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ABSTRACT 

A study has been made of the vapour phase photolysis 

of cis- and trans-but-2-ene at 1849 ~ _ The p~es sure quenching 

effects of butene or added gases on the yiel ds of the pr oducts 

suggest that absorption of light at 1849 ~ produces ei t her the 

Rydberg eR) state or the first excited single t ~ - ~* CV) stat e 

of but-2-ene, in the ratio "' V 8 : 1 • 

The V state l eads sol el y t o iso!nerisation, whi l e the R 

state may decompose by seven primary r eactions . The effect of 

radical scavengers oxygen or nitric oxide hel ps to di stinguish 

five IDGl ecular and t wo radical primary r eactions . 

C4HS- 2 + h V -> V or R 

( cis fr om ois) 
>6 

V ~ isomer fr om trans, trans 0 · 085 

R ~ H· + ·CH2 - CH = CH - CH
3 

0-6 

R -+ HC - CH + 2 -CH 
3 0 '.23 

R -+ CH2 = CH - CH = CH2 0 " 11 

R ~ 'CH3 + ' CH = CH - CH3 0'065 

R -+ CH
4 

+ CH2 = C = CH2 0'05 

R -+ CH - C 3 - C - CH3 + H2 0 ' 007 

R -+ 2 H2C = CH2 0 ' 007 



Recombination r eactions of the radicals formed in the primary 

r eactions expl ain the full range of products C
1 

to C8 and the 

soli d polymer formed in the photolysis . Photolysis of but- 2-

ene in the liquid phase at 1849 R suggests that, only the V 

state i s formed, for the products consist almost entirely of 

the geome tric isomer. 

A t hird excited state , the triplet state of but-1-ene 

is formed by crossover from the excited but-2-ene states , and 

results in the formation of but-1-ene. 
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1. INTROD UCTION 

1.1 Preliminary Remar~ 

Photoohemioal prooesses are or fund4m nt lDpor no in 

nature, for the oonversion of 1 ght en rgy into ch 10 

essential to many biologioal aotivi ties . On oh oon reion proo 0 is 

photoohemioal cis-trens isomeri tion, whioh plays an impor ant rol in 

the me oruniam of vision. The rods on the r t Illl. of tho oont n 

visual pigment , rhodopsin, wh1~h i~ a oomb . 

(Vitamin A, a.ldehyde) and a protein (opain) . 1'he o th 

11-ois oonfiguration and abaorp'l;lon of' liLJ;htool'lv -~ -to th 0 11-

form . This iaOIDE:lrisa tion tr ggera off a oho.. n 0 proo ooc G whioh 

eventually l ea.d to visual exoi tat:.&.on.1 

Although photoohemical c1s··trans SOnlO sa.t on ~ 0 suoh b 0 

importance, very little is known about the na tur 

present study, using a simple olefin , was in t ate 

th proo a. Thu 

o g n mol' 

'lmderstanding of the intermedia.te exo t ea. s t'Js invo vo n pho oohe 

ois-i:rans isomerisation. It was found tha. t on phC'J~c :(o:l. on 0 thu 

OM 

olefin, there was compe'ci tion in the xo1tod 'tat botw u ' cc.'mori on 

and dis8ooia'tion wit:1 the lattflT.' proo B pr. 

the orlgin~l inta1t was to study photoohe 

the scope was extended to inolud a study 

dom:~ tinge So , Itho 

a 1somori s tion, 

photod1sdooiut1on . 

But·-2, -Ems WilS ohe sen for t e study, f U .. ' t is ha simpl at 

Ul1deutElrated olefin wh:5.oh ex:i.std in two goomet:-ioa. 1 om no forma, 
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cia trans 

It /H ~ H3C 
/H 

c = c" c = c 
/ H// "CH H3C 'cH 3 3 

and has the advantage of being a gas at room temperature . Consequently, 

the photolysis oan be studied in the vapour phase wher e interaotions 

between neighbouring moleoules are at a minimum, and solvent effects 

do not have to be oonsidered. 

The introduotion to this thesis includes a disoussion of the 

absorption speotra of olefins vmioh provide inforllll.tion on the nature 

of the exoited states produced by absorptio:l of light. The various theories 

of ois-trans isomerisation are oonsidered in t erms of the exoited sta.t 8 

involved, and a disoussion is given of the relationship between 

isomerisation and breakdown of exoited olefins produoed by several 

different methods. 

1.2 AbSOrption Speotra 

The absorption of simple alef ins, pa.rtioularly ethylene , in 

the ultraviolet has been the subjeot of oonsiderable practioal 

investigation and theoretical interpretation. As the absorption speotra 

of all simple olefins are qualitatively similar, the discussion can 

be centred on ethylene, and then extended to inoorporate but-2-ene 

- 2 -



and other olefins . 
2 The absorption speotrum of ethylene is illustrated in 

Figure 1 .1 • 

The speotrum can be divided into the f ollowing zones :-

( a) A serie s of diffuse bands of rapidly rising intensity, 

from 2069 X (very weak absorption) to at l east 1750 K. 
Cb) A series of intense sharp bqnds , beginning at 1744 i , 

and decreasing in intensity t o shorter wavelengths. 

Cc) A broad oontinuum underlying the sharp banda , and 

rising to a maximum intensity at 1620 R. 
( d) Thr.ae further seri es of sharp bands beginning aJc 

1520 R, 1440 R, and 1370 R, underlain by another 

continuum. 

The spectrum is assooiated vdth absorption by the ~- el eotrons 

of the C=C bond, but the nature of the spectrum indioa.tes that more than 

one type of electronic transiti on is involved. 

The sharp bands, beginning at 1744.R have beon assigned to a 

3 Rydberg transition by Price . The 'h £l.naed struct"Ure is attributed to 

excitation of the))2 (C=C stretvhing) and thel})4 (twisting) vibrat ions 

in the Rydberg state, other vibrational modes being unexcited . The 

further banded series beginning at 1520 R, 1440 R and at 1370 R are also 

assigned to Rydberg transitions,2,4 all three series oonverging t o the 

same ionization potential. 

The broad continuum (c) and the serj.e s of diffuse bands ( a) 

-3-
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5 are oonsidered by Craig to represent two different transitions, both 

singlet - singlet, but the latter one symmetry-forbidden and hence of 

lower intensity. However, the merging of the two lones (a) am (0) 

into eaoh other, and the oontinuity in the intensity, is taken as 

2 
evidenoe by Wilkinson and Mulliken that the two zones represent one 

transi tion. This is further substantiated by the red shifi; oaused by 

the replaoement of the hydrogen atoms of the ethylene moleoule by alkyl 

groups. The zones (a) and (0) are shifted ae a whole and not ae 

separate entities. The diffuse bands in zone (a) are assooiated with 

)J 2 vibrations ani the produotion of the continuum in zone (0) is 

presumed due to the increasing presence of other modes of vibration. 

The reoognition of substruoture, (associated with torsional osoillation), 

in zone (a) of the speotrum of tetra deutero ··~thylene goes some 1f8y 

to substantiating this presumption. The 0-0 band of the transition 

is not seen, but from the progression of theV2 bands, it is estimated 

to be at approx. 2.500 ~. . The maximum at 1620 .R is assooiated with some 

twenty quanta of stretohing vibrations, oorresponding to a C=C bond 

length of 1.6, R in the exoited state, compared with a O:::C bond. length 

of 1 .353 R in the ground ata te •
6 

Thus two transitions are seen to ooour. These are designated 

R .. N and V .. N in Mulliken' s 7 terms, where N represents the singlet 

ground state, R represents the Rydberg state with one of the 1T-bonding 

electrons transferred to a Rydberg orbital, and V represents the 

first upper excited singlet state, with one of the 1T-bonding eleotrons 

transferred to an anti-bonding orbital. Prioe and Tutte
8 

oonsider 
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tha t t he f irst Rydberg orbital is itself somewhat anti -bonding, sinoe 

i t occurs a t a s~orter wavel ength than pr edicted . 

Snow and All sopp9 originally believed the weak dif fuse 

absorption bands below 2069 R to be due t o a ~inglet - triplet transition 

T .... N, in which the spin of the el eotron in the anti-bonding orb! tal was 

r eversed. However , tile use of long path-lengths of liquid ethyl ne ,1 0 

or gaseous ethylene in the presenoe of one hundred atmospher es of oxYgen,11 

ha s helped to distinguish weak absorption bands in the 2600 - 3500 R. 

r egi on , which ar e attributed t o the T .... N transition . 

The effect of r epla cing the hydrogen at oms of e thylene by alkyl 

groups is to shift both the R ... N transition and the V ... N transit ion 

t~{ards the visible r egi on , although the f ormer i s shift ed much furth r 

t han the l atter . These effects have beer. car e:f'ul.ly s tudi d by Car r 

12 13,14-
and co-workers . ' 

The shift of the Rydberg bands depends sol ely upon the number of 

hydrogen a toms which have been r epl aoed , and not upon t heir posit ion. 

This is becaus e the energy of transition is due to the effeotivo nuol ar 

charge on the central carbon ntoms .13 Thu s the Rydber g bands of 

cis-but-2~ a~A cyclohexene ar e almost coi~otdent . 

Since the V .... N transition is a ohar ge transfer transition, 

the shift depends upon the dipol e vect or at the mol eoule . Ther ef or e 

the V .... N dhift is dependent upon moleoular shape , and hence upon 

the posi t i on of r eplacement , r a ther than upon the number of hydrogen 

14- 15 . a t oms r epl a ced. ' The direct~on of the dipol e governs whether t he 
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maximum of the V ~ N absorption is displaoed to longer or shorter 

wavelengths than the moleoule with no effective dipole . This is 

illustrated far the isomerio butenes in Table 1.1 

Table 1 .1 

Olefin 
cis-but-2-ene and trana-but-2-ene 2-methylprOJloene but-1-ene 

Effeotive Dipole 
Perpendioular to None Along C=O C::C 

Amax V~N 1754.R ci8- 1780 R 1883 R 1750 ~ but-1-ene 
absorption 

The absorption spectra of oia- and trans-out-2-ene are given 

16 
in Figures 1 . 2 and 1.3 . 

The 0-0 band f or the R +-N transition is an intense band for 

eaoh isomer at 2066 )t ( c is-) and 2021 .R (trans-). The )} 2 (C= C 6 tretohing) 

frequency is ~1680 ~.-1 from infrared and Raman measur ments,17 and is 

oomparable with the moderately strong bands at 2004.R (oi&) and 1959 R 
( trans-). The r emaining bands ob served befora the R ~ N abs orption 

is submerged below the V ~ N absorption are attributed to other 

vibrational modes of the moleoule , whioh a re oomparable with similar 
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figure 1 . 2 
I -
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10 er E. 
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Figure 1 .3 

trans - but- 2- ene . 
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Vave number x 10-3 cm .-1 

Absorption spectra of cis- and trans - but- 2- ene . 
16 . 



bands obtained in the Raman and I.R. speotra..17 The diffuseness of the 

bands compared with the sharpness of the ethylene bonds ie believed due 

to interaotion of the promoted el eotron with the methyl groups. The 

Rydberg orbital of ethylene has a radius of ,...., 3 'i..7 and henoe the eleotron 

is r el atively unhindered, since it lies outside the hydrogen atoms . 

However, in the derivatives of ethylene, interaction ooours between the 

electron and the substituent groups. In solution or i n the solid phase , 

the R ~ N bands are not observed at all, since the Rydberg orbital is 

strongly perturbed by the presence of neighbouring moleoulea.18 

The appearance of fine structure in the speotrum of isobutene, 

which is not quite so well marked in ois- and trana-but-2-ene , has been 

compared to a imilar structure in benzene . Benzene oan be oonsidered for 

this purpose as ethylene Vii th two cis-hydrogens r eplaoed . The fine 

struoture for benzene has been assigned to a aecond Rydberg transition,19 

and a similar assignment can be made for the butenes .14 In view of the 

super-posi tion of the two transitions in the butene speotrum it is 

extremely difficult to est~ate the limit of the Rydborg series. However, 

as the benzene and butene Rydberg transitions are similar, the Ionization 

Potential of butene is estimated to be similar to that of benzene 

(~9.6 e.v.~8 (Measured as 9.34 e.v. for cis-but-2-ene).111 

Original measurements of the speotra of but-2-ene were qualitative~ 

The first quantitative measurements of the speotra were made by Gary 

16 20 and Piokett, and these were later improved by Jones and Taylor using 

a photoelectrio detector. Both measured the absorption intensities of 
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the broad V <to N absorption. The results are given in Table 1.2. 

Table 1.2 

Gary and Pioke tt Jones and Taylor 

A. R E -1 A. .R € max cm . 
-1 

ma.x max cm. max 

cia 1754 21,900 1740 16,000 

trans 1777 14,100 1780 13,000 

The osoillator strengths for the bands wer e determined using 

the formula 
))2 

£ = 4.32 x 10-.9 J to:. d)l 

VI 
where the area of the band is taken as € times max the band wiath at 

half peak height. For ois f = 0.59, and for trans f : 0.32. 
16 

The speotra of both butenes show that at 1849 .R the two 

transi tions V <to N and R +- N are superimposed, the former being the most 

intense. Thus irradiation by light of 1849 .R may produce e ither the V 

state of butene , or a mixture of both V and R states. 

-: 8 -



1.3 Excited states 

Mull1ken7,22 has disoussed in theoretioal t erms the form of 

the exoited states of ethylenic moleoules which are produoed by the 

absorption of ultraviolet light. 

The Rydberg state maintains the planar form of the ground state 

moleoule, although with a greatly reduoed r esistanoe to twisting. The 

barrier to rotation in the Rydberg state i8 put as low as 0.1 e .v. 

(cf. 2.66 e.v . in the g:ound state).2 The sharpness of the absorption 

bands imply that the ground state structure is retained. However, in 

the upper singlet state V, the most stable form of the moleoule is with 

the plane s of the two CH2 groups mutually perpendicular . The 

rotation is taken to account for the extero..ed wavelength range of the 

V .. N spectrum. The: perpendicular nature of the excited state is further 

indioated by the pronounced shoulder on the long wavelength side of the 

speotrum, particularly notioeable in solution when the R .. N bands 

are absent . This shoulder is due to moleoules in the ground. state 

oooupying the first or seoond torsional vibration l evels. Consequently, 

o 
l ess energy is required to produce the 90 form from these levels, and 

absorption occurs at longer wavelengths . 
o At 77 K the shoulder disappears, 

for almost all molecules are then in the zeroth vibrational l evel.18 

Associated with singlet states V and R are triplet states 

T and ~ in which the spin of the electron has been r eversed. The 

11 work of Evans has shown that the T .. N transition of ethylene lies 

at 2500 - 3600 R, and is of very low intensity since it is spin-forbidden. 

- 9 -



.tU though there is no experimental evidence on the structtn'e of the 

T state of olefins, Walsh23 suggests that triplet ethylene may 

have 1;W.:) non-planar groupings, and Mulliken and Roothaan31 have estimated 

that the perpendicular form of the T state of ethylene would be more 

stable than the planar form by approximately 20 keal. 

No information is available on the state !l.r, although oomparing 

it with the relationship of atate T to state V, the Rr ~ N transition 

would be expeoted to oeour at longer wavelengths than the R ~ N transition. 

Once an excited singlet state V has been produoed by absorption 

of radiation, the molecule can lose its energy by the following 

24 prooesses , as illustrated on the Jablonsld. diagram in Figure 1 .4. 

1 • Dissooiation of a vibronic state to yield photoohemioal produots . 

