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Abstract

The subduction of hydrated slab mantle is the most important and yet weakly
constrained factor in the quantification of the Earth’s deep geologic water cycle.
The most critical unknowns are the initial hydration state and the dehydration
behavior of the subducted oceanic mantle. Here we present a combined
thermomechanical, thermodynamic and geochemical model of the Kamchatka
subduction zone that indicates significant dehydration of subducted slab mantle
beneath Kamchatka.

Evidence for the subduction of hydrated oceanic mantle comes from across-arc
trends of boron concentrations and isotopic compositions in arc volcanic rocks.
Our thermodynamic-geochemical models successfully predict the complex
geochemical patterns and the spatial distribution of arc volcanoes in Kamchatka
assuming the subduction of hydrated oceanic mantle. Our results show that water
content and dehydration behavior of the slab mantle beneath Kamchatka can be
directly linked to compositional features in arc volcanic rocks.

Depending on hydration depth of the slab mantle, our models yield water
recycling rates between 1.1 x 103 and 7.4 x 103 TgMalkm corresponding to
values between 0.75 x 10° and 5.2 x 10® TgMa! for the entire Kamchatkan
subduction zone. These values are up to one order of magnitude lower than
previous estimates for Kamchatka (Hacker 2008; Van Keken et al., 2011), but
clearly show that subducted hydrated slab mantle significantly contributes to the

water budget in the Kamchatkan subduction zone.
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Introduction

The amount and distribution of the Earth’s water is a so far unresolved problem despite
its importance for geodynamics, atmosphere and biosphere. The silicate Earth’s total
water content is in the order of 2700 * 1350 ppm(wt) (Marty 2012), whereas
hydrosphere and atmosphere represent only 250 ppm water relative to the Earth’s total
mass. It is, indeed, the Earth’s mantle that is thought to represent by far the Earth'’s
largest water reservoir. Water in nominally anhydrous minerals (NAM) and in dense
hydrous magnesium silicates (DHMS) can make up ten times of the water that is stored
in the oceans at the Earth’s surface (Smyth et al.,, 2006, Angel et al., 2001; Frost 1999;
Ohtani et al.,, 2001). Recent findings of ringwoodite highlighted the hydrous nature of
the mantle transition zone and hence point to the importance of the mantle regarding
the quantification of the Earth’s water budget (Pearson et al,, 2014).

Two competing processes are crucial for the distribution of water between the Earth'’s
hydrosphere and the silicate mantle: (1) outgassing of water from the mantle through
volcanism and (2) subduction of hydrated oceanic lithosphere that enables recycling of
water from the hydrosphere into the deeper mantle. The interplay of these opposing
processes displays a dynamic equilibrium that controls the distribution of water
between the Earth’s surface and the deeper mantle (Riipke et al.,, 2004, Hacker 2008,
van Keken et al,, 2011; Freundt et al., 2014). Both of these processes are closely related
to the Earth’s internal thermal structure as geodynamic processes, such as mantle
convection and plate motion, are primarily heat dependent. It is evident that continuous
cooling of our planet has significantly changed geodynamics on Earth since the Early
Archean (Brown 2008; Stern 2008; Condie and Kroner, 2008). Hence, subducting plates
become cooler, hydrous phases therein become more stable and larger amounts of

water can be dragged down to the deep mantle (e.g., Maruyama and Okamoto 2007).
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This increasingly important process will potentially shift the distribution of water
between the Earth’s surface and the silicate mantle in the future.

Advances in computational capabilities nowadays allow numerical modelling of water
cycling in subduction zones based on thermodynamic and thermo-mechanical models
(Rupke et al., 2004; Hacker 2008; Van Keken et al., 2011, Konrad-Schmolke and Halama
2014). Balancing the amount of water brought into the subduction zone by the hydrated
oceanic lithosphere with the modeled dehydration reactions in the subducting slab
enables a quantitative estimation of how much water is subducted beyond the volcanic
arcs in subduction zones (e.g., Hacker 2008; van Keken et al, 2011). However, the
results of these numerical models differ significantly in the intensity of water recycling
into the mantle, such that estimates of the total overturning times of the entire
hydrosphere range from 1.6 to 3.3 Ga depending on the model input parameters.

All of the numerical models show that the hydration state of the subducted mantle
lithosphere is the major factor in water recycling in subduction zones, as the amount of
water potentially present in hydrated sub-oceanic serpentinites is several times larger
than in the altered oceanic crust (AOC). Further, due to the specific thermal structure in
subducting plates - involving a thermal minimum extending sub-parallel to the plate
surface at slab mantle depth - dehydration reactions in the slab mantle can be inhibited
and water contained therein can be directly transferred into DHMS (e.g. Phase A).
Within such dense hydrous phases water can be subducted as deep as the mantle
transition zone between 410 and 660 km depth and once brought to this depth, the
stability of wadsleyite and ringwoodite enables storage of water in the order of several
hydrosphere masses (e.g. Karato, 2011; Jacobsen and van der Lee, 2006; Pearson et al,,

2014).
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Numerical simulations of the water budget in subduction zones strongly depend on the
setting of the critical model parameters, most of which are poorly constrained (Riipke et
al, 2006). Hence, unambiguous information on the subducted water amount and the
global water cycle is difficult to extract from numerical models alone without further
external information. Surface expressions of the dehydration reactions in the slab, such
as the chemical composition of arc lavas, are commonly the only reliable proxies for the
water budget in deeply subducted rocks (e.g., Pearce and Peate 1995; Ryan et al., 1995;
Hebert et al., 2009; Kimura et al., 2009). Based on this assumption Riipke et al. (2002)
and Walowski et al. (2015) presented thermodynamic-geochemical models of the
Nicaragua and Cascadia subduction zones, respectively, the results of which indicate a
significant contribution of dehydration reactions in the subducted oceanic mantle on arc
lava chemistry. In both cases the structural position as well as the chemical imprint on
arc lavas clearly point towards water release from the downgoing slab mantle thus
indicating that the subducted mantle lithosphere in these subduction zones is indeed
hydrated to significant extents. Both works further show the capacity of
thermodynamic-geochemical models to discriminate fluid sources in subducting slabs
based on characteristic across-arc variations in arc lava chemistry.

In this paper we model the dehydration of the oceanic lithosphere in the Kamchatkan
subduction zone utilizing two-dimensional thermodynamic models based on Gibbs
energy minimization. Dehydration reactions, fluid liberation, fluid migration and fluid-
rock interaction are modeled based on a thermal pattern derived from thermo-
mechanical finite element models of three profiles across the Kamchatkan subduction
zone. The results of the thermodynamic models are then used to simulate boron release
from the slab, which is compared to the observed variations in the erupted lavas in

Kamchatka. Our results indicate that for Kamchatka, slab mantle dehydration is likely a
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major process for the formation of some arc volcanoes and that water retained in the

slab mantle can potentially be transported beyond the volcanic arc.

Geological setting of the Kamchatka subduction zone

The Kamchatka subduction zone (Fig. 1) is one of the most volcanically active regions on
Earth (e.g., Portnyagin and Manea 2008). It comprises three distinct volcanic chains -
the Eastern Volcanic Front (EVF), the volcanoes in the Central Kamchatkan Depression
(CKD) and the Sredinny Range (SR) - for which detailed geochemical and B isotope data
have been published (e.g., Ishikawa et al., 2001; Churikova et al., 2001; Portnyagin et al.,
2007). Furthermore, geophysical studies yielded detailed insight into the shape and dip
of the subducted plate as well as the crust and mantle structure beneath Kamchatka (e.g.
Manea and Manea, 2007; Levin et al., 2002).

