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Abstract

Convection plays a key role in the evolution of massive stars. Despite many decades

of work on this topic, the treatment of convection (convective boundary mixing in

particular) is still one of the major uncertainties in stellar evolution modelling. For-

tunately computing power has reached a level that enables detailed three-dimensional

hydrodynamic simulations, these can provide valuable insights into the processes and

phenomena that occur during stellar convection. The aim of this thesis is to explore the

physics responsible for convective boundary mixing within the deep interiors of massive

stars, through the calculation of stellar evolution and three-dimensional hydrodynamic

models. The latter focus on carbon shell burning and are the first of their kind within

the stellar hydrodynamic community.

To prepare the input models as well as study the evolution of convective boundaries,

a 15M⊙ stellar model was computed and a parameter study was undertaken on the

convective regions of this model. The carbon shell was chosen as an input model for

three-dimensional simulations. Two sets of simulations were calculated with the aim

of conducting a resolution study and luminosity study. The simulations were analysed

using the Reynolds-averaged Navier-Stokes (RANS) framework and within the context

of the entrainment law.

The following is a summary of the key findings. The lower convective boundary

was found to be ‘stiffer’ (according to the bulk Richardson number) than the upper

boundary. The boundaries are shown to have a significant width which is likely formed

through Kelvin-Helmholtz instabilities, the width of the lower boundary is much nar-

rower than the upper. The shape of the boundaries (interpreted through the composi-

tion) is smooth and sigmoid-like, whereas in the one-dimensional models it is sharp and

discontinuous. Finally, these simulations confirm the scaling of the bulk Richardson

number with both the entrainment rate and the driving luminosity.
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Chapter 1

Introduction

Massive stars have a large impact on the dynamics and composition of the universe,

throughout all stages of their life cycle. Their radiation represents a significant fraction

of the radiation emitted from their host galaxy, and ionises the gas that surrounds them,

forming H II (ionised hydrogen) regions (Wood and Churchwell, 1989).

The internal temperature and neutron density during certain phases of massive star

evolution are high enough for the synthesis of weak s-process isotopes1 (e.g. Langer,

Arcoragi and Arnould, 1989; Käppeler et al., 2011).

At the end of the star’s life the majority of the interior matter (including s-process

isotopes) is expelled into the inter-stellar medium (ISM) through a dramatic core-

collapse supernova (CC-SN) explosion. Such events are also responsible for the for-

mation of primordial dust grains, providing that they survive the reverse shockwave

(Todini and Ferrara, 2001), and are considered a candidate for the site2 of r-process

nucleosynthesis (Nishimura et al., 2012; Winteler et al., 2012), where large neutron

fluxes are required to produce the heaviest elements. The feedback of energy (both

kinetic and thermal) from SN events to the surrounding ISM is thought to have a

significant impact on galaxy formation (e.g. Simpson et al., 2015). Stellar winds also

affect galaxy structure and composition through the deposition of kinetic energy and

nucleosynthesis products (e.g. Garay and Lizano, 1999).

Massive stars leave behind neutron stars or black holes depending on the final

1These are isotopes of the heavy elements in the mass range 60 . 𝐴 . 90 (e.g. Pignatari et al.,
2010).

2A more favoured astrophysical site for r-process nucleosynthesis is neutron star mergers (Wanajo
et al., 2014).
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mass of the heavy element core (e.g. Woosley, Heger and Weaver, 2002). In addition,

massive stars are an astrophysical laboratory where physical processes at such high

temperatures and densities can be studied. Similar studies are possible terrestrially

but only in small volumes, for example in NIF3 (Kuranz et al., 2011) and z-pinch

device4 (Miernik et al., 2013) experiments.

1.1 The life and death of a massive star

Massive stars are generally defined as those with an initial mass large enough such

that they will go through all of the burning stages to form an iron core, which will

eventually collapse. According to Woosley, Heger and Weaver (2002); Heger et al.

(2003) and Jones et al. (2013) the lower mass threshold is around 8M⊙. These mass

limits are determined from 1D stellar evolution calculations, and so the inclusion of

new convective boundary mixing prescriptions could affect these limits.

1.1.1 Early stages

Consider a significantly massive gas cloud, due to its self-gravity the gas (assumed to be

perfect) is gravitationally accelerated towards the centre but is balanced by the pressure

gradient between the centre and surface of the star. This mechanical equilibrium is

referred to as hydrostatic equilibrium, and the star is in such a state for most of its

life. If the gas pressure is not large enough to balance the gravitational forces, the star

will contract, reducing the gravitational potential energy and increasing the internal

energy (as the internal pressure and temperature increase).

Upon reaching temperatures of around 107K hydrogen fusion is possible predom-

inantly through the CNO cycle5. Each cycle produces an alpha particle (He) and

around 4×10−5 erg of energy (from 6 different reactions during each cycle) in the form

3The National Ignition Facility at the Lawrence Livermore National Laboratory in California is the
world’s largest and most energetic laser facility. Ongoing experiments are conducted in the attempt
to achieve inertial confinement fusion.

4A z-pinch device uses strong magnets to induce a current in the conductive plasma, which when
appropriately aligned can compress the plasma through the Lorentz force. The largest generator
that can undertake such experiments is the ‘Z-machine’ located at Sandia National Laboratory, New
Mexico.

5Energy is also produced through the p-p chain but is only around 5% of the energy produced from
the CNO cycle at a temperature of 2× 107 K (see Fig. 18.8 of Kippenhahn, Weigert and Weiss 2013).
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of photons. These photons travel towards the surface of the star through collisions

with the surrounding matter and in doing so exert a radiative pressure. This increase

in local pressure prevents the star from collapsing further. Hydrogen fusion eventually

ceases in the core once all of the hydrogen fuel has been depleted. The reduction in

the nuclear energy generation rate removes the energy source and the pressure is no

longer great enough to prevent the star from contracting (due to its self-gravity). The

gas contracts and its temperature and density increase. Once temperatures of around

108K are reached the fusion of helium into carbon is possible, through the triple-𝛼 pro-

cess, producing around 2× 10−5 erg per three helium nuclei and restoring the pressure

balance. Carbon nuclei can capture alpha particles to produce oxygen6 and this pro-

vides a similar amount of energy to helium fusion. These alpha captures are possible

once a sufficient amount of carbon has been produced. Once helium is exhausted the

carbon- and oxygen-rich core will contract again.

1.1.2 Advanced phases

Following the end of helium burning, if the carbon-oxygen rich core is below around

1M⊙, the temperatures reached are not high enough in the core for carbon nuclei

to fuse. These stars instead lose their envelope (at the end of their life via a stellar

wind) leaving a carbon-oxygen white dwarf (CO -WD) remnant. For stars with initial

masses between around 8M⊙ and 10M⊙ competition between carbon burning (under

degenerate conditions) and mass loss due to thermal pulses in the helium burning shell

will determine the final evolutionary state of the star. For stars with initial masses7

around 9M⊙ (Siess and Pumo, 2006; Jones et al., 2013), once core contraction begins

due to carbon exhaustion, the presence of a temperature inversion in the core, allows

a Ne/O flame8 to develop, which propagates towards the centre of the star. The

contraction of the core occurs faster than the flame propagation, and once densities

are reached sufficient for electron captures on 24Mg and 20Ne, these stars then explode

6Oxygen nuclei can also capture alpha particles to produce neon, but the production is low in
comparison.

7Some studies suggest this ignition mass is closer to 7M⊙ (Jones, 2014).

8In this sense, a flame is defined as the ignition of nuclear fusion at an off-centre position. The
heating of the surrounding material mainly through convective heat transport then helps to push this
flame front further towards the centre of the star.
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Figure 1.1: Average binding energy per nucleon as a function of the atomic mass
number. Common isotopes are noted, including 56Fe which has the lowest mass per
nucleon. Despite many textbooks stating that 56Fe is the isotope with the highest
binding energy per nucleon, it is actually 62Ni. This is shown by the inset which shows
the binding energy per nucleon of the iron-group elements. Alpha captures during
silicon burning cease at 62Ni, but much more 56Ni is produced (not shown), which later
decays to 56Fe. Credit: Wikimedia Commons; inset adapted from Fig. 2 in Fewell
1995.
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Phase Hydrogen Helium Carbon Neon Oxygen Silicon

Lifetime (yrs) 1.1× 107 2.0× 106 2.0× 103 0.7 2.6 0.05

Table 1.1: Approximate lifetimes (in years) of the various nuclear burning phases within
a 15M⊙ star. Adapted from Woosley and Janka (2005).

through an electron-capture supernova (EC-SN).

For stars within this mass range (8-10M⊙) which have ignited carbon in the core

but do not have densities great enough to permit electron captures, their now oxygen-

neon rich core becomes completely degenerate, and the star ends as an oxygen-neon

white dwarf (ONe -WD). Stars greater than around 10M⊙ can ignite carbon non-

degenerately, where carbon burning continues until the carbon fuel is depleted. Stellar

models show that the exact value of this mass limit is sensitive to the input physics

used (e.g. convective boundary mixing, and rotation).

For carbon burning and beyond, photons emitted from nuclear burning still provide

a radiative component to the pressure but the high temperatures and densities lead

to significant neutrino emissions from the plasma. These neutrinos do not contribute

to the pressure balance as their mean free path is larger than the radius of the star

and so directly remove energy from the star, this accelerates the evolution during the

advanced burning stages compared to the earlier hydrogen and helium burning phases

(Arnett, 1996). The approximate lifetimes of each burning phase for a 15M⊙ star are

shown in Table 1.1, here it can be seen that there is an acceleration in lifetime for the

more advanced phases.

Following the depletion of the carbon fuel, heating of the core continues to tem-

peratures above 109K. At this temperature the photons are so energetic that neon is

photodissociated into oxygen, the energy lost from this endothermic reaction is com-

pensated for by the capture of alpha particles onto neon creating magnesium. The

net result is a production of around 7×10−6 erg (from the reaction 20Ne(𝛼,𝛾)24Mg) per

two neon nuclei (the photodissociation of one Ne nucleus provides the alpha particle

for fusion with the second). Further heating to temperatures of 1.5×109K results in

the fusion of oxygen into mainly silicon, producing around 1.25×10−5 erg per oxygen
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nucleus. Once oxygen has depleted in the core, and the temperature rises to 3×109K,

many nuclei are photodisintegrated. This allows alpha particles to be captured by sili-

con and heavier elements producing many iron group elements. Further fusion beyond

the iron group is not possible (without an input of energy) as the production of heavier

isotopes would result in a decreased binding energy per nucleon (see Fig. 1.1). With

no further fusion possible in the core, a pressure imbalance exists once again and the

star begins to contract.

1.1.3 Final fate

As mentioned earlier, the fate of low mass massive stars (8M⊙ - 10M⊙) is either to

cool into a WD or explode through an EC-SN.

For massive stars with initial masses greater than around 10M⊙, the exhaustion of

the silicon fuel leads to temperatures in the core beyond 1010K. Large densities in the

core facilitate electron captures, reducing the Chandrasekhar mass9 (Chandrasekhar,

1931), M𝑐ℎ, of the core. Once M𝑐ℎ becomes smaller than the mass of the core, electron

degeneracy pressure can no longer support the weight of the star and collapse ensues

on an almost free-fall time-scale (∼40ms; Kippenhahn, Weigert and Weiss 2013). The

stellar remnant following the core-collapse will be either a neutron star (NS) or black

hole (BH).

Ergma and van den Heuvel (1998) argue based on observations of high mass X-ray

binary systems10 that for progenitor masses between 8M⊙ and 20M⊙, a NS remnant

will most likely form. Whereas for progenitor masses greater than 50M⊙ a BH remnant

will most likely form, and for intermediate masses the remnant could be either. A

similar uncertainty in the NS and BH progenitor masses is demonstrated in Fig. 1.2,

adapted from Woosley, Heger and Weaver (2002), whereby the final (pre-supernova)

and remnant masses cannot be accurately determined (not shown in this plot) due to

the uncertainties surrounding the mass loss rates for stars of initial masses & 30M⊙.

9The theoretical mass limit of a core supported by the degeneracy pressure of relativistic electrons,
beyond which the core will collapse. For a mean molecular weight (see also Eq. 2.1.2) per electron
of 2 (generally relevant for hydrogen free gas), the Chandrasekhar mass is 1.44M⊙ (Chandrasekhar,
1967).

10These consist of a massive star with a NS or BH companion. Mass lost from the massive star is
accreted onto the compact object in the form of a disc. Friction in this accretion disc heats up the
material to energies relevant for X-ray emission.
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O’Connor and Ott (2011) show that BHs likely form without a SN explosion for

a compactness parameter, 𝜉2.5 & 0.45, where the compactness is defined as the ratio

of mass to radius (inside a mass of 2.5M⊙) at the time when the core ‘bounces’, once

nuclear densities of 𝜌 ∼ 1014 g cm−3 are reached. Using this definition for BH formation,

from four sets of stellar models at solar metallicity, they find that the percentage of

BHs formed assuming a Salpeter (Salpeter, 1955) initial mass function over the initial

mass range of 8 ≤ M/M ⊙ ≤ 120 range from 0% to 7%. Ertl et al. (2016) define two

parameters that help in determining the explodability of massive stars. The first, 𝑀4,

is the mass inside the dimensionless entropy per nucleon of 𝑠 = 4 (normalised by a

solar mass), the second, 𝜇4 is the spatial derivative of the mass at this point. They

find that a higher value of 𝑀4 in association with a lower value of 𝜇4 favours explosions

and NS remnants. While, BH formation is generally associated with local minima and

maxima in 𝑀4 and 𝜇4, respectively.

1.2 Convection in massive stars

Convection is expected to occur in stars as the necessary ingredients for convective

heat transport are present: a gravitational field; a fluid (mostly plasma); and a heat

source (nuclear fusion or material with a high radiative opacity). The gravitational

field allows relatively less dense material to become buoyant (through Archimedes’

principle; see S2.1.1 for more details). As this material is a fluid it can be continually

displaced with large velocities. The heat source provides the local increase/decrease in

temperature/density.

Convection therefore occurs in the deep interiors and envelopes of massive stars

(see e.g. Fig. 1.3), and is a major transport process of kinetic energy throughout these

regions of the star. The extent of convection within stellar evolution models is approx-

imated by the Schwarzschild or Ledoux criteria (see S2.1.1). The local fluid velocity

associated with convective instability is usually obtained through the assumption of

adibaticity in the deep interior or the use of the mixing length theory11 near the surface

(see S2.1.2).

11Alternative theories do exist, such as the full spectrum of turbulence pioneered by Canuto and
Mazzitelli (1991); Canuto, Goldman and Mazzitelli (1996).
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Figure 1.2: Initial mass function of non-rotating, solar metallicity, single stars. The
horizontal axis shows the initial mass in solar masses on a logarithmic scale. The
vertical axis denotes the final (blue) and remnant (red) masses in solar masses. The
final mass is the mass of the star before it becomes unstable, either through mass
loss during the planetary nebula phase for low-mass stars, or through core-collapse
for massive stars. The remnant mass is the mass left behind following this dynamical
event, the type of remnant is annotated along the horizontal axis for various initial
masses. Final and remnant masses beyond initial masses ∼ 30M⊙ are not shown due
to the uncertainty in mass loss rates for these stars. Figure adapted from Woosley,
Heger and Weaver (2002).

8



The time-scale for the transport of heat and composition by convection can be

compared to other time-scales relevant for stellar evolution and stellar structure. The

following time-scales were estimated for a 15M⊙ star on the zero-age main sequence

(ZAMS). Turbulent convection mixes composition over dynamical time-scales (∼ 103 s),

whereas diffusive processes such as radiative transport occur over longer thermal time-

scales (∼ 105 yrs) and the production of new nuclei (through fusion) generally occurs

over even longer evolutionary time-scales (∼ 108 yrs). Therefore, in most cases the

composition over the convective region can be considered homogeneous, however at

the boundary between a convective and stable region, mixing of material can lead to

inhomogeneities in composition.

1.2.1 Driving processes

There are two main driving processes for convection in stars; convection driven by the

absorption and scattering of radiation (or opacity) which occurs in the envelope (sub-

surface convection) and convection driven by nuclear fusion which occurs in the deep

interior.

Opacity driven convection

Photons that are produced in the deep interior travel to the surface of the star. Below

the photosphere12, the opacity of the material is much higher due to the lower local

temperature of the gas and the subsequent recombination (the capturing of electrons

by nuclei) of hydrogen, helium and iron as well as other metals (e.g. Phillips, 1999).

The re-ionisation of these metals by high energy photons leads to a substantial increase

in heat and the production of a thermal boundary layer near the photosphere. Colder

material above the photosphere, sinks towards the thermal boundary layer in thin

down-drafts and breaks up due to turbulent instabilities. This sinking fluid is replaced

by hot rising fluid which ‘condenses’ and cools at the surface. The overall result is the

turning over of matter in the form of convective instability which eventually extends

over several orders of magnitude in density below the photosphere (∼4 for a 5M⊙ star,

for example; Viallet et al. 2013). An example of a convectively unstable region driven by

12A surface above which matter is transparent to radiation.
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Figure 1.3: Convective structure evolution (Kippenhahn diagram) of a 15M⊙ solar
metallicity, non-rotating, single star model. The vertical axis shows the mass in solar
masses. The horizontal axis shows the estimated time left until collapse in years, on
a logarithmic scale. Blue regions indicate convective instability. The initial convective
region which extends out to 6M⊙ is the hydrogen burning core, an example of fusion
driven convection. The later convective region which initially extends between 8 and
14.5M⊙ is the deep convective envelope which develops during core helium burning,
and is an example of opacity driven convection. The reduction in mass of the outer
boundary is a result of mass loss from the surface of the star.

opacity is shown in Fig. 1.3, extending initially in mass between 8 and 14.5M⊙. Here,

the envelope of the star has become convectively unstable via the process described

above.

Fusion driven convection

Nuclear fusion is generally localised due to the strong temperature dependencies (e.g.

temperature to the power of the order 20 for the CNO cycle; Kippenhahn, Weigert and

Weiss 2013) of the energy generation rate and also the availability of the nuclei fuel.

The radiation or conduction of the energy produced from fusion throughout the plasma

is much less efficient than convection due to the diffusive nature of these mechanisms13.

Convection is very efficient due to the large stratification in density over the convective

region, and heat is therefore advected almost adiabatically over the unstable region.

The material at higher temperatures (locally) becomes buoyant, rises and overturns

13Diffusive mechanisms transport matter slowly over gradients in concentration, whereas, convection
is predominantly advective which transports matter via the bulk motion of the fluid.
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Figure 1.4: Illustration of a convective boundary layer, separating a turbulent region
below and a stably stratified region above. Other features include internal gravity waves
generated by turbulent motions below the boundary layer, and a mean shear flow that
may develop between the turbulent and stable regions due to the over-turning of fluid
elements near the boundary. Figure adapted from Meakin and Arnett (2007b).

as it is decelerated near the convective-radiative boundary, this material then cools

and sinks back towards the temperature peak (e.g. Arnett et al., 2015; Cristini et al.,

2016a). Convective velocities are large and the flow becomes turbulent, typically, the

Mach number varies from 10−4 to 10−1 (see Fig. 4.5). These features of buoyant

material rising and overturning are depicted in Fig. 1.4, where a turbulent region is

separated from a stably stratified region by a boundary layer; the overturning of fluid

elements may generate shear at the boundary. This figure also illustrates how turbulent

elements which impact the boundary region can generate gravity mode waves which

propagate through the stable region above (see also Figs. 5.8 and 5.12). An example of

fusion driven convection is shown in Fig. 1.3, where a high flux of energy during core

hydrogen burning leads to the development of a convectively unstable region which

initially extends in mass out to 6M⊙. Fusion driven convection also occurs during

helium, carbon, oxygen and silicon burning (see Fig. 4.1). Convection is also driven

by photodissociation during neon burning.
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1.2.2 Compositional mixing

Turbulent convection mixes the composition over dynamical time-scales due to the

large convective velocities, therefore, for most of the burning stages, the distribution

of nuclear species (including those newly created from fusion) can be considered ho-

mogeneous, due to the much longer nuclear time-scales over which they are created or

destroyed14 (e.g. Kippenhahn, Weigert and Weiss, 2013).

The homogeneity of the composition within the convective region, can lead to sharp

spatial gradients in composition at the boundary between the convective and stable

regions, due to the lack of mixing within the stable regions. These gradients can even

become discontinuous. The development of such sharp gradients can be seen in the

composition profiles of Fig. 1.5. This figure shows the abundance in mass fractions

(as a function of the interior mass of the star) for a 15M⊙ model. The model is

part way through carbon shell burning, where the core is composed of mostly neon

and oxygen and is radiative. Given that the time-scale for mixing (dynamical) is

much shorter than the time-scale for nuclear processes (evolutionary) the assumption

of homogeneity (instantaneous mixing) is valid. Such an assumption, however, leads to

sharp discontinuities in the abundance profiles (∼ 1.9M⊙), which may not be physically

representative of the star (see S5.2.5).

A relative increase in convective boundary mixing above the core will lead to an

increased core mass, which will extend the lifetime of the burning phase. Also, the

ashes of previous nuclear burning phases can be mixed into the convective envelope

and advected to the surface of the star. Frischknecht et al. (2010) show this effect in

models of 9, 12 and 15M⊙ stars through a combination of turbulent convection and

rotationally induced mixing.

14The time-scale of the most advanced burning stages can become comparable to the dynamical
time-scale.
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Figure 1.5: Abundance profiles in units of mass fractions (fraction of the total mass
within that region) versus interior mass for a 15M⊙, solar metallicity, non-rotating,
single star model. The model represents the carbon burning phase, where convec-
tive carbon burning occurs in a convective shell. The abundances of carbon (blue),
oxygen (green), neon (orange) and magnesium (magenta) are plotted. The carbon
burning convective shell can be seen to extend between around 1.2M⊙ and 1.9M⊙.
The assumption of homogeneous mixing is illustrated by flat abundance profiles in the
convective zones. This leads to sharp gradients at the boundaries.
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1.3 The necessity of predictive modelling

Observations of massive stars are key to determine how and why many processes occur.

However, until the recent advances in asteroseismology (see e.g. Aerts, Christensen-

Dalsgaard and Kurtz, 2010) it has been difficult to directly observe what occurs in

the interiors of massive stars. Even asteroseismology, with these advances can only

provide information up to the edge of the convective core. As such, currently detailed

analysis of massive star interiors can only be achieved through numerical modelling.

Such models can be used in conjunction with observations to provide estimates for:

masses of real stars (e.g. Bersten et al., 2014); nucleosynthesis yields (Pignatari et al.,

2016); supernova progenitor structures (Arnett and Meakin, 2011a); and evolutionary

ages (e.g. Nieva and Przybilla, 2014). Models are not only directly applicable to un-

derstanding stellar evolution and structure, but such information can also be used in

many other aspects of astrophysics, for example in galactic chemical evolution models

(Nomoto, Kobayashi and Tominaga, 2013).

1.3.1 Modelling deep interiors

The construction of a stellar model at a single instance in time first requires the speci-

fication of the initial total mass and compositional fractions, usually specified through

the fraction of metals (all species heavier than helium).

The equations of stellar structure are essentially given by four equations (see S3.1 for

a full account of these), which provide a local description (within a Lagrangian frame-

work) of the radius, pressure, luminosity and temperature. These are the equations of

mass conservation, hydrostatic equilibrium, energy conservation and energy transport.

Several auxiliary equations are also required, these are: the equation of state; tempera-

ture gradients for heat transport via radiation (and conduction); adiabatic convection;

and super-adiabatic convection (the latter requires a theory of convection such as mix-

ing length theory15, to calculate the temperature gradient, see S2.1.2). The opacity

of material is calculated through the interpolation of tabulated values, given the lo-

cal density, temperature and composition. The change in composition is calculated

15Such a procedure does not account for the convective boundary sub-structure, or the effects of
convective boundary mixing.
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based on the production and destruction of nuclear species, given reaction rates for

each species. Finally, two boundary conditions at the centre and surface of the star

are required. The central conditions are usually taken as zero radius and luminosity.

The surface conditions are defined by the location of the photosphere which can be

found at a radius, 𝑅, where the optical depth (a function of density and opacity) is

2/3 and the luminosity at the effective temperature is, 𝐿 = 4𝜋𝑅2𝜎𝑇 2
𝑒𝑓𝑓 , where 𝜎 is the

Stefan-Boltzmann constant.

A first principles approach to stellar modelling (in one dimension) is not attainable,

as several physical aspects of the model must be obtained through numerical approx-

imations and heuristic theory (based on observations). In addition to this, there are

many different approaches to prescribing much of the micro-physics contained within

stellar models and the increasing number of combinations of these approaches leads to

(Martins and Palacios, 2013) different predicted evolutionary paths for stellar models

of the same initial mass, and an increase in the number of free parameters used which

are not globally constrained.

Stellar models therefore require the convergence of solutions between codes that are

physically representative of the problem at hand. This can be achieved through verifi-

cation and validation (V&V) of the codes (Calder et al., 2006). V&V are the principal

testing procedures for the development of any code that is designed to meaningfully

describe nature through simulations, and should be continually used throughout the

code development.

The American Institute of Aeronautics and Astronautics (AIAA, 1998) define ver-

ification as “the process of determining that a model implementation accurately rep-

resents the developer’s conceptual description of the model and the solution of the

model.” They define validation as “the process of determining the degree to which

a model is an accurate representation of the real world from the perspective of the

intended uses of the model.”

Verification in stellar models can be achieved by comparing the same model over

varying mesh and time resolutions, or by comparing models using the same initial

conditions between independent codes (Jones et al., 2015). Errors and uncertainties in

the numerical solution can easily be identified through verification, or other constraints.

Validation ultimately requires the comparison of stellar models with observations,
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and tests the underlying physical assumptions in the models. There are two ways

in which the validation of stellar models can be achieved; either through empirical or

theoretical tests. Generally, V&V should be completed for stellar interior models before

they are considered to be predictive, although the act of fine-tuning stellar evolution

model parameterisations in order to match observations renders them postdictive rather

than predictive.

Empirical validation

The comparison of complete stellar models with relevant observations of real stars is

the most obvious form of empirical validation. Such comparisons are also necessary in

order to constrain certain aspects of stellar models such as the free parameter in the

mixing length theory. Ekström et al. (2012) compare Geneva stellar evolution code

(GENEC; Eggenberger et al. 2008) models using a mixing length of, 𝛼𝑚𝑙 = 1.6 (see Eq.

2.1.15), to observations of stars in the red super giant (RSG) stage. This comparison is

shown in Fig. 1.6, where the evolution of stellar models and observations are compared

in the Hertzsprung-Russell diagram. The evolutionary tracks of various stellar models

(solid lines) of different initial masses are compared to observations of stars from various

clusters (grey shading) and RSG stars in the Milky Way (red circles). The agreement

between theory and observation is good for the post main sequence evolution, and

justifies the choice of mixing length for these models at these evolutionary stages.

Comparison of theory and observation can also reveal the non-universality (and non-

locality) of theoretical prescriptions for physical processes. Tayar et al. (2017) find that

stellar models of red giants using the Yale rotating stellar evolution code (YREC; De-

marque et al. 2008) and the Padova-Trieste stellar evolution code (PARSEC; Bressan

et al. 2012) only agree with observations from the Apache Point observatory galac-

tic evolution experiment (APOGEE)-Kepler catalogue (Fleming et al., 2015) when a

metallicity dependent mixing length is used.

The parameterised physical processes used in stellar models can also be tested by

comparison to the results from the meteorology (e.g. Garcia and Mellado, 2014) and

oceanography (e.g. Large, McWilliams and Doney, 1994) communities, with the caveat

that the fluid in stars is high energy-density plasma, not air or water. For example,

parameterisations in stellar models for convective boundary mixing through turbulent
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Figure 1.6: Hertzsprung-Russell diagram showing evolutionary tracks for rotating (solid
lines) and non-rotating (dashed lines) stellar models calculated using the Geneva stellar
evolution code. Grey shaded areas are observations of various clusters and associations,
and red circles are observations of RSGs in the Milky Way. The agreement between the-
ory and observation is good for the post main sequence evolution. These observations
are used to constrain the mixing length free parameter used in the stellar evolution
models. Adapted from Ekström et al. (2012).
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Figure 1.7: Left: two-dimensional simulation of the SN1987A supernova using the
prometheus (Fryxell, Müller and Arnett, 1989) code, the scale is approximately
109 cm. Right: radiograph of a laser-induced hydrodynamic experiment (scaled to
SN1987A) using the Omega laser (Boehly et al., 1995). Images taken from Kuranz
et al. (2011).

entrainment can be guided by the entrainment law famous to these communities.

Additionally, the results from laboratory studies on fluids with similar properties

(extremely high temperature and pressure plasmas) to that of stars can be compared

to simulations of stellar interiors, although the volumes of such fluids are much smaller

than those in stars. A two-dimensional simulation of the interior of a supernova pro-

genitor is compared to the results of a laser experiment in Fig. 1.7. Although the

separation in scales between the simulation and experiment is huge, similarities in the

developing hydrodynamic instabilities can be seen.

Theoretical validation

Phenomena such as turbulent convection within the deep interior of massive stars,

particularly during their advanced evolution, occur in extreme regimes far from the

regimes observed terrestrially. For the deep interiors of massive stars, particularly

during the later evolution, there are no observations or terrestrial experiments that

can validate simulations. Testing the predictability of stellar models concerning the

deep interiors therefore requires validation through theory.

According to Shu (1992), “there is no rigorous general procedure starting from first

principles, that exists for the non-linear resolution of the development of convection in
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stars, and the consequences of its back reaction on the basic state.” As such, there is

no complete theoretical picture for the presence of convective instability within stellar

interiors.

The alternative then is to turn to the numerical modelling of the governing equa-

tions of fluid dynamics (e.g. the Navier-Stokes equations of motion), through the use

of multi-dimensional hydrodynamic simulations. These can test the stellar models

and their prescriptions for multi-dimensional physical processes under semi-realistic

astrophysical, macroscopic, but not necessarily microscopic conditions (the spectrum

of length-scales is too small to represent all of the motions between the macroscopic

and microscopic scales in stellar convection).

Such simulations are extremely computationally expensive, and the dynamical time-

scales over which they evolve are much shorter than the evolutionary time-scales of the

star. It is therefore difficult to extrapolate such results over the entire evolution of the

star16, but nevertheless, the results over these short time-scales are usually enlightening.

1.4 A brief history of stellar interior simulations

Henyey et al. (1959) were among the first to produce stellar configurations at mul-

tiple epochs using a computer (see Fig. 1.8); they discretised the stellar evolution

equations (see S3.1) onto a one-dimensional Lagrangian computational grid. The dif-

ferential equations were replaced with finite difference approximations and solved using

the Newton-Raphson scheme17. This scheme was later generalised by Henyey, Forbes

and Gould (1964). They used implicit time-stepping, where all the quantities can be

calculated at an advanced epoch. In order to ensure numerical convergence and no loss

of temporal information, the time-step, Δ𝑡, must be limited. This upper limit on the

time-step is the time taken for the fluid to cross a single cell of width, Δ𝑥 (assuming

some flow velocity).

Such a restriction on the permitted time-step is described by the Courant-Friedrichs-

Lewy (CFL; Courant, Friedrichs and Lewy, 1928) condition,

16An apt analogy is the attempt to extrapolate a local climate from a weather forecast.

17This method calculates successive approximations to the root of a function. Generally, iterations
stop after a pre-defined number of successive estimates or once a solution is found to within a pre-
defined tolerance.
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𝑈 Δ𝑡

Δ𝑥
= 𝐶𝑚𝑎𝑥, (1.4.1)

where 𝑈 in this case is the flow velocity and 𝐶𝑚𝑎𝑥 is the Courant factor, which

has a maximum value of unity. The maximum time-step size is usually chosen with

a Courant factor smaller than one, in order to ensure numerical accuracy, while still

providing an acceptable margin of error if the flow velocity, 𝑈 , increases during the

simulation compared to the initially adopted value.

Following the success of these calculations, Henyey, Lelevier and Levee (1959) cal-

culated stellar evolution models during the main sequence for stars of mass 1.5, 2, 3.5,

6, 11, 20 and 30M⊙. This was done by using tabulated values for the opacity based on

local values of the temperature, density and composition, a non-relativistic degenerate

equation of state and interpolation formulae for the nuclear energy generation rates.

One of the first 2D simulations of stellar interiors was calculated by Deupree (1976).

Rather than simulate the entire star at different epochs, their aim was to simulate part

of the star with greater detail within a computational box (see S1.5.2 for details on

these two types of modelling). They simulated adiabatic stellar pulsations in convective

envelopes, where an implicit time-stepping scheme would not be suitable, due to the

unsteadiness of these types of flows. Instead, an explicit time-step was taken which

resolves all of the relevant transport processes. Hence, in order to temporally resolve

acoustic motions, the time-step had a stricter limit than for implicit schemes. The

upper limit on this time-step is the time taken for a sound wave to cross a single cell

(assuming the local speed of sound), this is equivalent to replacing the flow velocity,

𝑈 , in Eq. 1.4.1 by 𝑈 + 𝑐𝑠, where 𝑐𝑠 is the local sound speed. Deupree (1976) observed

the formation and breakup of convective cells in the convective envelope of a 1.5M⊙

star (see Fig. 1.9).

As computing power increased, simulations of stellar interiors were extended to

three dimensions. One of the first groups to calculate such a model were Young et al.

(2005) who simulated shell oxygen burning within a 23M⊙ star, again by placing a

computational box within the area of interest of the star.
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Figure 1.8: Left: UNIVAC 1, the first commercial computer produced in the United
States, first installed in 1951. It weighed 7 tons and was capable of performing 1905
floating point operations per second (FLOPS). Right: Sunway TaihuLight, as of Novem-
ber 2016, the fastest supercomputer in the world (Dongarra, 2014). Installed at the
National Supercomputing Centre in Wuxi, China. It has over 10 million cores, weighs
over 150 tons and is capable of performing at over 100 peta-FLOPS.

Figure 1.9: Convective motions shown by test particles from 2D simulations (N-body,
non-hydrostatic) of adiabatic envelope convection by Deupree (1976). Particles were
released from the bottom (left panel), middle (centre panel) and top (right panel) of the
convection zone. Horizontal arrows denote convective boundary positions and vertical
arrows denote pressure scale heights. Dashes along each profile indicate time intervals
of 1000 s. Figure taken from Deupree (1976).