2. Collisional deaotiva tion of a vibronio state. 

3. Fluoresoenoe: radiative conversion to the ground state . 

4. Internal Conversion: non-radiative oonversion to the ground state. 

5. Intersystem Crossing: non-rad1ative transition whioh involves 

a spin interoombiaation to the triplet state, which is then 

vibrationally deaotivated. 

6. Energy transfer non-radiatively to a neighbouring moleoule. 

The triplet state produoed in (S) will lose its energy 

by:-

7. Phosphoresoenoe: radiative interoombination with the ground state. 

8. Internal oonversion: non-radiative interoombination with the 

ground state. 

9. Photoohemical dissociation from the triplet state. 

10. Triplet-triplet energy transfer: non-radiative transfer of 

eleotronic energy to a neighbouring moleoule. 

- 10 -



Figure 1 . 4 

9 . 

10 . 

h y 3. 

7 • 

11 . t> 

Full lines represent radiative processes , and brok en 

lines re present non-radiative processes . 



The ground state moleoule produoed by internal oonversions 

(4) and (8) may be highly vibrationally excited, and may lose its 

energy by:-

11 • Dissociation of th3 vibrationally exoited ground state to 

yield ~hotochemioal produots . 

If an excited moleoule is not deaotivated or does not 

deoompose, it will return to the ground state after a certain time with 

emission of radiation (process 3). If A is the average number of nm 

transitions per atom per second between upper state n and lower state m, 

the mean life o~ state n is defined as 

1 .1125 

Anm is the Einstein transition probabiliJ.;y of spontaneous emission , and 

is related to the intensity of emission from the upper state. Hence 

each exoited state has a. mean life 1:", and if the moleoule is to undergo 

reaotion in the exoited state the rate oonstant for the reaotion mus"!; 

be shorter than the mean life. The mean life is also inversely propor-

tional to +be absorption strength of the exoited state. The Beer-

26 
Bouguer-LaL1bel;'t JJ;.w states that the inte"gra teel " fraotion of light 

absorbed by an assembly of molecules is proportional to the number of 

absorbing systems in the light path, viz. 

1.IIl 
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where I and I are 'the intensities of entrant and emergent light 
o 

respectively, with El. path length 1 of absorbing speoies at a 

conoentration of 0 mOles/litre. The oonstant £ is the molar extinction~-

c:iert£l1'l.Cli3alIDasure of the strength of absorption . Themneah life "C.. , and t. 

are related by the expression 

r A. 2 N 

, '2, dV 
0 0 

= 
81T "C 

»1 
where A. is the wavelength of tee maximum of the a bsorption band, 

o 

1. IV 

N is Avogadro's number 
o 

am "2 and 'Vi the limits of the absorption band, a re 

in units of frequency. The value of j't d)) may be taken as' times '- max . 

the peak width at half peak height. 

In the near ultraviole't this can be approximated to 

Thus for V ~ N transitions in olefins, where € is of the order max 

10,000, 't is of the order of 10-
8 

sec.; while for T" N transitiona, 

which are spin-forbiMen , E. max is le06 than 10, 60 that L ""10-5 seo . 

Cons equentlYI triplet states are mnch more likely to be influenced by 

environment in view of the longer mean life. 

The mean life of the V state of butene as caloulated from the speo­

tral measurements of Gary and Pick:ett16 is as follows:-

- 12 -



cis-but-2-ene trans-b\.:t-2-ene 

-C 5 .1 
-10 x 10 secs 1 .5 x 10-9 secs 

These mean lifetimes must be oonsidered in relation to a vibrational 

period of 1V10-13 sec ., a rotational period of "V 10-10 sec . , and a 

11 -1-1 collision frequenoy in the vapour phase of 2 x 10 litres moles sec . 

(Calculated using a collision diameter of 6.5 ~ for butene29 in 

the relationship 

(2@!)i" 
M 

30 
1 .VI 

where iT is the collision diameter and M the molecular weight of but-

2-ene) . 

In view of the mutually perpendicular form of the C~ 

groups adjacent to the C::C bend in the V and T states of but-2-ene, 

deaotivation of these st~teB may be expected to lead to either cis-

or trans- isomer , while deactivation of the R er RT states would be 

expeoted to yield the original isomer . 
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1.4 Cis-Trans Isomerisation 

The variation in energy of the N, V, R and T states of a 

simple olefin 

as a funotion of the angle between the planes of the two CR2 groups is 

given in Figure 1 .5.31 

However, when the olefin linkage is part of a conjugated system, 

the energy variations oan be much more oomplicated, as is seen with stil­

bene32 and azobenzene. 33 

The pathway by ,vhich cis-trans isomerisation prooeeds depends 

upon the energy that is put into the molecule. Thus thennal isomerisation 

would be expected to proceed via the N state, while photochemical 

isomerisation would proceed via the V, T or possibly R state. 

1 .4.1 Thermal Isomerisation 

Figure 1.5 ShOV1S that in the perpendicular oonfiguration 

the triplAt state has lower energy than the grou-'1d state. This presents 

two possible pathways for isomerisation,34 a purely singlet mechanism, 

or a mechanism involving transfer from the singlet state to the triplet 

state and vice versa. 

1 • The singlet mechanism ACE involves the formation of' an activated 

complex, C. Enhanoed stabilisation in the 90° form is at:bributed 

to resonance, due to the interaction between two e~uivalent 

- 14 -
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2. 

struotures. The singlet meohanism is Charaoterised by high 

(normal) frequenoy factors CA ~1013 sec.-1) and aotivation 

( -1) energies EA iV 40 - 60 koal .mole • 

Triplet mechanism A B D E involves orossover to the triplet 

state . This mechanism is oharacterised by low frequency faotors 

(A "" 1 04 seo . -1) and aotivation energies (EA ~ 20 - 30 koala 

mole -1) . 

In solution there is evidenoe that both meohanisms can ooour~35 

Malentea isomerise with low A and EA faotors,36 while oinnnmates have 

high values .37 Changing the subatituent in the p-aubstituted stilbenes 

leads to a ohange from singlet to triplet values.38 However, the theory 

gives no indioation as to what oontrols ~.e choioe of reaotion path . 

In the vapour phase present evidence suggests that only the singlet 

DEohanisID is operative . Early results which gave low values CA = 2 seo.-1 

EA = 18 keal .mole -1) for ois-but-2-ene39 and for c:ts-diohloroethylene40 

( 2 -1 -1) A = 2.1 x 10 seo . , EA = 16 kcal. mole have been shown to be 

inaocurate, for both reaotions are governed by surfaoe oonditions.41 ,42,43 

When the surfaoe effects were counteraoted ty ' oonditioning', high A and 

EA values were obtained. However, the values for uut-2-ene were still 

considered low,44 and Lifshitz , Bauer and Resler45 extended the work 

up to a temperature of 1250oK, using a single-pulse shock tube, to reduoe 

the errors obtained worldng over a limited temperature range. The be st 

values for the thermal isomerisation of but-2-ene and the oonditions they 

were obtained under are listed in Table 1.3. 
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Table 1.3 

0 Temp. C Press. range mm. A seo. -1 E koal. Ref. 

391 - 443 200 - 400 1011 52 4b 

413 - 503 3 x 10-3 - 445 6.1 x 10'3 62.8 41 

410 - 4-76 -2 1.7 x 10 -401 1014- 62.4- 4~ 

727 - 977 30 - 160 3.5 x 1014- 65 45 

A further meohanism involving tunneling through the potential 

barrier between the two singlet states was oonsidered to be of negligible 

importanoe by Magee, Shand. and. Eyring. 34 

1 .4.2 Photoohemical 

Although there is very little information on the direot 

photoohemical isomerisation of simple olefins, conjugated compounds, 

partioularly stilbene and azobenzene have been extensively investigated. 

Various theories have been proposed to explain the JOOohanism of cis-trans 

isanerisation, many being discarded as improved techniques have brought 

new facts to light. Olson,47 basing his oonolusions on the limited 

results available at the time, oonsidered ois-trans isomer.aution as 

ooourring by rotation in an exai. ted state oommon to both isomers, 

produoed direot~ by absorption. However, a number of f eatures, partioularly 

ooncerning stilbene, were not explained by this meohahism. 
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vis. The fluoreaeenoe of the trans-isomer and not the ois-; the 

definite struoture of the absorption speotrum of the trana-isomer, 

while the eis-isomer has a oontinuous absorption with no disorete levels. 

Lewis, Magel and Lipkin48 interpreted the results in terms of the "loose 

bolt" theory.49 in which the eleotronic' energy a£ excitation of the ois-

isomer is very r ap1dly oonnected to vibrational and rotational energy 

of the grouni state. The molecule in this highly vibrationally excited 

state can then undergo cis-trans isomerisation. The cis-trans isomerisa-

tion of stilbene and substituted stllbenes is further complioated by the 

quantum yield of trans + cis conversion being dependent upon conoentration, 

sol ven ts. and very strongly de pendent on temperature, 50 and by the forma. tion 

of the side-proiuot phenanthrene.51 The discovery of an emission which 

was originally thought to be due to phoaphorescence,52 but was later , shown 

to be caused by impurities, 53 l ed to the proposal of theories involving 

the triplet state as intermediate in the cis-traus isomeri8ati~. There 

are two major achovls of thought on the mechanism, one believing that a 

oommon triplet intermediate is involvAd, and the other postulating two 

triplet intermediates with a thermal barrier between them. 

The siIl8le intermediate meohanism is supported by Sohtll.te­

Frohlinde50 and by Dyok and MoClure. 54 The reaotion soheme is represented 

by Figure 1 .6. 

3f )£ 
St' St ' Se' Sc are ground and 1st exoited singlet statea of 

trans- and ois-stilbene respeotively. St*+ is a vibrationally exoited 

* level of the St state. The vibra'cional or rotational energy is equal 
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Fi gure 1.6 

~+ s*+ 
St c 

Jot 

* Sc 
St 

T I . 
I 5 ' 

Mechanism of cis - trans isomerisation
50 

54 
involving a single intermediate state . ' • 



to the aotivation energy of the thermally aotivated singlet .. triplet 

transition. 

Isomerl.. sation trans ... cis involves 1, 2, 3, 4, and cis ... trans 

involves 1', 2', 3', 4'. 5 represents fluorescence from the trans 

state, while 5 ' represents a possible radiationless combination with the 

ground state, Only prooesses 2 and 2' are oonsidered to be thermally 

activ~ted. 

The mechanism involving two intermediates was proposed by 

F8rster,55 developed by Zimmerman,56 and later modified by Malkin and 

FisCher .57 The mechanism originally involved a thermal barrier between 

two intermediate triplet states Tt and To associated with trans- and 

58 eis-stilbene respeotively. However, later results with p-bromostilbene 

required a modifioation of the soheme to inolude two thermally aotivated 

steps, 1 and 3, in Figure 1.7, and the presenoe of a further triplet 

state T't' St~ represents a second singlet state which is not obtained 

by direct radiation. All other symbols are as in Figure 1 ."6. stegemeyer,59 

reviGWing the current results on stilbene and azobenzene, oonsiders that 

the model involving two intermediates best fits the facts .. 

Thus in thermal and photoohemical isomerisation, the reaction 

path. includes the lowest possible energy states of the r eaotant molecules. 

Viz. the Nand T states. The following review will cover other methods of 

inducing cis-tra.ns isomerisation, oonsidering, where possible, the nature 

of the excited states involved. 
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Figure 1 .7 
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1.5 Photosensitisation 

The prooess of photosensitisation involves the absorption of 

light energy by a strongly absorbing substanoe, the photosensitiser, and 

its transfer by oollision to another substanoe which does not absorb 

in the speotral region employed. The non-absorbing molecule then quenohes 

the energy of the exei ted molecule. 

The triplet state of most moleoules has a mean life several orders 

of magnitude greater than the exoited singlet state (section 1.3), and is 

oonsequently very amenable to collisional quenching processes. If the 

triplet state of one molecule A is produoed in the presence of the ground 

state of anomer molecule Q, then providing Q hOos a triplet state with 

energy lower than the triplet state of A, reaction 

A~(triplet) + Q (singlet) ~ A (singlet) + Q*(triplet) 1.VII 

will occur at every collision. 

Oocasionally a transfer can occur when the triplet energy of 

A!f. is less than that of Q*. 63 This transfer is believed to involve 

non-Franck-Condon excitation to 'phantom' triplets which are equivalent 

to the T state in the perpendicular COnfiguration.63 The Wigner-Witmer 

rule60 states that a change of multiplicity of Q must occur for the process 

to be spin-allowed. This process has been shown to occur in the SOlid,61 

liquid62 ,63 and vapour35 ,64 phases. For photosensitisation in the vapour 

phase, particularly in the ultraviolet region, the vapours of some metals 

have proved most useful. Steacie66 defines a suitable sensitiser as a 

metal with a sufficiently high vapour pressure at a reasonably low tempera-

ture, and an excitation energy of the right order of magnitude. These 
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requirements narrow down the ohoioe for the u. v. r egion to meroury, 

oadmi um and zino. Of the se , meroury has been th e most extensively us ed~5,64 

1.5 .1 Meroury ns Photosensitiser 

Triple t state meroury ha s been used to transfer e nergy to both 

paraf'finio ani olefinic hydrocarbons. With paraffins a sufficiently 

low-lying triplet stat e is not available for process 1.VII to ocour, 

so tha t the r eaction is spin--forbidden. Quenching the n r esults in the 

rupture of a. C-H bond of the par affin. With olefins a l C1N-lying triplet 

stat e is available (-' 70.:!: 5 kcals.66 for but-2- ene c.f. 112.2 kc nl. 

for mercury) and r eaction 1 .VII oocurs a t eve~· collision, produoing a 

vibrationally excited olefin triplet. TIn s triplet can either deoomp ose or 

be collisionally deactivated to the g~und sta t e by a r adia tionless 

intercombination. The se processe s are r epr e sented by the following 

sequence :-

Hg 6('8
0

) + hy CA 2537 i) ~ Hg 6( 3P1 ) 1 .VIII 

Cn H2n + Hg 6C3P1) --) C H ll+ + Hg 6('3 ) 1.IX n 2n 0 

Rt-Cn H2n 
~ products 1.X 

C H !!+ 
n 2n + M ~ Cn 

H !f 
2n + M 1.XI 

C H !( 

n 2n """"" '~ Cn H2n 1.XII 

where !( r epresents triple t electroni c exoita tion and + r epre sents vibrational 

exoita tion. 