The Kamchatka peninsula is part of the Kurile-Kamchatka arc where the Pacific plate is
subducted northwestward since the Late Cretaceous to Early Paleocene (e.g., Avdeiko et
al, 2007). Subduction and differential counterclockwise slab rollback have led to the
formation of the Kurile backarc basin, the Hokkaido-Sachalin dextral strike slip system
and the Ochotsk sea (Schellart et al., 2003). Accretion and amalgamation of different
volcanic arcs in the northern part of the subduction zone have led to the formation of
the Kamchatkan peninsula as it is seen today (Avdeiko et al., 2007). Such an accretion
event is interpreted to be the reason for the cessation of volcanism in the Sredinny
Range. Due to arc accretion at the eastern side of Kamchatka subduction jumped to its
currently active position beneath the EVF and CKD. A relict of the dehydrating slab
beneath the SR is interpreted to be responsible for the active volcanic activity in the

westernmost volcanic chain in Kamchatka (Avdeiko et al., 2006).
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Due to the southeastward motion of the Kurile-Kamchatka arc the northern part of the
Kamchatka peninsula interacted with the Aleutian subduction zone and is affected since
the late Miocene by the strike slip motion along the Komandorsky fault system that is
kinematically connected with the Aleutian subduction zone (Fig. 1). The strike slip
motion along this fault system has led to a rupture of the subducting Pacific plate at the
Aleutian-Kamchatka junction (AK]J) and likely to a slab breakoff beneath northern
Kamchatka between 5 and 10 Ma ago (Levin et al., 2002). As a consequence of the slab
loss, volcanism ceased in northern Kamchatka and hot mantle material is interpreted to
flow arc parallel southward beneath central Kamchatka (Peyton et al., 2001; Portnyagin
et al., 2005). Furthermore, the slab loss has led to a decrease in the subduction angle
north of the Kluchevskoy group volcanoes at the northernmost tip of the Pacific plate
beneath the AK] and likely to melting of the slab edge reflected in the geochemistry of
volcanic rocks from Shiveluch volcano in northern Kamchatka (Manea and Manea 2007;
Portnyagin et al, 2007). This complex tectonic setting is further influenced by the
beginning subduction of the Hawaii-Emperor chain just south of the AK]. The subduction
of these remnant oceanic islands is interpreted to have a major influence on the thermal
and possibly chemical structure of the northern Kamchatkan subduction zone (Manea
and Manea 2007).

A remarkable, yet kinematically unresolved tectonic feature is the extension in the
Central Kamchatkan Depression (CKD). The CKD opens from the South of Kamchatka
and represents an active basin with westward dipping normal faults bordering its
eastern side and a poorly constrained normal fault system at the western border
(Kozhurin et al., 2006). Extension in the CKD began in the Upper Pliocene and is still
ongoing having led to an accumulation of up to 2500m of sediments in the deepest part

of the CKD (Khain 1994; Kozhurin et al., 2006). Furthermore, the CKD hosts several of
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the most active volcanoes on Earth, such as Kluchevskoy, Tolbachik and Shiveluch. It is
remarkable that the chemistry of these CKD volcanoes is clearly distinct from that in the
EVF and the SR (cf. Churikova et al,, 2001; Dorendorf et al., 2000), The volcanic activity
in the CKD is restricted to the northern part of the basin and only occurs where

volcanism in the EVF ceases towards the North (Fig. 1).

General model assumptions

The aim of our thermodynamic-geochemical model is to predict dehydration reactions
in the downgoing slab beneath Kamchatka in order to calculate the expected B
concentrations and B isotopic compositions resulting from dehydration and fluid-rock
interaction within the complex thermal pattern in the subducted rock pile (c.f., Konrad-
Schmolke and Halama 2014). Assuming a simplified vertical migration of the liberated
fluids to the source regions of the arc volcanoes, calculated positions of the dehydration
reactions as well as the modeled B concentrations and B isotopic compositions of the
fluids are compared with the occurrence of volcanic centers and their B geochemical
characteristics. This comparison is used as an independent validation of the numerically
determined dehydration pattern in the downgoing slab and wedge mantle.

In our combined thermodynamic-geochemical models, three thermal subduction zone
patterns of the Northern, Central and Southern Kamchatka subduction zone (Manea and
Manea, 2007) derived from finite element thermomechanical modeling (Fig. 1) are used
as pressure-temperature input for a Gibbs energy minimization algorithm that simulates
the passing of a vertical rock column within the subducted slab through the steady state

thermal pattern (cf. Connolly, 2005; Konrad-Schmolke and Halama, 2014).

General model approach
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The numerical model that we wuse is a combination of thermomechanical,
thermodynamic and mass balanced trace element calculations. Modeling consists of the
following four steps: (1) Thermal patterns of the three profiles along the Kamchatkan
subduction zone are modeled, utilizing a finite element thermomechanical code, and
discretized (Manea and Manea, 2007), (2) the discretized pressure-temperature-
distance relations derived from the thermomechanical models are used as input for a
Gibbs energy minimization algorithm that simulates the passing of a vertical rock
column within the subducted slab (Connolly 2005) through the thermal input pattern.
Based on the modeled pressure-temperature relations, phase relations are calculated at
every discretized increment with a resolution of 250 x 250m. Water liberated by
dehydration reactions is transported vertically upward equilibrating at every calculated
increment within the column and thus reflecting a high ratio of fluid/slab migration
velocity. (3) The modeled phase relations at every calculated increment are used for a
coefficient-based mass-balanced boron distribution among the stable solid and liquid
phases. (4) A temperature-dependent fluid-solid boron isotope fractionation based on
experimentally determined functions (Wunder et al., 2005) is calculated to determine
the amounts of 1°B and 1!B in solids and fluid. Boron incorporated into the fluid phase is
assumed to migrate upward into the next calculated increment and re-distributed.
Elements retained in the solids are transported within the slab and form the initial bulk
rock composition in the next rock column. Therefore the model simulates fluid release,
fluid migration, boron transport and boron isotope fractionation in a subducted slab

passing through a steady state thermal pattern.

Thermomechanical model
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The steady-state thermomechanical models of Manea and Manea (2007) consist of five
thermo-stratigraphic units: the upper and lower continental crust, the oceanic
lithosphere and sediments, and the mantle wedge. The boundary conditions employed
in these numeric models are as following: the upper and lower boundaries correspond
to 0°C and 1450°C respectively, the landward boundary is defined by a 22.5°C/km
thermal gradient for the continental crust, and 10°C/km for the lithospheric mantle, and
the oceanic boundary is age dependent corresponding to an oceanic geotherm
calculated using GDH1 model of Stein and Stein (1992). Depth, thickness and geometry
of different layers used in the 2D steady-state thermomechanical models of Manea and
Manea (2007) are well constrained by seismological data. Also, the oceanic boundary
conditions, that strongly control the slab thermal structure, are in good agreement with
the age of the incoming Pacific plate.

Thermodynamic model

The thermodynamic model calculates modes and compositions of stable phases
depending on the pressure and temperature given by the thermomechanical model and
the composition of the different layers in the subducted slab. The modeled subducted
slab consists of a mantle wedge layer (10 km (primitive upper mantle (PUM) of
Workman and Hart 2005), a sediment pile (0.65 km (N Pacific sediment, Plank and
Langmuir 1998)), igneous basaltic crust (6.5 km (N-MORB, Workman and Hart 2005))
and a variably hydrated slab mantle (18.5 km, depleted MORB mantle (DMM), Workman
and Hart 2005)). Phase relations for each rock type are calculated at every increment
utilizing the Gibbs energy minimization algorithm vertex (Connolly 2005).
Thermodynamic calculations start at the bottom of the initial input column representing
the initial composition of the subducted slab. Modes and compositions of the stable

phases are calculated and water liberated by the modeled dehydration reactions is
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assumed to be transported vertically upward. Water bound in hydrous minerals is
transferred slab-parallel into the corresponding increment in the next column.
Geochemical model

The modeled phase relations at every calculated increment are used for a partition
coefficient-based mass-balanced boron distribution (Brenan et al, 1998) and a
temperature-dependent fluid-solid boron isotope fractionation (Wunder et al., 2005).
Based on bulk distribution coefficients calculated at every increment the concentration
of boron in the fluid and solids is calculated. Boron concentrated in the fluid phase is
assumed to migrate vertically upward and is transferred into the next increment. Boron
incorporated into solid phases is transferred slab-parallel into the corresponding
increment in the next column.

Boron isotope compositions in fluid and solids are calculated at every increment based
on the temperature-dependent fractionation function published in Wunder et al., (2005)
and the thermal input pattern. 19B and 1B is distributed among the stable phases
according to the calculated A11Bfluid/solid Chemical and isotopic equilibration among the
stable phases is assumed at every calculated increment. The isotopic evolution within
the modeled system is therefore controlled by the B concentrations and the isotopic
composition of B in the coexisting solid phases and the migrating fluid equilibrating with
the surrounding rock. Thus, the model simulates fluid release, fluid migration, fluid-rock
interaction and boron transport in a subducted slab and the overlying mantle wedge,
taking into account the compositional changes of the dehydration fluid with increasing
slab depth.

