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ABSTRACT 

This thesis is concerned with the measurement of human visual Averaged Evoked Potentials 

(AEPs) to tachistoscopically presented pattern stimuli, i.e. the sudden appearance and 

disappearance of patterns into an otherwise;, continuously illuminated diffuse field, such that 

the overall change in luminance is zero or very small. 

Previous work reviewed includes that on the response of single cells in the cat and monkey 

visual cortices to contoured stimuli, and also that on the measurement of human visual AEPs 

to patterned stimuli. The work of D.A. Jeffreys, indicating that AEP scalp distribution 

measurements showed promise for identifying source locations of the first two (temporally 

separate) pattern AEP components, is considered in detail. 

The experimental apparatus and computing system are described, together with a detailed 

discussion of experimental errors. 

The computing system was designed to be on-line and interactive, and a general discussion 

is included on the man-computer interface. 

Four chapters report and discuss the experimental findings. 

The first de_scrib~ the adaptation effect of one stimulus on the AEP to another which follows 

it after a short time interval. The adaptation is plotted as a function of relative timings and 

pattern types. Monocular stimulation showed that the effect must be partially central in 

origin. 

The second reports on variability of the AEP. The AEP standard deviation is plotted as a 

function of electrode position, and was found to be almost independent of the stimulus. 

A 'Running Average' technique is described for measuring longer term AEP variations. 

The third describes a computerised AEP co~ponent separation method, which was developed 

and used to provide further confirmation that the two AEP components first identified by 

Jeffreys give scalp distributions compatible with dipole sources in the striate and extrastriate 

cortices. Four subjects were tested in detail, and the results compared with a simple dipole 

model. 

The fourth describes the development and initial trials of an on-line Evoked Potential 

Stochastic Search Technique. 

The results are discussed, and some confirmatory and extension experiments suggested. 
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CHAPTER 1: GENERAL INTRODUCTION 

The existence of varying potentials on the surface of the scalp (electro-encephalographic, 

or EEG potentials) caused by activity in the underlying brain has been known for a long 

time. Incoming sensory signals cause changes in the measured EEG voltages, and when such 

a change can be correlated with a specific external stimulus it is usually called an 'Evoked 

Potential' (EP). Evoked potentials offer to the physiological experimenter a useful tool 

with which to investigate the internal sensory information processes in the brain. 

The measurement of evoked potentials to a restricted class of stimuli is the subject of this 

thesis. EPs have a number of advantages and also some disadvantages when compared with 

other methods of investigating sensory information processes, and in order to put EPs into 

their correct perspective, we shall first review briefly the alternative methods of study. 

1.1 Alternative Methods of Study 

These fall into four broad categories: 

1. Psychophysics 

2. Ablational methods 

3. Cytoarchitectonic and degeneration methods 

4. Electrophysiology. 

1. Psychophysics is the measurement of a subject's perceptual response to an applied 

stimulus. Psychophysical experimentation has proved to be of great value in providing 

information about sensory mechanisms. It does, however, have two significant dis­

advantages. Firstly, the chain of processing between stimulus and response is very 

complicated, involving as it does, not only the sensory mechanisms, but also various 

effector mechanisms, such as motor or speech processes. All these processes are little 

understood and care must be taken to ensure that they do not affect the validity of the 

results obtained on the sensory mechanism being studied. 

Seco~dly, most psychophysical experiments are restricted to humans, owing to the 
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need for adequate communication between subject and experimenter. Experiments with 

animals are possible, however, but these usually require extensive training to overcome 

the communication barrier. 

2. Ablational methods involve the study of behavioural or perceptual changes resulting 

from lesions or damage to the brain. In animals such lesions can be selective (within 

humane limits). On the other hand in man such studies are limited because one only 

has available lesions caused by accident or disease. Owing to the vast interconnectivity 

of the pathways of the nervous system, the results are, in many cases, open to more than 

one interpretation. It is, of course, an irreversible method. 

3. Cytoarchitectonic and degeneration studies utilise suitable selective staining techniques 

to determine the positions of cells and their processes. The paths of degenerating axons 

caused by small selective lesions can be traced in this way, and this provides an ideal 

method for mapping nerve fibre connections. To obtain much more highly magnified 

detail of all structures and particularly the synaptic connections electronic microscopy 

can be used. 

4. Electrophysiology is the direct measurement of the electrical activity generated by 

nervous tissue. Evoked potentials come under this heading. The recording of electrical 

activity in or near actual nerve cells or nerve fibres using microelectrodes (single unit 

recording) has developed very rapidly indeed over the last decade. These measurements 

fall roughly into two classes: 

a. Spike activity - observation of nerve cell discharges 

b. 'Slow wave' activity - measurement of the more slowly varying electrical voltages in 

the tissue surrounding the nerve cells. 

Single unit recording has, however, two disadvantages. In the first place, it is not 

normally possible for human subjects, except when clinical needs allow it, such as during 

a brain operation, and when the brain is anyway not in its normal healthy state. 

Secondly, in the case of animals the side effects of surgery are likely to put the animal 

into a condition not truly representative of its normal waking state. This is especially 

true if an anaesthetic is used, most of which are known to have some effect on neural 
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activity. Also the animal may be paralysed, a condition which may have further effects 

on neural activity. A number of approaches have been tried to circumvent the 

anaesthetic problem. One method is to use an animal with an isolated forebrain 

(cerveau isole) (see 19, 35). This allows that part of the brain to be investigated without 

an anaesthetic, but contingent effects of the actual surgical section are still possible. 

Another approach which has been tried 174 is to record from implanted microelectrodes 

in the awake animal, after taking suitable precautions to avoid pain, etc. In general, 

however, experiments with awake subjects (human and animal) present special problems 

because of the difficulties of controlling all the experimental conditions, and such 

studies must be considered as complementing those on relatively stable anaesthetised 

preparations. 

Measurement of human EEG is possible, however, for normal healthy awake subjects. 

Thus EPs represent what is usually the only direct physical method for studying sensory 

mechanisms in the human brain. 

1.2 Drawbacks of Evoked Potentials 

That the EEG is caused by neural activity in the underlying brain is generally accepted, but 

the precise mechanisms for its generation are little understood. Also the electrical trans­

mission characteristics of the layers of tissue and bone between the EEG generators and 

surface recording electrodes lead to severe attenuation and distortion of voltages measured 

by the latter. Both these factors make interpretation of evoked potentials rather difficult. 

This will be discussed in more detail later. 

