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ABSTRACT 

Studies have been made on the photolytic decompostion of 

but-I-ene, isobutene and cis pent-2-ene. A number of decomposition 

products were found in each case and the effects of time, added gas 

pressure, reactant pressure and temperature on the product yields was 

studied. The yields of the products increased linearly with time up 

to about 30 mins and thereafter the rate of production decreased due 

to polymer formation on the cell window. Temperature had no general 

effect on the product yields, whereas increasing the pressure of the 

reactant, added inert gases or oxygen caused a general decrease in 

the product yields. The yields of many of the products were eliminated 

by the addition of oxygen and were therefore taken to be of free radical 

origin, whereas thoseproducts whose yields are only affected by oxygen 

to the same extent as they were by nitrogen say, were classified as 

molecular fragmentation products. 

From the results of the above experiments pr~mary reaction 

schemes have been proposed for the decomposition of the olefins studied, 

the major reaction in each case being of free radical nature. In 

but-l-ene and cis pent-2-ene this is the cleavage of a C-C bond in the 

~ position to the double bond and in isobutene it is the cleavage of a 

corresponding C-H bond. The quantum yields of the primary reactions are 

estimated after consideration of the fate of the free radicals produced. 



But-l-ene 

1 hv> CH
3

• + ·CH2 - CH = CH2 C4H8 - 7' ¢ = 0.51 

In addition five more primary reactions are postulated 

and their total quantum yield, ¢ = 0.213 

Isobutene 

¢ = 0.476 

Similarly five more primary reactions are postulated 

to account for the products and their relative yields, the total 

quantum yield of these being 0.309. 

Cis Pent-2-ene 

The two major primary reactions suggested are:-

cis ¢ = 0.40 

and ¢ = 0.36 

with a further three primary reactions of minor importance (total 

¢ = 0.034). 

The decrease in the product yields with pressure is thought 

to be due to the collisional deactivation of an excited state intermediate; 

in the case of cis pent-2-ene this is the first excited singlet Rydberg 



state on the basis that collisional deactivation did not give rise to 

isomerisation. The presence of a second excited state for cis pent-2-ene 

is postulated which is arrived at by a self-quenching or enerr;y transfer 

process, this state cave r1se to isomerisation rather than decomposition. 

Estimates have been made of the decomposition lifetimes of the 

excited state interoediate in each of the three olefins and these are 

compared with the radiative lifetimes of the first excited singlet 

state obtained from spectral data. 
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1. INTRODUCTION 

1.1 Preliminary Remarks 

The interaction of light with certain molecules may cause 

physical and chemical changes to take place and the study of this 

process is known as photochemistry. More than a century ago Grotthus 

put forward the first law of photochemistry and in 1912-13 Stark and 

Einstein formulated the second law. Since this time much work has 

been done and the early results have been shown more recently by the 

advent of mass spectrometry and gas chromatography to have been very 

accurate in view of the difficulties of product analysis confronting 

early workers. Light plays an important role in all forms of life 

since it is necessary in many biological reactions. One such process 

is the photochemical cis-trans isomerisation which plays an essential 

part in the mechanism of vision. The rods on the retina of the eye 

contain a visual pigment, rhodopsin, which is a combination of retinene 

(Vitamin A, aldehyde) and a protein (opsin). The retinene is in the 

ll-cis configuration and the absorption of light converts it all to 

the all-trans form. This isomerisation triggers off a chain of processes 

which eventually lead to visual excitation. l 

Even though the process of photochemical cis-trans isomerisation 

is of basic importance little is known of the exact nature of the 



- 2 -

mechanism. With this in mind James
2 

set out to study the cis-trans 

isomerisation of a simple olefin at 1849 ~, but-2-ene, in order to 

gain some knowledge of the excited state intermediate involved. 

Although some cis-trans isomerisation was induced the major process 

involved appeared to be the dissociation of the butene leading to a 

variety of products. Following this previous work but-l-ene and isobutene 

were studied in order that the mechanism of photodecomposition may be 

elucidated more fully, since both these compounds have similar 

absorption spectra to those of the but-2-enes but the nature of the bonds 

differ slightly. But-l-ene has C-C bonds in a B-position to the double 

bond whereas the three other isomeric butenes have only C-C bonds in the 

a-position. In an effort to pursue the mechanism of cis-trans isomerisa­

tion the photolysis of cis-pent-2-ene was studied and the results 

examined in the light of the previous work on cis and trans but-2-ene. 

The introduction to this thesis includes a discussion of the 

various absorption spectra related to the compounds under examination 

which provide information on the excited states involved by the 

absorption of light. So~e knowledge may also be gained with regard to 

the various bond strengths of the olefins by thermal dissociation, and 

thus an indication of which bond will dissociate first which is of prime 

importance in establishing the reaction mechanism. Consideration is also 

given to previous studies of olefinic photodeco~position using light of 

various wavelengths. 
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1.2 Absorption Spectra 

The absorption spectra of ethylene has been well studied 

and the discussion is therefore centred about ethy1ene3,4 and may be 

then extended to include the substituted ethy1enes. 

The spectrum may be divided into several zones:-

(a) A series of diffuse bands of rapidly rising intensity, 

from 2069 ~ (weak) to 1750 ~. 

(b) A series of intense sharp bands, beginning at 1744 ~, 

and decreasing in intensity to shorter wavelengths. 

(c) A broad continuum underlying the sharp bands, and 

rising to a maximum at 1630 ~. 

(d) Three further series of sharp bands beginning at 

1520 ~, 1440 ~ and 1370 ~, underlain by another con-

tinuum. 

The spectrum is associated with absorption by the w-e1ectrons 

of the C=C bond, but the nature of the spectrum indicates that more than 

one type of electronic transition is involved. 
o 

The sharp bands beginning at 1744 A have been assigned to a 

Rydberg transition by Price. 5 The banded structure is attributed to the 

excitation of the v2 (C=C stretching) and the v4 (twisting) vibrations 

in the Rydberg state, other vibrational modes being unexcited. The 

• .• 0 44 0 0 further banded ser1es beg1nn1ng at 1520 A, lOA and 1370 A are also 

• db t .. 3,6 ass1gned to Ry erg rans1t10ns, all three series converging to the 

same ionisation potential. 
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Absorption Spectra of CiH4 and C2D4 from 1550 to 2050 R. 

The dashed and solid curves correspond to the R ~ and 

V ~N transitions respectively.2 
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The broad continuum (c) and the series of diffuse bands (a) are 

considered by Craig7 to represent two different transitions, both 

singlet-singlet, but the latter one symmetry-forbidden and hence of 

lower intensity. However, the merging of the two zones (a) and (c) 

into each other and the continuity in the intensity, is taken as 

evidence by Wilkinson and Hulliken3 that the two zones represent one 

transition. This is further substantiated by the red shift caused by 

the replacement of the hydrogen atoms of ethylene by alkyl groups. The 
c 

zones (a) and (a) are shifted as a whole not as separate entities. The 

diffuse bands in zone (a) are associated with v2 vibrations and the 

production of the continuum in zone (c) is presumed due to increasing 

pressure of other modes of vibration. The recoenition of substructure, 

(associated with torsional oscillation), in zone (a) of the spectrum of 

tetra deutero-ethylene goes some way to sUbstantiating this presumption. 

The 0-0 band of the transition is not seen, but from the progression of 
o a 

the v
2 

bands, it is estimated to be approx. 2500 A. The maximum at 1630 A 

is associated with some twenty quanta of stretching vibrations, 

6 0 • 
corresponding to a C=C bond length of 1. 9 A 1n the excited state, 

compared with a C= C bond length of 1.35 ~ in the ground state.8 

Thus two transitions are seen to occur. These are designated 

R -+- N and V -+- N in Hulliken's terms,9 where N represents the singlet 

ground state, R represents the Rydberg state with one of the w-electrons 

transferred to a Rydberg orbital, undergoing a change in principal quantum 

number, and V represents the first upper excited singlet state, with one 
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of the w-bonding electrons transferred to an antibonding orbital. 

Price and TuttelO considered that the first Rydberg orbital is itself 

somewhat antibonding, since it occurs at a shorter wavelength than 

predicted. 
11 Snow and Allsop originally believed the weak diffuse 

o 
absorption bands below 2069 A to be due to singlet-triplet transition 

T + N, in which the spin of the electron in the antibonding orbital 

was reversed. 
11 However, the use of long path lengths of liquid ethylene, 

13 or gaseous ethylene in the presence of one hundred atmospheres of oxygen, 
o 

has helped to distinguish weak absorption bands in the 2600 - 3500 A 

region which are attributed to the T + N transition. 

The effect of replacinG the hydrogen atoms of ethylene by 

alkyl groups is to shift both the R + n transition and the V + N 

transition towards the visible region, although the former is shifted 

much further than the latter. These effects have been carefully studied 

14 15 16 by Carr and co-workers. ' , 

The shift in the Rydberg bands depends solely upon the number 

of hydrogen atoms which have been replaced, and not upon the position of 

the hydrogens which are replaced. This is so since the energy of the 

transition is due to the effective nuclear charge on the central carbon 

atoms.15 On the other hand the V + N transition is a charge transfer 

transition, and thus depends on the effective dipole vector of the 

molecule. Therefore it is dependent on the positions of the hydrogen 

16,17 
atoms replaced. 
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The absorption spectra of but-l-ene and isobutene are shown 

in figures 1.2 and 1.318 and the positions of the first Rydberg bands 

and the band maxima are shown in Table 1.1. 

Table 1.1 

Olefin -1 1st Rydberg Band Max. cm 
(V + N) band cm-1 

(R + Ii) 

But-1-ene 57,100 53,390 

Isobutene 53,100 49,750 

. . k . d t th·· 16 S~m~lar wor was carr~e ou on e ~s.omer~c pentenes, the 

absorption spectra of cis-pent-2-ene, trans-pent-2-ene, and ~~e-butene 

being shown in figure 1.4. 

The figures for the band maxima and first Rydberg bands are 

shown in Table 1.2. 



:~ir;ure 1 . 2 ? i crLlre 1. 3 

4 

\V .3 ~ 3 
IlO 311'i'- 1- E:,;'E IlO I303::rrK~ 
0 0 

r1 r1 

2 
2 

50 55 60 50 55 60 

';{A,VE _rri1-.ffiER. X 10- 3 C :-1 ':{AVE 1:tr..3ZR X10- 3 "1 , 1 v ,. 

"i'igure 1 . 4 

17 

15 
,. 

','" 

r<'\ 12 
'0 
..-

>< 9 
~ 
0 
r1 6 .r-! 
.~ 

0.. ;-c:j 

3 

0 

45 

, 
:i\1JJ.J3ER. X 10- 3 - 1 

./ ~ em 

mrans ?e .t- 2- ene . 

Cis ?e_ t - 2- ene . 

2 .:e- J ut- 1- enc . 



- 7 -

Table 1.2 

Band Hax. cm-l Position of Ist_l Rydberg band cm 
(R .. N) 

Olefin 
(v .. N) 

Cis-pent-2-ene 56,600 

Trans-pent-2-ene 55,500 

21-1e-butene 53,200 

48,800 

49,800 

49,800 

numerous conflicting assignments have been put forward for 

the weak "shoulder" bands displayed by most ethylene derivatives in the 

region 2500 - 2000~. These bands appear on the long wavelength side of 

the absorption maximum generally agreed to represent the V .. N transition. 

Berry19 drawing an analogy between the isoelectronic molecules HCEO and 

C
2
H

4
, has supposed the shoulder bands to be due to the analogue of the 

well-knOwn intravalency shell w* .. n transition of HCHO. In C H the "n" 2 4 
orbital becomes a C-H bonding orbital. Berry's assignment may thus be 

symbolised as 'If* .. C1 (C-H). Calculations by Moskowitz and Harrison20 

yield the lowest energy transition as w* .. C1 (C-H) and the next as 'If* .. W 

in agreement with Berry's assignment. 21 However, Evans fOlmd a pronounced 

effect of nitrogen under pressure on the bands, in tetrarnethyl ethylene 

and cyclohexane, which is a strong indication that they are Rydberg bands. 

In agreement the w* .. 'If transition is found to be little affected by 
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nitrogen. It seens clear that the orbital to which an electron is 

transferred is not the sane in the shoulder bands as in the '11* +- 'IT 

transition. Robin, Hart and Kuebler22 assign the bands to a 

o (C-H)* +- 'II transition, where the 0 (C-H)* stands for an antibonding 

C-H orbital which is unoccupied in the ground state and has considerable 

Rydberg character. Robin et. al., seem to assume that the shoulder 

11 
bands correspond to the Sno,., and Allsop bands of ethylene, but these 

ak th .. 13 . d . d are much we er an or1G1nally supposed and Evans f1n s no eV1 ence 
o 

for any transition in the ethylene spectrum in the region 2500 - 2000 A 

other than the "tail" of the V +- N transition. Similarly in the same 

region, the spectrum of a single crystal of ethylene shows23 only bands 

apparently analogous to the V +- II transition in the gas phase. It does 

not seen to rule out that the shoulder bands of ethylene derivatives 
o 

simply correspond to the well-y~own 1744 A Rydberg bands of ethylene 

itself, as originally supposed by Carr and Stucklen.15 In this connection 

it should be remembered that the origin of the V +- n transition lies at 
o 

lower energy than the origin of the 1744 A transition, even though the 

order of the vertical transition energies is reversed. The shoulder bands 

have been called the "mystery" bands; the mystery does not yet appear 

to have been cleared up. 

24 Gary and Pickett and also Jones and Taylor measured the 

extinction coefficient (E) for the butenes and the oscillator strengths 

for the bands were determined using the formula: 

f = 4.32 x 10-9 
Ed\) 1.I 
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where the value of the integral was evaluated from the product of 

the maximum value of E: and the band width at half the maximum value. 25 

Table 1.3 shows the values obtained for the butenes. lB 

Table 1.3 

Olefin 

But-l-ene 

Isobutene 

Trans But-2-ene 

Cis But-2-ene 

f value 

0.39 

0.39 

0.32 

0.59 

4 . t 16 and Table 1. those obtalned for the pen enes. 

Table 1.4 

Olefin f value 

Cis Pent-2-ene 0.45 

Trans Pent-2-ene 0.32 

2He Butene 0.38 
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The spectra of the above ole fins show that the V + N and 

R + N are superimposed in the region of 1849 X and certainly the 

mystery band is in easy "striking" distance, one therfore may expect 

that excitation with light of 1849 X may produce :C~l.r of the above 

three or indeed a mixture. 

1.3 Excited States 

By international convention the symbol for the upper state 

is always written first and that for the lower state last regardless 

h 
. . .. 26 of whether t e process ~s absorpt~on or em~ss~on. In the enumerative 

notation, singlet states are labelled So' Sl' S2 etc., in order of 

increasing energy with S the ground state. Triplets27 are labelled o 

T
l

, T
2

, T3 etc., Mulliken25 ,28 employs different capital letters to 

represent states, N (normal) being the ground state and V, R, for example, 

referring to excited states. 

One can also describe electronic transitions in terms of the 

initial and final orbitals occupied by the single electron involved in 

the transition. 29 A relatively simple system but less precise than say 

symmetry notation. 

As stated previously the ole fins under study may undergo 

transitions of the V + N and R + N types from consideration of the 

absorption spectrum. The V + N transition involves promotion of one 

electron from a bonding r~.o. to an antibonding M.O. and in the case of 

an olefin is designated as w* + w transition. In Rydberg transitions, 

R + N, a change in the principal quantun number of the electron occurs. 
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The electron is promoted fron a bonding H.O. to a H.O. which is 

essentially atomic in character. This being illustrated by the fine 

structure superimposed on the olefin absorption spectrum. The excited 

state responsible for the "mystery" band is also a possible state to 

be considered but conflicting assignments make it difficult to name 

one in particular, but an extension of the Rydberg bands is strong 

possibility, and calculations of the type made by Nulliken and 

Wilkinson3 on the barrier to rotation about the double bond in the 

Rydberg state, would yield much useful information. A value of 0.1 ev 

for the barrier to rotation of the double bond in the Rydberg state has 

been calculated from the work of Nulliken and Wilkinson, which is much 

lower than that of the ground state (2.66 e.v.) thus isomerisation from 

an excited Rydberg is likely, but less so than say the V state (upper 

singlet);O~he triplet state for ethylene has been shown to lie at 

6 0 13 b" "f b"dd " 3 00 - 2500 A for ethylene but e1ng sp1n- or 1 en 1S only very low 

in intensity. 

Once an excited singlet V state has been produced by the 

electronic transition from a bonding n-orbital to an antibonding n*-

orbital, the energy gained from the exciting light may be lost by the 

following processes,29 as illustrated with a Jablonski diagram. Figure 1.5. 

1. Dissociation of a vibronic state to yield photochenical 

products. 

2. Collisional deactivation of a vibronic state. 

3. Fluorescence: radiative conversion to the ground 

state. 
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4. Internal Conversion: non-radiative conversion 

to the ground state. 

5. Intersystem Crossing: non-radiative transition 

which involves a spin intercombination to the 

triplet state, which is then vibrationally 

deactivated. 

6. Energy transfer non-radiatively to a neighbouring 

molecule. 

The triplet state produced in (5) will lose its 

energy by:-

7. Phosphorescence: radiative intercombination with the 

ground state. 

8. Internal conversion: non-radiative intercombination 

with the ground state. 

