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ABSTRACT 

The area mapped is situated on the west side of the Baie de 

Saint Brieuc, Cates du Nord, France. It is bounded by the towns of 

Binic, Br~hec, Lantic and Plehedel. Rocks of Pentevrian, Brioverian 

and post Brioverian age were recorded. The Pentevrian, which was 

previously unreported, is composed of the pelitic and semipelitic Port 

Goret gneisses, the metasediments and metavolcanics of the Plouha Series 

and the late Pentevrian intrusion, the Port Moguer tonalite. The Port 

Goret gneisses and the Plouha Series had undergone at least 4 major fold 

phases and 4 regional metamorphic events prior to the Brioverian 

sedimentation. Locally the structural and metamorphic histories are found 

to be more complex. However the Port Moguer tonalite has a relatively 

simple structural history. 

Two sequences of Brioverian age are recorded, the Binic-Brehec 

Series and the Palus plage metasediments and metavolcanics. The sediment­

ology of the former has been studie~ and it is conluded that they are a 

sequence of distal turbidites. The latter are composed of pelites, 

psammites and acid volcanics and they display an unconformable relationship 

with the Port Goret gneisses. The original surface of unconformity may 

not be preserved. The Brioverian and locally the Pentevrian have been 

affected by the late Precambrian Cadomian orogeny, which has produced 3 

main phases of folding and up to five phases of metamorphism. The grade 

of anyone metamorphic event varies throughout the area. Late Cadomian 

brittle structures are recorded. 

The Port Goret gneisses are intruded by a post-Brioverian, syn­

Cadomian composite norite, hornblende-ferropypersthene gabbro and quartz-



hornblende gabbro intrusion, the Saint Quay intrusion. Petrological and 

petrochemical studies indicate that this body was formed by two intrusive 

phases, the second of which was more differentiated than the first. 

The regional significance of this research has been discussed. 



CHAPTER I. 

INTRODucr ION 
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Figure 1.1. Map showing A) the location of the 

Armorican Massif (patterned), 

B) the geography of the Armorican 

Massif, C) the location of the 

area mapped. After the Michelin 

Carte de la France. 



1 
A. Location of area and preliminary statement 

1. Location of areal 

The area studied is situated on the western side of the Bay 

of Saint Brieuc, CStes du Nord, Brittany, France. It is bordered on 
. 1 ~ 

the coast by the towns of Binic CWU 135833) to the south and Brehec 

CWU 038974) to the north. The western inland margin is marked by the 

towns of Kerlidic CWU 008948) to the north, P10uha CWU 054917), P10urhan 

(WU 097867) and Lantic CWU 086838) to the south. (Figure 1.1). The 

are occupies some 70 sq. km. The land is generally flat lying and has 

an altitude of 60 to 80 m. except near the coast where it is deeply 

dissected by river valleys. The land rises steeply from the coast which 

is' often comprised of cliffs of 10 to 40 m. in height. 

The various lithologies are well exposed along the coast where 

all the detailed studies were carried out. Inland the exposure is 

very poor; In some areas there are less than ten exposures per square 

kilometre and indirect evidence has had to be used in the mapping of 

certain boundaries. 

The area is comprised of rocks of a Precambrian age, except around 

Br(hec where an area of 1.2. sq. km. is occupied by sequence of red 

beds that have been variously assigned to different systems withing the 

Palaeozoic. (Figure 1.2). The rocks of a Precambrian age can be 

attributed to both the Pentevrian2 and Brioverian2 , and all can be ShOWl 

to have been affected by the Cadomian
2 

orogeny. 

1NOTB1 All map references are given using the 1000 m. U.T.M. grid, 
zone 30, international spheroid and are taken from the 
"Carte de France au 50.000e (type M)tt sheet numbers: 
VIII-15 and IX-15. 

2Vide infra. 
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Figure 1.2. Sketch geological map of the area 

studied. 



2. Preliminary Statementl 

Any study of the Precambrian rocks of the Armorican Massif 

is made difficult by the fact that there are no clearly defined 

criteria which may be used to assign any given sequence of rocks 

1 2 

to either of the two fundamental Precambrian units, unless the existence 

of a local unconformity can be established. The matter is further 

complicated as the Precambrian geology of the Armorican Massif is only 

sparsely reported in the English language journals (e.g. • Barrois 

1898; Bigot 1930; Shelly 1966; Adams 1967; Bradshaw et al. 1967; 

Rast and Crimes 1969; Bishop et a1. 1969; Brown et a1. 1971; Roach 

et a1. 1972)"the bulk of the information being contained in numerous 

articles (approximately two hundred) that have appeared in the French 

literature since 1886. It is therefore necessary that before a study 

can be carried out on these rocks a clear statement as to the significance 

of the terms employed should be made. 

In view of these difficulties and the fact that some of the results 

presented below may help to clarify the nomenclature used, a brief 

review of the history of research and the present state of opinion 

concerning the Precambrian geology of the Armorican Massif will be given 

in the following section. 



B. Review of the geology of the Armorican Massif. 

1. Regional setting. 

The Armorican Massif is a large area of pre-Mesozoic rocks that 

cover the regions of Lower Normandy and Brittany, which are made up 

1 3 

of the Departments of Calvados, Manche, ~ne, Mayenne, Ille-et-Villaine, 

Cotes du Nord, Finistere, Morbihan, Loire Inferieur, Sarth, Maine et 

Loire and Vend'e (Figure 1.1). The area covered is about the same 

size as Wales, extending approximately 400 km. E.-W. and a similar 

distance N.-S. The massif is bounded along its east and southeast 

margins by the relatively undisturbed Mesozoic sedimentary cover of the 

Paris and Aquitaine basins, and therefore encompasses one of the 

largest areas of Precambrian and Palaeozoic rocks in France. Included 

within this region are the Channel Isles of Jersey, Guernsey, A1derney 

and Sark, and numerous other small island groups such as the Ecrehous, 

Minquiers, Chauseys and the Paternosters. 

Geomorphological1y the region is low lying, consisting of 

undulating terrain generally less than 100 m. in height, but reaching 

over 200 m. in parts of north Brittany and Lower Normandy. In some 

areas (e.g. Manche) partly dissected platforms can be clearly distinguished. 

The whole region is characterized by an irregular coast line giving 

excellent cliff and off-shore reef exposures. Inland exposures, however, 

are not good except along river valleys, which may be locally drowned as 

in north Finistere. 

A simplified geological map of the central and northern parts of 

the Armorican Massif (Figure 1.3) shows that the region is essentially 

composed of four units, 

(1) Areas of Palaeozoic sediments, occupying synclinal tracts 

extending in a direction varying from ENE-WSW to ESE-WNW, 

(2) Granitic plutons, often aligned in directions para11ed to 
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Figure 1.3. Geological map of the Armorican 

Massif after Roach et al, 1972. 



Table 1.1 

THE STRATIGRAPHY OF THE BRIOVERIAN 

Barroh (1895) Barrois & Pruvost (1930) 

1. Dalles vertes de Neantes (Xc). 1. Green shales 1. Green shales 

( 1. Slates ( 1. Slates 
( ( 
( 2. Gourin conglomerates ( 2. Slates and quartz-
( ( phyllites 
( ( 

Phyllades de 2. Schistes et Conglomerates ( 3. Slates and quartz- ( 3. St. Thurial limestone 
Saint Ld (X) de Gourin (Xb). ( phyllites ( 
(BRIOVERIAN) ( ( 

( 4. St. Thurial limestone( 4. Slates 
( ( 
( 5. Slates ( 5. Gourin conglomerate 

3. Schistes de Lamballe (Xa). 1. Slates with Phtanites 1. Slates with Phtanites 

2. Slates and greywackes 2. Slates with greywackes. 
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the Palaeozoic synclines, and emplaced during either the 

late Precambrian Cadomian orogeny or the Variscan orogeny, 

(3) Late Precambrian Brioverian geosynclinal sediments, which 

while generally at a low metamorphic grade are locally in 

a more highly metamorphosed conditions, 

(4) Pre-Brioverian crystalline basement, known as the 

Pentevrian. This last unit covers a small percentage 

of the Massif compared to the others. 

2. History of Research 

(a) The Brioveriana 

Early studies of Puillon-Bob1aye (1827), Bune1 (1829-1833) and 

Dufrenoy (1838) established the existence of two stratigraphical 

divisions within the Armorican Massif. The lower division comprised 

a slate-greywacke sequence that was covered unconformably by an upper 

division, whose base was marked by a horizon of purple conglomerates. 

Barrois (1895) proposed that the lower division, previously termed the 

"Schistes de St. ~" or the "phyllades de St. I2", actually represented 

a stratigraphical system which he named the Brioveri{n1 and he proposed 

a stratigraphical column for this system which he later modified (Barrois & 

Pruvost 1930 and Barrois 1934) crable 1.1). There was much 

discussion concerning the age of the Brioveriana De Fourcey (1844), 

Barrois and Pruvost (1930), Barrois (1934), Pruvost (1949) attributed 

it to the Cambrian; Herbert (1886) and Bigot (1890, 1922, 1925) felt 

that it was of Precambrian age; Kerforne (1923) placed it in the 

Carboniferous; whereas Pruvost (1951) proposed that it was part of a 

world wide post-Algonkian, pre-Georgian system which he termed the 

"Infracambrian". The first real evidence for the Precambrian age of 

l(in this work the anglicised versions of Brioverien and Cadomi:n and 
Pentevrien i.e. Brioverian, Cadomian and Pentevrian will be used). 



Table 1. 2 

ACE DATES FOR THE POST-CADOMIAN GRANITES 

Locality Method Rock Type Author Age (years x 106) 

St. Marean Rb/Sr-B granite Leut¥ein 580:!:30 

Mt. Dol Rb/Sr-B granite 1968 560:!:30 

Athis Rb/Sr-B granite Adams 1967 553:!:9 

Athis Rb/Sr-B granite Graindor & S4S:!:11 

Chausey Rb/Sr-B granite Wasserberg 540+11 

Vire Rb/Sr-WR granite-
pegmatite 1962 S08:!:11 

Vire K/A-B granite Kaplan & 586!22 

Vire K/A-B granite Leut¥ein 582!1 

Vire K/A-B granite 1963 58l!14 

Fougeres Rb/Sr-B granite Leut¥ein 545:!:20 
1968 

The following abbreviations have been used in this table: 

B • biotite and WR - whole rock. 



Table 1.3 

AGE DATES FOR THE CADOMIAN METAMORPHOSED BRIOVERIAN 

Locality Method Rock Type Author 
6 Age (years x 10 ) 

Lermot K/A-WR meta tuff Leut'lein & 530!20 

Binic K/A-WR meta tuff Sonet 1965 541 

Palus plage K/A-WR greyvacke Leut'lein, 680+20 

Sonet & 

Zimmerman 1968 

Pt. Pordic K/A-WR quartzite 615!20 

St. Clet K/A-WR amphibo 1i te 670!20 

Erquy K/A-WR diabase Leut'lein 670!10 

Plessala ltb/Sr-WR. shale 1968 630!30 

Pabus plage K/A-WR tuff 680+20 

La Bouillie K/A-WR shale ·600+20 

Brest Rb/Sr gneiss* Adams in 690!40 
(isochron) Roach et 

al1972 

* early Cadomian intrusion 

The following abbreviations have been used in this table: 

B - biotite, WR. whole rock. 
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the Brioverian was given by Bigot (1925) who founded Middle Cambrian 

fossils in limestones above the purple conglomerates at Carteret, but 

this did not become universally accepted until the granites that were 

intruded at the end of a post-Brioverian tectonic episode were shown 

to have been intruded prior to the Middle Cambrian, which rested 

unconformably upon them (Chauris, Dangeard, Graindor and DeLapparent 

1956, Chauris 1956). This implies that the Brioverian underwent 

folding, granitic intrusion, uplift and erosion prior to the Middle 

Cambrian and must, therefore, be Precambrian. This age was later 

confirmed by isotopic age date studies of these granites (Table 1.2) 

and the Brioverian (Table 1.3), however, insufficent work has been 

carried out to enable the exact age of the Brioverian to be determined 

although Roach et al (1972) have suggested that it was deposited 

sometime between 9~700 m.y. ago. 

The stratigraphy of the Brioverian was greatly advanced by 

Graindor (1954, 1957) who, after the identification of the conglomerates 

within the Brioverian as tillites CWegman, Dangeard and Graindor 1950), 

proposed a stratigraphic column for the Brioverian (Table 1.4) which 

has since been generally accepted and extended over the whole of the 

Armorican Massif by Cogn~ (1962). Detailed palaeogeographical 

reconstructions for the Brioverian era have been proposed by Cogn{ 

(1962) and Graindor (1964) with the Lower and Middle Brioverian being 

represented by periods of accumulation of deep water sediments in a 

geosyncline. This was followed by a period of deposition of 'Flysch' 

type sediments during the Upper Brioverian subsequent to a regional 

glaciation that resulted in the formation of terrestia1 conglomerates 

on the margins of geanticlinal ridges within the geosycline. This 

picture is questioned by Dangeard, Dor{ and Guignot (1961) and Winterer 

(1964) who point out that the Upper Brioverian tillites are not 

terrestia1 and are in fact graded pebbly mudstones that were deposited 



Table 1.4 

STRATIGRAPHIC COLUMN FOR THE BRIO'~:!lJAN OF CONTENTIN 

(after Graindor 1957) 

... 
Etage de la Laize (X3b) 1. shales, ripple-marked 

sandstones, conglomerates 

and rare calc-siltstones 

... 
Qj 
Cl. 
Cl. 
P 

'" Etage de Granville (X3a) 1. tillites and varves 

Rhyolites de Saint Germain-le-Calliard 

" de Villiers-Fossard (X2b) Etage 1. shales of St. Andre l'Epine 

2. felspathic sandstones of 

Ramp an 

3. phyllites of Cantilly 

Qj ..... 
"T:S 
"T:S .... 
X 

ttage de Landes des Vardes (X2a) 1. Phtanites, graphitic shales 

and argillites 

/ 
d'Erquy (XI) 1. .volcanic rocks ... Etage 

Qj 

~ 
0 2. metamorphic rocks ~ 



1 6 

from turbidity currents. (Winterer OPe cit.). 

(b) The Cadomian OrogenYI 

Bertrand (1921) introduced the concept of the Cadomian orogeny 

to account for the unconformity between the Brioverian and the purple 

conglomerates. He defined the Cadomian orogeny as being a late 

Precambrian orogeny that resulted in the folding, uplifting and 

peneplanation 'of the Brioverian. Bertrand's concept of the Cadomian 

was modified by Graindor (1957, 1965) and Cogn~ (1962) who proposed 

that there were in fact two orogenic phases during the Cadomian. 

The earlier Constant ian phase occurred post-Middle Brioverian but 

pre-Upper Brioverian and was responsible for the development of a 

regional foliation at depth and granitisation of the Lower Brioverian. 

The later Viducastian phase occurred at the end of Brioverian 

sedimentation and caused the development of east-west trending folds 

throughout the region. The dual nature of the Cadomian arose as a 

direct consequence of the stratigr~phy of the Brioverian, structural 

evidence for this being given by Roblot (1962) who identifies an 

intra-Brioverian unconformity at Quibou, Manche and by Jeanette and 

Cogn~ (1968) who report a structural discordance between Upper and 

Middle Brioverian in the Bay of St. Brieuc. 

The age of the Cadomian orogeny is best defined by the 690~40 m.y. 

isochron CRoach et al 1972) obtained for the gneiss de Brest, a grano­

dioritic body that was emplaced prior to the main phase of Cadomian 

folding (Bradshaw et a1 1967). Age dates obtained by other authors 

for the metamorphosed Brioverian (Table 1.3) and the post Cadomian 

granites (Table 1.2).indicate that the region did not cool until about 

540 m.y. ago and that the post-tectonic granites were intruded between 

600 m.y. and 540 m.y. ago. 



Table 1.5 

AGE DATES FOR THE PENTEVRIAN BASEMENT OF THE ARMORICAN MASSIF 

N2 Locality Method Rock Type Author Age (years x 106) 

1 Jospinet K/A-B diorite gneiss Adams 536+10 

2 Jospinet K/A-B diorite gneiss 1967 587+11 

3 Pont Neufs K/A-WR micaschist 930+10 

4 Pont Neufs K/A-Am amphibolite 1050+50 
Leutwein 

5 Pont Neufs K/A-WR amphibolite 1010+50 
1968 

6 St. Alban K/A-WR amphibolite 1090+20 

7 Lannebert K/A-Am amphibolite 10)0+100 

8. Pont Neufs K/A-B amphibolite- 1420+20 
gneiss 

9. Jospinet K/A-WR diabase 1265+10 

10. Dinard, Rb/Sr-M anatexites 510+15 
offshore 

11. reefs Rb/Sr-or anatexite 1000+30 

12 It Rb/Sr-or anatexite Leutwein 920+20 

13. It Rb/Sr-or anatexite & Sonet 396+10 

14. It Rb/Sr-M anatexite 1965 520+20 

15 " Rb/Sr-B gneiss 450+15 

16 It Rb/Sr-or . 
1000+100 gne18S 

17 Port Moguer Rb/Sr-WR granite Leutwein 850+80 
Sonet & 

18 Port Moguer K/A-WR granite Zimmerman 700+50 
1968 

The following abbreviations are used in the above table: 

Am • amphibole, B· biotite, M - muscovite, Or. orthoclase, 

WR • whole rock. The numbers against each date correspond to 

those on Fig. 1.4. 
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Figure 1.4. Map to show the known outcrops of 

Pentevrian basement (black) in the 

Armorican Massif, after Roach et 

a1 1972, and the location of the age 

dates given in Table 1.5. 
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(c) The Pentevrian Basement 

Cogn: (1959) recorded the existence of a pre-Brioverian basement, 

termed the Pentevrian, that could be seen to be covered unconformably 

by the Brioverian at Jospinet on the east side of the Bay o! St. Brieuc. 

Here the basement is comprised of dioritic gneisses which possess a 

NNE-SSW trending foliation that predates the E-W foliation of the 

Brioverian (Cogn~ OPe cit.). Subsequently several other areas of 

Pentevrian basement have been recorded (Graindor 1960, Cog~ and 

Shelly 1966) on the basis of N-S structural trends and high metamorphic 

grade. other areas of Pentevrian have been proposed on the basis of 

'age date studies (Leutwein and Sonet 1965, Leutwein 1968, Leutwein 

et a1 1968) which are reviewed in Figure 1.4.and Table 1.5. Brown et 

a1 (1971 and 1972) have attributed the migmatites of Saint Malo, Dinan 

and Saint Cast to the Pentevrian on structural grounds. Present age 

date studies indicate that the Pentevrian basement evolved over a 

considerable period of time, with the earliest events taking place some 

2600 m.y. ago and possibly the latest events occurring as late as 1000 

m.y. ago (Roach et a1. 1972). 

C. History of research in area investigated. 

Little detailed work was carried out in this area before the 

present study. Previous researches have either been in the form of 

survey mapping for the production of the 1180,000 geological maps of 

France, or a study of features in the area that were thought to have 

a regional significance. The first detailed map of the area was that 

compiled by Barrois in 1898. The results were presented in the 

St. Brieuc and Paimpo1 sheets of the 1180,000 geological maps of France 

(Figure 115). In these maps and the accompanying reports (Barrois 

1896, 1898) Barrois recognised the unconformity between the red beds of 

Brehec (h,,) and the shales to the north (X), assigning the former to 

the Cadomian and the latter to the Precambrian. These shales were 
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Figure 1.5. Geological map of the area studied 

as compiled from the 1:80,000 

Carte Geologique de la France. The 

key to this map is given in Table 

1.6. on the following page. 



Table 1.6 

KEY TO 1:80,000 GEOLOGICAL MAPS OF FRANCE 

(see Fig. 1.6) 

Map 42, the Treguier sheet. (Barrois and Bigot 1929) 

Map 59,_ the 

))1 Plourivo porphyrite 

h
2 

Green sandy shales of Plourivo 

h1 Toul Lan red beds 

h.. Port Lazo conglomerates. sands & silts 

Brioverian 

x Schists of Saint Lo 

xi?, Mica schists 

Xt>,vAmphibole schists 

Intrusives 

~.tbx Diorite of Countances 

b>, Granuli te 

~ Granite of Plouaret 

Saint Brieuc sheet (Barrois 1893/4) 

Brioverian 

bx Series of Binic 

Gr Phtanite 

bxv" Mica and amphibole schists 

Intrusives 

b>, Granulite 

~,px Uralised diorite 

~,bx Hornblende syenite 
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correlated with a larger outcrop to the south, the "Series de Binic", 

which in turn were correlated with the "phyllades de St. ~" and were 

therefore Brioverian in age. This correlation was based on the fact 

that both of these series were found to contain bands of pthanites (Gr). 