Furthermore, EPs are usually rather small in magnitude (0-10 IJ. V), when compared with 

other apparently uncorrelated EEG voltages (30-50 IJ. V). In order to extract the EP from 

the on-going random activity or 'noise', it is normally necessary to use special analysis 

techniques. These do not, however, completely remove the effects of the unwanted noise, 

and one of the purposes of this thesis is to discuss to what extent the residual effects of 

noise must be considered when interpreting the results of evoked potential experiments. 
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CHAPTER 2: REVIEW OF VISUAL EVOKED POTENTIALS 

2.1 Important Parameters of Visual Input 

The visual scene with which the human organism is confronted consists predominantly of a 

contoured or structured matrix to which is added such other details as colour, movement, 

brightness, depth, etc. Common sense tells us that it is the contours or boundaries within 

our visual scene which provide us with most of our useful visual information, and thus we 

should expect that when we investigate the appropriate visual information processing 

mechanisms in the brain we should fmd that this aspect of the visual scene receives particular 

attention. There is much experimental evidence in animals to support this conjecture. This 

evidence will be reviewed in the next section. It is also found that the brain has specific 

mechanisms for reducing the influence of 'uninteresting' variables. One such mechanism is 

the pupillary reflex of the eye, which reduces the effect of changing overall brightness. In 

man such physiological evidence as exists (see below) lends support to the view that what is 

known from animal experiments can be extrapolated to humans. Psychophysical experi­

ments have also amply demonstrated that the human visual system contains mechanisms 

for the extraction of certain structural features of the visual field, such as orientation, spatial 

frequency, etc. Recently evoked potential work has also provided confirmation of some of 

these psychophysical results 105, 23, 101, 103. 

In general, however, psychophysics can only provide evidence that a particular processing 

mechanism exists, rather than providing a detailed explanation of how it works and which 

particular neural networks are involved. 

2.2 Functional Organisation of the Visual Cortex 

Visual input from the retinae of most higher animals is conveyed first via the optic tract to 

certain mid-brain centres, which include the lateral geniculate nuclei (LGN). These nuclei 

then project to the occipital cortex, which assumes a major role in the processing of visual 

inf orma tion. 

In the following sections we review in some detail what is known about how this part of 
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'the cortex is organised. 

2.2.1 Evidence from Animal Experiments 

Very extensive work has been performed on the cat's visual cortex and, more recently, 

much of this work has been followed up on monkeys. We shall first review the work on 

cats and then that on monkeys, paying particular attention to the latter as this is closest to 

the human case. The results from the two animals show no very striking differences, but 

there are gradational changes which one might expect phylogenetically. 

It appears that the visual cortex of both these animals is retinotopically organised, with 

several distinct mappings, probably representing successive stages of complexity in visual 

information processing. This can be inferred from the types of stimuli to which cells in 

each particular area respond. 

2.2.2 Results from Cats 

Studies of the cell types and configurations in various regions of the visual cortex have led 

to the definition of three distinct areas, 17, 18, and 19. These were first defined for the cat 

by Otsuka and Hassler 115. Area 17 is also called the striate area, because of its characteristic 

layered appearance. 

Talbot and Marshall 150 and Talbot 149 recorded evoked potentials from the surface of the 

cortex, and found two areas over which the visual field was mapped in an orderly fashion. 

These areas they termed Visual I and Visual II. More recently Hubel and Wiesel 75 have 

identified areas 17 and 18 with visual areas I and II respectively, and have also found a third 

orderly mapping, which they term Visual III, identified with the anatomically defined area 

19. There is also evidence for a fourth visual projection in the lateral bank of the supra­

sylvian gyrus 75, 49,172 and this has also been shown to be retinotopically mapped 77. 

The retinal mappings on the cortical visual areas I, II and III are quite straightforward and 

are illustrated in Fig. 2.1 (which shows the monkey arrangement, but the cat is similar). 

The mapping is centrally inverted, bottom right to top left, etc. The area to area mapping 

is not linear, much more cortical surface being devoted to the central (area centralis) part of 
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'the field than to the periphery. The projections within each visual area form mirror images 

across the boundaries, as shown in Fig. 2.1. 

A number of degeneration studies have been undertaken to discover how the various 

areas are interconnected. It has been shown that the lateral geniculate bodies project to 

ipsilaterfal areas 17, 18, and 19 60, 167 and that area 17 in turn projects to areas 18 and 19, 

and also to the suprasylvian gyrus in both hemispheres 75. There seems to be some diver­

gence of opinion and conflicting evidence as to whether the two area 17s in opposite 

hemispheres are interconnected 75,123. Hubel and Wiesel 75 find little evidence for such 

connections and are of the opinion that they do not exist as it is difficult to see a use for 

them. 

Studies on the types of stimuli to which cells in these various cortical areas respond link 

in well with the pattern of connections found by degeneration studies. Hubel and Wiesel ,. 

74, 75 have identified several distinct types of cell, classified according to the type of stimuli 

evoking the greatest response. All these cells respond to contours of more or less com­

plexity. 

a. Simple Cells: These respond to a simple edge, bar or slit at a particular orientation, 

fairly critically located in the centre of an elongated receptive field. The receptive fields 

of these cells can be mapped out using small spots of light, and the pattern of excitation 

thus measured is consistent with the more complicated stimulus which gives the greatest 

response. 

b. Complex Cells: These also respond best to an edge, bar or slit, appropriately oriented, but 

in this case the precise position in the receptive field is not critical. Diffuse light or small 

spots do not excite these cells. The length of the edge, bar or slit is critical only in that 

the maximum response is obtained when the bar is extended to the limits of the recep­

tive field. If extended outside the receptive field, there is no change in the response. As 

Hubel and Wiesel have shown, the behaviour of a complex cell can be explained if it is 

assumed that each such cell receives afferents from a number of appropriate simple cells, 
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and they suggest that the two types of cell represent successive stages in the analysis of a 

complicated visual scene. 

c. Hypercomplex Cells (lower order); These are again stimulated by edges of a particular 

orientation, as with complex cells, but there are now restrictions on the length of the 

edge. These cells apparently have a receptive field consisting of two parts - one 

'activating' region and the other 'antagonistic'. To produce a response one has to have 

an edge at the correct orientation in the activating region, but not in the antagonistic 

region. Thus, the most effective stimulus is a 'stopped' edge. Other such cells have been 

found which have two antagonistic regions - requiring an edge 'stopped' at both ends 

for stimulation. Other cells respond similarly to slits or bars. It is also noted by Hubel 

and Wiesel that the properties displayed by this sort of cell can be explained as a com­

bination of the features of two complex cells. 

d. Hypercomplex Cells (higher order); The principal feature of cells of this type is that they 

respond to the presence of two edges 90° apart (or corners), and their behaviour seems to 

be explicable in terms of the combination of the selective properties of two lower order 

hypercomplex cells with orientations 90° apart. 

Simple cells occur only in Visual!. However, the other types of cell occur in all three 

visual areas, but as we go from I to II to III, so the proportion of hypercomplex cells 

increases. Thus most cells in Visual II appear to be complex, while in Visual III hyper­

complex cells predominate. 

For all these cells movement of the line or bar perpendicular to its long edge was usually 

necessary to elicit a response, but not always. Often movement in one direction only was 

effective. Some workers have used exclusively moving stimuli to elicit the responses 

19 20 , . 
Most of the cells in all three visual areas are binocularly driven and it appears that a 

major function of this part of the cortex is the analysis of retinal image disparity, 

presumably as part of the animal's depth perception. This has been studied by a 
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numberofworkers 75,74, 11, 10, 19, 311, 114, 120. 