21



1.5 Modern simulations of massive stellar interiors

Sophisticated simulations sampling a broad range of relevant and increasingly realistic

astrophysical conditions have been undertaken thanks to the continuous increase in

computing power (see Fig. 1.8).

These simulations fall into two categories: one-dimensional stellar evolution models,

which are designed to simulate the entire life-cycle of the star (from the ZAMS to

pre-collapse) using spherical symmetry and parameterised micro-physics; and multi-

dimensional hydrodynamic simulations, which are designed to simulate short phases

of stellar evolution (over shorter dynamical time-scales) from first principles and a

minimal number of approximations.

1.5.1 One dimensional simulations

Several groups have calculated grids of multiple stellar models, which provide evo-

lutionary tracks in the Hertzsprung-Russell diagram for models with varying mass,

metallicity and rotation rate. Observations can then be over-layed onto these mod-

els, in order to estimate those quantities for the observed stars. Recent efforts have

focussed on the implementation of axial rotation into such grids. Rotation has been

shown to have an impact on many properties of stellar models, mainly through rota-

tionally induced mixing. Namely, these are stellar lifetimes, evolutionary paths and

nucleosynthesis (Maeder and Meynet, 2010). Such influences will also directly affect

population synthesis models and galactic chemical evolution models. Four independent

groups have calculated such grids, the properties of which are summarised in Table 1.2.

There is a range of masses, metallicities and rotation rates between the four studies. In

addition to this, there will be inherent differences in each code regarding certain phys-

ical assumptions, e.g. the specific treatment of rotation, calibration of extra chemical

mixing etc.

There are other notable stellar evolution codes which are suitable for studying mas-

sive star evolution. These are starevol (Decressin et al., 2009), padova18 (Bertelli

et al., 2009) and kepler (Heger, Langer and Woosley, 2000).

18Rotation is not included in the padova stellar evolution code.
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Reference Code Mass Metallicity Rotation Rotation
M⊙ Z 𝑣𝑧𝑎𝑚𝑠/km s−1 𝑣𝑖𝑛𝑖/𝑣𝑐𝑟𝑖𝑡

Brott et al. (2011) stern 5 - 60 0.0021 - 0.0088 0 - 540 -

Ekström et al. (2012) genec 0.8 - 120 0.014 110 - 220 0.4

Chieffi and Limongi (2013) franec 13 - 120 0.014 300 0.6

Choi et al. (2016) mesa 0.1 - 300 0.00012 - 0.037 - 0.4

Table 1.2: Properties of four sets of stellar model grids: reference to the publication;
stellar evolution code used; mass range in solar masses of models; metallicity range
in mass fractions of models; rotation range of models in terms of both the equatorial
rotational rate on the ZAMS, 𝑣𝑧𝑎𝑚𝑠 and the ratio of initial rotation rate, 𝑣𝑖𝑛𝑖, to the
critical rotation rate, 𝑣𝑐𝑟𝑖𝑡.

1.5.2 Multi dimensional

Almost all phases of stellar evolution have been simulated using multi-dimensional

hydrodynamic simulations. The following is a summary of notable efforts to simulate

various burning stages of massive stars.

Oxygen burning

Oxygen burning has been studied by numerous groups at different resolutions. Oxygen,

as well as the other advanced burning phases (carbon to silicon burning), are preferable

for hydrodynamic simulations, due to the short nuclear burning time scale, allowing a

significant fraction of the burning stage to be simulated. Furthermore, neutrino losses

dominate over radiative losses of energy, such that radiative cooling due to photon losses

is negligible, the computational cost is therefore reduced. Two types of simulations are

generally adopted, box-in-a-star simulations which model a small section of the star

within the computational domain, and star-in-a-box simulations which model the entire

geometric volume (4𝜋 sphere) of the part of the star considered. Oxygen burning

simulations are chronologically tabulated in Table 1.3. Unless otherwise stated, all

computational grids consist of uniform cells within a Cartesian geometry.

Until very high-resolution simulations (> 1536 × 1536 × 1536) can be routinely

undertaken, both ‘box-in-a-star’ and ‘star-in-a-box’ simulations are needed and provide
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Reference Zoning Type Notes

Arnett (1994) 200× 40 Box-in-a-star 𝑎

Bazan and Arnett (1994) 200× 40 Star-in-a-box 𝑏

Bazán and Arnett (1998) 460× 128 Box-in-a-star 𝑐

Asida and Arnett (2000) 172× 60 Box-in-a-star 𝑑

Kuhlen, Woosley and Glatzmaier (2003) 241× 63× 31 Anelastic 𝑒

Young et al. (2005) 400× 100× 100 Box-in-a-star -

Meakin and Arnett (2006) 800× 320 Box-in-a-star 𝑓

Meakin and Arnett (2007a) 400× 100× 100 Box-in-a-star -

Meakin and Arnett (2007b) 400× 100× 100 Box-in-a-star -

Arnett and Meakin (2011a) 800× 320 Box-in-a-star 𝑔

Viallet et al. (2013) 786× 512× 512 Box-in-a-star -

Chatzopoulos, Graziani and Couch (2014) 8× 8× 8 Box-in-a-star ℎ

Arnett et al. (2015) 1536× 1024× 1024 Box-in-a-star -

Jones et al. (2017) 1536× 1536× 1536 Star-in-a-box -

𝑎 Box-in-a-star simulations maximise local resolution.

𝑏 Star-in-a-box simulations have lower local resolution but provide all of the low-order modes in a

full circular/spherical (4𝜋) domain.

𝑐 The computational domain was taken from the edge of the silicon shell to the start of the hydrogen

envelope.

𝑑 The radial resolution is logarithmic, while the horizontal resolution is linear.

𝑒 The resolution describes 𝑛𝑚𝑎𝑥 × 𝑙𝑚𝑎𝑥 ×𝑚𝑚𝑎𝑥 which are the Chebyshev polynomials and spherical

harmonics 𝑙 and 𝑚, respectively.

𝑓 In addition to the oxygen shell the overlying carbon shell was also simulated.

𝑔 In addition to the oxygen shell the carbon, neon and silicon shells were also included.

ℎ Although this was the initial size of the grid, this simulation utilised adaptive mesh refinement,

whereby the grid zoning is increased in areas requiring higher resolution, resulting in a maximum

mesh size of 6250× 6250× 6250.

Table 1.3: Chronological summary of oxygen burning simulations, detailing the refer-
ence, grid zoning, type of simulation (box-in-a-star, star-in-a-box or anelastic) and any
additional information about the simulation.
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complementary information on convection in stars.

Anelastic simulations allow longer time-steps than fully compressible simulations.

However, their use of impermeable and stress-free boundary conditions mean that

convective boundary mixing (see S2.1.3) can not be studied and the overall flow pattern

in the convective region will be restricted (Meakin and Arnett, 2007a).

Silicon burning

Silicon burning is the most complicated burning phase and requires a large computa-

tional effort. Here the neutrino losses are very high and the evolution time-scale is

down to the order of days. Early simulations of silicon burning on a numerical grid of

256× 64 were performed by Bazán and Arnett (1997) using a nuclear reaction network

consisting of 123 nuclei. Couch et al. (2015) simulated (in three dimensions) the final

three minutes of silicon burning in a 15M⊙ star19. They show that asphericities in

the progenitor structures may have a strong impact on the core-collapse supernova

mechanism (e.g. Müller and Janka 2015) and should not be ignored. An initial study

of silicon burning in three dimensions with a large network (∼ 120 nuclei) has been

carried out by Meakin & Arnett (in prep.). The carbon, oxygen and part of the silicon

shell of an 18M⊙ star preceding its collapse have also been simulated as a full-sphere,

with a resolution of 400× 148× 56 in (log(r), 𝜑, 𝜃) by Müller et al. (2016).

Hydrogen burning

Early phases of stellar evolution are harder to simulate because they are generally

characterised by their large size, very long nuclear time scales and strong cooling due

to photon losses, meaning that radiative effects cannot be ignored. Despite these added

difficulties, several studies have targeted hydrogen or helium burning phases. Meakin

and Arnett (2007b) performed a fully-compressible simulation of core hydrogen burning

on a numerical grid of 400×100×100, with the driving luminosity boosted by a factor

of 10. Gilet et al. (2013) adopted the low Mach number solver maestro (Almgren,

Bell and Zingale, 2007) to simulate core hydrogen burning on a numerical grid of

512 × 512 × 512. This type of solver removes the need to follow the propagation of

19This simulation used the flash code (Fryxell et al., 2000) with adaptive mesh refinement and a
small nuclear reaction network.
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acoustic waves. Such a solver allows for longer time-steps than a fully compressible

one, but may neglect important kinetic energy (KE) transfer due to acoustic fluxes

(see Eq. A.2).

Helium burning

Herwig et al. (2014) and Woodward, Herwig and Lin (2015) performed idealised full-

sphere hydrodynamic simulations of H-ingestion into the He-burning shell of a post

asymptotic giant branch (AGB) star on a numerical grid of 15363. The rapidity of

such events violate the assumptions inherent in the mixing length theory (see S2.1.2)

of stellar convection and therefore requires hydrodynamic simulations for lack of an

alternative model.

1.6 Thesis outline

The first three-dimensional hydrodynamic simulations of carbon shell burning in a mas-

sive star are presented in this thesis. In chapter 2, the necessary theoretical aspects

are introduced for the numerical modelling of turbulent convection in stellar interiors,

as well as the prescriptions that are used to describe such processes in stellar evolu-

tion models. Descriptions of the computational tools that are used are presented in

chapter 3. These tools are used to calculate the stellar evolution and hydrodynamical

models which are presented in later chapters. Chapter 4 presents new results from a

boundary parameter study of various convective boundaries within a 15M⊙ stellar evo-

lution model. In chapter 5, new results from a resolution study using hydrodynamic

simulations of the carbon burning shell are shown. The initial conditions used for

these models are provided by the stellar model introduced in chapter 4. Convergence

to a physical solution is tested, and emphasis is placed on analysing the convective

boundaries. Turbulent entrainment20 is investigated and the width of the convective

boundary regions is estimated. The same initial conditions introduced in chapter 4 are

used in a luminosity study, where the nominal carbon burning nuclear energy genera-

tion rate is multiplied by 8 different factors within the range 1− 3× 104. The results

20Turner (1973) defines entrainment as the transport of fluid across an interface between two bodies
of fluid by a shear-induced turbulent flux.
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of this study are presented in chapter 6. Here, the scaling between turbulent driving,

convective velocities and boundary stiffness as well as the entrainment law are tested

by varying the driving luminosity of each model. Finally, in chapter 7, the findings

from each study are summarised and the potential future implementations and plans

for the further study of turbulent convection within massive stars is discussed.
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Chapter 2

Analytical tools and prescriptions

for numerical modelling of

convection in stellar interiors

2.1 Stellar model prescriptions for turbulent con-

vection

In stellar evolution codes the treatment of convection is split into three aspects: bound-

ary location; mixing within the convective region; and convective boundary mixing. I

look at each of these aspects in turn.

2.1.1 Criterion for stability against convection

In a broad sense, when radiation is not efficient enough to transport energy, matter

becomes convectively unstable. This convective transport of energy can be very efficient

and nearly fully adiabatic, or conversely radiative losses can occur during convective

transport leading to super-adiabatic convection. The extent of convection is determined

in the following from a thermodynamical point of view. The derivations shown here

are based on those from Maeder (2009) and Kippenhahn, Weigert and Weiss (2013).

The thermodynamic properties of a system are related to each other through an

equation of state (EOS), for which a general form is
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𝑝𝛼 =
𝜌

𝜇𝜑
𝑘𝐵𝑇

𝛿, (2.1.1)

where 𝑝, 𝜌, 𝜇, 𝑘𝐵 and 𝑇 are the pressure, density, mean molecular weight, Boltzmann’s

constant and temperature, respectively. 𝛼, 𝜑 and 𝛿 are defined in Eq. 2.1.3. The mean

molecular weight for a mixture of nuclei of type 𝑖 is

𝜇 =

(︃∑︁
𝑖

𝑋𝑖(1 + 𝑍𝑖)

𝜇𝑖

)︃−1

, (2.1.2)

for molecular weight, 𝜇𝑖, atomic number, 𝑋𝑖 and charge number, 𝑍𝑖. The exponents

in Eq. 2.1.1 are given by

𝛼 =

(︂
𝜕 ln 𝜌

𝜕 ln 𝑝

)︂
𝜇,𝑇

, 𝜑 =

(︂
𝜕 ln 𝜌

𝜕 ln𝜇

)︂
𝑝,𝑇

, 𝛿 = −
(︂
𝜕 ln 𝜌

𝜕 ln𝑇

)︂
𝑝,𝜇

, (2.1.3)

the usual ideal gas EOS is retrieved with 𝛼 = 𝜑 = 𝛿 = 1.

Taking the logarithm and then the radial derivative (assuming 𝛼, 𝜑 and 𝛿 are con-

stant) of Eq. 2.1.1 gives

1

𝜌

𝜕𝜌

𝜕𝑟
=

𝛼

𝑝

𝜕𝑝

𝜕𝑟
+

𝜑

𝜇

𝜕𝜇

𝜕𝑟
− 𝛿

𝑇

𝜕𝑇

𝜕𝑟
. (2.1.4)

Considering a fluid element (𝑒) within its surroundings (𝑠), if the element is heated

and assumed to be in hydrostatic equilibrium with its surroundings then its density

will decrease (according to Eq. 2.1.1). The fluid element will subsequently feel a

buoyant acceleration (according to Archimedes’ principle; e.g. Lautrup 2011) and will

move upwards by some distance. If the change in distance is a small perturbation in

radius, 𝛿𝑟, then the change in density of the fluid element and its surroundings over

this distance can be expressed as

(︂
𝜕𝜌

𝜕𝑟

)︂
𝑒

𝛿𝑟 and

(︂
𝜕𝜌

𝜕𝑟

)︂
𝑠

𝛿𝑟, respectively. (2.1.5)

If the change in density of the fluid element (a reduction due to heating) is greater

than the change in density of the surroundings over the distance, 𝛿𝑟, then the fluid

element will continue to rise and becomes convectively unstable. This can be expressed

as (remembering that the radial density gradient is negative for a stable stratification)
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(︂
𝜕𝜌

𝜕𝑟

)︂
𝑒

<

(︂
𝜕𝜌

𝜕𝑟

)︂
𝑠

. (2.1.6)

Substituting Eq. 2.1.4 into the instability criterion given by Eq. 2.1.6, while assum-

ing that the fluid element is in pressure equilibrium with its surroundings, (𝜕𝑝/𝜕𝑟)𝑒 =

(𝜕𝑝/𝜕𝑟)𝑠, and that the composition of the fluid element remains constant, (𝜕𝜇/𝜕𝑟)𝑒 =

0, yields

−
(︂
𝛿

𝑇

𝜕𝑇

𝜕𝑟

)︂
𝑒

<

(︂
𝜑

𝜇

𝜕𝜇

𝜕𝑟

)︂
𝑠

−
(︂
𝛿

𝑇

𝜕𝑇

𝜕𝑟

)︂
𝑠

. (2.1.7)

This criterion is more commonly expressed using the nabla notation (see Eq. 2.1.9).

This notation uses the pressure scale height, which describes the characteristic length

scale for a radial variation in the pressure21 of the order of the exponential function

‘𝑒’ (e.g. Kippenhahn, Weigert and Weiss, 2013); in hydrostatic equilibrium this can be

expressed as

𝐻𝑝 = − 𝑑𝑟

𝑑 ln 𝑝
≈ 𝑝

𝑔𝜌
, (2.1.8)

𝐻𝑝 > 0 as pressure decreases radially from the centre, for a dynamically stable star.

The nabla notation is then defined as

−𝐻𝑝

𝑇

𝜕𝑇

𝜕𝑟
=

𝜕 ln𝑇

𝜕 ln 𝑝
= ∇. (2.1.9)

Using this notation in Eq. 2.1.7 yields the Ledoux (Ledoux, 1947) criterion for

stability against convection

∇𝑒 −∇𝑠 < −𝜑

𝛿
∇𝜇, (2.1.10)

where ∇𝜇 = 𝜕 ln𝜇/𝜕 ln 𝑝 is the compositional gradient.

In the absence of convection the temperature gradient in the surrounding medium is

determined by radiative and conductive heat transport. Therefore, ∇𝑠 = ∇𝑟𝑎𝑑, where

∇𝑟𝑎𝑑 is the radiative temperature gradient due to the transport of heat by photons;

this transport can be assumed to be diffusive throughout the star as the photonic mean

21A similar definition also exists for the density scale height, describing the radial variation in the
density.
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free path is much smaller than the stellar radius. The radiative temperature gradient

is given by (see Appendix A.1 for the derivation)

∇𝑟𝑎𝑑 =
3

16𝜋𝑎𝑐𝐺

𝜅 𝑝𝐿

𝑚𝑇 4
, (2.1.11)

where 𝑎, 𝑐 and 𝐺 are the radiation density constant, speed of light and gravitational

constant, respectively. 𝑚 and 𝐿 are the mass and luminosity of the star, respectively,

and 𝜅 is the combined radiative and conductive opacity.

If a fluid element is convectively unstable, then it will rise adiabatically (to a good

approximation, in most cases the fluid element is actually super-adiabatic, as it will

radiate some energy to the surroundings; see S2.1.2); the temperature gradient of the

fluid element is then the adiabatic one, ∇𝑒 = ∇𝑎𝑑 where (e.g. Maeder, 2009)

∇𝑎𝑑 =
𝑝 𝛿

𝑇𝜌 𝑐𝑝
, (2.1.12)

and 𝑐𝑝 is the specific heat at constant pressure. Replacing the temperature gradients

in Eq. 2.1.10 with those from Eqs. 2.1.11 and 2.1.12 leads to a calculable expression

for the extent of convective instability

∇𝑟𝑎𝑑 > ∇𝑎𝑑 +
𝜑

𝛿
∇𝜇. (2.1.13)

If the surrounding medium is assumed to be of uniform chemical composition (or

if the stabilising effects of composition gradients are ignored) the composition gradi-

ent, ∇𝜇, is zero, and the Ledoux criterion for convective instability simplifies to the

Schwarzschild (Schwarzschild, 1992) criterion

∇𝑟𝑎𝑑 > ∇𝑎𝑑. (2.1.14)

2.1.2 Böhm-Vitense’s convective flux

In order for a star with a non-zero nuclear energy generation rate to remain in ther-

mal balance, it must radiate energy at some radiative flux, 𝐹𝑟. The kinetic energy

(KE) flux, 𝐹𝑘, of the star in a localised region can become greater than the maximum

possible radiative flux of the star, for example during nuclear burning phases. If this
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happens, then this region of the star will become convectively unstable as the radiative

flux alone is not efficient enough to provide thermal stability. For deep interior convec-

tion, transport of KE by a convective flux, 𝐹𝑐, is very efficient and is almost entirely

adiabatic. For sub-surface convection in the envelopes of red giants, for example, the

convective flux is less efficient as some of the energy is radiated to the surroundings

and is therefore super-adiabatic.

One common way to estimate this super-adiabatic convective flux in stellar evolu-

tion models is to use the mixing length theory (MLT; Böhm-Vitense 1958). In MLT,

convective fluid elements are assumed to be transported over some mean free path

known as the mixing length, beyond which they diffuse and deposit their internal en-

ergy into the ambient medium. The mixing length is given as

ℓ𝑚𝑙 = 𝛼𝑚𝑙𝐻𝑝, (2.1.15)

where 𝛼𝑚𝑙 is of order unity and is tuned in such a way that stellar models match

observations (e.g. Ekström et al., 2012).

By combining the Schwarzschild criterion (Eq. 2.1.14) with Eq. 2.1.11, a critical

luminosity can be derived, above which heat transport must be convective. The total

flux of the star can be associated with some ‘fictitious’ radiative temperature gradient22

(as given by Eq. 2.1.11 and the derivation in Appendix A.1)

𝐹𝑡𝑜𝑡 = 𝐹𝑟𝑎𝑑 + 𝐹𝑐𝑜𝑛𝑣 =
4𝑎𝑐𝐺

3

𝑚𝑇 4

𝜅𝑝𝑟2
∇𝑟𝑎𝑑, (2.1.16)

where the radiative flux, 𝐹𝑟𝑎𝑑, is determined by the background temperature gra-

dient, ∇ (if there is a non-zero convective flux)

𝐹𝑟𝑎𝑑 =
4𝑎𝑐𝐺

3

𝑚𝑇 4

𝜅𝑝𝑟2
∇. (2.1.17)

The convective flux is calculated by following the MLT formalism. A convective fluid

element will travel the mixing length distance, ℓ𝑚𝑙, through a background stratification

of density, 𝜌, before diffusing with the background fluid depositing an average specific

energy of 𝑐𝑝Δ𝑇 , where Δ𝑇 is the average temperature excess of the fluid element with

22This gradient is not fictitious if the convective flux is zero, in such a situation the total flux is
equal to the radiative flux only and ∇ = ∇𝑟𝑎𝑑.

32



respect to the background. If the average velocity of (up-flowing and down-flowing)

convective elements over this distance is 𝑣𝑚𝑙𝑡, then the average convective flux is

𝐹𝑐𝑜𝑛𝑣 = 𝑐𝑝 𝜌 𝑣𝑚𝑙𝑡Δ𝑇 . (2.1.18)

In a similar manner to that described by Eq. 2.1.5, the average temperature excess

(Δ𝑇 ) of a fluid element (𝑒) with respect to its background (𝑠) after traversing the

mixing length (ℓ𝑚𝑙 ) is approximated as the temperature excess at half of this distance

Δ𝑇 ≈ Δ𝑇 (ℓ𝑚𝑙/2) =

[︂(︂
𝜕𝑇

𝜕𝑟

)︂
𝑒

−
(︂
𝜕𝑇

𝜕𝑟

)︂
𝑠

]︂
ℓ𝑚𝑙

2
. (2.1.19)

In order to estimate the average convective flux of a fluid element its average buoy-

ancy per unit volume, 𝐵, over the mixing length is considered

𝐵 = −𝑔Δ𝜌, (2.1.20)

where the average density excess is related to the temperature excess through Eq.

2.1.4 (assuming hydrostatic equilibrium and uniform composition) and is

Δ𝜌

𝜌
= −𝛿

Δ𝑇

𝑇
. (2.1.21)

The average work done by a convective fluid element moving a distance of the

mixing length, ℓ𝑚𝑙, is assumed to be equal to the work done at half this distance. Half

of this work done by the fluid element is assumed to be lost to the background through

displacement of other fluid elements. The remaining half is associated with the KE of

the fluid element; this can be written as

1

2
𝑊 =

1

2
𝑊(ℓ𝑚𝑙/2) =

1

2
𝐵(ℓ𝑚𝑙/2)

ℓ𝑚𝑙

2

= −1

2
𝑔Δ𝜌(ℓ𝑚𝑙/2)

ℓ𝑚𝑙

2
=

1

2
𝜌 𝑣2𝑚𝑙𝑡.

(2.1.22)

Hence, using Eqs. 2.1.19 - 2.1.22, the average convective velocity of a fluid can be

calculated using
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𝑣2𝑚𝑙𝑡 =
𝑔 𝛿 ℓ2𝑚𝑙

8𝐻𝑝

(∇−∇𝑒) , (2.1.23)

and the convective flux given by Eq. 2.1.18 becomes

Fconv = ℓ2ml𝜌Tcp

√
g 𝛿

4
√
2
H−3/2

p (∇−∇e)
3/2. (2.1.24)

For deep interior convection, where heat transport is very efficient, the temperature

gradient of the fluid elements can be taken as the adiabatic one, ∇𝑒 = ∇𝑎𝑑, but for less

efficient convection, at the surface, for example, corrections for radiative losses of the

fluid element must be accounted for.

A fluid element of surface area, 𝑆, and radial thickness, 𝑑, will radiate energy at a

rate, 𝜆 = 𝐹𝜆𝑆, where 𝐹𝜆 is the absolute value of the element’s radiative flux

𝐹𝜆 =
4𝑎𝑐𝑇 3

3𝜅𝜌

⃒⃒⃒⃒
𝜕𝑇

𝜕𝑛

⃒⃒⃒⃒
, (2.1.25)

and 𝜕𝑇/𝜕𝑛 is the temperature gradient in the direction perpendicular to the surface

and can be approximated, using Eq. 2.1.19, as 𝜕𝑇/𝜕𝑛 ≈ 2Δ𝑇/𝑑. If the fluid element

has an average velocity, 𝑣𝑚𝑙𝑡, then its temperature loss per unit length is

(︂
𝜕𝑇

𝜕𝑟

)︂
𝜆

=

(︂
𝜕𝑇

𝜕𝑟

)︂
𝑎𝑑

−
(︂
𝜕𝑇

𝜕𝑟

)︂
𝑒

=
𝜆

𝜌𝑉 𝑐𝑝𝑣𝑚𝑙𝑡

, (2.1.26)

where 𝑉 is the volume of the fluid element. The temperature change per unit length

due to radiative losses in nabla notation is then

∇𝑒 −∇𝑎𝑑 =
𝜆𝐻𝑝

𝜌𝑉 𝑐𝑝𝑣𝑚𝑙𝑡𝑇
. (2.1.27)

Inserting the expression 𝜆 = 𝐹𝜆𝑆 into Eq. 2.1.27, using 𝑆ℓ𝑚𝑙/𝑉 𝑑 ≈ 9/2ℓ𝑚𝑙 (from

the original formulation in Böhm-Vitense, 1958) and rearranging yields

∇𝑒 −∇𝑎𝑑

∇−∇𝑒

=
6𝑎𝑐𝑇 3

𝜅𝜌2𝑐𝑝𝑣𝑚𝑙𝑡ℓ𝑚𝑙

. (2.1.28)

Then using Eqs. 2.1.16 - 2.1.18, 2.1.23 and 2.1.28 the radiative and convective

fluxes, convective velocity and temperature gradients of the background and of the fluid

element can be calculated. Finally, the strength of diffusive mixing due to convection
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can be determined through an appropriate diffusion coefficient:

𝐷𝑚𝑙𝑡 =
1

3
𝑣𝑚𝑙𝑡ℓ𝑚𝑙. (2.1.29)

2.1.3 Convective boundary mixing prescriptions

One prescription used in stellar evolution modelling of convective boundary mixing

(CBM) is penetrative convection. This is the motion of a fluid element from a con-

vectively unstable region into a surrounding stable region. Such motions weaken the

sub-adiabatic stratification in the stable region, resulting in growth of the convective

region over time. Penetrative convection is believed to occur in the fluids of stars due

to the abundance of this phenomenon terrestrially. It is observed in: fluid dynam-

ics experiments (Moroni and Cenedese, 2006; Dore et al., 2009); the Earth’s oceans

(Turner, 1986); and the Earth’s atmosphere (Frey et al., 2014). Zahn (1991) made the

distinction between convective penetration and overshooting23 for stellar models. They

also showed that penetrative convection into the stable region above a convective core,

will remove the sub-adiabatic stratification in all but a thin thermal boundary layer.

One standard CBM prescription for convective cores is an adiabatic extension of the

core by a fraction of the local pressure scale height. Schaller et al. (1992) showed that

an extension of 20% provided the best fit for the main sequence envelope of 65 star

clusters. Such a value is adopted for CBM during hydrogen and helium burning cores

in GENEC models (Eggenberger et al. 2008; see S3.2 for a description of the GENEC

code).

Another approach is to consider a non-zero velocity at the formal convective bound-

ary, unlike the predictions given by MLT. Freytag, Ludwig and Steffen (1996) computed

2D radiative hydrodynamic simulations of surface convection. They found that the ve-

locity profiles decayed exponentially and extended well beyond the convective bound-

23Overshooting occurs when the efficiency of convection is low (when thermal dissipation is signif-
icant); such penetration mixes abundances and transports momentum, but cannot alter the stable
temperature gradient.
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Mixing type Entropy mixing? Diffusion or advection? Composition profile shape

Penetration Yes Diffusion Step function
Overshoot No Diffusion Step function
Diffusive No Diffusion Exponential
Double-diffusive No Diffusion Double exponential
Entrainment Yes Both Sigmoid

Table 2.1: Summary of the various convective boundary mixing prescriptions that
are commonly implemented into stellar evolution codes. Details include: whether the
entropy structure is affected by the mixing process; if the mixing is primarily due to
diffusion or advection; and the function which best describes the compositional profile
shape.

ary. They attributed this to the propagation of linear g-modes24 (e.g. Christensen-

Dalsgaard, 2003) in the stable region. They modelled the position of tracer particles

in the overshot region by an exponentially decaying diffusive process, with a suitable

diffusion coefficient of the form

𝐷 = 𝐷0 𝑒𝑥𝑝

(︂
− 2𝑧

𝑓𝐻𝑝,0

)︂
, (2.1.30)

where 𝐷0 can be taken as the diffusion coefficient calculated by MLT at a suitable

distance inside the convectively unstable region, i.e. at a position where the convective

velocity (Eq. 2.1.23) is high and is not affected by buoyant deceleration near the

convective boundary region. 𝑧 is the distance from the formal convective boundary (i.e.

that determined by the Schwarzschild or Ledoux criteria), 𝐻𝑝,0 was originally taken as

the velocity scale height at the convective boundary, but is commonly replaced (for

example, in the MESA code; Paxton et al., 2011) by a fraction, 𝑓 , of the pressure

scale height at the same position where 𝐷0 is evaluated. This fraction is fine-tuned so

that the models reproduce observed main sequence widths (Herwig, 2000; Jones et al.,

2015), and often different values are taken for different convective boundaries. Such a

type of diffusive CBM is similar to classical (non-adiabatic) overshooting in the sense

that they do not affect the entropy structure of the mixed region.

24These waves occur within fluids or at fluid interfaces. They are produced from the restoring force
of gravity when the fluid is perturbed, such that the perturbation is not strong enough to result in
the fluid becoming buoyant.
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A modified diffusive CBM approach was first introduced by Herwig et al. (2007),

who used the same tracer particle method25 as Freytag, Ludwig and Steffen (1996).

This method was used to fit an exponentially decaying diffusion coefficient to diffusive

mixing within the convective region and near the boundary of the helium shell in a

2M⊙ AGB star. A separate method was used to derive diffusion coefficients for diffusive

mixing in the stable region, based on the vertical spread of the entropy. This approach

is then a ‘double-diffusive’ mixing parameterisation that uses two exponential decays

of different slopes. The first decay can be thought of as physically representative of

shear mixing near the convective boundary, while the second decay of a shallower slope

is representative of the mixing due to propagating gravity waves. Battino et al. (2016)

applied this ‘double diffusive’ method to two regions within 2 and 3M⊙ AGB stars: at

the bottom of the thermal pulse-driven convective zone26 above the core; and during

the third dredge up27 below the convective envelope. They used free parameters that

were fixed according to the results of simulations by Herwig et al. (2007) and theoretical

work by Denissenkov and Tout (2003).

A recent study by Viallet et al. (2015) suggests the combination of the two types of

CBM previously mentioned (penetrative and diffusive) as well as a third type, turbulent

entrainment (turbulence leads to shear mixing at convective boundaries; see S2.2.2)

for the modelling of CBM in stellar evolution calculations. The suggested use of each

prescription depends on the specific regime of mixing, and in particular the importance

of radiative effects, which can be determined using the Péclet number (Pe; the ratio of

time-scales for heat transport through conduction and advection; see S4.2). For Pe < 1,

such as in surface convection, thermal diffusion is the dominant form of mixing and

so a parameterisation such as Eq. 2.1.30 can be used. For deeper internal convection

that is still affected by thermal diffusion, such as CBM during core hydrogen and

helium burning and the envelopes of red giants (Viallet et al., 2013), a transition occurs

25This method consists of using a scalar quantity as a tracer particle, by allowing the particles
position to change based on the local fluid velocity.

26This refers to a convection zone which arises for a relatively short amount of time, caused by a
helium flash. This flash occurs when helium is ignited under degenerate conditions, resulting in an
increase in temperature with no expansion due to the prevailing pressure component from degenerate
electrons.

27Following a helium flash, the opacity driven convective envelope can extend down to the region
where helium was processed into carbon and nitrogen. These newly created elements can then be
advected to the surface. This process is known as the third dredge up.
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whereby penetrative convection mixes both entropy and composition until thermal

effects can inhibit this process. Such mixing would be best represented by penetrative

convection (Schaller et al., 1992) immediately followed by a diffusive CBM prescription.

Finally, the third case is where radiative effects are negligible (Pe ≫ 1), such as in the

advanced burning stages of massive stars where neutrino losses dominate the cooling. In

this case, mixing of composition and entropy proceeds through turbulent entrainment

and shear mixing, extending the convective region. Such mixing has been observed in

simulations of oxygen shell burning by Meakin and Arnett (2007b), carbon shell burning

by Cristini et al. (2016a) and the core helium flash by Mocák, Siess and Müller (2011).

Also, results of turbulent entrainment in the carbon shell of a 15M⊙ star are presented

in S5.2 and S6.2. All of the CBM prescriptions mentioned above are summarised in

Table 2.1, where their effect on entropy, mixing type (diffusive/advective) and the

subsequent shape of the composition profile are detailed.

2.2 Analytical tools for studying turbulent convec-

tion

There have been considerable efforts into understanding turbulence from a theoretical

perspective. Such perspectives are incredibly useful when analysing multi-dimensional

hydrodynamic simulations of turbulent convection. In the following sections I detail

the turbulent cascade of energy, the entrainment of material from dynamically stable

regions due to turbulence and the analysis of the mean evolution and fluctuations in

the turbulent flow properties.

2.2.1 Kolmogorov’s turbulent cascade

From dimensional analysis of a turbulent system, given a root-mean-square (RMS)

velocity of the largest energy-containing fluid elements, 𝑣𝑟𝑚𝑠, at the integral length

scale, ℓ, the approximate specific KE of the system is, 𝑣2𝑟𝑚𝑠, and will vary over a time

scale of ℓ/𝑣𝑟𝑚𝑠. Hence, as Kolmogorov (1941) showed, the rate of energy dissipation at

the largest (integral) length-scale of the system is
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𝜖 ∼ 𝑣3𝑟𝑚𝑠/ℓ. (2.2.1)

The turbulent velocity, 𝑣𝑟𝑚𝑠, can be calculated using a spatially (horizontal) and

temporally averaged velocity magnitude in the following way:

𝑣𝑟𝑚𝑠 =

√︁⟨︀
𝑣2𝑚𝑎𝑔

⟩︀
− ⟨𝑣𝑚𝑎𝑔⟩2, (2.2.2)

where 𝑣𝑚𝑎𝑔 is the magnitude of the velocity over the three dimensions; a description

of this notation is given in S2.2.3.