The east-west strike of the outcrop of the shales (bx) was attributed 

to folding about parallel east-west axial planes during the Precambrain. 

Barrois described the Saint Quay intrusion (b"bx) as a diorite 

which formed a westward extension of the "Diorite de Coutances". This 

diorite was thought to have been responsible for the metamorphism of 

the "Series de Binic". Its age was taken to be Precambrian as boulders 

of a similar rock type were found in the Cambrian conglomerates at 

Br{hec. The intrusion to the north of Plouha was described as a 

granulite, (b l ) genetically related to several other granulitic intrusions 

in the region, some of which cut the Carboniferous. The Plouha intrusion 

was therefore placed within the Carboniferous. 

Bands of rock of a higher metamorphic grade than the "Series de 

Binic" were recognised and mapped as mica schists, amphibolites and 

E A 
amphibole schists (bx~,,/X blvfX b,). These were also assigned to the 

Brioverian. They were described as being cut by irregular veins of 

syenite that was thought to be genetically related to the "Diorite de 

Coutances". 

Maz~res (1927) thought that the red beds of Brehec were a facies 

of the Brioverian but Milon (1927) pointed out that they were in fact 

resting unconformably upon the Brioverian (as had Barrois previously). 

He also identified the shales to the south of Pointe. de la Tour as being 

Brioverian and not a continuation of the ~ed beds as Barrois had thought. 

In later publications (Barrois 1934, 1938, Barrois, Pruvost 

and Waterlot 1938) the earlier 1898 stratigraphy for the region was 



Table 1.7 

THE STRATIGRAPHY OF THE SAINT BRIEUC REGION 

(after Barrois (1934» 

STAGE: LITHOLOGY: 

OLD CAM B R I A N 

Shales and zeolitic sands of Paimpol 

;' Conglomerates of Brehec and Ceslon 

C, xc 
'" Red beds of Brehec and eruptives 

C" xb 

C", xb 
Series of St. Brieue (ophiolites) 

C, xb v 

B RIO V E R I A N 

xa xa Series de Binie 



greatly revised (Table 1.7) although the later edition of the St. 

Brieuc geological map (Barrois, Pruvost and Water lot 1938) 

showed very little change in the geological boundaries of the 

earlier map, only the outcrop of the "Series de Binic" being 

substantially altered. 

Barrois (1934) proposed that only the "Series de Binic" should 
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be assigned to the Brioverian and that the ophiolites around St. Brieuc 

were Cambrian in age. This was based upon the correlation of the 

conglomerates of Cesson, Gourin and Br~hec. The Gourin conglomerates 

contain pebbles of phtanites and the B~hec conglometates, at the base 

of the red beds, rest unconformably upon the Brioverian. Thus the 

Cesson conglomerates were assigned to the Cambrian and as the ophiolites 

lie between these and the "Series de Binic tl these were also assigned to 

the Cambrian. Complexities of outcrop between the ophiolites, 

conglomerates and Brioverian shales were explained by postulating the 

existence of large nappes in the ophiolites. 

In this work the St. Quay intrusion was correlated with that at 
,... 

Tregomar and both were thought to have been intruded during the Cambrian 

and to have been associated with the ophiolitic vulcanicity, as were 

dykes that cut the "Series de Binic". A large scale syncline, the 

St. Brieuc-Binic-Erquy syncline, with_the, Cesson conglomerates at its 
_/ U 

core was described, and was thought to be the result of orogenic movements 

that took place during the Carboniferous. 

Barrois (l934a) reported the occurrence of staurolite bearing 

mica-schists to the north of the Gr~ve de Paluso These were traced 

inland as an east-west band as far asPloemerel. These were correlated 

with other staurolite bearing rocks in the south of Brittany, all of 

which he believed to have been formed during the Variscan orogeny. 
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Barrois (1938) described and identified pthanites and associated 

graphitic shales over the whole of Brittany, including those in the 

"Series de Binic", and concluded that they were formed from radiolarian 

tests and plants. He argued that as they are distributed throughout 

the Brioverian of Brittany they make valuable stratigraphic marker 

horizons. The pthanites of the' "Series de Binic" were described in 

even greater detail by Barrois, Pruvost and Water lot (1938) who concluded, 

from the outcrop of these and other bands of pthanite, that the "Series 

of Binic" and that of Erquy occupy the core of a fold of unknown 

attitude and that their stratigraphic relationship with the ophiolites is 

therefore not known. 

Cogn: (1962) assigns the "Series de Binic" to the upper part of 

the Middle Brioverian as it contains pthanites and rests upon the 

ophiolites with a marked structural discordance. The Brioverian of 

Brehec and Pointe de la Tour is assigned to the lower part of the Middle 

Brioverian. The mica-schists and amphibolites are assigned to the 

Lower Brioverian as are the ophiolites. The Saint Quay intrusion and 

the granite to the north of Plouha were believed to have been intruded 

syn-or post-kinematically to the Constantian orogenic phase • 

./ 
Cogne postulated that the higher metamorphic grade of the Lower 

Brioverian was due to this being structurally lower than the Middle 

Brioverian and to have therefore been more severely metamorphosed during 

the Constantian orogenic phase. Melting of the basement to produce the 

magma for the two intrusions was thought to have also occurred at this 

time, as was the formation of the regional east-west foliation. The 

east-west folds that affect the region were thought to have been 

developed later during the Viducastian orogenic phase. 

A detailed map of the occurrence of the pthanite bands within 

the "Series de Binic" was prepared by Cogne (1962a). This map suggests 
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that the structure of this region is simple, the "Series de Binic" 

occupying a synclinal structure with several minor flexures upon its 

limbs. The arguments for the ages of this series and others were 

reiterated. 

.". 
Jeanette and Cogne (1968) have reinterpreted the structural 

and metamorphic discordance between the Series de Binic and the rocks 

to the south as indicating an Upper Brioverian, i.e. post Constantian, 

age for the Series de Binic which they describe as being comprised of 

flysch type sediments. 

A few age date studies have been carried out in this region. 

A Brioverian tuff band at Binic has been dated at 541 m.y. (Leutwein 

and Sonet 1965; Table 1.3) and a Brioverian sandstone at Palus Plage 

at 680~20 m.y. (Leutwein, Sonet and Zimmermann ,1968; Table 1.3). 

Pentevrian ages have been yielded by amphibolites at Lannenbert, 

l030~lOO m.y. (Leutwein, 1968; Table 1.5. no. 7) and by the granite 

at Port Moguer, 850~80 m.y. (Leutwein, Sonnet and Zimmermann 1968; 

Table 1.5. no. 17). The Saint Quay intrusion has been dated at 559+27 

m.y. (Vidal et al 1972). 
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D. Discussion 

From the preceding review it can be seen that there still remains 

much to be done before detailed sedimentological, stratigraphical, 

metamorphic and structural models for the region can be confidently 

assembled. It is felt that many of the existing models should be 

critically re-examined and thay they should be used only with the utmost 

caution. In this study, certain current definitions for the terms 

Pentevrian, Brioverian and Cadomian have not been used. Rather the 

author has returned to the original definitions as far as possible. 

The Pentevrian is considered to be any sequence of rocks that 

may be shown to be pre-Brioverian. In any one region this relationship 

may be established by proving that the sequence of rocks in question is 

covered unconformably by the Brioverian or by a detailed structural and 

metamorphic analysis of both the Brioverian and Pentevrian of that region. 

Metamorphic grade and fold trend are not in themselves sufficent criteria. 

The Pentevrian is not comprised solely of granodioritic gneisses as is 

/ suggested by Cogne (1959) from his study of the rocks in the type area, 

but also of paragneisses, migmatites, and metasediments as seen on 

Guernsey CRoach 1966), at Cap de la Hague CGraindor 1960, Roach et al 

1972), in the St. Malo region (Brown, Barber and Roach 1972) and in the 

area studied by the present author. It should be noted that the 

Pentevrian is defined with respect to the Brioverian and is a blanket 

term for any pre-Brioverian basement. The Pentevrian is thus made up 

of any sequence of rocks that is older than approximately 1,000 m.y. 

The Brioverian was originally defined upon lithological grounds 

(Barrois 1895), the Precambrian age for this sequence only being firmly 

established much later. The Brioverian is considered to comprise the 

sequence of Precambrian supracrustal rocks that are found within the 

Armorican Massif and which were deposited between 1,000 to 700 m.y. 
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ago. These rocks have been affected by the late Precambrian Cadomian 

orogeny. No attempt has been made to use the lithostratigraphic 

succession that has been established for the Brioverian of Lower Normandy 

by Graindor (1954, 1957) and has been extended over the whole of the 

Armorican Massif by Cogn~ (1961). It is felt in view of the complex 

structural patterns that are found in the Brioverian sedimentation, that 

any large scale lithological correlation would be un-justified at this 

time. 

Bertrand's definition of the Cadomian (1921) has been used. 

The Cadomian is considered to be a late Precambrian orogenic event that 

give rise to the deformation and metamorphism of both the Brioverian and 

the Pentevrian. This event was then followed by the intrusion of post­

kinematic granites and then finally by uplift and peneplanation of the 

Brioverian before the transgression of the Cambrian seas. The main 

Cadomian deformation and metamorphism can be dated between 620-650 m.y. 

(Roach et al 1972). In practice the Cadomian may be identified as it 

is the only Precambrian orogeny that has affected the Brioverian 

sediments. There are conflicting views as to the actual nature and 

timing of the Cadomian orogenic events (Cogn~ 1961, Graindor 1964, 

Winterer 1967, Roblot 1962, Bradshaw, Renouf and Taylor 1967 and Bishop 

et al 1969). Although there is no doubt that throughout the greater 

part of the Brioverian outcrop the main direction of the Cadomian folds 

is east-west, it must be noted that this direction is that associated 

with the second major phase of deformation, an earlier phase having 

formed north-south structures. Also, no detailed structural analysis 

of the Pentevrian basement has yet been undertaken and therefore all 

the structural trends within the Pentevrian are not -know. As a 

result it would be unwise to identify folds as Cadomian in age purely 

upon the basis of their east-west trend. 



CHAPrER II 

THE PENTEVR IAN 



A. Introduction 

Rocks which are older than the Brioverian and can therefore be 

assigned to the Pentevrian are found within the area studied. These 

have a much more complex structural and metamorphic history than the 

Brioverian which may be seen locally to rest unconformably upon them. 
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The outcrop of the Pentevrian, which occupies the largest 

proportion of the area stUdied, extends from Moulin plage (128873) to 

Bourdonniere (084882) in the south and from Pointe de la Tour (050963) 

to Le Pouloudou (016944) in the north. All the rocks in this area are 

Pentevrian, except the Saint Quay and Plouha intrusions which are 

post-Brioverian, pre-Cadomian in age and the Palus plage metasediments 

and metavolcanics which form part of the local Brioverian sequence. 

The rocks of Pentevrian age have been divided into three suites, 

namely the Port Goret gneisses, the Plouha Series and the Port Moguer 

tonalite. 

In the first section the lithologies and field relationships of 

the various suites will be dealt with. In the second section, the 

structural and metamorphic histories of the Pentevrian rocks will be 

covered. The third section will contain a synthesis of the preceding 

information and a sequence of events for the Pentevrian will be proposed. 

B. Pentevrian Lithologies 

1. The Port Goret Gneisses 

(a) Introduction 

The outcrop of this highly deformed sequence of staurolite 

bearinf paragneisses occupies approximately 7 sq.km in the centre of 

the area studied. 



Plate 2 . 1 . Irregular veins of meta-tonalite ( light gr ey) cutting 
the Port Goret gneisses ( dark grey) . Palus - Plouha 
road, 1 mile to the west of Paluso 

Plate 2 . 2. Port Goret gneisses at Port Gore t. ot e the ligh e r 
ve ins of migmatised gneisses cutting the mass ive 
darker gneisses . 
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Figure 2.1. Sketch geological map showing the 

outcrop of the Port Goret gneisses. 



Unfortunately, in spite of their large inland areal extent they 

only outcrop on the coast in two small rocky headlands, either 

side of the Saint Quay intrusion (Figure 2.1). At Moulin plage 

(129874) in the south they are exposed along the coast for sCm, 

while at Port Goret (095915) to the north the gneisses form a 

prominent headland and are well exposed for 550m along the coast 

(Map 1). 

The southern margin of these gneisses is faulted and runs 

approximately east-west along the line of a valley. This contact 

is found at Moulin plage and runs westwards through Saint Barnabie 

(094882) and Bourdonniere (084882). The northern margin is an 

unconformity between the gneisses and the Brioverian. This 

unconformity is well exposed at Pal us plage (093915) and it may be 

traced inland as far as Keregal (082911). Although this contact is 

represented on the map as a straight line it may in detail be rather 

irregular if the contact at Palus plage is taken as the norm 

(see Chapter IV). 

The northern contact may then be followed along the D32 Plouha­

Pal us road until Lanlorec (052910). In the northwestern part of 

the outcrop of the gneisses they are cut by irregular veins of tonalite 

(Plate 2.1). This occurs in the region which is to the south of the 

D32, and is bounded to the southeast by Keregal and to the southwest 

by Coray (068900). 

This sequence of gneisses has been intruded by the Saint Quay 

intrusion, and much of the coastal and inland areas between Palus 

p1age and Moulin plage is occupied by this body which extends along the 

coast from pointe Bec du Vir (103915) to the north of Moulin plage 

(129874), and it is found inland at Lan Mergat (081902) and Saint 

Barnabie (093882). 

2 2 



Staurolite-bearing rocks of Brittany ( after Barrois 1934~). 
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Figure 2.2. Map showing the distribution of 

staurolite-bearing schists in the 

Armorican Massif, after Barrois. 



The headland at Port Goret is made up of cliffs that rise 

steeply to a height of 40m and are deeply dissected by steep sided 

gullies. Inland, the gneisses tend to occupy land that is slightly 

lower than the surrounding terrain and is cut by many stream valleys. 

This rock apparently weathers very easily, with the result that 

inland exposures are in a very poor state of preservation. 

(b) History of Previous Research 

Staurolite bearing gneisses in this area were described by 

Barrois (1934a). However, on his map he shows that the gneisses 

outcropped to the north of Plouha (Figure 2.2). The rocks to the 

north of Plouha have been called the Plouha Series by the author 

(Figure 2.3) and although they contain rare staurolite bearing bands 

they may be clearly differentiated from the Port Goret gneisses which 

are not shown on Barrois' map. 

Barrois named this east-west striking band of gneisses and 

amphibolites the ttMassif du Penthievre" and suggested that it extended 

inland as far as Morlaix (Figure 2.2). He described this band as 

being made up of grey micaschists that are interbedded with meta­

quartzites. These he assigned to the Brioverian. To the west 

of Ploumillau the nature of this band changes, being now composed of 

sillimanite+biotite+muscovite gneisses that are cut by granitic veins. 

To the east of Ploumillau the predominant rocks are staurolite-bearing 

gneisses which also contain iron oxides, zircon, apatite, tourmaline, 
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biotite, muscovite, garnet and granular quartz. He also noted that the 

staurolites were partially altered. 

Barrois assumed that the above mineral assemblages were developed 

during a single phase of metamorphism in spite of the fact that it is 

obviously not an equilibrium assemblage. He suggested that this 



metamorphic event was responsible for the generation of staurolite 

in the Massifs du Leon and Cornouaille, the Le Mur schists, and the 

Morbihanites of southern Brittany and that this took place during 

the Carboniferous. 

Cogne (1962) attributed these gneisses to the Lower Brioverian 

and believes that they were developed during the metamorphic event 

associated with the pre-Upper Brioverian post-Middle Brioverian 

(Constantian) orogenic episode. 

(c) Age of the Port Goret Gneisses: 

The Pentevrian age of this sequence is established by the fact 
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that to the south of Palus plage in a small inlet (093915) these gneisses 

are covered unconformably by the Palus plage metavolcanics and metasediments 

which are Brioverian in age. 

The contact betweert the gneisses of the Pentevrian basement and the 

Brioverian supracrustal sequence is interpreted as an unconformity 

on the grounds that: 

(1) boulders of gneiss are found in the overlying metasediments; 

(2) the gneisses have undergone eight phases of deformation 

(7 Pentevrian and 1 Cadomian) prior to the local 

development within them of the Cadomian S2C foliation, 

whereas the Brioverian had only undergone one Cadomian 

phase of deformation prior to this event. In places 

the bedding of the metasediments and metavolcanics 

is parallel to their contact with the gneisses and they 

contain pebbles and boulders of the underlying gneiss. 

Here the contact is thought to represent the original 

unconformity although elsewhere the contact may well be tectonic 

(see Chapters III and IV). 
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The Plouha Series and the Port Moguer tonalite have been 

assigned to the Pentevrian on the grounds that the structural and 

metamorphic events that are found within these bodies correlate 

with those that affected the Port Goret gneisses before the depos-

ition of the Brioverian, and also the structural and metamorphic 

histories of these bodies are far too complex to have been produced 

during the Cadomian orogeny alone. 

This unconformity cannot be interpreted as an intra-Brioverian 

unconformity formed as a result of uplift of the area subsequent to 

the Constantian phase of the Cadomian orogeny, because the overlying 

supracrustal sequence has been affected by the main Cadomian metamorphism, 

which according to Graindor (1965) was operative during the Constantian 

phase. 

(d) Lithology 

The Port Goret gneisses are made up of three main rock types which 

are irregu1ari1y interbanded with one another. These are: 

(1) coarse grained staurolite gneisses 

(2) staurolite-bearing micaschists, and 

(3) calc-silicate rocks. 

The coarse grained staurolite gneisses (Plate 2.2) make up the bulk 

of this sequence. They are red-brown in colour and contain quartz+ 

plagioclase + biotite + staurolite + andalusite + cordierite + garnet. 

Bands may be massive and up to several metres in thickness, or they 

can be as thin as 2-3 cm. The most distinctive feature of these rocks 

is the dark brown to black porphyrob1asts of staurolite that may easily 

be recognised in hand specimen. 

The micaschists occur in bands from 1~40 cm in thickness that are 
interbanded with the staurolite gneisses (Plate 2.3). They are 



Plate 2.3 . Banded mica schists at Moulin Plage . Spgl foliation 
is parallel to the ruler. The schists ar e cut by 
concordant and slightly discordant Mpg2 granitic 
veins . Scale 30 ems. 

* Plate 2 . 4. Photomicrograph ( ppl) of metacalc-silicate band 
in gneisses at Port Goret Showing a quartz tremolite 
zoizite assemblage. Scale 0.69 mm. 

* N.B. ppl = plane polarised light and cn = crossed nicols. 
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Figure 2.3. Sketch map showing the outcrop of the 

Plouha Series (ornamented) in the 

area mapped. 



fine grained and dark brown in colour due to the predominance of 

biotite. These weather readily to a crumbly yellow-brown rock. 
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The calc-silicate bands (Plate 2.4) vary from 5-50 cm in thickness, 

but are: usually around 7-12 cm. Al though these bands are often 

discontinuous, their strike is usually parallel to that of the adjacent 

bands of micaschist. They are yellow-grey in colour and often exhibit 

a fine internal banding (1 mm to 1 cm in thickness) which is parallel 

to the strike of the band. The calc-silicates make up only a very 

small percentage of the whole sequence. 

The Port Goret gneisses are thought to be a sequence of para­

gneisses because the metamorphic assemblages developed suggest that the 

gneisses, micaschists and calc-silicates had quartzo-felspathic, pelitic 

and calcareous parent rocks respectively. The sedimentary origin of 

these rocks is supported by the inhomogeneity of the sequence and the 

occurence of staurolite. The bands of gneiss, micaschist and calc­

silicates are parallel to one another and are cut discordantly by the 

first visible foliation. This banding may therefore represent the 

original sedimentary bedding. 