A comparison of modeled and observed boron concentrations and isotopic patterns is
then used to evaluate the initial hydration of the slab and the dehydration behavior of

wedge mantle and slab during subduction. The model presented in this work highlights
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the potential of combined thermodynamic-geochemical modeling and the instructive
comparison with across-arc B trends.

In order to simulate water release from the slab and wedge mantle all lithologies of the
incoming plate are assumed to be hydrated to different amounts. As detailed data of the
hydration state of the AOC and the slab mantle offshore Kamchatka are lacking, our
model constraints display simplified assumptions. The incoming sediments and the AOC
are assumed to contain 7 wt% water in the sediments and 4 wt% water in the AOC (cf.
Staudigel et al., 1998).

A more critical and yet unresolved question is the amount of water in the subducted slab
mantle. Here we assume, in different model runs, a variable thickness (1 to 18.5 km) of
hydrated oceanic mantle lithosphere that contains between 0.5 and 6 wt% water. The
model runs with 2.5 wt% water in a 15 km thick hydrated slab mantle section are taken
as a representative example throughout this paper, but the results of all models are
evaluated and discussed. We additionally varied the most critical input parameters, such
as the B concentrations and B isotopic compositions in the different layers and discuss
the model sensitivity and reliability. A detailed description of the model approach and
the input parameters used for the modelling is given in the electronic supplementary

material.

Tracing dehydration in subduction zones using boron

The incoming oceanic lithosphere is undergoing continuous dehydration by pore
compaction and dehydration reactions as it enters the subduction zone. Pore water
expulsion occurs within the first 10 km depth and can be detected directly by sampling
seeps and mud volcanoes in the accretionary wedges of forearcs (e.g., Mottl et al., 2004;

Deyhle and Kopf 2002). In contrast, water released by metamorphic reactions occurring

12
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in the deeper parts of the subduction zone is more difficult to quantify. Commonly,
continuous dehydration of the downgoing slab is deduced from across-arc trace element
variations in arc volcanic rocks, in particular the concentrations, element ratios and
isotopic compositions of fluid mobile elements (FMEs).
Most of these elements are abundant in the sediments and/or in the altered oceanic
crust (AOC), which makes them useful tracers for the dehydration of these lithologies
(e.g. Ryan et al., 1995; Elliott, 2003). However, slab mantle dehydration is most difficult
to detect in arc volcanic rocks by geochemical means because ultramafic rocks are
typically poor in many fluid-mobile trace elements. Arsenic, antimony, chlorine and
boron (B) are among the few elements characteristic for serpentinites (Scambelluri et
al, 2001; Savov et al.,, 2007; Spivack and Edmond 1987; Kodolany et al., 2012) and
geochemical trends of these elements as well as the isotopic composition of boron in arc
lavas were interpreted to reflect serpentinite dehydration (e.g., Tonarini et al., 2011).
However, geochemical models alone cannot discriminate between dehydration of
serpentinites from supra-subduction zone (SSZ) mantle wedge and serpentinites from
the subducted oceanic mantle. In order to make this important distinction, we use B and
its isotopic composition as tracers for fluid flux and fluid-rock interaction during slab
dehydration and fluid migration in a combined thermodynamic-geochemical model and
compare the results to real data from the Kamchatka subduction zone.
Several unique properties of B make it particularly useful regarding the investigation of
dehydration and fluid flow in subduction zones:
* B is highly fluid-mobile (Brenan et al., 1998) and its isotopic composition is
influenced by temperature-dependent equilibrium fractionation between solid
and fluid phases with a preferred incorporation of 1B in the fluid phase (Wunder

et al., 2005).
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* B can be incorporated into the crystal structure of serpentine (e.g., Pabst et al,,
2011) resulting in high B concentrations (up to 100 pg/g) in serpentinites
(Boschi et al, 2008; Vils et al., 2008), so that dehydration of hydrated mantle
rocks produces B-rich fluids that potentially create characteristic B signals in arc
volcanic rocks.

* B concentrations in dry mantle rocks are extremely low (<1 pg/g), excluding
significant modification of the slab signal during ascent across the mantle wedge
(e.g., Ryan and Langmuir 1993).

Consequently, arc lavas are generally rich in B and have a high 8B, consistent with the
influence of a B-rich, high-811B fluid derived from the subducted slab (Scambelluri and
Tonarini, 2012). Across-arc trends with decreasing boron concentration and isotopically
lighter compositions with increasing slab-surface depths are observed in many
subduction zones (Ishikawa and Nakamura, 1994; Ishikawa and Tera, 1997; Ishikawa et
al, 2001; Rosner et al., 2003). This feature is interpreted to directly reflect increasing
degrees of slab dehydration and decreasing slab-to-arc element transfer (Morris et al.,
1990; Moran et al.,, 1992; Bebout et al., 1999; Marschall et al., 2007). Several subduction
zones, such as Kamchatka, show unusually high 1B and B/Nb values or characteristic
reversals in their trends (Tonarini et al., 2011; Ishikawa et al., 2001; Moriguti et al,,

2004), a feature that remains unexplained so far.

Chemical composition of the Kamchatkan lavas

Geochemical trends among the three different volcanic chains in Kamchatka generally
fall into two groups. Proxies indicative for magmatic source components, such as high
field strength element (HFSE) ratios and Nd-Hf isotopic compositions, generally show
only minor variations (Dorendorf et al, 2000; Miinker et al, 2004). In contrast,
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geochemical tracers of fluid enrichment and fluid-rock interaction, such as large ion
lithophile elements (LILE), B, Li and the volatiles S, Cl and F show positive anomalies in
the CKD lavas, namely in those of the Kluchevskoy group (Fig. 2).

The 611B, 880 and Sr-Pb isotopic compositions clearly indicate the addition of large
amounts of slab-derived fluids to the sources of the CKD lavas (e.g., Dorendorf et al,,
2000; Ishikawa et al., 2001; Churikova et al., 2001, 2007). Especially boron and boron
isotopic compositions of the Kamchatkan arc lavas show a characteristic pattern. In
addition to the typical trend of decreasing 8''B and B/Nb with increasing slab depth
visible in the EVF, both parameters show a unique increase in the second volcanic chain
(CKD) in Kamchatka (Fig. 1). The origin of the unusually high B/Nb and 6!'B in the CKD
has been attributed to large influxes of slab-derived fluid (Ishikawa et al., 2001), hence
making it a prime suspect for reflecting serpentinite dehydration.

Furthermore, U-series disequilibria (Dosseto and Turner 2014) indicate that the CKD
lavas also show unusually fast ascent rates in the order of 20 m/a. Hence, it is widely
accepted that the Kamchatkan arc volcanic rocks, especially those from the CKD, evolved
in a fluid-rich subduction zone regime and fluid-triggered mantle melting is the
dominant magma forming process (e.g., Churikova et al., 2007), although the source of

the fluids involved in the melting processes has not been clarified so far.

Model results

Important differences in the structural position of the three thermal profiles exist. The
northernmost profile cuts across the EVF chain and the CKD where the Kluchevskoy
group volcanoes are located. The central profile also includes both the EVF and the CKD,
but volcanic activity in the CKD is absent in this section. The third profile is located at
the southernmost tip of Kamchatka, just north of the northernmost Kurile islands where
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the CKD is absent and the EVF displays the only active volcanic chain on the Kamchatka
peninsula. The three sections show clear thermal differences between the two northern
profiles and the southern profile, the latter being significantly cooler than the former
two. This difference is interpreted to be due to the thermal plate rejuvenation in the
northern profiles caused by the interaction of the Pacific plate with the Hawaii-Emperor

plume (Manea and Manea 2007).

Simulated slab dehydration

A detailed inspection of the thermodynamic dehydration models assuming 2.5wt%
water in the uppermost 15km if the slab mantle reveals that all three models yield
similar patterns with respect to the dehydration of the slab crust and the overlying
mantle wedge, but differ significantly in slab mantle dehydration (Fig. 3).

Forearc dehydration

In the forearc from 60 - 100 km slab surface depth, brucite, antigorite and to a lesser
extent chlorite breakdown in the mantle wedge are the major water releasing reactions
in all models. Amphibole, although stable in the wedge mantle, does not significantly
contribute to the water budget in any of the three profiles. The modeled crustal
dehydration is controlled predominantly by chlorite breakdown and is increasing to the
highest values in the forearc of all models.

