2	98.1	109.8
Dy E	2.94	3.14	3.25	3.56	3.85	2.88	2.57
Er	1.59	1.72	1.6/	1.94	2.30	1.69	1.49
Eu	1.00	1.19	1.14	1.34	1.42	1.10	0.94
Ga	19.3	19.6	22.1	20.5	21.0	20.4	20.8
Ga	5.05	5.45 1.60	3.31	4.03	4.29	5.15	2.09
Uf	2.01	2.21	2 25	0.98	1.03	1.33	1.42
п	2.01	2.31	2.55	2.04	2.00	1.07	0.527
In	0.344	0.010	0.080	0.737	0.803	0.000	0.027
III La	14.4	14.4	15.3	19.2	20.0	11.6	10.03
Lu	0.281	0.326	0 302	0.325	0.338	0.249	0.227
Mo	0.82	0.520	0.302	1.12	1 11	0.249	0.227
Nh	2.63	2.95	3 62	4 65	4 62	2.02	1.52
Nd	13.7	14.7	15.6	18.7	19.3	12.1	10.6
Ni	4.5	2.1	2.0	2.7	5.2	43.1	19.0
Pb	14.8	15.3	18.3	17.3	15.7	16.6	14.9
Pr	3.32	3.43	3.68	4.51	4.91	2.84	2.48
Rb	46.1	38.3	42.7	47.7	49.0	23.9	20.9
Sb	0.23	0.22	0.20	0.14	0.17	0.16	0.13
Sm	3.06	3.33	3.58	4.35	4.40	3.10	2.65
Sn	0.76	0.92	0.87	0.93	1.01	0.86	0.86
Sr	496	519	519	520	573	568	642
Та	0.21	0.23	0.30	0.36	0.36	0.15	0.12
Tb	0.469	0.513	0.476	0.592	0.622	0.473	0.403
Th	6.27	5.52	5.87	6.16	6.20	4.91	4.21
Tm	0.254	0.299	0.262	0.343	0.330	0.258	0.243
U	1.31	1.16	1.29	1.53	1.42	0.84	0.62
v	243	213	150	189	239	331	316
W	0.91	0.73	1.00	1.08	0.81	0.95	0.48
Y	17.9	20.9	20.1	21.1	22.3	18.0	16.3
Yb	1.70	1.87	1.91	2.09	2.10	1.61	1.47
Zn	87.8	85.6	86.0	91.0	88.0	92.0	85.3
Zr	88	92	102	113	112	64	48

Anhang 5 Mineralchemische Daten

Tab. A5.1. Überblick über die Mineralanalytik	293
Tab. A5.2. Mineralchemische Daten: Plagioklas (Auswahl)	294
Tab. A5.3. Mineralchemische Daten: Klinopyroxen (Auswahl)	308
Tab. A5.4. Mineralchemische Daten: Orthopyroxen	323
Tab. A5.5. Mineralchemische Daten: Olivin	
Tab. A5.6. Mineralchemische Daten: Amphibol	
Tab. A5.7. Mineralchemische Daten: Fe-Ti-Oxide	344
Tab. A5.8. Mineralchemische Daten: Chromspinell	355
-	

Strukturformelberechnung (Tab. A5.2-A5.8):

Plagioklas:

Anzahl der Kationen auf der Basis von 8 Sauerstoffatomen; Gesamteisen als Fe²⁺

Pyroxene:

Anzahl der Kationen auf der Basis von 6 Sauerstoffatomen und idealer Stöchiometrie (Kationensumme = 4)

Olivin:

Anzahl der Kationen auf der Basis von 4 Sauerstoffatomen; Gesamteisen als Fe²⁺

Amphibol:

Anzahl der Kationen auf der Basis von 23 Sauerstoffatomen; Fe³⁺: Mittelwert zwischen maximalem (13eCNK) und minimalem (15eNK) Fe³⁺-Gehalt (Spear & Kimball, 1984)

Spinelle:

Anzahl der Kationen auf der Basis von 4 Sauerstoffatomen und idealer Stöchiometrie (Kationensumme = 3)

Ilmenit-Hämatit:

Anzahl der Kationen auf der Basis von 3 Sauerstoffatomen und idealer Stöchiometrie (Kationensumme = 2)

Erläuterungen verwendeter Abkürzungen (Anhang 5):

n.a. nicht analysiert

Tab. A5.2:

- AB Mol% Albit
- AN Mol% Anorthit
- OR Mol% Orthoklas

Tab. A5.3/A5.4:

- Ph Einsprenglingsmineral
- Xc Klinopyroxen-Xenokristall-Kerne (Salit, Salit-Diopsid, Diopsid)
- Xr Ummantelung der Xenokristall-Kerne
- Xt Übergangszone zwischen den Xenokristall-Kernen und deren Ummantelungen
- WO Mol% Wollastonit (Ca)
- EN Mol% Enstatit (Mg)
- FS Mol% Ferrosilit (Fe+Mn)

Tab. A5.5:

FO Mol% Forsterit

Tab. A5.7:

- mt Titanomagnetit
- emt Titanomagnetit, entmischt Wirtsmineral
- mt/l Titanomagnetit, entmischt Entmischungslamellen (Mt-Usp_{ss})
- ilm/l Titanomagnetit, entmischt Entmischungslamellen (Hem-Ilm_{ss})
- USP Mol% Ulvøspinell
- (ILM) Mol% Ilmenit

Tab. A5.1. Überblick über die Mineralanalytik.

Probe	Serie	Plag	Ol	Срх	Opx	Oxide	Amph
Rezente Domlaven / pyr. St	röme						
M95-011/M98-1081	HK						
M96-142/145	HK						
M97-068	HK						
Juvenile Komponenten hol	ozäner py	r. Ströme					
M96-137/M98-0991	MK						
M96-167	HK						
M97-009	HK						
M97-045	HK						
M97-0392	HK						
M98-002	HK						
M98-0532	MK						
M98-059	HK						
M98-066	HK						
M98-096	HK						

Juvenile Komponenten holozäner Fallablagerungen

M96-075	HK			
M96-102	HK			
M96-163	MK			
M97-053	HK			
M98-031	HK			

Laven Merapi-Somma

M95-026	MK			
M96-056	MK			
M96-070	MK			
M98-048	MK			
M98-105	MK			
M98-107	MK			

Laven G. Turgo, G. Plawangan (Proto-Merapi)

M95-028	-			
M96-052	-			

	Rezente	Domlave	n und py	roklastis	che Strön	ne										
Probe	M95-01	1														
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
SiO ₂	59.34	59.35	59.42	59.24	58.30	58.79	58.88	58.71	59.09	58.98	58.58	58.96	58.60	58.57	58.50	58.5
Al_2O_3	25.91	25.75	26.12	25.53	25.99	26.04	26.47	26.27	26.23	26.39	26.28	26.18	26.14	26.38	26.53	26.3
FeO	0.56	0.69	0.48	0.72	0.60	0.58	0.55	0.62	0.61	0.68	0.61	0.64	0.61	0.58	0.61	0.6
MnO	0.00	0.00	0.00	0.04	0.06	0.01	0.03	0.03	0.01	0.00	0.01	0.02	0.03	0.00	0.04	0.0
MgO	0.05	0.07	0.05	0.09	0.04	0.03	0.05	0.05	0.06	0.04	0.04	0.05	0.05	0.03	0.04	0.0
CaO	6.11	6.39	6.51	6.37	6.31	6.51	6.59	6.53	6.62	6.69	6.71	6.65	6.58	6.73	6.73	6.7
Na ₂ O	6.96	6.88	6.98	6.74	6.68	6.92	6.87	6.76	6.87	6.86	6.88	6.73	6.66	6.78	6.80	6.74
K ₂ O	1.32	1.34	1.23	1.33	1.28	1.21	1.16	1.18	1.15	1.24	1.16	1.20	1.14	1.16	1.12	1.10
Summe	100.25	100.47	100.80	100.06	99.25	100.09	100.59	100.14	100.63	100.89	100.27	100.44	99.83	100.24	100.37	100.2
Si	2.648	2.647	2.639	2.652	2.631	2.631	2.622	2.626	2.630	2.622	2.615	2.630	2.628	2.619	2.613	2.61
Al	1.363	1.354	1.368	1.347	1.382	1.374	1.389	1.385	1.376	1.383	1.385	1.376	1.382	1.390	1.396	1.39
Fe	0.021	0.026	0.018	0.027	0.023	0.022	0.020	0.023	0.023	0.025	0.023	0.024	0.023	0.022	0.023	0.02
Mn	0.000	0.000	0.000	0.001	0.002	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.000	0.002	0.00
Mg	0.003	0.005	0.003	0.006	0.003	0.002	0.004	0.003	0.004	0.003	0.003	0.003	0.004	0.002	0.003	0.003
Ca	0.292	0.306	0.310	0.306	0.305	0.312	0.314	0.313	0.316	0.318	0.322	0.318	0.316	0.322	0.322	0.323
Na	0.602	0.595	0.601	0.585	0.584	0.601	0.593	0.586	0.593	0.591	0.596	0.582	0.580	0.588	0.589	0.58:
K Summa	5.006	5.008	5.000	5.000	5.004	5.011	5.000	5.004	5.007	5.012	5.010	5.003	4 000	5.000	5.011	5.000
Summe	5.000	5.008	3.009	3.000	3.004	5.011	3.009	3.004	3.007	5.015	5.010	3.003	4.999	3.009	5.011	3.005
AB	62.1	60.9	61.3	60.5	60.7	61.2	60.9	60.7	60.9	60.3	60.6	60.1	60.3	60.2	60.4	60.
	30.1	31.3	31.6	31.6	31.7	31.8	32.3	32.4	32.4	32.5	32.7	32.8	32.9	33.0	33.0	33.1
OR Einheit	7.8 Rezente	7.8 Domlave	7.1 n und py	7.8 roklastis	7.6 che Strön	7.0 ne	6.8	7.0	6.7	1.2	6.8	7.1	0.8	0.8	0.5	0.0
AN OR Einheit Probe	7.8 Rezente M95-011	7.8 Domlave I (Fortset	7.1 n und py zung)	7.8 roklastise	7.6 che Strön	7.0	6.8	7.0	6.7	1.2	6.8	7.1	0.8	0.8 M96-142	6.5 2 (Auswa	h1)
AN OR Einheit Probe Nr.	7.8 Rezente M95-011	7.8 Domlave I (Fortset 18	7.1 n und py zung) 19	7.8 roklastise 20	7.6 che Strön 21	7.0 ne	6.8	24	25	26	27	28		0.8 M96-142 1	6.5 2 (Auswa 2	hl)
AN OR Einheit Probe Nr. SiO ₂	7.8 Rezente M95-011 17 58.28	7.8 Domlave I (Fortset 18 58.00	7.1 n und py zung) 19 58.05	7.8 roklastise 20 58.32	7.6 che Strön 21 58.29	7.0 ne 22 57.26	6.8 23 56.80	7.0 7.0 24 57.42	6.7 25 56.78	26	6.8 27 54.80	28	0.8	0.8 M96-142 1 58.95	6.3 2 (Auswa 2 58.24	hl)
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃	7.8 Rezente M95-011 17 58.28 26.32	7.8 Domlave 1 (Fortset 18 58.00 26.44	7.1 n und py zung) 19 58.05 26.68	7.8 roklastise 20 58.32 26.60	7.6 che Strön 21 58.29 26.95	7.0 ne 22 57.26 26.92	6.8 23 56.80 27.30	7.0 24 57.42 27.31	6.7 25 56.78 27.25	26 55.00 28.24	6.8 27 54.80 28.97	28 52.58 30.21		M96-142 1 58.95 25.03	6.5 2 (Auswa 2 58.24 26.01	hl) 57.72 25.83
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO	7.8 Rezente M95-011 17 58.28 26.32 0.62	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60	7.1 n und py zung) 19 58.05 26.68 0.60	7.8 roklastise 20 58.32 26.60 0.60	7.6 che Strön 21 58.29 26.95 0.63	7.0 ne 22 57.26 26.92 0.59	6.8 23 56.80 27.30 0.58	7.0 24 57.42 27.31 0.60	6.7 25 56.78 27.25 0.65	26 55.00 28.24 0.57	6.8 27 54.80 28.97 0.62	28 52.58 30.21 0.60	-	M96-142 1 58.95 25.03 0.58	6.5 2 (Auswa 2 58.24 26.01 0.49	hl) 57.72 25.88 0.52
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03	7.1 n und py zung) 19 58.05 26.68 0.60 0.02	7.8 roklastise 20 58.32 26.60 0.60 0.02	7.6 che Strön 21 58.29 26.95 0.63 0.00	7.0 ne 22 57.26 26.92 0.59 0.01	6.8 23 56.80 27.30 0.58 0.03	7.0 24 57.42 27.31 0.60 0.00	6.7 25 56.78 27.25 0.65 0.00	26 55.00 28.24 0.57 0.00	6.8 27 54.80 28.97 0.62 0.00	28 52.58 30.21 0.60 0.02		M96-142 1 58.95 25.03 0.58 0.02	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00	hl) 57.72 25.83 0.52 0.00
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05	7.6 che Strön 21 58.29 26.95 0.63 0.00 0.04	7.0 ne 22 57.26 26.92 0.59 0.01 0.04	6.8 23 56.80 27.30 0.58 0.03 0.04	7.0 24 57.42 27.31 0.60 0.00 0.05	6.7 25 56.78 27.25 0.65 0.00 0.04	26 55.00 28.24 0.57 0.00 0.04	6.8 27 54.80 28.97 0.62 0.00 0.04	28 52.58 30.21 0.60 0.02 0.04	-	M96-142 1 58.95 25.03 0.58 0.02 0.03	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03	hl) 57.72 25.83 0.52 0.00 0.02
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83	26 55.00 28.24 0.57 0.00 0.04 8.98	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56	28 52.58 30.21 0.60 0.02 0.04 11.15	-	58.95 25.03 0.58 0.02 0.03 7.20	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84	hl) 57.72 25.88 0.52 0.00 0.00 7.94
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74	-	58.95 25.03 0.58 0.02 0.03 7.20 6.72	6.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55	57.72 25.88 0.52 0.00 0.00 7.94 6.54
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40	-	58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95	6.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82	hl) 57.72 25.88 0.52 0.00 0.03 7.94 6.54 0.74
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29	7.6 che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59	7.0 24 57.42 27.31 0.60 0.005 7.82 6.27 0.87 100.33	6.7 25 56.78 27.25 0.65 0.00 7.83 6.24 0.90 99.69	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72	0.8	0.8 M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97	hl) 57.72 25.88 0.52 0.00 0.02 7.99 6.52 0.72 99.31
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380	-	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656	6.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614	hl) 57.72 25.83 0.52 0.00 0.03 7.94 6.54 0.74 99.37 2.608
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618	-	0.8 M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329	6.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376	57.77 255.88 0.55 0.00 0.00 7.99 6.55 0.77 99.37 2.600 1.375
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023	-	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019	57.77 255.88 0.55 0.00 0.00 7.99 6.55 0.74 99.37 2.600 1.375 0.024
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001	-	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000	hl) 57.72 25.83 0.52 0.00 0.03 7.94 6.54 0.74 99.37 2.608 1.378 0.020 0.000
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.003	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000 0.004	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003	-	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002	hl) 57.72 25.83 0.52 0.00 0.03 7.94 6.54 0.74 99.37 2.608 1.378 0.020 0.000 0.002
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003 0.324	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002 0.325	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004 0.330	7.8 roklastise 20 58.32 26.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.003 0.333	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003 0.355	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003 0.356	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003 0.372	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000 0.004 0.375	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003 0.378	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003 0.437	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003 0.462	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003 0.543	-	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002 0.347	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002 0.377	57.77 25.88 0.55 0.00 0.00 7.99 6.55 0.74 99.37 2.600 1.377 0.024 0.000 0.002 0.004 0.002 0.004
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003 0.324 0.585	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002 0.325 0.582	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004 0.330 0.588	7.8 roklastise 20 58.32 26.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.003 0.333 0.575	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003 0.355 0.564	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003 0.356 0.565	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003 0.372 0.552	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000 0.004 0.375 0.544	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003 0.378 0.545	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003 0.437 0.503	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003 0.462 0.485	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003 0.543 0.418	0.8	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002 0.347 0.587	5.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002 0.377 0.570	57.77 55.8% 0.55 0.00 0.00 7.99.3 2.600 1.37% 0.024 0.000 0.000 0.000 0.38% 0.57%
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Summe Si Al Fe Mn Mg Ca Na K Summe	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003 0.324 0.585 0.064	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002 0.325 0.582 0.065 5 0.065	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004 0.330 0.588 0.064 5.015	7.8 roklastise 20 58.32 26.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.003 0.333 0.575 0.064 5.0064	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003 0.355 0.564 0.056	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003 0.356 0.565 0.056 5.010	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003 0.372 0.552 0.004	7.0 24 57.42 27.31 0.60 0.005 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000 0.004 0.375 0.544 0.054 0.544	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003 0.378 0.545 0.051 5.0151	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003 0.437 0.503 0.39 5.500	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003 0.462 0.485 0.035 5.502	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003 0.543 0.418 0.23	-	0.8 M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002 0.347 0.587 0.055 4.002	6.5 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002 0.377 0.570 0.047	57.77 557.77 25.86 0.00 0.05 0.00 0.05 0.79 99.37 2.600 1.377 0.024 0.002
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na K Summe	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003 0.324 0.585 0.064 5.008	7.8 Domlave I (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002 0.325 0.582 0.065 5.009	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004 0.330 0.004 0.330 0.588 0.064 5.018	7.8 roklastise 20 58.32 26.60 0.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.003 0.333 0.575 0.064 5.006	7.6 che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003 0.355 0.564 0.056 5.008	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003 0.356 0.565 0.056 5.010	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003 0.372 0.552 0.048 5.009	$\begin{array}{c} 7.0\\ \\ \hline \\ 24\\ \\ 57.42\\ 27.31\\ 0.60\\ 0.05\\ 7.82\\ 6.27\\ 0.87\\ 100.33\\ 2.570\\ 1.440\\ 0.022\\ 0.000\\ 0.004\\ 0.375\\ 0.544\\ 0.050\\ 5.005\\ \end{array}$	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003 0.378 0.545 0.051 5.010	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003 0.437 0.503 0.039 5.004	6.8 27 54.80 28.97 0.62 0.00 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003 0.462 0.485 0.035 5.006	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003 0.543 0.418 0.023 5.008	0.8	M96-142 1 58.95 25.03 0.58 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002 0.347 0.557 4.999	5.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002 0.377 0.570 0.047 5.003	57.7? 57.7?
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Summe Si Al Fe Mn Mg Ca Summe K Summe AB	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003 0.324 0.585 0.064 5.008 60.1	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002 0.325 0.582 0.065 5.009 59.9	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004 0.330 0.0588 0.064 5.018	7.8 roklastise 20 58.32 26.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.003 0.333 0.575 0.064 5.006	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003 0.355 0.564 0.056 5.008 57.8	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003 0.356 0.565 0.056 5.010 57.8	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003 0.372 0.552 0.048 5.009 56.8	7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000 0.004 0.375 0.544 0.050 5.005 56.2	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003 0.378 0.545 0.051 5.010 55.9	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003 0.437 0.503 0.039 5.004 51.4	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003 0.462 0.485 0.035 5.006 49.4	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003 0.543 0.023 5.008 42.5	0.8	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002 0.347 0.587 0.055 4.999 59.3	5.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002 0.377 0.570 0.047 5.003 57.3	hl) 57.72 25.83 0.52 0.00 0.03 7.94 6.54 0.74 99.33 2.609 1.378 0.020 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.00000000
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Summe Si Al Fe Mn Mg CaO Summe Si Al Fe Mn Mg Ca Summe AB AN	7.8 Rezente M95-011 17 58.28 26.32 0.62 0.00 0.05 6.75 6.72 1.11 99.84 2.616 1.392 0.023 0.000 0.003 0.324 0.585 0.064 5.008 60.1 33.3	7.8 Domlave 1 (Fortset 18 58.00 26.44 0.60 0.03 0.03 6.74 6.67 1.13 99.66 2.609 1.402 0.023 0.001 0.002 0.325 0.582 0.065 5.009 59.9 33.4	7.1 n und py zung) 19 58.05 26.68 0.60 0.02 0.05 6.87 6.77 1.13 100.18 2.600 1.408 0.023 0.001 0.004 0.330 0.004 0.330 0.0588 0.064 5.018	7.8 roklastise 20 58.32 26.60 0.02 0.05 6.95 6.63 1.12 100.29 2.607 1.401 0.022 0.001 0.033 0.575 0.064 5.006 59.2 34.3	7.6 Che Strön 21 58.29 26.95 0.63 0.00 0.04 7.44 6.53 1.00 100.89 2.593 1.413 0.024 0.000 0.003 0.355 0.564 0.056 5.008 57.8 36.4	7.0 ne 22 57.26 26.92 0.59 0.01 0.04 7.38 6.47 0.98 99.65 2.579 1.429 0.022 0.000 0.003 0.356 0.565 0.056 5.010 57.8 36.4	6.8 23 56.80 27.30 0.58 0.03 0.04 7.69 6.31 0.84 99.59 2.561 1.451 0.022 0.001 0.003 0.372 0.552 0.048 5.009 56.8 38.2	7.0 7.0 24 57.42 27.31 0.60 0.00 0.05 7.82 6.27 0.87 100.33 2.570 1.440 0.022 0.000 0.004 0.375 0.544 0.050 5.005 56.2 38.7	6.7 25 56.78 27.25 0.65 0.00 0.04 7.83 6.24 0.90 99.69 2.560 1.448 0.025 0.000 0.003 0.378 0.545 0.051 5.010 55.9 38.8	26 55.00 28.24 0.57 0.00 0.04 8.98 5.71 0.68 99.22 2.488 1.512 0.022 0.000 0.003 0.437 0.503 0.039 5.004 51.4 44.6	6.8 27 54.80 28.97 0.62 0.00 0.04 9.56 5.55 0.61 100.14 2.460 1.539 0.023 0.000 0.003 0.462 0.485 0.035 5.006 49.4 47.0	28 52.58 30.21 0.60 0.02 0.04 11.15 4.74 0.40 99.72 2.380 1.618 0.023 0.001 0.003 0.543 0.023 5.008 42.5 55.2	0.8	M96-142 1 58.95 25.03 0.58 0.02 0.03 7.20 6.72 0.95 99.49 2.656 1.329 0.022 0.001 0.002 0.347 0.587 0.055 4.999 59.3 35.1	5.3 2 (Auswa 2 58.24 26.01 0.49 0.00 0.03 7.84 6.55 0.82 99.97 2.614 1.376 0.019 0.000 0.002 0.377 0.570 0.047 5.003 57.3 37.9	hl) 57.72 25.88 0.52 0.00 0.03 7.94 6.54 0.74 99.33 2.608 1.378 0.020 0.00200000000

Tab. A5.2. Mineralchemische Daten: Plagioklas (Auswahl).

Probe	M96-142	(Fortset	zung)													
Nr.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
SiO ₂	57.98	58.56	58.15	57.58	57.62	57.74	57.82	57.26	56.73	57.13	56.14	54.88	55.64	54.18	54.54	53.96
Al_2O_3	26.00	25.79	26.23	26.57	26.65	26.00	26.66	26.57	26.77	26.78	27.26	28.08	27.79	28.96	28.66	29.13
FeO	0.53	0.54	0.51	0.46	0.53	0.45	0.52	0.51	0.59	0.46	0.52	0.44	0.58	0.48	0.50	0.45
MnO	0.00	0.00	0.00	0.00	0.03	0.01	0.00	0.00	0.03	0.04	0.03	0.00	0.00	0.00	0.04	0.00
MgO	0.03	0.03	0.02	0.04	0.02	0.04	0.07	0.03	0.04	0.04	0.04	0.05	0.12	0.00	0.06	0.00
CaO	8.09	8.29	8.12	8.21	8.43	8.39	8.47	8.84	9.23	9.30	9.45	10.39	10.32	10.90	11.05	11.34
Na_2O	6.41	6.57	6.38	6.38	6.19	6.18	6.15	6.06	5.91	5.99	5.79	5.33	4.99	5.01	4.79	4.56
K ₂ O	0.79	0.80	0.75	0.76	0.76	0.73	0.67	0.70	0.64	0.58	0.50	0.48	0.56	0.46	0.38	0.63
Summe	99.83	100.57	100.16	99.99	100.22	99.54	100.36	99.98	99.94	100.32	99.72	99.65	100.00	99.99	100.02	100.07
Si	2.608	2.615	2.606	2.586	2.583	2.603	2.586	2.576	2.557	2.564	2.536	2.487	2.520	2.452	2.464	2.442
AI	1.378	1.357	1.385	1.406	1.408	1.381	1.405	1.409	1.422	1.417	1.451	1.500	1.478	1.544	1.526	1.554
Fe	0.020	0.020	0.019	0.017	0.020	0.017	0.019	0.019	0.022	0.017	0.020	0.017	0.022	0.018	0.019	0.017
Mn	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.002	0.001	0.000	0.000	0.000	0.001	0.000
Mg	0.002	0.002	0.002	0.002	0.002	0.002	0.005	0.002	0.003	0.003	0.003	0.003	0.008	0.000	0.004	0.000
Ca N-	0.390	0.397	0.390	0.395	0.405	0.406	0.406	0.426	0.446	0.447	0.457	0.504	0.499	0.529	0.535	0.550
Na V	0.559	0.568	0.554	0.550	0.538	0.540	0.555	0.529	0.510	0.521	0.507	0.468	0.430	0.440	0.420	0.400
к а	0.043	0.043	0.045	0.045	0.045	0.042	0.038	0.040	0.037	0.033	0.029	0.028	0.032	0.027	0.022	0.037
Summe	5.003	5.004	4.999	5.006	5.000	4.992	4.993	5.003	5.004	5.003	5.004	5.007	4.995	5.009	4.991	4.999
AB	56.2	56.3	56.2	55.9	54.6	54.7	54.6	53.1	51.7	52.0	51.1	46.8	45.1	44.2	43.0	40.6
ANT	20.2	20.2	20.5	39.7	41.1	41.1	41.5	42.8	44.6	44.6	46.1	50.4	51.6	53.1	54.8	55.7
OR Einheit	4.6 Rezente	39.3 4.5 Domlave	4.4 n und pyr	4.4	4.4 che Ström	4.2 ne	3.9	4.1	3.7	3.3	2.9	2.8	3.4	2.7	2.2	3.7
OR Einheit Probe	4.6 Rezente M96-142	39.3 4.5 Domlave	4.4 n und pyr zung)	4.4	4.4 che Ström	4.2 ne	3.9	4.1	3.7	3.3	2.9	2.8	3.4	2.7	2.2	3.7
AIN OR Einheit Probe Nr.	39.2 4.6 Rezente M96-142 20	39.3 4.5 Domlave 2 (Fortset 21	222	4.4 roklastise	4.4 che Ström 24	4.2 ne 25	3.9	4.1	28	29	2.9	2.8	3.4	2.7	2.2	3.7
AIN OR Einheit Probe Nr.	39.2 4.6 Rezente M96-142 20	39.3 4.5 Domlave 2 (Fortset 21	59.3 4.4 n und pyr zung) 22 51.10	23	4.4 che Ström 24	4.2 ne 25	3.9	4.1	3.7	3.3 29	2.9	2.8	3.4	2.7	2.2	3.7
AIN OR Einheit Probe Nr. SiO ₂ Al-O ₂	39.2 4.6 Rezente M96-142 20 53.83 29.16	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73	39.3 4.4 n und pyr zung) 22 51.10 31.64	23 49.31 32.00	4.4 che Ström 24 49.56 31.81	4.2 ne 25 48.64 32.29	3.9 26 48.47 33.09	4.1 27 47.56 33.44	3.7 28 47.26 33.46	3.3 29 45.82 34 47	2.9 30 45.88 34 52	2.8 31 45.34 34.87	3.4 32 45.12 34.98	2.7 33 45.12 35.55	2.2 34 45.23 35.18	3.7 35 44.37 35 91
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO	39.2 4.6 Rezente M96-142 20 53.83 29.16 0.43	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43	39.3 4.4 n und pyr zung) 22 51.10 31.64 0.44	4.4 roklastise 23 49.31 32.00 0.45	4.4 che Ström 24 49.56 31.81 0.57	4.2 ne 25 48.64 32.29 0.54	3.9 26 48.47 33.09 0.46	4.1 27 47.56 33.44 0.44	3.7 28 47.26 33.46 0.49	3.3 29 45.82 34.47 0.43	2.9 30 45.88 34.52 0.37	2.8 31 45.34 34.87 0.59	3.4 32 45.12 34.98 0.49	2.7 33 45.12 35.55 0.53	2.2 34 45.23 35.18 0.53	3.7 35 44.37 35.91 0.39
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00	4.4 roklastise 23 49.31 32.00 0.45 0.00	4.4 che Strön 24 49.56 31.81 0.57 0.04	4.2 ne 25 48.64 32.29 0.54 0.00	3.9 26 48.47 33.09 0.46 0.00	4.1 27 47.56 33.44 0.44 0.00	3.7 28 47.26 33.46 0.49 0.00	3.3 29 45.82 34.47 0.43 0.00	2.9 30 45.88 34.52 0.37 0.00	2.8 31 45.34 34.87 0.59 0.00	3.4 32 45.12 34.98 0.49 0.00	2.7 33 45.12 35.55 0.53 0.00	2.2 34 45.23 35.18 0.53 0.00	3.7 35 44.37 35.91 0.39 0.00
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00 0.00	4.4 roklastise 23 49.31 32.00 0.45 0.00 0.00	4.4 che Strön 24 49.56 31.81 0.57 0.04 0.05	4.2 ne 25 48.64 32.29 0.54 0.00 0.00	3.9 26 48.47 33.09 0.46 0.00 0.00	4.1 27 47.56 33.44 0.44 0.00 0.00	3.7 28 47.26 33.46 0.49 0.00 0.00	3.3 29 45.82 34.47 0.43 0.00 0.00	2.9 30 45.88 34.52 0.37 0.00 0.00	2.8 31 45.34 34.87 0.59 0.00 0.00	3.4 32 45.12 34.98 0.49 0.00 0.00	2.7 33 45.12 35.55 0.53 0.00 0.00	2.2 34 45.23 35.18 0.53 0.00 0.00	3.7 35 44.37 35.91 0.39 0.00 0.00
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.00 12.67	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00 0.00 13.87	23 49.31 32.00 0.45 0.00 14.57	4.4 che Strön 24 49.56 31.81 0.57 0.04 0.05 15.24	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76	4.1 27 47.56 33.44 0.44 0.00 0.00 16.37	3.7 28 47.26 33.46 0.49 0.00 0.00 16.32	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47	2.9 30 45.88 34.52 0.37 0.00 0.00 17.83	2.8 31 45.34 34.87 0.59 0.00 0.00 17.90	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.00 12.67 3.99	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43	23 49.31 32.00 0.45 0.00 14.57 2.86	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20	4.1 27 47.56 33.44 0.44 0.00 0.00 16.37 1.95	3.7 28 47.26 33.46 0.49 0.00 0.00 16.32 1.85	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36	2.9 30 45.88 34.52 0.37 0.00 0.00 17.83 1.17	2.8 31 45.34 34.87 0.59 0.00 0.00 17.90 1.05	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.80	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57 0.44	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.000 12.67 3.99 0.35	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21	4.4 	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17	4.1 27 47.56 33.44 0.44 0.00 0.00 16.37 1.95 0.13	3.7 28 47.26 33.46 0.49 0.00 0.00 16.32 1.85 0.11	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07	2.9 30 45.88 34.52 0.37 0.00 0.00 17.83 1.17 0.06	2.8 31 45.34 34.87 0.59 0.00 0.00 17.90 1.05 0.05	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89 0.03	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.80 0.03	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67 0.01
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57 0.44 100.40	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.00 12.67 3.99 0.35 99.93	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00 0.000 13.87 3.43 0.21 100.69	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39	4.4 the Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36	3.9 26 48.47 33.09 0.46 0.00 15.76 2.20 0.17 100.14	4.1 27 47.56 33.44 0.40 0.00 16.37 1.95 0.13 99.90	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50	3.3 29 45.82 34.47 0.43 0.00 17.47 1.36 0.07 99.63	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82	2.8 31 45.34 34.87 0.59 0.00 0.00 17.90 1.05 0.05 99.79	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89 0.03 99.68	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.80 0.03 100.38	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67 0.01 99.99
AN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57 0.44 100.40 2.431	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.00 12.67 3.99 0.35 99.93 2.397	59.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17 100.14 2.216	4.1 27 47.56 33.44 0.00 0.00 16.37 1.95 0.13 99.90 2.185	3.7 28 47.26 33.46 0.49 0.00 0.00 16.32 1.85 0.11 99.50 2.180	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117	2.8 31 45.34 34.87 0.59 0.00 0.00 17.90 1.05 0.05 99.79 2.096	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89 0.03 99.68 2.088	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67 0.01 99.99 2.050
Ain OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MgO CaO Na ₂ O K ₂ O Summe Si Al	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57 0.44 100.40 2.431 1.553	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 12.67 3.99 0.35 99.93 2.397 1.591	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312 1.687	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17 100.14 2.216 1.783	4.1 27 47.56 33.44 0.44 0.00 0.00 16.37 1.95 0.13 99.90 2.185 1.810	3.7 28 47.26 33.46 0.49 0.00 0.00 16.32 1.85 0.11 99.50 2.180 1.818	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878	2.9 30 45.88 34.52 0.37 0.00 0.00 17.83 1.17 0.06 99.82 2.117 1.877	2.8 31 45.34 34.87 0.59 0.00 17.90 1.05 0.05 99.79 2.096 1.900	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89 0.03 99.68 2.088 1.908	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67 0.01 99.99 2.050 1.955
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57 0.44 100.40 2.431 1.553 0.016	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 12.67 3.99 0.35 99.93 2.397 1.591 0.016	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014	2.8 31 45.34 34.87 0.59 0.00 17.90 1.05 0.05 99.79 2.096 1.900 0.023	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015
Ain OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.00 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000	2.8 31 45.34 34.87 0.59 0.00 17.90 1.05 0.05 99.79 2.096 1.900 0.023 0.000	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.000	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.000	3.7 35 44.37 35.91 0.39 0.00 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000
Ain OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.000	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.00 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000 0.000	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.000	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.000	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000 0.000	3.9 26 48.47 33.09 0.46 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.000	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.000	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.000	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.000	2.8 31 45.34 34.87 0.59 0.00 1.05 0.05 99.79 2.096 1.900 0.023 0.000 0.000	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.000 0.000	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.000 0.000	3.7 35 44.37 35.91 0.39 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000
Ain OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.000 0.579	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000 0.000 0.616	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.000 0.672	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.000 0.717	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003 0.746	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000 0.000 0.000 0.758	3.9 26 48.47 33.09 0.46 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000 0.772	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.000 0.806	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.000 0.807	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.000 0.865	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.000 0.001 0.000 0.881	2.8 31 45.34 34.87 0.59 0.00 1.05 0.05 99.79 2.096 1.900 0.023 0.000 0.000 0.887	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000 0.901	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.000 0.000 0.905	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.000 0.000 0.000 0.921	3.7 35 44.37 35.91 0.39 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000 0.000 0.923
Ain OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.000 0.579 0.400	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000 0.001 0.016 0.000	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.000 0.672 0.301	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.000 0.717 0.255	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003 0.746 0.243	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000 0.000 0.758 0.213	3.9 26 48.47 33.09 0.46 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000 0.772 0.195	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.806 0.174	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.000 0.807 0.166	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.000 0.865 0.122	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.000 0.001 0.004 0.000 0.881 0.104	2.8 31 45.34 34.87 0.59 0.00 1.05 0.05 99.79 2.096 1.900 0.023 0.000 0.000 0.887 0.094	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000 0.901 0.080	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.000 0.000 0.000 0.905 0.071	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	3.7 35 44.37 35.91 0.39 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000 0.000 0.923 0.060
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Fe Mn Mg Ca Na K	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.579 0.400 0.025	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000 0.001 0.016 0.000 0.616 0.352 0.020	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.000 0.672 0.301 0.012	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.001 0.717 0.255 0.012	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003 0.746 0.243 0.007	4.2 ne 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000 0.000 0.758 0.213 0.009	3.9 26 48.47 33.09 0.46 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000 0.772 0.195 0.010	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.806 0.174 0.008	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.807 0.166 0.007	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.865 0.122 0.004	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.000 0.881 0.104 0.003	2.8 31 45.34 34.87 0.59 0.00 1.05 0.05 99.79 2.096 1.900 0.023 0.000 0.000 0.887 0.094 0.003	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000 0.901 0.080 0.002	2.7 33 45.12 35.55 0.53 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.000 0.000 0.921 0.066 0.002	3.7 35 44.37 35.91 0.39 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000 0.000 0.923 0.060 0.001
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Fe Mn Mg Ca Summe Si Al Summe	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.579 0.400 0.025 5.004	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.000 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000 0.616 0.352 0.020 4.993	39.3 4.4 n und pyr zung) 22 51.10 31.64 0.44 0.000 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.672 0.301 0.012 5.001	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.717 0.255 0.012 5.001	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003 0.746 0.243 0.007 5.000	4.2 10 10 10 10 10 10 10 10 10 10	3.9 26 48.47 33.09 0.46 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000 0.772 0.195 0.010 4.994	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.806 0.174 0.008 5.000	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.807 0.166 0.007 4.996	3.3 29 45.82 34.47 0.43 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.865 0.122 0.004 5.005	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.881 0.104 0.003 4.998	2.8 31 45.34 34.87 0.59 0.00 17.90 1.05 99.79 2.096 1.900 0.023 0.000 0.023 0.000 0.0887 0.094 0.003 5.003	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000 0.901 0.080 0.002 4.998	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.80 0.03 100.38 2.075 1.926 0.020 0.000 0.000 0.000 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 0.000 0.000 1.926 0.020 0.0000 0.000 0.000 0.000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 100.40 2.081 1.908 0.020 0.0000 0.000000 0.0000 0.00000 0.00000 0.0000 0.0000	3.7 35 44.37 35.91 0.39 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000 0.923 0.060 0.001 5.003
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Fe Mn Mg Ca Summe K Summe AB	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.000 0.579 0.400 0.025 5.004 39.9	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.000 12.67 3.99 0.35 99.93 2.397 1.591 0.016 0.000 0.000 0.616 0.352 0.020 4.993 35.6	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.000 0.672 0.301 0.012 5.001 30.5	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.001 0.717 0.255 0.012 5.001 25.9	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003 0.746 0.243 0.007 5.000 24.4	4.2 1e 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000 0.000 0.758 0.213 0.009 4.994 21.7	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000 0.772 0.195 0.010 4.994 20.0	4.1 27 47.56 33.44 0.44 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.000 0.806 0.174 0.008 5.000 17.6	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.807 0.166 0.007 4.996 16.9	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.865 0.122 0.004 5.005 12.3	2.9 30 45.88 34.52 0.37 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.000 0.881 0.104 0.003 4.998 10.5	2.8 31 45.34 34.87 0.59 0.00 1.05 0.05 99.79 2.096 1.900 0.023 0.000 0.000 0.887 0.094 0.003 5.003 9.6	3.4 32 45.12 34.98 0.49 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000 0.901 0.080 0.002 4.998 8.1	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.000 0.000 0.000 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 1.926 0.020 0.000 0.000 0.000 0.000 1.926 0.020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000 0.0000 0.0000000 0.00000 0.0000	2.2 34 45.23 35.18 0.53 0.00 0.00 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.000 0.000 0.921 0.066 0.002 4.999 6.7	3.7 35 44.37 35.91 0.39 0.00 0.000 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000 0.923 0.060 0.001 5.003 6.1
AIN OR Einheit Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na K Summe AB AN	39.2 4.6 Rezente 20 53.83 29.16 0.43 0.00 0.000 11.96 4.57 0.44 100.40 2.431 1.553 0.016 0.000 0.000 0.579 0.400 0.025 5.004 39.9 57.6	39.3 4.5 Domlave 2 (Fortset 21 52.77 29.73 0.43 0.00 0.000 0.35 99.93 2.397 1.591 0.016 0.000 0.000 0.000 0.616 0.352 0.020 4.993 35.6 62.3	59.3 4.4 n und pyr 22 51.10 31.64 0.44 0.00 13.87 3.43 0.21 100.69 2.312 1.687 0.017 0.000 0.000 0.672 0.301 0.012 5.001 30.5 68.2	23 49.31 32.00 0.45 0.00 14.57 2.86 0.20 99.39 2.266 1.733 0.017 0.000 0.000 0.717 0.255 0.012 5.001 25.9 72.9	4.4 che Ström 24 49.56 31.81 0.57 0.04 0.05 15.24 2.75 0.12 100.13 2.265 1.713 0.022 0.001 0.003 0.746 0.243 0.007 5.000 24.4 74.9	4.2 1e 25 48.64 32.29 0.54 0.00 0.00 15.36 2.38 0.15 99.36 2.241 1.753 0.021 0.000 0.000 0.758 0.213 0.009 4.994 21.7 77.4	3.9 26 48.47 33.09 0.46 0.00 0.00 15.76 2.20 0.17 100.14 2.216 1.783 0.017 0.000 0.000 0.772 0.195 0.010 4.994 20.0 79.0	4.1 27 47.56 33.44 0.44 0.00 0.00 16.37 1.95 0.13 99.90 2.185 1.810 0.017 0.000 0.000 0.806 0.174 0.008 5.000 17.6 81.6	3.7 28 47.26 33.46 0.49 0.00 16.32 1.85 0.11 99.50 2.180 1.818 0.019 0.000 0.807 0.166 0.007 4.996 16.9 82.4	3.3 29 45.82 34.47 0.43 0.00 0.00 17.47 1.36 0.07 99.63 2.119 1.878 0.016 0.000 0.865 0.122 0.004 5.005 12.3 87.2	2.9 30 45.88 34.52 0.37 0.00 0.00 17.83 1.17 0.06 99.82 2.117 1.877 0.014 0.000 0.000 0.881 0.104 0.003 4.998 10.5 89.1	2.8 31 45.34 34.87 0.59 0.00 1.05 0.05 99.79 2.096 1.900 0.023 0.000 0.000 0.887 0.094 0.003 5.003 9.6 90.1	3.4 32 45.12 34.98 0.49 0.00 0.00 18.17 0.89 0.03 99.68 2.088 1.908 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.817 0.00 0.000 0.000 1.817 0.03 99.68 1.908 0.019 0.000 0.000 0.000 1.908 0.019 0.000 0.000 1.817 0.89 0.03 99.68 1.908 0.019 0.000 0.000 0.000 1.817 0.03 99.68 1.908 0.019 0.000 0.000 0.000 1.817 0.000 0.000 0.000 1.817 0.000 0.000 0.000 0.000 1.817 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000000 0.00000 0.0000000 0.00000000	2.7 33 45.12 35.55 0.53 0.00 0.00 18.36 0.03 100.38 2.075 1.926 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.926 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000 0.0000 0.00000 0.000000 0	2.2 34 45.23 35.18 0.53 0.00 0.000 18.69 0.74 0.04 100.40 2.081 1.908 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.004 0.002 0.000 0.000 0.000 0.004 0.004 0.004 0.004 0.004 0.000 0.004 0.004 0.004 0.004 0.000 0.004 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.004 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.004 0.000 0.002 0.0	3.7 35 44.37 35.91 0.39 0.00 18.64 0.67 0.01 99.99 2.050 1.955 0.015 0.000 0.000 0.023 0.060 0.001 5.003 6.1 93.8

Einheit	Rezente	Domlave	en und py	roklastise	che Ströi	ne										
Probe	M96-14	5														
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	59.43	58.46	57.90	57.74	56.61	57.28	56.80	53.96	53.70	52.49	52.24	51.96	51.13	51.22	50.91	50.90
Al ₂ O ₃	25.36	26.23	26.56	26.32	27.22	27.12	27.14	29.13	29.54	29.80	29.93	30.55	30.54	30.62	30.79	31.15
FeO	0.57	0.53	0.45	0.50	0.41	0.48	0.52	0.45	0.46	0.60	0.56	0.50	0.62	0.60	0.60	0.56
MnO	0.03	0.03	0.01	0.04	0.01	0.04	0.04	0.00	0.00	0.04	0.02	0.00	0.02	0.04	0.03	0.02
MgO	0.03	0.04	0.04	0.05	0.06	0.04	0.05	0.00	0.00	0.07	0.07	0.05	0.06	0.06	0.05	0.07
CaO	6.69	7.82	8.12	8.02	8.95	8.88	8.96	11.34	11.74	12.39	12.61	13.00	13.16	13.21	13.45	14.19
Na ₂ O	7.12	6.41	6.39	6.27	5.99	5.87	5.92	4.56	4.47	4.12	4.14	3.90	3.65	3.65	3.51	3.32
K_2O	0.95	0.90	0.78	0.83	0.72	0.68	0.69	0.63	0.34	0.28	0.27	0.27	0.29	0.28	0.27	0.23
Summe	100.17	100.40	100.27	99.77	99.97	100.40	100.12	100.07	100.25	99.79	99.84	100.23	99.48	99.67	99.62	100.45
Si	2.656	2.612	2.593	2.599	2.549	2.565	2.554	2.442	2.425	2.389	2.379	2.358	2.341	2.341	2.329	2.313
Al	1.336	1.381	1.402	1.396	1.444	1.431	1.438	1.554	1.572	1.599	1.606	1.634	1.648	1.649	1.660	1.668
Fe	0.021	0.020	0.017	0.019	0.015	0.018	0.019	0.017	0.017	0.023	0.021	0.019	0.024	0.023	0.023	0.021
Mn	0.001	0.001	0.001	0.002	0.000	0.002	0.001	0.000	0.000	0.002	0.001	0.000	0.001	0.001	0.001	0.001
Mg	0.002	0.003	0.003	0.003	0.004	0.003	0.003	0.000	0.000	0.005	0.005	0.003	0.004	0.004	0.003	0.004
Ca	0.320	0.375	0.390	0.387	0.432	0.426	0.431	0.550	0.568	0.604	0.615	0.632	0.646	0.647	0.659	0.691
Na	0.617	0.555	0.555	0.547	0.523	0.510	0.516	0.400	0.391	0.364	0.366	0.343	0.324	0.323	0.311	0.292
к Summe	5.008	4 998	5.005	5.000	5.009	4 992	5.003	4 999	4 993	5.001	5 009	5.004	5.005	5.004	5.003	5.005
Summe	5.000	4.990	5.005	5.000	5.007	4.992	5.005	4.777	4.775	5.001	5.007	5.004	5.005	5.004	5.005	5.001
AB	62.2	56.6	56.1	55.7	52.5	52.3	52.3	40.6	40.0	37.0	36.7	34.6	32.9	32.8	31.6	29.3
AN	32.3	38.2	39.4	39.4	43.4	43.7	43.7	55.7	58.0	61.4	61.7	63.8	65.4	65.6	66.8	69.3
OR	5.5	5.2	4.5	4.9	4.2	4.0	4.0	3.7	2.0	1.6	1.6	1.6	1.7	1.6	1.6	1.4
Einheit	Rezente	Domlave	en und py	roklastiso	che Ströi	ne										
Probe	M97-068	8 (Auswa	ıhl)													
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	59.45	56.89	56.24	55.97	54.44	53.87	53.06	53.03	52.89	53.06	52.79	52.54	52.68	51.92	51.70	51.85
Al_2O_3	25.68	27.35	27.79	28.53	28.76	28.73	29.24	29.53	29.50	29.58	29.72	29.88	30.27	29.56	30.39	30.65
FeO Mag	0.57	0.66	0.62	0.64	0.66	0.48	0.50	0.53	0.58	0.53	0.60	0.51	0.51	0.56	0.61	0.57
MaO	0.01	0.01	0.00	0.01	0.01	0.01	0.04	0.00	0.00	0.03	0.02	0.01	0.06	0.00	0.00	0.00
CaO	6.83	7.97	8.82	9 39	10.05	10.96	11 54	11.92	12 10	12.06	12.38	12 42	12 51	12 37	13 23	13.22
Na ₂ O	6.72	6.18	5.84	5.64	5.26	4.64	4.41	4.38	4.28	4.22	4.24	4.05	4.05	3.97	3.82	3.72
K ₂ O	1.03	0.79	0.58	0.54	0.46	0.40	0.35	0.39	0.35	0.38	0.37	0.31	0.31	0.31	0.29	0.29
Summe	100.40	99.96	100.02	100.86	99.74	99.15	99.21	99.88	99.81	99.96	100.24	99.79	100.46	98.82	100.15	100.39
Si	2.651	2.559	2.531	2.501	2.467	2.456	2.422	2.409	2.405	2.408	2.394	2.390	2.381	2.387	2.352	2.35
Al	1.350	1.450	1.474	1.503	1.536	1.543	1.573	1.581	1.581	1.582	1.588	1.602	1.613	1.601	1.629	1.638
Fe	0.021	0.025	0.023	0.024	0.025	0.018	0.019	0.020	0.022	0.020	0.023	0.019	0.019	0.022	0.023	0.022
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.001	0.001	0.000	0.002	0.000	0.000	0.000
Mg	0.003	0.002	0.003	0.005	0.004	0.005	0.004	0.004	0.004	0.005	0.004	0.003	0.004	0.004	0.004	0.004
Ca	0.326	0.384	0.425	0.450	0.488	0.535	0.564	0.580	0.590	0.586	0.601	0.605	0.606	0.609	0.645	0.642
Na	0.581	0.539	0.509	0.489	0.462	0.410	0.391	0.386	0.378	0.371	0.373	0.357	0.355	0.353	0.337	0.327
K	0.059	0.045	0.033	0.031	0.027	0.023	0.020	0.022	0.020	0.022	0.021	0.018	0.018	0.018	0.017	0.017
Summe	4.991	5.003	4.999	5.003	5.008	4.990	4.995	5.002	5.000	4.995	5.005	4.995	4.998	4.994	5.007	5.001
AB	60.1	55.6	52.6	50.4	47.3	42.3	40.1	39.0	38.2	37.9	37.4	36.4	36.3	36.0	33.7	33.2
AN	33.8	39.7	43.9	46.4	50.0	55.3	57.9	58.7	59.7	59.8	60.4	61.7	61.9	62.1	64.6	65.1
OR	6.1	4.7	3.4	3.2	2.7	2.4	2.1	2.3	2.1	2.2	2.1	1.8	1.8	1.9	1.7	1.7

Einheit	Rezente	Domlave	n und py	roklastis	che Strör	ne										
Probe	M97-068	8 (Fortset	zung)													
Nr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
SiO ₂	51.46	50.85	50.40	49.38	50.01	48.92	48.70	48.37	48.00	47.46	47.49	46.38	46.21	45.84	45.76	45.41
Al_2O_3	30.86	31.10	31.66	31.65	31.77	32.24	32.49	32.53	32.80	33.61	33.52	34.15	34.41	34.65	34.25	35.04
FeO	0.64	0.60	0.59	0.58	0.55	0.61	0.60	0.66	0.61	0.67	0.64	0.61	0.56	0.62	0.66	0.55
MgO	0.00	0.00	0.02	0.04	0.03	0.00	0.00	0.03	0.00	0.01	0.02	0.04	0.02	0.00	0.00	0.00
CaO	13 46	13.82	14 21	14 58	14 75	15.01	15 37	15 17	15.90	16.34	16.68	17.27	17 39	17.65	17.81	18 18
Na ₂ O	3.50	3.40	3.10	3.01	3.02	2.70	2.55	2.36	2.19	1.96	1.83	1.47	1.33	1.30	1.30	1.11
K ₂ O	0.27	0.23	0.25	0.20	0.19	0.18	0.18	0.17	0.15	0.13	0.15	0.10	0.08	0.07	0.08	0.06
Summe	100.26	100.06	100.28	99.47	100.36	99.70	99.94	99.33	99.71	100.22	100.39	100.07	100.03	100.16	99.90	100.39
Si	2.337	2.313	2.294	2.271	2.278	2.246	2.233	2.230	2.209	2.176	2.175	2.135	2.128	2.111	2.115	2.089
Al	1.652	1.667	1.698	1.715	1.706	1.745	1.756	1.768	1.779	1.816	1.809	1.853	1.867	1.880	1.865	1.899
Fe	0.024	0.023	0.022	0.022	0.021	0.023	0.023	0.025	0.023	0.026	0.024	0.023	0.022	0.024	0.026	0.021
Mn Ma	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.002	0.001	0.000	0.000	0.000
Mg Ca	0.004	0.003	0.004	0.003	0.003	0.003	0.004	0.003	0.004	0.005	0.004	0.004	0.002	0.003	0.003	0.005
Na	0.000	0.300	0.093	0.268	0.720	0.738	0.755	0.749	0.195	0.302	0.019	0.352	0.358	0.371	0.002	0.090
K	0.016	0.014	0.015	0.012	0.011	0.011	0.010	0.010	0.009	0.008	0.009	0.006	0.005	0.004	0.005	0.003
Summe	4.997	4.995	5.000	5.010	5.007	5.006	5.007	4.997	5.003	5.004	5.003	5.006	5.000	5.009	5.011	5.010
AB	31.5	30.4	27.9	26.9	26.7	24.3	22.8	21.8	19.8	17.7	16.4	13.3	12.1	11.7	11.6	9.9
AN	66.9	68.2	70.7	72.0	72.2	74.6	76.1	77.2	79.3	81.5	82.7	86.1	87.5	87.9	87.9	89.7
OR	1.6	1.4	1.5	1.2	1.1	1.1	1.0	1.0	0.9	0.8	0.9	0.6	0.5	0.4	0.5	0.3
Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Str	öme									
Probe	M96-13	7 (Auswa	hl)													
										10		10	10			
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	57.58	58.00	57.94	57.05	56.79	57.22	57.19	56.70	56.51	55.55	54.69	54.97	53.10	53.24	52.44	50.85
Al_2O_3	26.34	26.46	26.23	26.80	26.81	26.72	26.94	27.12	27.43	28.12	28.27	28.51	29.80	29.38	29.71	30.77
FeO	0.65	0.69	0.70	0.68	0.58	0.73	0.67	0.62	0.71	0.62	0.64	0.98	0.66	0.67	0.65	0.64
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
MgO C+O	0.04	0.03	0.05	0.04	0.05	0.13	0.05	0.04	0.04	0.05	0.05	0.07	0.06	0.05	0.05	0.04
CaO NaoO	8.07 6.35	8.14 6.26	8.51 6.22	8.01 6.17	8.07 6.09	8.70 5.00	5.92	9.02 5.03	9.23	5 32	5 24	10.48	11.96	12.24	12.42	3 31
K ₂ O	0.75	0.20	0.68	0.56	0.64	0.65	0.58	0.59	0.55	0.44	0.41	0.36	0.35	0.33	0.29	0.23
Summe	99.77	100.29	100.34	99.91	99.64	100.21	100.23	100.01	100.28	100.50	99.81	100.48	100.38	100.14	99.67	99.99
Si	2.592	2.596	2.596	2.568	2.564	2.569	2.565	2.552	2.538	2.496	2.477	2.473	2.401	2.413	2.390	2.321
Al	1.397	1.396	1.385	1.422	1.426	1.414	1.424	1.438	1.452	1.489	1.509	1.512	1.588	1.570	1.595	1.656
Fe	0.024	0.026	0.026	0.025	0.022	0.028	0.025	0.023	0.027	0.023	0.024	0.037	0.025	0.025	0.025	0.024
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	0.003	0.002	0.004	0.003	0.003	0.009	0.003	0.002	0.003	0.004	0.004	0.004	0.004	0.004	0.004	0.003
Ca	0.389	0.391	0.408	0.415	0.420	0.422	0.429	0.435	0.444	0.499	0.509	0.505	0.579	0.594	0.606	0.692
ina K	0.554	0.543	0.541	0.538	0.533	0.522	0.512	0.024	0.506	0.464	0.460	0.446	0.390	0.372	0.303	0.293
r.	5.002	4.007	4.000	5.004	5.007	4.000	4.001	5.002	5.001	5.001	5.000	4.000	5.007	4.007	5.000	5.002
Summe	5.003	4.995	4.998	5.004	5.005	4.999	4.991	5.002	5.001	5.001	5.008	4.998	5.007	4.99/	5.000	5.002
AB	56.2	55.8	54.7	54.6	53.9	53.2	52.6	52.5	51.6	46.9	46.3	45.9	39.4	37.7	36.8	29.3
AN	39.4	40.1	41.4	42.1	42.4	43.0	44.0	44.1	45.2	50.5	51.3	52.0	58.6	60.3	61.5	69.3
UK	4.3	4.2	3.9	3.3	3.7	3.8	3.4	3.4	3.2	2.6	2.4	2.1	2.0	1.9	1.7	1.3

Einheit	Juvenile	Kompor	nenten ho	lozäner p	oyroklasti	scher Sti	röme									
Probe	M96-167	(Auswa	ıhl)													
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	55.95	55.60	55.46	55.00	54.68	53.53	54.38	53.86	53.71	53.55	53.24	53.33	53.40	52.89	52.77	51.74
Al_2O_3	27.18	27.97	28.12	28.25	28.76	28.86	28.83	29.25	29.29	29.33	29.51	29.63	30.02	30.01	30.07	30.20
FeO	0.48	0.43	0.42	0.42	0.46	0.72	0.45	0.46	0.45	0.46	0.44	0.47	0.52	0.53	0.40	0.50
/InO /InO	0.00	0.02	0.01	0.05	0.02	0.02	0.00	0.05	0.02	0.00	0.01	0.00	0.04	0.04	0.00	0.01
CaO	9.39	10.05	10.44	10.54	10.92	10.82	11.24	11.53	11.70	11.75	11.88	12.07	12.23	12.24	12.57	12.84
a_2O	5.66	5.21	5.15	5.04	4.87	4.65	4.75	4.59	4.56	4.41	4.39	4.33	4.27	4.17	4.06	3.74
K ₂ O	0.63	0.62	0.46	0.42	0.42	0.42	0.40	0.38	0.36	0.38	0.34	0.34	0.32	0.29	0.31	0.28
umme	99.33	99.96	100.09	99.76	100.19	99.05	100.09	100.17	100.13	99.91	99.87	100.23	100.84	100.23	100.22	99.37
i	2.538	2.508	2.499	2.487	2.466	2.445	2.456	2.434	2.429	2.427	2.415	2.412	2.402	2.393	2.389	2.365
A1	1.453	1.487	1.493	1.506	1.528	1.553	1.534	1.558	1.562	1.566	1.578	1.580	1.591	1.600	1.604	1.627
e Au	0.018	0.016	0.016	0.016	0.017	0.028	0.017	0.018	0.017	0.017	0.017	0.018	0.019	0.020	0.015	0.019
/In Λσ	0.000	0.001	0.000	0.002	0.001	0.001	0.000	0.002	0.001	0.000	0.001	0.000	0.002	0.002	0.000	0.000
'a	0.456	0.486	0.504	0.511	0.528	0.530	0.544	0.558	0.567	0.570	0.577	0.585	0.589	0.593	0.609	0.629
Va	0.497	0.456	0.450	0.442	0.426	0.412	0.416	0.402	0.400	0.387	0.386	0.380	0.372	0.366	0.356	0.331
K	0.036	0.036	0.026	0.024	0.024	0.025	0.023	0.022	0.021	0.022	0.019	0.020	0.018	0.017	0.018	0.016
umme	5.002	4.992	4.992	4.991	4.994	4.995	4.993	4.997	4.999	4.993	4.997	4.998	4.997	4.995	4.995	4.991
В	50.2	46.6	45.9	45.2	43.5	42.6	42.3	40.9	40.5	39.5	39.3	38.6	38.0	37.5	36.2	33.9
AN DR	46.1 3.7	49.7 3.7	51.4 2.7	52.3 2.5	54.0 2.5	54.8 2.5	55.4 2.3	56.9 2.2	57.4 2.1	58.2 2.2	58.7 2.0	59.4 2.0	60.1 1.9	60.8 1.7	61.9 1.8	64.4 1.7
Einheit	Rezente	Domlave	en und py	roklastis	che Strön	ne										
Probe	M96-167	(Fortse	tzung)													
Nr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
SiO ₂	51.18	51.78	51.30	51.09	51.08	51.06	50.82	50.66	50.70	49.51	50.20	49.26	46.87	46.06	45.75	45.63
Al_2O_3	30.26	30.70	30.81	31.09	31.24	31.08	31.43	31.12	31.34	31.80	32.05	31.97	34.15	34.41	34.94	35.27
FeO	1.21	0.58	0.51	0.52	0.44	0.40	0.50	0.50	0.59	0.39	0.43	0.55	0.55	0.45	0.48	0.46
VinO MgO	0.01	0.02	0.03	0.02	0.07	0.01	0.04	0.00	0.01	0.00	0.04	0.00	0.03	0.01	0.03	0.00
.150 CaO	12.84	13.31	13.38	13.65	13.69	13.77	14.00	14.05	14.17	14.46	14.61	14.97	17.22	17.63	18.00	18.13
Na ₂ O	3.60	3.71	3.56	3.54	3.42	3.33	3.26	3.25	3.17	2.87	2.84	2.81	1.58	1.25	1.10	1.02
K_2O	0.24	0.25	0.28	0.23	0.26	0.21	0.22	0.20	0.22	0.19	0.17	0.16	0.11	0.06	0.05	0.04
Summe	99.39	100.39	99.91	100.19	100.25	99.90	100.30	99.83	100.24	99.27	100.38	99.74	100.52	99.90	100.37	100.56
Si	2.348	2.347	2.337	2.323	2.321	2.326	2.309	2.313	2.307	2.276	2.281	2.259	2.146	2.123	2.102	2.092
Al	1.636	1.640	1.654	1.667	1.673	1.669	1.683	1.675	1.680	1.723	1.717	1.728	1.843	1.870	1.892	1.906
Fe	0.046	0.022	0.020	0.020	0.017	0.015	0.019	0.019	0.023	0.015	0.016	0.021	0.021	0.017	0.018	0.018
vin Ma	0.000	0.001	0.001	0.001	0.003	0.001	0.001	0.000	0.000	0.000	0.002	0.000	0.001	0.001	0.001	0.000
vig Ca	0.004	0.003	0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.001	0.001
Na	0.320	0.326	0.315	0.312	0.301	0.294	0.288	0.288	0.280	0.255	0.250	0.250	0.140	0.112	0.098	0.091
K	0.014	0.014	0.016	0.014	0.015	0.012	0.013	0.011	0.013	0.011	0.010	0.009	0.007	0.004	0.003	0.002
Summe	5.000	4.999	4.999	5.005	5.000	4.991	4.997	4.997	4.996	4.995	4.990	5.004	5.003	4.999	5.001	5.001
ΑВ	33.2	33.0	32.0	31.5	30.7	30.1	29.3	29.2	28.4	26.1	25.7	25.1	14.1	11.4	10.0	9.3
4N	65.4	65.5	66.4	67.1	67.8	68.7	69.4	69.7	70.2	72.8	73.2	74.0	85.2	88.3	89.8	90.5
OR	1.5	1.5	1.7	1.4	1.6	1.2	1.3	1.2	1.3	1.1	1.0	0.9	0.7	0.4	0.3	0.2

Einheit	Juvenile	Kompor	nenten ho	olozäner p	oyroklasti	ischer St	röme									
Probe	M97-04	5 (Auswa	ıhl)													
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	53.25	53.26	52.81	52.34	51.57	50.87	48.19	47.41	46.58	46.28	46.23	46.38	45.81	45.62	45.90	45.82
Al_2O_3	29.41	29.48	30.25	30.48	31.10	31.00	33.37	33.80	34.09	33.98	34.31	34.38	34.84	34.69	34.90	34.88
FeO	0.53	0.61	0.59	0.65	0.63	0.59	0.55	0.51	0.57	0.59	0.55	0.60	0.55	0.61	0.54	0.61
MnO	0.07	0.03	0.03	0.04	0.00	0.00	0.00	0.03	0.01	0.00	0.01	0.01	0.02	0.00	0.01	0.00
MgO	0.07	0.08	0.07	0.08	0.06	0.06	0.04	0.04	0.03	0.05	0.03	0.03	0.03	0.03	0.03	0.04
CaO	11.74	11.77	12.06	12.75	13.35	13.49	16.16	16.70	17.09	16.91	17.23	17.72	17.64	17.75	17.96	17.96
Na ₂ O	4.45	4.45	4.19	3.88	3.60	3.41	2.06	1.82	1.65	1.51	1.40	1.31	1.27	1.24	1.23	1.18
K ₂ O Summe	0.35 99.87	0.36	0.31	100.52	0.27	0.21 99.62	0.10	0.10	0.08	0.09 99.41	0.06 99.83	0.06	0.06	100.02	0.04	0.07
Si	2.417	2.415	2.387	2.366	2.334	2.324	2.200	2.170	2.143	2.142	2.131	2.127	2.107	2.104	2.104	2.103
Al	1.573	1.575	1.612	1.624	1.659	1.669	1.795	1.823	1.848	1.853	1.864	1.859	1.889	1.886	1.886	1.887
Fe	0.020	0.023	0.022	0.025	0.024	0.022	0.021	0.019	0.022	0.023	0.021	0.023	0.021	0.023	0.021	0.023
Mn	0.003	0.001	0.001	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
Mg	0.005	0.005	0.005	0.005	0.004	0.004	0.003	0.003	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.002
Ca No	0.371	0.372	0.364	0.017	0.047	0.000	0.790	0.819	0.842	0.839	0.831	0.871	0.809	0.877	0.882	0.003
K	0.392	0.021	0.018	0.017	0.016	0.012	0.182	0.102	0.147	0.135	0.125	0.003	0.003	0.004	0.002	0.103
Summe	5.000	5.003	4.997	4.996	5.000	4.995	4.997	5.003	5.009	5.000	4.999	5.002	5.006	5.009	5.007	5.007
AB	39.9	39.7	37.9	34.9	32.3	31.0	18.6	16.4	14.8	13.8	12.8	11.8	11.5	11.2	11.0	10.6
AN	58.1	58.2	60.3	63.3	66.1	67.7	80.8	83.0	84.8	85.7	86.9	87.9	88.1	88.4	88.8	89.0
OR	2.0	2.1	1.8	1.8	1.6	1.3	0.6	0.6	0.5	0.5	0.4	0.3	0.3	0.4	0.2	0.4
Einheit	Juvenile	Kompor	nenten ho	lozäner p	oyroklasti	ischer Sti	röme									
Probe	M97-04	5 (Fortse	tzung)													
Nr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
SiO ₂	45.79	45.72	45.71	45.61	45.49	45.80	45.27	45.71	45.36	45.49	45.15	45.35	45.39	45.36	44.92	45.04
Al_2O_3	35.06	35.02	35.06	35.01	35.09	34.93	35.08	35.14	35.27	35.18	34.99	35.23	35.43	35.25	35.42	35.41
FeO	0.56	0.52	0.63	0.54	0.60	0.53	0.58	0.55	0.51	0.48	0.58	0.57	0.51	0.54	0.52	0.54
MnO	0.00	0.03	0.00	0.00	0.01	0.01	0.00	0.01	0.01	0.00	0.01	0.03	0.00	0.00	0.00	0.00
MgO	0.04	0.03	0.03	0.04	0.02	0.04	0.02	0.03	0.02	0.02	0.02	0.02	0.01	0.03	0.03	0.01
CaO	18.06	17.91	18.14	17.98	18.07	17.80	18.11	18.31	18.02	18.16	18.10	18.27	18.40	18.43	18.57	18.53
Na ₂ O	1.13	1.09	1.10	1.09	1.10	1.07	1.02	1.04	1.02	1.00	0.97	0.95	0.92	0.90	0.84	0.84
K ₂ O Summe	100.68	100.38	100.73	100.32	100.43	100.24	100.15	100.83	100.28	100.39	0.04 99.85	100.49	100.70	100.56	100.34	100.40
Si	2.098	2.100	2.095	2.097	2.091	2.105	2.087	2.093	2.086	2.091	2.087	2.083	2.081	2.083	2.069	2.073
Al	1.893	1.895	1.894	1.897	1.901	1.892	1.906	1.896	1.912	1.905	1.906	1.908	1.914	1.908	1.923	1.920
Fe	0.021	0.020	0.024	0.021	0.023	0.020	0.022	0.021	0.020	0.019	0.022	0.022	0.020	0.021	0.020	0.021
Mn	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Mg	0.002	0.002	0.002	0.003	0.002	0.003	0.001	0.002	0.002	0.002	0.001	0.002	0.001	0.002	0.002	0.001
Ca	0.886	0.881	0.891	0.885	0.890	0.877	0.895	0.898	0.888	0.894	0.896	0.899	0.904	0.907	0.917	0.914
Na	0.100	0.097	0.097	0.097	0.098	0.096	0.092	0.092	0.091	0.089	0.087	0.084	0.081	0.080	0.075	0.075
к Summe	0.003 5.004	0.003 5.000	0.004 5.008	0.003 5.003	0.003 5.007	0.003 4.996	0.004 5.007	0.003 5.005	0.003 5.002	0.003 5.002	0.002 5.003	0.004 5.004	0.002 5.003	0.003 5.003	0.003 5.007	0.002 5.005
AB	10.1	9.9	9.8	9.9	9.9	9.8	9.3	9.3	9.3	9.0	8.8	8.6	8.3	8.1	7.5	7.5
AN	89.6	89.8	89.8	89.8	89.9	89.9	90.4	90.5	90.5	90.7	91.0	91.1	91.5	91.6	92.2	92.3
OR	0.3	0.4	0.4	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.2	0.4	0.2	0.3	0.3	0.2

Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklast	ischer St	röme									
Probe	M97-03	92 (Ausw	ahl)													
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	57.96	56.53	55.37	56.15	55.70	55.53	54.68	54.93	54.83	54.01	54.05	53.50	54.35	53.29	52.56	52.76
Al_2O_3	26.31	27.56	27.47	28.06	27.64	28.33	28.17	28.02	28.95	28.84	28.70	29.16	29.16	29.40	29.38	29.38
FeO	0.74	0.45	0.55	0.52	0.77	0.48	0.50	0.48	0.55	0.58	0.48	0.51	0.48	0.48	0.45	0.50
MnO MgO	0.00	0.00	0.01	0.04	0.00	0.03	0.01	0.02	0.03	0.03	0.03	0.02	0.00	0.01	0.01	0.01
CaO	7.81	9.27	9.50	9.85	9.85	10.16	10.43	10.49	10.90	10.95	11.26	11.38	11.43	11.79	11.83	12.00
Na ₂ O	5.95	5.60	5.44	5.47	5.15	5.42	5.06	5.05	4.92	4.77	4.71	4.65	4.63	4.62	4.41	4.31
K_2O	1.24	0.61	0.63	0.52	0.83	0.55	0.51	0.55	0.48	0.47	0.43	0.45	0.40	0.36	0.41	0.36
Summe	100.05	100.06	99.03	100.65	99.99	100.54	99.41	99.58	100.70	99.68	99.71	99.71	100.50	100.01	99.11	99.38
Si	2.603	2.542	2.521	2.514	2.515	2.493	2.484	2.491	2.462	2.450	2.453	2.430	2.446	2.416	2.405	2.408
Al	1.393	1.459	1.474	1.481	1.471	1.499	1.508	1.498	1.532	1.542	1.535	1.561	1.547	1.571	1.585	1.581
Fe	0.028	0.017	0.021	0.020	0.029	0.018	0.019	0.018	0.021	0.022	0.018	0.019	0.018	0.018	0.017	0.019
Mn	0.000	0.000	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.001
Mg	0.002	0.003	0.003	0.003	0.003	0.003	0.004	0.002	0.004	0.003	0.004	0.003	0.003	0.003	0.004	0.003
Ca	0.376	0.446	0.463	0.472	0.477	0.489	0.507	0.510	0.525	0.532	0.547	0.554	0.551	0.573	0.580	0.587
Na K	0.518	0.488	0.481	0.475	0.451	0.472	0.446	0.444	0.428	0.419	0.414	0.410	0.404	0.406	0.391	0.382
Summe	4.991	4.990	5.001	4.995	4.994	5.006	4.998	4.996	5.000	4.997	4.997	5.004	4.992	5.008	5.006	5.001
AB	53.7	50.3	49.0	48.6	46.2	47.5	45.3	45.1	43.7	42.9	42.0	41.4	41.3	40.6	39.3	38.6
AN	39.0	46.0	47.3	48.4	48.9	49.3	51.6	51.7	53.5	54.4	55.5	56.0	56.3	57.3	58.3	59.3
OR	7.4	3.6	3.7	3.1	4.9	3.2	3.0	3.2	2.8	2.8	2.5	2.6	2.4	2.1	2.4	2.1
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklast	ischer St	röme									
Probe	M97-03	92 (Fortse	etzung)													
Nr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
SiO ₂	52.17	52.38	52.22	52.09	51.39	50.82	50.07	48.82	48.84	47.48	47.71	47.54	46.97	45.91	45.92	46.60
Al_2O_3	29.86	29.82	29.84	29.96	31.24	31.39	31.91	32.51	32.87	33.06	33.52	33.60	33.83	34.15	34.54	33.91
FeO	0.54	0.43	0.44	0.55	0.59	0.55	0.58	0.61	0.53	0.59	0.52	0.59	0.52	0.47	0.49	0.59
MnO	0.00	0.01	0.00	0.02	0.01	0.00	0.02	0.04	0.04	0.01	0.05	0.01	0.04	0.00	0.02	0.00
MgO	0.04	0.06	0.05	0.06	0.03	0.05	0.05	0.05	0.04	0.05	0.02	0.04	0.03	0.02	0.03	0.04
CaO No-O	12.18	12.18	12.35	12.71	13.19	14.09	14.86	15.53	15.68	16.18	16.39	10.81	16.99	17.05	17.49	18.05
K ₂ O	0.35	0.34	0.34	0.31	0.26	0.21	0.20	0.12	0.15	0.13	0.12	0.09	0.09	0.08	0.05	0.06
Summe	99.43	99.43	99.41	99.72	100.37	100.47	100.64	100.26	100.64	99.59	100.36	100.61	100.24	99.29	99.99	100.57
Si	2.383	2.391	2.385	2.375	2.330	2.307	2.274	2.232	2.225	2.190	2.183	2.173	2.156	2.129	2.116	2.138
Al	1.608	1.604	1.606	1.610	1.670	1.680	1.709	1.751	1.764	1.797	1.808	1.810	1.830	1.866	1.876	1.833
Fe	0.020	0.016	0.017	0.021	0.022	0.021	0.022	0.023	0.020	0.023	0.020	0.023	0.020	0.018	0.019	0.023
Mn	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.002	0.001	0.000	0.002	0.001	0.002	0.000	0.001	0.000
Mg Ca	0.003	0.004	0.003	0.621	0.002	0.003	0.003	0.003	0.003	0.004	0.002	0.002	0.002	0.001	0.002	0.003
Ca Na	0.390	0.390	0.004	0.021	0.041	0.000	0.725	0.700	0.703	0.800	0.803	0.823	0.830	0.047	0.804	0.007
K	0.380	0.020	0.020	0.018	0.015	0.012	0.011	0.007	0.009	0.008	0.007	0.005	0.006	0.005	0.003	0.003
Summe	5.010	5.004	5.005	5.004	5.003	5.005	5.005	5.007	5.007	5.007	5.004	5.008	5.008	5.011	5.010	5.005
AB	38.2	37.8	37.2	35.7	32.9	29.8	26.2	22.9	22.1	18.8	18.1	17.1	15.7	14.5	13.0	11.7
AN	59.8	60.2	60.8	62.5	65.6	69.0	72.7	76.3	77.0	80.5	81.1	82.4	83.8	85.0	86.7	88.0
OR	2.0	2.0	2.0	1.8	1.5	1.2	1.1	0.7	0.9	0.8	0.7	0.5	0.6	0.5	0.3	0.3

Tab. A5.2. (Fortsetzung)

Einheit	Juvenile	Kompor	ienten ho	lozäner p	yroklasti	scher St	röme									
Probe	M98-09	6											-	M96-07	5	
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	-	1	2	3
SiO ₂	54.13	53.50	53.77	52.91	52.23	52.18	52.93	52.08	52.69	52.26	52.25	51.28		55.16	55.57	55.21
Al_2O_3	29.31	29.33	29.40	30.00	29.57	30.28	29.96	30.17	30.31	30.21	30.54	30.97		28.31	28.16	28.57
FeO	0.62	0.56	0.60	0.54	0.57	0.61	0.60	0.57	0.61	0.60	0.58	0.59		0.46	0.48	0.46
MnO	0.00	0.00	0.05	0.00	0.00	0.01	0.05	0.04	0.06	0.00	0.00	0.00		0.03	0.03	0.00
MgO C=O	0.07	0.07	0.08	0.07	0.15	0.08	0.08	0.07	0.05	0.06	0.07	0.07		0.04	0.04	0.04
CaO No. O	11.49	11.49	11.6/	12.21	12.08	12.10	12.45	12.48	12.61	12.75	12.81	13.43		10.30	5 17	10.54
Na ₂ O	4.04	4.50	4.45	4.18	4.04	4.07	4.15	4.00	4.01	3.99	3.90	0.25		5.24 0.46	5.17	5.07
Summe	100.64	99.83	100.40	100.23	99.01	99.63	100.51	99.69	100.63	100.12	100.43	100.10		100.07	100.32	100.34
Si	2,436	2.427	2,426	2 391	2 394	2 376	2 391	2 373	2 379	2 372	2 364	2 332		2.488	2 499	2 483
Al	1.554	1.568	1.563	1.597	1.597	1.625	1.595	1.620	1.613	1.616	1.629	1.660		1.505	1.492	1.514
Fe	0.023	0.021	0.023	0.020	0.022	0.023	0.023	0.022	0.023	0.023	0.022	0.022		0.017	0.018	0.017
Mn	0.000	0.000	0.002	0.000	0.000	0.000	0.002	0.001	0.002	0.000	0.000	0.000		0.001	0.001	0.000
Mg	0.005	0.005	0.005	0.005	0.010	0.005	0.006	0.005	0.004	0.004	0.004	0.005		0.003	0.002	0.003
Ca	0.554	0.559	0.564	0.591	0.593	0.590	0.602	0.609	0.610	0.620	0.621	0.655		0.501	0.501	0.508
Na	0.405	0.396	0.390	0.366	0.359	0.360	0.361	0.353	0.351	0.351	0.342	0.310		0.458	0.450	0.442
K	0.022	0.021	0.021	0.019	0.022	0.018	0.018	0.017	0.017	0.015	0.016	0.014		0.026	0.027	0.026
Summe	4.998	4.998	4.994	4.989	4.997	4.997	4.998	4.999	4.998	5.001	4.999	4.998		4.999	4.992	4.993
AB	41.3	40.6	39.9	37.5	36.8	37.2	36.8	36.1	35.9	35.6	35.0	31.7		46.5	46.0	45.3
AN	56.5	57.2	57.9	60.6	60.9	61.0	61.4	62.2	62.4	62.9	63.4	66.9		50.8	51.2	52.1
OR	2.2	2.2	2.2	1.9	2.3	1.8	1.8	1.7	1.7	1.5	1.6	1.5		2.7	2.8	2.6
Einheit	Juvenile	Kompor	nenten ho	olozäner I	Fallablage	erungen										
Probe	M96-075	5 (Fortse	tzung)													
Nr.	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
SiO ₂	54.27	54.19	54.37	53.52	53.51	53.14	53.09	52.53	52.72	52.60	52.43	52.14	51.77	51.75	52.17	51.77
Al_2O_3	28.93	29.26	29.11	29.36	29.63	29.44	29.83	30.22	30.21	30.05	29.83	30.94	30.78	30.17	30.61	30.85
FeO	0.48	0.58	0.50	0.55	0.49	0.53	0.54	0.54	0.48	0.52	0.73	0.59	0.48	0.78	0.55	0.45
MnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01
MgO	0.05	0.05	0.03	0.05	0.04	0.05	0.04	0.04	0.05	0.05	0.10	0.04	0.04	0.08	0.06	0.03
CaO	10.54	10.95	11.04	11.03	11.60	11.54	11.75	11.88	12.08	12.35	12.30	12.56	12.54	12.50	12.91	13.13
Na ₂ O	5.09	4.85	4.80	4.70	4.51	4.48	4.42	4.30	4.35	4.18	3.99	3.96	3.95	3.89	3.87	3.85
K ₂ O Summe	0.35 99.72	0.34	0.38	0.37 99.58	0.34	0.32 99.49	0.27 99.95	0.32 99.83	0.26	0.29	0.35 99.73	0.26	0.27 99.83	0.26 99.43	0.25	0.28
Si	2.458	2.445	2.451	2.431	2.420	2.418	2.406	2.386	2.387	2.386	2.388	2.356	2.355	2.366	2.361	2.346
AI	1.544	1.555	1.546	1.572	1.579	1.579	1.593	1.618	1.612	1.607	1.601	1.648	1.650	1.626	1.632	1.648
re Mr	0.018	0.022	0.019	0.021	0.018	0.020	0.020	0.020	0.018	0.020	0.028	0.022	0.018	0.030	0.021	0.017
Mo	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Ca	0.512	0.529	0.533	0.537	0.562	0.563	0.571	0.578	0.586	0.600	0,600	0.608	0.611	0.612	0.626	0.638
Na	0.447	0.424	0.419	0.414	0.395	0.395	0.389	0.379	0.382	0.368	0.352	0.347	0.348	0.345	0.340	0.338
K	0.020	0.020	0.022	0.021	0.019	0.018	0.016	0.018	0.015	0.017	0.020	0.015	0.015	0.015	0.015	0.016
Summe	5.003	4.998	4.992	4.999	4.996	4.997	4.997	5.002	5.004	5.000	4.997	4.999	5.001	4.999	4.998	5.006
AB	45.7	43.6	43.0	42.6	40.5	40.5	39.8	38.9	38.9	37.3	36.2	35.8	35.7	35.4	34.6	34.1
AN	52.2	54.4	54.7	55.2	57.6	57.6	58.5	59.3	59.6	60.9	61.7	62.7	62.7	63.0	63.9	64.3
OR	2.1	2.0	2.2	2.2	2.0	1.9	1.6	1.9	1.5	1.7	2.1	1.5	1.6	1.6	1.5	1.6