A feature of all cortical cells found (except those in area 17 with simple circular fields) 

is the orientation specificity of the edge (slot or bar) needed to excite them. Campbell 

et al. 20 found that the orientation selectivity curve had linear sides with half width in 

the range 140 -260
• 

2.2.3 Results from Monkeys 

Electrophysiological studies in which cortical EPs are measured in response to light flashes 

in various parts of the field have established retinotopic mappings in the monkey almost 

identical to visual areas I and II in the cat (corresponding to areas 17 and 18). Talbot and 

Marshall 150 and Daniel and Whitteridge 42 have obtained detailed mappings of the striate 

area, and have determined cortical magnification factors (the relation between retinal area 

and the representative cortical area) as a function of angular distance from the centre of the 

field. Cowey 35 has extended these mappings to include the extra striate cortex, or Visual 

area II, which as with the cat is probably co-extensive with area 18. He also finds that if the 

striate area is removed responses from the extra striate cortex disappear. This seems to 

indicate that the striate 'drives' the extra striate, and they are sequential analysis stages. 

This conclusion is supported by the findings of Wilson and Cragg 167 and Cragg 37 con­

sidered in the next paragraph. So far no mapping of Visual III by EP methods has been 

reported, but such a mapping is indicated by degeneration studies. A useful review on this 

and the degeneration studies considered next is given by Zeki 1711. 

Numerous degeneration studies 37, 179 have also confirmed that the retinoptic mapping on 

to areas 17, 18 and 19 (Visual I, II and III) in the monkey is essentially the same as in the 

cat. These studies have also shown that area 17 projects to 18 and 19 in both hemispheres 

as in the cat. However, in contrast to the cat, Cragg 37 found with one monkey that a lesion 

in the LGN gave degeneration only in the striate, and this tends to confirm other studies, 

Wilson and Cragg 167, which have failed to find direct projections from the LGN to areas 18 

and 19 in the monkey. Hence, in the monkey, and thus also probably in man, visual in­

formation is processed first by area 17 and then by 18 and 19. 
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. Hubel and Wiesel 76, 711 have measured the responses of cells in the monkey areas 17 and 

18 and found a very similar organisation to that of the cat. Simple, complex and low order 

hypercomplex cells were found in area 17, and complex and hypercomplex (high and low 

order) in area 18. In the following respects, however, the results were different from those 

of the cat: 

1. In area 17, complex cells predominated, much more so than in the cat. 

2. In area 17 most simple cells were driven by one eye only, and there is some evidence 

that in the monkey, binocular depth analysis is performed in area 18 78• 

3. Receptive fields are smaller than those in the cat by a factor of about 3 or 4. 

4. Only a few (about 10%) of the cells showed any colour preference. This is surprising 

since the monkey has well-developed colour vision, similar to man; and also since the 

majority of cells in the monkey lateral geniculate nucleus are colour coded 165. 

5. No results have so far been reported on the stimulation characteristics of cell types in 

area 19 of the monkey. 

One of the criticisms referred to above concerning electrophysiological experiments on 

animals was the effects on the functioning of the nervous system of the anaesthetic, 

paralysing agent~ and surgery. To overcome these disadvantages Wurtz 174 has devised a 

method of measuring receptive fields in the striate cortex of awake monkeys. This is done 

by training the monkeys to fixate. Eye movements are not otherwise restricted. Un­

fortunately his recordings were mostly limited to units in or near layer IV of the striate 

cortex and thus it is difficult to make a fair comparison with the distribution of unit types 

found by Hubel and Wiesel 76. However, some cells corresponding to the simple and complex 

cells of Hubel and Wiesel were found. The most significant difference was, however, the 

discovery of a large number of cells which gave good non-adapting responses to stationary 

stimuli. Many such units responded with bursts of spike discharges, and it is tempting to 

link these to eye movements, but Wurtz failed to find any connection between these bursts 
,) 

and the measured EOG (electro-ocul~ram). In contrast to these non-adapting units, how-

ever, others were found which responded only to moving stimuli, but adapted rapidly. This 

sort of behaviour has not been found in paralysed, anaesthetised animals, and suggests that 
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· in the awake animal there may be habituating mechanisms (possibly central) at work, 

which are not present under anaesthetic. 

Further evidence found by Wurtz 173, 175, 176 in monkeys has shown that some units in 

the cortex are inhibited by sudden displacements of patterned retinal images, both 

saccadic or externally induced, providing further support for the influence of eye move­

ments. 

It is relevant at this point to make a few remarks about changes in evoked potentials as a 

result of eye movements (or absence of them). The evidence is somewhat conflicting. 

Riggs and Whittle 132 found that the EPs to both flashed patterns and displaced patterns 

were unaffected by stabilising the retinal image. This would indicate that the EP generating 

mechanism comes before that which causes perceptual suppression. Keesey 89 has recently 

found that the EP to flickering light was reduced by stabilisation, but only at low flicker 

frequencies and high modulation depth. Other workers 61, 50 have found, however, that 

during a saccadic eye movement EPs are often highly attenuated. Thus it seems that eye 

movements are necessary for perception and not for an evoked potential, but eye move­

ments themselves do influence the EP. 

These considerations are discussed at some length here since most EP experiments on 

humans (including those reported in this thesis) have been done with eye movements 

restricted in no way except that of voluntary fixation. 

The role of eye movement effects in the functioning of the visual centres is thus probably 

very important. The nonnal 'awake' eye is in continuous 'saccadic' motion, and that these 

eye movements are necessary for sustained visual perception is apparent from the well known 

fading phenomenon of a stabilised retinal image. However, in most of the single unit work 

referred to above (except Wurtz) paralysed preparations were used, and thus we should expect 

the picture they give of visual processes to be necessarily an incomplete one. 

2.2.4 Evidence from Human Experiments 

Since it is not normally possible to do similar histological or electrophysiological experi­

ments on humans, other, less direct methods have to be resorted to, mainly in clinical cases. 
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A number of workers have measured EPs on the human cortical surface '71,11'7 but they 

have usually used flash stimuli. Perez-BOlja et al. 11'7 did, however, measure X-wave 

responses to patterned stimuli. 

The only single unit work in the human visual cortex so far reported has been that of 

Marg et al. 106,10'7, who recorded from a few units with chronically implanted electrodes in 

awake patients. It was found that the most effective stimuli were moving bars or discs, but 

detailed comparison with the results from animals is virtually impossible. 

Extensive studies on lesions owing to accidents '72, 154 have enabled a crude retinotopic 

mapping to be made on the human striate cortex. Brindley and Lewin 16 were able to 

stimulate directly the striate cortex of a blind patient, and by observing the position of the 

subjectively reported light flashes, they were able to provide direct evidence for retinal 

mapping in the striate area. 

These experiments provide crude confirmation that the visual cortex in man is organised 

similarly to that of the monkey. There are differences, however. Man's striate cortex is 

confined much more to the internal surfaces of the calcarine fissure and the medial 

surfaces 124, in contrast to that of the monkey, which has more striate cortex on the outer 

cortical surface. Man's cortex is also more folded than that of the monkey. 