The mercury sensitised photolysis of e thylene has been extensively 

studied and the meohanism is quite well understood. The production of 
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ao.etylene and hydrogen by an intramoleoular deoomposi tion was reoognised 

by early workera,67 although the possibility of a free radioal meohanism68 

was not finally discounted until ovetanovio and Callear69 photolysed 

mixtures of C
2
H

4 
and C2D

4
• Kinstio studies o~ the decomposition required 

the existenoe of two excited states of ethylene , with approximately 

equal lifetimes, both of which could be oollisionally deactivated but only 

one of whioh oould deoompoae.64 The sensitisation of ois-CHD:Crn!° 

yielded the tran! isome~, and also CD
2

:CH2 , a reaotion whioh again 

required the existence of two intermediate excited states:-

a) The triplet state of CHD:CIID which on deacJ~ivation could yield 

either ois- or trans-CHD: CrID. b) A triplet ethylidene formed by the 

migration of H or D, which oould either deoompose or be oollisionally 

deaotivated to yield C0 2 :CH2 • Similarly in the sensitisation of but-1-

ene, a 1,2 or 1,4 hydrogen atom shift in the exoited state oan explain 

the formation of methyl cyclo propane.71 - which was originally thought to 

be but_2_ene~72,73 

Meroury photo sens i tisa tion (input 112 koala mole -1) re suIts in the 

rupture of weak bonds p to the double bOnd,74 yielding resonanoe 

stabilised allylio radicals. Cvetanovic and Doyle71 disoovered over 

thirty produots formed by the combination and disproportionation reaotions 

of the radicals formed by /1-bond cleavage in but-1-ene. The ratio of 

c-c to C-H cleavage was found to be "..; 1.6 - 1 .3. Although there are 

no /1-bonds in ethylene, C-H oleavage does oocur at room temperature, and 

beoomes of increasing importanoe as the temperature is raised to 350°C . 75 
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With but-2-ene the prinoiple photosensitised reaotio~ is ois­

trans isomerisation,72,76 ,29 with very little formation of other 

29 products except at lowest reaotant pressures. Cvetanovio, Gunning 

and Steaoie, 76 working at 60 mm pressure of out-2-ene, obtained 

approximately equimolar mixtures of the two isomers after prolonged 

irradiation. Thus the exoited triplet state gives either isomer with 

29 equal probability on deactivation. Cundall and Palmer obtained a 

limiting value for the fraction of trans-isomer as 0.53 - 0.54. The 

small difference from 0.5 was considered due to different quenching 

efficiences of the two isomers. Below 30 mm pressure the r at e of isomer-

isation was pressure dependent, and from the pressure effect the lifetime 

of the vibrationally excited tripl et state of but-2-ene was oalculated as 

-9 29 ( - 9 71 . 3.3 x 10 sec. c.f. but-1-ene 6.3 x 10 sec.; methyloyclopropane 

~ ~ ~ ~) 4..7 x 10 sec. ; ethylene and ethylidene ,...., 4 x 10 seo. • At low 

pressure of but-2-ene Lossing , Marsden and Farmer,74 showed, using the 

teohnique of a mass speotrometer coupled direotly to the reaotion vessel, 

that P C-H bond cleavage occurred to yield the y-methylallyl radical 

CH3.CH::CH.CH2 in considerable amounts . Other products were butadiene 

and hydrogen, possibly forme~ by moleoular deoomposit~on, sorne propylene 

and aliene , and a dimer. Kobarle and Avrabami77 working at a pressure 

o of 2J.l ois-but-2-ene mixed with 10 mm helium at a temperature of 55 C, used 

a similar technique to Lossing, Marsden and Farmer , and disoovered that 

even at such low pressure the main fate of the exoited triplet butene 

molecule was collisional deaotivation, the ratio of deactivated to 

- 22 .... 



deoomposed being approximately 3:2. A large number or produots C1 

to C8 were obtained whioh could be explained by two primary prooesses:­

~ C-H bond cleavage and also a rearrangement of the excited triplet to 

give methyl and allyl radicals. 

1.XIII 

The methylallyl radioal is oonsidered to be a mesomer of the two forms 

1.XIV 

and its re oombina. tion with other radioals would be expeoted to lead to 

two distinot produots. The direot elimination of hydrogen to form 

butadiene is oonsidered unlikely, sinoe no direot elimination occurs in the 

mercury photosensitised deoomposition of propylene . 78 Thus the transfer 

of energy from mercury (112 koal . mole - 1) to lmt-2-ene yields a vibrationally 

excited triplet state of butene. At high pressures (> 30 mm) this is 

deactivated to yield either isomer with approximately equal probability, 

mile at low pressures the excited molecule has suffioient energy to 

undergo /3 C-H bond cleavage . The produotion of both isomers on deaotiva-

tion indicates that the triplet state involved is T (Figure 1.5). 

Deactivation of the Rydberg triplet state ~ would be expected to yield 

only the original isomer . 

1.5.2 other photosensitisers 

1 .5 .2 .! . Metals and Inorganic Sensi tisers 

Cadmium Cd 5(3p1) (87 . 3 kcal .mole-1 ) has been suodessfully used 

to photosensitise the isomerisation of but-2-ene,79 although the rate is 
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slower than with mercury. Although sine Zn 4(3P1 ) (92.5 koal.mole-1) 

has not been used, it should equally well oause isomerisation. However, 

sodium Na 3(2p) (48 koal.mole-1) has insufficient energy to cause 

isomerisation.80 

Photoexoited sulphur dioxide81 has been disoovered to transfer 

energy to olefins in the vapour phase, and transfer to \ut-2-ene29 

results in isomerisation. This has been taken as an indication that the 
~~ 

lowest triplet state of sulphur dioxide (73.4 kcal.mole ')is 

involved in the transfer. 

1 .5.2.~ Organic sensitisers 

A varie~ of organic compounds, and in particular benzene, has 

been used to photosensitise but-2-ene. The cis-trans isomerisation 

reaction sensitised by benzene has recently been followed by I.R. 

spectrosoopy.83 The value for the photostationery state ois/trans has 

been reported as 1 .3~d 1.0.85 The results for a range of sensitisers 

investigated by Cundall and cO-workers are given in Table 1.4. 
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Table 1.4 

Senaitiaer Triplet state_1 energy keal.mole 
.Resul ting cis-trans I 

isomeIi sation of but~2-ene Ref. 

Benzene 85 Yea 84,29 

Pyridine 85 " 84 
Pyrrol 83 " 84 
Toluene 83 " 35 

Fluorobenzene 85 11 35 
cis-dichloroethylene ? " 35 
Formic Acid ? " 35 
Cyclopentanone ? " ·35 
Acetone ",78 " 35,29 

Benzophenone 68 .5 " 35 
Styrene 62 No 84 
Acrylonitrile ? " 35 
Vinyl Acet at e ,., 

" 35 . 
Biacetyl 54.9 " 29 

Cyclopentanone ? 11 35 

ThE' difference in the photostationary states tha. t are obtained 

are attributed to the different quenching cross-sections of the butene 

isomers in the interaction with the sensitisers.35 

Thus, in order to induoe isomerisation of but-2-ene the 

sensi tiaer moo t have a triplet state energy in 9xoess of 'V 65 koal.mole -1 • 

This is a good indioation that the tripl et sta t e energy of but-2-ene is 

-1 .}: 65 kcal.mole • The sole products from the triplet state are either 

- 25 -



the cis- or trans-iaomer, unless the triplet state is highly 

vihrationally ex~ited, when C-H bond cleavage can oocur. 
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1.6 Radiation Sensitised Isomerisation 

The radiation-sensitised i someri sation or but-2- ene i s in 

es sence the same as the photosensitised i somerisation. The triplet st at e 

or the sensitiser which is produced by th~ y-radiation, transr er s its 

ener gy to· tho butene . 

Benzene (singl et) 
y 

~..,/' .. ~ Benz ene (triplet) 1 .XV 

Benzene (T) + trans-J~t-2-ene (S) --+ but-2-ene eT) + Benzene CS) 1 .XVI 

But-2-eno (T) --+ ois- or trana-but-2-ene 1 .XVII 

However, the production or ions , r r ee el ectrons and f r ee 

r adicals a s well as the excited sta t es, may be expeoted t o complicat e 

the r eactions. In benzene solution rree r adical soavengers iodine86 and 

r erric chloride ,87 when present in low co~centration, have no er reot upon 

the i s omerisation. However, when iodine i s pr esent in sufr icient 

concentration to deactiva t e the triplet stat e ,88 the i s omerisation is 

r educed. Side products, whiuh constitute l e ss than 5% of the products , 

are substantially r eduoed by the r adical scavenger s . Further evidence 

ror a tripl et state mechanism is obtained rrom the addition or naphthal ene and 

anthra cene87' which have lower triplet sta t e energies (~1 and 42 kcal. 

mole-1 respectively) tha n benzene (85 koal.~ole-1) and 1ut-2-ene 

(~ 65 - 70 koa l.mole- 1), and oxygen,87 which quenohes the triplet stat e . 

The a dditions l ead to a r eduotion in the amount or isomer isation. 

89 In the vapour pha se benzene , t oluene and aoetcne all 

sensitise the is omerisat i on, although rree r adical produot s a r e also rormed. 
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Inorganic sensitisers nitr ic oxide90 and sulphur dioxide90 transfer 

triplet energy ~.though the l atter l eads to some fcrrnation of sulphi nic 

89 acid and polymer, probably hy a fre e radical mechanism. 

Thus, although thel'e is olear eviJ.ence for a triplet state 

mechanism the rndiat~on-san8iti8od r eaction similar to that in the 

photosensitised reaction, the produots are complicat ed by the presence 

of free radicals in the system . 
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1.7 Radical Isomerisations 
.j 

The addition of a radical to the double bond of an olefin requires 

ve~ little energy. 

EA 'V 5 kcal./mole65). 

( / 
.91 H + C=C EA 'V 2 koal. mole, CH3 • or C~H5' + C::C 

Henoe olefins act as efficient scavengers of 

radicals in a. system. The resultant adduot radica.l is vibrationally 

exoited with the energy of the newly formed bond, and its lifetime is 

sufficient for it to undergo rotation about the C-C bond and also for it 

to be involved in further oollisions. Consequently, there is a competition 

between isomerisation, whioh involves expulsion of the original radical 

after rotation, and addition whioh results from vibrational deaotivation 

of the adduot radical. The oompetition is best illustrated by the r eaotions 

or but-2-ene with halogen~9,92,93,87 or sulphur-94,89,45 containing 

radicals, produced either thermally,93 photolytioal1~2,94 or 

radiolytical1y.87,89,S5 Initially, a ~omplex is formed between the 

radioal and olefin,96 held together by charge transfer processes. 

Wi th allmlogens except iodine this 1T-oomp1ex rapidly oollapses to a 

cr-oomple~7 (free radical). 

X(halogen or. S-radical) + A (olefin) -+ 1T-oomp1ex -c--complex'J 1 .XVIII 

The adduct radioal deaotivated by collision abstracts from the halogen 

or sulphur radical souroe, yielding a diha1ide or disulphide. In all 

oases the isomerisation reaotion predominates over the addition reaction. 

Addition of hydrogen atoms to but-2-ene results in cis-trans 

isomerisation, but the mechanism is not necessarily the same as with 

halogen- or sulphur-containing radioals. Positional isomerisation 
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89 is also obtained by exchange reactions of the hydrogen a tom, while 

Rabinovitch98 and oo-workers, have found that sen-butyl radicals, formed 

by the addition of H to ois-but-2-ene, dissociate and do not isomerise; 

+ 1 .XIX 

and hence they explain the cis-trans isome risation as ~sulting from 

disproportionation between sec-bu~l radicals and decomposition of 

seoonda~ n-bu~l radicals. 

Thus the presenoe of free radicals in a system containing 

but-2-ene can lead to isomerisation possibly by a variety of reactions. 
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1.8 Radiolyais 

The bombardment of olefins by high energy eleotrons produoed 

60 by a Van de ~raaft aocelerator, or by y-rays from a Co source, results 

in the formation of excited states, ion-molecules and free radicals. The 

final produots of radiolysis are a oompromise between the reaotions of 

these various species. 

The radiolysis of ethylene has received oonsiderable attention, 

largely because there is muoh information available for oomparison from 

mass spectrometry, photosensitisation and photochemistry. Initial 

excitation produoes the ion-moleoule C2H
4

+ and an exoited state whioh 

dissooiates to yield either molecular hydrogen and acetylene, or atomio 

hydrogen and the sequent free radicals. 

In the vapour phase below 150 mm99 C
2
H
4
+ possibly dissooiates 

yielding aoetylene and hydrogen, while above 150 mm,99,100 and also in 

the IJ.'quid101 and solid102 h C-H + t' i t id' P ases, Z-4 par J.O pa es n con ensatJ.on 

reaotions of the type:-

- 1. XX 

+ - etc. 1.XXI 

Polymers up to C18 ' mainly branohed chain mono-olefins, have been 

deteoted in the solid phas9,102 while laok of polymers above the trimer 

in the liquid phase has been aocounted for by more rapid eleotron 

101 
neutralisation, and hence ohain termination. 
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Elimination of moleoular hydrogen has been detected in all 

103 three phases, two modes of splitting being demonstrated by use of 

deuterated ethylenes. 

CD2 = CH2 -- 1 .XXII 

+ HO i.XXIII 

The vinylidene radical rapidly rearranges to aoetylene . The aoetylene 

yield in the vapour pha.ge accounts for only 1 0% of the ethylene used up, 99 

the remainder yielding condensation products. 

The importance of radicals has been demonstrated partioularly 

in the liquid phase, 101 where G . ~ G .104-radical products ~v molecular produots 

The radical produots can be almost totally accounted for by the presenoe 

of ethyl , vinyl and methyl-allyl radicals. 

+ H· 1.XXIV 

i.XXV 

1 .XXVI 

The partioipation of ions and free radicals has been demonstrated 

in the radiolysis of propylene,105 the butenes106 and higher olefins.107 

Although the geometrio isomer ia the major product of the 

radiolysis o~ ois- or trans_but_2_ene,104-,108,109 little information is 

available on the mechanism of formation, for attention has been centred 

on the reaotions of the molecule-ion C4-H8 +. In the liquid phase 

oondensation of the ion leads to a number of branched ohain dimers 
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(80% mono-olefins) and unspecified higher polymers.106 Alternatively, 

the ion may undergo the reaotion:-

-- + -c H 108 
47 1 .XXVII 

which may be oonsidered as proton transfer or hydrogen atcm abstraotion. 

The 1-methyl allyl radicals so formed are mainly the cis isomers from 

cia-but-2-ene, and almost exolusively the trans isomer from trans-but-

2-ene. The oarbonium ion C4-~ + after neutralisation yields an excited 

seo-bu~l radical whioh may decompose:-

-CH 3 

abstraot hydrogen to form n-butane:-

+ 

+ 1 .XXVIII 

1 .XXIX 

or stabilise to s eo-butyl radicals. Thus the only radicals present 

10S are 1-methyl allyl, sec-butyl and methyl. Elimination of the radioals 

by p-benzoquinone and iodine, whioh are more effeotive soavengers than 

ois-but-2-ene, indicates that hydrogen, aoetylene and propylene, and 

most of the geometric (trans) and positional (but-1-ene) isomers are 

formed by a molecular mechanism.109 

The !leutraliaation of the C4lia + ion is believed to yield an 

excited moleoule C4HSM whioh produces a mixture of singlet and triple t 

moleoules. Cis-trans isomerisation would then ooour in the triplet state~09 
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Ci/ + e - C. 3( 
~s 1.XXX 

3( 1 cis (single t) 1.XXXI Cia -- 4-
3 cia ( triplet) --+ 3 trans 1.XXXII - 4- -g 

- 3 ois 13 

The addition of naphthalene and. anthracene which have lower ionisation 

potentials (8.12 and 7.23 e.v.110) than cis-but-2-ene (9.~ e.v.
111

) 

results in oharge transfer to the additive, and hence in a reduction of 

isomerisation:-

C• + ~a + M -- 1.XXXIII 

The formation of the geometrio isomer in ~he vapour phase has been 

1~ ~ reported as the major product, but also as not important. A 

significantly larger amount of fragmentation produots (hydrogen C
1 

- C
3 

hydrooarbons) are produced compared with the liquid phase. This is 

due to increased oollisional deaotivation of the exoited moleoules in the 

liquid phase, while i~ the vapour phase dissooiation readily oocurs. 

Thus, in the direot radiolysis of but-2-ene, although ~ometrical 

isomerisation does occur, a large numb er of other produots are produoed 

due to the interaotions of ion-molecules, excited states and free radicals. 
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1.9 Photolysis 

Finally, a disoussion of the few studies of the direct 

photolysis of olefine. 
112 

Deoomposi tion of ethylene by li er.t of 1470 i produoes 

hydrogen both moleoularly and atomically. 