Einheit	Juvenne	Kompon	enten no	lozaner i	allablag	erungen										
Probe	M96-075	5 (Fortset	zung)													
Nr.	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
SiO_2	51.80	51.62	50.97	51.18	51.32	50.92	50.31	50.10	49.94	49.29	48.90	48.26	47.84	47.87	47.10	46.82
Al_2O_3	30.78	31.03	31.17	31.16	31.44	31.27	31.73	31.83	32.33	32.41	32.62	32.89	32.78	33.32	33.74	34.13
FeO	0.51	0.54	0.62	0.53	0.52	0.74	0.64	0.53	0.57	0.59	0.54	0.64	0.55	0.55	0.75	0.60
MnO MaO	0.02	0.00	0.01	0.00	0.00	0.01	0.06	0.01	0.01	0.00	0.04	0.03	0.04	0.00	0.01	0.00
MgO CaO	13 23	13 35	13 30	13.28	0.05	0.11	0.07	0.03	14 74	0.03	15 20	15 70	0.03	0.02	16.89	17.03
Na2O	3.74	3.70	3.65	3.63	3.45	3.40	3.01	3.03	2.85	2.70	2.60	2.37	2.35	2.05	1.75	1,69
K ₂ O	0.22	0.25	0.23	0.20	0.22	0.25	0.23	0.19	0.21	0.16	0.14	0.12	0.14	0.12	0.10	0.07
Summe	100.36	100.55	100.01	100.02	100.67	100.35	100.56	100.34	100.67	100.21	100.17	100.07	99.59	100.09	100.38	100.35
Si	2.348	2.337	2.322	2.328	2.321	2.314	2.286	2.281	2.266	2.250	2.235	2.212	2.205	2.194	2.160	2.147
Al	1.644	1.656	1.674	1.671	1.675	1.674	1.700	1.708	1.729	1.744	1.757	1.776	1.780	1.800	1.823	1.844
Fe	0.019	0.021	0.024	0.020	0.020	0.028	0.024	0.020	0.022	0.023	0.021	0.024	0.021	0.021	0.029	0.023
Mn Ma	0.001	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.001	0.000	0.001	0.001	0.002	0.000	0.000	0.000
Mg	0.004	0.004	0.004	0.002	0.004	0.008	0.005	0.002	0.001	0.002	0.002	0.004	0.002	0.001	0.004	0.001
Ca Na	0.042	0.047	0.049	0.047	0.002	0.004	0.707	0.713	0.717	0.733	0.749	0.771	0.783	0.193	0.850	0.837
K	0.013	0.015	0.013	0.012	0.013	0.015	0.013	0.011	0.012	0.009	0.008	0.007	0.008	0.007	0.006	0.004
Summe	5.000	5.005	5.008	5.000	4.997	5.003	5.002	5.003	4.998	5.002	5.004	5.007	5.011	5.000	5.007	5.006
AB	33.4	32.9	32.7	32.7	30.9	30.6	26.9	27.0	25.6	24.3	23.3	21.3	21.0	18.6	15.7	15.1
AN	65.3	65.6	65.9	66.1	67.7	67.9	71.7	71.9	73.2	74.8	75.9	78.0	78.2	80.7	83.7	84.5
OR	1.3	1.5	1.4	1.2	1.3	1.5	1.4	1.1	1.2	1.0	0.8	0.7	0.8	0.7	0.6	0.4
Einheit	Juvenile	Kompon	enten ho	lozäner H	allablag	erungen										
		•			0	0										
Probe	M96-163	3						M97-053	3							
Probe Nr.	M96-163	3 2	3	4	5	6		M97-053	3	3	4	5	6	7	8	9
Probe Nr.	M96-163	3 2	3	4	5	6		M97-053	3 2	3	4	5	6	7	8	9
Probe Nr. SiO ₂	M96-163	3 2 53.19 30.14	3 51.65 30.14	47.68	5 46.69 33.94	6 45.84 34.09		M97-053 1 56.30 27 83	3 2 55.97 28.08	3 55.74 28.12	4 55.59 28.04	5 55.35 28.40	6 55.48 28.16	7 55.26 28 35	8 54.99 28.48	9 54.66 28.60
Probe Nr. SiO ₂ Al ₂ O ₃ FeO	M96-163	3 2 53.19 30.14 0.49	3 51.65 30.14 0.56	4 47.68 32.96 0.60	5 46.69 33.94 0.47	6 45.84 34.09 0.54		M97-053 1 56.30 27.83 0.42	3 2 55.97 28.08 0.42	3 55.74 28.12 0.41	4 55.59 28.04 0.49	5 55.35 28.40 0.47	6 55.48 28.16 0.40	7 55.26 28.35 0.48	8 54.99 28.48 0.44	9 54.66 28.60 0.49
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO	M96-163	3 3 53.19 30.14 0.49 0.00	3 51.65 30.14 0.56 0.01	4 47.68 32.96 0.60 0.01	5 46.69 33.94 0.47 0.00	6 45.84 34.09 0.54 0.02	<u> </u>	M97-053 1 56.30 27.83 0.42 0.04	3 55.97 28.08 0.42 0.00	3 55.74 28.12 0.41 0.03	4 55.59 28.04 0.49 0.01	5 55.35 28.40 0.47 0.00	6 55.48 28.16 0.40 0.00	7 55.26 28.35 0.48 0.04	8 54.99 28.48 0.44 0.03	9 54.66 28.60 0.49 0.00
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO	M96-162 1 53.15 29.22 0.45 0.00 0.05	3 3 53.19 30.14 0.49 0.00 0.04	3 51.65 30.14 0.56 0.01 0.05	4 47.68 32.96 0.60 0.01 0.05	5 46.69 33.94 0.47 0.00 0.04	6 45.84 34.09 0.54 0.02 0.04		M97-053 1 56.30 27.83 0.42 0.04 0.03	3 55.97 28.08 0.42 0.00 0.04	3 55.74 28.12 0.41 0.03 0.03	4 55.59 28.04 0.49 0.01 0.02	5 55.35 28.40 0.47 0.00 0.04	6 55.48 28.16 0.40 0.00 0.04	7 55.26 28.35 0.48 0.04 0.04	8 54.99 28.48 0.44 0.03 0.05	9 54.66 28.60 0.49 0.00 0.04
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	M96-162 1 53.15 29.22 0.45 0.00 0.05 11.46	3 53.19 30.14 0.49 0.00 0.04 12.18	3 51.65 30.14 0.56 0.01 0.05 12.77	47.68 32.96 0.60 0.01 0.05 15.90	5 46.69 33.94 0.47 0.00 0.04 17.01	6 45.84 34.09 0.54 0.02 0.04 17.18		M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17	3 55.97 28.08 0.42 0.00 0.04 9.46	3 55.74 28.12 0.41 0.03 0.03 9.69	4 55.59 28.04 0.49 0.01 0.02 9.68	5 55.35 28.40 0.47 0.00 0.04 9.95	6 55.48 28.16 0.40 0.00 0.04 10.08	7 55.26 28.35 0.48 0.04 0.04 10.10	8 54.99 28.48 0.44 0.03 0.05 10.00	9 54.66 28.60 0.49 0.00 0.04 10.01
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	M96-16 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03	47.68 32.96 0.60 0.01 0.05 15.90 2.29	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48		M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76	3 55.74 28.12 0.41 0.03 0.03 9.69 5.65	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54	7 55.26 28.35 0.48 0.04 0.04 10.10 5.43	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summo	M96-163 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 00.25	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100 \$	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20	4 47.68 32.96 0.01 0.05 15.90 2.29 0.09	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05	-	M97-053	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40	6 55.48 28.16 0.40 0.04 10.08 5.54 0.42	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe	M96-16 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23		M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54 0.42 100.10	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si	M96-16 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93 2.507	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493	6 55.48 28.16 0.40 0.00 10.08 5.54 0.42 100.10 2.499	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al	M96-163 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.01	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.010	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.022	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.010	5 55.35 28.40 0.47 0.00 9.95 5.48 0.40 100.10 2.493 1.507 0.018	6 55.48 28.16 0.40 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.010
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn	M96-163 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.007	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.009	3 51.65 30.14 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.001	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.002	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.008	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.0016	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000	6 55.48 28.16 0.40 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.005	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.007	9 54.66 28.60 0.49 0.00 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg	M96-163 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.003	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.000	3 51.65 30.14 0.56 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003	4 47.68 32.96 0.60 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.000 0.003	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001	4 55.59 28.04 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003	6 55.48 28.16 0.40 0.00 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 9.72 2.485 1.517 0.017 0.001 0.003	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca	M96-163 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.003 0.560	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.000 0.003 0.587	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003 0.626	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003 0.785	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.000 0.003 0.839	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001 0.003 0.854	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002 0.041	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003 0.455	3 55.74 28.12 0.41 0.03 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001 0.002 0.467	4 55.59 28.04 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000 0.002 0.468	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003 0.480	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003 0.486	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001 0.003 0.488	8 54.99 28.48 0.44 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.001 0.003 0.484	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000 0.003 0.486
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na	M96-16: 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.003 0.560 0.415	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.000 0.003 0.587 0.394	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003 0.626 0.357	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003 0.785 0.205	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.000 0.003 0.839 0.149	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001 0.003 0.854 0.133	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002 0.441 0.519	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003 0.455 0.502	3 55.74 28.12 0.41 0.03 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001 0.002 0.467 0.493	4 55.59 28.04 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000 0.002 0.468 0.493	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003 0.480 0.479	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003 0.486 0.483	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001 0.003 0.488 0.474	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.001 0.003 0.484 0.472	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000 0.003 0.486 0.468
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na K	M96-163 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.003 0.560 0.415 0.013	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.000 0.003 0.587 0.394 0.014	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003 0.626 0.357 0.012	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003 0.785 0.205 0.005	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.000 0.003 0.839 0.149 0.005	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001 0.003 0.854 0.133 0.003		M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002 0.441 0.519 0.024	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003 0.455 0.502 0.025	3 55.74 28.12 0.41 0.03 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001 0.002 0.467 0.493 0.026	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000 0.002 0.468 0.493 0.026	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003 0.480 0.479 0.023	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003 0.486 0.483 0.024	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001 0.003 0.488 0.474 0.023	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.001 0.003 0.484 0.472 0.020	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000 0.003 0.486 0.468 0.024
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na K Summe	M96-16 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.017 0.000 0.017 0.000 0.415 0.013 5.003	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 1025 100.80 2.394 1.599 0.019 0.000 0.003 0.587 0.394 0.014 5.010	3 51.65 30.14 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003 0.626 0.357 0.012 5.008	4 47.68 32.96 0.60 0.01 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003 0.785 0.205 0.005 5.010	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.003 0.003 0.149 0.005 5.004	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001 0.003 0.854 0.133 0.003 5.006	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002 0.441 0.519 0.024 5.005	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003 0.455 0.502 0.025 5.003	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001 0.002 0.467 0.493 0.026 5.004	4 55.59 28.04 0.49 0.01 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000 0.002 0.468 0.493 0.026 5.005	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003 0.480 0.479 0.023 5.003	6 55.48 28.16 0.40 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003 0.486 0.483 0.024 5.006	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001 0.003 0.488 0.474 0.023 5.003	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.001 0.003 0.484 0.472 0.020 4.999	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000 0.003 0.486 0.024 5.004
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na K Summe AB	M96-16: 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.003 0.560 0.415 0.013 5.003 42.0	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.000 0.003 0.587 0.394 0.014 5.010 39.6	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003 0.626 0.357 0.012 5.008 35.9	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003 0.785 0.205 0.005 5.010 20.6	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.000 0.003 0.839 0.149 0.005 5.004 15.0	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001 0.003 0.854 0.133 0.003 5.006 13.4		M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002 0.441 0.519 0.024 5.005 52.7	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003 0.455 0.502 0.025 5.003 51.1	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001 0.002 0.467 0.493 0.026 5.004	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000 0.002 0.468 0.493 0.026 5.005	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003 0.480 0.479 0.023 5.003 48.8	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003 0.486 0.483 0.024 5.006 48.6	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001 0.003 0.488 0.474 0.023 5.003 48.2	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.001 0.003 0.484 0.472 0.020 4.999 48.3	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000 0.003 0.486 0.024 5.004 47.8
Probe Nr. SiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Summe Si Al Fe Mn Mg Ca Na K Summe AB AN	M96-16: 1 53.15 29.22 0.45 0.00 0.05 11.46 4.70 0.23 99.25 2.424 1.570 0.017 0.000 0.003 0.560 0.415 0.013 5.003 42.0 56.6	3 53.19 30.14 0.49 0.00 0.04 12.18 4.51 0.25 100.80 2.394 1.599 0.019 0.000 0.003 0.587 0.394 0.014 5.010 39.6 59.0	3 51.65 30.14 0.56 0.01 0.05 12.77 4.03 0.20 99.40 2.363 1.625 0.021 0.000 0.003 0.626 0.357 0.012 5.008 35.9 62.9	4 47.68 32.96 0.60 0.01 0.05 15.90 2.29 0.09 99.57 2.197 1.790 0.023 0.000 0.003 0.785 0.205 0.005 5.010 20.6 78.9	5 46.69 33.94 0.47 0.00 0.04 17.01 1.67 0.08 99.90 2.149 1.841 0.018 0.000 0.003 0.839 0.149 0.005 5.004 15.0 84.5	6 45.84 34.09 0.54 0.02 0.04 17.18 1.48 0.05 99.23 2.128 1.864 0.021 0.001 0.003 0.854 0.133 0.003 5.006 13.4 86.3	-	M97-053 1 56.30 27.83 0.42 0.04 0.03 9.17 5.96 0.43 100.16 2.528 1.473 0.016 0.002 0.002 0.441 0.519 0.024 5.005 52.7 44.8	3 55.97 28.08 0.42 0.00 0.04 9.46 5.76 0.43 100.16 2.515 1.487 0.016 0.000 0.003 0.455 0.502 0.025 5.003 51.1 46.4	3 55.74 28.12 0.41 0.03 9.69 5.65 0.45 100.12 2.508 1.491 0.015 0.001 0.002 0.467 0.493 0.026 5.004 5.00 47.4	4 55.59 28.04 0.49 0.01 0.02 9.68 5.64 0.45 99.93 2.507 1.491 0.019 0.000 0.002 0.468 0.493 0.026 5.005 5.00 47.4	5 55.35 28.40 0.47 0.00 0.04 9.95 5.48 0.40 100.10 2.493 1.507 0.018 0.000 0.003 0.480 0.479 0.023 5.003 48.8 48.9	6 55.48 28.16 0.40 0.00 0.04 10.08 5.54 0.42 100.10 2.499 1.495 0.015 0.000 0.003 0.486 0.483 0.024 5.006 48.6 48.9	7 55.26 28.35 0.48 0.04 10.10 5.43 0.39 100.09 2.491 1.506 0.018 0.001 0.003 0.488 0.474 0.023 5.003 48.2 49.5	8 54.99 28.48 0.44 0.03 0.05 10.00 5.39 0.35 99.72 2.485 1.517 0.017 0.001 0.003 0.484 0.472 0.020 4.999 48.3 49.6	9 54.66 28.60 0.49 0.00 0.04 10.01 5.32 0.41 99.54 2.477 1.528 0.019 0.000 0.003 0.486 0.024 5.004 47.8 49.7

Einheit	Juvenile	Kompor	ienten ho	olozäner I	Fallablag	erungen					Laven M	erapi-Soi	nma			
Probe	M97-053	3 (Fortse	tzung)							-	M95-020	5 (Auswa	ıhl)			
Nr.	10	11	12	13	14	15	16	17	18	-	1	2	3	4	5	6
SiO ₂	54.98	54.77	55.15	54.62	54.51	54.31	53.76	53.49	53.24		55.60	55.47	55.48	54.82	53.85	52.83
Al_2O_3	28.69	28.69	28.81	28.89	28.67	28.87	29.73	29.56	29.63		28.30	28.53	28.66	28.82	29.70	30.33
FeO	0.39	0.46	0.40	0.41	0.50	0.41	0.43	0.40	0.37		0.40	0.42	0.53	0.42	0.45	0.55
MnO	0.00	0.00	0.01	0.03	0.02	0.02	0.00	0.00	0.02		0.00	0.00	0.01	0.01	0.04	0.02
MgO	0.04	0.04	0.04	0.04	0.03	0.03	0.04	0.04	0.03		0.04	0.05	0.05	0.06	0.05	0.05
NaoO	5 30	5 30	5 31	5 15	5 10	5.02	4 77	4 74	4 62		5 34	5 18	5.08	11.19	11.95	4 00
K ₂ O	0.40	0.38	0.42	0.37	0.35	0.39	0.34	0.30	0.28		0.35	0.43	0.36	0.34	0.28	0.26
Summe	99.87	99.76	100.64	100.02	99.85	99.86	100.34	99.92	99.68		100.25	100.54	100.92	100.50	100.71	100.84
Si	2.481	2.476	2.475	2.465	2.466	2.457	2.424	2.422	2.417		2.499	2.488	2.482	2.464	2.421	2.380
Al	1.526	1.529	1.523	1.537	1.529	1.540	1.580	1.578	1.586		1.499	1.508	1.511	1.527	1.573	1.610
Fe	0.015	0.017	0.015	0.016	0.019	0.016	0.016	0.015	0.014		0.015	0.016	0.020	0.016	0.017	0.021
Mn Ma	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.001		0.000	0.000	0.000	0.000	0.002	0.001
Mg	0.003	0.003	0.003	0.003	0.002	0.002	0.003	0.003	0.002		0.003	0.004	0.003	0.004	0.003	0.003
Na	0.463	0.465	0.462	0.450	0.447	0.440	0.417	0.416	0.407		0.465	0.451	0.441	0.422	0.383	0.357
K	0.023	0.022	0.024	0.021	0.020	0.022	0.019	0.017	0.016		0.020	0.024	0.020	0.019	0.016	0.015
Summe	4.997	5.001	5.007	5.001	5.002	5.002	5.004	5.004	5.002		4.993	4.994	4.993	4.991	4.990	5.000
AB	47.6	47.6	46.6	46.0	45.4	44.6	42.5	42.2	41.5		47.6	46.1	45.1	43.1	39.3	36.2
AN	50.0	50.1	50.9	51.9	52.5	53.1	55.5	56.1	56.9		50.4	51.4	52.8	55.0	59.1	62.3
OR	2.4	2.3	2.4	2.2	2.1	2.3	2.0	1.7	1.6		2.0	2.5	2.1	2.0	1.6	1.5
Einheit	Laven M	erapi-Soi	nma													
Probe	M95-020	ó (Fortse	tzung)													
Nr.	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
SiO ₂	52.58	52.48	52.24	52.24	51.22	51.01	51.15	50.80	50.02	50.61	50.20	50.05	49.80	49.32	49.31	49.35
Al_2O_3	30.57	30.38	30.73	30.21	31.21	31.25	31.42	31.53	31.88	31.73	31.84	32.03	32.42	32.32	32.38	32.60
FeO	0.55	0.50	0.48	1.13	0.52	0.55	0.48	0.49	0.54	0.52	0.57	0.49	0.61	0.55	0.56	0.56
MnO MaO	0.01	0.00	0.02	0.06	0.00	0.02	0.00	0.07	0.00	0.00	0.02	0.03	0.05	0.05	0.01	0.01
MgO CaO	12.84	12.84	13 10	0.28	13 61	13.98	13.95	14.26	14 56	14 42	14 59	14 91	14.93	15 36	15.25	15 42
Na ₂ O	4.03	3.92	3.81	3.46	3.43	3.43	3.33	3.18	3.20	3.08	2.96	2.87	2.65	2.74	2.54	2.57
K ₂ O	0.26	0.22	0.24	0.26	0.23	0.19	0.22	0.21	0.19	0.20	0.19	0.20	0.19	0.16	0.22	0.16
Summe	100.88	100.40	100.67	101.07	100.25	100.45	100.60	100.59	100.40	100.63	100.40	100.61	100.69	100.51	100.32	100.69
Si	2.369	2.374	2.359	2.358	2.326	2.316	2.316	2.304	2.277	2.295	2.284	2.274	2.260	2.248	2.250	2.244
Al	1.623	1.619	1.635	1.607	1.671	1.672	1.677	1.686	1.711	1.695	1.707	1.715	1.735	1.736	1.741	1.746
Fe	0.021	0.019	0.018	0.043	0.020	0.021	0.018	0.018	0.020	0.020	0.022	0.019	0.023	0.021	0.021	0.021
Mn Mc	0.001	0.000	0.001	0.002	0.000	0.001	0.000	0.003	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.000
Mg Ca	0.003	0.622	0.633	0.019	0.003	0.680	0.003	0.693	0.000	0.005	0.002	0.002	0.004	0.000	0.004	0.000
Na	0.352	0.344	0.334	0.303	0.302	0.302	0.292	0.280	0.282	0.270	0.261	0.253	0.233	0.242	0.224	0.227
K	0.015	0.013	0.014	0.015	0.013	0.011	0.013	0.012	0.011	0.012	0.011	0.012	0.011	0.009	0.013	0.009
Summe	5.003	4.994	4.997	4.995	4.996	5.004	4.996	4.999	5.013	4.998	4.999	5.001	4.993	5.009	4.998	4.999
AB	35.7	35.1	34.0	31.3	30.9	30.4	29.7	28.4	28.1	27.5	26.5	25.5	24.0	24.2	22.8	23.0
AN	62.9	63.5	64.6	67.2	67.7	68.5	68.9	70.3	70.8	71.3	72.4	73.3	74.9	74.9	75.9	76.1
OR	1.5	1.3	1.4	1.6	1.4	1.1	1.3	1.2	1.1	1.2	1.1	1.2	1.1	0.9	1.3	1.0

Tab. A5.2.	(Fortsetzung).

Linneit	Laven M	erapi-Soi	mma													
Probe	M95-026	ó (Fortse	tzung)							M96-050	5 (Auswa	hl)				
Nr.	23	24	25	26	27	28	29	30	-	1	2	3	4	5	6	
SiO ₂	49.00	48.55	48.78	48.44	48.46	48.35	47.61	47.51		56.33	56.25	54.80	54.94	54.76	54.51	54.3
Al_2O_3	32.48	33.16	32.77	33.34	33.22	33.61	33.89	33.62		28.39	27.97	28.60	28.36	29.09	28.72	28.8
FeO	0.43	0.49	0.58	0.53	0.68	0.58	0.52	0.53		0.40	0.47	0.47	0.49	0.52	0.46	0.4
MnO	0.02	0.01	0.03	0.01	0.00	0.02	0.00	0.02		0.00	0.00	0.05	0.00	0.04	0.00	0.0
MgO	0.03	0.01	0.06	0.04	0.03	0.01	0.03	0.02		0.04	0.03	0.05	0.04	0.04	0.05	0.0
CaO	15.45	15.86	15.93	16.04	16.24	16.37	16.58	16.53		8.72	9.62	10.22	10.90	10.80	10.93	11.0
Na ₂ O	2.56	2.43	2.32	2.23	2.14	2.02	1.92	1.82		6.00	5.63	5.26	5.29	5.04	4.93	4.94
K_2O	0.14	0.14	0.12	0.13	0.13	0.12	0.10	0.12		0.48	0.40	0.32	0.28	0.30	0.30	0.2
Summe	100.11	100.65	100.58	100.75	100.90	101.08	100.64	100.18		100.36	100.37	99.76	100.30	100.59	99.89	100.0
Si	2.240	2.211	2.224	2.204	2.205	2.194	2.172	2.177		2.521	2.522	2.477	2.475	2.458	2.465	2.45
Al	1.750	1.780	1.761	1.788	1.782	1.798	1.823	1.816		1.497	1.478	1.524	1.506	1.539	1.530	1.53
Fe	0.017	0.019	0.022	0.020	0.026	0.022	0.020	0.020		0.015	0.018	0.018	0.018	0.020	0.017	0.019
Mn	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.001		0.000	0.000	0.002	0.000	0.001	0.000	0.00
Mg	0.002	0.001	0.004	0.003	0.002	0.000	0.002	0.002		0.003	0.002	0.003	0.003	0.003	0.003	0.002
Ca	0.757	0.774	0.778	0.782	0.792	0.796	0.810	0.812		0.418	0.462	0.495	0.526	0.520	0.530	0.537
Na	0.227	0.214	0.205	0.197	0.189	0.178	0.170	0.162		0.520	0.489	0.461	0.462	0.439	0.432	0.432
K	0.008	0.008	0.007	0.007	0.008	0.007	0.006	0.007		0.027	0.023	0.019	0.016	0.017	0.017	0.016
Summe	5.001	5.008	5.002	5.001	5.003	4.996	5.003	4.997		5.002	4.995	4.998	5.006	4.996	4.995	5.000
AB	22.9	21.5	20.7	19.9	19.1	18.1	17.2	16.5		53.9	50.2	47.3	46.0	45.0	44.2	43.9
AN	76.3	77.7	78.6	79.3	80.1	81.2	82.2	82.8		43.3	47.4	50.8	52.4	53.3	54.1	54.:
Finheit	Laven M	erani-Sou	nma													
		erupi boi														
Probe	M96-056	5 (Fortse	tzung)													
Nr.	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
SiO ₂	53.97	54.00	53.99	53.94	53.92	54.20	53.54	53.52	53.46	53.34	53.27	53.40	53.14	52.88	52.87	52.23
Al_2O_3	28.61	28.93	29.16	29.04	29.18	29.03	29.55	29.09	29.47	29.54	29.56	29.54	29.67	29.67	29.80	30.73
FeO	0.45	0.46	0.50	0.49	0.49	0.50	0.44	0.49	0.41	0.55	0.43	0.58	0.43	0.61	0.54	0.48
MnO	0.05	0.00	0.00	0.01	0.01	0.02	0.00	0.00	0.05	0.00	0.01	0.00	0.03	0.03	0.03	0.00
MgO	0.05	0.05	0.04	0.05	0.05	0.05	0.04	0.05	0.05	0.04	0.04	0.03	0.05	0.05	0.04	0.04
CaO	11.20	11.09	11.16	11.28	11.35	11.47	11.65	11.44	11.52	11.62	11.88	11.75	12.03	11.99	12.31	12.62
Na ₂ O	4.93	4.83	4.81	4.76	4.72	4.70	4.73	4.61	4.60	4.58	4.60	4.51	4.37	4.20	4.37	4.05
K_2O	0.30	0.25	0.26	0.26	0.25	0.25	0.23	0.25	0.24	0.24	0.24	0.25	0.23	0.36	0.22	0.21
Summe	99.56	99.61	99.92	99.83	99.98	100.21	100.18	99.45	99.80	99.92	100.03	100.06	99.96	99.78	100.18	100.37
Si	2.453	2.449	2.443	2.443	2.439	2.446	2.420	2.435	2.424	2.418	2.413	2.417	2.409	2.404	2.396	2.363
Al	1.533	1.547	1.555	1.550	1.556	1.544	1.574	1.560	1.575	1.578	1.578	1.576	1.585	1.590	1.592	1.63
Fe	0.017	0.017	0.019	0.019	0.019	0.019	0.017	0.019	0.016	0.021	0.016	0.022	0.016	0.023	0.020	0.018
Mn	0.002	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.000	0.001	0.001	0.001	0.000
Mg	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.003
Ca	0.546	0.539	0.541	0.548	0.550	0.554	0.564	0.557	0.560	0.564	0.576	0.570	0.584	0.584	0.598	0.612
Na	0.435	0.425	0.422	0.418	0.414	0.411	0.415	0.407	0.404	0.403	0.404	0.396	0.384	0.370	0.384	0.355
к	0.017	0.015	0.015	0.015	0.015	0.014	0.013	0.015	0.014	0.014	0.014	0.014	0.013	0.021	0.012	0.012
Summe	5.005	4.995	4.997	4.997	4.996	4.994	5.005	4.995	4.997	5.001	5.005	4.998	4.997	4.996	5.006	5.00
AB	43.6	43.4	43.1	42.6	42.3	42.0	41.8	41.6	41.3	41.1	40.6	40.4	39.1	38.0	38.6	36.3
AN	54.7	55.1	55.4	55.8	56.2	56.6	56.9	56.9	57.2	57.5	58.0	58.2	59.5	59.9	60.1	62.5
0.0		1 5	15	1 (15	15	1.2	1 5	1 4	1 4	1 4	15	1 4	2 1	1 2	1.0

T	a	b.	A5.2.	(F	ortset	tzung).	
 -			*		1.0		

Einheit	Laven M	erapi-Sor	nma													
Probe	M96-056	5 (Fortset	zung)						M96-070) (Auswa	hl)					
Nr.	24	25	26	27	28	29	30	_	1	2	3	4	5	6	7	8
SiO ₂	51.37	50.32	49.44	49.26	49.08	48.34	48.66		55.82	54.35	54.03	53.79	53.87	53.50	53.26	53.65
Al_2O_3	30.78	31.96	32.32	32.57	32.61	32.62	32.85		27.55	28.87	28.81	29.04	28.99	29.61	29.50	29.42
FeO	0.45	0.48	0.46	0.48	0.47	0.52	0.56		0.66	0.52	0.53	0.53	0.55	0.58	0.51	0.59
MnO	0.00	0.02	0.01	0.00	0.03	0.00	0.05		0.02	0.03	0.00	0.00	0.00	0.02	0.03	0.02
MgO	0.04	0.02	0.04	0.03	0.04	0.05	0.04		0.04	0.06	0.06	0.06	0.07	0.07	0.06	0.06
CaO	14.15	14.23	15.21	15.13	15.23	15.59	15.46		9.65	10.96	11.24	11.37	11.75	11.68	11.75	11.88
Na2O KaO	0.16	0.21	2.81	2.00	2.03	2.49	2.39		0.32	4.92	4.72	4.38	4.55	4.48	4.43	4.40
Summe	100.49	100.36	100.39	100.21	100.20	99.71	100.17		99.81	100.00	99.69	99.71	100.06	100.24	99.82	100.37
Si	2.331	2.287	2.252	2.247	2.241	2.221	2.224		2.520	2.455	2.451	2.440	2.438	2.417	2.416	2.422
Al	1.646	1.712	1.735	1.750	1.755	1.767	1.770		1.466	1.537	1.540	1.552	1.546	1.577	1.577	1.565
Fe	0.017	0.018	0.017	0.018	0.018	0.020	0.021		0.025	0.020	0.020	0.020	0.021	0.022	0.019	0.022
Mn	0.000	0.001	0.000	0.000	0.001	0.000	0.002		0.001	0.001	0.000	0.000	0.000	0.001	0.001	0.001
Mg	0.003	0.002	0.002	0.002	0.003	0.004	0.003		0.003	0.004	0.004	0.004	0.005	0.004	0.004	0.004
Ca	0.688	0.693	0.742	0.739	0.745	0.768	0.757		0.467	0.531	0.546	0.552	0.570	0.566	0.571	0.575
Na	0.311	0.275	0.248	0.230	0.232	0.222	0.212		0.504	0.431	0.415	0.402	0.398	0.392	0.391	0.390
ĸ	0.009	0.012	0.007	0.008	0.007	0.006	0.010		0.018	0.017	0.018	0.020	0.017	0.017	0.016	0.017
Summe	5.005	5.000	5.005	4.995	5.002	5.008	4.999		5.004	4.996	4.995	4.991	4.994	4.997	4.996	4.996
AB	30.9	28.1	24.9	23.6	23.6	22.3	21.7		51.0	44.0	42.4	41.3	40.4	40.2	40.0	39.8
AN	68.2	70.7	74.4	75.6	75.7	77.1	77.3		47.2	54.2	55.7	56.7	57.9	58.0	58.4	58.5
OR	0.9	1.2	0.7	0.8	0.7	0.6	1.0		1.9	1.7	1.9	2.0	1.7	1.8	1.6	1.7
Einheit	Laven M	erapi-Sor	nma													
Ducho	M06.070) (Eenteet	(2010)													
Probe	M96-070	(Fortset	zung)													
Nr.	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
SiO ₂	53.69	53.12	53.49	53.11	53.21	53.33	52.62	52.64	51.54	51.51	50.50	50.24	50.05	49.59	49.25	49.24
Al_2O_3	28.96	29.75	29.65	29.76	29.66	29.64	29.80	30.24	31.13	30.73	31.59	31.76	31.86	32.40	32.34	32.29
FeO	0.45	0.60	0.54	0.45	0.48	0.53	0.51	0.58	0.54	0.51	0.53	0.54	0.49	0.61	0.49	0.60
MnO	0.02	0.02	0.03	0.00	0.00	0.01	0.02	0.05	0.06	0.00	0.03	0.02	0.03	0.00	0.00	0.01
MgO	0.06	0.07	0.06	0.05	0.06	0.07	0.05	0.07	0.05	0.07	0.05	0.04	0.03	0.03	0.04	0.06
CaO	12.01	12.03	12.10	11.93	12.04	12.26	12.43	12.73	12.85	13.48	14.32	14.56	14.36	15.02	15.13	15.31
Na ₂ O	4.48	4.46	4.45	4.29	4.29	4.30	4.07	4.04	3.68	3.57	3.10	3.05	2.99	2.76	2.71	2.64
Summe	99.94	100.33	100.57	99.87	100.03	100.38	99.75	100.58	100.08	100.05	100.26	100.41	99.94	100.53	100.12	100.33
Si	2.433	2.402	2.412	2.408	2.410	2.408	2.393	2.378	2.339	2.343	2.297	2.285	2.284	2.255	2.250	2.247
Al	1.547	1.586	1.576	1.590	1.583	1.577	1.597	1.610	1.665	1.647	1.694	1.703	1.714	1.736	1.742	1.737
Fe	0.017	0.023	0.020	0.017	0.018	0.020	0.020	0.022	0.021	0.020	0.020	0.020	0.019	0.023	0.019	0.023
Mn	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.002	0.002	0.000	0.001	0.001	0.001	0.000	0.000	0.001
Mg	0.004	0.005	0.004	0.003	0.004	0.005	0.003	0.005	0.004	0.004	0.003	0.003	0.002	0.002	0.002	0.004
Ca	0.583	0.583	0.585	0.579	0.584	0.593	0.606	0.616	0.625	0.657	0.698	0.710	0.702	0.732	0.741	0.749
Na	0.394	0.391	0.389	0.377	0.377	0.376	0.359	0.354	0.324	0.315	0.273	0.269	0.264	0.243	0.240	0.234
К	0.015	0.016	0.014	0.016	0.016	0.014	0.014	0.013	0.013	0.011	0.008	0.012	0.008	0.007	0.009	0.010
Summe	4.994	5.007	5.001	4.991	4.992	4.994	4.993	4.999	4.993	4.995	4.996	5.002	4.994	4.999	5.003	5.004
AB	39.7	39.5	39.3	38.8	38.6	38.3	36.6	36.0	33.7	32.1	27.9	27.1	27.1	24.8	24.3	23.5
AN	58.8	58.9	59.2	59.6	59.8	60.3	61.9	62.7	65.0	66.9	71.3	71.7	72.1	/4.5	74.8	75.5
UK	1.0	1.0	1.5	1./	1.0	1.4	1.5	1.3	1.5	1.1	0.8	1.2	0.8	0.7	0.9	1.0

Tab.	A5.2.	(Fortsetzung).

Einheit	Laven M	erapi-Sor	nma													
Probe	M96-070) (Fortset	zung)					M98-105	5 (Auswa	hl)						
Nr.	25	26	27	28	29	30	-	1	2	3	4	5	6	7	8	9
SiO_2	48.64	47.93	48.00	47.54	47.04	46.77		55.52	55.12	54.73	54.43	54.10	53.84	54.30	54.29	53.92
Al_2O_3	32.64	32.91	33.44	33.36	34.16	34.03		27.98	28.07	28.37	28.39	28.62	29.07	29.02	29.15	29.00
FeO	0.64	0.58	0.65	0.60	0.52	0.53		0.52	0.52	0.59	0.50	0.57	0.64	0.58	0.52	0.54
MnO MaO	0.00	0.00	0.02	0.00	0.05	0.03		0.00	0.02	0.02	0.02	0.04	0.00	0.01	0.01	0.00
MgO	15 50	0.03	0.04	0.05	16.89	17.05		10.06	10.00	10.05	10.00	11.00	0.05	0.05	0.06	11.52
NapO	2 39	2 21	2 07	2 04	1 71	1 64		5 18	5 13	4 98	4 96	4 76	4 56	4 61	4 60	4 60
K ₂ O	0.13	0.11	0.09	0.11	0.08	0.09		0.45	0.45	0.47	0.42	0.36	0.40	0.42	0.42	0.35
Summe	99.97	99.59	100.42	100.15	100.46	100.17		99.95	99.75	99.66	99.15	99.58	99.66	100.39	100.55	99.97
Si	2.228	2.207	2.193	2.181	2.153	2.149		2.504	2.494	2.479	2.477	2.457	2.443	2.447	2.444	2.441
Al	1.762	1.786	1.801	1.803	1.843	1.843		1.487	1.497	1.514	1.523	1.532	1.555	1.541	1.546	1.547
Fe	0.024	0.022	0.025	0.023	0.020	0.021		0.020	0.020	0.022	0.019	0.022	0.024	0.022	0.020	0.020
Mn	0.000	0.000	0.001	0.000	0.002	0.001		0.000	0.001	0.001	0.001	0.002	0.000	0.000	0.000	0.000
Mg	0.003	0.002	0.003	0.003	0.002	0.003		0.004	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.004
Ca No	0.701	0.781	0.789	0.808	0.828	0.839		0.493	0.303	0.307	0.307	0.339	0.339	0.330	0.333	0.339
K	0.212	0.197	0.185	0.101	0.005	0.005		0.433	0.430	0.438	0.438	0.419	0.401	0.403	0.401	0.020
Summe	4.997	5.002	5.000	5.007	5.004	5.005		4.989	4.994	4.992	4.991	4.994	4.989	4.992	4.994	4.995
AB	21.6	20.0	18.8	18.2	15.4	14.7		46.5	45.9	45.1	45.2	42.8	41.6	41.2	40.9	41.1
AN	77.6	79.3	80.7	81.2	84.1	84.7		50.8	51.4	52.1	52.3	55.1	55.9	56.3	56.6	56.8
OR	0.8	0.6	0.5	0.6	0.5	0.5		2.7	2.6	2.8	2.5	2.1	2.4	2.5	2.5	2.0
Einheit	Laven M	erapi-Sor	nma													
Probe	M98-105	5 (Fortset	zung)													
Nr.	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
SiO ₂	53.51	53.81	53.82	53.62	53.13	53.02	52.11	52.43	51.94	50.97	51.21	51.02	50.55	50.03	49.56	48.82
Al_2O_3	29.19	29.26	29.55	29.19	29.49	29.73	30.32	30.15	30.47	31.08	30.53	31.37	31.50	31.72	32.35	32.35
MnO	0.55	0.30	0.08	0.47	0.33	0.34	0.32	0.32	0.32	0.33	0.39	0.02	0.32	0.32	0.39	0.04
MgO	0.05	0.00	0.00	0.00	0.01	0.00	0.02	0.04	0.04	0.00	0.01	0.02	0.05	0.01	0.00	0.00
CaO	11.67	11.67	11.70	11.80	12.06	12.44	12.82	12.70	13.37	13.84	13.94	14.23	14.33	14.72	15.08	15.49
Na ₂ O	4.57	4.41	4.38	4.38	4.32	4.12	3.92	3.86	3.74	3.41	3.34	3.20	3.12	2.92	2.67	2.48
K_2O	0.30	0.35	0.35	0.38	0.35	0.40	0.27	0.27	0.30	0.22	0.24	0.19	0.24	0.16	0.15	0.14
Summe	99.85	100.12	100.51	99.88	99.92	100.30	100.02	100.02	100.43	100.10	99.92	100.70	100.36	100.14	100.44	99.97
Si	2.428	2.433	2.425	2.430	2.411	2.399	2.367	2.379	2.354	2.321	2.336	2.311	2.299	2.282	2.256	2.237
Al	1.561	1.559	1.569	1.559	1.577	1.585	1.624	1.612	1.628	1.668	1.641	1.675	1.688	1.705	1.735	1.747
Fe	0.021	0.021	0.026	0.018	0.020	0.020	0.020	0.020	0.020	0.020	0.023	0.023	0.020	0.020	0.022	0.024
Mn Ma	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.000
Ca	0.004	0.003	0.002	0.003	0.002	0.003	0.002	0.003	0.004	0.003	0.004	0.004	0.004	0.004	0.003	0.004
Na	0.402	0.387	0.383	0.385	0.380	0.362	0.345	0.339	0.329	0.301	0.295	0.281	0.275	0.259	0.235	0.220
K	0.017	0.020	0.020	0.022	0.020	0.023	0.016	0.016	0.017	0.013	0.014	0.011	0.014	0.009	0.008	0.008
Summe	5.000	4.989	4.989	4.990	4.997	4.996	4.999	4.988	5.002	5.001	4.995	4.997	5.000	4.999	4.996	5.001
AB	40.8	39.8	39.6	39.3	38.5	36.6	35.0	34.9	33.0	30.4	29.8	28.6	27.9	26.2	24.0	22.3
AN	57.5	58.2	58.4	58.5	59.4	61.1	63.4	63.5	65.2	68.3	68.8	70.3	70.7	72.9	75.1	76.9
OR	1.8	2.0	2.1	2.2	2.1	2.3	1.6	1.6	1.7	1.3	1.4	1.1	1.4	0.9	0.9	0.8

Tab.	A5.2.	(Fortsetzung).

Einheit	Laven Merapi-Somma								Laven Proto-Merapi									
Probe	M98-10	5 (Fortse	tzung)					-	M96-052	2								
Nr.	26	27	28	29	30	31	32		1	2	3	4	5	6	7	8		
SiO_2	47.63	47.51	48.56	47.47	48.10	47.70	47.95		51.20	49.78	48.75	47.90	47.91	47.54	47.03	47.56		
Al_2O_3	32.56	32.80	33.25	32.74	31.90	33.15	33.80		30.92	32.05	32.40	32.90	33.04	33.03	33.87	33.50		
FeO	0.53	0.57	0.54	0.57	0.57	0.57	0.61		0.65	0.68	0.68	0.59	0.66	0.73	0.50	0.67		
MgO	0.04	0.00	0.03	0.00	0.02	0.00	0.00		0.02	0.03	0.04	0.00	0.02	0.02	0.00	0.02		
CaO	15.77	15.99	16.03	16.08	16.29	16.28	16.40		13.87	15.24	15.41	15.85	16.27	16.30	16.58	16.63		
Na ₂ O	2.37	2.28	2.24	2.24	2.24	2.03	1.88		3.53	2.65	2.52	2.24	2.06	1.95	1.84	1.81		
K_2O	0.10	0.11	0.11	0.11	0.13	0.09	0.11		0.25	0.22	0.17	0.14	0.13	0.20	0.09	0.12		
Summe	99.04	99.32	100.80	99.26	99.28	99.86	100.77		100.48	100.67	100.00	99.71	100.10	99.81	99.98	100.32		
Si	2.207	2.197	2.209	2.197	2.225	2.192	2.183		2.326	2.264	2.235	2.204	2.198	2.190	2.162	2.179		
Al Fo	1.778	1.788	1.782	1.786	1.739	1.795	1.814		1.655	1.718	1.751	1.784	1.787	1.793	1.835	1.809		
re Mn	0.021	0.022	0.021	0.022	0.022	0.022	0.023		0.025	0.026	0.026	0.023	0.025	0.028	0.019	0.026		
Mg	0.001	0.000	0.001	0.000	0.001	0.003	0.000		0.001	0.002	0.002	0.006	0.001	0.001	0.004	0.001		
Ca	0.783	0.792	0.781	0.797	0.807	0.802	0.800		0.675	0.743	0.757	0.781	0.800	0.805	0.816	0.816		
Na	0.213	0.205	0.198	0.201	0.201	0.181	0.166		0.311	0.233	0.224	0.200	0.183	0.174	0.164	0.161		
K	0.006	0.007	0.006	0.007	0.008	0.005	0.006		0.015	0.013	0.010	0.008	0.008	0.012	0.005	0.007		
Summe	5.012	5.014	5.000	5.012	5.007	5.000	4.995		5.009	5.000	5.006	5.008	5.003	5.006	5.006	5.000		
AB	21.3	20.4	20.1	20.0	19.8	18.3	17.1		31.1	23.6	22.6	20.2	18.5	17.6	16.6	16.3		
AN OP	/8.1	/8.9	/9.3	/9.4	/9.4	81.2	82.3		67.5	/5.1	/6.4	/9.0	80.8	81.3	82.8	82.9		
OK	0.0	0.7	0.0	0.7	0.8	0.5	0.0		1.5	1.5	1.0	0.0	0.8	1.2	0.0	0.7		
Einheit	Laven Pr	oto-Mera	ipi															
Probe	M96-052	2 (Fortset	zung)															
Nr	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
		10		12	10		10	10	17	10		20	21		20			
SiO ₂	47.46	47.17	46.59	46.85	46.62	46.09	46.60	46.17	46.11	45.89	46.17	46.14	45.74	45.66	46.10	45.98		
Al ₂ O ₃	33.22	33.64	33.97	34.10	33.97	34.33	34.39	34.32	34.51	34.61	34.13	34.72	34.75	34.35	34.53	34.40		
FeO	0.61	0.74	0.65	0.66	0.63	0.57	0.70	0.65	0.54	0.56	0.57	0.57	0.60	0.64	0.63	0.66		
MaO	0.02	0.02	0.05	0.05	0.02	0.00	0.03	0.05	0.00	0.00	0.02	0.01	0.00	0.00	0.02	0.08		
CaO	16.55	16.94	17.32	17.27	17.16	17.20	17.62	17.49	17.34	17.57	17.55	17.57	17.60	17.76	17.63	17.89		
Na ₂ O	1.78	1.72	1.58	1.58	1.52	1.53	1.45	1.41	1.38	1.38	1.34	1.35	1.35	1.35	1.29	1.27		
K_2O	0.13	0.11	0.12	0.09	0.10	0.07	0.09	0.10	0.07	0.08	0.09	0.06	0.06	0.07	0.10	0.09		
Summe	99.80	100.36	100.29	100.61	100.04	99.86	100.90	100.22	100.01	100.16	99.89	100.49	100.16	99.90	100.31	100.37		
Si	2.185	2.164	2.142	2.145	2.146	2.126	2.131	2.125	2.123	2.113	2.131	2.116	2.106	2.111	2.119	2.116		
Al	1.803	1.819	1.841	1.841	1.843	1.867	1.853	1.862	1.873	1.878	1.856	1.877	1.886	1.871	1.871	1.866		
Fe	0.023	0.029	0.025	0.025	0.024	0.022	0.027	0.025	0.021	0.022	0.022	0.022	0.023	0.025	0.024	0.025		
Ma	0.001	0.001	0.002	0.002	0.001	0.000	0.001	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.003		
Ca	0.816	0.833	0.853	0.847	0.846	0.850	0.863	0.863	0.856	0.867	0.868	0.864	0.868	0.879	0.868	0.882		
Na	0.159	0.153	0.141	0.140	0.136	0.137	0.128	0.126	0.123	0.124	0.120	0.120	0.120	0.121	0.115	0.113		
K	0.008	0.006	0.007	0.005	0.006	0.004	0.005	0.006	0.004	0.004	0.005	0.003	0.004	0.004	0.006	0.005		
Summe	4.997	5.006	5.012	5.007	5.004	5.011	5.010	5.010	5.004	5.012	5.004	5.007	5.013	5.016	5.006	5.011		
AB	16.2	15.4	14.1	14.1	13.8	13.8	12.9	12.7	12.5	12.4	12.1	12.2	12.1	12.0	11.6	11.3		
AN	83.0	84.0	85.2	85.4	85.6	85.8	86.6	86.7	87.1	87.1	87.4	87.5	87.5	87.5	87.8	88.2		
OR	0.8	0.6	0.7	0.5	0.6	0.4	0.5	0.6	0.4	0.4	0.5	0.3	0.4	0.4	0.6	0.5		

\mathbf{a}	n	С
э	υ	C.
		_

Ta	b. A5.3	. M	lineral	lchem	ische	Daten:	Klino	pyroxen	(Auswal	hl).
----	---------	------------	---------	-------	-------	--------	-------	---------	---------	----	----

Einheit	Rezente	Domlave	n und py	roklastisc	he Strön	ne	17				/					
Probe	M95-011	(Auswa	hl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	52.45	52.08	52.02	53.14	51.66	52.34	52.36	52.22	51.61	52.51	51.92	51.50	51.61	51.15	51.95	50.73
TiO ₂	0.39	0.66	0.52	0.39	0.53	0.50	0.43	0.44	0.70	0.50	0.47	0.55	0.57	0.65	0.39	0.65
Al_2O_3	1.31	3.09	2.77	1.91	2.40	2.38	1.58	1.61	3.29	2.29	2.24	2.69	2.55	3.08	1.75	3.35
Cr_2O_3	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.02	0.02
FeO MnO	9.64	8.55 0.53	8.98 0.47	8.58 0.57	8.51 0.57	8.38 0.62	9.40	9.55	8.50	8.60	9.35	9.18	8.79	9.33	9.00	9.30
MgO	14.75	14.58	14.07	15.23	14.63	15.06	14.72	14.77	14.36	14.71	15.02	14.52	14.91	14.68	15.37	13.90
CaO	19.66	20.87	21.03	20.44	20.91	20.62	19.81	19.52	20.93	20.91	20.89	21.14	21.60	21.01	21.00	21.37
Na_2O	0.41	0.42	0.36	0.30	0.43	0.38	0.41	0.41	0.39	0.34	0.28	0.27	0.29	0.27	0.23	0.33
Summe	99.45	100.77	100.22	100.57	99.66	100.30	99.34	99.23	100.25	100.44	100.75	100.46	100.79	100.69	100.32	100.16
Si	1.963	1.917	1.931	1.959	1.922	1.933	1.960	1.958	1.910	1.940	1.913	1.906	1.899	1.888	1.920	1.885
Al	0.058	0.134	0.121	0.083	0.105	0.104	0.070	0.071	0.143	0.100	0.097	0.117	0.111	0.134	0.076	0.147
Ti	0.011	0.018	0.014	0.011	0.015	0.014	0.012	0.012	0.019	0.014	0.013	0.015	0.016	0.018	0.011	0.018
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Fe(3) Ma	0.030	0.031	0.020	0.002	0.055	0.034	0.021	0.026	0.028	0.017	0.070	0.061	0.080	0.080	0.078	0.071
Fe(2)	0.822	0.799	0.778	0.837	0.210	0.828	0.821	0.824	0.792	0.810	0.823	0.223	0.818	0.807	0.847	0.219
Mn	0.0271	0.017	0.015	0.018	0.018	0.019	0.020	0.023	0.015	0.018	0.018	0.019	0.014	0.016	0.019	0.014
Ca	0.788	0.822	0.836	0.807	0.833	0.815	0.794	0.783	0.829	0.828	0.825	0.838	0.851	0.830	0.831	0.851
Na	0.030	0.030	0.026	0.022	0.031	0.027	0.029	0.030	0.028	0.024	0.020	0.020	0.021	0.019	0.016	0.024
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	40.6	43.3	43.8	41.9	43.2	42.4	41.2	40.6	43.7	43.1	42.2	43.2	43.6	42.8	42.1	44.2
EN	42.4	42.1	40.8	43.4	42.1	43.1	42.5	42.7	41.7	42.2	42.2	41.2	41.9	41.6	42.9	40.0
FS	16.9	14.7	15.4	14.7	14.7	14.5	16.3	16.7	14.6	14.8	15.7	15.6	14.6	15.7	15.1	15.9
Einheit	Rezente	Domlave	n und py	roklastisc	he Strön	ne										
Einheit Probe	Rezente M95-011	Domlave (Fortset	n und py zung)	roklastisc	he Strön	ne										
Einheit Probe Nr.	Rezente M95-011 Xr/1	Domlave (Fortset Xr/2	n und pyr zung) Xr/3	roklastisc Xr/4	the Strön Xr/5	ne Xr/6	Xr/7	Xr/8	Xt/1	Xt/2	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6
Einheit Probe Nr.	Rezente M95-011 Xr/1	Domlave (Fortset Xr/2	n und pyr zung) Xr/3	Xr/4	the Strön Xr/5	ne Xr/6	Xr/7	Xr/8	Xt/1	Xt/2	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6
Einheit Probe Nr. SiO ₂ TiO ₂	Rezente M95-011 Xr/1 51.60 0.53	Domlave (Fortset Xr/2 51.44 0.50	n und pyr zung) Xr/3 51.34 0.49	Xr/4 51.64 0.51	the Strön Xr/5 51.52 0.53	ne Xr/6 51.78 0.46	Xr/7 51.48 0.51	Xr/8 51.42 0.53	Xt/1 50.26 0.61	Xt/2 48.24 0.83	Xc/1 54.10 0.10	Xc/2 53.58 0.21	Xc/3 53.75 0.20	Xc/4 53.72 0.15	Xc/5 53.89 0.18	Xc/6
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Rezente M95-011 Xr/1 51.60 0.53 2.74	Domlave (Fortset Xr/2 51.44 0.50 2.70	n und pyr zung) Xr/3 51.34 0.49 2.75	Xr/4 51.64 0.51 2.72	xr/5 51.52 0.53 2.71	xr/6 51.78 0.46 2.62	Xr/7 51.48 0.51 2.86	Xr/8 51.42 0.53 2.82	Xt/1 50.26 0.61 4.15	Xt/2 48.24 0.83 6.65	Xc/1 54.10 0.10 1.21	Xc/2 53.58 0.21 1.69	Xc/3 53.75 0.20 1.62	Xc/4 53.72 0.15 1.56	Xc/5 53.89 0.18 1.64	Xc/6 53.59 0.20 1.76
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02	n und py: zung) Xr/3 51.34 0.49 2.75 0.00	Xr/4 51.64 0.51 2.72 0.00	the Strön Xr/5 51.52 0.53 2.71 0.02	ne Xr/6	Xr/7 51.48 0.51 2.86 0.00	Xr/8 51.42 0.53 2.82 0.02	Xt/1 50.26 0.61 4.15 0.00	Xt/2 48.24 0.83 6.65 0.02	Xc/1 54.10 0.10 1.21 0.17	Xc/2 53.58 0.21 1.69 0.11	Xc/3 53.75 0.20 1.62 0.13	Xc/4 53.72 0.15 1.56 0.12	Xc/5 53.89 0.18 1.64 0.15	Xc/6 53.59 0.20 1.76 0.15
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12	Xr/4 51.64 0.51 2.72 0.00 8.11	the Strön Xr/5 51.52 0.53 2.71 0.02 8.31	re Xr/6 51.78 0.46 2.62 0.00 8.31	Xr/7 51.48 0.51 2.86 0.00 8.41	Xr/8 51.42 0.53 2.82 0.02 9.63	Xt/1 50.26 0.61 4.15 0.00 8.23	Xt/2 48.24 0.83 6.65 0.02 8.38	Xc/1 54.10 0.10 1.21 0.17 2.46	Xc/2 53.58 0.21 1.69 0.11 3.79	Xc/3 53.75 0.20 1.62 0.13 3.43	Xc/4 53.72 0.15 1.56 0.12 3.43	Xc/5 53.89 0.18 1.64 0.15 3.36	Xc/6 53.59 0.20 1.76 0.15 3.41
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 1.105	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55	the Strön Xr/5 51.52 0.53 2.71 0.02 8.31 0.50	ne Xr/6 51.78 0.46 2.62 0.00 8.31 0.52	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Cr ₂ O	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.03	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.20	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.72	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.21	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.24	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 22.70	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 22.62
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97	Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.000	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3)	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075	n und py: zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.062 2.022	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.000 0.062 0.062	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001 0.115	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.005	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003 0.042	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Eq(2)	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055 0.822 0.202	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.075 0.829 0.176	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075 0.809 0.177	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824	Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.062 0.821 0.102	Xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.062 0.823	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.791 0.250	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.1761	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001 0.115 0.720 0.145	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.969 0.969	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003 0.042 0.933 0.072	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.932 0.0732	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.004 0.034	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035 0.936
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055 0.822 0.202 0.202 0.202	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075 0.829 0.176	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075 0.839 0.177 0.017	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824 0.196 0.017	Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.062 0.821 0.195	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.006 0.062 0.823 0.195	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.050 0.0791 0.250	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.171 0.010	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001 0.115 0.720 0.145	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.969 0.052	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003 0.042 0.933 0.073	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.0932 0.078	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.034 0.038 0.070	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035 0.936 0.069 0.002
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055 0.822 0.202 0.201 0.202 0.201 0.201 0.834	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075 0.829 0.176 0.018 0.043	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075 0.839 0.177 0.017 0.827	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824 0.196 0.017 0.840	Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.062 0.821 0.195 0.016 0.839	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.000 0.662 0.823 0.195 0.016 0.843	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215 0.015 0.825	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.0791 0.250 0.018 0.810	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.171 0.010 0.887	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.111 1.787 0.290 0.023 0.001 0.115 0.720 0.0145 0.006 0.889	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.003 0.022 0.062	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003 0.042 0.933 0.073 0.002 0.915	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.003 0.003 0.0919	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.004 0.034 0.034	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084 0.001 0.915	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.005 0.005 0.005 0.004 0.036 0.069 0.002 0.918
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055 0.822 0.202 0.016 0.834 0.025	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075 0.829 0.176 0.018 0.843 0.025	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.004 0.075 0.839 0.177 0.017 0.827 0.028	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824 0.196 0.017 0.840 0.024	xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.062 0.821 0.195 0.016 0.839 0.025	xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.000 0.062 0.823 0.195 0.016 0.843 0.023	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215 0.015 0.825 0.025	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.050 0.791 0.250 0.018 0.810 0.028	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.171 0.010 0.887 0.024	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.111 1.787 0.290 0.023 0.001 0.115 0.720 0.145 0.720 0.145 0.006 0.889 0.023	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.969 0.052 0.001 0.921 0.011	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.006 0.003 0.042 0.933 0.073 0.002 0.915 0.012	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.004 0.026 0.032 0.078 0.003 0.919 0.012	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.004 0.034 0.004 0.034 0.070 0.001 0.922 0.011	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084 0.001 0.915 0.010	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035 0.936 0.069 0.002 0.918 0.012
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055 0.822 0.202 0.016 0.834 0.025 4.000	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075 0.829 0.176 0.018 0.843 0.025 4.000	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075 0.839 0.177 0.017 0.827 0.028 4.000	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824 0.196 0.017 0.840 0.024 4.000	Strön Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.622 0.821 0.195 0.016 0.839 0.025 4.000	Xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.000 0.622 0.823 0.195 0.016 0.843 0.023 4.000	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215 0.015 0.825 0.025 4.000	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.0791 0.250 0.018 0.810 0.028 4.000	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.171 0.010 0.887 0.024 4.000	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001 0.115 0.720 0.145 0.006 0.889 0.023 4.000	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.969 0.052 0.001 0.921 0.011 4.000	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003 0.042 0.933 0.073 0.002 0.915 0.012 4.000	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.004 0.026 0.932 0.078 0.003 0.919 0.012 4.000	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.004 0.034 0.038 0.070 0.001 0.922 0.011 4.000	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084 0.001 0.915 0.010 4.000	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035 0.936 0.069 0.002 0.918 0.012 4.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.000 0.055 0.822 0.202 0.016 0.834 0.025 4.000 4.3.3	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075 0.829 0.176 0.018 0.843 0.025 4.000 43.4	n und py: zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075 0.839 0.177 0.017 0.827 0.028 4.000 42.7	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824 0.196 0.017 0.840 0.024 4.000 43.5	Strön Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.001 0.821 0.195 0.016 0.839 0.025 4.000 43.4	Xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.0062 0.823 0.016 0.843 0.023 4.000 43.5	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215 0.015 0.825 0.025 4.000 42.9	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.050 0.0791 0.250 0.018 0.810 0.028 4.000 42.2	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.171 0.010 0.887 0.024 4.000 46.3	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001 0.115 0.720 0.145 0.006 0.889 0.023 4.000 47.4	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.969 0.052 0.001 0.921 0.011 4.000 46.9	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.006 0.003 0.042 0.933 0.002 0.915 0.012 4.000 46.6	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.004 0.026 0.032 0.078 0.003 0.919 0.012 4.000 46.9	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.034 0.038 0.070 0.001 0.922 0.011 4.000 46.9	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084 0.001 0.915 0.010 4.000 46.8	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035 0.004 0.035 0.002 0.936 0.002 0.918 0.012 4.000 46.8
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	Rezente M95-011 Xr/1 51.60 0.53 2.74 0.00 8.30 0.50 14.89 21.02 0.35 99.93 1.912 0.119 0.015 0.822 0.202 0.016 0.834 0.025 4.000 43.3 42.6	Domlave (Fortset Xr/2 51.44 0.50 2.70 0.02 8.11 0.58 15.03 21.28 0.34 100.00 1.903 0.118 0.014 0.001 0.075 0.829 0.176 0.018 0.843 0.025 4.000 43.4 42.7	n und pyr zung) Xr/3 51.34 0.49 2.75 0.00 8.12 0.54 15.19 20.82 0.39 99.63 1.904 0.120 0.014 0.000 0.075 0.839 0.177 0.017 0.028 4.000 42.7 43.4	Xr/4 51.64 0.51 2.72 0.00 8.11 0.55 14.93 21.18 0.34 99.97 1.911 0.119 0.014 0.000 0.055 0.824 0.196 0.017 0.840 0.017 0.840 0.024 4.000 43.5 42.6	Strön Xr/5 51.52 0.53 2.71 0.02 8.31 0.50 14.88 21.16 0.35 99.98 1.907 0.118 0.015 0.016 0.821 0.195 0.016 0.839 0.025 4.000 43.4 42.5	Xr/6 51.78 0.46 2.62 0.00 8.31 0.52 14.96 21.30 0.33 100.28 1.911 0.114 0.013 0.062 0.823 0.016 0.843 0.023 4.000 43.5 42.5	Xr/7 51.48 0.51 2.86 0.00 8.41 0.48 14.83 20.73 0.34 99.65 1.913 0.125 0.014 0.000 0.046 0.822 0.215 0.015 0.825 0.025 4.000 42.9 42.7	Xr/8 51.42 0.53 2.82 0.02 9.63 0.58 14.27 20.31 0.39 99.96 1.914 0.123 0.015 0.000 0.050 0.050 0.018 0.810 0.028 4.000 42.2 41.2	Xt/1 50.26 0.61 4.15 0.00 8.23 0.32 13.80 22.34 0.33 100.04 1.864 0.181 0.017 0.000 0.084 0.762 0.171 0.010 0.887 0.024 4.000 46.3 39.8	Xt/2 48.24 0.83 6.65 0.02 8.38 0.20 13.04 22.41 0.33 100.11 1.787 0.290 0.023 0.001 0.115 0.720 0.145 0.006 0.889 0.023 4.000 47.4 38.4	Xc/1 54.10 0.10 1.21 0.17 2.46 0.04 17.91 23.70 0.16 99.84 1.963 0.052 0.003 0.005 0.022 0.969 0.052 0.001 0.921 0.011 4.000 46.9 49.3	Xc/2 53.58 0.21 1.69 0.11 3.79 0.07 17.27 23.56 0.17 100.46 1.942 0.072 0.006 0.003 0.042 0.933 0.073 0.002 0.915 0.012 4.000 46.6 47.5	Xc/3 53.75 0.20 1.62 0.13 3.43 0.10 17.22 23.64 0.17 100.26 1.951 0.069 0.006 0.004 0.026 0.003 0.003 0.012 4.000 46.9 47.6	Xc/4 53.72 0.15 1.56 0.12 3.43 0.05 17.35 23.71 0.15 100.24 1.949 0.067 0.004 0.004 0.004 0.004 0.004 0.038 0.070 0.001 0.922 0.011 4.000 46.9 47.7	Xc/5 53.89 0.18 1.64 0.15 3.36 0.03 17.36 23.55 0.15 100.31 1.954 0.070 0.005 0.004 0.018 0.939 0.084 0.001 0.915 0.010 4.000 4.000	Xc/6 53.59 0.20 1.76 0.15 3.41 0.07 17.31 23.62 0.17 100.29 1.943 0.075 0.005 0.004 0.035 0.936 0.009 0.002 0.918 0.012 4.000 46.8 47.8

Tab. A5.3.	(Fortsetzung)).
------------	---------------	----

Einheit	Rezente	Domlave	n und py	oklastis	che Strön	ne										
Probe	M96-142	2						1	M96-145	(Auswal	nl)					
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	_	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8
SiO ₂	51.62	52.92	53.09	52.64	52.92	53.04	52.97		52.30	52.24	51.47	52.94	52.51	52.15	52.21	50.82
TiO ₂	0.58	0.40	0.42	0.45	0.38	0.45	0.39		0.45	0.50	0.54	0.40	0.39	0.51	0.48	0.74
Al_2O_3	2.90	1.60	1.50	1.86	1.56	1.90	1.70		2.14	2.16	2.65	1.94	2.00	2.49	2.48	3.65
Cr_2O_3	0.00	0.00	0.00	0.02	0.02	0.00	0.02		0.04	0.04	0.04	0.02	0.04	0.00	0.00	0.01
FeO MnO	8.10	8.93	9.06	8.49	8.30	8.74	8.39		7.89	9.01	8.24	7.99	8.17	8.51	8.50	9.07
MgQ	14 28	14 52	14 86	14 74	14 69	14 86	14.92		15 38	15.92	15 50	15.42	15 38	15.12	14 87	14 28
CaO	21.18	20.67	20.50	20.59	20.91	20.45	20.78		21.07	19.25	20.30	20.39	20.33	20.11	20.19	20.30
Na ₂ O	0.38	0.42	0.36	0.39	0.38	0.41	0.39		0.18	0.25	0.28	0.37	0.38	0.37	0.35	0.39
Summe	99.60	100.22	100.49	99.81	100.05	100.62	100.27		99.94	100.04	99.69	100.10	99.82	99.83	99.63	99.74
Si	1.923	1.964	1.965	1.957	1.965	1.957	1.959		1.936	1.933	1.910	1.955	1.945	1.934	1.942	1.891
Al	0.127	0.070	0.065	0.081	0.068	0.082	0.074		0.093	0.094	0.116	0.084	0.087	0.109	0.109	0.160
Ti	0.016	0.011	0.012	0.013	0.011	0.013	0.011		0.013	0.014	0.015	0.011	0.011	0.014	0.014	0.021
Cr $E_{2}(2)$	0.000	0.000	0.000	0.001	0.001	0.000	0.001		0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000
Fe(3)	0.028	0.014	0.014	0.011	0.011	0.011	0.016		0.021	0.032	0.005	0.009	0.027	0.022	0.006	0.044
Fe(2)	0.224	0.263	0.266	0.253	0.248	0.258	0.244		0.223	0.246	0.193	0.238	0.226	0.242	0.258	0.238
Mn	0.018	0.024	0.022	0.020	0.026	0.024	0.022		0.015	0.021	0.020	0.020	0.020	0.018	0.017	0.015
Ca	0.845	0.821	0.812	0.820	0.831	0.808	0.823		0.836	0.763	0.806	0.807	0.807	0.799	0.805	0.809
Na	0.027	0.030	0.026	0.028	0.027	0.029	0.028		0.013	0.018	0.020	0.026	0.027	0.027	0.025	0.028
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	44.3	42.7	42.0	42.7	43.1	42.1	42.7		43.0	39.3	41.6	42.0	41.8	41.7	42.1	42.6
EN	41.6	41.7	42.4	42.5	42.1	42.6	42.7		43.7	45.2	44.2	44.2	44.0	43.6	43.2	41.7
FS	14.1	15.6	15.6	14.8	14.8	15.3	14.6		13.4	15.5	14.2	13.9	14.1	14.7	14.7	15.7
Einheit	Rezente	Domlave	n und py	roklastis	che Strön	ne										
Einheit Probe	Rezente M96-145	Domlave 5 (Fortset	n und pyr zung)	roklastise	che Strön	ne										
Einheit Probe Nr.	Rezente M96-145 Ph/9	Domlave 5 (Fortset Ph/10	n und pyr zung) Ph/11	roklastiso Ph/12	che Strön Ph/13	ne Ph/14	Ph/15	Ph/16	Ph/17	Ph/18	Ph/19	Ph/20	Ph/21	Ph/22	Ph/23	Ph/24
Einheit Probe Nr. SiO ₂	Rezente 2 M96-145 Ph/9 52.38	Domlave 5 (Fortset Ph/10 52.70	n und pyr zung) Ph/11 52.47	Ph/12 51.90	Ph/13 52.02	Ph/14 52.25	Ph/15 52.34	Ph/16 52.14	Ph/17 52.48	Ph/18 52.03	Ph/19 52.17	Ph/20 52.07	Ph/21 52.17	Ph/22 51.18	Ph/23 52.12	Ph/24 52.46
Einheit Probe Nr. SiO ₂ TiO ₂	Rezente M96-145 Ph/9 52.38 0.47	Domlave 5 (Fortset Ph/10 52.70 0.48	n und pyr zung) Ph/11 52.47 0.48	Ph/12 51.90 0.47	Ph/13 52.02 0.49	Ph/14 52.25 0.42	Ph/15 52.34 0.44	Ph/16 52.14 0.56	Ph/17 52.48 0.44	Ph/18 52.03 0.49	Ph/19 52.17 0.48	Ph/20 52.07 0.47	Ph/21 52.17 0.47	Ph/22 51.18 0.74	Ph/23 52.12 0.42	Ph/24 52.46 0.47
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Rezente M96-145 Ph/9 52.38 0.47 2.25	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88	n und pyr zung) Ph/11 52.47 0.48 2.46	Ph/12 51.90 0.47 2.47	Ph/13 52.02 0.49 2.51	Ph/14 52.25 0.42 2.44	Ph/15 52.34 0.44 2.39	Ph/16 52.14 0.56 2.58	Ph/17 52.48 0.44 2.43	Ph/18 52.03 0.49 2.55	Ph/19 52.17 0.48 2.51	Ph/20 52.07 0.47 2.52	Ph/21 52.17 0.47 2.38	Ph/22 51.18 0.74 3.33	Ph/23 52.12 0.42 2.49	Ph/24 52.46 0.47 2.26
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02	Ph/12 51.90 0.47 2.47 0.00	Ph/13 52.02 0.49 2.51 0.00	Ph/14 52.25 0.42 2.44 0.01	Ph/15 52.34 0.44 2.39 0.01	Ph/16 52.14 0.56 2.58 0.00	Ph/17 52.48 0.44 2.43 0.03	Ph/18 52.03 0.49 2.55 0.00	Ph/19 52.17 0.48 2.51 0.05	Ph/20 52.07 0.47 2.52 0.01	Ph/21 52.17 0.47 2.38 0.02	Ph/22 51.18 0.74 3.33 0.01	Ph/23 52.12 0.42 2.49 0.00	Ph/24 52.46 0.47 2.26 0.02
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0 0 0 0 0	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 8.38	Ph/12 51.90 0.47 2.47 0.00 7.94	Ph/13 52.02 0.49 2.51 0.00 8.02	Ph/14 52.25 0.42 2.44 0.01 8.24	Ph/15 52.34 0.44 2.39 0.01 8.15	Ph/16 52.14 0.56 2.58 0.00 8.22	Ph/17 52.48 0.44 2.43 0.03 8.34	Ph/18 52.03 0.49 2.55 0.00 8.41	Ph/19 52.17 0.48 2.51 0.05 8.29	Ph/20 52.07 0.47 2.52 0.01 8.33	Ph/21 52.17 0.47 2.38 0.02 8.44	Ph/22 51.18 0.74 3.33 0.01 8.49	Ph/23 52.12 0.42 2.49 0.00 8.45	Ph/24 52.46 0.47 2.26 0.02 8.11
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15 19	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14 96	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14 95	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO C ₂ O	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20 33	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20 13	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20 15	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20 37	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34	Ph/14 52.25 0.42 2.44 0.45 15.21 20.33 0.35	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 99.71 1.938	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 99.76 1.931	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 10.04 1.943 0.107	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 99.76 1.931 0.110	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 99.76 1.931 0.110 0.013	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.000	Ph/14 52.25 0.42 2.44 0.01 8.24 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 99.76 1.931 0.110 0.013 0.000	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3)	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.004 0.012	Ph/14 52.25 0.42 2.44 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Ea(2)	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255	Domlave 5 (Fortset 9 (Fortset 9 (Fortset 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.221	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.22	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.000 0.012 0.830 0.232	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.226	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.246	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.021 0.010	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028 0.832	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.029	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024 0.769	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.817	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.025
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255 0.010	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.261 0.012	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826 0.255	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.222 0.017	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.000 0.012 0.838 0.012	Ph/14 52.25 0.42 2.44 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.236	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.249 0.017	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240 0.017	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010 0.827 0.248	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834 0.241 0.012	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028 0.833 0.231 0.011	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010 0.253 0.016	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024 0.769 0.241 0.017	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.810 0.247	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.252
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255 0.019 0.796	Domlave 5 (Fortset 9 h/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.261 0.018 0.794	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826 0.255 0.016 0.809	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.222 0.017 0.820	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.004 0.012 0.830 0.238 0.013 0.821	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.236 0.014 0.808	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.249 0.017 0.799	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240 0.017 0.812	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010 0.827 0.248 0.016 0.808	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834 0.241 0.016 0.802	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255 0.015	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028 0.833 0.231 0.018 0.810	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010 0.829 0.253 0.016 0.805	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.0147 0.021 0.0024 0.769 0.241 0.017 0.838	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.810 0.818	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.252 0.017 0.810
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255 0.019 0.796 0.027	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.261 0.018 0.794 0.28	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826 0.016 0.809 0.025	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.222 0.017 0.820 0.025	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.004 0.012 0.830 0.238 0.013 0.821 0.024	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.236 0.014 0.808 0.025	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.249 0.017 0.799 0.025	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240 0.017 0.812 0.031	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010 0.827 0.248 0.016 0.808 0.028	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834 0.241 0.016 0.802 0.027	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255 0.015 0.804 0.026	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028 0.833 0.231 0.018 0.810 0.027	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010 0.253 0.016 0.805 0.025	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024 0.769 0.241 0.017 0.838 0.032	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.810 0.247 0.019 0.818 0.030	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.252 0.017 0.810 0.026
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255 0.019 0.796 0.027 4.000	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.261 0.018 0.794 0.288 4.000	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826 0.255 0.016 0.809 0.025 4.000	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.222 0.017 0.820 0.025 4.000	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.004 0.012 0.830 0.238 0.013 0.821 0.024 4.000	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.236 0.014 0.808 0.025 4.000	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.249 0.017 0.799 0.025 4.000	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240 0.017 0.812 0.031 4.000	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010 0.827 0.248 0.016 0.808 0.028 4.000	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834 0.241 0.016 0.802 0.027 4.000	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255 0.015 0.804 0.026 4.000	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 99.76 1.931 0.110 0.013 0.000 0.028 0.833 0.231 0.018 0.810 0.027 4.000	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010 0.829 0.253 0.016 0.805 0.025 4.000	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024 0.769 0.241 0.017 0.838 0.032 4.000	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.810 0.247 0.019 0.818 0.030 4.000	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.252 0.017 0.810 0.026 4.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255 0.019 0.796 0.027 4.000 41.6	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.261 0.018 0.794 0.028 4.000 41.4	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826 0.255 0.016 0.809 0.025 4.000 42.4	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.222 0.017 0.820 0.025 4.000 42.7	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.004 0.012 0.830 0.238 0.013 0.821 0.024 4.000 42.9	Ph/14 52.25 0.42 2.44 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.236 0.014 0.808 0.025 4.000 42.1	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.249 0.017 0.799 0.025 4.000 41.8	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240 0.017 0.812 0.031 4.000 42.6	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010 0.827 0.248 0.016 0.808 0.028 4.000 42.3	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834 0.241 0.016 0.802 0.027 4.000 41.9	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255 0.015 0.804 0.026 4.000 42.2	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028 0.833 0.231 0.018 0.810 0.027 4.000 42.2	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010 0.829 0.253 0.016 0.805 0.025 4.000 42.1	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024 0.769 0.241 0.017 0.838 0.032 4.000 44.4	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.810 0.247 0.019 0.818 0.030 4.000 42.8	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.252 0.017 0.810 0.026 4.000 42.4
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Summe WO EN	Rezente M96-145 Ph/9 52.38 0.47 2.25 0.00 8.50 0.60 15.07 20.00 0.37 99.65 1.947 0.098 0.013 0.000 0.009 0.835 0.255 0.019 0.796 0.027 4.000 41.6 43.6	Domlave 5 (Fortset Ph/10 52.70 0.48 1.88 0.03 8.40 0.58 15.19 19.93 0.38 99.57 1.960 0.082 0.013 0.001 0.000 0.842 0.261 0.018 0.794 0.028 4.000 41.4 44.0	n und pyr zung) Ph/11 52.47 0.48 2.46 0.02 8.38 0.52 14.96 20.41 0.34 100.04 1.943 0.107 0.013 0.001 0.004 0.826 0.025 0.016 0.809 0.025 4.000 42.4 43.2	Ph/12 51.90 0.47 2.47 0.00 7.94 0.53 15.04 20.56 0.35 99.27 1.934 0.108 0.013 0.000 0.026 0.835 0.222 0.017 0.820 0.025 4.000 42.7 43.5	Ph/13 52.02 0.49 2.51 0.00 8.02 0.43 14.95 20.58 0.34 99.32 1.937 0.110 0.014 0.004 0.012 0.830 0.238 0.013 0.238 0.013 0.224 4.000 42.9 43.4	Ph/14 52.25 0.42 2.44 0.01 8.24 0.45 15.21 20.33 0.35 99.71 1.938 0.107 0.012 0.000 0.019 0.841 0.236 0.014 0.808 0.025 4.000 42.1 43.8	Ph/15 52.34 0.44 2.39 0.01 8.15 0.53 15.22 20.07 0.35 99.49 1.945 0.105 0.012 0.000 0.005 0.843 0.249 0.017 0.799 0.025 4.000 41.8 44.1	Ph/16 52.14 0.56 2.58 0.00 8.22 0.55 14.84 20.41 0.43 99.73 1.936 0.113 0.016 0.000 0.015 0.821 0.240 0.017 0.812 0.031 4.000 42.6 43.1	Ph/17 52.48 0.44 2.43 0.03 8.34 0.50 14.98 20.36 0.39 99.94 1.944 0.106 0.012 0.001 0.010 0.827 0.248 0.016 0.808 0.028 4.000 42.3 43.3	Ph/18 52.03 0.49 2.55 0.00 8.41 0.52 15.05 20.13 0.37 99.55 1.934 0.112 0.014 0.000 0.021 0.834 0.241 0.016 0.802 0.027 4.000 41.9 43.6	Ph/19 52.17 0.48 2.51 0.05 8.29 0.48 14.94 20.15 0.37 99.43 1.943 0.110 0.013 0.001 0.003 0.829 0.255 0.015 0.804 0.026 4.000 42.2 43.5	Ph/20 52.07 0.47 2.52 0.01 8.33 0.56 15.06 20.37 0.37 99.76 1.931 0.110 0.013 0.000 0.028 0.833 0.231 0.018 0.810 0.027 4.000 42.2 43.4	Ph/21 52.17 0.47 2.38 0.02 8.44 0.51 14.94 20.19 0.35 99.47 1.943 0.104 0.013 0.001 0.010 0.829 0.025 4.000 42.1 43.3	Ph/22 51.18 0.74 3.33 0.01 8.49 0.55 13.82 20.96 0.44 99.54 1.910 0.147 0.021 0.000 0.024 0.769 0.241 0.017 0.838 0.032 4.000 44.4 40.7	Ph/23 52.12 0.42 2.49 0.00 8.45 0.59 14.59 20.50 0.41 99.59 1.940 0.109 0.012 0.000 0.017 0.810 0.247 0.019 0.818 0.030 4.000 4.2.8 42.4	Ph/24 52.46 0.47 2.26 0.02 8.11 0.55 15.00 20.34 0.36 99.57 1.950 0.099 0.013 0.001 0.000 0.831 0.252 0.017 0.810 0.026 4.000 42.4 43.5

Linnen	Kezente I	Donnave	in und py	lokiustis	Second Second											
Probe	M97-068	(Auswa	hl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	51.77	51.44	51.07	51.17	51.59	52.50	51.32	52.29	51.79	51.23	51.07	51.69	51.29	51.97	51.22	51.98
TiO ₂	0.34	0.49	0.52	0.53	0.53	0.35	0.51	0.45	0.36	0.49	0.55	0.47	0.46	0.48	0.55	0.44
Al_2O_3	2.20	2.86	3.26	2.85	2.57	2.00	2.59	2.25	2.18	2.72	3.03	2.43	2.31	2.48	2.88	2.03
Cr_2O_3	0.00	0.02	0.04	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0.03	0.02	0.00	0.00	0.00	0.05
FeO	8.64	8.81	9.76	8.55	8.04	8.66	8.79	9.32	8.85	9.15	8.42	8.01	8.02	7.84	8.32	8.12
MnO	0.44	0.44	0.47	0.57	0.52	0.57	0.47	0.61	0.59	0.45	0.56	0.49	0.58	0.53	0.48	0.51
MgO	14.96	14.33	13.99	14.53	14.75	15.19	14.59	14.94	14.81	14.51	14.29	14.80	14.98	14.80	14.38	14.98
CaO	21.12	21.07	21.01	20.74	21.59	20.97	21.09	20.21	21.12	21.01	21.33	21.37	21.54	21.52	21.34	21.23
Na ₂ O	0.32	0.35	0.44	0.37	0.34	0.34	0.36	0.38	0.37	0.36	0.37	0.33	0.33	0.35	0.39	0.32
Summe	99.79	99.80	100.57	99.32	99.93	100.59	99.74	100.46	100.06	99.95	99.64	99.62	99.51	99.96	99.56	99.65
Si	1.921	1.913	1.889	1.910	1.912	1.933	1.908	1.932	1.919	1.903	1.901	1.921	1.907	1.924	1.907	1.931
Al	0.096	0.125	0.142	0.126	0.112	0.087	0.114	0.098	0.095	0.119	0.133	0.107	0.101	0.108	0.126	0.089
Ti	0.010	0.014	0.015	0.015	0.015	0.010	0.014	0.012	0.010	0.014	0.015	0.013	0.013	0.013	0.015	0.012
Cr	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.002
Fe(3)	0.065	0.046	0.081	0.051	0.059	0.051	0.066	0.041	0.074	0.074	0.061	0.049	0.083	0.042	0.057	0.046
Fe(2)	0.828	0.795	0.771	0.809	0.815	0.834	0.809	0.823	0.818	0.804	0.793	0.820	0.830	0.817	0.798	0.830
Mn	0.203	0.228	0.015	0.215	0.190	0.213	0.015	0.247	0.200	0.211	0.018	0.200	0.100	0.200	0.202	0.207
Ca	0.840	0.840	0.833	0.829	0.857	0.827	0.840	0.800	0.839	0.836	0.850	0.851	0.858	0.854	0.851	0.845
Na	0.023	0.025	0.032	0.027	0.024	0.024	0.026	0.027	0.027	0.026	0.027	0.024	0.024	0.025	0.028	0.023
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	43.1	43.7	43.4	43.1	44.2	42.5	43.4	41.5	43.0	43.1	44.2	44.0	43.9	44.2	44.3	43.5
EN	42.5	41.3	40.2	42.1	42.1	42.8	41.7	42.6	42.0	41.5	41.2	42.4	42.4	42.3	41.5	42.7
FS	14.5	15.0	16.5	14.8	13.7	14.6	14.9	15.9	15.0	15.4	14.5	13.7	13.7	13.4	14.3	13.8
Einheit	Rezente l	Domlave	en und pyr	roklastise	he Strön	ne										
Probe	M97-068	(Fortset	zung)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	Xr/5	Xr/6	Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
SiO ₂	51.44	50.84	50.76	51.31	51.48	51.36	51.22	51.20	50.20	50.38	50.25	50.18	50.44	50.09	50.35	50.41
TiO ₂	0.57	0.66	0.68	0.50	0.57	0.51	0.53	0.53	0.66	0.64	0.67	0.65	0.60	0.58	0.62	0.63
Al_2O_3	2.93	3.39	3.63	2.76	2.96	2.77	2.86	2.82	4.46	4.32	4.29	4.34	4.24	4.19	4.24	4.41
Cr_2O_3	0.01	0.04	0.00	0.02	0.01	0.00	0.00	0.03	0.04	0.06	0.04	0.09	0.05	0.06	0.07	0.08
FeO	9.13	8.84	8.64	8.29	8.84	7.86	8.39	8.72	6.37	6.37	6.43	6.21	6.45	6.34	6.26	6.46
MnO MaO	0.55	0.45	0.45	0.53	0.68	0.51	0.55	0.66	0.13	0.12	0.16	0.14	0.14	0.13	0.12	0.09
MgO CaO	20.70	21.01	21.23	20.99	20.61	21.57	21 44	20.94	23 35	23.63	23 30	23.49	23 57	23 57	23.36	23 31
Na ₂ O	0.37	0.37	0.37	0.37	0.39	0.35	0.37	0.38	0.26	0.26	0.25	0.25	0.24	0.26	0.25	0.27
Summe	100.22	99.86	99.77	99.41	100.16	99.52	99.97	99.79	99.83	100.09	99.80	99.63	100.10	99.62	99.60	100.04
Si	1.906	1.889	1.889	1.911	1.907	1.910	1.898	1.903	1.853	1.856	1.856	1.857	1.858	1.853	1.864	1.857
Al	0.128	0.148	0.159	0.121	0.129	0.121	0.125	0.124	0.194	0.188	0.187	0.189	0.184	0.183	0.185	0.192
Ti	0.016	0.018	0.019	0.014	0.016	0.014	0.015	0.015	0.018	0.018	0.019	0.018	0.017	0.016	0.017	0.017
Cr	0.010			0.01.	0.010		0.015						0.017	0.010	0.017	
	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.002	0.001	0.003	0.001	0.002	0.002	0.002
Fe(3)	0.010	0.001	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.002	0.001	0.003	0.001 0.083	0.002	0.002	0.002
Fe(3) Mg	0.010 0.000 0.055 0.802	0.001 0.062 0.790	0.000 0.052 0.777	0.001 0.005 0.813	0.000 0.054 0.808	0.000 0.056 0.809	0.000 0.076 0.806	0.001 0.066 0.803	0.001 0.081 0.790	0.002 0.082 0.786	0.001 0.081 0.794	0.003 0.076 0.788	0.001 0.001 0.083 0.789	0.002 0.096 0.794	0.002 0.069 0.790	0.002 0.076 0.790
Fe(3) Mg Fe(2) Mn	0.010 0.000 0.055 0.802 0.228	0.001 0.062 0.790 0.213 0.014	0.000 0.052 0.777 0.216	0.001 0.001 0.055 0.813 0.204	0.000 0.054 0.808 0.220	0.000 0.056 0.809 0.189	0.010 0.000 0.076 0.806 0.184	0.001 0.066 0.803 0.205	0.001 0.081 0.790 0.115 0.004	0.002 0.082 0.786 0.114	0.001 0.081 0.794 0.118 0.005	0.003 0.076 0.788 0.116	0.001 0.001 0.083 0.789 0.116	0.002 0.096 0.794 0.100	0.002 0.069 0.790 0.125 0.004	0.002 0.076 0.790 0.123 0.003
Fe(3) Mg Fe(2) Mn Ca	0.010 0.000 0.055 0.802 0.228 0.017 0.822	0.001 0.062 0.790 0.213 0.014 0.837	0.000 0.052 0.777 0.216 0.014 0.846	0.001 0.055 0.813 0.204 0.017 0.838	0.000 0.054 0.808 0.220 0.021 0.818	0.000 0.056 0.809 0.189 0.016 0.860	0.010 0.076 0.806 0.184 0.017 0.851	0.001 0.066 0.803 0.205 0.021 0.834	0.001 0.081 0.790 0.115 0.004 0.924	0.002 0.082 0.786 0.114 0.004 0.933	0.001 0.081 0.794 0.118 0.005 0.922	0.003 0.076 0.788 0.116 0.004 0.931	0.017 0.001 0.083 0.789 0.116 0.004 0.930	0.002 0.096 0.794 0.100 0.004 0.934	0.002 0.069 0.790 0.125 0.004 0.926	0.002 0.076 0.790 0.123 0.003 0.920
Fe(3) Mg Fe(2) Mn Ca Na	0.010 0.000 0.055 0.802 0.228 0.017 0.822 0.027	0.001 0.062 0.790 0.213 0.014 0.837 0.027	0.000 0.052 0.777 0.216 0.014 0.846 0.027	0.001 0.055 0.813 0.204 0.017 0.838 0.027	0.000 0.054 0.808 0.220 0.021 0.818 0.028	0.000 0.056 0.809 0.189 0.016 0.860 0.025	0.010 0.076 0.806 0.184 0.017 0.851 0.027	0.001 0.066 0.803 0.205 0.021 0.834 0.027	0.001 0.081 0.790 0.115 0.004 0.924 0.019	0.002 0.082 0.786 0.114 0.004 0.933 0.018	0.001 0.081 0.794 0.118 0.005 0.922 0.018	0.003 0.076 0.788 0.116 0.004 0.931 0.018	0.017 0.001 0.083 0.789 0.116 0.004 0.930 0.017	0.002 0.096 0.794 0.100 0.004 0.934 0.018	0.002 0.069 0.790 0.125 0.004 0.926 0.018	0.002 0.076 0.790 0.123 0.003 0.920 0.019
Fe(3) Mg Fe(2) Mn Ca Na Summe	0.010 0.000 0.055 0.802 0.228 0.017 0.822 0.027 4.000	0.001 0.062 0.790 0.213 0.014 0.837 0.027 4.000	0.000 0.052 0.777 0.216 0.014 0.846 0.027 4.000	0.001 0.055 0.813 0.204 0.017 0.838 0.027 4.000	0.000 0.054 0.808 0.220 0.021 0.818 0.028 4.000	$\begin{array}{c} 0.000\\ 0.056\\ 0.809\\ 0.189\\ 0.016\\ 0.860\\ 0.025\\ 4.000\\ \end{array}$	0.010 0.076 0.806 0.184 0.017 0.851 0.027 4.000	0.001 0.066 0.803 0.205 0.021 0.834 0.027 4.000	0.001 0.081 0.790 0.115 0.004 0.924 0.019 4.000	0.002 0.082 0.786 0.114 0.004 0.933 0.018 4.000	0.001 0.081 0.794 0.118 0.005 0.922 0.018 4.000	0.003 0.076 0.788 0.116 0.004 0.931 0.018 4.000	$\begin{array}{c} 0.011\\ 0.001\\ 0.083\\ 0.789\\ 0.116\\ 0.004\\ 0.930\\ 0.017\\ 4.000\\ \end{array}$	0.002 0.096 0.794 0.100 0.004 0.934 0.018 4.000	0.002 0.069 0.790 0.125 0.004 0.926 0.018 4.000	0.002 0.076 0.790 0.123 0.003 0.920 0.019 4.000
Fe(3) Mg Fe(2) Mn Ca Na Summe WO	0.010 0.000 0.055 0.802 0.228 0.017 0.822 0.027 4.000 42.7	0.001 0.062 0.790 0.213 0.014 0.837 0.027 4.000 43.7	0.000 0.052 0.777 0.216 0.014 0.846 0.027 4.000 44.4	0.001 0.055 0.813 0.204 0.017 0.838 0.027 4.000 43.5	0.000 0.054 0.808 0.220 0.021 0.818 0.028 4.000 42.6	0.000 0.056 0.809 0.189 0.016 0.860 0.025 4.000 44.6	0.000 0.076 0.806 0.184 0.017 0.851 0.027 4.000 44.0	0.001 0.066 0.803 0.205 0.021 0.834 0.027 4.000 43.2	0.001 0.081 0.790 0.115 0.004 0.924 0.019 4.000 48.2	0.002 0.082 0.786 0.114 0.004 0.933 0.018 4.000 48.6	0.001 0.081 0.794 0.118 0.005 0.922 0.018 4.000 48.0	0.003 0.076 0.788 0.116 0.004 0.931 0.018 4.000 48.6	0.001 0.083 0.789 0.116 0.004 0.930 0.017 4.000 48.4	0.002 0.096 0.794 0.100 0.004 0.934 0.018 4.000 48.4	0.002 0.069 0.790 0.125 0.004 0.926 0.018 4.000 48.4	0.002 0.076 0.790 0.123 0.003 0.920 0.019 4.000 48.1
Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	0.010 0.000 0.055 0.802 0.228 0.017 0.822 0.027 4.000 42.7 41.7	0.001 0.062 0.790 0.213 0.014 0.837 0.027 4.000 43.7 41.3	0.000 0.052 0.777 0.216 0.014 0.846 0.027 4.000 44.4 40.7	0.001 0.055 0.813 0.204 0.017 0.838 0.027 4.000 43.5 42.2	0.000 0.054 0.808 0.220 0.021 0.818 0.028 4.000 42.6 42.1	0.000 0.056 0.809 0.189 0.016 0.860 0.025 4.000 44.6 41.9	0.000 0.076 0.806 0.184 0.017 0.851 0.027 4.000 44.0 41.7	0.001 0.066 0.803 0.205 0.021 0.834 0.027 4.000 43.2 41.6	0.001 0.081 0.790 0.115 0.004 0.924 0.019 4.000 48.2 41.3	0.002 0.082 0.786 0.114 0.004 0.933 0.018 4.000 48.6 41.0	0.001 0.081 0.794 0.118 0.005 0.922 0.018 4.000 48.0 41.4	0.003 0.076 0.788 0.116 0.004 0.931 0.018 4.000 48.6 41.1	0.017 0.001 0.083 0.789 0.116 0.004 0.930 0.017 4.000 48.4 41.1	0.002 0.096 0.794 0.100 0.004 0.934 0.018 4.000 48.4 41.2	0.002 0.069 0.790 0.125 0.004 0.926 0.018 4.000 48.4 41.3	0.002 0.076 0.790 0.123 0.003 0.920 0.019 4.000 48.1 41.3