At any other scale, 𝜆, where the velocity is 𝑣𝜆, the energy dissipation will be

𝜖𝜆 ∼ 𝑣3𝜆/𝜆. (2.2.3)

For a system in a statistically steady state, Kolmogorov (1962) showed that 𝜖𝜆 = 𝜖

for any scale (within the inertial sub-range), 𝜆, meaning that the same amount of

energy is transferred down through to fluid elements at increasingly smaller scales, i.e.

a turbulent cascade of KE from large to small scales. Equating Eqs. 2.2.1 and 2.2.3

reveals that

𝑣𝜆 = 𝑣𝑟𝑚𝑠

(︂
𝜆

ℓ

)︂1/3

, (2.2.4)

hence the largest fluid elements have the highest velocities (𝜆/ℓ = 1), while the

smallest fluid elements have the highest vorticities (𝑣𝜆/𝜆 ≫ 1). This spectrum of

velocities extends to smaller and smaller scales until a length scale, 𝜆0, is reached,

where the viscous dissipation rate is comparable to the turbulent kinetic energy (TKE)

dissipation rate28. At this scale the KE of the fluid elements is small enough to be

affected by viscous actions of the fluid, thereby damping out their motions.

The approximate dissipation of KE through viscous actions at this scale over a

time-scale 𝜆/𝑣𝜆 could be written as

v2
𝜆

𝜆

v𝜆

= 𝜈, (2.2.5)

28To quote the verse by Richardson (1922), “Big whorls have smaller whorls that feed on their
velocity, and little whorls have lesser whorls and so on to viscosity (in a molecular sense).”
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where 𝜈 is the kinematic viscosity. By equating Eqs. 2.2.1 and 2.2.4 and using Eq.

2.2.5, this can be expressed as

𝜆0 =

(︂
𝜈3

𝜖

)︂1/4

. (2.2.6)

This length-scale is otherwise known as the Kolmogorov length-scale.

2.2.2 Turbulent entrainment at convective boundary regions

Fluid flows can become turbulent when inertial forces become greater than the viscous

forces of the fluid. In a similar manner to the turbulent cascade, the Reynolds number

determines the separation between the smallest and largest scales of the flow, where

the largest scales are least affected by viscosity. The Reynolds number is therefore a

diagnostic for the relative importance of the inertial and viscous forces at a certain

scale, and can be expressed as

Re =
𝑣𝑟𝑚𝑠 ℓ

𝜈
. (2.2.7)

It is generally considered that fluid flow transitions from laminar to turbulent at

Rec & 2000 (Rec = 2722 - 2870, Reynolds 1883; Rec = 2250 - 2900, Pavelyev et al. 2003;

Rec = 2000 - 3500, Durst and Ünsal 2006), but this limit is often approximated to be

around 1000. Stellar flows are highly turbulent with Re ∼ 1012 (Cristini et al., 2016b),

which is due mainly to the length scales (109 cm) over which KE is transported, de-

spite the high viscosity (𝜈 ∼ 320) which is similar to that of tomato sauce. Turbulence

within a convectively unstable region results in chaotic changes in the flow velocity, and

near the convective boundary region has the overall effect of drawing in and mixing

material from the surrounding convectively stable region. This mixing due to turbu-

lence is referred to as turbulent entrainment. Turner (1973) defines entrainment as the

transport of fluid across an interface between two bodies of fluid by a shear-induced

turbulent flux. Examples of turbulent entrainment are shown in S5.2 and S6.2. Over

time, the entrainment of material into the convective region across boundaries leads

to a growth in the convective region. In turn, this shifts the boundary positions into

the surrounding convectively stable regions over time. If the turbulent system is in a
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quasi-steady state then this entrainment can occur within an equilibrium regime (see

below for more details on the equilibrium entrainment regime). Although the boundary

is not a flat surface, but an undulating one, and by tracking the centre of the boundary

surface over time an entrainment velocity can be obtained.

Convective boundary stiffness

I refer to the stiffness of a convective boundary as its susceptibility to turbulent mixing

over the boundary. The bulk Richardson number is one way to determine the stiffness

of a boundary, it is the ratio of the specific stabilisation potential (analogous to the

work done against convective motions by the boundary) to the specific TKE within

the convective region. It is written as

Ri𝐵 =
Δ𝐵ℓ

𝑣2𝑟𝑚𝑠

, (2.2.8)

where ℓ is the integral length scale which represents the size of the largest fluid

elements and 𝑣𝑟𝑚𝑠 is the turbulent RMS velocity and represents the velocity of the

largest fluid elements (at the integral scale) carrying most of the energy. Δ𝐵 is the

buoyancy jump local acceleration over the boundary and is estimated by integrating

the square of the buoyancy frequency over a suitable distance (Δ𝑟) either side of the

boundary centre, 𝑟𝑐,

Δ𝐵 =

𝑟𝑐+Δ𝑟∫︁
𝑟𝑐−Δ𝑟

𝑁2𝑑𝑟. (2.2.9)

The integration distance Δ𝑟 is not well defined theoretically but it should be large

enough to capture the dynamics of the boundary region and the distance over which

fluid elements are decelerated.

The buoyancy or Brunt-Väisälä frequency, 𝑁 , is the frequency with which a per-

turbed fluid element will oscillate if it is surrounded by a stably stratified medium.

This frequency is imaginary for a convectively unstable fluid element and is defined as:

𝑁2 = −𝑔

(︂
𝜕ln𝜌

𝜕𝑟

⃒⃒⃒
𝑒
− 𝜕ln𝜌

𝜕𝑟

⃒⃒⃒
𝑠

)︂
. (2.2.10)

Bulk Richardson numbers less than 10 are associated with relatively soft convective
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boundaries, whereas bulk Richardson numbers greater than 100 are associated with

relatively stiff convective boundaries.

The equilibrium entrainment regime

If entrainment and the subsequent mixing of material occurs on a time scale similar to

or smaller than the convective turnover time, then such mixing may be dominated by

strong, individual outlier events. The convective turnover time is defined as:

𝜏𝑐 =
2ℓ𝑐𝑧
𝑣𝑐

, (2.2.11)

where ℓ𝑐𝑧 is the height of the convective region and for 1D stellar evolution equations

𝑣𝑐 is given by Eq. 4.2.2, whereas for 3D hydrodynamic simulations 𝑣𝑐 is replaced by the

RMS velocity, 𝑣𝑟𝑚𝑠, given by Eq. 2.2.2. If the time scale for the boundary migration due

to entrainment, 𝜏𝑏, is comparable to or larger than the convective turnover time scale,

𝜏𝑐, then the turbulent mixing at the boundary is within the equilibrium entrainment

regime (Fedorovich, Conzemius and Mironov, 2004; Garcia and Mellado, 2014).

Within this regime, the entrainment process is sampling the entire spectrum of

turbulent motions rather than being sensitive to individual fluid elements, as mentioned

earlier. This simplifies the development of mixing models within this regime, as the

adopted prescription can be assumed to hold over the quasi-steady state of turbulence.

The entrainment law

The time rate of change of the boundary position through turbulent entrainment (the

entrainment velocity), 𝑣𝑒, is known to have a power law dependence on the bulk

Richardson number (Eq. 2.2.8), when the ratio of the entrainment velocity with the

velocity of the large-scale fluid elements, 𝐸 = 𝑣𝑒/𝑣𝑟𝑚𝑠, is considered (e. g. Garcia and

Mellado, 2014). This relationship between the relative entrainment rate and the bulk

Richardson number is referred to throughout the meteorological and atmospheric sci-

ence fields as the entrainment law, and is typically given as:

𝐸 =
𝑣𝑒
𝑣𝑟𝑚𝑠

= 𝐴Ri−𝑛
B , (2.2.12)

where 𝐴 and 𝑛 are constants. A positive entrainment rate implies the radially
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outward migration of the convective boundary over time, while a negative entrainment

rate implies that the convective boundary is receding over time. Many simulations (e. g.

Deardorff 1980) and laboratory (e. g. Chemel, Staquet and Chollet 2010) studies of a

well-mixed thermally convecting layer within a stable stratification have found similar

values for the coefficient, 𝐴, typically between 0.2 and 0.25. The exponent, 𝑛, is gener-

ally taken to be 1 for convectively driven turbulence with bulk Richardson numbers in

the range 7 < RiB < 100 and Pe ≫ 1 (e. g. Turner, 1986; Fernando, 1991; Stevens and

Lenschow, 2001). On the other hand, in a recent direct numerical simulation (DNS)

study, Jonker et al. (2013) showed that 𝐴 ≈ 0.35 and 𝑛 = 1/2 for small Péclet num-

ber, shear-driven entrainment. Entrainment rates for stellar convection typically vary

between 10−1 and 10−5 (e.g. see Fig. 5.15).

2.2.3 Mean field analysis in the Reynolds-averaged Navier-

Stokes framework

Turbulence is inherently a chaotic process, whereby energy is transferred from the

largest scale turbulent elements down through to the smallest scale. Fluid elements at

the largest scale determine the overall energy of the system, while those at the smallest

scale are responsible for the dissipation of KE and where viscosity dominates the flow

dynamics. It is common therefore, when studying turbulent flows to average them

both spatially, to obtain a mean turbulent state over two dimensions, and temporally,

to smooth out the stochastic nature of turbulence and provide a statistical average. In

the hydrodynamics code that I use (see S3.4), the Euler equations are solved, which are

an inviscid form of the Navier-Stokes equations of motion. When taking a Reynolds

average (see Eq. 2.2.3) of the Euler equations, a new ‘mean evolution’ of the fluid flow

can be represented, by averaging the three-dimensional profiles into a one-dimensional

radial profile. Through Reynolds averaging, new correlations of fluctuating terms will

appear, which sometimes provide new physical interpretations of this mean evolution

of the fluid flow, and are often different from the physical interpretation of terms in the

original equation (Ch.5 of Chassaing, 2002). Reynolds decomposition by construction

separates the mean flow component from the fluctuating component, and so physi-

cally relevant terms can be constructed that represent competing processes for a given
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conservation law. These include fluxes, sinks, sources and numerical effects (implied

momentum diffusion). The mean radial (x) field is calculated by averaging over the

horizontal plane (y-z), i.e. for a quantity 𝜔

⟨𝜔⟩ = 1

Δ𝐴

∫︁
Δ𝐴

𝜔 d𝐴, (2.2.13)

where d𝐴 = d𝑦 d𝑧 and Δ𝐴 = Δ𝑦Δ𝑧 is the area of the computational domain along

the radial axis. The original quantity can then be expressed as the sum of the mean

and fluctuating components

𝜔 = ⟨𝜔⟩+ 𝜔′, (2.2.14)

where the Reynolds average of the fluctuation is by definition zero, i.e. ⟨𝜔′⟩ = 0.

The over-bar notation denotes a temporal average and is defined below.

I apply this horizontal averaging to most29 of the quantities that describe the flow.

The simulations are set up in such a way that they begin with a violent turbulent tran-

sient phase, which ‘kick-starts’ the thermodynamic system, and turbulence begins to

develop. Such a phase is initiated through random and equal (but small) perturbations

in the density and temperature of the flow. As mentioned, this is a transient phase,

and so following this the flow enters a quasi-steady state of turbulent convection, which

is analogous to the physical fluid flow of the star. In such a state the kinetic energy

driving is closely balanced by the viscous dissipation (e.g. see Fig. 5.10). As turbu-

lence and turbulent events such as entrainment are chaotic by nature, I temporally

average the fluid flow over this quasi-steady period of the hydrodynamic simulation.

This provides a more statistically valid representation of the flow, and also smooths out

many of the instantaneous fluctuations, provided the number of convective turnovers

is large enough (& 3). Of course, if the evolutionary time-scale becomes comparable

to the convective turnover time-scale (e.g. during silicon burning) then such temporal

averaging is not valid, as the quasi-steady state approximation breaks down in such

cases. This temporal averaging is defined in the following way:

29The gravitational acceleration only has a mean component as the fluctuating component is zero,
i.e. 𝑔 = ⟨𝑔⟩. Such an assertion is made under the Cowling approximation, which states that the
perturbations in the gravitational potential are negligible with respect to the local density.
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𝜔 =
1

Δ𝑡

∫︁ 𝑡2

𝑡1

𝜔(𝑡)𝑑𝑡 (2.2.15)

for an averaging window Δ𝑡 = 𝑡2 − 𝑡1. I take averages of the TKE equation, and

construct energy flux, source and dissipation terms. This averaged equation and the

physical meaning of all of the terms are presented in Appendix A.2. This reduction

of multi-dimensional data into horizontally- and temporally-averaged one-dimensional

(1D) radial profiles allows the representation of the data obtained from hydrodynamic

simulations within the context of 1D stellar evolution models. This is because stellar

evolution models already implicitly include temporal and spatial averaging. Temporal

averaging is included through the use of time-steps in 1D stellar evolution that are

much larger than the convective turnover time, and spatial averaging due to the as-

sumption of spherical symmetry. Such a comparison of averaged 3D data to 1D data

allows the determination of the suitability of currently used prescriptions for convection

in stellar evolution calculations (extent, additional mixing etc.), and also the ability to

test new prescriptions based on the results of these multi-dimensional hydrodynamical

simulations.
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Chapter 3

Computational tools

3.1 1D stellar evolution models

The following information on the initial conditions and equations required to begin a

stellar evolution calculation is adapted from Kippenhahn, Weigert and Weiss (2013)

and Hansen and Kawaler (1994). The main parameters governing the evolution of stars

are the initial mass, 𝑀 , and metallicity, 𝑍 (or more accurately the abundances, 𝑋,

of a pre-determined list of nuclear species). In addition to the mass and metallicity,

initial estimations of the pressure, 𝑝0, temperature, 𝑇0, radius, 𝑟0, and luminosity, 𝐿0,

are required. There are four main differential equations that can be used to describe

the structure of the star. The independent coordinate for these equations is chosen

to be the mass, 𝑚, within a radial distance, 𝑟. This allows an easier discretisation of

the equations as the variation of mass is smoother than the variation of radius. These

describe mass conservation, hydrostatic equilibrium, energy conservation and energy

transport. These equations are:

𝜕𝑟

𝜕𝑚
=

1

4𝜋𝑟2𝜌
; (3.1.1)

𝜕𝑝

𝜕𝑚
= − 𝐺𝑚

4𝜋𝑟4
; (3.1.2)

𝜕𝐿

𝜕𝑚
= 𝜖𝑛 − 𝜖𝜈 − 𝑐𝑝

𝜕𝑇

𝜕𝑡
+

𝛿

𝜌

𝜕𝑝

𝜕𝑡
; (3.1.3)

𝜕𝑇

𝜕𝑚
= −𝐺𝑚𝑇

4𝜋𝑟4𝑝
O, (3.1.4)

where 𝜖𝑛 and 𝜖𝜈 are the specific energy generation rate due to nuclear reactions and
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neutrinos, respectively, the remaining variables have their usual meaning. A description

of the composition evolution is also required

𝜕𝑋𝑖

𝜕𝑡
=

𝑚𝑖

𝜌

(︃∑︁
𝑗

𝑅𝑗𝑖 −
∑︁
𝑘

𝑅𝑖𝑘

)︃
, 𝑖 = 1, ..., 𝐼, (3.1.5)

where 𝑋𝑖 is the mass fraction of nuclear species 𝑖 with mass 𝑚𝑖; 𝑅𝑗𝑖 and 𝑅𝑖𝑘 are

the reaction rates for nuclear species 𝑗 → 𝑖 and 𝑖 → 𝑘, respectively.

The background temperature gradient, ∇, is taken to be equal to the radiative tem-

perature gradient given by Eq. 2.1.11 if energy transport is dominated by radiation

(and conduction). If the energy transport is dominated by convection then the tem-

perature gradient, ∇, can be approximated as the adiabatic one given by Eq. 2.1.12,

or more accurately obtained through a theory of convection such as the mixing length

theory (see S2.1.2), for example.

In addition, an equation of state detailing the relationship between density, pressure,

temperature and composition is needed, as well as boundary conditions for the star.

Taking the radius and luminosity to be zero at the centre of the star (𝑚 = 0) would

lead to a singularity, so in practice, the mass, luminosity and radius are said to be

approaching zero at the centre. The first zone at a small radius contains non-zero

values for these structure variables which are then extrapolated to the centre.

At the ‘surface’ of the star both the density and temperature are assumed to be

approximately that of the surrounding vacuum, 𝜌 = 𝑇 = 0. To be precise, the surface

of the star is taken to be the photosphere, and the surrounding features of the star

such as the stellar wind are ignored and assumed to have no direct dynamical effect on

the stellar interior, other than to reduce the total mass.

The stellar structure and composition are discretised onto a finite, one-dimensional

grid, usually of non-uniform spacing. The resolution of the grid is adjusted over time

based on the changes in certain stellar properties between grid points, if these changes

exceed a pre-determined threshold30 for that variable then the number of grid points

in that region is increased. This helps to avoid discontinuities in the stellar profiles

30The grid mesh can be automatically adjusted based on the local change of the pressure, luminosity
or abundance between adjacent grid cells. This adjustment can be set to occur when this change
exceeds a value of typically a few percent.
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and ensures a sufficiently resolved numerical representation of the problem.

Some codes (GENEC, for example, Eggenberger et al. 2008; see S3.2) will change

the independent variable in Eqs. 3.1.1 - 3.1.4 from mass to pressure when computing

solutions to these equations in the stellar envelope. In this region of the star, the

pressure varies more than the mass with increasing radius, and this allows a better

discretisation of the star onto the computational grid.

In order to calculate the initial stellar model, Eqs. 3.1.1 - 3.1.4 must be inte-

grated over the mass of the star. This is not possible though, as the four boundary

conditions mentioned earlier are split between the centre and the surface. Instead, a

‘shooting method’ is sometimes employed, whereby the structure is integrated from the

surface inwards and the centre outwards, simultaneously, until a suitable fitting point

is reached. This fitting point is usually chosen as the boundary between the stellar

core and the envelope, as this is a natural position where the stellar profiles may be-

come discontinuous. Kippenhahn, Weigert and Hofmeister (1967) defined an efficient

method for calculating the boundary conditions over the 𝐿− 𝑇 parameter space used

in the integration of the outer regions.

An alternative to the shooting method is to integrate the structure from the centre

to a suitable fitting point, and the values of the structure variables over the remaining

mass up to the surface are obtained through extrapolation.

It is more computationally efficient to spatially integrate Eqs. 3.1.1 - 3.1.4 first

and then temporally integrate from Eq. 3.1.5 in an operator split approach. The exact

method differs between codes, though, with some codes coupling both the structure and

composition during the integration (e.g. MESA; Paxton et al. 2011). Although more

computationally efficient, an operator split approach is inconsistent. For example, if

following the spatial integration (given an initial composition), certain layers of the star

become convectively unstable, this would then affect the compositional stratification

during the temporal integration, i.e. convective motions will homogeneously mix the

chemical components over those layers. Whereas, if the structure and composition

were integrated simultaneously then the effect of a convectively unstable layer would

be coupled to both the structure and the composition, and the resulting solution may

be different than in the case where the composition and structure are de-coupled. This

inconsistency due to operator splitting can be reduced by minimising the employed
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time-step, but an underlying inconsistency will still be apparent, and the operator

coupled approach is the more accurate. In the operator split approach in genec for

example, in order to achieve a converged solution, the structure is first calculated,

followed by a separate burning (fusion) and mixing (instantaneous or diffusive) phase

of the composition. These two phases of the calculation are repeated in an iterative

fashion until convergence is reached.

The next two subsections describe the numerical procedures for spatially and tem-

porally integrating a stellar model beyond its initial conditions, respectively.

3.1.1 Spatial integration

The following is a description of the Henyey method (Henyey, Forbes and Gould, 1964),

commonly adopted to solve the stellar evolution equations and follows the derivation

presented in Kippenhahn, Weigert and Weiss (2013). Equations 3.1.1 - 3.1.4 can be

more compactly written as

𝑑𝑦𝑗
𝑑𝑚

= 𝑓𝑗 (𝑦1, ..., 𝑦4) , 𝑗 = 1, ..., 4, (3.1.6)

where 𝑦1 = 𝑟, 𝑦2 = 𝑝, 𝑦3 = 𝐿, 𝑦4 = 𝑇 . The derivatives on the left hand side of

Eq. 3.1.6 can be replaced with finite differences between adjacent grid points on the

mesh, and the arguments on the right hand side, 𝑦𝑗 (𝑗 = 1, ..., 4), can be evaluated at

the geometric centre of each grid cell,

𝐴𝑘
𝑗 =

𝑦𝑘𝑗 − 𝑦𝑘+1
𝑗

𝑚𝑘
𝑗 −𝑚𝑘+1

𝑗

− 𝑓𝑗

(︁
𝑦
𝑘+1/2
1 , ..., 𝑦

𝑘+1/2
4

)︁
= 0, 𝑗 = 1, ..., 4, 𝑘 = 𝑛, ..., 1, (3.1.7)

where the index k represents the grid points of the model from the centre, 𝑘 = 𝑛,

to the surface, 𝑘 = 1. The index 𝑘 + 1/2 refers to the value between adjacent grid

points and is usually represented by an average of those grid points. Suppose that the

solution to Eq. 3.1.6 given some initial conditions, 𝑀, 𝑋𝑖, 𝑝0, 𝑇0, 𝑟0 and 𝐿0, results in

𝐴𝑘
𝑗 ̸= 0. Corrections can then be added to each variable such that, 𝑦𝑘𝑗 (2) = 𝑦𝑘𝑗 (1)+𝛿𝑦𝑘𝑗 ,

where (1) and (2) denote the first and second iterations, respectively. Equation 3.1.6

can then be written in such a way that
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𝐴𝑘
𝑗 (1) + 𝛿𝐴𝑘

𝑗 = 0, (3.1.8)

where if 𝛿𝐴𝑘
𝑗 is sufficiently small, it can be expanded using a Taylor series up to

first order, so that the corrections are linearised,

𝛿𝐴𝑘
𝑗 ≈

𝛿𝐴𝑘
𝑗

𝛿𝑦 𝑘
𝑗

𝛿𝑦𝑘𝑗 . (3.1.9)

By inserting Eq. 3.1.9 into Eq. 3.1.8, it can be rewritten in matrix form as

𝐻𝑌 = −𝑋, (3.1.10)

where 𝐻 is called the Henyey matrix and contains the 4𝑛 − 2 (𝑗 = 1, ..., 4 with

𝑘 = 𝑛−1, ..., 2, i.e. excluding the central and surface zones, there are also four boundary

conditions for each variable at the centre, and two for the radius and luminosity at the

surface, giving a total of 2 + 4(𝑛 − 2) + 2 = 4𝑛 − 2 equations) derivatives, 𝛿𝐴𝑘
𝑗/𝛿𝑦

𝑘
𝑗 ;

𝑌 is a vector containing the 4𝑛− 2 corrections, 𝛿𝐴𝑘
𝑗 ; and X is a vector containing the

equations 𝐴𝑘
𝑗 .

If Eq. 3.1.8 is still not satisfied, then another correction is made and the same

process followed. These iteration steps are continued until a solution is obtained to

within a chosen accuracy.

Of course, there may be instances where convergence to a solution is not possible.

This could depend on several factors, such as: how different the initial approximation

is from an attainable solution (expanding the corrections, 𝛿𝑘𝑗 , to second order may

remedy this); the suitability of the mesh; or whether there is unphysical noise when

interpolating lookup tables (for example in opacity tables). If a converged solution is

found, then the whole process is repeated at the next time step.

3.1.2 Temporal integration

Generally, when integrating the composition in time, an implicit scheme is used,

whereby the composition at the future time-step is calculated based on the rate of

composition change at the future time-step. For a stellar model at the 𝑛𝑡ℎ time-step

of the calculation this can be written as (ignoring specific grid points for now)
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𝑋𝑛+1
𝑖 = 𝑋𝑛

𝑖 +Δ𝑡�̇�𝑛+1
𝑖 , 𝑖 = 1, ..., 𝐼, (3.1.11)

where Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, �̇� = 𝜕𝑋/𝜕𝑡 and again the accuracy of such a method is

determined by the size of the employed time-step.

In addition to the chemical composition, the last two terms in Eq. 3.1.3 also include

time derivatives, and so the same implicit scheme (as in Eq. 3.1.11) is also used to

obtain these differentials at the future time-step during the spatial integration. These

two terms describe a change in the internal energy of the star due to local expansion

or contraction.

The above describes the fundamental methodologies that are employed for discretis-

ing and solving the stellar evolution equations over multiple time-steps. In addition,

a description or parameterisation for the various input physics of the models should

be defined. Opacities, mass loss, nuclear reaction networks and the equation of state,

among others are required to calculate a stellar model. As the employed methods for

describing such input physics can vary greatly between stellar evolution codes, all of

the possible options will not be described in this thesis, but instead a description of

the specific stellar evolution code that is used in this study is described. Other no-

table stellar evolution codes which are used actively within the community are: mesa

(Paxton et al., 2011); stern (Brott et al., 2011); franec (Chieffi and Limongi, 2013);

kepler (Heger, Langer and Woosley, 2000); starevol (Decressin et al., 2009); and

parsec (Bressan et al., 2012).

3.2 The GENeva stellar Evolution Code

The Geneva stellar evolution code (GENEC; Eggenberger et al., 2008; Ekström et al.,

2012) solves the stellar evolution equations given by Eqs. 3.1.1 - 3.1.5 using a finite

differencing, de-coupled, time implicit method.

Up to the start of core oxygen burning it is assumed that the chemical composition

is homogeneously mixed between time-steps in convective regions only; this is a valid

assumption provided that the time-steps are longer than the convective turnover time
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(Eq. 2.2.11). From oxygen burning and onwards compositional mixing is treated

diffusively, and nuclear species are mixed according to their number concentration, 𝐶,

given by (Eggenberger et al., 2008)

𝜌
𝜕𝐶

𝜕𝑡
=

1

𝑟2
𝜕

𝜕𝑟

(︂
𝑟2𝜌𝐷

𝜕𝐶

𝜕𝑟
− 𝑟2𝜌𝐶𝑣𝐷

)︂
, (3.2.1)

where 𝐷 is the diffusion coefficient and 𝑣𝐷 is the diffusion velocity.

In GENEC, the structure equations are de-coupled from the abundance equations;

changes in abundances due to nuclear burning and diffusive mixing are calculated

separately.

Reaction rates are calculated for a nuclear reaction network of 23 isotopes; these

are: 1H, 3,4He, 12,13C, 14,15N, 16,17,18O, 20,22Ne, 24,25,26Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti,

48Cr, 52Fe, and 56Ni. These reaction rates are interpolated (based on the temperature)

from the reaction tables by NACRE (Angulo et al., 1999); screening factors are also

included through the prescription by Graboske et al. (1973). Using these rates, the

nuclear energy generation rate can be calculated for the relevant channels. Energy

losses due to the production and loss of neutrinos through the following mechanisms

are also included (see Fig. 3.1): pair creation reactions; photo-neutrino reactions

(Compton scattering); and plasma neutrino reactions (Itoh et al., 1989, 1996). The

equation of state relates the pressure, density and temperature assuming a perfect gas,

and includes radiation and partial degeneracy. Opacities are interpolated given the

density and temperature from tables provided by the OPAL group (Rogers, Swenson

and Iglesias, 1996) and Alexander and Ferguson (1994) for high and low temperatures,

respectively. With these opacities, the energy transport due to radiative transfer of

photons on nuclei can be calculated, see Eq. 2.1.17. The employed mass loss estimates

are a function of metallicity, and calculated according to the prescriptions by Vink, de

Koter and Lamers (2001) and de Jager, Nieuwenhuijzen and van der Hucht (1988) for

massive stars. Energy transport due to convection is assumed to be adiabatic for deep

internal convection, up to the start of core oxygen burning. For convective envelopes,

and other diffusively mixed convective regions, energy transport is modelled using the

mixing length theory with 𝛼𝑚𝑙 = 1.6 (Schaller et al., 1992), as described in S2.1.2. The

extent of convectively unstable regions, is determined by the Schwarzschild criterion
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Figure 3.1: Dominant neutrino production mechanisms over the density-temperature
plane for 12C matter, including neutrino production through recombination and
bremsstrahlung. Figure taken from Itoh et al. (1996).

(Eq. 2.1.14), along with penetrative convection (S2.1.3) of up to 20% (Stothers and

Chin, 1991) of the local pressure scale height (for core hydrogen and helium burning

phases). For the stellar model presented in S4.2 the extent of penetrative convection is

shortened to 10% of the pressure scale height.

3.3 3D stellar hydrodynamic models

Unlike one-dimensional stellar evolution models, three-dimensional stellar hydrody-

namic models generally focus on modelling the fluid dynamics of the stellar material

while the star is dynamically stable. This requires much smaller time-steps. Such mod-

els typically use an initial structure determined from a stellar evolution model, and then

calculate the flow dynamics, typically through solving some variation of the Navier-

Stokes equations. The Navier-Stokes equation of motion for a viscous, compressible

and homogeneous flow is

𝜌

(︂
𝜕𝑣

𝜕𝑡
+ (𝑣 ·∇)𝑣

)︂
= 𝜂∇2𝑣 + (𝜂 + 𝜆)∇ (∇ · 𝑣)−∇𝑝+ 𝜌𝑔, (3.3.1)
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where 𝑣 = 𝑣(𝑣𝑟, 𝑣𝑦, 𝑣𝑧, 𝑡) and 𝑔 = 𝑔(0, 0,−𝑔0, 𝑡). 𝜂 and 𝜆 are the first and second

coefficients of viscosity, respectively. The kinematic viscosity, 𝜈, is the ratio of the

first coefficient (dynamic viscosity), 𝜂, to the fluid density, 𝜌. There are generally two

approaches to turbulent fluid modelling; direct numerical simulations and large eddy

simulations. The suitability of each approach to stellar interior simulations will be

discussed.

3.3.1 Direct numerical simulations

Direct numerical simulations (DNS) are designed to have a grid spacing fine enough to

capture the smallest turbulent length scales (i.e. the Kolmogorov scale, see S2.2.1), at

which the dissipation of momentum through viscous forces becomes important. The

difficulty comes in simultaneously modelling the largest length scales (at the integral

scale) at which TKE is first generated and fed into the turbulent cascade, and also the

dissipative scale. Often, the range of scales adopted in DNS is some subset between

the two extremes which includes the Kolmogorov scale.

The number of grid points required for DNS of homogeneous, isotropic turbulence,

which captures both the integral scale and the Kolmogorov scale (while maintaining

a reasonable Courant number; see Eq. 1.4.1), is a function of the Reynolds number,

𝑁3 ∼ Re3. As an example, DNS of the (often assumed) transition from laminar to

turbulent flow at Re ∼ 1000, would thus require 109 grid points, whereas the effective

Reynolds number (see S3.3.2) that can be achieved for an equivalent number of grid

points using a large eddy simulation (LES) is an order of magnitude higher (Re ∼ 104).

Realistic DNS of stellar interiors are therefore not possible, as the integral scale cannot

be effectively modelled. The integral scale is a required characteristic of the system,

as it sets the scale and rate at which kinetic energy is dissipated into the turbulent

cascade.

3.3.2 Large eddy simulations

LES type schemes focus on modelling the integral scale motions. In a similar manner

to DNS, the imposed inertial sub-range is entirely modelled within the computational

domain. Such an inertial sub-range is imposed because the dissipative scale coincides
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with the grid-scale, whereby numerical dissipation is represented by a sub-grid scale

(SGS) model. This means that the effective Reynolds number (a measure of the num-

ber of eddy sizes between advective and dissipative length scales) is smaller than the

physical Reynolds number, as the dissipation range is encountered at the grid scale

which does not usually coincide with the Kolmogorov scale. A physical representa-

tion then requires extrapolation of the model to realistic Reynolds numbers. This is

possible for LES as the integral scale is correctly modelled and the rate of TKE dis-

sipation is the same at all scales (see S2.2.2), with the caveat that the dissipation of

energy below the grid scale (as detailed by the SGS model), must be physically realistic

(energy conserving) and coupled smoothly to the resolved scales. Commonly adopted

explicit SGS models are often a combination of two distinct methods: ‘functional’ mod-

els which utilise the addition of an artificial viscosity to the equations of motion (e.g.

Garnier, Adams and Sagaut, 2009); and ‘structural’ models which use various methods

to represent the stress tensor in the equation of motion, for example, approximate de-

convolution (San et al., 2011), scale similarity (Bardina, Ferziger and Reynolds, 1980)

or series expansions (Clark, Ferziger and Reynolds, 1979).

An alternative to using an explicit SGS model for the dissipation of energy below

the grid scale is an implicit LES (ILES) scheme, where the SGS model is implied

through the adopted numerical model (Garnier, Adams and Sagaut, 2009), rather than

being explicitly defined as part of the physical model. The numerical errors in LES

schemes are associated with the difference between the solutions to the Navier-Stokes

equations on a finite grid and the exact, analytical solutions. Ghosal (1996) showed

that these errors can be large in comparison to the sub-grid term which represents the

SGS dissipation model. They also showed that if the order of the scheme is increased

(up to eighth order), these errors can be reduced and can even be comparable to the

sub-grid term at certain wave-numbers (see their figs. 4 and 7). This was the premise

with which to develop the ILES scheme, whereby such errors due to the discretisation

of the problem represent the numerical dissipation of the model.

Implicit large eddy simulations

ILES usually solve the inviscid Euler equations (Eqs. 3.4.1a - 3.4.1d), where focus is

placed on the representation of the integral scale (largest eddies which are roughly the
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size of the convective region) and the inertial range. In most turbulent systems the

full inertial range and the scales at the Kolmogorov length can not be modelled while

simultaneously modelling the integral scale. This is especially true in stars where the

ratio of the integral scale (109 cm) to the Kolmogorov length-scale (1 cm; see Eq. 2.2.1)

is of the order of 109, considering that the current limit of the number of vertical zones

in 3D (cubic/spherical) simulations is approximately 2000 zones (e.g. Radice et al.,

2016).