9. Photochemical dissociation from the triplet state. 

10. Triplet-Triplet energy transfer: non-radiative transfer 

of electronic energy to a neighbouring molecule. 

The ground state molecule produced by internal conversions (4) 

and (8) may be highly vibrationally excited, and may lose its 

energy by:-

11. Dissociation of the vibrationally excited ground state to 

yield photochemical products. 

If an excited molecule is not deactivated or does not 

decompose, it will return to the ground state after a certain time with 

emission of radiation (3). If Am is the average number of transitions per 
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atom per sec. between upper state n and lower state m, the mean life 

of state n is defined as: 

T = 

A is the Einstein transition probability of spontaneous emission, and 
nm 

governs the intensity of emission from the upper state. Hence each 

excited state has a mean life T, and if the molecule is to undergo 

reaction in the excited state the rate constant for the reaction must be 

shorter than the mean life. The mean life is also inversely proportional 

to the absorption strength of the excited state. The Beer-Lambert Law3l 

states that the integrated fraction of light absorbed by an assembly of 

molecules is proportional to the number of absorbing systems in the light 

path, viz. 

log = £ cl 1.111 

where I and I are the incident and transmitted intensities respectively, 
o 

1 the path length in cm. and c the concentration in moles/litre. The £ is 

the molar extinction coefficient in litres/mole/cm. The mean lifetime and 

£ are related by:-

£dv = 
A 2 
o 

Ow 
• 

N 
o 

T 
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where ~ is the wavelength of the maximum of the absorption band, 
o 

No is Avogadro t s number and "1 and "2 the limits of the absorption 

band, are in units of frequency. The value of fEd" may be taken as 

£ times the peak width at half peak height. 
max. 

In the near u.v. this can be approximated to 

T = 10-4/£ 
max. 

Thus for V + N transition in olefins, where £ is of the order max. 
. -8 .. 10,000, T 1S of the order 10 sec.; while for T + N.trans1t10ns, which 

are spin-forbidden, £ is less than 10, so that T ~ 10-5 sec. max. 

Consequently, triplet states are much more likely to be influenced by 

environment in view of the longer mean lifetime. 

The mean radiative lifetime of the V state of the isomeric 

butenes as calculated from the spectral measurements of Gary and Pickett
18 

using the formula 1.1 to calculate the value of the integral are shown in 

Table 1.5. 

Table 1.5 

Olefin T rad. (sec) 

But-l-ene 1.19 x 10-9 

Cis-but-2-ene 1.09 x 10-9 

Trans-but-2-ene 1.93 x 10-9 

Isobutene 1.37 x 10-9 
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These mean lifetimes must be considered in relation to a 

vibrational period of 10-13 sec., a rotational period of sec., 

and a collision frequency in the vapour phase of 2 x lOll litres moles-l 

sec.-l {calculated usine a value of 6.5 ~ for butene34 in the relationship 

z = 2 N 2 
, 

1.VI35 ~ 
0 0 (J (~) 

1000 H 

where (J is the collision diameter and l1 the molecular weight of butene). 

From the above one might expect that deactivation of the V 

state may yield a mixture of cis and trans isomers of say cis pent-2-ene 

whereas deactivation of the R state (shown to have a potential barrier to 

rotation about the C=C) would yield only the original isomer. The state 

responsible for the "mystery" band would behave as a Rydberg state if it 

too has a potential barrier or the V state if it is found not to have 

such a barrier to rotation. 

1.4 Pyrolysis 

Thermal decomposition of olefins serves as a useful comparison 

with photochemical decompositions, especially when deciding which bond 

is most likely to break first. This section describes briefly work 

which has been performed on some olefins. 

The pyrolysis of propylene has been studied in some detail 

between 550 and 870
o

C,36-39 and a long chain free radical mechanism 

proposed in which reactions of the I-methyl-4-pentenyl radical is of 

. . rt 40 
pr~me ~rnpo ance. The main chain termination reaction was found to be 
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combination of methyl and allyl radicals. Very extensive studies of 

the kinetics of the reaction were made possible with the use of gas 

chromatography and mass spectrometry. The nost probable initiation 

steps are:-

C3
H6 -+ H· + C3H5• 1.VII 

C3
H6 -+ CH· + C2H3• 1.VIII 3 

2C3H6 
-+ C3H5 + C3H7• I.IX 

The rates of these reactions have been compared on a theoretical 

41 . 42 43 44 basis and supported by experlmental work, ' , the conclusion has 

been drawn that reaction 1.VIII is the prime initiation step. 

45 . . Swarc and She on examlned the results of the pyrolysls of 

but-l-ene by a flow nethod using toluene as carrier gas between 935 and 

lo46°K. The decomposition was measured by the rate of formation of 

methane which was found as a non-condensable gas with hydrogen. They 

proposed the cleavage of the C-C bond B to the double bond as the major 

reaction, 

CH • + ~H -CH=CH 322 l.X 

this being homogeneous and of 1st order. 

The products from the pyrolysis of isobutene46 were found to 

include hydrogen, methane and allene. The experimental results were 
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explained in terms of a chain mechanism the initiating step being 

decomposition of isobutene into a hydrogen atom and a C4 radical, 

• 
CH

3 t:. 
CH2 

1.XI 'c = CH2 ~ H· + 'c = CH2 / / 
CH

3 
CH

3 

the value of D(C-H) in isobutene given as 76 kcal/mole corresponding to 

d Q t h d bl . d H 47 t d h· the C-H bon pot e ou e bond. R~ce an .aynes suppor e a c a~n 

mechanism but they suggested that the initiating step vas the cleavage 

of the a C-C bond:-

> 1.XII 

~llien ethylene is heated to moderately high temperatures 

decomposition takes place, at the same time some polymerisation is also 

found. 48 ,49 As is the case of most thermal decompositions it is not 

possible to separate the tvo reactions and hence the mechanism becomes 

very complex. Hague and lfueeler 48 concluded that butadiene vas the most 

important product in the polymerisation but the result vas complicated 

by much decomposition. 
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The thermal decomposition of pentene50 also illustrates 

the weakness of the B C-C and B C-H bonds in olefinic molecules. 

With this in mind one mieht say that cleavage of the C-C bond B to 

the double bond is of prime importance in thermal decomposition 

reactions, this being concluded after consideration of the product 

distribution. 

The thermal decomposition of radicals51 ,52 is also important 

when one sets out to formulate a mechanism for the photodecomposition 

of olefins since radicals are formed and their disappearance will give 

rise to products. The decomposition of the sec-butyl radical, formed 

say by the addition of a hydrogen atom to but-l-ene, 

sec. 
• 

CH -ClI-ClI -CH 323 1.XIII 

into propylene and a methyl radical has an activation energy of 

23.5 kcal/mole.
5l 

Studies on the i_buty153 radical show that for the same 

decomposition a value of 31 ± 2 kcal has been calculated for the 

activation energy. 

1 5 Photosensitisation • 

certain elements have excited states with resonance levels of 

sufficient energy that collision with many types of molecules leads to 
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primary photochemical processes. Those that also have vapour pressures 

of about 10-3 mm. or more at temperatures where the molecule is stable, 

and are capable of being excited in a low pressure discharge to give 

an intense resonance line or lines, may be effective sensitisers for 

inducing decomposition of a wide variety of molecules which are trans-

parent to the incident resonance radiation itself. Several of these 

are tabulated in Table 1.6.54 

Table 1.6 

Hetal 

lIg Cd Zn Ca 

Principal quantum number, 
6 4 4 n: 5 

Sins1et-Sin~let 

n(lp
l

) .... n(lso) + h\l 

wavelength; ~ 1849 2288 2139 4227 

Energy, kcal/einstein: 154.6 125.0 133.7 67.6 

Radiative lifetime, sec: 1.3xlO-9 1.2xlO-9 < 10-7 3.5xlO-9 

Tri;Elet-Sine;let 

n(3p ) .... nelS ) + h\l 
1 0 
wavelength: ~ 2537 3261 3076 6537 

Energy/kcal/einstein: 112.7 87.7 92.9 43.7 

Radiative lifetime, sec: 1.1xlO-7 2xlO-6 
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If one is to study on the other hand a 'direct' photolysis 

then one must be very careful to exclude any traces of metallic 

sensitisers from the systen. Perto155 noted that the direct photolysis 

of C
2
li4 at 1849 ~ gave different results than the H9 (lpl) sensitised 

reaction. 

Ler Roy and Steacie56 proposed that for ethylene (and it is 

now agreed for olefins generally)57 the primary act is triplet energy 

transfer to produce a relatively long-lived excited state intermediate 

of the olefin. 

Hydrogen and acetylene are the major products fron the mercury 

sensitised decomposition of ethylene, which has been studied extensively. 

The quantum yields of these products were found to decrease with increasing 

pressure of ethylene or added inert gas. 58 ,59 These facts are indicative 

of an excited state intermediate and Cvetanovic and Callear60 verified 

this using mixtures of ethylene and deuterated ethylene. They found that 

the product did not contain any HD or mixed acetylenes, though some 

evidence for vinyl and H radical split has been found. 58 Later, Cvetanovic 

and Callear61 suggested a mechanism that incorporated two electronically 

and vibrationally excited states of approximately equal lifetime, both 

were subject to collisional deactivation but only one decomposed. 

Evidence to support this two-excited states 

proposal was gained by using cis-ethylene d2• 

H (in the ratio 1:6:2) and the corresponding 
2 

not only were D2 , RD, and 

acetylenes formed. but there 

was also extensive isomerisation to the trans isomer and the unsymmetrical 
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isomer, H2C = CD2• Similar experiments using the trans isomer Gave a 

. ·1 ult 62 very S1m1 ar res • 

Cis-trans isomerisation US1np, mercury as a sensitiser has been 

• . h b t 2 63,64 0 1 . .. 111ustrated uS1ng t e u - -enes. n pro onged 1rrad1at1on a 1:1 

mixture of trans and cis was found to result, and at pressures above 30 rom. 

= ~t-c = Using mass spectrometry it was found that at 

low reactant pressures CH
3 

and H radicals were formed but the major 

. . It . .. 66 react10n was C1S rans 1somer1sat1on. 

Cleavage of C-C bonds is of great importance in but-l-ene, and 

in general the higher olefins. The relatively weak S-C-C bonds in 

but-l-ene facilitate dissociation and the ratio of 8-C-C to the 8-C-H 

bond cleavage was calculated to be 1.3 - 1.6 to 1.63 Isomerisation to 

d67 . .. 
but-2-ene was also foun but 1t was of m1nor 1mportance, whereas the 

isomerisation to methyl cyclopropane was of importance. 63 The thirty-

three products found were shown to decrease in yield with pressure but the 

isomerisation to methylcyclopropane rose to a maximum at 65 mm. and then 

dropped off at 230 mm. Thus two excited states are proposed in the 

mechanism. 

l-C4HS (So) + Hg(3P1 ) ..... C4HS(Tl ) + Hg(lS ) 
0 1.XVIII 

C4HS (Tl ) ..... Products l.XIX 

..... (C4HS)* l.XX 

C4HS(Tl ) + l.f ..... 1 C4HS + M 1.XXI 

(C4HS)* ..... Products 1.XXII 

(C4HS)* + M ..... l1-CH3 + H 1.XXIII 



- 22 -

The importance of the B bond cleavage in the pentenes was 

also illustrated by Majer and RObb,67 a-bond cleavage was not totally 

ruled out but was only of minor importance. 

Propylene decomposes into free radicals by two reactions on 

o 0 0 102 
mercury photosens~t~sat~on. 

• 
CH

2 
= CH-CH

2 
+ H' + Hg 1. XXIV 

• • 
CII

2 
= CH + CH

3 
+ Hg 1.XXV 

The ratio of the two reactions being about 9:1 in preference 

to the C-H bond split. 

o 0 0 Co -1) Mercury photosens~tlsatlon lnput 112 kcal.mole results 

mainly in the cleavage of the weak bonds B to the double bond,63,67 

yielding resonance stabilised allylic radicals. With compounds able to 

exhibit cis-trans isomerisation the main reaction is in fact the 

isomerisation, and workers63 ,64,65 have found that the two isomers are 

formed in equal amounts. Thus it is also concluded that deactivation of 

the triplet state of but-2-ene would yield both isomers with equal 

probabili ty. 

1.6 Direct Photolysis 

As noted earlier several possible excited states may be 

intermediates in any reaction of olefins which may be excited by light. 

Excitation within the first singlet-singlet absorption band may be 
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followed by a variety of fragmentation steps involvinG H2 molecule 

and hydrogen atom and radical formation, 

H H H 
\. / "C C = C + hv = C: + n2 l.XXVI 
/ "- R/ R H 

.... RC - CH + H2 l.XXVII 

• • .... RC = CH
2 

+ H l.XXVIII 
• .... RCH = ClI + H· l.XXIX 

• • .... CH = ClI2 + R l.XXX 

Alternatively the major result of excitation, particularly in 

solution may be isomerisation of the original olefin. 

In the remainder of this section some of the direct olefin 

photolysis studies will be reviewed. 

Early investigations of the photolysis of ethylene did not 

distinguish very clearly between the direct photochemical reaction and 

the mercury sensitised reaction. The most definite information about the 

6C 
direct photoreaction was obtained by Hooney and Ludlam, who found that 

o 
ethylene did not absorb light of wavelength greater than 2130 A to any 

appreciable extent, and concluded that nothing was to be expected from 

investigations using lamps not capable of emitting light less than 

Nooney and Ludlam used an alUI:linium spark with a high intensity at 

o 
2000 A. 

1860 ~ 
and found that acetylene was formed. Qualitative observations by Lind and 
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Livingston69 are in agreement with these results. Taylor and Emeleus70 

o 
showed that a polymer was formed on irradiating ethylene by 1849 A 

light from a mercury arc, in the absence of mercury vapour. McDonald 

and Norrish7l reinvestigated the reaction using a hydrogen lamp source 

and fluorite apparatus and were thus able to use shorter wavelengths. 

Hydrogen, a polymer and a condensable gas were formed under these conditions. 

More recently72,73 at 1236, 1470 and 1849 ~ investigations suegest the 

mechanism 

.... CH C:+ H2 
'.2 

HC :: CH , 
.... CH2C:+ H" + H" 

HC - CH + H2 

HC - CH + H" + H" 

1.XXXI 

1.XXXII 

1.XXXIII 

l.XXXIV 

1.XXXV 

to account for the products and the possible cis/trans isomerisation with 

deuterated ethylene. 

Six reactions have been suggested for the photolysis of 

proPYlene74 ,75 at 1470 ~ and a fUrther reaction XLII for that at 1236 ~. 

C3H6 + h\l .... CH3" + H" + C2H2 1.XXXVI 

.... CH4 + C2H2 1.XXXVII 

.... H2 + CH2 = C = CH2 1.XXXVIII 

.... H" + C H • 1.XXXIX 3 5 
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+ : CH + C2H4 1.XL 2 

+ CH" + C2H3" + C2H2 + H" 1.XLI 3 
+ 

+ C3
H6 + e 1.XLII 

Arai et. al.
76 photolysed propylene at 1849 ~ and found some 

fifteen products and a solid polymer. The yields of the products were 

found to be practically independent of propylene pressure (10 - 70 rom.) 

though a slight possible linear increase was reported. This being quite 

different from the mercury photosensitised results. They accounted for 

the products and their relative yields by C-C and C-H bond cleavage 

reactions, which occur to a comparable extent. Very few results were 

reported and the effect of propylene pressure appears inconclusive. 

Previous studies on but-l-ene at 1849 ~77 showed that some 

twenty products were formed and the yields said to be independent of 

but-l-ene pressure. The pressure range quoted was 1.7 - 125 mm. Hg but 

as before76 few experimental results were listed and in fact a pressure 

dependence vas indeed found in several products. The two major reactions 

suggested were free radical reactions, 

+ 

+ 

C1I3 • + 

H- + 

. 
CH - CH = CH 2 2 

• 
CH3 - CH - ClI = CH2 

1.XLIII 

1.XLIV 

The ratio of the C-C bond split to the C-H bond split was put 

at about 7 to 1, thus indicating the weakness of the C-C bond B to the 

double bond. Okabe et. al.
78 

confirmed the preference for 8 C-C split 
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and from their mass spectrometric measurements proposed that the 

following reactions were also of importance in the photolysis of 

o 
but-l-ene at 1849 A. 

C4HS-l .. C3H4 + (Ho+ CH)) or CH4 
• .. C3

H6 + CH2 
• 
~H2 + C4Ha .. CSHlO 

l.XLV 

l.XLVI 

I.XLVII 

The preferential C-C bond split can be explained on the basis 

of the bond energy difference D(C2H
3 

- C2H
S

) - D(C3HS - CH
3

) of 

28 kcal/mole.79 

In isobuteneSO and the but_2_enes2.82.83 the major reaction is 

cleavage of the C-H bond B to the double bond since no B C-C bond exists. 