	1	1
<u>٦</u>		
~	-	-

Tab. A5.3. (Fortsetzung).EinheitRezente Domlaven und pyroklastische Ströme

Probe	M98-108	31 (Ausw	ahl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	51.15	51.71	52.08	51.70	51.40	51.46	51.77	51.39	51.61	51.49	51.83	51.28	51.03	51.10	51.75	51.70
TiO ₂	0.52	0.51	0.35	0.45	0.39	0.45	0.53	0.45	0.48	0.44	0.45	0.51	0.56	0.52	0.48	0.45
Al_2O_3	3.12	2.74	2.08	2.53	2.33	2.76	2.39	2.45	2.47	2.51	2.45	2.76	2.85	2.74	2.57	2.30
Cr_2O_3	0.00	0.00	0.01	0.00	0.03	0.00	0.03	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00
FeO	9.50	8.70	8.49	8.67	8.44	8.47	8.19	8.09	8.12	8.07	7.97	8.76	8.76	8.68	8.25	8.10
MaO	0.58	0.50	0.64	0.43	0.00	0.50	0.57	0.49	0.44	0.40	0.47	0.55	0.55	0.55	0.58	0.50
MgO CaO	20.85	21 59	21.42	21.76	21 44	21.40	21 32	21.25	21.22	21.34	21.37	20.48	20.82	21.08	20.93	21.01
Na ₂ O	0.50	0.46	0.40	0.42	0.34	0.42	0.40	0.40	0.38	0.38	0.40	0.45	0.41	0.45	0.42	0.41
Summe	100.63	100.62	100.27	100.52	99.90	99.58	99.73	99.17	99.41	99.44	99.84	99.27	99.44	99.65	99.61	99.43
Si	1.887	1.906	1.924	1.906	1.906	1.917	1.924	1.918	1.922	1.916	1.919	1.915	1.903	1.900	1.924	1.923
Al	0.136	0.119	0.090	0.110	0.102	0.121	0.105	0.108	0.108	0.110	0.107	0.121	0.125	0.120	0.113	0.101
Ti	0.014	0.014	0.010	0.012	0.011	0.013	0.015	0.013	0.013	0.012	0.012	0.014	0.016	0.014	0.013	0.012
Cr	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Fe(3)	0.097	0.073	0.070	0.082	0.088	0.050	0.045	0.061	0.049	0.061	0.058	0.052	0.067	0.083	0.043	0.058
Mg	0.792	0.789	0.816	0.801	0.822	0.785	0.805	0.815	0.816	0.818	0.823	0.807	0.804	0.806	0.811	0.826
Fe(2)	0.196	0.195	0.192	0.185	0.174	0.214	0.209	0.192	0.204	0.190	0.189	0.221	0.206	0.187	0.213	0.194
Mn Ca	0.018	0.017	0.020	0.013	0.021	0.016	0.018	0.015	0.014	0.014	0.015	0.017	0.017	0.017	0.018	0.018
Ca No	0.824	0.855	0.848	0.860	0.852	0.854	0.849	0.850	0.847	0.851	0.848	0.819	0.832	0.840	0.834	0.837
Summe	4 000	4 000	4 000	4.000	4 000	4.000	4.000	4 000	4 000	4.000	4 000	4.000	4.000	4 000	4.000	4.000
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	42.8	44.2	43.6	44.3	43.5	44.5	44.1	44.0	43.9	44.0	43.9	42.8	43.2	43.4	43.4	43.3
EN	41.1	40.9	41.9	41.2	42.0	40.9	41.8	42.2	42.3	42.3	42.6	42.1	41.8	41.7	42.3	42.7
FS	16.1	14.8	14.5	14.5	14.4	14.6	14.1	13.9	13.8	13.7	13.6	15.1	15.0	14.9	14.3	14.0
Einheit	Rezente	Domlave	n und py	roklastis	che Strör	ne										
Probe	M98-108	81 (Fortse	etzung)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	Xr/5	Xr/6	Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
SiO ₂	51.74	51.75	52.21	51.98	52.03	51.96	52.02	52.10	46.44	46.76	47.20	46.94	46.19	46.40	47.37	48.97
TiO ₂	0.47	0.58	0.51	0.49	0.51	0.50	0.50	0.49	1.17	1.13	1.03	1.07	1.17	1.23	0.93	0.79
Al_2O_3	2.87	2.79	2.71	2.49	2.47	2.78	2.50	2.51	8.13	8.04	7.38	7.74	8.43	8.60	7.64	5.72
Cr_2O_3	0.00	0.00	0.04	0.00	0.00	0.01	0.00	0.00	0.02	0.00	0.00	0.01	0.00	0.00	0.01	0.05
FeO MnO	8.47	8.40 0.56	8.30 0.43	8.20	8.22	8.28 0.54	7.98	8.01	9.08	9.15	8.80 0.23	8.79	9.00	8.89	8.91	0.33
MgO	14 73	14 73	15 30	15.06	15.07	14 97	15.09	14 99	11 25	11 18	11 57	11 33	11 24	11 19	11 56	12.97
CaO	20.95	20.62	20.98	21.20	21.08	21.21	21.27	21.23	23.01	23.28	23.49	23.25	23.21	23.12	23.23	22.29
Na ₂ O	0.39	0.42	0.41	0.41	0.35	0.40	0.39	0.41	0.31	0.34	0.33	0.30	0.31	0.32	0.30	0.34
Summe	100.14	99.91	100.96	100.34	100.23	100.64	100.32	100.21	99.60	100.10	100.09	99.58	99.76	99.95	100.10	100.09
Si	1.913	1.919	1.911	1.916	1.921	1.910	1.917	1.922	1.741	1.745	1.759	1.759	1.728	1.732	1.765	1.818
Al	0.125	0.122	0.117	0.108	0.107	0.121	0.109	0.109	0.359	0.353	0.324	0.342	0.372	0.378	0.335	0.250
Ti	0.013	0.016	0.014	0.013	0.014	0.014	0.014	0.014	0.033	0.032	0.029	0.030	0.033	0.035	0.026	0.022
Cr	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Fe(3)	0.050	0.039	0.060	0.063	0.048	0.060	0.057	0.048	0.115	0.118	0.124	0.101	0.129	0.111	0.104	0.092
Mg	0.812	0.814	0.835	0.827	0.829	0.820	0.829	0.824	0.629	0.622	0.643	0.633	0.627	0.623	0.642	0.718
Fe(2)	0.212	0.223	0.196	0.190	0.206	0.194	0.189	0.199	0.170	0.168	0.153	0.174	0.152	0.167	0.174	0.175
Mn	0.016	0.018	0.013	0.016	0.016	0.017	0.018	0.015	0.006	0.006	0.007	0.005	0.007	0.006	0.005	0.011
Ca Na	0.830	0.819	0.823	0.83/	0.834	0.836	0.840	0.839	0.924	0.931	0.938	0.933	0.930	0.925	0.927	0.88/
Summe	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
WO	43.0	42.8	42.7	43.3	42.1	43.4	43.5	43.6	50.1	50.5	50.3	50.5	50.4	50.5	50.1	47.1
EN	42.3	42.6	43 3	42.8	42.9	42.6	42.9	42.8	34.1	33.7	34.5	34.3	34.0	34.0	34.7	38.1
FS	14.5	14.6	14.0	13.9	13.9	14.1	13.6	13.6	15.8	15.8	15.2	15.2	15.6	15.5	15.3	14.8

Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklast	scher Sti	röme									
Probe	M96-137	1										M96-167	7 (Auswa	hl)		
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	-	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5
SiO ₂	51.15	51.11	51.73	51.86	50.13	51.04	51.87	51.39	51.21	51.18		51.52	52.08	51.74	51.47	51.72
TiO ₂	0.64	0.63	0.51	0.42	0.65	0.62	0.47	0.52	0.51	0.55		0.40	0.39	0.41	0.42	0.46
Al_2O_3	2.62	2.73	1.96	1.16	3.83	2.81	1.87	2.12	2.13	2.20		2.09	1.97	2.06	2.22	2.42
Er2O3 FeO	9.38	9.77	9.31	11 15	9.92	9.27	9.28	9.14	9.36	9.27		8.66	8.56	8.58	8.97	8 53
MnO	0.54	0.56	0.57	0.80	0.46	0.59	0.55	0.49	0.58	0.52		0.57	0.44	0.58	0.52	0.41
MgO	15.27	15.48	15.06	14.34	13.89	14.69	15.94	15.11	15.53	15.14		15.16	15.19	15.11	15.30	15.28
CaO	19.71	19.36	20.05	19.50	20.39	20.47	19.93	20.52	19.93	20.48		20.49	21.59	21.01	20.49	21.22
Na ₂ O	0.28	0.26	0.25	0.28	0.28	0.30	0.25	0.28	0.30	0.25		0.32	0.35	0.32	0.33	0.30
Summe	99.62	99.90	99.48	99.55	99.58	99.79	100.19	99.58	99.54	99.63		99.21	100.57	99.84	99.70	100.35
Si	1.904	1.898	1.932	1.951	1.876	1.900	1.917	1.914	1.906	1.907		1.922	1.917	1.920	1.912	1.907
Al	0.115	0.119	0.086	0.051	0.169	0.123	0.081	0.093	0.093	0.097		0.092	0.086	0.090	0.097	0.105
li Cr	0.018	0.018	0.014	0.012	0.018	0.017	0.013	0.015	0.014	0.015		0.011	0.011	0.012	0.012	0.013
Ee(3)	0.001	0.000	0.001	0.001	0.000	0.000	0.001	0.001	0.000	0.001		0.000	0.000	0.001	0.000	0.000
Mg	0.847	0.856	0.838	0.804	0.774	0.815	0.878	0.839	0.861	0.840		0.843	0.833	0.836	0.847	0.840
Fe(2)	0.228	0.230	0.250	0.302	0.245	0.224	0.207	0.213	0.202	0.208		0.206	0.179	0.197	0.196	0.185
Mn	0.017	0.018	0.018	0.025	0.015	0.019	0.017	0.015	0.018	0.016		0.018	0.014	0.018	0.016	0.013
Ca	0.786	0.769	0.802	0.785	0.817	0.816	0.789	0.819	0.795	0.817		0.819	0.851	0.835	0.815	0.838
Na	0.020	0.018	0.018	0.021	0.020	0.022	0.018	0.020	0.021	0.018		0.023	0.025	0.023	0.023	0.022
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000
WO	40.5	39.5	41.2	40.0	42.6	42.1	40.0	41.8	40.4	41.6		42.0	43.4	42.7	41.7	42.9
EN	43.6	44.0	43.0	40.9	40.4	42.0	44.5	42.8	43.8	42.8		43.2	42.5	42.7	43.3	43.0
FS	15.9	16.5	15.8	19.1	17.0	15.9	15.4	15.3	15.7	15.5		14.8	14.1	14.5	15.1	14.1
Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Sti	öme									
Probe	M96-167	(Fortset	tzung)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	Xr/5	Xr/6	Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
SiO ₂	51.87	51.98	52.37	52.12	53.31	53.02	53.07	52.24	49.89	49.43	49.25	48.77	48.90	49.06	48.73	48.66
TiO ₂	0.49	0.38	0.37	0.36	0.27	0.31	0.27	0.32	0.69	0.70	0.83	0.86	0.82	0.80	0.81	0.78
Al_2O_3	2.15	2.06	1.83	1.62	1.29	1.44	1.49	1.94	4.69	5.51	5.79	5.98	5.70	5.52	5.91	5.76
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.02	0.00	0.02	0.01	0.00	0.00	0.00
FeO	8.45	8.70	8.30	8.64	8.55	8.85	8.69	8.50	8.98	8.88	9.00	9.39	9.18	9.06	9.04	8.80
MnO McO	0.41	0.69	0.56	0.62	0.91	0.98	0.92	0.77	12.08	0.31	0.25	12.20	12.20	0.25	0.25	0.25
CaO	21.08	21.04	21.05	20.77	20.66	20.52	20.63	20.68	23.03	22.47	22.65	22.66	22.83	22 55	22 79	22.54
Na ₂ O	0.31	0.33	0.28	0.33	0.33	0.36	0.34	0.40	0.31	0.31	0.33	0.33	0.32	0.33	0.33	0.31
Summe	100.03	100.51	100.40	99.99	100.58	100.68	100.50	99.58	99.91	100.04	100.41	100.48	100.39	100.04	100.05	99.57
Si	1.919	1.915	1.928	1.929	1.966	1.955	1.960	1.946	1.866	1.842	1.829	1.812	1.816	1.828	1.817	1.821
Al	0.094	0.089	0.079	0.071	0.056	0.063	0.065	0.085	0.207	0.242	0.253	0.262	0.249	0.242	0.260	0.254
Ti	0.013	0.010	0.010	0.010	0.007	0.009	0.007	0.009	0.019	0.020	0.023	0.024	0.023	0.022	0.023	0.022
Cr	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000	0.000
Fe(3)	0.064	0.085	0.063	0.075	0.022	0.036	0.027	0.038	0.045	0.059	0.066	0.090	0.095	0.080	0.088	0.083
Mg	0.843	0.842	0.858	0.856	0.839	0.834	0.830	0.819	0.673	0.693	0.681	0.676	0.686	0.692	0.677	0.688
Fe(2)	0.198	0.184	0.193	0.193	0.242	0.236	0.241	0.226	0.236	0.218	0.213	0.202	0.190	0.202	0.194	0.192
NIII Ca	0.015	0.021	0.018	0.020	0.029	0.030	0.029	0.024	0.008	0.010	0.008	0.008	0.008	0.008	0.008	0.008
Na	0.022	0.023	0.020	0.024	0.024	0.026	0.024	0.029	0.023	0.022	0.024	0.024	0.023	0.024	0.024	0.023
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	42.8	42.3	42.3	41.9	41.9	41.6	42.0	42.7	49.0	47.7	48.2	48.0	48.1	47.8	48.5	48.3
EN	43.2	42.9	43.8	43.5	43.1	42.8	42.7	42.4	35.7	37.0	36.4	36.0	36.3	36.8	36.1	36.6
FS	14.0	14.8	13.9	14.6	15.0	15.6	15.3	14.9	15.3	15.3	15.4	16.0	15.5	15.4	15.4	15.1
3	1	2														
---	---	---														
J	T	J														

Einneit	Juvenne	Kompone	enten noi	lozaner p	yrokiasti	scher Su	ome									
Probe	M97-009	(Auswal	hl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	50.79	51.77	52.13	51.26	52.30	51.22	51.26	51.15	52.78	52.67	52.58	52.42	52.19	51.38	51.18	52.36
TiO ₂	0.73	0.47	0.35	0.67	0.42	0.64	0.53	0.51	0.34	0.35	0.32	0.36	0.39	0.49	0.62	0.39
Al_2O_3	3.40	2.18	2.17	2.85	2.17	3.00	2.65	2.79	1.61	1.53	1.39	1.82	1.96	2.74	3.33	2.05
Cr_2O_3	0.00	0.00	0.00	0.03	0.00	0.01	0.00	0.00	0.00	0.03	0.01	0.00	0.00	0.00	0.00	0.00
FeO	10.14	8.66	8.64	8.88	8.83	9.41	8.82	9.03	8.58	8.65	8.71	8.73	8.36	8.87	9.20	9.09
MnO	0.58	0.70	0.64	0.59	0.64	0.70	0.69	0.61	0.75	0.72	0.80	0.64	0.66	0.57	0.62	0.66
MgO	14.53	14.86	15.15	14.43	14.99	14.49	14.39	14.23	15.34	15.38	15.43	14.95	14.88	14.62	14.25	15.44
CaO	19.61	20.44	20.30	20.55	20.01	19.74	21.02	20.79	19.97	20.10	19.88	20.21	20.64	20.61	20.71	19.87
Na ₂ O	0.44	0.38	0.40	0.41	0.38	0.43	0.41	0.41	0.35	0.38	0.34	0.36	0.39	0.41	0.44	0.40
Summe	100.21	99.46	99.78	99.68	99.74	99.64	99.77	99.52	99.73	99.80	99.48	99.48	99.46	99.69	100.36	100.26
Si	1.884	1.930	1.934	1.909	1.944	1.910	1.907	1.909	1.960	1.954	1.958	1.954	1.944	1.911	1.894	1.934
Al	0.149	0.096	0.095	0.125	0.095	0.132	0.116	0.123	0.071	0.067	0.061	0.080	0.086	0.120	0.145	0.089
Ti	0.020	0.013	0.010	0.019	0.012	0.018	0.015	0.014	0.010	0.010	0.009	0.010	0.011	0.014	0.017	0.011
Cr	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Fe(3)	0.074	0.047	0.047	0.048	0.021	0.043	0.069	0.060	0.016	0.031	0.029	0.018	0.033	0.060	0.063	0.050
Mg	0.803	0.826	0.838	0.801	0.831	0.805	0.798	0.792	0.849	0.851	0.857	0.831	0.826	0.811	0.786	0.850
Fe(2)	0.241	0.223	0.221	0.229	0.253	0.250	0.205	0.222	0.251	0.237	0.242	0.254	0.228	0.216	0.221	0.230
Mn	0.018	0.022	0.020	0.019	0.020	0.022	0.022	0.019	0.024	0.023	0.025	0.020	0.021	0.018	0.020	0.021
Ca No	0.779	0.810	0.807	0.820	0.797	0.788	0.838	0.851	0.795	0.799	0.793	0.807	0.824	0.821	0.821	0.780
Summe	4 000	4.000	4 000	4 000	4.000	4 000	4.000	4 000	4 000	4.000	4 000	4 000	4 000	4 000	4 000	4 000
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	40.7	42.2	41.7	42.8	41.4	41.3	43.4	43.2	41.1	41.2	40.7	41.8	42.7	42.6	43.0	40.6
EN	41.9	42.7	43.3	41.8	43.2	42.2	41.3	41.1	43.9	43.8	44.0	43.0	42.8	42.1	41.1	43.9
FS	17.4	15.1	14.9	15.4	15.5	10.5	15.5	15.0	15.0	15.0	15.2	15.1	14.0	15.5	15.9	15.0
Einheit	Juvenile	Kompone	enten hol	lozäner p	yroklasti	scher Str	öme									
Probe	M97-039	2 (Ausw	ahl)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	Xr/5	Xr/6	Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
SiOa	52 15	52.06	51.99	52 22	52 43	51.67	52.28	52 17	49 71	50.17	51.87	51.62	51 69	51 75	51 17	50.37
TiO ₂	0.48	0.52	0.50	0.53	0.47	0.46	0.47	0.42	0.80	0.77	0.50	0.51	0.47	0.51	0.57	0.66
Al_2O_3	2.28	2.51	2.46	2.39	2.29	2.75	2.13	2.18	5.17	4.64	2.97	2.93	2.86	2.81	3.35	4.28
Cr ₂ O ₃	0.01	0.02	0.00	0.00	0.02	0.02	0.00	0.02	0.01	0.00	0.00	0.00	0.01	0.00	0.03	0.01
FeO	8.26	8.25	8.17	8.46	8.75	8.86	7.96	8.54	8.22	8.33	7.61	7.76	7.52	7.64	8.34	8.35
MnO	0.53	0.56	0.49	0.59	0.64	0.60	0.60	0.57	0.21	0.27	0.27	0.41	0.30	0.25	0.30	0.25
MgO	14.95	14.97	14.97	14.99	14.95	14.70	14.97	15.17	12.95	13.15	14.03	14.22	14.25	14.22	13.76	13.36
CaO	20.91	20.76	20.92	20.81	20.18	20.83	20.98	20.68	22.67	22.78	22.99	22.79	22.67	22.59	22.70	22.76
Na ₂ O	0.34	0.35	0.34	0.35	0.40	0.40	0.34	0.36	0.29	0.32	0.28	0.30	0.32	0.31	0.34	0.35
Summe	99.91	100.00	99.85	100.34	100.14	100.28	99.72	100.11	100.03	100.42	100.52	100.53	100.09	100.09	100.55	100.40
Si	1.933	1.927	1.927	1.928	1.941	1.910	1.941	1.929	1.848	1.857	1.914	1.903	1.913	1.916	1.890	1.865
Al	0.100	0.109	0.107	0.104	0.100	0.120	0.093	0.095	0.227	0.202	0.129	0.127	0.125	0.123	0.146	0.187
Ti	0.014	0.015	0.014	0.015	0.013	0.013	0.013	0.012	0.022	0.021	0.014	0.014	0.013	0.014	0.016	0.018
Cr	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000
Fe(3)	0.032	0.031	0.035	0.035	0.021	0.063	0.023	0.048	0.054	0.063	0.036	0.059	0.047	0.039	0.067	0.075
Mg	0.826	0.826	0.827	0.825	0.825	0.810	0.829	0.837	0.717	0.726	0.771	0.782	0.786	0.785	0.758	0.737
Fe(2)	0.224	0.224	0.218	0.226	0.250	0.211	0.224	0.216	0.202	0.195	0.199	0.180	0.186	0.197	0.191	0.184
Mn	0.017	0.018	0.015	0.018	0.020	0.019	0.019	0.018	0.007	0.008	0.008	0.013	0.009	0.008	0.009	0.008
Ca	0.831	0.824	0.831	0.823	0.800	0.825	0.834	0.819	0.903	0.904	0.909	0.901	0.899	0.896	0.898	0.902
Na Surrent	0.025	0.025	0.025	0.025	0.029	0.029	0.024	0.025	0.021	0.023	0.020	0.021	0.023	0.022	0.024	0.025
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	43.1	42.8	43.1	42.7	41.8	42.8	43.3	42.3	48.0	477	47.2	46.6	46.6	46.5	467	47.4
												10.0			+0.7	
EN	42.8	43.0	42.9	42.8	43.1	42.0	43.0	43.2	38.1	38.3	40.1	40.4	40.8	40.8	39.4	38.7

Einheit	Juvenile	Kompon	enten hol	, ozäner p	yroklasti	scher Str	öme									
Probe	M97-045	i (Auswa	hl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	51.17	51.81	51.07	52.00	52.11	50.84	52.03	50.41	52.51	50.16	52.19	51.18	51.95	52.52	51.75	51.84
TiO ₂	0.63	0.56	0.63	0.59	0.61	0.68	0.59	0.66	0.53	0.74	0.59	0.69	0.48	0.40	0.39	0.47
Al_2O_3	2.67	2.27	2.60	2.21	2.13	3.36	2.38	3.32	1.87	3.56	2.37	2.87	2.45	1.91	2.06	2.39
Cr_2O_3	0.01	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.00	0.02	0.02	0.03	0.00	0.01	0.00	0.00
MnO	8.70 0.46	0.52	9.13	0.72	0.30	0.09	9.13	0.90	0.29	9.43	0.30	9.10	0.17	0.51	0.54	0.51
ΜσΟ	15.04	15 56	15.04	15.26	15.61	14 59	15.52	14 63	15 56	14 62	15 43	15.07	15.09	15 39	15 27	15.07
CaO	21.07	20.95	20.76	21.01	20.87	21.34	20.16	20.95	21.00	20.84	21.22	20.91	20.98	20.92	20.64	20.77
Na ₂ O	0.37	0.36	0.37	0.36	0.37	0.39	0.39	0.46	0.30	0.41	0.37	0.38	0.34	0.30	0.33	0.33
Summe	100.11	100.66	100.19	100.73	100.76	100.36	100.78	99.88	100.61	100.34	101.20	100.72	99.95	100.01	99.01	99.49
Si	1.892	1.903	1.889	1.912	1.912	1.877	1.911	1.869	1.931	1.854	1.908	1.883	1.923	1.942	1.932	1.927
Al	0.117	0.098	0.113	0.096	0.092	0.146	0.103	0.145	0.081	0.155	0.102	0.124	0.107	0.083	0.091	0.105
Ti	0.017	0.016	0.018	0.016	0.017	0.019	0.016	0.018	0.015	0.021	0.016	0.019	0.013	0.011	0.011	0.013
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.000
Fe(3)	0.091	0.091	0.100	0.073	0.076	0.090	0.069	0.112	0.050	0.124	0.075	0.098	0.046	0.033	0.048	0.039
Mg	0.829	0.852	0.829	0.836	0.854	0.803	0.850	0.809	0.853	0.806	0.841	0.826	0.833	0.848	0.850	0.835
Fe(2)	0.178	0.170	0.182	0.195	0.187	0.178	0.211	0.166	0.205	0.168	0.186	0.182	0.207	0.216	0.202	0.213
Mn	0.014	0.019	0.018	0.018	0.015	0.014	0.018	0.015	0.017	0.017	0.014	0.015	0.015	0.016	0.017	0.016
Ca	0.835	0.825	0.823	0.828	0.821	0.844	0.793	0.832	0.827	0.825	0.831	0.824	0.832	0.829	0.826	0.827
Na Summe	0.026	0.026	0.027	0.026	0.026	0.028	0.028	0.033	0.022	0.030	0.026	0.027	0.024	0.022	0.024	0.024
WO	12.0	42.1	42.1	12.4	42.0	13.7	40.9	43.1	12.4	12.6	12.7	12.4	43.0	12 7	12 5	12.0
FN	42.9	42.1	42.1	42.4	42.0	43.7	40.9	43.1	42.4	42.0	42.7	42.4	43.0	42.7	42.3	42.9
FS	14.6	14.3	15.4	14.7	14.2	14.6	15.4	15.1	13.9	15.9	14.2	15.2	13.9	13.7	13.8	13.9
Finheit	Iuvanila	Kompon	antan hol	ozäner n	vroklasti	schar Str	öme									
Linnen	Juvenne	Kompon		ozanei p	yrokiasti	scher Su	onie									
Probe	M97-045	(Fortset	zung)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	Xr/5	Xr/6	Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
SiO_2	51.20	51.31	51.81	51.38	51.77	52.11	51.85	51.85	48.69	48.30	48.59	48.62	49.00	48.67	49.07	49.33
TiO ₂	0.51	0.51	0.52	0.56	0.56	0.45	0.43	0.43	0.83	0.81	0.79	0.88	0.76	0.79	0.77	0.77
Al_2O_3	3.00	2.60	2.69	2.80	3.11	2.33	2.16	2.30	6.26	6.25	5.93	5.95	5.80	5.66	5.68	5.62
Cr_2O_3	0.00	0.11	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.02	0.01	0.03	0.00	0.02	0.01	0.02
FeO	8.79	8.10	8.21	8.20	8.40	8.52	8.54	8.24	8.87	8.17	7.41	7.31	7.49	7.41	7.35	7.33
MaO	14.60	14.82	14.00	15.02	0.55	15 12	15 20	15.02	12 75	12.16	12 20	12 22	12.29	12 42	0.13	12 55
CaO	20.58	21.02	21 37	20.98	20.86	20.84	21.02	21.06	22 54	22.86	23.14	23.17	23.18	23.07	23 30	23.20
Na ₂ O	0.41	0.34	0.35	0.35	0.35	0.36	0.37	0.36	0.34	0.31	0.26	0.26	0.27	0.24	0.26	0.25
Summe	99.77	99.26	100.49	99.80	100.36	100.24	100.34	99.87	100.60	100.14	99.67	99.59	100.02	99.44	99.99	100.27
Si	1.901	1.913	1.908	1.904	1.910	1.924	1.911	1.921	1.800	1.788	1.804	1.808	1.813	1.812	1.816	1.820
Al	0.131	0.114	0.117	0.122	0.135	0.101	0.094	0.100	0.273	0.273	0.259	0.261	0.253	0.248	0.248	0.245
Ti	0.014	0.014	0.014	0.016	0.016	0.013	0.012	0.012	0.023	0.023	0.022	0.025	0.021	0.022	0.021	0.021
Cr	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.001
Fe(3)	0.069	0.052	0.064	0.065	0.039	0.050	0.088	0.061	0.106	0.128	0.108	0.093	0.098	0.101	0.096	0.089
Mg	0.813	0.824	0.823	0.830	0.813	0.833	0.846	0.830	0.702	0.726	0.741	0.732	0.738	0.744	0.739	0.746
Fe(2)	0.204	0.201	0.189	0.189	0.220	0.213	0.175	0.194	0.168	0.125	0.122	0.134	0.134	0.129	0.132	0.137
Mn	0.019	0.014	0.017	0.016	0.017	0.015	0.018	0.019	0.010	0.008	0.005	0.005	0.004	0.005	0.005	0.006
Ca	0.819	0.840	0.843	0.833	0.825	0.825	0.830	0.836	0.893	0.907	0.920	0.923	0.919	0.920	0.924	0.917
Na	0.029	0.024	0.025	0.025	0.025	0.026	0.027	0.026	0.025	0.022	0.019	0.019	0.019	0.017	0.019	0.018
Summe	4 000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
W/O	1.000										10 5	10.0	10.5	40.4	10 -	40.5
WO	42.6	43.5	43.5	43.1	43.1	42.6	42.4	43.1	47.5	47.9	48.5	48.9	48.5	48.4	48.7	48.4
WO EN FS	42.6 42.3	43.5 42.7 13.8	43.5 42.5	43.1 43.0 14.0	43.1 42.5	42.6 43.0	42.4 43.2	43.1 42.8	47.5 37.4	47.9 38.3 13.8	48.5 39.1 12.4	48.9 38.8 12.3	48.5 39.0 12.5	48.4 39.2	48.7 39.0	48.4 39.3

Einneit	Juvenne	Rompon		r r												
Probe	M98-002	2 (Auswa	hl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	52.05	51.93	51.83	52.57	52.26	51.53	51.89	51.53	52.21	51.34	51.33	51.06	51.80	51.69	51.60	51.91
TiO ₂	0.51	0.47	0.52	0.37	0.41	0.51	0.39	0.42	0.33	0.51	0.49	0.50	0.43	0.51	0.36	0.40
Al_2O_3	2.39	2.74	2.80	2.05	2.48	3.12	2.46	2.55	1.72	2.46	2.66	2.58	2.35	2.40	2.25	2.18
Cr ₂ O ₃	0.01	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.01
FeO	9.00	8.70	8.49	8.73	9.65	9.26	8.85	8.97	8.92	8.69	8.50	8.60	8.35	8.95	8.74	8.77
MnO	0.58	0.49	0.50	0.51	0.49	0.50	0.57	0.55	0.63	0.50	0.58	0.50	0.53	0.48	0.55	0.60
MgO	15.23	15.26	14.57	15.23	14.46	14.57	15.35	14.93	15.08	14.99	15.20	15.11	15.25	15.29	15.13	15.43
CaO	19.67	20.63	20.95	20.03	20.35	19.87	19.98	20.06	20.36	20.50	21.11	21.09	21.04	21.01	20.62	20.55
Na ₂ O	0.36	0.33	0.34	0.34	0.38	0.42	0.33	0.37	0.33	0.33	0.38	0.36	0.36	0.34	0.32	0.38
Summe	99.80	100.55	99.99	99.83	100.49	99.80	99.83	99.37	99.56	99.32	100.24	99.78	100.11	100.71	99.57	100.22
Si	1.932	1.911	1.922	1.950	1.934	1.916	1.924	1.921	1.945	1.915	1.893	1.893	1.913	1.901	1.919	1.916
Al	0.105	0.119	0.122	0.089	0.108	0.137	0.108	0.112	0.075	0.108	0.116	0.113	0.102	0.104	0.099	0.095
Ti	0.014	0.013	0.015	0.010	0.012	0.014	0.011	0.012	0.009	0.014	0.014	0.014	0.012	0.014	0.010	0.011
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Fe(3)	0.029	0.056	0.030	0.013	0.028	0.034	0.047	0.048	0.041	0.058	0.097	0.099	0.074	0.090	0.067	0.078
Mg	0.843	0.837	0.805	0.842	0.798	0.808	0.848	0.830	0.837	0.834	0.836	0.835	0.840	0.838	0.839	0.849
Fe(2)	0.251	0.212	0.234	0.258	0.271	0.254	0.227	0.231	0.237	0.213	0.165	0.168	0.184	0.185	0.205	0.193
Mn	0.018	0.015	0.016	0.016	0.016	0.016	0.018	0.017	0.020	0.016	0.018	0.016	0.017	0.015	0.017	0.019
Ca	0.782	0.813	0.832	0.796	0.807	0.791	0.793	0.801	0.812	0.819	0.834	0.838	0.833	0.828	0.822	0.813
Na	0.026	0.023	0.025	0.024	0.027	0.030	0.024	0.027	0.024	0.024	0.027	0.026	0.026	0.024	0.023	0.027
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	40.7	42.1	43.4	41.4	42.1	41.6	41.0	41.6	41.7	42.2	42.8	42.8	42.8	42.3	42.1	41.7
EN	43.8	43.3	42.0	43.7	41.6	42.4	43.9	43.0	43.0	43.0	42.8	42.7	43.1	42.8	43.0	43.5
FS	15.5	14.6	14.6	14.9	16.4	16.0	15.1	15.4	15.3	14.8	14.4	14.4	14.1	14.8	14.8	14.8
Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Str	öme									
Einheit Probe	Juvenile M98-002	Kompon 2 (Fortset	enten hol zung)	ozäner p	yroklasti	scher Str	öme									
Einheit Probe Nr.	Juvenile M98-002 Xr/1	Kompon 2 (Fortset Xr/2	enten hol zung) Xr/3	ozäner p Xr/4	yroklasti Xr/5	scher Str Xr/6	öme Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
Einheit Probe Nr.	Juvenile M98-002 Xr/1 52.61	Kompon 2 (Fortset Xr/2 52.46	enten hol zung) Xr/3 52.47	ozäner p Xr/4 52.35	yroklasti Xr/5 52.75	scher Str Xr/6 52.05	öme Xr/7 52.32	Xr/8 51.37	Xc/1 51.02	Xc/2 50.74	Xc/3 50.70	Xc/4 51.09	Xc/5 50.73	Xc/6	Xc/7 50.35	Xc/8
Einheit Probe Nr. SiO ₂ TiO ₂	Juvenile M98-002 Xr/1 52.61 0.41	Kompon 2 (Fortset Xr/2 52.46 0.36	enten hol zung) Xr/3 52.47 0.46	ozäner p Xr/4 52.35 0.37	yroklasti Xr/5 52.75 0.38	scher Str Xr/6 52.05 0.45	öme Xr/7 52.32 0.49	Xr/8 51.37 0.51	Xc/1 51.02 0.51	Xc/2 50.74 0.39	Xc/3 50.70 0.50	Xc/4 51.09 0.44	Xc/5 50.73 0.47	Xc/6 50.52 0.46	Xc/7 50.35 0.45	Xc/8 50.95 0.43
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile M98-002 Xr/1 52.61 0.41 2.08	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20	enten hol zung) Xr/3 52.47 0.46 2.11	ozäner p Xr/4 52.35 0.37 2.28	yroklasti Xr/5 52.75 0.38 1.98	scher Str Xr/6 52.05 0.45 2.36	öme Xr/7 52.32 0.49 2.46	Xr/8 51.37 0.51 2.91	Xc/1 51.02 0.51 3.85	Xc/2 50.74 0.39 3.84	Xc/3 50.70 0.50 3.90	Xc/4 51.09 0.44 3.93	Xc/5 50.73 0.47 4.06	Xc/6 50.52 0.46 4.04	Xc/7 50.35 0.45 4.15	Xc/8 50.95 0.43 4.04
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00	enten hol zung) Xr/3 52.47 0.46 2.11 0.01	ozäner p Xr/4 52.35 0.37 2.28 0.00	yroklasti Xr/5 52.75 0.38 1.98 0.00	scher Str Xr/6 52.05 0.45 2.36 0.00	öme Xr/7 52.32 0.49 2.46 0.00	Xr/8 51.37 0.51 2.91 0.00	Xc/1 51.02 0.51 3.85 0.14	Xc/2 50.74 0.39 3.84 0.13	Xc/3 50.70 0.50 3.90 0.18	Xc/4 51.09 0.44 3.93 0.14	Xc/5 50.73 0.47 4.06 0.19	Xc/6 50.52 0.46 4.04 0.20	Xc/7 50.35 0.45 4.15 0.17	Xc/8 50.95 0.43 4.04 0.18
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57	xr/3 52.47 0.46 2.11 0.01 8.63	Xr/4 52.35 0.37 2.28 0.00 8.82	xr/5 52.75 0.38 1.98 0.00 8.77	xr/6 52.05 0.45 2.36 0.00 8.68	öme Xr/7 52.32 0.49 2.46 0.00 8.64	Xr/8 51.37 0.51 2.91 0.00 8.74	Xc/1 51.02 0.51 3.85 0.14 5.73	Xc/2 50.74 0.39 3.84 0.13 6.26	Xc/3 50.70 0.50 3.90 0.18 6.43	Xc/4 51.09 0.44 3.93 0.14 6.02	Xc/5 50.73 0.47 4.06 0.19 6.09	Xc/6 50.52 0.46 4.04 0.20 5.88	Xc/7 50.35 0.45 4.15 0.17 5.93	Xc/8 50.95 0.43 4.04 0.18 5.86
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57 0.55	xr/3 52.47 0.46 2.11 0.01 8.63 0.50	52.35 0.37 2.28 0.00 8.82 0.51	xr/5 52.75 0.38 1.98 0.00 8.77 0.54	xr/6 52.05 0.45 2.36 0.00 8.68 0.53	öme Xr/7 52.32 0.49 2.46 0.00 8.64 0.55	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57 0.55 15.66	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85	52.35 0.37 2.28 0.00 8.82 0.51 15.70	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96	xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61	öme Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57 0.55 15.66 19.93	enten hol zung) 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19	öme Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39	öme Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 0.41	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 0.27	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 0.27 100.14	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940	Kompon 2 (Fortset 2 (Fortset 2 (Fortset 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 0.27 100.14 1.860	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091	Kompon 2 (Fortset 2 (Fortset 2 (Fortset 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936 0.096	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 0.34 100.39 1.941 0.086	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011	Kompon 2 (Fortset 2 (Fortset 2 (Fortset 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936 0.096 0.010	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 15.28 22.91 0.29 99.72 1.852 0.180 0.013	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000	Kompon 2 (Fortset 2 (Fortset 2 (Fortset 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936 0.096 0.010 0.000	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.000	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014 0.000	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.004	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3)	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034	Kompon 2 (Fortset 2 (Fortset 2 (Fortset 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936 0.096 0.010 0.000 0.041	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.000 0.059	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014 0.000 0.048	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.004 0.086	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.090	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005 0.093	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864	Kompon 2 (Fortset 2 (Fortset 2 (Fortset 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936 0.096 0.010 0.000 0.041 0.861	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.000 0.059 0.860	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014 0.0048 0.859	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.004 0.086 0.846	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.090 0.834	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005 0.093 0.841	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2)	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239	Kompon 2 (Fortset 2 (Fortset	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.860 0.212	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.014 0.0048 0.859 0.218	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.086 0.846 0.089	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.090 0.834 0.103	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 5.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 122.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841 0.098
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239 0.019 0.019	Kompon 2 (Fortset 2 (Fortset	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209 0.015	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.010 0.059 0.860 0.212 0.016	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235 0.017	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203 0.017	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014 0.000 0.48 0.859 0.218 0.017	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205 0.014	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.086 0.046 0.0846 0.089 0.005	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.834 0.000 0.834 0.103 0.006	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099 0.007	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103 0.003	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094 0.005	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085 0.003	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076 0.005	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841 0.098 0.003
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239 0.019 0.775 0.627	Kompon 2 (Fortset 2 (Fortset	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209 0.015 0.794 0.625	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.010 0.009 0.212 0.016 0.794 0.0212	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235 0.017 0.776 0.235	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203 0.017 0.797 0.797	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.014 0.0048 0.859 0.218 0.017 0.785 0.626	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205 0.014 0.805	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.086 0.046 0.0846 0.089 0.005 0.899	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.834 0.006 0.834 0.006	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099 0.007 0.891 0.831	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103 0.003 0.003 0.895	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094 0.005 0.894	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 5.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085 0.003 0.898 0.898	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076 0.005 0.903	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841 0.098 0.003 0.897 0.625
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Sum	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239 0.019 0.775 0.027 1.620	Kompon 2 (Fortset 2 (Fortset	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209 0.015 0.794 0.027 4.0027	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.860 0.212 0.016 0.794 0.026	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235 0.017 0.776 0.024	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203 0.017 0.797 0.028	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.014 0.0048 0.859 0.218 0.017 0.785 0.029	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205 0.014 0.805 0.027	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.086 0.046 0.0846 0.089 0.005 0.899 0.005	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.834 0.006 0.894 0.022	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099 0.007 0.891 0.022	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103 0.003 0.895 0.021	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094 0.005 0.894 0.019	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 5.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085 0.003 0.898 0.019	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076 0.005 0.903 0.021	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841 0.098 0.003 0.897 0.020
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239 0.019 0.775 0.027 4.000	Kompon 2 (Fortset Xr/2 52.46 0.36 2.20 0.00 8.57 0.55 15.66 19.93 0.39 100.12 1.936 0.096 0.010 0.000 0.041 0.861 0.223 0.017 0.788 0.028 4.000	enten hol zung) Xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209 0.015 0.794 0.027 4.000	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.860 0.212 0.016 0.794 0.026 4.000	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235 0.017 0.776 0.024 4.000	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203 0.017 0.797 0.028 4.000	öme 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.014 0.0048 0.859 0.218 0.017 0.785 0.029 4.000	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205 0.014 0.805 0.027 4.000	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.004 0.086 0.846 0.089 0.005 0.899 0.022 4.000	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.834 0.000 0.834 0.103 0.006 0.894 0.022 4.000	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099 0.007 0.891 0.022 4.000	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103 0.003 0.895 0.021 4.000	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 0.27 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094 0.005 0.894 0.019 4.000	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085 0.003 0.898 0.019 4.000	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076 0.005 0.903 0.021 4.000	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841 0.098 0.003 0.897 0.020 4.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239 0.019 0.775 0.027 4.000 40.1	Kompon 2 (Fortset 2 (Fortset	state state zung) Xr/3 52.47 0.46 2.11 0.01 0.66 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209 0.015 0.794 0.027 4.000 40.9 40.9	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.860 0.212 0.016 0.794 0.026 4.000 40.9	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235 0.017 0.776 0.024 4.000 40.0	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203 0.017 0.797 0.028 4.000 41.1	öme \$\$2.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014 0.000 0.048 0.859 0.218 0.017 0.785 0.029 4.000 40.8	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205 0.014 0.805 0.027 4.000 41.7	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.004 0.086 0.846 0.089 0.005 0.899 0.022 4.000 46.7	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.090 0.834 0.006 0.894 0.022 4.000 46.4	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099 0.007 0.891 0.022 4.000 46.2	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103 0.003 0.895 0.021 4.000 46.5	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 0.27 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094 0.005 0.894 0.019 4.000 46.4	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085 0.003 0.898 0.019 4.000 46.6	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076 0.005 0.903 0.021 4.000 46.8	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.084 1 0.098 0.003 0.897 0.020 4.000 46.7
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	Juvenile M98-002 Xr/1 52.61 0.41 2.08 0.00 8.86 0.60 15.73 19.61 0.38 100.27 1.940 0.091 0.011 0.000 0.034 0.864 0.239 0.019 0.775 0.027 4.000 40.1 44.8	Kompon 2 (Fortset 2 (Fortset	xr/3 52.47 0.46 2.11 0.01 8.63 0.50 15.85 20.19 0.38 100.57 1.927 0.091 0.013 0.000 0.056 0.868 0.209 0.015 0.794 0.027 4.000 40.9 44.7	Xr/4 52.35 0.37 2.28 0.00 8.82 0.51 15.70 20.15 0.37 100.56 1.924 0.099 0.010 0.009 0.010 0.009 0.860 0.212 0.016 0.794 0.026 4.000 40.9 44.3	Xr/5 52.75 0.38 1.98 0.00 8.77 0.54 15.96 19.68 0.34 100.39 1.941 0.086 0.011 0.000 0.035 0.876 0.235 0.017 0.776 0.235 0.017 0.776 0.024 4.000 40.00 45.2	Xr/6 52.05 0.45 2.36 0.00 8.68 0.53 15.61 20.19 0.39 100.26 1.918 0.103 0.012 0.000 0.064 0.858 0.203 0.017 0.797 0.028 4.000 41.1 44.2	Xr/7 52.32 0.49 2.46 0.00 8.64 0.55 15.67 19.94 0.41 100.48 1.924 0.107 0.014 0.000 0.048 0.859 0.218 0.017 0.785 0.029 4.000 40.8 44.6	Xr/8 51.37 0.51 2.91 0.00 8.74 0.43 15.21 20.29 0.37 99.83 1.903 0.127 0.014 0.000 0.065 0.840 0.205 0.014 0.805 0.027 4.000 41.7 43.5	Xc/1 51.02 0.51 3.85 0.14 5.73 0.16 15.49 22.92 0.30 100.12 1.869 0.166 0.014 0.004 0.086 0.846 0.089 0.005 0.899 0.022 4.000 46.7 43.9	Xc/2 50.74 0.39 3.84 0.13 6.26 0.19 15.19 22.65 0.30 99.69 1.870 0.167 0.011 0.004 0.090 0.834 0.006 0.894 0.022 4.000 46.4 43.3	Xc/3 50.70 0.50 3.90 0.18 6.43 0.21 15.22 22.66 0.31 100.12 1.861 0.169 0.014 0.005 0.098 0.833 0.099 0.007 0.891 0.022 4.000 46.2 43.2	Xc/4 51.09 0.44 3.93 0.14 6.02 0.11 15.38 22.81 0.30 100.20 1.871 0.169 0.012 0.004 0.081 0.840 0.103 0.003 0.895 0.021 4.000 46.5 43.7	Xc/5 50.73 0.47 4.06 0.19 6.09 0.17 15.38 22.77 0.27 100.14 1.860 0.176 0.013 0.005 0.093 0.841 0.094 0.005 0.894 0.019 4.000 46.4 43.6	Xc/6 50.52 0.46 4.04 0.20 5.88 0.10 15.45 22.79 0.26 99.69 1.858 0.175 0.013 0.006 0.096 0.847 0.085 0.003 0.898 0.019 4.000 46.6 43.9	Xc/7 50.35 0.45 4.15 0.17 5.93 0.18 15.28 22.91 0.29 99.72 1.852 0.180 0.013 0.005 0.106 0.838 0.076 0.005 0.903 0.021 4.000 46.8 43.5	Xc/8 50.95 0.43 4.04 0.18 5.86 0.09 15.39 22.85 0.29 100.07 1.867 0.174 0.012 0.005 0.082 0.841 0.098 0.003 0.897 0.020 4.000 46.7 43.8

WO EN FS

Tab. A5.3. (Fortsetzung).

Einheit	Juvenile	Kompon	enten hol	ozaner p	yroklasti	scher Sti	ome									
Probe	M98-053	32 (Ausw	ahl)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	Xr/5	Xr/6	Xr/7	Xr/8	Xc/1	Xc/2	Xc/3	Xc/4	Xc/5	Xc/6	Xc/7	Xc/8
SiO ₂	51.33	52.17	52.59	52.28	52.57	52.37	52.91	52.64	52.20	52.54	52.84	53.27	52.76	52.75	52.99	52.63
110 ₂	0.49	0.47	0.39	0.41	0.38	0.40	0.36	0.41	0.25	0.29	0.27	0.17	0.24	0.28	0.33	0.38
AI_2O_3 Cr_2O_2	2.39	2.03	0.00	0.02	0.00	0.02	0.02	0.00	0.39	0.32	2.41	2.55	2.40	0.31	2.33	0.26
FeO	9.23	9.40	8.80	8.84	8.91	8.80	8.94	8.96	4.90	4.87	4.70	4.91	4.75	4.61	4.75	5.02
MnO	0.61	0.53	0.56	0.59	0.62	0.56	0.63	0.64	0.12	0.10	0.13	0.12	0.10	0.09	0.08	0.12
MgO	15.02	15.17	15.60	15.59	15.70	15.39	15.58	15.64	16.27	16.35	16.59	16.54	16.42	16.42	16.38	16.30
CaO	20.15	20.34	20.48	19.90	19.81	20.18	20.06	20.12	22.69	23.02	22.95	22.89	23.05	23.02	22.88	23.06
Na ₂ O	0.41	0.43	0.32	0.38	0.33	0.35	0.37	0.40	0.23	0.23	0.25	0.24	0.24	0.23	0.26	0.27
Summe	99.64	100.56	100.37	99.82	99.95	99.87	100.56	100.66	99.59	100.19	100.51	100.87	100.42	99.98	100.49	100.58
Si	1.909	1.923	1.940	1.938	1.947	1.942	1.948	1.935	1.917	1.918	1.921	1.931	1.922	1.929	1.928	1.915
Al	0.105	0.089	0.071	0.079	0.071	0.079	0.073	0.080	0.110	0.106	0.103	0.100	0.103	0.098	0.109	0.109
Ti	0.014	0.013	0.011	0.011	0.011	0.011	0.010	0.011	0.007	0.008	0.007	0.005	0.007	0.008	0.009	0.010
Cr	0.000	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.011	0.009	0.011	0.011	0.013	0.009	0.008	0.007
Fe(3)	0.078	0.069	0.051	0.050	0.038	0.040	0.036	0.056	0.047	0.049	0.047	0.033	0.045	0.037	0.027	0.052
Nig Fe(2)	0.855	0.834	0.838	0.801	0.807	0.831	0.855	0.837	0.891	0.890	0.899	0.894	0.892	0.893	0.888	0.884
Mn	0.209	0.221	0.220	0.224	0.238	0.233	0.239	0.220	0.104	0.100	0.090	0.113	0.100	0.104	0.002	0.100
Ca	0.803	0.803	0.809	0.790	0.786	0.802	0.791	0.792	0.893	0.900	0.894	0.889	0.899	0.902	0.892	0.899
Na	0.030	0.031	0.023	0.027	0.024	0.025	0.026	0.029	0.016	0.016	0.018	0.017	0.017	0.016	0.018	0.019
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	41.3	41.3	41.4	40.6	40.3	41.3	40.8	40.7	46.1	46.4	46.1	45.9	46.4	46.5	46.3	46.3
EN	42.9	42.9	43.9	44.3	44.5	43.8	44.0	44.1	46.0	45.8	46.3	46.2	46.0	46.1	46.1	45.6
FS	15.8	15.8	14.8	15.0	15.2	15.0	15.2	15.2	8.0	7.8	7.6	7.9	7.6	7.4	7.6	8.1
Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Sti	öme									
Probe	M98-05	9										M98-066	5 (Auswa	hl)		
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	-	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5
SiO ₂	52.42	51.76	51.16	52.24	51.72	51.35	51.89	50.57	52.18	51.49		52.14	52.27	51.69	51.70	52.13
110 ₂	0.30	0.41	0.44	0.36	0.32	0.46	0.30	0.57	0.30	0.45		0.32	0.46	0.46	0.49	0.46
AI_2O_3 Cr_2O_2	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.04	0.02	2.40		0.00	2.07	2.03	2.49	2.33
FeO	9.26	8.55	8.91	8.88	8.77	8.83	9.06	9.31	8.78	8.66		8.67	8.84	9.16	8.93	8.83
MnO	0.78	0.49	0.50	0.59	0.59	0.51	0.70	0.45	0.75	0.52		0.59	0.59	0.54	0.53	0.61
MgO	15.75	15.44	15.23	16.28	15.98	15.58	15.52	14.94	15.85	15.50		15.43	15.31	14.83	14.96	15.20
CaO	20.15	20.95	20.31	19.63	19.98	20.29	20.58	20.66	20.65	20.47		20.44	20.30	20.93	20.52	20.35
Na ₂ O	0.38	0.35	0.34	0.25	0.36	0.37	0.36	0.42	0.28	0.36		0.36	0.36	0.41	0.37	0.38
Summe	100.69	100.50	99.56	99.99	99.60	99.92	100.14	100.23	100.18	99.85		99.90	100.20	100.65	100.01	100.31
Si	1.927	1.903	1.901	1.930	1.917	1.899	1.918	1.868	1.927	1.905		1.931	1.932	1.904	1.916	1.925
Al	0.071	0.111	0.117	0.076	0.082	0.110	0.076	0.142	0.059	0.105		0.084	0.090	0.114	0.109	0.102
Ti	0.008	0.011	0.012	0.010	0.009	0.013	0.008	0.016	0.008	0.013		0.009	0.013	0.013	0.014	0.013
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000		0.000	0.000	0.001	0.001	0.000
Fe(3)	0.084	0.085	0.081	0.062	0.092	0.093	0.097	0.118	0.089	0.085		0.062	0.045	0.081	0.059	0.050
Mg	0.863	0.846	0.844	0.896	0.883	0.859	0.855	0.823	0.873	0.855		0.852	0.843	0.814	0.827	0.837
Fe(2)	0.200	0.178	0.196	0.212	0.179	0.181	0.183	0.170	0.182	0.183		0.207	0.228	0.202	0.218	0.222
ivin Co	0.024	0.015	0.016	0.018	0.019	0.016	0.022	0.014	0.023	0.010		0.019	0.018	0.01/	0.017	0.019
Ca Na	0.794	0.825	0.809	0.117	0.793	0.804	0.026	0.030	0.81/	0.026		0.026	0.804	0.826	0.815	0.805
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000

 40.4
 42.3
 41.6
 39.5
 40.3
 41.2
 41.3
 42.1
 41.2
 41.6
 41.6
 41.5
 42.6
 42.1
 41.6

 43.9
 43.4
 43.4
 45.6
 44.9
 44.0
 43.4
 42.4
 44.0
 43.8
 43.7
 43.5
 42.0
 42.7
 43.3

 15.7
 14.3
 15.0
 14.9
 14.8
 15.3
 15.5
 14.8
 14.6
 14.7
 15.0
 15.4
 15.2
 15.1

	1	
э	T	1

Einheit	Juvenne	Kompon	enten no	iozunei p	, i o initia o in	Sener Su	onie									
Probe	M98-066	5 (Auswal	hl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	52.01	52.06	50.45	52.79	51.94	50.22	51.79	51.50	51.79	52.08	52.51	51.29	51.47	52.18	51.97	51.63
TiO ₂	0.41	0.53	0.50	0.34	0.39	0.54	0.49	0.40	0.56	0.40	0.34	0.39	0.37	0.36	0.35	0.34
Al_2O_3	2.18	2.51	3.51	1.85	2.22	3.36	2.56	2.41	2.76	2.27	1.94	2.38	2.36	1.83	2.09	1.65
Cr_2O_3	0.00	0.00	0.02	0.00	0.01	0.04	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.02	0.00
FeO	9.04	8.70	8.92	9.37	9.20	9.23	9.07	8.95	9.31	8.90	8.72	8.72	8.77	8.54	8.65	8.46
MnO	0.61	0.56	0.35	0.73	0.61	0.41	0.54	0.46	0.56	0.58	0.62	0.65	0.65	0.62	0.58	0.65
MgO	15.41	15.25	14.41	15.08	15.42	14.14	20.10	14.98	14.95	15.01	15.21	14.90	14.82	15.00	14.81	15.09
Na ₂ O	20.28	20.74	21.40	0.32	20.20	21.46	20.10	20.10	20.00	20.30	20.55	0.35	21.14	20.98	20.97	0.32
Summe	100.33	100.71	99.99	100.86	100.40	99.80	99.95	99.24	100.38	100.02	100.04	99.78	99.96	99.90	99.82	99.46
Si	1.919	1.913	1.870	1.939	1.916	1.869	1.920	1.922	1.914	1.930	1.944	1.904	1.908	1.936	1.930	1.923
Al	0.095	0.109	0.153	0.080	0.096	0.147	0.112	0.106	0.120	0.099	0.084	0.104	0.103	0.080	0.092	0.072
Ti	0.011	0.015	0.014	0.009	0.011	0.015	0.014	0.011	0.016	0.011	0.010	0.011	0.010	0.010	0.010	0.009
Cr	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.001	0.000
Fe(3)	0.071	0.062	0.104	0.045	0.075	0.111	0.049	0.055	0.049	0.046	0.034	0.091	0.080	0.052	0.054	0.080
Fe(2)	0.348	0.855	0.172	0.859	0.348	0.784	0.329	0.855	0.322	0.329	0.340	0.823	0.819	0.855	0.320	0.333
Mn	0.019	0.017	0.011	0.023	0.019	0.013	0.017	0.015	0.018	0.018	0.019	0.020	0.021	0.019	0.018	0.020
Ca	0.802	0.817	0.852	0.779	0.801	0.856	0.798	0.806	0.794	0.808	0.807	0.840	0.840	0.834	0.834	0.851
Na	0.027	0.027	0.026	0.023	0.025	0.027	0.029	0.028	0.028	0.028	0.026	0.025	0.027	0.023	0.026	0.023
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	41.2	42.2	44.0	40.0	41.0	44.1	41.5	41.7	41.3	41.9	41.7	42.9	43.0	42.7	43.0	43.1
EN	43.5	43.1	41.1	44.1	43.4	40.4	43.1	43.1	42.8	42.9	43.4	42.2	42.0	42.7	42.2	42.5
FS	15.3	14.7	14.9	15.9	15.5	15.5	15.5	15.2	15.9	15.2	14.9	14.9	15.0	14.6	14.8	14.4
Einheit	Juvenile	Kompone	enten ho	lozäner p	yroklasti	scher Str	öme									
Einheit Probe	Juvenile M98-096	Kompone 5 (Auswal	enten ho hl)	lozäner p	yroklasti	scher Str	öme									
Einheit Probe Nr.	Juvenile M98-096 Ph/1	Kompone 5 (Auswal Ph/2	enten ho hl) Ph/3	lozäner p Ph/4	yroklasti Ph/5	scher Str Ph/6	öme Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
Einheit Probe Nr. SiO ₂	Juvenile M98-096 Ph/1 51.94	Kompono 5 (Auswal Ph/2 51.51	enten ho hl) Ph/3 52.04	lozäner p Ph/4 52.37	Ph/5 52.07	scher Str Ph/6 51.05	öme Ph/7 52.74	Ph/8 52.30	Ph/9 53.18	Ph/10 52.61	Ph/11 51.34	Ph/12 52.53	Ph/13 51.86	Ph/14 51.11	Ph/15 51.45	Ph/16 50.40
Einheit Probe Nr. SiO ₂ TiO ₂	Juvenile M98-096 Ph/1 51.94 0.40	Kompone 5 (Auswal Ph/2 51.51 0.49	enten ho hl) Ph/3 52.04 0.38	Ph/4 52.37 0.23	Ph/5 52.07 0.33	scher Str Ph/6 51.05 0.52	öme Ph/7 52.74 0.31	Ph/8 52.30 0.33	Ph/9 53.18 0.31	Ph/10 52.61 0.31	Ph/11 51.34 0.42	Ph/12 52.53 0.30	Ph/13 51.86 0.36	Ph/14 51.11 0.45	Ph/15 51.45 0.49	Ph/16 50.40 0.57
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile M98-096 Ph/1 51.94 0.40 2.27	Kompone 5 (Auswal Ph/2 51.51 0.49 2.82	enten ho hl) 52.04 0.38 1.91	Ph/4 52.37 0.23 1.68	Ph/5 52.07 0.33 2.01	scher Str Ph/6 51.05 0.52 3.22	öme Ph/7 52.74 0.31 1.74	Ph/8 52.30 0.33 2.00	Ph/9 53.18 0.31 1.71	Ph/10 52.61 0.31 1.55	Ph/11 51.34 0.42 2.95	Ph/12 52.53 0.30 1.90	Ph/13 51.86 0.36 2.44	Ph/14 51.11 0.45 3.29	Ph/15 51.45 0.49 3.01	Ph/16 50.40 0.57 3.80
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01	Kompone 5 (Auswal Ph/2 51.51 0.49 2.82 0.00	enten ho hl) Ph/3 52.04 0.38 1.91 0.02	lozäner p Ph/4 52.37 0.23 1.68 0.00	Ph/5 52.07 0.33 2.01 0.00	Scher Str Ph/6 51.05 0.52 3.22 0.02	öme Ph/7 52.74 0.31 1.74 0.00	Ph/8 52.30 0.33 2.00 0.04	Ph/9 53.18 0.31 1.71 0.00	Ph/10 52.61 0.31 1.55 0.02	Ph/11 51.34 0.42 2.95 0.01	Ph/12 52.53 0.30 1.90 0.00	Ph/13 51.86 0.36 2.44 0.00	Ph/14 51.11 0.45 3.29 0.01	Ph/15 51.45 0.49 3.01 0.00	Ph/16 50.40 0.57 3.80 0.03
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15	enten ho hl) 52.04 0.38 1.91 0.02 8.36	Ph/4 52.37 0.23 1.68 0.00 8.40	Ph/5 52.07 0.33 2.01 0.00 8.37	Scher Str Ph/6 51.05 0.52 3.22 0.02 8.90	öme Ph/7 52.74 0.31 1.74 0.00 8.51	Ph/8 52.30 0.33 2.00 0.04 8.80	Ph/9 53.18 0.31 1.71 0.00 8.56	Ph/10 52.61 0.31 1.55 0.02 8.28	Ph/11 51.34 0.42 2.95 0.01 8.98	Ph/12 52.53 0.30 1.90 0.00 8.40	Ph/13 51.86 0.36 2.44 0.00 8.43	Ph/14 51.11 0.45 3.29 0.01 8.38	Ph/15 51.45 0.49 3.01 0.00 8.33	Ph/16 50.40 0.57 3.80 0.03 8.93
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.22	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Cr2O	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.05	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0 38	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0 38
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940	Ph/5 52.07 0.33 2.01 0.03 14.95 21.51 0.32 100.09 1.927	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	Juvenile M98-090 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 2.009	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.014	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.011	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.009	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.009	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.009	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr	Juvenile M98-090 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.001	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.014	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.001	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.000	öme Ph/7 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.009 0.000	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.001	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.000 0.000	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.001	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.071	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.004 0.004 0.065 0.827	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.001 0.060	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.000 0.057 0.857	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.633 0.825	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.091 0.800	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.009 0.055 0.866	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.850	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.008 0.000	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.820	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.708	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.701
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2)	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.08 20.21 0.34 99.68 1.929 0.083 0.011 0.001 0.060 0.866 0.199	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.000 0.057 0.857 0.203	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.683 0.009 0.000 0.063 0.825 0.196	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.000 0.091 0.800 0.183	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.009 0.055 0.866 0.207	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.000 0.052 0.848 0.207	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204 0.204 0.204	Kompond 5 (Auswal 9 h/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218 0.019	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.001 0.000 0.866 0.199 0.023	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007 0.007 0.857 0.203 0.019	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.063 0.825 0.196 0.016	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.001 0.001 0.800 0.183 0.017	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.000 0.055 0.866 0.207 0.021	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204 0.204 0.017	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246 0.022	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201 0.021	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197 0.017	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.008 0.002 0.052 0.848 0.207 0.018	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181 0.015	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187 0.011	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179 0.011	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179 0.013
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204 0.203 0.809	Kompond 5 (Auswal 9 h/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218 0.019 0.796	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.001 0.001 0.060 0.866 0.199 0.023 0.803	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007 0.007 0.857 0.203 0.019 0.820	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.063 0.825 0.196 0.016 0.853	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.001 0.001 0.0091 0.800 0.183 0.017 0.843	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.000 0.055 0.866 0.207 0.021 0.802	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204 0.204 0.204	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246 0.022 0.804	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201 0.021 0.821	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197 0.017 0.835	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.002 0.052 0.848 0.207 0.018 0.827	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181 0.015 0.853	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187 0.011 0.858	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179 0.011 0.858	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179 0.013 0.845
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204 0.203 0.809 0.026	Kompond 5 (Auswall 9 (Auswall 9 (Auswall 9 (Auswall 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218 0.019 0.796 0.030	enten ho hl) 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.060 0.866 0.199 0.023 0.803 0.024	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007 0.057 0.857 0.203 0.019 0.820 0.024	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.063 0.825 0.196 0.016 0.853 0.023	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.001 0.001 0.800 0.183 0.017 0.843 0.027	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.009 0.0055 0.866 0.207 0.021 0.802 0.026	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204 0.017 0.816 0.023	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246 0.022 0.804 0.022	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201 0.021 0.021 0.023	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197 0.017 0.835 0.030	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.000 0.052 0.848 0.207 0.018 0.827 0.022	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181 0.015 0.853 0.021	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187 0.011 0.858 0.025	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179 0.011 0.858 0.025	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179 0.013 0.845 0.027
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204 0.023 0.809 0.026 4.000	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218 0.019 0.796 0.030 4.000	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.060 0.866 0.199 0.023 0.024 4.000	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007 0.057 0.203 0.019 0.820 0.024 4.000	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.633 0.825 0.196 0.016 0.853 0.023 4.000	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.001 0.800 0.183 0.017 0.843 0.027 4.000	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.000 0.055 0.866 0.207 0.021 0.802 0.026 4.000	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204 0.017 0.816 0.023 4.000	Ph/9 53.18 0.31 1.71 0.000 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246 0.022 0.804 0.022 4.000	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201 0.021 0.023 4.000	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197 0.017 0.835 0.030 4.000	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.000 0.052 0.848 0.207 0.018 0.827 0.022 4.000	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181 0.015 0.853 0.021 4.000	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187 0.011 0.858 0.025 4.000	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179 0.011 0.858 0.025 4.000	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179 0.013 0.845 0.027 4.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204 0.204 0.203 0.809 0.026 4.000 41.6	Kompond 5 (Auswal 9 h/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218 0.019 0.796 0.030 4.000 41.3	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.060 0.866 0.199 0.023 0.803 0.024 4.000 41.1	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007 0.077 0.203 0.019 0.820 0.024 4.000 41.9	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.063 0.825 0.196 0.016 0.853 0.023 4.000 43.7	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.001 0.001 0.800 0.183 0.017 0.843 0.027 4.000 43.6	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.000 0.055 0.866 0.207 0.021 0.802 0.026 4.000	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204 0.017 0.816 0.023 4.000 41.7	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246 0.022 0.804 0.022 4.000 41.5	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201 0.021 0.023 4.000 41.9	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197 0.017 0.835 0.030 4.000 43.2	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.002 0.848 0.207 0.018 0.827 0.018 0.827 0.022 4.000	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181 0.015 0.853 0.021 4.000 43.6	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187 0.011 0.858 0.025 4.000 44.5	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179 0.011 0.858 0.025 4.000 44.3	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179 0.013 0.845 0.027 4.000 43.9
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	Juvenile M98-096 Ph/1 51.94 0.40 2.27 0.01 8.86 0.75 15.28 20.46 0.36 100.34 1.917 0.099 0.011 0.000 0.070 0.841 0.204 0.204 0.203 0.809 0.026 4.000 41.6 43.2	Kompond 5 (Auswal Ph/2 51.51 0.49 2.82 0.00 9.15 0.61 14.99 20.07 0.42 100.05 1.907 0.123 0.014 0.000 0.065 0.827 0.218 0.019 0.796 0.030 4.000 41.3 43.0	enten ho hl) Ph/3 52.04 0.38 1.91 0.02 8.36 0.74 15.68 20.21 0.34 99.68 1.929 0.083 0.011 0.001 0.060 0.866 0.199 0.023 0.024 4.000 41.1 44.4	Ph/4 52.37 0.23 1.68 0.00 8.40 0.61 15.52 20.65 0.33 99.80 1.940 0.074 0.006 0.007 0.007 0.0057 0.203 0.019 0.820 0.024 4.000 41.9 43.8	Ph/5 52.07 0.33 2.01 0.00 8.37 0.52 14.95 21.51 0.32 100.09 1.927 0.088 0.009 0.000 0.063 0.825 0.196 0.016 0.853 0.023 4.000 43.7 42.2	Ph/6 51.05 0.52 3.22 0.02 8.90 0.55 14.55 21.33 0.38 100.51 1.883 0.140 0.014 0.001 0.00000000	öme 52.74 0.31 1.74 0.00 8.51 0.69 15.80 20.36 0.36 100.51 1.939 0.075 0.000 0.055 0.866 0.207 0.021 0.802 0.026 4.000 41.1 44.4	Ph/8 52.30 0.33 2.00 0.04 8.80 0.56 15.52 20.68 0.32 100.55 1.925 0.087 0.009 0.001 0.067 0.851 0.204 0.017 0.816 0.023 4.000 41.7 43.5	Ph/9 53.18 0.31 1.71 0.00 8.56 0.71 15.47 20.40 0.31 100.64 1.957 0.074 0.009 0.000 0.017 0.848 0.246 0.022 0.804 0.022 4.000 41.5 43.8	Ph/10 52.61 0.31 1.55 0.02 8.28 0.68 15.63 20.76 0.33 100.16 1.942 0.067 0.008 0.001 0.054 0.860 0.201 0.021 0.023 4.000 41.9 43.9	Ph/11 51.34 0.42 2.95 0.01 8.98 0.54 14.54 21.07 0.42 100.27 1.899 0.128 0.012 0.000 0.081 0.802 0.197 0.017 0.835 0.030 4.000 43.2 41.5	Ph/12 52.53 0.30 1.90 0.00 8.40 0.56 15.43 20.95 0.31 100.38 1.936 0.082 0.008 0.002 0.048 0.000 0.052 0.848 0.207 0.018 0.827 0.022 4.000 42.4 43.4	Ph/13 51.86 0.36 2.44 0.00 8.43 0.47 15.11 21.63 0.29 100.59 1.908 0.106 0.010 0.000 0.079 0.829 0.181 0.015 0.853 0.021 4.000 43.6 42.4	Ph/14 51.11 0.45 3.29 0.01 8.38 0.35 14.46 21.62 0.35 100.02 1.892 0.144 0.013 0.000 0.072 0.798 0.187 0.011 0.858 0.025 4.000 44.5 41.4	Ph/15 51.45 0.49 3.01 0.00 8.33 0.34 14.76 21.73 0.35 100.48 1.895 0.131 0.014 0.000 0.077 0.811 0.179 0.011 0.858 0.025 4.000 44.3 41.9	Ph/16 50.40 0.57 3.80 0.03 8.93 0.41 14.33 21.30 0.38 100.15 1.865 0.166 0.016 0.001 0.098 0.791 0.179 0.013 0.845 0.027 4.000 43.9 41.1

Probe	M98-099	1 (Ausw	ahl)													
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16
SiO ₂	51.94	52.00	51.75	51.55	51.54	52.03	51.53	52.51	52.40	51.72	52.19	51.15	51.37	52.54	51.97	52.18
TiO ₂	0.39	0.38	0.43	0.41	0.57	0.44	0.53	0.44	0.51	0.52	0.48	0.50	0.52	0.45	0.44	0.45
Al_2O_3	1.85	2.06	2.18	2.16	2.27	2.29	2.24	2.12	2.17	2.37	2.37	2.26	2.36	2.00	2.11	2.33
Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00
FeO	9.17	8.94	9.09	8.83	9.53	9.15	9.49	9.62	9.29	9.57	9.68	9.55	9.41	9.22	9.03	9.08
MnO	0.56	0.53	0.55	0.56	0.58	0.53	0.56	0.56	0.54	0.52	0.57	0.47	0.50	0.52	0.54	0.58
MgO	16.05	15.77	15.78	15.66	15.20	15.72	15.27	15.32	15.29	15.28	14.93	14.75	14.96	15.33	15.13	15.13
CaO	19.65	19.55	19.89	20.02	20.14	20.06	19.56	19.73	19.78	19.80	19.79	19.88	19.76	20.09	20.11	19.83
Na ₂ O	0.35	0.36	0.37	0.35	0.37	0.34	0.38	0.37	0.37	0.33	0.42	0.41	0.42	0.35	0.40	0.36
Summe	99.96	99.57	100.03	99.53	100.19	100.57	99.57	100.67	100.37	100.11	100.42	98.99	99.32	100.50	99.73	99.95
Si	1.920	1.930	1.912	1.914	1.908	1.913	1.919	1.935	1.936	1.916	1.930	1.918	1.918	1.938	1.930	1.935
Al	0.081	0.090	0.095	0.094	0.099	0.099	0.098	0.092	0.095	0.104	0.103	0.100	0.104	0.087	0.092	0.102
Ti	0.011	0.011	0.012	0.012	0.016	0.012	0.015	0.012	0.014	0.015	0.013	0.014	0.015	0.013	0.012	0.013
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
Fe(3)	0.083	0.055	0.083	0.079	0.080	0.074	0.062	0.040	0.032	0.059	0.041	0.066	0.061	0.036	0.052	0.028
Mg	0.885	0.872	0.869	0.867	0.839	0.862	0.848	0.841	0.842	0.844	0.823	0.825	0.833	0.843	0.838	0.836
Fe(2)	0.200	0.223	0.198	0.195	0.215	0.208	0.234	0.256	0.255	0.237	0.259	0.234	0.233	0.248	0.229	0.254
Mn	0.017	0.017	0.017	0.018	0.018	0.017	0.018	0.017	0.017	0.016	0.018	0.015	0.016	0.016	0.017	0.018
Ca	0.778	0.777	0.787	0.796	0.799	0.791	0.780	0.779	0.783	0.786	0.784	0.798	0.790	0.794	0.800	0.788
Na	0.025	0.026	0.026	0.025	0.026	0.024	0.027	0.027	0.026	0.024	0.030	0.030	0.030	0.025	0.029	0.026
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	39.6	40.0	40.3	40.7	41.0	40.5	40.2	40.3	40.6	40.5	40.8	41.2	40.9	41.0	41.3	41.0
EN	45.1	44.9	44.5	44.3	43.0	44.2	43.7	43.5	43.7	43.4	42.8	42.6	43.1	43.5	43.3	43.5
FS	15.3	15.1	15.2	14.9	16.1	15.3	16.1	16.2	15.8	16.1	16.5	16.2	16.0	15.5	15.4	15.6
Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Stre	öme									
Probe	M98-099	1 (Fortse	etzung)													
Nr.	Xr/1	Xr/2	Xr/3	Xr/4	V.,/5	Vr/6	Xr/7	Xr/8	V - /1	Xc/2	Xc/3	Xc/4	Xc/5			
5:0		111/2	11,0		AI/3	AI/0		11,0	AC/1				10/5	Xc/6	Xc//	Xc/8
NH 1.	51.00	51 45	51.50	51.45	51.00	52.19	51.55	51.61	52.01	52.22	52.42	52.42	51.00	Xc/6	Xc//	Xc/8
510 <u>2</u> T:O	51.88	51.45	51.50	51.45	51.86	52.18	51.55	51.61	52.01	52.22	52.42	52.42	51.90	Xc/6	51.36	Xc/8
TiO ₂	51.88 0.45 2.33	51.45 0.42	51.50 0.45 2.20	51.45 0.49	51.86 0.41	52.18 0.42	51.55 0.43	51.61 0.47	52.01 0.37	52.22 0.36 2.90	52.42 0.43	52.42 0.37	51.90 0.32	Xc/6 51.97 0.38 2.91	51.36 0.40	Xc/8 52.03 0.36 2.94
TiO_2 Al_2O_3	51.88 0.45 2.33 0.00	51.45 0.42 2.44	51.50 0.45 2.20 0.03	51.45 0.49 2.17	51.86 0.41 1.97	52.18 0.42 1.87	51.55 0.43 2.29 0.02	51.61 0.47 2.00	52.01 0.37 2.92 0.36	52.22 0.36 2.90 0.33	52.42 0.43 2.85 0.32	52.42 0.37 2.84	51.90 0.32 2.87 0.33	Xc/6 51.97 0.38 2.91 0.32	51.36 0.40 2.91	Xc/8 52.03 0.36 2.94 0.33
TiO_2 Al_2O_3 Cr_2O_3 FaO	51.88 0.45 2.33 0.00 9.05	51.45 0.42 2.44 0.07 9.38	51.50 0.45 2.20 0.03 9.12	51.45 0.49 2.17 0.00 9.26	51.86 0.41 1.97 0.00 9.12	52.18 0.42 1.87 0.00 9.68	51.55 0.43 2.29 0.02 9.49	51.61 0.47 2.00 0.00 9.52	52.01 0.37 2.92 0.36 4.82	52.22 0.36 2.90 0.33 5.02	52.42 0.43 2.85 0.32 5.00	52.42 0.37 2.84 0.34	51.90 0.32 2.87 0.33 5.00	Xc/6 51.97 0.38 2.91 0.32 4.97	51.36 0.40 2.91 0.19	Xc/8 52.03 0.36 2.94 0.33 4.93
TiO_2 Al_2O_3 Cr_2O_3 FeO MnO	51.88 0.45 2.33 0.00 9.05 0.57	51.45 0.42 2.44 0.07 9.38 0.51	51.50 0.45 2.20 0.03 9.12 0.53	51.45 0.49 2.17 0.00 9.26 0.59	51.86 0.41 1.97 0.00 9.12 0.58	52.18 0.42 1.87 0.00 9.68 0.65	51.55 0.43 2.29 0.02 9.49 0.53	51.61 0.47 2.00 0.00 9.52 0.51	52.01 0.37 2.92 0.36 4.82 0.13	52.22 0.36 2.90 0.33 5.02 0.08	52.42 0.43 2.85 0.32 5.00 0.09	52.42 0.37 2.84 0.34 4.91 0.11	51.90 0.32 2.87 0.33 5.00 0.08	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08	51.36 0.40 2.91 0.19 4.97 0.09	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	51.88 0.45 2.33 0.00 9.05 0.57 15.34	51.45 0.42 2.44 0.07 9.38 0.51 15.05	51.50 0.45 2.20 0.03 9.12 0.53 15.30	51.45 0.49 2.17 0.00 9.26 0.59 15.17	51.86 0.41 1.97 0.00 9.12 0.58 15.39	52.18 0.42 1.87 0.00 9.68 0.65	51.55 0.43 2.29 0.02 9.49 0.53 15.32	51.61 0.47 2.00 0.00 9.52 0.51 15.48	52.01 0.37 2.92 0.36 4.82 0.13 16.26	52.22 0.36 2.90 0.33 5.02 0.08 16.22	52.42 0.43 2.85 0.32 5.00 0.09	52.42 0.37 2.84 0.34 4.91 0.11 16.04	51.90 0.32 2.87 0.33 5.00 0.08 16.18	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29	51.36 0.40 2.91 0.19 4.97 0.09 16.36	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12
TiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34
TiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18 1.916	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895	51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896
TiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18 1.916 0.123	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126
$\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{Summe}\\ \text{Si}\\ \text{Al}\\ \text{Ti}\\ \end{array}$	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18 1.916 0.123 0.012	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010	51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010
$\begin{array}{c} \text{SiG}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{Summe}\\ \text{Si}\\ \text{Al}\\ \text{Ti}\\ \text{Cr}\\ \end{array}$	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 100.18 1.916 0.123 0.012 0.009	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009
$\begin{array}{c} \text{SiG}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{Summe}\\ \\ \text{Si}\\ \text{Al}\\ \text{Ti}\\ \text{Cr}\\ \text{Fe(3)}\\ \end{array}$	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 100.18 1.916 0.123 0.012 0.009 0.032	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.066	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072
$\begin{array}{c} \text{SiG}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{Summe}\\ \end{array}$	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053 0.848	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.847	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 100.18 1.916 0.123 0.012 0.009 0.032 0.878	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.006 0.884	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 1.895 0.125 0.010 0.009 0.074 0.885	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883
$\begin{array}{c} \text{SiG}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{MgO}\\ \text{CaO}\\ \text{Na}_2\text{O}\\ \text{Summe}\\ \end{array}$	$51.88 \\ 0.45 \\ 2.33 \\ 0.00 \\ 9.05 \\ 0.57 \\ 15.34 \\ 19.87 \\ 0.37 \\ 99.85 \\ 1.924 \\ 0.102 \\ 0.013 \\ 0.000 \\ 0.053 \\ 0.848 \\ 0.228 \\ 0.228 \\ 0.228 \\ 0.45 \\ 0.45 \\ 0.28 \\ 0.228 \\ 0.228 \\ 0.45 \\ 0.228 \\ 0.288 \\ 0.288 \\ 0.288 \\ 0.288 $	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835 0.228	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841 0.206	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.209	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.847 0.216	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859 0.223	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885 0.080	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 100.18 1.916 0.123 0.012 0.009 0.032 0.878 0.121	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876 0.124	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.006 0.884 0.087	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 1.895 0.125 0.010 0.009 0.074 0.885 0.077	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896 0.062	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.078
$\begin{array}{c} \mathrm{SiG}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{Cr}_2\mathrm{O}_3\\ \mathrm{FeO}\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{Summe}\\ \mathrm{Si}\\ \mathrm{Al}\\ \mathrm{Ti}\\ \mathrm{Cr}\\ \mathrm{Fe}(3)\\ \mathrm{Mg}\\ \mathrm{Fe}(2)\\ \mathrm{Mn}\\ \end{array}$	$51.88 \\ 0.45 \\ 2.33 \\ 0.00 \\ 9.05 \\ 0.57 \\ 15.34 \\ 19.87 \\ 0.37 \\ 99.85 \\ 1.924 \\ 0.102 \\ 0.013 \\ 0.000 \\ 0.053 \\ 0.848 \\ 0.228 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.018 \\ 0.001 \\ 0.$	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835 0.228 0.016	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207 0.017	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841 0.206 0.018	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.209 0.018	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253 0.020	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.847 0.216 0.017	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859 0.223 0.016	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885 0.080 0.004	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101 0.002	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 100.18 1.916 0.123 0.012 0.009 0.032 0.878 0.121 0.003	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876 0.124 0.003	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.006 0.884 0.087 0.002	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074 0.885 0.077 0.003	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896 0.062 0.003	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.078 0.003
$\begin{array}{c} \mathrm{SiG}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{Cr}_2\mathrm{O}_3\\ \mathrm{FeO}\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{Summe}\\ \mathrm{Si}\\ \mathrm{Al}\\ \mathrm{Ti}\\ \mathrm{Cr}\\ \mathrm{Fe}(3)\\ \mathrm{Mg}\\ \mathrm{Fe}(2)\\ \mathrm{Mn}\\ \mathrm{Ca}\\ \end{array}$	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053 0.848 0.228 0.018 0.789	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835 0.228 0.016 0.794	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207 0.017 0.801	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841 0.206 0.018 0.804	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.209 0.018 0.808	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253 0.020 0.781	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.847 0.216 0.017 0.789	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859 0.223 0.016 0.783	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885 0.080 0.004 0.901	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101 0.002 0.895	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 100.18 1.916 0.123 0.012 0.009 0.032 0.878 0.121 0.003 0.888	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876 0.124 0.003 0.888	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.006 0.884 0.087 0.002 0.899	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074 0.885 0.077 0.003 0.902	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896 0.062 0.003 0.900	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.078 0.003 0.903
SiG2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053 0.848 0.228 0.018 0.789 0.026	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835 0.228 0.016 0.794 0.027	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207 0.017 0.801 0.027	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841 0.206 0.018 0.804 0.29	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.209 0.018 0.808 0.024	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253 0.020 0.781 0.030	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.216 0.017 0.789 0.028	51.61 0.47 2.00 0.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859 0.223 0.016 0.783 0.026	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885 0.080 0.004 0.901 0.019	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101 0.002 0.885 0.017	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18 1.916 0.123 0.012 0.009 0.032 0.878 0.121 0.003 0.888 0.19	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876 0.124 0.003 0.888 0.019	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.006 0.884 0.087 0.002 0.899 0.019	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074 0.885 0.077 0.003 0.902 0.019	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896 0.062 0.003 0.900 0.018	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.078 0.003 0.903 0.019
$\begin{array}{c} \mathrm{SiG}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{Cr}_2\mathrm{O}_3\\ \mathrm{FeO}\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{Summe}\\ \end{array}$	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053 0.848 0.228 0.018 0.789 0.026 4.000	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835 0.228 0.016 0.794 0.027 4.000	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207 0.017 0.801 0.027 4.000	$51.45 \\ 0.49 \\ 2.17 \\ 0.00 \\ 9.26 \\ 0.59 \\ 15.17 \\ 20.18 \\ 0.40 \\ 99.71 \\ 1.912 \\ 0.095 \\ 0.014 \\ 0.005 \\ 0.014 \\ 0.005 \\ 0.841 \\ 0.206 \\ 0.018 \\ 0.804 \\ 0.029 \\ 4.000 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.001 \\ 0.$	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.0074 0.850 0.018 0.808 0.024 4.000	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253 0.020 0.781 0.030 4.000	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.216 0.017 0.216 0.017 0.789 0.028 4.000	51.61 0.47 2.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859 0.223 0.016 0.783 0.026 4.000	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885 0.004 0.004 0.001 0.019 4.000	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101 0.002 0.895 0.017 4.000	$\begin{array}{c} 52.42\\ 0.43\\ 2.85\\ 0.32\\ 5.00\\ 0.09\\ 16.13\\ 22.67\\ 0.27\\ 100.18\\ 1.916\\ 0.123\\ 0.012\\ 0.009\\ 0.032\\ 0.878\\ 0.121\\ 0.003\\ 0.888\\ 0.019\\ 4.000\\ \end{array}$	$\begin{array}{c} 52.42\\ 0.37\\ 2.84\\ 0.34\\ 4.91\\ 0.11\\ 16.04\\ 22.63\\ 0.27\\ 99.92\\ 1.920\\ 0.123\\ 0.010\\ 0.010\\ 0.026\\ 0.876\\ 0.124\\ 0.003\\ 0.888\\ 0.019\\ 4.000\\ \end{array}$	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.006 0.884 0.009 0.006 0.884 0.087 0.002 0.899 0.019 4.000	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074 0.885 0.077 0.003 0.902 0.019 4.000	\$1.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.896 0.062 0.003 0.900 0.018 4.000	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.003 0.078 0.003 0.903 0.019 4.000
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053 0.848 0.228 0.018 0.789 0.026 4.000	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.835 0.228 0.016 0.794 0.027 4.000 41.0	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207 0.017 0.801 0.027 4.000 41.1	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841 0.206 0.018 0.206 0.018 0.209 4.000	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.000 0.074 0.850 0.209 0.018 0.808 0.224 4.000 41.3	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253 0.020 0.781 0.030 4.000	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.216 0.017 0.216 0.017 0.28 4.000 40.5	51.61 0.47 2.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.859 0.223 0.016 0.783 0.026 4.000	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.067 0.885 0.080 0.004 0.901 0.019 4.000 46.5	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101 0.002 0.895 0.017 4.000 46.3	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18 1.916 0.123 0.012 0.009 0.032 0.878 0.121 0.003 0.888 0.019 4.000 46.2	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876 0.124 0.003 0.888 0.019 4.000 46.3	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.006 0.884 0.087 0.002 0.899 0.019 4.000 46.4	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074 0.885 0.007 0.003 0.902 0.019 4.000 46.4	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896 0.003 0.900 0.018 4.000 46.1	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.003 0.078 0.003 0.003 0.019 4.000 46.6
SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	51.88 0.45 2.33 0.00 9.05 0.57 15.34 19.87 0.37 99.85 1.924 0.102 0.013 0.000 0.053 0.848 0.228 0.018 0.228 0.018 0.789 0.026 4.000	51.45 0.42 2.44 0.07 9.38 0.51 15.05 19.92 0.37 99.61 1.915 0.107 0.012 0.002 0.064 0.794 0.028 0.016 0.794 0.027 4.000 41.0 43.1	51.50 0.45 2.20 0.03 9.12 0.53 15.30 20.12 0.38 99.63 1.914 0.096 0.013 0.001 0.077 0.848 0.207 0.017 0.841 0.027 4.000 41.1 43.5	51.45 0.49 2.17 0.00 9.26 0.59 15.17 20.18 0.40 99.71 1.912 0.095 0.014 0.000 0.082 0.841 0.206 0.018 0.804 0.029 4.000 41.2 43.1	51.86 0.41 1.97 0.00 9.12 0.58 15.39 20.37 0.33 100.03 1.920 0.086 0.012 0.000 0.074 0.850 0.000 0.074 0.850 0.024 4.000 41.3 43.4	52.18 0.42 1.87 0.00 9.68 0.65 15.10 19.63 0.41 99.93 1.938 0.082 0.012 0.000 0.048 0.836 0.253 0.020 0.781 0.030 4.000	51.55 0.43 2.29 0.02 9.49 0.53 15.32 19.85 0.39 99.86 1.912 0.100 0.012 0.000 0.078 0.216 0.017 0.216 0.017 0.284 4.000 40.5 43.5	51.61 0.47 2.00 9.52 0.51 15.48 19.65 0.36 99.60 1.920 0.088 0.013 0.000 0.073 0.073 0.223 0.016 0.783 0.026 4.000 40.1 43.9	52.01 0.37 2.92 0.36 4.82 0.13 16.26 23.04 0.27 100.18 1.898 0.125 0.010 0.011 0.011 0.067 0.885 0.080 0.004 0.901 0.019 4.000 46.5 45.7	52.22 0.36 2.90 0.33 5.02 0.08 16.22 22.88 0.25 100.26 1.906 0.125 0.010 0.010 0.052 0.882 0.101 0.002 0.895 0.017 4.000 46.3 45.7	52.42 0.43 2.85 0.32 5.00 0.09 16.13 22.67 0.27 100.18 1.916 0.123 0.012 0.009 0.032 0.878 0.121 0.003 0.888 0.19 4.000 46.2 45.7	52.42 0.37 2.84 0.34 4.91 0.11 16.04 22.63 0.27 99.92 1.920 0.123 0.010 0.010 0.026 0.876 0.124 0.003 0.888 0.019 4.000 46.3 45.7	51.90 0.32 2.87 0.33 5.00 0.08 16.18 22.91 0.26 99.85 1.901 0.124 0.009 0.009 0.009 0.006 0.884 0.087 0.002 0.899 0.019 4.000 46.4 45.6	Xc/6 51.97 0.38 2.91 0.32 4.97 0.08 16.29 23.08 0.27 100.27 1.895 0.125 0.010 0.009 0.074 0.885 0.077 0.003 0.902 0.019 4.000 46.4 45.6	xc// 51.36 0.40 2.91 0.19 4.97 0.09 16.36 22.87 0.26 99.41 1.887 0.126 0.011 0.006 0.090 0.896 0.062 0.003 0.900 0.890 0.018 4.000 4.000 46.1 45.9	Xc/8 52.03 0.36 2.94 0.33 4.93 0.09 16.26 23.12 0.27 100.34 1.896 0.126 0.010 0.009 0.072 0.883 0.003 0.078 0.003 0.093 0.093 0.019 4.000 46.6 45.6

Probe	M96-075	5							M96-102				
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5
SiO ₂	52.00	52.36	52.48	51.70	51.25	51.92	52.79	52.41	52.74	52.51	52.46	51.97	51.60
TiO ₂	0.52	0.35	0.38	0.44	0.45	0.43	0.28	0.38	0.25	0.27	0.29	0.39	0.35
Al_2O_3	2.08	1.86	1.94	2.56	2.93	2.28	1.47	1.70	1.81	1.70	2.14	2.80	3.01
Cr ₂ O ₃	0.03	0.02	0.03	0.03	0.00	0.04	0.02	0.02	0.00	0.00	0.00	0.00	0.00
FeO	9.39	8.60	9.27	9.31	8.79	8.81	9.15	8.30	9.01	9.19	8.40	8.13	8.40
MnO	0.63	0.66	0.69	0.57	0.56	0.68	0.81	0.75	0.48	0.48	0.48	0.32	0.34
MgO	14.80	14.67	14.73	13.74	14.07	14.75	14.47	15.11	15.40	15.57	15.59	14.87	14.22
CaO	21.00	21.33	20.36	21.46	21.81	21.35	21.12	21.29	19.37	19.61	20.01	20.95	21.55
Na ₂ O	0.20	0.27	0.22	0.31	0.27	0.31	0.32	0.25	0.37	0.33	0.36	0.35	0.41
Summe	100.66	100.13	100.12	100.12	100.15	100.55	100.44	100.21	99.43	99.65	99.71	99.77	99.88
Si	1.923	1.943	1.950	1.926	1.902	1.918	1.957	1.940	1.964	1.951	1.943	1.926	1.915
Al	0.090	0.082	0.085	0.112	0.128	0.099	0.064	0.074	0.080	0.075	0.093	0.122	0.132
Ti	0.014	0.010	0.011	0.012	0.013	0.012	0.008	0.010	0.007	0.007	0.008	0.011	0.010
Cr	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.000	0.000
Fe(3)	0.052	0.034	0.009	0.036	0.062	0.071	0.030	0.046	0.006	0.032	0.030	0.029	0.049
Mg	0.816	0.811	0.816	0.762	0.779	0.811	0.800	0.833	0.855	0.863	0.861	0.821	0.786
Fe(2)	0.238	0.232	0.280	0.254	0.211	0.201	0.253	0.211	0.275	0.253	0.230	0.223	0.212
Mn	0.020	0.021	0.022	0.018	0.018	0.021	0.025	0.024	0.015	0.015	0.015	0.010	0.011
Ca	0.832	0.848	0.811	0.856	0.867	0.844	0.839	0.844	0.773	0.781	0.794	0.832	0.857
Na	0.015	0.019	0.016	0.022	0.020	0.022	0.023	0.018	0.026	0.024	0.026	0.025	0.029
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	42.5	43.6	41.9	44.4	44.8	43.3	43.1	43.1	40.2	40.2	41.1	43.4	44.8
EN	41.7	41.7	42.1	39.6	40.2	41.6	41.1	42.6	44.5	44.4	44.6	42.9	41.1
FS	15.8	14.8	16.0	16.0	15.0	15.0	15.9	14.3	15.4	15.5	14.2	13.7	14.2

Tab. A5.3. (Fortsetzung).