-- + ~ 

- 2H. 

For these reaotions .01 ~ 152 , It is unlikely that the reaotion 

1.XXXIV 

1 .XXXV 

1 ,XXXVI 

ooours, for no products oharacteristio of vinyl radicals are produoed. 

The hydrogen atoms are soavenged by e thylene to produoe ethyl radicals . 

Variation of the exciting wavelength results in an inorease in 

the proportion of atomio hydrogen to moleoular hJdrogen as the wavelength 

113 0113 
is shortene~ (C2H~H2 is 2.8 ! 0.2 at 1236 A, 2.01! 0.1 at 

112 114. 
1470 X a.nd 1 .2 ! 0.1 at 1 849 K . ). 

Similarly, atomio and moleoular eliminat1.on of hydrogen is 
115 

exhibited on photolysis of propylene, at 1470.R and 1236 'i o.lthough 

mQleo~la.r eliminaticn at methane is also important:-
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atomio: CH3 - CH = CH2 - CH3• + H· + C2H2 1.XXXVII 

rH3 - CH = CD2 
-+ H2 + CH2 = C = CD2 1.XXXVIII 

moleoular: 
CH3 - CH = CH2 - CH4 + C2H2 1.XXXIX 

However, a further three primary reactions have been invoked to 

reasonably explain the final distribution of produots. 

C3H6 -+ H· + .C3
HS 1. XL 

C3H6 -+ :CH2 + CtI4 1.XLI 

cyr6 -+ .CH
3 + 'Ci13 1 .XLII 

The photolysis of 2"'methyl-propene at 1900 R. me given rise to 

tree radicals from an exoited state whioh is pressure quenohed,116 while 

pressure has no eN'eot on the majority of the produots formed in the 

photolysis of but-1-ene at 1849 K.117 Although p~lymerisation ooours 

with 2-methyl-propane, only a traoe of Cs hydrooarbons have been 

deteoted from but-1-ene. The photolysis of the latter is explained by 

two primary reaotions 

C~s - 1 -+ -GH3 + 'C3
HS 

C 4 HS - 1 -+ . H + CH2 = CH - ~H - CH3 

followed by recombination of these various radicals. 

1 .XLIII 

1.XLIV 

Finally, Cundall has attempted the photol ysis of but-2-ene with 

light from an aluminium spark (1860 - 1920 X) and has obtained high 

molecular weight products and some assooiated isomerisation, but ~e has 
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not investigated the reaotion in any detail. JS . 

- 37 -



Summary 

Figure 1 .8 represents the energies of the various exoited states 

of cis-but-2-ene, and the order of the energt put into the molecule 

in the reactions desoribed in the preoeedlng Rections . 

Low enArgy input (thermal, photosensitised and radiosensi tised) 

results almost solely in cis-tr~s isomerisation reactions. High 

energy input (rad1olysis) results not only in ois-trans isomerisation, 

but in atomic and molec~uar elimination reaotions from exoited states 

or moleoular ions . Increasing energy of photolysing radiation of 

ethylene, produces an increase of atomic elimination relative to molecular 

elimination . 

Irradiation by 1849 .R. radiation will possibly produoe a mixture 

of the R and V states of butene, the former planar, and the latter 

twisted with the CH3-C-CH planes mutually perpendicular . If both states 

are produoed, then the product~ may be expected to be a oompromise between 

the reaotions of both exoited states . In faot , on irradiation of but-2-

ene at 1849 2" a large number of hydr(lcarbon produots, as well as the 

geometrical isomer, are formed, and these can only be explained by 

postulating the presenoe in the system of a mixture of excited st~te8. 
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Figure 1. 8 

Comoarison of the ener gy levels of the excited states 
of but- 2- ene with the input energies of the processes 
discussed in section 1 . 
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2 • EXPERDtiENTAL 

2.1 Introduotion 

Cis- or trans-but-2-ene, at a known pressure, was introduoed 

into the thermostated reaction cell via a merc~-free vacuum system. 

The gas was irrad..t-ated f'or a known period of' time with a low pressure 

mercury vapour lamp. 1849 ~ was the aotivating radiation emitted by 

the l amp , and the amount of' radiation reaching the cell was measured 

by chemical actinometry. Af'ter irradiation the reaction products were 

thoroughly mixed in the reaotion cell before a gaseous sample was analysed 

by gas ohromatography. 
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2 . 2 Materials 

Cis- and trans-but-2-ene were Phillips Res~arch Grade materials . 

The cis-but-2-ene contained less than 0.05% of the trans isomer, and the 

trans-but-2-ene contained less than O .1 ~ of the cis isomer, butane and 

propylene . The gases were used without further purification. 

Ethylene was originally prepared by the a otion of zinc and 

methanol on ethylene dibromide . It was purified by repeated distillation 

in vacuum. ME:. theson Research Grade ethylene was used in later experiments . 

Hydrogen bromide was prepared by t he a ction of bromine on 

tetra1in (tetrahydronaphthalene)118 and collected as a white solid at 

77°K. Purification was by r epeated distillation in vaouum . 

Junmonia was obtained from a cy1ind.er and purified by vacuum 

distillation. 

Carbon dioxide was obtained from the solid material by 

repeated vaouum sublimation. 

Nitric oxide was prepared by the action of moderately dilute 

sulphuric acid on a s01ution of potassium nitrite and potassium iodiae,119 

and purified by bubbling through strong potassium hydroxide and concen­

trated sulphuric acid . Final purification was aohi eved by vaouum 

distillation . 

Oxygen was ob~ined from a cylinder, liquified at 77°K and 

the middle portion from the third distillation retained. 

Oxygen-free nitrogen was obtained from a cylinder, dried over 

silica-gel and then stored in a bulb cooled at 77°K, for several hours 

before use. Argon was obtained from a oylinder and purified by 
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repeated vacuum distillation. 

Materials for quantitative oalibration and qualitative analyses 

were either Matheson Research Grade gases (methane , ethane, propylene, 

ethylene, but-1-ene, buta-1,3-d.iene) or pure liquid samples obtained. 

from British Petroleum Co. (CS hydrocarbons) and Gulf Petroleum 

Co'(C6 - Cs hydrocarbons). 
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2.3 Apparatus 

The high vaouum apparatus is represented by Figure 2.1. 

A conventional meroury diffusion pump oould not be used in 

the system because of the importance of keep -: ng the system meroury-free. 

The presenoe of meroury in the reaction cell would result in:-

a) preferential abBorption of the radiation by the mercury, resulting 

in the production of excited meroury atoms, and b) photosensitisation 

of the but-2-ene by the exoited meroury a toms. Consequently, an oil 

diffusion pump (Figure 2.2) was used. 

The pump was a three stage oil diffusion pump filled with a 

charge of 150 mls. Edward.s No. 704 Silioone Oil, and it was backed by 

an Edwards Speedivao Rotary Oil Pump (Type 1 .S.50). This canbination, 

pumping through a trap cooled in liquid nitrogen, was capable of 

-5 producing a vaouum of 10 mm . Hg. 

Pure gases were introduoed into the system via inlet A, 

liquified in cooled traps and then degassed before use or storage. 

Impure gases were introduoed at B, and. purified. by bulb to bulb distil-

la tion along the dis tilla tion train. Gase B were stored in one litre 

bulbs , C, which were fitted with freeze-arms to assist reoovery of the 

gases from the vaouum line. 

The reaotion cell was attached to the system at E, via a B.10 

ground-glass joint whioh was lubricated with Edwards High Vacuum 

SiliconeGrease . This joint provided for easy removal of the cell when 

neoessary. 

D and D' provided alternate routes for the gases from the storage 
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Figure 2.2 

Oil Diffusion Pump. 



bulbs to the reaotion cell, and also anyone section provided n useful 

'siding' for holding gases before mixing, or befor3 introduction into 

the cell. 

Pressure measurements were made on Edwards Absolute Dial Gauges 

(Type C. G.3 .) at F, calibrated 0-20 mm . and 0-760 mm ., and on a butyl 

phthalate manomet er. It was necessary to check the calibration of the 

gauges against the meroury manometer of an independent vaouum system. 

The gauges and mercury manometer were separated by a trap cooled in 

liquid nitrogen to pr event mercury distilling into the vaouum system . 

Immediately after calibration the mercury mAnometer and trap were sealed 

off from the vacuum system. The calibration charts for the two gauges 

are given in Figures 2 . 3 and 2 .4 . The 0-20 mm . gauge was accurate , while 

the 0-760 mm . gauge had a zero error of 26 mm . The butyl phthal a te 

manometer was used for measuring pressures in the range 20-40 mm . 

Gaseous samples were introduced into the gas chromatograph through 

the U-tube at G. In diagram 2 .5 , taps I and II were three-way glass 

stopcocks, while III was a straight- through stopcock. A sample was 

taken for analysis by the follovdng procedure:-

a) Tap ITI remained open to allow unimpeled flow of carrier 

gas to the chromatograph. 

b) With tap I closed, tap 11 was opened to the pumping line 

so that th~ U-tube was evacuated. Tap 11 was then closed . 

c) Tap I was opened to the system containing the gas to be 

analysed . Sufficient time was allowed for pressure 

equilibra tion before tap I was closed. 
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Figure 2 . 3 

Oalibration of' 0- 20mm . Dial Gauge aBainst 
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Fi gure 2 . 4 

Calibration of' 0- 760 mm . Di al Gauge agains t 

a mercury manome ter . 
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d) Tap I was briefly opened to the carrier gas stream and 

then olosed. Carrier gas entered the U-tube and forced 

the gas to be analysed into a 'slug I against tap II. 

e) Before the gaseous 'slug' had time to diffuse through the 

oarrier gas, taps I and II were simultaneously opened to 

the carrier gaa stream, and tap III closed immediately 

afterwards. The' slug' of gas was then carried into the 

gas ohromatograph. 

The volume of the U-tube at G was 8.5 ml. The total volume 

of the gas before a sample was taken was 720 ml. Thus only 1 .2% of 

the gas was removed for ana~sis. Consequently, for long irradiations, 

it was possible to remove samples for analysis periodically during the 

course of the r eaotion, without seriously affecting the amounts of 

material present. 

Apart from the three-way stopcocks I and II, which were lubricated 

with silicone grease, all stopcocks with which reaotant gases came into 

contact, were greaseless Springham Valves with fluorocarbon (Viton A) 

diaphragms. These do not absorb ynraffin or olefin hydrocarbons, and are 

resistant to attack by hydrogen bromide and bromine. All other stopcooks 

in the system were lubricated with Appiezon L grease. 

On oompletion of the experiments with trans-but-2-ene, great 

diffioul ty was experienoed in removing final traoes of butene from the 

vacuum system, even after all the stop cooks had been regreased, the 

fluorooarbon diaphragms replaoed, and the system contin~oUBly pumped rn~ 
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s ever al days. -7 -8 The continued pres ence of butene in 10 - 10 molar 

ooncentra tion was attributed t o ads orption of the ga s on the walls of 

the va ouum system . It oould. only finally be r emoved. by a thorough 

fla ming down of the whole syst em . 
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2 .4 Reaotion Cells 

2 .4 .1 Vapour Ph~ 

2 .4 .1 .~ . ColI 

Originally the reaotion cell was a Pyrex olyinder , 80 mm . 

long and 50 mm . in diameter with a side arm oonnecting it to the vacuum 

system through a B.10 joint at E. The end windows were of Speotrosil 

and were sealed on with Araldite . However , this arrangement proved 

unsatisfactory because :-

i) Durj.ng irradiation, a polymer formed on the o~ll window whioh 

could only be removed ~y chromic aoid or oonoentrated nitrio 

acid . The.acid , however , also attaoked the Araldite , breaking 

the vacuum- tight seal . It was the~ neoessary t o remove all the 

hardened Araldite and recemGnt the windows to the cell . 

ii) The Araldite itself was photodecomposed , and was also attaoked 

by the bromine formed in the actinomctric photolysis of hydrogen 

bromide • 

These difficult ies were overcome by use of th8 metal cell 

illustrated in Figure 2 .6 . It oonsisted of a crass oylinder of the same 

dimensions as the pyrex cell , with the Specirosil winduws held on by 

a- rings and sorew oaps . These provided for easy removal of the windows 

when they beoame ooated in polymer . 

The side a~~ was attached to the oell via a glass to oopper 

junction , the copper tube being soldered into the wall of the cell . 

Connection with the vacuum line was via the B.10 joint at E. The bulb 
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on the side arm was used for mixing reactant or product gases by the 

freeze-thaw method . The total volume of the cell and side arm was 

155 mls . 

Spectrosil , a synthetic quartz pruduoed by Thermal Syndicate 

Ltd . , was used for the cell windows because of its transmission 

properties in the ultraviolet . A 10 mm. thick diso of Spectrosil will 

transmit ;v9~ 184-9 j radiation incident upon it,(Figure 2.7) . The total 

thickness of Spectrosil traversed by the 1849 X radiation before reaching 

the cell was < 5 mm . 

2 . 4- . 1 .~ Thermostat 

The cell was enolosed in an air thermostat constructed of 

Sindanyo , (compressed asbestos cement) .Figure ;2 · .. 8 • The total volume was 

24 litres . The thermostat was heated by a 1 .5 kw. spiral heater and the 

gas circulated by means of an electrically driven high speed fan . The 

temperature was controlled by a mercury contact thermometer acting through 

a ' Sunvic ' relay. 
o Tests showed that at 100 C, the temperature throughout 

the oven was constant to ! 1 .5°C, while at the cell position it was 

better than + 1oC. The maximum temperature attainable in tile thermostat 

was 200
o

C. 

The th&rIDOstat was flushed through with dry oxygen-free nitrogen, 

120 121 as both oxygen and water vapour have an absorption coefficient of 

- 1 0 1 .5 cm . at 1849 A . The nitrogen was dried by passing the stream of 

gas over silica gel . 
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2.4.2 Liquid Phase 

The oell is illustrated in Figure 2.9. It was oonneoted to 

the vacuum line at J (Figure 2.1 .). It was constructed of brass with a 

Speotrosil window held in position by an O-ring and screw oap. The total 

volume in the irradiation~ne was 0.9 ml . The base of the oell was a solid 

brass heat-sink, and when it was immersed in a pentane slush (-131 °C) , 

it maintained the butene in the cell in liquid form. Liquid butene was 

introduced to the oell by allowing it to drip down the entry tube from a 

cold finger cooled by liquid nitrogen. The planar spiral lamp was held 

directly above the window in a tube flushed with dry hitrogen. 
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2.4.3 Radiolysia Cell 

The cell is illustrated in Figure 2 .10. It oonsisted of a Pyrex 

cylinder of total volume 75 mls. oonneoted to the vacuum system via a 

oapillary arm at J (Figure 2.1). For irradiation t he oapillary was sealed 

and the oell removed from the vacuum system. Following irradiation the 

cell was reoonrleoted to the vacuum system at M (Figure 2 .1) via the side 

arm oontaining the break-seal. 
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2.5 Lliht Souroes 

2.5.1 Ultraviolet 

Preliminary experiments were conducted using a Phillips 4 watt 

Ozonising lamp (Type 024W) which had ~5% o~ its output at 1849 R 

( 5 x 1014 quanta/sec.). No quantitative measurements were made using 

this lamp. 

A 2 watt 12" planar spiral meroury vapour lamp (Hanovia Type 

75~62) fitted with a Speotrosil envelope was used in the liquid phase 

photolysis. Powered by a 1 250 V trans~ormer, it drew 10 !JA at 340 V. 

The output of the lamp at 1849 j as measured by ethylene aotinometry 

was 2.8 x 1015 quanta/sec. 