2 Borrell and James reported the presence of hydrogen and thirty-two 

hydrocarbon products in the gas phase and also a solid polymer. The 

yields of the products were said to decrease with pressure except those 

of the geometric isomer and but-l-ene. A mechanism was suggested in which 

eight possible primary reactions account for the products. Only the 

reaction involving the isomer is pressure independent. all the others 

being quenched by increasing the pressure or adding foreign gases. 

cis or trans C4HS-2 + hv .. CH3-CH=CH.CH2• + II· 1. XLVIII .. HC = ClI + 2CH
3 

• 1. XLIX 

.. CH2=CH-CH=CH
2 

+ H2 l.L 
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cis-C4H8-2 + hv ..... trans C4Ha-2 loLl 

• cis or trans C4H8-2 + hv ..... CH3-CH=CH + cn· 1.LII 3 
..... CH2 = C = CH2 + CH4 1.LIII 

..... CH
3 

C - C - CH3 + H2 1.LIV 

..... 2C2H4 1.LV 

The first reaction accounts for half the observed reaction and the ratio 

of this to the fourth gives' a value of 7 to 1 which corresponds to the 

ratio of the C-H to C-C split. 

Recent studies usinG flash photolysis techniques95 have 

illustrated the importance of the e C-C bond cleavage in but-l-ene by the 

presence of the absorption spectra of the free allyl radical in the 

product mixture. Sinilarly the methyl allyl radical absorption spectra 

was seen on flashing but-2-ene, isobutene and cis pent-2-ene, illustrating 

the importance of the B C-H bond cleavage in but-2-ene and isobutene where 

no B C-C bond exists and the B C-C bond cleavage is cis pent-2-ene. 

1.7 Summary of Available Information 

The results from pyrolysis, mercury photosensitisation and direct 

photolysis seem to suggest that, when present, it is the C-C bond B to the 

double bond which breaks first when energy is added to the system. If a 

C-C in the B position is not present then it is the C-H bond in a B 

position to the double bond which breaks first. In the case of photo­
o 

sensitisation at 2537 A a definite pressure quenching effect is noted; 
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presumably from an excited triplet state, whereas the effect in 

the unsensitised studies is not clear since conflicting reports have 

been made. The excited state responsible for the unsensitised 

decompositions is not yet resolved, much support being given to the 

theory of the first excited singlet Rydberg state being the intermediate 

for decomposition whereas the V state is responsible for isomerisation 

wherever possible. These possibilities being suggested after 

consideration of pressure effects remembering that the first excited 

singlet Rydberg state has a potential barrier to rotation about the 

double bond. 

Experiments were then performed on selected ole fins to 

determine the effects of several parameters - not least that of pressure, 

thus the above postulat~ may be examined further and perhaps some 

support for the suggestion of the excited state intermediate gained. 
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2. EXPERIf.lENTAL 

2.1 Introduction 

Known pressures of but-l-ene, isobutene or cis pent-2-ene 

were admitted to the reaction cell via a mercury-free vacuum system. 

After allowing the system to equilibriate the gas was irradiated by 
o 

light of 1849 A from a low pressure mercury lamp. Ethylene was 

used as an actinometer to measure the number of quanta of light 

entering the cell. After allowing time to mix the product gas was 

analysed using gas chromatography. 
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2.2 Materials 

But-l-ene and isobutylene were obtained from Phillips 

Petroleum Company and were research grade materials. But-I-ene was 

99.98% pure the impurities being propylene and propane, isobutene 

was also 99.98% pure the impurities being propylene and propane plus 

a little isobutane. 

Cis pent-2-ene was obtained from Koch Light and was purified 

first by distillation under vacuum to separate it from the hydroperoxide 

and then by preparative gas chromatography. A Pye 105 preparative gas 

chromatograph was used incorporating a 30 ft. column packed with silver 

nitrate/ethylene glycol on a celite solid support (60 - 80 mesh). The 

column temperature was set at 400 C and nitrogen used as carrier gas 

the flow rate being 100 mls./min. The cis pent-2-ene obtained from this 

source was found by gas chromatography (using column 0 at 350 C and flow 

rate 60 mls./min.) to be about 0.01% in the trans isomer. Ethylene was 

an Air Products Special Gas and was distilled under vacuum before use, 

the purity being better than 99.9%. 

Carbon dioxide, argon, nitrogen and oxygen were obtained from 

cylinder gases. 

nitrous oxide was also a cylinder gas of research grade obtained 

from B.O.C., and was stored after vacuum distillation, the purity being 

Perfluorocyclobutane was a gift from Dr. R.B. Cundall of 

Nottingham University. 
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Materials for quantitative calibration and qualitative 

analyses were either Matheson Research Grade gases or pure liquid 

samples from British Petroleum Co. (C5 hydrocarbons) and Gulf 

Petroleum Co. (C6 - Ca hydrocarbons). 
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2.3 Apparatus 

2.3.1 Vacuum System 

The high vacuum apparatus is represented by Figure 2.1. 

An oil diffusion pump was used in order to exclude any mercury 

from the system. The pump was of the three stage type and charged with 

150 mls. of Edwards No. 704 Silicone oil. This diffusion pump was 

backed by an Edwards Speedivac Rotary Oil Punp (type 1.S.50) and with 

the use of a liquid nitrogen trap a working vacuum of 10-5 mm. mercury 

was readily obtained. 

Pure gases were introduced into the system at A liquified in 

B and stored in a one litre bulb C which were fitted with freeze-arms 

to assist recovery of the gases from the vacuum line. Liquids were 

introduced at the trap B and cooled with liquid nitrogen whilst pumped 

down, after boiling they were stored as before. 

The system of taps at D provided alternate routes from the 

storage bulbs to the reaction cell. 

Pressure measurements were made with Edwards Absolute Dial 

Gauges at F, which were calibrated using a butyl phthalate manometer. 2 

Gaseous samples are introduced into the gas chromatograph via 

the u-tube at G. In Figure 2.2, taps I and II were double oblique bore 

taps and III was a single straight through tap. A sample was taken for 

analysis by the following procedure:-
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(a) Tap III remained open to allow unimpeded flow of 

carrier sas to the chromatograph. 

(b) With tap I closed, tap II was opened to the pumping 

line so that evacuation of the U-tube was achieved. 

Tap II was then closed. 

(c) Tap I was opened to the system containing the sample 

to be analysed. Sufficient time was allowed for 

pressure equilibriuo before tap I closed. 

(d) Tap I was briefly opened to the carrier gas stream 

and then closed. Carrier gas thus entered the tube 

and the sample was thus compressed to a 'slug'. 

(e) Before mixing could take place taps I and II were 

opened to the carrier gas stream and III closed. TIle 

'slug' of test gas was thus carried into the gas 

chromatograph. 

The volume of the U-tube was varied between 8 and 10 mls. The 

total volume of the gas before a sample was taken was 720 ml. Thus only 

a small amount of the gas was removed for sampling and hence samples 

could be removed with little loss of sample. 

Apart from the three-way stopcocks I and II, which were 

lubricated with silicone grease, all stopcocks which reactant and product 

gases came into contact were greaseless Springham Valves with 

fluorocarbon (Vi ton A) diaphragms. These do not absorb paraffin or 
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olefinic hydrocarbons. All other stopcocks in the system were 

lubricated with silicone high vacuum grease. 

2.3.2 Cell 

The irradiation cell was of metal construction shown in 

Figure 2.3. This consisted of a brass cylinder 80 rom. long and 50 mm. 

in diameter, the Spectrosil windows were held in place with O-rings and 

screw caps. Thus easy removal for cleaning purposes was facilitated. 

The cell was fitted to the vacuum system using a glass to copper seal 

which was soldered into the cell body. A side-arm with a bulb was 

connected into the cell in order that any condensable products may be 

frozen down for mixing purposes. The total volume of the cell and side-

arm was 158 mls. 

Spectrosil, a synthetic quartz produced by Thermal Sydicate 

Ltd., was used for the cell windows because of its transmission properties 

in the ultraviolet. A 10 mm. thick disc of Spectrosil will transmit ~90% 
o 

1849 A radiation incident upon it (Figure 2.4). The total thickness of 
o 

Spectrosil traversed by the 1849 A radiation before reaching the cell was 

<5 mm. 

2.3.3 Thermostat 

The cell was enclosed in an air thermostat constructed of 

Syndanyo, (compressed asbestos cement) Figure 2.5. The total volume was 

24 litres. The thermostat was heated by a 1.5 kw. spiral heater and the 

gas circulated by means of an electrically driven high speed fan. The 
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temperature was controlled by a mercury contact thermometer acting 

through a 'sunvic' relay. Thus it was possible to achieve a temperature 

of ± 20 C in the oven. 

The thermostat was flushed out with dry oxygen-free nitrogen, 

83 d t 84 h b to 0 ° as both oxygen an wa er vapour ave an a sorp ~on coeff~c~ent of 

o 
14.6 1/mo1e/cm. at 1849 A. The nitrogen was dried by passing the gas over 

silica gel. 

The light source for the experiments was a 15 watt, 24" U-tube 

low pressure mercury vapour lamp (Uanovia Type 766/63) fitted with a 

Spectrosi1 envelope. Activated by a 2000 V transformer, it drew 30 rnA 

at 600 V. The output of a typical low pressure mercury lamp in the 

ultraviolet, without a Spectrosi1 envelope is illustrated in Figure 2.6.85 

The output of the lamp at 1849 ~ measured using ethylene actinometry was 

found to be 2.3 x 1015 quanta/sec. The output of the lamp did not change 

88 after considerable use. Beckey et. al. said that for a similar lamp the 
0

0
0 

intensity of the 1849 A 11ne was about 10 to 15% of that of the 2537 A 

line. 

The lamp was housed in a closed tube Figure 2.7 constructed of a 

Q.V.F. pipe with an end window of Spectrosi1 sealed with Ara1dite. The 

apex of the U-1amp was 1 cm. from the end-window. During an irradiation 

the lamp housing was flushed with dry nitrogen. 
o 

In order to eliminate the 1849 A radiation to test for 
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photosensitisation a 1 cm. thick 2% acetic-acid solution filter was 

placed between the lamp and the cell. The transmission properties of 

such a filter are shown in Figure 2.8. 
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2.4 Procedure 

The apparatus including the reaction cell was evacuated 

until no discharge could be seen in ordinary light using a 'Tesla 

3 86 Coil' (said to be below 10- mm. Hg. ) before the desired pressure 

of reactant gas was admitted to the cell. The lamp was allowed to 

warm up for 10 mins before irradiation during which time the 

reactant gas had time to attain the cell temperature. The irradiation 

time was generally five minutes except in the case of time dependence 

experiments, and in experiments where the reactant consumption was to 

be measured and thus a longer irradiation time (30 mins) necessary to 

achieve better accuracy. During all irradiations the cell-housing and 

thermostat were flushed with dry nitrogen in order to limit ozone 

formation and absorption of the light by water vapour. Hixtures of 

gases were allowed to mix 1 hour before irradiation was commenced. 

After irradiation the product gas was allowed to mix for 

1 hour in order that a representative sample was taken for analysis. 

Tap H (Figure 2.1) was then opened with tap K closed and a sample of 

the gas introduced into the gas chromatograph for analysis. 

From time to time the window of the cell was removed and 

examined using the S.P. 700 spectrophotometer and when the transmission 

was lowered appreciably then the window was cleaned first with chromic 

acid then distilled water, and lastly acetone before drying for about 

20 mins in an oven at 1000C. 
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2.5 Actinometry 
o 

The output of the lanp at 1849 A was measured using ethylene 

as a chemical actinometer. The quantum yields for the foroation of 

acetylene (1.0) and hydrogen (0.8 ± 0.1) were originally eiven to us 

by Dr. H. Romme187 and subsequently published by Beckey, Groth, Okabe 

and Rommel.88 The values were determined using nitrous oxide as an 

actino~eter.89,90,91 Due to the i~portance of the figure for the ~H2 

from ethylene it was decided to remeasure this usinG nitrous oxide as 

an actinometer. 

Several steady state experiments were carried out with nitrous 

oxide and ethylene in order to determine the yields of nitrogen and 

hydrogen respectively. In each case 100 mm. of gas was irradiated and 

after allowing 1 hour for the products to mix they were analysed by gas 

chromatography using a 6 metre column packed with silicone grease on 

celite (Go - eO mesh) for hydrogen and a 2 metre column packed with a 

molecular sieve (5A) for nitrogen. At 100 mm. pressure of either gas all 

the light was absorbed in the cell (see Section 2.6). The results from 

these experiments are shown in Table 2.1 for ethylene and Table 2.2 for 

nitrous oxide. 



Run rIo. 

1 

2 

3 

4 

5 

Analytical Conditions: 
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Table 2.1 (Ethylene) 

Irradiation Time 
(mins) 

10 

" 
" 
" 

20 hours 

Hydrogen 
Yield Noles x 107 

1.43 

1.43 

1.49 

1.43 

0.117 

Colunn '0' (silicone erease); o Temperature, 35 ; Nitrogen 

Carrier gas flow rate, 60 mIs/min.; Detector, Hot-wire. 

Table 2.2 (nitrous oxide) 

Run No. Irradiation Time Nitrogen 
(mins) Yield Holes x 107 

1 10 3.34 

2 " 3.34 

3 " 3.46 

4 " 3.36 

5 20 hours 0.263 

Analytical Conditions: 

Column, molecular sieve (5A); Temperature, Room Temp.; 

Hydrogen Carrier gas flow rate, 60 mls/min.; Detector, Hot-wire. 
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The first four runs were conducted using the usual cell 

arrangement while in run 5 the lamp was withdrawn from the cell and 

viewed through a small aperture so that the effect of the intensity 

and also the geometry of the cell on the quantum yield could be tested. 

The results shown in Tables 2.1 and 2.2 show that the quantum yield was 

unaltered throughout the runs, a fieure of 0.60 ± 0.02 being calculated 

in each case using the results as numbered. A steady state experiment 

was also performed to determine the ratio ~C2H2/~H2 and the result 

found to be the same as that quoted by Rommel. 

It was therefore decided to use the figure of O.Go ± 0.02 for 

~H2 to calculate the product yields later in this thesis since the 

optical system used to arrive at this figure was well defined, and with 

a path length of 8 cm. more than 96% of the light is absorbed. If less 

light were to be absorbed then, because of the difference in molar 

absorbtivity between ethylene and nitrous oxide, a higher value for ~H2 

would be obtained. The path length used by the previous workers88 was 

less than 8 cm. 

2.6 Heasurement of Bolar Extinction coefficient - A PhotocheMical 

Hethod 

During the study of the use of ethylene as an actinometer at 

1849 ~ a possible method for the measurement of the extinction coefficient 

(£) was seen, using a modification of the Beer-Lambert Absorption Law: 

I = I -kcl 
o e 
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where I and I are the incident and transmitted light intensities 
o 

respectively, k is the ~olar absorption coefficient, c the 

concentration in moles/litre and 1 the path length of the cell in em. 

then I b a s = 

if rl is the quantum yield of product then the rate = I rl ~ abs ~ 

• 
• • Rate = I ¢ (1 o 

-kcl) 
e 

where R is the rate of production when all the light is absorbed, 
o 

calculated from figure 2.9 for nitrous oxide and figure 2.10 for 

ethylene. 

then 

and 

R -In (1 - /R) = kcl o 

-log (1 - R/R ) = Ecl 
o 

where k = 2.303 E. 

R A plot of -log (1 - IR) versus c in moles per litre would 
o 

therefore have a slope equal to E1. Thus E may be calculated by 

irradiating various pressures of the gas under investigation and 

calculating the product yield. The results for ethylene (table 2.3) 

and nitrous oxide (table 2.4) are s~arised below and illustrated in 

figures 2.11 and 2.12. 
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Table 2.3 

Irradiation Pressure Rate (r!oles/ 

Time (min.) C
2
H4 (rom.) nin.) x 109 

30 15 0.6333 

30 20 0.7166 

30 30 0.8666 

10 100 1.43 

10 200 1.43 

Table 2.4 

Irradiation Pressure Rate (Holes/ 

Time (min.) N
2
0 (rom.) min.) x 109 

30 15 1.23 

30 20 1.45 

30 30 2.05 

10 100 3.34 

10 200 3.35 

From the slopes E for nitrous oxide was calculated to be 

-1 -1 4 -1 -1 30.49 1. mole cm and for ethylene 3 .1 1. mole em • The values 

1 99 . -1 -1 3 24 calculated from spectra data are lltres mole cm for ethylene, , 

-1 -1 92 1 1 83 and 29 litres mole em or 35 litres mole- em- for nitrous oxide. 
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The agreement for nitrous oxide demonstrates the validity 

of the method for a compound with a continuous spectrum. 

The spectrum of ethylene shows some structure in this region 

and the difference between the results obtained from this method and the 

spectral results may be attributed to the bandwidths used. In the 

" " t" 3,24 d "d h "_0 photoelectr~c determ~na ~on the ban w~ t was approx~mately lA. The 

bandwidth in the present work will be determined by the width of the 

mercury line emitted by the low pressure arc, it is not likely to be 

greater than 0.05 ~.93,100 Clearly this measurement will be more 

sensitive to detailed features of the spectrum than those made previously. 

This method then offers a way of determining absorption 

coefficients in photochemical systems where a narrow emission line is 

produced by the light source; in this case a monochromator is not 

required. 

2.7 Analysis 

Qualitative and quantitative analyses were performed on a 

Perkin-Elmer Hodel 452 Gas Chromatograph fitted with both a hot-wire 

detector and a hydrogen flame ionisation detector. 

Qualitative analyses were made on a variety of columns listed 

in Table 2.5. The inert support material for all Perkin-Elmer column 

fillings is 60 - 80 mesh Celite. 
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Table 2.5 

Perkin-Elmer Column Stationary Length Running Carrier gas flow 

Classification phase (metres) 0 Temp. C rate mls/min. 