2. The Plouha Series 

(a) Introduction 

This series occupies the coast between the northern side of 

the Palus plage (086918) and the Bay to the south of Pointe de la Tour 

(050963). It is bounded to the north by the Port Goret gneisses and 

the Pal us plage metasediments and metavolcanics, to the north by 

the Brioverian of Br~hec and is intruded by the Port Moguer tonalite. 

The northern contact may be traced from Pointe de la Tour to Le Pouloudou 

and the southern contact may be traced from Palus plage to Lanlorec 

(Figure 2.3, Map 1). 



The coast in this region is comprised of cliffs of between 60m and 

80m in height and unlike the rest of the area there are few beaches 

and consequently few roads or tracks that descend to the coast. 

Inland the main outcrop of the Plouha series, that is to the south of 

the Port Moguer tonalite, occupies the only ground in the area 

studied that exceeds 100m in height. It comprises a ridge that 

extends from Kerouziel (081930) westwards to La Sauraie (042918). 

The general inaccessibility of the coast and the lack of 

good inland exposure has meant that it has not been possible to 

map the whole of this sequence in great detail. Fortunately, 

however, it has been possible to evaluate a detailed structural 

chronology for the rocks of this series from the area to the 

north of Palus plage where they are well exposed. 

The rocks of this series are thought to be Pentevrian in age 

on the basis that their structural history is a good deal more 

complex than that found in the adjacent Brioverian rocks which 

have only been subjected to the Cadomian orogeny. Also this 

structural history is very similar to that of the Port Goret 

gneisses of proven Pentevrian age. 

At both its southern and northern margins this series is in 

contact with the Brioverian,the Palus plage metasediments and 

metavolcanics in the south and the Brioverian sediments at Pointe 

de la Tour in the north. The northern contact can be seen to be 

faulted, while the nature of the southern contact is uncertain. 

Inland, within the general outcrop of this series, in a 

trench to the west of Plouha (052917) rocks that are petrologic­

ally identical to certain members of the Palus plage metasediments 

and metavolcanics have been found and could therefore be Brioverian 

in age. There being no exposure in that region it has not proved 
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possible to map the extent of these rocks or to establish their relat-

ionships with the Plouha Series. (Map 1). 

(b) Lithology 

Although aiginally there was a great variation in the lithology 

of this series, a late phase of cataclastic metamorphism has resulted 

in the destruction of many of the original textures and the major part 

of the series is now made up of a monotonous sequence of green/grey 

blastomylonites (Plate 2.7). In the area immediately to the north 

of Palus plage the effect of this cataclasis is slight and it has been 

possible to distinguish the following lithologies: 

1. Metasediments 

2. Metabasalts 

3. Meta-acid igneous rocks of possible 

volcanic origin 

4. Granite gneiss 

5. Aplites. 

1. Metasediments 

These comprise the main bulk of the Plouha Series, occurring in 

bands that are between 5cm and several tens of centimetres in thickness. 

They are generally pelitic in composition and are distinguished from 

the pelitic fraction of the Port Goret gneisses in that they are richer 

in mica, are interbanded with amphibolites and hornblende schists, and 

do not contain bands of meta-psammite. Mineralogically they are very 

complex, the textures and mineral assemblages being partly or wholly 

preserved. The typical assemblage found within the metasediments being 

biotite + quartz + plagioclase + Cordie rite + staurolite + muscovite - - -
+ andalusite ~ garnet ~ chlorite ~ sericite. 



Plate 2 . 5 . 

Plate 2 . 6 . 

Meta-amygdaloidal basalts showing flattened 
amygdales (light patches in the centre) which 
define the Sps l foliation . North Palus plage. 

Photomicrograph (en) of flattened quartz filled 
amygdale in the meta-rhyolites at Pal us plage. 
Scale 1.2 mm. 



2. Metabasalts 

These are dark green in colour and outcrop as bands that are 

between 80cm and 3m in thickness. Some of the bands contain amygdales 

(O.5-0.6cm across) that make up from approximately 1% to 10% by volume 
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of the rock (Plate 2.5). These amygdales are flattened and ellipsoidal 

in form ana lie so that long axes are oriented in a plane of structural 

significance (SIP) that is of an earlier generation that the foliation 

within the matrix of the rock. These bands are common in the south but 

no amygdaloidal rocks are found to the north of the Port Moguer tonalite. 

The degree of cataclasis increase towards the north and so it is possible 

that such earlier textures could have been destroyed. 

Mineralogically these rocks are very complex. This is because 

they have been subjected to several phases of metamorphism none of which 

caused the complete recrystallisation of the rock. The typical assemblage 

found in these rocks is: 

hornblende + plagioclase + magnetite + sphene ~ epidote ~ sericite 

~ haematite ~ muscovite within the matrix and garnet + quartz 

+ apatite + plagioclase! sericite ~ epidote ~ calcite in 

the amygdales. 

3. Meta-acid igneous rocks of possible volcanic origin. 

Thin bands of metarhyolite that are 25-75cm in thickness and are 

sometimes amygdaloidal are found between Palus plage and Port Logot. 

Mineralogically they are simple, being comprised of quartz + plagioclase 

+ biotite ~ actinolite ~ chlorite ~ sericite. The amygdales, which are 

filled with quartz grains are ellipsoidal in form and are from O.5-3cm 

across (Plate 2.6). 

Associated rock types are found on a poorly accessible section of 

the coast between Port Logot and Pointe de la Tour. These consist of 



Plate 2 .7. 

Plate 2 . 8. 

Banded blastomylonitic Plouha series, Pointe 
Plouha . Field of view 4 m. 

Photomicrograph (ppl) of sheared porphyritic 
aplite, Pointe Plouha. Scale 0. 69 mm. 



Plate 2.9. 

Plate 2 .10 

Flattened rhyolitic pebbles in sheared acid 
tuffs south of Pointe Le Pommier. The elongate 
pebbles define the SpS4 foliation . Field of 
view is 60 cm. 

Photomicrograph (cn) of metatonalite vein 
cutting the Plouha Series, Palus plage/Plouha 
Ro ad. Note static biotite flakes in top centre 
of photograph. 



sheared metarhyolites (Plate 2.8.) and sheared acid tuffs (Plate 2.9.). 

The rhyolites differ from those found at Pal us plage in that they are 

non-amygdaloidal and they contain relict phenocrysts of plagioclase 

although their mineralogies are similar.. The tuffs outcrop at le 

Pommier and immediately to the south where ext=emely flattened pebbles 

of rhyolite rest in a very fine grained matrix of quartz,plagioclase 

and biotite. In one locality, Sm to the south of the contact of the 

Plouha Series with the Port Moguer Tonalite at Le Pommier, there is a 

band of rock in which angular fragments of quartz, plagioclase and 

magnetite (O.S-lcm) are set in a matrix similar to that of the tuffs, 

these are thought to represent fragments of sediment enclosed in an 

acid tuff (Figure 2.5). 

Although there is no direct evidence for the common origin of the 

rock types described above, most original textures being destroyed, it 

is felt that, in view of the similarity in their mineralogies, it is 

possible that they are all associated and were produced during a phase 

of acid vulcanicity that took place during the deposition of the Plouha 

Series. 

4 Granite gneiss 

Occasional bands of granite gneiss of up to 2m in thickness occur 

throughout the Plouha Series. These were emplaced before the phase of 

cataclastic deformation and often preserve earlier textures than the 
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surrounding rock. In the north where severe cataclasis has taken place 

these are recrysta11ised to a coarse grained quartz + oligoclase + biotite 

~ garnet gneiss. However in the south the non-cataclased Plouha Series 

is cut by veins of tonalite (Plate 2.10) identical to those that cut the 

Port Goret gneisses (page 2.2.). These veins are similar in both mineralogy 

and texture to the Port Moguer tonalite. It is thought that all of 

these veins have a common origin and that they are associated with the 



Plate 2.11. Aplite dyke ' (at base of hammer) cutting the 
P10uha Series north of Pointe P1ouha. 
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Figure 2.4. Sketch geological map showing the 

outcrop of the Port Moguer tonalite 

(ornamented) in the area mapped. 



Port Moguer tonalite. 

5. Aplites 

In the area around the Port Moguer tonalite the Plouha Series is 

cut by bands of aplite that are between 40cm and 1.2m in thickness 

(plate 2.11). These are always parallel to the foliation. They are 

white to light grey in colour and composed of phenocrysts of oligoclase 

2 11 

set in a fine quartz-plagioclase matrix. These were intruded at the end 

of, or after the cataclastic event that has affected this series. Some 

are sheared and have developed a muscovite foliation, this texture is 

similar to that developed in the tonalite at the end of the cataclastic 

event (page 2.38). Some of these bands have undergone substantial re­

crystallisation with both the phenocrysts and the matrix being replaced 

by a quartz/plagioclase intergrowth and static needles of actinolite 

being grown in the matrix. 

3. Port Moguer Tonalite 

(a) Introduction 

This body of rock is intruded into the Plouha Series to the north 

of Plouha (Figure 2.4 and Map 1). It occupies about 14 square km of the 

area mapped. It varies from 3.3 km to 2.4 km in width and is at least 

5.1 km in length. It is probable that this intrusion extends seaward 

for at least a further 1.2 km, as the island known as La Mauve (088946) 

to the east-northeast of Pointe Le Pommier is apparently made up of the 

tonalite. 

Topographically the body generally forms an inland platform about 

80 m above sea level. This platform is remarkably flat with very few 

dissecting streams. At the coast the cliffs rise vertically for the 

first 20 m and then slope steeply until they attain a height of 60 m. 

There is no rocky foreshore, the cliff line being coincident with the 

high tide line. Good sandy beaches are exposed along much of the coast 



at low tide. At Port Moguer a stream valley cuts into the tonalite. 

The sides of the intrusion are sub-parallel for most of its 

length, the axis of the body trending ENE-WSW. The southern contact 

with the Plouha Series is seen on the coast at a small bay 200 m south 

of Pointe Le Pommier (082943). From here it can be traced beneath 

the Chapelle La Trinite (066934) and through Pouldouran (052923) to the 

north of the town of Plouha. The northern contact is exposed in the 

Plage Bonaparte (056953) and though not as well exposed inland as the 

southern contact, it may be seen to run through La Fauvre (023942) 

and just to the north of the Convent St. George (025942). 

(b) History of previous research 

This body was first described by Barrois (1898). In this work 

Barrois has named the intrusion the Plouha Granite. He noted that it 

was cutting highly metamorphosed rocks and suggested that it could be 

of Variscan age. In his later works (Barrois 1934, Barrois, Pruvost 

and Waterlot 1938) he suggests that the intrusion is in fact Caledonian 

and not Variscan in age. It should be noted that the boundaries as 

drawn by Barrois coincide with those proposed by the author. 

Cogne (1962) considers this intrusion to be Precambrian. He 

believes that it was one of the many developed as a result of anatectic 

melting of the more acidic fractions of the Lower Brioverian sediments 

and Pentevrian basement during the post Middle Brioverian - pre Upper 

Brioverian, Constantian, phase of the Cadomian. By inference from his 

2 12 

conclusions it appears that he suggests that the body was intruded into 

the Lower Brioverian (i.e. the Plouha Series) during this orogenic 

episode and that the E-W trending foliation within the body was developed 

in conjunction with the regional E-W schistosity that, is axial planar 

to the main Cadomian folds. 



Plate 2 .12 . Plouha Serie s/Port Mogue r tonalit e (right) 
s outhe rn contact at Pointe Le Pommie r 
(see Fi gure 2 . 5 ) . 



Plate 2 .13. 

Plate 2 .14. 

Zone in Port Moguer tonalite rich in xenoliths 
(darke r patches) at Quin Zega1. Field of view 3m. 

Large angular xenolith i c blocks in tonalite 
at Quin Zega1. Scale 30 cm. 



The name of this body has been changed from the Plouha Granite 

to the Port Moguer tonalite for two reasons. Firstly the body does 

not outcrop in or around the town of Plouha whereas it is excellently 

exposed at Port Moguer (070945), a small fishing port that lies on the 

coast approximately in the centre of the body. Secondly, although 
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the body has undergone several phases of metamorphism, including 

cataclastic retrogressive and progressive regional metamorphisms and 

metasomatism, enough of the original mineralogy and texture are preserved 

in several localities in the centre of the body around Kerlohou (046933) 

to indicate that the original igneous rock is essentially an over­

saturated leucocratic plutonic igneous rock consisting of andesine, 

quartz and biotite, and is therefore a tonalite. 

(c) Field Relationships 

It can be shown that the tonalite has been intruded into the Plouha 

Series, although where the contact is seen it is a simple fault surface 

(Plate 2.12). 

In the north, the fault surface is made up of a zone of cataclastic 

material about lOcm in thickness. On either side, both rock types are 

cut by chloritised shears that are found up to 10m away from the fault. 

In the granite thin mylonitised zones are found that are parallel to the 

fault and cut the foliation within the tonalite. These occur up to 

30m away from the contact. 

At its southern contact the tonalite may be seen to contain several 

xenoliths (Plates 2.13 and 2.14). These are not particularly abundant, 

comprising less than 1% by the volume of the rock. They are ellipsoidal 

with the long axis of the ellipse lying in the plane of the foliation. 

They do not usually exceed 30cm in length. 
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Figure 2.5. Sketch geological map of the area 

around Quin Zegal and Pointe Le 

Pommier showing the southern contact 

of the Port Moguer tonalite with the 

Plouha Series. Note the tonalite veins 

that cut the micaschists within the 

Plouha Series. 
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On the island of Quin Zegal
l 

(078946) there is a zone that is rich 

in larger xenoliths (see Figure 2.5). These are irregular in shape and 

range in size from 5 cm to 5 m, the mean size being 30 to 60 cm. This 

zone ends abruptly, there being no apparent decrease in size or frequency 

of the xenoliths as the margin is approached. The tonalite that 

surrounds these xenoliths is mineralogically identical to that which 

lies outside of this xenolith rich zone but is less sheared, presumably 

due to an increase in mechanical strength due to xenolithic 

inhomogeneties. The origin of this zone is not clear, although there 

are three possible explanations: 

(i) This may be a xenolith rich zone that is situated at the 

margin of the intrusion. 

(ii) This may represent the breaking up and partial digestion of 

a large stoped block of country rock. 

(iii) A combination of both of these. 

The second explanation is preferred on the grounds that no such 

concentration of xenoliths is found anywhere the margin is approached, 

and secondly that if stoping of small blocks occurred at the margin it 

would be expected that these would die out gradually into the body of 

the intrusion. If this explanation is correct, the block must have been 

of very considerable size. It could extend up to 500 m. in any 

horizontal direction. The vertical height is not known but it must be 

greater than 10 m. 

To the south of the contact, at Le Pommier, the amphibolites can 

be seen to be cut by irregular sheets of tonalite (Figure 2.5) that 

greatly resemble the rock type of the main intrusion. These sheets are 

1. Also known as Gouiane Segat. 



Plate 2.15 . 

Plate 2 . 16 . 

Folded retrogressed amphibolite dyke cutting 
Port Moguer tonalite at Quin Zegal. 

Unaltered tonalite with xenoliths at Kerlohou 
quarry . Scale is in inches . 
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34 poles to Spm1 ( the majority of these readings 
were taken from the coastal section of the Port 
Moguer tonalite ). 



Figure 2.6. ·Stereographic projection showing 

the plots of 34 poles to the Spm1 

foliation within the Port Moguer 

tonalite. 



slightly discordant to the foliation and the compositional banding of 

the amphibolites,but they are themselves foliated. This would suggest 

that the tonalite veined the country rock considerably at the margins 
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and that the apparent simplicity of the contact is oniy due to subsequent 

faulting. 

The tonalite is a white, yellow or pink coarse grained hypidomorphic 

rock that has a marked foliation. This foliation strikes east-west and 

dips steeply to the north (Figure 2.6). In the field the foliation 

is defined by the paralleism of micas and/or plagioclase laths, and the 

development of chloritised or quartz-rich shear zones. This foliation 

appears to die out as the centre of the body is approached. 

The tonalite is cut by four phases of late aplite dykes and one 

phase of basic dykes. The latter are concentrated around the margins 

of the intrusion, particularly around Quin Zegal (Figure 2.5, Map 1). 

These are vertical and have an east-west strike. They are thoroughly 

retrogressed (Plate 2.15) and deformed, although their contacts with 

the tonalite are sharp and have not been disrupted tectonically. The 

first phase of aplitic dykes was intruded prior to the development of 

the foliation. Dykes of this generation have been broken up by the 

shearing that is associated with the development of the foliation and 

they noW occur as trails of ellipsoidal bodies that have their long 

axes lying within the plane of foliation. The two subsequent phases 

that are found are seen to be generally parallel to the foliation 

within the tonalite, but they have been intruded after the development 

of this foliation and are not foliated. The earlier phase is 

made up of a yellow-white porphyritic aplite that in places may be seen 

to be cut by a later phase of pink porphyritic aplite that is sometimes 



Plate 2 .17. 

Plate 2. 18 . 

Photomicrograph (cn) of zoned plagioclase in 
tonalite from Kerlohou. 
Scale 0. 69 mm . 

Photomicrograph (cn) of oscillatory zoning in 
plagioc lase from tonalite at Kerlohou. 
Scale 0.69 mm. 



intruded along the same plane as the earlier aplite to form composite 

dykes. The last phase of intrusion is marked by irregu1at thin veins 

of a very fine grained ap1itic rock that may be seen to cut all the 

earlier phases of ap1ites and that are discordant to the foliation 

within the tonalite. 

(d) The Original Nature of the Tonalite: 

The nature of the original tonalite may be studied in the quarry 

at Ker1ohou (Plate 2.16). At this locality the tonalite has not been 

sheared and is relatively fresh. It is a 1eucocratic coarse-grained 

hypidiomorphic rock comprised of quartz, plagioclase and biotite. 

The plagioclase occurs as large 3-5 mm. subhedra1 laths that show 

well developed twinning according to the Carlsbad-Albite, Albite and 

Pericline laws. The Carlsbad twinning appears to be a primary growth 

twinning as the composition planes are irregular and occasionally show 

embayments. These p1agioc1ases (An2Q-3S) show well developed broad 

euhedra1 oscillatory zones with very narrow rhythmic zones superimposed 

upon them (Plates 2.17 and 2.18). At the margins of these grains the 

last euhedral zone is overgrown by a zone of sodic plagioclase 

o 0 (An
l2

,2V x 86 -89 ) that apparently shows the same twinning as the 

rest of the grain. This zone varies in thickness from 0.05 -0.2 mm 

and shows ragged margins against quartz. Smal~er equidimensional 
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grains of plagioclase are found included poikilitically in quartz grains. 

These are found to display only the Carlsbad twin laws. Small anhedral 

grains of antiperthitic plagioclase up to 0.2 mm are found in the interstices 

between the large oligoclase grains and are enclosed poikilitically by 

quartz grains. Where these are in contact with quartz the contact is 

sharp but where in contact with the outer albitic rims of the plagioclase 

they are lobate and irregular. This would suggest that there had been 



some reaction between these two phases. All the plagioclases are mildly 

seriticised. 
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The biotite is in the form of subhedral laths up to 3 mm. in length. 

These laths are elongate in form,with a length to breadth ratio of 

2.5 to 1. The biotite shows a dark olive brown - dark brown pleochroism. 

They are often replaced by chlorite that grows along the cleavage. 

Quartz occurs as large anhedral grains up to 5 mm. across, and 

as small interstitial grains between the crystal of biotite and plagio­

clase. They poikilitically enclose small grains antiperthitic andesine 

and sub poikilitically enclose biotite. 

Small anhedral grains of magnetite are common. These may be seen 

to enclose grains of apatite that occur as a minor accessory. Very small 

grains of magnetite are enclosed poikilitically in the outer regions of 

the andesine grains. 

The order of crystallisation of the primary igneous minerals in this 

tonalite is, in order of appearance, andesine, antiperthite, biotite, 

albite-oligoclase and quartz. 

The fact that the euhedral zoning of the andesine is continuous 

and that there is no evidence of resorption or patchy zoning within these 

fe1spars would suggest that these crystals had grown slowly in the magma 

which had rested at one level. The growth of biotite ~nd antiperthite 

would have also gone on at the same time but not to the same extent. 