Sub-arc dehydration (EVF and CKD)

In the sub-arc region underneath the EVF, water is delivered by continuous chlorite
dehydration from the crust and, in case of the northern profile, by the chlorite-out
reaction in the wedge mantle that causes a characteristic peak in this model at ~130 km
slab surface depth. The lawsonite-out reaction starts at about 100km depth and is

dominating the water release from the subducted slab crust up to ~250 km slab surface
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depth. The overall dehydration pattern resulting from these reactions is characterized
by a significant decrease between 90 and 110 km depth followed by a significant
increase with a maximum at about 120 km slab depth and a more constant dehydration
down to 250 km slab surface depth (Fig. 3). The drastic increase in the water release
beneath the EVF is caused by increasing chlorite dehydration in the crust and the SSZ
mantle.

The most important result of our models, however, concerns the spike-like water
release from the slab mantle by the antigorite breakdown reactions in the northern and
central profile (arrows in the upper panels in Fig. 3). The antigorite-out reaction starts
at the bottom of the hydrated slab mantle part (Fig. 3, lower panel). Here, the liberated
water migrates upward until it reaches a water-undersaturated part of the slab mantle,
where it is resorbed and dragged down within the plate. This process is repeated until
the thermal stability limit of antigorite in the slab mantle is reached. Here, the
accumulated water is released, which causes very high fluid fluxes and a narrow spike-
like peak in the water release in the northern profile at about 175 km depth. In contrast,
water liberated at the topmost part of the hydrated slab mantle directly migrates
upward into the slab crust, which can be seen in the central profile, where slab mantle
dehydration causes a more gradual water liberation between 175 and 200 km slab
depth. Nevertheless, in both cases large amounts of water are liberated by antigorite
breakdown causing a massive fluid flux into the overlying slab crust and wedge mantle.
The position of this reaction coincides well with the location of the second volcanic
chain in the CKD in the northern profile and with the position of the CKD basin in the
southern profile. Beyond the CKD, minor water release continues by lawsonite

breakdown in the crustal part of the slab.
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In contrast to the northern and central profiles, slab mantle dehydration as observed in
the other two models is completely absent in the southern profile. Due to the lower slab
temperatures water liberation due to antigorite breakdown is lacking and the entire

water stored in the hydrous slab mantle is subducted beyond sub-arc depth.

Boron modelling

Figure 4 shows the result of a mass balanced boron distribution among the modeled
stable phases in Fig. 3, together with a temperature-dependent fluid/solid boron isotope
fractionation. These models provide information about the B geochemical
characteristics of the slab-derived fluid as it enters the melting region underneath the
arc. Comparing the modeled values with observed data from arc lavas serves as an
independent test for the quantitative validity of the thermodynamic model results.

The uppermost panel in Fig. 4 shows the boron concentration (ug/g) in the liberated
fluid (green line) as well as the modeled boron flux (kg/m?/s) into the mantle wedge
(red line). The drastic increase in boron release beneath the CKD is predominantly
controlled by the fluid amount rather than by the concentration of B in the fluid. In the
southern profile this B peak is missing as there is no slab mantle dehydration occurring.
All models can reproduce the characteristic decreasing B concentrations (reflected in
the decreasing B/Nb ratios, where Nb represents a fluid-immobile reference element) in
the lavas of the EVF and the northern profile model successfully reproduces the
observed high values in the CKD volcanoes (cf. Figs. 1 and 4).

The observed 6'1B values in Kamchatka (second and lowermost panel in Fig. 4) show a
continuous linear decrease in the EVF as well as a distinct increase in the CKD volcanoes.
Our models can reproduce both features. In all models the dehydration of each lithology

in the layered slab is associated with continuous dehydration-induced 6!'B depletion in
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the residual rocks leading to a decreasing d''B trend in the released fluids. First,
dehydration of sediments and SSZ wedge serpentinites releases extremely heavy boron
into the fore-arc region, a feature that is observed in many forearcs. Subsequently, initial
dehydration of the oceanic crust releases high-0!'B fluids initiating a second trend of
decreasing 8B that is recorded in the EVF and in several other arcs globally. Finally, the
high-B fluid released by antigorite breakdown in the slab mantle of the northern and
central profiles directly transfers a high- 8'1B signature towards the surface due to the
high water flux and the finite capability of the crust to incorporate B. It is notable that
continuing dehydration of slab crust alone is not able to deliver any significant amounts
of water or boron at depths greater than 150 km. This is due to the fact that phengite,
the phase with the highest B concentration in the oceanic crust, remains stable to
beyond arc depths. Moreover, any released crustal fluids are expected to carry a
negative 0!'B value due the loss of isotopically heavy B during early stages of
subduction, inconsistent with the observed positive 811B in the CKD volcanic rocks. Both,
the modeled drastic water release from the slab together with the anomalously high [B]
and 0'1B values associated with slab mantle dehydration strengthen the hypothesis that

the CKD volcanic activity is induced by devolatilisation of the subducted oceanic mantle.

Water subducted beyond arc

Figure 5 shows a summary of the modeled water contents of the slab and the water
subducted beyond arc. The latter is displayed in vertical sections through the slab at
maximum slab depth in the three models. In all models dehydration reactions ceased at
the maximum model depth and the only stable hydrous phases in all slabs are phengite

and phase A in the oceanic crust/sediments and mantle, respectively.
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Three features are important to mention regarding the water content of the slab. First,
in none of the models the SSZ mantle is able to bring water beyond the first volcanic
chain, so ruling out its role in deep water recycling. Second, the sedimentary layer is
capable of bringing 0.9 wt% water to depth greater than 250 km whereas the water
content in the MORB layer is with 0.03 wt% negligible after lawsonite dehydration. In
both lithologies phengite is the only hydrous mineral that is stable at depths greater
than 250km and the amount of water subducted to these depths is proportional to the
potassium content of the oceanic crust and the sedimentary pile (cf. Hacker 2008).
Despite its limited thickness of less than 1 km, however, the 0.9 wt% water in the
sedimentary layer make up 75% of the deeply subducted water in the oceanic crust
(excluding the slab mantle). Third, the amount of water subducted in the slab mantle
part beyond the volcanic arc is controlled by the overlap of the stability fields of
antigorite and phase A as well as by the amount of phase A stable in the slab mantle.

The bell shaped curves in the right-hand diagrams show the maximum capacity of Phase
A to bring water beyond the arc in the northern and central profiles. This value is
already reached by the models assuming 2.5wt% water in a 15 km thick mantle part.
Additional water from the serpentinized slab mantle is released into the overlying
mantle wedge. In contrast, in the colder southern profile dehydration reactions are
lacking as all water in the slab mantle can be transferred into Phase A. A summary of the
calculated beyond-arc water fluxes corresponding to the models in Fig.5 is given in
Table 1.

It is evident that only in case of the northern profile, where a second volcanic chain is
indicating slab mantle dehydration, constraints can be made on the beyond arc water
subduction. Fluid liberation from the slab mantle is here indicating that the water

saturation in the deeper slab mantle (controlled by Phase A) has been overcome. In the
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northern profile the water saturation in the beyond arc slab is controlled by the bell-
shaped profile vertically across the stability field of Phase A (Fig. 4), this curve can be
used to calculate the minimum amount of water in the subducted slab necessary to
saturate the slab beyond arc.

The relation between the beyond-arc water flux in the northern profile and the depth of
initial hydration of the subducted slab mantle is shown in Fig. 6. The sigmoidal curve is
reflecting the bell-shaped water saturation profile in Fig. 5. The bold numbers on that
curve show the minimum initial water content of the slab mantle that is necessary to
yield a fully hydrated beyond-arc slab mantle (controlled by the amount of Phase A). At
this minimum water content, no slab mantle dehydration would occur and no second
volcanic chain could develop, as the values represent the minimum amount of water
necessary to fully hydrate Phase A. In the case of the northern and central profiles,
however, slab mantle dehydration does occur and the 81B signal in the arc lavas can be
used to determine the actual extent of slab mantle dehydration as the 1B signal is a
function of the excess water released from the slab. The slab mantle water content
necessary to reproduce the observed 8'1B patterns in the CKD volcanic lavas is indicated
by the numbers in italics on the grey curve. Our results show that the beyond-arc arc
water flux in Kamchatka is between ~1.1 x 103 and ~7.4 x 103 TgMa-lkm, equal to
between 0.75 and 5.2 x 106 TgMa-! over the entire 700 km subduction zone length (Fig.
6). The upper boundary of this value is constrained by the amount of water that can be
stored in stable phase A. The lower boundary of 0.75 x 10 TgMa-l is given by the
constraint to reproduce the observed 8'1B pattern, which is not possible at hydration

depths smaller than 2.5 km.