H Silver nitrate on 2 35 60 
ethylene glycol 9 (Prepar- 40 100 

ative) 

0 Silicone grease 6 35 65 
80 140 

S Silica gel + 2 80 135 
diethylhexyl 
sebacate 

Poropak 'R' 2 100 60 

EA Bis methoxyethyl- 2 35 65 
adiptate 

I Holecular Sl.eve 2 Room 60 
(5A) Temp. 

The product retention times were compared with authentic samples. 

ColUFn 0 separated by boiling points and from boiling poir.t-log 

, 94 h b '1' , retention tl.me curves t e Ol. l.ng pOl.nts of products for which no 

authentic samples were available could be determined to within t 20 C. 

Quantitative analyses were made on col~n 0, S and I, Cl - C
5 

hydrocarbons 
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on co1unn 0 at 35°C. CG to Ce hydrocarbons on co1~n 0 at Booc, 

nitrogen on column I at roon temperature. Calibration was made usine 

mixtures of the authentic sample with nitrogen. Table 2.6 shows the 

relationship between the peak height or peak area. recorded on a 

Honeywell high gain high impedance recorder with a 0-2.5 mV ranee, and 

the molar quantities of Cl - C8 hydrocarbons. 

Table 2.6 

Peak height or peak area with detector at full 

sensitivity corresponding to 10-9 moles. 

(Column 0 at 35°C) 

Hydrocarbon 

Hethane 
Ethylene 
Ethane 
Acetylene 
Propylene 
Allene 
But-1-ene 
Isobutane 
Isobutene 
Cis-but-2-ene 
Trans-but-2-ene 
Butadiene 

Peak Height 

(ins) 

7.0 
10.5 
11.0 
14.0 
18.0 
11.9 

4.0 
7.0 
4.5 
9.4 
9.0 
4.0 

Hydrocarbon 

3 He-butene 
Iso pentane 
n-Pentane 
Trans Pent-2-ene 
cis Pent-2-ene 
2 He-butene 

Col. 0 800 C 

n-Hexane 
cis Hept-2-ene 
Oct-1-ene 

2.52 
2.65 
2.1 
2.4 
2.37 
1.0 

0.5 
0.25 
0.52 

Infrared spectra were recorded on a Perkin-ElMer Hodel 221 I.R. 

Spectrometer. and ultra-violet transmission data and spectra were recorded 

on a Unicam Hodel S.P. 700. 
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3. RESULTS: But-l-ene 

Irradiation of known pressures of but-l-ene using a low pressure 

mercury lamp with a 1 cm. thick filter containing 2% acetic acid solution 

interposed between the lamp and the cell resulted in no photochemical 

products. The filter which absorbs lS49 ~ radiation (Section 2.3 
o 

Figure 2.8) proved that the exciting radiation was that of the 1849 A 

resonance line. Thus it was concluded that no sensitisers, such as mercury, 

were present in the system, since the olefins under study are transparent 

to 2537 2 radiation which is the main component of the light emitted from 

a low pressure mercury lamp (Section 2.3 Figure 2.6). 

After irradiation without such a filter more than twenty-five 

hydrocarbons, hydrogen and a solid polymer were found to be present. The 

products were analysed by gas chromatography using col~~ 0 at 350 C for 

C
l 

- C
5 

hydrocarbons and column 0 at 800 c for CG - CS' no hydrocarbons 

higher than Ce were detected after thorough examination. Table 3.1 

illustrates the relative yields of the products from a 5 min. irradiation 

compared with ethane, which is taken as 10 (equivalent to 2.7 x 10-7 moles). 



H2 

CH4 

C2H4 

C2H6 

C2H2 

C3
H6 

C3
H8 
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Table 3.1 

Relative anounts of Products fomed by Photolysis of 

But-l-ene at 1849 A with reference to C2HG = 10 

(equivalent to 2.7 x 10-7 moles) 

Time of Irradiation 5 mln.; 

Temperature = 20
0 

t 20 C 

0.002 C3H4 1.64 

2.52 Iso-butane 0.2 

5.34 Cis but-2-ene 0.76 

(10.0) Trans but-2-ene 0.34 

0.76 3l1e-but ene 0.92 

2.28 Iso-Pentane 2.62 

1.84 n-Pentane 1.1 

Eut-2-yne 

Cis Pent-2-ene 

Trans Pent-2-ene 

Pent-l-ene 

(C
7

) 
(C6) 

(C8 ) 

trace 

1.08 

0.08 

1.0 
10.G6 

2.85 

0.75 

(C6), (C
7
), (Ca) represent the total approximate values for 

several peaks. Individual hydrocarbons were not identified and therefore 

are grouped together as (CG) (C7) or (Ce) after consideration of their 

retention times. 
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In order to establish which products are formed by molecular 

fragmentation reactions and which are formed by free radical reactions 

steady state experiments were carried out to determine the effect of 

the following parameters on the product yields: 

(1) Irradiation Time 

(2) Added Gas Pressure 

(3) Reactant Pressure 

(4) Temperature 

The irradiation time was generally 5 minutes which ~ive rise 

to about 1% conversion of the butene present. The yield of the products 

was thus small and a hydrogen flame ionisation detector was needed to 

measure the yields accurately. But-l-ene contained propylene and propane 

as impurities {0.02%} but this level of impurity presented no analytical 

difficulty at low but-l-ene pressures. At higher butene pressures the 

yields of propylene and propane were so small that the amount present 

as impurity became a serious problen. Heasurenent of the product yields 

(c hydrocarbons) which had a longer retention time than but-l-ene became 
5 

increasingly difficult as the pressure of but-l-ene was increased, due to 

severe tailing of the butene peak. The pressure of but-l-ene (£~ 10,000)17 

in the cell was always sufficient to absorb > 99% of the radiation. All 

the light being absorbed in the first 2 cm. length of the cell. 

In the figures referring to section 3.1 the product yields 

are quoted in moles and in sections 3.2. 3.3 and 3.4 quantum yields are 
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used to show the effect on the product yield where, 

~product = 
noles of product produced per ninute 

quanta lieht used per ninute 

the amount of lieht used being deternined by ethylene actinometry 

(section 2.5). 
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3.1 Effect of Irradiation Time 

The effect of varying the irradiation time on the rate of 

fornation of the Cl to C
5 

hydrocarbon products is shovm in Table 3.2 

and illustrated by Fieures 3.1 to 3.14. It can be readily seen that 

the yields of the products increase linearly with tine up to about 20 

minutes thereafter the rate of fornation decreases due to the fornation 

of a solid polymer on the cell window during long irradiations. Later 

experiments were therefore carried out using 5 ninutes irradiation 

tL~e. The polymer was not found to build up on the cell window during 

consecutive 5 minute irradiations. 



Time 
Mins. 

0 

1 

2 

3 

5 

7 

10 

12 

15 

20 

30 

40 

60 

90 

120 

Table 3.2 

Product Yields in r·101es x 107 as a function of Irradiation Time 

p(C4Ha-l) = 6 nun; temperature = 20° :I: 20C 

Analytical Conditions: Flame Ionisation Detector; COlUMn: 0; 

Temperature: 35°C; II2 pressure: 12 1b/sq. in. 

CH4 C2H4 C2H6 C2H2 C3
H6 C3

HS C3H4 t-b-2 c-b-2 3!·1e- iso- n-
butene pentane pentane 

trace trace 

0.04 0.16 0.32 0.02 0.12 O.oS O.OS 0.02 0.02 

0.12 0.32 0.64 0.04 0.24 0.16 0.16 0.03 0.02 0.08 

0.24 0.39 1.26 0.08 0.36 0.24 0.24 0.03 0.04 0.06 

0.4 0.70 3.20 0.16 0.68 0.53 0.40 0.08 0.32 0.06 0.16 

0.52 1.05 3.85 0.19 0.77 0.71 0.52 0.35 

0.96 1.60 6.70 0.36 0.92 1.04 0.76 0.13 0.48 0.35 0.08 0.20 

1.08 - 1.24 1.15 0.79 0.64 0.28 

1.35 2.55 9.90 0.71 1.80 1.23 1.13 0.60 0.12 

1.76 3.24 2.2S 1.56 1.48 0.34 0.76 0.64 0.16 0.48 

2.40 4.68 16.50 1.08 2.70 2.13 1.80 0.96 1.02 0.27 

2.68 6.00 21.60 1.20 3.60 2.72 2.52 1.32 1.21 0.40 0.88 

4.6S 7.56 50.4 2.76 5.04 3.96 3.60 1.83 1.D6 3.24 3.6 

7.20 lJ. 70 63.0 3.42 9.27 4.86 6.66 2.79 3.78 4.32 3.15 

7.44 13. 68 75.6 4.20 11004 9.00 8.28 3.66 2.S8 4.32 5.52 4.20 

t-p-2 c-p-2 

0.03 0.05 

0.08 

0.09 0.11 

0.18 0.16 

0.24 0.24 

0.26 0.30 

0.32 0.42 

0.56 

0.58 0.67 

0.70 

2.19 1.34 

2.25 1.46 

1.70 
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3.2 Effect of Added Gas Pressure 

In order to determine which products are formed by molecular 

fragmentation reactions in the primary reactions and which are formed 

via free radicals, the effect of addinG various gases was investiGated. 

The added Gases may be divided into two categories: 

(a) Inert gases 

(b) Radical Scavengers, 

(oxygen taken as an example) 

The effect of inert gases on the product yields is shown in 

Table 3.3, 3.4 and 3.5 for argon, nitrogen and carbon dioxide 

respectively, and the results are also illustrated by Figures 3.15a to 

3.27a. A general decrease in the quantum yields is noted and the effect 

of all three inert gases is seen to be the sane. 

In order to determine whether quenching of the excited state 

is in fact taking place further experiments were performed to determine 

the consumption of the but-l-ene as a function of nitrogen pressure. 

The results are illustrated in Figure 3.28, it must be noted that the 

error in each point is greater than in the other figures since each point 

represents a small difference between two large numbers (equivalent to 

5% decomposition of the but-l-ene). Clearly, in spite of this the 

figure shows that quenching of an excited state intermediate is taking 

place to yield the starting material. 

The effect of adding oxygen on the product yields is shown 1n 
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Table 3.6 and illustrated by Figures 3.15b to 3.22b. Those products 

whose yields are completely eliminated by oXYGen are not illustrated 

by any figure (C
5 

- C8 hydrocarbons). It was noted that oxygen affected 

the yields of some products much more than the inert gases did and 

eliminated the higher products icrmediatelys these products are fomed 

v~a free radical processes. The products whose yields are only affected 

the sane by oxygen as they were by the inert gases are fomed in the 

primary reactions by molecular fragnentation. The question now arises 

as to whether oxygen just quenches the excited state intermediate as well 

as reacting with radicals or whether it also reacts with the excited 

state. Experiments were conducted to determine the consumption of 

but-l-ene in the presence of oxygen and are illustrated in Figure 3.29 s 

the accuracy of the points is the same as in FiGure 3.28. The consumption 

of but-l-ene was seen to rise as oxygen was added but then appears 

constant up to about 250 nn., indicating that oxygen is reacting 

chemically with the butene in addition to other reactions with the 

excited molecule. 
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Effect of Added Gases 

Exnerimental Conditions: 

p(But-I-ene) = 6 mID; tenperature 

irradiation time = 5 mins. 

Analytical Conditions: 

O t t 350C·, Coll.lMIl, ; empera ure, 

flame ionisation detector; 112 pressure, 12 lb/sq.in. 

Key to FiGUres: 

The followinG notation is used in Fieures 15 to 27. 

o ArGon; 

~ OXYeen 

)( Carbon dioxide; 

\-j nitroeen 

The yields of the products are quoted as quantum yields and 

sienified by ¢. 



Table 3.3 

Effect of Argon on the Cl to C
5 

Product Yields 

(r.101es x 109 per minute) 

Pressure CH4 C2H4 C2H2 C2H6 C3
H6 C3

H8 C3H4 c-b-2 3Me iso- n- t-b-2 c-b-2 
nun butene pentane pentane 

0 12.6 26.7 3.8 50.2 11.4 9.2 8.2 3.8 4.6 13.1 5.5 5.4 4.0 

20 12.0 20.2 3.4 48.0 8.7 7.1 6.0 3.6 4.1 11.5 4.4 4.2 3.5 

50 10.9 16.4 3.3 45.8 7.1 6.0 4.9 3.3 3.8 10.9 3.0 3.7 3.2 

100 8.7 13.6 2.7 39.3 6.0 4.4 3.3 2.9 9.3 2.4 2.6 2.7 

200 8.2 9.3 2.8 39.3 4.4 3.0 2.0 2.9 2.9 9.3 2.2 2.4 2.6 

300 8.2 9.3 2.8 39.3 4.4 3.0 1.6 2.7 2.7 9.2 1.5 2.4 2.4 



Table 3.4 

Effect of Nitrogen on the C1 to C
5 

Product Yields 

(Holes x 109 per minute) 

Pressure CII4 C2H4 C2H2 C2H6 C3H6 C3H(3 C3H4 c-b-2 3Ile iso- n- t-b-2 c-b-2 
rom butene pentane pentane 

0 12.6 26.7 3.D 50.2 11.4 9.2 D.2 3.D 4.6 13.1 5.5 5.4 4.0 

25 12.5 25.1 3.D 50.0 9.1 5.5 5.2 3.8 4.4 9.6 3.8 5.0 3.8 

50 10.9 22.4 3.3 43.6 6.9 4.9 4.9 3.7 4.0 8.7 3.7 4.7 3.7 

100 8.2 18.5 3.3 43.0 5.5 3.1 4.6 3.5 3.9 D.o 3.3 4.1 3.3 

200 7.5 10.9 2.7 39.3 4.7 1.3 3.1 3.1 3.7 7.1 2.6 3.8 2.(3 

300 7.5 9.3 2.6 32.7 4.1 1.2 3.1 3.1 3.5 7.1 2.6 3.8 2.5 



Table 3.5 

Effect of Carbon Dioxide on the Cl to C
5 

Product Yields 

(Holes x 109 per minute) 

Pressure CH4 C2H4 C2H2 C2II6 C3E6 C3HS C3H4 c-b-2 3!·te iso- n- t-b-2 c-b-2 
mIn butene pentane pentane 

0 12.6 26.7 3.D 50.2 11.4 9.2 B.2 3.8 4.6 13.1 5.5 5.4 4.0 

20 10.6 16.4 3.5 44.5 B.o 6.6 3.0 2.9 3.7 9.6 3.3 4.2 3.2 

50 10.3 12.5 3.3 43.5 5.S 4.4 2.7 2.9 3.5 B.9 2.2 3.7 2.9 

100 9.5 9.B 2.9 40.0 4.B 3.8 2.2 2.5 2.9 8.2 2.0 3.5 2.5 

200 9.3 5.5 2.5 33.0 4.2 3.1 1.1 2.2 2.8 7.1 1.1 1.9 1.5 

300 B.2 3.4 2.5 33.0 4.2 3.1 0.6 2.4 2.7 6.8 1.4 2.2 2.0 



Table 3.6 

Effect of Oxygen on Cl to C
5 

Product yields 

(Moles x 109 per minute) 

Pressure CH4 C2H4 C2H2 C2II6 C3
H6 C3II8 C3II4 c-b-2 3He iso- n- t-b-2 c-b-2 

mm butene pentane pentane 

0 12.6 26.7 3.8 50.2 11.4 9.2 8.2 3.8 4.6 13.1 5.5 5.4 4.0 

25 10.3 22.9 3.7 12.8 4.9 3.8 5.7 3.7 

50 9.3 16.9 3.3 12.5 2.7 2.5 4.9 3.7 

100 7.1 15.8 3.2 12.0 2.0 1.1 4.6 3.0 

220 7.6 9.8 2.6 10.1 1.1 0.9 2.5 1.5 

300 7.6 9.3 2.5 9.3 1.1 0.9 2.5 1.5 
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Figure 3.15b 

Variation of pro uct yield vii th oxygen pressure. 
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Vari~tion of product yield with added g~s pressure . 
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Figure 3. 2Gb 

Varia..tion of product yiel vritl oxygen pressure . 

PrOD.:D1e . 

0,09 

0 , 03 

8 11 8 

0 
100 200 300 

OXYGEN Pl. ESSU:\.E (I u. ) • 



V3.ri::t.tion of pro uct :,ield '-lith added gas prezsure . 

0 , 03 
X r;;p 

¢ 
\:j 

X 0 

0, 0'10 
X \:} 

\:j 

0 
X 

0, 006 

° 100 200 300 

PRESSURE (mm) . 



Fir:ure; 3 . 21b 

V:.lriation 0 oduct yield \,/ith OX'JGcn prc ::;~ure o 

O , 0~8 _ 

0 , 03 

0 , 018 

0 , 006 

° 
100 200 300 

OXYG:r~ PRESSURE (mrn) . 



V:lI'io.tion of product yield \'lith n.ddcd e;n.3 pres::;urc . 

Cis lIut- 2- ene . 

C . G~h 

O'J V \:j 
X 0 

X ® 
\-j \-j 

0 
0 

X 
X 

0 . 01 2 

0 . 006 

o 100 200 300 

T', '''s.,..n' ( ) rJ."\.~U un. ~.J m • 



l~ir,urc 3. 2;~b 

Vuriation of procluct yicld "lith oxy r;cn prc.3Ourc . 