The magma was then intruded to its present level and the more sodic 

felspars and quartz were the main phases to have crystallised from the 

liquid. 



Deformation Fold phase Style Lineation Metamorphism Mineral assemblages Foliation 

1 Fpgl isoclinal •••• Mpg, biotite + staurolite + Spg, 
plagioclase + quartz 

2 Fpg2 isoclinal •••• • ••• ••••••••••••••••••••••• Spg2 
to tight 

3 Fpg3 isoclinal •••• Mpg2 biotite spg3 
to tight 

4 Fpg4 tight, •••• •••• •••••••••••••••••••••• •••• 
angular 

5 Fpg5 close to •••• Mpg3 biotite Spg5 
isoclinal, (750

_ 2550
) 

complex 

•••• • ••• •••••••••• • ••• Mpg4 quartz + andesine + •••• 
biotite + andalusite + 
garnet (remobilised 
~eucocratic portions of 
gneisses are intruded 
as veins parallel to 
Spg"j ) 

6 Fpg6 tight Lpg6 •••• ••••••••••••••••••••• •••• 

7 Fpg7 close •••• •••• ••••••••••••••••••••• •••• 

------ ----.. --~---.- - -

Table 2.1. Pentevrian structural and metamorphic history of the Port Goret gneisses. 



C. The Pre-Brioverian Structural and Metamorphic History of the 

Pentevrian Basement. 

1. Introduction. 
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The metamorphic and structural histories of the three Pentevrian groups 

will be dealt with separately. The following suffixes have been used to 

identify the group within which an event was identified: pg, Port Goret 

staurolite gneisses; ps, Plouha Series; pm, Port Moguer tonalite. Thus, 

for example, Fpgl is the first phase of folding recognised in the Port 

Goret gneisses and Mpm3 is the third phase of metamorphism recognised in 

the Port Moguer tonalite •. An attempt to correlate these structural and 

metamorphic events within these groups will be made and a chronology of 

events during the Pentevrian era will be proposed. 

2. Criteria for the evaluation of the structural histories. 

The chronology of the folding has been evaluated by using the 

criterion of successive geometrical superpositions of folds of a later 

phase upon those of an earlier phase. Individual small scale structures 

have been assigned to a particular event when the associated fabric has 

been sufficiently distinctive to allow it to be differentiated from all 

other fabrics. Folds of a particular generation have not been recognised 

by their style as this is often varied by flattening during later events 

and this effect may not be constant over the whole region. 

3. The structural and Metamorphic History of the Port Goret gneisses 

(a) Introduction 

These gneisses have been the subject of a special study as it is 

possible to enumerate which structures were developed prior to the 

deposition of the Brioverian. It has been possible to detect seven 

pre-Brioverian phases of deformation and four phases of associated met­

amorphism. These are summarised in Table 2.1. 



Plate 2 .19. 

Plate 2 . 20. 

Photomicrograph (ppl) of Mpgl staurolite in 
schists at Moulin plage . Relict Spgl (running 
from left to right) is enclosed in the staurolite . 
The Spgl foliation is crenulated in the matrix. 
Scale 0.69 mm . 

Fpgl folds at Moulin plage (in centre l eft of 
photo) . 
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Figure 2.7. Sketches from notebook of interference 

structures found in the Port Goret 

gneisses. The hatched areas represent 

gneisses, the heavily stippled areas 

micaschists and the lightly stippled 

areas calc-silicate bands. The coarse 

hatching correspnds to rocks with a 

syn-F
5 

fabric and the fine hatching to 
p .. 

rocks with a syn-F1p fabric. 
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The structural and metamorphic history presented below for these 

gneisses has been compounded from a study of the coastal exposures of the 

gneisses at Port Goret, Palus plage and Moulin plage. There are obvious 

disadvantages from using small outcrops to build up the structural 

chronology of such large area of rock, as the assumption must be made 

that all the structures within the Pentevrian are represented in the 

areas studied. The results obtained are for this reason not claimed to 

represent a full and complete account of the structural evolution of the 

Pentevrian basement. They are valuable however in that they show the 

Pentevrian to have a much more complex structural history than is suggested 

by some authors (e.g. Cogne, 1959 and Graindor, 1960). 

(b) First phase of folding Fpg1 and associated metamorphism Mpgl. 

Isoclinal folds of this generation are found in the thinner bands 

of micaschist and calc-silicates at both Port Goret and Moulin plage 

(Plate 2.20 and Figure 2.7A,B and C). A penetrative micaceous foliation 

Spgl is developed that is parallel to the axial surfaces of these folds. 

This foliation is also developed in the bands of gneiss although no Fpg1 

fold closures have been recorded. This foliation is defined by parallel 

biotite flakes that are associated with the growth of staurolite 

porphyroblasts (Plate 2.19). These minerals were grown during the Mpgl 

phase of metamorphism. 

Although the compositional banding is cut by Spgl in the hinge regions 

of the Fpgl folds,elsewhere it is parallel to Spgl. This would suggest 

that any large scale folds of this generation are also isoclinal. 

Small scale Fpg1 fold closures are only preserved when the axial 

surface foliation Spgl is parallel or sub-parallel to the later 

foliation SpgS (Figure 2.8D). It would appear that all other Fpg1 folds 
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Figure 2.8. Stereographic projections of struct- -

ures found within the Pentevrian: 

A) contoured plot to 87 poles to the 

Spg5 foliation at Port Goret; B) con­

toured plot to 112 poles to the Spg4 

foliation within the Plouha Series; 

C) contoured plot og 69 axes of small 

scale Fpg5 folds at Port Goret; D) 3% 

contour of poles to Spg5 in the west 

of Port Goret and poles to the axial 

surfaces of earlier structures (closed 

circles = Fpgl' crosses = Fpg2 and 

open circles = Fpg3). 



that were of a different orientation had either been completely 

transposed during this later event or they had undergone 

rotation during the flattening that brought them into parallelism 

with Spg5. 

The Spgl foliation is the oldest penetrative foliation to be found 

within the gneisses. However this does not necessarily mean that 

there were no previous phases of folding, for it is possible that 

any earlier phase may not have had an associated penetrative fabric 

or if it had this fabric may have been transposed during the formation 

of the Fpgl folds and the Spgl foliation. 

The textures and mineralogical assemblages that were developed 

during the Mpgl metamorphic event are not well preserved in the 

staurolite gneisses which have all undergone some degree of subsequent 

recrystallisation. However, these textures are preserved in bands 

of mica schist at Moulin plage (Plates 2.3 and 2.20). The mineral-

ogical assemblage developed comprises quartz, oligoclase, biotite and 

staurolite. The quartz and the plagioclase form a granoblastic 

polygonal matrix of equant grains. The plagioclase has a composition 

o 0 of An28 and a 2Vx of 80 to 84 and shows rarely developed fine albite 
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twin lamellae. The staurolites that are up to 1 cm in length are elong-

ate in form and may occasionally poikiloblastically enclose quartz. They 

generally have an idioblastic to sub-idioblastic form often showing 

six sided basal sections with the 1l2l0} form much better developed 

than the i910} form. These porphyroblasts are usually oriented such 

that their axes lie within the plane of the foliation. The biotite 

which is elongate and exhibits a well defined foliation is concentrated 

in trails and the staurolites are often found in the intervening biotite 

poor regions. This concentration of biotite is due to a strain 

slip cleavage developed during the Fpg2 phase of fOlding. 
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The same mineral assemblage appears to have been developed in the 

staurolite gneisses during this event. The schists differ, however, 

from the gneisses in the relative abundance of the constituent minerals. 

It has not proved possible to discover the mineral assemblages that 

were developed in the calc-silicate bands during this event. The 

mineral assemblages developed during this phase of metamorphism indicate 

that the amphibolite facies of regional metamorphism was attained. 

(c) Second phase of folding, Fpg2 

These folds are found in both of the headlands. The closures 

are tight to isoclinal and are coaxial with the Fpg1 folds whose limbs 

they fold, they also fold the foliation Spg1' At Port Goret they are 

quite tight and are extensively developed as small scale structures but 

they do not have any associated axial surface foliation (Figure 2.7 

A, B and E), In the south of the region at Moulin plage there has been 

a strong crinkling of the foliation Spgl during this phase, The 

structures that are developed are asymmetric with one limb extremely 

attenuated and a strain slip foliation Spg2 parallel to the axial 

surfaces of these folds has begun to develop. 

Although there is no penetrative axial surface foliation associated 

with the Fpg2 folds throughout the area, the style of the folds and 

the fact that the strain slip foliation Spg2 is not associated with any 

retrogression of the mineral assemblages formed during the Mpgl phase 

of metamorphism would suggest that the metamorphic conditions prevalent 

during Mpg1 may have continued during Fpg2' but no substantial 

recrystallisation took place after the cessation of Fpgl' 

(d) Third phase of folding Fpg3 and associated metamorphism Mpg2 

Folds of this generation are found throughout the outcrop of the 

gneisses. They vary in style from isoclinal to tight structures with 

rounded closures. An associated foliation Spg3' defined by biotite, 



Plate 2.21 . Closed Fpgl or Fpg2/Fpg3 inte rfernce structures 
at Moulin plage. The Spg3 foliation is 
parallel to the ruler. 



is developed parallel to the axial surfaces of these folds in the 

micaschists during the Mpg2 phase of metamorphism (Plate 2.21). At 

Moulin plage remobilisation of the leucocratic portions of the rock 

has led to the injection of small tenuous veins of quartz and felspar 

parallel to the axial surfaces of these folds. These veins are 

usually only developed in the axial regions of these folds. 

Where these folds are preserved their axial surfaces are often 

parallel or sub-parallel to the later transposing folation Spg5 

(Figure 2.8D). Fpg3 folds refold the Spgl foliation and recognisable 

Fpg2 folds (Figure 2.7B). This superposition of structures results in 

a variety of interference structures (e.g. Plate 2.21). 

(e) Fourth phase of folding Fpg4 

A few small scale folds of this generation have been recorded at 

Port Goret. They have a wavelength of only a few centimetres and 

occur as close to tight asymmetric folds with rounded or angular 
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closures upon the limbs of FPg3 folds (Figure 2.7D). The axial surfaces 

of these folds show a constant orientation with respect to Spg3' always 

making an angle of approximatley 400 with this surface. There is no 

metamorphic fabric associated with these folds. 

Fpg4 folds are not associated with any major folds. They are not 

found elsewhere in the Port Goret gneisses and their equivalent is not 

seen in the other outcrops of Pentevrian. They are clearly only of 

local occurence and are not the product of any major Pentevrian deformation. 

(f) Fifth phase of folding Fpg5 and associated metamorphism Mpg3 

Small scale folds associated with this event are well developed 

throughout the gneisses. They vary greatly in style with both rock 

type and position but they may be easily identified as they are the last 

generation of small scale folds to have an associated axial planar 
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Figure 2.9. Sketches taken from notebook illustrat­

ing the variation in fold style of the 

FpgS folds at Port Goret; A) intrafol­

ial fold within migmatised gneisses 

which exhibit the Spg5 foliation; 

B) asymmetric isoclines in band of 

calc-silicate (stippled). Note the 

complexity of the contact within the 

gneisses; C) asymmetric close fold in 

banded gneisses. Note the marked change 

in limb thickness. 



foliation SpgS which was developed during the Mpg3 phase of meta­

morphism. This foliation is found as a penetrative fabric throughout 

the gneisses which often transposes earlier fabrics. 

The small scale folds of this generation commonly have axes 
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that are steeply inclined (Figure 2.8C) and their amplitudes or wave­

lengths are not in excess of a few tens of centimetres. Larger scale 

folds with wavelengths in excess of 30m may be identified at Port Goret 

on account of the change in symmetry of these small scale structures. 

A fold closure of thses larger folds is not seen, but the fact that the 

trend of the gneissic banding is always sub-parallel to the Spgs foliation 

would suggest that these folds are tight to isoclinal structures. 

The style of these folds shows a marked variation, which is not 

only dependent upon the lithology of the band that is folded but is also 

controlled by the position of the fold in the gneiss outcrop. The folds 

are tighter and more flattened in the north than those in the south 

(Figure 2.9) there being a much greater attenuation of the fold limbs 

and hence an increase in the amplitude/wavelength ratio of these folds 

This effect is associated with a change in the nature of Spgs which is 

a strain slip foliation in the south and a penetrative micaceous foliation 

in the north. The severity of the Mpg3 recrystallisation that was 

associated with the development of this foliation in the north is 

indicated by the fact that there are many instances of intrafolial 

folds of micaschist or calc-silicate found in bands of gneiss 

(Figure 2.9). In the extreme north, near to the unconformity, 

earlier textures that were discordant to SpgS have been transposed, 

the only foliation found in the gneiss is Spgs while the compositional 

banding of the gneisses is only preserved where it is concordant with 

this foliation. Some of the earlier fabrics are preserved in the hinge 

regions of the larger scale FpgS folds. 



Within anyone area the small scale FpgS structures show a 

variation in style which is dependent upon rock type. Fold closures 
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in the bands of gneiss are usually rounded although some display complex 

crenulations at the hinge region (Figure 2.9B), and do not show as much 

attenuation of the limbs as do those in the micaschist.Fold closures 

in the micaschists are complex and often angular. Folds in the calcsili-

cates exhibit rounded closures and extreme attenuation of the limbs so 

much so that they often become isolated (Figure 2.9C). 

The mineral assemblages developed at Port Goret during the Mpg3 

event are quartz,plagioclase and biotite. The quartz and plagioclase 

form a polygonal granoblastic matrix and they show rational unilateral
l 

boundaries with one another. The plagioclases are untwinned and their 

composition is approximately An20• The biotite is in the form 

of elongate laths which define a foliation that is parallel to the axial 

surfaces of these folds. Biotite usually occurs at the contacts of the 

grains of the matri~.and shows straight rational contacts with the 

surrounding grains. Occassionally, the biotite laths are enclosed sub-

poikiloblastic ally in quartz grains that display rounded irregular 

contacts, or they show serrated gradational contacts with plagioclase 

suggesting that there has been some reaction between these two minerals. 

These relationships would suggest that of these minerals, which were 

syntectonic and may have nucleated at the same time, plagioclase was the 

first to cease crystallisation and quartz the last. The retrogression 

of the staurolite porphyroblasts began during this event or possibly 

even earlier. At first they are replaced by a fine mesh of white mica 

at the margins which gradually spreads to replace the whole crysta1. This 

white mica often pseudomorphs the staurolite, the original crystal 

outlines and even the cleavages are still discernible even in a completely 

replaced individual., As the staurolite is altered to white mica 

very fine granules of ore are exsolved. This mica although non-pleochroic 

lMetamorphic textures are described using the terminology of Spry (1969). 



Plate 2.22 

Plate 2.23. 

FpgS fold at Moulin plage. The ruler is 
parallel to the SpgS strain/slip cleavage. 

Close up of Plate 2 . 22 showing the development 
of the SpgS strain/slip cleavage. 
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Figure 2.10. Structural sketch map of the Port 

Goret gneisses showing the attitude of 

the compositional banding SpgO and the 

location of the Kerhouet antiform and 

the Keregal synform. A contoured stereo-

gram of 77 poles to Spgl ( which is 

parallel to SpgO except at the rare 

Fpgl fold closures) measured around 

Kerhouet antiform shows the non-cylin-

droidal nature of the structure. Note 

that small subsidiary folds around this 

structure lie within Spg5. 
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DIAGRAMMATIC 

REPRESENTATION OF THE STRUCTURE 

OF THE KERIHOUET ANTIFORM PRIOR 

TO THE EMPLACEMENT OF THE ST QUAY 
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Figure 2.11. Sketch which attempts to reconstruct 

the form of the Kerhouet antiform 

and the Keregal synform SIp prior to 

the emplacement of the Saint Quay in­

trusion. 



is usually yellow in colour. 

Complete recrystallisation did not take place during this event 

in the south of the region. The FpgS folding produced tight asymmetric 

small scale folds with angular closures one limb of which has become 

attenuated to produce a strain slip foliation (Plates 2.22 and 2.23). 

At Moulin plage complete recrystallisation did not take place and a new 

generation of biotite that defines a foliation Spgs parallel to the 

axial surfaces of these folds has begun to grow, but only a few small 

individuals are developed at the hinge regions of these folds. In 

these rocks the staurolites are only partially retrogressed. A white 

fibrous mica is seen to grow around the margins of the grains. A phase 

of injection of quartz veins took place during this event. These veins 

which are found in the hinge regions of the FpgS folds often cut across 

the hinges of these folds and are either partially folded or display 

ptygmatic structures. 

A study of the compositional banding except at Fpgl closures, 
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has shown that the majority of the outcrop of the Port Goret Staurolite 

gneisses is taken up by a large antiform, the Kerhouet antiform. The 

limbs of this structure dip away from the core, the northern limb 

strikes NE-SW and dips more steeply than the southern limb which strikes 

WNW-ESE to E-W. This non-cylindroidal fold has two hinge zones, one at 

Froidville (093886) and one at Kerlan (088897) as shown in Figures 2.10 

and 2.11. In spite of the geometrically complex nature of the fold th~ 

axes of the individual closures fall upon a plane that is parallel to 

the axial surface of this structure (Figure 2.10 and 2.11). 

To the north of the Kerhouet antiform there is a tight synform, the 

Keregal synform, whose vertical axial surface strikes ENE-WSW parallel 

to the SpgS foliation. The Keregal synform,unlike the neighbouring 



antiform, is a simple symmetrical fold with both the northern and 

the southern limbs dipping steeply towards the core, its statistical 

o 0 
axis plunges at 35 towards 245 east of north. 

These folds do not affect the attitude of the small scale Fpg5 

folds (the last major penetrative Pentevrian fold phase) and were 

therefore formed during or prior toFpgS. From the evidence available 

it appears that the axial surfaces of these major structures are sub-
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parallel to a later foliation Spg5. Also,since the major structures have 

not undergone major refolding, they are thought to be of the same gener-

ation as the Fpg5 small scale folds and were therefore the product of 

the last major Pentevrian fold phase to affect the region. 

A tentative attempt to reconstruct the form of these folds is 

given in Figure 2.11. This diagram is only schematic and is solely 

intended to demonstrate the form envisaged for these folds in the 

light of the present evidence. 

The non-cylindroidal nature of these folds must be attributed to 

a previous phase of deformation prior to the formation of the Fpgs 

Kerhouet antiform and the Keregal synform. As the Fpgl folds were 

isoclinal the pre-Fpg5 major folding must have taken place during any 

of the Fpg2' Fpg3 or Fpg4 phases of folding. The small scale structures 

associated with the Fpg2 folding are everywhere isoclinal and coaxial 

with the Fpgl structures. The Fpg4 folds are not widespread and are 

therefore unlikely to be associated with the development of large, scale 

folds, thus it is probable that the non-planar form of the compositional 

banding prior to Fpg5 was in the main attributable to the major phase of 

folding immediately prior to this event, that is Fpg3. Although little 

can be deduced about the form of the Fpg3 folds, the reconstruction of 

the form of the Spgl surface proposed in Figure 2.11 would suggest that 

their axes were approximately horizontal. 



Plate 2 . 24 . 

Plate 2 . 25 . 

Photomicrograph (cn) of oligoclase and quartz 
in the remobilised portion of the gneisses at 
Port Goret . Scale 0. 69 mm. 

Photomicrograph (cn) of Mpg4 static biotites 
in Port Goret gneisses at Palus plage . Scale 19 rom· 



Plate 2 . 26 . Photomicrograph Cppl) of Mpg4 st atic biotites 
in gneisses at Port Goret. Scale 0. 32 mm. 
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(g) The MPg
4 

phase of static regional metamorphism 

This was a phase of static metamorphism that affected both the 

gneisses and the micaschists throughout the region. The mineralogical 

assemblages developed during this event are quartz + plagioclase + biotite 

+ garnet + andalusite in the south at Moulin plage and quartz + plagioclase 

+ cordierite + andalusite in the north by the unconformity at Palus plage. 

This event has also been associated with the remobilisation and 

injection of the leucocratic portions of the gneiss as veins that are 

parallel or sub-parallel to the axial surfaces of the Fpg folds, 
5 

produced during the previous phase of metamorphism. Recrystallisation 

and the growth of new minerals takes place to a much greater extent in 

the hinge zones of these folds and elsewhere. 