Probe	M96-16	3				M97-053	3					M98-03	l	
Nr.	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/1	Ph/2	Ph/3
SiO ₂	52.77	52.42	52.51	51.98	51.22	52.05	52.58	52.66	52.83	52.36	51.86	51.83	52.27	52.73
TiO ₂	0.39	0.33	0.31	0.40	0.57	0.44	0.45	0.34	0.32	0.45	0.51	0.62	0.37	0.37
Al_2O_3	1.42	1.57	1.28	1.46	2.83	2.22	2.10	1.51	1.41	2.28	2.39	2.53	1.98	1.70
Cr_2O_3	0.08	0.06	0.05	0.07	0.04	0.04	0.01	0.00	0.00	0.00	0.00	0.01	0.04	0.03
FeO	8.78	9.21	8.78	8.63	9.28	8.33	8.01	8.23	7.58	8.17	8.05	8.32	8.34	7.94
MnO	0.71	0.75	0.69	0.71	0.61	0.82	0.73	0.77	0.81	0.77	0.68	0.68	0.61	0.64
MgO	15.46	15.57	15.94	15.41	14.44	14.38	14.61	15.04	14.94	14.30	13.96	14.64	15.42	15.11
CaO	20.44	20.01	20.31	20.59	20.57	21.35	21.46	21.21	21.53	21.64	21.80	21.23	20.77	21.24
Na ₂ O	0.25	0.25	0.20	0.29	0.32	0.42	0.40	0.35	0.35	0.40	0.43	0.35	0.35	0.35
Summe	100.31	100.17	100.08	99.53	99.86	100.05	100.35	100.11	99.77	100.37	99.68	100.19	100.15	100.12
Si	1.952	1.942	1.943	1.936	1.907	1.932	1.945	1.949	1.961	1.937	1.933	1.918	1.930	1.950
Al	0.062	0.068	0.056	0.064	0.124	0.097	0.092	0.066	0.062	0.100	0.105	0.110	0.086	0.074
Ti	0.011	0.009	0.009	0.011	0.016	0.012	0.012	0.010	0.009	0.012	0.014	0.017	0.010	0.010
Cr	0.002	0.002	0.001	0.002	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Fe(3)	0.031	0.049	0.056	0.063	0.055	0.048	0.030	0.043	0.025	0.032	0.034	0.044	0.057	0.030
Mg	0.852	0.859	0.879	0.855	0.801	0.795	0.804	0.830	0.826	0.788	0.775	0.808	0.849	0.833
Fe(2)	0.241	0.236	0.215	0.206	0.234	0.211	0.217	0.212	0.210	0.221	0.217	0.214	0.201	0.215
Mn	0.022	0.023	0.022	0.022	0.019	0.026	0.023	0.024	0.026	0.024	0.021	0.021	0.019	0.020
Ca	0.810	0.794	0.805	0.821	0.820	0.848	0.849	0.841	0.856	0.857	0.870	0.842	0.822	0.842
Na	0.018	0.018	0.015	0.021	0.023	0.030	0.028	0.025	0.025	0.029	0.031	0.025	0.025	0.025
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	41.4	40.5	40.7	41.7	42.5	44.0	44.1	43.1	44.1	44.6	45.4	43.7	42.2	43.4
EN	43.6	43.8	44.4	43.5	41.5	41.3	41.8	42.6	42.5	41.0	40.4	41.9	43.6	42.9
FS	15.0	15.7	14.8	14.8	16.0	14.7	14.0	14.3	13.4	14.4	14.2	14.4	14.2	13.7

Гяh	453	(Fortsetzung)
rav.	A3.3.	(TORISCIZUNG).

Einheit					Laven M	erapi-Son	ıma									
Probe	M98-03	1 (Fortse	tzung)]	M95-02	6					M96-050	5				
Nr.	Ph/1	Ph/2	Ph/3	-	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	-	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6
SiO ₂	51.43	51.93	52.99		52.05	52.54	51.39	51.24	51.59		52.76	51.75	52.83	52.03	53.03	51.99
TiO ₂	0.70	0.45	0.33		0.47	0.32	0.53	0.46	0.57		0.32	0.53	0.32	0.32	0.29	0.34
Al_2O_3	2.87	2.31	1.29		2.46	1.59	2.06	2.22	2.24		1.22	2.35	1.20	2.04	1.24	1.57
Cr_2O_3	0.04	0.01	0.01		0.00	0.02	0.01	0.00	0.00		0.00	0.01	0.00	0.00	0.00	0.00
FeO	8.47	8.04	8.18		9.14	8.14	8.80	9.12	9.09		8.86	8.71	8.74	9.59	8.65	8.98
MaO	0.00	0.44	0.69		0.01	0.05	0.49	0.58	0.52		0.80	0.59	0.72	0.70	0.85	14.80
CaO	22.06	21.82	20.49		20.98	21.55	21.80	21.77	21.28		20.64	20.61	20.44	20.25	20.82	20.76
Na ₂ O	0.41	0.37	0.30		0.48	0.28	0.25	0.34	0.31		0.34	0.33	0.28	0.36	0.30	0.32
Summe	100.74	100.11	100.06		100.30	99.92	99.73	99.86	99.79		100.04	99.75	99.98	100.01	100.46	99.55
Si	1.896	1.920	1.958		1.931	1.950	1.916	1.910	1.925		1.959	1.924	1.958	1.935	1.958	1.940
Al	0.125	0.101	0.056		0.107	0.069	0.091	0.097	0.098		0.054	0.103	0.052	0.089	0.054	0.069
Ti	0.020	0.012	0.009		0.013	0.009	0.015	0.013	0.016		0.009	0.015	0.009	0.009	0.008	0.009
Cr	0.001	0.000	0.000		0.000	0.001	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000
re(5) Mg	0.072	0.001	0.051		0.030	0.030	0.070	0.089	0.048		0.039	0.044	0.034	0.031	0.055	0.030
Fe(2)	0.189	0.187	0.222		0.234	0.217	0.204	0.195	0.235		0.235	0.227	0.237	0.247	0.232	0.225
Mn	0.019	0.014	0.022		0.019	0.020	0.015	0.018	0.016		0.027	0.019	0.022	0.024	0.026	0.025
Ca	0.871	0.864	0.811		0.833	0.856	0.870	0.868	0.850		0.821	0.821	0.812	0.806	0.823	0.830
Na	0.029	0.026	0.021		0.034	0.020	0.018	0.025	0.022		0.025	0.024	0.020	0.026	0.021	0.023
Summe	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000
WO	45.2	44.6	41.5		43.5	43.9	44.4	44.4	43.8		42.0	42.4	41.4	41.5	42.0	42.4
EN	40.3	41.9	44.5		40.7	42.1	40.8	40.1	40.7		42.6	42.6	43.6	41.9	43.0	42.0
гэ	14.5	15.5	14.0		13.8	14.0	14.8	15.5	15.5		13.4	13.0	13.0	10.0	13.0	13.0
Einheit	Laven M	lerapi-Soi	nma													
Probe	M96-056	6 (Fortse	tzung)						1	M96-070)					
Nr.	Ph/7	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	-	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7
SiO ₂	52.45	52.55	52.54	52.77	51.63	52.78	52.49	51.84		51.45	51.25	51.71	51.51	50.37	50.85	51.86
TiO ₂	0.40	0.42	0.36	0.38	0.47	0.39	0.33	0.48		0.48	0.42	0.41	0.40	0.57	0.52	0.38
Al_2O_3	1.74	1.68	1.69	1.60	2.32	1.60	1.48	2.40		2.53	2.21	2.30	2.12	3.61	2.52	1.34
Cr_2O_3	0.02	0.01	0.00	0.00	0.00	0.00	0.04	0.00		0.00	0.00	0.03	0.01	0.03	0.00	0.02
FeO	8.77	8.97	8.69	8.57	8.93	8.48	8.68	8.77		9.46	8.75	9.42	9.47	8.81	8.98	9.23
MnO M-O	0.83	0.73	0.70	0.71	0.58	0.67	0.68	0.57		0.56	0.55	0.56	0.60	0.46	0.54	0.63
MgO	20.62	20.69	20.70	21.06	14.57	21.00	15.52	14.58		14.85	20.55	15.28	20.14	20.69	14.75	10.08
Na ₂ O	0.35	0.34	0.35	0.31	0.35	0.35	0.28	0.35		0.38	0.35	0.31	0.41	0.35	0.31	0.21
Summe	100.15	100.50	100.07	100.50	99.71	100.31	99.88	99.95		99.91	99.14	100.21	99.55	99.14	99.16	99.24
Si	1.944	1.941	1.947	1.948	1.923	1.951	1.948	1.925		1.912	1.915	1.913	1.920	1.884	1.902	1.938
Al	0.076	0.073	0.074	0.069	0.102	0.070	0.065	0.105		0.111	0.097	0.100	0.093	0.159	0.111	0.059
Ti	0.011	0.012	0.010	0.011	0.013	0.011	0.009	0.013		0.013	0.012	0.011	0.011	0.016	0.014	0.011
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000		0.000	0.000	0.001	0.000	0.001	0.000	0.001
Fe(3)	0.041	0.049	0.037	0.040	0.051	0.033	0.041	0.044		0.069	0.079	0.072	0.074	0.065	0.078	0.059
Nig Fe(2)	0.828	0.852	0.830	0.851	0.809	0.828	0.847	0.807		0.821	0.838	0.845	0.828	0.794	0.823	0.808
Mn	0.026	0.023	0.022	0.022	0.018	0.021	0.022	0.018		0.018	0.017	0.017	0.019	0.015	0.017	0.020
Ca	0.818	0.818	0.822	0.832	0.833	0.832	0.819	0.834		0.805	0.822	0.801	0.804	0.829	0.829	0.800
Na	0.025	0.025	0.025	0.022	0.025	0.025	0.020	0.026		0.028	0.025	0.022	0.029	0.026	0.022	0.015
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	42.1	42.0	42.3	42.7	43.0	42.8	41.8	43.2		41.5	42.1	41.0	41.3	43.3	42.5	40.5
EN	42.6	42.7	42.7	42.6	41.7	42.6	43.3	41.8		42.4	43.0	43.2	42.5	41.5	42.2	43.9
FS	15.3	15.4	15.0	14.7	15.3	14.6	14.9	15.0		16.1	14.9	15.8	16.1	15.2	15.3	15.6

Tab.	A5.3. (Fortsetzung).
Einheit	Laven Merapi-Somma

Emmen		crapi-3011	ma													
Probe	M96-070	(Fortset	zung)					M98-048	3							
Nr.	Ph/8	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13		Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9
SiO ₂	51.77	51.41	51.68	51.13	50.26	51.49		52.23	52.50	51.22	51.76	52.37	52.62	52.43	52.22	52.64
TiO ₂	0.44	0.43	0.41	0.50	0.62	0.40		0.44	0.44	0.64	0.54	0.45	0.39	0.37	0.52	0.38
Al_2O_3	2.21	1.93	1.95	2.35	3.37	1.91		2.11	2.13	3.07	2.42	1.88	1.66	1.63	2.19	1.44
Cr_2O_3	0.01	0.04	0.00	0.00	0.00	0.01		0.30	0.02	0.27	0.01	0.00	0.01	0.00	0.00	0.00
FeO	9.08	9.39	8.97	8.84	9.18	9.00		8.96	8.78	9.15	8.85	8.86	8.75	8.57	9.03	8.86
MnO MrO	0.50	0.58	0.62	0.51	0.59	0.56		0.59	0.62	0.50	0.62	0.65	0.61	0.63	0.59	0.66
MgO	15.08	20.04	15.55	14.85	14.38	15.14		15.14	15.40	14.05	20.14	15.21	15.50	15.58	15.55	15.50
Na ₂ O	0.35	0.30	0.33	0.33	0.34	0.32		0.34	0.33	0.33	0.31	0.33	0.20	0.29	0.34	0.29
Summe	99.94	99.38	99.62	99.16	99.34	99.29		100.73	100.72	100.17	99.96	100.17	100.10	99.67	100.43	99.94
Si	1.920	1.920	1.921	1.911	1.879	1.922		1.924	1.931	1.899	1.918	1.938	1.948	1.947	1.926	1.952
Al	0.097	0.085	0.086	0.104	0.148	0.084		0.092	0.092	0.134	0.106	0.082	0.072	0.071	0.095	0.063
Ti	0.012	0.012	0.012	0.014	0.017	0.011		0.012	0.012	0.018	0.015	0.013	0.011	0.010	0.014	0.011
Cr	0.000	0.001	0.000	0.000	0.000	0.000		0.009	0.000	0.008	0.000	0.000	0.000	0.000	0.000	0.000
Fe(3)	0.064	0.075	0.073	0.070	0.086	0.073		0.052	0.048	0.049	0.051	0.040	0.034	0.036	0.047	0.033
Mg	0.834	0.848	0.851	0.827	0.801	0.843		0.831	0.844	0.810	0.845	0.839	0.858	0.862	0.844	0.857
Fe(2)	0.218	0.218	0.206	0.206	0.201	0.208		0.224	0.222	0.235	0.223	0.234	0.237	0.230	0.231	0.242
Mn	0.016	0.018	0.019	0.016	0.019	0.018		0.018	0.019	0.016	0.019	0.020	0.019	0.020	0.018	0.021
Ca Na	0.014	0.001	0.009	0.828	0.023	0.023		0.024	0.007	0.808	0.000	0.023	0.001	0.002	0.798	0.021
Summe	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	41.8	40.9	41.3	42.5	42.7	41.8		42.0	41.6	42.2	41.2	41.7	41.1	41.1	41.2	41.0
EN	42.9	43.2	43.4	42.5	41.5	43.0		42.9	43.5	42.2	43.6	43.2	44.0	44.2	43.5	43.9
FS	15.5	15.9	15.2	15.0	15.8	15.2		15.2	14.9	15.0	15.2	15.2	14.9	14.7	15.5	15.1
Einheit	Laven Me	erapi-Son	nma													
Probe	M98-048	(Fortset	zung)						M98-105	5						
Nr.	Ph/10	Ph/11	Ph/12	Ph/13	Ph/14	Ph/15	Ph/16	-	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8
SiO ₂	51.70	52.25	51.89	51.36	52.45	52.71	51.92		51.41	51.09	51.31	51.33	51.73	51.09	51.18	51.16
TiO ₂	0.50	0.45	0.47	0.53	0.38	0.37	0.47		0.47	0.52	0.49	0.52	0.45	0.55	0.49	0.53
Al_2O_3	2.51	2.02	2.19	2.73	1.57	1.36	2.14		2.22	2.40	2.20	2.37	1.96	2.42	2.27	2.55
Cr_2O_3	0.00	0.00	0.03	0.10	0.00	0.00	0.00		0.00	0.00	0.02	0.10	0.14	0.01	0.00	0.00
MnO	9.03 0.64	0.62	0.54	0.43	0.60	0.64	0.57		0.14	0.56	0.57	0.64	0.64	0.11	0.56	0.64
MgO	14.83	15.08	15.11	14.55	15.57	15.90	15.20		15.06	15.00	15.01	15.06	15.38	14.76	14.95	14.83
CaO	20.31	20.26	20.65	20.98	20.23	19.67	20.49		21.22	20.73	20.49	20.18	20.27	21.70	20.06	20.06
Na ₂ O	0.38	0.36	0.35	0.34	0.30	0.25	0.36		0.31	0.35	0.36	0.36	0.33	0.29	0.39	0.42
Summe	99.91	100.26	99.91	99.94	99.86	100.02	99.94		99.28	99.35	99.43	99.28	99.13	99.37	99.12	99.34
Si	1.921	1.934	1.925	1.907	1.945	1.952	1.924		1.915	1.904	1.912	1.916	1.931	1.904	1.914	1.910
Al	0.110	0.088	0.095	0.120	0.069	0.060	0.093		0.097	0.106	0.097	0.104	0.086	0.106	0.100	0.112
Ti	0.014	0.012	0.013	0.015	0.011	0.010	0.013		0.013	0.015	0.014	0.015	0.013	0.015	0.014	0.015
Cr	0.000	0.000	0.001	0.005	0.000	0.000	0.000		0.000	0.000	0.001	0.003	0.004	0.000	0.000	0.000
Fe(3)	0.056	0.047	0.058	0.057	0.045	0.034	0.059		0.068	0.082	0.077	0.063	0.049	0.077	0.072	0.071
Mg Fo(2)	0.820	0.832	0.834	0.805	0.860	0.8/8	0.840		0.837	0.834	0.834	0.837	0.855	0.820	0.834	0.825
Mn	0.224	0.238	0.211	0.219	0.220	0.247	0.214		0.185	0.189	0.203	0.209	0.207	0.170	0.210	0.215
Ca	0.808	0.803	0.820	0.835	0.803	0.780	0.813		0.847	0.828	0.818	0.806	0.810	0.867	0.804	0.802
Na	0.027	0.026	0.025	0.025	0.022	0.018	0.026		0.023	0.025	0.026	0.026	0.024	0.021	0.028	0.030
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	41.9	41.4	42.3	43.3	41.1	39.8	41.8		43.4	42.4	42.0	41.6	41.7	44.4	41.4	41.5
EN	42.5	42.9	43.0	41.7	44.0	44.8	43.2		42.9	42.7	42.8	43.2	44.0	42.0	42.9	42.7
				150	110		110				150		14.2	12.6	15 0	15.9

Tab. A	5.3. (Fortsetzung)	
Einheit	Laven Merapi-Somma	

Linnen		1													
Probe	M98-105	(Fortset	zung)			M98-10	7								
Nr.	Ph/9	Ph/10	Ph/11	Ph/12	Ph/13	Ph/1	Ph/2	Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10
SiO ₂	51.71	51.71	51.42	51.99	51.62	51.45	50.86	51.15	51.86	51.72	51.61	51.19	52.15	50.82	50.28
TiO ₂	0.47	0.40	0.38	0.42	0.40	0.55	0.59	0.52	0.48	0.45	0.46	0.59	0.42	0.78	0.57
Al_2O_3	2.25	1.87	1.75	2.07	2.02	2.68	2.74	2.33	2.05	1.95	1.90	2.58	1.73	2.56	3.16
Cr_2O_3	0.00	0.02	0.02	0.09	0.02	0.00	0.04	0.01	0.00	0.00	0.00	0.00	0.02	0.02	0.01
FeO	8.76	8.50	8.71	9.11	8.66	9.31	9.20	9.36	8.95	8.75	8.81	8.22	8.41	8.61	8.93
MnO	0.64	0.65	0.62	0.59	0.52	0.49	0.55	0.55	0.58	0.57	0.48	0.47	0.55	0.40	0.39
MgO	15.30	15.41	15.55	15.28	15.09	15.20	14.99	15.70	15.03	15.76	15.19	15.19	15.24	15.25	14.32
CaO	20.37	20.43	20.34	20.17	20.56	19.96	20.60	19.29	20.57	19.96	20.78	20.67	21.23	20.66	21.38
Na_2O	0.39	0.31	0.31	0.38	0.36	0.35	0.32	0.33	0.32	0.32	0.36	0.32	0.29	0.31	0.30
Summe	99.89	99.29	99.10	100.08	99.24	99.99	99.88	99.25	99.84	99.50	99.59	99.22	100.04	99.41	99.34
Si	1.915	1.927	1.919	1.925	1.926	1.907	1.889	1.906	1.927	1.921	1.919	1.907	1.931	1.893	1.878
Al	0.098	0.082	0.077	0.090	0.089	0.117	0.120	0.102	0.090	0.086	0.083	0.113	0.075	0.112	0.139
Ti	0.013	0.011	0.011	0.012	0.011	0.015	0.016	0.015	0.013	0.013	0.013	0.016	0.012	0.022	0.016
Cr	0.000	0.001	0.001	0.002	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.000
Fe(3)	0.073	0.065	0.085	0.062	0.064	0.066	0.096	0.080	0.054	0.070	0.078	0.062	0.060	0.084	0.094
Mg	0.845	0.856	0.865	0.843	0.839	0.839	0.829	0.872	0.832	0.873	0.842	0.844	0.841	0.846	0.797
Fe(2)	0.198	0.199	0.187	0.220	0.206	0.222	0.190	0.212	0.224	0.202	0.196	0.194	0.200	0.185	0.185
Mn	0.020	0.021	0.020	0.018	0.016	0.015	0.017	0.017	0.018	0.018	0.015	0.015	0.017	0.013	0.012
Ca	0.809	0.815	0.814	0.800	0.822	0.792	0.819	0.770	0.819	0.794	0.828	0.825	0.842	0.824	0.856
Na	0.028	0.022	0.022	0.027	0.026	0.025	0.023	0.024	0.023	0.023	0.026	0.023	0.021	0.022	0.022
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	41.6	41.7	41.3	41.2	42.2	40.9	42.0	39.5	42.0	40.6	42.3	42.5	43.0	42.2	44.0
EN	43.4	43.7	43.9	43.4	43.1	43.4	42.5	44.7	42.7	44.6	43.0	43.5	42.9	43.4	41.0
FS	15.0	14.6	14.8	15.5	14.7	15.7	15.5	15.8	15.2	14.8	14.8	14.0	14.2	14.4	15.0
Einheit															
Einneit	Laven Me	erapi-Son	nma			Laven P	oto-Mera	pi							
Probe	Laven Me M98-107	erapi-Som (Fortsetz	uma zung)			Laven P M96-05	roto-Mera 2	pi							
Probe Nr.	Laven Me M98-107 Ph/11	erapi-Som (Fortsetz Ph/12	nma zung) Ph/13	Ph/14	Ph/15	Laven P M96-05	roto-Mera 2 Ph/2	pi Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10
Probe Nr.	Laven Me M98-107 Ph/11	(Fortset: Ph/12	nma zung) Ph/13	Ph/14	Ph/15	Laven P M96-05 Ph/1	roto-Mera 2 Ph/2	pi Ph/3	Ph/4	Ph/5	Ph/6	Ph/7	Ph/8	Ph/9	Ph/10
Probe Nr. SiO ₂	Laven Me M98-107 Ph/11 51.01	(Fortsetz Ph/12 51.54	nma zung) Ph/13 50.53	Ph/14 50.58	Ph/15 51.06	Laven P M96-05 Ph/1 49.78	roto-Mera 2 Ph/2 49.77	pi Ph/3 49.36	Ph/4 49.33	Ph/5 50.18	Ph/6 50.09	Ph/7 49.72	Ph/8 52.35	Ph/9 49.64	Ph/10 51.77
Probe Nr. SiO ₂ TiO ₂	Laven Me M98-107 Ph/11 51.01 0.55	(Fortset: Ph/12 51.54 0.37	nma zung) Ph/13 50.53 0.66	Ph/14 50.58 0.59	Ph/15 51.06 0.52	Laven P M96-05 Ph/1 49.78 0.75	2 Ph/2 49.77 0.81	pi Ph/3 49.36 0.85	Ph/4 49.33 0.89	Ph/5 50.18 0.80	Ph/6 50.09 0.75	Ph/7 49.72 0.80	Ph/8 52.35 0.58	Ph/9 49.64 0.83	Ph/10 51.77 0.46
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Laven Me M98-107 Ph/11 51.01 0.55 2.45	(Fortsetz Ph/12 51.54 0.37 1.81	ma zung) Ph/13 50.53 0.66 2.81	Ph/14 50.58 0.59 3.20	Ph/15 51.06 0.52 2.45	Laven P M96-05 Ph/1 49.78 0.75 5.97	2 Ph/2 49.77 0.81 5.93	pi Ph/3 49.36 0.85 6.32	Ph/4 49.33 0.89 6.38	Ph/5 50.18 0.80 5.94	Ph/6 50.09 0.75 5.86	Ph/7 49.72 0.80 5.72	Ph/8 52.35 0.58 3.36	Ph/9 49.64 0.83 6.15	Ph/10 51.77 0.46 3.75
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00	(Fortsetz Ph/12 51.54 0.37 1.81 0.00	ma zung) Ph/13 50.53 0.66 2.81 0.02	Ph/14 50.58 0.59 3.20 0.03	Ph/15 51.06 0.52 2.45 0.01	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12	2 Ph/2 49.77 0.81 5.93 0.18	pi Ph/3 49.36 0.85 6.32 0.13	Ph/4 49.33 0.89 6.38 0.20	Ph/5 50.18 0.80 5.94 0.13	Ph/6 50.09 0.75 5.86 0.14	Ph/7 49.72 0.80 5.72 0.13	Ph/8 52.35 0.58 3.36 0.09	Ph/9 49.64 0.83 6.15 0.12	Ph/10 51.77 0.46 3.75 0.11
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07	Frapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45	Ph/14 50.58 0.59 3.20 0.03 9.79	Ph/15 51.06 0.52 2.45 0.01 8.51	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30	2 Ph/2 49.77 0.81 5.93 0.18 8.81	pi Ph/3 49.36 0.85 6.32 0.13 9.32	Ph/4 49.33 0.89 6.38 0.20 9.34	Ph/5 50.18 0.80 5.94 0.13 8.51	Ph/6 50.09 0.75 5.86 0.14 8.70	Ph/7 49.72 0.80 5.72 0.13 8.63	Ph/8 52.35 0.58 3.36 0.09 8.09	Ph/9 49.64 0.83 6.15 0.12 8.70	Ph/10 51.77 0.46 3.75 0.11 8.34
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42	erapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 15.08	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 2.21	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 9.24	Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 2.24	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 2.27	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 2.041	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 2.34	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.20	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 2.21
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 0.34	Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 0.37	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19	erapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01	ma 2ung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903	erapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928	ma 2ung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108	 Frapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 	ma 2ung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015	 Frapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.013
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.004	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.013 0.003
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3)	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 2.65	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.201	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.079	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.01	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.004 0.048 0.048	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006 0.042	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004 0.027	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004 0.031	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.013 0.003 0.003
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 2.65	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.202	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.026 0.026 0.027 0.124 0.018 0.021 0.028 0.027 0.124 0.028 0.027 0.124 0.028 0.027 0.124 0.028 0.028 0.124 0.028 0.028 0.124 0.028 0.028 0.124 0.028 0.028 0.028 0.124 0.028 0.028 0.028 0.028 0.124 0.028 0.02	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.079 0.849 0.462	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.766	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036 0.765	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.048 0.764 0.055 0.764	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006 0.042 0.756	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004 0.027 0.761 0.004	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004 0.031 0.748	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.013 0.003 0.003 0.003
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2)	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.201	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.207 0.640	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.079 0.849 0.187 0.02	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.076	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036 0.765 0.236	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.048 0.764 0.764 0.241 0.65	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006 0.042 0.756 0.247	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004 0.027 0.761 0.242	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004 0.031 0.748 0.238 0.268	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.013 0.003 0.003 0.003 0.831 0.255
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn	Laven Mc M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.014 0.55	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205 0.221 0.221	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.207 0.016	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217 0.07	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.079 0.849 0.187 0.0187	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.0241	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036 0.765 0.236 0.005	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.048 0.764 0.241 0.006 0.754	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006 0.042 0.756 0.247 0.009 0.756	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251 0.007	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004 0.027 0.761 0.242 0.007	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232 0.009	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245 0.006	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004 0.031 0.748 0.238 0.006	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.013 0.003 0.003 0.003 0.003 0.255 0.007
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.014 0.795 0.201	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205 0.021 0.815	ma 2ung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.207 0.016 0.791 0.027	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217 0.017 0.794 0.027	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.079 0.849 0.187 0.014 0.822	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.006 0.813 0.25	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036 0.765 0.236 0.005 0.236	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.048 0.764 0.241 0.006 0.781 0.026	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006 0.042 0.756 0.247 0.009 0.781	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251 0.007 0.806	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004 0.027 0.761 0.242 0.007 0.805 0.025	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232 0.009 0.807	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245 0.006 0.766	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004 0.031 0.748 0.238 0.006 0.817 0.022	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.003 0.003 0.003 0.003 0.003 0.255 0.007 0.787
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.014 0.795 0.024 4.002	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205 0.021 0.818 0.025	ma 2ung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.207 0.016 0.791 0.027 4.0027	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217 0.017 0.794 0.036	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.079 0.849 0.187 0.014 0.820 0.023	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.006 0.813 0.025 1.005	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036 0.765 0.236 0.005 0.236 0.005	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.004 0.048 0.764 0.241 0.006 0.781 0.029 4.0029	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.025 0.006 0.042 0.756 0.247 0.009 0.781 0.029	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251 0.007 0.806 0.027	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.255 0.021 0.004 0.255 0.021 0.004 0.27 0.761 0.242 0.007 0.805 0.027	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232 0.009 0.807 0.028	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245 0.006 0.766 0.024	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.268 0.023 0.004 0.031 0.748 0.238 0.006 0.817 0.026	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.003 0.003 0.003 0.003 0.003 0.003 0.007 0.787 0.023
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.014 0.795 0.024 4.000	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205 0.021 0.818 0.025 4.000	ma Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.207 0.016 0.791 0.027 4.000	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217 0.017 0.794 0.036 4.000	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.000 0.679 0.849 0.187 0.014 0.820 0.023 4.000	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.006 0.813 0.025 4.000	2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.036 0.765 0.236 0.005 0.205 0.005 0.025 4.000	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.004 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.029 4.000	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.006 0.042 0.756 0.247 0.009 0.781 0.029 4.000	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251 0.007 0.806 0.027 4.000	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.025 0.021 0.004 0.027 0.761 0.242 0.007 0.805 0.027 4.000	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232 0.009 0.807 0.288 4.000	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245 0.006 0.766 0.024 4.000	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.023 0.004 0.031 0.748 0.238 0.006 0.817 0.026 4.000	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.003 0.003 0.003 0.003 0.003 0.831 0.255 0.007 0.787 0.023 4.000
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.014 0.795 0.024 4.000 40.8	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205 0.021 0.818 0.025 4.000 41.8	ma zung) Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.840 0.207 0.016 0.791 0.027 4.000 40.7	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217 0.017 0.794 0.036 4.000 41.4	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.007 0.849 0.187 0.014 0.820 0.023 4.000 42.1	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.006 0.813 0.025 4.000 44.2	Ph/2 Ph/2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.236 0.036 0.765 0.236 0.005 0.236 0.005 0.235 4.000 43.6	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.004 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.241 0.006 0.781 0.029 4.000 42.5	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.006 0.042 0.756 0.247 0.009 0.781 0.029 4.000 42.6	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251 0.007 0.806 0.027 4.000 44.0	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.025 0.021 0.004 0.027 0.761 0.242 0.007 0.805 0.027 4.000 43.7	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232 0.009 0.807 0.28 4.000 43.7	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245 0.006 0.766 0.024 4.000 40.5	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.023 0.004 0.031 0.748 0.238 0.006 0.817 0.026 4.000 44.4	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.003 0.003 0.003 0.003 0.003 0.003 0.007 0.787 0.023 4.000 41.8
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	Laven Me M98-107 Ph/11 51.01 0.55 2.45 0.00 9.07 0.46 15.42 19.89 0.34 99.19 1.903 0.108 0.015 0.000 0.081 0.857 0.201 0.014 0.795 0.024 4.000 40.8 44.0	rapi-Son (Fortset: Ph/12 51.54 0.37 1.81 0.00 8.74 0.66 15.15 20.40 0.34 99.01 1.928 0.080 0.010 0.000 0.068 0.845 0.205 0.021 0.818 0.025 4.000 41.8 43.2	 Ph/13 Ph/13 50.53 0.66 2.81 0.02 9.45 0.50 15.08 19.74 0.37 99.15 1.889 0.124 0.018 0.001 0.089 0.840 0.207 0.016 0.791 0.027 4.000 40.7 43.3 	Ph/14 50.58 0.59 3.20 0.03 9.79 0.53 14.42 19.87 0.50 99.52 1.888 0.141 0.017 0.001 0.088 0.802 0.217 0.794 0.036 4.000 41.4 41.8	Ph/15 51.06 0.52 2.45 0.01 8.51 0.46 15.27 20.52 0.32 99.11 1.906 0.108 0.014 0.007 0.849 0.187 0.014 0.820 0.023 4.000 42.1 43.6	Laven P M96-05 Ph/1 49.78 0.75 5.97 0.12 8.30 0.20 13.72 20.41 0.34 99.59 1.852 0.261 0.021 0.004 0.017 0.760 0.241 0.006 0.813 0.025 4.000 44.2 41.4	Ph/2 Ph/2 Ph/2 49.77 0.81 5.93 0.18 8.81 0.17 13.88 20.33 0.36 100.23 1.840 0.258 0.022 0.005 0.236 0.036 0.765 0.236 0.005 0.236 0.005 0.236 0.005 0.235 4.000 43.6 41.4	pi Ph/3 49.36 0.85 6.32 0.13 9.32 0.21 13.84 19.70 0.41 100.14 1.827 0.276 0.024 0.004 0.048 0.764 0.048 0.764 0.048 0.764 0.048 0.764 0.29 4.000 4.25 41.5	Ph/4 49.33 0.89 6.38 0.20 9.34 0.29 13.70 19.70 0.40 100.24 1.826 0.278 0.006 0.042 0.756 0.247 0.009 0.781 0.029 4.000 42.6 41.2	Ph/5 50.18 0.80 5.94 0.13 8.51 0.23 13.75 20.37 0.37 100.27 1.855 0.259 0.022 0.004 0.012 0.758 0.251 0.007 0.806 0.027 4.000 44.0 41.3	Ph/6 50.09 0.75 5.86 0.14 8.70 0.23 13.83 20.34 0.38 100.33 1.850 0.255 0.021 0.004 0.027 0.761 0.242 0.007 0.805 0.027 4.000 43.7 41.3	Ph/7 49.72 0.80 5.72 0.13 8.63 0.27 13.79 20.27 0.39 99.73 1.848 0.250 0.022 0.004 0.037 0.764 0.232 0.009 0.807 0.288 4.000 43.7 41.3	Ph/8 52.35 0.58 3.36 0.09 8.09 0.19 15.92 19.50 0.34 100.43 1.920 0.145 0.016 0.003 0.004 0.871 0.245 0.006 0.766 0.024 4.000 40.5 46.0	Ph/9 49.64 0.83 6.15 0.12 8.70 0.20 13.55 20.60 0.36 100.15 1.838 0.023 0.004 0.031 0.748 0.238 0.006 0.817 0.026 4.000 44.4 40.6	Ph/10 51.77 0.46 3.75 0.11 8.34 0.22 15.08 19.86 0.31 99.90 1.915 0.163 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.255 0.007 0.787 0.023 4.000 41.8 44.2

Probe M96-142 Nr. I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Stop 53.48 53.65 54.26 53.51 53.91 54.19 55.70 54.13 53.26 54.40 53.65 53.53 53.07 53.31 53.29 50.26 0.25 0.25 0.25 0.25 0.25 0.21 0.16 0.00 0.02 0.0	Einheit	Rezente	Domlave	en und py	roklastise	che Strör	ne										
Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S0. 53.48 53.66 54.19 53.79 54.19 53.79 54.13 53.26 64.40 51.65 53.37 53.37 53.37 53.37 53.37 53.07 53.31 53.87 53.07 53.31 53.87 53.07 53.31 53.87 50.07 53.37 53.07 53.31 53.37 53.07 53.31 53.07 53.07	Probe	M96-142	2														
	Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Top, ALGO, ALGO, Cr.O. 0.11 0.22 0.22 0.25 0.24 0.23 0.24 0.	SiO ₂	53.48	53.65	54.26	53.63	53.91	54.19	53.70	54.13	53.26	54.90	53.65	53.53	53.07	53.31	53.29	
Al-β0, 1.17 1.03 0.07 1.01 1.15 1.23 0.68 0.02 1.03 1.44 0.97 Crop, 0.00	TiO ₂	0.31	0.22	0.21	0.32	0.22	0.25	0.25	0.25	0.24	0.18	0.39	0.24	0.26	0.28	0.20	
Cr-O, FO 0.00	Al_2O_3	1.17	1.03	0.75	1.51	1.08	1.05	1.01	1.15	1.23	0.68	0.92	1.03	1.43	0.94	0.97	
FeO 17.12 17.46 17.27 17.49 17.29 17.49 17.29 17.49 17.29 17.49 17.29 17.49 17.29 17.48 1.19 1.58 1.56 MgO 24.12 24.14 24.58 24.52 24.82 25.06 25.03 25.07 25.60 25.48 25.02 24.22 22.89 24.12 Na ₀ O 0.03 0.03 0.03 0.03 0.03 0.02 0.04 1.00.3 10.08 9.98 9.39 9.51 10.036 Simme 9.95 9.83 1.055 1.057 1.971 1.957 1.957 1.958 1.951 1.981 1.943 1.956 1.983 1.944 A1 0.051 0.045 0.052 0.046 0.040 0.020 0.030 0.040 0.00	Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.02	0.01	0.00	0.02	0.02	0.00	0.02	
MbO 1.20 1.39 1.40 1.17 1.12 1.14 1.11 1.14 1.11 1.12 1.18 1.18 1.19 1.19 1.18 1.19 1.18 1.19 1.19 1.18 1.19 1.18 1.14 <th1< td=""><td>FeO</td><td>17.12</td><td>17.46</td><td>17.72</td><td>17.96</td><td>17.14</td><td>17.48</td><td>17.82</td><td>17.44</td><td>17.17</td><td>17.12</td><td>17.75</td><td>17.49</td><td>17.22</td><td>18.84</td><td>18.70</td><td></td></th1<>	FeO	17.12	17.46	17.72	17.96	17.14	17.48	17.82	17.44	17.17	17.12	17.75	17.49	17.22	18.84	18.70	
Mg0 24.12 24.14 24.38 24.48 25.00 23.03 23.23 23.04 25.04 24.12 24.18 1.45 1.48 1.45 1.44 1.45 1.48 1.45 1.44 1.45 1.48 1.45 1.48 1.45 1.48 1.45 1.48 1.45 1.48 1.45 1.48 1.45 1.48 1.55 1.951 1.981 1.931 1.956 1.951 1.981 1.943 1.956 1.951 1.981 1.943 1.956 1.951 1.981 1.943 1.950 1.983 1.951 1.981 1.943 1.950 1.981 1.943 1.943 1.950 1.981 1.914 0.023 0.020 0.003 0.004 0.006 0.000 0	MnO	1.20	1.39	1.40	1.38	1.17	1.32	1.19	1.11	1.14	1.11	1.28	1.18	1.19	1.58	1.56	
CaD 2.17 1.88 1.35 1.49 1.47 1.48 1.47 1.48 1.43	MgO	24.12	24.14	24.58	24.23	24.88	25.06	25.03	25.32	25.07	25.60	25.48	25.02	24.72	22.89	24.12	
Hagb 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 <th< td=""><td>Na-O</td><td>2.17</td><td>1.88</td><td>1.50</td><td>1.49</td><td>1.47</td><td>1.58</td><td>1.43</td><td>1.48</td><td>1.47</td><td>1.40</td><td>1.38</td><td>1.45</td><td>1.48</td><td>0.09</td><td>1.49</td><td></td></th<>	Na-O	2.17	1.88	1.50	1.49	1.47	1.58	1.43	1.48	1.47	1.40	1.38	1.45	1.48	0.09	1.49	
Si. 1.967 1.971 1.980 1.971 1.965 1.955 1.981 1.981 1.943 1.956 1.950 1.983 1.954 AI 0.051 0.045 0.032 0.066 0.006 0.006 0.006 0.007 0.000	Summe	99.59	99.80	100.51	100.54	99.90	100.76	100.44	100.92	99.62	101.03	100.88	99.98	99.39	99.51	100.36	
Al 0.051 0.045 0.032 0.066 0.066 0.066 0.067 0.067 0.067 0.067 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.060 0.000 0.	Si	1.967	1.971	1.980	1.958	1.971	1.967	1.955	1.958	1.951	1.981	1.943	1.956	1.950	1.983	1.954	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Al	0.051	0.045	0.032	0.065	0.046	0.045	0.043	0.049	0.053	0.029	0.039	0.044	0.062	0.041	0.042	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ti	0.009	0.006	0.006	0.009	0.006	0.007	0.007	0.007	0.006	0.005	0.011	0.007	0.007	0.008	0.006	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.001	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fe(3)	0.001	0.003	0.006	0.007	0.004	0.013	0.034	0.025	0.035	0.002	0.055	0.031	0.024	0.004	0.043	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg	1.322	1.322	1.336	1.318	1.356	1.355	1.358	1.365	1.368	1.377	1.376	1.363	1.354	1.265	1.318	
Mn 0.037 0.043 0.043 0.043 0.034 0.037 0.037 0.037 0.036 0.058 0.	Fe(2)	0.526	0.534	0.534	0.541	0.520	0.517	0.508	0.503	0.491	0.515	0.482	0.503	0.505	0.580	0.530	
Ca 0.086 0.074 0.092 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.001 0.000 0.	Mn	0.037	0.043	0.043	0.043	0.036	0.040	0.037	0.034	0.035	0.034	0.039	0.037	0.037	0.050	0.049	
samme 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.000 0.00 0.00 0	Ca	0.086	0.074	0.061	0.058	0.057	0.054	0.056	0.057	0.058	0.054	0.054	0.057	0.058	0.063	0.059	
Summe 4.000 <th< td=""><td>Na</td><td>0.002</td><td>0.002</td><td>0.002</td><td>0.002</td><td>0.003</td><td>0.002</td><td>0.001</td><td>0.002</td><td>0.002</td><td>0.002</td><td>0.001</td><td>0.002</td><td>0.001</td><td>0.007</td><td>0.000</td><td></td></th<>	Na	0.002	0.002	0.002	0.002	0.003	0.002	0.001	0.002	0.002	0.002	0.001	0.002	0.001	0.007	0.000	
WO 4.3 3.7 3.1 3.0 2.9 2.7 2.8 2.9 2.7 2.7 2.8 2.9 3.2 2.9 EN 67.1 66.9 67.5 67.0 68.7 68.5 68.8 68.9 69.5 68.6 68.5 68.4 64.5 66.0 Einheit Juvenile Komponenten bolozäner pyroklastischer Ströme Probe M96-145 M96-137 Mr. 1 2 3 4 5 6 7 1 2 3 SiO2 53.32 53.41 53.00 53.11 53.03 53.73 53.77 53.27 52.36 53.44 53.33 53.37 53.15 53. SiO2 53.32 53.44 53.70 53.11 53.03 53.73 53.77 53.27 52.36 53.44 53.33 53.37 53.15 53.17 G102 0.20 0.31 0.17 0.30 0.27 0.26 0.20 0.31 0.16 0.16 0.16 0.16 0.16 0.16 0.	Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WO	4.3	3.7	3.1	3.0	2.9	2.7	2.8	2.9	2.9	2.7	2.7	2.8	2.9	3.2	2.9	
FS 28.6 29.3 29.5 30.0 28.4 28.8 29.1 28.3 28.2 27.8 28.8 28.7 28.6 32.3 31.1 Einheit Juvenile Komponenten holoziner pyroklastischer Ströme Probe M96-145 M96-137 M96-137 M96-167 Nr. 1 2 3 4 5 6 7 1 2 3 SiO ₂ 53.32 53.44 53.70 53.11 53.03 53.77 53.27 52.36 53.44 53.33 53.37 53.15 53. G2 0.20 0.31 0.17 0.30 0.27 0.26 0.20 0.27 0.34 0.26 0.16 0.16 0.16 0.19 0.62 0.71 1.16 1 78.0 1.85 1.83 1.83 1.83 1.84 1.84 1.84 1.84 1.84 1.84 1.84 1.73 1 1.85 1.73 1 1.85 1.73	EN	67.1	66.9	67.5	67.0	68.7	68.5	68.1	68.8	68.9	69.5	68.6	68.5	68.4	64.5	66.0	
Einheit Juvenile Komponenten holozäner pyroklastischer Ströme Probe M96-145 M96-137 M96-137 M96-167 SiO2 53.32 53.44 53.70 53.11 53.03 53.73 53.77 53.27 52.36 53.44 53.33 53.37 53.15 53 TiO2 0.20 0.31 0.17 0.30 0.27 0.26 0.20 0.27 0.34 0.26 0.16 0.16 0.16 0.16 0.16 0.16 0.19 0.0 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.01 1.87 <td< td=""><td>FS</td><td>28.6</td><td>29.3</td><td>29.5</td><td>30.0</td><td>28.4</td><td>28.8</td><td>29.1</td><td>28.3</td><td>28.2</td><td>27.8</td><td>28.8</td><td>28.7</td><td>28.6</td><td>32.3</td><td>31.1</td><td></td></td<>	FS	28.6	29.3	29.5	30.0	28.4	28.8	29.1	28.3	28.2	27.8	28.8	28.7	28.6	32.3	31.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Einheit					Juvenile	Kompon	enten ho	lozäner p	yroklasti	ischer Sti	öme					
Nr. I 2 3 4 5 6 7 1 2 3 SiO2 53.32 53.44 53.70 53.11 53.03 53.77 53.27 52.36 53.44 53.33 53.37	Probe	M96-14	5		-	M96-13′	7							M96-167	7		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nr.	1	2	3	-	1	2	3	4	5	6	7	-	1	2	3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO2	53.32	53.44	53.70		53.11	53.03	53.73	53.77	53.27	52.36	53.44		53.33	53.37	53.15	53.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂	0.20	0.31	0.17		0.30	0.27	0.26	0.20	0.27	0.34	0.26		0.16	0.16	0.19	0.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al_2O_3	1.16	1.27	0.40		1.26	1.25	1.00	0.79	1.09	1.06	0.79		0.62	0.71	1.16	1.0
FeO 19.10 17.22 17.23 18.52 18.57 18.05 18.20 18.51 20.11 18.18 18.68 18.98 18.04 17. MnO 1.60 1.48 1.46 0.96 0.98 0.95 0.98 1.13 0.97 1.87 1.85 1.73 1 MgO 23.49 24.46 25.28 24.58 25.01 1.47 1.54 1.42 23.96 23.91 24.20 24 24.70 24.46 25.28 24.58 25.01 1.47 1.54 1.45 1.39 1.30 1.42 1 Na2O 0.00	Cr ₂ O ₃	0.04	0.02	0.05		0.03	0.04	0.03	0.02	0.03	0.02	0.01		0.00	0.00	0.01	0.0
MnO 1.60 1.48 1.46 0.96 0.98 0.98 0.95 0.98 1.13 0.97 1.87 1.85 1.73 1. MgO 23.49 24.46 25.28 24.58 25.08 25.11 22.05 25.14 22.84 25.17 23.96 23.91 24.20 24 CaO 1.54 1.80 1.34 1.54 1.50 1.47 1.54 1.45 2.07 1.48 1.39 1.30 1.42 1. Na ₂ O 0.00	FeO	19.10	17.22	17.23		18.52	18.57	18.05	18.20	18.51	20.11	18.18		18.68	18.98	18.04	17.7
MgO 23.49 24.46 25.28 24.58 25.08 25.21 25.05 25.14 22.84 25.17 23.96 23.91 24.20 24 CaO 1.54 1.80 1.34 1.54 1.50 1.47 1.54 1.45 2.07 1.48 1.39 1.30 1.42 1 Na2O 0.00	MnO	1.60	1.48	1.46		0.96	0.98	0.98	0.95	0.98	1.13	0.97		1.87	1.85	1.73	1.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO	23.49	24.46	25.28		24.58	25.08	25.21	25.05	25.14	22.84	25.17		23.96	23.91	24.20	24.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaO	1.54	1.80	1.34		1.54	1.50	1.47	1.54	1.45	2.07	1.48		1.39	1.30	1.42	1.7
Summe 100.44 100.00 99.63 100.29 100.71 100.73 100.52 100.75 99.93 100.30 100.05 100.32 99.95 100.31 Si 1.960 1.958 1.969 1.941 1.927 1.950 1.957 1.934 1.941 1.948 1.963 1.961 1.952 1.5 Al 0.050 0.055 0.017 0.054 0.053 0.043 0.047 0.046 0.034 0.027 0.031 0.050 0.05 Cr 0.001<	Na ₂ O	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.04	0.04	0.04	0.0
Si 1.960 1.958 1.969 1.941 1.927 1.950 1.957 1.934 1.941 1.948 1.963 1.961 1.952 1.55 Al 0.050 0.055 0.017 0.054 0.053 0.043 0.047 0.046 0.034 0.027 0.031 0.050 0.05 Ti 0.006 0.009 0.005 0.008 0.007 0.005 0.007 0.009 0.007 0.004 0.004 0.004 0.005 0.00 Cr 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 <td< td=""><td>Summe</td><td>100.44</td><td>100.00</td><td>99.63</td><td></td><td>100.29</td><td>100.71</td><td>100.73</td><td>100.52</td><td>100.75</td><td>99.93</td><td>100.30</td><td></td><td>100.05</td><td>100.32</td><td>99.95</td><td>100.4</td></td<>	Summe	100.44	100.00	99.63		100.29	100.71	100.73	100.52	100.75	99.93	100.30		100.05	100.32	99.95	100.4
Al 0.050 0.055 0.017 0.054 0.053 0.034 0.047 0.046 0.034 0.027 0.031 0.050 0.05 Ti 0.006 0.009 0.005 0.008 0.007 0.007 0.005 0.007 0.009 0.007 0.004 0.004 0.004 0.004 0.004 0.004 0.001 <td>Si</td> <td>1.960</td> <td>1.958</td> <td>1.969</td> <td></td> <td>1.941</td> <td>1.927</td> <td>1.950</td> <td>1.957</td> <td>1.934</td> <td>1.941</td> <td>1.948</td> <td></td> <td>1.963</td> <td>1.961</td> <td>1.952</td> <td>1.96</td>	Si	1.960	1.958	1.969		1.941	1.927	1.950	1.957	1.934	1.941	1.948		1.963	1.961	1.952	1.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al	0.050	0.055	0.017		0.054	0.053	0.043	0.034	0.047	0.046	0.034		0.027	0.031	0.050	0.04
Cr 0.001 0.	Ti	0.006	0.009	0.005		0.008	0.007	0.007	0.005	0.007	0.009	0.007		0.004	0.004	0.005	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr	0.001	0.001	0.001		0.001	0.001	0.001	0.000	0.001	0.001	0.000		0.000	0.000	0.000	0.00
Mg 1.286 1.335 1.381 1.340 1.359 1.364 1.360 1.361 1.262 1.368 1.315 1.309 1.325 1.3 Fe(2) 0.564 0.509 0.494 0.519 0.487 0.505 0.514 0.494 0.568 0.500 0.534 0.541 0.516 0.5 Mn 0.050 0.046 0.045 0.030 0.030 0.029 0.030 0.035 0.030 0.058 0.058 0.058 0.058 0.058 0.051 0.056 0.0 0.030 0.030 0.029 0.030 0.035 0.030 0.058 0.058 0.055 0.051 0.056 0.0 0.058 0.055 0.051 0.056 0.0 0.0 0.000	Fe(3)	0.023	0.018	0.034		0.046	0.077	0.043	0.040	0.068	0.055	0.055		0.041	0.042	0.038	0.00
re(2) 0.504 0.509 0.494 0.519 0.487 0.505 0.514 0.494 0.568 0.500 0.534 0.541 0.516 0.5 Mn 0.050 0.046 0.045 0.030 0.030 0.029 0.030 0.035 0.030 0.035 0.030 0.058<	Mg	1.286	1.335	1.381		1.340	1.359	1.364	1.360	1.361	1.262	1.368		1.315	1.309	1.325	1.31
Nin 0.050 0.046 0.045 0.050 0.051 0.050 0.051 0.051 0.058 0.058 0.058 0.058 0.058 0.051 0.056 0.051 Ca 0.000<	re(2)	0.564	0.509	0.494		0.519	0.487	0.505	0.514	0.494	0.568	0.500		0.534	0.541	0.516	0.53
Ca 0.001 0.001 0.003 0.		0.050	0.040	0.045		0.030	0.050	0.030	0.029	0.050	0.035	0.030		0.058	0.058	0.054	0.05
Numme 4.000 <td< td=""><td>Ca Na</td><td>0.001</td><td>0.071</td><td>0.033</td><td></td><td>0.000</td><td>0.039</td><td>0.037</td><td>0.000</td><td>0.037</td><td>0.082</td><td>0.038</td><td></td><td>0.033</td><td>0.031</td><td>0.030</td><td>0.00</td></td<>	Ca Na	0.001	0.071	0.033		0.000	0.039	0.037	0.000	0.037	0.082	0.038		0.033	0.031	0.030	0.00
WO 3.1 3.6 2.6 3.0 2.9 2.9 3.0 2.8 4.1 2.9 2.7 2.6 2.8 2.8 EN 64.9 67.5 68.8 67.1 67.5 68.2 67.9 67.7 63.0 68.1 65.6 65.4 66.6 66 FS 32.1 29.0 28.6 29.9 29.5 28.9 29.1 29.5 32.9 29.1 31.6 32.0 30.6 30	Summe	4 000	4 000	4 000		4 000	4 000	4 000	4 000	4 000	4 000	4 000		4 000	4 000	4 000	4 00
WO 3.1 3.6 2.6 3.0 2.9 2.9 3.0 2.8 4.1 2.9 2.7 2.6 2.8 2.8 EN 64.9 67.5 68.8 67.1 67.5 68.2 67.9 67.7 63.0 68.1 65.6 65.4 66.6 66 FS 32.1 29.0 28.6 29.9 29.5 28.9 29.1 29.5 32.9 29.1 31.6 32.0 30.6 30	Summe	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.00
EN 64.9 67.5 68.8 67.1 67.5 68.2 67.9 67.7 63.0 68.1 65.6 65.4 66.6 66 FS 32.1 29.0 28.6 29.9 29.5 28.9 29.1 29.5 32.9 29.1 31.6 32.0 30.6 30	WO	3.1	3.6	2.6		3.0	2.9	2.9	3.0	2.8	4.1	2.9		2.7	2.6	2.8	3.
FS 32.1 29.0 28.6 29.9 29.5 28.9 29.1 29.5 32.9 29.1 31.6 32.0 30.6 30	EN	64.9	67.5	68.8		67.1	67.5	68.2	67.9	67.7	63.0	68.1		65.6	65.4	66.6	66.
	FS	32.1	29.0	28.6		29.9	29.5	28.9	29.1	29.5	32.9	29.1		31.6	32.0	30.6	30.

|--|

_

Tab. A5.4.	(Fortsetzung)).
------------	---------------	----

Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Str	öme									
Probe	M96-167	7 (Fortset	zung)							M97-009	1					
Nr.	5	6	7	8	9	10	11	12	-	1	2	3	4	5	6	7
SiO ₂	53.49	53.07	53.75	53.20	53.29	53.51	54.26	54.16		54.25	54.45	53.62	52.34	54.10	53.71	53.56
TiO ₂	0.22	0.11	0.19	0.18	0.20	0.18	0.11	0.13		0.15	0.17	0.24	0.28	0.15	0.22	0.21
Al_2O_3	1.08	0.52	0.95	1.06	1.08	0.91	0.42	0.42		0.83	0.59	1.53	1.29	0.50	0.73	0.89
Cr_2O_3	0.00	20.58	0.00	0.00	0.00	0.01	0.00	0.01		0.00	0.00	0.01	18.85	0.00	20.27	0.01
MnO	1.82	1.81	1.57	1.62	1.68	1.63	1.68	1.65		1.48	1.33	1,47	1.49	1.37	1.57	1.56
MgO	23.69	22.83	24.34	24.56	24.24	24.22	24.73	24.62		25.38	25.73	24.71	23.36	25.77	22.79	24.00
CaO	1.62	1.43	1.40	1.24	1.32	1.53	1.32	1.28		1.59	1.40	1.44	1.78	1.49	1.44	1.36
Na ₂ O	0.05	0.02	0.05	0.03	0.02	0.05	0.03	0.03		0.04	0.02	0.04	0.03	0.03	0.03	0.03
Summe	100.63	100.39	100.40	99.76	100.16	100.52	100.47	100.07		100.19	99.84	100.19	99.42	99.78	100.77	100.45
Si	1.959	1.963	1.965	1.954	1.954	1.957	1.980	1.985		1.973	1.984	1.956	1.941	1.972	1.978	1.963
Al	0.047	0.023	0.041	0.046	0.047	0.039	0.018	0.018		0.036	0.025	0.066	0.056	0.022	0.032	0.039
li Cr	0.006	0.003	0.005	0.005	0.005	0.005	0.003	0.004		0.004	0.005	0.007	0.008	0.004	0.006	0.006
Ee(3)	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	1.293	1.259	1.327	1.345	1.326	1.320	1.346	1.345		1.376	1.397	1.344	1.291	1.401	1.251	1.311
Fe(2)	0.545	0.591	0.534	0.511	0.528	0.524	0.530	0.538		0.488	0.492	0.511	0.535	0.472	0.623	0.551
Mn	0.056	0.057	0.049	0.050	0.052	0.051	0.052	0.051		0.046	0.041	0.046	0.047	0.042	0.049	0.049
Ca	0.064	0.057	0.055	0.049	0.052	0.060	0.052	0.050		0.062	0.055	0.056	0.071	0.058	0.057	0.053
Na	0.003	0.001	0.003	0.002	0.001	0.003	0.002	0.002		0.003	0.002	0.003	0.002	0.002	0.002	0.002
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	3.2	2.8	2.8	2.5	2.6	3.0	2.6	2.5		3.1	2.8	2.9	3.5	2.9	2.9	2.7
EN	65.2	62.7	66.8	67.5	66.5	66.2	67.4	67.5		69.3	70.4	68.3	64.8	70.0	63.1	65.9
FS	31.6	34.5	30.4	30.1	30.9	30.8	30.0	29.9		27.5	26.8	28.9	31.7	27.1	34.0	31.4
Einheit	Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Str	öme									
Einheit Probe	Juvenile	Kompon	enten hol M97-039	ozäner p 02	yroklasti	scher Str	öme	M98-053	32							
Einheit Probe Nr.	Juvenile	Kompon	enten hol M97-039 1	ozäner p 22 2	yroklasti 3	scher Str	öme -	M98-053 1	32	3	4	5	6	7	8	9
Einheit Probe Nr. SiO ₂	Juvenile 	Kompon	enten hol M97-039 1 53.89	ozäner p 22 2 54.36	yroklasti 3 54.13	scher Str 4 54.05	öme -	M98-053 1 54.14	³² 2 53.36	3 53.88	4 53.91	5	6	7 54.00	8	9 53.52
Einheit Probe Nr. SiO ₂ TiO ₂	Juvenile 8 54.09 0.11	Kompon -	enten hol M97-039 1 53.89 0.20	ozäner p 22 2 54.36 0.19	yroklasti 3 54.13 0.16	scher Str 4 54.05 0.15	öme -	M98-053 1 54.14 0.15	32 2 53.36 0.23	3 53.88 0.19	4 53.91 0.18	5 53.20 0.25	6 54.06 0.19	7 54.00 0.25	8 53.70 0.25	9 53.52 0.21
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Juvenile 	Kompon -	enten hol M97-039 1 53.89 0.20 0.96	ozäner p 22 2 54.36 0.19 1.01	3 54.13 0.16 0.80	scher Str 4 54.05 0.15 0.99	öme -	M98-053 1 54.14 0.15 0.70	2 53.36 0.23 0.57	3 53.88 0.19 0.91	4 53.91 0.18 0.81	5 53.20 0.25 1.06	6 54.06 0.19 1.01	7 54.00 0.25 1.13	8 53.70 0.25 1.10	9 53.52 0.21 0.95
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	Juvenile 8 54.09 0.11 0.27 0.03	Kompon -	enten hol M97-039 1 53.89 0.20 0.96 0.02	22 2 54.36 0.19 1.01 0.01	yroklasti 3 54.13 0.16 0.80 0.00	scher Str 4 54.05 0.15 0.99 0.01	öme -	M98-053 1 54.14 0.15 0.70 0.00	32 2 53.36 0.23 0.57 0.00	3 53.88 0.19 0.91 0.02	4 53.91 0.18 0.81 0.01	5 53.20 0.25 1.06 0.00	6 54.06 0.19 1.01 0.00	7 54.00 0.25 1.13 0.00	8 53.70 0.25 1.10 0.00	9 53.52 0.21 0.95 0.02
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO	Juvenile 8 54.09 0.11 0.27 0.03 18.98	Kompon -	enten hol M97-039 1 53.89 0.20 0.96 0.02 17.15	22 23 54.36 0.19 1.01 0.01 17.05	3 54.13 0.16 0.80 0.00 16.71	scher Str 4 54.05 0.15 0.99 0.01 16.41	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36	2 53.36 0.23 0.57 0.00 20.69	3 53.88 0.19 0.91 0.02 17.79	4 53.91 0.18 0.81 0.01 17.02	5 53.20 0.25 1.06 0.00 17.54	6 54.06 0.19 1.01 0.00 17.56	7 54.00 0.25 1.13 0.00 17.59	8 53.70 0.25 1.10 0.00 17.20	9 53.52 0.21 0.95 0.02 17.41
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68	Kompon -	enten hol M97-039 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74	54.36 0.19 1.01 0.01 17.05 1.21 25 63	3 54.13 0.16 0.80 0.60 16.71 1.26 25.48	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.40	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25 31	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26	7 54.00 0.25 1.13 0.00 17.59 1.06 25.00	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22	Kompon -	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1 33	54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Juvenile 8 54.09 0.11 0.27 0.03 18.99 23.68 1.22 0.03	Kompon -	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03	54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39	Kompon -	enten hol M97-039 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 100.51	22 23 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990	Kompon -	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012	Kompon -	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952 0.041	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003	Kompon -	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952 0.041 0.005	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007	8 53.70 0.25 1.10 0.00 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr	Juvenile 8 54.09 0.11 0.27 0.03 18.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001	Kompon -	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952 0.041 0.005 0.001	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.000	öme -	M98-053 1 54.14 0.15 0.70 0.000 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3)	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003	Kompon	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952 0.041 0.005 0.001 0.045	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.03 100.97 1.962 0.043 0.005 0.000 0.025	3 54.13 0.16 0.80 0.001 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.000 0.021	öme -	M98-053 1 54.14 0.15 0.70 0.000 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018	4 53.91 0.18 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000 0.021
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.290	Kompon	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952 0.041 0.005 0.001 0.045 1.390 0.045	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.025	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.000 0.021 1.382 0.021	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.574 0.575 0.000 0.001 0.	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.061	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.000	4 53.91 0.18 0.81 0.01 17.02 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006 1.370	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.024	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000 0.021 1.364
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mr	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.298 0.581 0.051	Kompon	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.03 100.51 1.952 0.041 0.005 0.001 0.045 1.390 0.475 0.025 1.390	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379 0.427	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.494 0.494	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.0021 1.382 0.478 0.021	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.507 0.021	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.618 0.041	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.525	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006 1.370 0.515	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330 0.502	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.52	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359 0.517	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365 0.517	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000 0.021 1.364 0.513 0.022
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.298 0.581 0.068	Kompon	Image: matrix matrix 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 0.031 100.51 1.952 0.041 0.045 1.390 0.475 0.037 0.052	22 23 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379 0.489 0.037 0.057	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.494 0.039 0.055	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.004 0.0021 1.382 0.478 0.037	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.507 0.034	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.618 0.046	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.526 0.035	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006 1.370 0.515 0.033	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330 0.502 0.037	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.510 0.033 0.053	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359 0.517 0.032	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365 0.517 0.032 0.054	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000 0.021 1.364 0.513 0.036
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.298 0.581 0.062 0.042	Kompon -	enten hol M97-039 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 100.51 1.952 0.041 0.005 0.001 0.475 0.037 0.052 0.002	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379 0.489 0.037 0.057 0.002	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.494 0.039 0.055 0.003	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.004 0.0021 1.382 0.478 0.034 0.067 0.004	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.507 0.034 0.577 0.034	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.618 0.046 0.057 0.003	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.526 0.035 0.055 0.002	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006 1.370 0.515 0.033 0.058 0.002	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330 0.502 0.037 0.087 0.002	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.510 0.033 0.053 0.002	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359 0.517 0.032 0.055 0.002	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365 0.517 0.032 0.054 0.002	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000 0.021 1.364 0.513 0.036 0.052 0.002
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	Juvenile 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.298 0.581 0.062 0.048 0.002 4.000	Kompon	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 100.51 1.952 0.041 0.005 0.001 0.045 1.390 0.475 0.037 0.052 0.002 4.000	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379 0.489 0.037 0.057 0.002 4.000	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.494 0.039 0.055 0.003 4.000	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.001 1.382 0.478 0.034 0.034 0.067 0.004 4.000	öme -	M98-053 1 54.14 0.15 0.70 0.000 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.507 0.034 0.057 0.034 0.057 0.002 4.000	2 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.618 0.046 0.057 0.003 4.000	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.526 0.035 0.002 4.000	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.006 1.370 0.515 0.033 0.058 0.002 4.000	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330 0.502 0.037 0.087 0.087 0.002 4.000	6 54.06 0.19 1.01 0.00 17.56 1.09 25.26 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.510 0.033 0.053 0.002 4.000	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359 0.517 0.032 0.055 0.002 4.000	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365 0.517 0.032 0.054 0.002 4.000	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.001 1.364 0.513 0.036 0.052 0.002 4.000
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.298 0.581 0.062 0.048 0.002 4.000 2.4	Kompon	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 100.51 1.952 0.041 0.005 0.001 0.045 1.390 0.475 0.037 0.052 0.002 4.000 2.6	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379 0.489 0.037 0.057 0.002 4.000 2 9	3 54.13 0.16 0.80 0.001 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.494 0.039 0.055 0.003 4.000 2.8	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.002 1.382 0.478 0.034 0.067 0.004 4.000 3.4	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.507 0.034 0.507 0.034 0.507 0.034 0.507 0.034 0.577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.0577 0.034 0.002 1.5777 0.034 0.0577 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 0.002 1.5777 0.034 1.5777 0.034 1.5777 0.034 1.5777 0.032 1.57877 1.5787 1.5787 1.57877 1.	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.618 0.046 0.057 0.003 4.000 2.9	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.526 0.005 0.002 4.000 2.7	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006 1.370 0.0515 0.033 0.058 0.002 4.000 2 9	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330 0.502 0.037 0.002 4.000 4.000	6 54.06 0.19 1.01 0.00 17.56 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.510 0.033 0.053 0.002 4.000 2.7	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359 0.517 0.032 0.055 0.002 4.000 2 8	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365 0.517 0.032 0.054 0.002 4.000 2.7	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.001 1.364 0.0513 0.036 0.052 0.002 4.000 2.6
Einheit Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	Juvenile 8 54.09 0.11 0.27 0.03 18.98 1.99 23.68 1.22 0.03 100.39 1.990 0.012 0.003 0.001 0.003 1.298 0.581 0.062 0.048 0.002 4.000 2.4 65.2	Kompon	enten hol M97-035 1 53.89 0.20 0.96 0.02 17.15 1.20 25.74 1.33 100.51 1.952 0.041 0.005 0.001 0.045 1.390 0.475 0.037 0.052 0.002 4.000 2.6 69.6	22 54.36 0.19 1.01 0.01 17.05 1.21 25.63 1.48 0.03 100.97 1.962 0.043 0.005 0.000 0.025 1.379 0.489 0.037 0.057 0.002 4.000 2.9 69.4	3 54.13 0.16 0.80 0.00 16.71 1.26 25.48 1.41 0.04 99.99 1.972 0.034 0.005 0.000 0.015 1.384 0.494 0.039 0.055 0.000 4.000 2.88 69.6	scher Str 4 54.05 0.15 0.99 0.01 16.41 1.12 25.49 1.73 0.06 100.00 1.966 0.042 0.004 0.0021 1.382 0.478 0.034 0.067 0.004 4.000 3.4 69.7	öme -	M98-053 1 54.14 0.15 0.70 0.00 17.36 1.11 25.31 1.46 0.02 100.26 1.971 0.030 0.004 0.000 0.021 1.374 0.507 0.034 0.507 0.034 0.507 0.034 0.507 0.002 4.000 2.88 68.9	32 53.36 0.23 0.57 0.00 20.69 1.46 22.72 1.45 0.04 100.51 1.972 0.025 0.006 0.000 0.021 1.252 0.618 0.046 0.057 0.003 4.000 2.9 62.8	3 53.88 0.19 0.91 0.02 17.79 1.14 24.86 1.40 0.03 100.21 1.967 0.039 0.005 0.000 0.018 1.353 0.526 0.005 0.002 4.000 2.7 68.1	4 53.91 0.18 0.81 0.01 17.02 1.05 25.08 1.47 0.03 99.56 1.975 0.035 0.005 0.000 0.006 1.370 0.0515 0.003 0.058 0.002 4.000 2.9 69.1	5 53.20 0.25 1.06 0.00 17.54 1.19 24.31 2.20 0.03 99.78 1.953 0.046 0.007 0.000 0.037 1.330 0.502 0.037 0.002 4.000 4.44 66.8	6 54.06 0.19 1.01 0.00 17.56 1.36 0.04 100.57 1.962 0.043 0.005 0.000 0.024 1.367 0.510 0.033 0.053 0.002 4.000 2.7 68.8	7 54.00 0.25 1.13 0.00 17.59 1.06 25.09 1.42 0.03 100.56 1.962 0.048 0.007 0.000 0.017 1.359 0.517 0.032 0.055 0.002 4.000 2.8 68.6	8 53.70 0.25 1.10 0.00 17.20 1.04 25.02 1.38 0.03 99.72 1.965 0.048 0.007 0.000 0.009 1.365 0.517 0.032 0.054 0.002 4.000 2.7 69.0	9 53.52 0.21 0.95 0.02 17.41 1.15 24.94 1.32 0.03 99.55 1.964 0.041 0.006 0.000 0.021 1.364 0.513 0.036 0.052 0.002 4.000 2.6 68.7

Tab. A5.4.	(Fortsetzung)	•
------------	---------------	---

Einheit]	Juvenile	Kompon	enten ho	lozäner H	Fallablag	erungen						
Probe	M98-09	91		I	M96-102	2					M96-163	3		-	M95-026	5
Nr.	1	2	3	_	1	2	3	4	5	-	1	2	3	-	1	2
SiO ₂	53.28	53.39	53.62		54.43	54.07	54.15	53.85	54.14		54.39	53.41	53.55	-	53.57	54.27
TiO ₂	0.29	0.30	0.20		0.00	0.07	0.09	0.06	0.06		0.22	0.24	0.22		0.18	0.18
Al_2O_3	1.39	1.44	1.04		0.70	0.77	1.04	0.72	0.72		0.68	0.81	0.55		1.57	0.54
Cr_2O_3	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00		0.04	0.04	0.05		0.00	0.01
FeO MnO	17.85	17.75	1/.4/		17.93	17.93	17.40	18.17	17.94		11.27	17.55	17.84		17.60	10.82
MgO	24.62	24 80	25.11		25 37	25.09	25.62	24 94	24.97		25.16	25.12	24.95		24 90	25.54
CaO	1.81	1.74	1.41		1.34	1.52	1.17	1.48	1.33		1.28	1.38	1.39		1.24	1.50
Na ₂ O	0.03	0.04	0.03		0.02	0.03	0.02	0.04	0.04		0.00	0.00	0.00		0.04	0.03
Summe	100.25	100.44	99.90		100.69	100.45	100.35	100.18	100.28		100.20	99.89	99.76		100.15	99.86
Si	1.944	1.943	1.959		1.974	1.968	1.966	1.966	1.975		1.984	1.955	1.965		1.954	1.979
Al	0.060	0.062	0.045		0.030	0.033	0.044	0.031	0.031		0.029	0.035	0.024		0.067	0.023
11 Cr	0.008	0.008	0.005		0.000	0.002	0.002	0.002	0.002		0.006	0.007	0.006		0.005	0.005
CI Fe(3)	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000		0.001	0.001	0.001		0.000	0.000
Μσ	1 340	1 346	1 368		1 372	1 361	1 386	1 358	1 358		1 367	1 370	1 364		1 354	1 389
Fe(2)	0.507	0.502	0.505		0.520	0.515	0.509	0.518	0.528		0.526	0.494	0.511		0.518	0.502
Mn	0.031	0.031	0.032		0.028	0.030	0.024	0.028	0.033		0.036	0.041	0.038		0.033	0.030
Ca	0.071	0.068	0.055		0.052	0.059	0.045	0.058	0.052		0.050	0.054	0.055		0.049	0.059
Na	0.002	0.003	0.002		0.001	0.002	0.001	0.003	0.003		0.000	0.000	0.000		0.003	0.002
Summe	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000		4.000	4.000
WO	3.6	3.4	2.8		2.6	3.0	2.3	2.9	2.6		2.5	2.7	2.7		2.5	3.0
EN	67.5	67.8	68.8		68.8	68.2	69.8	67.9	68.2		69.1	68.4	68.1		68.7	69.8
FS	29.0	28.8	28.4		28.6	28.8	27.9	29.2	29.2		28.4	28.9	29.2		28.9	27.3
Einheit	Laven M	erapi-Son	nma													
Probe	M95-026	6 (Fortset	zung)						M96-050	6						
Nr.	3	4	5	6	7	8	9	-	1	2	3	4	5	6	7	8
SiO ₂	53.89	53.88	53.16	54.32	53.60	54.06	54.80		53.87	53.50	53.24	54.24	54.35	53.24	53.95	53.09
TiO ₂	0.23	0.23	0.26	0.12	0.19	0.16	0.13		0.22	0.22	0.19	0.15	0.12	0.25	0.14	0.25
Al_2O_3	1.38	1.17	1.15	0.59	1.35	0.71	0.58		1.12	1.38	1.14	0.46	0.56	1.41	0.63	1.42
Cr_2O_3	0.00	0.00	0.01	0.00	0.04	0.01	0.02		0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00
FeO	17.79	17.32	18.20	16.99	17.64	16.48	16.34		17.81	18.06	18.26	17.48	17.57	17.70	17.17	18.22
MnO McO	1.15	0.96	1.15	0.93	1.15	25.04	0.85		24.02	1.28	24.16	1.54	25.20	1.24	1.33	24.26
CaO	1 68	1 55	1 56	1.22	1 29	1 28	1 33		1 21	1 27	1 30	1 22	1 12	1 56	1 32	1 24.30
Na ₂ O	0.03	0.04	0.02	0.03	0.04	0.04	0.03		0.03	0.04	0.03	0.02	0.03	0.02	0.03	0.03
Summe	100.61	100.45	100.14	99.95	99.92	99.60	100.33		100.42	100.30	99.72	100.18	100.25	99.99	99.64	99.78
Si	1.962	1.956	1.945	1.978	1.962	1.971	1.982		1.962	1.954	1.960	1.981	1.981	1.949	1.978	1.950
Al	0.059	0.050	0.050	0.025	0.058	0.031	0.025		0.048	0.059	0.050	0.020	0.024	0.061	0.027	0.061
Ti	0.006	0.006	0.007	0.003	0.005	0.004	0.003		0.006	0.006	0.005	0.004	0.003	0.007	0.004	0.007
Cr	0.000	0.000	0.000	0.000	0.001	0.000	0.001		0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
Fe(3)	0.005	0.029	0.047	0.014	1 344	0.021	0.007		0.017	0.022	0.022	0.011	0.008	0.028	0.012	1.334
Fe(2)	0.537	0 497	0.509	0.503	0.532	0.481	0.487		0.525	0.530	0.540	0.523	0.528	0.513	0.514	0.533
Mn	0.036	0.030	0.036	0.029	0.036	0.028	0.026		0.037	0.040	0.043	0.048	0.040	0.038	0.041	0.036
Ca	0.066	0.060	0.061	0.047	0.051	0.050	0.051		0.047	0.050	0.051	0.048	0.044	0.061	0.052	0.049
Na	0.002	0.003	0.001	0.002	0.003	0.003	0.002		0.002	0.003	0.002	0.002	0.002	0.001	0.002	0.002
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	3.3	3.0	3.1	2.4	2.6	2.5	2.6		2.4	2.5	2.6	2.4	2.2	3.1	2.6	2.5
EN	67.4	69.0	67.3	70.2	68.2	70.8	71.2		68.3	67.6	66.9	68.4	68.8	67.6	68.9	67.4
FS	29.3	28.0	29.7	27.4	29.2	26.7	26.2		29.3	29.9	30.5	29.2	28.9	29.3	28.5	30.1

Tab. A	45.4. (Fortsetzung).
Einheit	Laven Merapi-Somma

Probe	M96-056	(Fortset	zung)	M96-070)											
Nr.	9	10	-	1	2	3	4	5	6	7	8	9	10	11	12	
SiO ₂	54.02	53.61		53.60	53.69	53.32	53.60	53.24	53.37	53.26	53.87	53.16	54.01	54.16	52.88	
TiO ₂	0.13	0.22		0.20	0.17	0.20	0.18	0.27	0.24	0.27	0.14	0.28	0.14	0.23	0.33	
Al_2O_3	0.46	0.98		1.06	0.85	1.29	1.05	1.50	1.39	1.44	0.65	1.57	0.69	0.91	2.00	
Cr_2O_3	0.00	0.05		0.00	0.00	0.01	0.00	0.00	0.02	0.04	0.02	0.00	0.00	0.00	0.02	
FeO	17.88	17.77		17.74	17.86	18.27	17.82	17.90	18.05	18.12	17.36	18.25	16.93	17.50	17.22	
MnO MaO	1.41	1.33		0.89	1.02	1.05	0.99	0.91	0.98	1.04	0.92	1.03	0.86	0.91	0.95	
CaO	24.90	24.75		23.35	23.71	23.30	25.55	23.13	23.38	1 50	23.94	1.83	20.00	23.97	24.75	
Na ₂ O	0.04	0.03		0.04	0.04	0.03	0.02	0.03	0.04	0.04	0.03	0.04	0.03	0.03	0.03	
Summe	99.97	99.95		100.42	100.77	101.03	100.71	100.92	101.14	100.97	100.37	100.73	100.26	101.14	99.94	
Si	1.978	1.964		1.946	1.942	1.927	1.941	1.926	1.925	1.927	1.953	1.933	1.957	1.950	1.931	
Al	0.020	0.042		0.045	0.036	0.055	0.045	0.064	0.059	0.061	0.028	0.067	0.030	0.038	0.086	
Ti	0.004	0.006		0.005	0.005	0.005	0.005	0.007	0.007	0.007	0.004	0.008	0.004	0.006	0.009	
Cr	0.000	0.001		0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.000	0.001	
re(3) Mg	1 360	0.018		0.000	1 386	1 374	0.005	0.071	0.080	1 362	1 402	0.000	1 409	1 304	0.035	
Fe(2)	0.529	0.526		0.484	0.468	0.469	0.475	0.470	0.464	0.476	0.467	0.499	0.463	0.475	0.491	
Mn	0.044	0.041		0.027	0.031	0.032	0.030	0.028	0.030	0.032	0.028	0.032	0.027	0.028	0.029	
Ca	0.044	0.049		0.053	0.055	0.053	0.058	0.074	0.057	0.058	0.056	0.071	0.059	0.056	0.069	
Na	0.003	0.002		0.003	0.003	0.002	0.002	0.002	0.003	0.003	0.002	0.003	0.002	0.002	0.002	
Summe	4.000	4.000		4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	
WO	2.2	2.4		2.6	2.8	2.6	2.9	3.7	2.8	2.9	2.8	3.6	3.0	2.8	3.5	
EN	68.1	68.1		69.1	68.9	68.3	68.7	67.8	68.5	68.1	69.7	67.0	70.1	69.5	68.3	
Probe	M98-048	3							NO0 10	5						
Nr.									M98-10	5						
	1	2	3	4	5	6	7	-	1	2	3	4	5	6	7	
SiO ₂	53.30	2 53.60	3 53.60	4	5	6	7	-	1 53.87	2 53.86	3	4	5	6	7 54.36	53.9
SiO ₂ TiO ₂	1 53.30 0.25	2 53.60 0.24	3 53.60 0.19	4 53.56 0.24	5 53.67 0.26	6 54.26 0.16	7 54.01 0.18		M98-10: 1 53.87 0.19	2 53.86 0.20	3 53.91 0.28	4 53.42 0.27	5 53.52 0.29	6 53.74 0.22	7 54.36 0.18	53.9 0.1
SiO ₂ TiO ₂ Al ₂ O ₃	1 53.30 0.25 1.74	2 53.60 0.24 1.30	3 53.60 0.19 1.02	4 53.56 0.24 1.35	5 53.67 0.26 1.20	6 54.26 0.16 0.68	7 54.01 0.18 0.64		1 53.87 0.19 1.09	2 53.86 0.20 0.98	3 53.91 0.28 1.21	4 53.42 0.27 1.56	5 53.52 0.29 1.66	6 53.74 0.22 0.86	7 54.36 0.18 0.85	53.9 0.1 0.6
SiO_2 TiO_2 Al_2O_3 Cr_2O_3	1 53.30 0.25 1.74 0.02	2 53.60 0.24 1.30 0.00	3 53.60 0.19 1.02 0.01	4 53.56 0.24 1.35 0.00	5 53.67 0.26 1.20 0.00	6 54.26 0.16 0.68 0.01	7 54.01 0.18 0.64 0.00	-	1 53.87 0.19 1.09 0.02	2 53.86 0.20 0.98 0.02	3 53.91 0.28 1.21 0.03	4 53.42 0.27 1.56 0.00	5 53.52 0.29 1.66 0.02	6 53.74 0.22 0.86 0.00	7 54.36 0.18 0.85 0.00	53.9 0.1 0.6 0.0
SiO_2 TiO_2 Al_2O_3 Cr_2O_3 FeO	1 53.30 0.25 1.74 0.02 17.83	2 53.60 0.24 1.30 0.00 17.76	3 53.60 0.19 1.02 0.01 17.90	4 53.56 0.24 1.35 0.00 17.40	5 53.67 0.26 1.20 0.00 17.34	6 54.26 0.16 0.68 0.01 17.41	7 54.01 0.18 0.64 0.00 17.84	-	1 53.87 0.19 1.09 0.02 17.21	2 53.86 0.20 0.98 0.02 16.58	3 53.91 0.28 1.21 0.03 16.82	4 53.42 0.27 1.56 0.00 17.61	5 53.52 0.29 1.66 0.02 16.70	6 53.74 0.22 0.86 0.00 16.65	7 54.36 0.18 0.85 0.00 16.62	53.9 0.1 0.6 0.0
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	1 53.30 0.25 1.74 0.02 17.83 1.07	2 53.60 0.24 1.30 0.00 17.76 1.03	3 53.60 0.19 1.02 0.01 17.90 1.11	4 53.56 0.24 1.35 0.00 17.40 1.00	5 53.67 0.26 1.20 0.00 17.34 0.99	6 54.26 0.16 0.68 0.01 17.41 1.14	7 54.01 0.18 0.64 0.00 17.84 0.99		M98-103 1 53.87 0.19 1.09 0.02 17.21 1.19 25.75	53.86 0.20 0.98 0.02 16.58 1.05	3 53.91 0.28 1.21 0.03 16.82 1.14	4 53.42 0.27 1.56 0.00 17.61 1.12	5 53.52 0.29 1.66 0.02 16.70 1.07	6 53.74 0.22 0.86 0.00 16.65 1.04	7 54.36 0.18 0.85 0.00 16.62 1.13	53.9 0.1 0.6 0.0 16.6 1.1
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79	-	1 53.87 0.19 1.09 0.02 17.21 1.19 25.75	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48	53.9 0.1 0.6 0.0 16.6 1.1 26.1
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03	-	53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85	<u> </u>	53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3 0.0 100.2
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979		53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3 0.0 100.2 1.95
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\Cr_2O_3\\FeO\\MnO\\MgO\\CaO\\Na_2O\\Summe\\Si\\Al\end{array}$	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028	-	53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3 0.0 100.2 1.95 0.02
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005	-	53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.008	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005	53.5 0.1 0.6 16.6 1.1 26.1 1.3 0.0 100.2 1.95 0.02 0.00
SiO_2 TiO_2 Al_2O_3 Cr_2O_3 FeO MnO MgO CaO Na_2O $Summe$ Si Al Ti Cr Cr	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000	-	M98-10: 1 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.008 0.001	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000	53.5 0.1 0.6 16.6 1.1 26.1 1.3 0.0 100.2 1.95 0.02 0.00 0.00
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mo	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000 0.030	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000 0.025	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.0006	-	M98-10: 1 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.025	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.008 0.001 0.055	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.000	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3 0.0 2 0.00 0.00 0.00 0.00 0.00
Si O_2 Ti O_2 Al ₂ O_3 Cr ₂ O_3 FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2)	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000 0.030 1.345	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000 0.025 1.358	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012 1.369 0.510	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354	-	53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.008 0.001 0.055 1.404 0.451	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.060 1.405	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.009 1.410 0.457	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3 0.0 2 0.00 0.00 0.000 0.000 0.05 1.41
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn	$\begin{array}{c c} \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000 0.025 1.358 0.516 0.032	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357 0.524 0.035	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500 0.031	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510 0.031	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012 1.369 0.519 0.035	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354 0.541 0.031	-	53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474 0.036	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411 0.456 0.032	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.005 1.404 0.451 0.035	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471 0.034	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.060 1.405 0.443 0.033	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000 0.049 1.410 0.457 0.032	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447 0.034	53.9 0.1 0.6 0.0 16.6 1.1 1.2 6.1 1.2 6.1 100.2 1.95 0.00 0.00 0.005 1.41 0.45 0.02
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000 0.030 1.345 0.514 0.033 0.053	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000 0.025 1.358 0.516 0.032 0.051	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357 0.524 0.035 0.047	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500 0.031 0.054	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510 0.031 0.050	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012 1.369 0.519	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354 0.541 0.031 0.054	-	M98-10 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474 0.369	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411 0.456 0.032 0.055	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.005 1.404 0.451 0.035 0.053	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471 0.034	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.060 1.405 0.443 0.033	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000 0.049 1.410 0.457 0.032 0.054	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447 0.034 0.053	53.9 0.1 0.6 0.0 16.6 1.1 1.3 0.0 26.1 100.2 1.95 0.00 0.00 0.005 1.41 0.45 0.03 0.05
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000 0.030 1.345 0.514 0.033 0.053 0.002	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000 0.025 1.358 0.516 0.032 0.051 0.002	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357 0.524 0.035 0.047 0.002	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500 0.031 0.054 0.002	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510 0.031 0.050 0.002	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012 1.369 0.519 0.035 0.054 0.002	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354 0.541 0.054 0.002	-	M98-10: 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474 0.360 0.050 0.003	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411 0.426 0.032 0.055 0.001	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.005 1.008 0.001 0.055 1.404 0.451 0.035 0.002	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471 0.034 0.059 0.003	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.600 1.405 0.443 0.033 0.050 0.003	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000 0.049 1.410 0.457 0.032 0.054 0.003	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447 0.034 0.053 0.003	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.3 0.0 2 0.00 0.00 0.00 0.00 0.00 0.00 0
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000 0.030 1.345 0.514 0.033 0.053 0.002 4.000	$\begin{array}{c} 2\\ 53.60\\ 0.24\\ 1.30\\ 0.00\\ 17.76\\ 1.03\\ 24.99\\ 1.30\\ 0.03\\ 100.25\\ 1.954\\ 0.056\\ 0.007\\ 0.000\\ 0.025\\ 1.358\\ 0.516\\ 0.032\\ 0.051\\ 0.002\\ 4.000\\ \end{array}$	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357 0.524 0.035 0.047 0.002 4.000	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500 0.031 0.054 0.002 4.000	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510 0.031 0.050 0.002 4.000	$\begin{array}{c} 6\\ 54.26\\ 0.16\\ 0.68\\ 0.01\\ 17.41\\ 1.14\\ 25.21\\ 1.38\\ 0.03\\ 100.26\\ 1.976\\ 0.029\\ 0.004\\ 0.000\\ 0.012\\ 1.369\\ 0.519\\ 0.035\\ 0.054\\ 0.002\\ 4.000\end{array}$	7 54.01 0.18 0.64 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354 0.541 0.031 0.054 0.002 4.000	-	M98-10: 1 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474 0.036 4.000	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411 0.456 0.032 0.055 0.001 4.000	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.008 0.001 0.055 1.404 0.451 0.035 0.053 0.002 4.000	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471 0.034 0.059 0.003 4.000	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.060 1.405 0.443 0.033 0.050 0.003 4.000	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000 0.049 1.410 0.457 0.032 0.054 0.003 4.000	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447 0.034 0.053 0.003 4.000	53.9 0.1 0.6 0.0 16.6 1.1 26.1 1.2 6.1 100.2 0.00 0.00 0.00 0.00 0.00 1.41 0.45 0.03 0.05 0.00 4.00
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.007 0.000 0.030 1.345 0.514 0.053 0.053 0.002 4.000 2.7	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.005 0.007 0.000 0.025 1.358 0.516 0.032 0.051 0.002 4.000 2.6	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357 0.524 0.035 0.047 0.524 0.035 0.047 0.524	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500 0.031 0.054 0.002 4.000 2.7	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510 0.031 0.050 0.002 4.000 2.5	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012 1.369 0.519 0.035 0.054 0.002 4.000 2.7	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354 0.031 0.054 0.002 4.000 2.7	-	M98-10 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474 0.036 0.050 0.003 4.000 2.5	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411 0.456 0.032 0.055 0.001 4.000 2.7	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.005 1.940 0.051 0.005 1.404 0.451 0.035 0.002 4.000 2.7	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471 0.034 0.059 0.003 4.000 3.0	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.600 1.405 0.443 0.033 0.050 0.003 4.000 2.5	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000 0.049 1.410 0.457 0.032 0.054 0.003 4.000 2.7	7 54.36 0.18 0.85 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447 0.034 0.043 0.003 4.000 2.6	53.9 0.1 0.6 0.0 16.6 1.1 1.3 0.0 100.2 1.95 0.02 0.00 0.00 0.005 1.41 0.45 0.03 0.05 0.002 0.000 4.000 2
SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO CaO Na ₂ O Summe Si Al Ti Cr Fe(3) Mg Fe(2) Mn Ca Na Summe WO EN	1 53.30 0.25 1.74 0.02 17.83 1.07 24.75 1.35 0.03 100.34 1.942 0.075 0.000 0.030 1.345 0.514 0.033 0.002 4.000 2.7 68.1	2 53.60 0.24 1.30 0.00 17.76 1.03 24.99 1.30 0.03 100.25 1.954 0.056 0.007 0.000 0.025 1.358 0.516 0.032 0.051 0.002 4.000 2.6 68.5	3 53.60 0.19 1.02 0.01 17.90 1.11 24.86 1.21 0.03 99.94 1.962 0.044 0.005 0.000 0.024 1.357 0.524 0.035 0.047 0.524 0.035 0.047 0.022 4.000 2.4 68.3	4 53.56 0.24 1.35 0.00 17.40 1.00 25.19 1.38 0.03 100.16 1.951 0.058 0.007 0.000 0.030 1.368 0.500 0.031 0.054 0.002 4.000 2.7 69.0	5 53.67 0.26 1.20 0.00 17.34 0.99 25.22 1.27 0.02 99.98 1.958 0.052 0.007 0.000 0.019 1.372 0.510 0.031 0.050 0.002 4.000 2.5 69.2	6 54.26 0.16 0.68 0.01 17.41 1.14 25.21 1.38 0.03 100.26 1.976 0.029 0.004 0.000 0.012 1.369 0.035 0.054 0.002 4.000 2.7 68.8	7 54.01 0.18 0.64 0.00 17.84 0.99 24.79 1.37 0.03 99.85 1.979 0.028 0.005 0.000 0.006 1.354 0.031 0.054 0.002 4.000 2.7 68.2	-	M98-10 53.87 0.19 1.09 0.02 17.21 1.19 25.75 1.28 0.04 100.63 1.949 0.046 0.005 0.001 0.047 1.389 0.474 0.036 0.050 0.003 4.000 2.5 69.6	2 53.86 0.20 0.98 0.02 16.58 1.05 26.12 1.41 0.02 100.24 1.951 0.042 0.006 0.001 0.046 1.411 0.456 0.032 0.055 0.001 4.000 2.7 70.5	3 53.91 0.28 1.21 0.03 16.82 1.14 26.18 1.38 0.03 100.97 1.940 0.051 0.005 1.940 0.051 0.005 1.404 0.451 0.035 0.002 4.000 2.7 70.3	4 53.42 0.27 1.56 0.00 17.61 1.12 25.39 1.53 0.04 100.93 1.930 0.066 0.007 0.000 0.061 1.368 0.471 0.034 0.059 0.003 4.000 3.0 68.6	5 53.52 0.29 1.66 0.02 16.70 1.07 26.16 1.30 0.04 100.76 1.928 0.071 0.008 0.001 0.060 1.405 0.443 0.033 0.050 0.003 4.000 2.5 70.6	6 53.74 0.22 0.86 0.00 16.65 1.04 26.03 1.39 0.04 99.97 1.952 0.037 0.006 0.000 0.049 1.410 0.457 0.032 0.054 0.003 4.000 2.7 70.4	7 54.36 0.18 0.00 16.62 1.13 26.48 1.38 0.04 101.03 1.952 0.036 0.005 0.000 0.052 1.418 0.447 0.034 0.034 0.003 4.000 2.6 70.7	53.9 0.1 0.6 0.0 16.6 1.1 1.3 0.0 100.2 1.95 0.02 0.00 0.00 0.005 1.41 0.45 0.03 0.05 0.00 0.00200000000