Cis "lut- 2- ene . 

¢ 

0 , 01 2 

0 , 006 

o 100 200 300 

OXYGEN PRESSURE (mm) . 



Ficurc 3.23.::1 

Vori:.ltion of p oduct yicJd with addlJd G.::1:J prcs:::urc . 

3- :.:cth.vl- T3utc: 1C . 

0 , 0) 

\} 

¢ 0 8 v x v x VI 

0 , C1~) 5( ® 

0 , 006 _ 

o 100 200 30 ' 



Variation of prouuct yield ",ith added gas prc::;::;urc . 

Isopentane. 

0, 09 

o 

0,03 

° 
200 300 

PR~SSillE (rn: ) . 



:?i gurc 3.25a 

Variation of produc t yield vrith ad ed gas pr es!Jure . 

n- l'entane . 

0 , 0\2 

0 
y \!j 

X V 
0 

0 'V V 
0, 020 X X 0 

X 
X 

o 100 200 300 

PRESSURE (mm) . 



0, 03 \:l 

¢ 

0 , 0 2 -

o 

Figure 3.26n. 

Varb.tion of pro'uct yield ,nth added gas pressure . 

'i'ro..n::; Pcnt- 2- ..... ;ne . 

V 

V 
® X 

o 

100 

PRESSURE (mm) . 

\J 

o 
X 

200 

9 

300 



I<'igure 3.270. 

V:.. i o.t ion of prod.uct yie;l' "'it ad<lc gas prc0sure . 

Cis Pcnt- 2- cne . 

0, 0.';.2 

0, 03 

¢ 
V \;j 
0 

0 \;j 
X 

X 9 
\(j 
0 ~ 

0, 02 X 

l 100 200 300 

° 
P:U::vSURE (m ) . 



87 , 5 

o 

50 o 

o 

::t'iGllre 3. 28 

Conswnption o~ but- 1- ene as a function of 
nitrog8n pressure . 

o 
o 

o 
o 

o 

o L-------------------~1~OO~------------------~20:V~------------------~~7~O; 

• essure of nitrogen (mm) . 



12 

10 

out- 1 - ene 

consumption 8 
I' 

1 0
0 

moles x 

6 

4 

2 

:;:"igurc 3.29 

Co s~~p~ion 0_ but- 1- ene as a ~ction o~ oXYGen pressure . 

o 
o o o 

o L-________________ -L __________________ ~ __________ __ 

'100 200 



- 59 -

3.3 Effect of Reactant Pressure 

On increasine the pressure of but-l-ene the yields of 

the majority of the products were decreased as before with two 

exceptions s the yield of ethane appeared to be constant after an initial 

decrease and the yield of methane increased after a slight initial decrease. 

The results are illustrated in Table 3.7, and by Figures 3.30 to 3.38. 

Irradiation Conditions: 

p(C4HS-l)s 6 to 200 rem; temperatures 20 t 2°C; 

time of irradiations 5 minutes. 

Analytical Conditions: 

1 0 t t 35°C·, Co umn s ; empera ure s 

Fl~e ionisation detector; N2 pressure 12 lb/sq.in. 



Table 3.7 

Effect of Reactant Pressure on Product Yields 

(Holes x 109 per minute) 

Pressure CH4 C2H4 C2H2 C2II6 C3II4 c-b-2 3Me iso- n- t-p-2 c-p-2 
IllI1l butene pentane pentane 

6 12.0 26.7 3.7 50.2 8.2 3.8 4.6 13.1 5.5 5.4 3.8 

12 23.0 3.5 38.0 6.3 3.7 4.4 10.4 4.2 5.1 3.7 

20 11.0 20.0 3.4 44.0 5.2 4.2 9.6 3.9 4.9 3.7 

50 13.0 17.0 3.2 42.0 4.9 8.7 3.7 4.7 3.2 

90 24.0 15.0 2.6 44.0 4.6 G.l 3.4 4.0 2.8 

200 34.0 11.0 2.5 38.0 3.1 7.1 2.6 3.7 2.4 
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3.4 Effect of Temperature 

The effect of temperature was studied at 70°C and 140°C 

and the results compared with those at 20°C when varying the pressure 

of argon and the reactant. The results are illustrated by Tables 3.8 

and 3.9 and by Figures 3.39, 3.40 and 3.41 and show that temperature 

had no effect upon the product yields with the exception of methane 

which on increasing the pressure of but-l-ene (Figure 3.40) showed a 

marked increase with increase in temperature over the values obtained 

in Figure 3.30. 

Effect of Temperature 

Analytical Conditions: 

ColUI!Ul, 0; 
o temperature 35 C; 

Flame ionisation detector; U2 pressure 12 lb/sq.in. 

Irradiation Conditions: 

p(but-l-ene), 6 rom; irradiation time, 5 minutes 



Table 3.8 

Effect of Argon on Product Yields as a Function of Temperature 

(no1es x 109/T!'.in) 

Pressure 0 CH4 C2H4 *C2H6 *C3H2 C3H4 c-b-2 3He iso- t-p-2 c-p-2 Temp. C n-
mm C2H2 C3Ha butene pentane pentane 

0 140 12.6 26.1 44 13.4 8.2 3.8 4.6 13.1 5.5 5.4 4.0 

10 12.6 26.6 44 13.4 8.2 3.8 4.6 13.2 5.3 5.3 4.1 

20 12.6 26.1 44 13.4 8.1 3.8 4.6 13.2 5.4 5.3 4.1 

25 140 12.0 25.1 40 11.5 6.0 3.5 4.1 11.5 4.2 4.3 3.5 

10 12.0 25.0 40 11.4 6.0 3.5 4.0 11.4 4.2 4.1 3.6 

20 12.0 25.0 40 11.4 6.0 3.5 4.1 11.5 4.2 4.2 3.5 
100 140 8.1 16.0 34 9.1 4.9 3.2 3.8 10.8 3.1 3.1 3.2 

70 8.6 16.0 33 9.1 5.0 3.3 3.8 10.6 3.6 3.1 3.2 
20 8.5 16.0 33 9.1 5.0 3.2 3.8 10.1 3.6 3.1 3.2 

200 140 8.2 9.6 20 5.4 3.3 2.9 2.9 9.2 2.4 2.6 2.7 

10 8.2 9.6 21 5.4 3.3 2.9 2.9 9.5 2.4 2.5 2.3 

20 8.2 9.6 21 5.4 3.3 2.9 2.9 9.4 2.3 2.6 2.5 

300 140 8.2 9.3 19 4.8 2.0 2.8 2.9 9.2 2.4 2.4 2.1 

10 8.2 9.2 19 4.9 2.0 2.9 2.9 9.0 2.4 2.3 2.3 

20 8.2 9.2 19 4.9 2.0 2.8 2.9 9.1 2.4 2.3 2.2 

, Rrpressed .BS .peak he.zghts .. 



Table 3.9 

Effect of Reactant Pressure on the Product Yields as a Function of Temperature 

(Moles x 109 per minute) 

Pressure Temperature CH4 C2H4 *C2E6 iso- n- t-p-2 c-p-2 
rum °c C2H2 pentane pentane 

6 20 12.0 26.7 50.2 13.1 5.5 5.4 3.8 

70 12.0 26.7 50.2 13.1 5.3 5.4 3.8 

140 12.4 26.6 50.6 13.1 5.5 5.5 4.0 

12 20 23 38.0 10.4 4.2 5.1 3.7 

70 11.5 23 38.0 10.6 4.2 5.0 3.7 
140 12.0 22 38.0 10.5 4.3 5.0 3.6 

18 20 11.0 20 42.0 9.6 3.9 4.9 3.7 

70 12.1 21 42.0 9.7 3.9 4.9 3.7 
140 15.0 21 47.0 9.6 3.9 4.8 3.8 

100 20 13.0 17 44.6 8.7 3.7 4.7 3.2 

70 30.0 14.7 44.0 8.7 3.6 4.1 2.8 

11~0 60.0 14.5 44.0 8.7 3.6 3.9 2.8 

170 20 24.0 15 39.0 8.1 3.4 3.6 2.1 

70 40.0 12.1 38.0 8.2 2.6 3.7 2.3 

140 63.0 12.1 39.0 8.2 2.6 3.7 2.5 

* Yields quoted as peak heights. 
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3.5 Carbon Balance 

In order that the analytical technique may be examined 

experiments were carried out to measure the yield of all the products~ 

C
l 

to C8 hydrocarbons1and conpare the result with the amount of 

but-l-ene consumed. For reasons of accuracy in measuring the consunption 

of but-l-ene the tine of irradiation used was 2 hours which converted 50% 

of the initial but-l-ene to products. The Cl to C
5 

hydrocarbon products 

o 
were measured using colunn 0 at 35 C and the C6 to Cn hydrocarbon products 

o 
usinr, the same col~n at 80 C. 

The results are illustrated in Table 3.10. 

Table 3.10 

Holes x 107 

6 rom. but-l-ene. 2 hours irradiation; temperature = 200 C 

6.5 87.7 13.3 2.1 17.2 64 

From Table 3.10 the total carbon found may be calculated from: 

Total butene = C1 + C2 + 3C3 + 

424 

C4 + 5C5 + 3C6 + 7C7 + 2CO - --
424 

which is equal to the amount of C4 (but-l-ene) consumed. 
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-7 It vas calculated that 270 x 10 noles of but-l-ene were 

used and from ~able 3.10 the accumulated products accounted for 

212 x 10-7 moles but-l-ene. Taking into account the polyoer fomed 

in a long run, the two figures show a good product recovery. 

3.6 Surr~ary of But-l-ene Results 

(1) The yields of the products increased linearly with the irradiation 

time until about 20 mins, after vhich time the rate of formation decreased 

due to the formation of a solid polyner on the cell windm-l which cut 

down the anount of light entering the cell. 

(2) The majority of the product yields vere decreased on increasine the 

pressure of the reactant except nethane which showed an increase with 

increased but-l-ene pressure, and ethane vhich vas virtually unchanged. 

(3) Oxygen reduced the yields of all the products and conpletely 

elininated the C5 hydrocarbons. The yields of CH4, C2H4, C3H4 and C2H
2 

were only affected to the same extent by oxygen as by nitrogen. The 

yields of ethane and propylene and the but-2-enes are affected to a 

greater extent by oxygen, but are not conpletely elininated. 

(4) The inert gases argon, nitrogen and carbon dioxide reduced the yields 

of all the products with increasing gas pressure. 
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(5) Temperature had little effect on the product yields with the 

exception of methane and in runs where the pressure of but-l-ene was 

increased the results showed an increase at 70
0 

and l40
0 c over those 

o 
at 20 C. 
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4. RESULTS: Isobutene 

Experiments were perfo~ed as in Section 3 to establish if 

any sensitisation was taking place and these experiments proved 

negative. 

On irradiating isobutene with light of 1849 ~ hydrogen, 

thirty-one hydrocarbons and a solid polyner were found. The gaseous 

products were analysed by gas chromatography as in Section 3. 

Steady state experiments were conducted to deternine the 

effects of: 

1. Irradiation time 

2. Isobutene pressure 

3. Added gases 

In subsections 2 and 3 the irradiation time was generally 5 

minutes which gave rise to about 2% decomposition of the isobutene 

present. The isobutene contained propylene, propane and a small amount 

of isobutane as impurities therefore at high reactant pressures the 

yields of these products were obscured. Difficulties were also experienced 

in measuring the product yields which were eluted from the column 

immediately after the isobutene due to tailing of the isobutene peak. 
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Table 4.1 

Product Yields from the Photolysis of Isobutene 

Irradiation Conditions: 

Time of irradiation, 5 reins; p(isobutene), 6 rom; 

teMperature, 20° t 2°C 

• !·!oles x 108 

0.12 isobutane 16.65 Cis pent-2-ene 

12.50 Cis but-2-ene trace pent-l-ene 

0.40 Trans but-2-ene 6.25 (c6) 

7.75 3-He-butene trace (C
7

) 

3.35 isopentane trace (Ca) 

6.00 2-He-butene 21.15 

9.20 Trans pent-2-ene 0.16 

0.08 

0.31 

3.75 

13.75 

2.5 

(C
6
), (C

7
) and (Ca) represent total approximate values for several peaks. 

Analytical Conditions: 

Column, 0; flaoe ionisation detector; 

Ir2 pressure, 12 Ib/sq.in; teI:lperature 35°C. 
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4.1 Effect of Irradiation Ti~e 

On increasing the irradiation ti~e the yields of the products 

increased linearly up to about 25 minutes ar.d then the rate fell of~ 

due again to the formation of a solid polymer on the cell window after 

long irradiation tines. The results for the Cl to C
5 

hydrocarbon 

products are shown in Table 4.2 and illustrated by Figures 4.1 to 4.12. 

Irradiation Conditions: 

p(isobutene), 6 TIn; temperature, 20° t 2°C. 

Analytical Conditions: 

O t t 35°C·, ColUl':".Il, ; eI:lpera ure, 

N2 pressure 12 lb/sq.in.; flame ionisation detector. 



Table 4.2 

Effect of Irradiation Time on the Product Yields 

8 (Holes x 10 ) 

Time CH4 C2II4 C2H6 C2II2 C3II6 C3H4 iso- t-b-2 c-b-2 3He- i80- are- t-p-2 c-p-2 
mins butane butene pentane butene 

1 3.6 0.13 2.2 1.0 2.2 1.8 4.B 0.91 trace trace 6.5 trace trace 

3 11.6 0.2 6.3 3.2 5.9 5.3 13.8 " 0.1 " 19.2 0.2 " 
5 16.7 0.4 9.6 4.7 8.3 8.2 20.5 4.2 " 0.1 " 27.5 0.6 0.4 

7 22.5 0.6 13.5 6.6 11.5 11.4 30.3 4.4 " " 40.6 0.6 

11 39.3 1.6 20.9 11.0 18.1 18.9 44.2 12.1 " 2.1 " 86.5 0.7 o.B 
20 78.9 3.9 36.3 18.0 33.1 35.6 82.0 33.5 " " loB 1.2 1.4 

30 91.2 4.0 52.8 26.1 39.5 43.5 105.7 43.7 10.5 2.7 1.5 155 2.0 2.1 

60 153.5 10.2 90.7 42.9 65.7 80.7 168.0 58.2 15.8 3.5 2.5 225 2.8 3.9 

120 258.1 10.2 171.5 84.9 95.4 87.5 257.0 106.0 23.4 8.0 8.2 269 
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4.2 Effect of Reactant Pressure 

On increasin~ the pressure of isobutene the yields of the 

products were decreased and this is illustrated in Table 4.3 and 

by Figures 4.13 to 4.17. Products such as C4 and C
5 

hydrocarbons 

having retention tines just longer than that of isobutene were very 

difficult to measure due to severe tailing of the reactant peak. 

Irradiation Conditions: 

Irradiation time, 5 m1ns; temperature 20° t 2°C 

Analytical Conditions: 

O t t 350C" Colunn, ; empera ure, 

flane ionisation detector; N2 pressure 12 lb/sq.in. 



- 72 -

Table 4.3 

Effect of Isobutene Pressure 

(Holes x 108 per minute) 

Pressure CH4 
C2H6 C2H2 C3H4 *iso- 2He-

mm butane butene 

2 1.9 1.3 0.5 1.4 1.8 2.8 

4 2.1 1.3 0.6 1.6 2.5 2.9 

6 2.0 1.6 0.7 1.8 3.3 4.2 

10 2.4 1.4 0.8 1.6 3.4 4.5 

15 2.4 1.4 0.5 1.4 3.4 4.5 

20 2.1 1.3 0.6 1.1 2.7 2.9 

50 1.4 0.8 0.4 0.5 1.8 2.8 

100 1.8 1.0 0.5 0.2 2.3 2.3 

120 1.7 0.8 0.4 0.3 2.9 

200 1.1 0.6 0.3 0.1 1.8 1.7 

220 1.4 0.7 0.4 0.2 2.0 

280 1.2 0.6 0.3 0.2 1.5 

380 0.3 0.3 0.1 0.1 1.7 0.9 

* Isobutane vas an inpurity in the starting material. 

The remaining products are not tabulated due to 'tailine' of the 

reactant pea}~ and the levels of impurity. 
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4.3 Effect of Added Gases 

The added gases are divided as before into two sections; 

(a) added inert gases 

(b) oxygen. 

(a) On adding the inert gases nitrogen, argon, carbon dioxide and 

perfluorocyclobutane the yields of all the products were decreased. The 

effect of the first three gases appeared to be the same whereas the 

perfluorocyclobutane affected the yield to a slightly greater extent. 

The results are illustrated in Tables 4.4, 4.5, 4.6 and 4.7 and by 

Figures 4.18a to 4.26a. 

In order to establish whether quenching was in fact taking place 

experiments were conducted using 30 mins irradiation time to establish the 

effect of nitrogen on the consunption of isobutene. The results are 

illustrated by Figure 4.27 and show that quenChing is taking place to 

give back the starting material. The accuracy of this partiCUlar figure 

is the same as that of Figure 3.28. 

Analytical Conditions: 

Column, 0; temperature 350 C; 

flame ionisation detector; 112 pressure, 12 lb/sq.in. 

Irradiation Conditions: 

p(isobutene), 6 mID; temperature, 200 
t 20 C; 

irradiation time, 5 minutes. 