The quartz recrystallised from small polygonal granoblastic grains 

to much larger irregular poikiloblastic grains with irregular lobate 

margins that form embayments in the plagioclase and that often include 

small rounded embayed plagioclase crystals (Plate 2.24). 

The plagioclase also recrystallised to form larger crystals (Plate 

2.24). These are poikilioblastic to very small inclusions of quartz 

that occur only in the centre of the plagioclase, and also to grains of 

biotite that are only found in the outer parts of the grains. These 

grains have irregular form and lobate margins with quartz and with 

other plagioclase. These plagioclases show well developed twinning 

according to the Albite and Pericline laws. 

The biotites grew as static decussate overgrowths upon the earlier 
f 

nematoblastic biotites (Plates 2.25 and 2.26). These are usually of 

similar size to the earlier biotites but they show a different pleochroic 

formula. often an earlier nematoblastic biotite with well developed 

cleavages can be seen to be replaced mimetically by a later static 

biotite that grows in optical continuity with it. The later biotite 



Plate 2.27 . 

Plate 2 . 28. 

Photomicrograph (en) of Mpg4 garnet (centre 
right) r emobilised portion of the gneisses 
at Port Goret. Scale 0. 69 mm. 

Photomicrograph (en) of Mpg4 garnet replacing 
a retrogressed Mpgl staurolite in micaschists 
at Port Goret. Scale 0.69 rom . 
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shows a different pleochroism, less well defined cleavage and inclusions 

of small,high relief, acicular crystals that are aligned along three 

directions that are at 120
0 

to one another. These later biotites show 

irregular creulate margins with all the other minerals indicating that 

they have replaced these minerals. All biotites show pleochroic haloes 

around minute zircon crystals. 

Subhedral garnet porphyroblasts (5mm across) occur throughout the 

gneisses (Plates 2.27 and 2.28). However they are best developed in the 

areas where remobilisation has taken place (Plate 2.27) or replacing 

the altered staurolites (Plate 2.28). Very small grains of andalusite 

(0.02mm across) are often associated with these garnets. At Port Goret 

the altered staurolite porphyroblasts have acted as a centre of 

nucleation for cordierite porphyroblasts (5mm across) that show sector 

twinning (Plate 2.29) and are full of inclusions of quartz, plagioclase 

and mica. 

There has been a remobilisation of the leucocratic portions of the 

gneiss during this phase of metamorphism. This appears to have taken 

place only in the hinge zones of the FpgS folds that were developed in 

the gneisses during the preceding phase of metamorphism. The 

remobilised portion of the gneisses is often intruded as leucocratic 

veins that are sub-parallel to the axial surfaces of these folds. This 

remobilisation is first marked by the growth of large poikilitic porphy­

roblasts of quartz. These generally start as several discrete grains 

that all have parallel extinction. At a further stage these grains 

are seen to coalesce and to replace both biotite and plagioclase. They 

are often filled with small embayed inclusions of plagioclase and their 

margins are irregular and lobate, particularly when they are in contact 

with the non-recrystallised plagioclase. This growth of quartz 

porphyroblasts is followed by the growth of irregular poikiloblastic 



Plate 2.29 . 

Plate 2.30. 

Photomicrograph (cn) of Mpg4 cordierite in 
micaschists at Palus plage. Scale 0.69 mm. 

Photomicrograph of Mpg4 garnets shown in tonalite 
veins which cut the Port Goret gneisses . 
Scale 0 . 19 mm (en). 
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porphyrob1asts of oligoclase An 2V 860 which show twinning 
20-22' x ' 

according to both the Albite and the Peric1ine Laws. (Plate 2.24). Each 

porphyrob1ast appears to have nucleated as a single grain that has grown 

outwards incorporating all other minerals. The quartz is apparently 

absorbed and then later exso1ved as small square shaped,oriented 

inclusions within the plagioclase. The p1agioc1ases have irregular 

lobate margins and the twinning is much more well developed than that 

of the plagioclase that grew during the previous phase of metamorphism. 

These new minerals coalesce into very fine veinlets in the hinge regions 

of the small scale folds. The vein1ets appear to coalesce in their 

turn to form larger veins, 3-7 cm across, that are intruded sub-parallel 

to the axial surfaces of the F5P small scale folds. These veins are 

generally irregular in th~ckness and often bifurcate but they may be up 

to 1m in length. 

The tonalite veins that cut the gneisses in the north of their 

outcrop (Figure 2.1 and Map 1) and are probably associated with be Port 

Moguer tonalite are thought to have been intruded prior to this phase 

but post-Mpg3. They show growth of decussate biotite flakes and garnets 

(Plate 2.30) in shear zones and replacing the igneous biotites. Also 

quartz-plagioclase intergrowths are developed at the margins of the 

igneous p1agioc1ases. 

(h) Sixth phase of fOlding Fpg6 

At Port Goret both the SpgS foliation and the leucocratic bands 

parallel to it are crenulated. These microcrenulations (Fpg6), rarely 

greater tn~n-icm in amplitude and 2.S cm in wavelength, are of irregular 

form and form a marked lineation (Lpg6). This lineation is not 

associated with the development of any other large or small scale structures. 

(i) Seventh phase of folding, Fpg7 

The SpgS foliation and the Lpg6 lineation may be seen to be gently 



De£ormation Fold phase Style Lineation Metamorphism Mineral assemblage Foliation 

, Fps, isoclinal •••• ? (quartz + andesine + Sps1 
garnet + apatite? ) 

2 Fps2 isoclinal •••• Mps1 quartz + oligoclase + Sps 
biotite + hornblende + 2 
garnet 

3 Fps3 isoclinal tc Lps3 Mps2 quartz + biotite + Sps3 
close muscovite + andesine + 

hornblende + garnet I 

4 Fps4 isoclinal tc Lps4 •••• ••••••••••••••••••••• Sps4 I 

(south) tight ( crenulation) 

4 Fps4 cataclasis •••• •••• ••••••••••••••••••••• Sps4 
(north, 

(mylonitic) early) 

4 •••• • ••••••••• Lps4 MpS3 quartz + oligoclase + SPS4 
(north, hornblende (penetrative) late) ! 

•••• •••• •••••••••• • ••• Mps3 quartz + oligoclase + • ••• 
(south) biotite + garnet + 

andalusite + hornblende 
+ stauroli te 

5 Fps5 gentle to •••• • ••• ••••••••••••••••••••• •••• 
open 

Table 2.2. Pentevrian structural and metamorphic history o£ the Plouha Series. 



Metamorphic Port Goret gneisses Plouha Series Plouha Series Port Moguer 
events: (pelites) (basites) tonalite 

local Mpg, Mpg2 Mpg 
3 Mpg4 Mps, Mps2 MpS3 Mps, Mps2 Mps3 Mpm

1 
Mpm2 

regional M,p M3P M4P ~p M2P M3P M5P 
M2P M3P ~p ~p M6P 

Minerals: 

Sphene X 

Magnetite X X X 

Epidote X 

Garnet X X X X 

Cordierite X X 

Andalusite X X 

Staurolite X X I 

Hornblende X X X X 
I 

Muscovite X X 

Biotite X X X X X X X X 

Oligoclase X X X X X X X X X X X 

Microcline X 

Quartz X X X X X X X X X X X 
-- - -- -

Table 2.3. Mineral" assemblages developed within the Pentevrian basement during the various Pentevrian metamorphic events. 



folded by late folds Fpg7 (Figure 2.8A) which have an axial surface 

that strikes 1300_310
0 

east of north and dips at 87
0 

to the south west. 

The axes of these folds plunge at 810 towards 740 east of north at 

Port Goret and at 260 towards 840 east of north Moulin p1age. Fpg6 

fold closures are not exposed at Port Goret but they are found exposed 

on the beach at Moulin p1age. The folds are gentle, the dihedral 
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o angle between the two limbs being in the order of 120. There are no small 

scale folds r axial planar foliation associated wifu.these folds, which 

have wavelengths of not less than 5Om, although a mullion lineation is 

developed parallel to the axes of these folds at Moulin p1age. 

The pre-Brioverian structural and metamorphic history of the Port 

Goret gneisses is swmmarised in Table 2.1. 

3. The structural and Metamorphic History of the P10uha Series. 

(a) Introduction 

The P10uha Series has not proved suitable for structural analysis 

as it is poorly exposed inland where it is often impossible to identify 

individual structures. As a result no major structures have been eva1-

uated in this series. A structural and metamorphic chronology has been 

established however from a study of the rocks that are exposed on the 

coast between Pa1us p1age and Port Logot, where the structural 

pattern is well preserved on account of the inhomogeneity of the 

P10uha series in this region. Elsewhere this series appears to be struct-

ura11y very simple due to severity of a late catac1astic deformation 

which has resulted in the transposition of all pre-existing structures 

and metamorphic textures. 

Fivepre-Brioverian phases of small scale folding, Fpsl to Fps5 and 

three associated metamorphic events Mpslto MPS3 have been recognised in 

this area, these are reviewed in Tables 2.2 and 2.3. 
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Figure 2.12. Sketches taken from notebook showing 

the form of two complex interference 

structures found in the Plouha Series 

exposed to the north of Palus plage. 

Both the sketches were drawn looking 

westwards onto a vertical north-south 

cliff face. 



Plate 2 .31. FpSl folds in metarhyolites at Palus plage . 
Field of view 20 em. 



(b) First phase of folding Fpsl 

these folds are best preserved in the interbanded acid and basic 

sheets, where they are not uncommon (Figure 2.12A, Plate 2.31). No 

fold of this generation has been found in the pelites. They are 

isoclinal and show extreme attenuation of the limbs and a very large 

amplitude to wavelength ratio. They are always refolded by the later 

Fps2 folds. In the basic lavas the amygdales are flattened and define 
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a foliation that is folded by the Fps2 folds and it is therefore thought 

to be associated with the, Fpsl folds. 

The preservation of the foliation that is defined by the alignment 

of the ellipsoidal amygdales must indicate that these became structurally 

inert after the first phase of folding. This would suggest that these 

amygdales, that were originally filled with quartz, zeolites and chlorite, 

as may be deduced from their mineralogy (see page 2.9), underwent meta-

morphic recrystallisation during the Fpsl event, and that the new minerals 

grown led to the amygdales becoming less ductile that the surrounding rock, 

and hence able to preserve this earlier texture. The garnet + quartz + 

apatite + andesine and andesine + quartz + apatite assemblages developed in 

these amygdales may therefore have been grown during a metamorphic event 

that accompanied the Fps1 folding. However as no other textures that 

could have been associated with such an event are found it is felt that 

there is insufficient evidence to propose this possible event as a 

distinct phase of metamorphism (Table 2.2). 

(c) Second phase of folding Fps and associated metamorphism Mps 
2 1 

The Fps2 folds are isoclinal and show severe attenuation of the limbs. 

Where they refold an Fps1 structure the resultant interference structure 

is of type 3 ORamsay 1967) indicating that the two phases of folding were 

coaxial (Figure 2.l2A). A metamorphic foliation Sps which is defined 
2 

by biotites grown during Mpsl and is parallel to the axial surfaces of 



Plate 2 .32. 

Plate 2 .33. 

Photomicrograph (en) of a partially retrogressed 
Mpsl eordierite with a poor sygmoidal internal 
foliation (SpSl 7) in foliated (SpS2) meta­
sediments east of Plouha. Scale 0.69 mm. 

Photomicrograph (ppl) of metabasalt with 
relict Sps3 foliation defined by Mp s 2 hornblendes 
that are replaced mimetically by Mps4 hornblended . 
Seale 0. 69 mm. 



Plate 2.34. 

Plate 2 .35. 

Fps2/Fps3 interference structures at Palus 
plage. Scale 30cm. 

Fps2/Fps3 interference structure at Palus 
plage shown in Figure 2 .12B. Scale 3Ocm. 



of these folds, is found in the metasediments. This is the earliest 

recognisable Pentevrian metamorphic fabric within this sequence. 

Syntectonic poikilitic porphyroblasts of cordierite which contain 

sigmoidal trails of inclusions of quartz and ore needles were also 

grown in the metasediments during Mpsl (Plate 2.32, Table 2.3). 

Occasionally a relict foliation parallel to Sps2 which is defined by 

hornblende or biotite is found in Fps2 closures in the metabasalts and 

metarhyolites respectively. Also in the metarhyolites, the amygdales 

are flattened and define a foliation that is parallel to Sps2. The 

preservation of the earlier Spsi foliation by "the amygdales in the meta­

basalts is presumably due to the fact that these were flattened and met-

amorphosed during Fpsi and that the metamorphic assemblage developed 

at this time, resisted recrystallisation during Mpsi. This would mean 

that these amygdales were structurally inert during Fps2' the fold phase 

associated with Mpsi. Quartzo-felspathic veins are found in both the 

metabasalts and the meta-rhyolites that are parallel to Sps2. 

(d) Third phase of folding Fps3 and associated metamorphism Mps2 

Fps3 folds are variable in style from tight to isoclinal. They 

are developed throughout this sequence of rocks 'and have a penetrative 

foliation developed parallel to their axial surfaces, Sps3. This folia-

tion is defined by the parallelism of biotite and hornblende crystals 

which were grown during Mps2 (Plate 2.33) and constitutes the major 

metamorphic fabric of this series between Palus plage and Port Logot. 
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Sps3 is generally low lying or horizontal, the axes of the associated 

folds being horizontal with an east-west trend. Where these folds refold 

either Fps1 or Fps2 (Plates 2.34 and,2.35) they are coaxial with each of 

the two preceding phases, and in fact Fps1' FpS2 and Fps3 are all coaxl,a!. 

Where larger scale folds of this generation are observed they are isocl-

inal and recumbant with an amplitude of 10 m and a wavelength of 8m. The 

bands of basic lavas and of pelites within the cores of these folds are 



Plate 2.36. 

plate 2 .37. 

Photomicrograph (cn) of amygdale in metabasalts 
containing Mps2 quartz and garnet which are r e ­
placed by Mps4 calcite. Scale 0.69 mm. 

Complex interference structure (ou t lined) in 
metasediments at Palus plage . Fi e l d of view 10 m. 
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well foliated and all the previous foliations are transposed, whereas 

the poor micaceous foliation Sps2 found within the acid bands is not, and 

is folded into angular small scale folds whose axial surfaces are parallel 

to those of the larger scale Fps3 folds. 

Where the Sps2 foliation is not transposed on the limbs of these folds 

it is crenulated, the axes of these crenulations defining a lineation LpS3 

that is parallel to the axes of the Fps3 folds. 

The Mps2 metamorphism led to the development of a new biotite 

foliation, Sps3' in the metasediments and the replacement of- the Mps1 

cordierites by an agregate. of quartz + plagioclase + white mica + 

biotite (Table 2.3). In the metabasalts a hornblende + andesine + garnet + 

quartz + magnetite assemblage was developed (Table 2.3). The acicular 

needles of hornblende (0.3mm) lie within the plane of the Sps3 foliation, 

and smaller (0.1 mm - 0.2 mm) grains of andesine and subiodiob1astic mag­

netite grains form the matrix (Plate 2.33). The amygdales have been replaced 

by either garnet + quartz + apatite or by quartz + andesine (An34 ) + apatite 

(Plate 2.36). This variation must reflect the original composition of 

the amygdales which are ellipsoidal in form and often rimmed by quartz that 

is concen~rated in pressure shadows. Textures associated with this event 

have not been recognised in other lithologies. 

Deformation in this area was very complex and some of the resultant 

interference structures are difficult to interpret. The interference 

structures shown in Plates 2.34 and 2.37 only show fabrics which are 

associated with Fpsl' Fps2 and Fps3. However it is not possible to produce 

such structures from 3 phases of cylindroidal folding which the majority of 



Plate 2.38. Asymmetric small scale Fps4 folds which fold 
the Sps3 foliation at Palus plage. 

Folded Lps1 lineation at Palus plage. 
Scale in ems. 
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structures suggest were coaxial. Such structures can only be interpreted 

as being the result of these phases of folding if, either locally the 

strain involved in these fold phases was inhomogenous, or there was some 

primary contortion of the banding. There still remain some structures 

that have not been fully interpreted and the sequence of events here proposed 

has been deduced from interference structures where individual fabrics 

have been recognised. No structures or fabrics have been found which 

suggest that a further event has been missed. 

(e) Fourth phase of deformation Dps4 and associated folding Fps4' 

Few large scale folds of this generation are seen although the Sps3 

foliation is strongly crenulated (Plate 2.38) and a good crenulation cleavage 

Sps4' which has an east-west strike and dips at a moderate angle to;the 

north is developed, which is found everywhere along the coast between Palus 

plage and Port Legot. The axes of these crenulations define a lineation 

Lps4 that is variable in attitude but is always parallel to the axes of the 

neighbouring large scale Fps4 folds. These larger scale folds have 

amplititudes of up to 10m and wavelengths of up to 20m, are tight to iso-

clinal in form and have been responsible for controlling the attitude of 

the structures in this region. Folding about the east-west striking axial 

surfa~es has rotated all previous structures to their present east-west 

orientation. 

It appears that one limb of the Fps3 folds sometimes contained 

the Ita" kinematic axis of the Fps4 folds since, although these 

limbs are still planar, the lps3 lineation which they contain has been 

deformed (Plate 2.39). This also indicates that the folding, Fps4' 

took place as a result of simple shear rather than flexural slip (Ramsay 1967). 



Plate 2.40. Sheared Plouha Series (banding dips steeply to 
the north) at Bonaparte plage . A late Cadomian 
flexur e occurs in centre of photograph . 
Scale 30 cm. 



Plate 2.41. 

Plate 2 .42. 

Small scale Fps fold with comples closure 
in aplite at Pointe Plouha. 

Small scale Fps4 fold with angular closure 
in aplite at Pointe Plouha. 



Plate 2 .43. 

Plate 2.44 

Sharp contact be tween the aplites and the she ared 
metabasalts ( darker coloured) in the Pl ouha 
Se ries at Pointe Plouha. Fi e ld of view approx­
imately 30 cm . 

Vertical aplite vein cutting the Plouha 
Series at Pointe Plouha. The ve in i s 
parallel to the Sps foliation and i s approX- ­
imately 25 em wide. 4 
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To the north of Port Logot the style of deformation changes. 

The major penetrative fabric is a mylonitic foliation that transposes all 

previous structures. This foliation strikes 750 _2550 east of north and 

is vertical or dips steeply to the south (Figure 2.8B). This foliation 

is correlated with Sps4 in the south on the grounds that: 1) it has not 

been subjected to any major folding,late warps being the only subsequent 

structures to be developed; and 2) the rocks in this region have undergone 

a late to post-deformational metamorphic event Mps3 which has affected the 

rest of the Plouha Series (Tables 2.2 and 2.3). This metamorphic event 

always occurs as a late tectonic to post-tectonic event, closely related 

to the last major phase of Pentevrian deformation Dps4. 

In the cataclased P10uha Series (Plate 2.40) north of Port Logot, 

the Sps4 foliation is parallel to the axial surfaces of the rare Fps4 

fold closures that occur (Plates 2.41 and 2.42). Fold closures that 

may be attributed to an earlier phase of deformation are absent in this 

area. Those Fps4 folds which are preserved are tight to isoclinal with 

angular closures (Plates 2.41 and 2.42) and axes of variable orientation. 

They occur where thick bands of acid material, which are surrounded 

by massive amphibolite~ are folded. It is thought that the less 

competent amphibolite protected the more competent acid bands from 

the effects of the cataclastic deformation. Bands of relatively unsheared 

acid material occur which are always oriented parallel to the foliation. 

It is thought that these were originally concordant with the 

cataclastic foliation and therefore did not themselves undergo such 

severe deformation during this event (Plates 2.43 and 2.44). 

A discussion on the variation in the nature of the Dps4 deformation 

is given on page 2.43. 



Plate 2 . 45 . Photomicrograph (cn) of partially r e trogresse d 
Mps3 staurolites in the metasediments to the 
north of Palus plage . Scale 0.69 mm . 