Einheit	Laven M	erapi-Sor	nma								
Probe	M98-105	5 (Fortset	tzung)		M98-107	7					
Nr.	9	10	11	12	1	2	3	4	5	6	7
SiO ₂	52.92	54.42	54.24	54.26	53.48	54.20	53.54	53.01	53.54	52.86	53.46
TiO ₂	0.31	0.14	0.18	0.22	0.26	0.15	0.31	0.31	0.32	0.31	0.25
Al_2O_3	1.93	0.72	0.88	1.05	1.76	0.83	1.44	1.42	0.98	0.88	0.61
Cr_2O_3	0.01	0.00	0.01	0.00	0.06	0.00	0.00	0.00	0.02	0.02	0.01
FeO	17.22	16.89	16.73	16.71	16.74	17.84	16.62	16.45	20.94	21.20	20.31
MnO	1.12	1.24	1.00	1.15	0.85	0.95	0.82	0.82	1.11	1.16	1.19
MgO	25.59	26.32	26.41	26.26	26.21	25.79	26.34	26.08	22.33	22.72	23.46
CaO	1.33	1.32	1.30	1.31	1.40	1.35	1.38	1.37	1.71	1.65	1.65
Na ₂ O	0.04	0.03	0.02	0.05	0.03	0.04	0.05	0.05	0.08	0.06	0.03
Summe	100.46	101.08	100.77	101.01	100.80	101.14	100.51	99.50	101.03	100.85	100.95
Si	1.917	1.957	1.954	1.951	1.925	1.953	1.931	1.939	1.970	1.947	1.959
Al	0.082	0.031	0.037	0.044	0.075	0.035	0.061	0.061	0.042	0.038	0.026
Ti	0.008	0.004	0.005	0.006	0.007	0.004	0.008	0.007	0.009	0.009	0.007
Cr	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.001	0.001	0.000
Fe(3)	0.069	0.050	0.047	0.046	0.062	0.052	0.063	0.051	0.004	0.054	0.044
Mg	1.382	1.411	1.418	1.407	1.406	1.386	1.416	1.417	1.225	1.248	1.282
Fe(2)	0.452	0.457	0.457	0.456	0.442	0.485	0.438	0.447	0.641	0.599	0.578
Mn	0.034	0.038	0.030	0.035	0.026	0.029	0.025	0.025	0.035	0.036	0.037
Ca	0.052	0.051	0.050	0.050	0.054	0.052	0.053	0.052	0.067	0.065	0.065
Na	0.003	0.002	0.002	0.004	0.002	0.003	0.003	0.002	0.006	0.004	0.002
Summe	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
WO	2.6	2.5	2.5	2.5	2.7	2.6	2.7	2.6	3.4	3.2	3.2
EN	69.5	70.3	70.8	70.5	70.7	69.1	70.9	71.1	62.1	62.3	63.9
FS	27.9	27.2	26.7	26.9	26.6	28.3	26.4	26.2	34.5	34.4	32.9

Probe	M95-01	1														
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	38.77	36.57	36.43	36.20	36.08	36.30	37.09	37.71	38.28	38.15	38.79	38.38	38.21	38.04	37.81	37.29
TiO ₂	0.01	0.01	0.00	0.00	0.05	0.06	0.01	0.00	0.00	0.01	0.01	0.03	0.00	0.02	0.03	0.00
FeO	21.26	30.98	31.50	32.04	34.06	33.60	30.11	26.22	23.51	22.12	21.42	21.44	22.20	23.61	25.03	27.53
MnO	0.58	1.36	1.44	1.40	1.51	1.47	1.20	0.93	0.79	0.65	0.59	0.50	0.62	0.72	0.84	1.08
MgO	39.76	30.67	30.36	29.94	28.39	28.83	31.81	35.43	37.47	38.18	39.24	39.13	38.15	37.38	36.22	33.23
CaO	0.20	0.26	0.18	0.24	0.20	0.20	0.17	0.17	0.16	0.18	0.19	0.19	0.19	0.17	0.19	0.24
Summe	100.58	99.86	99.92	99.82	100.29	100.47	100.38	100.46	100.22	99.30	100.25	99.67	99.38	99.94	100.12	99.38
Si	0.998	1.000	0.999	0.996	0.998	0.999	1.002	0.998	1.001	1.000	1.002	0.999	1.001	0.999	0.998	1.005
Ti	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000
Mg	1.526	1.250	1.240	1.228	1.171	1.183	1.282	1.398	1.460	1.492	1.512	1.518	1.491	1.463	1.425	1.335
Fe	0.458	0.709	0.722	0.737	0.788	0.773	0.680	0.580	0.514	0.485	0.463	0.467	0.486	0.518	0.552	0.620
Mn	0.013	0.032	0.033	0.033	0.035	0.034	0.027	0.021	0.018	0.015	0.013	0.011	0.014	0.016	0.019	0.025
Ca	0.006	0.008	0.005	0.007	0.006	0.006	0.005	0.005	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.007
Summe	3.001	2.998	3.000	3.002	2.999	2.997	2.997	3.002	2.997	2.997	2.996	3.000	2.997	3.001	3.000	2.991
FO	76.9	63.8	63.2	62.5	59.8	60.5	65.3	70.7	74.0	75.5	76.6	76.5	75.4	73.8	72.1	68.3
Einheit	Rezente	Domlave	n und py	roklastise	che Strön	ne										
Probe	M97-068	8			M98-108	31										
Nr.	1	2	3	-	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	37.15	37.13	36.58		36.05	35.71	36.34	36.09	35.93	35.79	36.33	35.57	35.78	36.12	35.89	35.97
TiO ₂	0.04	0.02	0.08		0.02	0.01	0.00	0.00	0.00	0.01	0.03	0.01	0.01	0.02	0.01	0.01
FeO	28.07	28.68	29.89		33.82	33.96	33.63	33.81	33.39	33.88	33.94	33.63	34.20	33.44	33.72	33.59
MnO	1.01	1.16	1.22		1.62	1.55	1.50	1.54	1.62	1.49	1.55	1.58	1.53	1.55	1.65	1.54
MgO	33.58	32.84	31.61		28.18	28.44	29.51	28.32	28.35	27.89	28.43	28.40	28.41	28.32	28.68	28.11
CaO	0.15	0.18	0.19		0.22	0.20	0.18	0.22	0.18	0.24	0.23	0.21	0.21	0.21	0.19	0.21
Summe	100.01	100.01	99.57		99.91	99.88	101.15	99.97	99.46	99.30	100.50	99.40	100.15	99.65	100.13	99.43
Si	0.998	1.000	0.997		1.001	0.993	0.994	1.001	1.000	1.000	1.002	0.993	0.993	1.003	0.994	1.003
Ti	0.001	0.000	0.002		0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
Mg	1.345	1.319	1.284		1.166	1.180	1.203	1.171	1.177	1.162	1.169	1.182	1.176	1.173	1.185	1.168
Fe	0.630	0.646	0.681		0.785	0.790	0.769	0.784	0.777	0.792	0.783	0.785	0.794	0.777	0.781	0.783
Mn	0.023	0.026	0.028		0.038	0.037	0.035	0.036	0.038	0.035	0.036	0.037	0.036	0.036	0.039	0.036
Ca	0.004	0.005	0.006		0.007	0.006	0.005	0.006	0.005	0.007	0.007	0.006	0.006	0.006	0.006	0.006
Summe	3.001	2.998	2.998		2.997	3.006	3.006	2.999	2.998	2.997	2.997	3.005	3.006	2.995	3.005	2.996
FO	68.1	67.1	65.3		59.8	59.9	61.0	59.9	60.2	59.5	59.9	60.1	59.7	60.2	60.3	59.9
Einheit	Rezente	Domlave	n und py	roklastise	che Stron	ne										
Probe	M98-108	81 (Fortse	etzung)													
Nr.	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
SiO ₂	35.99	35.79	35.75	36.16	36.10	35.89	36.04	35.84	35.58	35.46	35.62	36.10	36.20	35.98	35.59	35.86
TiO ₂	0.01	0.01	0.00	0.01	0.02	0.01	0.02	0.01	0.03	0.00	0.00	0.04	0.01	0.04	0.06	0.02
FeO	33.50	33.81	34.08	33.71	33.21	33.08	33.51	33.05	33.11	33.52	33.08	33.30	33.91	32.85	33.21	33.07
MnO	1.59	1.48	1.44	1.64	1.51	1.47	1.44	1.55	1.70	1.38	1.62	1.61	1.55	1.49	1.61	1.50
MgO	28.19	28.26	28.26	28.19	28.44	28.63	28.75	28.63	28.67	28.59	28.45	28.79	28.77	28.49	28.78	28.69
CaO	0.19	0.20	0.25	0.28	0.21	0.21	0.21	0.19	0.18	0.21	0.22	0.21	0.19	0.23	0.19	0.18
Summe	99.48	99.56	99.78	100.00	99.48	99.30	99.97	99.27	99.28	99.16	99.00	100.05	100.63	99.07	99.45	99.31
51	1.002	0.998	0.995	1.003	1.003	1.000	0.998	0.999	0.993	0.992	0.997	0.998	0.997	1.002	0.992	0.998
11 Ma	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.001	0.000
Mg Fo	1.1/1	1.1/5	1.1/3	1.105	1.1/8	1.189	1.18/	1.189	1.193	1.192	1.18/	1.18/	1.181	1.184	1.196	1.191
ne Mn	0.780	0.700	0.794	0.782	0.772	0.770	0.770	0.770	0.773	0.784	0.774	0.770	0.701	0.700	0.774	0.770
Ca	0.038	0.033	0.034	0.039	0.030	0.033	0.034	0.03/	0.040	0.033	0.038	0.038	0.030	0.033	0.038	0.033
Ca Summe	2 007	3 002	3 002	2 007	2 006	3 000	3 001	3 000	3 004	3 007	3 002	3 000	3 002	2 00/	3 006	3 000
FO	60.0	50.002	5.005	2.99/	2.770	5.000	5.001	5.000	5.004	5.007	5.002	5.000	5.002	60 7	5.000	5.000
.0	00.0	59.0	59.0	59.9	00.4	00.7	00.5	00.7	00.7	00.5	00.5	00.0	00.2	00.7	00.7	00.7

Tab. A5.5. Mineralchemische Daten: Olivin.EinheitRezente Domlaven und pyroklastische Ströme

Tab. A5.5. (Fortsetzung).EinheitRezente Domlaven und pyroklastische Ströme

Probe	M98-108	31 (Fortse	etzung)													
Nr.	29	30	31	32	33	34	35	36	37	38	39	40	41	42		
SiO ₂	36.13	36.03	35.62	36.30	36.08	35.76	35.66	36.21	35.62	36.09	35.68	36.48	36.23	35.65		
TiO ₂	0.00	0.02	0.00	0.00	0.02	0.02	0.00	0.00	0.02	0.02	0.01	0.00	0.00	0.02		
FeO	33.75	33.61	33.53	33.53	32.98	33.48	33.24	33.30	33.54	33.51	33.59	33.45	33.52	33.10		
MnO	1.55	1.55	1.59	1.62	1.58	1.60	1.55	1.59	1.62	1.61	1.49	1.62	1.68	1.57		
MgO	28.63	28.73	28.67	28.61	28.74	28.77	28.76	28.75	28.79	29.10	28.87	29.00	29.06	29.06		
Summe	100.22	100.12	99.64	100.30	99.59	0.19	99.40	100.06	99.80	100 51	0.19	100.71	100.68	99.65		
Si	0.998	0.997	0.992	1.002	1.001	0.993	0.994	1.001	0.991	0.994	0.991	1.001	0.996	0.991		
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Mg	1.179	1.185	1.190	1.177	1.188	1.191	1.195	1.185	1.194	1.195	1.196	1.186	1.191	1.204		
Fe	0.780	0.778	0.781	0.774	0.765	0.778	0.775	0.770	0.780	0.772	0.780	0.768	0.771	0.769		
Mn	0.036	0.036	0.037	0.038	0.037	0.038	0.037	0.037	0.038	0.037	0.035	0.038	0.039	0.037		
Ca	0.006	0.006	0.007	0.007	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.005	0.006	0.008		
Summe	3.000	3.001	3.007	2.997	2.998	3.005	3.005	2.999	3.009	3.004	3.008	2.998	3.003	3.009		
FO	60.2	60.4	60.4	60.3	60.8	60.5	60.7	60.6	60.5	60.8	60.5	60.7	60.7	61.0		
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	ischer Str	-öme									
Probe	M97-03	92						M97-04	5							
Nr.	1	2	3	4	5	6	-	1	2	3	4	5	6	7	8	ç
SiO ₂	37.20	37.16	37.59	37.47	37.52	37.58		36.43	37.31	37.48	36.21	37.00	37.49	37.40	37.32	37.01
TiO ₂	0.00	0.03	0.03	0.02	0.02	0.03		0.03	0.04	0.04	0.03	0.04	0.05	0.05	0.04	0.03
FeO	27.49	27.42	27.08	27.18	26.76	27.09		29.74	28.07	27.42	31.47	28.78	27.99	27.29	27.69	27.48
MnO	1.27	1.25	1.16	1.10	1.22	1.13		1.17	1.15	1.00	1.58	1.16	1.05	1.08	1.10	1.08
MgO	34.10	33.92	34.73	34.40	34.67	34.48		31.99	33.70	34.91	30.67	32.93	34.10	34.13	34.03	33.53
CaO	100.24	0.25	0.19	0.20	0.17	0.10		0.21	0.21	0.18	0.20	0.14	0.14	0.16	0.11	0.11
Si	0 995	0.995	0 997	0 998	0 998	0 999		0 99.30	0 997	0 992	0.992	0 997	0 997	0 999	0 997	1 000
Ti	0.000	0.001	0.001	0.000	0.000	0.001		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Mg	1.360	1.355	1.372	1.366	1.375	1.366		1.300	1.343	1.378	1.252	1.323	1.352	1.359	1.356	1.350
Fe	0.615	0.614	0.600	0.605	0.595	0.602		0.678	0.627	0.607	0.721	0.649	0.623	0.610	0.619	0.621
Mn	0.029	0.028	0.026	0.025	0.027	0.025		0.027	0.026	0.022	0.037	0.027	0.024	0.025	0.025	0.025
Ca	0.005	0.007	0.005	0.006	0.005	0.005		0.006	0.006	0.005	0.006	0.004	0.004	0.005	0.003	0.003
Summe	3.003	3.001	3.001	3.000	3.000	2.998		3.005	3.000	3.006	3.009	3.000	3.000	2.998	3.001	2.999
FO	68.9	68.8	69.6	69.3	69.8	69.4		65.7	68.2	69.4	63.5	67.1	68.5	69.0	68.7	68.5
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Str	öme									
Probe	M97-045	6 (Fortset	zung)		M98-002	2									M98-059)
Nr.	10	11	12	-	1	2	3	4	5	6	7	8	9	•	1	2
SiO ₂	37.48	37.61	37.23		37.02	37.45	37.29	36.73	36.77	36.68	36.64	36.16	36.92		37.25	36.47
TiO ₂	0.05	0.05	0.06		0.01	0.02	0.03	0.00	0.00	0.02	0.02	0.01	0.01		0.01	0.01
FeO	27.95	28.04	28.00		29.53	27.44	28.32	30.81	32.10	31.81	32.37	32.47	30.04		27.94	30.84
MaO	1.13	1.08	33 56		1.25	1.04	1.14	31.51	30.15	30.38	30.10	1.43	31.80		33.00	30.00
CaO	0.10	0.11	0.12		0.17	0.25	0.25	0.13	0.19	0.22	0.14	0.18	0.14		0.14	0.17
Summe	100.62	100.74	100.01		100.03	100.47	100.77	100.45	100.61	100.56	100.79	99.82	100.30		100.33	99.97
Si	0.999	1.001	0.999		1.002	0.997	0.995	0.996	1.002	1.000	0.999	0.998	0.999		0.997	0.996
Ti	0.001	0.001	0.001		0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000		0.000	0.000
Mg	1.347	1.343	1.343		1.293	1.361	1.342	1.274	1.225	1.234	1.223	1.216	1.287		1.352	1.262
Fe	0.623	0.624	0.628		0.668	0.611	0.632	0.699	0.732	0.725	0.738	0.749	0.680		0.625	0.705
Mn	0.026	0.024	0.024		0.029	0.023	0.026	0.029	0.032	0.033	0.035	0.033	0.030		0.025	0.034
Ca	0.003	0.003	0.004		0.005	0.007	0.007	0.004	0.006	0.006	0.004	0.005	0.004		0.004	0.005
Summe	2.999	2.997	2.999		2.997	3.000	3.003	3.003	2.997	2.999	3.000	3.002	3.000		3.002	3.003
FO	68.4	68.3	68.1		65.9	69.0	68.0	64.6	62.6	63.0	62.4	61.9	65.4		68.4	64.2

Tab. A5.5. (Fortsetzung).

Einheit	Juvenile	Kompon	enten hol	lozäner p	yroklasti	scher Str	öme									
Probe	M98-059	(Fortset	zung)]	M98-066	5	
Nr.	3	4	5	6	7	8	9	10	11	12	13	14	-	1	2	3
SiO ₂	37.08	36.95	37.48	36.70	36.25	36.21	37.28	36.79	37.11	36.25	37.52	36.72		35.99	36.74	36.93
TiO ₂	0.03	0.00	0.00	0.00	0.03	0.02	0.02	0.02	0.01	0.02	0.01	0.00		0.02	0.00	0.02
FeO	27.23	30.72	28.11	30.97	31.47	32.34	28.56	31.37	28.23	31.16	26.98	31.89		33.03	31.35	31.85
MnO	1.10	1.30	1.08	1.36	1.42	1.53	1.02	1.32	1.13	1.43	1.10	1.49		1.34	1.29	1.24
MgO	34.01	31.32	33.94	30.98	30.28	29.68	33.44	30.81	33.22	30.43	34.57	30.40		28.64	31.02	30.47
CaO	0.14	0.21	0.12	0.17	0.20	0.19	0.14	0.15	0.10	0.17	0.15	0.18		0.16	0.11	0.16
Summe	99.58	100.51	100.73	100.18	99.65	99.97	100.46	100.45	99.79	99.46	100.33	100.68		99.21	100.52	100.70
SI Ti	0.997	0.000	0.998	0.999	0.990	0.997	0.998	0.000	0.000	0.997	0.998	0.999		0.000	0.999	0.000
Μσ	1 363	1 265	1 348	1 257	1 241	1 218	1 335	1 249	1 334	1 247	1 371	1 234		1 1 8 9	1 257	1 234
Fe	0.612	0.696	0.626	0.705	0.723	0.744	0.639	0.713	0.636	0.717	0.600	0.726		0.769	0.713	0.724
Mn	0.025	0.030	0.024	0.031	0.033	0.036	0.023	0.030	0.026	0.033	0.025	0.034		0.032	0.030	0.029
Ca	0.004	0.006	0.003	0.005	0.006	0.006	0.004	0.004	0.003	0.005	0.004	0.005		0.005	0.003	0.005
Summe	3.002	2.998	3.000	2.998	3.000	3.001	2.999	2.997	2.999	2.999	2.999	2.998		2.996	3.001	2.995
FO	69.0	64.5	68.3	64.1	63.2	62.1	67.6	63.6	67.7	63.5	69.6	63.0		60.5	63.9	62.7
Einheit	Juvenile	Kompon	enten hol	lozäner p	vroklasti	scher Str	öme]	Laven Pro	oto-Mera	pi					
Probe	M98-066	ó (Fortset	zung)	M98-099	91			1	M98-052	2						
Nr.	4	5	-	1	2	3	4	-	1	2	3	4	5	6	7	8
SiO ₂	36.56	36.21		37.86	36.50	37.87	37.51		37.54	38.51	38.31	37.95	38.32	38.02	38.06	37.94
TiO ₂	0.03	0.00		0.06	0.04	0.00	0.02		0.00	0.00	0.01	0.01	0.01	0.02	0.00	0.01
FeO	32.25	33.28		26.38	31.38	25.36	26.14		24.01	24.07	24.76	24.17	24.61	24.33	24.41	24.58
MnO M-O	1.32	1.39		0.92	1.21	0.91	0.97		0.51	0.46	0.43	0.47	0.40	0.51	0.44	0.43
MgO CaO	29.75	28.07		0.14	30.57	0.13	0.10		0.24	37.38	30.94 0.24	30.80	30.95	37.04	37.09	0.23
Summe	100.07	99.71		100.57	99.84	100.20	99.99		99.42	100.65	100.69	99.67	100.49	100.14	100.23	100.02
Si	1 003	1 003		1 001	0 999	1 000	0.998		0 993	1 003	1 001	1 000	1 002	0 998	0.998	0 998
Ti	0.001	0.000		0.001	0.001	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	1.217	1.184		1.388	1.247	1.415	1.394		1.464	1.452	1.439	1.448	1.440	1.450	1.450	1.444
Fe	0.740	0.771		0.583	0.718	0.560	0.581		0.531	0.524	0.541	0.533	0.538	0.534	0.535	0.541
Mn	0.031	0.033		0.021	0.028	0.020	0.022		0.011	0.010	0.010	0.010	0.009	0.011	0.010	0.010
Ca	0.004	0.005		0.004	0.004	0.004	0.006		0.007	0.007	0.007	0.006	0.006	0.007	0.006	0.007
Summe	2.995	2.996		2.998	2.998	2.999	3.001		3.006	2.996	2.997	2.998	2.996	3.000	3.000	2.999
FO	61.8	60.3		70.4	63.5	71.6	70.6		73.4	73.5	72.7	73.1	72.8	73.1	73.0	72.8
Einheit	Laven Pr	oto-Mera	pi													
Probe	M98-052	2														
Nr.	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
SiO ₂	37.98	38.09	38.21	38.28	38.00	38.10	38.22	37.72	39.10	39.68	40.06	39.91	39.76	39.75	40.17	39.90
TiO ₂	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.01	0.00
FeO	24.44	24.45	24.26	24.41	24.43	24.49	24.18	24.95	17.01	13.68	13.21	13.22	13.75	13.85	14.13	13.74
MnO M-O	0.51	0.43	0.49	0.42	0.48	0.46	0.49	0.58	0.35	0.24	0.26	0.26	0.28	0.23	0.34	0.24
MgO CaO	0.22	0.21	0.22	0.21	0.23	0.23	0.23	0.23	42.90	43.09	43.92	43.85	43.75	43.89	43.77	45.51
Summe	100.22	100.16	100.18	100 41	100.23	100.23	100.49	99.95	99.64	99 49	99.66	99.42	99.72	99 94	100.63	99.58
Si	0.995	1.000	1.002	1.001	0.997	1.000	0.999	0.996	0.996	0.996	1.001	1.000	0.996	0.994	0.998	1.000
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	1.455	1.447	1.446	1.446	1.450	1.445	1.455	1.436	1.631	1.709	1.710	1.712	1.708	1.710	1.696	1.700
Fe	0.535	0.537	0.532	0.534	0.536	0.537	0.528	0.551	0.362	0.287	0.276	0.277	0.288	0.289	0.294	0.288
Mn	0.011	0.010	0.011	0.009	0.011	0.010	0.011	0.013	0.008	0.005	0.005	0.006	0.006	0.005	0.007	0.005
Ca	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.007	0.006	0.005	0.005	0.005	0.005	0.006	0.006	0.005
Summe	3.003	2.999	2.997	2.996	3.001	2.998	3.000	3.003	3.003	3.003	2.998	3.000	3.003	3.004	3.001	2.999
FO	73.1	72.9	73.1	73.0	73.0	72.9	73.4	72.3	81.8	85.6	86.1	86.1	85.6	85.5	85.2	85.5

	221
	331

Tab. A5.5.	(Fortsetzung).

Einheit	Laven Pro	oto-Mera	pi													
Probe	M96-052	(Fortset	zung)													
Nr.	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
SiO ₂	39.80	40.01	39.64	39.55	39.73	40.21	39.85	39.49	39.15	37.46	39.10	39.66	39.99	40.09	40.11	40.21
TiO ₂	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.02	0.01	0.00	0.01	0.00	0.00	0.00	0.00
FeO	13.67	13.91	13.89	13.51	13.68	13.24	13.54	14.51	16.67	24.05	18.40	14.25	12.93	12.91	12.30	12.20
MnO	0.26	0.27	0.27	0.25	0.24	0.30	0.24	0.28	0.30	0.40	0.33	0.28	0.23	0.20	0.22	0.20
MgO	45.50	45.54	45.64	45.51	45.78	45.82	45.96	45.20	43.45	37.06	41.65	45.27	46.25	46.35	46.80	46.60
CaO	0.20	0.20	0.21	0.21	0.21	0.21	0.19	0.23	0.23	0.26	0.24	0.23	0.24	0.23	0.31	0.28
Summe	99.43	99.93	99.65	99.03	99.65	99.78	99.79	99.72	99.82	99.23	99.72	99.71	99.63	99.77	99.73	99.49
Si	0.999	1.000	0.994	0.997	0.995	1.003	0.996	0.993	0.994	0.991	1.000	0.996	0.998	0.999	0.997	1.002
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mg	1.703	1.697	1.707	1.710	1.710	1.704	1.713	1.695	1.645	1.462	1.589	1.695	1.722	1.722	1.735	1.730
Fe	0.287	0.291	0.291	0.285	0.287	0.276	0.283	0.305	0.354	0.532	0.394	0.299	0.270	0.269	0.256	0.254
Mn	0.006	0.006	0.006	0.005	0.005	0.006	0.005	0.006	0.006	0.009	0.007	0.006	0.005	0.004	0.005	0.004
Ca	0.005	0.005	0.006	0.006	0.006	0.005	0.005	0.006	0.006	0.007	0.007	0.006	0.006	0.006	0.008	0.007
Summe	3.000	2.999	3.004	3.003	3.003	2.996	3.003	3.005	3.006	3.001	2.996	3.002	3.001	3.000	3.001	2.998
FO	85.6	85.4	85.4	85.7	85.6	86.0	85.8	84.7	82.3	73.3	80.1	85.0	86.4	86.5	87.2	87.2
Einheit	Laven Pro	oto-Mera	pi													
Probe	M96-052	(Fortset	zung)													
Nr.	41	42	43	44												
SiOa			-15	44												
010/	40.12	40.00	39.45	39.05												
TiO ₂	40.12	40.00	39.45 0.02	39.05 0.02												
TiO ₂ FeO	40.12 0.00 12.52	40.00 0.03 13.66	39.45 0.02 15.72	39.05 0.02 18.35												
TiO ₂ FeO MnO	40.12 0.00 12.52 0.17	40.00 0.03 13.66 0.27	39.45 0.02 15.72 0.30	39.05 0.02 18.35 0.25												
TiO ₂ FeO MnO MgO	40.12 0.00 12.52 0.17 46.66	40.00 0.03 13.66 0.27 45.53	39.45 0.02 15.72 0.30 44.07	39.05 0.02 18.35 0.25 42.27												
TiO ₂ FeO MnO MgO CaO	40.12 0.00 12.52 0.17 46.66 0.22	40.00 0.03 13.66 0.27 45.53 0.24	39.45 0.02 15.72 0.30 44.07 0.22	39.05 0.02 18.35 0.25 42.27 0.21												
TiO ₂ FeO MnO MgO CaO Summe	40.12 0.00 12.52 0.17 46.66 0.22 99.70	40.00 0.03 13.66 0.27 45.53 0.24 99.73	39.45 0.02 15.72 0.30 44.07 0.22 99.78	39.05 0.02 18.35 0.25 42.27 0.21 100.15												
TiO ₂ FeO MnO MgO CaO Summe Si	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995												
TiO ₂ FeO MnO MgO CaO Summe Si Ti	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999 0.000	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000 0.001	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997 0.000	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995 0.000												
TiO ₂ FeO MnO MgO CaO Summe Si Ti Mg	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999 0.000 1.732	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000 0.001 1.698	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997 0.000 1.660	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995 0.000 1.606												
TiO2 FeO MnO MgO CaO Summe Si Ti Mg Fe	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999 0.000 1.732 0.261	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000 0.001 1.698 0.286	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997 0.000 1.660 0.332	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995 0.000 1.606 0.391												
TiO2 FeO MnO MgO CaO Summe Si Ti Mg Fe Mn	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999 0.000 1.732 0.261 0.004	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000 0.001 1.698 0.286 0.006	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997 0.000 1.660 0.332 0.006	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995 0.000 1.606 0.391 0.005												
TiO2 FeO MnO MgO CaO Summe Si Ti Mg Fe Mn Ca	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999 0.000 1.732 0.261 0.004 0.006	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000 0.001 1.698 0.286 0.006 0.006	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997 0.000 1.660 0.332 0.006 0.006	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995 0.000 1.606 0.391 0.005 0.006												
TiO2 FeO MnO MgO CaO Summe Si Ti Mg Fe Mn Ca Summe	40.12 0.00 12.52 0.17 46.66 0.22 99.70 0.999 0.000 1.732 0.261 0.004 0.006 3.001	40.00 0.03 13.66 0.27 45.53 0.24 99.73 1.000 0.001 1.698 0.286 0.006 0.006 2.996	39.45 0.02 15.72 0.30 44.07 0.22 99.78 0.997 0.000 1.660 0.332 0.006 0.006 3.002	39.05 0.02 18.35 0.25 42.27 0.21 100.15 0.995 0.000 1.606 0.391 0.005 0.006 3.003												

Einheit	recente		15													
Probe	M95-01	1]	M96-14	5						
Nr.	1	2	3	4	5	6	7	_	1	2	3	4	5	6	7	8
SiO ₂	40.96	40.80	40.75	41.21	40.67	41.37	41.37		40.42	40.51	40.85	40.81	40.27	40.48	40.40	40.33
TiO ₂	1.84	2.27	1.78	2.01	1.95	1.79	1.76		2.03	2.08	2.04	2.07	2.01	2.01	1.98	2.02
Al_2O_3	14.63	14.15	14.63	15.42	14.01	14.53	14.36		14.10	13.92	14.01	13.88	14.07	13.89	14.24	14.15
FeO	11.08	12.27	10.99	10.78	11.29	11.02	10.83		13.07	12.77	12.94	12.77	12.80	12.71	12.65	12.64
MnO	0.11	0.19	0.11	0.15	0.10	0.10	0.10		0.18	0.15	0.14	0.13	0.16	0.17	0.13	0.15
MgO	13.99	13.23	13.86	13.19	13.25	13.77	13.88		12.76	12.77	12.86	12.86	12.88	12.96	12.93	13.06
CaO	12.59	12.20	12.48	11.95	12.94	12.49	12.59		12.28	12.09	12.28	12.24	12.15	12.20	12.16	12.38
Na_2O	1.83	2.00	1.79	1.81	1.70	1.81	1.83		2.30	2.26	2.28	2.31	2.32	2.25	2.28	2.18
K ₂ O	1.54	1.32	1.48	1.32	1.50	1.54	1.48		0.97	0.95	1.03	1.00	1.00	1.02	1.01	1.06
CI	0.02	0.04	0.01	0.02	0.02	0.02	0.01		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
F	0.24	0.27	0.27	0.15	0.25	0.25	0.51		0.35	0.37	0.28	0.33	0.52	0.29	0.30	0.28
Summe	98.81	98.75	98.10	97.99	97.00	98.70	98.75		98.47	97.90	98.75	98.42	98.01	98.00	98.09	98.27
Si	5.940	5.956	5.944	6.001	6.003	6.009	6.021		5.940	5.981	5.982	5.997	5.939	5.965	5.943	5.922
Al TT:	2.500	2.435	2.515	2.646	2.437	2.487	2.463		2.442	2.422	2.417	2.405	2.446	2.412	2.468	2.450
	0.201	0.249	0.195	0.220	0.216	0.196	0.192		0.224	0.231	0.224	0.229	0.223	0.223	0.219	0.223
Fe(3)	0.469	0.439	0.478	0.300	0.307	0.367	0.360		0.465	0.422	0.408	0.376	0.465	0.456	0.456	0.496
Nig	0.874	2.001	0.862	2.804	2.910	2.982	0.058		2.790	2.011	2.808	2.810	2.052	2.847	2.855	2.030
Mn	0.074	0.023	0.803	0.010	0.012	0.972	0.938		0.023	0.010	0.017	0.017	0.020	0.021	0.016	0.010
Ca	1 955	1 909	1 950	1 864	2 046	1 944	1.963		1 933	1 913	1 927	1 927	1 9 1 9	1 927	1 917	1 948
Na	0.513	0.567	0.506	0.511	0 486	0.510	0.517		0.654	0.646	0.648	0.658	0.664	0.642	0.651	0.621
K	0.284	0.245	0.276	0.245	0.282	0.285	0.274		0.181	0.178	0.192	0.187	0.189	0.191	0.189	0.199
Cl	0.006	0.010	0.003	0.004	0.005	0.005	0.004		0.005	0.005	0.006	0.005	0.005	0.005	0.004	0.004
F	0.108	0.126	0.125	0.068	0.116	0.117	0.237		0.162	0.175	0.132	0.154	0.148	0.136	0.137	0.129
Summe	15.773	15.764	15.755	15.683	15.793	15.765	15.771		15.800	15.778	15.801	15.806	15.810	15.794	15.796	15.792
Finhait																
	Rezente	Domlave	n und nv	roklastic	che Strön	ne										
Linnen	Rezente	Domlave	n und py	roklastise	che Strön	ne										
Probe	M96-145	Domlave 5 (Fortset	n und py	roklastise	che Strön	ne										
Probe Nr.	M96-145	Domlave 5 (Fortset 10	n und py zung) 11	roklastise	13	ne 14	15	16	17	18	19	20	21	22	23	24
Probe Nr. SiO ₂	Rezente M96-145 9 39.38	Domlave 5 (Fortset 10 39.73	n und py zung) 11 39.78	12 39.83	13 40.01	14 39.67	15 39.91	16 39.94	17 40.27	18 39.80	19	20	21 39.97	22 39.66	23 40.31	24
Probe Nr. SiO ₂ TiO ₂	Rezente M96-145 9 39.38 2.01	Domlave 5 (Fortset 10 39.73 2.03	n und py zung) 11 39.78 2.02	12 39.83 2.09	13 40.01 2.19	14 39.67 2.06	15 39.91 2.14	16 39.94 2.17	17 40.27 2.23	18 39.80 2.03	19 40.45 1.98	20 40.34 1.99	21 39.97 2.08	22 39.66 2.04	23 40.31 2.06	24 39.89 2.10
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃	Rezente M96-145 9 39.38 2.01 14.71	Domlave 5 (Fortset 10 39.73 2.03 14.92	n und py zung) 11 39.78 2.02 14.99	12 39.83 2.09 14.84	13 40.01 2.19 14.38	14 39.67 2.06 14.98	15 39.91 2.14 14.99	16 39.94 2.17 14.46	17 40.27 2.23 14.12	18 39.80 2.03 14.89	19 40.45 1.98 14.48	20 40.34 1.99 14.60	21 39.97 2.08 14.45	22 39.66 2.04 14.51	23 40.31 2.06 14.69	24 39.89 2.10 14.84
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO	Rezente M96-145 9 39.38 2.01 14.71 12.71	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82	n und py zung) 11 39.78 2.02 14.99 13.11	12 39.83 2.09 14.84 12.87	13 40.01 2.19 14.38 12.97	14 39.67 2.06 14.98 12.95	15 39.91 2.14 14.99 12.79	16 39.94 2.17 14.46 12.95	17 40.27 2.23 14.12 12.68	18 39.80 2.03 14.89 13.01	19 40.45 1.98 14.48 11.61	20 40.34 1.99 14.60 11.19	21 39.97 2.08 14.45 10.97	22 39.66 2.04 14.51 12.29	23 40.31 2.06 14.69 10.74	24 39.89 2.10 14.84 11.12
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16	n und py zung) 11 39.78 2.02 14.99 13.11 0.16	12 39.83 2.09 14.84 12.87 0.17	13 40.01 2.19 14.38 12.97 0.17	14 39.67 2.06 14.98 12.95 0.19	15 39.91 2.14 14.99 12.79 0.14	16 39.94 2.17 14.46 12.95 0.21	17 40.27 2.23 14.12 12.68 0.22	18 39.80 2.03 14.89 13.01 0.16	19 40.45 1.98 14.48 11.61 0.14	20 40.34 1.99 14.60 11.19 0.10	21 39.97 2.08 14.45 10.97 0.10	22 39.66 2.04 14.51 12.29 0.10	23 40.31 2.06 14.69 10.74 0.10	24 39.89 2.10 14.84 11.12 0.06
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58	12 39.83 2.09 14.84 12.87 0.17 12.50	13 40.01 2.19 14.38 12.97 0.17 12.51	14 39.67 2.06 14.98 12.95 0.19 12.40	15 39.91 2.14 14.99 12.79 0.14 12.30	16 39.94 2.17 14.46 12.95 0.21 12.39	17 40.27 2.23 14.12 12.68 0.22 12.70	18 39.80 2.03 14.89 13.01 0.16 12.46	19 40.45 1.98 14.48 11.61 0.14 13.40	20 40.34 1.99 14.60 11.19 0.10 13.54	21 39.97 2.08 14.45 10.97 0.10 13.98	22 39.66 2.04 14.51 12.29 0.10 13.96	23 40.31 2.06 14.69 10.74 0.10 14.01	24 39.89 2.10 14.84 11.12 0.06 13.69
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.07	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22	zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.10	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20	15 39.91 2.14 14.99 12.79 0.14 12.30 2.20 1.08 0.01 0.21	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.21	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.20
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 0.726	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 0.7 8%	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 0.26	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 0.21	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 2.79	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 0.20 0.20	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 08.07	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 0.7 \$2	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 07.85	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 0.34	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 08 21	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 08 20	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 08.57	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 0.28	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 07.97
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 98.17	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 98.17 5.870	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 2.592	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 2.593	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 98.17 5.870 2.578	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.215	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.222	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 2.529	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti E	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.255	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.255 0.225 0.255	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.203	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 98.17 5.870 2.578 0.2578 0.232	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.444	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.428	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.237	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.421	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.401	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.223	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.257 0.217	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Ma	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.225 0.46	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.225 0.225	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.223 0.495 2.755	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 98.17 5.870 2.578 0.232 0.242 2.578	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.244 0.245 2.751	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.428	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.421	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.408	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.022	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.554	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230 0.504 2.054	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.259 0.259	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Ea(2)	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.112	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 2.767	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 0.25 98.17 5.870 2.578 0.232 0.444 2.742	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.750 1.157	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.420 2.732 1.122	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.406 2.797	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.022	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230 0.504 3.0604	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.035 0.759	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.227 0.449 3.052	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.113 0.217	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 1.074 0.024	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752 1.114 0.020	I2 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 98.17 5.870 2.578 0.232 0.444 2.745 1.143	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.756 1.157 0.021	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726 1.127 0.024	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704 1.199 0.017	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.420 2.732 1.182 0.027	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.406 2.797 1.160 0.027	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736 1.122 0.020	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.020 0.012	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230 0.504 3.062 0.804	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.033 0.759	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.227 0.449 3.052 0.803	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994 0.904
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.113 0.461	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 1.074 0.020 0.207 1.074 0.020 0.205 0.507 1.074 0.020 0.207 1.074 0.020 0.020 0.020 0.074 0.020 0.020 0.074 0.020 0.020 0.074 0.020 0.020 0.074 0.020 0.020 0.020 0.020 0.074 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.020	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752 1.114 0.202 1.925	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 98.17 5.870 2.578 0.232 0.444 2.745 1.143 0.924	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.756 1.157 0.021 1.921	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726 1.127 0.024 1.927	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704 1.199 0.017 1.943	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.420 2.732 1.182 0.027 1.934	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.406 2.797 1.160 0.027 1.898	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736 1.122 0.020	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027 0.017	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.020 0.013	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230 0.504 3.062 0.804 0.013 1.948	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.033 0.759 0.012	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.227 0.449 3.052 0.863 0.012 1.950	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994 0.007
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.113 0.071 1.961 0.635	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 1.074 0.020 1.907 0.634	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752 1.114 0.205 1.925 0.658	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 98.17 5.870 2.578 0.232 0.444 2.745 1.143 0.021 1.934 0.635	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.756 1.157 0.921 1.9200	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726 1.127 0.024 1.937 0.630	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704 1.199 0.017 1.943 0.629	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.421 2.732 1.182 0.027 1.934 0.642	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.406 2.797 1.160 0.027 1.898 0.656	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736 1.122 0.200 1.933 0.627	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027 0.017 1.921 0.620	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.020 0.013 1.960 0.617	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230 0.504 3.062 0.804 0.054 3.062 0.844 0.014 8.062	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.033 0.759 3.033 0.739 0.012 1.921	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.227 0.449 3.052 0.863 0.012 1.950	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994 0.007 1.961 0.609
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.113 0.017 1.961 0.635 0.216	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 1.074 0.020 1.907 0.634 0.200	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752 1.114 0.205 1.925 0.658 0.212	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 98.17 5.870 2.578 0.232 0.444 2.745 1.143 0.021 1.934 0.635 0.211	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.756 1.157 0.920 0.629 0.200	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726 1.127 0.024 1.937 0.630 0 205	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704 1.199 0.017 1.943 0.629 0.203	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.420 2.732 1.182 0.027 1.934 0.642 0.189	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.406 2.797 1.160 0.027 1.898 0.626 0.193	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736 1.122 0.200 1.933 0.627 0.206	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027 0.017 1.921 0.620 0.248	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.020 0.013 1.960 0.617 0.261	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.230 0.504 3.062 0.844 0.013 1.948 0.607 0.243	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.033 0.759 3.033 0.739 0.012 1.921 0.574 0.256	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.227 0.449 3.052 0.863 0.012 1.950 0.596 0.246	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994 0.007 1.961 0.609 0.234
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K Cl	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.113 0.017 1.961 0.635 0.216	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 1.074 0.200 1.907 0.634 0.200 0.005	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752 1.114 0.200 1.925 0.658 0.212 0.005	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 98.17 5.870 2.578 0.232 0.444 2.745 1.143 0.021 1.934 0.635 0.211 0.005	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.756 1.021 1.920 0.629 0.200 0.006	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726 1.127 0.024 1.937 0.630 0.205 0.005	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704 1.199 0.017 1.943 0.629 0.203 0.004	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.420 2.732 1.182 0.027 1.934 0.642 0.189 0.005	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.248 0.406 2.797 1.160 0.027 1.898 0.626 0.193 0.010	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736 1.122 0.200 1.933 0.627 0.206 0.005	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027 0.017 1.921 0.620 0.248 0.007	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.020 0.013 1.960 0.617 0.261 0.004	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.2501 0.504 3.062 0.504 3.062 0.844 0.013 1.948 0.607 0.243 0.003	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.033 0.739 0.012 1.921 0.574 0.256 0.002	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 98.09 5.890 2.529 0.227 0.449 3.052 0.863 0.012 1.950 0.596 0.246 0.004	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994 0.904 0.007 1.961 0.609 0.234 0.003
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K Cl F	Rezente M96-145 9 39.38 2.01 14.71 12.71 0.14 12.51 12.32 2.21 1.14 0.02 97.39 5.850 2.575 0.466 2.772 1.113 0.017 1.961 0.635 0.2120	Domlave 5 (Fortset 10 39.73 2.03 14.92 12.82 0.16 12.59 12.07 2.22 1.06 0.02 0.26 97.88 5.859 2.592 0.225 0.507 2.767 1.074 0.200 1.907 0.634 0.200 5.0124	n und py zung) 11 39.78 2.02 14.99 13.11 0.16 12.58 12.24 2.31 1.13 0.02 0.26 98.62 5.838 2.593 0.223 0.495 2.752 1.114 0.020 1.925 0.658 0.211	12 39.83 2.09 14.84 12.87 0.17 12.50 12.25 2.22 1.12 0.02 98.17 5.870 2.578 0.232 0.444 2.745 1.143 0.021 1.934 0.635 0.211 0.005 0.118	13 40.01 2.19 14.38 12.97 0.17 12.51 12.13 2.19 1.06 0.02 0.19 97.83 5.910 2.504 0.244 0.445 2.756 1.920 0.629 0.200 0.006 0.088	14 39.67 2.06 14.98 12.95 0.19 12.40 12.26 2.20 1.09 0.02 0.20 98.02 5.851 2.604 0.228 0.470 2.726 1.127 0.024 1.937 0.630 0.205 0.005 0.092	15 39.91 2.14 14.99 12.79 0.14 12.30 12.30 2.20 1.08 0.01 0.21 98.07 5.885 2.606 0.237 0.378 2.704 1.199 0.017 1.943 0.629 0.203 0.004 0.098	16 39.94 2.17 14.46 12.95 0.21 12.39 12.20 2.24 1.00 0.02 0.23 97.82 5.908 2.520 0.241 0.420 2.732 1.182 0.027 1.934 0.642 0.110	17 40.27 2.23 14.12 12.68 0.22 12.70 11.99 2.29 1.02 0.04 0.28 97.85 5.950 2.459 0.2459 0.248 0.406 2.797 1.160 0.027 1.898 0.626 0.193 0.010 0.133	18 39.80 2.03 14.89 13.01 0.16 12.46 12.25 2.19 1.09 0.02 0.34 98.26 5.861 2.585 0.225 0.481 2.736 1.122 0.200 1.933 0.627 0.206 0.005 0.158	19 40.45 1.98 14.48 11.61 0.14 13.40 12.21 2.18 1.32 0.03 0.41 98.21 5.938 2.505 0.219 0.397 2.932 1.027 0.017 1.921 0.620 0.248 0.007 0.188	20 40.34 1.99 14.60 11.19 0.10 13.54 12.46 2.17 1.39 0.02 0.41 98.20 5.923 2.527 0.220 0.354 2.963 1.020 0.013 1.960 0.617 0.261 0.004 0.188	21 39.97 2.08 14.45 10.97 0.10 13.98 12.38 2.13 1.30 0.01 0.39 97.77 5.870 2.501 0.2501 0.504 3.062 0.504 3.062 0.844 0.013 1.948 0.607 0.243 0.003 0.182	22 39.66 2.04 14.51 12.29 0.10 13.96 12.31 2.03 1.38 0.01 0.29 98.57 5.779 2.492 0.223 0.759 3.033 0.739 0.012 1.921 0.574 0.256 0.002 0.132	23 40.31 2.06 14.69 10.74 0.10 14.01 12.46 2.10 1.32 0.02 0.28 98.09 5.890 2.529 0.227 0.449 3.052 0.863 0.012 1.950 0.596 0.246 0.004 0.129	24 39.89 2.10 14.84 11.12 0.06 13.69 12.48 2.14 1.25 0.01 0.29 97.87 5.853 2.567 0.231 0.462 2.994 0.904 0.007 1.961 0.609 0.234 0.003 0.133

Tab. A5.6. Mineralchemische Daten: Amphibol.

Tab. A5.6. (Fortsetzung).

Einneit					Juvenile	Kompon	enten no	iozaner p	byroklasti	ischer Su	rome				
Probe	M96-14	5 (Fortset	tzung)		M96-13	7									
Nr.	25	26	27	28	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	39.86	40.06	40.09	39.94	39.92	39.88	40.05	40.01	39.61	39.84	40.36	39.89	40.33	40.01	39.74
TiO ₂	2.02	2.00	2.09	2.75	2.12	2.07	2.32	2.31	2.15	2.10	2.00	2.04	2.05	2.15	2.26
Al_2O_3	14.81	14.66	14.57	13.23	14.58	14.74	14.10	14.22	14.70	14.48	14.20	14.22	14.28	14.37	14.50
FeO	11.23	11.84	12.65	13.41	13.00	12.77	13.21	12.88	12.96	12.47	12.44	12.25	12.19	12.51	12.85
MnO	0.11	0.16	0.21	0.31	0.14	0.14	0.16	0.19	0.15	0.11	0.15	0.15	0.12	0.19	0.17
MgO	13.62	13.23	12.85	12.77	12.84	12.80	12.64	12.46	12.67	12.87	13.03	13.13	13.06	13.17	12.67
CaO	12.55	12.31	11.77	11.43	12.04	12.03	12.13	12.07	12.27	12.06	12.20	12.12	11.93	12.06	12.05
Na ₂ O	2.10	2.08	2.26	2.31	2.30	2.29	2.33	2.26	2.24	2.21	2.30	2.34	2.26	2.29	2.24
K_2O	1.33	1.38	1.39	1.21	0.91	0.90	0.88	0.84	0.91	0.95	0.88	0.88	0.85	1.05	0.88
Cl	0.01	0.02	0.04	0.11	0.05	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.03
F	0.30	0.36	0.39	0.37	0.40	0.33	0.26	0.23	0.23	0.22	0.23	0.23	0.24	0.24	0.23
Summe	97.94	98.10	98.31	97.84	98.29	97.97	98.10	97.51	97.90	97.34	97.80	97.24	97.34	98.07	97.61
Si	5.853	5.891	5.902	5.931	5.865	5.867	5.906	5.927	5.837	5.891	5.941	5.902	5.951	5.878	5.870
Al	2.562	2.541	2.528	2.316	2.524	2.556	2.450	2.483	2.554	2.523	2.464	2.479	2.484	2.487	2.524
Ti	0.224	0.221	0.231	0.307	0.234	0.229	0.257	0.258	0.238	0.234	0.222	0.227	0.227	0.237	0.251
Fe(3)	0.466	0.447	0.450	0.507	0.567	0.540	0.483	0.428	0.551	0.507	0.470	0.512	0.475	0.541	0.527
Mg	2.981	2.900	2.821	2.826	2.812	2.808	2.778	2.751	2.784	2.837	2.859	2.896	2.873	2.885	2.790
Fe(2)	0.913	1.009	1.107	1.159	1.030	1.031	1.146	1.168	1.047	1.035	1.061	1.003	1.028	0.996	1.060
Mn	0.013	0.020	0.027	0.039	0.017	0.017	0.019	0.024	0.019	0.014	0.018	0.019	0.015	0.023	0.021
Ca	1.975	1.939	1.857	1.819	1.895	1.896	1.916	1.916	1.937	1.911	1.925	1.921	1.886	1.898	1.906
Na	0.596	0.594	0.646	0.666	0.655	0.655	0.666	0.650	0.641	0.635	0.656	0.671	0.647	0.653	0.643
K	0.250	0.259	0.261	0.228	0.170	0.169	0.165	0.159	0.172	0.180	0.166	0.166	0.160	0.197	0.165
Cl	0.002	0.006	0.010	0.027	0.013	0.005	0.007	0.006	0.005	0.005	0.004	0.005	0.006	0.008	0.006
F	0.138	0.166	0.182	0.174	0.186	0.153	0.122	0.108	0.105	0.103	0.105	0.108	0.113	0.111	0.109
Summe	15.833	15.820	15.831	15.798	15.769	15.768	15.786	15.764	15.779	15.767	15.781	15.795	15.746	15.795	15.758

Einheit Juvenile Komponenten holozäner pyroklastischer Ströme

Probe	M96-13	7 (Fortset	zung)		M96-16	7									
Nr.	12	13	14	15	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	39.64	39.78	39.71	39.51	42.55	42.32	41.85	41.20	42.06	41.62	42.40	42.21	42.61	42.66	42.61
TiO ₂	2.29	2.25	2.14	2.13	2.79	2.99	2.69	2.89	2.58	2.56	3.05	2.81	2.57	2.53	2.80
Al_2O_3	14.09	14.05	14.60	14.60	11.17	11.22	11.79	12.66	11.67	12.01	11.29	11.08	10.46	10.79	11.05
FeO	13.20	12.94	12.90	12.67	13.45	14.35	14.59	14.24	14.70	14.80	13.07	13.61	14.43	13.83	13.61
MnO	0.15	0.19	0.14	0.11	0.38	0.38	0.43	0.32	0.36	0.40	0.36	0.43	0.53	0.47	0.46
MgO	12.72	12.71	12.69	12.68	13.17	12.29	11.93	11.99	12.12	11.97	13.03	13.01	12.99	12.96	12.99
CaO	12.02	12.12	12.27	12.33	11.10	11.37	11.45	11.50	11.54	11.28	11.17	11.38	11.12	11.14	11.14
Na ₂ O	2.28	2.24	2.24	2.28	2.38	2.32	2.22	2.42	2.16	2.31	2.36	2.30	2.15	2.30	2.30
K_2O	0.87	0.93	0.95	0.92	1.05	1.10	1.30	1.01	1.31	1.01	1.09	1.07	0.95	1.05	1.03
Cl	0.03	0.03	0.02	0.02	0.13	0.12	0.14	0.09	0.14	0.09	0.12	0.14	0.16	0.15	0.13
F	0.24	0.26	0.29	0.38	0.25	0.14	0.21	0.16	0.23	0.20	0.20	0.21	0.36	0.21	0.20
Summe	97.53	97.49	97.96	97.63	98.44	98.60	98.61	98.48	98.86	98.26	98.13	98.25	98.33	98.08	98.34
Si	5.869	5.895	5.855	5.851	6.270	6.265	6.213	6.101	6.222	6.176	6.269	6.242	6.294	6.314	6.286
Al	2.458	2.454	2.537	2.548	1.940	1.957	2.064	2.209	2.035	2.100	1.967	1.932	1.822	1.883	1.921
Ti	0.255	0.250	0.238	0.237	0.310	0.333	0.301	0.322	0.287	0.286	0.339	0.312	0.285	0.282	0.311
Fe(3)	0.574	0.518	0.524	0.493	0.287	0.181	0.213	0.246	0.266	0.338	0.181	0.306	0.479	0.316	0.283
Mg	2.807	2.808	2.790	2.801	2.893	2.712	2.640	2.646	2.673	2.648	2.873	2.869	2.862	2.860	2.857
Fe(2)	1.061	1.086	1.067	1.076	1.371	1.596	1.599	1.517	1.553	1.498	1.434	1.377	1.304	1.396	1.396
Mn	0.019	0.024	0.018	0.014	0.047	0.047	0.054	0.040	0.045	0.050	0.045	0.054	0.067	0.059	0.057
Ca	1.907	1.924	1.939	1.956	1.752	1.804	1.822	1.825	1.828	1.793	1.770	1.804	1.760	1.766	1.761
Na	0.654	0.643	0.640	0.656	0.681	0.666	0.640	0.695	0.618	0.665	0.676	0.661	0.616	0.659	0.659
Κ	0.164	0.175	0.179	0.173	0.197	0.208	0.246	0.191	0.247	0.192	0.205	0.201	0.179	0.197	0.194
Cl	0.007	0.007	0.005	0.005	0.033	0.030	0.035	0.023	0.036	0.023	0.031	0.035	0.040	0.038	0.034
F	0.114	0.120	0.135	0.177	0.117	0.067	0.099	0.074	0.107	0.093	0.094	0.100	0.169	0.098	0.095
Summe	15.768	15.778	15.786	15.806	15.747	15.769	15.791	15.792	15.773	15.747	15.758	15.758	15.668	15.732	15.727

I ab. A5.0. (Foliseizul

Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklastis	scher Ströme									
Probe	M96-167	(Fortset	zung)			M97-00	9								
Nr.	12	13	14	15	16	1	2	3	4	5	6	7	8	9	10
SiO ₂	42.48	42.14	41.79	42.32	42.27	38.01	38.67	39.24	38.43	39.78	40.35	40.47	40.59	40.45	40.47
TiO ₂	2.71	2.65	2.80	2.63	2.68	2.41	2.47	2.78	2.54	2.74	2.97	3.00	2.84	2.98	2.85
Al_2O_3	10.82	11.36	11.31	10.96	11.11	14.89	14.66	13.66	14.76	12.33	12.65	12.59	12.80	12.53	12.53
FeO	13.49	13.61	13.77	13.42	13.72	14.54	15.27	13.99	14.94	14.44	15.11	15.30	14.94	15.01	15.36
MnO	0.43	0.39	0.38	0.41	0.43	0.19	0.21	0.24	0.19	0.31	0.42	0.41	0.44	0.41	0.39
MgO	13.10	12.86	12.89	13.04	13.02	11.66	11.59	12.19	11.77	12.42	12.13	12.12	11.66	11.92	12.02
CaO	11.16	11.21	11.34	11.16	11.23	11.91	11.79	11.80	12.04	11.78	11.40	11.25	11.01	11.49	11.40
Na ₂ O	2.26	2.29	2.31	2.25	2.34	2.23	2.22	2.41	2.25	2.33	2.37	2.28	2.26	2.32	2.36
K_2O	1.06	1.02	1.04	1.01	1.01	1.18	1.16	1.14	1.21	0.85	1.03	1.02	1.01	1.05	1.02
Cl	0.13	0.14	0.12	0.13	0.14	0.03	0.04	0.09	0.03	0.05	0.09	0.10	0.10	0.11	0.10
F	0.20	0.20	0.20	0.19	0.19	0.09	0.10	0.36	0.08	0.22	0.19	0.19	0.19	0.18	0.17
Summe	97.85	97.87	97.96	97.53	98.12	97.14	98.18	97.90	98.25	97.23	98.68	98.72	97.82	98.45	98.66
Si	6.295	6.245	6.197	6.286	6.250	5.693	5.736	5.853	5.699	5.953	5.965	5.973	6.046	6.005	5.989
Al	1.890	1.984	1.977	1.918	1.937	2.628	2.563	2.401	2.579	2.174	2.203	2.190	2.246	2.191	2.185
Ti	0.302	0.296	0.312	0.294	0.298	0.272	0.276	0.312	0.284	0.308	0.330	0.333	0.318	0.333	0.317
Fe(3)	0.306	0.318	0.355	0.322	0.341	0.664	0.688	0.477	0.671	0.586	0.542	0.588	0.441	0.450	0.541
Mg	2.894	2.842	2.851	2.888	2.869	2.603	2.563	2.712	2.602	2.771	2.672	2.667	2.589	2.637	2.651
Fe(2)	1.366	1.369	1.352	1.345	1.355	1.158	1.206	1.268	1.182	1.222	1.326	1.301	1.420	1.413	1.359
Mn	0.054	0.049	0.048	0.052	0.053	0.024	0.027	0.031	0.023	0.039	0.052	0.052	0.055	0.051	0.049
Ca	1.772	1.780	1.802	1.776	1.779	1.911	1.873	1.886	1.914	1.888	1.805	1.779	1.756	1.828	1.807
Na	0.650	0.657	0.663	0.647	0.671	0.648	0.640	0.697	0.648	0.675	0.678	0.653	0.654	0.667	0.677
Κ	0.200	0.193	0.197	0.191	0.190	0.226	0.220	0.217	0.230	0.162	0.194	0.192	0.191	0.199	0.193
Cl	0.033	0.035	0.031	0.032	0.035	0.008	0.009	0.024	0.008	0.013	0.021	0.025	0.024	0.026	0.025
F	0.096	0.093	0.093	0.090	0.087	0.041	0.046	0.169	0.038	0.102	0.088	0.087	0.090	0.086	0.081
Summe	15.730	15.733	15.754	15.719	15.743	15.827	15.792	15.853	15.831	15.777	15.768	15.727	15.715	15.775	15.766
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklastis	scher Ströme									

M97-009	(Fortset	zung)								M97-03	92			
11	12	13	14	15	16	17	18	19	20	1	2	3	4	5
40.68	40.52	40.31	39.22	38.96	39.49	39.52	39.48	39.39	39.01	40.05	39.57	39.77	40.77	40.52
2.66	2.63	2.76	2.77	2.69	2.71	2.64	2.48	2.53	2.34	2.32	2.20	2.14	2.15	2.03
12.64	12.23	12.91	14.45	14.49	13.74	13.85	14.78	14.61	15.05	15.27	15.45	15.16	14.62	14.85
14.43	14.92	15.35	14.81	14.56	14.55	14.84	14.98	14.71	14.88	11.82	12.59	11.77	11.45	11.28
0.40	0.41	0.35	0.18	0.20	0.24	0.27	0.20	0.18	0.18	0.11	0.14	0.05	0.10	0.14
12.65	12.13	12.19	11.93	11.93	12.01	12.12	11.76	11.92	11.77	13.09	12.39	13.19	13.29	13.21
11.45	10.86	11.54	12.01	11.95	12.12	11.79	11.94	11.95	12.06	12.30	12.50	12.61	12.53	12.46
2.46	2.42	2.43	2.24	2.28	2.23	2.33	2.22	2.30	2.23	1.69	1.76	1.75	1.74	1.64
0.91	0.81	1.00	1.20	1.18	1.12	1.17	1.22	1.22	1.21	1.48	1.24	1.34	1.22	1.26
0.07	0.09	0.07	0.04	0.04	0.03	0.07	0.03	0.03	0.03	0.02	0.02	0.01	0.01	0.01
0.17	0.13	0.11	0.08	0.08	0.07	0.07	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06
98.53	97.15	99.00	98.91	98.35	98.31	98.64	99.15	98.91	98.83	98.23	97.93	97.87	97.94	97.45
5 994	6 054	5 932	5 773	5 764	5 851	5 832	5 793	5 795	5 740	5 846	5 816	5 826	5 957	5 942
2.195	2.153	2.239	2.506	2.527	2.398	2.409	2.556	2.534	2.611	2.627	2.676	2.618	2.517	2.566
0.295	0.296	0.306	0.306	0.300	0.302	0.293	0.273	0.280	0.259	0.255	0.244	0.236	0.237	0.224
0.558	0.568	0.597	0.582	0.581	0.525	0.601	0.585	0.556	0.632	0.496	0.506	0.530	0.417	0.447
2.779	2.703	2.674	2.618	2.632	2.652	2.666	2.573	2.614	2.581	2.850	2.714	2.881	2.896	2.888
1.220	1.297	1.292	1.240	1.221	1.277	1.230	1.253	1.253	1.199	0.947	1.042	0.912	0.982	0.936
0.049	0.052	0.043	0.023	0.025	0.030	0.033	0.025	0.023	0.023	0.014	0.018	0.006	0.013	0.017
1.807	1.738	1.819	1.894	1.894	1.925	1.864	1.876	1.883	1.902	1.924	1.968	1.979	1.961	1.958
0.704	0.702	0.692	0.640	0.655	0.641	0.666	0.630	0.657	0.635	0.478	0.501	0.498	0.493	0.466
0.171	0.155	0.187	0.225	0.223	0.211	0.220	0.228	0.228	0.228	0.276	0.232	0.251	0.228	0.236
0.018	0.022	0.018	0.009	0.010	0.009	0.017	0.008	0.008	0.008	0.004	0.004	0.003	0.003	0.003
0.080	0.060	0.049	0.037	0.035	0.034	0.032	0.034	0.031	0.031	0.033	0.029	0.028	0.029	0.027
15.772	15.718	15.783	15.809	15.821	15.812	15.813	15.793	15.822	15.810	15.714	15.716	15.738	15.699	15.679
	M97-009 11 40.68 2.66 12.64 14.43 0.40 12.65 11.45 2.46 0.91 0.07 0.17 98.53 5.994 2.195 0.295 0.558 2.779 1.220 0.049 1.807 0.704 0.171 0.018 0.080 15.772	M97-009 (Fortset 11 12 40.68 40.52 2.66 2.63 12.64 12.23 14.43 14.92 0.40 0.41 12.65 12.13 11.45 10.86 2.46 2.42 0.91 0.81 0.07 0.09 0.17 0.13 98.53 97.15 5.994 6.054 2.195 2.153 0.295 0.296 0.558 0.568 2.779 2.703 1.220 1.297 0.049 0.052 1.807 1.738 0.704 0.702 0.171 0.155 0.018 0.022 0.800 0.606 15.772 15.718	M97-009 (Fortsetzung) 11 12 13 40.68 40.52 40.31 2.66 2.63 2.76 12.64 12.23 12.91 14.43 14.92 15.35 0.40 0.41 0.35 12.65 12.13 12.19 11.45 10.86 11.54 2.46 2.42 2.43 0.91 0.81 1.00 0.07 0.09 0.07 0.17 0.13 0.11 98.53 97.15 99.00 5.994 6.054 5.932 2.195 2.153 2.239 0.295 0.296 0.306 0.558 0.568 0.597 2.779 2.703 2.674 1.220 1.297 1.292 0.049 0.052 0.043 1.807 1.738 1.819 0.704 0.702 0.692 0.171 0.155 0.187	M97-009 (Fortsetzung) 11 12 13 14 40.68 40.52 40.31 39.22 2.66 2.63 2.76 2.77 12.64 12.23 12.91 14.45 14.43 14.92 15.35 14.81 0.40 0.41 0.35 0.18 12.65 12.13 12.19 11.93 11.45 10.86 11.54 12.01 2.46 2.42 2.43 2.24 0.91 0.81 1.00 1.20 0.07 0.09 0.07 0.04 0.17 0.13 0.11 0.08 98.53 97.15 99.00 98.91 5.994 6.054 5.932 5.773 2.195 2.153 2.239 2.506 0.295 0.296 0.306 0.306 0.558 0.568 0.597 0.582 2.779 2.703 2.674 2.618 1.2	M97-009 (Fortsetzung) 11 12 13 14 15 40.68 40.52 40.31 39.22 38.96 2.66 2.63 2.76 2.77 2.69 12.64 12.23 12.91 14.45 14.49 14.43 14.92 15.35 14.81 14.56 0.40 0.41 0.35 0.18 0.20 12.65 12.13 12.19 11.93 11.93 11.45 10.86 11.54 12.01 11.95 2.46 2.42 2.43 2.24 2.28 0.91 0.81 1.00 1.20 1.18 0.07 0.09 0.07 0.04 0.04 0.17 0.13 0.11 0.08 0.83 98.53 97.15 99.00 98.91 98.35 5.994 6.054 5.932 5.773 5.764 2.195 2.260 0.306 0.306 0.300	M97-009 (Fortsetzung) 11 12 13 14 15 16 40.68 40.52 40.31 39.22 38.96 39.49 2.66 2.63 2.76 2.77 2.69 2.71 12.64 12.23 12.91 14.45 14.49 13.74 14.43 14.92 15.35 14.81 14.56 14.55 0.40 0.41 0.35 0.18 0.20 0.24 12.65 12.13 12.19 11.93 11.93 12.01 11.45 10.86 11.54 12.01 11.95 12.12 2.46 2.42 2.43 2.24 2.28 2.23 0.91 0.81 1.00 1.20 1.18 1.12 0.07 0.09 0.07 0.04 0.04 0.03 0.17 0.13 0.11 0.08 0.08 0.07 98.53 97.15 99.00 98.91 98.35 98.31	M97-009 (Fortsetzung) 11 12 13 14 15 16 17 40.68 40.52 40.31 39.22 38.96 39.49 39.52 2.66 2.63 2.76 2.77 2.69 2.71 2.64 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.43 14.92 15.35 14.81 14.56 14.55 14.84 0.40 0.41 0.35 0.18 0.20 0.24 0.27 12.65 12.13 12.19 11.93 11.01 12.12 11.79 2.46 2.42 2.43 2.24 2.28 2.23 2.33 0.91 0.81 1.00 1.20 1.18 1.12 1.17 0.07 0.09 0.07 0.04 0.03 0.07 12.12 1.17 0.03 0.11 0.08 0.07 0.07 98.53 97.15 99.00	M97-009 (Fortsetzung) 11 12 13 14 15 16 17 18 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.43 14.92 15.35 14.81 14.56 14.55 14.84 14.98 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 12.65 12.13 12.19 11.93 11.93 12.01 12.12 11.76 11.45 10.86 11.54 12.01 11.95 12.12 11.79 11.94 2.46 2.42 2.43 2.24 2.28 2.23 2.33 2.22 0.91 0.81 1.00 1.20 1.18 1.12 1.17 1.22	M97-009 (Fortsetzung) 11 12 13 14 15 16 17 18 19 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 14.43 14.92 15.35 14.81 14.56 14.55 14.84 14.98 14.71 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 12.65 12.13 12.19 11.93 11.20 12.12 11.76 11.92 14.45 10.86 11.54 12.01 11.95 12.12 11.79 11.94 11.95 2.46 2.42 2.43 2.24 2.28 2.33 2.22 2.30 0.91 0.81 <td>M97-009 (Fortsetzung) 11 12 13 14 15 16 17 18 19 20 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 14.43 14.92 15.35 14.81 14.56 14.55 14.84 14.98 14.71 14.88 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 12.65 12.13 12.19 11.93 11.91 12.12 11.76 11.92 11.77 11.45 10.86 11.54 12.01 11.95 12.12 11.71 1.22 1.22 1.21 0.07 0.99 0.07<</td> <td>M97-009 (Fortsetzung) M97-03 11 12 13 14 15 16 17 18 19 20 1 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 40.05 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 2.32 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 15.27 14.43 14.92 15.35 14.81 14.56 14.55 14.84 14.98 14.71 14.88 11.82 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 0.11 11.45 10.86 11.54 12.01 11.95 12.12 11.76 11.92 11.77 13.00 2.46 2.42 2.43 2.24 2.28 2.23<!--</td--><td>M97-009 (Fortsetzung) M97-0392 11 12 13 14 15 16 17 18 19 20 1 2 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 40.05 39.57 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 2.32 2.20 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 15.27 15.45 14.43 14.92 15.35 14.81 14.56 14.45 14.98 14.71 14.88 11.82 12.59 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 0.11 0.14 12.65 12.13 12.01 11.95 12.12 11.76 11.92 11.77 13.09 12.30 12.50</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td>	M97-009 (Fortsetzung) 11 12 13 14 15 16 17 18 19 20 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 14.43 14.92 15.35 14.81 14.56 14.55 14.84 14.98 14.71 14.88 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 12.65 12.13 12.19 11.93 11.91 12.12 11.76 11.92 11.77 11.45 10.86 11.54 12.01 11.95 12.12 11.71 1.22 1.22 1.21 0.07 0.99 0.07<	M97-009 (Fortsetzung) M97-03 11 12 13 14 15 16 17 18 19 20 1 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 40.05 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 2.32 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 15.27 14.43 14.92 15.35 14.81 14.56 14.55 14.84 14.98 14.71 14.88 11.82 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 0.11 11.45 10.86 11.54 12.01 11.95 12.12 11.76 11.92 11.77 13.00 2.46 2.42 2.43 2.24 2.28 2.23 </td <td>M97-009 (Fortsetzung) M97-0392 11 12 13 14 15 16 17 18 19 20 1 2 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 40.05 39.57 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 2.32 2.20 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 15.27 15.45 14.43 14.92 15.35 14.81 14.56 14.45 14.98 14.71 14.88 11.82 12.59 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 0.11 0.14 12.65 12.13 12.01 11.95 12.12 11.76 11.92 11.77 13.09 12.30 12.50</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	M97-009 (Fortsetzung) M97-0392 11 12 13 14 15 16 17 18 19 20 1 2 40.68 40.52 40.31 39.22 38.96 39.49 39.52 39.48 39.39 39.01 40.05 39.57 2.66 2.63 2.76 2.77 2.69 2.71 2.64 2.48 2.53 2.34 2.32 2.20 12.64 12.23 12.91 14.45 14.49 13.74 13.85 14.78 14.61 15.05 15.27 15.45 14.43 14.92 15.35 14.81 14.56 14.45 14.98 14.71 14.88 11.82 12.59 0.40 0.41 0.35 0.18 0.20 0.24 0.27 0.20 0.18 0.18 0.11 0.14 12.65 12.13 12.01 11.95 12.12 11.76 11.92 11.77 13.09 12.30 12.50	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Sti	öme									
Probe	M97-039	92 (Forts	etzung)													
Nr.	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
SiO ₂	40.03	40.10	39.89	39.88	40.68	40.36	40.12	39.22	39.50	40.38	40.37	40.38	40.52	39.05	39.51	39.62
TiO ₂	2.28	2.51	2.11	2.34	2.47	2.12	2.29	2.18	2.17	2.10	2.09	2.10	2.09	2.18	2.05	2.10
Al_2O_3	15.31	14.77	15.30	14.53	14.15	15.17	14.87	15.48	15.28	14.61	14.44	14.46	14.43	15.68	15.43	15.19
FeO	12.54	12.84	11.52	14.62	14.01	11.12	12.93	12.20	11.79	11.14	11.41	11.35	11.61	12.20	12.13	12.20
MnO	0.17	0.10	0.12	0.18	0.20	0.09	0.15	0.13	0.12	0.13	0.09	0.10	0.12	0.13	0.13	0.10
MgO	12.25	12.60	12.99	11.27	11.83	13.32	12.47	12.96	13.21	13.56	13.78	13.74	13.68	12.72	13.00	13.03
CaO	12.37	12.47	12.46	11.96	12.23	12.57	12.36	12.27	12.24	12.37	12.25	12.41	12.38	12.37	12.34	12.38
Na ₂ O	1.77	1.80	1.72	1.83	1.91	1.76	1.82	2.16	2.13	2.15	2.22	2.22	2.24	2.07	2.15	2.14
K_2O	1.17	1.18	1.28	1.20	1.07	1.35	1.16	1.17	1.27	1.21	1.13	1.16	1.15	1.26	1.18	1.30
Cl	0.02	0.03	0.02	0.03	0.03	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.04
F	0.05	0.08	0.06	0.07	0.08	0.05	0.07	0.05	0.04	0.04	0.04	0.05	0.03	0.05	0.05	0.04
Summe	97.95	98.46	97.45	97.92	98.66	97.93	98.27	97.84	97.76	97.72	97.83	98.00	98.28	97.72	97.99	98.15
Si	5.879	5.867	5.861	5.915	5.976	5.898	5.879	5.760	5.799	5.922	5.906	5.906	5.913	5.749	5.792	5.810
Al	2.651	2.547	2.649	2.541	2.449	2.612	2.569	2.679	2.644	2.526	2.490	2.493	2.481	2.721	2.667	2.625
Ti	0.251	0.276	0.233	0.261	0.273	0.233	0.253	0.240	0.240	0.232	0.230	0.231	0.230	0.241	0.227	0.231
Fe(3)	0.424	0.486	0.475	0.459	0.390	0.410	0.499	0.559	0.515	0.389	0.484	0.446	0.455	0.523	0.531	0.498
Mg	2.683	2.747	2.845	2.493	2.590	2.901	2.724	2.838	2.890	2.964	3.005	2.995	2.975	2.793	2.841	2.849
Fe(2)	1.116	1.086	0.941	1.354	1.332	0.949	1.085	0.939	0.933	0.977	0.911	0.943	0.961	0.979	0.956	0.998
Mn	0.021	0.012	0.015	0.023	0.025	0.012	0.019	0.016	0.015	0.016	0.011	0.013	0.015	0.016	0.016	0.013
Ca	1.947	1.955	1.961	1.900	1.925	1.968	1.940	1.931	1.924	1.944	1.920	1.945	1.935	1.951	1.938	1.945
Na	0.503	0.510	0.491	0.526	0.543	0.498	0.516	0.616	0.607	0.611	0.628	0.630	0.635	0.591	0.611	0.608
Κ	0.219	0.220	0.239	0.226	0.200	0.252	0.217	0.219	0.238	0.227	0.210	0.217	0.214	0.236	0.221	0.244
Cl	0.005	0.007	0.005	0.008	0.008	0.004	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.010
F	0.022	0.035	0.028	0.034	0.039	0.025	0.030	0.024	0.020	0.020	0.018	0.023	0.016	0.024	0.022	0.020
Summe	15.694	15.706	15.709	15.700	15.702	15.734	15.701	15.798	15.804	15.808	15.796	15.817	15.814	15.801	15.799	15.823
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Sti	öme									
Probe	M97-039	92 (Forts	etzung)												M97-045	5
Nr.	22	23	24	25	26	27	28	29	30	31	32	33	34	-	1	2
		20	2.		20	21	20		20	51		55	2.			2

		20	2.	20	20	27	20	_/	20	51		00	5.		-
SiO ₂	40.06	39.49	39.78	39.41	39.37	39.08	39.48	39.57	39.17	39.32	39.70	39.95	39.50	39.12	39.05
TiO ₂	1.98	2.14	2.11	2.33	2.58	2.40	2.48	2.29	2.13	2.38	2.24	1.89	2.10	2.02	2.04
Al_2O_3	14.98	15.19	15.20	14.44	14.60	14.49	14.59	14.49	14.86	14.67	14.77	14.90	15.15	15.31	15.28
FeO	11.01	11.87	11.68	14.43	14.97	14.62	14.33	14.16	14.38	14.65	14.58	11.03	11.64	13.24	13.23
MnO	0.06	0.14	0.08	0.20	0.22	0.20	0.17	0.22	0.23	0.22	0.21	0.11	0.07	0.13	0.10
MgO	13.79	13.27	13.46	11.66	11.43	11.61	11.63	11.71	11.72	11.01	11.69	14.00	13.19	12.18	12.20
CaO	12.36	12.55	12.41	12.04	12.02	11.97	12.05	11.87	12.03	11.95	11.86	12.34	12.47	12.39	12.30
Na ₂ O	2.14	2.05	2.19	2.24	2.31	2.28	2.29	2.20	2.29	2.28	2.28	2.16	2.10	2.36	2.10
K_2O	1.34	1.26	1.22	1.13	1.11	1.14	1.14	1.20	1.19	1.20	1.17	1.28	1.21	1.00	0.97
Cl	0.05	0.05	0.05	0.06	0.07	0.05	0.08	0.09	0.08	0.07	0.07	0.04	0.04	0.02	0.02
F	0.04	0.04	0.04	0.07	0.07	0.07	0.08	0.07	0.07	0.07	0.06	0.03	0.04	0.28	0.26
Summe	97.80	98.03	98.23	98.01	98.75	97.93	98.32	97.87	98.14	97.82	98.63	97.73	97.52	98.08	97.54
C:	5 962	5 706	5 0 1 1	5 052	5 0 1 0	5 9 1 4	5 950	5 970	5 907	5 077	5 957	5 9 1 1	5 916	5 705	5 702
51 A1	2.805	2.700	2.617	2.635	2 5 4 2	2.540	2.630	2 5 2 7	2.506	2.6//	2.652	2 5 6 0	2.620	2.783	2.705
AI Ti	2.383	0.225	0.222	0.260	0.286	2.340	2.346	0.256	0.227	2.365	2.300	2.309	0.229	0.225	2.007
$E_0(2)$	0.218	0.233	0.232	0.200	0.280	0.209	0.277	0.250	0.237	0.207	0.249	0.208	0.232	0.225	0.227
Ma	2 000	2 800	2 021	0.478	2 5 1 0	2 5 7 5	2 5 6 0	2 5 0 2	2 500	0.330	0.498	2 051	0.465	0.485	2.604
Fe(2)	0.885	2.099	2.931	1 314	1 370	1 302	1 357	1 308	1 255	1 502	1 200	0.707	2.890	2.080	2.094
Mn	0.009	0.905	0.917	0.025	0.028	0.025	0.022	0.028	0.028	0.028	0.027	0.797	0.951	0.017	0.012
Co	1.020	1.070	1.042	1.015	1.002	1 0023	1.012	1 8 8 0	1.011	1.012	1.872	1 022	1.067	1.064	1.052
Ca No	0.607	0.583	0.621	0.646	0.662	0.658	0.658	0.635	0.658	0.661	0.652	0.614	0.600	0.677	0.604
INA V	0.007	0.365	0.021	0.040	0.002	0.038	0.038	0.035	0.038	0.001	0.032	0.014	0.000	0.077	0.004
K Cl	0.230	0.233	0.228	0.214	0.209	0.217	0.213	0.227	0.223	0.229	0.219	0.239	0.227	0.189	0.165
E	0.011	0.014	0.012	0.010	0.017	0.014	0.020	0.021	0.020	0.018	0.018	0.009	0.011	0.132	0.000
Summo	15 824	15 801	15 919	15 815	15 810	15 826	15 827	15 802	15 926	15 844	15 804	15 817	15 800	15 847	15 761
Summe	15.824	15.801	15.010	15.815	15.819	13.820	13.827	15.802	15.850	15.844	15.804	13.817	15.809	13.647	15.701

Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Sti	öme									
Probe	M97-045	6 (Fortset	zung)													
Nr.	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SiO ₂	39.49	39.51	40.00	40.11	40.24	40.44	40.30	40.43	40.29	40.01	39.89	39.97	39.61	39.99	39.79	39.64
TiO ₂	1.98	2.05	2.04	1.95	2.00	1.98	2.05	2.03	1.95	2.02	2.04	1.93	1.96	2.04	1.96	2.03
Al_2O_3	15.10	14.91	14.35	14.50	14.53	14.42	14.49	14.61	14.49	14.57	14.58	14.41	14.44	14.61	14.86	14.94
FeO	13.32	12.74	12.57	12.09	12.23	12.19	12.16	11.94	11.97	12.27	11.90	12.26	12.29	12.28	12.41	12.64
MnO	0.17	0.12	0.11	0.12	0.14	0.16	0.13	0.12	0.16	0.13	0.15	0.14	0.12	0.12	0.13	0.16
MgO	12.30	12.74	13.03	13.45	13.43	13.53	13.35	13.41	13.26	13.41	13.48	13.38	13.23	13.32	13.21	12.91
CaO	12.22	12.47	12.47	12.56	12.35	12.48	12.52	12.54	12.54	12.50	12.58	12.38	12.43	12.50	12.55	12.63
Na ₂ O	2.24	2.27	2.09	2.20	2.19	2.14	2.14	2.15	2.09	2.17	2.16	2.15	2.17	2.18	2.20	2.08
K_2O	0.96	0.99	1.14	1.21	1.20	1.23	1.32	1.32	1.24	1.28	1.35	1.35	1.24	1.21	1.26	1.21
Cl	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
F	0.19	0.16	0.16	0.15	0.15	0.15	0.15	0.14	0.15	0.15	0.14	0.16	0.19	0.19	0.20	0.21
Summe	98.01	97.98	97.97	98.36	98.48	98.72	98.62	98.71	98.16	98.55	98.29	98.17	97.69	98.44	98.59	98.47
Si	5.822	5.818	5.885	5.870	5.876	5.891	5.888	5.897	5.908	5.849	5.846	5.868	5.846	5.852	5.821	5.811
Al	2.623	2.588	2.487	2.501	2.501	2.476	2.496	2.512	2.505	2.510	2.518	2.494	2.511	2.519	2.562	2.582
Ti	0.220	0.228	0.226	0.214	0.220	0.217	0.225	0.223	0.215	0.222	0.225	0.213	0.217	0.224	0.216	0.224
Fe(3)	0.546	0.523	0.518	0.514	0.536	0.534	0.470	0.438	0.456	0.538	0.500	0.535	0.545	0.527	0.541	0.548
Mg	2.704	2.798	2.858	2.935	2.924	2.937	2.909	2.916	2.899	2.922	2.946	2.928	2.910	2.905	2.882	2.822
Fe(2)	1.096	1.046	1.028	0.966	0.958	0.952	1.015	1.018	1.013	0.962	0.959	0.971	0.972	0.976	0.977	1.001
Mn	0.021	0.015	0.014	0.015	0.017	0.019	0.016	0.015	0.019	0.016	0.018	0.017	0.015	0.015	0.016	0.020
Ca	1.930	1.968	1.965	1.969	1.932	1.947	1.960	1.959	1.969	1.957	1.975	1.947	1.966	1.960	1.967	1.983
Na	0.641	0.648	0.598	0.624	0.620	0.605	0.606	0.609	0.593	0.616	0.613	0.613	0.620	0.617	0.623	0.591
K	0.181	0.185	0.214	0.226	0.224	0.228	0.245	0.245	0.233	0.239	0.253	0.254	0.234	0.226	0.235	0.227
Cl	0.005	0.005	0.005	0.003	0.006	0.004	0.004	0.005	0.004	0.005	0.005	0.005	0.006	0.004	0.005	0.004
F	0.090	0.072	0.075	0.071	0.070	0.067	0.067	0.064	0.070	0.070	0.067	0.076	0.091	0.086	0.093	0.098
Summe	15.785	15.816	15.792	15.833	15.808	15.805	15.830	15.832	15.810	15.833	15.853	15.838	15.836	15.823	15.840	15.809
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Stu	öme									

Probe	M97-04	5 (Fortset	zung)				M98-066	5							
Nr.	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9
SiO ₂	39.07	39.11	41.11	41.38	41.41	40.76	38.98	39.72	39.53	39.88	39.10	39.46	39.32	39.32	38.85
TiO ₂	2.03	2.04	2.05	1.93	1.96	1.93	1.91	1.87	1.84	1.81	1.97	2.20	2.05	1.93	1.90
Al_2O_3	15.24	15.29	15.45	14.72	14.45	14.64	15.35	14.58	14.91	14.64	14.80	14.48	15.35	15.16	15.36
FeO	13.19	13.28	13.08	12.14	11.99	12.24	13.22	13.39	13.06	12.96	13.48	13.10	13.58	13.47	13.30
MnO	0.20	0.18	0.16	0.11	0.12	0.13	0.16	0.11	0.15	0.13	0.17	0.13	0.15	0.17	0.15
MgO	12.21	12.25	11.52	12.95	12.96	12.84	13.10	12.83	13.23	13.20	12.88	13.11	12.85	12.74	12.90
CaO	12.30	12.48	12.46	12.79	12.67	12.69	12.14	12.30	12.28	12.18	12.16	12.24	12.18	12.15	12.30
Na ₂ O	2.18	2.31	1.81	1.73	1.73	1.73	2.16	2.19	2.19	2.33	2.25	2.18	2.19	2.11	2.24
K_2O	1.18	1.01	1.00	1.28	1.27	1.31	1.09	1.23	1.25	1.23	1.19	1.18	1.07	1.11	1.12
Cl	0.03	0.04	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02
F	0.24	0.30	0.25	0.19	0.16	0.16	0.32	0.17	0.14	0.22	0.16	0.10	0.09	0.27	0.45
Summe	97.86	98.29	98.92	99.24	98.74	98.45	98.45	98.41	98.58	98.59	98.18	98.19	98.87	98.44	98.59
Si	5.784	5.770	6.007	5.997	6.028	5.959	5.699	5.833	5.774	5.836	5.752	5.793	5.725	5.760	5.698
Al	2.660	2.659	2.662	2.514	2.480	2.522	2.645	2.523	2.567	2.524	2.565	2.505	2.635	2.617	2.655
Ti	0.226	0.226	0.226	0.211	0.214	0.213	0.210	0.207	0.202	0.199	0.218	0.242	0.225	0.213	0.209
Fe(3)	0.523	0.524	0.226	0.361	0.336	0.414	0.824	0.614	0.712	0.611	0.718	0.663	0.754	0.729	0.755
Mg	2.695	2.695	2.510	2.799	2.814	2.798	2.855	2.809	2.880	2.879	2.823	2.869	2.790	2.783	2.819
Fe(2)	1.110	1.116	1.372	1.111	1.124	1.083	0.792	1.031	0.883	0.975	0.941	0.946	0.899	0.920	0.876
Mn	0.025	0.022	0.020	0.014	0.015	0.017	0.020	0.014	0.018	0.017	0.021	0.017	0.018	0.020	0.019
Ca	1.951	1.973	1.951	1.986	1.976	1.987	1.902	1.936	1.922	1.911	1.916	1.926	1.900	1.907	1.932
Na	0.627	0.662	0.513	0.487	0.488	0.490	0.613	0.622	0.619	0.660	0.642	0.619	0.618	0.599	0.638
K	0.222	0.191	0.186	0.236	0.236	0.244	0.204	0.230	0.233	0.229	0.224	0.222	0.200	0.207	0.210
Cl	0.006	0.010	0.006	0.003	0.004	0.003	0.005	0.005	0.004	0.005	0.005	0.004	0.007	0.005	0.005
F	0.111	0.138	0.116	0.088	0.075	0.075	0.148	0.079	0.065	0.102	0.072	0.046	0.042	0.125	0.210
Summe	15.823	15.838	15.672	15.716	15.711	15.727	15.765	15.818	15.810	15.841	15.821	15.801	15.764	15.757	15.812

Fe(2)

Mn

Ca

Na

Κ

Cl

F

Summe

0.808

0.017

1.896

0.663

0.178

0.004

0.016 0.018

0.938

0.013

1.920

0.649

0.193

0.004

0.828

0.019

1.929

0.653

0.185

0.004

0.862

0.018

1.932

0.672

0.180

0.004

0.802

0.018

1.908

0.650

0.178

0.002

0.884

0.013

1.914

0.640

0.175

0.004

0.025 0.026 0.026 0.028 0.035 0.038 0.046

0.843

0.018

1.899

0.654

0.176

0.003

0.838

0.014

1.918

0.660

0.179

0.004

 $15.786 \ 15.799 \ 15.799 \ 15.815 \ 15.778 \ 15.769 \ 15.776 \ 15.795 \ 15.813 \ 15.785 \ 15.780 \ 15.810 \ 15.804 \ 15.774 \ 15.796 \ 15.815 \ 1$

0.875

0.015

1.947

0.671

0.170

0.004

0.799

0.020

1.900

0.670

0.167

0.005

0.068

0.812

0.017

1.896

0.652

0.183

0.004

0.067

0.784

0.017

1.909

0.670

0.189

0.003

0.805

0.016

1.923

0.650

0.195

0.003

0.066 0.061

0.691

0.009

1.860

0.668

0.180

0.010

0.767

0.013

1.904

0.647

0.200

0.003

0.050 0.062 0.065

0.721

0.012

1.945

0.647

0.198

0.002

Einheit	Juvenile	Kompon	enten hol	lozäner p	yroklasti	scher Str	öme									
Probe	M98-096	5				M98-099	91									
Nr.	1	2	3	4	-	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	40.75	40.10	38.18	38.24		38.98	39.48	39.34	39.47	39.40	39.07	39.32	39.07	38.87	38.87	38.81
TiO ₂	2.59	2.60	2.07	2.07		2.00	1.99	1.98	1.95	2.01	1.96	1.94	1.94	2.02	1.98	2.06
Al_2O_3	11.57	12.14	15.09	15.13		14.89	14.86	14.81	14.84	14.81	14.82	14.72	14.70	15.04	15.15	15.00
FeO	14.70	13.79	13.59	13.62		12.60	12.32	12.60	12.68	12.43	12.50	12.56	12.39	12.47	12.81	12.89
MnO	0.49	0.42	0.15	0.16		0.16	0.17	0.15	0.13	0.12	0.14	0.12	0.12	0.10	0.15	0.12
MgO	12.68	13.05	12.74	12.63		13.37	13.36	13.51	13.49	13.34	13.32	13.61	13.30	13.20	13.24	13.01
CaO	11.20	11.49	12.39	12.42		12.06	12.15	12.00	12.12	12.27	12.22	12.16	12.19	12.12	12.23	12.10
Na ₂ O	2.34	2.35	2.15	2.22		2.31	2.30	2.32	2.25	2.27	2.24	2.20	2.25	2.19	2.30	2.22
K_2O	0.99	1.06	1.10	1.09		1.00	1.06	1.08	1.04	1.01	1.10	1.06	1.04	1.05	0.97	0.96
Cl	0.10	0.07	0.02	0.02		0.02	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.01
F	0.16	0.18	0.05	0.05		0.36	0.26	0.17	0.11	0.09	0.07	0.05	0.06	0.05	0.04	0.04
Summe	97.57	97.25	97.53	97.66		97.74	97.97	97.95	98.09	97.75	97.45	97.77	97.07	97.12	97.76	97.22
Si	6.069	5.978	5.647	5.656		5.737	5.794	5.766	5.771	5.785	5.758	5.761	5.776	5.739	5.706	5.730
Al	2.031	2.134	2.630	2.638		2.583	2.570	2.558	2.556	2.563	2.574	2.542	2.562	2.617	2.621	2.610
Ti	0.290	0.292	0.230	0.230		0.221	0.220	0.218	0.214	0.222	0.217	0.214	0.215	0.225	0.219	0.229
Fe(3)	0.612	0.622	0.831	0.780		0.759	0.645	0.739	0.750	0.663	0.705	0.782	0.687	0.717	0.775	0.747
Mg	2.816	2.900	2.810	2.786		2.934	2.924	2.951	2.940	2.920	2.926	2.972	2.932	2.905	2.898	2.865
Fe(2)	1.219	1.098	0.850	0.906		0.792	0.868	0.805	0.800	0.864	0.835	0.757	0.845	0.823	0.798	0.845
Mn	0.062	0.053	0.019	0.020		0.020	0.021	0.018	0.015	0.015	0.018	0.015	0.014	0.012	0.019	0.014
Ca	1.787	1.835	1.963	1.969		1.902	1.911	1.884	1.899	1.930	1.929	1.908	1.931	1.918	1.924	1.915
Na	0.676	0.679	0.615	0.638		0.658	0.653	0.658	0.637	0.645	0.641	0.626	0.644	0.628	0.654	0.636
K	0.189	0.201	0.208	0.206		0.188	0.199	0.202	0.194	0.188	0.206	0.199	0.197	0.198	0.181	0.180
Cl	0.026	0.018	0.006	0.005		0.004	0.003	0.002	0.003	0.004	0.004	0.003	0.004	0.003	0.004	0.004
F	0.075	0.085	0.025	0.026		0.167	0.120	0.078	0.053	0.040	0.034	0.025	0.027	0.022	0.016	0.019
Summe	15.751	15.792	15.804	15.827		15.794	15.805	15.799	15.777	15.796	15.809	15.776	15.804	15.782	15.795	15.771
Einheit	Juvenile	Kompon	enten hol	lozäner p	yroklasti	scher Str	öme									
Probe	M98-099	91 (Fortse	etzung)													
Nr.	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
SiO ₂	38.56	38.95	38.33	38.57	38.57	38.98	38.56	38.39	38.45	38.72	39.15	38.61	38.94	39.43	39.34	38.98
TiO ₂	2.18	2.06	2.03	2.06	2.02	2.08	1.98	2.16	2.12	2.16	2.02	1.93	2.02	1.86	1.93	1.93
Al_2O_3	15.32	15.09	15.27	15.20	15.42	15.29	15.12	15.29	15.27	14.97	14.90	15.00	14.85	15.08	14.53	14.57
FeO	12.97	12.82	12.79	13.00	13.02	13.09	12.82	12.74	12.82	12.85	12.76	12.46	12.51	12.25	12.23	12.27
MnO	0.14	0.10	0.15	0.15	0.15	0.11	0.14	0.11	0.12	0.16	0.14	0.14	0.13	0.08	0.11	0.10
MgO	13.07	12.84	12.92	12.95	12.99	12.88	12.89	12.96	12.89	13.21	13.32	13.29	13.38	13.88	13.72	13.80
CaO	12.03	12.13	12.15	12.23	12.10	12.16	11.94	12.09	12.29	12.04	12.05	12.03	12.18	11.91	12.08	12.34
Na ₂ O	2.33	2.27	2.27	2.35	2.28	2.25	2.28	2.30	2.34	2.35	2.29	2.33	2.28	2.36	2.27	2.27
K_2O	0.95	1.02	0.98	0.96	0.95	0.94	0.93	0.95	0.90	0.89	0.98	1.00	1.04	0.97	1.07	1.05
Cl	0.02	0.01	0.02	0.02	0.01	0.02	0.01	0.02	0.02	0.02	0.02	0.01	0.01	0.04	0.01	0.01
F	0.03	0.04	0.05	0.06	0.06	0.06	0.08	0.08	0.10	0.15	0.15	0.14	0.13	0.11	0.13	0.14
Summe	97.60	97.32	96.96	97.54	97.57	97.84	96.75	97.08	97.31	97.51	97.77	96.95	97.45	97.96	97.42	97.46
Si	5.672	5.756	5.681	5.690	5.675	5.724	5.722	5.682	5.686	5.704	5.748	5.716	5.737	5.750	5.786	5.736
Al	2.656	2.627	2.667	2.643	2.674	2.646	2.645	2.666	2.662	2.599	2.579	2.618	2.579	2.591	2.518	2.527
Ti	0.241	0.229	0.227	0.229	0.224	0.230	0.221	0.240	0.235	0.239	0.223	0.215	0.224	0.204	0.214	0.213
Fe(3)	0.788	0.646	0.757	0.741	0.800	0.723	0.748	0.739	0.710	0.785	0.755	0.758	0.736	0.803	0.738	0.789
Mg	2.867	2.828	2.855	2.848	2.850	2.820	2.851	2.859	2.841	2.902	2.915	2.934	2.938	3.017	3.009	3.028

Tab. A5.6. (Fortsetzung).

Einheit	Juvenile	Kompon	enten hol	lozäner p	yroklasti	scher Str	öme									
Probe	M98-099	91 (Forts	etzung)									-	M96-075	5		
Nr.	28	29	30	31	32	33	34	35	36	37	38	-	1	2	3	4
SiO ₂	39.06	38.87	38.95	39.37	38.72	38.98	39.00	39.13	38.74	38.76	39.35		42.14	41.69	42.20	42.31
TiO ₂	1.89	1.96	1.99	2.02	1.96	1.94	1.95	1.96	2.00	1.97	1.88		2.63	2.79	2.55	2.67
Al_2O_3	14.61	14.86	14.89	15.22	15.00	14.92	14.89	14.75	14.79	14.87	14.65		11.32	11.56	11.94	11.46
FeO	12.43	12.29	12.77	12.77	12.53	12.44	12.37	12.34	12.33	12.79	12.55		13.04	13.15	12.88	13.08
MnO	0.11	0.12	0.09	0.11	0.14	0.14	0.11	0.13	0.15	0.09	0.13		0.40	0.43	0.41	0.39
MgO	13.65	13.45	13.54	13.75	13.43	13.51	13.62	13.55	13.58	13.46	13.45		13.35	13.52	13.45	13.69
CaO	12.13	12.10	12.06	12.27	12.19	12.19	12.14	12.09	12.10	12.17	12.16		11.48	11.58	10.75	11.56
Na ₂ O	2.24	2.35	2.20	2.41	2.23	2.23	2.27	2.28	2.24	2.27	2.25		2.32	2.30	2.44	2.30
K ₂ O Cl	0.02	0.01	0.01	0.99	0.01	0.01	0.01	0.01	0.99	0.01	0.01		0.89	0.88	0.91	0.93
F	0.02	0.01	0.01	0.12	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.10	0.09	0.10	0.08
Summe	97.31	97.18	97.68	99.02	97 34	97 53	97 53	97.42	97.16	97.67	97 79		97.86	98.19	97.85	98.69
Summe	27.51	27.10	27.00	<i>))</i> .02	77.54	71.55	71.55	<i>)</i> 7.42	97.10	21.01	<i>,</i>		27.00	<i>y</i> 0.1 <i>y</i>	27.05	20.02
Si	5.753	5.741	5.715	5.701	5.704	5.730	5.730	5.760	5.718	5.704	5.785		6.224	6.132	6.207	6.187
Al	2.536	2.586	2.575	2.597	2.605	2.585	2.578	2.558	2.572	2.578	2.538		1.971	2.005	2.070	1.975
Ti	0.210	0.218	0.219	0.220	0.217	0.214	0.216	0.216	0.221	0.218	0.208		0.292	0.309	0.282	0.293
Fe(3)	0.797	0.718	0.835	0.806	0.808	0.783	0.789	0.749	0.813	0.830	0.733		0.362	0.481	0.411	0.436
Mg	2.997	2.962	2.961	2.968	2.948	2.961	2.984	2.974	2.989	2.953	2.948		2.939	2.965	2.950	2.985
Fe(2)	0.734	0.800	0.732	0.741	0.735	0.747	0.731	0.770	0.709	0.744	0.810		1.249	1.138	1.1/3	1.163
Min	0.015	0.016	0.011	0.015	0.018	0.017	0.014	0.016	0.018	0.011	0.016		0.050	1.825	0.051	0.049
Ca Na	0.638	0.673	0.643	0.676	0.636	0.636	0.647	0.650	0.642	0.648	0.641		0.663	0.655	0.695	0.651
K	0.195	0.075	0.188	0.183	0.189	0.050	0.190	0.189	0.187	0.189	0.191		0.005	0.055	0.170	0.031
Cl	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.003	0.002	0.003		0.025	0.023	0.040	0.021
F	0.061	0.056	0.052	0.055	0.053	0.064	0.072	0.086	0.108	0.130	0.157		0.087	0.092	0.077	0.090
Summe	15.788	15.824	15.776	15.807	15.785	15.787	15.789	15.790	15.783	15.792	15.787		15.733	15.726	15.703	15.729
Einheit	Juvenile	Vommon		1008000	Colloble or	arungan										
		rombou	enten no	iozaner r	ranabiag	erungen										
Prohe	M96-07	Kompon	zung)	lozaller f	anabiag	erungen										
Probe	M96-075	6 (Fortset	zung)		anabiag											
Probe Nr.	M96-075	6 (Fortset	zung) 7	8	9	10	11	12	13	14	15	16	17	18	19	20
Probe Nr. SiO ₂	M96-075	6 (Fortset	zung) 7 41.67 2 92	8 41.50 2.73	9 42.07 2 70	10 41.89 2.69	11 41.84 2.82	12 41.48 2.59	13 42.50 2.57	14 42.18 2.56	15 42.43 2.66	16 42.05 2.69	17 42.31 2.62	18 42.10 2.64	19 42.37 2.63	20 42.19 2.61
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₂	M96-075 5 41.80 2.77 11.43	6 41.47 2.91 11.50	zung) 7 41.67 2.92 11.71	8 41.50 2.73 11.54	9 42.07 2.70 11.20	10 41.89 2.69 11.57	11 41.84 2.82 11.66	12 41.48 2.59 11.57	13 42.50 2.57 11.33	14 42.18 2.56 11.23	15 42.43 2.66 11.29	16 42.05 2.69 11.38	17 42.31 2.62 11.14	18 42.10 2.64 11.22	19 42.37 2.63 11.34	20 42.19 2.61 11.18
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO	M96-075 5 41.80 2.77 11.43 13.14	6 (Fortset 41.47 2.91 11.50 13.47	41.67 2.92 11.71 12.81	8 41.50 2.73 11.54 13.32	9 42.07 2.70 11.20 12.66	10 41.89 2.69 11.57 13.56	11 41.84 2.82 11.66 13.10	12 41.48 2.59 11.57 13.36	13 42.50 2.57 11.33 12.63	14 42.18 2.56 11.23 13.31	15 42.43 2.66 11.29 12.98	16 42.05 2.69 11.38 13.45	17 42.31 2.62 11.14 13.31	18 42.10 2.64 11.22 12.84	19 42.37 2.63 11.34 13.27	20 42.19 2.61 11.18 13.39
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	M96-075 5 41.80 2.77 11.43 13.14 0.39	6 (Fortset 41.47 2.91 11.50 13.47 0.36	zung) 7 41.67 2.92 11.71 12.81 0.32	8 41.50 2.73 11.54 13.32 0.37	9 42.07 2.70 11.20 12.66 0.43	10 41.89 2.69 11.57 13.56 0.43	11 41.84 2.82 11.66 13.10 0.40	12 41.48 2.59 11.57 13.36 0.51	13 42.50 2.57 11.33 12.63 0.41	14 42.18 2.56 11.23 13.31 0.41	15 42.43 2.66 11.29 12.98 0.39	16 42.05 2.69 11.38 13.45 0.42	17 42.31 2.62 11.14 13.31 0.41	18 42.10 2.64 11.22 12.84 0.36	19 42.37 2.63 11.34 13.27 0.43	20 42.19 2.61 11.18 13.39 0.43
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	M96-073 5 41.80 2.77 11.43 13.14 0.39 13.59	5 (Fortset 6 41.47 2.91 11.50 13.47 0.36 13.37	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59	8 41.50 2.73 11.54 13.32 0.37 13.21	9 42.07 2.70 11.20 12.66 0.43 13.75	10 41.89 2.69 11.57 13.56 0.43 13.31	11 41.84 2.82 11.66 13.10 0.40 13.52	12 41.48 2.59 11.57 13.36 0.51 13.20	13 42.50 2.57 11.33 12.63 0.41 13.84	14 42.18 2.56 11.23 13.31 0.41 13.50	15 42.43 2.66 11.29 12.98 0.39 13.38	16 42.05 2.69 11.38 13.45 0.42 13.41	17 42.31 2.62 11.14 13.31 0.41 13.56	18 42.10 2.64 11.22 12.84 0.36 13.28	19 42.37 2.63 11.34 13.27 0.43 13.44	20 42.19 2.61 11.18 13.39 0.43 13.59
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38	5 (Fortset 6 41.47 2.91 11.50 13.47 0.36 13.37 11.40	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.08	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.08 0.19	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO CaO Na ₂ O K ₂ O Cl F Summe	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06	6 5 (Fortset 6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.08 0.19 98.30	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155	6 5 (Fortset 6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.08 0.19 98.30 6.126	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al	M96-075 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983	6 6 6 6 6 11.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.19 98.30 6.126 2.028	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti	M96-075 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324	7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.08 0.19 98.30 6.126 2.028 0.323	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959 0.283	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3)	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.323 0.392	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.397	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.444	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959 0.283 0.420	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941	7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.323 0.392 2.979	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.397 2.918	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.289 0.444 2.913	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959 0.283 0.420 3.026	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2)	M96-075 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984 1.153	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941 1.207	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.322 2.979 1.183	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.397 2.918 1.253	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025 1.133	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915 1.191	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958 1.192	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.444 2.913 1.209	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.19 98.11 6.231 1.959 0.283 0.420 3.026 1.129	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964 1.178	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940 1.271	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940 1.204	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975 1.172	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939 1.296	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945 1.241	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973 1.177
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn	M96-073 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984 1.153 0.048	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941 1.207 0.455	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.392 2.979 1.183 0.391	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.397 2.918 1.253 0.046	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025 1.133 0.54	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915 1.191 0.054	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958 1.192 0.049	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.289 0.289 0.444 2.913 1.209 0.064	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.19 98.11 6.231 1.959 0.283 0.420 3.026 1.129 0.051	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964 1.178 0.051	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940 1.271 0.049	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940 1.204 0.052	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975 1.172 0.051	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939 1.296 0.045	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945 1.241 0.054	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973 1.177 0.053
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca	M96-073 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984 1.795 0.678	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941 1.207 0.045 1.802 0.015	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.392 2.979 1.183 0.039 2.878	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.304 0.397 2.918 1.253 0.046 1.820	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025 1.133 0.054 1.792	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915 1.191 0.054 1.811	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958 1.192 0.049 1.822	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.444 2.913 1.209 0.064 1.832	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959 0.283 0.420 3.026 1.129 0.051 1.789	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964 1.178 0.051 1.779	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940 1.271 0.049 1.787	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940 1.204 0.052 1.787	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975 1.172 0.051 1.764	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939 1.296 0.045 1.816	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945 1.241 0.054 1.771	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973 1.177 0.053 1.815
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na V	M96-073 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984 1.795 0.648 1.795 0.670	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941 1.207 0.045 1.802 0.682 0.915	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.392 2.979 1.183 0.039 1.848 0.674	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.304 0.397 2.918 1.253 0.046 1.820 0.672	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025 1.133 0.054 1.792 0.660	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915 1.191 0.054 1.811 0.639	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958 1.192 0.049 1.822 0.049	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.444 2.913 1.209 0.064 1.832 0.064	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.19 98.11 6.231 1.959 0.283 0.420 3.026 1.129 0.051 1.789 0.651	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964 1.178 0.051 1.779 0.647	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940 1.271 0.049 1.787 0.662 0.217	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940 1.204 0.052 1.787 0.664	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975 1.172 0.051 1.764 0.651 0.217	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939 1.296 0.045 1.816 0.667	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945 1.241 0.054 1.771 0.678	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973 1.177 0.053 1.815 0.650
Probe Nr. TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K Cl	M96-073 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984 1.795 0.670 0.175	Kompoli 5 (Fortset) 6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941 1.207 0.045 1.802 0.682 0.026 0.266	41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.126 2.028 0.323 0.392 2.979 1.183 0.0391 1.848 0.669 0.174 0.0174	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.397 2.918 1.253 0.046 1.820 0.677 0.192	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025 1.133 0.054 1.792 0.660 0.1660 0.025	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915 1.191 0.054 1.811 0.639 0.184 0.023	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958 1.192 0.049 1.822 0.049 1.822 0.682 0.172	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.444 2.913 1.209 0.064 1.832 0.064 1.832 0.064	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959 0.283 0.420 3.026 1.129 0.051 1.789 0.651 0.1651	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964 1.178 0.051 1.779 0.647 0.125	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940 1.271 0.049 1.787 0.662 0.176 0.176	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940 1.204 0.052 1.787 0.664 0.179 0.022	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975 1.172 0.051 1.764 0.651 0.173	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939 1.296 0.045 1.816 0.667 0.179 0.025	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945 1.241 0.054 1.771 0.678 0.196	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973 1.177 0.053 1.815 0.650 0.182
Probe Nr. SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K Cl F	M96-073 5 41.80 2.77 11.43 13.14 0.39 13.59 11.38 2.35 0.93 0.10 0.18 98.06 6.155 1.983 0.307 0.465 2.984 1.795 0.6148 1.795 0.024 0.082	6 41.47 2.91 11.50 13.47 0.36 13.37 11.40 2.38 0.99 0.10 0.19 98.15 6.120 2.001 0.324 0.455 2.941 1.207 0.045 1.802 0.682 0.185 0.026 0.087	zung) 7 41.67 2.92 11.71 12.81 0.32 13.59 11.73 2.35 0.93 0.19 98.30 6.126 2.028 0.323 0.392 2.979 1.183 0.039 1.848 0.6124 0.174 0.019 0.088	8 41.50 2.73 11.54 13.32 0.37 13.21 11.46 2.36 1.02 0.10 0.20 97.82 6.150 2.016 0.304 0.397 2.918 1.253 0.046 1.820 0.677 0.193 0.026 0.095	9 42.07 2.70 11.20 12.66 0.43 13.75 11.33 2.31 0.89 0.10 0.20 97.63 6.208 1.948 0.300 0.429 3.025 1.133 0.054 1.792 0.660 0.168 0.025 0.092	10 41.89 2.69 11.57 13.56 0.43 13.31 11.51 2.24 0.98 0.09 0.18 98.47 6.153 2.003 0.298 0.475 2.915 1.191 0.054 1.811 0.639 0.184 0.023 0.083	11 41.84 2.82 11.66 13.10 0.40 13.52 11.59 2.40 0.92 0.09 0.19 98.51 6.141 2.016 0.311 0.415 2.958 1.192 0.049 1.822 0.682 0.172 0.022 0.087	12 41.48 2.59 11.57 13.36 0.51 13.20 11.55 2.38 0.93 0.10 0.17 97.86 6.140 2.019 0.289 0.444 2.913 1.209 0.064 1.832 0.683 0.176 0.026 0.080	13 42.50 2.57 11.33 12.63 0.41 13.84 11.39 2.29 0.88 0.08 0.19 98.11 6.231 1.959 0.283 0.420 3.026 1.129 0.051 1.789 0.651 0.165 0.021 0.086	14 42.18 2.56 11.23 13.31 0.41 13.50 11.27 2.27 0.95 0.10 0.20 97.98 6.214 1.951 0.284 0.463 2.964 1.178 0.051 1.779 0.647 0.179 0.025 0.092	15 42.43 2.66 11.29 12.98 0.39 13.38 11.32 2.32 0.93 0.09 0.19 97.98 6.254 1.962 0.295 0.329 2.940 1.271 0.049 1.787 0.662 0.176 0.022 0.088	16 42.05 2.69 11.38 13.45 0.42 13.41 11.34 2.33 0.95 0.09 0.19 98.30 6.183 1.973 0.297 0.451 2.940 1.204 0.052 1.787 0.664 0.179 0.022 0.089	17 42.31 2.62 11.14 13.31 0.41 13.56 11.19 2.28 0.92 0.10 0.20 98.04 6.225 1.931 0.290 0.466 2.975 1.172 0.051 1.764 0.651 0.173 0.024 0.094	18 42.10 2.64 11.22 12.84 0.36 13.28 11.41 2.32 0.94 0.10 0.20 97.40 6.250 1.962 0.295 0.298 2.939 1.296 0.045 1.816 0.667 0.179 0.025 0.092	19 42.37 2.63 11.34 13.27 0.43 13.44 11.25 2.38 0.98 0.11 0.19 98.37 6.225 1.963 0.290 0.389 2.945 1.241 0.054 1.771 0.678 0.183 0.026 0.086	20 42.19 2.61 11.18 13.39 0.43 13.59 11.54 2.28 0.97 0.10 0.20 98.47 6.194 1.934 0.289 0.466 2.973 1.177 0.053 1.815 0.650 0.182 0.025 0.094

Na

Κ

Cl

F

Summe

0.674 0.665 0.701

0.161 0.189 0.144

15.744 15.778 15.772

Tab. A5.6. (Fortsetzung).

Einheit	Juvenile	Kompon	enten ho	lozäner F	Fallablag	erungen										
Probe	M96-075	i (Fortset	zung)													
Nr.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
SiO ₂	42.21	41.69	42.65	41.05	41.86	41.90	41.20	41.71	41.94	41.86	41.86	41.80	40.72	40.47	40.27	40.28
TiO ₂	2.58	2.68	2.57	2.28	1.80	1.71	1.78	1.77	1.85	1.79	1.86	1.89	1.95	2.04	1.82	1.85
Al_2O_3	11.37	11.58	11.66	13.46	13.20	13.67	14.17	13.50	13.47	13.48	12.72	13.36	13.83	14.05	14.60	14.81
FeO	12.90	12.78	12.83	13.10	11.52	11.51	11.68	11.53	11.97	11.79	11.80	12.44	13.37	12.78	12.42	12.52
MnO	0.43	0.39	0.43	0.21	0.15	0.15	0.15	0.18	0.14	0.17	0.18	0.16	0.21	0.18	0.15	0.11
MgO	13.74	13.29	13.32	12.95	14.17	13.93	13.91	13.95	14.03	14.06	13.81	13.79	12.83	13.01	13.27	13.08
CaO No. O	2.27	11.48	11.39	2.12	11.85	12.24	12.19	12.00	12.05	2.14	11.76	12.02	12.23	12.21	12.36	12.30
Na ₂ O	2.57	2.40	2.50	2.15	2.23	2.29	1.02	2.20	2.21	2.14	2.12	2.21	2.23	1.03	1.26	2.14
K ₂ U	0.93	0.95	0.91	0.93	0.91	0.02	0.02	0.98	0.03	0.93	0.98	0.93	0.89	0.03	0.02	1.50
F	0.08	0.09	0.11	0.12	0.02	0.03	0.02	0.02	0.03	0.02	0.02	0.05	0.03	0.05	0.02	0.02
Summe	98.15	97.49	98.35	98.20	97.78	98.55	98.41	97.91	98.72	98.25	97.16	98.70	98.39	98.12	98.40	98.52
Si	6.201	6.185	6.258	6.019	6.102	6.085	5.982	6.082	6.070	6.073	6.156	6.062	5.967	5.941	5.886	5.886
Al	1.969	2.024	2.016	2.326	2.268	2.340	2.424	2.320	2.298	2.305	2.205	2.284	2.389	2.431	2.515	2.551
Ti	0.285	0.299	0.284	0.251	0.197	0.187	0.194	0.194	0.201	0.195	0.206	0.206	0.215	0.226	0.201	0.203
Fe(3)	0.442	0.327	0.300	0.488	0.489	0.380	0.511	0.455	0.496	0.531	0.438	0.522	0.531	0.487	0.523	0.490
Mg	3.010	2.939	2.914	2.831	3.080	3.016	3.011	3.033	3.026	3.040	3.028	2.981	2.802	2.847	2.892	2.850
Fe(2)	1.143	1.259	1.274	1.118	0.916	1.017	0.907	0.952	0.953	0.899	1.014	0.986	1.107	1.082	0.995	1.040
Mn	0.053	0.050	0.053	0.027	0.019	0.018	0.019	0.023	0.018	0.020	0.022	0.020	0.026	0.023	0.019	0.013
Ca	1.781	1.825	1.790	1.869	1.850	1.904	1.896	1.875	1.869	1.861	1.853	1.867	1.920	1.921	1.935	1.926
ina V	0.070	0.691	0.654	0.607	0.030	0.044	0.034	0.623	0.620	0.603	0.004	0.023	0.034	0.041	0.024	0.000
K Cl	0.175	0.177	0.171	0.177	0.170	0.195	0.189	0.182	0.185	0.172	0.185	0.170	0.107	0.195	0.234	0.235
F	0.021	0.022	0.020	0.011	0.000	0.000	0.003	0.005	0.000	0.003	0.000	0.000	0.008	0.008	0.003	0.004
Summe	15 735	15 774	15 714	15 714	15 726	15 786	15 767	15 739	15 734	15 702	15 710	15 728	15 759	15 791	15 824	15 820
						101700	101707	101707	10.701	101702	101/10	10.720	101707	101771	10.02	10.020
Einheit	Juvenile	Kompon	enten ho	lozäner I	allablag	erungen										
Probe	M96-075	(Fortset	zung)											M96-102	2	
Nr.	37	38	39	40	41	42	43	44	45	46	47	48	-	1	2	3
SiO ₂	40.16	40.20	40.22	42.28	39.79	40.47	40.27	40.28	40.16	40.20	40.22	39.79		40.92	40.79	40.37
TiO ₂	1.83	1.76	1.84	1.76	1.93	2.04	1.82	1.85	1.83	1.76	1.84	1.93		2.31	2.17	2.16
Al_2O_3	14.73	14.67	14.70	12.91	14.54	14.05	14.60	14.81	14.73	14.67	14.70	14.54		14.00	13.92	14.23
FeO	12.12	11.95	12.11	11.69	12.47	12.78	12.42	12.52	12.12	11.95	12.11	12.47		12.50	11.12	12.39
MnO	0.17	0.13	0.13	0.15	0.12	0.18	0.15	0.11	0.17	0.13	0.13	0.12		0.09	0.01	0.01
MgO	13.17	13.29	13.13	14.46	13.36	13.01	13.27	13.08	13.17	13.29	13.13	13.36		13.38	14.38	13.57
CaO	12.32	11.98	12.24	12.01	12.22	12.21	12.36	12.30	12.32	11.98	12.24	12.22		11.71	11.89	11.89
Na ₂ O	2.16	2.18	2.04	2.23	2.21	2.25	2.20	2.14	2.16	2.18	2.04	2.21		2.38	2.35	2.47
K ₂ U	1.24	1.27	1.29	1.03	1.07	1.03	1.20	1.50	1.24	1.27	1.29	1.07		0.86	1.02	0.77
E	0.02	0.08	0.02	0.02	0.02	0.05	0.02	0.02	0.02	0.08	0.02	0.02		n.a.	n.a.	n.a.
Summe	0.04	0.02	0.05	0.05	0.00	0.00	0.04	0.03	0.04	0.02	0.05	0.00		08.16	07.65	07.87
Summe	91.91	97.54	91.11	98.58	91.10	96.12	98.40	98.52	91.91	97.54	91.11	91.10		98.10	97.05	91.01
Si	5.893	5.914	5.908	6.119	5.840	5.941	5.886	5.886	5.893	5.914	5.908	5.840		5.971	5.950	5.902
Al	2.546	2.542	2.545	2.202	2.515	2.431	2.515	2.551	2.546	2.542	2.545	2.515		2.408	2.393	2.452
Ti	0.202	0.195	0.204	0.192	0.213	0.226	0.201	0.203	0.202	0.195	0.204	0.213		0.254	0.238	0.238
Fe(3)	0.483	0.499	0.490	0.509	0.632	0.487	0.523	0.490	0.483	0.499	0.490	0.632		0.488	0.527	0.571
Mg	2.880	2.915	2.874	3.119	2.923	2.847	2.892	2.850	2.880	2.915	2.874	2.923		2.910	5.127	2.957
re(2)	1 1111/	11 (17/1	- n uu:/	11 0115		1 (10)	11 005							1 1137/	11 8 70	0.944
M.,	0.004	0.971	0.997	0.905	0.090	0.002	0.995	1.040	1.004	0.971	0.997	0.696		0.011	0.029	0.001
Mn Co	0.021	0.971	0.016	0.903	0.014	0.023	0.995	0.013	0.021	0.971	0.997	0.898		0.011	0.001	0.001

0.615 0.623 0.580 0.625 0.630 0.641 0.624 0.606 0.615 0.623 0.580 0.630

 $0.233 \quad 0.238 \quad 0.241 \quad 0.190 \quad 0.200 \quad 0.193 \quad 0.234 \quad 0.253 \quad 0.233 \quad 0.238 \quad 0.241 \quad 0.200$

0.005 0.019 0.004 0.005 0.006 0.008 0.005 0.004 0.005 0.019 0.004 0.006

 0.020
 0.011
 0.024
 0.022
 0.030
 0.028
 0.021
 0.025
 0.020
 0.011
 0.024
 0.030

 15.814
 15.801
 15.781
 15.741
 15.788
 15.791
 15.824
 15.820
 15.814
 15.801
 15.781
 15.788

Tab. A5.6. (Fortsetzung).

Einheit	Juvenile	Kompon	enten ho	lozäner I	Fallablag	erungen										
Probe	M96-102	2 (Fortset	zung)			M96-163	3				M97-053	3				
Nr.	4	5	6	7	-	1	2	3	4	-	1	2	3	4	5	6
SiO ₂	41.32	40.72	40.55	41.05		42.36	41.69	40.69	40.81		42.69	42.51	42.67	42.14	42.33	41.72
TiO ₂	1.90	2.09	2.22	1.91		2.64	3.00	2.40	2.31		2.60	2.63	2.75	2.58	2.25	2.56
Al_2O_3	13.71	14.03	14.31	13.49		11.01	11.85	13.56	13.22		11.07	10.93	10.81	11.61	11.32	11.74
FeO	10.67	11.08	11.56	10.20		15.73	13.75	12.65	12.53		12.91	13.14	13.13	13.42	13.68	13.33
MnO	0.00	0.00	0.01	0.00		0.50	0.46	0.25	0.22		0.47	0.44	0.45	0.46	0.46	0.35
MgO	14.69	14.50	13.67	15.13		12.10	12.80	13.68	13.69		13.33	13.33	13.44	13.08	13.02	12.99
CaO	11.94	12.32	11.76	11.83		10.70	10.82	11.60	11.49		11.62	11.33	11.36	11.55	11.34	11.56
Na ₂ O	2.38	2.30	2.37	2.31		2.10	2.25	2.38	2.42		2.27	2.20	2.31	2.35	2.28	2.29
R ₂ 0	1.15 n 9	1.12 n 9	0.92	1.12 n 9		1.00 n.a	0.81	0.80	0.80		0.97	0.11	0.11	0.98	0.80	0.08
F	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.		0.22	0.21	0.23	0.21	0.24	0.22
Summe	97.74	98.22	97.37	97.04		98.20	97.42	98.00	97.55		98.26	97.91	98.28	98.47	97.88	97.94
Si	6.015	5.918	5.946	5.996		6.259	6.161	5.940	5.988		6.290	6.283	6.288	6.204	6.257	6.179
Al	2.352	2.403	2.473	2.322		1.918	2.065	2.333	2.287		1.923	1.904	1.877	2.014	1.972	2.050
Ti	0.208	0.229	0.245	0.210		0.294	0.333	0.264	0.255		0.289	0.293	0.305	0.286	0.251	0.285
Fe(3)	0.466	0.518	0.459	0.561		0.495	0.455	0.637	0.583		0.266	0.326	0.302	0.341	0.414	0.333
Mg	3.189	3.142	2.988	3.295		2.666	2.819	2.976	2.995		2.927	2.937	2.952	2.870	2.869	2.869
Fe(2)	0.833	0.828	0.958	0.685		1.449	1.244	0.907	0.954		1.325	1.298	1.317	1.311	1.277	1.318
Mn	0.000	0.000	0.001	0.000		0.062	0.058	0.031	0.028		0.059	0.055	0.056	0.057	0.057	0.044
Ca	1.862	1.919	1.847	1.851		1.694	1.713	1.814	1.807		1.834	1.794	1.794	1.822	1.796	1.835
INA K	0.072	0.003	0.074	0.034		0.018	0.043	0.672	0.088		0.049	0.040	0.001	0.670	0.034	0.030
Cl	0.209	0.207	0.175	0.209		0.188	0.152	0.140	0.100		0.185	0.192	0.195	0.026	0.028	0.209
F	-	-	-	-		-	-	-	-		0.103	0.097	0.106	0.098	0.110	0.105
Summe	15.808	15.829	15.766	15.784		15.644	15.645	15.722	15.745		15.743	15.728	15.744	15.759	15.708	15.777
Einheit	Juvenile	Kompon	enten ho	lozäner I	Fallablag	erungen										
Probe	M97-053	3 (Fortset	zung)													
Nr.	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
SiO ₂	42.64	42.66	42.51	42.42	42.45	42.28	40.92	41.39	41.11	42.17	42.16	42.33	40.30	41.90	42.36	42.37
TiO ₂	2.81	2.70	2.53	2.76	2.76	2.79	2.49	2.43	2.55	2.92	2.71	2.65	2.31	2.72	2.69	2.80
Al_2O_3	11.00	10.97	10.79	11.02	10.92	11.05	12.60	12.32	12.39	11.11	10.93	10.90	13.57	10.89	10.84	11.08
FeO	12.76	13.01	13.66	13.41	13.21	12.93	13.72	13.65	13.47	12.75	13.27	13.04	13.59	13.24	13.03	13.02
MnO	0.44	0.48	0.49	0.46	0.44	0.40	0.29	0.33	0.32	0.42	0.44	0.44	0.26	0.53	0.46	0.43
MgO C-O	13.62	13.42	13.13	13.34	13.46	13.40	12.43	12.59	12.55	13.33	13.29	13.29	12.30	13.19	13.43	13.59
Na ₂ O	2 34	2 34	2.26	2 30	2 36	2 24	2 26	2 31	2 30	2 28	2 32	2 34	2 21	2 23	2 26	2 32
K ₂ O	0.99	1.02	0.98	1.05	1.03	0.99	1 10	1.07	1.08	1.02	0.95	0.97	1.01	0.98	1.02	0.97
Cl	0.10	0.11	0.12	0.10	0.11	0.09	0.07	0.07	0.07	0.10	0.11	0.10	0.04	0.11	0.11	0.10
F	0.23	0.22	0.21	0.21	0.22	0.22	0.23	0.22	0.24	0.22	0.22	0.23	0.21	0.16	0.20	0.22
Summe	98.29	98.33	98.30	98.35	98.23	98.01	97.88	98.27	97.85	97.73	97.77	97.64	97.96	97.51	97.87	98.31
Si	6.271	6.283	6.278	6.246	6.258	6.244	6.081	6.125	6.108	6.247	6.247	6.279	5.972	6.228	6.266	6.231
Al	1.907	1.903	1.877	1.913	1.897	1.923	2.207	2.149	2.170	1.941	1.908	1.905	2.369	1.908	1.889	1.920
Ti	0.311	0.299	0.281	0.306	0.306	0.310	0.278	0.271	0.285	0.326	0.302	0.296	0.257	0.304	0.299	0.310
Fe(3)	0.298	0.287	0.345	0.362	0.340	0.310	0.352	0.316	0.309	0.271	0.357	0.298	0.422	0.371	0.330	0.370
Mg	2.985	2.946	2.890	2.929	2.957	2.950	2.753	2.777	2.780	2.944	2.935	2.939	2.717	2.922	2.961	2.978
re(2)	1.271	1.315	1.342	1.289	1.289	1.286	1.353	1.374	1.365	1.308	1.288	1.319	1.262	1.275	1.282	1.231
MIN Ca	0.054	1 801	1.829	0.057	1 7 9 1	0.050	1.872	0.041 1 801	0.040	1 807	1 802	1 805	1 020	1.841	0.057	1 800
Na	0.667	0.667	0.647	0.658	0.673	0.641	0.652	0.664	0.667	0.656	0.667	0.672	0.635	0.642	0.649	0.660
K	0.007	0.191	0.185	0.196	0.194	0.187	0.209	0.203	0.205	0.192	0.180	0.184	0.192	0.186	0.193	0.181
Cl	0.025	0.026	0.030	0.026	0.028	0.022	0.018	0.018	0.017	0.026	0.029	0.026	0.010	0.027	0.027	0.025
F	0.108	0.103	0.099	0.098	0.105	0.102	0.107	0.103	0.111	0.105	0.103	0.108	0.098	0.075	0.094	0.104
Summe	15.741	15.752	15.746	15.737	15.751	15.743	15.793	15.804	15.801	15.746	15.743	15.752	15.789	15.742	15.747	15.735

Tab. A5.6. (Fo	ortsetzung).
-----------------------	--------------

Probe	M97-053	3 (Fortset	zung)												M98-03	1
Nr.	23	24	25	26	27	28	29	30	31	32	33	34	35	-	1	2
SiO ₂	41.30	41.13	41.36	42.58	42.19	41.79	42.18	42.40	42.51	41.91	42.31	40.09	39.88		41.19	39.86
TiO ₂	2.51	2.71	2.77	2.62	2.72	2.72	2.66	2.68	2.64	2.69	2.68	1.99	1.98		3.05	2.34
Al_2O_3	11.77	12.00	11.58	10.73	11.14	11.50	11.16	10.90	10.80	11.14	10.85	14.18	14.43		12.45	13.71
FeO	13.51	13.82	13.60	13.16	13.23	13.20	13.15	13.00	13.42	13.47	13.39	13.69	13.88		14.07	12.33
MnO	0.36	0.45	0.45	0.42	0.48	0.46	0.46	0.48	0.44	0.52	0.49	0.20	0.20		0.34	0.10
MgO	12.94	12.54	12.97	13.39	13.38	13.17	13.24	13.23	13.58	13.08	13.21	12.35	12.27		11.98	13.32
CaO	11.59	11.69	11.37	11.40	11.48	11.52	11.27	11.36	11.38	11.51	11.44	12.29	12.26		11.88	12.48
Na ₂ O	2.30	2.27	2.40	2.25	2.27	2.32	2.30	2.28	2.26	2.27	2.27	2.16	2.15		2.64	2.57
K_2O	0.98	1.12	1.04	0.97	1.00	1.02	0.98	0.96	0.95	1.05	1.01	1.07	1.05		1.11	1.15
Cl	0.09	0.09	0.10	0.10	0.10	0.09	0.11	0.11	0.11	0.12	0.12	0.03	0.02		n.a.	n.a
F	0.19	0.20	0.21	0.21	0.22	0.21	0.21	0.23	0.20	0.18	0.13	0.15	0.18		n.a.	n.a.
Summe	97.54	98.02	97.86	97.83	98.21	97.99	97.72	97.61	98.28	97.92	97.90	98.18	98.30		98.71	97.86
Si	6.138	6.111	6.139	6.297	6.219	6.180	6.246	6.289	6.252	6.210	6.262	5.913	5.876		6.104	5.892
Al	2.062	2.100	2.026	1.869	1.936	2.005	1.948	1.905	1.872	1.945	1.893	2.465	2.506		2.174	2.388
Ti	0.281	0.303	0.309	0.291	0.301	0.302	0.296	0.299	0.292	0.300	0.298	0.221	0.219		0.340	0.260
Fe(3)	0.416	0.354	0.393	0.331	0.385	0.358	0.349	0.291	0.439	0.368	0.341	0.512	0.560		0.090	0.381
Mg	2.867	2.778	2.870	2.951	2.941	2.904	2.923	2.926	2.976	2.890	2.914	2.715	2.694		2.648	2.934
Fe(2)	1.263	1.363	1.296	1.297	1.245	1.274	1.280	1.322	1.211	1.302	1.316	1.177	1.149		1.654	1.143
Mn	0.045	0.057	0.057	0.053	0.060	0.057	0.058	0.060	0.055	0.065	0.061	0.026	0.025		0.043	0.013
Ca	1.846	1.860	1.809	1.807	1.813	1.825	1.788	1.805	1.793	1.828	1.814	1.942	1.936		1.886	1.976
Na	0.663	0.654	0.691	0.646	0.649	0.664	0.659	0.656	0.644	0.652	0.652	0.618	0.614		0.759	0.735
K	0.185	0.213	0.197	0.183	0.188	0.193	0.185	0.181	0.179	0.198	0.192	0.201	0.198		0.210	0.217
Cl	0.022	0.022	0.026	0.025	0.025	0.024	0.027	0.027	0.027	0.030	0.030	0.006	0.006		-	
F	0.091	0.094	0.097	0.096	0.103	0.098	0.099	0.106	0.092	0.082	0.062	0.068	0.084		-	
Summe	15.766	15.793	15.786	15.726	15.737	15.764	15.732	15.733	15.712	15.757	15.744	15.788	15.777		15.908	15.939
Einheit						Laven M	erapi-Son	nma								
Probe	M98-03	l (Fortset	zung)		-	M96-05	6									
Nr.	3				_											
		4	5	6		1	2	3	4	5	6	7	8	9	10	11
SiO ₂	42.04	4 40.79	42.14	6 40.12		1 40.31	2	3	4 40.75	5	6 40.60	7	8	9 40.52	10 39.76	40.91
SiO ₂ TiO ₂	42.04 3.27	40.79	5 42.14 3.07	6 40.12 3.03		1 40.31 1.79	2 41.43 1.78	3 40.90 1.77	4 40.75 1.74	5 41.34 1.72	6 40.60 1.78	7 41.03 1.79	8 40.70 1.76	9 40.52 1.86	10 39.76 2.67	11 40.91 2.57
SiO ₂ TiO ₂ Al ₂ O ₃	42.04 3.27 11.27	4 40.79 1.98 13.57	5 42.14 3.07 10.92	6 40.12 3.03 12.74		1 40.31 1.79 14.84	2 41.43 1.78 13.95	3 40.90 1.77 14.42	4 40.75 1.74 14.48	5 41.34 1.72 14.82	6 40.60 1.78 14.47	7 41.03 1.79 14.73	8 40.70 1.76 14.47	9 40.52 1.86 14.65	10 39.76 2.67 13.92	11 40.91 2.57 13.43
SiO ₂ TiO ₂ Al ₂ O ₃ FeO	42.04 3.27 11.27 13.46	4 40.79 1.98 13.57 9.96	5 42.14 3.07 10.92 12.49	6 40.12 3.03 12.74 13.30		1 40.31 1.79 14.84 10.94	2 41.43 1.78 13.95 10.88	3 40.90 1.77 14.42 10.95	4 40.75 1.74 14.48 10.99	5 41.34 1.72 14.82 10.96	6 40.60 1.78 14.47 11.29	7 41.03 1.79 14.73 11.31	8 40.70 1.76 14.47 11.37	9 40.52 1.86 14.65 11.86	10 39.76 2.67 13.92 13.71	11 40.91 2.57 13.43 13.64
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO	42.04 3.27 11.27 13.46 0.38	4 40.79 1.98 13.57 9.96 0.07	5 42.14 3.07 10.92 12.49 0.42	6 40.12 3.03 12.74 13.30 0.33		1 40.31 1.79 14.84 10.94 0.09	2 41.43 1.78 13.95 10.88 0.12	3 40.90 1.77 14.42 10.95 0.06	4 40.75 1.74 14.48 10.99 0.13	5 41.34 1.72 14.82 10.96 0.10	6 40.60 1.78 14.47 11.29 0.11	7 41.03 1.79 14.73 11.31 0.09	8 40.70 1.76 14.47 11.37 0.11	9 40.52 1.86 14.65 11.86 0.11	10 39.76 2.67 13.92 13.71 0.32	11 40.91 2.57 13.43 13.64 0.16
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO	42.04 3.27 11.27 13.46 0.38 12.77	4 40.79 1.98 13.57 9.96 0.07 15.22	5 42.14 3.07 10.92 12.49 0.42 13.96	6 40.12 3.03 12.74 13.30 0.33 12.84		1 40.31 1.79 14.84 10.94 0.09 13.82	2 41.43 1.78 13.95 10.88 0.12 14.19	3 40.90 1.77 14.42 10.95 0.06 13.91	4 40.75 1.74 14.48 10.99 0.13 13.98	5 41.34 1.72 14.82 10.96 0.10 14.37	6 40.60 1.78 14.47 11.29 0.11 13.98	7 41.03 1.79 14.73 11.31 0.09 14.03	8 40.70 1.76 14.47 11.37 0.11 13.89	9 40.52 1.86 14.65 11.86 0.11 13.50	10 39.76 2.67 13.92 13.71 0.32 12.20	11 40.91 2.57 13.43 13.64 0.16 12.42
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO	42.04 3.27 11.27 13.46 0.38 12.77 11.73	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97	111 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79
$\begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ Cl \end{array}$	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a.	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a.	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a.	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a.		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04
$\begin{array}{c} SiO_2 \\ TiO_2 \\ Al_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ Na_2O \\ K_2O \\ Cl \\ F \end{array}$	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. n.a.	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. n.a.	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a.	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a.		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10
$\begin{array}{l} SiO_2\\ TiO_2\\ Al_2O_3\\ FeO\\ MnO\\ MgO\\ CaO\\ Na_2O\\ K_2O\\ Cl\\ F\\ Summe \end{array}$	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35	42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18 98.04	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56	40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O CaO K ₂ O Cl F Summe Si	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. n.a. 98.35 5.934	42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21 5.949		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18 98.04 5.922	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O CaO K ₂ O Cl F Summe Si Al	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. n.a. 98.35 5.934 2.327	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a. 98.21 5.949 2.228		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034 2.395	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949 2.513	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18 98.04 5.922 2.488	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937 2.513	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433	111 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O CaO Na ₂ O Cl F Summe Si Al Ti	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a. 98.21 5.949 2.228 0.338		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560 0.197	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 98.38 6.034 2.395 0.195	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949 2.513 0.187	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18 98.04 5.922 2.488 0.195	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937 2.513 0.195	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298	111 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329 0.285
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O CaO Na ₂ O Cl F Summe Si Al Ti Fe(3)	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217 0.421	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a. 98.21 5.949 2.228 0.338 0.302		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560 0.197 0.457	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 98.38 6.034 2.395 0.195 0.385	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949 2.513 0.187 0.508	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18 98.04 5.922 2.488 0.195 0.527	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937 2.513 0.195 0.500	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382	111 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329 0.285 0.285
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Cl F Summe Si Al Ti Fe(3) Mg	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217 0.421 3.301	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a. 98.21 5.949 2.228 0.338 0.302 2.839		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560 0.197 0.457 3.017	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 98.38 6.034 2.395 0.195 0.385 3.080	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082	6 40.60 1.78 14.47 11.29 0.11 13.98 12.31 2.26 1.04 0.01 0.18 98.04 5.922 2.488 0.195 0.527 3.040	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937 2.513 0.195 0.500 3.026	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329 0.285 0.367 2.725
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2)	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. n.a. 98.35 5.934 2.327 0.217 0.421 3.301 0.791	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560 0.197 0.457 3.017 0.883	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040 0.891	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.850\\ \end{array}$	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937 2.513 0.195 0.500 3.026 0.869	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318	111 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329 0.285 0.367 2.725 1.312
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610 0.048	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. n.a. 98.35 5.934 2.327 0.217 0.421 3.301 0.791 0.008	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329 0.053	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348 0.042		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.03 97.83 97.83 5.902 2.560 0.197 0.457 3.017 0.883 0.011	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941 0.015	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922 0.008	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040 0.891 0.016	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811 0.012	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.850\\ 0.014\\ \end{array}$	$\begin{array}{c} 7\\ 41.03\\ 1.79\\ 14.73\\ 11.31\\ 0.09\\ 14.03\\ 12.22\\ 2.31\\ 1.02\\ 0.01\\ 0.20\\ 98.75\\ 5.937\\ 2.513\\ 0.195\\ 0.500\\ 3.026\\ 0.869\\ 0.011\\ \end{array}$	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901 0.014	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982 0.013	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318 0.040	40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.04 0.16 98.39 6.017 2.329 0.285 0.285 0.285 0.367 2.725 1.312 0.020
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610 0.048 1.858	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. n.a. 98.35 5.934 2.327 0.217 0.421 3.301 0.791 0.008 2.002	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329 0.053 1.868	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348 0.042 1.903		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.97 0.33 97.83 5.902 2.560 0.197 0.457 3.017 0.883 0.011 1.944	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941 0.015 1.905	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922 0.008 1.941	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040 0.891 0.016 1.950	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811 0.012 1.867	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.850\\ 0.014\\ 1.924\\ \end{array}$	$\begin{array}{c} 7\\ 41.03\\ 1.79\\ 14.73\\ 11.31\\ 0.09\\ 14.03\\ 12.22\\ 2.31\\ 1.02\\ 0.01\\ 0.20\\ 98.75\\ 5.937\\ 2.513\\ 0.195\\ 0.500\\ 3.026\\ 0.869\\ 0.011\\ 1.894 \end{array}$	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901 0.014 1.925	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982 0.013 1.919	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318 0.040 1.873	40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.04 0.16 98.39 6.017 2.329 0.285 0.367 2.725 1.312 0.020 1.884
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO CaO Na ₂ O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610 0.048 1.858 0.767	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217 0.421 3.301 0.791 0.008 2.002 0.642	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329 0.053 1.868 0.804	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348 0.042 1.903 0.780		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.33 97.83 5.902 2.560 0.197 0.457 3.017 0.883 0.011 1.944 0.664	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941 0.015 1.905 0.668	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922 0.008 1.941 0.630	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040 0.891 0.016 1.950 0.644	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811 0.012 1.867 0.658	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.850\\ 0.014\\ 1.924\\ 0.639\\ \end{array}$	$\begin{array}{c} 7\\ 41.03\\ 1.79\\ 14.73\\ 11.31\\ 0.09\\ 14.03\\ 12.22\\ 2.31\\ 1.02\\ 0.01\\ 0.20\\ 98.75\\ 5.937\\ 2.513\\ 0.195\\ 0.500\\ 3.026\\ 0.869\\ 0.011\\ 1.894\\ 0.649\\ \end{array}$	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901 0.014 1.925 0.659	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982 0.013 1.919 0.671	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318 0.040 1.873 0.754	111 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329 0.285 0.367 2.725 1.312 0.020 1.884 0.675
SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610 0.048 1.858 0.767 0.213	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217 0.421 3.301 0.791 0.008 2.002 0.642 0.305	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329 0.053 1.868 0.804 0.185	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348 0.042 1.903 0.780 0.220		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560 0.197 0.457 3.017 0.457 3.017 0.883 0.011 1.944 0.664 0.182	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941 0.015 1.905 0.668 0.196	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922 0.008 1.941 0.630 0.195	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040 0.891 0.016 1.950 0.644 0.198	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811 0.012 1.867 0.658 0.192	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.850\\ 0.014\\ 1.924\\ 0.639\\ 0.194\\ \end{array}$	7 41.03 1.79 14.73 11.31 0.09 14.03 12.22 2.31 1.02 0.01 0.20 98.75 5.937 2.513 0.195 0.500 3.026 0.869 0.011 1.894 0.649 0.189	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901 0.014 1.925 0.659 0.193	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982 0.013 1.919 0.671 0.193	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318 0.040 1.873 0.754 0.184	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 0.285 0.367 2.725 1.312 0.020 1.884 0.675 0.149
SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K Cl	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610 0.048 1.858 0.767 0.213	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217 0.421 3.301 0.791 0.008 2.002 0.642 0.305	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329 0.053 1.868 0.804 0.185	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348 0.042 1.903 0.780 0.220		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.33 97.83 5.902 2.560 0.197 0.457 3.017 0.883 0.011 1.944 0.664 0.182 0.003	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.03 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941 0.015 1.905 0.668 0.196 0.007	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922 0.008 1.941 0.630 0.195 0.003	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.499 3.040 0.891 0.016 1.950 0.644 0.198 0.002	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811 0.012 1.867 0.658 0.192 0.012	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.850\\ 0.014\\ 1.924\\ 0.639\\ 0.194\\ 0.002\\ \end{array}$	$\begin{array}{c} 7\\ 41.03\\ 1.79\\ 14.73\\ 11.31\\ 0.09\\ 14.03\\ 12.22\\ 2.31\\ 1.02\\ 0.01\\ 0.20\\ 98.75\\ 5.937\\ 2.513\\ 0.195\\ 0.500\\ 3.026\\ 0.869\\ 0.011\\ 1.894\\ 0.649\\ 0.189\\ 0.003\\ \end{array}$	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901 0.014 1.925 0.659 0.193 0.003	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982 0.013 1.919 0.671 0.193 0.003	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318 0.040 1.873 0.754 0.184 0.007	11 40.91 2.57 13.43 13.64 0.16 12.42 11.96 2.37 0.79 0.04 0.10 98.39 6.017 2.329 0.285 0.367 2.725 1.312 0.020 1.884 0.675 0.149 0.009
SiO2 TiO2 Al2O3 FeO MnO CaO Na2O CaO Na2O Cl F Summe Si Al Ti Fe(3) Mg Fe(2) Mn Ca Na K Cl F	42.04 3.27 11.27 13.46 0.38 12.77 11.73 2.68 1.13 n.a. 98.72 6.214 1.964 0.364 0.053 2.814 1.610 0.048 1.858 0.767 0.213	4 40.79 1.98 13.57 9.96 0.07 15.22 12.85 2.28 1.64 n.a. 98.35 5.934 2.327 0.217 0.217 0.421 3.301 0.791 0.008 2.002 0.642 0.305	5 42.14 3.07 10.92 12.49 0.42 13.96 11.87 2.82 0.99 n.a. n.a. 98.67 6.189 1.890 0.339 0.205 3.056 1.329 0.053 1.868 0.804 0.185	6 40.12 3.03 12.74 13.30 0.33 12.84 11.98 2.71 1.16 n.a. 98.21 5.949 2.228 0.338 0.302 2.839 1.348 0.042 1.903 0.780 0.220		1 40.31 1.79 14.84 10.94 0.09 13.82 12.39 2.34 0.97 0.01 0.33 97.83 5.902 2.560 0.197 0.457 3.017 0.883 0.011 1.944 0.664 0.182 0.003 0.152	2 41.43 1.78 13.95 10.88 0.12 14.19 12.20 2.37 1.05 0.39 98.38 6.034 2.395 0.195 0.385 3.080 0.941 0.015 1.905 0.668 0.196 0.007 0.179	3 40.90 1.77 14.42 10.95 0.06 13.91 12.40 2.22 1.05 0.01 0.10 97.80 5.975 2.482 0.194 0.417 3.030 0.922 0.008 1.941 0.630 0.195 0.003 0.047	4 40.75 1.74 14.48 10.99 0.13 13.98 12.47 2.28 1.06 0.01 0.11 98.00 5.945 2.491 0.191 0.449 3.040 0.891 0.016 1.950 0.644 0.198 0.002 0.051	5 41.34 1.72 14.82 10.96 0.10 14.37 12.11 2.36 1.05 0.19 99.07 5.949 2.513 0.187 0.508 3.082 0.811 0.012 1.867 0.658 0.192 0.012 0.084	$\begin{array}{c} 6\\ \hline \\ 40.60\\ 1.78\\ 14.47\\ 11.29\\ 0.11\\ 13.98\\ 12.31\\ 2.26\\ 1.04\\ 0.01\\ 0.18\\ 98.04\\ \hline \\ 5.922\\ 2.488\\ 0.195\\ 0.527\\ 3.040\\ 0.527\\ 3.040\\ 0.850\\ 0.014\\ 1.924\\ 0.639\\ 0.194\\ 0.002\\ 0.085\\ \hline \end{array}$	$\begin{array}{c} 7\\ 41.03\\ 1.79\\ 14.73\\ 11.31\\ 0.09\\ 14.03\\ 12.22\\ 2.31\\ 1.02\\ 0.01\\ 0.20\\ 98.75\\ 5.937\\ 2.513\\ 0.195\\ 0.500\\ 3.026\\ 0.869\\ 0.011\\ 1.894\\ 0.649\\ 0.189\\ 0.003\\ 0.091\\ \end{array}$	8 40.70 1.76 14.47 11.37 0.11 13.89 12.32 2.33 1.04 0.01 0.26 98.28 5.935 2.487 0.193 0.486 3.019 0.901 0.014 1.925 0.659 0.193 0.003 0.122	9 40.52 1.86 14.65 11.86 0.11 13.50 12.27 2.37 1.04 0.01 0.28 98.47 5.914 2.521 0.205 0.465 2.938 0.982 0.013 1.919 0.671 0.193 0.003 0.128	10 39.76 2.67 13.92 13.71 0.32 12.20 11.79 2.62 0.97 0.03 0.57 98.56 5.894 2.433 0.298 0.382 2.695 1.318 0.040 1.873 0.754 0.184 0.007 0.267	11 40.91 2.57 13.43 13.64 0.16 2.37 0.79 0.04 0.10 98.39 0.04 0.839 0.285 0.367 2.725 1.312 0.020 1.884 0.675 0.149 0.009 0.045

Tab. A	45.6. (Fortsetzung	g).
Einheit	Laven Merapi-Somma	

I un	110.00	•	0115012
Einheit	Laven	Me	erapi-Somn

Probe	M96-070)														
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	40.82	40.48	40.38	40.41	40.09	40.17	40.35	39.92	40.94	40.76	40.41	40.39	40.49	40.38	40.53	40.56
TiO ₂	2.65	2.33	2.36	2.14	2.12	2.10	2.14	2.37	2.37	2.27	2.27	2.14	2.10	2.14	2.13	2.13
Al_2O_3	13.51	14.10	13.97	14.69	14.63	14.57	14.64	13.52	13.95	14.04	14.22	14.31	14.50	14.53	14.58	14.61
FeO	13.75	13.78	13.80	13.02	13.27	13.34	13.12	13.54	13.60	13.79	13.53	13.44	13.20	13.64	13.42	13.23
MnO	0.25	0.20	0.21	0.12	0.15	0.13	0.14	0.15	0.18	0.17	0.18	0.20	0.16	0.15	0.17	0.16
MgO	12.50	12.48	12.47	12.59	12.55	12.65	12.70	12.10	12.63	12.57	12.55	12.47	12.72	12.72	12.56	12.72
CaO	12.01	11.91	12.01	12.44	12.28	12.39	12.43	12.27	12.01	12.14	12.20	12.26	12.06	12.23	12.47	12.33
Na ₂ O	2.38	2.35	2.40	2.27	2.16	2.26	2.25	2.12	2.35	2.25	2.26	2.25	2.31	2.24	2.18	2.22
K_2O	0.81	0.83	0.84	0.97	0.94	0.96	0.90	0.95	0.83	0.87	0.86	0.90	0.89	0.86	0.89	0.89
Cl	0.04	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
F	0.08	0.07	0.06	0.08	0.07	0.05	0.06	0.08	0.06	0.04	0.07	0.08	0.05	0.07	0.06	0.06
Summe	98.80	98.56	98.52	98.75	98.27	98.63	98.74	97.05	98.95	98.93	98.59	98.46	98.50	98.97	99.01	98.91
Si	5.981	5.930	5.927	5.908	5.880	5.876	5.891	5.964	5.971	5.947	5.917	5.924	5.918	5.878	5.905	5.905
Al	2.333	2.434	2.417	2.530	2.529	2.512	2.518	2.381	2.398	2.414	2.454	2.474	2.498	2.493	2.504	2.506
Ti	0.292	0.257	0.261	0.235	0.234	0.231	0.235	0.267	0.260	0.249	0.250	0.236	0.231	0.234	0.233	0.233
Fe(3)	0.416	0.507	0.487	0.414	0.529	0.518	0.485	0.404	0.452	0.503	0.500	0.478	0.505	0.590	0.497	0.508
Mg	2.730	2.726	2.728	2.743	2.744	2.759	2.763	2.695	2.747	2.734	2.739	2.727	2.772	2.760	2.727	2.761
Fe(2)	1.270	1.181	1.208	1.178	1.098	1.115	1.116	1.288	1.207	1.180	1.157	1.171	1.109	1.070	1.138	1.103
Mn	0.031	0.025	0.026	0.014	0.018	0.016	0.018	0.019	0.023	0.021	0.023	0.025	0.020	0.019	0.022	0.020
Ca	1.886	1.870	1.888	1.949	1.930	1.942	1.945	1.963	1.878	1.898	1.914	1.926	1.889	1.907	1.947	1.924
Na	0.675	0.668	0.684	0.643	0.613	0.640	0.636	0.615	0.664	0.637	0.642	0.639	0.653	0.632	0.617	0.627
K	0.152	0.155	0.157	0.180	0.176	0.178	0.168	0.180	0.155	0.163	0.161	0.168	0.165	0.160	0.165	0.164
CI	0.009	0.007	0.008	0.005	0.005	0.005	0.005	0.007	0.006	0.005	0.006	0.006	0.006	0.005	0.005	0.005
F	0.039	0.034	0.026	0.038	0.030	0.022	0.026	0.036	0.026	0.020	0.031	0.037	0.025	0.031	0.029	0.026
Summe	15.766	15./53	15./81	15.796	15.752	15./8/	15.775	15.775	15./53	15.745	15./58	15./68	15.759	15.743	15./53	15.750
Einheit	Laven M	erapi-Son	nma													
Probe	M96-070) (Fortset	zung)													
Nr.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
SiO ₂	40.51	40.64	40.69	40.56	39.53	40.07	39.74	40.40	40.18	40.08	40.32	40.32	39.80	40.34	41.86	41.72
TiO ₂	2.11	2.10	2.26	2.48	1.93	1.99	2.04	2.05	2.17	2.04	2.02	2.03	2.03	2.45	2.54	2.49
Al_2O_3	14.64	14.63	13.99	13.99	14.97	14.60	14.40	14.48	14.61	14.63	14.55	14.42	14.90	13.48	12.69	12.61
FeO	13.05	13.36	13.51	13.68	13.05	12.92	12.42	12.47	12.57	12.67	12.73	12.75	13.06	13.47	13.66	13.81
MnO	0.19	0.16	0.21	0.23	0.16	0.18	0.12	0.13	0.13	0.16	0.18	0.13	0.13	0.22	0.39	0.38
MgO	12.72	12.67	12.39	12.53	13.08	13.15	13.07	12.98	12.87	12.88	13.02	13.15	12.94	12.38	13.00	12.98
CaO	12.43	12.28	12.05	11.82	12.17	12.40	12.37	12.45	12.24	12.21	12.10	12.21	12.17	11.81	11.04	11.07
Na ₂ O	2.24	2.26	2.36	2.33	2.43	2.21	2.19	2.14	2.25	2.25	2.26	2.24	2.25	2.25	2.50	2.42
K_2O	0.90	0.95	0.81	0.82	0.93	0.99	1.02	0.99	0.95	0.93	0.95	0.91	0.92	0.83	0.56	0.57
Cl	0.02	0.02	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.04
F	0.05	0.05	0.08	0.09	0.40	0.05	0.06	0.04	0.04	0.04	0.06	0.05	0.51	0.05	0.06	0.06
Summe	98.85	99.12	98.38	98.56	98.66	98.57	97.44	98.15	98.02	97.91	98.21	98.22	98.73	97.30	98.35	98.15
Si	5.904	5.911	5.977	5.940	5.783	5.844	5.866	5.917	5.896	5.885	5.899	5.894	5.819	5.986	6.115	6.106
Al	2.515	2.508	2.422	2.414	2.581	2.510	2.506	2.500	2.526	2.532	2.509	2.484	2.567	2.358	2.185	2.176
Ti	0.232	0.229	0.250	0.273	0.212	0.219	0.227	0.226	0.239	0.225	0.222	0.223	0.223	0.273	0.279	0.274
Fe(3)	0.478	0.488	0.411	0.499	0.665	0.622	0.536	0.471	0.468	0.519	0.541	0.569	0.636	0.448	0.503	0.551
Mg	2.764	2.748	2.713	2.736	2.852	2.859	2.875	2.833	2.816	2.819	2.839	2.865	2.821	2.739	2.831	2.831
Fe(2)	1.113	1.137	1.248	1.176	0.932	0.953	0.996	1.057	1.074	1.037	1.017	0.989	0.961	1.224	1.166	1.139
Mn	0.023	0.020	0.027	0.029	0.019	0.022	0.015	0.016	0.016	0.020	0.022	0.016	0.016	0.028	0.049	0.047
Ca	1.941	1.913	1.896	1.855	1.907	1.938	1.956	1.954	1.924	1.921	1.897	1.913	1.907	1.878	1.728	1.736
ina V	0.632	0.638	0.671	0.661	0.690	0.624	0.628	0.607	0.639	0.639	0.642	0.635	0.639	0.647	0.709	0.687
	0.168	0.177	0.152	0.153	0.1/4	0.184	0.193	0.185	0.178	0.1/4	0.177	0.169	0.172	0.15/	0.104	0.10/
E E	0.005	0.004	0.007	0.007	0.005	0.004	0.004	0.004	0.004	0.005	0.004	0.005	0.005	0.005	0.010	0.010
Summe	15,768	15,769	15,767	15.737	15.814	15,775	15.797	15,767	15.777	15.772	15,764	15.758	15,761	15.739	15.669	15,654
				/			/ /			· · · · ·						

	Tab.	A5.6. (Fortsetzung)
2	Einheit.	Lana Manai Camura

LaD. F	43.0. (f	erapi-So	nma	;) .									
Probe	M96-070	0 (Fortse	tzung)										
Nr.	33	34	35	36	37	38	39	40	41	42	43	44	45
SiO ₂	42.23	41.94	41.90	41.85	41.74	41.98	41.68	41.75	41.07	40.27	40.36	40.24	39.98
TiO ₂	2.42	2.47	2.42	2.49	2.37	2.48	2.47	2.52	2.61	2.09	2.14	2.16	2.07
Al_2O_3	12.18	12.55	12.63	12.59	12.77	12.69	12.78	12.58	13.00	14.45	14.36	14.16	14.50
FeO	13.66	13.68	13.82	13.85	13.63	13.45	13.83	13.64	14.09	13.37	13.08	13.24	13.15
MnO	0.37	0.37	0.37	0.39	0.37	0.35	0.34	0.38	0.25	0.16	0.14	0.20	0.13
MgO	13.44	13.15	13.17	13.11	13.25	13.19	12.91	13.00	12.81	12.61	12.76	12.71	12.62
CaO	10.94	10.96	10.90	11.01	10.86	10.96	11.39	11.11	11.46	12.22	12.17	12.17	12.15
Na ₂ O	2.38	2.41	2.43	2.48	2.49	2.49	2.45	2.51	2.41	2.24	2.31	2.23	2.24
K_2O	0.52	0.58	0.57	0.56	0.59	0.51	0.59	0.58	0.82	0.86	0.89	0.95	0.96
Cl	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.02	0.02	0.02	0.02
F	0.06	0.06	0.08	0.07	0.08	0.07	0.07	0.06	0.06	0.05	0.05	0.05	0.06
Summe	98.24	98.19	98.33	98.44	98.18	98.22	98.55	98.17	98.62	98.37	98.29	98.13	97.88
Si	6.152	6.124	6.110	6.104	6.093	6.125	6.088	6.115	6.012	5.899	5.916	5.913	5.888
Al	2.092	2.160	2.170	2.165	2.196	2.183	2.200	2.172	2.242	2.495	2.480	2.453	2.516
Ti	0.265	0.271	0.265	0.273	0.260	0.272	0.272	0.278	0.288	0.230	0.236	0.239	0.229
Fe(3)	0.616	0.563	0.603	0.572	0.602	0.526	0.508	0.491	0.537	0.534	0.487	0.522	0.518
Mg	2.919	2.862	2.864	2.852	2.883	2.869	2.811	2.838	2.796	2.754	2.788	2.783	2.770
Fe(2)	1.048	1.108	1.083	1.118	1.061	1.115	1.182	1.179	1.188	1.104	1.116	1.105	1.101
Mn	0.046	0.046	0.045	0.048	0.046	0.044	0.042	0.047	0.032	0.020	0.018	0.024	0.017
Ca	1.707	1.715	1.703	1.720	1.698	1.713	1.783	1.744	1.797	1.919	1.912	1.915	1.917
Na	0.672	0.682	0.686	0.702	0.706	0.705	0.694	0.714	0.684	0.636	0.656	0.635	0.640
K	0.097	0.107	0.106	0.104	0.109	0.095	0.110	0.109	0.153	0.162	0.167	0.177	0.180
Cl	0.009	0.009	0.010	0.009	0.009	0.009	0.008	0.010	0.011	0.005	0.005	0.005	0.004
F	0.029	0.027	0.039	0.030	0.038	0.033	0.030	0.030	0.028	0.025	0.024	0.024	0.029
Summe	15.614	15.638	15.635	15.658	15.655	15.648	15.688	15.687	15.729	15.755	15.777	15.767	15.777

Einneit	Rezente	Domiave	en und py	roklastis	cne Stror	ne										
Probe	M95-01	1														
Nr.	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10	mt/11	mt/12	mt/13	mt/14	mt/15	
TiO ₂	10.01	9.00	9.39	10.10	9.73	10.35	9.78	9.71	10.27	10.40	11.19	11.19	10.59	10.91	11.02	
AI_2O_3 Cr ₂ O ₂	0.06	4.07	0.05	0.06	0.09	2.85	2.85	0.04	0.05	2.80	0.03	0.06	0.05	0.05	0.04	
FeO	78.62	77.97	79.09	78.67	78.51	78.95	78.52	78.98	79.09	78.98	78.34	78.35	76.51	78.17	78.30	
MnO	0.84	0.71	0.89	0.84	0.84	0.77	0.80	0.68	0.78	0.81	0.87	0.86	0.87	0.92	0.86	
MgO	2.70	3.19	3.02	2.74	3.17	2.69	2.73	2.91	2.69	2.68	2.77	2.72	2.81	2.71	2.75	
Summe	95.31	95.60	95.89	95.49	95.81	95.66	94.72	95.86	95.69	95.79	95.97	95.97	93.61	95.56	95.68	
Fe ₂ O ₃	47.48	48.06	48.93	47.45	48.18	47.34	47.84	48.07	47.57	47.29	45.98	45.89	45.47	46.19	46.17	
FeO Summe	35.90	34.72 100.41	35.06	35.97	35.15	36.36 100.40	35.47 99.51	35.72	36.29	36.42	36.97	37.05 100.57	35.60 98.17	36.62	36.76	
Summe	100.07	100.41	100.79	100.24	100.05	100.40	<i>99.3</i> 1	100.07	100.40	100.52	100.58	100.57	90.17	100.19	100.51	
Al	0.134	0.199	0.148	0.133	0.149	0.122	0.124	0.152	0.121	0.123	0.120	0.120	0.123	0.121	0.118	
Ti Cr	0.276	0.245	0.256	0.278	0.266	0.285	0.272	0.266	0.283	0.286	0.308	0.308	0.298	0.301	0.304	
Fe(3)	1.312	1.309	1.338	1.309	1.317	1.305	1.331	1.316	1.312	1.302	1.264	1.263	1.280	1.276	1.274	
Mg	0.148	0.172	0.164	0.150	0.172	0.147	0.150	0.158	0.147	0.146	0.151	0.148	0.156	0.148	0.150	
Fe(2)	1.103	1.051	1.065	1.102	1.068	1.114	1.097	1.087	1.112	1.115	1.130	1.133	1.114	1.124	1.127	
Mn	0.026	0.022	0.027	0.026	0.026	0.024	0.025	0.021	0.024	0.025	0.027	0.027	0.028	0.029	0.027	
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	
USP (ILM)	29.6	27.2	27.7	29.8	28.7	30.4	29.0	28.8	30.1	30.5	32.7	32.8	31.8	32.1	32.3	
Einheit	Rezente	Domlave	n und py	roklastis	che Strör	ne										
Probe	M96-142	2												M96-14	5	
Nr.	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10	mt/11	mt/12	-	mt/1	mt/2	mt/.
TiO ₂	11.84	11.75	11.78	12.12	10.77	10.54	11.41	11.92	12.25	11.14	10.48	10.41		11.63	11.64	10.95
Al_2O_3	1.56	1.50	1.45	1.42	2.45	2.62	1.61	1.63	1.28	2.00	2.90	2.66		1.56	1.70	2.44
Cr ₂ O ₃	0.03	0.03	0.06	0.00	0.06	0.05	0.08	0.05	0.05	0.03	0.05	0.04		0.03	0.03	0.00
FeO	79.36	79.18	79.06	79.28	79.43	79.56	79.60	78.99	79.23	79.34	78.82	78.82		79.08	79.10	79.3
ΜοΟ	1.12	1.08	1.20	1.15	1.02	1.97	1.17	1.15	1.15	1.23	2.09	2.08		1.12	1 44	1.2.
Summe	95.39	94.99	95.06	95.30	95.62	95.72	95.30	95.25	95.28	95.44	95.45	94.98		94.89	94.90	95.92
Fe ₂ O ₂	44.97	44.93	44.97	44.50	46.48	46.85	45.66	44.64	44.31	46.07	46.51	46.61		45.05	44.84	46.3
FeO	38.90	38.75	38.60	39.23	37.61	37.40	38.52	38.82	39.36	37.89	36.97	36.88		38.55	38.75	37.68
Summe	99.89	99.49	99.56	99.76	100.28	100.42	99.88	99.72	99.72	100.06	100.11	99.64		99.40	99.39	100.50
Al	0.069	0.066	0.064	0.063	0.107	0.114	0.071	0.072	0.057	0.088	0.126	0.116		0.069	0.075	0.10
Ti	0.333	0.332	0.332	0.341	0.299	0.292	0.321	0.335	0.345	0.311	0.291	0.290		0.328	0.329	0.304
Cr	0.001	0.001	0.002	0.000	0.002	0.001	0.002	0.001	0.002	0.001	0.001	0.001		0.001	0.001	0.002
Fe(3)	1.265	1.269	1.270	1.255	1.293	1.300	1.285	1.256	1.251	1.289	1.291	1.302		1.273	1.267	1.28
Mg	0.082	0.081	0.081	0.076	0.104	0.109	0.080	0.084	0.075	0.094	0.115	0.115		0.082	0.081	0.104
re(2) Mn	1.216	1.216	1.211	0.036	1.163	1.153	1.204	1.214	1.235	1.178	1.141	1.145		1.211	1.217	1.162
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.00
USP (ILM)	34.5	34.3	34.4	35.2	31.6	31.0	33.3	34.8	35.6	32.6	31.0	30.9		34.0	34.2	32.

Tab. A5.7. Mineralchemische Daten: Fe-Ti-Oxide.

Einheit

Probe

Nr.

TiO₂

Al₂O₃

 Cr_2O_3

FeO

MnO

MgO

Summe

Fe₂O₃ FeO

Summe

Al Ti

Cr

Fe(3)

Mg Fe(2)

Mn

Summe

Einheit

Probe

Nr.