Key to Figures: The following notation is adopted in Figures 4.18 to 4.26: 

o 
• 

Argon; 

Perfluorocyclobutane. 

Oxygen; Nitrogen; 
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Table 4.4 

Areon 

(Holes x 108 per minute) 

Pressure CH4 
C2H4 C2H6 C2H2 C3

H6 C3H4 iso- t-b-2 2He 
mm butane butene 

0 2.5 0.08 1.6 0.7 1.2 1.8 3.3 1.3 4.2 

20 2.2 0.07 1.4 0.63 1.0 1.3 3.2 1.1 4.16 

50 2.0 0.06 1.2 0.58 0.96 1.1 2.7 1.0 3.5 

100 1.8 0.05 1.0 0.47 0.92 1.0 2.5 0.9 3.3 

200 1.6 0.04 0.95 0.43 0.83 0.7 1.9 0.6 2.67 

300 1.6 0.04 0.95 0.42 0.87 0.6 2.1 0.6 2.55 

400 1.5 0.03 0.92 0.42 0.73 0.4 1.7 0.4 2.5 

Table 4.5 

Nitrogen 

(Moles x 108 per minute) 

Pressure CH4 C2H4 C2H6 C2H2 C3
H6 C3H4 iso- t-b-2 2He 

mm butane butene 

0 2.5 0.08 1.55 0.67 1.2 1.84 3.33 1.25 4.2 

20 2.33 0.07 1.5 0.67 1.05 1.33 3.0 0.88 4.1 

60 2.25 0.07 1.4 0.58 1.02 1.25 2.92 0.9 3.5 

100 2.0 0.06 1.38 0.5 1.0 0.92 2.33 0.87 3.2 

200 1.6 0.05 1.12 0.5 0.77 0.58 1.5 0.43 2.6 

300 1.5 0.04 0.91 0.42 0.75 0.5 1.2 0.42 2.5 

400 0.67 0.04 0.75 0.33 0.5 0.49 0.33 0.30 1.7 

560 0.6 0.04 0.7 0.32 0.48 0.3 0.25 0.30 1.5 
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Table 4.6 

Carbon Dioxide 

(Holes x 108 per minute) 

Pressure CI-I4 C2H4 C2I-I6 C2H2 C3
H6 C3II4 iso- t-b-2 211e 

I!lIll butane butene 

0 2.5 0.08 1.55 0.67 1.2 1.8 3.3 1.25 4.2 

50 2.0 0.06 1.4 0.65 0.93 1.2 2.5 1.0 3.8 

100 1.7 0.04 1.3 0.57 0.91 0.9 1.6 0.9 3.2 

200 1.6 0.03 0.9 0.48 0.85 0.7 1.5 0.6 2.0 

300 1.5 0.02 0.8 0.38 0.8 0.6 1.4 0.4 2.6 

400 1.6 0.8 0.39 0.3 

Table 4.7 

Perf1uorocyc1obutane 

(Holes x 108 per minute) 

Pressure C1I4 C2H4 C3H4 iso- t-b-2 2He 
mm butane butene 

0 2.6 0.08 1.8 3.3 1.3 4.2 

25 1.9 0.06 1.3 2.9 0.8 4.0 

80 1.5 0.05 0.7 2.1 0.7 3.4 

180 1.3 0.03 0.4 1.8 0.6 2.9 

250 0.8 0.01 0.4 1.1 0.4 1.7 
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(b) On adding oXYGen the yields of all the products were 

decreased and the yields of C5 hydrocarbons were completely eliminated 

since they cannot be formed by any other method than by free radicals. 

Those product yields which were affected more by added oxygen than by 

the inert gases were also formed nainly from free radicals. The 

results are illustrated in Table 4.B and by Figures 4.lBb to 4.23b. 

Addition of Oxygen 

Irradiation Conditions: 

p(isobutene), 6 rnm; temperature, 20°C; 

time of irradiation, 5 minutes. 

Analytical Conditions: 

O t t 350C·, Column, ; empera ure, 

flaoe ionisation detector; N2 pressure 12 lb/sq.in. 
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Table 4.8 

Oxygen 

(~fo1es x 108 per minute) 

Pressure CH4 C2H4 C2H6 C
2
H2 C3

H6 C3H4 iso- t-b-2 2He 
x:un butane butene 

0 2.5 0.08 1.55 0.67 1.2 1.84 3.3 1.25 4.23 

20 0.22 0.07 Nil 0.15 0.13 1.2 0.07 Nil Nil 

50 0.20 0.06 " 0.09 0.12 1.0 0.07 " " 
100 0.20 0.06 " 0.13 0.11 0.9 Nil " " 
200 0.07 0.05 " 0.08 0.10 0.6 " " " 
300 0.05 0.04 " 0.07 0.09 0.4 " " " 
400 0.02 0.04 " 0.05 0.09 0.4 " " " 
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4.4 Carbon Balance 

In order to observe the change in the rather large reactant 

peak a 2 hour irradiation was necessary as with the previous butene 

and the results were measured in the same way. 

Table 4.9 

Moles x 107 

18.6 20.6 19.2 27.8 25.1 5.4 21.1 3.8 

The aoount of isobutene consumed vas found to be 191 x 10-7 moles 

4 -7 and the accunulated products from Table .9 accounted for 152 x 10 moles 

butene thus a good product recovery was illustrated, taking into account 

the polymer foruation in long runs. 

4.5 SUMmary of Isobutene Results 

(1) The product yields increased linearly with time up to about 

25 - 30 mins and then the rate decreased, again due to polymer formation 

on the cell window. 
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(2) The yields of all the products were decreased by an increase 

in reactant pressure. 

(3) Inert gases nitrogen, argon, carbon dioxide and perfluorocyclo-

butane decreased the yields of all the products. It was noted that the 

lase litter foreign gas appeared to decrease the yields more than the former 

three gases. 

(4) On adding oxygen to the reaction system the yields of ethane, 

C hydrocarbons, isobutane and the but-2-enes were conpletely eliminated. 
5 

The yields of the renainder of the products with the exception of allene 

and ethylene were affected to a greater extent by oxygen than by the 

inert gases, the yields of allene and ethylene only being affected the 

same. 



- Co -

5. RESULTS: cis Pent-2-ene 

The cis pent-2-ene was stored as a gas in a 1 litre bulb 

and on irradiating known pressures with light of 1849 ~ wavelength 

the product mixture was found to contain hydrogen and twenty three 

hydrocarbons. A solid polymer was also found to build up on the 

cell window after long periods of irradiation. The products were 

o analysed by Gas chromatography using column 0 at 35 C for the Cl to 

o C
5 

hydrocarbons and column 0 at So C for the higher compounds. No 

products were found after Cs hydrocarbons. Table 5.1 shows the 

product yields from a typical 5 minute irradiation. 

Steady state experiments were conducted to categorise the 

products in the SaMe way as for but-l-ene and isobutene, the effect 

of the following par~eters investigated. 

(I) Tine of irradiation 

(2) Pressure of Cis pent-2-ene (reactant) 

(3) Pressure of added gases 

The irradiation time used was generally 5 minutes which gave 

rise to about 5% decomposition of the cis pent-2-ene which was at a 

pressure of 3 rom. for experiments in Sections 5.1 and 5.3. 

The extinction coefficient of cis pent-2-ene was about 

-1 -1 IS 
12,000 l.moles cm and therefore more than 99% of the incident light 
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was absorbed in the cell at pressures greater than 2 nm. of cis 

pent-2-ene. 

Irradiation Conditions: 

p(c-p-2), 3 rnn; temperature, 20° t 2°C; 

irradiation tine, 5 mins. 

Analytical Conditions: 

Column 0; temperature 35°C and BOoC·, .... , 

U2 pressure, 12 Ib/sq.in. and 20 Ib/sq.in.; 

flame ionisation detector. 



H2 

CH4 

C2H4 

C2H6 
C2H2 

C3
H6 

C3
HS. 
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Table 5.1 

Product Yields from a Typical 5 minute Run Quoted 

in moles x lOS 

5.7 C3H4 0.2 2I1e butene 

4.2 But-l-ene 7.S trans pent-2-ene 

4.4 Butadiene 3S.2 (C6) 

39.1 trans but-2-ene trace (C
7

) 

1.0 cis but-2-ene 0.2 (CS) 

2.1 3He butene 7.6 1-3 pentadiene 

2.1 (18.3 mins) ..., 4.8 

S.O 

7.9 

1.S 

0.5 

1.7 

3.2 

(C
6

) (C
7

) and (C8) represent total approximate values for several peaks. 

Individual identification of these hieher products was not made and the 

presence of (C
7

) compounds was not established beyond doubt. 
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5.1 Effect of Irradiation Time 

The rate of production of all products increased linearly 

with time to about 30 mins thereafter the rate decreased due to the 

formation of a solid polymer on the cell window. The presence of 

the polymer was confirmed spectrophotometrically and after a lone 

irradiation ( 2 h.) was clearly visible with the naked eye. Later 

experiments were conducted using an irradiation tine of 5 minutes, 

therefore limiting the effect of the polymer. After longer irradiations 

the cell window was cleaned with chromic acid and then water and finally 

acetone before drying at 1000C for 20 minutes. 

The results are illustrated by Table 5.2 and Figures 5.1 to 5.13. 

Analytical Conditions: 

C 1 0 t t 350C·, o umn ; empera ure, 

N2 pressure, 12 lb/sq.in.; flame ionisation detector. 



* 

Time CH4 C2H4 C2H6 C2H2 mins 

5 4.2 4.4 39.1 1.0 

1 5.0 5.4 46.8 1.1 

15 12.1 14.9 104 2.6 

20 15.4 19.1 136 3.4 

30 21.6 28.3 205 5.1 

60 33.1 50.2 308 7.7 

100 55.1 e9.0 482 12.1 

120 60.6 102.3 514 12.8 

C3
HG C3

Ha 

2.1 2.1 

2.3 2.4 

5.6 5.1 

7.2 7.4 

10.3 10.5 

15.1 15.4 

24.0 24.4 

21.2 27.6 

Table 5.2 

a (Holes x 10 ) 

C3H4 But-
-l-ene 

0.2 7.8 

0.2 8.8 

0.9 21.3 

0.9 28.4 

1.2 40.0 

3.0 51.7 

3.8 81.0 

5.3 92.3 

But a-
diene 

38.2 

42.8 

84.4 

114 

141 

173 

195 

200 

The yield of the unidentified product is quoted as a peak area. 

t-b-2 c-b-2 3He *le.3 2I1e 
butene nine butene 

trace 0.2 7.6 30 4.0 

" 0.2 8.3 45 5.2 

" 0.8 19.5 52 8.3 

" 1.3 27.6 Go 9.9 

1.4 2.0 41.3 80 14.4 

2.9 5.2 51.5 90 17.4 

5.6 7.9 60.5 97.5 20.3 

8.4 9.1 63.8 100 21.1 
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5.2 Effect of Reactant Pressure 

On ir.creasine the reactant pressure the yields of the 

products were decreased with the exception of the eeometric 

isomer which showed a noticeable increase in the pressure ranr,e 

used. The results are illustrated in Table 5.3 and by Figures 5.14 

to 5.23. 

Analvtical Conditions: . 
O t t 350C,· Column, ; empera ure, 

H2 pressure, 12 Ib/sq.in.; flane ionisation detector. 



Table 5.3 

(Holes x 109 per minute) 

Pressure CH4 C2H4 C2H6 C2H2 C3
H6 C3

H8 C3H4 but- but a- c-b-2 3r·le t-p-2 
IllI:l -l-ene diene butene 

2 15.7 

3 9.5 13.2 78.2 2.0 5.2 5.2 0.13 18.8 72.9 0.4 13.3 

5 8.2 8.1 78.2 2.0 3.4 3.4 0.05 14.1 67.3 0.4 14.5 

8 21.0 

11 7.6 6.7 79.0 2.1 3.4 3.4 0.04 14.1 48.6 0.3 17.5 

15 25.2 

20 7.1 5.3 78.2 2.0 3.2 3.2 0.03 12.8 30.4 0.2 17.2 

35 42.4 

60 6.6 3.0 67.3 1.7 2.3 2.3 0.03 9.3 10.0 trace 13.1 

100 6.6 3.0 55.1 1.3 2.1 2.1 0.03 8.0 6.1 trace 12.3 82.4 

160 84.0 

200 6.0 1.9 48.1 1.2 2.1 2.1 0.02 8.0 4.4 12.5 

300 5.7 1.2 24.3 0.6 1.0 1.0 0.02 3.5 2.8 5.1 



e . G:) 

:) 

~ 
O. Cl:_ 

G. U) 

o. O~~ 

C. O', 

o 
8 

-"l 'l rL! Ii . -;1; 
lJ...criation of' l :~Lll,.n(; yicl(, ',l iLll rC',c'L~f'l·" 

pressure: 

8 8 

V ~------------------11tKu;---------------~_~~TJ ----------------~.~J\ -----



VurL,'cion of' (;t: .yl en c: yielci '.Ii th !"CClCtCtnt pr-.;::;:31:re 

, " 

c, v:) 

o 
G. \..: .. 

o 0 
0 . 01 

o 

o :'\ .. , 

C- p- 2 f;rc~sure (mm) . 



¢ 

:'i 'lire 5. ~~ 6 

l L 

r -u . ) 

C. 2 

o 

Yo 

o 

o 

::00 

~- !' - ~ ~ , I ( 
, 

dJ. I • 



:' i ;ur c ') . 17 

o 
00 

o 
(0 

o 

(0 

O L---------------~--------------~--------------~--
-iGO 



Vari.J.tion of propylene yield ';lit, rCClcto.nt re::::::;ure 

C. 05 

0 . 02 

0 . 0-1 

o o o 

o 100 300 

C- p- 2 prcssurc ( .. ~:) . 



:.'i, ;U:" '. 5.19 

¢ 
o 

c. er! o 

o 

o 100 3()l; 

C- p- 2 pressure em ). 



· , 
., ... J.' 

)1' ;~:...ur' ~ 

0 . 08 . 

0 . 06 

(0 

0 . 05 

¢ 0) 
0. 04- 0 

0 0 
0 . 03 

0 . 02 

o 
0. 01 

0 ~------------~10~0~----------~2~0~0------------~3L-0--



V~~ri8.tio of butt.l..\licnc yiclcl vrlt h r (;t.lC t l.lnt r cssurc 

0.3 

O ') ... 

o 

'. 1 

o 
o o 

o 100 200 300 

C- p- 2 pr ossure (mm) . 



. \.1 

0 . 07 

V' i <.i.tio of 3 - me- Dut (;n e yi ..:! ld -,'/it rl;~cta t r:::;::;urc 

o 8 

u. oS _ 

0) 

. 05 

0. 04 

0 . 03 

0. 02 

0 . 01 

o 200 300 

C- p- 2 P CS8urc (~m) . 



0 . 4 

0. 3 

¢ 
0 . 2 

0 . 1 

o 

o 
8 

20 

Figure 5. 23 

Variation of t he yield of the Geometric isomer 'with r eactant 
re sure 

o 

8 

40 60 80 100 120 140 

C- p- 2 pr essure (mm) . 

o 

160 



- 87 -

5.3 Effect of Added Foreign Gases 

The added gases are divided into two sUbsections: 

(a) added inert gases, 

(b) added oxygen. 

nitrogen and argon were added to the system in order to 

determine the effect of the inert gases and the results are shown in 

Tables 5.4 and 5.5 and illustrated by Figures 5.24a to 5.35a. The 

yields of all the products are decreased but it is noted that the 

yields of ~1ethylbutene and the geometric isomer are not affected to 

the same extent as the other products. 

On addition of oxygen the products formed only via free 

radicals are eliminated immediately and include C2H6, C2H2, the 

but-2-enes and all the products higher than C4• The only products which 

appear to arise solely from molecular fragmentation reactions are 

butadiene and ethylene. The remainder of the products appear to arise 

partly from both sources. Table 5.6 and Figures 5.24b to 5.31b illustrate 

the results obtained. 

Analytical Conditions: 

1 0 t t 350C·, Co umn, ; empera ure, 

n pressure 12 lb/sCl.in.; flame ionisation detector. 
2 

Key to Figures 5.24 to 5.35 

o Argon, V Nitrogen, 8. Oxyc;en. 