Plat e 2 .46. Photomicrograph (cn) of a sheared porphyroblast 
now replaced by irregular mica plates in the 
metasediments at Pointe Plouha. The foliation 
seen in the photograph is Sps4' Scale 0.69 rom · 



(f) Third phase of metamorphism Mps3 

This phase of late to post-tectonic metamorphism led to the 

development of amphibolite facies assemblages and static metamorphic 

textures throughout the PlouhtSeries (Table 2.3). Within the meta­

basalts static porphyroblasts of hornblende are well developed in the 

more sheared bands and in the regions between the Sps4 crenulation 

cleavage planes, in the less sheared bands. Mimetic hornblendes that 
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lie within the Sps4 foliation are grown in bands of sheared metabasalt 

between Port Logot and Pointe de la Tour. Hornblende also replaces the 

margins of the garnets that occur in the amygdales. Sphene occurs in 

the matrix as small (O.2mm) sub-<idioblastic wedge shaped grains. In 

the metasediments a staurolite + quartz + plagioclase + andalusite + 

garnet assemblage was developed during Mps3 (Plate 2.45). The matrix 

of the metasediments has been recrystallised to a polygonal equigranular 

aggregate of quartz and plagiOClase whilst staurolite porphyroblasts that 

may be up to 2cm across are seen to either replace the Mpsl cordierite 

directly or to replace altered cordierite. The garnet grows exclusively 

in the altered cordierites. Andalusite replaces both the biotite in the 

matrix and the white mica that replaces the cordierite. To the north 

of Palus plage large retrogressed porphyroblasts of andalusite up to 

5cm across are developed. 

To the north of Port Logot, where the effects of the cataclastic 

deformation Dps4 are well developed, all previous textures have been 

obscured and the metasediments are represented by fine grained quartz + 

oligoclase + biotite schists, no porphyroblasts being developed 

(Plate 2.46). This would suggest that the pre-existing cordie rite 

porphyroblasts acted as a centre of nucleation for the later minerals 

and that where these cordierites had been destroyed during the 



Plate 2.47. Late Fps5 flexure in metabasalts at Palus 
plage.Th1s photograph was taken from the 
north. Scale 3Ocm. 
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Deformation Foliation Metamorphism Mineral assemblage 

Dpm
l 

Spm
l ---- -OOOOOooooooooooee 

(cataclastic) 

, Dpm
l 

Spm
l 

(metamorphic) Biotite,quartz, 
Mpm

l oligoclase ,epidote , 
hornblende ,magnetite . --. . . . . 
~ garnet • 

. . . . e • _ • Mpm
2 

Metasomatic muscovite 

Table 2.4. Pentevrian Structural and Metamorphic History of the 
Port Moguer tonalite. 



cataclasis, nucleation of such minerals as staurolite, andalusite and 

garnet did not take place. 
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The quartz + andesine + biotite assemblage found in the acid igneous 

rocks, the aplites and the granite gneisses, were developed during 

this event. The matrix of these rock types, where they have not been 

sheared, is comprised of a polygonal aggregate of quartz + andesine + 

biotite. The biotite grows as decussate plates. 

(g) Fifth phase of folding FpsS 

This isa late phase of folding about axial surfaces that strike 

ENE - WSW and dip at a moderate angle to the SSE. These folds are 

gentle to open (Plate 2.47) and have no associated metamorphic fabric. 

They can be seen to fold the Sps4 foliation and were therefore developed 

after the Fps4 phase of folding. 

4. The structural and metamorphic history of the Port Moguer tonalite 

(a) Introduction 

The Port Moguer tonalite has undergone at least two phases of Pentevrian 

metamorphism subsequent to its intrusion and solidification, which have 

resulted in a variety of mineral assemblages being formed. Its structural 

history is simple with only one penetrative foliation developed. The 

sequence or events is reviewed in Table 2.4. 

(b) Cataclasis Dpml and formation of Spm1 foliation 

Subsequent to the injection of aplite dykes the tonalite underwent 

a phase of cataclasis Dpml which resulted in the formation of the Spm
l 



Plate 2 . 48 . 

Plat e 2 .49. 

Photomicrograph (cn) of a plagioc lase grain 
in the sheared tonalite at Port Moguer. 
Scale 0.69 mm . 

Photomicrograph (en) of a shattered and strained 
quartz grain in the blastomylonitic tonalite. 
Scale 0.69 mm. 
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Figure 2.13. Sketch geological map of the Port 

Moguer tonalite showing the varying 

degree of cataclasis within the body. 
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foliation. This foliation has an almost east-west strike and dips steeply 

to the north (Figure 2.6). As it is unlikely that the tonalite would have 

undergone any appreciable flattening or rotation after this event because 

of its size and as the later staticrecrystallisation resulted in this 

body becoming a homogenous rigid body, this orientation of Spml may be taken 

as the original attitude of this foliation. The extent to which the 

tonalite has been affected by this event appears to decrease as the centre 

of the body is approached (Figure 2.13). The margins of the intrusion are 

comprised of mylonites with 60% to 90% of crushed matrix. Elongate 

porphyroclasts of sericitised plagioclase lie sub-parallel to the 

mylonitic foliation Spm
l 

within the matrix. These plagioclases are often 

bent and display a marked development of deformation twinning. Plagioclase 

laths whose long axes are not parallel to Spml are much less sericitised 

than those whose long axes lie within Spml • This may be due to the fact 

that the less sericitised plagioclases lie in a less sheared portion of the 

tonalite as they have not been rotated into parallelism with Spm1 • The 

age of this sericitisation is not clear. Only the original ig~ous 

plagioclases are sericitised, subsequent overgrowths are not. This could 

indicate that either this was associated with the earliest event Dpm1 

or that it took place later but only affected the more calcic primary 

plagioclase. 

The central two thirds of the intrusion, and the region around Quin 

Zegal that is rich in xenoliths, are made up of protomylonitised tonalite 

with only 10% to 50% of the original tonalite being reduced to a crushed matrix 

(Plates 2.48,2.49). In some instances the protomylonites are replaced by proto­

cataclasites that show no foliation. As previously mentioned, the tonalite in 

the centre region of the intrusion at Kerlohou has not been cataclased to any 

great extent. The large quartz grains all show strained extinction and are 



Plate 2.50 . Photomicrograph (cn) of crushed tonalite showing 
lighter oligoclase rims on the plagioclases and 
decussate biotites replacing the igneous biotites 
(c entre). Scale 0.69 mm. 



Plate 2 . 51. 

Plate 2 . 52 . 

Photomicrograph of a relict igneous plagioclase 
rimmed by Mpm

2 
oligoclase (0) . Scale 0. 69 mm, (cn) . 

Photomicrograph (cn) of shattered igneous 
plagioclase healed by a later growth of Mpm2 
oligoclase. Scale 0 . 69 mm. 
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often cut by microshears that are filled with finely crystalline quartz. 

The biotite laths are often kinked. 

(c) Prograde metamorphism Mpm l 

This metamorphism postdates the cataclastic events and has produced 

a granoblastic texture throughout the crushed matrix of the mylonites~ 

resulting in the development of blastomylonites . 

Biotites exhibit a decussate texture. In the less sheared areas 

of the tonalite the large relict igneous biotite laths are replaced by 

fine aggregates of small decussate biotites (Plate 2.50). Biotite also 

occurs as trails in the crushed matrix where it is particularly associated 

with the crushed grains of magnetite. Plagioclase is also replaced by 

biotite, but this is not common and could be due to grains of ore within 

the plagioclase being replaced. In the central regions of the body 

where the rock is less sheared the biotite shows a dark brown pleochroism, 

whereas at the more sheared margins of the intrusion the biotite shows a 

green brown to yellow pleochroism. 

The oligoclase felspar that is grown during this phase of metamorphism 

is developed as rims around the original igneous felspars (Plate 2.51) 

and also cements fragments of crushed igneous plagioclases (Plate 2.52). 

The grains of igneous plagioclase are also replaced by spongy albite/ 

quartz intergrowths. The original igneous andesine appears to have 

undergone recrystallisation as a result of which the zoning disappears 

and twinning becomes less distinct. Small irregular needles of ore 

(1 mm x 5 mm) that are found in the unaltered igneous andesine have 

apparently become resorbed 



Epidote replaces the uncrushed igneous plagioclases, often being 

developed in trails that follow the euhedral zones. It is, however, 

more commonly found growing in association with the biotite. In 

those rocks where the biotite and the h~rnblende define a foliation 
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Spm
l 

the epidote replaces the plagioclase porphyroclasts as a radial 

aggregate. This suggests that in these rocks the epidote grew after the 

deformation, whereas the biotite and the hornblende grew during the 

deformation, and that although the epidote is in close association with 

the biotite it had in fact continued to after the biotite, which it may 

even replace in some instances. 

Quatrz occurs as equidimensional granoblastic grains that are coarser 

in the pressure shadow regions of the plagioclase porphyroclasts than 

in the matrix. Some of the large grains of igneous quartz are not crushed, 

but may show marked undulose extinction ana the development of Born 

strain lamellae. These grains are often cut by microshears that are filled 

with very fine granular quartz. 

Small crystals of garnet grow in the plagioclase porphyroclasts 

and in the matrix where they are usually in association with ore or 

biotite. These grains are small, rarely exceeding O.lmm. They are 

anhedral but not poikilitic and are not commonly developed in these sheared 

rocks. 

Elongate needles of hornblende that are aligned parallel to the 

mylonitic foliation are developed in both the xenoliths and the tonalite 

surrounding them. These appear to have grown whilst the rock was still 

undergoing deformation, although it is possible that they could owe their 

orientation wholly or in part to a mimetic mode of crystallisation. 



100 polu to biotit. cl.avag. 
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Figure 2.14.Petrofabric diagrams from the Port Moguer 

tonali te: A) and C) 100 poles to biotite 

cleavage and 100 quartz C axes respectively 

taken from a specimen that did not undergo 

syn-Mpm
1 

shearing; B) and D) 100 poles to 

biotite cleavage and 100 quartz C axes 

respectively taken from a specimen that 

underwent syn-Mpm
1 

shearing. Both speci­

mens were collected 50 m. south of the 

harbour wall at Port Moguer. 
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Magnetite recrystallises as trails of anhedral grains in the matrix 

or, more rarely, as euhedral grains that are cubic in form. 

In certain discrete zones shearing took place during this event. 

One such zone is 200m to the north of the harbour wall at Port Moguer. 

Figures 2.14A and B are plots of poles to Mpml biotite cleavages from 

the blastomylonitic tonalite and the syn-Mpm
l 

shear zone respectively. 

Figure 2.l4C and D are plots of quartz C axes from the same specimens. 

The biotite defines a very weak girdle and the quartz C axes are .. almost 

spherically symmetrical in the b1astomy1onitic tonalite (Figures 2.14 

B and D), whereas the biotite defines a strong foliation with an associated 

triclinic quartz girdle in the s yn-Mpm
1 

shear zone (Figures 2.14 A and C). 

The foliation in the shear zone is parallel to this zone. Within the 

shear zone the quartzofe1spathic matrix is finer than in the surrounding 

blastomylonitic tonalite and grains show irregular sutured contacts 

with one another. 

The metamorphic assemblage developed within the toanlite and its 

cataclased derivative comprises biotite + quartz + albite + epidote + 

garnet ~ hornblende, typical of the upper greenschist facies. 

(d) Potassium metasomatism Mpm
2 

This event, postdating the phase of prograde regipnal metamorphism, 

is marked by the growth of microcline throughout the body. The microcline 

is generally seen to replace the albitic rims of the igneous plagioclases 

that grew during the previous phase of metamorphism. It is also seen 

to display a variety of replacement textures within the igneous plagioclases. 

Often lenses or stringers of microcline grow inwards from the margin of 
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Pentevrian Port Goret gneisses Plouha Series Port Moguer tonalite 

DIP FIP SIP · .. MIP · ... Fpgl Spgl · ... Mpgl · ... Fpsl Spsl · ... · ... · ... · ... · ... · ... · ... 
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D4P F4P · .. · .. . . . · ... Ppg4 · .. . .... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... 
DSp FSp SSP Lsp M4P · ... Fpgs Spgs 

Mpg3 Dps4 Fps4 Sps4 I.ps 4 Dpm
l 

Spm
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... . .. · .. •• • ?MSp? · ... . ... · ... · ... Mpg4 · ... · ... · ... · ... Mps3 · ... · ... · ... · ... Mpm
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6P 
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6P • •• L6P ?M
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D7P F7P Fpg7 ! · .. · .. ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... · ... , 

~-- ----

Table 2.S. Correlation of the Pentevrian Structural and Metamorphic events recorded in the area studied. 

The left hand column gives an overall synthesis for the Pentevrian in the area studied. 

The three other columns list the individual deformations, fold phases, foliations, lineations 

and metamorphisms for each of the three Pentevrian units. 



2 42 

the plagioclase crystal. In one instance micro1ine is developed along 

one half of a Carlsbad twinned individual, the other half of the individual 

is completely replaced by secondary mica. It is common for microcline 

to grow along certain twin individuals in one grain. Microdine also 

replaces the igneous plagioclase along the euhedral zones and often it 

is the outer zone of an individual that is partly or wholly replaced. 

Microcline grows along the contact of quartz veins and also across 

them. Often, several of these patches of microcline that replace one 

quartz vein are in optical continuity with one another. The age of this 

event is unknown. 

s. Correlation of the various Pentevrian structural and metamorphic events. 

A correlation of the various structural and metamorphic episodes 

described above is proposed in table 2.5. Fpgl and Fpsl are correlated 

in that theyare the earliest structures seen in both the Port Goret 

gneisses and the Plouha series. The folds are isoclinal and both fold 

phases are followed by two coaxial phases of folding which produce 

isoclinal folds Fpg2' Fps2' Fpg3and Fps3. The second and third phases 

of folding in the two regions are also correlated. The Fpg5' Fps4/Dps4 

and Dpm
l 

structures are all correlated as they are the last penetrative 

structures to be developed. The associated foliations Spg5' Sps4 and 

Spm
l 

all trend approximately ENE-WSW and all these events were followed 

by a static phase of regional metamorphism, Mpg4 Mps3 and Mpm
l 

respectively. 

The Fpg7 and Fps5 events are correlated in that these folds are of the 

same style and orientation, however the age of this event is unknown. A 

Complete structural and metamorphic history for the Pentevrian is 

proposed in Table 2.6. 
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Figure 2.15. Diagram showing the possible temporal 

and spatial relationships between DSp ' 

M
4P 

and MSp. It is suggested that M4P 

was synchronous with D5P in the south. 

However, M
4P 

either died out or preceded 

DSp where this event was associated with 

cataclasis in the north. The subsequent 

metamorphic event MSp postdated DSp in 

the south but was still associated with 

shearing and the development of SSP in 

the north. 



6. Discussion. 

The variation in the nature of the DSp deformation, with FSp 

folds being developed to the south of Port Logot and a cataclastic 

foliation SSP being formed to the north, could be due to one or more of 

the following factors: a variation in temperature during this event; 
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a variation in strain rate; a variation in the timing of the associated 

metamorphic events. One possible explanation is outlined in Figure 2.1S. 

In the south between Moulin p1age and Palus plage the FSp folding was 

associated with the M4P metamorphism. Between Pal us p1age and Port Logot 

no recrystallisation was associated with the FSp folds although the 

style of the folds would suggest that the rocks were fairly hot at 

this time. In the 'area to the north of Port Logot the DSp deformation 

may have acted on rocks that were a good deal cooler than those in the 

south and thus they yielded by cataclasis. This suggests that the M4P 

metamorphic event was less important in the north than in the south. 

Subsequent to the DSp deformation a static phase of metamorphism MSp 

affected all the Pentevrian. This event was post-tectonic in the south 

of the area, but was associ ted with some late shearing in the north. 

Thus it is suggested that whilst the M4P event accompanied DSp in the 

south, it either died out or preceded DSp in the north (Figure 2.15) and<. 

that the M event was post-tectonic in the south but late-tectonic in 
5P 

the north (Figure 2.15). This explanation does not take into account 

differing strain rates but may in part account for the above mentioned 

variation in the nature of D5p• 

This study has study has shown that the structural and metamorphic 

history of the Pentevrian on the French mainland is complex. At the 

present time similar studies are being undertaken in the Pentevrian 

basement regions of Cap de la Hague, Guernsey, Jospinet and Saint Malo 



----_.-

Deformation Fold phase Foliation Lineation Metamorphism Metamorphic grade 

Dr F SIP · .. M
1P 

Amphibolite facies 
. ? lP 

D
2P F2P S2P · .. M2P Amphibolite facies 

D
3P F

3P S3P L3P M
3P 

Amphibolite facies I 

D4P F
4P · .. · .. · .. .00000 ••• 000.0 •••• 

(Local) 

DSp FSp SSP LSp M4P 
Upper greenschist 

(South) facies 

Dsp early FSp SSP · .. ??? .•..... ??? •••••. 

(North) late ... 
SSP LSp MSp Amphibolite facies 

, . . . . . . . · .. · .. 
D6P 

F
6P · .. L6P · .. •• 0 •••••••••••• 0 •• 

(Local) 
D7P 

F7P · .. · .. · .. • •••• 0 ............. 

'------ ----- - --_ .. - - - -

Table 2.6. Pre-Brioverian Structural~and Metamorphic History of the Pentevrian Basement. 



and Saint Cast migmatite belts ( R.A.Roach, M.Brown and G.Power -

personal communication). There is a possibility, therefore, that 

some tentaive structural correlation may be made between these regions. 

It should be noted that the description of the Pentevrian in the 

type area by Cogne (1959) has led many other authors to treat the Pen­

tevrian as a pre-Brioverian, highly metamorphosed basement that has a 

predominantly north - south trending foliation. However, certain 

authors have gone even further and have taken high metamorphic grade 

and a penetrative north - south foliation as being typical criteria 

for recognising Pentevrian basement e.g. Graindor 1960, Shelley 1966, 

Rast and Crimes 1969. This has led to subsequent misidentification of 

Brioverian rocks as Pentevrian, and also to Pentevrian rocks (that 

do not show these features) being assigned to the Brioverian. 

7. Conclusions. 
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The existence of three previously unreported bodies of Pentevrian 

age, the Port Goret gneisses, the Plouha Series and the Port Moguer 

tonalite has been established. These are comprised of paragneisses, 

metasediments, metavolcanics and metatonalite. Although each body shows 

different structural and metamorphic patterns, an overall correlation 

is proposed that suggests that the Pentevrian basement in this area 

underwent at least 7 phases of folding and 5 metamorphic events prior 

to the deposition of the Brioverian. These are reviewed in Table 2.6. 
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Figure 3.1. Map of the Armorican Massif showing the 

outcrop of the Brioverian (stippled) after 

Cogne 1962 (modified). 
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A. Introduction 

The term Brioverian was first used by Barrois in 1895 

as a system name for the vast sequence of sedimentary Precambrian 

rocks that outcrop over the whole of the Armorican Massif 

(Figure 3.1) and had hitherto been known as the "Schists de St. ill". 

For the purpose of this study the author has taken the term 

Brioverian to imply a late Precambrian, post-Pentevrian, supracrustal 

sequence of geosynclinal sedimentary and volcanic rocks that were 

laid down in the Armorican Massif between 1~7000 m.y. ago. All 

Brioverian rocks in the Armorican Massif have been affected to 

some degree by the late Precambrian Cadomian orogeny that 

occurred between 6~600 m.y. ago. CRoach et al 1972). 

Although the rocks of this area that are considered to 

be Brioverian are not seen to be covered unconformably by the 

Cambrian, they are assigned to the Brioverian for the following 

reasons. 

1. They rest unconformably upon a pre-l030 m.y. 

gneissose basement (Leutwein 1968, see Page 1.7 

and Table 1.5 no. 7), which represents the 

Pentevrian as defined by Cognt (1959) 

.2. They have only been subject to one orogenic 

phase, which the radiometric dates published 

for the area show to have occurred pre-570 m.y. 

(see Page 1.5 and Table 1.3 no. 3) but post-

1030 m.y. (see above). This is considered to be 

the Cadomian orogeny (Leutwein 1968). 
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Figure 3.2. Outline geological map of the area around 

the Baie de Saint Brieuc showing the 

stratigraphy of the Brioverian, after 

Cogne 1962. 
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Figure 3.3. Sketch geological map showing the 

outcrop of the Binic-Br~hec series 

(stippled) in the area mapped. 



Since these sediments were deposited upon an older Precambrian 

basement, are Precambrian in age and have been affected only 

by the Cadomian orogeny, they may be regarded as Brioverian. 