Kolmogorov (1962) showed that the rate of TKE dissipation at all scales does not

depend on the details of the dissipative process. This implies that it may be unnecessary

to resolve the dissipation sub-range of the cascade, providing that the sub-grid dissipa-

tion reproduces the Kolmogorov length, through its implied viscosity. In a turbulent

flow the momentum diffusion (viscosity) is negligible in comparison to the advection of

KE at all scales except near the Kolmogorov scale and below it. In ILES, the minimum

amount of dissipation required in order to maintain monotonicity and energy conserva-

tion is adopted (Grinstein, Margolin and Rider, 2007). The implicit SGS model used in

ILES is the leading order term in the truncation error, which is a result of discretising

the Euler equations. This method incorporates the qualitative effects of dissipation

at the grid scale, i.e. energy conservation, but information such as the time-scale31

(e.g. cascade time over the unresolved inertial range) for such processes is lost in the

numerics. Energy conservation is built into the ILES scheme; KE that cascades down

to the sub-grid scales from the resolved scales is damped as the velocity fluctuations

are dissipated. The internal energy of the fluid is suitably increased in such a way that

it mimics viscosity at the Kolmogorov scale, which would dissipate the structures at

this scale into heat.

Beyond the broad categories of the LES and DNS paradigms, many methods exist

which are used to solve the Navier-Stokes or Euler equations. Here, the discussion is

limited to just the piecewise parabolic method (PPM), as this is the only method that

is incorporated into the hydrodynamic solver that is used.

31This time-scale for energy dissipation is generally much smaller than the convective turnover time
for well resolved simulations.
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3.3.3 Piecewise parabolic method

A description of the piecewise parabolic method (PPM) first requires an introduction

to Godunov’s method.

Godunov’s Method

Godunov’s method (Godunov, 1959; Godunov, Zabrodin and Prokopov, 1962) is a type

of finite-volume method (FVM; see Eymard, Gallouët and Herbin 2003). FVMs are

used to represent partial differential equations on a discretised geometry (such as a

uniformly spaced mesh), where finite volume refers to the volume surrounding the cen-

tre of each grid cell. They utilise Gauss’s theorem, in order to represent the integral

of the divergence of a variable over the volume of the grid cell, with the integral of the

flux of that variable (which is perpendicular to each cell wall), i.e. for a variable 𝑓 ,∫︀
𝑉
(∇· 𝑓)𝑑𝑉 =

∮︀
𝑆
(𝑓 ·𝑛)𝑑𝑆, where 𝑉 and 𝑆 are the volume and surface area of the grid

cell, and 𝑛 is the normal vector of the cell interface. The fluxes at each cell wall can

be reconstructed through interpolation of the cell’s centre value. This method is easily

applicable to two and three dimensions by calculating the flux over each cell edge in

each dimension. The FVM also has the advantage of being a conservative method.

Figure 3.2: Example of a Riemann problem
Values of a variable, 𝑈 , between two grid points: 𝑈 = 𝑈𝐿(𝑥𝑖) and 𝑈 = 𝑈𝑅(𝑥𝑖+1). A
discontinuity arises at the interface of the two grid points. This is an example of a

Riemann problem. Adapted from Brocchini et al. (2001).
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Godunov’s method is an application of the FVM to discretised grids, where Riemann

problems (see e.g. Toro, 1999) naturally arise. Riemann problems are initial value prob-

lems of conservation equations (e.g. an advection equation) that consist of piecewise

data and discontinuities (see Fig. 3.2). Hence, they arise in FVMs due to the interpo-

lation of cell values to the cell edges, resulting in discontinuities between cell interfaces.

PPM is a higher order extension of Godunov’s method generally applicable to non-

uniform computational grids. The PPM is reviewed to a high level of detail in Colella

and Woodward (1984). Given initial conditions of zone centred average values, the

values at the cell edges are interpolated over the cell using a 3rd order polynomial in

the form of a cubic parabola. An example of this interpolation is given by the density

profiles in Fig. 3.3. Here it can be seen that the interpolations result in a profile that

‘overshoots’ (𝑟 ∼ 3.85× 108 cm in the top panel) and ‘undershoots’ (𝑟 ∼ 4.25× 108 cm

in the top panel) at the boundaries; the advection of such profiles would result in

numerical instability. The interpolation is therefore constrained further by disallowing

the production of any new extrema, and forced to be a monotonous function between

edge values (bottom panel of Fig. 3.3); this introduces discontinuities at the cell edges

(Riemann problem). The same is done for all cells on the grid, so that the resulting

profiles are piecewise continuous. If such a discontinuity is detected at one or both cell

edges, then the cell boundary values are redefined by linear interpolations of the values

in adjacent cells in order to remove the discontinuity at the interface.

The future time-step solution is calculated explicitly from the previous one. Con-

sidering the advection equation

𝜕𝑓/𝜕𝑡+∇ · (𝑓𝑢) = 0, (3.3.2)

for a variable 𝑓 , the spatial increment of 𝑓 over the time-step is calculated by inte-

grating from the cell edges over the advection distance. This distance is calculated from

the local flow velocity, 𝑢, and the employed time-step; effectively this time-averages the

flux of the variable 𝑓 over the time-step. Calculated fluxes at each cell interface and

each time-step can be discretised over the computational domain in order to be used

in approximate conservation equations, e.g. a finite difference version of Eq. 3.3.2.
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Figure 3.3: Radial density profiles calculated using a parabolic reconstruction, with-
out enforcing monotonicity (top) and with monotonicity enforced (bottom). Vertical
dotted lines denote the cell interfaces, blue crosses and horizontal dashed lines show
the cell-centred values of the density and horizontal solid lines show the radial extent
over which each parabola is defined. In the bottom panel monotonicity enforcement
results in discontinuities at the cell interfaces, these discontinuities would be removed
by redefining the boundary values before the solution is advected to the next time-step.
Figures obtained from Viallet (2015).
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The above steps in calculating the advection of variables over the domain, can be

done within a Lagrangian framework and then remapped onto a spatial grid, or calcu-

lated directly within a Eulerian framework. Dissipation algorithms are also introduced

in order to help capture shocks (super-sonic motion) in the gas, although the fluids

studied here are universally sub-sonic.

PPM has been used extensively in different fluid dynamical problems, including

numerous stellar hydrodynamic applications. Examples of recent studies that have

used PPM to model stellar fluids are: Woodward, Herwig and Lin (2015); Cristini

et al. (2016a); Jones et al. (2017). A more complete, but non-exhaustive list of studies

which have utilised PPM is given in Appendix B.1.

3.4 The PROmetheus MPI code

The Prometheus MPI (prompi; Meakin and Arnett 2007b; where MPI is an acronym

for message passing interface) code is a finite-volume, time explicit, Eulerian, PPM

implementation of Colella and Woodward (1984) derived from the legacy astrophysics

code prometheus (Fryxell, Müller and Arnett, 1989). prompi utilises domain decom-

position in order to be parallelised over multiple processors. Communication between

computational nodes is handled by MPI. prompi solves the Euler equations (inviscid

approximation), given by:

𝜕𝜌

𝜕𝑡
+∇ · (𝜌v) = 0 (3.4.1a)

𝜌
𝜕v

𝜕𝑡
+ 𝜌(v ·∇)v = −∇𝑝+ 𝜌g (3.4.1b)

𝜌
𝜕𝐸𝑡

𝜕𝑡
+ 𝜌(v ·∇)𝐸𝑡 +∇ · (𝑝v) = 𝜌v · g + 𝜌(𝜖𝑛𝑢𝑐 + 𝜖𝜈) (3.4.1c)

𝜌
𝜕𝑋𝑖

𝜕𝑡
+ 𝜌(v ·∇)𝑋𝑖 = 𝑅𝑖 (3.4.1d)

where 𝐸𝑡 is the total energy, 𝑅𝑖 is the rate of change of a nuclear species 𝑖, and the

remaining variables have their usual meaning. These equations are solved within the

ILES paradigm, where dissipation below the grid scale is implicitly implemented as

the leading order term in the truncation errors; this is due to the discretisation of the

Euler equations.
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Domain boundary conditions are implemented for each dimension of the geometry.

For a Cartesian geometry, a reflective32 boundary condition is used in the vertical

direction and periodic33 boundary conditions are used in the horizontal directions. In

the case of reflective boundary conditions, the velocities are damped near the domain

boundaries either through an exponentially decaying or sinusoidal function. To ensure

that structural changes within cells are temporally resolved, the time-step should be

shorter than the local sound crossing time across the cell. prompi therefore employs

a time-step that is in accordance with the CFL condition with a Courant factor of 0.8.

prompi also calculates Reynolds averages of 106 quantities during each calculation,

removing the need for any post-process averaging of the raw data. Spatial averages are

taken in the horizontal directions (𝑦 and 𝑧 coordinates in the cubic Cartesian geometry)

and running temporal averages are updated between each data output write sequence.

3.4.1 Micro-physics

The base hydrodynamics solver in prompi is complemented by various implementations

of micro-physics.

Nuclear reaction network

A 25 isotope nuclear reaction network is included. These isotopes are: 1H; 4He; 12C;

16O; 20Ne; 23Na; 24Mg; 28Si; 31P; 32,34S; 35Cl; 36,38Ar; 39K; 40,42Ca; 44,46Ti; 48,50Cr; 52,54Fe;

and 56Ni. Reaction rates are calculated using data from Rauscher and Thielemann

(2000). Energy generation due to nuclear burning can then be calculated using these

rates, or alternatively, estimated through a volumetric parameterisation of the main

nuclear interaction branches (see e.g. S5.1).

Equation of state

The Helmholtz EOS (Timmes and Arnett, 1999; Timmes and Swesty, 2000) is used

to describe the thermodynamic state of the plasma. Input variables are: temperature;

density; average atomic mass; and average atomic number. Output variables include:

32The fluid flow has an elastic collision with the computational domain boundary.

33The fluid flow exits one side of the computational domain and enters through the opposite side of
the computational domain along the same dimension.
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pressure; total energy; entropy; many thermodynamical derivatives; and other useful

quantities such as the local sound speed. This EOS assumes a Planck distribution

of photon energies; an ideal gas of ions; and an electron-positron gas with arbitrary

degrees of relativity and degeneracy. Corrections to the Coulomb potential (due to

effects such as electron screening) are also included and implemented according to the

work by Yakovlev and Shalybkov (1989).

Other physics

Self-gravity can be included for a variety of different geometries, and the effects of grav-

ity perturbations are ignored under the Cowling approximation (𝑔′ = 0). Self-gravity

is not included in the models presented here, but instead the gravitational acceleration

is parameterised over the radius. The advection of multi-species fluids is also included.

Opacities can be calculated analytically, by assuming Thomson scattering or more ac-

curately interpolated given the density and temperature from data tables provided by

the OPAL group (Kurucz, 1991; Iglesias and Rogers, 1996). The resulting diffusive

flux of radiative energy throughout the plasma can also be calculated. In these mod-

els however, radiation transport is not considered as the convective heat transport is

almost purely adiabatic. Convective heat transport is initiated in the model through

small, random and equal perturbations in temperature and density. The loss of energy

due to escaping neutrinos is parameterised using the analytical formula34 provided by

Beaudet, Petrosian and Salpeter (1967). This includes all of the relevant neutrino pro-

duction processes: pair creation reactions; Compton scattering; and plasma neutrino

reactions (see e.g. Fig. 3.1).

34The formula for the specific energy generation rate for neutrino cooling is:

𝜖𝜈 =
1.590× 1014𝜆8

2(1 + 25.22𝜆)
+

21.6𝜌2𝜆2

𝜌+ 8.6× 105
(1 + 2.215× 10−6𝜉2)𝑒−4.5855×10−3𝜉

+ 4.772× 102𝜆2𝜌 𝑒−2.5817×10−5𝜌2/3𝜆−1

,

where 𝜆 = 𝑘𝐵𝑇/𝑚𝑐2 and 𝜉 = 𝜌1/3𝜆−1.
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Chapter 4

Parameter study of convectively

unstable regions in a 15M⊙ stellar

model

4.1 Motivations and methodologies

Convective boundary locations and convective boundary mixing has always been a well

researched area within stellar evolution. This is because the extent of the convective

region determines important aspects of the evolution, such as the lifetime of a burning

phase and the mass of the core below the shell burning regions. This is particularly

important for the final core masses in supernova progenitor models, but has also been

shown to have importance in the onset of novae35 and the propagation of flame fronts

in degenerate cores. The correct choice of prescriptions for the extent of convection

in stellar evolution codes, has always been a topic of debate and has been specifically

questioned by several authors.

Renzini (1987) discusses the improper use of MLT and penetrative convection (re-

ferred to as overshooting). He reminds the reader that the mixing length in MLT, is the

average length scale for the size of convective elements and also the average distance

convective elements will travel before dissipating. Penetrative convection beyond the

35Novae occur when a white dwarf in a binary system with a low mass star accretes a critical amount
of mass. Once this mass is reached, the temperatures are high enough for the CNO cycle to operate.
As the matter is degenerate, this heating continues without expansion until the Eddington luminosity
is reached, whereby the ignited layers are ejected, and the process can eventually recur.
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convective boundary location is usually taken up to a distance of around 10% or 20%

of a pressure scale height, i.e. a small fraction of the size of the convective elements

which are penetrating the stable region. This leads to a physical limitation of the MLT,

in that detailed information of the extra mixing processes that occur at the boundary

of the order of a fraction of a pressure scale height, cannot be attained if the resolving

power of the theory (the length-scale over which convective heat transport occurs) is

of the order of one pressure scale height.

Gabriel et al. (2014) comment on the incorrect identification of the mass coordinate

of the convective boundary, through two common methods used in stellar evolution

codes. They show that a spherical convective boundary, can be defined as the position

where the radial velocity, convective flux and kinetic energy flux are all zero, due to the

absence of radial convective motions and the overturning of the flow. Correspondingly,

the total flux at the boundary is equal to the radiative flux; this fact can be used

in stellar models to determine the convective boundary position. However, due to

the discretisation of the problem, the exact mass coordinate where the luminosity is

entirely radiative must be obtained through interpolation, and this interpolation should

be carried out from within the convective region. If the interpolation is carried out from

the radiative side of the boundary, then the inferred mass coordinate of the boundary

will be incorrect, and leads to an over-prediction of the core mass (Castellani, Giannone

and Renzini, 1971).

A more common method of identifying the mass co-ordinate of the boundary is by

searching for a change in sign of ∇𝑟𝑎𝑑 −∇𝑎𝑑 (Schwarzschild criterion; Eq. 2.1.14), and

then interpolating to the exact mass coordinate where this function is zero. Again, if

this interpolation is carried out on the radiative side of the boundary this will result

in either an under-estimated or over-estimated mass for the convective region.

Viallet et al. (2015) do not point out the incorrect use of prescriptions for deter-

mining convective boundary locations, but instead suggest specific prescriptions for

different mixing regimes within stars, based on the Péclet number (see S4.2). The

various regimes and suggested implementations are discussed in S2.1.3.

An uncertainty between stellar models of the same mass has also been demon-

strated, due to the use of different prescriptions for the extent of convective instabil-

ity. Martins and Palacios (2013) show a large uncertainty in the post main sequence
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evolution of six stellar models of a 20M⊙ star from different codes. While Georgy,

Saio and Meynet (2014) demonstrate the differences that arise when using either the

Schwarzschild or Ledoux criteria to determine the extent of the intermediate hydrogen

burning shell in a massive star. They show the onset of core helium burning is delayed

in the case that uses the Ledoux criterion, and the mass and position of the interme-

diate hydrogen burning shell is also changed, which in turn affects the morphology of

the convective envelope.

The above demonstrates that there are many uncertainties on how the convective

boundaries should be treated in 1D stellar evolution codes. This further confirms that

the use of 3D hydrodynamical simulations is required in order to accurately follow the

fluid flow, instabilities and mixing processes that occur in stars from first principles.

This area is explored in this thesis by evolving a 3D hydrodynamical model using

a 1D stellar evolution model as the initial conditions (S5 and S6). In order to decide

which convective phase was best suited to study, given the available resources (physical

time and CPU time), a parameter study on the various convective boundaries that

appear during the evolution of a 1D stellar evolution model was performed. As well

as providing insight into which boundaries are most suited for a 3D hydrodynamical

study, this parameter study can help identify possible trends over the stellar lifetime.

4.2 Results and discussions

A 15M⊙, solar metallicity, non-rotating stellar model was chosen to perform the pa-

rameter study. This stellar model was evolved using GENEC (S3.2), up to the end

of the oxygen burning phase. All the convective boundaries that were present during

the model were analysed, including convective cores and shells36, with the exceptions

of the hydrogen and neon burning shells and the convective envelope37. The structure

was analysed at the start, maximum mass extent (for all cores except hydrogen and

helium) and the end of each burning phase. Fig. 4.1 shows the evolution of the con-

36Convective shells appear at higher mass co-ordinates than cores and usually ignite after the
extinction of the related core burning region.

37These shells were not included as their structure was complicated, and the envelope was not
included as only deep interior convection was of interest.
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Log( )

Figure 4.1: Convective structure evolution (Kippenhahn) diagram of a 15M⊙ stellar
model up to the end of oxygen burning. The interior mass is plotted on the vertical axis
in units of solar masses and the log of the time remaining until the predicted collapse of
the star in units of years is on the horizontal axis. Coloured areas represent convectively
unstable regions, with the corresponding labels denoting the nuclear species that serves
as fuel in the most dominant nuclear reaction. There is no nuclear burning in the
envelope; convection arises due to the opacity of the material (see S1.2.1). Note that,
these plots are produced by drawing blue vertical lines which represent convectively
unstable regions at various time-steps of the model. Thus, the vertical white lines at
‘time left until core collapse’ ∼ 4 and other times are a consequence of the plotting
technique, hence the regions between neighbouring blue lines remain convective.
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vective mass structure of the stellar model (see also Fig. 4.5). The nuclear species that

serves as fuel in the most dominant nuclear reaction is annotated for the majority of

the convective regions.

The following quantities were considered to be informative of the structure and

evolution of the various convective regions within the model: the gravitational accel-

eration; convective velocity; MLT velocity (Eq. 2.1.23); buoyancy jump (Eq. 2.2.9);

pressure scale height (Eq. 2.1.8); total luminosity; mean molecular weight (Eq. 2.1.2);

and the number of convective turnovers. Several important dimensionless numbers

were also calculated: the bulk Richardson number (Eq. 2.2.8); Mach number (Eq.

4.2.4); Péclet number (Eq. 4.2.5); and Damköhler number (Eq. 4.2.7). Except for the

bulk Richardson number and total luminosity all of the quantities were mass averaged

over the convective region. The total luminosity was taken as the peak radial value

and the bulk Richardson number is a property of each boundary. The mass average of

a quantity 𝐴 is defined as:

𝐴avg =

√︃
1

𝑚2 −𝑚1

∫︁ 𝑚2

𝑚1

𝐴2(𝑚) 𝑑𝑚, (4.2.1)

where 𝑚1 and 𝑚2 are the masses at the lower and upper convective boundaries, re-

spectively.

The convective velocity is estimated from the convective flux and is given by (Ar-

nett, 2016):

𝑣𝑐 =

(︂
𝐹𝑐

𝜌

)︂ 1
3

, (4.2.2)

where 𝐹𝑐 is the convective flux. The approximate number of convective turnovers

during each burning phase is estimated according to:

𝑁𝑡 =
𝜏𝑏𝑢𝑟𝑛
𝜏𝑐

(4.2.3)

where 𝜏𝑏𝑢𝑟𝑛 is the approximate lifetime of each burning phase and 𝜏𝑐 is the convective

turnover time.

The flow speed and sound speed, 𝑐𝑠, are needed to calculate the Mach number. The

convective velocity was used for the former, and the latter was calculated using the
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Helmholtz EOS (S3.4.1). The Mach number is

Ma =
𝑣𝑐
𝑐𝑠
. (4.2.4)

The Péclet number (Pe) is defined as the ratio of heat transfer through conduction,

to heat transfer through advective motions, using characteristic time-scales for each

process. In the stellar case, thermal diffusion dominates over molecular diffusion. For

the deep interior, conductive heat transfer plays a minor role, so typically Pe ≫ 1. The

Péclet number was determined from a ratio of diffusivities using the following formula:

Pe =
3𝐷𝑚𝑙𝑡

𝜒
, (4.2.5)

where 𝐷𝑚𝑙𝑡 is the diffusion coefficient determined from MLT (Eq. 2.1.2) and 𝜒 is

the thermal diffusivity, defined as

𝜒 =
16𝜎 𝑇 3

3𝜅 𝜌2 𝑐𝑝
(4.2.6)

where 𝜅 is the opacity and 𝑐𝑝 is the specific heat at constant pressure.

The Damköhler number (Da) is defined as the ratio of the advective time-scale

to the nuclear reaction time-scale. Generally, this is a small value in deep convective

regions as the time-scale for nuclear reactions is long, but during the advanced stages

of massive star evolution the two time-scales can become comparable. The Damköhler

number was determined using the following formula:

Da =
𝜏𝑐
𝜏𝑛𝑢𝑐

=

(︂
2ℓ𝑐𝑧
𝑣𝑐

)︂(︂
𝜖𝑛𝑢𝑐
𝑞𝑋𝑖

)︂
, (4.2.7)

where ℓ𝑐𝑧 is the height of convective region, 𝑞 is the specific energy released for the

dominating reactions, 𝑋𝑖 is the mass abundance of the interacting particle and 𝜖𝑛𝑢𝑐 is

the nuclear energy generation rate.

One additional key property of the advanced convective regions in massive stars

is the radial extent (see Fig. 4.2 and the radial contours in Fig. 4.5). It is often

easier to express the extent of the convective regions in terms of an average of the

pressure scale height over the convective region. For the mass range that was considered

(15M⊙), such deep convective regions typically span only a few pressure scale heights
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Figure 4.2: Initial (top panel) and final (bottom panel) core properties of different
burning phases: hydrogen (blue); helium (red); carbon (green); neon (black); and
oxygen (magenta). From left to right along the horizontal axis are: the bulk Richardson
number (normalised by 100); core radius normalised by the mass averaged pressure
scale height in the core; mass averaged Mach number within the core (normalised by
10−3); and the estimated number of turnovers for the entire phase (normalised by 106).
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(0.2 − 5). Consequently, convective motions might be expected to resemble at least

some characteristics of the classical description of convective rolls38 proposed by Lorenz

(1963), a hypothesis that shows some validity according to the results of Arnett and

Meakin (2011b).

The above quantities are summarised throughout Tables 4.1 and 4.2 and Figs. 4.2

- 4.4. It is important to note that these quantities are only approximations to the

physical case and thus should only be used as order of magnitude estimates.

From Table 4.1, it can be seen that the general trend is for the gravitational ac-

celeration, peak luminosity and mean molecular weight to increase as the star evolves.

The gravitational acceleration ranges from around 105 cm s−2 in the early stages to

around 109 cm s−2 during the later stages. The peak luminosity ranges from around

5×1037 erg s−1 during the start of helium core burning up to 2×1044 erg s−1 at the end

of neon core burning. The mean molecular weight ranges from 0.627 at the start of

core hydrogen burning up to 1.92 at the end of oxygen shell burning. These increasing

trends are due to the centre of the star becoming denser as the star evolves. In turn,

this leads to higher temperatures (and therefore luminosities), which facilitates the

fusion of heavier nuclei (thermal kinetic energy overcomes the Coulomb potential bar-

rier), resulting in an increase in the mean molecular weight. The general trend for the

pressure scale height is a decrease over the stellar lifetime. It ranges from 5× 1010 cm

during core hydrogen burning down to 1 × 108 cm during shell oxygen burning. This

decreasing trend is a result of the increase in pressure and its radial gradient as the

interior regions become denser, and therefore the distance between pressure e-foldings

becomes shorter (a smaller pressure scale height).

From Table 4.2 it can be seen that the general trend is for the convective velocities

and the Mach, Péclet and Damköhler numbers to increase as the star evolves. The

convective velocities range from about 5×104 cm s−1 during the early phases, to several

times 106 cm s−1 during the advanced phases. The Mach number ranges from a few

times 10−4 (values lowest for helium and carbon burning) to close to 10−2. Note that,

the Mach number may still increase further during silicon burning as the core region

becomes denser, and also during the early collapse as found by Müller et al. (2016).

38These are two-dimensional global convective motions induced by buoyancy, which represent the
rolling of matter.
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Phase g (cm s−2) L (erg s−1) H𝑃 (cm) 𝜇

H Core Start 8.7×104 7.5×1037 5.1×1010 0.627
H Core End 9.0×104 1.5×1038 3.6×1010 1.21

He Core Start 1.8×106 4.6×1037 5.1×109 1.36
He Core End 2.4×106 1.2×1038 4.2×109 1.71

C Core Start 4.3×107 5.9×1038 8.9×108 1.77
C Core Max 4.6×107 5.6×1038 8.3×108 1.78
C Core End 5.0×107 6.1×1038 8.8×108 1.87

Ne Core Start 4.8×108 1.7×1043 2.3×108 1.81
Ne Core Max 4.1×108 1.4×1044 2.1×108 1.83
Ne Core End 4.2×108 2.1×1044 2.1×108 1.83

O Core Start 4.5×108 5.2×1042 2.3×108 1.84
O Core Max 5.0×108 7.4×1042 2.0×108 1.86
O Core End 5.1×108 3.1×1042 2.5×108 1.91

He Shell Start 7.4×107 5.2×1039 5.5×108 1.76
He Shell End 7.2×107 1.6×1039 6.3×108 1.74

C Shell Start 2.3×108 2.0×1041 2.5×108 1.8
C Shell IC𝑎 2.0×108 1.0×1041 2.8×108 1.8
C Shell End 2.1×108 3.3×1040 2.9×108 1.8

O Shell Start 1.3×109 1.6×1041 1.2×108 1.88
O Shell End 1.5×109 3.7×1042 1.0×108 1.92

𝑎 Properties of the 1D model used as initial conditions for the 3D simulations.

Table 4.1: Gravitational acceleration (cm s−2), luminosity (erg s−1), pressure scale
height (cm) and mean molecular weight at different times during core and shell burning
phases of a 15M⊙ stellar model. Except for the luminosity which is the peak value, all
other values were mass averaged over the convective region.
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Phase 𝑣𝑐 (cm s−1) RiB Ma Pe Da

H Core Start 6.9×104 1.8×102 9.3×10−4 ∼ 103 3.8×10−8

H Core End 9.7×104 1.1×102 1.5×10−3 ∼ 103 7.2×10−7

He Core Start 4.7×104 1.2×103 4.3×10−4 ∼ 104 1.8×10−7

He Core End 5.9×104 3.8×102 5.1×10−4 ∼ 105 3.0×10−6

C Core Start 6.9×104 7.2×103 3.0×10−4 ∼ 106 3.4×10−6

C Core Max 5.6×104 1.2×104 2.4×10−4 ∼ 107 1.2×10−5

C Core End 5.8×104 3.9×102 2.4×10−4 ∼ 107 1.8×10−5

Ne Core Start 1.5×106 82 3.9×10−3 ∼ 1010 3.3×10−3

Ne Core Max 6.4×105 3.6×102 1.9×10−3 ∼ 1010 5.5×10−3

Ne Core End 4.1×105 62 1.1×10−3 ∼ 1010 2.6×10−3

O Core Start 8.8×105 2.4×102 2.2×10−3 ∼ 1010 6.3×10−4

O Core Max 7.9×105 8.5×104 2.0×10−3 ∼ 1010 2.4×10−3

O Core End 7.5×105 27 1.8×10−3 ∼ 1010 2.0×10−3

He Shell Start 1.4×105 46 ( 20 ) 8.9×10−4 ∼ 106 5.7×10−8

He Shell End 1.3×105 14 ( 1.8×103 ) 9.1×10−4 ∼ 106 1.0×10−7

C Shell Start 3.6×105 4.2×102 ( 6.0×103 ) 1.3×10−3 ∼ 108 1.3×10−4

C Shell IC𝑎 2.9×105 6.9×102 ( 1.5×104 ) 1.2×10−3 ∼ 108 2.0×10−4

C Shell End 1.6×105 59 ( 6.5×104 ) 5.7×10−4 ∼ 107 1.3×10−4

O Shell Start 1.5×105 3.7×104 ( 4.0×104 ) 3.4×10−4 ∼ 1010 2.7×10−4

O Shell End 5.7×105 1.2×102 ( 3.4×104 ) 1.3×10−3 ∼ 1010 1.4×10−3

𝑎 Properties of the 1D model used as initial conditions for the 3D simulations.

Table 4.2: Estimates of the convective velocity (cm s−1), Bulk Richardson number,
Mach number, Péclet number and Damköhler number of different times during core
and shell burning phases of a 15M⊙ stellar model. Bulk Richardson numbers are
boundary values, brackets indicate values at the lower boundary, all other values were
mass averaged over the convective region.
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The Péclet number is always much larger than one, with a minimum of around 1000

during hydrogen burning and up to 1010 during the advanced phases. Radiative effects

may still dominate at smaller scales. One can define a length scale, ℓ𝑑 where eddies of

this size would be strongly affected by thermal diffusion (Viallet et al., 2015). Within

the entrainment regime, this length scale is small and close to the Kolmogorov length

scale. Viallet et al. (2015) categorise the early stages of stellar evolution to be within

a ‘penetrative regime’ where this length-scale is much larger, therefore the convective

boundary layer consists of a well mixed nearly adiabatic layer above which a layer

dominated by thermal diffusion lies. As mentioned in S1.5.2, for most of the convective

phases the evolutionary (or nuclear) time-scale is much larger than the advective time-

scale (Da ∼ 10−7 for hydrogen burning). Only during the later stages of evolution do

these time-scales become closer (Table 4.2; Da > 10−4).

From Fig. 4.2 it can be seen that the radial extent is on the order of a few pressure

scale heights for each burning region, and does not change significantly during their

evolution. The number of convective turnovers during hydrogen and helium burning

is roughly the same, but decreases as the star evolves through the advanced burning

phases. This is due to a very large increase in the number of plasma neutrinos produced

during the advanced phases, in combination with increased energy generation rates.

This leads to shorter evolutionary time-scales and faster extinction of the convective

region (see also Arnett, 1996, pg. 284 - 292).

4.2.1 Convective boundary evolution

Another important result relates to the bulk Richardson number (RiB). In order to

approximate RiB from a 1D model, its defining quantities must be substituted with

quantities from a stellar model that are physically analogous. The integration distance,

Δ𝑟, is not well defined theoretically but it should be large enough to capture the

dynamics of the boundary region and the distance over which the fluid elements are

decelerated. The integration length, Δ𝑟, is hence taken to be one quarter of the local

pressure scale height. As the integral length scale, ℓ, is often taken to be the horizontal

correlation length and Meakin and Arnett (2007b) show that the horizontal correlation

length scale and pressure scale height are similar to within a factor ∼ 3, I approximate
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Figure 4.3: Structure properties of the start of core hydrogen burning as a function
of radius (0.3% of fuel burnt). Top panel - Buoyancy jump (Δ𝐵; magenta) and its
components, thermal (Δ𝐵(𝑁2

𝑇 ); blue dashed) and compositional (Δ𝐵(𝑁2
𝜇); red dashed)

and gravitational acceleration (𝑔; green). Second panel - Pressure scale height (𝐻𝑃 ; red)
and bulk Richardson number (Ri𝐵; green diamond). Third panel - Convective (𝑣𝑐; red),
mixing length theory (𝑣𝑚𝑙𝑡; green) velocities and Mach number (Ma; blue). Bottom
panel - Luminosity (𝐿; magenta) and mean molecular weight (𝜇; cyan). Vertical black
lines represent radial positions of convective boundaries.
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Figure 4.4: Structure properties of the end of core hydrogen burning as a function of
radius (90.5% of fuel burnt). Curves, colours and lines are the same as in Fig. 4.3.
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the integral scale as half of the local pressure scale height. The RMS turbulent velocity

is approximated as the convective velocity, 𝑣𝑐, as this is one of only two choices (the

other being the mixing length velocity) for the flow velocity in 1D stellar evolution

models.

A key factor in the RiB is the buoyancy jump at the boundary (Eq. 2.2.9) which

has contributions from both entropy and mean molecular weight (𝜇) gradients. At the

start of burning stages, the entropy gradient or thermal component of 𝑁2 dominates

(e.g. see top panel of Fig. 4.3). However, as nuclear burning proceeds, the 𝜇 gradi-

ent increases and this compositional component starts to dominate over the thermal

component. Even during the hydrogen burning phase where the convective core con-

tinuously recedes, the 𝜇 gradient ultimately dominates over the thermal component.

This can be seen in Fig. 4.4, where at the end of core hydrogen burning, the molecular

weight has risen due to the production of a helium rich core. This leaves behind a

large molecular weight gradient, due to the recession of the core revealing previous

mixing signatures. The jump in buoyancy across the boundary is due mainly to this

large compositional gradient, and acts as a barrier against CBM. The magnitude of

the buoyancy jump increases during the evolution of the core, resulting in a stiffening

of the boundary as shown by an increase in RiB.

During the advanced burning stages (C, Ne, O, and Si burning), the convective core

grows throughout most of each stage and the boundary becomes stiffer as 𝜇 gradients

increase. As the end of the burning stage is approached, the convective regions recede

and the boundary stiffness decreases as the 𝜇 gradient is weakened. These trends can

explain the evolution of RiB observed in the model (see Table 4.2).

Comparing values of RiB between all of the different phases, it was found in general

that the boundary was at its stiffest during the maximum mass extent of the convective

cores and the start of the convective shells. The boundaries were softest at the very end

of each burning stage. The values estimated for the RiB for core carbon and oxygen

burning agree well with the trend described above. The evolution of RiB for the other

core burning stages, however, does not necessarily follow the same trend. This is

partly due to the fact that it is not straightforward to estimate RiB from a 1D model.

In particular, it is not easy to define the integration length, Δ𝑟 in Eq. 2.2.9 which

is used to calculate the buoyancy jump over the boundary. Estimates were used for
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this integration length, the turbulent velocity and the integral scale in the calculation

of Ri𝐵, which produces some inaccuracies. The numerical values for Ri𝐵 presented in

Table 4.2 should therefore be taken with caution and only as estimates. Nevertheless

the values of Ri𝐵 between different phases of a burning stage are comparable (as the

same approximations are used in each case).

RiB and thus the character of stellar convective boundaries, can be expected to

vary significantly during the course of stellar evolution. This is an indication that a

globally applicable and predictive model for CBM could be developed for use in stellar

evolution models, which would depend a priori on RiB.

Interestingly, the lower boundaries of the convective shells, are consistently found

to be stiffer than the upper boundaries. This has important implications for astro-

physical phenomena that involve CBM. For example, Denissenkov, Herwig, Bildsten

and Paxton (2013) showed that MESA models of novae, do not produce the observed

ejecta associated with novae unless some CBM is included at the interface between the

carbon-oxygen white dwarf and the accreted hydrogen envelope. They observe that

this interface is stiff, a similarity with the lower boundary of convective shells in mas-

sive stars. Therefore, the RiB may not only form a predictive model for CBM during

massive star evolution, but also may be important for the modelling of nova explosions.