TiO₂

Al₂O₃

 Cr_2O_3 FeO

MnO

MgO

Fe₂O₃

FeO

Al Ti

Cr

Fe(3)

Mg Fe(2)

Mn

Summe USP (ILM)

Summe

1.083

0.024

3.000

30.1

1.073

0.024

3.000

29.5

1.262 1.270 1.232 1.263 1.242

 $0.165 \quad 0.169 \quad 0.150 \quad 0.164 \quad 0.157$

1.120

0.024

32.3

1.083

0.024

3.000 3.000 3.000

30.0

1.103

0.024

31.4

1.165 1.166

3.000 3.000

0.025

35.0

0.024

34.5

1.168

0.024

3.000

35.2

Summe

USP (ILM)

Rezente	Domlave	en und py	roklastis	che Ström	e									
M96-145	(Fortse	tzung)			M97-068	3								
mt/4	mt/5	mt/6	mt/7	mt/8	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10
10.83	11.10	11.40	12.03	11.53	10.31	9.71	10.10	9.49	9.80	10.18	11.66	10.35	10.38	9.71
2.62	1.61	1.63	1.38	1.97	4.27	4.64	4.47	4.22	4.69	4.54	3.36	4.06	3.69	4.50
0.05	0.08	0.05	0.05	0.03	0.06	0.05	0.06	0.09	0.08	0.06	0.04	0.08	0.07	0.09
79.48	79.52	78.91	79.15	79.46	77.75	77.27	77.03	77.22	77.04	77.29	77.48	77.70	78.03	77.32
0.97	1.16	1.35	1.13	1.24	0.82	0.72	0.78	0.75	0.76	0.78	0.80	0.78	0.74	0.78
1.95	0/ 01	04.85	1.33	1.69	2.81	3.01	3.05	3.92	3.11	2.92	2.80	2.83	2.86	2.93
95.90	94.91	94.85	95.08	93.92	90.02	95.40	95.48	95.70	93.49	95.11	90.13	93.19	95.70	95.55
46.36	46.01	45.41	44.48	45.65	45.94	46.39	45.88	48.08	46.23	45.74	44.38	45.96	46.36	46.43
37.76	38.12	38.05	39.13	38.38	36.41	35.53	35.75	33.96	35.45	36.13	37.54	36.35	36.31	35.54
100.54	99.52	99.40	99.54	100.49	100.62	100.05	100.08	100.51	100.12	100.35	100.57	100.40	100.40	99.98
0.114	0.071	0.072	0.061	0.086	0.182	0.199	0.191	0.179	0.201	0.194	0.144	0.174	0.158	0.193
0.300	0.313	0.322	0.340	0.321	0.281	0.265	0.276	0.257	0.267	0.278	0.319	0.283	0.284	0.266
0.001	0.002	0.001	0.002	0.001	0.002	0.002	0.002	0.003	0.002	0.002	0.001	0.002	0.002	0.003
1.285	1.300	1.283	1.257	1.272	1.254	1.269	1.255	1.304	1.262	1.249	1.216	1.258	1.271	1.272
0.107	0.080	0.085	0.075	0.094	0.152	0.163	0.165	0.211	0.168	0.158	0.152	0.153	0.155	0.159
1.163	1.197	1.194	1.229	1.188	1.104	1.080	1.087	1.024	1.076	1.096	1.143	1.106	1.106	1.083
0.030	0.037	0.043	0.036	0.039	0.025	0.022	0.024	0.023	0.023	0.024	0.025	0.024	0.023	0.024
3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
31.8	32.5	33.4	35.1	33.5	31.0	29.5	30.6	28.3	29.8	30.8	34.4	31.0	30.9	29.5
Rezente	Domlave	en und py	roklastis	che Ström	e Juvenile	Kompon	enten ho	lozäner p	yroklasti	ischer Sti	öme			
M97-068	(Fortse	tzung)			M96-13	7								
mt/11	mt/12	mt/13	mt/14	mt/15	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10
9.98	9.72	10.72	9.93	10.38	11.73	11.88	11.91	12.03	11.96	12.33	10.97	11.94	12.36	11.25
4.49	4.57	4.12	4.56	4.38	2.70	2.70	2.66	2.53	2.56	2.53	2.36	2.49	2.51	2.98
0.07	0.09	0.10	0.03	0.07	0.04	0.06	0.02	0.03	0.04	0.06	0.06	0.08	0.06	0.09
77.32	77.05	77.12	77.29	77.10	77.92	77.35	77.27	77.64	77.41	77.57	78.78	77.71	77.81	78.03
0.78	0.78	0.79	0.77	0.78	0.76	0.81	0.77	0.82	0.82	0.81	0.75	0.72	0.83	0.78
3.05	3.11	2.76	3.03	2.90	2.48	2.52	2.52	2.42	2.31	2.42	2.25	2.34	2.32	2.70
95.69	95.32	95.59	95.60	95.61	95.63	95.32	95.15	95.47	95.10	95.71	95.16	95.29	95.89	95.84
46.24	46.41	44.90	46.24	45.39	44.53	43.99	43.89	43.98	43.72	43.51	46.04	43.98	43.54	45.40
35.70	35.29	36.71	35.69	36.25	37.85	37.77	37.77	38.07	38.07	38.42	37.35	38.14	38.63	37.19
100.32	99.97	100.09	100.24	100.15	100.09	99.72	99.55	99.87	99.48	100.06	99.77	99.69	100.25	100.38
0.192	0.196	0.177	0.195	0.188	0.117	0.117	0.116	0.110	0.112	0.110	0.103	0.109	0.109	0.128
0.272	0.266	0.294	0.271	0.284	0.324	0.330	0.331	0.334	0.334	0.341	0.306	0.332	0.342	0.310
0.002	0.003	0.003	0.001	0.002	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002

1.233 1.222 1.221 1.222 1.220 1.206 1.284 1.225 1.206 1.250

3.000 3.000

1.183

0.025

36.2

0.127 0.147

1.138

0.024

3.000

33.1

1.189

0.026

3.000

36.2

1.180

0.023

3.000

35.2

1.158

0.024

3.000

32.3

0.136 0.138 0.139 0.133 0.127 0.133 0.124 0.129

1.180

0.026

35.4

1.175

0.026

3.000

35.3

Tab.	A5.7.	(Fortsetzung).
		(I OI COCCECHING)

Emileit	Juvenne	Rompon	enten no	iozuner p	yrokiusti	sener su	ome									
Probe	M96-137	(Fortset	zung)	M96-16	7											
Nr.	mt/11	mt/12	-	emt/1	emt/1	emt/1	emt/1	mt/1/1	emt/2	emt/2	mt/2/1	mt/2/1	emt/3	emt/3	emt/3	emt/3
TiO ₂	11.31	11.14		2.26	2.08	2.62	1.82	20.90	2.71	3.73	21.63	21.15	3.94	2.85	2.74	2.95
Al_2O_3	3.09	3.06		3.45	3.68	3.33	4.16	0.79	3.50	3.18	0.59	0.65	2.99	3.53	3.46	3.32
Cr_2O_3	0.06	0.06		0.04	0.08	0.06	0.08	0.03	0.08	0.05	0.00	0.02	0.02	0.07	0.05	0.07
FeO	77.28	77.78		83.86	84.15	84.25	83.91	73.62	83.86	83.86	73.41	73.23	83.91	84.33	84.89	84.67
MnO	0.90	0.82		1.45	1.41	1.39	1.35	0.37	1.12	1.07	0.43	0.43	0.95	1.38	1.26	1.33
MgO Summe	2.74 95.36	2.68 95.53		1.89 92.94	1.68 93.08	1.81 93.46	1.71 93.03	0.92 96.63	2.01 93.28	1.70 93.60	1.09 97.15	1.11 96.58	1.60 93.39	1.76 93.91	1.76 94.16	1.73 94.05
Fe ₂ O ₃	44.85	45.33		60.88	60.91	60.60	60.82	27.76	60.15	58.54	27.02	27.52	58.18	60.16	60.69	60.33
FeO	36.93	36.99		29.08	29.35	29.72	29.18	48.65	29.73	31.19	49.10	48.46	31.55	30.19	30.27	30.38
Summe	99.86	100.08		99.04	99.18	99.53	99.12	99.41	99.31	99.46	99.86	99.34	99.22	99.94	100.24	100.10
Al	0.134	0.132		0.153	0.162	0.147	0.184	0.035	0.154	0.140	0.026	0.029	0.132	0.155	0.151	0.145
Ti	0.312	0.307		0.064	0.059	0.074	0.051	0.590	0.076	0.105	0.607	0.597	0.111	0.080	0.076	0.082
Cr	0.002	0.002		0.001	0.002	0.002	0.002	0.001	0.002	0.001	0.000	0.000	0.000	0.002	0.001	0.002
Fe(3)	1.240	1.251		1.719	1.718	1.704	1.712	0.784	1.691	1.648	0.759	0.777	1.645	1.684	1.695	1.688
Mg	0.150	0.147		0.105	0.094	0.101	0.095	0.051	0.112	0.095	0.061	0.062	0.089	0.097	0.097	0.096
Fe(2)	1.135	1.135		0.912	0.920	0.929	0.913	1.527	0.929	0.976	1.533	1.521	0.991	0.939	0.939	0.945
Summe	3 000	3 000		3 000	3 000	3 000	3 000	3 000	3 000	3 000	3 000	3 000	3.000	3 000	3 000	3 000
Summe	5.000	5.000		5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
USP (ILM)	33.5	32.9		6.9	6.4	8.0	5.6	60.1	8.3	11.3	61.5	60.6	11.9	8.7	8.3	8.9
Einheit	Juvenile	Kompone	enten ho	lozäner p	yroklasti	scher Str	öme									
Probe	M96-167	167 (Fortsetzung)												M97-00	Ð	
Nr.	mt/3/1	mt/3/1	mt/3/1	mt/3/1	emt/4	emt/4	mt/4/l	emt/5	emt/5	mt/5/1	mt/6	mt/7	-	mt/1	mt/2	mt/3
TiO ₂	18.98	19.63	21.15	19.97	3.61	3.59	18.61	1.61	1.49	18.12	9.21	9.41		10.12	10.35	10.01
Al_2O_3	0.73	0.75	0.58	0.72	2.90	2.88	1.11	3.67	4.13	0.97	2.19	2.24		2.97	2.45	2.41
Cr_2O_3	0.00	0.00	0.02	0.01	0.04	0.00	0.05	0.01	0.02	0.00	0.07	0.08		n.a.	n.a.	n.a.
FeO	75.21	75.12	73.26	74.45	85.02	85.29	75.48	85.03	85.93	75.60	79.76	80.02		79.39	79.52	79.89
MnO MaO	0.53	0.47	0.55	0.43	0.99	1.09	0.39	1.68	1.09	0.30	1.00	0.99		0.98	1.07	0.93
Summe	96.51	96.94	96.63	96.55	94.22	94.46	96.48	94.04	94.35	95.80	94.63	95.13		96.13	95.55	95.74
Fe ₂ O ₂	31.84	30.74	27.61	29.79	59.59	59.86	31.93	62.89	62.57	32.66	49.56	49.46		48.07	47.51	48.61
FeO	46.56	47.45	48.42	47.65	31.40	31.43	46.75	28.44	29.63	46.21	35.16	35.52		36.13	36.77	36.15
Summe	99.70	100.02	99.40	99.53	100.19	100.46	99.68	100.34	100.62	99.08	99.59	100.09		100.95	100.31	100.61
Al	0.032	0.033	0.026	0.032	0.127	0.126	0.049	0.160	0.180	0.043	0.096	0.098		0.127	0.107	0.104
Ti	0.535	0.551	0.597	0.563	0.101	0.100	0.525	0.045	0.041	0.514	0.258	0.262		0.277	0.287	0.276
Cr	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.001	0.000	0.002	0.002		-	-	-
Fe(3)	0.898	0.864	0.780	0.841	1.670	1.673	0.900	1.750	1.737	0.928	1.387	1.377		1.318	1.319	1.343
Mg	0.059	0.054	0.060	0.055	0.092	0.090	0.047	0.112	0.093	0.046	0.133	0.132		0.146	0.119	0.137
Fe(2)	1.459	1.482	1.520	1.495	0.978	0.976	1.465	0.880	0.914	1.459	1.093	1.099		1.101	1.135	1.110
Mn Summer	0.017	0.015	0.018	0.014	0.031	0.034	0.012	0.053	0.034	0.009	0.031	0.031		0.030	0.033	0.029
Summe	5.000	3.000	5.000	3.000	3.000	3.000	3.000	5.000	3.000	5.000	5.000	3.000		5.000	5.000	3.000
USP (ILM)	54.4	56.1	60.5	57.3	10.8	10.7	53.8	4.9	4.5	52.6	27.1	27.5		29.6	30.3	29.1

Tab. A5.7. (Fortsetzung).EinheitJuvenile Komponenten holozäner pyroklastischer Ströme

Probe

Nr.

TiO₂

 Al_2O_3

 Cr_2O_3

FeO

MnO

MgO

Summe

Fe₂O₃

FeO

Al

Ti

Cr

Fe(3)

Fe(2)

Summe

Einheit

Probe

Nr.

TiO₂

Al₂O₃

 Cr_2O_3 FeO

MnO

MgO

Summe

Fe₂O₃

FeO

Al

Ti

Cr Fe(3)

Mg Fe(2)

Mn

Summe USP (ILM) 0.157

1.120

0.026

3.000

32.5

0.169 0.162 0.167

1.082

0.021

3.000

29.7

1.080

0.022

3.000

29.9

1.091

0.021

30.2

3.000 3.000

1.076

0.020

29.2

Summe

USP (ILM)

Mg

Mn

Summe

Juvenile	Kompor	nenten ho	lozäner p	oyroklast	ischer Sti	öme									
M97-00	9 (Fortse	tzung)				M97-039	92								
mt/4	mt/5	mt/6	mt/7	mt/8	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10
10.17	10.05	9.57	9.43	8.72		10.11	9.39	11.10	10.12	10.34	9.90	10.43	10.21	10.12	9.99
2.44	2.57	3.46	3.51	4.24		3.61	3.73	2.62	3.64	3.56	3.59	3.50	3.54	3.54	3.50
n.a.	n.a.	n.a.	n.a.	n.a.		0.03	0.02	0.06	0.03	0.06	0.06	0.08	0.07	0.06	0.05
79.33	80.41	79.31	79.30	78.79		77.78	78.54	78.20	78.22	77.21	78.21	78.10	77.39	77.01	77.85
0.97	0.95	1.01	0.94	0.98		0.79	0.74	0.83	0.75	0.60	0.80	0.71	0.85	0.77	0.79
2.64	2.56	2.70	2.72	2.65		2.85	2.74	2.77	2.73	3.07	2.81	2.89	2.81	2.94	2.82
95.54	96.54	96.05	95.90	95.36		95.17	95.15	95.58	95.49	94.84	95.37	95.71	94.87	94.42	95.06
48.16	48.74	48.52	48.66	48.77		46.62	47.89	46.03	46.73	46.05	47.17	46.47	46.22	46.16	46.80
35.99	36.17	35.64	35.52	34.90		35.83	35.45	36.77	36.17	35.78	35.77	36.28	35.81	35.47	35.73
100.36	101.05	100.92	100.78	100.25		99.84	99.95	100.19	100.17	99.45	100.10	100.37	99.50	99.05	99.75
0.105	0.110	0.148	0.150	0.182		0.156	0.161	0.114	0.157	0.154	0.155	0.151	0.153	0.154	0.154
0.281	0.275	0.262	0.258	0.239		0.279	0.259	0.306	0.278	0.286	0.272	0.286	0.282	0.281	0.276
-	-	-	-	-		0.001	0.001	0.002	0.001	0.002	0.002	0.002	0.002	0.002	0.001
1.332	1.340	1.328	1.333	1.339		1.286	1.321	1.272	1.286	1.273	1.298	1.275	1.280	1.283	1.293
0.144	0.139	0.147	0.148	0.144		0.156	0.149	0.152	0.149	0.168	0.153	0.157	0.154	0.162	0.154
1.106	1.107	1.084	1.081	1.065		1.098	1.086	1.129	1.106	1.099	1.094	1.107	1.102	1.095	1.097
0.030	0.029	0.031	0.029	0.030		0.025	0.023	0.026	0.023	0.019	0.025	0.022	0.027	0.024	0.025
3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
29.7	29.1	28.3	27.9	26.3		30.2	28.2	32.5	30.2	31.0	29.6	31.0	30.6	30.5	29.9
Juvenile	Kompor	nenten ho	lozäner p	oyroklast	ischer Sti	röme									
		M97-04	5											M98-002	
mt/11		mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10	mt/11	-	mt/1	mt/2
10.97		9.70	10.02	9.87	9.99	9.89	9.54	9.73	9.87	9.77	9.69	9.89		9.66	8.58
3.03		4.36	4.28	4.17	4.30	4.14	4.39	4.30	4.23	4.30	4.43	4.37		3.38	3.45
0.06		0.07	0.06	0.07	0.05	0.03	0.07	0.06	0.05	0.04	0.07	0.08		n.a.	n.a
77.32		77.82	77.45	77.64	77.74	78.07	77.05	77.79	77.37	77.78	77.85	78.09		78.62	79.59
0.85		0.64	0.69	0.67	0.72	0.65	0.66	0.74	0.64	0.76	0.67	0.61		0.75	0.74
2.86		3.13	2.99	3.08	3.14	3.05	3.20	3.12	3.06	3.13	3.17	3.12		2.67	2.26
95.08		95.72	95.49	95.50	95.94	95.83	94.91	95.74	95.22	95.78	95.88	96.16		95.08	94.62
45.49		47.05	46.24	46.74	46.71	47.01	46.78	47.08	46.47	47.05	47.12	46.95		47.69	49.27
36.39		35.49	35.84	35.58	35.71	35.77	34.96	35.43	35.56	35.44	35.45	35.85		35.70	35.25
99.64		100.43	100.12	100.18	100.62	100.54	99.60	100.46	99.88	100.49	100.60	100.86		99.85	99.55
0.131		0.186	0.184	0.179	0.183	0.177	0.189	0.184	0.182	0.184	0.189	0.186		0.147	0.151
0.304		0.264	0.274	0.270	0.272	0.270	0.262	0.265	0.271	0.266	0.264	0.268		0.267	0.239
0.002		0.002	0.002	0.002	0.001	0.001	0.002	0.002	0.001	0.001	0.002	0.002		-	
1.260		1.283	1.266	1.279	1.272	1.283	1.285	1.284	1.275	1.283	1.282	1.275		1.319	1.372

0.169 0.165 0.174 0.169

1.067

0.020

3.000

29.0

1.074

0.023

3.000

29.2

1.085

0.020

3.000

29.8

1.085

0.020

3.000

29.6

0.166 0.169 0.171

1.074

0.023

3.000

29.3

1.072

0.021

3.000

29.1

0.168

1.082

0.019

3.000

29.6

 $0.146 \quad 0.124$

0.023 0.023

3.000 3.000

28.8 25.8

1.091

1.098

Tab.	A5.7. (Fortsetzung).
Einheit	Juvenile Komponenten holoz

Einheit	Juvenile	Kompone	enten hol	ozäner p	yroklasti	scher Str	öme									
Probe	M98-002	(Fortset	zung)]	M98-053	32						
Nr.	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8
TiO ₂	9.33	9.07	9.30	7.37	9.17	9.16	8.88		9.99	10.26	9.69	9.40	10.16	13.22	11.67	12.27
Al_2O_3	3.14	3.41	3.44	3.55	3.25	3.54	3.31		3.30	3.37	4.06	4.30	3.65	1.64	1.90	1.70
Cr_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
FeO	79.52	78.85	78.82	79.96	78.61	78.96	79.43		79.05	79.02	78.05	77.98	76.86	78.40	79.15	79.17
MnO MrO	0.84	0.94	0.91	0.83	0.87	0.89	0.83		0.82	0.83	0.65	0.69	0.75	0.79	0.84	0.91
MgO	2.41	2.47	2.54	2.49	2.47	2.54	2.42		1.89	1.90	2.24	2.03	3.03	05.20	04.80	05.22
Summe	93.23	94.74	95.00	94.20	94.36	95.09	94.00		95.05	95.44	94.00	95.00	95.05	95.50	94.80	95.52
Fe ₂ O ₃	48.66	48.53	48.24	51.47	48.24	48.46	49.10		46.65	46.34	46.24	46.99	46.86	41.87	44.35	43.77
FeO	35.74	35.19	35.41	33.65	35.20	35.35	35.24		37.08	37.33	36.44	35.70	34.69	40.73	39.24	39.78
Summe	100.12	99.60	99.84	99.36	99.21	99.94	99.78		99.73	100.08	99.31	99.70	99.74	99.49	99.24	99.70
Al	0.136	0.148	0.149	0.155	0.142	0.153	0.144		0.144	0.146	0.177	0.186	0.157	0.073	0.084	0.075
Ti	0.258	0.252	0.257	0.205	0.256	0.253	0.246		0.278	0.284	0.269	0.259	0.279	0.373	0.330	0.346
Cr	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
Fe(3)	1.347	1.348	1.336	1.434	1.346	1.340	1.363		1.300	1.285	1.285	1.296	1.286	1.182	1.255	1.234
Mg	0.132	0.136	0.139	0.137	0.137	0.139	0.133		0.104	0.108	0.123	0.143	0.198	0.070	0.069	0.071
Fe(2)	1.100	1.086	1.090	1.042	1.092	1.087	1.088		1.148	1.151	1.126	1.094	1.058	1.278	1.234	1.246
NIN	0.026	0.029	0.028	0.026	2 000	0.028	0.026		0.026	0.026	0.020	0.021	0.023	0.025	3.000	2 000
	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	27.7	27.2	27.8	22.3	27.5	27.4	26.5		30.0	30.7	29.5	28.6	30.2	38.7	34.5	35.9
Einheit	Juvenile	Kompone	enten hol	ozäner p	yroklasti	scher Str	öme									
Probe	M98-059	1								M98-066						
Nr.	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8		mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7
TiO ₂	8.96	9.75	8.59	9.91	9.92	9.99	9.67	10.06		10.32	10.99	10.74	10.44	10.70	10.93	10.62
Al_2O_3	3.55	2.66	3.61	2.63	2.70	2.63	2.71	2.62		2.60	2.61	2.56	2.71	2.59	2.52	2.56
Cr_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
FeO	78.32	78.62	79.32	79.20	78.30	79.28	78.68	78.73		78.42	78.13	78.72	79.06	78.89	78.96	79.30
MnO MaO	0.86	0.82	0.86	0.93	0.96	0.93	0.95	0.94		0.82	0.84	0.91	0.85	0.89	0.84	0.86
Summe	94.33	94.39	2.39 94.97	95.16	94.35	95.43	94.53	94.87		94.52	94.94	95.28	95.39	95.39	95.56	95.61
E O	40.25	47.04	10.50	40.10	47.00	40.17	40.02	17.00		16.72	15 62	46.47	46.07	16.57	46.20	46.01
Fe ₂ O ₃	48.35	47.84	49.50	48.10	47.38	48.17	48.03	47.60		46.73	45.63	46.47	46.97	46.57	46.30	46.91
Summe	99.17	99.18	99.93	99.98	99.10	100.25	99.34	99.64		99.20	99.51	99.93	100.10	100.06	100.20	100.31
Al Ti	0.155	0.117	0.157	0.114	0.118	0.114	0.118	0.114		0.114	0.114	0.111	0.118	0.113	0.109	0.111
11 Cr	0.249	0.275	0.237	0.275	0.278	0.276	0.270	0.280		0.289	0.306	0.298	0.289	0.297	0.303	0.294
Ee(3)	1 346	1 338	1 360	1 336	1 3 2 7	1 3 3 3	1 342	1 326		1 308	1 273	1 202	1 303	1 203	1 285	1 300
Mg	0.145	0.141	0.142	0.137	0.137	0.142	0.140	0.139		0.131	0.131	0.1292	0.128	0.127	0.127	0.125
Fe(2)	1.078	1.106	1.069	1.109	1.110	1.105	1.101	1.111		1.132	1.149	1.140	1.135	1.142	1.150	1.143
Mn	0.027	0.026	0.027	0.029	0.030	0.029	0.030	0.030		0.026	0.026	0.029	0.027	0.028	0.026	0.027
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	27.0	28.9	25.7	29.2	29.5	29.3	28.7	29.7		30.6	32.5	31.6	30.8	31.5	32.1	31.2
Probe			M98-09	6										M98-099	91	
--------------------------------	---------------	------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	----------	---------------	---------------	---------------
Nr.	mt/8	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10	-	mt/1	mt/2	mt/3
TiO ₂	10.70		8.36	8.29	8.18	8.27	8.21	8.30	8.35	8.29	8.10	8.14		11.45	11.47	7.46
Al_2O_3	2.52		3.39	3.37	3.40	3.36	3.36	3.41	3.43	3.45	4.09	4.07		3.04	3.04	5.74
Cr_2O_3	n.a.		n.a.		n.a.	n.a.	n.a.									
FeO	78.49		80.70	80.04	80.35	80.19	80.32	80.18	80.41	79.60	79.73	79.68		77.54	78.21	77.63
MnO	0.84		0.85	0.92	0.87	0.88	0.92	0.87	0.89	0.93	0.80	0.79		0.79	0.84	0.65
MgO Summe	2.25 94.80		2.48 95.78	2.49 95.11	2.49 95.28	2.36 95.07	2.39 95.20	2.34 95.10	2.38 95.47	2.33 94.60	2.15 94.87	2.12 94.81		2.56 95.38	2.60 96.16	3.49 94.97
Fe ₂ O ₃	46.19		50.79	50.48	50.80	50.42	50.66	50.31	50.47	49.89	49.59	49.45		44.58	45.14	49.68
FeO	36.93		35.00	34.62	34.63	34.83	34.73	34.91	35.00	34.71	35.11	35.18		37.43	37.59	32.93
Summe	99.42		100.87	100.16	100.37	100.12	100.27	100.14	100.53	99.60	99.84	99.76		99.84	100.68	99.94
Al	0.110		0.146	0.146	0.147	0.146	0.145	0.148	0.148	0.150	0.178	0.177		0.132	0.131	0.244
Ti	0.299		0.229	0.229	0.226	0.229	0.227	0.230	0.230	0.231	0.224	0.226		0.317	0.315	0.203
Cr Ee(3)	1 202		-	-	-	-	-	-	-	-	-	-		-	-	-
10(3) Μα	0.125		0.135	0.137	0.136	0.130	0.131	0.128	0.130	0.128	0.118	0.117		0.140	0.141	0.188
Fe(2)	1.148		1.068	1.064	1.062	1.072	1.067	1.074	1.072	1.073	1.081	1.084		1.152	1.147	0.995
Mn	0.026		0.026	0.029	0.027	0.027	0.029	0.027	0.028	0.029	0.025	0.025		0.025	0.026	0.020
Summe	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000
USP (ILM)	31.6		24.7	24.7	24.3	24.7	24.5	24.8	24.8	24.9	24.6	24.8		33.9	33.7	23.1
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Str	öme		Juvenile	Kompon	enten ho	lozäner F	allablag	erungen		
Probe	M98-099	91 (Fortse	etzung)					-	M96-075	5						
Nr.	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8
TiO ₂	10.75	11.40	10.90	10.73	10.83	10.70	10.91		7.91	8.18	8.05	7.92	8.02	7.99	8.00	8.36
Al_2O_3	3.38	3.47	3.53	3.61	3.64	3.55	3.52		3.42	3.38	3.49	3.45	3.36	3.39	3.48	3.33
Cr_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		0.04	0.05	0.02	0.04	0.05	0.03	0.04	0.06
FeO	77.46	78.64	77.90	77.39	77.95	77.14	78.20		80.17	80.01	80.27	80.21	79.91	80.19	79.66	80.22
MnO	0.72	0.71	0.70	0.73	0.69	0.73	0.74		0.95	0.91	0.88	0.99	0.90	0.96	0.93	0.92
MgO Summe	3.19	2.23	2.93	2.86	2.69	2.72 94.84	2.66		2.53	2.53	2.55	2.50	2.48	2.51	2.50 94.60	2.61
Summe	95.49	90.45	95.90	95.52	95.19	94.04	90.02		95.01	95.05	95.25	95.11	94.71	95.07	94.00	95.40
Fe ₂ O ₃	46.06	44.74	45.75	45.47	45.49	45.18	45.63		51.11	50.61	50.93	51.11	50.69	51.03	50.53	50.67
FeO	36.02	38.38	36.73	36.47	37.01	36.49	37.13		34.18	34.47	34.44	34.22	34.30	34.27	34.19	34.62
Summe	100.11	100.93	100.54	99.88	100.35	99.37	100.60		100.13	100.12	100.35	100.23	99.79	100.19	99.66	100.55
Al	0.145	0.149	0.151	0.156	0.157	0.154	0.151		0.148	0.146	0.151	0.149	0.146	0.147	0.151	0.143
Ti	0.295	0.312	0.298	0.296	0.297	0.297	0.299		0.219	0.226	0.222	0.219	0.223	0.221	0.222	0.230
Cr	-	-	-	-	-	-	-		0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.002
Fe(3)	1.265	1.226	1.252	1.253	1.249	1.253	1.251		1.413	1.400	1.405	1.412	1.407	1.411	1.404	1.395
Mg Fo(2)	0.174	0.121	0.159	0.156	0.146	0.149	0.145		0.139	0.138	0.139	0.137	0.136	0.138	0.137	0.142
re(2) Mn	1.099	1.109	1.118	1.11/	1.130	1.124	1.131		1.051	1.060	1.056	1.051	1.058	1.053	1.056	1.059
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	31.8	33.7	32.3	32.1	32.2	32.1	32.3		23.6	24.4	24.0	23.7	24.0	23.8	24.0	24.8

Tab. A5.7. (Fortsetzung).EinheitJuvenile Komponenten holozäner pyroklastischer Ströme

Einheit	Juvenile	Kompon	enten hol	ozäner F	allablag	erungen										
Probe	M96-075	i (Fortset	zung)			M96-102								M96-16	3	
Nr.	mt/9	mt/10	mt/11	mt/12	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	-	mt/1	mt/2	mt/3
TiO ₂	8.08	8.13	8.12	8.15		9.07	9.57	8.93	9.54	9.43	9.38	9.72		8.77	6.98	9.59
Al_2O_3	3.38	3.50	3.38	3.42		3.43	3.30	3.94	3.35	3.33	3.35	3.39		2.76	4.68	2.64
Cr_2O_3	0.02	0.01	0.04	0.02		0.03	0.03	0.02	0.03	0.06	0.05	0.04		0.21	0.21	0.22
FeO	80.23	80.09	80.74	79.45		78.48	78.80	78.36	79.27	78.60	78.66	78.74		79.69	79.53	79.38
MnO	0.89	1.01	0.89	0.95		0.71	0.71	0.45	0.62	0.69	0.72	0.66		1.14	0.75	1.12
MgO	2.54	2.47	2.43	2.52		2.85	2.82	3.45	2.78	2.87	2.93	2.74		2.59	2.91	2.49
Summe	95.13	95.21	95.61	94.51		94.57	95.23	95.15	95.59	94.98	95.09	95.29		95.16	95.06	95.44
Fe ₂ O ₃	50.93	50.70	51.10	50.26		48.56	48.16	48.99	48.40	48.22	48.42	47.72		50.12	51.51	48.71
FeO	34.40	34.47	34.76	34.23		34.79	35.47	34.28	35.72	35.21	35.09	35.80		34.59	33.18	35.55
Summe	100.23	100.29	100.73	99.55		99.43	100.05	100.06	100.44	99.81	99.94	100.07		100.18	100.22	100.32
Al	0.146	0.151	0.146	0.149		0.149	0.143	0.169	0.144	0.144	0.145	0.146		0.120	0.201	0.115
Ti	0.223	0.224	0.223	0.226		0.251	0.264	0.244	0.262	0.261	0.259	0.268		0.243	0.191	0.265
Cr	0.001	0.000	0.001	0.001		0.001	0.001	0.001	0.001	0.002	0.001	0.001		0.006	0.006	0.006
Fe(3)	1.407	1.400	1.406	1.398		1.347	1.329	1.342	1.331	1.333	1.336	1.316		1.388	1.411	1.349
Mg	0.139	0.135	0.133	0.139		0.157	0.154	0.187	0.151	0.157	0.160	0.150		0.142	0.158	0.137
Fe(2)	1.056	1.058	1.063	1.058		1.073	1.088	1.043	1.092	1.082	1.076	1.098		1.065	1.010	1.094
Mn	0.028	0.031	0.027	0.030		0.022	0.022	0.014	0.019	0.021	0.022	0.020		0.036	0.023	0.035
Summe	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000
USP (ILM)	24.1	24.3	24.1	24.5		27.2	28.4	26.7	28.3	28.1	27.9	28.9		25.9	21.3	28.2
Einheit	Juvenile	Kompon	enten hol	ozäner F	allablag	erungen										
Probe	M96-163	(Fortset	zung)	1	M97-053	3										
Nr.	mt/4	mt/5	mt/6	_	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10	mt/11	mt/12
TiO ₂	8.85	9.11	9.37		8.37	8.21	8.18	8.37	8.06	8.40	8.29	8.42	8.36	8.29	7.87	8.31
Al_2O_3	2.82	2.86	2.86		2.99	3.02	3.05	3.06	2.99	3.01	3.00	3.07	3.04	3.03	3.21	3.00
Cr_2O_3	0.22	0.19	0.20		0.04	0.06	0.00	0.02	0.05	0.04	0.05	0.04	0.04	0.04	0.04	0.04
FeO	79.57	79.54	79.44		80.37	80.63	79.89	80.51	80.28	80.02	80.46	79.79	80.02	80.51	80.71	80.20
MnO	0.99	1.07	0.99		1.05	0.95	1.01	1.11	1.11	1.02	1.08	1.07	0.98	0.99	1.03	1.05
MgO	2.60	2.61	2.78		2.41	2.35	2.35	2.39	2.37	2.37	2.36	2.43	2.40	2.38	2.38	2.38
Summe	95.07	95.38	95.64		95.24	95.21	94.47	95.45	94.85	94.84	95.24	94.82	94.84	95.23	95.24	94.97
Fe ₂ O ₃	49.79	49.48	49.23		50.79	51.02	50.55	50.88	51.12	50.40	50.91	50.30	50.46	50.88	51.56	50.70
FeO	34.77	35.02	35.15		34.67	34.72	34.40	34.73	34.28	34.67	34.65	34.53	34.62	34.72	34.32	34.58
Summe	100.05	100.33	100.57		100.33	100.32	99.54	100.55	99.97	99.89	100.34	99.86	99.89	100.33	100.40	100.05
Al	0.123	0.124	0.123		0.130	0.131	0.133	0.132	0.130	0.131	0.130	0.134	0.132	0.131	0.139	0.130
Ti	0.245	0.252	0.258		0.232	0.227	0.228	0.231	0.224	0.233	0.229	0.234	0.232	0.229	0.217	0.231
Cr	0.006	0.005	0.006		0.001	0.002	0.000	0.000	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.001
Fe(3)	1.380	1.368	1.355		1.406	1.413	1.410	1.405	1.421	1.401	1.410	1.398	1.402	1.409	1.425	1.407
Mg	0.143	0.143	0.151		0.132	0.129	0.130	0.131	0.130	0.130	0.129	0.134	0.132	0.130	0.131	0.131
Fe(2)	1.071	1.076	1.076		1.067	1.069	1.067	1.066	1.059	1.071	1.066	1.066	1.069	1.068	1.055	1.067
Mn	0.031	0.033	0.031		0.033	0.030	0.032	0.034	0.035	0.032	0.034	0.033	0.031	0.031	0.032	0.033
Summe	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	26.2	26.9	27.6		24.8	24.3	24.4	24.7	24.0	25.0	24.5	25.1	24.9	24.6	23.4	24.7

Tab. A5.7. (Fortsetzung).

Einheit				/			Laven Me	erapi-Sor	nma							
Probe	M98-031					-	M95-026	i								
Nr.	mt/1	mt/2	mt/3	mt/4	mt/5	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6	mt/7	mt/8	mt/9	mt/10
TiO ₂	8.49	8.18	8.62	8.50	8.59		9.94	9.89	10.26	10.38	10.11	8.72	9.81	9.20	9.25	10.28
Al_2O_3	3.30	3.99	3.38	3.28	3.49		2.79	2.58	2.43	2.38	2.73	2.39	2.39	2.33	2.37	2.52
Cr_2O_3	0.19	0.18	0.18	0.18	0.19		0.05	0.09	0.08	0.07	0.06	0.08	0.07	0.04	0.09	0.07
FeO	79.72	79.31	79.17	79.76	79.26		80.35	80.21	80.01	80.76	79.64	81.37	81.14	81.70	81.08	80.38
MnO MaO	1.08	0.96	1.13	1.12	1.09		0.61	0.68	0.64	0.74	0.63	0.59	0.64	0.65	0.62	0.67
Summe	95 34	94 61	04 98	95.42	2.40		95.03	94.86	94.84	95 72	94.82	94 51	95.26	95.19	94.68	95 35
Summe	<i>)),,,,,,,,,,,,,</i>	94.01	74.70	<i>)3</i> .42	<i>y</i> 5.10		75.05	74.00	94.04	<i>)3</i> .72	74.02	74.51	95.20	<i>).............</i>	94.00	75.55
Fe ₂ O ₃	50.17	49.06	49.49	50.23	49.48		46.97	47.26	46.68	47.14	46.76	49.63	47.85	49.21	48.63	46.90
FeO	34.58	35.16	34.64	34.57	34.73		38.08	37.68	38.01	38.34	37.56	36.71	38.08	37.42	37.32	38.18
Summe	100.37	99.52	99.93	100.45	100.06		99.74	99.59	99.52	100.45	99.50	99.48	100.05	100.12	99.55	100.05
Al	0.143	0.174	0.146	0.142	0.151		0.122	0.114	0.107	0.104	0.120	0.106	0.105	0.102	0.105	0.111
Ti	0.234	0.228	0.239	0.234	0.237		0.279	0.278	0.289	0.289	0.283	0.246	0.275	0.258	0.261	0.288
Cr	0.005	0.005	0.005	0.005	0.006		0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.001	0.003	0.002
Fe(3)	1.384	1.366	1.371	1.385	1.369		1.318	1.329	1.314	1.315	1.312	1.400	1.343	1.380	1.371	1.312
Mg	0.140	0.110	0.137	0.141	0.136		0.072	0.079	0.079	0.077	0.092	0.076	0.068	0.071	0.071	0.079
re(2)	0.034	0.030	0.035	0.035	0.034		0.019	0.022	0.020	0.023	0.020	0.019	0.020	0.020	0.020	0.021
Summe	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	25.3	25.0	25.8	25.3	25.8		29.7	29.5	30.5	30.6	30.2	26.0	29.1	27.2	27.5	30.5
Einheit	Laven Me	rapi-Som	ima													
Probe	M95-026	(Fortsetz	zung)								M96-056	i				
Nr.	mt/11	mt/12	mt/13	mt/14	mt/15	mt/16	mt/17	mt/18	mt/19	-	mt/1	mt/2	mt/3	mt/4	mt/5	mt/6
TiO ₂	10.18	9.56	10.25	10.40	10.04	10.07	10.01	8.88	9.99		10.55	10.73	10.66	11.92	11.71	11.63
Al_2O_3	2.63	2.45	2.15	2.09	1.86	2.51	1.96	2.38	1.64		2.98	2.84	1.90	1.91	2.36	2.35
Cr_2O_3	0.05	0.03	0.02	0.04	0.06	0.07	0.05	0.06	0.03		0.04	0.06	0.04	0.05	0.04	0.04
FeO	79.91	80.11	80.64	80.52	81.82	79.69	81.71	81.12	81.48		78.74	79.00	80.32	79.59	79.32	79.47
MnO	0.60	0.67	0.60	0.51	0.68	0.65	0.69	0.68	0.67		0.76	0.69	0.73	0.87	0.80	0.80
MgO	1.34	1.//	1.52	1.38	1.35	1.05	1.25	1.40	1.34		1.89	1.66	1.46	1.26	1.22	1.18
Summe	94.72	94.38	93.18	94.94	93.80	94.04	93.07	94.33	93.13		94.90	94.98	95.11	93.39	93.43	93.47
Fe ₂ O ₃	46.47	48.18	47.43	46.90	48.55	46.95	48.33	49.37	48.46		45.77	45.44	46.77	44.40	44.13	44.29
FeO	38.09	36.76	37.97	38.32	38.13	37.44	38.22	36.70	37.87		37.55	38.12	38.23	39.64	39.61	39.61
Summe	99.37	99.41	99.93	99.64	100.66	99.34	100.51	99.47	100.01		99.54	99.53	99.80	100.04	99.88	99.91
Al	0.116	0.108	0.094	0.092	0.081	0.110	0.086	0.105	0.072		0.130	0.124	0.083	0.084	0.104	0.103
Ti	0.287	0.268	0.287	0.293	0.280	0.283	0.280	0.250	0.281		0.295	0.300	0.300	0.334	0.328	0.326
Cr	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.001		0.001	0.002	0.001	0.001	0.001	0.001
Fe(3)	1.309	1.354	1.331	1.321	1.357	1.321	1.353	1.392	1.365		1.279	1.273	1.316	1.246	1.238	1.243
Mg Fe(2)	0.075	0.099	1 1 2 4	1.100	0.075	0.092	0.070	0.078	1 1 9 5		0.104	1 1 97	1 105	0.070	1 225	1 225
Mn	0.010	0.021	0.010	0.016	0.021	0.020	0.022	0.022	0.021		0.024	0.022	0.023	0.027	0.025	0.025
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	30.4	28.4	30.2	30.7	29.2	30.0	29.3	26.4	29.2		31.5	32.1	31.3	34.9	34.7	34.4

Tab. A5.7. (Fortsetzung).

Tab.	A5.7. (Fortsetzung).
Einheit	Louis Monal Commo

Einheit	Laven Me	erapi-Son	ıma													
Probe	M96-056	(Fortset	zung)							M96-070)					
Nr.	mt/7	mt/8	mt/9	mt/10	mt/11	mt/12	mt/13	mt/14	-	emt/1	emt/2	emt/3	emt/4	emt/5	emt/6	emt/7
TiO ₂	11.16	11.72	12.13	11.44	11.52	11.39	9.28	10.07		9.01	9.81	8.80	8.82	5.96	6.63	6.18
Al ₂ O ₃	2.26	2.13	1.92	2.40	2.23	2.50	3.21	3.15		3.90	3.77	3.79	3.73	2.82	2.63	2.85
Cr_2O_3	0.04	0.03	0.01	0.09	0.04	0.06	0.06	0.06		0.07	0.09	0.07	0.06	0.03	0.09	0.07
FeO MnO	80.07	/9.40 0.84	0.81	/9.32 0.85	19.07	/9.50 0.76	/9.54 0.76	/9.04 0.71		/8.09	0.61	18.23	/8.50	83.70	81.45 0.84	0.80
MgO	1.32	1.15	1.11	1.57	1.16	1.49	1.90	2.29		2.20	2.23	2.20	2.16	1.27	1.19	1.17
Summe	95.65	95.34	95.49	95.66	94.95	95.69	94.75	95.31		94.50	93.56	93.80	93.87	94.66	92.83	93.26
Fe ₂ O ₃	45.61	44.29	43.82	44.95	44.27	44.94	47.94	47.03		47.61	45.43	47.67	47.75	54.92	52.31	53.30
FeO	39.03	39.61	40.07	38.87	39.23	39.06	36.40	36.73		35.85	36.17	35.33	35.53	34.35	34.38	34.23
Summe	100.22	99.77	99.88	100.16	99.38	100.20	99.55	100.02		99.27	98.11	98.58	98.65	100.16	98.07	98.60
Al	0.099	0.094	0.085	0.105	0.099	0.109	0.140	0.137		0.170	0.166	0.166	0.164	0.124	0.118	0.127
Ti	0.312	0.330	0.341	0.319	0.325	0.318	0.259	0.279		0.251	0.276	0.247	0.247	0.167	0.190	0.176
Cr	0.001	0.001	0.000	0.002	0.001	0.002	0.002	0.002		0.002	0.003	0.002	0.002	0.001	0.003	0.002
Fe(3)	0.073	1.240	1.233	1.254	0.065	1.254	1.340	0.126		0.121	0.125	1.338	1.340	1.541	0.068	0.066
Fe(2)	1 213	1 2 3 9	1 253	1 206	1 231	1 211	1 1 30	1 131		1 1 1 0	1 1 3 2	1 102	1 108	1 071	1 095	1 084
Mn	0.025	0.027	0.026	0.027	0.029	0.024	0.024	0.022		0.020	0.019	0.023	0.019	0.026	0.027	0.026
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		3.000	3.000	3.000	3.000	3.000	3.000	3.000
USP (ILM)	32.8	34.6	35.6	33.7	34.2	33.6	27.9	30.0		27.4	30.1	27.0	27.0	17.8	20.2	18.8
Einheit	Laven Me	erapi-Son	ıma													
Probe	M96-070	(Fortset	zung)													
Nr.	emt/8e	emt/9	emt/10	emt/11	emt/12	emt/13	emt/14	emt/15	emt/16	emt/17	emt/18	emt/19	emt/20	emt/21	emt/22	ilm/1/l
TiO ₂	8.75	9.14	7.14	5.75	6.54	6.68	6.78	6.58	6.21	6.29	6.48	6.06	6.02	5.62	5.46	49.63
Al_2O_3	3.36	3.30	3.53	2.89	2.69	2.74	2.67	2.66	2.73	2.75	2.78	2.69	2.77	2.84	3.04	0.07
Cr ₂ O ₃	0.05	0.06	0.04	0.08	0.06	0.09	0.06	0.08	0.05	0.08	0.08	0.06	0.08	0.03	0.05	0.00
FeO	79.69	78.61	80.09	83.52	82.70	82.40	82.24	82.98	82.73	83.15	82.90	82.67	82.96	83.89	83.39	42.59
MnO MgO	0.88	0.88	0.80	0.73	0.80	0.82	0 84		0 77	070			11 / 6		11 / 1	1.40
11150		1.83	1 73	1 17	1 30	1.28	1 24	0.79	0.77	0.76	1.21	0.81	1 17	0.71	1 11	5 5 5
Summe	94.53	1.83 93.82	1.73 93.32	1.17 94.14	1.30 94.09	1.28 94.00	1.24 93.83	0.79 1.17 94.27	0.77 1.16 93.64	0.76 1.25 94.28	1.21 94.31	0.81 1.22 93.50	1.17 93.76	0.71 1.14 94.24	1.11 93.75	5.55 99.23
Summe Fe ₂ O ₃	94.53 48.65	1.83 93.82 47.38	1.73 93.32 50.86	1.17 94.14 54.78	1.30 94.09 53.45	1.28 94.00 53.01	1.24 93.83 52.75	0.79 1.17 94.27 53.44	0.77 1.16 93.64 53.68	0.76 1.25 94.28 53.99	0.87 1.21 94.31 53.56	0.81 1.22 93.50 53.97	1.17 93.76 54.09	0.71 1.14 94.24 55.22	1.11 93.75 54.90	5.55 99.23 10.29
Summe Fe ₂ O ₃ FeO	94.53 48.65 35.92	1.83 93.82 47.38 35.97	1.73 93.32 50.86 34.32	1.17 94.14 54.78 34.23	1.30 94.09 53.45 34.61	1.28 94.00 53.01 34.70	1.24 93.83 52.75 34.77	0.79 1.17 94.27 53.44 34.90	0.77 1.16 93.64 53.68 34.43	0.76 1.25 94.28 53.99 34.58	0.87 1.21 94.31 53.56 34.71	0.81 1.22 93.50 53.97 34.11	0.70 1.17 93.76 54.09 34.29	0.71 1.14 94.24 55.22 34.20	1.11 93.75 54.90 33.99	5.55 99.23 10.29 33.33
Summe Fe ₂ O ₃ FeO Summe	48.65 35.92 99.41	1.83 93.82 47.38 35.97 98.57	1.73 93.32 50.86 34.32 98.42	1.17 94.14 54.78 34.23 99.63	1.30 94.09 53.45 34.61 99.45	1.28 94.00 53.01 34.70 99.31	52.75 34.77 99.11	0.79 1.17 94.27 53.44 34.90 99.62	0.77 1.16 93.64 53.68 34.43 99.02	0.76 1.25 94.28 53.99 34.58 99.69	0.87 1.21 94.31 53.56 34.71 99.67	0.81 1.22 93.50 53.97 34.11 98.90	54.09 34.29 99.18	0.71 1.14 94.24 55.22 34.20 99.77	54.90 33.99 99.25	5.55 99.23 10.29 33.33 100.26
Fe ₂ O ₃ FeO Summe	94.53 48.65 35.92 99.41 0.147	1.83 93.82 47.38 35.97 98.57 0.146	1.73 93.32 50.86 34.32 98.42 0.156	1.17 94.14 54.78 34.23 99.63 0.128	1.30 94.09 53.45 34.61 99.45 0.119	1.28 94.00 53.01 34.70 99.31 0.121	1.24 93.83 52.75 34.77 99.11 0.119	0.79 1.17 94.27 53.44 34.90 99.62 0.118	0.77 1.16 93.64 53.68 34.43 99.02 0.121	0.76 1.25 94.28 53.99 34.58 99.69 0.121	0.87 1.21 94.31 53.56 34.71 99.67 0.123	0.81 1.22 93.50 53.97 34.11 98.90 0.120	0.10 1.17 93.76 54.09 34.29 99.18 0.123	0.71 1.14 94.24 55.22 34.20 99.77 0.125	0.11 1.11 93.75 54.90 33.99 99.25 0.135	5.55 99.23 10.29 33.33 100.26 0.002
Fe ₂ O ₃ FeO Summe	94.53 48.65 35.92 99.41 0.147 0.245	1.83 93.82 47.38 35.97 98.57 0.146 0.258	1.73 93.32 50.86 34.32 98.42 0.156 0.202	1.17 94.14 54.78 34.23 99.63 0.128 0.162	1.30 94.09 53.45 34.61 99.45 0.119 0.185	1.28 94.00 53.01 34.70 99.31 0.121 0.189	1.24 93.83 52.75 34.77 99.11 0.119 0.192	0.19 1.17 94.27 53.44 34.90 99.62 0.118 0.186	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.183	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172	0.10 1.17 93.76 54.09 34.29 99.18 0.123 0.171	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.158	0.71 1.11 93.75 54.90 33.99 99.25 0.135 0.155	5.55 99.23 10.29 33.33 100.26 0.002 0.905
Fe ₂ O ₃ FeO Summe Al Ti Cr	94.53 48.65 35.92 99.41 0.147 0.245 0.002	1.83 93.82 47.38 35.97 98.57 0.146 0.258 0.002	1.73 93.32 50.86 34.32 98.42 0.156 0.202 0.001	1.17 94.14 54.78 34.23 99.63 0.128 0.162 0.002	1.30 94.09 53.45 34.61 99.45 0.119 0.185 0.002	1.28 94.00 53.01 34.70 99.31 0.121 0.189 0.003	1.24 93.83 52.75 34.77 99.11 0.119 0.192 0.002	0.19 1.17 94.27 53.44 34.90 99.62 0.118 0.186 0.002	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176 0.001	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177 0.002	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.183 0.002	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172 0.002	0.10 1.17 93.76 54.09 34.29 99.18 0.123 0.171 0.002	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.158 0.001	0.71 1.11 93.75 54.90 33.99 99.25 0.135 0.135 0.001	5.55 99.23 10.29 33.33 100.26 0.002 0.905 0.000
Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg	94.53 94.53 48.65 35.92 99.41 0.147 0.245 0.002 1.362 0.099	1.83 93.82 47.38 35.97 98.57 0.146 0.258 0.002 1.337 0.102	1.73 93.32 50.86 34.32 98.42 0.156 0.202 0.001 1.439 0.097	1.17 94.14 54.78 34.23 99.63 0.128 0.162 0.002 1.546 0.066	1.30 94.09 53.45 34.61 99.45 0.119 0.185 0.002 1.510 0.073	1.28 94.00 53.01 34.70 99.31 0.121 0.189 0.003 1.499 0.072	0.11 1.24 93.83 52.75 34.77 99.11 0.119 0.192 0.002 1.496 0.070	0.19 1.17 94.27 53.44 34.90 99.62 0.118 0.186 0.002 1.509 0.065	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176 0.001 1.525 0.065	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177 0.002 1.522 0.070	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.183 0.002 1.510 0.067	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172 0.002 1.534 0.068	0.10 1.17 93.76 54.09 34.29 99.18 0.123 0.171 0.002 1.533 0.066	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.158 0.001 1.557 0.064	0.71 1.11 93.75 54.90 33.99 99.25 0.135 0.135 0.001 1.555 0.062	5.55 99.23 10.29 33.33 100.26 0.002 0.905 0.000 0.188 0.201
Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg Fe(2)	94.53 48.65 35.92 99.41 0.147 0.245 0.002 1.362 0.099	1.83 93.82 47.38 35.97 98.57 0.146 0.258 0.002 1.337 0.102 1.128	1.73 93.32 50.86 34.32 98.42 0.156 0.202 0.001 1.439 0.097 1.079	1.17 94.14 54.78 34.23 99.63 0.128 0.162 0.002 1.546 0.066 1.073	1.30 94.09 53.45 34.61 99.45 0.119 0.185 0.002 1.510 0.073 1.087	1.28 94.00 53.01 34.70 99.31 0.121 0.189 0.003 1.499 0.072 1.091	0.11 1.24 93.83 52.75 34.77 99.11 0.119 0.002 1.496 0.070 1.095	0.19 1.17 94.27 53.44 34.90 99.62 0.118 0.186 0.002 1.509 0.065 1.095	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176 0.001 1.525 0.065 1.087	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177 0.002 1.522 0.070 1.083	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.183 0.002 1.510 0.067 1.088	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172 0.002 1.534 0.068 1.078	0.10 1.17 93.76 54.09 34.29 99.18 0.123 0.171 0.002 1.533 0.066 1.080	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.158 0.001 1.557 0.064 1.072	0.11 93.75 54.90 33.99 99.25 0.135 0.135 0.001 1.555 0.062 1.070	5.55 99.23 10.29 33.33 100.26 0.002 0.905 0.000 0.188 0.201 0.676
Summe Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg Fe(2) Mn	94.53 48.65 35.92 99.41 0.147 0.245 0.002 1.362 0.099 1.117 0.028	1.83 93.82 47.38 35.97 98.57 0.146 0.258 0.002 1.337 0.102 1.128 0.028	1.73 93.32 50.86 34.32 98.42 0.156 0.202 0.001 1.439 0.097 1.079 0.025	1.17 94.14 54.78 34.23 99.63 0.128 0.162 0.002 1.546 0.066 1.073 0.023	1.30 94.09 53.45 34.61 99.45 0.119 0.185 0.002 1.510 0.073 1.087 0.026	1.28 94.00 53.01 34.70 99.31 0.121 0.189 0.003 1.499 0.072 1.091 0.026	1.24 93.83 52.75 34.77 99.11 0.119 0.002 1.496 0.070 1.095 0.027	0.19 1.17 94.27 53.44 34.90 99.62 0.118 0.186 0.002 1.509 0.065 1.095 0.025	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176 0.001 1.525 0.065 1.087 0.025	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177 0.002 1.522 0.070 1.083 0.024	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.123 0.022 1.510 0.067 1.088 0.028	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172 0.002 1.534 0.068 1.078 0.026	0.10 1.17 93.76 54.09 34.29 99.18 0.123 0.123 0.171 0.002 1.533 0.066 1.080 0.024	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.158 0.001 1.557 0.064 1.072 0.023	0.11 93.75 54.90 33.99 99.25 0.135 0.001 1.555 0.002 1.070 0.023	5.55 99.23 10.29 33.33 100.26 0.002 0.905 0.000 0.188 0.201 0.676 0.029
Summe Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg Fe(2) Mn Summe	94.53 48.65 35.92 99.41 0.147 0.245 0.002 1.362 0.099 1.117 0.028 3.000	1.83 93.82 47.38 35.97 98.57 0.146 0.258 0.002 1.337 0.102 1.128 0.028 3.000	1.73 93.32 50.86 34.32 98.42 0.156 0.202 0.001 1.439 0.097 1.079 0.025 3.000	$\begin{array}{c} 1.17\\ 94.14\\ \\ 54.78\\ 34.23\\ 99.63\\ \\ 0.128\\ 0.162\\ 0.002\\ 1.546\\ 0.066\\ 1.073\\ 0.023\\ 3.000\\ \end{array}$	1.30 94.09 53.45 34.61 99.45 0.119 0.185 0.002 1.510 0.073 1.087 0.026 3.000	1.28 94.00 53.01 34.70 99.31 0.121 0.189 0.003 1.499 0.072 1.091 0.026 3.000	1.24 93.83 52.75 34.77 99.11 0.119 0.192 0.002 1.496 0.070 1.095 0.027 3.000	0.19 1.17 94.27 53.44 34.90 99.62 0.118 0.186 0.002 1.509 0.065 1.095 0.025 3.000	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176 0.001 1.525 0.065 1.087 0.025 3.000	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177 0.002 1.522 0.070 1.083 0.024 3.000	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.123 0.002 1.510 0.067 1.088 0.028 3.000	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172 0.002 1.534 0.068 1.078 0.026 3.000	0.13 1.17 93.76 54.09 34.29 99.18 0.123 0.123 0.171 0.002 1.533 0.066 1.080 0.024 3.000	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.125 0.001 1.557 0.064 1.072 0.023 3.000	0.71 1.11 93.75 54.90 33.99 99.25 0.135 0.001 1.555 0.062 1.070 0.023 3.000	5.55 99.23 10.29 33.33 100.26 0.002 0.905 0.000 0.188 0.201 0.676 0.029 2.000
Summe Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg Fe(2) Mn Summe USP (ILM)	94.53 48.65 35.92 99.41 0.147 0.245 0.002 1.362 0.099 1.117 0.028 3.000 26.4	1.83 93.82 47.38 35.97 98.57 0.146 0.258 0.002 1.337 0.102 1.128 0.028 3.000 27.8	1.73 93.32 50.86 34.32 98.42 0.156 0.202 0.001 1.439 0.097 1.079 0.025 3.000 21.9	1.17 94.14 54.78 34.23 99.63 0.128 0.162 0.002 1.546 0.066 1.073 0.023 3.000 17.3	1.30 94.09 53.45 34.61 99.45 0.119 0.185 0.002 1.510 0.073 1.087 0.026 3.000 19.7	1.28 94.00 53.01 34.70 99.31 0.121 0.189 0.003 1.499 0.072 1.091 0.026 3.000 20.1	1.24 93.83 52.75 34.77 99.11 0.119 0.192 0.002 1.496 0.070 1.095 0.027 3.000 20.4	0.79 1.17 94.27 53.44 34.90 99.62 0.118 0.186 0.002 1.509 0.065 1.095 0.025 3.000 19.7	0.77 1.16 93.64 53.68 34.43 99.02 0.121 0.176 0.001 1.525 0.065 1.087 0.025 3.000 18.8	0.76 1.25 94.28 53.99 34.58 99.69 0.121 0.177 0.002 1.522 0.070 1.083 0.024 3.000 18.9	0.87 1.21 94.31 53.56 34.71 99.67 0.123 0.123 0.002 1.510 0.067 1.088 0.028 3.000 19.5	0.81 1.22 93.50 53.97 34.11 98.90 0.120 0.172 0.002 1.534 0.026 3.000 18.3	0.13 1.17 93.76 54.09 34.29 99.18 0.123 0.171 0.002 1.533 0.066 1.080 0.024 3.000 18.2	0.71 1.14 94.24 55.22 34.20 99.77 0.125 0.125 0.001 1.557 0.064 1.072 0.023 3.000 16.9	0.71 1.11 93.75 54.90 33.99 99.25 0.135 0.013 0.155 0.001 1.555 0.062 1.070 0.023 3.000 16.6	5.55 99.23 10.29 33.33 100.26 0.002 0.905 0.000 0.188 0.201 0.676 0.029 2.000 (89.4)

Tab. A5.7. (For	tsetzung).
-----------------	------------

Probe	M96-070) (Fortset	zung)									M98-048	3			
Nr.	ilm/2/l	ilm/3/1	ilm/4/l	ilm/5/l	ilm/6/l	ilm/7/l	ilm/8/l	ilm/9/1	ilm/10/1	ilm/11/1	-	mt/1	mt/2	mt/3	mt/4	mt/5
TiO ₂	49.67	49.23	49.46	49.76	49.43	46.41	47.78	50.24	50.26	43.99		10.88	10.46	9.17	9.28	10.17
Al ₂ O ₃	0.05	0.04	0.08	0.03	0.08	0.29	0.33	0.06	0.07	0.67		2.40	2.53	2.55	2.50	2.82
Cr_2O_3	0.01	0.05	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.02		0.05	0.04	0.08	0.07	0.07
FeO MnO	42.54	44.51	42.94	43.50	43.38	45.91	44.55	42.74	42.10	48.80		/9.94 0.86	80.05	0.79	80.98 0.74	/9.89 0.76
MgO	5.65	4.02	3.80	4.00	3.75	3.69	4.93	4.82	4.66	3.17		1.32	1.47	1.43	1.40	1.71
Summe	99.31	99.73	98.42	99.42	98.72	98.28	99.12	99.55	98.83	98.64		95.45	95.42	94.83	94.97	95.41
Fe ₂ O ₃	10.41	10.35	8.24	8.94	8.57	14.16	13.26	8.74	7.74	18.79		45.84	46.64	48.78	48.71	46.96
FeO	33.17	35.20	35.53	35.52	35.67	33.17	32.62	34.88	35.13	31.95		38.69	38.09	36.92	37.15	37.63
Summe	100.35	100.76	99.24	100.31	99.58	99.69	100.45	100.43	99.60	100.52		100.05	100.09	99.72	99.85	100.11
Al	0.001	0.001	0.002	0.001	0.002	0.009	0.009	0.002	0.002	0.019		0.105	0.111	0.112	0.110	0.123
Ti	0.904	0.904	0.922	0.917	0.919	0.864	0.874	0.919	0.927	0.816		0.305	0.292	0.257	0.260	0.283
Cr	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.001	0.001	0.002	0.002	0.002
Mg	0.190	0.190	0.134	0.105	0.139	0.204	0.243	0.100	0.143	0.349		0.073	0.082	0.080	0.078	0.094
Fe(2)	0.672	0.719	0.737	0.728	0.738	0.687	0.664	0.710	0.721	0.659		1.204	1.183	1.153	1.159	1.165
Mn	0.029	0.039	0.045	0.043	0.043	0.041	0.032	0.035	0.036	0.040		0.027	0.027	0.025	0.023	0.024
Summe	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000		3.000	3.000	3.000	3.000	3.000
USP (ILM)	(89.3)	(89.5)	(91.5)	(90.9)	(91.2)	(85.5)	(86.4)	(91.1)	(92.0)	(80.9)		32.2	31.0	27.3	27.6	30.2
Einheit	Laven Me	erapi-Son	nma													
Deater																
Probe	M98-048	3					M98-105	5								
Nr.	M98-048 	3 mt/7	mt/8	mt/9	mt/10	-	M98-105 emt/1	emt/1	emt/1	emt/1	mt/1/1	mt/1/l	emt/2	emt/2	emt/2	emt/2
Nr. TiO ₂	M98-048 mt/6	3 mt/7 10.03	mt/8 10.67	mt/9 10.27	mt/10	-	M98-105 emt/1 0.91	emt/1 0.70	emt/1	emt/1 0.75	mt/1/l 21.76	mt/1/l 21.83	emt/2 1.55	emt/2 2.00	emt/2 1.26	emt/2 1.01
TiO ₂ Al ₂ O ₃	M98-048 mt/6	mt/7 10.03 2.91	mt/8 10.67 2.50	mt/9 10.27 2.60	mt/10 10.17 2.97	-	M98-105 emt/1 0.91 2.11	emt/1 0.70 1.22	emt/1 1.26 0.80	emt/1 0.75 0.97	mt/1/1 21.76 0.44	mt/1/l 21.83 0.39	emt/2 1.55 3.55	emt/2 2.00 3.76	emt/2 1.26 3.77	emt/2 1.01 2.32
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃	M98-048 mt/6 10.42 2.26 0.05 80.42	mt/7 10.03 2.91 0.03	mt/8 10.67 2.50 0.03	mt/9 10.27 2.60 0.04	mt/10 10.17 2.97 0.03	-	M98-105 emt/1 0.91 2.11 0.08	emt/1 0.70 1.22 0.02	emt/1 1.26 0.80 0.07	emt/1 0.75 0.97 0.05	mt/1/1 21.76 0.44 0.00 73.65	mt/1/1 21.83 0.39 0.00 73.02	emt/2 1.55 3.55 0.07	emt/2 2.00 3.76 0.04	emt/2 1.26 3.77 0.06	emt/2 1.01 2.32 0.06
Ртове Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84	mt/7 10.03 2.91 0.03 80.48 0.83	mt/8 10.67 2.50 0.03 80.29 0.85	mt/9 10.27 2.60 0.04 80.33 0.94	mt/10 10.17 2.97 0.03 80.37 0.77	-	M98-105 emt/1 0.91 2.11 0.08 87.15	emt/1 0.70 1.22 0.02 87.86 1.31	emt/1 1.26 0.80 0.07 87.87 1.33	emt/1 0.75 0.97 0.05 88.84	mt/1/1 21.76 0.44 0.00 73.65 0.37	mt/1/l 21.83 0.39 0.00 73.02 0.44	emt/2 1.55 3.55 0.07 83.60 1.58	emt/2 2.00 3.76 0.04 83.93 1.68	emt/2 1.26 3.77 0.06 84.13 1.53	emt/2 1.01 2.32 0.06 86.44
Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37	mt/7 10.03 2.91 0.03 80.48 0.83 1.50	mt/8 10.67 2.50 0.03 80.29 0.85 1.28	mt/9 10.27 2.60 0.04 80.33 0.94 1.31	mt/10 10.17 2.97 0.03 80.37 0.77 1.72	-	M98-105 emt/1 0.91 2.11 0.08 87.15 1.56 2.01	emt/1 0.70 1.22 0.02 87.86 1.31 1.37	emt/1 1.26 0.80 0.07 87.87 1.33 1.32	emt/1 0.75 0.97 0.05 88.84 1.14 1.23	mt/1/l 21.76 0.44 0.00 73.65 0.37 0.91	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02	emt/2 1.55 3.55 0.07 83.60 1.58 1.79	emt/2 2.00 3.76 0.04 83.93 1.68 1.82	emt/2 1.26 3.77 0.06 84.13 1.53 1.79	emt/2 1.01 2.32 0.06 86.44 1.13 1.17
Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03	-	emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13	mt/1/1 21.83 0.39 0.00 73.02 0.44 1.02 96.70	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14
TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29	-	M98-105 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78	mt/1/l 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84	mt/1/1 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87
Probe Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe Fe ₂ O ₃ FeO	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82		M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97
Probe Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe Fe ₂ O ₃ FeO Summe	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19	mt/10 10.17 2.97 0.03 80.37 1.72 96.03 47.29 37.82 100.77		M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54
Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe Fe ₂ O ₃ FeO Summe	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82 100.77 0.129		M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35 0.166	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104
Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe Fe ₂ O ₃ FeO Summe Al Ti	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099 0.292	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127 0.279	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110 0.298	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114 0.287	mt/10 10.17 2.97 0.03 80.37 1.72 96.03 47.29 37.82 100.77 0.129 0.281		M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093 0.025	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055 0.020	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036 0.036	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043 0.022	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019 0.612	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017 0.617	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158 0.044	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35 0.166 0.056	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167 0.036	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104 0.029
Probe Nr. TiO2 Al2O3 Cr2O3 FeO MnO MgO Summe Fe2O3 FeO Summe Al Ti Cr	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099 0.292 0.002	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127 0.279 0.001 1.217	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110 0.298 0.001 1.201	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114 0.287 0.001 1.21	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82 100.77 0.129 0.281 0.001 1.229		M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093 0.025 0.002	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055 0.020 0.001	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036 0.036 0.036 0.002 1.026	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043 0.022 0.002	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019 0.612 0.000	mt/1/l 21.83 0.39 0.000 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017 0.617 0.617	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158 0.044 0.002 1.758	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35 0.166 0.056 0.001	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167 0.036 0.002 1.55	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104 0.029 0.002
Probe Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099 0.292 0.002 1.316 0.072	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127 0.279 0.001 1.315 0.03	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110 0.298 0.001 1.294 0.071	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114 0.287 0.001 1.311 0.171	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82 100.77 0.129 0.281 0.001 1.308 0.004		M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093 0.025 0.002 1.854 0.012	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055 0.020 0.001 1.904 0.075	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036 0.036 0.036 0.002 1.889 0.075	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043 0.022 0.002 1.912 0.070	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019 0.612 0.000 0.756	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017 0.617 0.000 0.749	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158 0.044 0.002 1.752 0.101	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35 0.166 0.056 0.001 1.721	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167 0.036 0.002 1.760 0.102	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104 0.029 0.002 1.836 0.067
Probe Nr. TiO2 Al2O3 Cr2O3 FeO MnO MgO Summe FeO Summe Al Ti Cr Fe(3) Mg Fe(2)	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099 0.292 0.002 1.316 0.076	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127 0.279 0.001 1.315 0.083 1.170	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110 0.298 0.001 1.294 0.071 1.201	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114 0.287 0.001 1.311 0.73 1.185	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82 100.77 0.129 0.281 0.001 1.308 0.094 1.163	-	M98-105 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093 0.025 0.002 1.854 0.112 0.864	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055 0.020 0.001 1.904 0.078 0.900	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036 0.036 0.036 0.002 1.889 0.075	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043 0.022 0.002 1.912 0.070 0.915	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019 0.612 0.000 0.756 0.051 1.550	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017 0.617 0.000 0.749 0.057	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158 0.044 0.002 1.752 0.101 0.893	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35 0.166 0.056 0.001 1.721 0.101	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167 0.036 0.002 1.760 0.100 0.886	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104 0.029 0.002 1.836 0.067 0.925
Probe Nr. TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO MgO Summe Fe ₂ O ₃ FeO Summe Al Ti Cr Fe(3) Mg Fe(2) Mn	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099 0.292 0.002 1.316 0.078 0.026	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127 0.279 0.001 1.315 0.083 1.170 0.026	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110 0.298 0.001 1.294 0.071 1.201	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114 0.287 0.001 1.311 0.733 1.185 0.030	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82 100.77 0.129 0.281 0.001 1.308 0.094 1.163 0.024	-	M98-105 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093 0.025 0.002 1.854 0.112 0.864 0.049	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055 0.020 0.001 1.904 0.78 0.900 0.042	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036 0.036 0.002 1.889 0.075 0.918 0.043	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043 0.022 0.002 1.912 0.070 0.915 0.037	mt/1/l 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019 0.612 0.000 0.756 0.051 1.550 0.012	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017 0.617 0.000 0.749 0.057 1.546 0.014	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158 0.044 0.002 1.752 0.101 0.893 0.051	emt/2 2.00 3.76 0.04 83.93 1.68 93.22 61.20 28.86 99.35 0.166 0.056 0.001 1.721 0.101 0.902 0.053	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167 0.036 0.002 1.760 0.100 0.886 0.049	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104 0.029 0.002 1.836 0.067 0.925 0.037
Probe Nr. TiO2 Al2O3 Cr2O3 FeO MnO MgO Summe FeQ Al Ti Cr Fe(3) Mg Fe(2) Mn Summe	M98-048 mt/6 10.42 2.26 0.05 80.43 0.84 1.37 95.36 46.94 38.19 100.06 0.099 0.292 0.002 1.316 0.076 1.189 0.026 3.000	mt/7 10.03 2.91 0.03 80.48 0.83 1.50 95.79 47.34 37.89 100.54 0.127 0.279 0.001 1.315 0.083 1.170 0.026 3.000	mt/8 10.67 2.50 0.03 80.29 0.85 1.28 95.62 46.28 38.65 100.25 0.110 0.298 0.001 1.294 0.071 1.201 0.027 3.000	mt/9 10.27 2.60 0.04 80.33 0.94 1.31 95.50 46.90 38.13 100.19 0.114 0.287 0.001 1.311 0.073 1.185 0.030 3.000	mt/10 10.17 2.97 0.03 80.37 0.77 1.72 96.03 47.29 37.82 100.77 0.129 0.281 0.001 1.308 0.094 1.163 0.024 3.000	-	M98-103 emt/1 0.91 2.11 0.08 87.15 1.56 2.01 93.82 66.06 27.71 100.44 0.093 0.025 0.002 1.854 0.112 0.864 0.049 3.000	emt/1 0.70 1.22 0.02 87.86 1.31 1.37 92.48 66.31 28.20 99.13 0.055 0.020 0.001 1.904 0.078 0.900 0.042 3.000	emt/1 1.26 0.80 0.07 87.87 1.33 1.32 92.65 65.72 28.73 99.23 0.036 0.036 0.002 1.889 0.075 0.918 0.043 3.000	emt/1 0.75 0.97 0.05 88.84 1.14 1.23 92.98 66.78 28.76 99.67 0.043 0.022 0.002 1.912 0.070 0.915 0.037 3.000	mt/1/1 21.76 0.44 0.00 73.65 0.37 0.91 97.13 26.84 49.51 99.82 0.019 0.612 0.000 0.756 0.051 1.550 0.012 3.000	mt/1/l 21.83 0.39 0.00 73.02 0.44 1.02 96.70 26.48 49.19 99.35 0.017 0.617 0.000 0.749 0.057 1.546 0.014 3.000	emt/2 1.55 3.55 0.07 83.60 1.58 1.79 92.13 61.54 28.23 98.30 0.158 0.044 0.002 1.752 0.101 0.893 0.051 3.000	emt/2 2.00 3.76 0.04 83.93 1.68 1.82 93.22 61.20 28.86 99.35 0.166 0.056 0.001 1.721 0.101 0.902 0.053 3.000	emt/2 1.26 3.77 0.06 84.13 1.53 1.79 92.54 62.18 28.18 98.77 0.167 0.036 0.002 1.760 0.100 0.886 0.049 3.000	emt/2 1.01 2.32 0.06 86.44 1.13 1.17 92.14 63.87 28.97 98.54 0.104 0.029 0.002 1.836 0.067 0.925 0.037 3.000

Tab. A5.7.	(Fortsetzung).

Einheit	Laven Me	erapi-Son	nma												
Probe	M98-105	(Fortset	zung)					M98-107							
Nr.	mt/2/1	mt/2/1	mt/3	mt/4	mt/5	mt/6	mt/7	emt/1	emt/2	emt/3	emt/4	emt/5	emt/6	ilm/1/l	ilm/2/l
TiO ₂	25.96	24.03	10.27	11.05	10.16	11.86	11.83	4.01	3.29	2.76	1.75	1.61	1.74	49.09	50.26
Al_2O_3	0.33	0.32	3.30	3.17	3.26	2.81	2.83	3.05	3.19	3.24	4.33	4.26	4.05	0.06	0.10
Cr_2O_3	0.03	0.00	0.09	0.03	0.03	0.05	0.03	0.08	0.07	0.08	0.06	0.07	0.04	0.00	0.00
FeO	69.86	71.48	79.06	77.99	78.87	77.93	78.24	84.91	84.96	85.28	83.14	83.25	83.89	45.67	42.63
MnO	0.63	0.40	1.04	1.03	0.94	0.86	0.92	0.31	0.28	0.32	0.90	0.89	0.82	1.35	3.23
MgO	1.12	0.74	1.88	1.67	1.66	1.73	1.73	1.55	1.56	1.51	3.01	3.02	2.98	2.18	3.60
Summe	97.94	96.98	95.64	94.95	94.91	95.25	95.58	93.90	93.35	93.19	93.19	93.11	93.55	98.35	99.82
Fe ₂ O ₃	18.93	22.05	46.41	44.36	46.07	43.38	43.70	58.23	59.15	60.03	61.63	61.95	62.26	7.53	7.92
FeO	52.83	51.64	37.31	38.08	37.41	38.90	38.92	32.51	31.74	31.27	27.68	27.51	27.87	38.89	35.50
Summe	99.84	99.19	100.29	99.39	99.53	99.58	99.96	99.73	99.28	99.21	99.37	99.31	99.76	99.10	100.61
Al	0.015	0.014	0.143	0.139	0.143	0.123	0.124	0.134	0.141	0.144	0.189	0.185	0.176	0.002	0.003
Ti	0.727	0.681	0.284	0.309	0.284	0.331	0.329	0.113	0.093	0.078	0.049	0.045	0.048	0.928	0.926
Cr	0.001	0.000	0.003	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.001	0.000	0.000
Fe(3)	0.531	0.625	1.286	1.242	1.288	1.213	1.217	1.638	1.671	1.698	1.712	1.723	1.726	0.142	0.146
Mg	0.062	0.042	0.103	0.092	0.092	0.096	0.096	0.087	0.087	0.085	0.166	0.167	0.164	0.082	0.131
Fe(2)	1.645	1.626	1.149	1.184	1.163	1.209	1.205	1.016	0.996	0.983	0.855	0.850	0.859	0.818	0.727
Mn	0.020	0.013	0.032	0.032	0.029	0.027	0.029	0.010	0.009	0.010	0.028	0.028	0.025	0.029	0.067
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	2.000	2.000
USP (ILM)	73.3	68.5	30.7	33.2	30.6	35.3	35.1	12.1	10.0	8.4	5.4	4.9	5.3	(92.5)	(91.9)
Einheit			Laven Pro	oto-M.											
Probe		-	M96-052	!											
Nr.	ilm/3/l	-	mt/1	mt/2											
TiO ₂	49.19	-	8.96	11.77											
Al_2O_3	0.12		2.14	2.14											
Cr_2O_3	0.02		0.14	0.25											
FeO	42.18		82.32	80.20											
MnO	3.45		0.44	0.42											
MgO	4.61		0.68	0.67											
Summe	99.56		94.69	95.44											
Fe ₂ O ₃	10.72		49.12	43.73											
FeO	32.53		38.13	40.85											
Summe	100.64		99.61	99.83											
Al	0.003		0.095	0.094											
Ti	0.900		0.254	0.332											
Cr	0.000		0.004	0.007											
Fe(3)	0.196		1.393	1.234											
Mg	0.167		0.038	0.037											
Fe(2)	0.662		1.202	1.281											
Mn	0.071		0.014	0.013											
Summe	2.000		3.000	3.000											
USP (ILM)	(88.8)		26.7	35.0											

Einheit	Laven Proto	o-Merapi											
Probe	M95-028/N	A96-052											
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13
Typ (s. Kap. 10)	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Π	Π	III	III
TiO ₂	0.56	0.54	0.54	0.54	0.81	0.69	0.62	0.53	0.54	1.78	1.49	0.89	1.24
Al_2O_3	15.21	15.14	13.70	13.96	15.65	16.47	16.23	13.87	13.97	6.97	7.41	4.49	5.22
Cr_2O_3	44.32	44.41	44.18	44.42	38.67	41.00	42.66	44.04	43.75	20.58	19.76	6.86	6.00
FeO	27.33	27.55	31.88	31.59	34.92	28.59	29.09	32.21	32.04	62.70	62.63	78.72	78.70
MnO	0.35	0.25	0.29	0.29	0.28	0.28	0.29	0.32	0.31	0.31	0.67	0.47	0.21
MgO	10.58	10.71	7.90	7.92	7.96	11.35	9.86	8.00	8.03	3.57	3.52	2.33	2.58
Summe	98.35	98.60	98.50	98.72	98.30	98.38	98.74	98.97	98.63	95.91	95.49	93.76	93.94
Fe ₂ O ₂	10.29	10.56	10.92	10.52	13.80	12.50	10.55	11.28	11.25	38.18	38.79	55.82	55.38
FeO	18.07	18.04	22.05	22.13	22.50	17.34	19.60	22.05	21.92	28.34	27.73	28.50	28.86
Summe	99.38	99.66	99.59	99.77	99.68	99.63	99.80	100.10	99.76	99.73	99.37	99.35	99.49
Al	0.583	0.578	0.537	0.546	0.609	0.623	0.620	0.541	0.546	0.294	0.313	0.196	0.226
Ti	0.014	0.013	0.014	0.013	0.020	0.017	0.015	0.013	0.013	0.048	0.040	0.025	0.034
Cr	1.139	1.138	1.162	1.165	1.009	1.041	1.093	1.152	1.147	0.582	0.560	0.201	0.174
Fe(3)	0.252	0.258	0.274	0.263	0.343	0.302	0.257	0.281	0.281	1.028	1.046	1.554	1.531
Mg	0.513	0.517	0.392	0.391	0.392	0.543	0.476	0.394	0.397	0.190	0.188	0.128	0.141
Fe(2)	0.491	0.489	0.614	0.614	0.621	0.466	0.531	0.610	0.608	0.848	0.831	0.882	0.887
Mn	0.010	0.007	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009	0.020	0.015	0.006
Summe	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
Cr/(Cr+Al)	0.661	0.663	0.684	0.681	0.624	0.626	0.638	0.680	0.678	0.664	0.641	0.506	0.435
Mg/(Mg+Fe(2))	0.511	0.514	0.390	0.389	0.387	0.538	0.473	0.393	0.395	0.183	0.185	0.127	0.137
Al/(Al+Cr+Fe(3))	0.295	0.293	0.272	0.277	0.311	0.317	0.315	0.274	0.277	0.154	0.163	0.100	0.117
Fe(3)/(Al+Cr+Fe(3))	0.128	0.131	0.139	0.133	0.175	0.154	0.131	0.142	0.142	0.540	0.545	0.797	0.793

Tab. A5.8. Mineralchemische Daten: Chromspinell.

Anhang 6 Glasanalysen

Tab.	A6.1.	Glasanalysen-Merapi: Schmelzeinschlüsse	.357
Tab.	A6.2.	Glasanalysen-Merapi: Matrixgläser	.361

Erläuterungen verwendeter Abkürzungen (Anhang 6):

n.a. nicht analysiert <u>Tab. A6.1:</u> plag Plagioklas cpx Klinopyroxen opx Orthopyroxen amph Amphibol mt Titanomagnetit

Tab. A	6.1. Glasanalysen-Merapi: Schmelzeinschlüsse (Alle Angaben in Gew.%).
Einheit	Rezente Domlaven und pyroklastische Ströme

Probe	M95-011									M96-142	2					
Mineral/Nr.	cpx/1	cpx/2	cpx/3	cpx/4	plag/1	plag/2	plag/3	plag/4	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	cpx/7
SiO ₂	65.29	66.42	65.96	66.68	66.15	66.13	66.02	66.12		67.11	67.73	67.58	66.25	66.52	69.05	66.54
TiO ₂	0.68	0.51	0.51	0.53	0.53	0.44	0.57	0.55		0.39	0.51	0.55	0.50	0.57	0.55	0.48
Al_2O_3	15.27	15.34	15.32	15.52	15.24	15.75	15.43	15.24		15.56	15.88	15.48	16.37	16.25	13.93	15.52
FeO	4.89	3.69	3.82	3.75	3.69	3.32	3.88	4.36		2.65	2.95	2.71	2.58	2.47	3.02	2.32
MnO	0.13	0.09	0.16	0.21	0.13	0.14	0.22	0.31		0.12	0.18	0.18	0.22	0.20	0.04	0.19
MgO	0.54	0.63	0.73	0.72	0.65	0.56	0.72	0.76		0.36	0.30	0.38	0.38	0.32	0.25	0.28
CaO	2.27	2.03	2.38	2.12	2.27	2.13	2.34	2.29		1.64	1.74	1.46	1.56	1.55	1.26	1.31
Na ₂ O	3.85	4.76	5.22	4.54	4.73	5.00	4.99	5.04		5.10	4.54	4.85	5.33	5.33	4.13	5.11
K ₂ O	6.32	6.16	4.85	5.34	5.30	6.27	5.17	5.07		5.68	5.25	5.51	5.62	5.88	5.38	5.92
P_2O_5	0.14	0.24	0.18	0.16	0.10	0.13	0.18	0.10		0.14	0.20	0.09	0.18	0.08	0.10	0.14
Summe	99.38	99.87	99.13	99.57	98.79	99.87	99.52	99.84		98.74	99.27	98.77	99.00	99.16	97.72	97.80
F	n.a.	0.067	0.054	0.063	0.075	0.058	n.a.	n.a.		0.077	0.035	0.066	0.040	0.043	n.a.	0.066
S	n.a.	0.032	0.022	0.024	0.020	0.028	n.a.	n.a.		0.011	0.021	0.030	0.017	0.017	n.a.	0.020
Cl	n.a.	0.335	0.339	0.304	0.311	0.352	n.a.	n.a.		0.347	0.389	0.379	0.252	0.260	n.a.	0.302
Einheit	Rezente l	Domlave	n und py	roklastise	che Strön	ne										
Probe	M96-142	(Fortset	zung)		M96-145	5						M97-068	3			
Mineral/Nr.	cpx/8	cpx/9	cpx/10	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5
SiO ₂	67.04	65.80	66.81		69.20	69.13	66.70	65.73	66.20	68.40		60.79	60.61	60.65	61.35	61.04
TiO ₂	0.60	0.55	0.45		0.35	0.35	0.46	0.40	0.47	0.46		0.57	0.57	0.51	0.61	0.58
Al_2O_3	16.04	16.50	15.71		15.02	15.18	16.59	16.90	17.08	15.70		17.81	17.37	17.34	17.40	17.43
FeO	2.70	2.57	2.77		2.68	2.79	2.78	2.66	2.51	3.01		5.29	5.10	5.11	5.08	4.86
MnO	0.22	0.12	0.19		0.18	0.00	0.14	0.14	0.08	0.06		0.18	0.20	0.16	0.11	0.15
MgO	0.32	0.40	0.36		0.31	0.36	0.32	0.32	0.28	0.34		1.12	1.28	1.17	1.03	1.07
CaO	1.60	1 76	1 50		1 37	1 31	1 48	1 51	1.52	1 32		3 3 5	3 4 8	3 14	2.28	2 40

4.10 4.38 4.81 5.25 4.93 3.99

5.63 5.74 5.93 5.82

0.04 0.22 0.26 0.26

0.016 0.015 0.018 0.019 0.019 0.018

 $0.309 \quad 0.340 \quad 0.294 \quad 0.313 \quad 0.290 \quad 0.362$

 $0.085 \quad 0.060 \quad 0.066 \quad 0.063 \quad 0.056$

99.20 99.25 99.11 99.16 99.12

5.59

0.11

98.91

5.52 5.71

4.69 4.47

0.29

0.27

5.62

0.19

0.113

6.02 5.48 5.29

0.30 0.25

5.90 5.85

0.24

5.18

99.58 99.07 99.58 99.49 98.92

 $0.068 \quad 0.070 \quad 0.076 \quad 0.089 \quad 0.087$

 $0.020 \quad 0.018 \quad 0.012 \quad 0.021 \quad 0.014$

 $0.300 \quad 0.292 \quad 0.316 \quad 0.312 \quad 0.301$

Einheit Rezente Domlaven und pyroklastische Ströme

5.19 5.15 5.65

5.63 5.44 5.58

0.12 0.22 0.12

99.46 98.50 99.13

 $0.039 \quad 0.070 \quad 0.073$

0.023 0.016 0.027

 $0.295 \quad 0.312 \quad 0.316$

Probe M97-068 (Fortsetzung)

Na₂O K₂O

 P_2O_5

F

S

Cl

Summe

Mineral/Nr.	cpx/6	cpx/7	cpx/8	cpx/9	cpx/10	cpx/11	cpx/12	cpx/13	cpx/14	cpx/15	cpx/16	cpx/17	cpx/18	cpx/19	cpx/20	cpx/21
\$:0-	61.20	60.12	62 58	67.78	61.22	58.00	61.21	61 70	61 57	50.07	61.29	60.54	60.22	62.06	61.06	62.00
3102	01.20	00.15	02.38	02.20	01.22	38.90	01.21	01.79	01.57	39.07	01.58	00.54	00.55	03.00	01.00	02.00
T_1O_2	0.61	0.78	0.61	0.70	0.73	0.64	0.71	0.72	0.79	0.49	0.72	0.60	0.55	0.78	0.68	0.63
Al_2O_3	17.53	18.10	16.93	16.65	18.80	17.42	18.07	17.93	17.97	16.93	17.14	17.49	16.67	17.81	17.23	16.70
FeO	4.75	4.83	4.59	4.81	3.69	5.03	4.30	4.24	4.16	4.28	3.25	4.78	5.08	3.54	4.70	4.60
MnO	0.09	0.22	0.11	0.09	0.12	0.13	0.14	0.14	0.13	0.27	0.13	0.14	0.11	0.14	0.24	0.16
MgO	1.18	1.20	1.01	0.90	1.00	1.28	1.27	1.26	1.13	1.25	0.99	1.11	1.24	0.69	1.25	1.17
CaO	3.18	3.13	2.40	2.11	2.22	3.11	3.25	3.32	2.96	2.80	2.68	2.52	3.07	2.80	2.73	2.50
Na ₂ O	5.75	5.98	4.95	5.01	5.81	5.52	5.56	5.28	5.41	5.60	5.78	5.88	5.79	5.43	4.98	5.17
K ₂ O	5.28	4.88	5.23	5.89	5.54	4.82	4.83	4.63	4.88	5.20	5.27	5.48	5.54	5.19	6.15	5.86
P_2O_5	0.29	0.29	0.28	0.28	0.30	0.23	0.21	0.25	0.23	0.27	0.30	0.27	0.23	0.27	0.25	0.34
Summe	99.87	99.55	98.69	98.70	99.44	97.08	99.56	99.56	99.22	96.16	97.65	98.79	98.60	99.71	99.26	99.15
F	n.a.	0.085	0.114	0.106	0.057	n.a.	0.106	n.a.	n.a.	n.a.	n.a.	n.a.	0.069	n.a.	0.108	n.a.
S	n.a.	0.022	0.029	0.033	0.023	n.a.	0.017	n.a.	n.a.	n.a.	n.a.	n.a.	0.018	n.a.	0.026	n.a.
Cl	n.a.	0.313	0.307	0.324	0.291	n.a.	0.279	n.a.	n.a.	n.a.	n.a.	n.a.	0.335	n.a.	0.305	n.a.