These sediments were first described as Brioverian by 

Barrois (1896) who referred to the "Massif (now 'Series') de Binic", 

which he later correlated with the "Schistes et Phtanites de 

Lambal1e" (Barrois 1934 and 1938a) as they contained bands of 

phtanite. The Series de Binic has been assigned to the Middle 

'" Brioverian as it contains phtanites (Cogne 1962, 1964, Figure 3.2) 

and also to the Upper Brioverian as it is said to rest discordantly 

upon the Lower and Middle Brioverian of Rosaires p1age. The 

Brioverian of Pointe de 1a Tour and Br~hec is placed in the Lower 

Brioverian along with the Port Goret gneisses and the P10uha Series 

'" by Cogne (1962). 
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The Brioverian sediments of the area studied may be divided 

into three separate sequences. That in the north of the area, 

'" comprising the Brioverian of Brehec and Pointe de 1a Tour, outcrops 

on the coast as far south as Pointe de 1a Tour (052966) and extends 

northwards past Br~hec port (039974) (Figure 3.3). At Br~hec it 

can be seen to be covered unconformably by a sequence of red beds. (Map 1). 

The southern contact of the Brioverian with the Pentevrian runs 

east-northeast to west-southwest and has been traced inland as 

far as Kertidic (008948). The ground occupied by these sediments 

rises steeply from the coast to a plateau around 80 m. in altitude. 

A second sequence in the centre of the area is composed of 

volcanic rocks that are seen to rest unconformably upon the 



Pentevrian basement. These rocks, the Palus plage metasediments 

1\ 
and metavolcanics, outcrop on the southern flank of the Greve de 

Palus (088915 to 094914) and extend inland as far as Kerega1 (Map 1). 

Another limited outcrop of a very similar sequence of volcanics 

is found to the north of P10uha (052917). In the south of the area 

a third sequence consists of a great thickness of clastic sediments, 

the "Series de Binic" (Barrois 1896). These occupy a rectangular 

area that is bounded by the town of La Bourdonniere (~77880) and 

Moulin plage (128872) in the north, and the towns 6f Lantic (086838) 

and Binic (134834). The outcrop of this series continues to the 

south of the area studied as far as the beach at Les Rosaires where 

it is in contact with a sequence of older metamorphic rocks. 

The land occupied by the Series de Binic rises from the coast as 

low cliffs 10m. to 20m. in height to an inland plateau about 80m. 

in height which is disected by a few east-west river valleys. 

The Series de Binic and the Brioverian of B~hec and 

Pointe de 1a Tour are very similar in litholigies and will be 

treated together and termed the Binic - Br{hec Series. 

3 3 



Plate 3 . 1. 

Plate 3.2. 

Photomicrograph (ppl) of the calc-siltstones 
of Pointe de la Rougnouse, consisting of 
"clastic" quartz grains in a zoizite, biotite 
matrix. 
Scale 0.19 mm . 

Parallel flute casts in Series de Binic in 
quarry ! km west of Binic on the Binic-Lantic 
Road. Field of view is approximately 3m . 
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B. The Binic-Br~hec Series 

1. Introduction 

The Binic-Br~hec series is comprised of an interbedded 

sequence of sandstones, siltstones and mudstones. The sandstone 

units may be up to several metres in thickness whereas the finer 

material may occur in laminations that are less than 1 mm. in 

thickness. Individual beds are very constant in thickness and 

even the finest of these may be traced with no variation for a 

considerable distance. Many of the coarser beds show graded 

bedding. Similar sediments are found elsewhere in the 

Brioverian, e.g. between Granville and Saint Pair and along the 

E10rn. However, only a few detailed studies on their sedimentology 

have been carried out (Graindor 1957, 1964; Dangeard, Doret 

and Guignot 1961; Winterer 1967; Bradshaw, Renouf and Taylor 

1967; Bishop, Bradshaw, Renouf and Taylor 1969). 

There is some variation in the nature of the sediments 
/ 

that make up the Binic-Brehec series. At Pointe de 1a Rougnouse (Map 1) 

there is a band 110 m. thick, that is comprised of calc-sandstones 

and siltstones (Plate 3.1). These sediments show much less 

variation in grain size than the rest of the sequence and are 

made up of beds of 1 - 3.5m thick are much richer in quartz. 

A study of the nature of the Brioverian exposed on the 

coast between Moulin P1age (132872) and Pointe de Troup1et (137848) 
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Figure 3.4. Map of the Moulin and Goudelin plages 

showing the location of the sections 

recorded. The numbers on the sections 

for Moulin and Goudelin plages correspond 

to those on figures 3.10 and 3.14. respect-·· 

ively. 



Plate 3.3 . 

Plate 3 . 4 . 

Bifurcating ripple marks in the Series de Bi nic 
in quarry 3 km west of Binic on the Binic­
Lantic road . Field of view is approximat e ly 3 m. 

Graded bedding in lithofacies Ml . Grading (the 
fine sediments are darke r than the coarser) 
indicates that the sequence is the right way up . 
Sc ale 30 cm . 



has been carried out in order that something may be learned of 

the mechanism and environment of deposition of these sediments 

(Figure 3-4). In this study no regard has been paid to the 

relatively few directional sedimentary structures (Plates 3-2 and 

3-3) preserved in these sediments as it is felt that the 

complexity of the Cadomian deformations and the lack of knowledge 

of the exact orientation, type and mechanism of formation of 

structures associated with the early phase of folding would make 

any attempt at calculating the original attitude of the bedding 

very inaccurate. 

2. The Brioverian of Moulin plage. 

(a) Introduction. 

Four distinct lithofacies have been recognised within the 

Brioverian of this section (Figure 3.4). These are. lithofacies 

Ml, massive nodular sandstones; lithofacies M2, graded sandstones 

and sandstones with banded mUdstones; lithofacies M3, banded 

mudstones; and lithofacies M4, graded siltstones and sandstones 

with banded mUdstones. These lithofacies are often found in a 

constant stratigraphic order with lithofacies Ml at the base and M4 

at the top. All four lithofacies comprise a unit of sedimentation 

which is repeated cyclically at least six times within this 

section (Figures 3.10 and 3.11). The thickness of one such cyclic 

unit varies from l2.00-30.5m with a mean value of 19.5m. 

(b) Lithofacies MI. 

This is comprised of thick units of massively bedded 

greywackes that are from 0.7-9.4m thick, the mean being 3.9m 

3 5 



- -

-.-.9. . . . , . · .... ... .. .... . ' , 

.. ".. .. .. .. . .. .. .. , . .. ...... , , . 
.. " .. ,.a 

.. ...... .. " 
.. .. .. .. .. 

.. .. .. " .. " .. 
.. .. .... 

.. ....... .. · ... .. .. .... .. 

\.~·~.:o 
':,~o~o 

.. .. .. .. 
.. f, .... : • .. .. . ' . · .. ".' . .. .. .. .. . .. .. . . 
.. : ... ... .. 

.. .. .... .. 
.. .. .. . .. .. · .... .." .... . . . · .... - .. . , ... .. . . . .. ..... .... .. .. 

• ... .. ........... .. 
.. .... ..... .. 

.. ....... . . . .." .. " .... .. ... .. '. 
.. .... ...... ...... 

.. .. .. .. .. 
, , 

.. .. .. .. .. " .. .. . , 
f. .. .. .... .. .. 

.. .... .... .. .. .. .... 
· . .... .. " 

.. .." .. ' .. .. 
.... " ...... .. 
.. " .. " . .." . , . .... .. .. .. · . · . . 

.. '. .." ..... t .. 

.. .." . .. .. " .. 
.. "... .. ... . 

.. .... .. , 
.. .... .. .. . " ... .. .... ...... .. .. . . " .. .. .. .. .. .... 

.. ...... .. " . , , 
.... ~ '. ... .. .... ... " ~ .. .." .. .. . . . 
"'0' : ,', · . . . ' . . , 

, . . . . . .. .... .. 
, " " . . 

.. .." .. .. .' . . . 
.. : .... . .. 
.. .... ... . ..... 
~: . o· , .. 
~ ,o:~ .. 
': 0': ~ ,.0: 

.. .. .... 
.. .. : .. .. .. 

, , . 
.. .. " '.. .. , .. . ' .... .. ".... · ' .. .. .. .... .. 

.. .. .. .. .. "." .. . . 
.. .... .. .. .. 

.. . " .. · . . , . . 
.. ..." .. 

MI 

o 
y 

, ­
r 
t 
i 

2 c 
a 
I 

3 s 
c 
a 

4 I 
.e 

5 metres 

.......... , 
::::','.:, sandstone 

li"_ ........ 

t.-J siltstone 

Q mudstone 

sharp contact 

KEY 

laminated 

mudstone 

........ gradational contact 

~ disrupted or sl umped beds 

-utJ1I' load costs 

o calcareous nodules 



Figure 3.5. Section through lithofacies M 1 taken from 

section no.3, Moulin p1age. The key in this 

figure is also used for Figures 3.7., 3.8., 

3.9. and 3.12. 
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Figure 3.6. Sedimentary structures found in litho­

facies M 1: a) deformed load structure' 

at the base of sand unit 2m thick; b) Load 

cast with overturned mud plume and possible 

"ball and pillow" structures. Balls of 

mud are contained in bed of mudstone. 



Plate 3 . 5 . 

Plate 3.6 . 

Well developed load structures at the base 
of a graded unit in Lithofacies MI. Scale 
in cm. 

Disrupted mud bank (dark coloured) near the 
base of a graded unit in lithofacies M1. 
Seale in em . 



Plate 3.7. 

Plate 3.8. 

Thick graded unit in lithofacies MI 
with flattened clacareous nodules aligned 
parallel to the cleavage S2C (which is also 
parallel to the hammer). 

CalcareouS nodule in greywacke, lithofacies 
MI. Scale in cms. 



(Figure 3.5, Plate 3.4). There may be up to three such beds 

in any of the units of this lithology which are from 3.3-15.4m 

thich with a mean of 6.2m. The greywackes are medium grained 

and show little variation in grain size, except at the top of a 

unit where beds are often well graded. The grain size at the 

base of a graded bed is coarser than that of the rest of the 

unit. Individual beds of greywacke are often separated by 

thin bands of finely interbedded siltstones and mudstones that 

are O.1-0.4m thick (Figure 3.5). The base of the overlying 

bed shows well developed load and flame structures and ball and 

pillow structures (Figure 3.6 and Plate 3.5) while the bedding 

in the mud and siltstones is often severely disrupted (Plate 3.6). 

The thick greywacke beds are characterised by the occurrence 

of distinct horizons that are rich in calcareous nodules (Plates 3.7 

and 3.8), which are O.07-0.5m thick. Several such horizons may 

be found in one bed of greywacke. The nodules are in the form 

of ellipsoids whose longer axes lie within the plane of the 

foliation S2C (see Chapter IV, page 4.4). The principal 

axes of these ellipsoids vary from XIYaZ:= O.8maO.6maO.3m to XaYIZ = 

0.05maO.04maO.03m and the ratio of the long to short axes varies 

from 111 (or circular) to 2011. These nodules make up between 

5% and 20% by volume of the nodular horizons. The banding. 
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within these nodules is concentric and they are thought to be 

concretionary in origin. In some instances the nodules do not occur 

in distinct horizons but are disseminated throughout the bed 

of sandstones. 



Plate 3.9. 

Plate 3 .10. 

Photomicrograph (en) of greywacke from base 
of graded unit at Binic harbour wall. The clastic 
grains still exhibit some original texture. 
Scale 0.63 mm. 

Bedding in lithofacies M2. Field of view is 
approximately 8m . 
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Figure 3.7. Section through lithofacies M 2 taken 

from section no. 3, Moulin plage. (Key 

as in figure 3.5.) 



Petrologically it is difficult to assess the actual 

abundances of the original constituents of these greywackes, 

particularily the labile constituents, as these rocks have 

undergone metamorphic recrystallisation. Fortunately all 

original textures have not been lost and in the greywackes the 

detrital fragments still preserve their angular form (Plate 3.9). 
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The relative abundances of these fragments are quartz~felspar~lithic 

fragments. These rocks appear to have contained a good deal of 

matrix since metamorphic biotite, which has presumably grown at 

the expense of the matrix, is ubiquitous and never falls below 

15% of the mode even in the most coarse grained rocks. These 

sandstones may therefore be classified as greywacke~ (Pettijohn 1957)0 

It is remarkable that there is very little variation in the 

mineralogical composition of these greywackesin the sequences 

studied and the above observations hold true for the whole Binic­

Br{hec Series. 

(c) Lithofacies M2 

This consists of beds that grade from sandstone at 

the base to mUdstone at the top, and that are interbedded with 

thinner beds containing many thin bands of mUdstone that grade 

to siltstone at their base (Figure 3.7). This lithofacies 

ranges from 9.7-3.lm in thickness with a mean thickness of 

6.9m (Plate 3.10). 

The graded beds range in thickness from O.lm to l.~ with 

a mean of O.4m. The base of these beds is made up of a sandstone 

that is usually massive, although it does sometimes contain fine 



Plate 3.11. 

Plate 3.12 . 

Graded units in lithofacies M2 with load 
structures at the base. Scale in cms. 

Disrupted silt bands (lighter colour) at the 
top of a 1.2 m graded unit in lithofacies M2. 
Field of view 50 cm. 



bands of siltstone. Load casts and flame structures are 

well developed at the base of these beds (Plate 3.11). 

The sandstone at the base often contain mudflake conglomerates 

that appear to have been derived from the underlying beds. 

As the top of the bed is approached, the grain size changes to that 

of siltstone and then to mUdstone. The ratio of sandstone 

to mUdstone in anyone bed is variable, although it appears that 

as the top of this facies is approached the amount of mudstone 

increases and the grain size of the coarser material at the base 

of the bed decreases. Occasionally bands of disrupted siltstone 

occur at the top of a graded unit (Place 3.12). 

The beds of banded mudstone range in thickness from O.2-0.7m 

with a mean of O.3m. These are comprised of many thin beds of 

mudstone, usually of lcm to Scm in thickness, that grade to 

siltstone at their very base. The ratio of mUdstone to siltstone 

is very large, the siltstone never comprising more than 20% Of one 

unit. Occasionally, there appears to be a very fine lamination 

within the graded unit. Calcareous nodules are rarely developed 

within these beds and tend to be a good deal more elongate than 

those in the thick beds of sandstone. 

Beds of medium to fine-grained sandstone that have no 

internal structure and sharp bases and tops occur within this 

sequence. They range in thickness from 1.lm to O.Sm with a 

mean of O.9m. 
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Figure 3.8. Section through lithofacies M 3 taken 

from section no. 3, Moulin plage. (Key 

as in figure 3.5.) 



Plate 3.13. 

Plate 3.14. 

Bedding in lithofacies M3. Scale 3cm wide. 

Ball and pillow structures in silt band 
(lighter colour) which is enclosed by 
mUdstones of lithofacies M3. Scale in cms. 
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Figure 3.9. Section through lithofacies M 4, taken 

from section no. 12, Moulin p1age. (Key 

as in figure 3.5.) 



(d) Lithofacies M3 

This is comprised of beds of massive mudstones that are 

interbedded with units of laminated mUdstones and siltstones 

(Figure 3.8, Plate 3.13). This lithofacies is up to lO.Sm 

thick in the north of the section but is only 2.l-0.Sm thick in 

the south where no beds of massive mUdstones are seen. The 

thickness of the massive mudstone units varies from 6.0-0.lm but 

in general it is close to the mean value of 1.3m. These units 

are generally featureless except for very occasional bands of 

siltstone (l-2cm thick) that are often disrupted (Plate 3.14). 

These mUdstones do not contain nodules. The rhythmically 

interbedded mudstones and siltstones are composed of beds of 

mudstone (5-30cm thick) that are interbedded with siltstones (I-Scm 

thick). The contacts between the beds of mudstone and siltstone 

may be either sharp or gradational. Occasionally these beds 

may exhibit a very fine lamination of order of thickness less than 

1 mm. The interbedded mUdstones and siltstones are O.1-O.9m 

thick with a mean 6f O.4m. Rare beds of sandstone that do not 

exceed O.3m in thickness occur within this lithofacies. They 

have both sharp tops and bases. 

(e) Lithofacies M4 

This lithofacies, which varies in thickness from l.9-l0.2m 

with a mean value of S.2m, is comprised of graded beds with 

mUdstone at the top and siltstone or fine grained sandstones at 

the base (Figure 3.9). The beds that grade down into siltstone 

are O.l-O.6m thick with a mean of 0.25m. The silt fraction 

occupies on average approximately 60% by volume of these beds, 

although it may vary from l01~90% of anyone bed. These 
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Plate 3.15. 

Plate 3.16. 

Cross lamination in siltstone band in 
lithofacies M4 Scale in ems. 

Cross lamination in siltstone band in 
lithofacies M4. Scale in ems. 
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Figure 3.10. Diagram to show the distribution of the 

lithofacies M 1, M 2, M 3, M 4 as rec­

orded in the various sections measured at~ 

Moulin plage. Their cyclic arrangement 

can be clearly seen. The numbers on the sections 

correspond to those on the Moulin plage section 

shown in figure 3.4. 
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Figure 3.ll.A cross section showing the distribution' 

of the lithofacies M 1, M 2, M 3 and M 4 

as recorded in the southern portion of the 

Moulin plage section. The diagram is comp­

iled from sections numbers 10, 11, 12, and 

13 ( see also Figures 3.4 and 3.10). 



siltstones show rare cross lamination (Plates 3.15 and 3.16). The 

beds that grade down into fine sandstone are common near the top 

of this lithofacies and are 0.2-1.7m thick with a mean value of 

0.6m. The sandstone fraction occupies the lower lOr~30% of any 

one bed. Load structures are developed at the base of these 

beds which, near the top of the lithofacies, become so 

exaggerated that ball and pillow structures are developed.· 

Towards the base of this lithofacies horizons of interbedded 

mudstones and siltstones are found which comprise 8% by volume 

of this lithofacies. The beds of mUdstone and siltstone are 

usually of equal thickness which varies between 1cm and 5cm. 

(f) Summary 

The distribution of the lithofacies described above 

is summarised in Figure 3.10. The rhythmic repetition of the 

individual lithofacies in a given order may be seen in Figure 3.11. 

Generally it appears that within a rhythmic unit thick beds of 

coarse sediments are found at the base and finer sediments 

in a thinner beds are found at the top. These thinner beds then 

grade gradually upwards into thicker coarser beds. 

3. The Brioverian of the Goudelin p1age section 

(a) Introduction 

The Brioverian sediments of this section may be divided 

into two distinct lithofacies G1 and G2. Lithofacies G1 is 

comprised mainly of arenaceous sediments and lithofacies G2 is 

comprised mainly of argillaceous sediments. The succession here 
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Figure 3.12. Section through lithofacies Gla and Glb 

taken from Goudelin plage section no.2. 

( Key as in figure 3.5.) 



is of broadly similar composition to the Moulin plage section 

being made up of clastic sediments, the only major variation 

being that the calcareous nodules are not found within the 

sandstones of this succession. The relative distribution of 

the different rock types in the various lithofacies is however 

greatly different to that of the Moulin plage section. The 

sandstone beds are always graded and are much thinner that those 

of the Moulin plage succession, there being no equivalents to 

the intermediate lithofacies M2 and M4, also there is a much 

greater abundance of finer grained sediments. 

(b) Lithofacies G1 

This lithofacies is comprised of graded units 0.4-2.8m 

thick. These are mainly comprised of sandstone, usually have 

sharp bases and grade into siltstone or mUdstone towards the 

top. This lithofacies is further subdivided on account of 

the nature of the finer fraction of the graded beds into 

lithofacies G1a and Glb. Lithofacies Gla is comprised of 

beds of sandstone that grade upwards into the siltstones 

and mUdstones that are 0.3-2.2m thick with a mean value of 

0.8m. These beds all have sharp bases and they all show 

some degree of grading. In the thicker beds only the top 

10% is occupied by the finer fraction, whereas in the 

thinner beds the finer fraction may comprise up to 50% of 

the whole. Mudstones that are 0.1-0.8m thick are interbedded 

with these graded beds. These mUdstones are massive, grading 

into siltstone at their base. These mUdstones 
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Plate 3 .17. 