Table 5.4 

Effect of nitroc;en 

(Holes x 109/ninute) 

Pressure CH4 C2H4 C2H6 C2H2 C3
H6 C3

H8 but-1- buta- c-b-2 *18.3 3~fe 2He t-:p-2 
run ene diene rans butene butene 

0 8.4 9.7 78.2 2.0 4.0 4.0 15.6 83.5 0.40 26 13.4 8.0 15.7 

25 7.6 9.0 76.9 1.9 3.3 3.3 13.4 50.0 0.33 25 12.7 7.3 14.9 

50 6.3 5.2 63.6 1.6 2.0 2.1 8.9 32.0 0.23 20 12.0 5.3 13.5 

100 5.5 4.4 60.0 1.5 1.9 2.0 7.6 19.9 0.22 18 11.7 4.3 12.7 

220 4.2 2.7 51.0 1.3 1.6 1.8 6.4 10.2 0.20 15 10.2 3.0 12.1 

300 4.0 2.5 51.2 1.3 1.5 1.7 6.0 7.9 0.17 14 10.1 2.7 11.4 



Table 5.5 

Effect of Argon 

(Holes x 109/minute) 

Pressure CH4 C2H4 C2H6 C2H2 C3H6 C3He but-1- but!l.- c-b-2 *18.3 3He 2He t-p-2 
I!1lll ene diene mins butene butene 

0 8.4 9.1 18.2 2.0 4.0 4.0 15.6 83.5 0.40 26 13.4 8.0 15.7 

20 7.7 9.0 76.8 1.9 3.3 3.3 13.6 51.0 0.32 26 12.7 7.4 15.4 

60 6.1 5.2 62 1.6 2.1 2.1 9.0 31.0 0.22 18 12.0 5.4 14.6 

120 5.3 4.3 59 1.5 1.8 1.8 7.6 19.5 0.23 16 11.6 4.3 13.9 

230 4.2 2.7 49 1.2 1.6 1.7 6.1 10.3 0.20 15 10.1 3.0 12.2 

320 3.9 2.5 49 1.2 1.4 1.6 6.0 7.9 0.18 14 10.0 2.6 11.5 



Table 5.6 

Effect of Oxygen 

(rroles x 109/minute) 

Pressure CH4 C2H4 C2H6 C2H2 C3
H6 C3

HS C3H4 but-l- buta- c-b-2 3l1e *18.3 2He t-p-2 
nun cne diene butene mins butene 

0 8.4 9.7 78.2 2.0 4.0 4.0 0.12 15.6 83.5 0.4 13.4 26 8.0 15.7 

25 1.4 6.8 0.61 0.62 0.06 40.0 

50 1.2 4.4 0.40 0.41 0.03 21.7 

100 0.9 4.6 0.37 0.37 0.03 20.0 

200 0.9 2.7 0.33 0.34 7.3 

300 0.5 1.7 0.28 0.29 6.2 
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5.4 Carbon Balance 

Experiments were performed to determine the accuracy of the 

analytical recovery of the pentene used. 

In order to observe the chanGe in the large reactant peak 

a 35 minute irradiation was required and the results from such a run 

are shown below in Table 5.7 and represent about 60% conversion. 

Table 5.7 

Moles x 107 

2.3 30.6 2.4 20.2 10.6 5 4.4 6.4 

The total amount of pentene (C
5

) recovered is calculated using:-

Total 
Cl 

2C2 3C
3 

4C4 + 
C
5 + 

GCG 7C
7 

8Ce = +- +- +- - +- + -pentene 5 5 5 5 5 5 5 

and the figure found 600 x 10-7 moles which' is in good agreement with the 

figure of 610 x 10-7 moles obtained for the consumption of pent-2-ene. 

The figures show a e;ood aereement considering the errors 

involved in measuring the C6, C7 and Ca compounds and the polymer fomed. 
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5 5 Summa~ of Cis Pent-2-ene Results . ~ 

(1) The yields of all the products increased linearly with tine 

up to 30 minutes thereafter the rate decreased due to the formation of 

a solid polymer on the cell window. 

(2) On increasing the reactant pressure the yields of all but one 

of the products were decreased, the yield of the geometric isomer showed 

a marked increase with cis pcnt-2-ene pressure. 

(3) The addition of foreign gases to the systen decreased the yield 

of the products and on adding oxygen the yields of C2HG, C2H2 , but-l-ene 

and the C compounds were eliminated illustrating that these products were 
5 

formed wholly from free radical reactions. Ethylene and butadiene were 

shown to arise solely from molecular frar,mentation reactions since oXYGen 

only had the sane effect as nitrogen or argon on their yields. The yields 

of CH
4

, C
3

II
4

, C
3

H6, C3
Ha were affected tlore by oxygen than they were by 

nitrogen or argon but they were not conpletely eliminated. 
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6. DISCUSSIOH: But-l-ene 

6. Discussion of But-l-ene Results 

The results from the experiments (Section 3) enable the 

products to be divided into two cateeories; those whose yields are 

affected equivalently by inert gases and by oxygen, beine formed by 

molecular fragmentation processes in the primary reactions; and 

those whose yields are severely reduced by oxygen are fomed via free 

radical reactions. 

Hethane (at 6 IIlt:l. but-l-ene pressure), ethylene, allene, 

acetylene and to some extent ethane, propylene and the but-2-enes are 

examples of products fomed by molecular fra~entation processes, 

whereas the C
5 

products cannot be formed in any other way than from 

free radical reactions. From the number of products formed and their 

relative yields it is concluded that a number of primary reactions are 

operative in their fornation. The reactions postulated are shown below 

in their probable order of importance, each reaction is discussed in 

detail also. 

6.1 Primary Reactions ~ :# 

1) C4II8-l* ~ CH • 3 + ·CH2-CH=CH2 0.51 
• 

2) ~ H· + CH -CH-CH=CII 3 2 0.09 

3) ;> 2C2H4 0.07 
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4) ) CH4 + C3H4 0.031 

5) > C2HG + C2H
2 0.008 

6) ~ :CII2 + C3H6 0.007 

7) ~ C4HS-2 (cis/trans) 0.007 

~ The quantun yields for reactions 1) and 2) are estimated 

after consideration of the yields of the secondary products and can 

only be regarded as mininum values (see later). The quantun yields of 

the remainder of the reactions are estimated after extrapolatinG the 

product yield to zero pressure. 

The most important reaction ~s 1) the cleavage of the C-C bond R 

to the double bond, this being 5.7 times greater than 2) the cleava~e of 

the C-H bond B to the double bond. rio evidence was found for any ex C-C 

bond cleavage to yield ethyl and vinyl radicals. This is in accordance 

with estimates for the relative bond dissociation energies, the C-C bond 

in the B position being 28 kcal/mole less energetic than the corresponding 

ex C-C bond. 79 Other workers have also observed this preferential cleavaGe 

o 77 . . 0.. 
at 1849 A. l-Iercury sens~hsed at 2537 11. studles Ylelded a fir;ure of 

1.3 to 1.6 to 1 for the same ratio. 57 

The renainder of the reactions are molecular fracnentations. 

Reaction 3) is postulated since there seems to be no other processes 

which account for the similarity of the effect of oxygen and added inert 

gases on the yield of ethylene. On the same basis reaction 4) accolmts 

for the rough equivalence of the methane yield with that of allene, the 
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slight excess of methane being readily attributed to hydrogen abstraction 

by methyl radicals from the reactant (Figure 3.30). Reaction 5) accounts 

for both acetylene and the small fraction of ethane which is of molecular 

rather than free radical origin. Reaction 6) is suggested after 

consideration of the work of Okabe, Beckey and Groth,78 using a Field 

Ion Hass Spectrometer, who found evidence for the presence of methylene 

radicals. 7his reaction would account for the 20% (maxiMum) of the 

propylene yield which is not eliminated by oxycen. 

Reaction 7) is of interest since there seems to be some 

specificity, for more cis but-2-ene is fomed than the trans isomer. This 

is not in accordance with the observations of Uarumiya, Shida and Arai. 77 

An even greater specificity has been observed in the photolysis of 

isobutene (see Table 4.1 for ratio trans/cis). 

Heasurements were not undertaken to catec;orise the hydror;en 

produced since it is a very minor product and estimation using a hot-wire 

detector is much less accurate than using the flame ionisation detector 

(see Table 3.1 for relative yield). 

6.2 Secondary Reactions 

The primary reactions give rise to five free radicals H.; 

• • 
CH3-CII-CH=CH2 and ~H2. ~le last radical, methylene, 

will almost certainly react with the but-l-ene to produce pentene. ~e 

two larger radicals probably equilibriate with their isomers. 
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• 
CH

3
-CH-CH=CH2 

~ CH3-CH=CH-CH2" 6.2.1 < 

(A) (n) 

·CH2-CE=CII2 oc 
CH

3
-CH=CIIo 6.2.II 

(C) (D) 

Reaction of (A) with CH
3

• would yield 3-Hethylbutene. (n) by 

reaction with methyl radicals gives rise to the pent-2-enes (c,t). 

Combination of either two together would yield the CD compounds. 

Reaction of CH
3

• with (D) would give rise to but-2-enes (c,t), 

whereas reaction of (e) with methyl radicals would give back the starting 

material. 

The products may be mainly accounted for by radical recombination 

reactions i.e. C
3 

+ C
3 

= CG etc. (activation enerey ~ zero96 ) rather than 

radical-olefin addition reactions (EA for alkyl radical + C = C ~ 

5kcal/mole97 ), and in the temperature range studied radical dispropor-

tionations are insignificant compared "lith radical combination reactions. 

A possible exception in the secondary butyl radical which will be formed 

iruneuiately (EA ~ 2kcal/mole) by addition of the hydrogen atom formed in 

)
. 1 97,98 2 wlth but- -ene. 

+ 6.2.II1 

which may decompose or be collisionally deactivated 
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C4H9* ) CH • 3 + C3H6 6.2.IV 

C4F.9* + r.t ) C4H9• + I-1 6.2.V 

2C4H9• , CSHIC etc. 6.2.VI 

Reaction 6.2.IV would account for the remainder of the 

propylene yield and the greater effect of added gases on the propylene 

yield. 

Hydrogen abstraction by II· radicals is unlikelylOl but evidence 

was found of the hydrogen abstraction by methyl fron the but-l-ene to 

yield methane at higher reactant pressures. This was confirmed by 

temperature runs thus illustrating that there is an activation energy 

needed for the reaction: 

) 6.2.VII 

6.3 Primary Quantum Yields 

The primary quantum yields of reactions 1) and 2) are estimated 

after consideration of the fate of the free radicals. The allyl and 

propenyl radicals from reactions 1) and 6.2.II can recombine with the 

radicals present to give C4, C6 and C7 products. The difficulty is of 

course that but-l-ene will be reformed from nethyl and allyl radicals and 

therefore will not be estimated. The increase in CH4 yield with increasing 

but-l-ene pressure may be attributed to methyl radicals which would 

otherwise have reformed but-l-ene since no other product was found to 
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decrease proportionately. Consequently it is only possible to 

estimate a minimun value for ¢l from: 

= 6.3.1 

The value is probably 25% low, if the increase in methane yield 

with but-I-ene pressure is taken as a measure of the loss. 

Reaction 2) with 6.2.1, 6.2.111 and 6.2.1V gives rise to 

propylene and C
4 

radicals which may form C5, C7 and C8 products. ¢2 is 

then given by: 

6.3.II 

The quantum yields of the molecular fragmentation reactions are 

estimated by extrapolating the product yields to zero pressures. 

The sun of the prinary quantum yields given is 0.72, but this 

is a minimum value. "lith the errors of estimating C6, C
7 

and C8 products 

it is within experimental error, unity. 

A check on the scheme proposed is to sum the yields which . 

contribute to the fornation of methyl radicals, and compare this with the 

figure obtained from the products formed by methyl radicals. 

lfethyl radicals produced in 1) and 6.2.1V 

= 6.3.II1 
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1·!ethy1 radicals form intercombination products ethane 

(4/5 total yield) and C
5 

hydrocarbons 

= + 6.3.IV 

The two figures obtained for R(CII3 ) are 145 x 10-7 I:lo1es 

and 124 x 10-7 ~oles which are in moderate agreement considering the 

complexity of the mechanisD postulated. 

Reaction 2) could possibly give four different butenyl radicals 

by detachment of a hydrogen atom. There is no way to distinguish between 

these possibilities and the presence of various C5 olefins suggests that 

the major primary reaction breaks the weakest bond in the Molecule and 

that the ratio of the S C-C to the S C-H split is at least 5.7 to 1, a 

value sonewhat greater than that recorded in sensitised studies. 

6.4 Excited state Internediates 

The decrease in product yield with increasing pressure of 

but-l-ene, inert gases and oxygen may be attributed to the collisional 

deactivation of an excited state intermediate. The observation is again 

in conflict with Haruniya, Shida and Arai77 who reported no major 

variation of product yields within the pressure range 5 - 170 mn. Eg. 

There are three possible excited states which may be intermediates 

in the reaction: first the (n,n*) state responsible for the broad maximum 

in the absorption spectrum at 1751 ~ attributed to the V + N tronsition. 14 
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The second is the excited singlet Rydberg state, the first absorption 
o 

band in the spectrUrl attributed to an R +- II transition being at 1873 A 

for but_l_ene.14 The third suggested by Professor ,s.F. r.1ason99 is the 

state responsible for the "Hystery Band" described by Berry.19 There 

is a strong possibility however15 ,23 that these bands found in substituted 

ethylenes 9' hE ] ill.! are in fact a continuation of the Rydberg bands. 

Borrell and James2 suggested that it was in fact the first 

excited Singlet Rydberg state which was the intermediate after observing 

that quenching only produced the original isomer and this is in accordance 

with the potential barrier to rotation which exists in the Rydberg state. 

In but-l-ene there are no cis/trans isomers therefore distinction becomes 

impossible on these grounds. The question also arises as to whether a 

potential maxiI!lu.r.l exists for the state responsible for the "Hystery Band". 

Berry, who assigned the mystery band to a n * +- n 1 transition z y 

and also Robin, Hart and Kuebler22 who disagreed with the assignment 

suggested that a bond cleavage should be observed if this state gives 

rise to photochemical decomposition. Although this would seem to give a 

guide to the intermediates involved, Berry's conclusion seems to be based 

on a misinterpretation of the work of Majer, Hille and RobbG7 and there-

fore does not help. 

The following reaction scheme illustrates the fate of the 

but-l-ene; C4HS-l* is the unspecified internediate. 

But-l-ene (N) h" )-

) 

6.4.1 

6.4.II 
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and/or 

> products v~a reactions 1) to 7) 6.4.III 

Assuning steady state conditions we may write:-

1/ (Rate) = 
1 

I¢. 
~ 

H 

I¢" 
~ 

where ¢i is the quantum yield at zero pressure. 

6.4.IV 

Stern-Volmer plots have been nade for three of the products 

and are shown in rieure 6.1, from which the deconposition lifetime for 

the excited state .ras found to have values between 2.6 and 6.4 x 10-10 sec 

(k -4) These were calculated usinG a value of 2 x 10'· l.mole-lsec-l for 
III • 

k assuning that deactivatinG reactions take place at each collision. 
II 

63 " d h d "t" 1" " Cvetanovic and Doyle est~mate t e ecompos~ ~on ~fet~me of presumably 

the triplet state in the mercury sensitised studies of but-l-ene at 

o 6 -9 " -10 -1 -1 2537 A to be .3 x 10 sec, assum~nG a value of 10 molecules cc. sec 

for the deactivation rate constant. 

The radiative lifetime of the V state has been calculated to be 

1.08 x 10-9 sec, usinG the spectral data of Gary and Pickett17 (Section 

1.3). That for the Rydbere state will be somewhat lonGer so that the fate 

of the but-l-ene internediate will be decomposition, and at hieher pressures 

it may be co1lisionally deactivated. It is concluded that no fluorescence 

would be observed. 
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7. DISCUSSIOH: Isobutene 

7. Discussion of Isobutene Results 

The C
l 

to C
5 

hydrocarbon products have been cateeorised as 

with but-l-ene and are shown in Table 7.1. 

Table 7.1 

ORIGIn 
rf Free radical t1 f.101ecular jJ 13 

CH4 75 25 

C
2
H4 100 

C2H6 100 

C2H2 85 15 

C3
H6 80 20 

C3II4 100 

Isobutane 100 

t-b-2 100 

C 's 
5 

100 

One nust therefore account for the ethylene and allene yields 

in the prinary reactions and also to some extent the CH4, C2H
2 

and C
3

II6 

yields. The primary reactions postulated are shown below in their 

probable order of inportance. 
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7.1 Primary Reactions 

• o :I 
1) CH

3 
CH

2 
'c = ClI * " 0.476 .. C = CH

2 
+ II· 

/ 2 /' 
CH3 CH

3 
• 

2) .. CII -3 
C = CH2 + CII • 

3 
0.203 

• 
3) C3H4 + CH3 + H· (CH4) o.oBS 

• 
4) C3

H6 + ~H2 0.011 

5) ,. C2H2 + 2CII3• 0.005 

6) ,. 2C
2
H4 0.002 

:I The quantum yields of reactions 1) and 2) are estinated after 

consideration of the yields of secondary products. 

The remainder of the quantum yields are estimated by the 

extrapolation of the portion of the product yield concerned to zero 

pressure. 

The most important primary reaction is 1) the cleavage of the 

C-H bond B to the double bond, this being about 2.4 times 2) the production 

of Methyl and allyl radicals. The remainder of the primary reactions 

account for the similarity of the effects of oxygen and the inert gases 

on the product yields. Reaction 3) is suggested to account for the allene 

produced which appears to be wholly of Molecular origin, and the small 

amount of nethane which is not eliminated by the addition of oxygen. 

Similarly reactions 4) and 5) account for the small re~aining yields of 

propylene and acetylene respectively, after the addition of oxygen to the 

system. Reaction 6) accounts for the ethylene yield which appears to be 
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wholly of molecular origin. 