The principal light source for gas phase experiments was a 15 watt 

24" U-tube low pressure meroury vapour lamp (Hanovia Type 766/63) fitted 

with a Speotrosil envelope. Activated by a 2000 V transformer, it drew 

30 ml\. at 600 V. The output of a typical low pressure meroury vapour lamp in 

the ultraviol et , without the speotrosil envelope·(o is illustrated in 

Figure 2.11.123 The output of the lamp at 1849 R was 4.65 x 1015 

quanta/sec. as originally measured by ammonia actinome~ and 

3.54 x 1015 quantal seo. as measured by ethyl~ne aotinometry . The output 

at 1849 K did not fall notioeably over the total irradiation time of 

...., 800 hrs. Uranyl oxalate actinometry was used to measure the output 

at 2537 R a s 1.45 x 1016 quanta/sec . The output of the two minor lines 

at 1942 i and 2020 R was found to be less than 1~ of the 1849 R line 

, "1 1 122 ~n a S~~ ar amp. 

The lamp was housed in a olosed tube (Figure 2j2).oonstructed of 
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Figure 2 .12 
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Q.V.F. pipes, with an end window of Speotrosil sealed on with 

Araldi te. The apex of the U-lamp wa:l 1 cm. from the end-window. During 

an irradiation the lamp-housing was flushed through with dry nitrogen. 
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2.5.2 Optical System 

Originally, an attempt was made to focus the 1849 1t radiation 

at a point near the oehtre of the cell using a 50 mm. diameter f.1 lens 

of Speotrosil . However, the lens was found. to absorb almost all of the 

1849 R radiation and was therefore discarded. 

The lamp-hou8ing was fixed so that the apex of the U-lamp was 

1.5 cm . from the cell, the thick walls of the brass screw cap of the 

cell aoting to some extent as a collimater. The distanoe between the lamp 

and oell was kept to a minimum because of the inverse square relationship 

between intensity and distance. 

A metal shutter, operated by a pull-cord, separated the lamp­

housing and oell . To insert the intensity stops or the filter, the 

lamp-h6using had to be wi thd.rawn 2 cm. from the cell. 

Intensity stops were construoted of metal gauze of various 

gauges, coated with black matt paint. The geometry was fixed by holding 

the stop in a short metal oylinder (Fig. 2.13), and the position of the 

stops between the lamp and the oell was fixed by the lugs, on the foot 

of the stop, fitting into oorresponding sockets on the base of the 

thermostat. 

The filter oonsisted of a 1 cm. thiok 2% aoet:Lc acid solution. 

The transmission properties are given in Figure 2.14. 
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Figure 2 .14 
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2.5.3 Radio1ysis 

Radio1ysis experiments were conducted by Dr . p . G. a,lay of 

the Department of Nuclear Technology, Imperial College of Science and 

Technology, London. Radiation was from an 825~ 60eo source . 

The dose r ate was altered by changing the distance between the oe11 and 

the source. 
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2.6 Prooedure 

2.6.1 Vapour P~ 

The reaction cell was pumped under high vacuum for a period of 

half an hour prior to introducing a known pressure of but-2-ene into the 

cell. After admission of the gas tap H (Figure 2.1) was closed, and the 

gas given sufficient time to attain the cell temperatm-e. The lamp Vias 

allowed a warm-up period of ten minutes, before irradiation was commenced 

by removal of the shutter. Irradiation periods were in general ef six 

minutes or less, although ocoasionally mf several hours, and were 

terminateo. by switching off the lamp. During the warm-up and irradiation 

periods both the lamp-housing and thermostat were flushed through with 

dry nitrogen, a stream of the gas playing on the space between the l amp 

and cell. 

On oompletion of irradia~n, the reaotion products were mixed by 

three rapid freeze-thaw cycles, alternately cool~ng and warming the bulb 

on the cell side-arm with liquid nitrogen and hot water . The products were 

then admit~ed t o the pressure measuring seotion by opening tap H (Figure 

Z.1) with tap K closed, and a gaseous sample introduced to the gas 

chromatograph for analysis . When irradiation of but-2-ene WQS oarried 

out in the presence of a non-condensable additive , the gases were given 

~ hr. before irradiation and 1 hr. after it·radiation to enable thorough 

mixing to occur. 

When the transmission of the cell window had been deoreased by 

formation of a polymer, the window vms removed andwaahed in firstly 

oonoentrated nitric aoid or chromic aoid for several hours, seoondly 
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distilled water and lastly a.ootone . Then the window wa.s dried and the 

transmission at 1849 R measured on the S.P. 700 apeotrometer . After 

insertion of a clean window the cell was pumped for several hours under 

high vacuum before irradiations were recommenaed 

2.6.2 Liquid Phase 

The reaotion 0011 was immersed in a pentane slush (-131 o.~) and 

pumped under high vacuum for t hr. prior t o introduction of the but-2-ene 

sample. When the pressure of' the butene had been measured, the gas was 

frozen onto the cold finger and tap L (Figure 2.9) olosed. As the cold 

finger was slowly warmed, the butene dripped down into the reaction cell. 

Irradiations were oommenced and terminated by switching the lamp on and 

off. After an irradiation/tap L was opened and the produots evaporated . , 

into the pressure-measuring seotion, A gaseous sample was then introduoed 

to the gas chromatograph for analysis. 

2.6.3 Radiolysis 

Prior to introduction of a sample the cells were pumped under high 

vacuum for several hours. A known pressure of but-2-ene was admitted 

to the cell, and the capillary tube sealed off with the cell cooled in 

liquid nitrogen. Following irradiation the cell was reconneoted to the 

vaouum system at M, (Figure 2.1) the break-seal broken by a small metal 

rod, and the products admitted to the pressure-i1leasuring seotion and 

a sample analysed as above. 

- 55 -



2.7 Actinometry 

The output of the l amp a t 1849 R was measured by chemioal 

actinometry . The essential oharaoteristio of an actinome t er i s that 

the quantum yields of the products of photolysis ar e ac curat ely known 

for particular wavel engths . The photolysis must be e s sentially si mple , 

and the rate of r eaotion proportional to the first power of the intensity. 

At 1849 R, f ew materials had been suffioiently studied for use as 

aotinometers , viz . Hydrogen bromide , ammonia , ethyler. e and nitr.ous 

oxide . They all had the advantage of being gases, and could therefore 

be used in the same cell as butene . Consequently, they would be 

subjected to the same intenSity of r adiation as the butene , and no 

correction would be necessary for absor ption by the windows or f or the 

distance traversed by the r adintion . 

Three actinometric gases wer e used in this study - hydrogen 

bromide , ammonia and ethylene . The first two had to be disoarded, 

beoause of complications on phot~lysis , while ethylene wa s f ound to be 

successful . No measurements wer e made using nitrous oxide because of 

l a ck of a suitable means of acourat ely est ima ting the nitro~n yield. 
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2.7.1 Hydrogen bromide 

Hydrogen bromide has an absorption ooeffioant at 1849 R of 

470 cm.-1 •124 vlfGrburg125 initially studied the vapour phase photolysis 

of hydrogen bromide at 2090 ~ and 2530 .R, obtaining J6d a.camp. HBr 

as 2.08 and 2.01 at the respeotive wavelengths . Later workers used 

the value ~ = 2.00 for actinometrio work,122 ,126,1 27 and measured 

the pressure of hydrogen formed: PH2 = 1 .00. 

The photolysis of hydrogen bromide was attempted in the 

original Pyrex cell. 50 mm. of hydrogen bromide were irradiated for 

1 hr., yielding a mixture of bromine and hydrogen. The bromine 

immediately attacked the Araldite window cement, and also the metal of 

the dial gauges, preventing accurate pressure measurements . Consequently, 

the photolysis of hydrogen bromide \<vas abnndoned in favour of:-
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2.7.2 Ammonia 

The absorption spectrum of ammonia is given in Figure 2.15, 

shovdng an absorption coefficient at 1849 K of 150 cm.-1 •128 Warburg129 

again initially studied the photolysis and later work was summarised by 

Welge and Beckmo.n.130 Due to the build-up of hydrazine in the reaction 

zone the !5 in a flow system was shown to be twioe that 
decomp. NH~ 

in a static system.1 1 The acoepted value for ~NH3 at 2100 R is 0.16.132 

This is in faot a compromise between three earlier values (0.14,133 

0.16,126 0.18127). The value of ~ at 1849 X was assumed to be 

the same as at 2100 K,132 and was found to be dependent upon pressure, 

oell size ar.i temperature. 

The photolysis of 760 mm . ammonia was conducted in the Pyrex 

oell. Reproducible results were not obtained until the oell had been 

'condi tioned' by irradiating for upwards of forty hours. During thi s 

time the hydrogen YJ.eld fell off e xponentially with time, Figm-e 2.16, 

and even aft9r 40 hrs. was still fa.lling slowly. The w:indow became 

ooated with a solid ma~erial during the irradiation. Suoh 'conditioning,1-

is in accord w~th previous measurements.127,130 H~tever, when the cell 

was finally oonditioned it was found that tbe w:indow would transmit 

very little 1849 R radiation. The photolysis of ammonia was therefore 

abandoned in favour of:-
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Figure 2.15 
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2.7.3 Ethylene 

The absorption speotrum of ethylene is given in Figure 1.1, 

o -1 showing an absorption coefficient at 1849 I~ of 'V 1 0 cm. • The use 

114 of ethylene as an actinometer was suggested by Rommell. Assuming 

i5d C H to be unity, then ~C H = 1.0 + 0 .1 and the r a ti 0 
eoomp . 2 4 2 2 -

/ ( . C2H2/ 69 C2H~ H2 = 1.2 .!. 0.1 c.f. Hg photosenl!l~U.sation, H2 = 1 .0; 

R 112 . 0 113 Photolysis at 1470 = 2.01 + 0.1; PhotCilly8~s at 12361'1. = 2.8 + 0.2 ). - -
Those result s were shuwn to be consistent with the photolyai8 of nitrous 

oxide .114 

1 00 mm . e thy le ne wa s irradia t ed for ten minute s • The c ondensa bl e 

gases were ~len frozen down and the pressure of hydrogen measured using 

the gas chromatograph fitted with the hot wire detector . 

The lamp output was periodically measured using the ethylene 

actinometer . After three consecutive actinometric irradiations, the 

oell window had to be removed for cleaning due to the formation of a 

polymer . 
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2.8 Jt\na.lysis 

Produot analyses were made on a Perkin Elmer Model 452 Gas 

Chromatograph using either a hot-wire detector or a hydrogen flume 

ionization detector. 

Initial qualitative analyses were made using a varie~ of 

columns, listed in Table 2.1. 

TABLE 2.1 

Nitrogen 

Perkin Elmer Length Running Carrier 
Column Stationary Phase gas flow Classifica tion Metres Temp. QC rate in 

rols ./min. 

C Silicone Oil DC 200/50 2 35 110 

H Silver nitrate on ethylene 2 35 110 
1 glycol 

I EA Bis me thoxy ethyl adipate 2 35 170 

BMEA Bis methoxy ethyl adipate 100 25 150 Capillary 

0 Silioone grease 6 35 and 80 170 

S Silica gel + diethylhexyl 2 80 270 
sebaoate 

I 

The inert support material on all oolumns is 60 - 80 mesh Celite. 

Columns were used singly or in pairs and product retention times 

oompared with authentio samples, when these were available. The 

retention times .for four sets of colums are listed in Table 2.2. 
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TJillLE 2.2 

Retention time in minutes 

I 
Columns C + H Columns H + EA Column BMEA Column S 

Material 350e 35°C 25°C 800 e 
Flow 170 ml/ min Flow 1 70 ml/ min 150 ml/min 270 ml/min 

-

Me thane 2.2 2.4 11 .0 0.8 
Et hane 2.7 2.6 11 .25 1 .3 
Ethylene 3.4 3.6 11.05 1.7 
Propane 3.6 2.9 11 .3 2.1 
Propylene 4.7 4.4 11 .35 4.0 
Acetylene - 3.6 11.4 3.5 
n-Butane 6.4 4.0 11 .5 4.0 
Butene-1 - 7.4 - 8 .5 
Cis-2-butene 9 .7 8 .5 11.7 11 ~8 
Trans-2-butene 7.4 5.9 11.65 11~0 

Isobutene 7.1 6.2 11.6 -
Allene - 5.6 - 5.7 
Neopentane ;. 3.8 11.5 --
Isopentane - 5 .4 . 11 . 8 6.6 
n-pentane - 6 .4 11.95 7.1 
}-Methyl butene-1 - 8 .2 - -
Cis-2-pentene 15.6 10.4 12.4 -
Trans-2-pentene 19.0 14 .0 12.6 -
pentene-1 - 11 .6 - -
2-Methyl butene-1 15.7 11 .6 12.3 -
2-Methyl butene-2 16 .8 11 .5 12.8 -
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Columns 'C' and '0' separated by boiling point, and 

boiling point - log retention time134 ourves are given in Figurm2.17 

o 2.18 Column '0' at 35 C; Figure 2.19, Column '0' 

° at 80 C. The boiling points of produots for which no authentio samples 

were available could then be estimated with an aoouracy of.! 2°C. 

Quantitative analyses were made using column '0' or Column'S ' 

at 3SoC (for C1 to Cs hydrocarbons) and Column '0' 80°C (far C6 to C8 

hydrocarbons) . Quantitative calibration curves were oonstruoted far tile 

I 
I 

major products using measured samples of authentic gases mixed with nitro-

gen . The relationship between peak height or peak area and molar 

quantities 0f C1 to C
5 

hydrooarbons is given in Table 2.3. 

Peak height 

TABLE 2 .3 

or peak area with detector at full sensitivity 
oorresponding to 10-7 mole 

o 
Column 0 at 35 C 

. . . 
Material Height (1" divisions) Material Area(small 

sauares 

Methane 10.5 3-methyl-but-1-ene 125 

Ethylene 10.9 iso-pentane 135 

Ethane 9.4 n-pentane 135 

Propylene 9.4 trans-pent-2-ene '125 

Allene 8.0 ois-pent-2-ene 120 

Aoetylene 8.0 

6.6 
0 

But-1-ene Column 0 at 80 C 

n-Butane 6.6 
Trans-but-2-ene 5.8 n-hexane 140 

Cis-but-2-ene 5.4 cis-hept-2-ene 110 

Butadiene 5.4 oct-1-ene 95 
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Log retention time vs. boiling point 
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Figure 2.19 

Log. retent i on time vs. boiling point 
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Chromatograme were reoorded on a Honeywell high gain high 

impedance reoorder with a 0-25 m.V. range. 

An attempt wae made to collect samples of eluent from the Gas 

Chromatograph by passing the gas stream through a number of traps cooled 

in liquid nitrogen. However, insuffioient material oould be collected 

for I.R. or N.M.R. analytical measurements. 

Shall Research Laboratories, Thornton, were contacted in 

conneotion with obtaining confirmator,y analyses of the irradiation produots 

by mass spectrometry. However, although the matter is still in hand, Shell 

Laboratories have been unable to co-operate. 

Infrared speotra were recorded on a perkin Elmer Model 221 I.R. 

Spectrometer, and ultraviolet transmission data and spectra were reoorded 

on a Unicarn model S.P. 700. 
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3. RESULTS 

3.1 Vapour Phase 

Irradiation of a sample of either oi3- or trans-but-2-ene with 

a filter of 2% aoetic acid interposed between the lamp and the cell, 

resulted in no photoohemioal r eaotion, whereas without the filter in 

position, a large number of photoohemioal products were obtained. The 

presence of the filter, whioh absorbs 1849 1 radiation (seotion 2.5.2), 

indicated that 1849 K was the exciting radiation, and also that no 

mercury was present in the system. Merour,y would have produoed geometrioal 

isomerisation of the but-2-ene by meroury photosensitisation (section 

1.5.1). 