Plate 3 . 18 . 

Disrupted mudstone (dark coloured) at the top 
of a sandstone unit in lithofacies Gla. 

Finely laminated siltstones (lighter) and 
mudstones (darker) at the top of a graded unit 
in lithofacies Glb. A thicker siltstone 
band is boudinaged. 
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Figure 3.13. Sketches taken from notebook to illustrate 

the difference in the nature of the bedding 

in lithofacies G2a and G2b. 



sometimes contain thin bands of siltstone and their bedding may 

be disrupted (Plate 3.17), they comprise 8% by volume of this 

lithofacies. Lithofacies G1b is made up of graded beds of 

sandstone which are 0.3-2.7m thick with a mean of 0.9m. 

These sandstones grade up into siltstones and laminated 

mUdstones (Plate 3.18). In this lithofacies the finer sediments 

occupy a slightly larger proportion of each grade than they do 

in lithofacies G1a, comprising 20% of the thicker beds and up 

to 70% of the thinner beds. The bases of each graded unit 

are sharp but are otherwise featureless. These graded units 

are interbedded with laminated mudstones that have a mean 

thickness of 33cm which ranges from 10cm to 5Ocm. These 

mudstones comprise 14% by volume of this lithofacies. 

Where these two lithofacies are seen to be in contact, 

lithofacies G1b is always seen to rest upon lithofacies G1a, 

which in turn is seen to rest upon lithofacies G2. This 

would suggest that these lithofacies are part of a cyclic 

sequence. In one instance a thin unit of lithofacies G1b is 

covered by lithofacies G2 (Figure 3.14, section 2). 

(c) Lithofacies G2 

This lithofacies is mainly comprised of laminated 

mUdstones. It has been further subdivided into lithofacies 

G2a, G2b,and G2c on account of the amount and the distribution 

of the siltstone beds within these mUdstones (Figure 3.13). 

Lithofacies G2a is largely composed laminated mudstones and is 
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Plate 3 . 19 . 

Plate 3 . 20 . 

Laminated mudstones and siltstones (lighter 
bands) of lithofacies G2a . Scale 30 cm. 

Interbedded laminated mudstones and siltstones 
(lighter bands) of lithofacies G2b . 
Scale 30 crn. 



16.2-1.Om thick (Figure 3.13A). The individual laminae average 

about Smm in thickness and are grouped in units that are from 
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O.2-1.Om thick. These units contain thin beds of siltstone (Plate 3.19) 

that are rare at the top but increase in frequency towards the 

base of the unit which is entirely made up of finely banded 

siltstones. Many of these siltstones are seen to be underlain 

by up to Scm. of sandstone. The thickness of these units 

decreases from the base to the top of this lithofacies. 

The beds at the base are anything from 100cm to SOcm in thickness, 

whereas this decreases to a thickness of 20cm at the top. The 

contact of this lithofacies with the overlying lithofacies 

G2b. is not always clearly defined and may be gradational over 

up to 1m of sediment. 

Lithofacies G2b is made up of composite graded units of 

thickness between 2cm and lOcm (Plate 3.20, Figure 3.13), . these 

graded units are made up of massively bedded or laminated 

mudstones (average thickness of laminae 1mm) which tend to 

grade into siltstones at the base. Unlike the siltstone 

of the previous lithofacies these siltstones are usually 

massively bedded, although there are also some finely banded 

siltstones at the base of some units. This lithofacies has 

a sharp contact with the overlying lithofacies G2c. 

Lithofacies G2c is made up of a thick sequence of finely 

laminated mudstones (average thickness of laminae 1mm) (Plate 3.21), 

which are ove1ain by massively bedded mudstones. The 



Plate 3 . 21. 

Plate 3.22. 

Massive mudstones, lithofacies G2c. Scale 30 cm. 

Contact between lithofacies G2c and Gl 
(on left), Section 1, Goude1in plage. Field 
of view is approximately 13m. 
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Figure 3.14. Diagram to show the distribution of the 

lithofacies of Gla. Glb, G2a. G2b, G2c 

as recorded in the sections measured at 

Goudelin plage. The numbers in the sections 

correspond to those on the Goudelin plage 

section shown in figure 3.4. 



lower finely laminated mUdstones are rarely interbedded with 

silt laminae that show a rhythmic variation in their abundance 

over l-2cm. 

It has not always proved possible to carry out such a 

detailed subdivision of lithofacies G2 as has been outlined 

above since the quality of the exposure is not always good, and 

in some places it has only proved possible to record that the 

rock was principally comprised of mUdstone. Where this has 

been the case the rock has been assigned to lithofacies G2. 

As illustrated in Figure 3-14 these lithofacies are 

cyclically arranged with lithofacies G2a being overlain by 

G2b and this in turn being overlain by G2c and this is then 

covered again by G2a or Gl (Plate 3.22). It may be generally 

stated that lithofacies G2 is made up of composite units of 

mudstone with siltstone or sandstone at the base. The 

size of these graded units and the amount of coarser sediment 

decrease as the top of the lithofacies is approached. There 

are cyclic variations between sub-lithofacies of varying grain' 

size within this lithofacies. 

(d) Conclusions. 

The following conclusions may be drawn from the above 

study of the Brioverian of the Moulin pI age and Goudelin plage 

sections I 

3 14 



1. The sequence is comprised of a marked alternation of 

fine, medium and coarse grained clastic sediments. 

2. The sandstones are greywackes. They are poorely sorted 

and contain angular fragments of quartz, felspar and 

lithic fragments, and a large proportion of matrix. 

3. Within the succession various lithofacies may be 

identified. These are constant in composition 

throughout a great ghickness of the succession and 

they are repeated in a rhythmic fashion. 

4. The bedding within this succession shows no lateral 

variation in thickness or in composition. 

5. Thick beds of sandstone occur throughout the sequence 

and these are typified by graded bedding. 

6. The bases of these sandstones may be planar or they may 

exhibit flute casts, flame structures and load casts. 

7. The finer sediments show laminations, flame structures, 

rare current ripples, slumps and convolute laminations. 

8. There is a general absence of cross stratification and 

ripple marks, especially in the coarser grained horizons. 
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9. The thickness of this sequence is considerable, the real 

thickness is not known but is at least lkm and is probably 

much greater. 



The major differences observed between the Brioverian of 

the two areas are listed below. 

1. There is proportionately much more fine grained sediment 

in the Brioverian of Goudelin plage. 

2. The beds of sandstone are much thinner and show much 

more pronounced graded bedding in the Brioverian of 

Goudelin plage. 

3. There are no calcareous nodules in the sandstones of 

Goudelin plage. 

4. Load casts, flame structures and flute casts are 

visible at the base of the sandstones of Moulin 

plage but these structures are not seen in the Brioverian 

of Goudelin plage. 

5. Slump structures and cross bedding are seen in the 

siltstones of Moulin plage, these are not seen in 

those of Goudelin plage. 

6. The bedding of the finer grained sediments of Goudelin 

plage is much finer than that of Moulin plage. 

7. The lithofacies in the Brioverian of the Moulin plage 

are repeated in a cyclic fashion to form a larger 

unit of sediment: This also appears to be the case for 

the Brioverian of Goudelin plage but here these cycles 

are a great deal thicker than those of Moulin plage. 

The conclusions presented above indicate that these are 

probably geosynclinal sediments which were the result of 

deposition from turbidity currents and that they may be termed 
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"flysch" like (Dzulynski and Walton 1965). The total thickness 

of this sequence is not known but it must be greater than lkm 

as this thickness of sediment is found in the southern limb of 

the Moulin antiform. The main difference between the sediments 

of the Moulin plage section and the Goudelin plage section is 

that the Goudelin turbidites are of a more distal nature than 

the Moulin turbidites, however, the rocks of both sections show 

features that are typical of distal turbidites. If this variation 

is lateral it would indicate that the source of these sediments was 

to the north, possibly the Pentevrian mass around Plouha. However, 

as the exact position and attitude of the first phase of Cadomian 

folds in this region is not known, this variation may be a 

vertical one. 
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Figure 3.15. Sketch geological map showing the outcrop 

of the Palus plage Brioverian (patterned) 

in the area mapped. 
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Figure 3.16. Geological map of the Palus plage Brioverian 

as it is exposed in the wavecut platform to the 

south of Palus plage. 



C. The Palus Plage Metasediments and Metavolcanics 

1. Introduction 

The Palua p1age metasediments and metavo1canics are well 

exposed in the wave cut platform on the northern side of the sandy 

bay immediately south of the Pa1us p1age (Figure 3.15) where they are 

in contact with the Port Goret gneisses (Figure 3.16). The contact 

between these two sequences has undergone polyphase deformation 
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during the Cadomian orogeny (Chapter IV), however, sedimentary evidence 

suggests that in places it may represent a Pentevrian/Brioverian 

unconformity. The metasediments are pelites and psammites, the meta­

volcanics were originally pyroclastics of an acidic/intermediate 

composition. 

Acid volcanics also occur in the Brioverian between Mor1aix and· 

Tregaste1, C~tes du Nord (Verdier 1968, Roach personal communication), 

on Jersey, Channel Islands (Mouraunt 1933) and at Saint Germain-1e­

Ga11iard, Manche (Graindor 1957). Graindor assigns the Rhyolites de 

Saint Germain-1e-Ga11iard to the base of the Upper Brioverian as he 

believes that they were extruded onto a land surface formed as a result 

of uplift during the Constantian phase of the Cadomian orogeny. 

2. Lithologies 

The Pa1us p1age metasediments and metavo1canics contain the 

following rock types: pe1ites; coarse and fine agglomerates; crystal 

tuffs; dark tuffs; intermediate tuffs; and tuffaceous sandstones. 

They will be considered in the .order given . 

(a) Pe1ites. 

These lie at the base of the Pa1us p1age Brioverian and 



Plate 3 . 23 . 

Plate 3.24 . 

Interbedded meta-mudstones and meta-siltstones 
in the Pelites, Palus plage . 

Graded beds in the Pelites. Grading (coarser 
sediments are lighter than the finer) indicates 
that the beds young in the direction of the pencil 
point, i.e. towards the west. Palus plage. 



may rest unconformably upon the Port Goret gneisses in the 

eastern part of the Palus plage section (Figure 3.16). Original 

sedimentary banding is still evident (Plates 3.23 & 3.24) although 

they have been metamorphosed to a fine grained quartz+biotite+ 

plagioclasetmagnetite schist. They were originally comprised of 

interbedded iron rich mudstones and siltstones. The siltstone 

bands are lighter in colour, from 5mm to 5cm thick and are graded. 

They are typically separated by 5-lOcm of mudstone. Bands of 

siltstone are plentiful in the east of the outcrop but become 
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rarer towards the west. 4m to the west of the eastern_most pelite/gneiss 

contact there is a conglomeratic horizon in which boulders of 

retrogressed gneiss, 20-40cm across, are set in a matrix of 

siltstone. This horizon is parallel to the sedimentary layering 

and is almost certainly a primary sedimentary horizon. 

A study of the graded bedding found in the siltstones 

indicates that although there is some variation in the direction of 

younging the pelites young towards the east over most of their 

outcrop. The beds in fact dip to the west, indicating that they 

are overturned. This would suggest that the Port Goret gneisses 

occupying the Port Goret headland overlie the pelites. It is 

for this reason that it is felt that the eastern-most pelite gneiss 

contact is a tectonic and not a sedimentary contact, whereas the 

western contact of the main outcrop of the pelites with the gneisses 

may represent an original surface of unconformity that has now 

been inverted. It is not clear why the only boulder horizon 



Plate 3 . 25. 

Plate 3 . 26 . 

Contact between the basal Brioverian agglomerates 
and the Pentevrian basement (at bottom) . This 
surface is thought to represent the original 
unconformity. Fragments of gneiss are outlined. 
Headland south of Palus plage. Field of view is 
approximately 1 m. 

Weathered surface of the crystal tuffs showing 
relict plagioclase of primocrysts. Palus plage . 
Field of view is approximately 50 cm. 



recorded within the pe1ites should be so far above their base. 

In their western most occurrence the pelites thin to 

2-4m and the siltstone bands become rich in grains of plagioclase 

(2-8mm) that are thought to be an original feature of the sediments 

as they show relict Carlsbad-Albite twinning, a law that is only 

developed in primary igneous plagioclases (Vance 1961). The 

appearance of these plagioclase primocrysts must represent 

the onset of volcanic activity in this area. This band passes 

laterally into a fine grained basal agglomerate (Figure 3.16) 

which contains fragments of volcanic rocks and rarely of gneiss 

which are set in a matrix similar to the overlying crystal tuffs. 
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The nature of these agglomerates, which are in contact with the gneisses 

(Plate 3.25), indicates that this contact was originally an unconformity 

which has been subsequently modified by Cadomian deformation (Chapter IV). 

(b) Crystal tuffs. 

These immediately overlie the pelites and fine 

agglomerates (Figure 3.16). They are massively bedded and are 

monotonous in composition. The matrix was originally a fine grained 

tuff that has now been metamorphosed to a plagioc1ase+quartz+hornb1ende 

assemblage. A distinctive feature of these tuffs is the 

occurrence of p1agioc1a~e primocrysts, similar to those 



Plate 3.27. 

Plate 3 . 28 . 

Photomicrograph (cn) of the contact between meta­
rhyolite pebble (top) and the matrix of the agglom­
erates. Scale 0.19 mm. 

Photomicrograph (cn) of a meta-rhyolite pebble 
in the agglomerates. Scale 0.19 mm. 



found in the pelites, which have been sericitised during 

a later metamorphic event CM
4C 

see page 4.22) and now 

stand out in relief in the weathered rock making it easily 

identified (Plate 3.26). 

The pelites and the crystal tuffs outcrop only in the east 

of the Palus plage section and their stratigraphical 

relationships with the other rock types of this sequence are 

not known although the crystal tuffs and the fine grained 

basal agglomerate are most probably closely associated with 

the other volcanic rocks found in this sequence. 
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(c) Agglomerates (of the western part of the Palus plage section) 

The agglomerates are comprised of massively bedded 

pyroclastic rocks which contain boulders of volcanic rock of 

up to 50cm. across enclosed in a matrix similar to the crystal 

tuffs. The great majority of the volcanic fragments are a recrystallised 

acid igneous rock (Plates 3.27 & 28), of possible rhyolitic 

origin, which mayor may not contain plagioclase phenocrysts. 

There are a few fragments that are granodioritic in 

composition which are made up of subhedral laths of plagioclase 

and a few small grains of quartz. Small fragments of meta-

basalt are occasionally.found. There is a marked increase 

in the size of these fragments in going from east to west. In 

the west of the section the largest fragments are up to 50cm 

in length but in the east they rarely exceed 5cm in length. 

It is difficult to estimate the original size of these 



Plate 3.29. 

Plate 3.30. 

Deformed pebbles and boulders of metarhyolite 
and other igneous fragments in the agglomerates . 
Wavecut platform, 200 m east of track to 
Treveneuc, Palus plage. Field of view is 
approximately l . S.m . 

Photomicrograph (cn) of a relict igneous 
plagioclase primocryst, which exhibits 
Carlsbad Albite twinning, in the matrix of 
the agglomerates. Scale 0 . 69 mm . 



fragments as they have undergone severe tectonic flattening 

(Plate 3.29) and their present form is statistically equivalent 

to an ellipsoid with axial ratios of X:Y:Z = 5:2:1. 

These fragments are enclosed in a fine grained quartz+ 

p1agioc1ase+hornb1ende+biotite+ch1orite matrix that contains 

many plagioclase primocrysts (Plate 3.30) (0.5-3mm) that show 

not only relict igneous twinning laws but also relict 

euhedra1 form that may be distinguished in spite of metamorphic 

overgrowths. Large grains of quartz occur, which have 

angular cores that are overgrown by metamorphic quartz, these 

are also thought to be an original feature of the agglomerates. 

It should be noted that the pe1ites pass laterally westwards 

into a coarser agg10meratic rock type and that also the 

agglomerates described above coarsen to the west. This suggests 

that the site of volcanic activity lay to the west, i.e. towards 

P1ouha. 

(d) Dark tuffs 

A band of dark coloured tuffs, structurally above the 

agglomerates, are poorly exposed along the seaward margin of 

the rocky foreshore in the centre of the Pa1us p1age section 

(Figure 3.16). These are of unknown thickness. They are 

generally dark green in colour but are mottled with light 

green patches. They enclose fragments of volcanic material 

that do not exceed 10cm. in length. The matrix of these 

tuffs is a quartz~p1agioc1ase mesh that contains rare plagioclase 
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Plate 3 . 31 . 

Plate 3 . 32 . 

Photomicrograph (cn) of relict plagioclase 
primocrys t in the matrix of the intermediate 
tuffs. Scale 0.69 mm. 

Rhyolitic tuff band in tuffaceous sandstones, 
Pa1us plage 30 m. west o£ track to Treveneuc. 



primocrysts and is generally pelitic in composition. The 

gragments that are found in these tuffs are similar to those 

found in the agglomerates and are probably of a rhyolitic nature. 

The variation in the colour of these sediments is due to 

two factors. The first being the rapid variation in the 

composition of the sediments, the pelitic tuffs being interbedded 

with coarser tuffs that are very similar in nature to the 

crystal tuffs. The actual relationship between these two 

rock types is not clear, but generally it may be said that 

the coarser tuffs exist as irregular lenses within the dark 

tuffs. The second factor that causes variation in the colour of 

these tuffs is the retrogression and epidotisation of the dark 

tuff to produce a rock that is a light green in colour. 

These retrogressed patches are irregular in size and occurrence. 

(e) Intermediate tuffs. 

These meta-tuffs occupy the wave cut platform 

immediately to the west of the track that leads to Treveneuc 

(Figure 3.16). Since they are faulted against the dark tuffs 

and the agglomerates their stratigraphical relationship to 

these beds is not known. They are comprised of light 

coloured tuffs that have been metamorphosed to a quartzt 

p1agioc1ase+hornb1ende assemblage (Plate 3.31). These are inter­

bedded with lenses of crystal tuffs and fine agglomerate. 

These agglomerates have a matrix of intermediate tuff and contain 
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pebbles that may represent fragments of the basement gneiss 

although the majority are similar to the rhyolitic pebbles found 

elsewhere. 

Recognition of the original nature of these tuffs has been 

made more difficult as the result of a static phase of metamorphism 

(M3C see page 4.20) that has resulted in the growth of large 

poiki1itic porphyroblasts of plagioclase and hornblende up to 

5cm in length. These are particu1ari1y common in the pressure 

shadows of the occasional large boulders that occur in these tuffs. 

(f) Tuffaceous sandstones 

These outcrop in the extreme west of the Pa1us p1age 

section (Figure 3.16) and are comprised of interbedded tuffs 

and fine grained sandstones. The tuffs are very similar 

to the previously described intermediate tuffs while the 

sandstones have a large percentage of matrix enclosing clasts 

of plagioclase, quartz and rock fragments and are fe1spathic 

greywackes. A band of poorly exposed, hard, white, fine 

grained rock that contains many extremely flattened micaceous 

inclusions is interbedded with the sandstones. This may 

represent a rock that was originally a rhyolite or even an 

ignimbrite (Plate 3.32). The stratigraphical relationships 

of the tuffaceous sandstones with the other rock types is not 

know. 
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3. Conclusions. 

The coastal section along the east side of Palus plage is 

composed of a sequence of Brioverian volcanic rocks with minor 

sediments, which rests unconformably upon the Pentevrian 

basement. Boulders of gneiss, similar in composition to 

the Port Goret gneisses, occur within the boulder horizons 

and the agglomerates near the base of the sequence. The 

nature of the pyroclastics indicate that there was a volcanic 

centre not far to the west. The relationship between the 

Pa1us p1age meta-volcanics and meta-sediments and the Binic­

Br~hec Series is not known. 

The nature of the Pa1us plage sediments, bedded pyroclastics 

of acid affinities immediately overlying fine grained pelitic 

sediments containing horizons of basal conglomerate, indicates 

that they were formed as a result of volcanic activity in a 

sub-aerie1 to shallow water environment. This setting strongly 

contrasts with the thick sequence of basic pillow lavas and 

intrusive sheets which are developed at the base of the 

Brioverian further south between Cesson and Erquy (Cogn~ 1961, 

Brown and Roach 1972). 
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