Jones et al. (2013) demonstrate that the transition masses for super-AGBs ending

their lives as either electron-capture supernova (EC-SN) or core-collapse supernova

(CC-SN) are shifted when CBM is included in their stellar evolution models, due to an

increase in the convective core size. The relative increase in stiffness at lower convective

boundaries of shells compared to the upper boundaries, could also affect the dynamics

of flame front propagation in these models, further affecting their predicted end-points.

Denissenkov, Herwig, Truran and Paxton (2013) reveal that when including CBM,

the propagation of a carbon burning flame (see S1.1.2) is quenched throughout the

carbon-oxygen core of a super-AGB model. This could have important consequences

for type Ia SNe, as this opens up another channel for single degenerate progenitors.

The amount of un-burnt carbon that is left in these models depends on the CBM

prescriptions used, and so the stiffness of the lower boundary of the carbon shell would

therefore directly affect the amount of CBM that occurs.
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4.2.2 Carbon shell burning

The second carbon shell (shown in Fig. 4.5 at mass coordinate ∼2M⊙) was chosen as

the convective region to study in greater detail using 3D hydrodynamic simulations.

Structural properties and some useful dimensionless numbers are presented for the

carbon shell in Table 4.3.

The carbon shell is an interesting choice for the following reasons, in addition to the

fact that (at the time of writing) it has not been studied before in detail. It is the first

neutrino-cooled burning shell, thus allowing radiative diffusion to be neglected (large

Péclet number) and hence simplifying the numerical model. Earlier phases of stellar

evolution are harder to simulate, as they are generally characterised by very small

Damköhler numbers (slow burning) and very low convective Mach numbers (slow mix-

ing). The carbon shell is characterised by a larger Damköhler number than these

earlier, radiatively cooled stages, helping to alleviate the computational cost. The

initial composition and structural profiles are also simpler than those of the more ad-

vanced stages. This is a result of the region in which the shell forms, being smoothed by

the preceding convective helium-burning core. As carbon burning is the first neutrino

dominated phase of nuclear burning, it plays an important role in setting the size of

the heavy element core which subsequently forms and in which the core-collapse event

will take place. Finally, the choice of the carbon shell (as opposed to the core) affords

the study of two physically distinct convective boundaries rather than just one.

The structural properties of the second carbon shell at a time where it has burnt

31% of its fuel is summarised in Fig. 4.6. Here it can be seen that the lower convec-

tive boundary (∼ 0.9 × 109) is stiffer, according to the value of RiB, than the upper

convective boundary (∼ 2.3× 109).
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Figure 4.6: Structure properties of carbon shell burning as a function of radius (at
31% of the shell’s lifetime). Central regions between vertical black lines are convective,
areas outside of these lines are convectively stable. Curves, colours and lines are the
same as in Fig. 4.3.
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Chapter 5

Implicit large eddy simulations of a

carbon burning shell and their

dependence on resolution

5.1 Physical model set-up

3D hydrodynamical simulations have been computed using the prompi code, as de-

scribed in S3.4. Models were evolved from initial conditions provided by a stellar model

snapshot of the start of carbon shell burning (see Fig. 4.5) within a 15M⊙ star (see

S4.2.2). The fluid flow is then solved for using the inviscid Euler equations (Eqs. 3.4.1a

- d). While there is evidence that magnetic fields will be generated in deep interior

convective regions (e. g. Boldyrev and Cattaneo, 2004) and that rotational instabilities

(e. g. Maeder et al., 2013) may play an important role in shaping convection, it was de-

cided to focus purely on the hydrodynamic problem in the current study, which remains

a problem of significant complexity with many outstanding issues, such as unresolved

convective boundary regions.

Energy generation during carbon burning proceeds mainly via fusion of two 12C

nuclei. For stellar conditions, considering only the main exit channels (𝛼 and 𝑝 chan-

nels) will result in no significant errors (Arnett, 1996). The 𝑛 exit channel branching

ratio is only 𝑏𝑛 = 0.02. Thus, for this study, its effect on the energy generation is

neglected and only the 𝛼 and 𝑝 channels are considered. Rather than calculating the

reaction rates through interpolation of reaction rates from tables in the literature (e.g.
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the REACLIB database; Cyburt et al. 2010), the carbon burning energy generation

rate was estimated using a slightly modified version of the parameterisation given by

Audouze, Chiosi and Woosley (1986); Maeder (2009):

𝜖12𝐶 ∼ 4.8× 1018 𝑌 2
12 𝜌 𝜆12,12, (5.1.1)

where 𝑌12 = 𝑋12𝐶/12, 𝑋12𝐶 is the mass fraction of 12C, 𝜆12,12 = 5.2 × 10−11 𝑇9
30 and

𝑇9 = 𝑇/109. This approach is simpler than the former and more computationally

efficient. Additionally, only the abundance of 12C needs to be followed when using

this parameterisation. There are thus only three compositional variables required for

the model: the abundance of 12C; the average atomic mass (𝐴); and average atomic

number (𝑍). The mean mass and charge are required for the EOS (S3.4.1) and to

represent the mean properties of all other species besides 12C. Thus the composition

is an active scalar, coupled through the EOS and composition transport. A further

simplification of the simulations is that the change of 12C abundance due to nuclear

burning is ignored because of its negligible rate of change relative to advective mixing

(i. e. the carbon shell is characterised by a small Damköhler number, Da ∼ 10−4,

see Table 4.2). The key important feature retained with this prescription of nuclear

burning is the interaction and feedback between the nuclear burning and hydrodynamic

mixing, while keeping computational costs to a minimum.

Cooling via neutrino losses is parameterised using the analytical formula provided

by Beaudet, Petrosian and Salpeter (1967) which includes all of the relevant processes:

pair creation reactions; Compton scattering; and plasma neutrino reactions. Other

neutrino production processes such as recombination and bremsstrahlung are not rel-

evant for typical carbon burning temperatures and densities.

5.1.1 The Computational Domain

Rather than simulate the star within a spherical geometry, a Cartesian geometry was

chosen. This was done by employing the plane-parallel approximation; the simulations

are therefore of the “box-in-a-star” type rather than a “star-in-a-box” type (see e.g.

Jones et al., 2017). The main advantage of adopting a Cartesian geometry under

83



Figure 5.1: The geometry of the computational domain. Gravity is aligned with the
x-axis. The blue region depicts the approximate location of the convectively unstable
layer at the start of the simulation while the surrounding green volumes depict the
locations of the bounding stably stratified layers.

the plane-parallel approximation, rather than a full spherical approximation is the

increased resolution available at the convective boundaries. This is important in this

study as the dynamics of mixing at the boundaries (and the boundaries themselves)

are the main focus. Utilising a Cartesian geometry with a plane-parallel approximation

rather than a spherical one also affords an increase in computational efficiency, as the

Courant time scale39 at the inner boundary of the domain will be eased.

The computational domain (for this box-in-a-star simulation) encompasses the con-

vective region of thickness, 𝑡, and is bounded either side by radiative regions of thick-

ness, 𝑡/2. The width of the computational domain is 2𝑡 in both horizontal directions;

this allows the formation of two large scale convective eddies within the convective

region. The geometry of the computational domain is illustrated in Fig. 5.1, where the

convective region is coloured blue and the stably stratified regions are coloured green.

The aspect ratio of the convective zone is 2:1 (width:height), and so a plane-parallel

39The models of this thesis are evolved explicitly in time with time-steps determined by the Courant
condition (Eq. 1.4.1), using a Courant factor of 0.8.

84



approximation is not ideal and is one major simplification of the set-up40. This geom-

etry allows for maximum effective resolution of the convective boundary regions but

high order modes may not be present in the simulation. In spite of this, when these

plane parallel simulations are compared to spherical simulations of the oxygen burning

shell (Arnett et al., 2015), the change in geometry seems to have no significant effect

on the velocity profiles and mean turbulent kinetic energy budget. On the other hand,

by not simulating the shell within a full sphere (4𝜋), some global convective motions

may be inhibited by the restricted geometry (e.g. Herwig et al., 2014, and references

therein), but as mentioned above this disadvantage is accepted in favour of maximum

effective resolution at the boundaries.

In order to study the convective region, and also stable region dynamics, the entire

convection zone and portions of the adjacent stable regions are included in the sim-

ulations. The mass and radial extent of the domain in relation to the stellar model

initial conditions are illustrated by the vertical red bars in Figs. 4.5 and 5.2, respec-

tively. The computational domain extends in the vertical direction from 0.42× 109 cm

to 2.30× 109 cm, and in the two horizontal directions from 0 to 1.88× 109 cm, see Fig.

5.1. The vertical mass extent of the computational domain is 0.4M⊙ < 𝑚 < 2.1M⊙.

During initial studies on the optimal aspect ratio for the computational domain, it was

found that an aspect ratio for the convection zone of 2:1 (horizontal:vertical) was the re-

quired minimum for unrestricted circulation of the turbulent fluid elements. An aspect

ratio of 3:1 did not change the morphology or circulation of fluid elements significantly.

The computational domain utilises reflective boundary conditions in the vertical di-

rection (x), with the assumption that beyond this boundary the same physical processes

exist. Periodic boundary conditions are used in the two horizontal directions (y, z) in

order to mimic the continued fluid flow over planes of constant height. Although the

material in the radiative regions is stable against convection, it has oscillatory gravity-

modes (e.g. Christensen-Dalsgaard, 2003) propagating from the convective boundary,

which are excited by the turbulence in the adjacent convection zone. In order to mimic

the propagation of these waves out of the domain, a damping region is employed that

extends radially 0.18× 109 cm above the lower domain boundary at 0.42× 109 cm (and

40In relation to the total radius of the star, which is 4.6× 1013 cm, the radial extent of the compu-
tational domain is 4× 10−3% of this.
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Figure 5.2: Structure evolution diagram of the 15M⊙ stellar model used as initial
conditions in the 3D hydrodynamic simulations, this is an expanded view of Fig. 4.5.
The horizontal axis is the time relative to the start of the 3D simulations (𝜏hydro). The
vertical axis is the radius (109 cm). Mass contours (in solar masses) are shown by black
lines and nuclear energy generation rate contours by coloured lines, brown corresponds
to 109 erg g−1 s−1, the remaining colours decrease by one order of magnitude. Blue
and pink shading represent regions of negative and positive net energy generation,
respectively. Grey shaded areas correspond to convective regions. The vertical red bar
indicates the relative start time and radial extent of the hydrodynamical 3D simulation.
The physical time of the simulation is on the order of 1 hour, still much shorter than
the time-scale of this plot.
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covers the entire domain horizontally). Within this region all velocity components

are reduced by a common damping factor, 𝑓 , resulting in damped velocities over the

computational domain, vd = 𝑓v. The damping factor is defined as

𝑓 = (1 + Δ𝑡 𝜔𝑓𝑑)
−1 , (5.1.2)

where 𝜔 = 0.01 and is a free scaling parameter; and 𝑓𝑑 = 0.5 cos (𝜋𝑟/𝑟0) + 1,

where 𝑟 is the radial position in the vertical direction (x-coordinate in this set-up) and

𝑟0 = 0.6×109 cm is the edge of the damping region in the vertical direction. The change

in internal energy due to the dissipation of the damped wave energy is not included,

as it is assumed that such effects are negligible on the overall energy budget41.

The vertical red bar in Fig. 5.2 (a zoom in of Fig. 4.5) shows the time at which

the simulations start and the vertical extent of the computational domain included in

the simulations. The horizontal axis represents the age of the star relative to the age

of the star at the start of the simulations. The chosen point in time corresponds to

the start of the carbon burning shell, where the shell is still growing in mass according

to the 1D stellar evolution model, and the large convective luminosity is driven by a

peak in nuclear energy generation of ∼ 109 erg g−1 s−1 at 0.9 × 109 cm. The physical

time of the 3D hydrodynamical simulations, however, is of the order of hours, much

shorter than the time-scale shown by the horizontal axis. Furthermore, the bottom

of the convective shell is stable over time (horizontal mass contour for 1.2M⊙ in Fig.

5.2). Thus, it is not expected that there will be any strong structural re-arrangements

that occur over the time-scale of the 3D simulations. This is also a justification for

excluding modelling of the gravitational acceleration evolution over the course of the

simulation (see S5.1.2 for details).

5.1.2 Initial Conditions and Runtime Parameters

The initial structure of the convective region can be seen through the entropy, buoy-

ancy and composition profiles in Fig. 5.3. The convective region is apparent through

the homogeneity of these quantities due to strong mixing, while the boundaries are

41Although not relevant for these models, Fuller et al. (2015) showed that internal gravity waves
excited by the convective shells in massive stars can increase core rotation rates and thereby reduce
the spin period of the post-supernova neutron star remnant.
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Figure 5.3: Top panel: Initial radial density (solid) and entropy (dashed) profiles.
Bottom panel: Initial radial buoyancy (solid) and composition (dashed) profiles. One
dimensional (1D) stellar evolution profiles calculated using genec (blue) are compared
with the same profiles integrated and mapped onto the Eulerian Cartesian grid in
prompi (red).
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defined by sharp jumps due to the placement of the convective boundary using the

Schwarzschild criterion (Eq. 2.1.14).

An initial hydrostatic structure in prompi was reconstructed from the entropy,

composition and gravitational acceleration profiles taken from the genec 1D model.

Stellar models do not have regularly spaced mesh points in the radial direction, given

the fact that they use a Lagrangian method which utilises adaptive mesh refinement.

The spatial resolution therefore can be quite coarse, especially at the convective bound-

aries. For this reason, the 1D genec entropy (𝑠), average atomic mass (𝐴) and average

atomic number (𝑍) profiles are first remapped onto a finer, uniform mesh before being

linearly interpolated onto the Eulerian grid in prompi. The details of this re-mapping

can be found in Appendix A.3. To ensure the re-mapped model is in hydrostatic equi-

librium and is thermodynamically self-consistent, the density 𝜌(𝑠, 𝑝, 𝐴, 𝑍) is integrated

along the new radial grid according to:

𝜕𝜌

𝜕𝑟
=

𝑑𝑠

𝑑𝑟

(︂
𝜕𝜌

𝜕𝑠

)︂
𝑝,𝐴,𝑍

+
𝑑𝑝

𝑑𝑟

(︂
𝜕𝜌

𝜕𝑝

)︂
𝑠,𝐴,𝑍

+
𝑑𝐴

𝑑𝑟

(︂
𝜕𝜌

𝜕𝐴

)︂
𝑠,𝑝,𝑍

+
𝑑𝑍

𝑑𝑟

(︂
𝜕𝜌

𝜕𝑍

)︂
𝑠,𝑝,𝐴

, (5.1.3)

the second term is simplified by enforcing hydrostatic equilibrium to within a tolerance

of 10−10, given by:

𝑑𝑝

𝑑𝑟
= −𝜌𝑔. (5.1.4)

For this plane-parallel geometry set-up, the gravitational acceleration is parame-

terised by a function of the form 𝑔(𝑟) = 𝐴/𝑟, with constant 𝐴 = 1.5× 1017 cm2 s−2. As

mentioned above, this is not expected to have any adverse effects on the model, as there

should not be any secular changes in the stellar structure on such a short time-scale

(. 104 s). The total derivatives 𝑑𝑠
𝑑𝑟
, 𝑑𝐴

𝑑𝑟
and 𝑑𝑍

𝑑𝑟
are calculated from the fitted profiles

introduced earlier. The partial derivatives 𝜕𝜌
𝜕𝑠
, 𝜕𝜌

𝜕𝑝
, 𝜕𝜌

𝜕𝐴
and 𝜕𝜌

𝜕𝑍
are calculated from the

Helmholtz EOS. The initial profiles (density, entropy, buoyancy and average atomic

mass) for the stellar model initial conditions (Fig. 5.3) were mapped onto the Eulerian

grid in prompi. There is good agreement between the 1D and 3D initial conditions.
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lrez mrez hrez vhrez

N𝑥𝑦𝑧 1283 2563 5123 1,0243

𝜏𝑠𝑖𝑚(s) 3,213 3,062 2,841 986 †

𝑣𝑟𝑚𝑠(cm/s) 3.76×106 4.36×106 4.34×106 3.93×106

𝜏𝑐(s) 554 474 471 513

𝑁𝑐 4.0 4.4 3.9 1.9

RiB 29 (370) 21 (259) 20 (251) 23 (299)

Ma 0.0152 0.0176 0.0175 0.0159

† If the initial transient time of the hrez model is also included, then the total physical time for this
model is 1966 s, as the vhrez model was restarted from the end of this phase in the hrez model.

Table 5.1: Summary of simulation properties. 𝑁𝑥𝑦𝑧: Total number of zones in the com-
putational domain (𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧); 𝜏sim: simulated physical time; 𝑣rms: global RMS
convective velocity; 𝜏𝑐: convective turnover time; 𝑁𝑐: number of convective turnovers;
RiB: bulk Richardson number (values in brackets are representative of the lower con-
vective boundary region); Ma: Mach number.

Carbon shell simulations

The carbon shell was simulated at four different resolutions named according to their

resolution: lrez - 1283, mrez - 2563, hrez - 5123 and vhrez - 10243, and their global prop-

erties are summarised in Table 5.1, which includes physical time simulated, resolution,

convective turnover time, as well as a variety of other physical parameters estimated for

the flows. Simulation time is typically measured relative to the number of convective

turnovers, where the convective turnover time, 𝜏𝑐, is given by Eq. 2.2.11. The four

simulations typically span 2 to 4 convective turnovers, following an initial transient

phase of around 1,000 s. By comparing the different simulations, the dependence of the

results on the numerical resolution can be tested. If the results vary significantly as

the resolution is increased, then this would suggest that the results are sensitive to the

numerics in some way. Whereas, if the results appear to converge to a common value

or trend over certain resolutions, then this would suggest the simulations are modelling

a physical process and that the results are independent of those resolutions.
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The vhrez model was restarted from the hrez model at 980 s, rather than begin-

ning with the stellar model initial conditions as in the other three simulations. This

approach (restarting one model from another) is achieved by duplicating every cell in

each direction, effectively representing the same physical model on twice the number of

grid points, hence, the new grid scale is halved, and the resolution doubled. The time

chosen to restart the hrez model at double the resolution is roughly coincident with

the beginning of the quasi-steady state, therefore removing the need to simulate the

transient phase, which is mostly converged (except for the peak in total kinetic energy)

when varying the resolution. Due to the limited number of computational resources

available for this study, the vhrez model could not be simulated for the desired number

of convective turnovers in order for any temporal averaging of the turbulent processes

to be statistically valid. As a result, this model is not included in any detailed analysis

but serves only as a higher resolution comparison to the other models.

Convection is seeded in these models through equal and random perturbations in

temperature and density in the same manner described by Meakin and Arnett (2007b).

They also show that the subsequent nature of the flow is independent of these seed

perturbations.

5.1.3 Problems with sustaining turbulence

During initial test calculations, it was apparent that turbulent motions were not being

sustained throughout the simulation following the initial transient phase. The following

discussion explores, heuristically, the modelling of turbulence on a discrete grid to

determine whether a computed flow will exhibit turbulence based on the spatial and

temporal discretisation used.

Spatial constraint of turbulence

A useful dimensionless number for determining the extent of turbulence in a simulation

is the effective Reynolds number. This is the discrete analogue of the Reynolds number

(Eq. 2.2.7). It is defined using the following arguments. From Eq. 2.2.3, one can state

the rate of energy dissipation at the extreme scales of the simulation, i.e. at the integral

scale and the grid scale. These energy dissipation rates are
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𝜖ℓ =
𝑣3𝑟𝑚𝑠

ℓ
and 𝜖Δ𝑥 =

Δ𝑢3

Δ𝑥
, respectively, (5.1.5)

where Δ𝑢 is the flow velocity across a grid cell; this velocity can also be used to

define an effective numerical viscosity at the grid scale

𝜈𝑒𝑓𝑓 = Δ𝑢Δ𝑥. (5.1.6)

For a turbulent system within a statistically steady state, Kolmogorov (1962)

showed that the rate of energy dissipation is equal at all scales; applying this equality

to Eq. 5.1.5 yields (with the use of Eq. 5.1.6)

𝜈𝑒𝑓𝑓 = 𝑣𝑟𝑚𝑠ℓ

(︂
Δ𝑥

ℓ

)︂4/3

. (5.1.7)

Assuming the integral scale is the size of the convective region, ℓ𝑐𝑧, then the effective

Reynolds number can be expressed as (to within a factor of 2)

Re𝑒𝑓𝑓 =

(︂
ℓ

Δ𝑥

)︂4/3

∼ 𝑁 4/3
𝑥 , (5.1.8)

where 𝑁𝑥 is the number of grid points in the vertical direction. In these simulations

this is a slight over-estimate as in the vertical direction only half of the grid points

represent the convective region.

Within the ILES paradigm the effective Reynolds number is therefore limited by

the momentum diffusivity42 at the grid scale (Eq. 5.1.6), and as demonstrated by Eq.

5.1.8 it is the choice of spatial zoning that sets a limit on the degree of turbulence.

This is essentially because the grid scale sets an effective Kolmogorov length-scale

which is larger than the physical one, therefore ‘shortening’ the inertial sub-range, and

reducing the ensemble of eddies with different sizes within this sub-range. The effective

Reynolds numbers of the current simulations (𝑁𝑥 = 128 − 1024) range from around

650 to 104, suggesting that the simulations with finer grids are within the turbulent

42The actual numerical dissipation of the PPM method is highly complex and non-linear (Sytine
et al., 2000); the higher resolution simulations presented here seem to capture the effective dissipation
accurately.
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regime43 (Re𝑒𝑓𝑓 & 1000).

Temporal constraint of turbulence

The peak energy generation rate, 𝜖𝑝𝑒𝑎𝑘, can be larger than the mean energy generation

rate, 𝜖, by a considerable factor, due to the strong temperature dependence. For

carbon burning, 𝜖𝑝𝑒𝑎𝑘 ∼ 40𝜖 (Arnett, 1996). This heating will induce buoyancy and

drive convective motion, which is turbulent, and will carry the super-adiabatic energy

down to the smaller scales where it is dissipated.

The turbulent velocity can be estimated using Eq. 2.2.1. For carbon burning,

𝜖𝑝𝑒𝑎𝑘 ∼ 109 erg g−1 s−1 and the integral scale can be approximated as the height of

the convective region (ℓ𝑐𝑧 ∼ 109 cm), thus, 𝑣𝑟𝑚𝑠 = (ℓ𝜖)1/3 ∼ 3 × 105 cm s−1, which

agrees with the value calculated by the stellar evolution model, given in Table 4.2.

The convective turnover time, 𝜏𝑐, is the time needed to establish the turbulent velocity

field (Meakin and Arnett, 2007b) following the initial perturbations in temperature

and density. Hence, it is the temporal constraint for modelling turbulence in these

simulations; for carbon burning the turnover time (using the velocity calculated above)

is 𝜏𝑐 ∼ 6.7 × 103 s. The maximum time step size is Δ𝑡𝑚𝑎𝑥 = Δ𝑥/𝑐𝑠, where the local

sound speed is approximately 𝑐𝑠 ∼ 4.5 × 108 cm s−1. Thus (adopting the number of

grid zones as 𝑁𝑥 = 2ℓ𝑐𝑧/Δ𝑥) the maximum time-step is Δ𝑡𝑚𝑎𝑥 = 2ℓ𝑐𝑧/𝑐𝑠𝑁𝑥 ∼ 4.4/𝑁𝑥.

This implies that the minimum number of time steps needed to establish a turbulent

flow (roughly one convective turnover time) is 𝑁Δ𝑡 ∼ 1.5× 103𝑁𝑥.

For the hrez zoning (512 3), the required number of time-steps equates to 7.7× 105,

which would have exceeded the available computer resource budget. The modelling of

smaller velocities therefore requires more time steps. One option to overcome this issue

is to scale the velocity up, by scaling the nuclear energy generation rate up. By scaling

the burning rate (energy generation) by a factor of 1000 (this only scales the velocity,

𝑣𝑟𝑚𝑠 ∝ 𝜖1/3 up by a factor of 10), the convective turnover time becomes 𝜏𝑐 ∼ 667 s, and

the minimum number of time-steps required to establish a turbulent flow decreases

to 𝑁Δ𝑡 ∼ 150𝑁𝑥. For a zoning of 512 3, this is ∼ 7.68 × 104 time-steps, which was

comfortably attainable given the available computational resources.

43This is supported by visual comparison of the simulations with experimental data (e.g. van Dyke,
1982).
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Boosting factor

The chosen boosting factor44,45 for the nuclear energy generation rate was 1000. This

boosting increases the flow velocity, 𝑣𝑟𝑚𝑠 (see Eq. 2.2.1), by a factor of 10. A key

advantage to this approach is that more convective turn-over times can be computed

for the same computational cost, but it does highlight an important sensitivity of the

hydrodynamic flow to the numerical set-up. Additionally, as the nuclear luminosity

has been boosted the neutrino losses contribute negligibly to the thermal evolution of

the model. Interestingly, the boosted nuclear energy generation rate is close to the

natural oxygen burning one (∼ 1012 erg g−1 s−1; Meakin and Arnett, 2007b).

5.2 Results and discussions

5.2.1 The Onset of Convection

All of the models represent some fraction of the inertial range. A similar representation

was demonstrated by Sytine et al. (2000) in their PPM simulations of homogeneous

turbulence on grids of sizes 643, 1283, 2563, 5123, 10243, see their Fig. 11. In this figure

they compute the velocity power spectra of the models and show their agreement with

Kolmogorov’s 𝑘−5/3 power law for the inertial range, where 𝑘 is the wave-number of

turbulent fluid elements. In order to independently test whether the prompi carbon

shell simulations correctly model turbulence (with the inclusion of an inertial range),

the velocity power spectra for the four models was computed in this thesis.

Turbulent velocity spectrum

In order to visualise the specific kinetic energy of the simulations over a range of

wave-numbers the velocity power spectra is calculated for the four models. This is

44In such simulations, the effect of such a boost in driving will not alter the thermal diffusion in
the model. This is because thermal diffusivity is negligible in comparison to the loss of heat through
escaping neutrinos produced in the plasma (Arnett, 1996, pg. 284 - 292), and so thermal diffusion
only becomes important at the sub-grid scale.

45An argument for why thermal diffusivity is also negligible in the boundary regions of the oxygen
burning shell (which would also apply to the boosted carbon shell) has been presented in Arnett et al.
(2015). They show that a large Péclet number leads to an adiabatic expansion of the convective
boundary.
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achieved by performing a horizontal 2D fast Fourier transform46 (FFT) of the vertical

velocity at a constant height, within the centre of the convection zone. The results

of this transform are presented in Fig. 5.4, where the square of the transform, 𝑉 2(𝑘),

is plotted as a function of the wave-number. These spectra are time-averaged over

several convective turnover times, and the 1D profile is obtained by binning the 2D

transform within the 𝑘𝑦−𝑘𝑧 plane, where 𝑘𝑦 and 𝑘𝑧 are the wave-numbers in the y and

z directions, respectively (𝑘𝑦, 𝑘𝑧 = 0, 2𝜋, 4𝜋, ..., 2𝜋(𝑁/2), where 𝑁 is the number of grid

points in one dimension, i.e. the resolution). A scaling of (𝑘5/3/𝑁𝑥) is applied, to allow

a visual determination of the inertial range shown by a 𝑘−5/3 power law (Kolmogorov,

1941). The inertial range is therefore represented by the roughly horizontal regions of

the profiles, for example, 𝑘 = 10 − 500 in the vhrez (green) simulation. This wave-

number range represents the scales within the simulation that are free from the effects

of the driving force, numerical dissipation, boundary conditions and initial conditions.

The steep decline in each model (500 < 𝑘 < 3000, for the vhrez model) represents

the dissipation of TKE at a rate that departs from the Kolmogorov 𝑘−5/3 scaling;

this is because at these length scales the numerical dissipation inherent to these PPM

simulations indirectly affects the flow. Porter, Woodward and Pouquet (1998); Sytine

et al. (2000) show that this is the case in their highest resolution simulations for up

to 16 and 32 cell widths, respectively. The same effect is observed at 𝑘 ∼ 500, which

corresponds to around 8 cell widths in the highest resolution simulation. At the end of

each profile there is a small ‘lip’ (i.e. the feature at 𝑘 ∼ 3000 in the vhrez simulation)

which represents the wave-number of the grid-scale. The discretisation of the profiles

produces this feature due to the sudden increase in numerical dissipation at the grid-

scale.

These velocity spectra thus demonstrate that the two highest resolution PPM sim-

ulations possess the essential characteristics of a turbulent flow – an integral scale, an

inertial range obeying the 𝑘−5/3 power law, and an effective Kolmogorov length-scale

(represented by the grid scale). In the two lowest resolution models, on the other hand,

the plateau is either very short or not present, indicating that models with fewer than

5123 zones are probably not very accurate models of turbulence. This minimum de-

sired resolution is in reasonable agreement with the estimates of the numerical Reynolds

46Using the Python package numpy.fft.fft2.
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Figure 5.4: Specific kinetic energy spectrum of the four simulations. Spectra were
obtained from a 2D Fourier transform of the vertical velocity (at the mid-height of the
convective region), averaged over several convective turnovers. The vertical axis is the
square of the Fourier transform, scaled by a ‘Kolmogorov factor’, 𝑘5/3, multiplied by
a constant (𝑁−1

𝑥 ) to allow easier comparison between resolutions. This scaling means
that the inertial range corresponds to the horizontal part of the curve. The horizontal
axis is the wave-number, 𝑘. See text for more details.

numbers presented in S5.1.3 (Re𝑒𝑓𝑓 ∼ 𝑁
4/3
𝑥 ).

Temporal evolution of convection

The temporal evolution of the global (integrated over the convective zone) specific ki-

netic energy for all of the models is presented in Fig. 5.5. The first ∼1,000 seconds of

evolution are characterised by an initial transient associated with the onset of convec-

tion. Beyond this time, all of the models settle into a quasi-steady state, characterised

by semi-regular pulses in kinetic energy, occurring on a time scale of the order of the

convective turnover time. These pulses are associated with the formation and eventual

breakup of semi-coherent, large-scale eddies (or plumes), that traverse a good fraction
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Figure 5.5: Temporal evolution of the global specific kinetic energy: thin dashed - lrez;
thick dashed - mrez; black solid - hrez; red solid - vhrez. The quasi-steady state begins
after approximately 1,000 s, and is shown by the vertical solid black line.

of the convection zone before dissipating and are a phenomenon that is typical of stellar

convective flow (Meakin and Arnett, 2007b; Arnett and Meakin, 2011a,b; Viallet et al.,

2013; Arnett et al., 2015).

As discussed in S5.1.2, the evolution of the highest resolution model, vhrez, begins

at ∼1,000s, the time at which it was restarted from the hrez model by sampling the

underlying flow field onto a higher resolution mesh. As is typical of turbulent flow,

this model relaxes in approximately one large-eddy crossing time as evidenced by the

re-establishment of the TKE balance which is discussed further in S5.2.3.

Although these simulations do not sample a large number of convective turnover

times (between ∼2 and ∼4), resolution trends are still apparent. The most prominent

trend seen in Fig. 5.5 is the kinetic energy peak associated with the initial transient,
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which increases as the grid is refined. This is not linked to the initial seed perturbations

and is most likely related to the decreased numerical dissipation at finer zoning.

A similar trend can also be seen in the quasi-steady turbulent state that follows

the initial transient. Interestingly, in this case, a resolution dependence only appears

to manifest for the lowest resolution model, lrez. This has an overall smaller amplitude

of kinetic energy as well as a much smaller variance associated with the formation

and destruction of pulses. These properties can be naturally attributed to a higher

numerical dissipation at a lower resolution.

5.2.2 Properties of the Quasi-Steady State

Thermodynamic fluctuations around the mean states are considered by expanding the

Taylor series of thermodynamic variables up to the second order. These variables

are then given by the sum of the mean background state and the linear fluctuations

from this state. These fluctuations are small enough so that the expansion up to

second order is reasonably accurate. RMS fluctuations in density, pressure, entropy,

temperature and composition centred around their mean background states are shown

for the hrez model in Fig. 5.6. Fluctuations in the convective region are small and

of a similar magnitude for all quantities except the composition. Near the convective

boundary regions, the relative amplitude of the fluctuations is highest, reaching values

up to around 1% of the mean background state.

Pressure fluctuations can be grouped into a compressible and an incompressible

component. The former describes the acoustic nature of pressure fluctuations such

as when the flow turns and is compressed. The latter describes the advective nature

of pressure perturbations due to buoyancy effects. The compressible component of

the pressure fluctuations is proportional to a pseudo-sound term, 𝜌0 𝑣
′2/𝑝0, shown by

the dashed line in Fig. 5.6. This term is highest in the convective region and has a

magnitude similar to the square of the Mach number, ∼ 3× 10−4.

Horizontally averaged RMS velocity components for the hrez model are shown in

Fig. 5.7. These profiles represent an average over the quasi-steady state period of the

simulation, which is estimated to occur over four convective turnover times. The total

RMS velocity reaches a maximum of around 4.8× 106 cm s−1 both in the centre of the

98



0.5 1.0 1.5 2.0 2.5

Radius (109 cm)

10−5

10−4

10−3

10−2

10−1

q’
rm

s/
q 0

A

Density
Pressure

Temperature
Entropy
ρ0 v

′ 2/p0

Figure 5.6: Horizontally averaged RMS fluctuations of composition, density, pressure,
temperature and entropy weighted by their average values. The dashed curve represents
a pseudo-sound term. These fluctuations were time averaged over 4 convective turnover
times of the hrez model.

99



Figure 5.7: RMS radial (thin dashed), horizontal (thick dashed) and total (solid) veloc-
ity components, time averaged over four convective turnover times for the hrez model.
Local maxima (minima) in the horizontal (vertical) velocity indicate the approximate
convective boundary locations.
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convective region (𝑟 ∼ 1.4× 109 cm) and also near the lower convective boundary (𝑟 ∼

0.9× 109 cm). Contributions to the total velocity are dominated by the radial velocity

over the central part of the convective region, while close to the convective boundaries

the horizontal velocity (𝑣ℎ =
√︀
𝑣2𝑦 + 𝑣2𝑧 ) is the largest component. The local maxima in

horizontal velocities and coincidental local minima in vertical velocities correspond to

the radial deceleration and eventual turning of the flow near the convective boundaries.