Secondary Reactions 
CH,., . "-

The four free radicals II·, CH3" C1I
3

-C=CH2 and CH';C 
3 

produced may now take part in a number of secondary reactions. 

radical produced ln 2) may equi1ibriate with its isomer: 

• 
C = CH 

2 < 

• 
> e1I

3 
- CH = CH 7.2.I 

The C4 radical does not isomerise as the C4 radical from the 

other isomeric butenes did and therefore there is a noticeable change in 

the distribution of the C
5 

products (see Table 4.1). By far the major C
5 

product is 2Hethy1-butene which is presumably formed by the addition of a 

methyl group to the C4 radical thus, 

7.2.II 

The relatively high quantum yield of the C7 hydrocarbons would 

account for the excess of C
3 

radicals left after combination with the ClI
3

• 

available to yield ~iethy1-butene. 

The fate of the hydrogen atom is almost certainly in combination 

with the isobutene which is present in great excess to form an excited 

tertiary butyl radical. Little infornation is available on the reactions 

of the tertiary butyl radical. It seems likely however that the tertiary 
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butyl radical would behave in a similar way to the secondary butyl 

radical reported in Section 6 since one must account for 80% of 

the propylene which is produced from free radicals. Abstraction of 

hydrogen by allyl radicals from isobutene is ruled out on the basis 

that one would expect to see an increase in propylene yield with 

increase in isobutene pressure. Even though propylene is present as 

an impurity in the isobutene after subtraction of the level of impurity 

its yield showed a decrease with isobutene pressure to at least the s~e 

extent as the other product yields. 

Fron the above arcuments the following scheme of reactions is 

put forward to illustrate the fate of the excited tertiary butyl radical. 

iso C4H8 
+ H· ) t-C4H9* 7.2.II1 

t-C4H9* ) CH3• + C3
HG 7.2.IV 

+H 
t-C4II9• 7.2.V )-

2t-C4H9 • CeH18 etc. 7.2.VI 

)" C4H10 
+ iso C4H8 7.2. VII 

Reaction 7.2.IV would account for the propylene yield which is 

of free radical rather than no1ecular orir;in. 

The ratio of the isobutane/C8 (Table 4.1) is a measure 

and it is noted that there is a e;reater tendency for the t-C4II
9

• 

of ~II/~I 
to 

disproportionate than to recombine which is opposite to that found in the 

2 
case of the but-2-enes. 

The free radicals thus produced would recombine or disproportionate 
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to yield the products listed. However disproportionation reactions 

of the type listed below would yield the startinG material and thus 

will not be accounted for in the calculations. 

CH + t-C4H • 2 9 2 7.2.VIII 

HydroGen abstraction or addition to isobutene by the remaininG 

t o 1 0 k 1 101 radicals at room tempera ures ~s un ~ e y. 

7.3 Primary QuantUM Yields 

The primary quantlun yields of the two major reactions are 

estimated after consideration of the fate of the free radicals produced. 

It is taken that the C4 radicals produce C5' C3, C7 and Cn hydrocarbons 

and by summation of the necessary quantum yields. 

which is a minimum value since disproportionations to yield isobutene is 

not accounted for (reaction 7.2.VIII). 

The sum of the quantum yields is 0.785 and is a minimum value 

due to the 'unaccountable' reformation of isobutene. 
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A check on the scheme proposed is again to sum the yields 

of the products which give rise to methyl radicals and to compare 

this figure with that obtained from those products which are formed 

from methyl radicals. 

Hethyl radicals are produced in reactions 2), 3), 5) and 

7.2.IV. 

• . . = 

Consumption of methyl radicals takes place in the formation 

of ethane and C
5 

products • 

• 
= . . 

4 -8 The values of R CH
3 

were found to be 2 and 37 x 10 moles 

respectively which is in fair agreement for such a complex mechanism. 

7.4 Excited State Intermediates 

The general decrease in product yields with increasing pressure 

is taken to be an indication of the presence of an excited state inter-

mediate. 

Once aeain three possible excited state intermediates must be 

considered, the second and third probably being of the same origin. 
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Firstly, there is the n,n* state responsible for the broad maximUM in 

the absorption spectrum at 1883 ~ attributed to the V + N transition. 14 

The second is the excited singlet RydberG state, the first absorption 

band in the spectrum assigned to a Rydberg transition (R + II) being at 

o 14 
2010 A for isobutene. The third possibility is again the state 

o 
responsible for the mystery band at wavelenGths longer than 2000 A found 

in substituted ethylenes, but as explained in the but-l-ene discussion 

this may just be an extension of the Rydberg bands which are superimposed 

on the band maximUM and extend to shorter wavelengths. 

There is no possibility at the moment of distineuishing between 

these possibilities but since the excited state intermediate Gives rise 

to photochemical products it is possible to determine the decomposition 

lifetime using a Stern Volmer plot, illustrated for two products by 

FiGUre 7.1, and applying steady state conditions as before. If one assumes 

deactivation takes place at each collision for simplicit~ the values of 

the decomposition lifetime of the excited state intermedinte are found to 

-10 
be 2.7 and 3.7 x 10 sees. 

The radiative lifetime of the V state was found to be 1.37 x 10-9 

sees from the spectral data of Gary and Pickett.17 Thus the fate of the 

isobutene is again decomposition and at higher pressures deactivation. 
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8. DISCUSSION: Cis pent-2-ene 

From the results of the added gas experiments the products 

have been cateGorised as before: whilst butadiene, 1.3.pentadiene 

and ethylene are formed molecularly in the primary reactions, the 

remainder of the products are formed from free radicals except a small 

amount of methane which is accounted for in the primary reactions. 

The following scheme of reactions is put forward as primary 

• 0 
reactions in the photolysis of C1S pent-2-ene at 1849 A. 

8.1 PriMary Reactions 

II 

CH - CH3* 
/ 2 

= C ~ 

" II 

+ 0.40 

2) ---+ H2C=CH-CII=CH2 + ClI3• + H· (CH4) 0.36 

3) ~ 2C2H4 + :CH2 0.03 

4) ~ CH
3

-CH=CH-CH=CH2 + H2 (II· + II·) 0.003 

• 
5) ~ CH

3
-cn=cH-cH-CH

3 
+ H· 0.001 

# The quantum yields of the free radical reactions 1) and 5) are 

estimated after consideration of the secondary reactions. The 

quantum yields of molecular fragmentation reactions are calculated 



- 110 -

after consideration of the particular product yield. 

Reaction 2) is sucgested to account for the butadiene fomed, 

the yield of which is only affected the same by oxygen as it was by the 

inert gases. Similarly reaction 3) and 4) are suggested to account for 

the yields of ethylene and 1.3.pentadiene respectively which are of 

molecular fragmentation origin rather than free radical. 

The nost inportant reaction is 1), the cleavage of the C-C 

bond in the 8 position to the double bond, this being 400 times greater 

than the cleavage of the C-H bond in the weak B position (Reaction 5)). 

This is in accordance with the recent flash photolysis work of Callear 

and Lee who observed the presence of the methylallyl absorption spectra 

in the flashed cis pent_2_ene95 and Chesick8l who found no evidence to 

support the cleavage of a C-H bond in the direct photolysis of cis 

hex-2-ene, but the possibility cannot be ruled out in the case of cis 

pent-2-ene. The absence of C
9 

or CIO compounds is indicative of the small 

quantum yield for reaction 5). 

8.2 Secondary Reactions 

The free radicals fOrMed in the primary reactions may now take 

part in a number of secondary reactions. The C4 radical produced in 

reaction 1) will equilibriate with its isomer • 

• • 
CH3 - CH = cn - CH2 

> CH3 - ClI - CH = CH2 

(A) (B) 
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Reaction of (A) or (n) with methyl radicals would yield the 

pent-2-enes or 3!,fe-butene respectively. AssuminG equal probability 

of forming cis and trans pent-2-ene from (A) it is seen from Table 5.1 

that the ratio of (A) to (B) is 2 to 1. 

The C
5 

radical produced in 5) would mainly give rise to C6 

compounds and the hydrogen atoms react with the cis pent-2-ene to give 

excited pentyl radicals which would decompose or recombine and dis-

proportionate as the excited butyl radicals did. 

Thus the following reactions are thought to be operative. 

C
5
H10 + H C5Hll * 8.2.1 

~ 

C5Hll * C4H8-l + CII3• 8.2.II 
~ 

----+ C3II6 + C 2II5· 8.2.II1 

+H 
C5Hll• B.2.1V > 

2C5Hll • ) 
C
5
H10 + C5H12 B.2.V 

The absence of C10 hydrocarbons which may be formed by the 

straightforward recombination reaction of the pentyl radicals again 

confirms the low value for ¢5. 
TiT 

Reaction 8.2:i is put forward to account for the possibility of 

C
7 

products which could not be ruled out on analysis - thus C2 + C
5 
~ C

7
• 

It would also account for the propylene yield which is mainly formed via 

free radicals. 
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8.3 Primary Quantum Yields 

The C4 radicals formed in reaction 1) will give rise to the 

C
5 

and Cs hydrocarbons and by disproportionation the butenes • 

• 
= • • 

which is a minimum value; and similarly 

= 

The sum of the primary quantum yields is 0.794 which is a 

minimum value since recombination to yield back cis pent-2-ene is not 

accounted for. If the probability of Cl + C4 = C
5 

were the same for 

both cis and trans pentene then the value would be about 17% low and 

therefore the primary quantum yield is taken to be unity within the 

limits of experimental error. 

The methyl radicals used and produced are again compared to 

check the mechanism suggested. 

Hethyl radicals are produced in reactions 1), 2) and 8.2.II. 

• • = + 

The last term may be neglected since the quantum yield of 

but-l-ene from this source will only be equivalent to ~5 and thus is very 

small. 

1.lethyl radicals are used to produce the C
5 

hydrocarbons, ethane 
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and methane • 

• 
• • = + + R~ 

-8 . The two figures for R CH
3 

are 90 and 120 x 10 moles respect~vely, 

which in view of the complexity of the mechanism is in fair agreement. 

8.4 Excited States 

As in the case of the butenes a decrease in the yields of the 

products was found on increasing the pressure of the system either by 

adding gases or by increasing the reactant pressure itself. This fact 

was taken to be indicative of the quenching of an excited state inter-

mediate to yield the reactant, though experiments to measure the 

consumption of cis pent-2-ene versus nitrogen pressure were abortive,but 

on the other hand no increase in any product yield was seen with added 

gases. The behaviour of the yield of the geometric isomer was anomalous 

in that it increased with an increase in reactant pressure, whereas a 

decreased yield was noted with added gases. The increase was sharp at 

first but then levelled off at a quantum yield around c.lt. 

This latter fact may be explained on an energy transfer basis, 

the first excited pentene is quenched by more pentene to yield a second 

excited state of pentene which does not decompose but is able to isomerise. 

At 3 rom. cis pent-2-ene pressure the yield of the trans isomer is decreased 

on adding inert gases to the system and was eliminated by the addition of 

. . 2. . oxygen, th~s was not so ~n the but-2-enes where the y~eld of the geometr~c 

isomer was unaffected by pressure. 
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Since a nixture of cis and trans isoTIers is not formed on 

quenching the first excited state of pentene it is sur,gested that the 

first excited sinelet Rydbere state is the most likely intermediate 

in the deconposition. The first absorption band attributed to an R +- n 

transition beinG at 2049 X for cis pent_2_ene16 (Section 1.2). Excitation 

throueh the V state vould yield a mixture of the isomers.2 At this 

juncture the 'mystery bands' are taken to be an extension of the Rydberg 

bands and vould therefore be a similar intermediate. The second excited 

state reached by enerey transfer yields cis or trans isoners therefore 

does not possess a potential barrier to rotation thus may be the V state 

(V +- IT transition at 1767 ~)16 or indeed a triplet state. The exact 

assignment is not clear at this stage and the folloving scheme is put 

forward to illustrate the fnte of the excited pentene. 

cis C
5
HIO 

hv cis C
5
HIO * C.4.r --t 

(I~) 

kl 
cis C5HIO* (C*) ~ products n.4.II 

k2 

cis C5HIO* + H ~ C1S C
5
HIO 8.4.rII 

k3 
cis C5HIO* + cis C

5
HIO (C) ~ C

5
HIO (cis/trans) 8.4.rv 

Applying steady state conditions as in Section 6 to the above 
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scheme, for the deconposition products we get 

1 

(Rate) 
= 1 

I¢. 
1. 

+ 
1-1 

I¢. 
1. 

where ¢. is the quantUM yield at zero pressure. 
1. 

B.4.v 

Stern Volmer plots have been made for ethylene and butadiene, 

Figure 8.1, and from these the ratio k1 /k2 calculated to be 1.0 x 102 rom., 

and the decomposition lifetime (l/kl) of the first excited pent-2-ene 

-9 8 -10 . estioated to be 3.5 x 10 and .9 x 10 sees respect1.vely. These were 

11 -1-1 estimated using a value of 2 x 10 1. mole sec for k2 which assumes 

a similar collision diameter for cis pent-2-ene to that of the butenes 

and that deactivation takes place on each collision. 

If sinilar treatment is now given to the trans isomer alone 

which is a product of equation B.4.IV. 

How 

Rate trans (Rt) = ~ k
3

(C*)(C) 8.4.VI 

dc* = B.4.VII 
dt 

assuming steady state conditions 

• • 8.4. VIII 
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and Rt = ~ k3C1~ 8.4.1X 

kl + k2r.l+ k3 C 

.!! 2k 2k2U 2 B.4.x = 1 + + 
Rt 

k3C k3C 

1 2 2 ~l + k2 l~ B.4.X1 = + 
Rate (trans ) 1~ k3e1~ 

How plottine l/Rtrans vs l/e should give a straic;ht line, 

Figure 8.2, the slope/intercept of which equals 1'1/k3 (a = 0). The figure 

k should be sinilar to that of l/k2 if the mechanism is in accordance with 

the experimental results. This was not so but the result nay be reconciled 

with the fact that if sone trans isomer is produced in reaction 8.4.11 a 

110 plot of /Rt_RtO vs /C (where Rt is the trnns isomer yield at low reactant 

pressure) would be more consistent ,-lith the nechanism postulated. 

Fit;ure 8.3 yields a value for kl/k3 of 1.1 x 10
2 

mrn. ",hich is in good 

agreement with the value obtained for kl/k2 from Figure 8.1. Thus the 

mechanism sueeested is consistent with the experimental results. 

The radiative lifetime of the V state for cis pent-2-ene was 

calculated to be 1.05 x 10-9 sees from the spectral data of Semenhow and 

Harrison16 and therefore no fluorescence "Tould be observed. 



Figure 8 .2 
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9. SllI'U-1ARY OF GENERAL CONCLUSIOnS 

o 
9.1 Unsensitised DecoMposition at lC49 A 

On interaction with light at 1849 A the olefins studied here, 

° 2 ° ° and the but-2-enes prev10usly decompose to Y1eld a var1ety of products 

which are fOrMed nainly froM free radicals, but some molecular 

fragmentation reactions do take place. 

From the experimental results of the olefins studied it is 

concluded that the major reaction in the decomposition of olefins is 

cleavage of a bond in the B position to the double bond. This being a 

C-C bond in but-l-ene and cis pcnt-2-ene, and a C-H bond in isobutene and 

the but_2_enes2 since no B C-C bond exists, thus: 

h\l • 
CH

3
-CH2-CH=CH2 CH3• + ClI -CH=CH 9.1.I 2 2 

h\l • 
Cis CH3CH2CII=CIICII

3 ~ CH3• + CH2-CII=CII-CH
3 9.1.II 

h\l • 
(CH3)2C = CH2 

) CH
2

C(CH
3

) = ClI" + n· 9.l.II1 
<-

and 

h\l • 
CH

3
-CH=CII-CH

3 
) CH2-CH=CH-CH3 + H· 9.l.IV 

Analogous reactions to the above are postulated as prime 

initiation steps in the pyrolysis of but_l_ene,45 equation 1.X, and 

46 to 1 Isobutene, equa 10n .XI. 
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o 61 63 Similarly in mercury sensitised studies (2537 A) for but-l-ene; , 

102 propylene, equation 1.XXIV; b t 2 64,65 d • 67 u - -enes an c~s pent-2-ene. 

The results of direct photolysis are also in agreement; 

but-l-ene (1849 ~),77,78 equation 1.XLIII; Isobutene80 and the 

82,83 but-2-enes. 

The recent work by Callear and Lee95 on the flash photolysis 

of but-l-ene, cis pent-2-ene, Isobutene and the but-2-enes showed the 

presence of the methylallyl radical absorption spectrum in the product 

mixture after flashing the last three olefins, and on flashing but-l-ene 

the presence of the free allyl absorption spectrun was noted. Thus the 

weay~ess of the bonds, especially C-C, S to the double bond has been well 

established. 

9.2 Excited State Internediates 

Definite assignnent of the excited state intermediate involved 

in the decomposition of but-l-ene and isobutene was not possible but 

since .. deactivation of the first excited state of cis pent-2-ene did not 

yield the trans isomer it was concluded that the first excited sinGlet 

Rydberg state was participating in the decomposition of cis pent-2-ene. 

This is based on the fact that there exists a barrier to rotation in the 

excited singlet Rydberg state but no such barrier exists in the sinelet V 

state. Previous work on the but-2-enes2 brought this point to light. 

Evidence for a further excited state was also found for cis pent-2-ene 

which Gives rise to isomerisation rather than decomposition but this was 
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not definitely assigned due to lack of inforrn.ation. The vleir,ht of 

evidence seems to be in favour of the first singlet RydberG stnte 
o 

participating in the deconposition of olefins nt 1849 A ,d th a further 

interrn.ediate for the isomerisation wherever possible. 
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