Discussion
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Critical parameters of our model

Due to the large number and complexity of the input parameters of our model a detailed
examination of the critical parameters is necessary. Generally, as argued afore, we
interpret that the complex across-arc B pattern observed in Kamchatka can excellently
explained by a succession of slab crust and subsequent slab mantle dehydration.
Consequently it has to be questioned inasmuch a comparison of modeled and observed
B patterns can be used to quantify the hydration state of the subducted slab mantle and
the absolute amount of water subducted beyond arc in Kamchatka.

Critical parameters for the water cycling in subduction zones are the hydration intensity
and the hydration depth of the subducting slab mantle (Riipke et al., 2006; Hacker 2008;
van Keken et al,, 2011; this study). Both of these input parameters influence the boron
signal of the CKD arc volcanic rocks (Fig. 6). Distinct model runs, which differ in initial
water content and hydration depth of the slab mantle, can therefore reproduce the
complex pattern observed in the CKD volcanic rocks.

Other critical parameters of our model and the effect of their variation on the results are
shown in Fig. 7. The parameters with the largest influence on the modeled 8B values
are the initial B concentration and 1B of the MORB and the slab mantle as well as the B
fluid-lawsonite distribution coefficient. In contrast, it is evident in Fig. 7 that neither the
B concentration and 6!'B in the SSZ mantle nor in the sediments influence the B pattern
in the CKD lavas significantly. Interestingly, the concentration of B in the MORB layer
has the largest effect on the 8'1B in the CKD lavas, whereas initial 8''B in MORB is
influencing the subarc (EVF) 611B pattern. This result is reflecting the filter effect of the
MORB layer. A B-poor MORB layer will have little effect on the B concentration and 8B
of fluids derived from the slab mantle. Thus, in case of a B-poor oceanic crust the 8B

signal from the slab mantle is directly transferred to the slab surface and the magma
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source region. A scenario, however, with a B-rich slab mantle and a B-poor slab crust,
which could equally reproduce the observed 6!'B pattern, is quite unlikely as B is
transferred to both lithologies by the ocean water, more of which is certainly interacting
with the crust than the mantle. It has to be noted, however, that the filter effect of the
MORB crust is essential for determining the absolute 1B values in the CKD volcanoes.
In general the 0!'B pattern in the EVF volcanoes can be used to constrain several of the
critical parameters used for the interpretation of the B signal in the CKD lavas (Fig. 6).
Variations in the lawsonite-fluid distribution coefficient as well as the initial !B in the
MORB crust yield distinct 8'1B patterns in the EVF lavas, which can be used to constrain
these values.

However, since the across-arc geochemical variations alone do not yield unambiguous
information on the hydration state parameters, but only on their relations (Fig. 6)
seismic constraints on the hydration depth of the slab mantle prior to subduction,
together with thermodynamic models as presented in this work, are required to fully
quantify the water budget in subduction zones. To our knowledge, there are no data
available that constrain the degree of hydration of the oceanic mantle east of the
Kamchatka trench, but normal faults, fault escarpments and fracture zones have been
identified by geophysical methods in the upper mantle of the adjacent Japan and Kurile
trenches (Garth and Rietbrock 2011; Kobayashi et al, 1998). All of these features
facilitate hydration of the incoming oceanic mantle. Whether slab mantle dehydration is
significant elsewhere has to be evaluated considering thermal and thermodynamic

constraints for each subduction zone individually.

Distinction between fluid source rocks
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All subducted hydrated lithologies potentially contribute to the water budget in the
subduction zone, but it is only the hydrated slab mantle that is able to transfer
significant amounts of water into the deeper mantle in antigorite (e.g., Ulmer and
Trommsdorff 1995) and subsequently DHMS (Phase A). Hence, detection of slab mantle
dehydration serves as an indicator for possible deep water recycling and according to
our models the volcanic activity in the CKD, occurring up to 200km above the subducted
slab, is providing indirect evidence for slab mantle hydration in Kamchatka.

It is evident that both the EVF and the CKD are reflecting a strong contribution of slab-
derived fluids to the zone of magma generation (e.g., Dorendorf et al., 2000; Churikova
et al,, 2001; 2007; Portnyagin et al., 2005). Based on trace element modeling, the fluid
contribution to the melts seems to be highest (up to 2.1%) in the CKD volcanoes
(Churikova et al.,, 2001). This interpretation is supported by the data shown in Fig. 2:
The Ba/Nb as well as the Ba/Th ratios show similar trends, i.e. a slight decrease with
increasing slab depth in the EVF followed by a clear increase in the CKD volcanic rocks,
indicating an increasing contribution of slab-derived aqueous fluids on the melt sources
of the CKD volcanoes. In contrast the Th/Nb ratios, possibly indicative for hydrous melts
derived from the downgoing slab (e.g., Perce et al., 2005) are largely constant in both
volcanic chains. Hence, the majority of the geochemical data are in general agreement
with a strong fluid contribution to the arc volcanic lavas in Kamchatka, but the source of
these fluids remains to be clearly characterised.

Churikova et al. (2007) could show that the fluid sources for the EVF and CKD volcanoes
are chemically distinct, the latter being characterized by elevated 87Sr/86Sr ratios and
high 6180, whereas the EVF fluids are characterized by high LILE and LREE contents, but

also high concentrations in F and chalcophile elements. Based on their observations they
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distinguish between serpentine + amphibole and lawsonite + phengite for the
dehydrating mineral assemblages beneath the EVF and the CKD, respectively.

In contrast, our thermodynamic models suggest a strong contribution of chlorite
dehydration in both, the SSZ mantle as well as the MORB crust, to the fluids causing the
EVF volcanism (Fig. 3). The high B content of the EVF lavas comes from the fluid-rock
interaction and the resulting B enrichment in fluid during the fluid percolation through
the oceanic crust and the sediment layer (Fig. 4). The 8'1B patterns in all three modeled
profiles are also in agreement with that interpretation. Regarding the second fluid
source, beneath the CKD volcanoes, our northern and central profiles clearly show that
dehydration of sediments, hydrated crust and SSZ wedge mantle, cannot deliver enough
water to explain the high B/Nb or the high 8!'B values in the CKD lavas (Fig. 4).
Phengitic white mica, known to be a significant carrier of B in sedimentary and igneous
lithologies in subduction zones (Bebout et al, 2007; Konrad-Schmolke et al., 2011a;
Bebout et al,, 2013; Halama et al., 2014), remains stable in the crustal parts of the slab
and does therefore neither contribute to fluid release thereof nor to release of other
FMEs preferentially incorporated into phengite. This is consistent with experimental
constraints on the stability of phengite to depths exceeding 360 km (Domanik et al,,
1996) and field-based evidence for the retention of FME in phengite-bearing HP rocks
(Bebout et al,, 2007; Bebout et al., 2013). Due to the comparatively small volume and the
strongly negative 611B values, neither the amount nor the isotopic composition of B (Fig.
4) in the sediments beneath the CKD can account for the high B flux and the high 1B in
the CKD lavas.