Similar features are reported in simulations of the oxygen burning shell by Meakin and

Arnett (2007b) and Jones et al. (2017), see their Figs. 6 and 11, respectively.

The components of the flow velocity for the hrez model are illustrated by contour

plots in Fig. 5.8. These snapshots of the flow were taken at 1,480 s into the simulation,

where the quasi-steady state has already developed. Each vertical 2D slice in Fig. 5.8

is taken at the same horizontal (𝑧) position in the 𝑥 − 𝑦 plane, at 𝑧 = 0.94 × 109 cm

(i. e. in the middle of the domain). The top, middle and bottom panels of Fig. 5.8

show the 𝑥, 𝑦 and 𝑧 components of the velocity, respectively. In the top panel, strong,

buoyant up-flows are shown in shades of red, while cooler, dense down-drafts are shown

in shades of blue. The convective boundaries are apparent in all the velocity compo-

nents from the sudden drop in velocity magnitude. The lower convective boundary is

clearly distinguishable, but the upper boundary is more subtle with velocities above

the boundary represented by slightly lighter shades of red and blue. In the middle

and bottom panels, horizontal velocities are strongest near the convective boundaries

(shown by extended patches of dark red and dark blue colours). This is indicative of

the flow turning as it approaches the boundary. Gravity mode waves excited by tur-

bulence in the convective region can be seen in the stable region above, and are shown

by lighter shades of red and blue in the upper part of each panel.

5.2.3 Mean Field Analysis of Kinetic Energy

The Reynolds-averaged Navier-Stokes (RANS) framework (introduced in S2.2.3) was

used to calculate the terms of the turbulent kinetic energy (TKE) equation (details

given in Appendix A.2) and to analyse them, by spatially averaging over the horizon-

tal directions and temporally averaging over the quasi-steady turbulent state. Such a

time integration is valid at the convective boundaries, despite their dynamic behaviour,
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Figure 5.8: Velocity components within a vertical 2D plane, at 𝑧 = 0.94 × 109 cm,
1480s into the hrez simulation. Plotted from top to bottom are the radial velocity
component (𝑣𝑟) and horizontal velocity components (𝑣𝑦 and 𝑣𝑧), respectively. Reds
represent positive values, while blues represent negative values and white represents
velocities around zero. Velocity values corresponding to certain colours are also shown
in the colour-bars. 102



as the characteristic expansion time of the boundaries is smaller than the convective

turnover time. Such a situation occurs within the equilibrium entrainment regime47

(e.g. Fedorovich, Conzemius and Mironov, 2004). The ratios of the boundary migration

time-scales to the convective turnover time-scales, 𝜏𝑏/𝜏𝑐, are 13.4, 13.1, 9.8 and 11.7

for the upper convective boundaries and 42.2, 27.6, 23.4, 12.3 for the lower convective

boundaries of the lrez, mrez, hrez and vhrez models, respectively. These models, there-

fore, are considered to be within the equilibrium entrainment regime. The data from

these simulations is interpreted within this framework (see S2.2.2 for details).

Momentum diffusion is not included in these simulations as the inviscid Euler

equations are solved within the ILES paradigm. Instead, TKE dissipation is inferred

through the loss of information below the grid scale, this provides an effective numerical

viscosity (𝜖𝑘 in Eq. A.2). Each term in Eq. A.2 is computed, apart from the numerical

dissipation which is associated with the residual TKE from the energy budget.

Time-Averaged Properties of the TKE Budget

The profiles of the mean TKE equation terms (Eq. A.2) for the lrez, mrez, hrez and

vhrez models are shown in the left panels of Figs. 5.9 and 5.10, with the inferred viscous

dissipation shown by the black dashed lines. These profiles are time integrated over

multiple convective turnovers (excluding the initial transient phase) and normalised

by the surface area of the domain. Bar charts of the mean fields integrated over the

domain are shown in the right panels. Comparing the left panels of these figures to

Fig. 8 of Viallet et al. (2013), it can be seen that the properties of convection during

carbon burning are very similar to oxygen burning.

Time Evolution. — The Eulerian time derivative of the kinetic energy, 𝜌Dt𝐸𝑘, is

small or negligible over the simulation domain, implying that over the chosen time-

scale, the model is in a statistically steady state.

Transport Terms. — The transport of kinetic energy throughout the convective

47This regime also assumes that the energy lost from exciting g-modes in the stable region is
negligible in comparison to the turbulent kinetic energy. See Fig. 5.7, where the wave velocities at
𝑟 < 0.9× 109 cm are around 40 times smaller than the velocities in the convective region, but at radii
𝑟 > 2× 109 cm the velocities are around 2-3 times smaller than those in the convective region, and so
are not negligible.
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lrez

mrez

Figure 5.9: Left: Decomposed terms of the mean kinetic energy equation (Eq. A.2) over
the simulation domain for the lrez (top) and mrez (bottom) models. These models have
been horizontally averaged, normalised by the domain surface area and time averaged
over the quasi-steady state. Time averaging windows are over 2,200 s and 2,100 s for the
lrez and mrez models, respectively. Right: Bar charts representing the radial integration
of the profiles in the left panel. This plot is analogous to Fig. 8 of Viallet et al. (2013).
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hrez

vhrez

Figure 5.10: Left: Decomposed terms of the mean kinetic energy equation (Eq. A.2)
over the simulation domain for the hrez (top) and vhrez (bottom) models. These
models have been horizontally averaged, normalised by the domain surface area and
time averaged over the quasi-steady state. Time averaging windows are over 1,850 s
and 1,000 s for the hrez and vhrez models, respectively. Right: Bar charts representing
the radial integration of the profiles in the left panel. This plot is analogous to Fig. 8
of Viallet et al. (2013).
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region is determined by the two transport terms: the TKE flux, Fk; and the acoustic

flux, Fp (see Viallet et al., 2013, for a detailed discussion on these terms).

Source Terms. — Turbulence is driven by two kinetic energy source terms, Wb and

Wp. The rate of work due to buoyancy (density fluctuations), Wb is the main source

of kinetic energy within the convective region, while the rate of work due to compres-

sion (pressure fluctuations or dilatation), Wp, is small, suggesting that the fluid in this

region of the star is almost incompressible. In the convective zone, generally Wb > 0

as expected since it is the main driving term. Near the boundaries, however, there is

a region where Wb < 0. These regions are where the flow decelerates (braking layer)

as it approaches the boundary, as already found and discussed for oxygen burning in

Meakin and Arnett (2007b) and Arnett et al. (2015). Interestingly, the top braking

layer and convective boundary width is more extended than the bottom one; this point

is explored more in S5.2.5.

Dissipation. — Kinetic energy driving is found to be closely balanced by viscous

dissipation, 𝜖𝑘; a property consistent with the statistical steady state observed. The

time and horizontally averaged dissipation can be seen to extend roughly uniformly

throughout the convective region but increases slowly in its amplitude with depth,

tracking the RMS velocities. There is almost no dissipation in the stable layers, where

velocity amplitudes are low and turbulence is absent. Finally, there are notable peaks

in dissipation localised at the convective boundaries. The dependence of these peaks

on resolution is discussed next.

Resolution Dependence

The four models are compared - lrez, mrez, hrez and vhrez models - to determine if any

of the physical results depend on the chosen mesh size. Over the four resolutions, the

profiles in Figs. 5.9 and 5.10 are qualitatively similar. Within the turbulent regions

of the higher resolution models, the cascade of kinetic energy over the inertial range

appears to be resolution independent (Fig. 5.4). This suggests, as expected that the

dissipation rate of kinetic energy is set by the dissipation of kinetic energy at the largest

scales, which is sufficiently modelled at these resolutions. This is apparent from the
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convergence of the inertial range within the kinetic energy spectrum in Fig. 5.4. An

example of this dissipation is the breakup of large scale turbulent elements into smaller

elements through shear forces.

In the left panels of Figs. 5.9 and 5.10 there is a significant deviation between

models at the lower boundary region (∼ 0.9×109 cm). This region is narrow in radius,

and so the lrez model has an insufficient number of grid points to be representative

(see Table 5.3 for approximate boundary widths and S5.2.5 for their definition). Also,

the kinetic energy dissipation at the lower convective boundaries is clearly resolution

dependent; this point is addressed next.

Dissipation at Convective Boundaries

At the lower convective boundary (∼ 0.9× 109 cm) a peak in dissipation appears at all

resolutions in Figs. 5.9 and 5.10. This peak appears to be numerical, but the general

behaviour of the numerical dissipation is sane, and the discrepancy is localised. The

peak reduces in amplitude and width with increasing resolution, suggesting convergence

to a physically relevant solution. A comparison of the dissipation in the lower boundary

region for all resolutions is given in the bottom panel of Fig. 5.11. Here the TKE

dissipation is normalised by a value at a common position within the convective region

near to the boundary. This highlights the relative decrease in this numerical peak

with respect to a converged value in the convective region. A similar plot for the

upper boundary in the top panel of Fig. 5.11 shows that the dissipation at the upper

boundary is smooth for both hrez and vhrez models. There is, however, some noise in

the vhrez profile of the upper boundary, which is due to the lack of a sufficient number

of convective turnovers for this model.

5.2.4 Convective Boundary Mixing

Entrainment events (similar to entrainment events found for oxygen burning, see Fig.

23 in Meakin and Arnett, 2007b) in the hrez model can be seen in both panels of Fig.

5.12. The upper panel shows the 2D velocity magnitude (
√︀
𝑣2𝑟 + 𝑣2𝑦) in the (𝑥, 𝑦) plane

during a snapshot of the hrez model. The lower panel shows the logarithm of the

average atomic weight fluctuations relative to their mean of the same snapshot, with
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Upper convective 
     boundary

Lower convective
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Figure 5.11: Turbulent kinetic energy residual dissipation curves of the upper (top)
and lower (bottom) convective boundary regions for the lrez (red), mrez (yellow), hrez
(cyan) and vhrez (green) models. The dissipation at each boundary has been normalised
by a value at a common position within the convective region near to the boundary.
The hrez and vhrez residual profiles appear to be converging at the upper boundary,
suggesting that the representative numerical dissipation here is physically relevant.
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    weight 
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Figure 5.12: Upper: Vertical cross-section of the radial component and one horizontal
component of the velocity vector field magnitude,

√︀
𝑣2𝑟 + 𝑣2𝑦. The colour-map repre-

sents the velocity magnitude in cm s−1. Lower: Vertical cross-section of the logarithm
of the absolute average atomic weight fluctuations relative to their mean within the
convective region. The colour map represents the logarithm of compositional fluctua-
tions (|𝐴′

/𝐴0|) relative to the mean. Arrows within the plot show the velocity vector
field plotted in the upper panel. The direction of the arrows indicates the direction of
this vector field in the x-y plane, and their length the magnitude of the velocity vector
at that grid point.
Both snapshots were taken at 2,820 s into the hrez simulation. The horizontal black
arrows on the left of each panel denote the vertical positions of the convective bound-
aries.
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the velocity field over-plotted as arrow vectors, and with the magnitude and direction

of the velocity vector at that point represented by the length and direction of the

arrows, respectively. In the lower panel, the convective zone is represented by the

orange/red region. At the bottom of this region material from below the convective

zone is entrained upwards, resulting in an entrained region of thickness 0.26𝐻𝑝,𝑙, where

𝐻𝑝,𝑙 is the pressure scale height at the lower convective boundary. In the top corners

of the convective region material is entrained from the stable layer above, resulting

in an entrained region of thickness 0.7𝐻𝑝,𝑢, where 𝐻𝑝,𝑢 is the pressure scale height at

the upper convective boundary. In both panels, strong flows can be seen in the centre

of the convective region (centre of image/panel) and shear flows can be seen over the

entire convective region. These shear flows have the greatest impact at the convective

boundaries, where composition and entropy are mixed between the convective and

radiative regions.

The production of Kelvin-Helmholtz (KH) instabilities48 due to the effects of the

shear flow at the boundary can be seen in Fig. 5.13. This plot shows the velocity

magnitude for the vhrez simulation, focused on one section of the upper boundary

region. Several rolls (or waves) of fluid can be seen (as is typical of KH instabilities)

just above the boundary interface due to their increased velocity relative to the slower

stable region. The behaviour of the flow at the boundary is a very different picture

from the parameterisations that are used to describe CBM in stellar evolution models49.

Such differences in the flow behaviour are also seen in oxygen burning simulations (e.g.

Meakin and Arnett, 2007b; Arnett et al., 2015).

Entrainment at both boundaries, pushes the boundary position over time into the

surrounding previously stable regions. This is due to the entrainment of fuel from

the upper stable region, which is quickly mixed and burnt near the bottom of the

convection zone, increasing the internal energy and convective flux of the shell. In

order to calculate the boundary entrainment velocities, first, the convective boundary

positions must be determined for each model. In the 3D simulations, the boundary is

48These types of instabilities arise when there is a velocity difference at the interface of two fluids,
and are most prominent when the fluids are flowing in opposite directions (along the horizontal plane
of the interface).

49Although most paramaterisations for CBM in stellar models are based on the results of 3D hy-
drodynamic simulations, they cannot capture multi-dimensional processes such as the KH instability.
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Figure 5.13: Sequential vertical cross-sections in the x-y plane of the velocity magni-
tude,

√︀
𝑣2𝑟 + 𝑣2𝑦 + 𝑣2𝑧 , across the left section of the upper convective boundary for the

vhrez simulation. Snapshots are taken at 1565 s (upper left), 1570 s (upper right), 1575 s
(lower left) and 1580 s (lower right). The colour bar presents the values of the velocity
magnitude in units of cm s−1. The convective boundary is located at approximately
1.85×109 cm in the vertical direction. Each panel reveals shear mixing occurring across
the boundary interface. The Kelvin-Helmholtz instability is a promising candidate for
generating this type of mixing.
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a two-dimensional surface with a varying thickness and is not spherically symmetric as

in 1D stellar models.

Estimating Convective Boundary Locations

In order to estimate the radial position of a convective boundary, the boundary surface

must first be mapped out. Consider the two-dimensional horizontal boundary surface,

𝑟𝑗,𝑘 = 𝑟(𝑗, 𝑘), for 𝑗 = 1, 𝑛𝑦; 𝑘 = 1, 𝑛𝑧, where 𝑛𝑦 and 𝑛𝑧 are the number of grid points

in the horizontal 𝑦 and 𝑧 directions. The radial position of the boundary at each

horizontal coordinate, is defined as the position which coincides with a pre-defined

composition, using the average atomic weight, 𝐴. This value of the composition is

the average of the mean values of 𝐴 in the convective and the corresponding radiative

zones for each boundary, and is defined as

𝐴𝑡ℎ =
𝐴𝑐𝑜𝑛𝑣 + 𝐴𝑟𝑎𝑑

2
, (5.2.1)

where 𝐴𝑐𝑜𝑛𝑣 and 𝐴𝑟𝑎𝑑 are the averages of 𝐴 in the convective and relevant stable

regions, respectively. This method is similar to the one adopted by Meakin and Arnett

(2007b), who use the maximum radial gradient of the composition to define the location

of the convective boundaries in their oxygen shell simulations. Once the 2D boundary

surface, 𝑟𝑗,𝑘, has been mapped out using the compositional constraint given by Eq.

5.2.1, the radial position (𝑥) of the centre of the boundary region is taken as the mean

of the surface position over the 𝑦 − 𝑧 plane, 𝑟𝑗,𝑘, henceforth denoted as 𝑟.

The error in the estimated boundary position is defined as the standard deviation

(𝜎) from the horizontal surface mean, 𝑟. As the composition, 𝐴, is used as an input

variable in the EOS, the value of 𝐴𝑡ℎ is updated as the models evolve, and hence

new boundary surface positions, 𝑟𝑗,𝑘, (and their means) are calculated. The method

chosen here is a valid, but not unique, procedure in which to calculate the convective

boundary positions. Examples of various other methods can be found in the following

texts: Sullivan et al. (1998); Fedorovich, Conzemius and Mironov (2004); Meakin and

Arnett (2007b); Liu and Ecke (2011); Sullivan and Patton (2011); van Reeuwijk, Hunt

and Jonker (2011); Garcia and Mellado (2014); Gastine, Wicht and Aurnou (2015).
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lrez mrez hrez vhrez

Entrainment 1.78 (-0.44) 2.01 (-0.39) 2.15 (-0.30) 1.59 (-0.46)
velocity

(104 cm s−1)

RMS 3.76 4.36 4.34 3.93
velocity

(106 cm s−1)

Convective 1.08 1.04 1.03 1.09
height

(109 cm)

Boundary 7.4 (23.4) 6.2 (13.1) 4.6 (11.0) 6.0 (6.3)
entrainment time

(103 s)

Convective 554 474 471 513
turnover time

(s)

Bulk Richardson 29 (370) 21 (259) 20 (251) 23 (299)
number

Table 5.2: Table summarising bulk and boundary region properties for each model.
Values in brackets correspond to the lower boundary.

Convective Boundary Evolution and Entrainment Velocities

The variation in time of the average surface position, 𝑟, of both boundaries is shown for

all models in Fig. 5.14. Positions are shown as solid lines and the surrounding shaded

envelopes are twice the standard deviation. This small variance is due to the vertical

extent of the boundary surface, which is not flat as explained above. Following the

initial transient (> 1, 000 s), a quasi-steady expansion of the convective shell proceeds.

The entrainment velocities, 𝑣𝑒, are calculated using a linear fit to the time evolution of

the boundary position plotted in Fig. 5.14, and are given in Table 5.2. These velocities

are very high. If one multiplies them by the lifetime of the carbon shell (of the order of

10 years), the convective boundaries would move by more than 1010 cm, which would

lead to dramatic consequences for the evolution of the star. Note, though, that the

driving luminosity of the shell was boosted by a factor of 1,000, in order to increase the
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physical time of the simulations given limited resources. Hence the entrainment is also

accelerated, although it is difficult to quantify by how much, the convective velocities

are boosted by a factor of 10.

Turbulent entrainment

It is interesting to interpret the carbon shell simulations within the framework of the

entrainment law (see Eq. 2.2.12), and ascertain the corresponding numerical values

for 𝐴 and 𝑛. Before doing this, it is instructive to compare the bulk Richardson

numbers (Eq. 2.2.8) of the 3D simulations (of this thesis) to the initial conditions from

the 1D stellar model (S4.2.2) and check that these simulations are indeed within the

entrainment regime.

From the 1D 15M⊙ stellar model introduced in S4.2, the carbon shell that was used

as initial conditions in the 3D simulations (see Table 4.2) has bulk Richardson numbers

of Ri𝑢B ∼ 1, 440 and Ri 𝑙B ∼ 2.0 × 104 for the upper and lower convective boundaries,

respectively. While, for the 3D vhrez model (see Table 5.2), Ri𝑢B ∼ 23 and Ri 𝑙B ∼ 299.

The lower values obtained in 3D are mainly the result of boosting the luminosity by a

factor of 1,000, as this will increase the flow velocity by a factor of ∼ 10 (as Ri𝐵 ∝ 𝑣−2
𝑐 ;

see S6.2 for a detailed study on the effects of varying the driving luminosity).

As the boundaries possess reasonable values for the bulk Richardson number (given

the boosted energy generation rate), the four models are interpreted within the frame-

work of the entrainment law (Eq. 2.2.12). A best fit entrainment coefficient of

𝐴 = 0.03 (+0.02/ − 0.01) and exponent of 𝑛 = 0.60 (+0.13/ − 0.14) is obtained over

the four models (see Fig. 5.15). The value obtained for the entrainment exponent, 𝑛,

falls between two scaling relations, 1/2 ≤ 𝑛 ≤ 1 (e.g. Jonker et al., 2013; Turner, 1986,

respectively).

The value for the coefficient, 𝐴, for the simulations however, differs from all of the

values found in the literature. A larger dataset is required to explore in more detail the

parameter space; this is achieved in S6.2 where eight different simulations (16 convective

boundaries) are compared within the 𝐸 − Ri𝐵 plane. Despite the discrepancies with

the literature, this data set is compared with that from the oxygen burning study by

Meakin and Arnett (2007b), in Fig. 5.15. The bulk Richardson numbers are similar

for both datasets, and in particular, the lower convective boundaries both have higher
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Figure 5.15: Logarithm of the entrainment speed for high Péclet number simulations,
normalised by the RMS turbulent velocity versus the bulk Richardson number. Red
points represent data obtained in the study by Meakin and Arnett (2007b) and blue
points represent data obtained in this study. Transparent points represent the values
for the lrez and mrez models, which are not included in the best fit power law shown by
the blue solid line. The blue dashed lines show the best fit to the extremes of the error
bars of the hrez and vhrez models. The red solid line is the best fit power law from a
linear regression of the oxygen shell data and the red dashed lines show the error in
the computed slope.

values than the corresponding upper boundaries. Entrainment velocities for the carbon

shell are smaller than the oxygen shell, but this is partly expected due to the slightly

lower turbulent driving.

5.2.5 Convective Boundary Structure

While stellar evolution codes describe a convective boundary as a discontinuity (see

the blue composition profile in the bottom panel of Fig. 5.3, for example), 3D hydro-

dynamic simulations show a more complex structure. A boundary layer structure is

formed between the convective and stably stratified regions. This can be seen from the
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apparent structure of the mean fields, at ∼ 0.9× 109 cm and ∼ 1.9× 109 cm, in the left

panels of Fig. 5.10, which represent the approximate locations of the lower and upper

convective boundaries, respectively.

Figure 5.16 presents time-averaged profiles for various quantities over the upper

(top panel) and lower (bottom panel) convective boundary regions for the vhrez model.

These profiles have been normalised (see the caption of Fig. 5.16) to make comparison

of their qualitative behaviour easier. It is apparent that a sub-structure exists within

these boundary regions. For example, in the bottom panel of Fig. 5.16, the region

that is most stable against convection (where there is a maximum in 𝑁2), lies below

the region of maximum deceleration of the incoming fluid elements (i.e. below where

there is a minimum in ⟨𝑊𝑏⟩). Within this region of deceleration, radial velocities are

lower. This effect is also shown by the lower RMS velocity compared with velocities at

larger radii. The fluid elements approach a ‘wall of stability’ when the radial velocity

is low, this is represented by the peak in the 𝑁2 profile. At this position, the horizontal

velocities are high; the fluid elements turn around and re-enter the convective region.

This picture of over-turning fluid elements is similar to the description given by Arnett

et al. (2015) (see their Fig. 5 and text therein).

Convective Boundary Thickness Estimates

The thickness of the convective boundaries is estimated using the jump in composition,

𝐴, between convective and stable regions. This jump represents the transition between

the fully mixed convectively unstable region and the convectively stable, stratified

region. Due to the fusion of fuel into ashes, the average atomic weight difference

between regions containing mostly ash or mostly fuel is considerable. The average

composition (averaging removes stochastic fluctuations in composition) in the lower

stable, convective and upper stable regions are denoted as, 𝐴𝑙, 𝐴𝑐 and 𝐴𝑢, respectively.

The width of the boundary region is considered to extend between 99% and 101% of the

respective positions coincident with such compositional values, for example the outer

position (greatest radius) of the upper convective boundary is considered to coincide

with the position where the composition is equal to 1.01𝐴𝑢. For each boundary, the

various threshold values are denoted with the appendage of a subscript − (99%) or +

(101%) to the composition of each region, i.e. 𝐴𝑢+ , for the previous example. Explicitly
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Figure 5.16: Time averaged profiles for the upper (top panel) and lower (bottom panel)
convective boundaries of the vhrez model.
The following quantities are plotted: buoyancy work (⟨𝑊𝑏⟩, normalised by 1035; blue);
temperature (𝑇9 = 𝑇/2 × 109; orange); Brunt-Väisälä frequency (𝑁2, normalised by
10; green); total energy generation rate (𝜖𝑡𝑜𝑡 = 𝜖𝑛𝑢𝑐− 𝜖𝜈 , normalised by 1013; magenta);
carbon mass fraction (𝑋12𝐶 , cyan); RMS velocity magnitude (𝑣𝑟𝑚𝑠, normalised by 107;
brown); and total cumulative luminosity (𝐿𝑡𝑜𝑡, normalised by 1042; grey).
Filled circles in the buoyancy work profile represent the grid spacing. The slight mis-
alignment of the profile minima/maxima (especially for the lower boundary), demon-
strates that there is a sub-structure within the boundary region. Also, the effect of 𝜖𝜈
on the total energy generation rate is small due to the artificial boosting of 𝜖𝑛𝑢𝑐 by a
factor of 1,000.
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then, the thickness of the lower and upper boundaries are defined as:

𝛿𝑟𝑙 = 𝑟
(︀
𝐴𝑐+

)︀
− 𝑟

(︀
𝐴𝑙−

)︀
; and (5.2.2)

𝛿𝑟𝑢 = 𝑟
(︀
𝐴𝑢+

)︀
− 𝑟

(︀
𝐴𝑐−

)︀
, respectively. (5.2.3)

In addition, the boundary thickness was defined using radial gradients in the compo-

sition and entropy, and also the jump in entropy at the boundary. These other methods

gave quantitatively similar results to the jump in composition at the boundary. In Fig.

5.17, the estimation of the thickness of the boundaries (using Eqs. 5.2.2 and 5.2.3)

is illustrated for the final time-step of each simulation. The radius of each model has

been shifted, such that the boundary position, 𝑟 (see S5.2.4), of each model coincides

with the boundary position of the vhrez model. With such a translation, it is easier

to assess the convergence of the representations of the boundaries from each model.

The thickness of the boundaries are denoted by the distance between filled squares for

each simulation and also by the corresponding arrowed lines. Filled circles represent

the individual mesh points, indicating the resolution of each simulation (a closer spac-

ing between circles indicates a greater resolution). Note that, the composition profile

labelled as model GENEC is from the 1D stellar model (bottom panel of Fig. 5.3), and

was used as part of the initial conditions for all of the 3D models, so serves only as

a qualitative comparison. The use of instantaneous mixing in stellar models (black)

leads to compositional gradients at convective boundaries that are very different from

the gradients obtained in hydrodynamic models (e.g. green) which calculate the fluid

flow from first principles. Numerical estimates of the thickness of the boundaries are

shown in Table 5.3, along with their ratio of the local pressure scale height.

In Fig. 5.17, it can be seen that the composition gradient varies little with resolu-

tion at the upper boundary. The composition gradient at the lower boundary varies

significantly between the lrez and hrez models, while between the hrez and vhrez the

gradient appears to be converging and generally becomes narrower with increasing res-

olution. These trends are confirmed by the boundary widths presented in Table 5.3,

but a further increase in resolution is desired in order to be sure that the representation

of the boundaries (including their position and width) is physical and not dependent
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Table 5.3: 𝛿𝑟𝑙 and 𝛿𝑟𝑢 are the approximate boundary widths determined from the
composition profiles of the lower and upper convective boundaries, respectively (see
Fig. 5.17). 𝐻𝑝,𝑙 and 𝐻𝑝,𝑢 are the average pressure scale heights across the lower and
upper convective boundary regions, respectively.

on the resolution that is used.

The widths determined from the abundance gradients (shown in Fig. 5.17 and given

in Table 5.3) are larger than the fluctuations of the boundary locations (corresponding

to the mid-point of the abundance gradients plotted in Fig. 5.17) shown as shaded

areas in Fig. 5.14. This is expected since the fluctuations of the boundary location do

not take into account its thickness or width, but only the location of its centre (mid-

point). As a physical validity, these fluctuations in the location can be compared to

the fluctuations in the position of the ocean surface due to the presence of waves. The

fact that the width determined from the abundance gradients (given in Table 5.3) is

significantly larger than the fluctuations, means that there is mixing across the bound-

ary. This mixing is most likely due to shear (Kelvin-Helmholtz instability) induced

by plumes rising from the bottom of the convective region and turning around at the

boundary. Such instabilities can be seen in Fig. 5.13, which shows sequential slices of

the flow velocity across the left section of the upper convective boundary region, where

the characteristic Kelvin-Helmholtz rolls can be seen (see also the shear layer in Fig. 5

of Arnett et al., 2015). Mixing also occurs through plume impingement or penetration

with the boundary. Some mixing may also occur through the presence of gravity waves

which propagate through the stable region (e.g. Denissenkov and Tout, 2003). It is not

expected that the upper boundary gradient will steepen, as this would support more
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violent surface waves whose non-linear dissipation would tend to broaden the gradient,

resulting in a negative feedback loop between these two processes.

It is important to note though, that the boundary widths given in Table 5.3 are

only estimates. The key findings are (1) that the lower boundary has a narrower width

compared to the upper boundary, and (2) the widths are relatively well converged

between the hrez and vhrez models.

Comparison of Convective Boundaries

In order to visualise and understand how the shape of the boundaries changes over time,

the composition (𝐴) of the hrez model has been over-plotted for each boundary over

all points in time in Fig. 5.18, with the radial position of each profile (the boundary

position at that time) shifted by its distance from the initial position of the boundary

centre such that all the mid-points align, using the data from Fig. 5.14. At both

boundaries, the initial, relatively narrow composition jump plotted in blue, is quickly

broadened during the initial transient phase (up to 1,000 s) due to the turbulent flow.

In the following quasi-steady state phase (& 1,000 s), the upper convective boundary

becomes slightly ‘softer’ over time, broadening the composition jump in the stable

region. Similarly, the lower boundary is slightly broadened over time into the stable

region, but the overall width of the lower boundary is much smaller than the upper

boundary.

Summarising the boundary properties determined so far for the hrez model (see Ta-

bles 5.2 and 5.3), the upper boundary region has a typical width of 9.9×107 cm, entrain-

ment speed of 2.2×104 cm s−1 and bulk Richardson number of 20. The lower boundary

region typically has a width of 3.3 × 107 cm, entrainment speed of 3 × 103 cm s−1 and

bulk Richardson number of 251. There is thus a consistent picture of the lower bound-

ary being narrower, having a slower entrainment velocity and being stiffer (higher RiB)

than the upper boundary by a factor of about 3, 7 and 13, respectively. Due to the

sharpness and small extent of the lower boundary region, the resolution of the current

simulations is not high enough to sufficiently resolve the lower boundary, whereas the

upper boundary is sufficiently resolved with a resolution of 5123. This can be seen from

Fig. 5.11 where the residual TKE is compared for each resolution and at each bound-

ary. Each profile is normalised by a converged value from within the convective region;
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Figure 5.18: Composition (𝐴) profiles of the hrez model, over-plotted and coloured
based on the time of the simulation. The radius of each profile is shifted by the distance
from the initial boundary centre, using the data from Fig. 5.14, i.e. the boundary centre
of each profile coincides with the boundary centre of the initial profile. The colour
bar illustrates the time evolution of the profiles. Top: upper convective boundary
composition profiles. Bottom: lower convective boundary composition profiles.
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it is therefore easy to see that models with poor resolution at the boundaries possess

sharp peaks in dissipation which decrease with increasing resolution. It is predicted

then that a resolution of 15363 would be large enough to adequately resolve the lower

boundary region.

5.3 Comparisons to similar studies

Here, I compare the results of the hydrodynamic simulations of the carbon shell within

this resolution study, to other hydrodynamic simulations from the community. Such

a comparison allows the process of entrainment and the dynamics of the boundary

regions to be tested between different stages of stellar evolution, using different codes

and analytical approaches.

The oxygen shell of a 23M⊙ star was simulated by Meakin and Arnett (2007b)

in spherical coordinates, also using the prompi code. The boosted luminosity of the

carbon shell simulations in the resolution study, is similar in magnitude to the natural

luminosity of their oxygen shell. The profiles of the velocity components are similar

between the two models, despite the differences in geometry. Estimates of the bulk

Richardson numbers obtained for the relevant convective boundaries in each study are

similar. The predicted values of the constants in the entrainment law (Eq. 2.2.12)

differ between the two shells (see Fig. 5.15). For the carbon shell these are 𝐴 =

0.03 (+0.02/ − 0.01) and 𝑛 = 0.60 (+0.13/ − 0.14). While for the oxygen shell these

are 𝐴 = 1.06 (±2.40) and 𝑛 = 1.05 (±0.21). Higher values of 𝐴 in the oxygen shell

models points to more efficient entrainment of material across the boundaries, while a

value for 𝑛 which departs from 1 in the carbon shell models suggests that there may

be additional mixing processes besides entrainment occurring within the carbon shell.

The TKE budget obtained in these Cartesian simulations of the carbon shell is in

qualitative agreement with the spherical simulations of the oxygen shell in a 23M⊙

star by Viallet et al. (2013) also computed with prompi. In both sets of simulations a

statistically steady state of turbulence is achieved where TKE is driven by an overall

positive rate of work due to buoyancy; this driving is balanced by dissipation at the grid

scale through numerical viscosity. This suggests, in terms of the TKE budget, that the

chosen geometry (spherical or plane-parallel) does not affect the results significantly.
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However, the lack of a full spherical geometry may lead to missing low-order modes

which could affect the energetics in other ways.

In a recent full spherical simulation of the oxygen burning shell in a 25M⊙ star,

Jones et al. (2017) find a 2𝜎 fluctuation in their calculation of the convective boundary

position of 17% of the local pressure scale height. This is larger than the horizontal

fluctuation in the estimation of the upper boundary position of the carbon shell - a

2𝜎 fluctuation of 4.3% of the local pressure scale height (Fig. 5.14). This difference

could be due to the maximum tangential velocity gradient method50 which Jones et al.

(2017) use to estimate the boundary positions, which differs from the method described

in S5.2.4. In practice, there is no commonly accepted method for determining the

position of the convective boundary. The magnitudes of the velocity components are

comparable between the two simulations (see Fig. 5.7, and their Fig. 11), and so

are the Mach numbers of the flow (see Table 5.1, and their Table 1). This could be

in part due to the fact that the boosted energy generation rate used in the prompi

carbon shell simulations (∼ 3× 1012 erg g−1 s−1) is comparable to the rate used in their

PPMstar (Woodward, Herwig and Lin, 2015) simulations. The relative magnitude of

the radial velocity component in Fig. 5.7 is higher than that of Jones et al. (2017), and

the horizontal velocity does not possess the same symmetry as their tangential velocity.

The latter is likely due to the difference in geometries between the two simulations.