2.2.5 Summary 

The above review does not claim to be complete but was designed to show that the occipital 

cortex visual centres in man are probably arranged in several spatially separate, retino­

topically mapped regions containing 'cells which respond to contoured stimuli of different 

complexities, and which probably represent sequentially excited stages in the analysis of 

visual infonnation. This part of the cortex seems to be very predominantly concerned with 

contour and depth infonnation, while colour and luminance specificity are conspicuous 

by their relative absence. The role of eye movement is difficult to assess, because of the 

paralysed state of many of the animals used. 
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2.3 Origin of Scalp Evoked Potentials 

Electrodes attached to the surface of the scalp can pick up potentials generated by a number 

of sources (muscles, eyes, etc.,) but we shall consider only those potentials derived from 

neural activity in the underlying brain. The electrode on the surface is separated from the 

brain by the scalp (about 0.7 cm thick), which has a fairly low resistivity, and the skull bone 

(about 0.5 cm thick), which probably has a somewhat higher resistivity. It is fairly well 

established that the scalp EEG is an attenuated and spatially averaged form of the poten­

tials existing on the surface of the cortex itself 44, 31, 69,160,34. The origin of the EEG 

measured on the surface of the cortex is, however, less certain. One possibility is that the 

EEG is the result of summated neuron action potentials. Fox and O'Brien 56 measured 

fIring time histograms, and found that in a large number of examples these were a good 

approximation to the EP. However, this does not demonstrate a cause and effect relation­

ship. On the other hand, Amassian et a1. 1 consider it unlikely that neuron action poten­

tials summate to produce the surface potential, and suggest that the most likely causes are 

the post synaptic potentials, or other slow cortical potentials. This is supported by other 

work 40,59, and Creutzfeldt et a1. 39,41 have proposed a detailed mechanism to explain the 

generation of a cortical surface evoked potential resulting from the arrival of an afferent 

volley of discharges from a receptor. With this mechanism cortical activity leads to the 

generation of a potential difference across the cortex, and thus lends support to any model 

of EEG or EP generation which assumes that the cortex acts like a dipole, or dipole sheet, 

with axes perpendicular to the cortical surface. A number of theoretical models have been 

proposed relating the surface voltages with the position and orientation of dipoles within 

the brain 159,143,55,161,139,90,110. The most significant result of these calculations is the 

severe attenuation which can exist between the cortical generators and the EEG electrodes. 

This can qualitatively be seen to be the result of the shunting effect of the comparatively 

low resistance scalp overlaying the high resistance skull. A further effect is that the 'spread' 

of potential on the scalp surface is much greater than that on the cortex. Thus widespread 

EP distributions measured on the surface may be much more localised in the cortex. 

In summary we may say about EP origins: 
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1. The EP is a very much attenuated and diffused form of the underlying cortical surface 

activity. 

2. A large EP is symptomatic of widespread, coherent, cortical activity. 

3. Absence of EP does not mean absence of cortical activity related to the stimulus, since 

the spatial average may be zero. Thus the magnitude of the EP is not necessarily a 

measure of the number of neurons involved. 

4. Real sources may be equivalent to dipoles perpendicular to the cortical surface. 

2.4 Evoked Potentials and Noise 

Mention has already been made of the high level of uncorrelated noise which accompanies 

the scalp recorded EP. Normally the "EP" as such cannot be distinguished by inspection 

of the "raw" EEG trace. To extract the EP from the noise, it is necessary to present 

multiple stimuli (not necessarily regularly spaced in time) and then use a cross correla­

tion technique. The method usually employed is 'time locked averaging' which is simply 

described as follows: 

In each stimulus period, suppose the stimulus is presented at t = 0, on a time scale re­

defined for each period. t is called the 'latency'. 

Suppose N stimuli are presented, and that the EEG voltage measured during the ith 

stimulus period is Viet), then the 'average evoked potential' VA(t) (or AEP) is defined as: 
N 

VA(r) - -& kVl(t) 
V A(t) will be a measure of the correlated response, after the uncorrelated noise has been 

(approximately) averaged out. Practical limitations restrict the value of N, and as a result 

V A(t) will always be subject to the residual effects of the noise. For this reason every AEP 

measurement or comparison should include some estimate of the significance of the result 

being quoted. Too often in the literature this is neglected, although some authors have 

computed variability estimates. Donchin 46 gives a useful review of the extent to which 

such statistical methods have been used in AEP research. 
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2.5 Results from Human Visual Average Evoked Potentials 

2.5.1 Averaged Evoked Potentials to Flash Stimuli 

Much early work on visual AEPs was done using simple light flashes as stimuli, principally 

because such stimuli are simple and easy to generate. The AEP to flashes is, however, in 

general very complex 27, 94, and is often followed by a decaying oscillation at a frequency 

approximately equal to the ,or-rhythm 53, 163, 116. It is also found that most components of 

AEPs to flashes have a very wide distribution over the head. The most extensive studies on 

the topographical distributions of flash responses have been reported by R~mond 130. In 

general he and other workers find that early components of the flash AEP show greater 

variation over the scalp than the later components. He also points out e01
, p. 240) that 

simultaneous recording at multiple sites on the scalp is necessary to obtain maximum 

information on temporal relations between sites. It seems that instrumental limitations 

often prohibit multi-channel recording for many workers, but as will be seen below for 

pattern responses, measurement of topographical AEP distributions is essential if the AEP 

is to be related to its underlying sources. In general, flash AEPs are complex, widespread, 

long-lasting and difficult to relate to underlying brain mechanisms. A useful review on the 

results and significance of AEPs to flash stimuli is given by MacKay and Jeffreys 103. 

2.5.2 AEPs to Pattern Stimuli 

Since i&;became evident that the human visual system (and particularly the occipital cortex) 

was more concerned with the analysis of spatially structured fields, some AEP workers 

turned their attention to patterned stimuli. Initially 'flashed' patterns were used 144, 131, 67, 

66,33,29,68,65 and it was found that the presence of a pattern had a marked effect on the 

form of the response, but that the responses were still rather complex. If, however, the 

response to an unpatterned light flash (of the same luminance change) is subtracted from the 

'flashed' pattern response 131,164 a much simpler response is produced. Jeffreys III has 

further shown that this 'subtracted' response is very similar to that produced by a 

tachistoscopically presented pattern, where the pattern appears on a uniformly illuminated 

field, such that the overall luminance change is zero. Jeffreys has also shown 101 that the 

distributions over the head of the 'flash' response and the tachistoscopically presented 

2-12 



pattern response are different. This is strong evidence to suggest that these two types of 

response have different origins. This has also been suggested by Spekreijse 145 and Regan 

and Heron 128, based on results using alternating checkerboard stimuli. Coupled with what 

is known from single unit work in animals (section 2.2) concerning the predominance of 

contour analysing units in the visual cortex, it is tempting to suppose that these 'pattern' 

AEPs (i.e. without change of luminance) arise in the visual cortex. This has been proposed 

by Jeffreys 101,84,82,83,85 and by Halliday and Michael 63. 