The produots of irradiation at 1849 j included hydrogen,at least 

thirty two hydrocarbons C1 to Cs and a solid polymer. Hydrocarbons from 

C
9 

to C12 were searohed for, but not deteoted . A typical Chromatogram 

showing the product distribution after six minutes irradiation of cis-

but-2-ene is given in Figure 3.1. Products C1 to Cs were separated on 

Column '0' (silioone grease) at 3SoC, and produots C6 to Cs on Column 

o '0' at 80 C. 

The relative yields of the C1 to Cs produots from irradiation of 

10 mm . cis-but-2-ene are as follows: 

Acetylene > but-1-ene > hydrogen ) butadiene ) 

propylene = isopentane > ethane '> ois and trans pent-2-ene = 
3-methyl-but-1-ene > trans-but-2-ene > n-butane > methane> 

allene> ethylene. 

- 64-



1. methane + hydrogen. 
2. ethylene 
3. acetylene + ethane . 
4. propylene + propane . 
5. allene. 
6; isobutane. 
7. but-l-ene. 
8. n-butane + butadiene . 
9. trans-but- 2 -ene. 

la. cis-but-2-ene . 
11. 3-methyl but-l-ene. 
'12. i sopentane. 
13. n-pentane. 
14. but- 2-yne. 
15. trans-pent-2-ene. 
16. cis-pent-2-ene. 
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Clearly, in the formation of suoh a large number of products, both 

free radical and moleoular elimination prooesses from e~cit~d states 

can be involved (seotion 1.5). To help distinguish between the modes 

of formation of the produots, their dependence upon the variation of 

the following parameters was measured: 

1 • Time 

2. Intensity 

3. Pressure 

4. Temperature 

5. Added Inert Gases 

6. Added Radical Scavengers 

Irradiations were generally of one or twc minutes duration , 

resulting in <0 .1 % oonversion of but-2-ene. Consequently, produot 

yields were small and had to be measured with the detector at full 

sensitivity. Both isomers contained a low peroentage of impurities 

(ois-hut-2-ene oontained (0.05% trans-but-2-ene; trans-but-2-ene 

oontained < 0.1 % cis-but-2-ene, but-1-ene, and propylene) • At low 

pressure of r eaotant but-2-ene the impurities were easily measured and 

the product distribution corrected for their original presence . However, 

at high pressures of reaotant but-2-ene, the impurities were often 

an order of magnitude greater than the produot, 'because of the low 

oonversions used. Consequently, the quantitat~ve measurements of some 

of the products at high reaotant pressures of but-2-ene are subjeot to 

oonsiderable error . Also at high reactant pressures of but-2-ene it was 
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not possible to mea8ure the produots above C4 ' for their peaks were 

swamped by the large but-2-ene peak. The pressure of but-2-ene in 

the reaction oell was always sufficient to ca.use ) 99% absorption of 

the 1849 .R radiation. 

I 
log 0 

E. c.d. = 
I 

at 10 mm . pressure, C = 10 150 moles/litre, x 
22.4 x 760 1000 

-1) -1 d = 8 cm., and E = 6,300 cm. (cis and 10,000 cm. (trans). 

Thus log E.2 = 4.4 (oia) and 7.05 (trans) 
I 

The absorption profile in the oell was then: 

o~--~--~~====~====~-=~----~----~----* 
l 7 

I.,,~ I\; .~ c.e-I \ GM . 

The effeots of varying the paraEtltrs 1 - 6 are given in 

Sections 3.1.1 to 3.1 .6. 

In seotions 3.1.1 and 3.1 .2 produot measurements ara in t erms 

of rate of formation in moles per minute. In Seotions 3.1.3 to 3.1.6 

produot measurements are in terms of quantum yield of formation /J, where 

- 66 -



~ = No. of moleoules formed per seoond 

Amount of light ab sorbed per saeond 

and the amount of light absorbed was determined by ethylene aotinometry 

(seotion 2 .5.1) . When no quantita tive calibration data for particular 

produots had been determined, the produot measurements are in t erms of 

~eak areas . 
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3.1.1 The effect of Time Variation 

Originally the hot wire detector was used to analyse the produots 

o£ irradiation. Using the detector at £ull sensitivi~ it was neoessary 

to irradiate a sampl e for ten minutes befor e a dependable analytical 

measurement could be made . The varia non with irradiation time o£ the 

rates of formation of hydrogen and ethane are given in Figures 3.2 

and 3.3. The rate of formation of hydrogen was apparently linear for 

one hour , while that of ethane was linear with time for only t;<,-enty 

minutes. Beyond these times the rates of formation of the products 

were progressively reduoed . Examination of the cell window revealed 

that on long irradiations, a solid polymeric material was produced which 

coated the window and reduced the transmission of 1849 ~ radiation. 

Consequently, it was considered desirabl~ to irradiate for much shorter 

periods of time , and to use the flame ionization detector far product 

analysss . Figures 3.4 to 3.14 show that products C1 to C
5 

have linear 

rates of formation with irradiation time for at least 4 minutes. No 

polymer could be deteoteo on the cell window aft~r four minutes 

irradiation. 
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Variation of Time 

Irradiation Gondition~ 

Pressure of trans-but-2-ene 6 .1 mm . 

Tempera ture 

Analytical Conditions 

Deteotor Hot wire F'lame ionization 

Column EA + H 0 

Temperature °c 35 35 ---- -

N2 pressure lb/sq.in. 12 12 
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Figure 3.2 

Variation of hydrogen yield with irradiation time. 
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Figure 3.3 

Variation of ethane yield with irradiation time. 
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Figure 3.4 

Variation of methane yield with irradiation time. 

o 60 120 180 240 

Irradiation time in seconds. 



Figure 3.5 

Variation of ethylene yield with irradiation time • 
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Figure 3.6 

Variation of ethane yield with irradiation time • 
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Figure 3.7 

Variation of propylene with irradiation time. 
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Figure 3.8 

Variation of allene yield with irradiation time. 
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Figure 3.9 

Variation of butene-l yield with irradiation time. 
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Figure 3.10 

Variation of butadiene yield with irradiation time. 
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Figure 3.11 

3-methyl-but-l-ene 
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Figure 3.12 

Isopentane 
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Variation of 3-methyl-but-l-ene and isopentane yields 

with irradiation time. 
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3.1.2 Effect of Intensity Varia tion 

Using intensity stops of blaokened oopper ga uze plaoed between 

the lamp and oell, a ten fold variation in intensity uould be obta ined 

(Section 2.5.2). Figures 3.15 to 3.22 illustrat e that the produots of 

irradia tion are direotly proportional t o the intensity. 

Varia tion J?f Intensity 

Irr~iiation Conditions 

Pressure of ci s-~ut-2-ene t 7 mm. 

Temper ature 25°C 

Irradia tion Time 10 minutes 

Analytical Conditions 

Flame Ioniza tion Det eotor 

Column 

Temper ature 

N2 pressure 

o 

35°C 

12lb!sq.in. 
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Variation of methane and ethane yields with intensity 

of irradiation. 
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Figure 3.19 
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Figure 3.21 
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3.1.3 Effeot of variation of pressure of but-2-ene .-
The effect of increasing the pressure, of either ois- or trana-

but-2-ene, on the quantum yields of products C1 to C4 is illustrated in 

Figures 3 . 23 to 3. 32. The yields of all produots with the exoeption of 

the geometric isomer and but-1-ene were found to deorease with increa~ing 

pressure . The geometrio isomer produot oould only be measured with 

reasonable acouraoy to 100 mm . pressure . It! presence as an impurity 

then greatly exceeded the produot yield . Inoreaeing pressure is seen 

to have no effect on the quantum yi eld, up to 100 mm. pressure . The 

behaviour of but-1 -ene is anamolous in that the quantum yield inoreases 

from 0-20 ~n, and then remains constnnt to 760 mm of but-2-ene. 
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~riation of but - 2- ene ~ra8sure 

Conditions of Irradiation: 

Temper p.ture 

Irradiation time from one to five minutes 

Analytioal CondL1?i.~ 

Flame ionization deteotor : 

------
Column H 0 S -
Temperature °c 35 35 80 

-
N2 pressure lb . ) 0'" 12 12 20 
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Variation of methane yield with pressure 
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Variation of acetylene yield with pressure of 
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Variation of ethylene yield with pressure 

of but-2-ene 
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Variation of propylene yield with pressure 
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Variation of butadiene with pressure of 
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3.1.4 Effect of Temperature Varinti~ 

Irradiations were carried out a t three temperatures, 25, 60 

and 100°C. Comparlson of the results obtained in seotion 3 .1. 3 with 

Figures 3 . 33 to 3.41 show that in the rar..ge studied tempera.ture had no 

effeot upon the products, with the exception of methane. The quantum 

yield of methane at 100°C showed a maximum at 250-300 mm pressure 

but-2-ene. 

Effeot of Temper ature 

Irradiation Conditions 

Pressure of but-2-ene Varied 0-760 

T t 60°C and 100°C empera ure 

Irradiation time From one to five mins. 

Analysis 

Flame Ionization Deteotor Column : 0 

T t 35°C ampera ure: 

N2 pressure: 12 Ib/sq. in. 
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3.1 .5 Effect of the prese~oe of ad~~ft_~t gase~ 

The effect of adding differing pressures of nitrogen, 

oarbon dioxide and argon to a fixed pressure of either cis- or trans­

but-2-ene is illustrated in Figures 3.42 to 3.64. The result of 

inoreasing the pressure of additive gas was a reduction in the quantum 

yields of products similar to that obtained with inoreasing pressure 

of but-2-ene (section 3.1 .3) . However, although the quantum yield of 

but-1-ene remained constant with inoreasing pressure of nitrogen mixed 

with cis-but-2-ene , with nitrogen and trans-but-2-ene or argon and 

carbon dioxide with either isomer, the yield was deoreased in a similar 

way to other produots . The quantum yield of the geometric isomer was 

relatively small and remained constant vdth pressure throughout the 

range . Because of the swamping effect of the but-2-ene peak on the 

chromatogram,it was only possible to measure the effect of pressure on 

the products C
5 

to Cs in the presenoe of inert gases . As Figures 

3 .52 to 3.64 indicate , the overall effect of pressure is to slightly 

deorease the yields of the products throughout the pressure range . 
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Effeot of Added Gases 

Irradiation Conditions : 

Pressure of but-2-ene 10 mm 

T t 25°C emper a ure 

Irradiation time one t o six minutes 

Analysed Conditions : 

Flame i onization det ector 

Column 0 0 S 

Temper ature 35°C Sooe sooe 

N2 pressure 12 lb/sq . in 20 lb./O" 20 lb ./0" 
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Figure 3.56 

Variation with pressure of the peak area of the product 

cis + carbon dioxide 0 
cis + nitrogen x 

trans ~ nitrogen 0 

x 

40 x x 

x-
X x 

x x x 

30 xo 0 

0 
ttl 

, 0) 
~ 20 ttl 

~ 
ttl 
Q) 

~ 

10 

o 
200 400 600 

Pressure of added gas. mm . 



Figure 3.57 
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Figure 3.58 

Variation with pressure of the peak area of the product 
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Variation with pressure of the peak area of the product 
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Figure 3.61 

Variation with pressure of the peak area of the product 
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Variation with pressure of the peak area of the product 

with b.p. rvllloC 
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Figure 3.63 
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Figure 3.64 

Variation with pressure of the peak area of the product 

wi th b.p. ~ 122"C 
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• 

3.1.6 ![f~~ . of radical scavengers 

The addition of nitrio oxide or oxygen, gases which have been 

used aB radical scavengers in similar systems,11 7,35 resulted in the 

almost complete removal of ethane, n-butane, isobutane and all products 

with carbon numb er greater than four . But-1-ene was totally removed 

by the presence of 1 % oxygen, while the geometric isomer was unaffected. 

The yields of most other products decreaxed with increasing pressure 

of scavenger, (Figures 3.65 to 3.71), in a similar way to inoreasing 

pressure of inert gas, apart from propylene , Figure 3.68, which was 

sharply reduced by the presence of 20 mm . of scavenger. 

Effect of radical Scavengers 

Irradiation Conditions: 

Pressure of but-2-ene 

Analysis Conditions: 

Temperature 

Irradiation time One to six minutes 

Flame Ionization Detect~r 

Column 0 S 

Temperature 35°C 800 e 

N2 pressure 12 Ib ./0" 20 Ib./O" 
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Figure 3.65 
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Figure 3.66 

Variation of ethylene yield with pressure of 

added radical scavenger 

200 400 600 
o ' . 

Pressure of added radical scavenger. mm . 



0.2 

0.1 

o 

Figure 3.67 

Variation of acetylene yield with pressure of 
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Figure 3.69 

Variation of allene yield with pressure of 
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Figure 3.70 

Variation of butadiene yield with pressure of 

added radical scavenger 
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3.1 . 7 Polymer Formation 

Irradiations o~ longer than 20 minutes resulted in the formation 

o~ a s olid polymer or but-2-ene that coated the cell window and absorbed the 

1849 K radiation . The polymer proved ineoluble in all available hydrocarbon 

solvents , including benzene, toluene , xylene, hexane and heptane . Aoetone, 

which dissolved the polymer ~ormed on irradiation of but-1-ena at 1849 i,117 

also failed t o dissolve the polymer . Irradiations of ten hours or more 

procluced '"J. layer of polymer thick enough to be scraped from the window 

(not quantitatively) . However, t o completely clear the window of polymer, 

it was neoessary to wash the window in concentrated nitrio acid or freshly 

prepared ohromic aoid . 

The rat'3 of formation of polymer a s measured by the fa1l-of~ 

in the rate of formation of hydro gen is given in Figure 3. 72 . The rate 

of formation decreased with time because , as less light was transmitted by the 

window due t o absorption by the polymer~ less polymer is formed . 

The effect of pressure on the p olymer formation is illustrated 

i~ Table 3.2 . The amount of polymer is measured by the ohange of 

transmission of the cell window over t wo and. a half hours irradiation 

period . 
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TABLE 3.2 

% Transmission of Cell window at 1849i 
Pressure 

Before After 2~ hrs irradiation Change 

5.7 mm 98.5 61 37.5 cis-but-2-ene 

5.8 mm c.b.2 97 60 37 + 100 mmN
2 

5.7 mm c.b_i. 98 60 38 
+ 300 mmN;z 

Th~s change in pressure has no measurable effect on the rate 

uf polymer formation. 

The u.v. absorption spectrum of the polymer shows a maximum near 

1850 .1(, while the LR. absorption spectrtnn indicates the presence of 

C::C bonds and C-CH
3 

groups. 
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3.1.8 Carbon Balance 

The produot yields of a typical run are given in Table 3.3. 

TABLE 3.3 

Yields in moles x 10.8 

Hydrogen 18 Propylene 20 t-but-2-ene 12 t-pent-2-ene 12 
t 

Methane 8 Allene 7 3-Me-but-1 -ene 11 c-pent-2-ene 11 

Ethylene I 2 But-1-ene 30 IBopentane 27 C6 3 

Ethane : 13 Butadiene 16 n-p entane 1 C
7 

6 

Acetylene 34- n-Butane 17 but-2-yne 1 Cs 30 

Unfortunately, at such low conversions, it was not possible to 

measure the fall off in the r eactant cis-b~t-2-ene with any aoouraoy, 

because of the smell chanp:e in the large chromatograph peak of the cis-but-

2-ene. Consequently, it was necessary t o irradiate for a period of two 

and a half hours to obtain a r easonable decr ease of but-2-ene, so tha t an 

estimate of the ca rbon balance could be made. The products obtained 

after 2t hrs. irradiation a re given in Table 3.4-. 