Jones et al. (2017) also observe entrainment at the upper convective boundary of

their oxygen shell; their velocity of the upper boundary due to entrainment is lower

than the entrainment velocity estimated in the carbon shell simulations by over an

order of magnitude. One reason for this difference could be that their oxygen shell

boundary is much stiffer than the carbon shell boundary of this thesis. Such a predic-

tion could be confirmed by calculating the bulk Richardson numbers of these oxygen

shell boundaries. Stiffer boundaries in the oxygen shell would point to a larger jump in

buoyancy over the boundary, as their value for the RMS turbulent velocity is similar to

the value obtained in the carbon shell simulations. This difference in boundary stability

could be confirmed through a difference in the peak squared Brunt-Väisälä frequencies,

𝑁2. The value at the upper boundary of the carbon shell (𝑁2 ∼ 0.05 rad s−2) is an

50The tangential velocity drops rapidly where the steep entropy gradient forces the flow to overturn.
The boundary position is then assumed to coincide with the position where the velocity slope is
steepest.
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order of magnitude smaller than that of the oxygen shell. This could then explain the

order of magnitude difference in entrainment velocity assuming that the oxygen shell

simulations follow an entrainment law similar to Eq. 2.2.12.

The comparison between the carbon shell simulations and these three simulations

shows that entrainment is common to both carbon and oxygen shell burning.
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Chapter 6

Investigation of the buoyancy

driving strength within the context

of a carbon burning shell

6.1 Motivations and methodologies

Following the realisation that 3D hydrodynamical simulations of carbon burning at nat-

ural luminosities are not easily attainable given the available computational resources

(see S5.1.3), it seems befitting to further investigate the effects of varying the driving

luminosity while retaining the same stellar structure. For this purpose, the driving

luminosities are varied from natural carbon burning rates, up to oxygen burning rates

and beyond. Despite boosting the luminosities of the models by such amounts, sim-

ulations are still possible as prompi is capable of modelling fluids over a wide range

of Mach numbers. The most energetic of these models is the furthest from realistic

stellar conditions, given the initial structure of the shell, but the aim in such a study

is to explore the effects that varying the driving luminosity will have on the convective

boundary dynamics and global properties of the shell.

Previous works (e.g. Porter and Woodward, 2000; Arnett et al., 2015) have shown

that the RMS radial velocities of convective regions have a universal dependence on the

driving luminosity (from Eq. 5.1.3), 𝑣𝑥,𝑟𝑚𝑠 ∝ 𝐿1/3, where 𝑣𝑥,𝑟𝑚𝑠 is the vertical/radial

RMS velocity. The simulations presented in this thesis were tested for these conditions

and follow the same scaling relation. Jones et al. (2017) also show that the entrainment
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rate of oxygen across the upper boundary of their oxygen shell burning simulations, is

directly proportional to the driving luminosity. In these carbon burning simulations the

fluid composition is defined by the average value of the atomic weight of all species in

the fluid; as such it is not possible to obtain a similar mass entrainment rate for carbon.

Instead, the scaling relation between the bulk Richardson number and the energy

generation rate was determined. The bulk Richardson number is a useful diagnostic

for the susceptibility of a boundary region to the entrainment of material through

turbulent motions.

Many laboratory and computational studies have explored the entrainment law

(Eq. 2.2.12) in various terrestrial situations (e.g. atmospheres, oceans and confined

plasmas), but only recently has attention turned to stellar turbulent flows within the

context of an entrainment law. Terrestrially there is already much debate on the

universality of turbulence within the framework of an entrainment law, based on the

TKE and stabilisation potential of the convective boundary (see S5.2.4). The initial

result on turbulent dynamics within the carbon shell (e.g. Fig. 5.15) suggests that

the standard scalings for entrainment are similar to those of stellar entrainment, but

such results are far from conclusive. This makes a luminosity study of stellar convective

mixing processes such as entrainment very attractive as, currently, the parameter space

of the entrainment law (𝐸−Ri𝐵) is sparsely populated with data points from multi-

dimensional stellar simulations. A larger study, over a range of driving luminosities

could therefore help determine the appropriate scaling for turbulent entrainment within

a stellar environment.

These models were also calculated using the prompi code, as described in S3.4 and

evolved from the same initial conditions described in S4.2.2, within the same geometry

and under the assumption of the plane-parallel approximation, as described in S5.1.1.

The only change in the physical set-up between models is the driving luminosity, which

is set by the carbon burning nuclear energy generation rate. This energy generation

rate is the same prescription as described by Eq. 5.1, with the addition of a constant

boosting factor, 𝜖𝑓𝑎𝑐, varying between 1 and 3.3×104. The radial profile of the nuclear

energy generation rate is plotted for all models in Fig. 6.1, and is normalised to the

maximum energy generation rate for the original eps1 model. The energy generation

rate due to neutrino losses is unchanged for each model, as over such short (dynam-
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Figure 6.1: Radial profiles of the nuclear energy generation rate for each model. Each
profile is normalised to the maximum energy generation rate in the original eps1 model,
to allow an easier comparison between the models.

ical) time-scales it is not expected that changes in the energy generation rate due to

neutrino losses will have an effect on the structure of the shell, even in the case of

the natural luminosity model, eps1, where cooling due to neutrino losses cannot be

neglected relative to the nuclear energy generation rate.

In order to be computationally efficient while maximising the resolution, a mesh

size of 5123 was chosen for all of these models. This resolution is sufficient to model the

upper convective boundary for the hrez model (a subset of the eps1k model with 𝜖𝑓𝑎𝑐 =

1000), e.g. see the top panel of Fig. 5.11. It would be too computationally expensive

to compute several models at a resolution of 10243. Eight models are computed and

are named according to the value used for 𝜖𝑓𝑎𝑐, see Table 6.1. The model eps1k is

an extension of the hrez model (introduced in S5.1.2) up to 6000 s. All other models

were computed from the same stellar model initial conditions; this was in order to

129



ep
s1

ep
s3
3

ep
s1
00

ep
s3
33

ep
s1
k

ep
s3
k

ep
s1
0k

ep
s3
3k

𝜖 𝑓
𝑎
𝑐

1
33

10
0

33
3

10
00

30
00

1×
10

4
3.
3×

10
4

𝜏 𝑠
𝑖𝑚

50
00

50
00

36
00

16
40

60
00

36
35

20
00

11
90

𝑣 𝑟
𝑚
𝑠

6.
80
×
10

5
1.
15
×
10

6
1.
59
×
10

6
1.
92
×
10

6
4.
56
×
10

6
6.
93
×
10

6
1.
03
×
10

7
1.
57
×
10

7

𝜏 𝑐
32
57

17
89

13
17

10
25

46
5

31
6

21
9

15
3

𝜏 𝑞
/𝜏

𝑐
1.
20

2.
18

1.
89

0.
62

10
.7
6

8.
68

6.
84

3.
87

R
i B

18
76

(2
.9
3×

10
4
)

55
9
(8
08
9)

31
0
(4
20
3)

20
0
(3
10
1)

42
(4
35
)

19
(1
88
)

7
(1
01
)

4
(4
4)

M
a

0.
00
28

0.
00
48

0.
00
70

0.
00
74

0.
02
09

0.
03
21

0.
04
81

0.
07
27

T
ab

le
6.
1:

S
u
m
m
ar
y
of

si
m
u
la
ti
on

p
ro
p
er
ti
es
.
𝜖 𝑓

𝑎
𝑐
:
n
u
cl
ea
r
en
er
gy

ge
n
er
at
io
n
ra
te

b
o
os
ti
n
g
fa
ct
or
,
𝜏 s

im
:
si
m
u
la
te
d
p
h
y
si
ca
l
ti
m
e,

𝑣 r
m
s:

gl
ob

al
R
M
S

co
n
ve
ct
iv
e
ve
lo
ci
ty
,
𝜏 𝑐
:
co
n
ve
ct
iv
e
tu
rn
ov
er

ti
m
e,

𝜏 𝑞
:
q
u
as
i-
st
ea
d
y
st
at
e
ti
m
e,

R
i B
:
b
u
lk

R
ic
h
ar
d
so
n
n
u
m
b
er

(v
al
u
es

in
b
ra
ck
et
s
ar
e
re
p
re
se
n
ta
ti
ve

of
th
e
lo
w
er

co
n
ve
ct
iv
e
b
ou

n
d
ar
y
re
gi
on

),
M
a:

M
ac
h
n
u
m
b
er
.

130



study the effect of varying 𝜖𝑓𝑎𝑐 on the initial transient stage. In particular, the time

required to reach a quasi-steady state, where an equilibrium is reached between the

driving luminosity and numerical dissipation was of interest. The highest energy model

eps33k, was difficult to evolve as the energies were so extreme that the structure of the

shell was disrupted, which made the shell become dynamically unstable. As such, the

physical simulation time for this model is relatively shorter than the other models. The

physical time of the eps333 model is also particularly short, but this was due to a lack

of computational resources. The global properties of each model are summarised in

Table 6.1.

6.2 Results and discussions

6.2.1 General flow properties

Similarly to the majority of models presented in S5.1.2, the eight models for this study

were evolved from the initial conditions given in S4.2.2. They first passed through an

initial transient phase (whereby the turbulent velocity field was established) and the

models eventually reached a quasi-steady turbulent state, where there was no longer

any influence from the initial conditions. The transition to the quasi-steady state for

each model can be seen most easily in Fig. 6.2, where the specific total kinetic energy

(KE) for each model is plotted against the simulation time. The initial transient phase

begins with a characteristic sharp rise in the KE up to a local maximum, which is

then followed by a steady decrease. This marks the end of the initial transient, and

the beginning of the quasi-steady state, and is indicated by a vertical dashed line for

each model. From Fig. 6.2 it can be seen that the local maximum in KE during the

transient phase increases with the boosting factor for the energy generation, and that

the overall KE for each model increases as the boosting factor is increased. This is

intuitive as an increase in energy generation alone, results in a larger flux of KE at the

temperature peak near the bottom of the shell.

The specific KE evolution over the radius of the computational domain for each

model is shown as separate contour plots in Fig. 6.3; the colour-bars show values of

the KE in units of 1013 erg g−1. Each panel is labelled for the respective model. Each
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Figure 6.2: Specific total kinetic energy over the simulation time of each model. The
initial transient is characterised by a sharp rise to a local maximum, followed by a
shallow decrease. The roughly horizontal parts of each profile that follow, denote the
quasi-steady turbulent phases of each model, the start of which are denoted by the
relevant vertical dashed lines. Note though, that the lower energy models (eps1, eps33,
eps100 and eps333) have likely entered this phase for only a short amount of time, due
to such long transient time-scales and relatively short simulation times. The end of
each profile indicates the end of each model.
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Figure 6.3: Contour plots of the logarithm of the KE evolution in the radial direction
for each model. Each panel has the same radial scale (vertical axis) but has individual
scales for each colour bar representing the KE magnitude and thus each model should
be compared qualitatively and not quantitatively. Each model passes through an initial
transient phase characterised by a strong pulse in KE near the start of each simulation.
The eps1k, eps3k, eps10k and eps33kmodels, clearly show extended periods of turbulent
entrainment, characterised by the migration of the upper boundary into the stable
region above, which can be seen from the radial extension of the relatively higher KE
in the turbulent region compared with the upper stable region. The eps1, eps33, eps100
and eps333 models have either not reached or have only entered the quasi-steady state
for a short amount of time. 133



model passes through an initial transient phase characterised by a strong pulse in KE

near the start of each simulation. The models eps1k, eps3k, eps10k and eps33k show

semi-regular pulses in KE over the evolution of the models, a characteristic of convective

transport. Such strong turbulent motions also lead to turbulent entrainment. This is

best seen at the upper boundary by the gradual migration of the boundary into the

stable region above. In all models, excited gravity modes can be seen in the upper

stable region, identified by short, horizontal light blue streaks.

At first glance, the eps33k model may appear to still be transitioning through the

transient phase, but actually this transition is shown by the light blue region spanning

the convective region at around 200 s, followed by strong entrainment at the upper

boundary. Towards the end of the model (> 700 s) a strong increase (> 3×1014 erg g−1)

in KE can be seen; at this point in the simulation the driving luminosity is so great

that the shell is becoming dynamically unstable, and at later times (> 1000 s) the

shell is completely disrupted. This can be seen in the time series of the velocity

magnitude for this model in Fig. 6.4, where the velocity magnitude is plotted at

340 s, 840 s, 1020 s and 1180 s. Comparing the velocity magnitudes at 340 s and 840 s

(top two panels), it can be seen that the upper boundary migrates, almost entirely

encompassing the stable region above. By 1020 s (lower left panel) the upper boundary

no longer exists and the entire previously upper stable region is now turbulent. These

turbulent motions are no longer decelerated by approaching a stable region above, but

still over-turn (as if these motions were approaching a boundary with an extremely

high bulk Richardson number) due to the reflective boundary condition at the edge

of the simulation domain. By 1180 s, the removal of the upper stable region leads

to the turbulent velocities increasing dramatically (lower right panel) as turbulence

is still driven by a large nuclear energy generation rate at the bottom of the shell,

and the up-flowing radial velocities produced from this turbulence are not reduced

by a negative buoyancy force due to the presence of an upper boundary. Instead the

strong radial deceleration and turning of fluid elements at the upper domain boundary

results in a band of material (> 2×109 cm) with visibly reduced velocities. Regardless,

the removal of the boundary results in an un-damped, runaway acceleration within

the convective region and the velocities become so high, that the fluid approaches

the transonic regime (|𝑣| ∼ 108 cm s−1) and the shell becomes dynamically unstable.
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Figure 6.4: Sequential vertical cross-sections in the x-y plane of the velocity magnitude
(|𝑣| =

√︀
𝑣2𝑟 + 𝑣2𝑦 + 𝑣2𝑧) for the eps33k model. Snapshots are taken at 340 s (upper left),

840 s (upper right), 1020 s (lower left) and 1180 s (lower right). The colour bar presents
the values of the velocity magnitude in units of cm s−1. The upper panels reveal the
progressive expansion of the upper boundary layer into the surrounding stable region.
The lower panels reveal that the upper boundary is now completely disrupted and the
entire previously upper stable region has become turbulent.

Despite such dynamic and violent behaviour, the short time period between 450 s -

900 s still represents turbulent entrainment at a greatly boosted rate, and such a time

period is used in the further boundary analysis for this model.

Similarly to S5.2.1, the properties of the inertial range when varying the luminosity

are explored by comparing velocity spectra for each model. Each spectrum is calculated

in the same manner as described in S5.2.1 (including time-averaging over the quasi-

steady state period), and are shown in Fig. 6.5. Similarly to Fig. 5.4, the inertial sub-

ranges are shown by the roughly horizontal section of each profile. These represent the

scales of the model which are no longer affected by the initial or boundary conditions,

driving force or dissipation. The extent of the inertial sub-range over wave-number

increases as the driving luminosity is increased, but is roughly located between 𝑘 = 20
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Figure 6.5: Specific kinetic energy spectrum for all of the simulations in the luminos-
ity study. Spectra were obtained from a 2D Fourier transform (in the centre of the
convective region) of the vertical velocity. The vertical axis consists of the square of
the Fourier transform, scaled by a ‘Kolmogorov factor’, 𝑘5/3, and a constant. The
horizontal axis is the normalised wave-number, 𝑘 =

√︀
𝑘2
𝑦 + 𝑘2

𝑧 . The eps333 (brown)
and eps1k (yellow) models follow slightly different trends to the other models within
the dissipation range. This is likely due to a relative decrease and increase in time
averaging for these models, respectively.

and 𝑘 = 250 for all models. The magnitude of the specific kinetic energy (velocity

squared) also increases with driving luminosity, as expected. The differing trends

beyond the inertial sub-range for the eps333 (brown) and eps1k (yellow) models is likely

due to a relative decrease and increase in time averaging for these models, respectively,

but the renormalisation makes such a comparison difficult.

Using heuristic arguments within turbulence theory; from Kolmogorov (1941) it can

be shown that 𝜖 ∼ 𝑣3𝑟𝑚𝑠/ℓ. Assuming that the energy generation rate is proportional to

the luminosity, it can be shown that the cube of the vertical/radial velocity is directly

proportional to the luminosity, or that
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Figure 6.6: Vertical/radial (x-direction) RMS velocity averaged over the convective
zone versus nuclear energy generation rate, for each model. This plot can help de-
termine the scaling between these two quantities, assuming 𝑣𝑥,𝑟𝑚𝑠 ∝ 𝜖 𝛼. A linear
regression on this data provides a line of best fit with a gradient of 𝛼 = 0.318± 0.034,
implying that the vertical flow velocity is roughly proportional to the energy generation
rate (or luminosity) to the power one third, or 𝑣𝑥,𝑟𝑚𝑠 ∝ 𝐿1/3.
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𝑣𝑥,𝑟𝑚𝑠 ∝ 𝐿1/3, (6.2.1)

where 𝑣𝑥,𝑟𝑚𝑠 is the vertical RMS velocity, assuming that the integral scale, ℓ, is

constant and that 𝑣𝑥,𝑟𝑚𝑠 ∼ 𝑣𝑟𝑚𝑠. Several other studies (Porter and Woodward, 2000;

Arnett, Meakin and Young, 2009; Arnett et al., 2015; Jones et al., 2017) have also

confirmed this proportionality.

For the eight models in this study, the cube of the vertical/radial velocity does

indeed have a positive correlation with the nuclear energy generation rate. This is

shown by Fig. 6.6, where the vertical velocity of each model is plotted against the

boosting factor, 𝜖𝑓𝑎𝑐. A linear regression on these values reveals a line of best fit with

a gradient of 0.318 ± 0.034. This is in agreement with Eq. 6.2.1 when the energy

generation rate is considered to be proportional to the luminosity.

As explained in S5.1.3 the time-scale of the transient phase is approximately one

convective turnover time. The above scaling implies that, as the energy generation

rate is increased over the same initial structure (for each model), then the convective

turnover time will decrease. This is confirmed in Fig. 6.2 by the relatively shorter

initial transient times for the more energetic models. The lower energy models (i.e.

eps1, eps33, eps100 and eps333) may have reached the quasi-steady state, but have

not completed enough convective turnover times during this state for statistically valid

analyses of the boundaries. This is apparent from their convective turnover times in

Table 6.1. The number of turnovers completed during the simulation time of each

model is shown in Fig. 6.7, where it can be seen that the eps1, eps33, eps100 and

eps333 models have all completed two or less convective turnovers. In such models

the turbulent velocity field may have developed but there is insufficient time during

the quasi-steady state to provide statistically reliable results, this also leads to lower

averages for the velocities, 𝑣𝑟𝑚𝑠. The absence of sustained turbulence is also apparent

from the relevant panels (eps1 - eps333) in Fig. 6.3, where it can be seen that there is

a strong pulse in specific KE during the initial transient phase, but following this there

is little activity in terms of the KE. For the eps100 and eps333 models though, it can

be seen that there is a slight increase in KE towards later times, suggesting that these
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Figure 6.7: Approximate number of convective turnovers following the initial transient
for each model. Convective turnover times were calculated as the time taken for a
convective eddy with speed 𝑣𝑟𝑚𝑠, to traverse twice the height of the convective region.
The approximate time for entrainment to occur over a statistically significant period
following the establishment of the turbulent velocity field is roughly between 3 and 5
convective turnover times. Hence, models eps1, eps33, eps100 and eps333 have not been
evolved sufficiently, such that the convective region has been within a quasi-steady state
for a significant time. The models which have evolved for one convective turnover or
less are likely still adjusting to the initial conditions. Hence, only models eps1k, eps3k,
eps10k and eps33k are included in the detailed boundary analysis.
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models may be close to the equilibrium state during the quasi-steady state period. For

the reasons described above the four models eps1, eps33, eps100 and eps333 are likely

not entraining material at the boundaries, and certainly not over time-scales where a

temporal average can reliably be taken. As such these models were excluded from all

analysis involving turbulent entrainment.

6.2.2 Turbulent entrainment at convective boundaries

As mentioned earlier, only the more energetic models show signs of entrainment. This

is not due to the energetics directly, but the shorter time-scales associated with the

higher energy models (see the discussion in S5.1.3). The positions of the convective

boundaries (calculated from a horizontal mean over the boundary surface, see S5.2.4

for more details on this method) over the simulation times are plotted in Fig. 6.8. The

positions of the upper (top panel) and lower (bottom panel) boundaries are shown by

solid lines, and the shaded envelopes represent twice the standard deviation from the

calculated means. The eps1k, eps3k, eps10k and eps33k models show clear entrainment

of the boundary over time. On the other hand, the eps1, eps33, eps100 and eps333

models do not show the same behaviour and the boundary positions remain fairly

constant over the simulation time. For the lower boundary of the eps100 model, despite

the shorter simulation time, the boundary appears to be migrating to a lower position

towards the end of the simulation. Again, the analysis of an extension of this model

would confirm if the boundaries will migrate further due to turbulent entrainment.

The variance in the boundary positions increases as the driving luminosity is in-

creased. This agrees with the notion that the boundaries become softer with an in-

creased driving luminosity due to a higher TKE flux at the boundaries, and that a

larger distortion in the boundary surface (relative to the mean) is characteristic of

plume penetration. The increase in softness of the boundaries with luminosity is also

verified by the bulk Richardson numbers51 given in Table 6.1.

The evolution of the convective boundary positions for the eps1k (top figure) and

eps3k (bottom figure) models are shown separately in Fig. 6.9. The evolution of the

51Note that the bulk Richardson numbers for the eps1k model are different to those calculated from
the hrez model (Table 5.2), as the eps1k model is an extension of the hrez model up to 6,000 s. Hence,
the mean value of the bulk Richardson number is more accurate in this case due to the increased
averaging time-scale.
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Figure 6.9: Time evolution of the mean radial position of the upper (top panel) and
lower (second panel) convective boundaries for the eps1k model and the upper (third
panel) and lower (bottom panel) convective boundaries for the eps3k model. Instan-
taneous boundary positions over the simulation times are shown by black lines, the
coloured lines in each panel represent the best fit line following a linear regression of
the boundary position over the quasi-steady state period. The corresponding entrain-
ment velocity given by the best fit gradient and respective error are shown in coloured
text beside each fit.
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Figure 6.10: Time evolution of the mean radial position of the upper (top panel) and
lower (second panel) convective boundaries for the eps10k and the upper (third panel)
and lower (bottom panel) convective boundaries for the eps33k model. See the caption
of Fig. 6.9 for details on the curves, colours and calculation of the best fit gradients.
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convective boundary positions for the eps10k (top figure) and eps33k (bottom figure)

models are shown separately in Fig. 6.10. These plots are very similar to Fig. 6.8, but

allow an individual assessment of the entrainment and boundary migration for each

model. The positions of the boundaries are shown by black solid lines. The best fit

line from a linear regression of the boundary positions during the quasi-steady state

for each model is shown by a solid coloured line. The corresponding best fit gradient

and relative error are shown in coloured text beside each fit. This gradient is the

entrainment velocity, and is remarkably linear in each case; the small errors in the

best fit gradient show this, for which the largest is 1.5% for the upper boundary of the

eps33k model.

The entrainment law and a boundary stiffness scaling

The eps1k, eps3k, eps10k and eps33kmodels have been interpreted within the framework

of the entrainment law (Eq. 2.2.12). These models simulate a significant fraction (& 3

convective turnover times) of the quasi-steady state (see Fig. 6.7). The entrainment

speed (normalised by the RMS turbulent velocity) is plotted as a function of the bulk

Richardson number for these models in Fig. 6.11. The coloured circles and triangles

represent the values for the upper and lower boundaries, respectively, for the eps1k

(yellow), eps3k (cyan), eps10k (orange) and eps33k (blue) models. The solid line is the

best fit line following a linear regression of each data point. The slope (𝑛) and intercept

(𝐴) along with the respective errors for this best fit are noted to the left of the line

as 𝑛 = 0.74 ± 0.04 and 𝐴 = 0.05 ± 0.06, respectively. These values are obtained by

performing a linear regression on the data points in (logarithmic) 𝐸 −Ri𝐵 space. The

line of best fit is then of the form 𝑦 = 𝑚𝑥 + 𝑐, where 𝑚 = −𝑛 and 𝑐 = log𝐴. The

black points in Fig. 6.11 represent the entrainment rate, 𝐸 (as a function of the bulk

Richardson number) obtained in the oxygen shell burning study by Meakin and Arnett

(2007b), and the dashed line is the best fit curve following a linear regression of their

data points. The slope and intercept are also noted beside this fit as 𝑛 = 1.05 ± 0.21

and 𝐴 = 1.06± 2.40, respectively.

Comparing the values obtained for the constants in this luminosity study with those

obtained in the resolution study (𝐴 = 0.03±0.01 and 𝑛 = 0.62+0.09/−0.15), it can be

seen that the values for 𝑛 are in reasonable agreement, and point towards a value in the
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Figure 6.11: Logarithm of the entrainment speed (normalised by the RMS turbulent
velocity) versus the bulk Richardson number. Coloured points represent data obtained
in this luminosity study: eps1k (yellow); eps3k (cyan); eps10k (orange); and eps33k
(blue). Triangles represent the values for the lower boundary and circles represent
the values for the upper boundary. The horizontal error bars in the bulk Richardson
number are the standard deviations from the mean over the quasi-steady state period.
The black points represent data obtained in the oxygen burning study by Meakin
and Arnett (2007b). The solid and dashed lines show the best fit power laws to the
respective data, obtained through linear regressions. The corresponding best fit slope
and intercept along with the respective errors are shown for the current data (solid
line) as 𝑛 = 0.74 ± 0.04 and 𝐴 = 0.05 ± 0.06, respectively, and for the oxygen shell
(dashed line) as 𝑛 = 1.05± 0.21 and 𝐴 = 1.06± 2.40, respectively.
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range 1/2 ≤ 𝑛 ≤ 1 for fusion driven (neutrino cooling dominated) turbulent convection

in the carbon shell burning of massive stars. The value of 𝐴 is slightly smaller than

the values quoted in other laboratory and numerical studies. The lower value of 𝐴 as

compared with that of the oxygen shell burning simulation (black points) suggests that

the efficiency of the work done by turbulent eddies on the stable stratification at the

boundary of the carbon shell is less than that of the oxygen shell. The error in the

calculation of 𝐴 from the linear regression of the data points in this luminosity study

is higher than the best fit intercept value. It is therefore unreliable and states the need

for more data points over the 𝐸−Ri𝐵 parameter space. Also, models which span larger

fractions of the quasi-steady state are needed in order to reduce the errors in the mean

values of the bulk Richardson numbers. The variance of 𝑛 between the carbon and

oxygen shells suggests that there may be additional mixing processes occurring besides

entrainment in the carbon shell. Uncertainties in the ‘correct’ value of 𝑛 for turbulent

entrainment are present throughout terrestrial simulations, where 𝑛 = 1/2 was found

by Jonker et al. (2013) while 𝑛 = 1 was found by Fernando (1991), for example.

An approximate scaling relation can be obtained between the Ri𝐵 and the luminos-

ity, this can then allow the determination of the stiffness of convective boundaries in

1D stellar models. This relation can be obtained by starting with the formula for the

bulk Richardson number (Eq. 2.2.8) and substituting for 𝑣𝑟𝑚𝑠 using Eq. 2.2.1 leads to

Ri𝐵 ∝ 𝑣−2
𝑟𝑚𝑠 ∝ 𝐿−2/3, (6.2.2)

if the integral scale and buoyancy jump (Δ𝐵) are assumed to be constant (rea-

sonable assumptions given an initial hydrostatic stratification and short dynamical

time-scales), and the nuclear energy generation rate proportional to the luminosity.

This scaling between the driving luminosity and bulk Richardson number can easily

be tested within the current luminosity study. As previously mentioned only the four

models eps1k - eps33k are used to test this relation, as the remaining models do not con-

tain a sufficient number of convective turnovers over which entrainment can occur. The

bulk Richardson numbers for the upper (bottom line) and lower (top line) boundaries

of these four models are plotted in Fig. 6.12 as a function of the boosting factor, 𝜖𝑓𝑎𝑐.
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Figure 6.12: Bulk Richardson number as a function of the nuclear energy generation
rate boosting factor. The upper points represent values for the lower convective bound-
ary and the lower points represent values for the upper convective boundary for the
eps1k, eps3k, eps10k and eps33k models. The grey lines are linear interpolations of each
set of points, with the best fit gradient noted next to each fit by 𝛽. In this form the
scaling between the boundary stiffness and driving luminosity is given by Ri𝐵 ∝ 𝐿𝛽,
where 𝛽 = −2/3 (−0.667) is the expected value.

A linear regression of the data points for each boundary is performed over logarithmic

space in order to determine a best fit power law and scaling exponent, 𝛽, assuming

Ri𝐵 ∝ 𝐿𝛽. This best fit power law is shown by the grey line for each boundary and

the corresponding value of the scaling exponent is noted beside each one, 𝛽 = −0.686

for the upper boundary and 𝛽 = −0.648 for the lower boundary. For both boundaries,

the value obtained is close to the expected value of 𝛽 = −0.667. Unfortunately due

to the sparse data sets it is not possible to obtain errors in the values of the slope.

Nevertheless, such an agreement between theory and simulation is encouraging, and

with more data points and longer time sampling for each model the confidence in these

estimates can be improved.

From the best fit power laws calculated in Fig. 6.12, the bulk Richardson numbers

of natural carbon burning luminosities can be extrapolated; these are Ri𝐵,𝑢 = 4750

and Ri𝐵,𝑙 = 3.77× 104 for the upper and lower boundaries, respectively. These values

are in agreement (to within a factor of around 3) with the values calculated in the

eps1 model (see Table 6.1), although arguably, the eps1 model values are not well con-

strained either, due to the short number of convective turnovers simulated (e.g. see
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Fig. 6.7). The above values also agree (also to within a factor of around 3) with the

values calculated from the stellar model initial conditions (see Table 4.2), which also

have inherent uncertainties, due to the difficulty of calculating the bulk Richardson

numbers over coarse stellar model grids. This difficulty arises from the lack of a precise

definition for the buoyancy jump within a complex, stratified medium such as stellar

interiors. The length scale over which this jump is calculated is therefore somewhat

arbitrary. The entrainment velocities for the eps1 model can also be estimated using

the above values for the bulk Richardson numbers. Inserting the above values for the

bulk Richardson numbers into the entrainment law (Eq. 2.2.12) with the values for 𝐴

and 𝑛 determined in Fig. 6.11 and the RMS velocity from Table 6.1 yields entrain-

ment velocities of around 14 cm s−1 and 65 cm s−1 for the lower and upper boundaries,

respectively.

Despite such uncertainties, the reliable estimation of the bulk Richardson number

is still best pursued through long time-scale (ideally & 10 convective turnovers), three-

dimensional hydrodynamic simulations of turbulent convection, the results of which

can populate the entrainment law parameter space (𝐸 − Ri𝐵) and constrain the free

parameters 𝐴 and 𝑛. The agreement with the scaling relation, Ri𝐵 ∝ 𝐿−2/3, for several

models over a range of different driving luminosities, demonstrates the applicability of

this scaling relation to stellar flows. The discrepancy between the extrapolated values

of the bulk Richardson number for natural carbon burning luminosities and the stellar

model initial conditions, can be used to fit free parameters within the formulation of

the bulk Richardson number for stellar models, namely the integration length, Δ𝑟, and

the integral scale, ℓ (see S2.2.2).

With better constrained values of 𝐴 and 𝑛 as well as more accurate estimates of

the bulk Richardson numbers within stellar models, new mixing prescriptions can be

incorporated into stellar models, such as the one suggested by Meakin and Arnett

(2007b)

�̇�𝑒 =
𝜕𝑚

𝜕𝑟
𝑣𝑒 = 4𝜋𝑟2𝜌 𝑣𝑟𝑚𝑠 𝐴Ri−𝑛

𝐵 , (6.2.3)

where 𝑣𝑟𝑚𝑠 can be substituted for either 𝑣𝑚𝑙𝑡 (Eq. 2.1.23) or 𝑣𝑐 (Eq. 4.2.2).
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6.2.3 Effects of driving luminosity on the turbulent kinetic

energy budget

In the same manner as in S5.2.3, I will interpret the TKE budget of the models in

this luminosity study within the RANS framework. All of the terms in Eq. A.2 are

calculated for the eps1k and eps3k models in the top and bottom panels of Fig. 6.13,

respectively, and for the eps10k and eps33k models in the top and bottom panels of

Fig. 6.14, respectively. The radial profiles of each term are presented in the left panels

of these figures, with the inferred viscous dissipation shown by a dashed line. Each

profile is time averaged over multiple convective turnover times and normalised by the

surface area of the domain. The right panels show bar charts of the radial integration

of each term in the left panel. It can be seen that all profiles increase in magnitude as

the driving luminosity is increased, simply because more nuclear energy is being put

into the system.

The main driving term for the TKE is the buoyancy work, Wb, which for the eps1k,

eps3k and eps10k models is balanced by the numerical dissipation at the grid scale, 𝜖𝑘.

Due to such a balance, the shell is in a statistically steady state, as shown by the

negligible values of the Eulerian time derivative of the TKE, 𝜌Dt𝐸𝑘. For the eps33k

model, the driving term is so large that while most of the TKE is dissipated, some

of the energy affects the shell dynamically, hence it is now no longer in a statistically

steady state and the shell itself is eventually completely disrupted.

The peak in the residual TKE (dashed curve) at the bottom of the convective shell

decreases in amplitude with increased driving luminosity, and the profile also broadens

with increased driving luminosity. This could be due to an actual broadening of the

boundary itself, as the boundary is more easily overwhelmed by turbulent motions as

the driving luminosity increases. Hence, for the most energetic model, eps33k, the lower

boundary is now broad enough that the spatial resolution is sufficient to model this

boundary physically and without any adverse numerical effects due to poor resolution.

The residual TKE is compared between these four models for the upper and lower

boundary in Fig. 6.15. In these figures the numerical dissipation is normalised by a

value at a common position within the convective region close to the boundary. This

normalisation value is numerically converged at these spatial resolutions (5123) and so
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eps1k

eps3k

Time average 5000 s

Time average 2750 s

Figure 6.13: Left : Decomposed terms of the mean kinetic energy equation (Eq. A.2),
which have been horizontally averaged, normalised by the domain surface area and
time averaged over the quasi-steady state. Time averaging windows are over 5,000 s
and 2,750 s for the eps1k (top) and eps3k (bottom) models, respectively. Right : Bar
charts representing the radial integration of the profiles in the left panel. This plot is
analogous to Fig. 8 of Viallet et al. (2013).
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eps10k

Time average = 1500 s

Time average = 600 s

eps33k

Figure 6.14: Same as Fig. 6.13 but for the eps10k (top) and eps33k (bottom) models.
Time averaging windows are over 1500 s and 600 s, respectively.
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eps1k eps3k eps10k eps33k

𝛿𝑟𝑙(cm) 4.04×107 5.14×107 6.24×107 5.88×107

𝛿𝑟𝑢(cm) 1.18×108 1.29×108 1.40×108 2.02×108

𝛿𝑟𝑙/𝐻𝑝,𝑙 0.141 0.181 0.218 0.201

𝛿𝑟𝑢/𝐻𝑝,𝑢 0.339 0.366 0.389 0.535

Table 6.2: 𝛿𝑟𝑙 and 𝛿𝑟𝑢 are the approximate boundary widths, determined from the
composition profiles of the lower and upper convective boundaries respectively (see
Fig. 6.16 and S5.2.5). These measurements of the boundary represent the size of
the boundary region which is formed due to Kelvin-Helmholtz instabilities and shear
mixing at the boundaries. 𝐻𝑝,𝑙 and 𝐻𝑝,𝑢 are the average pressure scale heights across
the lower and upper convective boundary regions, respectively.

poor spatial resolution at the boundary is revealed by peaks in the dissipation curves.