Thus it would seem that the most promising stimuli for investigating the processes in the 

visual cortex will be those which involve a change in spatial structure, but with little or no 

accompanying change in overall luminance. We now review the AEP work which has used 

this form of stimulus. 

This stimulus type can be categorised in two ways: 

A Nature of Pattern Change 

1. Transition from a 'blank' field to a 'patterned' one, or vice versa. These are termed 

'pattern appearance', or 'pattern disappearance' respectively. 

2. Transition from one pattern to another, which is usually the inverse of the first 

(pattern reversal). 

B Time Course of Change 

1. Sinusoidally modulated patterns as used by Spekreijse 145, Campbell and Maffei 23, 

Halliday and Michael 63 and Regan 128. A narrow band analysis technique is used here. 

2. Step changes, as used by Jeffreys 114. A wide band, transient analysis technique is used 

here. 

Narrow band analysis has the advantage that the resulting reponse is relatively free of 

noise, but a good deal of information is lost, when compared with the transient analysis 

method. The analogy here between the two common methods of analysing electrical net­

works is obvious. 
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2.5.3 AEPs to Alternating Patterns 

The stimuli used by most workers have either been alternating checker boards 145, 63, 30, 

1211,129 or alternating stripes 23, 4, 5, 30, lOS, 1011,109 and the variables which have been 

investigated include modulation depth, spatial frequency of pattern, rate of alternation, 

direction of stripes, etc. The principal results may be summarised as follows: 

1. The check size or stripe width which gives the maximum response lies between 

10' - 20' arc subtended at the eye 145, 5, lOll, 129 • 

2. The responses are derived almost entirely from the central 3_40 of the visual field 145. 

3. Campbell and Maffei 23 have shown that in the human visual processing mechanisms 

there are channels highly selective to orientation and spatial frequency of the alternating 

stripes. They have also shown that horizontal and vertical bars give a greater response 

than diagonal bars 105. 

4. The response decreases markedly with loss of accommodation 145. 

Most workers have not investigated the effect of change of retinal locus or the distribution 

of the responses over the scalp. Halliday and Michael have, however, investigated both these 

variables, and since 63 this is particularly relevant to this thesis, their results will be described 

in more detail. They measured the longitudinal and transverse distributions of the AEP 

using an array of electrodes over the occiput. They stimulated with 450 sectors of alternating 

checkerboards, in each of the 8 octants of the visual field. The field-size was large (160 

diam.) and so was the square-size (50'), which must be compared with the optimum value of 

10' - 20' quoted above. In addition the transition time between the patterns was about 

8ms. 

They measured the amplitude of a prominent transition at 100 ms latency, (i.e. peak. to 

peak amplitude) and their results for this transition may be summarised as follows: 

1. The response is in general positive (5-7 Jl V) for the upper half field and negative 

(7 -10 Jl V) for the lower. 

2. Contralateral responses were larger than ipsilateral ones. 

3. Octants near the vertical meridian gave larger responses than those near the horizontal. 

4. Longitudinally the maximum response occurs between 5 and 7.5 em above the inion, 
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for all octants. 

They concluded that the responses are unlikely to originate from the striate area, since the 

amplitudes were not compatible with the known projection of the visual field in this area. 

This would predict that the horizontal octants should give the greatest responses, whereas 

the vertical octants were in fact the largest. In addition the maximum responses came from 

a region well anterior to the striate area, making the striate origin less likely. 

However, the inversion of polarity between upper and lower half fields and the greater 

contralateral responses are in broad agreement with cortical mapping. An alternative 

explanation is that the responses arise in the extrastriate areas on the upper and lower 

surfaces of the occipital lobe. The similar amplitudes of the upper and lower half field 

responses make this explanation less likely, but it is also supported by Jeffrey's results 114 

considered below, although with a different form of stimulus. 

It should be pointed out that if the cortical sources behave like dipoles, the measured 

surface potentials will depend on the orientation, as well as position, of the dipoles, and 

thus the maximum response need not occur at the nearest point on the surface. With dipoles 

the position of the reference electrode is also important. This consideration was taken up 

in a second paper by Michael and Halliday 111, in which they provide further evidence that 

their responses come from the extra striate. 

The transition times used in these pattern reversal stimuli are worthy of comment. If the 

reversal is brought about by mechanical means, the transition times cannot be less than 

several milliseconds. Cobb et al. 30 quote 3 ms and Halliday and Michael considered 

above quote 8 ms. These times are quite significant physiologically and a more correct 

defmition of the stimulus would be the sequence 'pattern - fast moving blur - pattern'. If 

the pattern reversal is electronically switched, this complication does not arise as transitions 

can be made very fast. 

2.5.4 Transient AEPs to Pattern Appearance 

Relatively few workers have used this form of stimulus, which is surprising since it represents 

one which is closely related to normal visual experience. Work is reported by Jeffreys 101, 114 
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and Van der Tweel et al. 158. 

Van der Tweel et al. use equal 'pattern' and 'blank' durations, at a stimulus frequency of 

2.1 Hz and a modulation depth of 15%. The response shows clearly separated 'on' and 'off 

responses, of opposite polarity. Increasing the transition time has relatively little effect -

lengthening the 'on' response and reducing the 'off response. They did not vary retinal 

locus or measure scalp distributions. 

Jeffreys (private commun.) has also measured 'on' and 'off responses to pattern over a 

range of pattern durations and stimulus rates (both periodic and aperiodic). He finds that 

for stimulus durations greater than about 50 ms separate 'on' and 'off components can be 

distinguished in the response. For durations less than 50 ms two separate components 

cannot be distinguished. The response is also affected by the frequency of the stimulus, 

and on the pattern/blank duration ratio. These effects seem to be explicable in terms of 

the influence of one response on the next, the 'pre-exposure' effect, and more work on this 

particular effect is reported in this thesis. 

Jeffreys 84 has also been able to show that, by studying in detail the distributions of this 

type of AEP over the scalp for stimulation in different retinal areas, some correlation 

between the AEP and the known retinal mapping on the cortex can be found. 

In ref. 84 he reports on the distribution along the midline of pattern appearance AEPs. 

He used a 6° diameter field, and a pattern consisting of hollow checker-board squares of 

side 14'. The stimulus duration was 25 ms. His results are summarised as follows: 

1. The pattern appearance response consists of three principal peaks at approximate 

latencies 80, 110, and 180 ms after the onset of the stimulus. 

2. For stimulation in the lower half field these peaks were +ve, -ve, +ve respectively. 

These polarities are reversed for the upper half field. 

3. If the responses to the upper and lower half fields (presented separately) are added 

algebraically, the result is very good approximation to that obtained to full field 

stimulation. 

4. The longitudinal distributions of the second peak (latency 110 ms) are consistent with 

the hypothesis that this particular peak originates in extrastriate cortex above and 
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below the occipital pole for the lower and upper half fields respectively. He relates this 

to a model which assumes that the cortex behaves as a surface negative dipole sheet. 

Jeffreys also suggests that the inversion of polarity of the first (80 ms) peak is the result 

of dipole surface generators lying on the opposing surfaces of the striate cortex within the 

calcarine fissure. 