Several studies have shown that the SSZ mantle wedge can be dragged down to sub-arc
depths and contribute significantly to the melt production and trace element transfer in
subduction zones (Hattori and Guillot 2003; Savov et al., 2007; Tonarini et al., 2011). In
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cases where hydrated SSZ wedge material is dragged down to below the volcanic front, a
heavy B isotope signature may be transferred into the arc front volcanic rocks, as
proposed for the Izu arc (Straub and Layne 2002) and the South Sandwich Island arc
(Tonarini et al., 2011). All of our three models predict the release of isotopically heavy B
into forearc and subarc underneath the EVF due to dehydration of sediments and SSZ
wedge serpentinite, which is consistent with observations from serpentinite seamounts
(Benton et al., 2001) and highlights the important role of wedge mantle dehydration for
volcanism in other arcs (Tonarini et al., 2011). However, the thermal stability of chlorite
in the Kamchatka mantle wedge limits the depth to which this reservoir is able to deliver
water and trace elements into the magma source regions to about 130 km depth-to-slab.
Hence, the thermal structures of the chosen profiles, which are constrained by
independent observations (Manea and Manea 2007), do not suggest that SSZ mantle
wedge is dehydrating underneath the CKD. To explain volcanic activity in this second
volcanic chain and elevated 8''B and high B contents in the CKD arc lavas, our models
provide an alternative mechanism: the dehydration of slab serpentinite. B-rich fluids
derived from slab mantle dehydration beneath the CKD volcanoes transport a high 811B
signal from the slab to the melt source region (Fig. 3B and C), explaining the observed
across-arc variations in B/Nb and 811B. Moreover, the high K/Nb, Rb/Nb, Ba/Nb, Pb/Nb
and Zr/Y ratios that characterize the CKD lavas (Dorendorf et al., 2000) likely result
from slab mantle fluid release as the more fluid-mobile species (K, Rb, Ba and Pb) are
scavenged via fluid percolation through the sediment layer. High 680 values observed
at Kluchevskoy volcano, previously attributed to dehydration of low-temperature
altered oceanic crust (Dorendorf et al., 2000), can equally well be explained by slab
mantle dehydration if low serpentinisation temperatures and/or serpentinisation
at/near the seafloor are assumed.
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Our argument of slab mantle dehydration is further supported by the observation of a
double seismic zone in Kamchatka (Gorbatov et al., 1997). Such double seismic zones
are commonly explained to result from dehydration reactions up to several tens of
kilometers within the subducted plate (Hacker et al., 2003). In case of our models such
dehydration reactions can be explained by slab mantle dehydration that starts at the
base of serpentinite stability within the subducted slab (Fig. 2). Dehydration and
subsequent fluid migration within the slab mantle can likely be a source for the
observed seismicity in the lower zone of the double seismic zone in the Kamchatkan

slab.

Slab melting

Another critical aspect is the mass balanced distribution of boron between liquid and
solid phases. Slab surface temperatures in our model (650-750°C at 100-150 km slab
depth) are hot enough to allow fluid-induced flux melting in the sediment layer to the
rear of the EVF, as suggested for Kamchatka based on geochemical parameters (Duggen
et al, 2007; Plank et al,, 2009). Such fluxed melting of the sediment layer could indeed
be triggered by the dehydration of the underlying AOC or the serpentinized slab mantle
and the relatively high Th/Nb in some of the EVF lavas (Fig.2) might be the result of flux-
melting of the subducted sediments. However, our models do not consider melts due to
the lack of reliable thermodynamic data, but instead assume that the slab-derived liquid
is an aqueous fluid. Experimental data suggest that fluids leaving the slab are in a
supercritical state and complete miscibility between solute-rich fluid and aqueous melts
might exist (Hermann et al, 2006; Mibe et al., 2011). We argue that a distinction
between melt and fluid is of minor importance in our model, because the changes of B

solid-liquid partition coefficients remain fairly constant over a wide temperature range
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(700-1200 °C) and different liquid compositions (Kessel et al., 2005). Moreover, we
assume that all B released from the slab is incorporated into the melt phase in shallower
regions of the mantle wedge where the B compositional and isotopic information is
transferred into the source melts of the arc lavas. Melting of the igneous crust of the slab
under water-saturated conditions, producing eclogite-derived melts, has also been
proposed for the origin of the peculiar geochemical characteristics of the CKD volcanoes
(Yogodzinski et al., 2001). However, these melts are highly reactive with peridotite and
efficient transport through the mantle wedge is unlikely (Portnyagin and Manea 2008).
Instead, compositional trends within the CKD may be related to a decrease of magma
generation temperature and length of mantle melting columns toward the slab edge

(Portnyagin and Manea 2008).

Along-arc versus across-arc variations

The geochemical data used here for comparative purposes were originally plotted
versus increasing slab depth and interpreted in terms of across-arc variations (Ishikawa
et al,, 2001). However, the position of the volcanoes sampled forms a line that is oblique
to the subduction direction, with depth-to-slab increasing from south to north. Hence,
the comparison of the modeled geochemical variations, which are based on a thermal
model aligned parallel with the convergence velocity, and the observed geochemical
data is simplifying the geodynamic situation. Noting that other “across-arc” trends also
include volcanoes covering along-arc variation of several 10s to 100s km, e.g. about 60
km in Japan (Ishikawa and Nakamura 1994), about 300 km across the Andes (Rosner et
al, 2003) and nearly 1000 km at the Kurile trench (Ishikawa and Tera 1997), we
emphasize that deviations from a perfectly aligned across-arc profile are unavoidable

for most natural data sets and do not challenge the principal findings of our model. It is
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notable that some of the geochemical parameters that support our interpretation, such
as the data of Churikova et al., 2001, are indeed sampled along an across-arc profile
largely perpendicular to the volcanic chains. Nevertheless, despite the wealth of data
available for the Kamchatkan subduction zone today none of the published geochemical
datasets allows an unambiguous interpretation of the across-arc variations in
Kamchatka. We further emphasize that there is an along-arc variation in the slab
temperature pattern (Fig. 1), which is why we decided to use three different profiles for

our thermodynamic models in order to account for this along-arc temperature variation.

Slab-to-arc transport of geochemical signals

The idea that chemical processes in the subducting slab are reflected in the chemistry of
arc volcanic rocks is an important, but strongly debated assumption (e.g., Pearce and
Peate 1995; Marschall and Schumacher 2012). Based on the coincidence between
modeled and observed across-arc geochemical signatures and the correlation between
thermodynamically predicted positions of water release and the occurrences of volcanic
centers in Kamchatka, we assume that there is a clear, fluid-mediated link between arc
lava geochemistry and slab processes for the Kamchatka subduction zone. As our
models are simplified with respect to a strictly vertical fluid migration it was a clear
overinterpretation to suggest a strictly vertical melt transport in the Kamchatkan
subduction zone. A major implication of our results is, however, that the geochemical
signature visible in the arc volcanic rock in Kamchatka is generated in the subducting
slab already (by fluid-rock interaction) and transferred (sub-vertically) to the melt
sources by a fluid phase. These findings are in agreement with previously postulated
direct delivery of fluids to the melting region and the preservation of trace element

characteristics from fluid source lithologies (Hebert et al., 2009). Further, the rapid
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magma ascent underneath the Kamchatka volcanoes indicated by U-series disequilibria
(Dosseto and Turner 2014), is also pointing towards a direct slab-to-arc transfer. Such a
direct, almost vertical slab-to-arc transfer of geochemical signatures questions models
that invoke other means of slab-to-arc transport (Gerya and Yuen 2003; Behn et al,
2011; Marschall and Schumacher 2012), at least in fluid-dominated subduction systems

like Kamchatka.

Comparison with other previous estimates of beyond arc water fluxes

A comparison of our model data with those of Hacker (2008) and Van Keken et al.
(2011) - the only two estimates for beyond arc water flux in Kamchatka - shows that
although they are lower in the initial water content of the oceanic mantle, their absolute
values of water subducted beyond arc are higher than our estimates (Fig. 7). This
difference is likely reflecting different model approaches. Whereas both Hacker (2008)
and Van Keken et al. (2011) utilize one dimensional thermodynamic models we consider
internal water redistribution within the different lithologies, which leads to an
inhomogeneous water distribution in the slab mantle layer and different beyond arc
water fluxes. This effect seems to play a major role regarding the water budget in
subduction zones. Fig. 7 also shows that the values yielded from our models are at the

lower end of the range of previously published global average beyond arc water fluxes.

Concluding remarks

In the last decade the deep water recycling in subduction zones came into focus of
several scientific investigations (Riipke et al, 2004; Hacker 2008; Parai and
Mukhopadhyay 2012; Van Keken et al, 2011). All studies of subduction zone water

cycling, including the one presented here, have concluded that hydrated oceanic mantle
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is the most effective lithology regarding deep water recycling (Riipke et al, 2004;
Hacker 2008; Van Keken et al,, 2011). Reliable quantification of the Earth’s deep water
cycle is therefore only possible with knowledge about the hydration state and the
dehydration behavior during subduction of the subducted oceanic mantle. Regarding the
hydration state of the oceanic mantle entering the subduction zones, so far only a few
segments of the global subduction zones are investigated, but most of these studies
show either strongly hydrated oceanic mantle or at least a deeply fractured oceanic
lithosphere potentially allowing for strong hydration of the incoming oceanic plate (e.g.,
Ranero et al, 2003). These observations suggest that the incoming oceanic plate is
hydrated to a much higher degree than previously thought.