For the upper boundary (top panel in Fig. 6.15), the absence of any peaks suggests

that the adopted resolution is adequate in representing this boundary for the energy

configuration of these four models. With the exception of the eps33k model, all of

the models steadily decrease in relative dissipation towards the boundary, followed by

a steeper gradient beyond the boundary, and eventually plateauing to a small value

within the radiative region. For the eps33k model, however, the TKE is so great that

the reduction in dissipation across the boundary region occurs at an almost constant

gradient. A possible explanation for such behaviour is that the TKE of this model is

so great that it destroys the boundary layer altogether (see Fig. 6.4).

The lower boundary is much narrower than the upper boundary (see e.g. Table 5.3).

This is also apparent in Fig. 6.15 from the appearance of spurious peaks in the relative

dissipation curves in all models except eps33k. The increase in driving luminosity

broadens the lower boundary, resulting in an increase in the effective resolution for

the higher energy models, and reduces the amplitude of the dissipation peaks. In the

eps10k model the dissipation peak is small and in the eps33k it is almost non-existent.
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Upper convective boundary

Lower convective boundary

Figure 6.15: Turbulent kinetic energy residual dissipation curves of the upper (top)
and lower (bottom) convective boundary regions for the: eps1k (yellow); eps3k (cyan);
eps10k (orange); and eps33k (blue) models. The numerical dissipation for each bound-
ary has been normalised by a value at a common position within the convective region
near to the boundary (∼ 1.9× 109 cm and ∼ 1.0× 109 cm). Therefore, any sensitivity
to the spatial resolution should be revealed by sharp peaks in the dissipation profiles,
of which there are none at the upper boundary but all models except the eps33k model
possess sharp peaks at the lower boundary.
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6.2.4 Effects of driving luminosity on boundary widths

The composition profiles at both boundaries for the final time-step of each of the four

models (eps1k - eps33k) are shown in Fig. 6.16. Each composition profile has been

shifted in radius such that the boundary position, 𝑟 (defined in S5.2.4), coincides with

the boundary position of the eps1k model (for ease of comparison). The boundary

width (as defined in S5.2.5) is denoted for each model by the distance between two

filled squares at the edges of the boundary region, and is shown by the respectively

coloured shaded region. These boundary widths, along with the standard deviation of

the boundary position (Fig. 6.8) and their fractions of the pressure scale height are

shown in Table 6.2.

For the upper boundary (right panel of Fig. 6.16) the composition profiles are

similar except for the eps33k model, which has a shallower gradient over the boundary

region. In this model the upper boundary is much broader, and the increased driving

leads to a dramatic smoothing in the abundance gradient; this is not seen in the other

models. As noted in S6.2.3, the strong increase in driving luminosity is likely leading

to a structural readjustment of the shell at this time-step and will eventually result in

the complete disruption of the shell.

At the lower boundary (left panel) the abundance profiles are very similar in gra-

dient between all of the different cases, with an increase in driving luminosity leading

to a clear increase in boundary width. As entrainment becomes more effective with

stronger driving luminosity the composition in the convective region near the bound-

ary also increases slightly, as an increased amount of heavier material from the stable

region below is mixed into the turbulent region.

The smoothing of the horizontally averaged abundance profile due to the boundary

deformation, can be measured by the standard deviation of the boundary position

(Fig. 6.8) which can be associated with the vertical fluctuations in the boundary

surface, possibly due to plume penetration events. The extent of the boundary region

(its width), can be associated with the strength of shear mixing (or Kelvin-Helmholtz

instabilities) at the boundary, caused by the overturning of turbulent fluid elements

which carry large horizontal velocities.

Generally, the boundary widths (Table 6.2) have a weaker dependence on the boost-
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ing factor, 𝜖𝑓𝑎𝑐, than originally expected. Longer time-scale and statistically significant

simulations with lower values of 𝜖𝑓𝑎𝑐 will help to test this expectation.

6.3 Comparison to similar studies

Similarly to S5.3 where similarities between the resolution study and other studies

were identified, the results from this luminosity study can also be compared to similar

simulations from other authors. The bulk Richardson number of the boosted carbon

burning simulation eps1k has similar values to the bulk Richardson number for the

oxygen shell burning simulation by Meakin and Arnett (2007b). From Eq. 6.2.2,

this may be expected though, as the luminosity of the two shells are similar. These

similarities between the bulk Richardson numbers give hope that a general prescription

applicable to all or most evolutionary phases can be developed.
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Chapter 7

Conclusions and future perspectives

Massive stars have a significant impact on the formation, dynamics and evolution of

the universe, through their radiation, winds, explosions and chemical enrichment. The

understanding of the interiors of massive stars is limited in observations to astero-

seismology, progenitor structures inferred through supernovae and galactic chemical

evolution. Such observational techniques do not directly test the deep internal dy-

namics of the stellar fluid, and also cannot directly test the specific compositional

structure. The burden for detailed analysis of stellar interiors therefore lies with nu-

merical modelling of the structure and evolution of these stars. Stellar evolution models

are extremely useful tools for predicting the stellar structure and composition at var-

ious epochs. However, there are many areas which are poorly understood in terms

of stellar evolution, not least of all convection, and in particular convective boundary

mixing which has a large impact on the lifetime of the star and also the subsequent

explosion energetics. Multi-dimensional simulations can model stellar flows from first

principles for relatively short times. These simulations can provide great insight into

the underlying physical processes responsible for convective boundary mixing and help

in designing improved prescriptions for implementation into stellar evolution models.

An exploratory parameter study on various (but not all) convective regions during

the evolution of a 15M⊙ stellar model was performed. Over the evolution of the

star there was a general trend for the gravitational acceleration, peak luminosity and

mean molecular weight to increase, due to an increase in density and temperature

within the central regions of the star. The pressure scale height tends to decrease

as the star evolves due to an increase in the pressure and its radial gradient. As
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the star evolves there is also an increasing trend for the convective velocity, Mach,

Péclet and Damköhler numbers, pointing to a general acceleration in the evolutionary

time-scales as the star proceeds through each burning phase. The bulk Richardson

number was found to be highest (stiffer boundaries) during the maximum mass extent

of the convective region, and the smallest values were found towards the end of each

burning phase. The defining conclusion from this parameter study was that the lower

convective boundaries of convective shells are stiffer, according to the bulk Richardson

number, than the corresponding upper convective boundary. This finding was also

confirmed in three-dimensional hydrodynamical simulations of the carbon shell, using

initial conditions from the same stellar model, and also in oxygen burning simulations

by Meakin and Arnett (2007b). Such a finding has implications for other areas of

astrophysics, where CBM at lower boundaries of shells is important, such as novae and

flame front propagation, for which the latter also affects EC-SN and type Ia SN.

The first 3D hydrodynamic simulations of carbon shell burning in a massive star

were performed using the prompi code. These hydrodynamic simulations were de-

signed with a focus on the convective boundary regions in mind. Hence, certain ide-

alisations to the model set-up were made, such as a Cartesian geometry within the

plane parallel approximation. Such simplifications allow for maximum effective reso-

lution of the boundaries in these models. The effects of varying the grid resolution,

were tested within the same initial carbon shell structure provided by the 15M⊙ stellar

model mentioned above. These variations in resolution revealed that a resolution of

512× 512× 512 grid points are required to resolve the upper boundary of this carbon

shell. The required number of grid points to resolve the lower boundary in this case

is greater than 1024 × 1024 × 1024, and estimated to be 1536 × 1536 × 1536. Below

these resolutions, the boundaries are incorrectly modelled as highlighted by peaks in

the numerical viscosity. The widths of the boundaries were also estimated from the

512 × 512 × 512 model to be roughly 10% and 30% of the local pressure scale height

for the lower and upper convective boundaries, respectively.

In these simulations, the boosting of the nuclear energy generation rate by a factor

of 1000 was required. This was following the realisation that the time required to evolve

the model through the initial transient phase and set-up the turbulent velocity field,

is approximately one convective turnover time. For natural carbon burning luminosi-
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ties this would render high resolution, long time-scale (multiple convective turnovers)

simulations computationally unaffordable.

The effects of varying the driving luminosity was also investigated using the same

initial carbon shell structure. The results show that over the short dynamical time-

scales which these models were run over (due to limited computational resources), the

shell structure is not adversely affected by this boosting (except in the most extreme

case) and serves to accelerate the evolution of the shell through increased rates of

entrainment and mixing. As the structure is unchanged, the vigour of turbulence is

also increased for the same stable stratification and so the representation of entrainment

in the most energetic cases (𝜖𝑓𝑎𝑐 ≥ 104) is far from being physically realistic during

the current evolutionary state. Such a luminosity study allows one to populate the

parameter space (𝐸 − Ri𝐵) of the entrainment law (Eq. 2.2.12) and constrain the

values of 𝐴 and 𝑛 for high Péclet number, fusion driven convection.

This luminosity study has confirmed the scaling relation between the vertical RMS

velocity and the driving luminosity, 𝑣𝑥,𝑟𝑚𝑠 ∝ 𝐿1/3, as found by several other authors.

This study has also confirmed the expected scaling between the bulk Richardson num-

ber (stiffness) of the boundary and the driving luminosity of the shell, Ri𝐵 ∝ 𝐿−2/3.

Such a relation will prove useful in developing new CBM prescriptions for entrainment

in stellar evolution models. For example, it helps to extrapolate values of the bulk

Richardson number at nominal carbon burning luminosities. Comparing these extrap-

olated values to those from the initial 1D stellar evolution model calculations reveals

that they are similar to within a factor of around 3.

Looking at the composition profiles of the boundaries, the slope of these profiles

helps to give an idea of the boundary shape. From the 1D stellar evolution model

this profile is discontinuous, like a step function, whereas in the 3D hydrodynamical

models it is smooth and sigmoid-like. The boundary also possesses a sub-structure of

significant width unlike in the 1D model which represents the boundary as a sharp

discontinuity. The over-turning of fluid elements near the boundary leads to shear

mixing, most likely due to Kelvin-Helmholtz instabilities. This type of mixing broadens

the boundary region, and implies a similarity in the limiting behaviour of rotating and

non-rotating convective boundary mixing.

Additional hydrodynamical simulations of different phases of evolution, will help

159



to further populate the entrainment parameter space in order to test the robustness of

boundary scaling relations. They will also allow further exploration of the structure of

the boundary region, and the processes responsible for creating such regions.

7.1 Future studies

One-dimensional stellar evolution models are currently the only viable way to sim-

ulate the entire life-time of a star, and are used as initial conditions for more so-

phisticated simulations as well as being the main theoretical framework to interpret

observations. The improvement of these models and their underlying physical assump-

tions is paramount for the field of computational stellar astrophysics. There are many

outstanding areas of improvement for such models which will undoubtedly keep the

community occupied for decades to come:

∙ Convection

∙ Rotation

∙ Mass loss

∙ Magnetic fields

∙ Multiplicity

This thesis presents the work (carried out on the carbon shell of a 15M⊙ star)

which provides a small contribution to the problem of convection, by providing the

first three-dimensional hydrodynamic simulations of carbon shell burning in a massive

star.

Despite the many outstanding problems listed above, many other astrophysical

communities are under the assumption that stellar evolution is a solved problem. With

the dawn of new state-of-the-art observational programs such as LIGO (Abramovici

et al., 1992) and GAIA (Gaia Collaboration et al., 2016), as well as future missions

such as LSST (Ivezić et al., 2008), ELT (Gilmozzi and Spyromilio, 2007) and JWST

(Gardner et al., 2006), reliable stellar evolution models are needed in order to classify

the many observations that will arise from these global efforts.
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Concerning convection, the development of improved prescriptions is one way to

improve its treatment in stellar evolution models. The goal of 1D stellar evolution

models, is to capture the long-term (secular) evolution of the convective zone and

its boundaries, while 3D hydrodynamic simulations probe the short-term (dynamical)

evolution. Keeping this in mind, the key points to take from these and previous three-

dimensional hydrodynamic studies for the development of new prescriptions in 1D

stellar evolution codes are the following:

∙ Entrainment of the boundary and mixing across it occurs both at the top and

bottom boundaries. Thus 1D stellar evolution models should include convective

boundary mixing at both boundaries. Furthermore, the boundary shape is not

a discontinuity in the 3D hydrodynamic simulations but a smooth function of

radius, sigmoid-like, a feature that should also be incorporated in 1D models.

∙ At the lower boundary, which is stiffer, the entrainment is slower and the bound-

ary width is narrower. This confirms the dependence of entrainment and mixing

on the stiffness of the boundary. CBM prescriptions applied to lower bound-

aries should therefore reflect the decreased efficiency of mixing (compared to the

upper).

∙ Since the boundary stiffness varies both in time and with the convective boundary,

a single constant parameter will unlikely represent the dependence of the mixing

on the instantaneous convective boundary properties correctly. Therefore, future

prescriptions for entrainment in 1D stellar evolution codes would benefit from

using the bulk Richardson number, or a similar measure of the boundary stiffness.

Further hydrodynamic simulations of stellar convection are also needed to improve

the understanding of the evolution of entrainment at different epochs of phases of

evolution. One specific question which I would be interested in finding the answer

to is: “towards the end of carbon burning, does entrainment result in the further

migration of the boundary position into the surrounding stable region, or does the

boundary position remain roughly constant in mass/radius, as predicted by 1D stellar

models, or does the boundary position even recede?”

Of course, just like 1D stellar evolution models, 3D hydrodynamical models should

be subject to V&V in order to strengthen their predictive power. Verification can
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similarly be achieved through code comparison by providing benchmark problems which

can be simulated by several codes. The computation of well known fluid instabilities

such as a simple Rayleigh-Taylor instability, can also help to verify that the simulated

flows represent physical flows.

Validation ultimately requires the reproduction of observables. The level of agree-

ment between the simulations and these observables, may help in determining if the

physical assumptions and simplifications adopted significantly affect the solutions ob-

tained. Generally, there are three areas of astrophysics which provide observables for

the numerical modelling of stellar interiors: asteroseismology; galactic chemical evolu-

tion; and supernova progenitor structures. CBM prescriptions inspired by the results

of multi-dimensional hydrodynamic simulations which are incorporated into 1D stellar

evolution models should help to reproduce the observables from all three of these areas.

Multi-dimensional hydrodynamic simulations can also help simulate astrophysical

problems where 1D stellar evolution models cannot reproduce observations. Of course,

these simulations may not reproduce the observables either but will likely provide some

insight into the problem.

As computing power increases, and the porting of existing codes to GPU technolo-

gies is becoming more common, more numerous and longer time-scale simulations will

be possible. Such developments will help in the maturing of the stellar hydrodynamics

field.
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Appendix A

Useful derivations

A.1 Radiative temperature gradient

A radiative flux can be realised by applying Fick’s law of diffusing particles to photons,

by replacing the number density of particles, 𝑛, with the energy density of photons,

𝑢 = 𝑎𝑇 4, where 𝑎 is the radiation constant

Fr = −𝐷∇𝑢. (A.1.1)

The diffusion coefficient, 𝐷, is a measure of the dissipation of particles with a

characteristic velocity over a characteristic length-scale. For photons, their velocity is

the speed of light, and their characteristic length-scale can be taken as their mean free

path, which for photons with a specific radiative cross-section, 𝜅 (averaged over all

frequencies), propagating through a medium of density, 𝜌, is 1/𝜅𝜌. Of course, Fick’s

law can only be applied if the heat transport by photons is diffusive; this is indeed

the case as the mean free path (∼ 10−4 cm) is much smaller than the stellar radius

(∼ 1013 cm).

From spherical symmetry there is only a radial component of the flux and so

∇𝑢 = 4𝑎𝑇 3 𝜕𝑇

𝜕𝑟
, (A.1.2)

therefore the radiative flux can be written as

𝐹𝑟 = −1

3
𝑐
1

𝜅𝜌
4𝑎𝑇 3 𝜕𝑇

𝜕𝑟
, (A.1.3)
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where the factor 1/3 comes from the consideration of inflowing and out-flowing

fluxes on one side of a cube, where the cube represents a fluid element. Writing the flux

as the luminosity at a given surface of area 4𝜋𝑟2, and rearranging for the temperature

gradient yields

𝜕𝑇

𝜕𝑟
= − 3𝜅𝜌𝐿

16𝜋𝑎𝑐 𝑟2𝑇 3
. (A.1.4)

Transforming the independent variable to mass through the continuity equation

𝑑𝑚 = 𝜌4𝜋𝑟2𝑑𝑟

𝜕𝑇

𝜕𝑚
= − 3𝜅𝐿

64𝜋2𝑎𝑐 𝑟4𝑇 3
, (A.1.5)

and then using the equation for hydrostatic equilibrium

𝜕𝑝

𝜕𝑚
= − 𝐺𝑚

4𝜋𝑟4
, (A.1.6)

to change the independent variable again to pressure this time

𝜕𝑇

𝜕𝑝
=

3𝜅𝐿

16𝜋𝑎𝑐𝐺𝑚𝑇 3
. (A.1.7)

Finally, using the nabla notation introduced in Eq. 2.1.9, and switching out the

luminosity for flux again, the radiative flux can be expressed in terms of the radiative

temperature gradient, ∇𝑟𝑎𝑑,

𝐹𝑟 =
4𝑎𝑐𝐺𝑚𝑇 4

3𝜅𝑝𝑟2
∇𝑟𝑎𝑑. (A.1.8)

A.2 Turbulent Kinetic Energy Equation

The Eulerian equation of turbulent kinetic energy can be written as (eq. A12 of Meakin

and Arnett 2007b):

𝜕𝑡 (𝜌𝐸𝑘) +∇ · (𝜌𝐸𝑘𝑣) = −𝑣 ·∇𝑝+ 𝜌𝑣 · 𝑔, (A.2.1)

where 𝑣 is the velocity and 𝐸𝑘 =
1
2
(𝑣 · 𝑣) is the specific kinetic energy.

164



Applying horizontal and temporal averaging to the above equation yields the mean

turbulent kinetic energy equation, which can be written as

⟨𝜌Dt𝐸𝑘⟩ =−∇ · ⟨Fp + Fk⟩+ ⟨Wp⟩+ ⟨Wb⟩ − 𝜖𝑘, (A.2.2)

where 𝐸𝑘 is the kinetic energy (KE);

Dt = 𝜕𝑡 +∇ · u is the material derivative;

Fp = 𝑝′u′ is the turbulent pressure flux;

Fk = 𝜌𝐸𝑘u
′ is the TKE flux;

Wp = 𝑝′∇ · u′ is the pressure dilatation;

Wb = 𝜌′g · u′ is the work due to buoyancy; and

𝜖𝑘 is the numerical dissipation of KE.

A.3 Stellar Model Profile Fitting

The entropy (𝑠), average atomic mass (𝐴) and average atomic number (𝑍) were

remapped by considering five distinct sections of the domain. The lower stable region

(below the lower convective boundary), the convective region and the upper stable re-

gion (above the upper boundary) were fitted linearly in the form 𝛼+ 𝛽 𝑥, where 𝛼 and

𝛽 are constants, and 𝑥 is the radius on a grid point. The two remaining sections are

the upper and lower convective boundaries; these were fitted using sigmoid functions,

𝑓𝑠𝑖𝑔, of the form

𝑓𝑠𝑖𝑔 = 𝜃 +
𝜑− 𝜃

1 + 𝑒 𝜂 𝑧
, (A.3.1)

where 𝜃, 𝜑 and 𝜂 are constants, and 𝑧 is a normalised grid index. The fitting

constants for the three variables are presented in Table A.3; the subscripts for each

constant represent the section of the domain for which the fit refers to. Subscripts 1, 2, 3

denote the lower stable, convective and upper stable sections, respectively. Subscripts

𝑙 and 𝑢 refer to the lower and upper convective boundary sections, respectively.
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Appendix B

Additional information

B.1 Other hydrodynamic simulations

Here is a non-exhaustive list of some of the studies that have used the piecewise

parabolic method to model stellar fluids: Arnett, Fryxell and Müller (1989); Fryx-

ell, Arnett and Müller (1991); Shankar, Arnett and Fryxell (1992); Arnett and Livne

(1994); Ruffert and Arnett (1994); Arnett (1994); Shankar and Arnett (1994); Bazan

and Arnett (1994); Chen, Porter and Woodward (1994); Bazán and Arnett (1997);

Kane et al. (1997); Bazán and Arnett (1998); Nelson et al. (1998); Jacobs, Porter and

Woodward (1999); Kane, Arnett, Remington, Glendinning, Bazán, Müller, Fryxell and

Teyssier (2000); Kane, Arnett, Remington, Glendinning, Bazan, Drake and Fryxell

(2000); Porter and Woodward (2000); Mercer, Blondin and De Pree (2003); Meakin

and Arnett (2007b); Herwig et al. (2007, 2011); Viallet et al. (2013); Herwig et al.

(2014); Woodward, Herwig and Lin (2015); Cristini et al. (2016a); Jones et al. (2017).

B.2 Computational costs

The following table lists the computational costs required to run each model presented

in this thesis. These costs are in units of 103CPU-hrs, where 1 CPU-hr is equivalent

to using one CPU (not necessarily at 100% of its resources) for one continuous hour.

Hence, when using thousands of cores at one time for a single calculation, the accrued

cost can be significant.

167



M
o
de
l

lr
ez

m
re
z

hr
ez

vh
re
z

ep
s1

ep
s3
3

ep
s1
00

ep
s3
33

ep
s1
k

ep
s3
k

ep
s1
0k

ep
s3
3k

T
o
ta
l

C
P
U
co
st

(k
C
P
U
-h
rs
)

1.
4

22
.6

51
1.
0

10
26
.0

56
3.
0

56
9.
0

42
4.
1

13
6.
6

22
5.
6

47
7.
5

28
2.
8

29
3.
0

4
5
3
2
.6

T
ab

le
B
.1
:
C
om

p
u
ta
ti
on

al
co
st
s
fo
r
th
e
lr
ez
,
m
re
z,

hr
ez
,
vh
re
z,

ep
s1
,
ep
s3
3,

ep
s1
00
,
ep
s3
33
,
ep
s1
k,

ep
s3
k,

ep
s1
0k

an
d
ep
s3
3k

m
o
d
el
s
in

u
n
it
s
of

k
C
P
U
-h
rs
.

168



B.3 Glossary of acronyms

The following two tables list the various acronyms used throughout the thesis and their

meanings.

Acronym Definition

2D Two-dimensional
3D Three-dimensional
AGB Asymptotic giant branch
AIAA American institute of aeronautics and astronautics
APOGEE Apache Point observatory galactic evolution experiment
BH Black hole
CBM Convective boundary mixing
CC-SN Core-collapse supernova
CFL Courant-Friedrichs-Lewy
CPU Central processing unit
DNS Direct numerical simulation
EC-SN Electron capture supernova
ELT Extremely large telescope
EOS Equation of state
FLOPS Floating point operations per second
FRANEC Frascati Raphson Newton evolutionary code
FVM Finite-volume method
GAIA Global astrometric interferometer for astrophysics
GENEC Geneva stellar evolution code
GPU Graphics processing unit
HRD Hertzsprung-Russell diagram
ILES Implicit large eddy simulation
ISM Inter-stellar medium
JWST James-Webb space telescope
KE Kinetic energy

Table B.2: Table listing all of the acronyms used throughout the thesis and their
definitions.
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Acronym Definition

KH Kelvin-Helmholtz
LES Large eddy simulation
LIGO Laser interferometer gravitational-wave observatory
LSST Large synoptic survey telescope
MESA Modules for experiments in stellar astrophysics
MLT Mixing length theory
MPI Message passing interface
NACRE Nuclear astrophysics compilation of reaction rates
NIF National ignition facility
NS Neutron star
OPAL Opacity project at Livermore
PARSEC Padova and Trieste stellar evolution code
PPM Piecewise parabolic method
PROMPI Prometheus MPI
RANS Reynolds-averaged Navier-Stokes
RMS Root mean square
RSG Red super giant
SGS Sub-grid scale
SN Supernova
TKE Turbulent kinetic energy
UNIVAC Universal automatic computer
V&V Verification and validation
WD White dwarf
YREC Yale rotating stellar evolution code
ZAMS Zero-age main sequence

Table B.3: Continuation table listing all of the acronyms used throughout the thesis
and their definitions.
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Appendix C

Publications and other

dissemination methods

Refereed publications

1. A. Cristini, C. Meakin, R. Hirschi, D. Arnett, C. Georgy, M. Viallet and I. Walk-

ington. “3D Hydrodynamic Simulations of Carbon Burning in Massive Stars.”

Submitted to MNRAS Oct 2016, accepted for publication Jun 2017.

2. A. Cristini, C. Meakin, R. Hirschi, D. Arnett, C. Georgy and M. Viallet. “Link-

ing 1D evolutionary to 3D hydrodynamical simulations of massive stars.” Physica

Scripta 91(3):034006. (2016)

Other publications

1. A. Cristini, R. Hirschi, C. Georgy, C. Meakin, D. Arnett and M. Viallet, “The

First 3D Simulations of Carbon Burning in a Massive Star”, IAUS, 329 (2017; in

press)

2. R. Hirschi, D. Arnett, A. Cristini, C. Georgy, C. Meakin and I. Walkington,

“Progenitors of Core-Collapse Supernovae”, IAUS, 331 (2017; in press)

3. A. Cristini, R. Hirschi, C. Georgy, C. Meakin, D. Arnett and M. Viallet, “Link-

ing 1D Stellar Evolution to 3D Hydrodynamic Simulations”, IAUS, 307:98-99

(2015)
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4. R. Hirschi, J. den Hartogh, A. Cristini, C. Georgy and M. Pignatari, “Stellar

structure, evolution and nucleosynthesis”, PoS(NIC XIII)001 (2014)

In preparation for submission to a refereed journal

A. Cristini, C. Meakin, R. Hirschi, D. Arnett, C. Georgy, M. Viallet and I. Walk-

ington. “3D Hydrodynamic Simulations of Carbon Burning within the Context of a

Luminosity Study.” To be submitted to MNRAS.

Talks

1. Stellar Hydro Days IV, Canada. Jun 2017.

2. IAUS 329 - The Lives and Death-throes of Massive Stars, New Zealand. Dec

2016.

3. BRIDGCE Workshop, UK. Sep 2016.

4. Asteroseismology and Stellar Evolution Workshop, UK. Dec 2014.

5. BRIDGCE Workshop, UK. Sep 2014.

6. Turbulent Mixing and Beyond Workshop, Italy. Aug 2014.

7. Nucleosynthesis in AGB stars, Germany. July 2014.

8. 17th Workshop on Nuclear Astrophysics, Germany. Apr 2014.

Posters

1. Dirac Day, UK. Sep 2016.

2. IAUS 307 - New Windows on Massive Stars, Switzerland. Jun 2014.
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Durst, F. and B. Ünsal. 2006. “Forced laminar-to-turbulent transition of pipe flows.”

Journal of Fluid Mechanics 560:449–464.

Eggenberger, P., G. Meynet, A. Maeder, R. Hirschi, C. Charbonnel, S. Talon and S.

Ekström. 2008. “The Geneva stellar evolution code.” Ap&SS 316:43–54.

Ekström, S., C. Georgy, P. Eggenberger, G. Meynet, N. Mowlavi, A. Wyttenbach, A.

Granada, T. Decressin, R. Hirschi, U. Frischknecht, C. Charbonnel and A. Maeder.

178



2012. “Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at solar

metallicity (Z = 0.014).” A&A 537:A146.

Ergma, E. and E. P. J. van den Heuvel. 1998. “On the initial progenitor masses of

stellar mass black holes and neutron stars.” A&A 331:L29–L32.

Ertl, T., H.-T. Janka, S. E. Woosley, T. Sukhbold and M. Ugliano. 2016. “A

Two-parameter Criterion for Classifying the Explodability of Massive Stars by the

Neutrino-driven Mechanism.” ApJ 818:124.
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Käppeler, F., R. Gallino, S. Bisterzo and W. Aoki. 2011. “The s process: Nuclear

physics, stellar models, and observations.” Reviews of Modern Physics 83:157–194.

Kippenhahn, R., A. Weigert and A. Weiss. 2013. Stellar Structure and Evolution.

Kippenhahn, R., A. Weigert and E. Hofmeister. 1967. “Methods for Calculating Stellar

Evolution.” Methods in Computational Physics 7:129–190.

Kolmogorov, A. 1941. “The Local Structure of Turbulence in Incompressible Viscous

Fluid for Very Large Reynolds’ Numbers.” DoSSR 30:301–305.

Kolmogorov, A. N. 1962. “A refinement of previous hypotheses concerning the local

structure of turbulence in a viscous incompressible fluid at high Reynolds number.”

Journal of Fluid Mechanics 13:82–85.

Kuhlen, M., W. E. Woosley and G. A. Glatzmaier. 2003. 3D Anelastic Simulations of

Convection in Massive Stars. In 3D Stellar Evolution, ed. S. Turcotte, S. C. Keller

and R. M. Cavallo. Vol. 293 of Astronomical Society of the Pacific Conference Series

p. 147.

Kuranz, C. C., H.-S. Park, B. A. Remington, R. P. Drake, A. R. Miles, H. F. Robey,

J. D. Kilkenny, C. J. Keane, D. H. Kalantar, C. M. Huntington, C. M. Krauland,

E. C. Harding, M. J. Grosskopf, D. C. Marion, F. W. Doss, E. Myra, B. Maddox, B.

Young, J. L. Kline, G. Kyrala, T. Plewa, J. C. Wheeler, W. D. Arnett, R. J. Wallace,

E. Giraldez and A. Nikroo. 2011. “Astrophysically relevant radiation hydrodynamics

experiment at the National Ignition Facility.” Ap&SS 336:207–211.

185



Kurucz, R. L. 1991. New Opacity Calculations. In NATO Advanced Science Institutes

(ASI) Series C, ed. L. Crivellari, I. Hubeny and D. G. Hummer. Vol. 341 of NATO

Advanced Science Institutes (ASI) Series C p. 441.

Langer, N., J.-P. Arcoragi and M. Arnould. 1989. “Neutron capture nucleosynthesis

and the evolution of 15 and 30 solar-mass stars. I - The core helium burning phase.”

A&A 210:187–197.

Large, W. G., J. C. McWilliams and S. C. Doney. 1994. “Oceanic vertical mixing: A

review and a model with a nonlocal boundary layer parameterization.” Reviews of

Geophysics 32:363–403.

Lautrup, B. 2011. Physics of Continuous Matter: Exotic and Everyday Phenomena in

the Macroscopic World. CRC press.

Ledoux, P. 1947. “Stellar Models with Convection and with Discontinuity of the Mean

Molecular Weight.” ApJ 105:305.

Liu, Y. and R. E. Ecke. 2011. “Local temperature measurements in turbulent rotating

Rayleigh-Bénard convection.” Phys. Rev. E 84(1):016311.

Lorenz, E. N. 1963. “Deterministic Nonperiodic Flow.” J. Atmos. Sci. 20:130–148.

Maeder, A. 2009. Physics, Formation and Evolution of Rotating Stars.

Maeder, A. and G. Meynet. 2010. “Evolution of massive stars with mass loss and

rotation.” NewAR 54:32–38.

Maeder, A., G. Meynet, N. Lagarde and C. Charbonnel. 2013. “The thermohaline,

Richardson, Rayleigh-Taylor, Solberg-Høiland, and GSF criteria in rotating stars.”

A&A 553:A1.

Martins, F. and A. Palacios. 2013. “A comparison of evolutionary tracks for single

Galactic massive stars.” A&A 560:A16.

Meakin, C. A. and D. Arnett. 2006. “Active Carbon and Oxygen Shell Burning Hy-

drodynamics.” ApJ 637:L53–L56.

186



Meakin, C. A. and D. Arnett. 2007a. “Anelastic and Compressible Simulations of

Stellar Oxygen Burning.” ApJ 665:690–697.

Meakin, C. A. and D. Arnett. 2007b. “Turbulent Convection in Stellar Interiors. I.

Hydrodynamic Simulation.” ApJ 667:448–475.

Mercer, A., J. Blondin and C. G. De Pree. 2003. Hydrodynamic Simulations of Ultra-

compact HII Regions. In American Astronomical Society Meeting Abstracts. Vol. 36

of Bulletin of the American Astronomical Society p. 592.

Miernik, J., G. Statham, L. Fabisinski, C. D. Maples, R. Adams, T. Polsgrove, S.

Fincher, J. Cassibry, R. Cortez, M. Turner and T. Percy. 2013. “Z-Pinch fusion-

based nuclear propulsion.” Acta Astron. 82:173–182.

Mocák, M., L. Siess and E. Müller. 2011. “Multidimensional hydrodynamic simulations

of the hydrogen injection flash.” A&A 533:A53.

Moroni, M. and A. Cenedese. 2006. “Penetrative convection in stratified fluids: velocity

and temperature measurements.” Nonlinear Processes in Geophysics 13:353–363.

Müller, B. and H.-T. Janka. 2015. “Non-radial instabilities and progenitor asphericities

in core-collapse supernovae.” MNRAS 448:2141–2174.

Müller, B., M. Viallet, A. Heger and H.-T. Janka. 2016. “The Last Minutes of Oxygen

Shell Burning in a Massive Star.” ApJ 833:124.

Nelson, A. F., W. Benz, F. C. Adams and D. Arnett. 1998. “Dynamics of Circumstellar

Disks.” ApJ 502:342–371.

Nieva, M.-F. and N. Przybilla. 2014. “Fundamental properties of nearby single early

B-type stars.” A&A 566:A7.

Nishimura, N., T. Fischer, F.-K. Thielemann, C. Fröhlich, M. Hempel, R. Käppeli,
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