TABLE 3 . 4-

2~ hrs. irradiation 10 mm. cis-but-·2-ene Yield in 

.c.oles x 10-7 

C1 C2 C
3 C4- C

5 
C6 C

7 

10 50 25 52 56 5 6 
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The C6 to C8 hydrooarbons in Tables 3.3 and 3.4 are only roughly 

estimated quantitatively . 

Gonvert~ng the yields in Table 3.4 to C4, the total yield is 

equivalent to "'v 245 x 10- 7 moles of cis·-but-2-ene . The aotual amount 

used up in the experiment was ."-' 285 x 10-7 moles . The difference of 

,.<,./ 4.0 x 10-7 moles can be accounted for by the formation of the solid 

polymer , and by the ~ocuraoy of estimation of the yields of the C6 
to Cs hydrocarbon products . 
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3.2 Liquid Phase 
.. 

Two runs were oonducted with cis-but-2-ene in the liquid phase 

to compare the results with irradiations in the vapour phase. 

0.01 mole ois-but-2-ene was admitted to the liquid oell and 

irradiated fer n period of one mr. The produot yields were as follows: 

Methane 

Ethane 

But-1-ene 

Butadiene 

Trans-but-2-ene 

1.1 x 10-8 moles 

1.4 x 10-8 moles 

8.6 x 10-8 moles 

6.5 x 10-8 moles 

170 x 10-8 moles 

Higher moleoular wei8ht products could not be measured because of the 

large ois-but-2-ene peak on the ohromatogram. 

Thus, in the liquid phase, the geometrioal isomer is the major 

produot. 
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3.3 Radiolysis 

Two radiolysia experiments were conducted on cis-but-2-ene to 

compare the results with those obtained by Kaufman.1 06 The major 

product fran both radiolyses was the trans isomer . Evidenoe of 

decomposition was obtained by the presence of C
1 

to C4 hydrocarbons . 

Cs hydrocarbons were detected but not measured quantitatively. 

Radiolysis results are given illl Table 3 .5. 

TABLE 3.5 

Radiolyais Results 

Total dose is approximately 107 rads. 

Yields are in moles x 1 (j7 

Press . 
CH4 C~4 C#6 C2H2 C3H6 C:JI4 iso C4H10 C4HS-1 n C4~0 C4H6 ~-C4HS cis- but-2- ene 

370 mm 10 10 5 . 5 12.5 9 . 3 7 0 .15 7 9 _ 5 . 5 47 

• 
650 mm 5 5 2.6 6 .3 6 .6 3 .5 0.1 5 11.7 13 S. 8 ] 76 

106 
Thus, as in Kaufman t s wor~, the geometric isomer is the major 

product in the vapour phase. However, there is apparently a pressure 

dependence of the products which was not found by KauflT\d.n . 
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3.4 Summary 

1 • Photolysis of either cis- or trans-but-2-ene at 1849 ~ produces 

at least thirty four products, among which the geometrio isomer is not of 

major importance. 

2. The product yields were directly proportional to irradiation 

time for four minutes. On longer irradiations the product yields fell 

off due to formation of polymer or.. the cell window. 

3. All product yields were direotly proportional to the intensity 

of irradiation. 

4 . All product yields were deoreased by increaSing the pressure of 

reactant but-2-ene, except the yield of the geometric isomer, whiCh 

remained constant to at least 100 mm. pressure, and the yield of but-1-ene, 

which after an initial increase, r~mained constant to one atmosphere. 

5. o 0 Temperature over the range 25 C to 100 C had no effect upon the 

product yields except for the yield of methane Wilich showed a maximum 

at 100
0

C. 

6. The pressure effect of added gases nitrogen, carbon dioxide and 

argon was similar to that of increased pressure of but-2-ene, exoept that 

the yield of but-1-ene was decreased by argon, carbon dioxide and nitrogen 

with the trans isomer but not by ni trogen with the cis isomer. The yield 

of the geometriC isomer was constant to one atmosphere . 

7. The effect of addition of radical scavengerK was 

a: To remove but-1-ene completely, at low scavenger %age. 

b: To almost completely remove ethane, n-butane, isobutane 

and products above C
4 

at low scavenger r~ge. 
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o. To reduoe propylene substantially in the range 0-20 mm 

soavenger addition. 

d. To have little effeot on the remainder of the C
1 

to C4 
produots, inoluding the geometrio isomer. 

8. The major product in the liquid phase photolysis was the 

geometrio isomer. 

9. The major produot on radiolysis was the geometrio isomer. 

In the discussion of this thesis an attempt is made to weld 

these faots into the framework of previous experienoe discussed in the 

introduotio.1 . 
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4-. DISCUSSION 

The numb er and variety of the produots formed by the 

photolysis of either ois- or trans-but-2-ene at 1849 j, and 

their differing dependences upon the addition of inert gases and 

radical scavengers, suggests that a number of primary prooesses are 

operative in their formation. The pressure dependence of the yields 

of the majority of the produots sQggests that some oommon exoited 

state preoursor is being influenced, while the pressure independence 

e~1ibited by the yields of the geometric isomer and but-1-ene suggests 

that these produots may be formed from some other exoited state(s) , 

different to the state that yields the majority of products . 

The addition of the free radical scavengers oxygen and nitric 

oride to the system helps to distinguish two modes of product formation 

- molecular and free radical . The products that show little difference 

in yield when produoed in the presence of oxygen or nitrogen, viz. 

the geometric isomer , butadiene, allene , acetylene, ethylene, hydrogen 

and methane, 'may be attributed to molecular pr.i'mary reaotions. The 

produots that have their yields substantially reduoed by the presenoe 

of so avengers may be attributed to the reaotions of radioals. The 

anomolous behaviour of the produot but-1-ene with respeot to pressure, 

and its total removal by 1 % of oxygen, suggest a d1'fferent mode of 

formation to the other produots. 
, 

The following primary reaotions are proposed to acoount for the 

nature and distribution of the products . 
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4 .1 Moleoular Reaotions 

4 .1 .1 Formation of the ci8- or trans-isomer 

4 .Ia 

4.Th 

The rate of formation of the geometrio isomer is uninfluenoed by pressure 

or by the presenoe of free radioal soavengers. These faots indioate a 

unique moleoular mode of formation in the system, whioh oan be attributed 

to the presence of an excited state which leads principally to cis-trans 

isomerisation (Seotion 4.5) . 

4 .1.2 Formation of acetylene 

Acetylene is one of the major products of the photolysis , 

and the reaotion for its formation is suggested as 

This reaction is analogous t o that observed in the photolysis of 

propylene , where a methyl radioal and a hydrogen atom are eliminated 

(Reaotion 1 .XXXVII).115 The possibility of molecular elimination of 

ethane aocompanying the formation of aoetylene is disoounted because of 

the infl uence of radioal soavengers on the ethane yield . 

4 .1 . 3 ,FC?rmation of butadiene and but-2-yne 

The formation of butadiene and but-2-yne is aocounted for by 

moleoular elimination of hydrogen from but-2-ene 
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H3C - CH = CH - CH3 + h)) -+ CH2 = CH - CH = CH2 + H2 4.III 

-4 CH3 - c = C - CH3 + H2 4.IV 

Although no aocurate measurement of the yield of but-2-yne has been made, 

it is estimated to be approximately 10% of the yield of butadiene. 

Reaotions 4.III and 4.IV require the yield et: hydrogen to equal that of 

butadiene + but-2-yne. This is seen to be so from Table 3.3. The 

formation of but-2-yne is analogous to the formation of acetylene in the 

photolysis of ethylene.112 ,11 3 At the same time as acetylene is formed 

f rom ethylene, hydrogen i s elimjnated both atoffiically and molecularly, 

the ratio depending upon the wavelength of irradiation. At 1849 i 
the hydrogen elimination from ethylene is mainly molecular,114 and the 

correspondence between the yields of hydrogen ana butadiene + but-2-yne 

indicates that the hydrogen yield from but-2-ene is similarly mainly 

molecular . 

4.1.4 Formation of methane and allene 

The formation of methane and allene is accounted for by the 

process 

This reaction is analogous to that preposed for the moleoular elimination 

of methane from propylene115 (Reaotion 1.XXXIX). From Table 3.3 

the yields of allene and methane are seen to be approximately equal . 

However, the ooourrenoe of a maximum in the graph of quantum yield of 

methane against pressure of but-2-ene at 100°C (Figure 3.33) suggests 
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that methane is also formed by some other prooess at thi.s t emperature 

- possibly a disproportionation reaction involving methyl radicals. 

4.1 .5 Formation of ethylene 

The formation of ethylene is postulated as occurring by the 

process 

4.VI 

although suoh a rearrangement has not previously been suggested for 

olefin deoomposi tion • Initial formation of ethylidene radioals oannot 

be disoounted, although r earrar.gement of the radicals to ethylene 

would necessarily have to be faster than the collision frequency to 

account for the lack of effeot by radical soavengers . 
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4 .2 Radical Rea ctions 

Although the effect of r adical soavengers indicat es that a large 

numb er of the products owe their origin to t he pr esence of free r adicals , 

it i s only neoes sary to po~tulate t wo primary r eactions which form free 

r adicals . 

4 . 2 .1 C-H bond cleavage 

The weak C-H bond ~ to th6 C=C bond is r eadily split (c . f . 

photosensi tisa tion of b'.lt-2- ene 77 and photolysis of but-1-ene at 

1849 j 117) 

CH
3 

- CH :::: CH - CH3 + h 'J -+ H· + H C - CH :::: crr - CH
3 

2 • Jr 
H2C :::: CH-C - CH3 4.VII 

The products are a hydrogen atom and a r esonance stabilised y-methyl allyl 

radical . The hydrogen atom would be expected to r eact immediately 

with the but-2-ene (EA 'V 2 kcal . mole-1 91) to produoe I'ln excited 

. 136 J! 
sec-butyl. rad~cal , C4-H9 ' 

H + C4-H8 
k2 --..... C

4
H

9 
J! 

4 .VIII 

The disproportionation r eaction: -

H + Cl!!i8 
k1 --- H2 + C4

H7" 4- . IX 

is unlikely to occur , as the r atio ~ is only 0.076 for trans-but-2-ene , 

135 k2 
and 0.023 for cis- but-2-ene . 

The excited r adical C4H9~ may either decompose to yield 

propylene and a methyl r adical : -
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+ ' CH 3 

or be collisionally deactivated to yield a sec-butyl radical . 

4.x 

4.XI 

The yield of the produot propylene shows a greater decrease in 

yield when formed in the presence of oxygen (Figure 3.68) than when 

formed in the presenoe of other gases (Figure 3.46) . This is attributed 

to the combined effeot of pressure quenching and interaction of gen 

with the excited sec-butyl radical . 

4 . 2.2 C- C bond cleavage 

C-C bend cleavage was found to ooour in the meroury photo­

sensitisation of but-2-ene ,77 and a similar r eaction is postUla t ed here . 

CH3 - CH = CH - CH3 + h v - ' CH
3 

+ '·CH = CH - CH3 4 .XII 

The propenyl radioal formed in reaotion 4 .XII is likely to r earrange 

to the mor e stable allyl radical . CH2 - CH = C~ , as was found in the 

photosensitisation of but -2- ene .77 

4 . 2 . 3 Seoonda~ Reaotions 

The radicals formedin primary reactions 4 .VII and 4 .XII may 

then undergo a series of secondary r eactions . Radical r ecombination 

reaotions (~ zero aotivation energy65) are likely to predominate over 

r adioal-olefin addition reactions (EA for alkyl radical + C = C 

"'V 5 kcal .mole -1 91), and in the t emper ature range studied radical 

disproportionation reactions are likely to be insignificant in 

comparison with r adioal recombination reaotions . A possible exception 
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I 

I 

k 
is the interaction of sec-bu~l radioals where ~ has been reported 

as 1.5137 and 0.9898 at 25°C (k1 = r at e oonstant for disproportionation, 

l~ ~or recombination). Consequently, the disproportionation reaotion 

must be oonsidered of impor.tanoe. 

The produots of the recombination reaotions o~ the radicals 

~ormed in the primary processes are given in Table 4.1, using the 

numbering system given below • 

• 
CH3 ' (1); CH2 - CH = CH - CH3 (2); H2C = CH - CH - CH3 (3); 

'CH2 - CH = CH2 (4); H3C - CH2 - CH - CH3 (5). 

I ! , t 
2 I 3 4- S 1 I I 

1 Ethane I 
! 
I 

12 Pent-2-ene 2,6-octadiene 
(0, t) ( 0-0, o-t, t-t ') 

. 
\ ' 

3-methyl 3-Me-1 ,5-hepta- 3,4-Dimethyl- ! 
3 but-1-ene I diene (o,t) I 1,5-hexadiene I I 

I 1 .5-heptadiene 
! 

4 But-1-ene 3-metilyl-1 ,5-1 1,5-hexa-
i (0, t) hexadiene diene 

I I . ! 
5-methyl hept-2~cnel 4-methyl 3, 4-Dimet hy] 5 Isopente.ne I 3,4· ·D~me thyl- I 

I 

I I (0, t) i hex-1-ene ! hex-1-ene hexaiie I 
I 

f ! , 

Disproportionation of 5 + 5 yields n-butane + but-1-ene . 

The ratio of cis!trans-pent-2-ene formed by the oombination of the 

y-methyl allyl radioal, produoed by C-H bond cleavage (4.VII), and 

a methyl radical, is the same (0.9) no matter whether the y-methyl allyl 
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radicals are formed from ois- or trans-but-2-ene. This indicates 

that the y-methyl allyl radicals do not retain their original 

oonfiguration,which contrasts with the work of Holroyd and Klein 10S 

who.suggest that the y-methyl allyl radicals formed on the radiolysis 

of but-2-ene do retain their original configuration. The ratio of 

3-methyl but-1-ene/pent-2- ene (cis + trans) in the present work is 

0.47 (Table 3.3) which is in good agreement with the findings of 

Kubin, Rabinovitoh and Harrington, who obtained 0.4.136 

Alth.ough the majority of high molecular weight products oould 

not be positively identified, the number of peaks on the chromatogram 

oorresponded to the number of possible produots formed by these 

recombination reaotions. If the whole produot sample was frozen down 

into the sampling U-"tube, and then passeCl. through the chromatograph, 

a number of other minor products were detected. These may be attributed 

to the diBproportiona tion reaotions of the radic.'lls (1) to (4). Theae 

products are present in such small quantities as to be undetectable under 

regular sampli.1g cond:.tions. 

Assuming that all Cs hydrooarbons result from the C-H split 

(reaction 4.VII) , all C6 hydrocarbons result from the C-C split (4.XII), 

am that the C
7 

hydrocarbons can be attributed equally to C-H and C-C 

split, an estimation of the products C6 to Cs gives the ratio of C-H 

to C-C cleavage as ''V 5.5:1 (Table 3.3). This oompares with a ratio 

of ~5:1 obtained in the mercury photosensitisation of but-2-ene.77 

When the produot yields in Table 3.3 are converted to a peroentage of 
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the total products i'ormed by molecular and i'ree radical reactions , the 

rela tive importance o£ the postulat ed primary reactions can b e 

estimated. 