Kamchatka is a unique example of a well-investigated subduction zone with plenty of
published geophysical and geochemical data. The exceptional situation of three
successive volcanic chains additionally allows studying of slab processes at different
depths. Therefore we want to point out the importance of Kamchatka for further
investigations of the global deep water cycle.

In this contribution we used modeled and observed data available for Kamchatka for an
integrated thermodynamic-geochemical model in order to set constraints on possible
deep water recycling in the oceanic mantle and its possible contribution to the global
water cycle. Our results show that the beyond-arc arc water flux in Kamchatka is
between ~1.1 x 103 and ~7.4 x 103 TgMa-lkm-1, equal to between 0.75 and 5.2 x 10°
TgMa! over the entire 700 km subduction zone length. These values are significantly
lower than previous estimates for the Kamchatkan subduction zone (Hacker 2008; Van
Keken et al.,, 2011) and are at the lower end of previsouly published global beyond arc

water fluxes. Nevertheless, given the lack of information about the hydration state of the
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oceanic mantle offshore Kamchatka, these models yield indirect evidence for significant

beyond-arc water subduction.
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Figure Legends

Figure 1: (A) Topographic map (SRTM) and geological structures of the Kamchatka
subduction zone. The inset shows the three volcanic chains and the extent of the Central
Kamchatkan Depression (CKD). The stippled lines in the main map are isolines for the
slab surface depth and the numbers indicate the depth (data from Gorbatov et al., 1997).
Circles indicate volcanic centers. (B) The upper panel shows the relation between slab
surface depth and B geochemistry in the arc volcanic rocks. Circles are 611B values and
triangles mark B/Nb. As there is a significant along-arc extent of the data points, filled
symbols indicate values in the volcanoes that are nearest to the profile. The middle
panel shows the digital elevation model (ASTER) and the lowermost panel the modeled

thermal patterns used for the thermodynamic calculations.

Figure 2: Correlation of Ba/Nb, Th/Nb and Ba/Th with slab depth in the Kamchatkan
arc. Ba/Nb and Ba/Th are constant or slightly decreasing with increasing slab depth in
the EVF and strongly increasing in the CKD lavas. Th/Nb is (with one outlier) constant
throughout both chains. Data are compiled from Churikova et al., 2001, Portnyagin et al.,

2007 and Duggen et al., 2007.
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Figure 3: Modeled dehydration in all three profiles in models with 2.5wt% water in the
uppermost 15km of the slab slab mantle. The upper panel shows the water release at the
top of the model color-coded for the source of the fluid. Light blue: wedge mantle, red:
sediments and AOC, dark blue: slab mantle. High frequency variations are due to the
incrementation of the model. The middle panel shows the DEM (ASTER) and the lower
panel illustrates the distribution of free water within the slab together with the
dehydration reactions. In the northern and central profiles slab mantle dehydration
starts at the deepest hydrated part followed by dehydration in the uppermost slab
mantle. In the lower part the liberated water is absorbed in the overlying water under-
saturated part and released not before the tip of the atg-out reaction. In the southern
profile low intra-slab temperatures allow an entire water transfer into Phase A without

water liberation. See text for further details.

Figure 4: Release of boron and corresponding 61'Bauia values in the models shown in
Fig. 3. Uppermost panel: Relation between amount of water released at the top of the
model, the B concentration therein and the amount of B released from the slab. The
comparison shows that the B release is predominantly controlled by the fluid amount
rather than by the B concentration in the fluid. Second panel: §1Bguia values in the
released water. Extremely high &'1Bauiq values characterize water release into the
forearc in all models. Across the EVF, §11Bnauiq values systematically decrease, reflecting
continuous dehydration. The increase in 6!'Bpua values at the CKD is coupled to
serpentine dehydration in the slab mantle. Different 61'Bauia curves in the northern
profile result from different water contents in the slab mantle. Third panel: DEM data.

Lowermost panel: §11Bguiq values within the free fluid phase in the three slabs. Note the
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high 611Bguia values released by serpentine breakdown in the slab mantle enriching the

oceanic crust and the wedge mantle in 11B.

Figure 5: Water content of the slab and subduction of water beyond sub-arc depth.
The right column shows the water content of the slab assuming 2.5 wt% water in the
slab mantle. The left column shows the water distribution in the slab along a vertical
cross section at the largest slab depth. In all profiles wedge mantle and MORB do not
contribute significant amounts of water beyond subarc depths. In contrast, phengite (in
sediments) and phase A (in the slab mantle) remain as stable hydrous phases and are
able to transport water into the deep mantle. In all profiles beyond arc water fluxes are
constrained by the thermal stability of phase A, but in the northern and central profiles
2.5 wt% water within 15 km slab mantle are sufficient to saturate the beyond arc slab

mantle. See text for further discussion.

Figure 6: The sigmoidal curve shows the relationship between beyond-arc water flux,
hydration depth and initial water content of the slab mantle in the northernmost profile.
The bold italic numbers show the minimum amount of water necessary to fully hydrate
the slab mantle beyond arc (bell-shaped curve in Fig. 5). The circles and italic numbers
show the slab mantle water content of those model runs that reproduce the B pattern in

the arc lavas.

Figure 7: Comparison of the results of this study with published datasets for beyond-arc

water fluxes. Shown are the results from Hacker 2008 and Van Keken et al., 2011,
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published on Kamchatka data as well as global estimates for beyond arc water

subduction.

Figure 8: Variation of the critical parameters. The diagrams show the effect of the
variation of the most critical input parameters (B concentration, initial 611B as well as
the lawsonite-fluid distribution coefficient for B) on the resulting 611B pattern. The
green curves indicate the results shown in the paper, other curves are labeled for the

parameter variations.

Table 1: Calculated beyond-arc water fluxes from the models shown in Fig. 5
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Appendix to Konrad-Schmolke, M., Halama, R. and Manea, V. 2016:

“Slab mantle dehydrates beneath Kamchatka — yet recycles water into the

deeper mantle”

General model approach

The numerical model that we use is a combination of thermomechanical, thermodynamic and
mass balanced trace element calculations. Modeling consists of the following four steps: (1)
A thermal pattern of the Kamchatkan subduction zone is modeled, utilizing a finite element
thermomechanical code, and discretized (Manea and Manea, 2007), (2) the discretized
pressure-temperature-distance relations derived from the thermomechanical model are used as
input for a Gibbs energy minimization algorithm that simulates the passing of a vertical rock
column within the subducted slab (Connolly 2005) through the modeled steady state thermal
pattern. Based on the modeled pressure-temperature relations, phase relations are calculated at
every discretized increment with a resolution of 250 x 250m. Water liberated by dehydration
reactions is transported vertically upward equilibrating at every calculated increment within
the column and thus reflecting a high ratio of fluid/slab migration velocity. (3) The modeled
phase relations at every calculated increment are used for a coefficient-based mass-balanced
boron distribution among the stable solid and liquid phases. (4) A temperature-dependent
fluid-solid boron isotope fractionation based on experimentally determined functions
(Wunder et al., 2005) is calculated to determine the amounts of '°B and ''B in solids and
fluid. Boron incorporated into the fluid phase is assumed to migrate upward into the next
calculated increment and re-distributed. Elements retained in the solids are transported within
the slab and form the initial bulk rock composition in the next rock column. Therefore the
model simulates fluid release, fluid migration, boron transport and boron isotope fractionation

in a subducted slab passing through a steady state thermal pattern.
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Thermomechanical model

The steady-state thermomechanical models of Manea and Manea (2007) consist of five
thermo-stratigraphic units: the upper and lower continental crust, the oceanic
lithosphere and sediments, and the mantle wedge. The boundary conditions employed
in these numeric models are as following: the upper and lower boundaries correspond
to 0°C and 1450°C respectively, the left (landward) boundary is defined by a 22.5°C/km
thermal gradient for the continental crust, and 10°C/km for the lithospheric mantle, and
the right (oceanic) boundary is age dependent corresponding to an oceanic geotherm
calculated using GDH1 model of Stein and Stein (1992). Although advanced 3D numeric
models of subduction zone would have been preferable, the depth, thickness and
geometry of different layers used in the 2D steady-state thermomechanical models of
Manea and Manea (2007) are well constrained by seismological data. Also, the oceanic
boundary conditions, that strongly control the slab thermal structure, are in good
agreement with the age of the incoming Pacific plate. Although there is seismological
evidence of slab breaking beneath the northern part of Kamchatka in the last 10 Ma
(Levin et al,, 2002), a process that potentially would have triggered mantle upwelling in
that region, there are no currently published well-constrained 3D thermomechanical
models that take into account the long-term geodynamical evolution of the entire

Kamchatka subduction system.