The additive property of the upper and lower half field responses, and the fact that they 

have different longitudinal distributions strongly support the hypothesis that they originate 

in different, spatially separate locations. 

Jeffreys concludes this paper by stressing the need for simultaneous multi-channel 

recording of AEP distributions to stimulation of discrete areas within the upper and lower 

visual fields. It is this work that the techniques and results reported in this thesis were 

designed to extend. 

2.6 Summary 

1. Animal experiments have shown that the visual cortex is primarily concerned with 

processing the contour or pattern information in the visual input. 

2. AEP responses to luminance changes and to pattern changes have different scalp 

distributions and seem to have independent origins. 

3. Pattern appearance AEPs have been found to show some correlation with underlying 

cortical organisation. 

4. Very little reported work on pattern AEPs has included error estimates. 

5. Further extension of the work on relating the AEP to its cortical sources requires 

simultaneous, multi-channel recording of AEPs to a wide range of stimuli at different 

retinal locations. 
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CHAPTER 3: SCOPE OF THE PRESENT RESEARCH PROGRAMME 

3.1 Practical Considerations of AEP Measurement 

With the desire to answer more advanced questions concerning the origin and significance of 

pattern AEPs comes the need for greater refinement in experimental techniques. This need 

manifests itself in several conflicting respects. We shall state briefly the factors involved, 

showing how they interact and then establish the approaches to be taken to overcome the 

problems. 

1. Simultaneous multi-channel recording is required to measure AEP scalp distributions. 

2. Stimuli covering smaller retinal areas give smaller signals and thus, since the noise is 

unchanged, a poorer signal to noise ratio results. 

3. If possible a single experimental session should include all the stimulus conditions which 

are to be compared. This is to ensure that the effects of unwanted experimental 

variables are minimised. This raises the problem of subject endurance, and generally an 

experimental session should be less than 4 hours. 

4. The signal/noise ratio can be improved by' increasing N, the number of presentations per 

run. This however takes more time and conflicts with (3). In addition the signal/noise 

ratio only improves as !4N 
5. A way of increasing N, without sacrificing time, is to decrease the interstimulus period, 

Tp. This was the approach used by Campbell and Maffei 23. However, it brings with it 

the disadvantage that successive responses interact (the pre-exposure effect), and since 

the purpose of the experiments is to measure certain components of the AEP which are 

suppressed by the pre-exposure effect, reduction of the interstimulus period below about 

500 ms should be avoided. This aspect is considered more fully in chapter 7. 

It was decided that the best compromise to meet the above practical difficulties was to use 

values ofN and Tp which gave a run time of about 1 minute or less (well within the subject's 

range of maintained attention), but at the same time to make routine estimates of the variance 

(or std. dev.) of the average, and thus enable proper assessments of significance to be made. 

Thus typically N = 100 and Tp = 600 ms, although, as will be seen in the results sections, 
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these values were often adjusted to suit particular experiments. 

It may be, however, that such an approach does not result in sufficient precision to 

answer certain questions, or is too time consuming, thus calling for a different approach 

from the normal averaging run. In this work one alternative technique was tried and is 

reported in chapter 10. It was an attempt to introduce automatic search methods into EP 

work. 

A possible experimental technique, which overcomes the problem of substained subject 

attention, but does not save overall time, is to do the averaging run in stages, allowing the 

subject to rest between stages. The duration of each stage is best controlled by the subject 

himself. In the experiments reported here, the subject was provided with a 'hold' micro­

switch, which could be pressed to stop the averaging process (without stopping the stimulus 

presentation). In practice few subjects used this facility during runs of less than about 

3 mins. A similar feature was used by May et al. 1011. 

3.2 Other Factors which may influence the AEP 

There are a number of variables, other than those of the stimulus being tested, which may 

influence the AEP measured and which must as far as possible be controlled. We shall 

consider such variables under three headings. 

3.2. 1 Psychological Variables 

Here we must be careful to distinguish between our use of terms which relate to subjective 

attributes, as described by a subject, and those which relate to objective measurements. 

There has been a good deal of work reported on the influence of 'psychological variables' 

on evoked potentials. Much of it is inconsistent because of vague or ambiguous definitions 

of these psychological variables. Useful reviews are given by Sutton 1411 and Regan 127. 

It is reasonable to conjecture that the AEP may be correlated with some 'psychological 

variable' such as 'attention'. The trouble begins when it is required to 'measure' this 

variable, because to do so one must resort to a physical measurement, and then the 

investigation is reduced to looking for correlations between the AEP and this physical 
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measurement. In fact it is questionable why it was necessary to introduce the intermediate 

term called a psychological variable in the first place. Donchin and Cohen 47 illustrate this 

point when they show how different workers have used a variety of definitions of the 

variable 'attention' and suggest that this is the reason why results differ. 

The main question however, which concerns us here is how to control adequately these 

psychological variables so that they do not affect the result of an experiment designed to 

investigate only the sensory processing mechanisms. The only practical approach here is 

to conduct the experiments in such as way that these variables are as far as possible 

always constant. Confidence that one has achieved this can be gained if it is observed that 

on different occasions responses to identical stimuli agree within the expected error limits. 

3.2.2 Receptor Variables (of the receptor being investigated) 

In the case of vision, variations in the characteristics of the eye will almost certainly affect 

the AEP measured on the scalp. Such factors include accommodation, convergence, eye 

movements, pupil diameter, and blinking. It is well known that accommodation has a 

marked effect on pattern AEPs (Harter and White 67) and this is perhaps the most 

important factor. It will inevitably vary during a run, but its effects can be minimised 

by using fairly short runs, or by giving the subject rests within runs. The effects of eye 

movements on AEPs have been briefly considered in section 2.2.3. With stimuli of un­

changing overall luminance, pupil diameter should be constant. Eye blinks, and the 

muscle potentials associated with them, will cause contamination of the AEP, but their 

effects will be averaged out provided the subject is instructed not to blink synchronously 

with the stimulus. 

Donchin and Cohen 47 suggest that the changes observed in the AEP as a result of 

varying a so-called psychological variable may in fact be the result of the indirect effect on 

a receptor variable (a peripheral gating mechanism). For example, a reduced AEP as a result 

of decreased attention may really be because of impaired accommodation. If this is so then 

it is more important to control accommodation directly than attempt to control psycho­

logical state. 
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3.2.3 Other Experimental Variables 

The effects of numerous other experimental conditions on the AEP cannot be ruled out. 

Such factors include auditory stimuli, temperature, pressure, humidity, subject position, 

etc. These should be kept as constant as possible, and care should be taken to ensure that 

there are no auditory stimuli occurring synchronously with the stimulus. 

3.2.4 Extra-cerebral Sources of Noise 

There are a number of physiological generators lying outside the brain which can give rise 

to potentials across regions of the scalp, and thus would constitute extra noise on the EEG. 

Such sources include muscle potentials, including the heart, electroretinogram and electro­

oculogram potentials. The averaging process will reduce the effects of these sources, and 

std. dev. measurements will enable their effects to be assessed quantitatively. However, as 

with auditory stimuli care should be taken to eliminate any activity synchronous with the 

stimulus. 