S

Cl

 $0.029 \quad 0.037 \quad 0.035$

 $0.297 \quad 0.321 \quad 0.317$

Einheit				Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Str	röme						
Probe	M97-068	3 (Fortset	zung)	M96-137	7											
Mineral/Nr.	cpx/22	cpx/23	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	cpx/7	cpx/8	cpx/9	cpx/10	cpx/11	-	cpx/1
SiO ₂	62.31	61.71		66.13	66.02	67.45	67.09	69.08	69.32	67.71	69.15	69.39	66.31	68.24		63.72
TiO ₂	0.75	0.88		0.42	0.65	0.43	0.34	0.31	0.31	0.28	0.31	0.31	0.41	0.41		0.51
Al_2O_3	17.80	17.49		16.79	15.31	14.94	15.55	16.29	15.84	15.73	16.30	15.86	16.28	15.18		17.14
FeO	3.76	4.58		4.32	4.68	3.86	4.00	4.14	4.15	3.92	4.14	4.15	4.12	4.14		3.50
MnO	0.04	0.12		0.11	0.10	0.16	0.01	0.15	0.09	0.12	0.15	0.09	0.05	0.07		0.18
MgO	0.68	0.97		0.92	0.62	0.47	0.60	0.59	0.56	0.50	0.59	0.56	1.07	0.62		1.14
CaO	1.98	1.99		2.74	2.72	2.42	2.44	2.63	2.58	2.48	2.63	2.58	2.49	2.70		1.81
Na ₂ O	5.19	5.42		3.92	3.60	3.68	3.76	2.19	2.18	2.60	2.19	2.18	2.81	4.13		5.37
K_2O	5.69	5.72		3.86	3.97	4.49	4.26	3.62	4.26	4.29	3.63	4.26	4.47	3.86		4.36
P_2O_5	0.21	0.21		0.09	0.01	0.02	0.02	0.07	0.06	0.10	0.07	0.06	0.08	0.11		0.19
Summe	98.39	99.08		99.28	97.67	97.92	98.07	99.06	99.34	97.72	99.16	99.44	98.08	99.45		97.92
F	n.a.	n.a.		0.142	0.065	0.073	0.086	0.080	0.088	0.078	0.076	0.075	0.145	0.086		0.064
S	n.a.	n.a.		0.024	0.026	0.016	0.014	0.020	0.015	0.016	0.016	0.014	0.026	0.018		0.023
Cl	n.a.	n.a.		0.284	0.321	0.328	0.301	0.368	0.327	0.312	0.305	0.301	0.392	0.347		0.287
Einheit	Juve	nile Kom	ponenter	ı holozän	er pyrokl	astischer	Ströme									
Probe	M97-03	92 (Forts	setzung)													
Mineral/Nr.	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	cpx/7	cpx/8	cpx/9	cpx/10	cpx/11	cpx/12	cpx/13	cpx/14	plag/1	plag/2	mt/1
SiO ₂	63.87	63.56	60.53	59.32	62.59	61.96	63.13	62.50	62.71	64.48	63.27	64.02	62.98	64.41	64.64	59.69
TiO ₂	0.55	0.66	0.58	0.68	0.59	0.58	0.58	0.63	0.60	0.80	0.72	0.69	0.71	0.56	0.59	0.79
Al_2O_3	17.32	17.57	17.79	17.30	16.88	16.84	17.10	16.82	17.87	16.49	16.14	17.26	17.58	16.74	15.85	16.40
FeO	3.48	3.66	3.27	4.03	3.14	3.26	3.27	3.79	3.73	3.26	3.89	3.80	4.33	3.33	3.13	4.45
MnO	0.11	0.13	0.12	0.20	0.15	0.17	0.19	0.25	0.12	0.14	0.22	0.20	0.14	0.28	0.11	0.16
MgO	1.15	1.15	1.05	1.01	0.91	1.18	1.09	1.16	1.24	1.07	1.20	1.01	0.93	0.97	0.95	0.97
CaO	1.90	1.65	2.48	2.65	2.13	2.66	2.58	2.64	2.71	2.50	2.53	2.47	2.49	2.39	2.39	2.50
Na ₂ O	5.07	3.34	4.69	4.34	4.27	3.96	4.33	5.01	4.78	3.65	2.99	3.14	3.40	3.42	3.12	4.57
K_2O	4.44	4.22	5.07	4.83	4.65	4.58	4.66	4.91	4.39	4.68	4.49	5.04	5.39	5.18	5.22	4.63
P_2O_5	0.14	0.19	0.26	0.28	0.14	0.20	0.27	0.26	0.29	0.19	0.25	0.20	0.28	0.16	0.35	0.22
Summe	98.01	96.12	95.85	94.64	95.43	95.38	97.21	97.96	98.43	97.26	95.71	97.82	98.23	97.45	96.34	94.39
F	0.041	0.098	0.086	0.076	0.069	0.078	0.067	0.064	0.023	0.030	0.075	0.066	0.048	0.060	0.038	0.033
S	0.022	0.020	0.046	0.050	0.023	0.023	0.024	0.038	0.025	0.043	0.035	0.028	0.037	0.023	0.022	0.022
Cl	0.286	0.322	0.320	0.353	0.327	0.333	0.320	0.325	0.323	0.333	0.330	0.336	0.318	0.339	0.286	0.293
Einheit	Juvenile	Kompon	enten ho	lozäner p	yroklasti	scher Str	öme									
Probe	M97-04	5			M98-053	32						M98-059	9			
Mineral/Nr.	cpx/1	cpx/2	cpx/3	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5
SiO ₂	62.17	62.63	63.44		67.73	67.65	68.81	68.19	68.53	67.76		64.13	64.22	64.75	63.96	63.84
TiO ₂	0.45	0.47	0.45		0.49	0.57	0.60	0.66	0.47	0.50		0.53	0.44	0.56	0.63	0.57
Al_2O_3	18.88	18.23	18.20		16.96	17.15	16.93	16.42	17.03	16.49		17.85	17.75	17.29	17.79	17.61
FeO	3.68	4.32	4.09		2.58	2.79	2.69	2.56	2.48	2.41		4.15	3.78	3.98	4.32	3.90
MnO	0.10	0.12	0.06		0.08	0.01	0.07	0.07	0.09	0.03		0.25	0.16	0.16	0.18	0.11
MgO	1.43	1.16	1.18		0.90	0.88	0.83	0.81	0.85	0.84		0.84	0.85	0.68	0.68	0.79
CaO	2.78	2.33	2.38		2.04	2.10	1.93	1.93	1.78	1.86		1.76	1.85	1.65	1.83	1.87
Na ₂ O	3.52	3.55	3.48		3.17	3.33	3.52	3.61	3.24	2.77		3.96	4.28	3.97	3.95	4.38
K_2O	5.59	5.85	5.56		3.82	3.68	3.78	3.82	3.80	3.77		5.59	5.83	5.75	5.89	5.42
P_2O_5	0.41	0.33	0.40		0.23	0.21	0.25	0.18	0.22	0.23		0.24	0.22	0.18	0.31	0.28
Summe	99.01	98.99	99.22		98.00	98.37	99.41	98.24	98.49	96.64		99.31	99.38	98.97	99.54	98.77
F	0.156	0.125	0.129		0.033	0.027	0.032	0.034	0.035	0.042		0.052	0.074	0.112	0.128	0.097

 $0.033 \quad 0.031 \quad 0.029 \quad 0.021 \quad 0.031 \quad 0.030$

 $0.312 \quad 0.298 \quad 0.313 \quad 0.280 \quad 0.315 \quad 0.275$

 $0.034 \quad 0.036 \quad 0.029 \quad 0.020 \quad 0.031$

 $0.310 \quad 0.319 \quad 0.363 \quad 0.373 \quad 0.371$

Tab. A6.1. (Fortsetzung).

Tab. A6.1. (Fortsetzung).

Einheit Juvenile Komponenten holozäner pyroklastischer Ströme M98-066 M98-0991 Probe M98-096 Mineral/Nr. cpx/1 cpx/2 cpx/3 cpx/4 cpx/5 $cpx/1 \quad cpx/2 \quad cpx/3 \quad cpx/4 \quad cpx/5 \quad plag/1 \quad plag/2$ cpx/1 cpx/2 SiO₂ 64.34 65.25 66.29 64.53 64.69 63.61 64.28 66.69 67.73 67.59 66.48 67.03 65.17 65.16 TiO₂ 0.59 0.41 0.48 0.65 0.58 0.60 0.64 0.52 0.34 0.36 0.40 0.36 0.31 0.69 Al_2O_3 16.58 16.51 17.07 18.40 18.49 16.35 16.69 16.65 16.56 16.31 16.68 17.18 16.41 17.09 FeO 3.72 4.04 4.24 4.28 1.93 1.09 1.47 1.34 3.93 4.50 4.36 1.46 3.65 4.94 MnO 0.10 0.13 0.23 0.16 0.20 0.18 0.09 0.11 0.15 0.13 0.23 0.20 0.10 0.14 0.74 0.82 0.78 0.70 0.84 0.74 0.81 0.72 MgO 0.71 0.84 0.75 0.92 1.02 0.96 2.442.702.43 2.72 2.611.87 1.90 1.84 2.09 1.92 2.482.441.67 2.05 CaO 3.99 3.47 3.20 3.71 3.58 3.83 4.01 3.96 3.74 3.89 3.22 3.85 3.61 Na₂O 3.89 5.55 5.63 5.30 4.53 4.76 4.27 4.11 3.96 3.60 3.59 5.34 5.25 4.55 4.49 K_2O $P_2O_5 \\$ 0.20 0.18 0.25 0.21 0.24 0.20 0.18 0.24 0.21 0.15 0.20 0.21 0.20 0.25 Summe 97.78 98.48 99.85 98.77 100.10 96.86 97.26 96.40 95.66 95.68 98.63 99.20 98.62 98.79 F 0.038 $0.030 \quad 0.041 \quad 0.051 \quad 0.062$ 0.028 0.056 0.048 0.078 0.081 0.025 0.035 0.065 0.036 S 0.026 0.023 0.030 0.029 0.019 0.022 0.027 0.029 0.031 0.015 0.023 0.035 0.013 0.026 Cl 0.377 0.370 0.455 0.273 0.368 0.369 0.353 0.310 0.374 0.393 0.319 0.314 0.321 0.306 Einheit Juvenile Komponenten holozäner Fallablagerungen

Probe	M98-099	1 (Fortse	tzung)		M96-075										
Mineral/Nr.	cpx/3	cpx/4	cpx/5	cpx/6	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	cpx/7	cpx/8	cpx/9	cpx/10	cpx/11
SiO ₂	65.51	64.94	64.99	65.05	63.33	63.76	65.46	64.36	65.24	62.55	64.29	62.73	63.13	63.66	62.66
TiO ₂	0.56	0.58	0.57	0.57	0.41	0.36	0.40	0.53	0.46	0.46	0.37	0.40	0.44	0.53	0.35
Al_2O_3	17.09	17.76	17.58	17.33	15.97	16.14	16.93	17.08	17.00	17.02	16.69	16.76	16.57	16.14	16.48
FeO	5.00	4.90	4.33	4.53	3.13	3.12	2.45	2.83	2.99	2.93	3.25	3.04	3.11	2.43	3.16
MnO	0.18	0.15	0.18	0.21	0.06	0.19	0.18	0.10	0.21	0.15	0.21	0.23	0.12	0.04	0.21
MgO	0.81	0.70	0.83	0.84	0.80	0.65	0.46	0.39	0.51	0.71	0.48	0.77	0.76	0.60	0.77
CaO	1.96	1.39	2.19	2.18	2.53	2.38	2.47	2.28	2.18	3.33	1.89	2.44	2.49	2.49	2.33
Na ₂ O	4.06	3.71	4.34	3.66	3.42	3.56	2.52	3.60	3.15	3.94	3.77	3.35	3.36	3.33	3.52
K ₂ O	4.34	3.92	4.55	4.52	4.02	4.00	3.64	4.12	3.95	3.49	3.89	3.73	3.65	4.06	3.86
P_2O_5	0.23	0.20	0.21	0.34	0.14	0.12	0.23	0.24	0.17	0.06	0.10	0.27	0.19	0.27	0.23
Summe	99.74	98.25	99.76	99.21	93.82	94.29	94.74	95.53	95.86	94.65	94.95	93.72	93.82	93.54	93.56
F	0.037	0.101	0.050	0.032	0.016	0.018	0.028	0.021	0.038	0.026	0.028	0.024	0.021	0.020	0.015
S	0.025	0.025	0.025	0.022	0.018	0.017	0.016	0.021	0.023	0.028	0.018	0.019	0.019	0.018	0.020
Cl	0.300	0.314	0.288	0.292	0.306	0.315	0.336	0.372	0.329	0.299	0.335	0.325	0.331	0.333	0.331

Einheit Juvenile Komponenten holozäner Fallablagerungen

Probe	M96-075	6 (Fortset	zung)							M96-157					
Mineral/Nr.	cpx/12	cpx/13	cpx/14	cpx/15	cpx/16	cpx/17	cpx/18	cpx/19	cpx/20	cpx/1	opx/2	opx/3	plag/1	plag/2	plag/3
SiO ₂	63.24	62.94	63.40	62.07	63.64	64.28	64.18	62.93	64.55	62.96	63.70	63.32	61.36	64.06	64.27
TiO ₂	0.36	0.35	0.29	0.53	0.30	0.35	0.42	0.35	0.35	0.51	0.60	0.54	0.59	0.54	0.60
Al_2O_3	16.24	16.43	16.72	17.61	16.10	15.61	17.17	16.20	16.61	16.78	16.54	16.67	16.56	16.67	16.59
FeO	2.91	3.15	2.59	2.91	3.25	3.20	2.30	3.22	2.98	3.87	4.45	4.33	4.54	4.33	4.30
MnO	0.19	0.26	0.19	0.11	0.18	0.08	0.14	0.08	0.27	0.15	0.18	0.18	0.19	0.19	0.16
MgO	0.80	0.79	0.49	0.78	0.64	0.64	0.41	0.89	0.77	0.78	0.90	0.87	1.26	1.19	1.11
CaO	2.34	2.48	2.18	2.80	2.31	2.10	1.95	2.50	2.10	2.43	2.65	2.73	2.66	2.75	2.87
Na ₂ O	3.50	3.83	3.47	3.84	3.30	3.60	2.65	3.85	3.18	2.76	3.11	3.09	2.70	2.88	1.92
K_2O	4.14	3.86	3.95	3.80	4.03	4.34	3.95	3.94	4.35	4.85	4.43	4.45	4.76	4.90	4.85
P_2O_5	0.24	0.19	0.27	0.17	0.31	0.27	0.18	0.19	0.15	0.36	0.18	0.22	0.43	0.36	0.31
Summe	93.95	94.28	93.54	94.60	94.05	94.47	93.36	94.15	95.29	95.46	96.73	96.40	95.05	97.88	96.99
F	0.019	0.014	0.015	0.025	0.021	0.021	0.022	n.a.	n.a.	0.085	0.085	0.066	0.048	0.090	0.084
S	0.018	0.016	0.019	0.021	0.024	0.019	0.029	n.a.	n.a.	0.020	0.024	0.021	0.031	0.025	0.018
Cl	0.324	0.349	0.328	0.309	0.339	0.308	0.307	n.a.	n.a.	0.286	0.290	0.285	0.357	0.262	0.284

Tab. A6.1.	(Fortsetzung)).
------------	---------------	----

Einheit	Juvenile	Kompon	enten ho	lozäner H	allablag	erungen										
Probe	M96-163	3				M97-053	3									
Mineral/Nr.	cpx/1	cpx/2	cpx/3	cpx/4	-	cpx/1	cpx/2	cpx/3	cpx/4	cpx/5	cpx/6	cpx/7	cpx/8	cpx/9	cpx/10	cpx/11
SiO ₂	65.63	63.59	65.76	63.88		64.76	65.28	65.85	67.10	64.59	65.23	64.54	63.83	64.83	64.53	64.78
TiO ₂	0.50	0.40	0.51	0.54		0.52	0.50	0.47	0.53	0.47	0.53	0.51	0.59	0.49	0.50	0.53
Al_2O_3	16.45	15.76	16.12	17.08		16.29	16.38	16.09	16.61	15.94	16.02	16.30	16.08	15.79	15.93	16.43
FeO	3.21	3.20	3.47	3.64		2.79	2.43	2.45	2.43	2.41	2.48	2.25	2.23	2.37	2.35	2.17
MnO	0.15	0.11	0.14	0.17		0.24	0.21	0.06	0.10	0.07	0.12	0.09	0.26	0.20	0.22	0.04
MgO	1.26	1.35	1.30	1.31		0.49	0.56	0.54	0.59	0.55	0.58	0.41	0.38	0.67	0.45	0.38
CaO	2.81	2.71	2.68	2.85		2.29	2.34	2.44	2.40	2.06	2.18	2.09	2.02	2.43	2.13	2.05
Na ₂ O	2.00	4.44	3.14	3.13		3.99	4.53	3.46	5.00	3.73	4.17	4.34	4.65	4.72	4.75	4.15
K ₂ O	3.10	3.81	3.46	3.11		3.46	3.59	3.29	3.97	3.38	3.54	3.47	3.76	3.61	3.86	3.50
P_2O_5	0.08	0.09	0.13	0.32		0.00	0.12	0.17	0.25	0.13	0.25	0.29	0.04	0.06	0.23	0.17
Summe	95.20	95.48	96.70	96.02		94.83	95.94	94.81	98.97	93.33	95.12	94.28	93.83	95.17	94.93	94.19
F	0.059	0.065	0.041	0.055		0.014	0.022	0.022	0.024	0.019	0.014	n.a.	n.a.	0.020	0.017	0.023
S	0.027	0.036	0.026	0.029		0.027	0.014	0.014	0.017	0.013	0.014	n.a.	n.a.	0.014	0.015	0.014
Cl	0.328	0.281	0.326	0.321		0.354	0.321	0.311	0.335	0.309	0.300	n.a.	n.a.	0.340	0.316	0.315
Einheit	Juvenile	Kompon	enten ho	lozäner H	Fallablag	erungen										
Probe	M97-053	6 (Fortset	zung)													M98- 031
																031
Mineral/Nr.	cpx/12	cpx/13	cpx/14	cpx/15	cpx/16	cpx/17	cpx/18	cpx/19	cpx/20	amph/1	amph/2	amph/3	amph/4	amph/5	-	cpx/1
SiOa	65 63	65 21	64 94	65.88	66 69	65 32	65 44	64 88	65.90	65 23	66 76	65.86	64 22	64 78		63 66
TiO	0.57	0.55	0.54	0.52	0.57	0.45	0.55	0.52	0.50	0.55	0.47	0.57	0.53	0.51		0.48
	15 72	15.92	16.03	16.52	16.90	16.58	16 70	16 70	16.18	15.82	16.16	16.46	15 74	16.32		15 60
FeO	2.42	2.54	2.23	2.48	2.50	2.53	2.46	2.29	2.57	2.53	2.41	2.59	2.57	2.64		4 18
MnO	0.21	0.14	0.01	0.19	0.08	0.07	0.13	0.20	0.20	0.17	0.24	0.10	0.15	0.20		0.24
MgO	0.45	0.59	0.54	0.51	0.51	0.46	0.35	0.34	0.51	0.53	0.50	0.59	0.57	0.62		1.03
CaO	2.11	2 31	2.29	2.16	2.10	2.34	2.14	2.08	2.06	2.37	2 32	2.38	2.49	2.33		2.79
Na ₂ O	4 29	4 71	3 77	5 50	4 81	2.81	2.80	2.74	2.11	4 41	4 31	4 63	4 32	4 20		3.92
K ₂ O	3 53	3 73	3 29	4 07	4 03	3 33	3 41	3 27	2.99	3 50	3 87	3 83	3 76	3 75		4 31
P2O5	0.08	0.12	0.19	0.33	0.21	0.06	0.10	0.20	0.24	0.15	0.23	0.00	0.37	0.29		0.24
Summe	95.01	95.81	93.82	98.19	98.39	93.94	94.07	93.20	93.25	95.25	97.27	97.01	94.71	95.64		96.43
F	0.017	0.019	0.015	0.036	n a	0.012	0.024	0.012	0.031	na	n 9	n a	n a	na		0.063
s	0.014	0.014	0.014	0.013	n a	0.012	0.015	0.020	0.019	n.a.	n 9	n.a.	n.a.	n.a.		0.031
Cl	0 325	0.325	0.319	0 304	n a	0.345	0.335	0.354	0.335	n.a.	n a	n a	n.a.	n a		0.282
<u>_1</u>	0.525	0.525	0.517	0.504		0.5-75	0.555	0.554	0.555		a.					0.202
Einheit	Holozän	e Fallabla	agerunge	n												

Probe	M98-031	(Fortset	zung)	
Mineral/Nr.	cpx/2	cpx/3	amph/1	amph/2
SiO ₂	65.06	64.17	65.36	65.52
TiO ₂	0.43	0.42	0.60	0.53
Al_2O_3	15.74	15.99	16.64	16.93
FeO	3.01	2.91	3.51	3.56
MnO	0.10	0.13	0.17	0.18
MgO	0.81	0.88	0.83	0.78
CaO	2.12	2.16	2.41	2.27
Na ₂ O	3.97	4.16	4.20	4.02
K ₂ O	4.60	4.93	4.72	4.69
P_2O_5	0.23	0.24	0.20	0.21
Summe	96.06	96.00	98.63	98.68
F	0.043	0.053	0.038	0.041
S	0.022	0.023	0.027	0.032
Cl	0.317	0.303	0.315	0.332

			17													
Probe	M95-011															
Nr.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO ₂	66.60	66.45	66.45	66.20	66.64	65.69	67.07	66.48	66.52	67.10	66.69	66.55	66.61	66.59	66.29	66.81
TiO ₂	0.53	0.47	0.44	0.49	0.55	0.50	0.48	0.56	0.59	0.53	0.44	0.56	0.56	0.59	0.50	0.44
Al_2O_3	15.25	15.50	15.25	15.52	15.41	15.22	15.48	15.48	15.35	15.09	15.32	15.38	15.49	15.29	15.66	15.36
FeO	3.99	3.74	3.54	3.85	3.71	3.55	3.32	3.72	3.58	3.72	3.88	3.64	3.63	3.73	3.68	3.56
MnO	0.17	0.16	0.12	0.16	0.14	0.18	0.16	0.14	0.14	0.15	0.11	0.11	0.04	0.15	0.16	0.11
MgO CoO	0.70	0.64	0.67	0.71	0.65	0.71	0.67	0.71	0.72	0.73	0.70	0.64	0.66	0.72	0.65	0.64
Na ₂ O	2.12 4.51	2.32 4.71	2.04 4.50	2.24 4.42	2.08 4.14	4.05	5 20	5.12	2.03 4.66	5 34	5.00	4.82	4 25	2.20 4.74	5.02	4 34
K ₂ O	5.48	5.22	5.96	5.72	5.86	6.42	4.53	4.79	5.82	4.39	4.74	5.38	6.07	5.49	4.95	6.02
P_2O_5	0.10	0.12	0.14	0.18	0.29	0.24	0.18	0.22	0.16	0.12	0.12	0.18	0.16	0.22	0.12	0.24
Summe	99.45	99.33	99.11	99.49	99.47	98.58	99.51	99.55	99.59	99.59	99.24	99.35	99.53	99.72	99.39	99.68
F	0.061	0.069	0.067	0.064	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
S	0.004	0.002	0.003	0.004	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cl	0.268	0.281	0.252	0.231	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Einheit	Rezente l	Domlave	n und pyr	roklastisc	che Strön	ne										
Probe	M95-011	(Fortset	zung)]	M96-142	2					1	M96-145	i		
Nr.	17	18	19	20	-	1	2	3	4	5	6	-	1	2	3	4
SiO ₂	66.37	66.63	65.99	66.05		71.21	70.84	72.13	71.79	71.22	72.17		73.55	73.72	73.52	73.12
TiO ₂	0.67	0.56	0.51	0.47		0.45	0.42	0.39	0.39	0.43	0.24		0.35	0.32	0.34	0.33
Al_2O_3	15.14	15.42	15.56	15.57		13.32	13.61	13.37	12.88	13.04	13.11		12.31	12.32	12.34	12.13
FeO	3.53	3.60	3.39	4.62		2.61	2.41	2.57	2.38	2.47	2.57		2.57	2.66	2.60	2.79
MnO	0.19	0.05	0.14	0.10		0.14	0.01	0.14	0.09	0.17	0.10		0.10	0.14	0.14	0.08
MgO	0.68	0.65	0.61	0.87		0.20	0.23	0.19	0.25	0.24	0.23		0.23	0.22	0.24	0.24
CaO No O	2.23	1.98	2.15	2.35		1.22	1.28	1.17	1.28	1.19	1.21		1.24	1.25	1.24	1.18
Na ₂ O	4.08	4.20	4.20	4.62		4.07	4.39	5.99	4.02 5.24	5.99	4.47		5.49	5 35	5.78	5.45
R20 P205	0.18	0.16	0.12	0.12		0.04	0.10	0.08	0.10	0.12	0.17		0.02	0.27	0.08	0.13
Summe	99.29	99.41	98.90	99.12		98.72	98.67	99.35	98.41	98.31	99.33		99.43	99.70	99.88	99.03
F	n.a.	n.a.	n.a.	0.074		0.063	0.029	0.061	n.a.	n.a.	0.058		0.057	0.072	0.064	0.063
S	n.a.	n.a.	n.a.	0.007		0.001	0.002	0.003	n.a.	n.a.	0.005		0.002	0.003	0.001	0.002
Cl	n.a.	n.a.	n.a.	0.273		0.213	0.166	0.254	n.a.	n.a.	0.294		0.243	0.258	0.254	0.252
Einheit	Rezente l	Domlave	n und pyr	roklastisc	che Strön	ne										
Probe		-	M97-068	3												
Nr.	5	-	1	2	3	4	5	6	7	8	9	10	11	12	13	14
SiO ₂	73.44		65.53	64.30	65.13	65.35	64.00	65.17	64.68	64.62	64.56	64.35	63.86	64.98	64.69	63.68
TiO ₂	0.29		0.52	0.60	0.55	0.63	0.71	0.61	0.51	0.60	0.58	0.67	0.72	0.66	0.58	0.63
Al_2O_3	12.19		16.19	15.91	16.00	16.19	16.20	16.07	16.19	16.10	16.14	16.04	16.05	15.99	16.15	16.05
FeO	2.48		4.24	4.23	4.36	4.25	4.58	4.25	4.50	4.28	4.38	4.25	4.50	4.14	4.36	4.40
MnO	0.08		0.20	0.15	0.17	0.21	0.12	0.22	0.35	0.19	0.12	0.22	0.29	0.30	0.17	0.17
MgO	0.22		0.82	0.79	0.89	0.78	0.86	0.79	0.90	0.90	0.79	0.90	0.87	0.92	0.85	0.96
CaO	1.22		2.27	2.40	2.34	2.13	2.56	2.27	2.40	2.21	2.27	2.20	2.06	2.36	2.35	2.30
Na ₂ O	3.61		4.57	4.60	4.67	4.59	4.63	4.71	4.69	4.58	4.49	4.71	4.64	4.56	4.56	4.58
K ₂ U RO	5.44		5.32	5.38	5.40	5.46 0.25	5.25	5.49	5.34	5.39	5.34	5.41	5.43	5.36 0.27	5.26	5.27
r ₂ U ₅	0.08		0.25	0.27	0.29	0.25	0.21	0.33	0.21	0.29	0.25	0.14	0.21	0.27	0.28	0.23
F	99.05 0.067		99.92 0.071	90.03 0 071	99.79 0.064	77.04 0.056	99.11 0 072	99.90 0.056	97.// 0.069	99.13 0.078	0 069	20.00 0 076	70.02 n a	77.JJ na	77.24 na	70.29 n 2
S	0.002		0.001	0.001	0.002	0.003	0.003	0.002	0.001	0.001	0.002	0.002	n.a.	n.a.	n.a.	n.a.
Cl	0.247		0.198	0.215	0.234	0.239	0.264	0.219	0.222	0.238	0.257	0.289	n.a.	n.a.	n.a.	n.a.

Tab. A6.2. Glasanalysen-Merapi: Matrixgläser (Alle Angaben in Gew.%).EinheitRezente Domlaven und pyroklastische Ströme

T-L	110	$(\mathbf{\Gamma} - \mathbf{I} + \mathbf{I} + \mathbf{I} + \mathbf{I})$	
i ad.	A0.2.	(Fortsetzung)	١.

Einheit	Rezente	Domlave	n und py	roklastise	che Strön	ne										
Probe	M97-068	(Fortset	zung)													
Nr.	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
SiO ₂	64.45	64.88	64.84	64.38	64.74	65.09	64.65	64.66	64.57	64.37	64.62	64.23	64.34	64.67	63.99	65.32
TiO ₂	0.64	0.59	0.71	0.61	0.73	0.61	0.51	0.60	0.63	0.61	0.62	0.62	0.60	0.55	0.53	0.53
Al_2O_3	16.25	16.16	16.25	15.95	16.02	15.85	15.81	15.58	15.87	15.62	15.85	15.47	15.60	15.83	15.42	15.81
FeO	4.49	4.54	4.25	4.47	4.10	4.21	4.08	4.23	4.02	4.23	4.34	4.46	4.21	4.29	4.57	4.41
MnO	0.19	0.14	0.09	0.09	0.15	0.15	0.15	0.20	0.21	0.23	0.09	0.14	0.21	0.22	0.20	0.13
MgO	0.87	0.97	0.80	0.92	0.88	0.92	0.83	0.92	0.86	0.85	0.90	0.98	0.97	1.00	0.83	0.87
CaO	2.50	2.34	2.22	2.30	2.31	2.31	2.48	2.40	2.22	2.41	2.23	2.52	2.31	2.36	2.47	2.36
Na ₂ O	4.28	4.73	4.59	4.56	4.50	4.84	4.96	4.76	4.66	4.48	4.73	4.70	4.55	4.71	4.76	4.83
K_2O	5.29	5.44	5.43	5.35	5.36	5.44	5.12	5.22	5.36	5.38	5.63	5.55	5.42	5.47	5.54	5.45
P_2O_5	0.29	0.19	0.27	0.25	0.19	0.21	0.27	0.27	0.21	0.29	0.21	0.19	0.27	0.25	0.33	0.25
Summe	99.23	99.96	99.46	98.87	98.98	99.62	98.85	98.84	98.62	98.46	99.21	98.87	98.48	99.36	98.64	99.96
F	n.a.	n.a.	n.a.	n.a.	n.a.	0.077	0.063	0.072	0.072	0.076	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
S	n.a.	n.a.	n.a.	n.a.	n.a.	0.002	0.003	0.002	0.002	0.003	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Cl	n.a.	n.a.	n.a.	n.a.	n.a.	0.204	0.214	0.254	0.219	0.252	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Einheit				Juvenile	Kompon	enten hol	ozäner p	yroklasti	scher Str	öme						
Probe	M97-068	(Fortset	zung)	M96-137	,							M97-039	92			
Nr.	31	32	-	1	2	3	4	5	6	7	-	1	2	3	4	5
SiO ₂	65.43	65.25		68.88	69.25	67.99	68.51	68.98	69.32	68.29		63.48	63.71	63.19	62.79	62.68
TiO ₂	0.55	0.67		0.43	0.30	0.37	0.37	0.42	0.38	0.40		0.50	0.42	0.40	0.42	0.38
Al ₂ O ₃	15.71	15.84		15.07	15.22	14.93	14.86	14.24	15.18	15.05		17.38	17.33	17.74	17.21	17.22
FeO	4.09	4.11		4.55	4.03	4.00	3.76	4.12	3.71	4.23		3.75	3.96	3.85	4.05	4.34
MnO	0.11	0.16		0.08	0.12	0.20	0.18	0.21	0.13	0.19		0.17	0.21	0.21	0.19	0.18
MgO	0.94	0.95		0.68	0.61	0.62	0.60	0.70	0.54	0.65		0.94	1.03	1.06	1.01	1.05
CaO	2 37	2 44		2 17	2 23	2 22	2 16	2 16	2.26	2 20		2 4 3	2 36	1.82	2.26	1 98

CaO	2.37	2.44	2.17	2.23	2.22	2.16	2.16	2.26	2.20	2.43	2.36	1.82	2.26	1.98
Na ₂ O	4.96	4.73	3.20	3.45	4.12	4.05	4.21	3.11	4.20	4.58	4.56	4.75	4.66	4.41
K_2O	5.52	5.45	4.13	4.10	4.24	4.13	4.12	4.34	3.72	5.08	4.60	4.15	4.59	4.46
P_2O_5	0.27	0.31	0.09	0.08	0.09	0.06	0.02	0.09	0.01	0.27	0.25	0.19	0.24	0.23
Summe	99.94	99.90	99.28	99.39	98.76	98.66	99.17	99.06	98.93	98.57	98.44	97.38	97.43	96.94
F	n.a.	n.a.	0.082	0.081	0.087	0.088	0.094	0.103	0.078	0.044	0.058	0.059	0.059	0.037
S	n.a.	n.a.	0.002	0.001	0.004	0.002	0.004	0.004	0.003	0.008	0.009	0.009	0.012	0.012
Cl	n.a.	n.a.	0.202	0.208	0.174	0.141	0.23	0.231	0.256	0.247	0.278	0.208	0.272	0.298

Einheit Juvenile Komponenten holozäner pyroklastischer Ströme

Probe	M97-039	2 (Fortse	etzung)			M97-045			M98-0532					
Nr.	6	7	8	9	10	11	12	13	14	1	2	3	1	2
SiO ₂	63.24	63.52	64.47	65.55	64.41	64.23	64.42	64.92	64.64	65.52	65.56	65.72	69.94	70.89
TiO ₂	0.44	0.47	0.43	0.44	0.42	0.40	0.36	0.45	0.52	0.43	0.41	0.41	0.40	0.39
Al_2O_3	17.79	17.12	17.03	16.98	16.89	16.97	16.95	16.90	16.98	16.49	16.30	16.23	15.51	15.97
FeO	3.94	4.07	4.62	4.02	4.65	4.44	4.67	4.47	4.17	4.21	4.01	3.85	1.99	1.86
MnO	0.22	0.20	0.23	0.16	0.19	0.21	0.18	0.16	0.18	0.25	0.22	0.21	0.07	0.05
MgO	1.07	1.07	1.16	0.99	1.09	1.09	1.08	1.13	1.07	0.93	0.98	0.95	0.69	0.59
CaO	1.79	1.73	1.92	2.09	2.09	1.92	1.91	1.99	1.61	2.14	2.10	2.01	1.79	1.64
Na ₂ O	4.49	4.55	4.79	4.49	3.44	3.82	3.67	3.27	3.80	4.84	4.61	4.78	4.23	4.18
K_2O	4.54	4.64	4.89	4.76	4.83	4.81	4.95	4.45	5.14	4.74	4.60	4.55	4.00	4.12
P_2O_5	0.26	0.20	0.36	0.51	0.37	0.37	0.39	0.40	0.45	0.32	0.41	0.40	0.15	0.21
Summe	97.79	97.57	99.89	100.00	98.38	98.25	98.58	98.14	98.56	99.87	99.18	99.10	98.76	99.90
F	0.053	0.071	0.078	0.063	0.068	0.080	0.067	0.082	0.074	0.040	0.054	0.048	0.045	0.035
S	0.008	0.013	0.012	0.012	0.014	0.014	0.018	0.016	0.019	0.014	0.006	0.005	0.002	0.004
Cl	0.241	0.282	0.294	0.200	0.283	0.282	0.251	0.286	0.292	0.245	0.263	0.258	0.245	0.269

Т	a	b.	A6.2.	(F	ortsetz	ur	ıg).

Einheit	Juvenile	Kompone	enten ho	olozäner p	yroklasti	scher Str	öme									
Probe	M98-053	32 (Fortse	etzung)]	M98-059)]	M98-066	5			
Nr.	3	4	5	6	7	_	1	2	3	4	-	1	2	3	4	5
SiO ₂	70.78	71.14	70.11	70.23	71.85		67.87	67.53	68.30	68.09		68.51	68.43	68.59	68.61	67.42
TiO ₂	0.45	0.48	0.46	0.39	0.44		0.44	0.36	0.41	0.39		0.56	0.54	0.46	0.44	0.46
Al_2O_3	15.98	15.66	16.31	15.70	14.13		15.94	15.87	16.04	15.80		15.70	15.72	15.78	15.90	15.58
FeO	1.91	2.09	2.13	1.97	1.91		3.57	3.66	3.45	3.51		3.94	3.70	3.67	3.65	3.70
MnO	0.02	0.07	0.08	0.10	0.07		0.14	0.08	0.18	0.21		0.17	0.21	0.11	0.13	0.12
MgO	0.67	0.77	0.54	0.58	0.74		0.68	0.61	0.63	0.64		0.56	0.61	0.54	0.57	0.59
CaO	1.86	1.53	1.87	1.60	1.84		1.68	1.62	1.47	1.53		1.45	1.52	1.34	1.30	1.45
Na ₂ O	3.96	3.85	3.99	4.20	4.08		3.10	3.08	3.23	3.12		3.11	2.96	3.19	2.97	3.15
K_2O	4.18	4.32	3.97	3.82	4.01		5.28	5.26	5.32	5.36		5.46	5.72	5.62	5.43	5.53
P_2O_5	0.18	0.14	0.16	0.16	0.20		0.18	0.15	0.22	0.17		0.18	0.21	0.20	0.16	0.14
Summe	99.99	100.05	99.61	98.74	99.26		98.88	98.23	99.25	98.82		99.64	99.61	99.50	99.15	98.15
F	0.04	0.069	0.085	0.024	0.074		0.057	0.055	0.047	0.054		0.024	0.014	0.029	0.034	0.021
S	0.006	0.004	0.002	0.001	0.005		0.002	0.005	0.003	0.004		0.003	0.005	0.003	0.002	0.002
Cl	0.241	0.204	0.235	0.189	0.198		0.286	0.294	0.249	0.282		0.210	0.256	0.259	0.169	0.216
Einheit	Juvenile	Kompone	enten ho	olozäner p	yroklasti	scher Str	öme]	Holozäne	Fallabla	gerunger	1
Probe	M98-066	(Fortset	zung)	M98-096				M98-0991				M96-075				
Nr.	6	7		1	2	3	4	-	1	2	3	-	1	2	3	4
SiO ₂	67.83	67.20		64.92	64.49	64.32	64.00		69.58	68.03	68.10		65.46	65.73	65.18	65.75
TiO ₂	0.45	0.45		0.42	0.58	0.57	0.55		0.45	0.41	0.37		0.47	0.35	0.50	0.46
Al_2O_3	15.75	16.14		17.17	16.95	17.11	17.62		14.75	15.14	16.21		16.50	16.72	16.77	16.59
FeO	3.83	3.84		4.67	5.28	5.15	4.80		4.16	4.13	3.90		3.44	3.07	3.59	3.59
MnO	0.16	0.09		0.23	0.19	0.23	0.21		0.19	0.10	0.11		0.19	0.09	0.23	0.30
MgO	0.55	0.61		1.06	1.03	1.12	1.22		0.64	0.51	0.46		1.07	0.98	1.06	1.03
CaO	1.35	1.61		2.49	2.22	2.49	2.54		1.56	1.68	1.75		2.91	3.11	2.92	3.09
Na ₂ O	3.13	3.58		3.57	3.50	3.23	3.17		3.43	3.77	3.90		4.65	4.54	4.08	4.05
K ₂ O	5.54	5.69		5.10	5.26	5.00	5.08		4.83	4.87	4.75		4.40	4.19	4.40	4.19
P_2O_5	0.15	0.20		0.12	0.20	0.14	0.30		0.18	0.21	0.24		0.25	0.28	0.17	0.22
Summe	98.74	99.41		99.75	99.69	99.36	99.50		99.77	98.85	99.80		99.35	99.05	98.88	99.28
F	0.028	0.020		0.056	0.064	0.054	0.063		0.063	0.021	0.070		0.029	0.039	0.028	0.040
S	0.004	0.001		0.005	0.009	0.013	0.005		0.003	0.002	0.002		0.004	0.002	0.005	0.003
CI	0.248	0.293		0.200	0.299	0.262	0.275		0.243	0.209	0.200		0.275	0.248	0.215	0.232
Einheit	Juvenile	Kompone	enten ho	olozäner F	allablage	rungen (Fortsetzu	ing)								
Probe	M96-075 (Forts.)	5														
Nr.	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
SiO ₂	65.65	65.42	65.41	65.66	65.83	65.51	65.40	65.28	66.06	66.25	66.57	66.18	65.98	66.68	66.25	66.06
TiO ₂	0.48	0.44	0.49	0.41	0.45	0.38	0.39	0.44	0.36	0.39	0.42	0.43	0.43	0.44	0.39	0.39
Al_2O_3	17.06	16.72	16.68	16.76	16.92	16.85	17.07	16.74	16.77	16.80	16.90	16.71	16.44	16.91	16.74	16.98
FeO	3.16	3.54	3.56	3.44	3.30	3.26	3.37	3.37	3.30	3.24	3.67	3.58	3.45	3.54	3.64	3.55
MnO	0.11	0.24	0.18	0.12	0.29	0.19	0.13	0.17	0.34	0.18	0.19	0.18	0.17	0.21	0.31	0.13
MgO	1.01	1.04	1.04	1.01	1.03	0.93	1.13	0.98	1.04	0.86	0.97	0.96	0.98	1.03	0.96	0.96
CaO	3.03	2.95	3.19	2.83	2.88	3.03	3.21	3.17	2.77	3.01	2.78	2.84	3.24	3.15	3.06	2.99
Na ₂ O	4.30	3.86	3.93	4.39	4.15	4.07	4.12	4.33	3.86	3.49	3.63	3.49	3.21	3.37	3.15	3.57
K ₂ U	3.98	4.41	4.19	4.38	4.23	4.35	4.32	4.34	4.45	4.51	4.56	4.53	4.51	4.38	4.43	4.54
P ₂ O ₅	0.23	0.28	0.23	0.26	0.16	0.14	0.21	0.22	0.24	0.23	0.13	0.33	0.39	0.20	0.26	0.23
Summe	99.01	98.91	98.90	99.20	99.25	98.70	99.33	99.04	99.21	98.97	99.82	99.22	98.79	99.92	99.19	99.40
с 1.	0.030	0.034	0.030	0.023	0.023	0.024	n.a.	n.a.	n.a.	0.042	0.039	0.020	0.034	0.020	0.018	0.040
S Cl	0.003	0.004	0.005	0.007	0.000	0.007	n.a.	n.a.	n.a.	0.008	0.010	0.014	0.005	0.010	0.005	0.007
CI	0.273	0.230	0.221	0.250	0.280	0.290	n.a.	n.a.	n.a.	0.280	0.309	0.312	0.302	0.290	0.277	0.289

100.00 99.72

0.251 0.278

0.089 0.091 0.003 0.008

Tab. A6.2. (Fortsetzung).

Einheit	Juvenile Komponenten hoiozaner Fallablagerungen															
Probe	M96-157	1					M96-163									
Nr.	1	2	3	4	5	-	1	2	3	4	5	-	1	2	3	4
SiO ₂	64.61	64.22	65.14	63.75	62.77		65.69	66.57	68.84	68.24	69.89		67.13	68.18	68.17	67.75
TiO ₂	0.57	0.61	0.56	0.56	0.60		0.30	0.50	0.47	0.52	0.48		0.55	0.52	0.54	0.51
Al_2O_3	16.39	16.99	16.43	17.03	17.03		17.29	16.80	16.56	16.38	14.85		16.08	16.16	16.21	16.24
FeO	4.54	4.48	4.19	5.00	5.17		3.13	3.48	3.44	3.31	3.33		2.55	2.96	2.90	2.72
MnO	0.23	0.25	0.23	0.21	0.15		0.14	0.22	0.14	0.12	0.07		0.15	0.18	0.11	0.15
MgO	1.18	1.15	1.04	1.17	1.10		1.27	1.55	0.94	0.96	0.80		0.75	0.78	0.78	0.79
CaO	2.79	3.02	2.87	3.08	2.90		3.80	3.15	2.90	2.84	1.78		2.69	2.68	2.49	2.75
Na ₂ O	2.98	3.38	3.41	3.01	4.32		4.79	3.78	2.78	2.74	2.75		4.60	4.24	4.41	4.62
K ₂ O	4.75	4.69	4.72	4.61	4.63		3.07	3.38	3.78	3.79	4.43		4.10	4.15	4.06	4.23
P_2O_5	0.28	0.38	0.29	0.36	0.38		0.05	0.23	0.13	0.26	0.30		0.21	0.09	0.12	0.06
Summe	98.32	99.17	98.87	98.78	99.04		99.53	99.66	99.98	99.16	98.69		98.81	99.94	99.78	99.81
F	0.072	0.032	0.078	0.074	0.059		0.030	0.045	0.056	0.034	0.062		0.034	0.029	0.023	0.023
S	0.006	0.004	0.009	0.021	0.018		0.005	0.003	0.006	0.008	0.004		0.005	0.004	0.004	0.003
Cl	0.272	0.247	0.285	0.286	0.283		0.175	0.160	0.243	0.263	0.260		0.289	0.298	0.287	0.294
Einheit	Juvenile	Kompon	enten hol	lozäner F	allablage	erungen										
Probe	M97-053	(Fortset	zung)												M98-031	
Nr.	5	6	7	8	9	10	11	12	13	14	15	16	17	-	1	2
SiO ₂	68.18	67.29	66.36	67.41	67.93	68.11	68.38	67.40	67.33	67.82	66.74	67.40	67.14		65.96	65.43
TiO ₂	0.54	0.63	0.56	0.52	0.53	0.52	0.58	0.48	0.45	0.56	0.48	0.55	0.50		0.52	0.52
Al ₂ O ₃	16.49	16.46	16.58	16.45	16.52	16.17	16.29	16.66	16.61	16.43	16.42	16.32	16.17		17.28	17.06
FeO	2.94	2.69	2.77	2.70	2.74	2.93	2.52	2.65	2.96	2.69	2.87	2.92	2.82		3.93	3.76
MnO	0.17	0.23	0.11	0.10	0.14	0.10	0.18	0.13	0.21	0.20	0.15	0.14	0.12		0.16	0.22
MgO	0.78	0.78	0.68	0.73	0.72	0.72	0.74	0.70	0.77	0.73	0.68	0.69	0.71		0.97	1.07
CaO	2.58	2.53	2.48	2.75	2.61	2.64	2.52	2.60	2.58	2.57	2.53	2.73	2.55		2.61	2.97
Na ₂ O	4.23	4.51	4.50	4.27	4.50	4.12	4.25	4.15	4.53	4.68	4.03	3.91	3.93		3.58	3.52
K ₂ O	3.96	3.72	4.19	4.12	3.99	3.95	4.17	4.02	4.23	4.06	4.11	4.15	4.26		4.79	4.86
P_2O_5	0.08	0.06	0.17	0.19	0.14	0.23	0.23	0.04	0.23	0.21	0.17	0.25	0.16		0.20	0.31

 Summe
 99.94
 98.90
 98.40
 99.25
 99.82
 99.49
 99.86
 98.83
 99.89
 99.95
 98.17
 99.05
 98.35

 F
 0.036
 0.033
 0.045
 0.027
 0.023
 0.044
 n.a.
 n.a.
 n.a.
 n.a.
 0.a
 0.040
 0.025
 0.031

 S
 0.002
 0.005
 0.005
 0.002
 0.003
 n.a.
 n.a.
 n.a.
 n.a.
 0.04
 0.004
 0.005
 0.008

 C1
 0.289
 0.238
 0.292
 0.275
 0.272
 0.276
 n.a.
 n.a.
 n.a.
 n.a.
 0.a
 0.333
 0.319
 0.321

Probe	M98-031 (Fortsetzung)										
Nr.	3	4	5	6	7						
SiO ₂	65.23	65.77	65.26	68.59	64.85						
TiO ₂	0.54	0.53	0.51	0.34	0.51						
Al_2O_3	16.54	16.65	16.79	16.03	17.57						
FeO	4.35	4.31	4.15	2.55	3.96						
MnO	0.19	0.23	0.21	0.20	0.26						
MgO	1.02	0.98	1.00	0.47	0.99						
CaO	2.67	2.60	2.66	2.03	3.10						
Na ₂ O	3.36	3.30	3.17	3.97	3.79						
K_2O	5.10	5.18	4.83	4.99	4.67						
P_2O_5	0.34	0.28	0.31	0.06	0.22						
Summe	99.34	99.83	98.88	99.22	99.91						
F	0.071	0.064	0.089	0.045	0.084						
S	0.007	0.008	0.004	0.003	0.008						
Cl	0.292	0.274	0.280	0.240	0.270						

Anhang 7

Standardlegende zu den stratigraphischen Profilen (Kapitel 4)

Bibliographie

- Andersen D.J., Lindsley D.H. & Davidson, P.M. (1993): QUILF: A Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine and quartz. Comput. Geosci., 19, 1333-1350.
- Anderson, A.T. (1974): Chlorine, sulfur, and water in magmas and oceans. Geol. Soc. Am. Bull., **85**, 1485-1494.
- Anderson, A.T. (1976): Magma mixing: Petrological process and volcanological tool. J. Volcanol. Geotherm. Res., **1**, 3-33.
- Anderson, A.T. (1991): Hourglass inclusions: Theory and application to the Bishop Rhyolitic Tuff. Am. Mineral., **76**, 530-547.
- Anderson, A.T., Newman, S., Williams, S.T., Druitt, T.H., Skirius, C. & Stolper, E. (1989): H₂O, CO₂, Cl and gas in plinian and ash-flow Bishop rhyolite. Geology, **17**, 221-225.
- Andreastuti, S.D. (1999): Stratigraphy and geochemistry of Merapi volcano, Central Java, Indonesia: Implication for assessment of volcanic hazards. Ph.D. thesis, University of Auckland, Auckland, Neuseeland.
- Andreastuti, S.D., Alloway, B.V. & Smith, I.E.M. (2000): A detailed tephrostratigraphic framework at Merapi volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J. Volcanol. Geotherm. Res., 100, 51-67.
- Bahar, I. (1984): Contribution à la connaissance du volcanisme indonésien: Le Merapi (Centre Java); cadre structural, pétrologie, géochimie et implications volcanologiques. Ph.D. thesis, Université des Sciences et Techniques du Languedoc, Montpellier, Frankreich.
- Baker, D.R. & Eggler, D.H. (1983): Fractionation paths of Atka (Aleutians) high alumina basalts: constraints from phase relations. J. Volcanol. Geotherm. Res., **18**, 387-404.
- Baker, D.R. & Eggler, D.H. (1987): Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite and olivine or low-Ca pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. Am. Mineral., 72, 12-28.
- Barberi, F., Coltelli, M., Frullani, A., Rosi, M. & Almeida, E. (1995): Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting. J. Volcanol. Geotherm. Res., 69, 217-239.
- Bardintzeff, J.M. (1984): Merapi Volcano (Java, Indonesia) and Merapi-type nuée ardente. Bull. Volcanol., **47**, 433-446.

- Barling, J. & Goldstein, S.L. (1990): Extreme isotopic variations in Heard Island lavas and the nature of mantle reservoirs. Nature, **348**, 59-62.
- Beauducel, F. (1998): Structure et comportement mécanique du volcan Merapi (Java): une approche méthodologique du champs de déformations. Ph.D. thesis, Université Paris 7, Paris, Frankreich.
- Ben Othman, D., White, W.M. & Patchett, J. (1989): The geochemistry of marine sediments, island arc magma genesis and crust-mantle recycling. Earth Planet. Sci. Lett., **94**, 1-21.
- Berthommier, P.C. (1990): Etude volcanologique du Merapi (Centre-Java). Téphrostratigraphie et chronologie - produits éruptifs. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, Frankreich.
- Bronto, S. & Sayudi, S.D. (1995): Guide book for field excursion on south and west slopes of Merapi volcano. Volcanological Survey of Indonesia, 1. Merapi Decade Volcano International Workshop, Yogyakarta, 20 pp.
- Bruns, M., Levin, I., Münnich, K.O., Hubberten, H.W. & Fillipakis, S. (1980): Regional sources of volcanic carbon dioxide and their influence on ¹⁴C content of present-day plant material. Radiocarbon, 22, 532-536.
- Buddington, A.F. & Lindsley, D.H. (1964): Iron-titanium oxide minerals and synthetic equivalents. J. Petrol., **5**, 310-357.
- Burnham, C.W. & Davis, N.F. (1974): The role of H₂O in silicate melts: II. Thermodynamic & phase relations in the system NaAlSi₃O₈-H₂O to 10 kilobars, 700°C-1100°C. Am. J. Sci., 274, 902-940.
- Calvache V., M.L. & Williams, S.N. (1997): Geochemistry and petrology of the Galeras volcanic complex, Colombia. J. Volcanol. Geotherm. Res., **77**, 21-38.
- Camus, G., Gourgaud, A., Mossand-Berthommier, P.-C. & Vincent, P.M. (2000): Merapi (Central Java, Indonesia): An outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J. Volcanol. Geotherm. Res., **100**, 139-163.
- Carey, S. & Sparks, R.S.J. (1986): Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol., **48**, 109-125.
- Carey, S. & Sigurdsson, H. (1989): The intensity of plinian eruptions. Bull. Volcanol., **51**, 28-40.
- Carroll, M.R. & Rutherford, M.J. (1988): Sulfur speciation in hydrous experimental glasses of varying oxidation state: results from measured wavelength shifts of sulfur X-rays. Am. Mineral., 73, 845-849.

- Chesner, C.A. & Rose, W.I. (1991): Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia. Bull. Volcanol., **53**, 343-356.
- Cioni, R., Marianelli, P., Santacroce, R. & Sbrana, A. (2000): Plinian and subplinian eruptions. *In*: H. Sigurdsson (ed.): Encyclopedia of Volcanoes. Academic Press, pp. 477-494.
- Clarke, A.B. & Voight, B. (2000): Pumice flow deposits at Soufrière Hills volcano, Montserrat: Implications for modeling the 1997 vulcanian explosions. Abstracts, IAVCEI General Assembly 2000, Bali, Indonesia, p. 263.
- Cloos, M. (1994): Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geol. Soc. Am. Bull., 105, 715-737.
- Clynne, M.A. (1999): A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J. Petrol., **40**, 105-132.
- Cole, P.D., Fernandez, E., Duarte, E. & Duncan, A.M. (2000): Persistent explosive activity and pyroclastic flow formation between 1987 and 1999, Arenal Volcano, Costa Rica. Abstracts, IAVCEI General Assembly 2000, Bali, Indonesia, p. 245.
- Del Marmol, M.A. (1989): The petrology and geochemistry of Merapi volcano, Central Java, Indonesia. Ph.D. thesis, The Johns Hopkins University, Baltimore, USA.
- DePaolo, D.J. (1981): Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., **53**, 189-202.
- DePaolo, D.J. & Wasserburg, G.J. (1976): Nd isotopic variations and petrogenetic models. Geophys. Res. Lett., **3**, 249-252.
- Devine, J.D., Sigurdsson, H., Davis, A.N. & Self, S. (1984): Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects. J. Geophys. Res., 89, 6309-6325.
- Devine, J.D., Gardner, J.E., Brack, H.P., Layne, G.D. & Rutherford, M.J. (1995): Comparison of microanalytical methods for estimation of H₂O-contents of silicic volcanic glasses. Am. Mineral., 80, 319-328.
- Dixon, J.E., Clague, D.A. & Stolper, E.M. (1991): Degassing of water, sulfur and carbon in submarine lavas from Kilauea Volcano, Hawaii. J. Geol., **99**, 371-394.
- Djumarma, A., Bronto, S., Bahar, I., Suparban, F., Sukhyar, R., Newhall, C., Holcomb, R.T., Banks, N.G., Torley, R., Lockwood, J.P., Tilling, R.I., Rubin, M. & del Marmol, M.A. (1986): Did Merapi volcano (Central Java) erupt catastrophically in 1006 A.D.? Abstracts, IAVCEI International Volcanological Congress 1996, New Zealand, p. 236.

- Dosso, L., Vidal, P., Cantagrel, J.M., Lameyre, J., Marot, A. & Zimine, S. (1979): 'Kerguelen: continental fragment or oceanic island?' petrology and isotopic geochemistry evidence. Earth Planet. Sci. Lett., 43, 46-60.
- Dosso, L., Bougault, H., Beuzart, P. & Calvez, J.Y. (1988) The geochemical structure of the South-East Indian Ridge. Earth Planet. Sci. Lett., **88**, 47-59.
- Dunbar, N.W. & Kyle, P.R. (1993): Lack of volatile gradient in the Taupo plinian-ignimbrite transition: evidence from melt inclusion analysis. Am. Mineral., **78**, 612-618.
- Dungan, M.A. & Rhodes, J.M. (1978): Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: evidence for magma mixing. Contrib. Mineral. Petrol., **67**, 417-431.
- Dupré, B. & Allègre, C.J. (1983): Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, **303**, 142-146.
- Edwards, C.M.H., Morris, J.D. & Thirlwall, M.F. (1993): Separating mantle from slab signatures in arc lavas using B/Be and radiogenic isotope systematics. Nature, **362**, 530-533.
- Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., Morris, J.D., Leeman, W.P. & Harmon, R.S. (1994): The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser Complex, East Java, Indonesia. J. Petrol., **35**, 1557-1595.
- Eggler, D.H. (1972a): Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimated water content in a natural magma. Contrib. Mineral. Petrol., **34**, 261-271.
- Eggler, D.H. (1972b): Amphibole stability in H₂O-undersaturated calc-alkaline melts. Earth Planet. Sci. Lett., **15**, 28-34.
- Eggler, D.H. & Burnham, C.W. (1973): Crystallization and fractionation trends in the system and esite-H₂O-CO₂-O₂ at pressures to 10 kb. Geol. Soc. Am. Bull., **84**, 2517-2532.
- Escher, B.G. (1933a): On a classification of central eruptions according to gas pressure of the magma and viscosity of the lava. Leidsche Geol. Mededeelingen, **6**, 45-49.
- Escher, B.G. (1933b): On the character of the Merapi eruption in Central Java. Leidsche Geol. Mededeelingen, **7**, 51-59.
- Fierstein, J. & Nathenson, M. (1992): Another look at the calculation of fallout tephra volumes. Bull. Volcanol., **54**, 155-167.
- Foden, J.D. & Varne, R. (1980): The petrology and tectonic setting of Quaternary-recent volcanic centres of Lombok and Sumbawa, Sunda Arc. Chem. Geol., **30**, 201-226.
- Francis, P.W. (1993): Volcanoes, a planetary perspective. Clarendon Press, Oxford.
- Francis P.W., Gardeweg, M., Ramirez, C.F. & Rothery, D.A. (1985): Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology, **13**, 600-603.

- Frost, B.R. & Lindsley, D.H. (1992): Equilibria among Fe-Ti oxides, pyroxenes, olivine and quartz: Part II. Application. Am. Mineral., **77**, 1004-1020.
- Frost, B.R., Lindsley, D.H. & Andersen, D.J. (1988): Fe-Ti oxide-silicate equilibria: assemblages with fayalitic olivine. Am. Mineral., **73**, 727-740.
- Garcia, M.O. & Jacobson, S.S. (1979): Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib. Mineral. Petrol., **69**, 319-327.
- Gasparon, M. & Varne, R. (1998): Crustal assimilation versus subducted sediment input in west Sunda arc volcanics: an evaluation. Mineralogy and Petrology, **64**, 89-117.
- Gasparon, M., Hilton, D.R. & Varne, R. (1994): Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia. Earth Planet. Sci. Lett., 126, 15-22.
- Gerlach, T.M., Westrich, H.R., Casadevall, T.J. & Finnegan, D.L. (1994): Vapor saturation and accumulation in magmas of the 1989-1990 eruption of Redoubt Volcano, Alaska. J. Volcanol. Geotherm. Res., 62, 317-337.
- Gertisser, R. & Keller, J. (1998a): The Holocene volcanic activity and magmatic evolution of Merapi volcano, Central Java: constraints from stratigraphic, chronologic and geochemical data. Deutsche Geophysikalische Gesellschaft – Mitteilungen, Sonderband III/1998, pp. 15-19.
- Gertisser, R. & Keller, J. (1998b): Tephra-fall deposits from Merapi volcano, Central Java, Indonesia. Abstracts, IAVCEI International Volcanological Congress, Capetown, South Africa, p. 21.
- Gertisser, R. & Keller, J. (1998c): Merapi Decade Volcano: Pyroclastic stratigraphy and chronology of 'New Merapi'. Terra Nostra, **98** (**3**), 51-52.
- Gertisser, R. & Keller, J. (2000a): Chronology and dispersal characteristics of tephra erupted from Merapi volcano (Central Java): Implications for long-term eruption forecasting. Abstracts, IAVCEI General Assembly 2000, Bali, Indonesia, p. 141.
- Gertisser, R. & Keller, J. (2000b): Distribution, thickness, volume and age of pumiceous tephra-fall deposits from major explosive eruptions of Merapi volcano, Central Java, Indonesia. Deutsche Geophysikalische Gesellschaft - Mitteilungen, Sonderband IV/2000, pp. 1-6.
- Gertisser, R. & Keller, J. (2000c): The geochemical evolution of Merapi volcano (Central Java): Medium-K and high-K associations. Abstracts, IAVCEI General Assembly 2000, Bali, Indonesia, p. 150.
- Geyh, M.A. (1983): Physikalische und chemische Datierungsmethoden in der Quartär-Forschung. Clausthaler Tektonische Hefte, **19**, 163 pp.

- Gill, J.B. (1981): Orogenic andesites and plate tectonics. Springer-Verlag, Berlin.
- Grandjean, J.B. (1931): Korte mededeeling over de uitbarsting van den Merapi op 18 December 1930. De Mijningenieur, **12** (1), 4-6.
- Green, T.H. (1981): Experimental evidence for the role of accessory phases in magma genesis.J. Volcanol. Geotherm. Res., 10, 405-422.
- Green, T.H. (1982): Anatexis of mafic crust and high pressure crystallization of andesite. *In*: Thorpe, R.S. (ed.): Andesites. Wiley and Sons, Chichester, pp. 465-487.
- Grove, T.L., Gerlach, D.C. & Sando, T.W. (1982): Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing. Contrib. Mineral. Petrol., 80, 160-182.
- Halsor, S.P. (1989): Large glass inclusions in plagioclase phenocrysts and their bearing on the origin of mixed andesitic lavas at Tolimán volcano, Guatemala. Bull. Volcanol., 51, 271-280.
- Hamelin, B. & Allègre, C.J. (1985): Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge. Nature, **315**, 196-199.
- Hamelin, B., Dupré, B. & Allègre, C.J. (1985): Pb-Sr-Nd isotopic data of Indian Ocean Ridges: new evidence of large-scale mapping of mantle heterogeneities. Earth Planet. Sci. Lett., 76, 288-298.
- Hamilton, W. (1979): Tectonics of the Indonesian region. USGS Prof. Paper, 1078, 1-345.
- Hammarstrom, J.M. & Zen, E-an (1986): Aluminum in hornblende: an empirical igneous geobarometer. Am. Mineral., **71**, 1297-1313.
- Hammer, J.E., Cashman, K.V. & Voight, B. (2000): Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J. Volcanol. Geotherm. Res., 100, 165-192.
- Harmon, R.S. & Hoefs, J. (1995): Oxygen isotope heterogeneity of the mantle deduced from global ¹⁸O systematics of basalts from different geotectonic settings. Contrib. Mineral. Petrol., **120**, 95-114.
- Hart, S.R. (1984): The DUPAL anomaly: a large-scale isotopic anomaly in the southern hemisphere. Nature, **309**, 753-756.
- Hartmann, M. (1934a): Der grosse Ausbruch des Vulkanes G. Merapi (Mittel Java) im Jahre 1872. Natuurk. Tijdschr. Nederl. Indië, **94**, 189-209.
- Hartmann, M. (1934b): Die vulkanische T\u00e4tigkeit des Merapi Vulkanes (Mittel Java) in seinem \u00f6stlichen Gipfelgebiete zwischen 1902 und 1908. De Ingenieur in Nederlandsch-Indie, 5, 61-73.

- Hartmann, M. (1935a): Die Ausbrüche des G. Merapi (Mittel-Java) bis zum Jahre 1883. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, **75**, 127-162.
- Hartmann, M. (1935b): Die große Ausbruchsperiode des Merapi im 2. Halbjahr 1934. Zeitschrift für Vulkanologie, **16**, 199-205.
- Hartmann, M. (1936): Die Lavadomgebilde des Merapi (M.J.) nach dem grossen Ausbruch im Jahre 1930. Zeitschrift für Vulkanologie, **16**, 248-258.
- Hawkesworth, C.J., Gallagher, K., Hergt, J.M. & McDermott, F. (1993): Mantle and slab contributions in arc magmas. Ann. Rev. Earth Planet. Sci., **21**, 175-204.
- Hegner E., Roddick J.C., Fortier S.M. & Hulbert L. (1995a): Nd, Sr, Pb, Ar, and O isotopic systematics of Sturgeon Lake kimberlite, Saskatchewan, Canada: constraints on emplacement age, alteration, and source composition. Contrib. Mineral. Petrol., 120, 212-222.
- Hegner E., Walter, H.J. & Satir, M. (1995b): Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany. Contrib. Mineral. Petrol., 122, 322-335.
- Hervig, R.L., Dunbar, N., Westrich, H.R. & Kyle, P.R. (1989): Pre-eruptive water content of rhyolitic magmas as determined by ion microprobe analyses of melt inclusions in phenocrysts. J. Volcanol. Geotherm. Res., 36, 293-302.
- Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. & Sisson, V.B. (1987): Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calcalkaline plutons. Am. Mineral., 72, 231-239.
- Housh, T.B. & Luhr, J.F. (1991): Plagioclase-melt equilibria in hydrous systems. Am. Mineral., **76**, 477-492.
- Huppert, H.E. & Sparks, R.S.J. (1980): The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma. Contrib. Mineral. Petrol., 75, 279-289.
- Hutchison, C.S. (1982): Indonesia. *In*: Thorpe, R.S. (ed.): Andesites. Wiley and Sons, Chichester, pp. 307-325.
- Irvine, T.N. & Baragar, W.R.A. (1971): a guide to the chemical classification of the common volcanic rocks. Can. J. Earth. Sci., **8**, 523-548.
- Ito, E., White, W.M. & Göpel, C. (1987): The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem. Geol., 62, 157-176.
- James, D.E. (1981): The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Ann. Rev. Earth Planet. Sci., **9**, 311-344.

- Johnson, M.C. & Rutherford, M.J. (1989): Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17, 837-841.
- Junghuhn, F.W. (1853-54): Java, deszelfs gedaante, Bekleeding en Inwendige Structuur. 2nd ed, Uitgave C.W. Mieling, s'Gravenhage, pp. 417-465.
- Katili, J.A. (1975): Volcanism and plate tectonics in the Indonesian island arcs. Tectonophysics, **26**, 165-188.
- Katsui, Y., Ando, S. & Inaba, K. (1975): Formation and magmatic evolution of Mashu Volcano, East Hokkaido, Japan. J. Fac. Sci. Hokkaido Univ., Ser. IV, **16**, 533-552.
- Kemmerling, G.L.L. (1921): De hernieuwde werking van den vulkan G. Merapi (Midden Java) van den begin Augustus 1920 tot en met einde Februari 1921. Vulkanologische en seismologische Mededeelingen, 3, 1-30.
- Kemmerling, G.L.L. (1932): De controverse uitgeschoten gloedwolken (nuées ardentes d'explosion dirigée) of lawinen-gloedwolken (nuées ardentes d'avalanche). De Ingenieur, 47, 129-137.
- Kerinec, F. (1982): Le Merapi, volcan actif d'arc insulaire (Java): Pétrographie et géochimie des matériaux solides, implications géotectoniques. Ph.D. thesis, Orsay, Frankreich.
- Kimberly, P., Siebert, L., Luhr, J.F. & Simkin, T. (1998): Volcanoes of Indonesia, v. 1.0 (CD-ROM). Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-1.
- Kuno, H. (1968): Differentiation of basalt magmas. *In*: Hess, H.H. & Poldervaart, A. (eds.): Basalts. The Poldervaart treatise on rocks of basaltic composition, Vol. 2. Interscience, New York, pp. 623-688.
- Lacroix, A. (1904): La Montagne Pelée et ses éruptions. Paris, Masson, 662 pp.
- Lacroix, A. (1930): Remarques sur les matériaux de projection des volcans et sur la genèse des roches pyroclastiques q'ils constituent. Soc. Géol. France, Livre Jubilaire du Centenaire, II, 431-472.
- Lavigne, F., Thouret, J.-C., Voight, B., Suwa, H., Sumaryono, A. (2000): Overview of lahars at Merapi Volcano, Central Java, Indonesia. J. Volcanol. Geotherm. Res., **100**, 423-456.
- Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. (1986): A chemical classification of volcanic rocks based on the Total Alkali-Silica diagram. J. Petrol., **27**, 745-750.
- Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre J., Le Bas M.J., Sabine P.A., Schmidt R., Sørensen H., Streckeisen A., Woolley A.R., Zanettin B. (1989): A classification of igneous rocks and glossary of terms. Recommendations of the International Union

of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell, Oxford, 193 pp.

- Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird J., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. & Youzhi, G. (1997): Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineral. Mag., 61, 295-321.
- Lindsley, D.H. (1981): Some experiments pertaining to the magnetite-ulvöspinel miscibility gap. Am. Mineral., **66**, 759-762.
- Lindsley, D.H. (1983): Pyroxene thermometry. Am. Mineral., 68, 477-493.
- Lindsley, D.H. (1991): Experimental studies of oxide minerals. *In*: Lindsley, D.H. (ed.): Oxide Minerals: Petrologic and magnetic significance. Min. Soc. Am. Rev. Mineral., **25**, 69-106.
- Lindsley, D.H. & Frost, B.R. (1992): Equilibria among Fe-Ti oxides, pyroxenes, olivine and quartz: Part I. Therory. Am. Mineral., **77**, 987-1003.
- Lindsley, D.H., Frost, B.R., Andersen, D.J. & Davidson, P.M. (1990): Fe-Ti oxide-silicate equilibria: assemblages with orthopyroxene. The Geochemical Society, San Antonio, Texas, Spec. Publ., 2, 103-119.
- Luhr, J.F. (1990): Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón volcano. J. Petrol., **31**, 1071-1114.
- Luhr, J.F. (1992): Slab-derived fluids and partial melting in subduction zones: insights from two contrasting Mexican volcanoes (Colima and Ceboruco). J. Volcanol. Geotherm. Res., 54, 1-18.
- Luhr, J.F. & Carmichael, I.S.E. (1980): The Colima volcanic complex, Mexico. I. Post-caldera andesites from Volcán Colima. Contrib. Mineral. Petrol., **71**, 343-372.
- Macdonald, G.A. (1972): Volcanoes. Prentice-Hall, Englewood Cliffs, New Jersey.
- Martin, D.P. & Rose, W.I. (1981): Behavioral patterns of Fuego volcano, Guatemala. J. Volcanol. Geotherm. Res., **10**, 67-81.
- McCulloch, M.T. & Gamble, J.A. (1991): Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett., 102, 358-374.
- McDermott, F. & Hawkesworth, C. (1991): Th, Pb and Sr isotope variations in young island arc volcanics and oceanic sediments. Earth Planet. Sci. Lett., **104**, 1-15.
- Merzbacher, C. & Eggler, D. (1984): A magmatic geohygrometer: application to Mount St. Helens and other dacitic magmas. Geology, **12**, 587-590.

- Morimoto, N. (1988): Nomenclature of pyroxenes. Fortschr. Mineral., 66, 237-252.
- Morrice, M.G., Jezek, P.A., Gill, J.B., Whitford, D.J. & Monofara, M. (1983): An introduction to the Sangihe arc: Volcanism accompanying arc-arc collision in the Molucca Sea, Indonesia. J. Volcanol. Geotherm. Res., 19, 135-165.
- Morris, J.D. & Hart, S.R. (1983): Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta, **47**, 2015-2030.
- Morris, J.D., Jezek, P.A., Hart, S.R. & Gill, J.B. (1983): The Halmahera island arc, Molucca Sea collision zone, Indonesia: A geochemical survey. *In*: Hayes, D.E. (ed.): The tectonic and geologic evolution of southeast Asian seas and islands, Part 2. American Geophysical Union, Geophysics Monographs, 27, 373-387.
- Nelson, S.T. & Montana, A. (1992): Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am. Mineral., **77**, 1242-1249.
- Neumann van Padang, M. (1933): De Uitbarsting van den Merapi (Midden Java) in den Jaren 1930-1931. Vulkanologische en seismologische Mededeelingen, **12**, 1-117.
- Neumann van Padang, M. (1936): Die Tätigkeit des Merapi-Vulkans (Mittel-Java) in den Jahren 1883-1888. Zeitschrift für Vulkanologie, **17**, 93-113.
- Neumann van Padang, M. (1951): Catalogue of the active volcanoes of the world including solfatara fields, Part I: Indonesia. Internat. Volcanol. Association, Napoli.
- Newhall, C.G. (1979): Temporal variation in the lavas of Mayon volcano, Philippines. J. Volcanol. Geotherm. Res., **6**, 61-83.
- Newhall, C.G. & Self, S. (1982): The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res., **87**, 1231-1238.
- Newhall, C.G., Bronto, S., Alloway, B., Banks, N.G., Bahar, I., del Marmol, M.A., Hadisantono, R.D., Holcomb, R.T., McGeehin, J., Miksic, J.N., Rubin, M., Sayudi, S.D., Sukhyar, R., Andreastuti, S., Tilling, R.I., Torley, R., Trimble, D. & Wirakusumah, A.D. (2000): 10,000 years of explosive eruptions of Merapi volcano, Central Java: archaeological and modern implications. J. Volcanol. Geotherm. Res., **100**, 9-50.
- Nicholls, I.A., Whitford, D.J., Harris, K.L. & Taylor, S.R. (1980): Variation in the geochemistry of mantle sources for tholeiitic and calc-alkaline mafic magmas, western Sunda volcanic arc, Indonesia. Chem. Geol., **30**, 177-199.
- Nimis, P. (1995): A clinopyroxene geobarometer for basaltic systems based on crystal structure modeling. Contrib. Mineral. Petrol., **121**, 115-125.

- Nimis, P. (1999): Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline systems. Contrib. Mineral. Petrol., 135, 62-74.
- Nye, C.J. & Turner, D.L. (1990): Petrology, geochemistry, and age of the Spurr volcanic complex, eastern Aleutian arc. Bull. Volcanol., **52**, 205-226.
- Peccerillo, A. & Taylor, S.R. (1976): Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol., **58**, 63-81.
- Perfit, M.R., Gust, D.A., Bence, A.E., Arculus, R.J. & Taylor, S.R. (1980): Chemical characteristics of island-arc basalts: implications for mantle sources. Chem. Geol., **30**, 227-256.
- Plank, T. & Langmuir, C.H. (1998): The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., **145**, 325-94.
- Poldervaart, A. (1947): The relationship of orthopyroxene to pigeonite. Mineral. Mag., 28, 164-172.
- Poldervaart, A. & Hess, H.H. (1951): Pyroxenes in the crystallization of basaltic magma. J. Geol., **59**, 472-489.
- Pouchou, J.-L. & Pichoir, F. (1991): Quantitative analysis of homogeneous or stratified microvolumes applying the model of "PAP". *In*: Heinrich, K.F.J. & Newbiry, D.E. (eds.): Electron probe quantitation. Plenum Press, New York, pp. 31-75.
- Price, G.D. (1981): Subsolidus phase relations in the titanomagnetite solid solution series. Am. Mineral., **66**, 751-758.
- Purbawinata, M.A., Ratdomopurbo, A., Sinulingga, I.K., Sumarti, S. & Suharno (1996): Merapi volcano – a guide book: Volcanological Survey of Indonesia, Bandung, 64 pp.
- Pyle, D.M. (1989): The thickness, volume and grainsize of tephra fall deposits. Bull. Volcanol., **51**, 1-15.
- Pyle, D.M. (1995): Assessment of the minimum volume of tephra fall deposits. J. Volcanol. Geotherm. Res., **69**, 379-382.
- Ratdomopurbo, A. (1995): Etude sismologique du volcan Mérapi et formation du dôme de 1994. Ph.D. thesis, Université Joseph Fourier, Grenoble, Frankreich.
- Ratdomopurbo, A. & Poupinet, G. (2000): An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983-1994. J. Volcanol. Geotherm. Res., **100**, 193-214.
- Reck, H. (1931): Der Merapi-Vulkan auf Java und sein Ausbruch im Dezember 1930. Die Naturwissenschaften, **19**, 369-373.
- Reck, H. (1935): Der Ausbruchscyklus des Merapi in den Jahren 1933/34. Die Naturwissenschaften, **48**, 812-816.

- Rehkämper, M. & Hofmann, A.W. (1997): Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett., 147, 93-106.
- Rice, A. (1981): Convective fractionation: a mechanism to provide cryptic zoning (macrosegregation), layering, crescumulates, banded tuffs and explosive volcanism in igneous provinces. J. Geophys. Res., 86, 405-417.
- Roedder, E. (1984): Fluid inclusions. Min. Soc. Am. Rev. Mineral., 12, 644 pp.
- Roeder, P.L. & Emslie, R.F. (1970): Olivine-liquid equilibrium. Contrib. Mineral. Petrol., **29**, 275-289.
- Rose, W.I. (1993): Comment on 'Another look at the calculation of fallout tephra volumes' by Judy Fierstein and Manuel Nathenson. Bull. Volcanol., **55**, 372-374.
- Rose, W.I., Grant, N.K., Hahn, G.A., Lange, I.M., Powell, J.L., Easter, J. & De Graff, J.M. (1977): The evolution of Santa Maria Volcano, Guatemala. J. Geol., **85**, 63-87.
- Rubin, M., Lockwood, J.P. & Friedman, I. (1987): Effects of volcanic emanations on carbonisotope content of modern plants near Kilauea Volcano. USGS Prof. Paper, 1350, 209-211.
- Rutherford, M.J. & Devine, J.D. (1988): The May 18, 1980 eruption of Mount St. Helens. 3. stability and chemistry of amphibole in the magma chamber. J. Geophys. Res., **93**, 11949-11959.
- Rutherford, M.J. & Hill, P.M. (1993): Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980-1986 Mount St. Helens eruption. J. Geophys. Res., 98, 19667-19685.
- Rutherford, M.J., Sigurdsson, H., Carey, S. & Davis, A. (1985): The May 18, 1980 eruption of Mount St. Helens. 1. melt composition and experimental phase equilibria. J. Geophys. Res., 90, 2929-2947.
- Sakuyama, M. (1979): Evidence of magma mixing: petrological study of Shirouma-Oike calcalkaline andesite volcano, Japan. J. Volcanol. Geotherm. Res., **5**, 179-208.
- Saupé, F., Strappa, O., Coppens, R., Guillet, B. & Jaegy, R. (1980): A possible source of error in ¹⁴C dates: volcanic emanations (examples from the Monte Amiata district, provinces of Grosseto and Sienna, Italy). Radiocarbon, 22, 525-531.
- Schmidt, M.W. (1992): Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib. Mineral. Petrol., 110, 304-310.
- Schwarzkopf, L. & Schmincke, H.-U. (2000): The July 1998 eruptions of Merapi volcano: stratigraphy and volumes of the block-and-ash flow deposits. Deutsche Geophysikalische Gesellschaft - Mitteilungen, Sonderband IV/2000, pp. 7-10.

- Self, S. & King, A.J. (1996): Petrology and sulfur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia. Bull. Volcanol., **58**, 263-285.
- Shinohara, H., Iiyama, J.T. & Matsuo, S. (1989): Partition of chlorine compounds between silicate melt and hydrothermal solutions: I. Partition of NaCl-KCl. Geochim. Cosmochim. Acta, 53, 2617-2630.
- Siebert, L. (1984): Large volcanic debris avalanches: characteristics of source areas, deposits and associated phenomena. J. Volcanol. Geotherm. Res., **22**, 163-197.
- Sigurdsson, H. (1990): Assessment of the atmospheric impact of volcanic eruptions. Geol. Soc. Am. Spec. Pap., **247**, 99-110.
- Silver, L.A., Ihinger, P.D. & Stolper, E.M. (1990): The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol., **104**, 142-162.
- Simkin, T.L. & Siebert, L. (1994): Volcanoes of the world, second edition: a regional directory, gazetteer and chronology of volcanism during the last 10,000 years. Geoscience Press, Tuscon, AZ, 349 pp.
- Sisson, T.W. & Layne, G.D. (1993): H₂O in basalt and basaltic andesite glass inclusions from four subduction-related vocanoes. Earth Planet. Sci. Lett., **117**, 619-635.
- Sparks, R.S.J. (1986): The dimensions and dynamics of volcanic eruption columns. Bull. Volcanol., **48**, 3-15.
- Sparks, R.S.J., Huppert, H.E. & Turner, F.R.S. (1984): The fluid dynamics of evolving magma chambers. Phil. Trans. R. Soc. Lond., A **310**, 511-534.
- Spear, F.S. & Kimball, C. (1984): RECAMP A FORTRAN IV program for estimating Fe³⁺ contents in amphiboles. Comput. Geosci., **10**, 317-325.
- Stolz, A.J., Varne, R., Davies, G.R., Wheller, G.E. & Foden, J.D. (1990): Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contrib. Mineral. Petrol., 105, 585-601.
- Stuiver, M. & Polach, H.A. (1977): Discussion. Reporting of ¹⁴C data. Radiocarbon, **19**, 355-363.
- Stuiver, M. & Reimer, P.J. (1993): Extended ¹⁴C data base and revised CALIB 3.0 ¹⁴C age calibration program. Radiocarbon, **35**, 215-230.
- Stuiver, M., Reimer, P.J. & Braziunas, T.F. (1998): High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, **40**, 1127-1151.
- Sun, S.S. & McDonough, W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *In*: Saunders, A.D. & Norry, M.J. (eds.): Magmatism in the ocean basins. Geol. Soc., London, Spec. Publ., 42, 313-345.

- Tatsumi, Y., Hamilton, D.L. & Nesbitt, R.W. (1986): Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from highpressure experiments and natural rocks. J. Volcanol. Geotherm. Res., 29, 293-309.
- Taverne, N.J.M. (1925): G. Merapi in 1924. Natuurk. Tijdschr. Nederl. Indië, 85, 137-149.
- Taverne, N.J.M. (1933): De G. Merapi (Midden-Java) in 1922. Vulkanologische Berichten, **XXI-XXIX**, 2-26.
- Taylor Jr., H.P. (1968): The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol., **19**, 1-71.
- Taylor Jr., H.P. & Turi, B. (1976): High ¹⁸O igneous rocks from the Tuscan magmatic province, Italy. Contrib. Mineral. Petrol., **55**, 33-54.
- Tera, F., Brown, L., Morris, J., Sacks, I.S., Klein, J. & Middleton, R. (1986): Sediment incorporation in island-arc magmas: inferences from ¹⁰Be. Geochim. Cosmochim. Acta, 50, 535-550.
- Thirlwall, M.F., Smith, T.E. Graham, A.M., Theodorou, N., Hollings, P., Davidson, J.P. & Arculus, R.J. (1994): High field strength anomalies in arc lavas: source or process? J. Petrol., 35, 819-838.
- Thompson, R.N. (1974): Some high-pressure pyroxenes. Mineral. Mag., 39, 768-787.
- Thorarinsson, S. (1954): The eruptions of Hekla 1947-1948. II, 3. The tephra fall from Hekla on March 29th, 1947. Visindafelag Islendinga, Reykjavik, 68 pp.
- Thordarson, T., Self, S., Oskarsson, N. & Hulsebosch, T. (1996): Sulfur, chlorine and fluorine degassing and atmospheric loading by the 1783-1784 AD Laki (Skaftár Fires) eruption in Iceland. Bull. Volcanol., 58, 205-225.
- Tsuchiyama, A. (1985): Dissolution kinetics of plagioclase in the melt of the system diopsidealbite-anorthite and origin of dusty plagioclase in andesites. Contrib. Mineral. Petrol., **89**, 1-16.
- Ui, T. (1983): Volcanic dry avalanche deposits identification and comparison with nonvolcanic debris stream deposits. J. Volcanol. Geotherm. Res., **18**, 135-150.
- Ui, T., Takarada, S. & Yoshimoto (2000): Debris avalanches. *In*: H. Sigurdsson (ed.): Encyclopedia of Volcanoes. Academic Press, pp. 617-626.
- Van Bemmelen, R.W. (1949): The geology of Indonesia, Vol. 1A: General Geology, 732 pp.
- Van Bemmelen, R.W. (1956): The influence of geologic events on human history (an example from Central Java). Verh. Kon. Ned. Geol. Mijnb. Genoot. Geol., **16**, 20-36.
- Van Hinloopen Labberton, D. (1922): Oud-Javaansche gegevens omtrent de vulkanologie van Java. Natuurk. Tijdschr. Ned. Indië, **81**, 124-158.

- Varne, R. & Foden, J.D. (1986): Geochemical and isotopic systematics of eastern Sunda arc volcanics: implications for mantle sources and mantle mixing processes. *In*: Wezel, F.C. (ed): The origin of arcs. Elsevier, New York, pp. 159-189.
- Verbeek, R.D.M. & Fennema, R. (1896): Geologische beschrijving van Java and Madoera. Two volumes and a folio with maps and sections, Amsterdam, pp. 302-305, 319-322, 347-348, 947, 950, 957.
- Vincent, E.A., Wright, J.B., Chevallier, R. & Mathieu, S. (1957): Heating experiments on some natural titaniferous magnetites. Mineral. Mag., 31, 624-655.
- Voight, B., Constantine, E.K., Siswowidjoyo, S. & Torley, R. (2000): Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768-1998. J. Volcanol. Geotherm. Res., 100, 69-138.
- Vroon, P.Z., van Bergen, M.J., Klaver, G.J. & White, W.M. (1995): Strontium, neodymium, and lead isotopic and trace-element signatures of the east Indonesian sediments: Provenance and implications for Banda arc magma genesis. Geochim. Cosmochim. Acta, 59, 2573-2598.
- Webster, J.D. (1990): Partitioning of F between H₂O and CO₂ fluids and topaz rhyolite melt. Contrib. Mineral. Petrol., **104**, 424-438.
- Westrich, H.R. & Gerlach, T.M. (1992): Magmatic gas source for the stratospheric SO₂ cloud from the June 15, 1991, eruption of Mount Pinatubo. Geology, **20**, 867-870.
- Wheller, G.E., Varne, R., Foden, J.D. & Abbott, J.D. (1987): Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas. J. Volcanol. Geotherm. Res., **32**, 137-160.
- White, C.M. & McBirney, A.R. (1979): Some quantitative aspects of orogenic volcanism in the Oregon Cascades. Geol. Soc. Am. Mem., **152**, 369-388.
- White, W.M. & Hofmann, A.W. (1982): Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, **296**, 821-825.
- Whitford, D.J. (1975a): Geochemistry and petrology of volcanic rocks from the Sunda arc, Indonesia: PhD thesis, Australian National University, Canberra, Australien.
- Whitford, D.J. (1975b): Strontium isotopic studies of the volcanic rocks of the Sunda arc, Indonesia and their petrogenetic implications. Geochim. Cosmochim. Acta, **39**, 1287-1302.
- Whitford, D.J. & Nicholls, I.A. (1976): Potassium variation in lavas across the Sunda arc in Java and Bali.- *In*: Johnson, R.W. (ed.): Volcanism in Australasia. Elsevier, New York, pp. 63-75.

- Whitford, D.J. & Jezek, P.A. (1982): Isotopic constraints on the role of subducted sialic material in Indonesian island-arc magmatism. Geol. Soc. Am. Bull., **93**, 504-513.
- Whitford, D.J., Compston, W. & Nicholls, I.A. (1977): Geochemistry of late Cenozoic lavas from eastern Indonesia: role of subducted sediments in petrogenesis. Geology, **5**, 571-575.
- Whitford, D.J., Nicholls, I.A. & Taylor, S.R. (1979): Spatial variations in the geochemistry of Quaternary lavas across the Sunda arc in Java and Bali. Contrib. Mineral. Petrol., 70, 341-356.
- Whitford, D.J., White, W.M. & Jezek, P.A. (1981): Neodymium isotopic composition of Quaternary island arc lavas from Indonesia. Geochim. Cosmochim. Acta, **45**, 989-995.
- Wilson, M. (1989): Igneous petrogenesis. Chapman & Hall, London.
- Wirakusumah, A.D., Juwarna, H. & Loebis, H. (1989): Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000.
- Woodhead, J., Eggins, S. & Gamble, J. (1993): High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett., **114**, 491-504.
- Yang, H.J., Frey, F.A., Weis, D., Giret, A., Pyle, D.G. & Michon, G. (1998): Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the Kerguelen plume. J. Petrol., 39, 711-748.
- Yiou, F. & Raisbeck, G.M. (1972): Half-life of ¹⁰Be. Phys. Rev. Lett., **29**, 372-375.