Reaction No . of moles x 10-8 

1. Formation of methane + allene 8 

2 . Formation of acetylene 34 

3. Formation of l utadiene 16 

4. Formation of but-2-yne 1 

5. Formation of e thylene 1 

6 . C-H split i I [pcntcncs ] +-2 [CS] 95 

+ [C
7

] + [C
3
H6J + [n-G

4
H

10
1+ [~C4Ha-1] + [isOC

5
H12] 

7. C-C split [C
7

] + 2 [C 6] 11 

% of t ota.l 

5 

20 

1Q 

7 

It is seen that primary r eactions involving the for mation of free 

radicals are slightly mora impo~tant than primary molecular elimination 

reactions . 

4 . 2 .4 Formation of Polymer 

The polymer formed on the cell window i s a yellowish transparent 

solid tha t is thick enough to show second order diffraotion colours 

aft er six hours irradiation. The insolubility of the polymer suggests 

a high degree of cross linking, and the U.V. and I .R. absorption spectra 

suggest the presence of C=C b onds . 

The polymer is almost certainly formed by radioals r eacting with 

the but-2-ene to form higher moleoular weight r adicals. This process ,dll 

oontinue until a chain breaking step ocours - r eaction with another radical, 
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or abstraction of hydrogen from another moleoule . 

The rate of formation of the polymer is illustra t ed in Figure 

3.72. The initial induction period of half an ho~' before polymer 

formation becomes noticeab:e is suggestive of catalyt10 action on the 

cell window. Until sufficient hi ~p molecula r weight products are present 

at the window, formation of the solid. polymer cannot commenoe. 

This was oonfirmed by the polymer formed after only short irradiations. 

Irradiations of but-2-ene for a few minutes followed by replacement 

vrith f'resh but-2-ene, and reirradiation, yielded very little polymer 

even after a total irradia tion time of several hours. Thus, the 

polymer formation would seem to bEl dependent upon the build up of high 

molecular weight radicals which interact wlth each other and with the 

but-2-ene. 
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4.3 Formation of but-1-ene 

It was suggested earlier that the anomolous effect of pressure 

on the ;yield of but-'1-ene was due to the presenoe of a di:fferent excited 

state in the system, which yielded but-1-3ne . If it is assumed that 

the butene formed by the diBproportionation of sec-butyl radicals is 

primarily but-1-ene (lack of radical scavenger effect on the yield of 

but-2-ene), then the but-1-ene yield should equal that of n-butane 

(considering the yield of but-1-ene formed by the reoombination of 

methyl and 'l.llyl radicals to be small). Subtractin3 the n-butane 

yield from the total yield of but-1-ene r e sults in a yield of but-1-ene 

that increases with pressuro, Figure 4.1. This suggests that the 

but-1-ene is being formed from some state that is being stabilised by 

increasing pre ssure. The effect of oxygen is not only to remove the 

but-1-ene formed by the disproportionation of sec-butyl radicals, but 

also to remove the but-1-ene formed by this seco:ld prooess. The pressure 

effect and the effect of oxygen suggest tl~at a triplet state may play 

a role in the formatiun of but-1-ene. 
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Figure 4.1 

Total yield of but-l-ene,minus the yield of 
but-l-ene formed by disproportionation of 

sec-butyl radicals. 

200 

Pressure of but-2-ene. mm. 
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4.4 Excited states 

The preoeeding disoussion has drawn attent~on to the possible 

existence o~ three di~~erent excited states in the system, distinguished 

by their ~fering responses to the presenoe of ~ree radical soavengers 

and to increase of pressure. These are :-

1. .An exoited state precursor common to all primary ~ree radical and 

moleoular elimination reactions. This state is pressure quenched 

and returns to the ground state a s the original is cmer of but-2-ene. 

2. An excited state that leads direo~ly to cis-trans isomerisation. 

This state is unaffect ed by the presenoe o~ oxygen or nitric 

oxide, and on pressure quenching the yiel~ of geometrio isomer 

r emains constant. 

3. An excited state l eading t o the form tio!'l of but-1 - ene . Pressure 

quenching of this state l eads t o an increased yield c~ but-1-ene, 

and the presence in the system of nitric oxide or oxygen (gases 

welllmown for their influence on the trip~et state,13~ results 

in the complete removal of the product lut-1-ene. 

These r esults can be summarised as :-

but-2-ene (cis- or trans-) + h V ~ B* 4.XIII 
(1849 .R) 

!f B can be one of three states 

B* 
1 

~ products (free r adi oal s and molecular) 4.XIV 
3£ 

B1 + M ~ original isomer 4.Y:V 
B* ... geometric ieornel" 

B* 2 
1 B* but-1-ene or ~ ~ 

BI 3 
2 
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R The pressure quenohing effeot on Bi oan b e used to estimate the lifetime 

![ 
.of the excited sta.te Bi 

B + hy .... BJ£ -------k1 1 
B1f 

1 • produots~--k2 

B1f 
1 

+M .... B + M--------k3 

The rate of produot formation R is 

From equations 4.XIX to 4.XXI 

d[B~] 

dt 

4.XIX 

4.XX 

4.XXI 

4 .XXII 

4 .XXIII 

where I is the intensity of irrad.i.a tion, and j5 is the quantum yield of 

* formation of Bi • 

For steady state conditions 

= o 
dt 

Then r *] LBi = 1..& 
k2 + k3M 

Hence the rote of product foruntion from 4*XXII 

R 
k21 ~ 

= 
k2 + k3[M] 

This expression can b e rearranged to 

ill 
I.0 
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From a Stern-Volmer graph of ~ against [M], where [M] is the pressure 

of gas in mm ., the ratio k/~ can be calculated as the ratio slope/inter­

cept. The rate constant k3 for binary collisions, was calculated as 

2 x 10U litres mole8~1 8eo~1 (using a collision diameter of 6.5 j 

for but-2-ene, Section 1.3). Hence, the lifetime of the excited state 

B~ may be determined from the first arder rate constant k2 providing 

it is assumed that deactivation ocours on every collision. 

Figure 4.2 represents Stern-Volmer graphs of the products 

mt:lthone , ethane , allene and butadiene , and Figure 4.3 cons:is ts of Stern-

Volmer graphs of allene formed from 10 mm . trans-but-2-ene in the 

presence of nitrogen, oxygen and trans-but-2-ene itself. The graphs are 

straight lines indicating tha.t the assumpt":.on that deactivation ocours 

on every collision is a r easonable one . The values for the mean lifetime 

* of B1 calculated from the Stern-Volmor graphs of Figures 4.2 and 4.3 are 

-10 all in the range 1 - 2.5 x 10 secs. These values are a minimum in view 

of the assumption of quenching occurring on every collision, and they 

compare with the values of 5.1 x 10-10 sec. (cis) and 1 .5 x 10-' sec (trans) 

calculated for the lifetimes of state V (Section 1.3). 

A Stern-Volmer graph of the product but-1-ene cons~ing of 

two points - the rate of formation of but-1-ene from 10 mm . trans-but-2-

ene , and. the rate of form tion in the presence of < 1% of o~gen - indioate 

a lifetime for state B; of 5 x 10-9 secs. This compares with the triple t 

state lifetimes of but-2-ene (3.3 x 10-9 seos.29) and but-1-ene (6.3 x 

10-9 seo~.71) obtained by mercury photosensitisation (Section 1.5.1). 
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Figure 4.2 

Stern-Volmer plots of the products methane , 
ethane . a llene and butadien,e formed on photolysis 

of trans-but-2-ene. 
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Figure 4.3 

Stern-Volmer plots of the product allene 
formed by photolysis of 10rnrn. trans-but­
-2-ene in the presence of:-
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I 

oxygen • x 

ni trogen : 0 
trans-but-2-eDe : A 

Pressure of added gas. mm. 
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As the yield of the geometrio isomer is unaffeoted by pressure , no 

!! estimate can be made of the lifetime of state B2 • 

Consideration of the absorption speotra of ois- and trans-but-

2- ene (Seotion 1 . 2) indioa+.es that at 1849 K the speotra are a auper-

position of the R ~ N and V ~ N transitions . The progression of the 

-1 » 2 ( stretching) bands of th e R ~ N transitions (1560 cm . from a 0-0 

o -1 band at 2021 A for the trans- isomerj 1 500 cm. from a 0-0 band at 

2066 .R for the Cis-isomer16) is such that ba nds will oocur close to the 

1849 .R line (1846 K.,trans ; 1840 i,cis) . These bande are not seen in the 

spectra because of the masking effect of th6 more intense V ~ N 

transition. However , the occurrence of two transitions at 1849 R may 

result in the excitation of some molecules to the V state , and some to the 

R state . Tho most stable form of the V etate of but-2-eno is with the 
.. 

CH
3

-C-H planes mutually perpendicular . Hence , deaotivation of this state 

would be expected to yield either isomer with equal probability, as in 

the case of the T state (Section 1 .5) . However , deactivation of the R 

state would be expected to yield the original isomer, because of the 

energy barrier to rotation in the excited state (Figure 1.5). 

The results of these experiments show that deactivation of the 
!( 

excited state B1 yields the original isomer . Hence the suggestion is 

that stat e B~ is the Rydberg state of but-2-ene, and that it is from 

the Rydber3 state that pr imary molecular and r adical r eactions occur . The 

srne~l amount of geometrica l isomerisation that occurs from state B~ is then 

considerE'd to r esult from t.l,.e upper singlet state V. Deactiv8 tion of' 

this state produces either isomer with equal probabili~ . 
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Confirmation of this aoolysis is obtained f rem ir ... "'adiations 

in the liquid phcse (Section 3.2), where the trans-but-2-ene constitutes 

90% of the products 01 - C4 detected in the photolysis of cis-but-2-ene 

(cf. 6 . 3% in the vapour phase, Table 3 . 3). In the liquid phase R ~ N 

transition bands cannot be detected, because the Rydberg orbital is 

highly perturbed by the presence of neighbouring moleoules.18 Consequently, 

absorption at 1849 ~ oan only prod1me the V ~ N transition, and henoe 

geometrical isomGrisatio~ far outweighs the formation of other products. 

The product but-1 - ene is peculiar in the system in that its 

yield increases with inoreasing pressure, and that it is removed by 

oxygen . These facts SUg5est that a triplet state is involved in the 

formation of but-1-ene, and it is postul~tEa that an excited triplet 

state of but-1-ene is formed from either the V or R state of but-2-ene 

- 4.XXVIII 

The triplet state of but-1-ene oan either decompose or be collisionally 

deaotivated to yield b'lt-1-ene . The s eleotive deactivation by nitrogen 

on the triplet state produced from cis-but-2-ene (Section 3.1 .5) is 

difficult to understand, althougb. the deactivation by both isomers of 

but-2-ene is ~xplioable in terms of the larger collision di~meters of 

but-2-ene relative to those of argon or car~on dioxide, 
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4.5 Summary of Conclus ions 

The vapour phase photolysis of cis- or trans-but-2-ene at 

1849 R results in the formation of hydrogen, at least thirty two 

hydrocarbons C1 to C8 , including the geometri0 isomer, and a solid 

polymer . The varying effects that the pressure of but-2-ene or of 

added gases have on the yields of these produots indicates the existence 

of two different excited states B7 and B; in the system. Absorption 

of light at 1849 R can produce either the B~ state, or the B~ state, 

and once formed , they oan undergo reaotion or be pressure quenched. 

Pressure quenching of B~ results in reformation of the original isomer 

while qu~nohing of B~ produces the geometrio isomer . These facts 

help to equate s+.ates B~ and B; with the Rydberg (R) and first exoited 

singlet (V) states of but-2-ene respectively . The V state results 

solely in isomerisation, while the R state can decompose 'by seven 

primary reaotions . The effect of radical scavengers helps distinguish 

two mode~ of decomposition - molecular and free radical . 
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----..-------~~~--~-----~----..---~--.--- .... -- . - ... . . -.#' • . --

% decomposition 
~ B* 01' 

1 

57 

20 

10 

7 

5 

0' 5 

0· 5 

-----

0 0 005 

0-6 

0'23 

0· 11 j 

0 ' 085 

0 .05 

O~O07 

OWQ07 

..... - ---... _ ---- -.... ~------~- \._ ...... . _ 0-.. _ 
B~ 4 geometric isomer 4.1 a, b 

2 

Sf' 
B1 .... H· + .CH2 - CH = CH - CH3 4.V11 

5f HC :: CH + 2 oCH
3 4.11 B1 .... 

B!f 4 CE2 ::: CH - CH = CH,2 + H2 ~, .III 
1 

B!f 4 ' CH + ' CH = CH·CH3 4.XII 
1 3 
v B-- 4 Cl\, + CH2 

::: CH ::: CH2 4.V 
1 

B* 
1 

.... CH3 - C ~ C - CH3 + H2 4.IV 

Sf 2 H2C ::: CH2 4.VI 13
1 

-). 

-- - ------

'11he ratio .,f thG quantwn yields c-t: a.ecomponition to i c:)merisation 

indicates thc. t the R and V .3tatE'l8 are formed in the ratio .'5:1 in the 

vapu'L".!' phase . Conf irmation of the cor"eo t designation of these excited, 

stat es i s suggested by the liquid phase phot41ysis at 184~ R., where 

cis-trans is(,merisa tion i s almost the s ole r eactien . Thi s mus t occur 

i11 the V state, for the R state (:oes not e:cis+' in the l i quid phas e . 

Further confirmation c l ulcl be obtai..l1ed by use of deuterat ed butene3 

whioh shift the R ~ N and V ~ N abs orption s peotra r elative to each 

other. Phot~lY8is a t 184? R wt'lUld then be expeot ed to pr·)duce a 
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~ d.eoomposition 
J[ 

of B1 

46 

26 

12 

8 

6 

1 

1 

0 .1 

0 . 26 

0 . 2 

0 .1 5 

0.06 

0 . 05 

0 . 01 

0 . 01 

B!{ 
2 

B* 
1 

B!{ 
1 

Blf 
1 

BX 
1 

B]f 
1 

BH 
1 

Blf 
1 

____ w 

-+ geometric isomer 4.I a, b 

.. H' + • CH2 - CH = CH - CH3 4 .VII 

-+ He :: CH + 2 .CH
3 4 .II 

-+ CH2 = CH - CH = CH2 + H2 4 .III 

... -CH3 + 'CH = CH . CH3 4 .XII 

-+ CH4 + CH2 = CH = CH2 4 .V 

... CH3 - C ; C - CH3 + H2 4 .IV 

-+ 2 H2C = CH2 4 .VI 

The ratio of the qua.r.tum yield.s of d.eoomposition to i somerisation 

indioates tha t the R and V states are formed in the ratio e :1 in the 

vapour phase. Conf'irma tion of the correct designation of these exoited 

states is 3uggested by the liquid. phase photolysis at 1849 ~, where 

cis-trans iscmerisation is almost the sole re~otion . This must occur 

in the V state, for the R state do~s not e:~~st in the liquid phase . 

Further confirmation could be obtained. by use of deuterated butenes 

whioh shift the R ~ N and V ~ N absorption spectra relative to eaoh 

other . ' Photolysis at 1849 ' K would then be expe'oted to produce a 

different ratio of excited. states; and hence a different proportion er 

- 102 -



isomerisation to deoanposition. Deuterated butenes would also be 

useful in determining more aocurately the nature of the primary 

reaotions. 

An interesting consequenoe of the pressure quenching of the 

excited states is that if they fluoresoe, this should also show a 

pressure quenching effect . Such an observation would provide a 

useful confirmation of the mechanisms . 

A third excited state B~ f ound to exist in the system is 

pressure quenched to yield but-1-ene, and is equated with the triplet 

state of but-1-ene, formed by an intersystem crossing from the 

excited but-2-ene . 
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