3.3 Aims of the Research Programme 

In chapter 2 we reviewed the previous work on pattern appearance AEPs. We have shown 

that, in contrast to flash AEPs, measurement of pattern AEP scalp distributions promises to 

be a fruitful method with which to identify the cortical origins of these AEPs. Previous 

results also suggest that temporally separate components may have different, and identifiable, 

cortical origins. In addition we have drawn attention to the lack of any consistent study of 

pattern AEP variability. 

The principal aim of the research programme was to extend this work on pattern AEP 

origins and variability. 

A subsidiary aim was to develop and study new experimental techniques deemed necessary 

to achieve this principal aim. At the outset it was assumed that this would involve the use of 

a general purpose digital computer, and so several of the later chapters discuss ways of using 

such a machine as an on-line experimental tool. 

The first part of this chapter has briefly reviewed the problems of experimental technique, 
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and has high-lighted the following needs:-

1. The need for simultaneous multichannel recording of AEPs. Only in this way can scalp 

distributions be satisfactorily measured. 
Sit"'" 2. The need to devise effi cient experimental methods to overcome time limit.tAexperi-

mental sessions. 

3. The need for efficient separation of AEP components at different latencies. 

4. The need to investigate critically the variability and criteria of significance of AEP 

measurements. 

This led to the planning of a research programme to answer the following questions: 

1. To what extent is it possible to use a general purpose digital computer to meet the 

needs listed above? 

2. How does the variability of the pattern appearance AEPs depend on time, stimulus, and 

position on the scalp? 

3. Can the scalp distributions of the various components of the pattern appearance AEPs 

give a positive indication of the cortical origin of these responses? 

4. Is it possible, in the high noise EP situation, to perform a stochastic search operation? 

3.4 Brief Summary of the Following Chapters 

In chapters 4,5, and 6 we describe the experimental computing system developed, and consider 

what factors must be taken into account when using it interactively on-line. 

Chapters 7, 8, and 9 report on the use of the system to answer questions about the properties 

and origin of pattern appearance AEPs. 

:In chapter lOwe report on attempts to make the machine perform a stochastic search 

operation. 
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SECTION B 

EXPERIMENTAL AND PROGRAMMING METHODS 

This section will be divided into three chapters. In the first (chapter 4) we shall consider the 

experimental apparatus used to present the stimuli and record responses. In chapter 

5 we shall describe' the techniques used in the computer programs. This chapter also includes 

a discussion on the accuracy of the analysis methods used. Finally, in chapter 6, the special 

considerations appertaining to the use of a computer as an on-line interactive experimental 

aid will be discussed. 

The system as a whole was designed to be very versatile, allowing the user to conduct a wide 

variety of experiments. The information given in this section is that common to all 

experiments. Details relevant to particular experiments will be given when these are described. 



CHAPTER 4: EXPERIMENTAL APPARATUS 

A diagram of the overall experimental configuration is shown in Figure 4.1. Individual parts of 

it will be described in the following sections. 

4.1 Stimulus Presentation 

For early experiments (chapter 7) a 4-field tachistoscope of the form shown in Figure 4.2(a) 

was employed. This has been described by Jeffreys 180. For this the stimulus field was 

circular, subtending an angle of 6° at the eye, with a viewing distance of 98 cm. 

For later experiments (chapter 8,9, and 10) a simpler 2-field tachistoscope was used, with a 

larger stimulus area (12° diameter), and a shorter viewing distance (50 cm). This is shown in 

Figure 4.2(b). Illumination was provided by sets of fluorescent glow tubes which back 

illuminated opal glass screens. Patterns, either on photographic film or drawn with black ink 

on tracing paper were placed in front of these screens. The colour of the light was white with 

a slightly bluish tinge. 

Photomultiplier measurements showed that the on and off transition times of the light 

outputs were about 3001ls. Compared with physiological processing times this can be 

considered as effectively instantaneous. When one field was coming on at the same time as 

another was going off, the maximum overlap or deadspace periods were about lOOIlS. 

Potentiometer controls were available to adjust, independently, the luminance of each field. 

These were adjusted, with the fields switching and with no patterns in position, so that the 

fields all had the same subjective brightness. A series of control experiments was done to 

determine the effect on the pattern appearance.EPs of small differences in the luminances of 

the tachistoscope fields. It was found that a difference of ± 150cd./m2 could be tolerated 

before any significant change in the pattern AEP was observed. This was much larger than. 

the precision with which the luminances could be subjectively set as equal. The actual value 

of the mean luminance does not affect the pattern responses very much, and for all experiments 

a value of about 400 cd./m2 was used. (But see discussion in Section 9.5.2.) 
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4.1.1 Fixation 

Since most of the experiments reported here used patterned stimuli, for which it is known 

that the response measured depends on the retinal locus stimulated, it is necessary to ensure 

that the image projected on the retina stays in roughly the same location for the duration of 

the averaging run (normally Y2 - 5 mins.). This is achieved by fixation (a stabilised retinal 

image not being required for these experiments). The fixation mark was a steadily illuminated 

red cross in the centre of the field. As a check on how critical this fixation was, control 

experiments were done in which two subjects were instructed to practise one of three fixation 

conditions: 

a. Normal fixation on red cross. 

b. Fixation on centre of stimulus field but with no cross. 

c. Deliberately allowing the direction of gaze to wander around the stimulus area. 

Figure 4.3 shows the results obtained, and it can be seen that the effect of changing fixation 

condition is present but not large, and so it was concluded that, for this type of stimulus, 

fixation is not too critical. All the experiments reported later used the method (a). 

4.2 Electrodes 

Standard silver disc (9 mm diam.) EEG electrodes were used for all experiments, attached to the 

scalp with collodion glue. Electrode jelly was injected between the electrodes and the scalp to 

provide a good electrical contact. The maximum acceptable interelectrode resistance was about 

8 Kn, but the average value was about 5 Kn. The electrodes were chlorided from time to time 

to improve the contact resistance. Electrode placements on the scalp varied from experiment 

to experiment, and will be given under the appropriate sections. Recordings were usually 

mono polar, with an electrode on the right ear lobe used as a reference. The left ear lobe was 

grounded. In control experiments, right and left ear lobes, and the chin were compared as 

references and all found to give the same results, except that the chin reference gave a higher 

noise level (see Section 9.4.4). 
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4.3 EEG Amplifiers 

A 16-channel Beckman TC Electroencephalograph was used for all experiments. The mid­

band amplifier gain was about 5 X 104 which, with an EEG input of 20 Il V, would result 

in an output of 1 volt. Outputs to the computer's AID converters were taken directly 

from the pen writer drivers, which had a very low (few ohms) output impedance. The cables 

from the EEG amplifiers to the AID converters were rather lengthy, and this low impedance 

was necessary to reduce any cross coupling, which was checked and found to be negligible. 

The frequency response of one EEG amplifier at the filter settings normally used is shown 

in Figure 4.4. The other amplifiers were very similar. 