Thermodynamic model

The thermodynamic model approach used in this work was first published by Connolly
(2005). The steady state thermal pattern of the slab is divided into P-T increments at each of
which the Gibbs energy among the database phases is minimized and the stable assemblage as
well as the composition of the coexisting phases is determined (Fig. Al). A list of the solid

solution models used in the calculations is given in Table Al. The modeled slab consists of

2
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four lithologically different layers: a 10 km thick wedge mantle layer that has primitive upper
mantle composition (Workman and Hart, 2005), a 0.65 km thick sediment layer (N Pacific
sediment; Plank and Langmuir, 1998), a 6.5 km thick MORB-type oceanic crust (Workman
and Hart, 2005) and a 18.5 km thick layer with depleted mantle composition (Workman and

Hart, 2005) (Fig. A2).

)
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Fig. Al: The thermal pattern is discretized into 221 x 997 grid nodes at each of which Gibbs
energy minimization is performed. The spatial resolution of the model is 250x250 m. Free
water (and boron therein) is transferred into the overlying grid node within a column. Major
elements and boron in solids are transferred into the next column.
To model the migration of the slab through the steady state thermal pattern and the resulting
fluid migration, our calculations start at the lowermost increment of the slab at the beginning
of subduction. Amounts and compositions of stable phases are determined and the modeled
amount of the free fluid phase is transferred to the next overlying P-T increment. Here, phase

assemblage and composition are modeled taking into account the fluid added from below. At

the uppermost increment the fluid is assumed to leave the model. The next modeled column
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starts again at the lowermost increment with the bulk rock composition being determined as
the composition of the same increment in the afore-calculated column minus the amount of

elements that were transferred upward in the migrating fluid.

Initial values

Unit Lithology  Thickn.(m)| H20 | cB(png/g) 317B (%o) Slab dip

— wedge Primitive upper

£ 1 mantle mantle (PUM) 10.000 |saturated 50 +15 52°
v ‘I 0 E (Workman and Hart 2005)
- Teediments N Pacific sediment 650 7 wt% 40 +10

- 1 sediments “(Plank and Langmuir 1998} | .-

8— b MORB N-MORB 6.500 4wt% 25 -2
o) Z(L—_ {Workman and Hart 2005) | .. cale. cale.
Q0 2 | hydrated varying| 0-6 wt%  depend.on  depend.on
o = hydration | hydration

(72} 1 ... Depleted MORB mantle 8 _______________________________________________________________

i 1E {DMM) "

e 30 ] '; (Workman and Hart 2005) | 08 )

E’ =% | dry ™ varying  dry 0.1 -10

Fig. A2: Composition of the layered slab and initial input values.

Chemical input parameters

The initial water distribution in the slab assumes water saturation in the sediment and the
MORB layer. Water saturation in the 10 km thick mantle wedge layer is the result of initial
dehydration of the oceanic crust in the first calculated model column. The boron
concentrations in the wedge mantle, the sediments and the MORB layers are 50, 40 and 25
ng/g respectively (Spivack and Edmond 1987; Ishikawa and Nakamura 1993; Smith et al.,
1995). The initial 8''B(gui of the sediment and MORB layers is assumed to be +5%o and -2%o
(Spivack and Edmond 1987). The initial §''Bguu in the slab mantle layer is calculated by the
amount of serpentine initially present under the hydration state at the onset of subduction. A
boron concentration of 60 pg/g in serpentine, an initial 6“B(sﬂpenﬁne) of +13.5%o (Boschi et al.,

2008) as well as a boron concentration of 0.1pg/g and a 8''B of -10%. in dry peridotite is
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assumed. During forward modeling changing 6“B(Bu1k) is calculated by fractionating '°B and

B into the migrating fluid according to the modeled A“B(Mineral_}‘luid) (Fig. A4).

Boron distribution calculation

Under the assumption of thermodynamically independent trace element incorporation into
stable phases it is possible to calculate trace element concentrations in coexisting phases by
distributing a given amount of elements present in the bulk rock or effective (i.e. reacting)
bulk rock volume according to bulk distribution coefficients among the thermodynamically
modeled stable phases. The fluid-solid boron distribution is done by calculating a

Fluid/Matrix distribution coefficient ( p"“/*« ) at each calculated increment, where

Dgl”id/ Matrix _ 2 Dfuid | Minerat)- X

k=1

Mineral

with k denoting the stable minerals present at each calculation step and D§"“'""“ is the B
distribution coefficient for the fluid with respect to a certain mineral. A list of distribution
coefficients used and their sources are given in Table Al. In order to account for channelized
fluid flux and the resulting limited fluid-rock interaction in garnet-pyroxene rocks, i.e.
eclogites (e.g., Zack and John 2007), the reacting garnet and pyroxene fractions were reduced
to be only 25% of the thermodynamically stable mineral modes.

Based on the bulk distribution coefficient the concentration of boron in the fluid and solids is

calculated at each step by

Bulk
Cgluid _ CB

B (X gotias ! (Dgluid/Mmix' Xpia)) +1

Where C5“*is the B concentration in the bulk rock or effective bulk rock volume and X s

and X, being the weight proportions of the solids and the fluid. Element fractionation
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effects or fluid mediated element influx is modeled by changing the bulk rock or effective

bulk rock composition at every calculated step.

Boron isotope calculations
Boron isotope composition in fluid and solids are calculated at every calculated increment
based on the temperature-dependent fractionation function published in Wunder et al., 2005

(Fig. A3):

A"B yineral-Fiuiay = -10.69 (1000/T[K]) + 3.88

where

A" Binerat-Fluid) = ' BMineral) - 8" BFluid)-
Knowing the initial ' B(guy at the beginning of the modeling, 8''Bysotias) and 8''Bgiuiay can be
calculated at each step after boron distribution among the solids and the fluid.

Slab surface depth (km)
100 150 200 250 300

Intra-slab depth (km)

-4
| i |

A'I 1 B (Solid/Fluid)

Fig. A3: Modeled temperature dependent solid-fluid boron isotope fractionation calculated

after Wunder et al., 2005.
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119  Table Al: B U partition coefficients

Solid/Fluid pair Value Source

Cpx/Fluid 0.016 Brenan et al., 1998

Grt/Fluid 0.0006 Brenan et al., 1998

Atg/Fluid 0.2 Estimated

Mica/Fluid 0.2 Brenan et al., 1998

Law/Fluid 0.07 (0.04) Estimated (Brenan et al., 1998)
Amph/Fluid 0.016 Brenan et al., 1998

Chl/Fluid 0.0025 Estimated

Cpx=clinopyroxene, Grt=garnet, Atg=antigorite (serpentine), Law=lawsonite, Amph=amphibole, Chl=chlorite

120
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Table A2: Solid solution formulations used in the thermodynamic calculations

Solid solution
Amphibole

Antigorite
Chlorite
Clinopyroxene
Epidote
Feldspar
Garnet

Olivine
Orthopyroxene
Phase A
Spinel

Talc

White mica

Exchange vectors
CarrwNaziow[MgiFe 1 «]3+2y+2AL3 3y wS17+w+yO022(OH),,
wty+z<=1

MgusxFeas(1-xS134055(OH)e2
[MgxFeyMn x w]s y+zAla1+y-2Si3-y+010(OH)s, x+w<=1
Na;_yCa,Mg, Fe(1_x)yAlySi,O6

CaAls »xFexSi3012(OH)
KyNayCaj x yAlp x ySigsyOs, x+y<=1
Fes;CazyMg3,Mn3(i1 -y y AL S13012, x+y+z<=1

Mg, FeayMny (1) S104, x+y<=1
[MgFei «]> yAlySi> ,Op

Mg7Fes1-xS1208(OH)e

Mg.Fe | xAl,O3

[MgxFer_x]syAlySisy010(OH),

KiNa;_ Mg Fe, Alz 5(y+,S13+y+,010(OH)2

Source

[1,2]

Ideal
[3]
[4]
[5]
[6]
[7]
[7]
[4]
Ideal
Ideal
Ideal

[5]
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Flow chart of the modeling procedure
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