At the start and finish of each experiment the whole recording system was calibrated using 

lOll V pulses available from a calibrator built into the Electroencephalograph. 

4.4 Subjects 

A total of 12 volunteer~ubjects were used, of whom two (DAJ and JGA) were used much 

more extenSively thai the others. It was found in a few cases where subjects were used over 

an extended period that their responses became more consistent and less noisy. This was 

manifested by a steady reduction of the measured variance and was probably a result of a 

gradual improvement in the subjects' ability to relax and fixate. Most of the work was done 

with these few well-trained subjects. 

The subject was seated comfortably in a sound-proof room and could be instructed over an 

'intercom'. At the start of a 'run'. he would be given a warning 'buzz', which alerted him to 

fixate. He then replied 'ready!', and the computer operator would start the appropriate 

analysis section of the program. Apart from the instruction to fixate on the central cross, the 

subject was normally given no other task. At the end of a run the computer automatically 

stopped the stimulus switching, and this was a signal to the subject to relax. 2 - 3 minutes 

rest were usually allowed between runs. 
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CHAPTER 5: COMPUTER AND COMPUTER PROGRAM DETAILS 

5.0 Introduction and System Requirements 

In this chapter we give details of the computing system and the programs which were developed 

for the research. The machine is described fIrst and then details of the programs. Finally, in 

section 5.3 we discuss instrumental errors arising out of the methods of measurement and 

computation used. Variability inherent in the physiological system being investigated will be 

dealt with later. 

Arising out of the discussion in section 3.3 the following requirements were established for 

the computing system as a whole: 

1. The computer must control both the stimulus and the response analysis. This allows 

automatic interaction between them if desired. 

2. To deal with simultaneous reading from many electrodes, the recording system must sustain 

the data flow from the maximum number of parallel paths. (In practice this limit was 16, 

which was the number of available AID converter inputs and channels on the 

Electroencephalograph. ) 

3. The system must be versatile enough to allow for a wide variety of stimuli and response 

analyses. This was achieved by making the programs modular, with well defined interfaces 

between them. 

4. The system must be effIcient, in the sense that the best use must be made of the subject in 

a time limited session. 

5. The programs must calculate, and display on-line, the Std.devs of the averaged responses. 

6. The experimenter must have a continuous picture of how the responses are behaving. 

7. The experimenter must have the ability to inspect and manipulate the results on-line. 

He must also be able to modify easily program parameters which influence the direction of 

the experiment. In this way the experimenter himself would be part of the response to 

stimulus feed back loop. 

Item 6 and 7 were part of an overall requirement to achieve an efficient experimenter -

computer interface, a topic which receives special treatment in chapter 6. 
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5.1 Machine Description 

The computer used was a Digital Equipment Corporation POP8. The machine was equipped 

with a number of peripherals making it very suitable for on-line work. The basic word length 

was 12 bits and the size of the main store 8192 words. The machine was equipped with an 

'extended arithmetic element', which allowed such operations as 'multiply' and 'divide' to be 

initiated directly from the standard instruction set. 

Peripheral storage consisted of two fixed head disc files giving a total of 64K words storage 

at an average access time per word of 20 ms. Also available were two magnetic tape drives 

(Type TUSS), each capable of holding one tape with a capacity of 184K words. Tape access 

time was, of course, very slow and normally the magnetic tapes were only used during an 

experiment to record data for future analysis, using sequential loading, so that the time taken 

was quite acceptable. 

Other peripherals and facilities are briefly described in the following sections. Refer to 

Fig. 4.1 for their arrangement in the total configuration. 

5. 1.1 Type 338 Programmed CRT Display Unit 

This unit provides a 10" x I 0" display area which is divided up into 1024 x 1024 matrix of 

points, each of which can be separately illuminated. Although it has its own instruction set, the 

display shares the computer's main store and can be initiated, modified, or stopped directly 

by main computer instructions. 

A slave display in the experimental room was attached to the main display. A light pen 

attachment was also available for the master display, but this could not be used with the slave. 

The light pen was used with certain off-line analysis programs. 

5.1.2 Teletype 

The standard teletype input/output device was available to the experimenter. 

5.1.3 Analogue to Digital Converters 

A Type AFOIA Multiplexed A/D Converter system was attached to the machine. The 

multiplexor has a total of 16 channels which could be scanned under program control. A 
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switch allowed selection of conversion word length. The maximum available accuracy was 

12 bits, but for all the work recorded here a .. 9-bit conversion was used. The reason for this 

is explained in the section on instrumental errors. Since the machine time for conversion 

depended on the word length, the latter was made no longer than necessary. The dynamic 

range of the converter was -5V to +5V. 

5.1.4 Digital to Ana/ague Converters 

Four of these were available, each converting a 100bit binary number into a voltage in the range 

-5V to +5V. These were used for a variety of purposes, which included driving X-Y plotters 

or chart recorders, and for controlling the stimulus in the hill climbing experiments (chapter 10). 

5.1.5 Output Register 

The state of a 12-bit register located within the computer and loadable under program control 

could be sensed externally. This was used for controlling the switching times of the tachistoscope 

fields, and for driving a set of indicator lamps. 

5.1.6 Switch Register Input 

Under program control the state of a 12-bit external switch register could be read into the 

accumulator. Hence program branching and general control could be accomplished through this, 

and it was used by the experimenter as his main on-line control. Run, start, stop, interrupt, data 

store, etc. were all controlled in this way. 

5.1.7 Analogue Potentiometers 

For certain applications analogue control of variables in the machine was desirable. To this end 

a number of simple potentiometers were available, connected into some of the AID converter 

channels. Examples of their use will be given in chapter 6. 

5. 1.8 Real Time Clock 

The computer had a real time clock facility which operated as follows. A crystal oscillator 

produced a series of pulses with a nominal cycle of 7.8p.s. The pulses incremented a 6-bit clock 
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register, which would thus eventually overflow, causing a program interrupt. The register 

could initially be loaded with an arbitrary number. Hence it was possible to perform timing 

operations quantised in units of 7.8 ps. Normally, however, the register was loaded with zero, 

and this gave a basic clock timing interval of about 500 ps. 

In practice, however, the effective clock interval was a little longer than 500 ps. This was 

because of the time taken for the machine to do a few 'housekeeping' instructions connected 

with the program interrupt. Thus it was necessary to calibrate the internal timing against an 

external time standard. For this a Wavetek oscillator Type 112 was used. 

As a result of this calibration a correction factor of 1.08 had to be applied to all nominal 

timings. This factor was checked from time to time during the research. All timing 

information given in this thesis is corrected. 

5.2 Programming Details 

Although certain software packages for on-line experimentation were available for use with 

PDP8, these were neither fast enough nor versatile enough to meet the demands of the present 

system. In many ways it was necessary to use the speed and throughput capabilities of the 

machine at their limits. Thus all programs (except for a standard floating point arithmetic 

package) were written from scratch in the machine assembly language (PAL). 

The programs were incorporated into a 'disc operating system' written specially for the 

purpose. This and other programs will be described in the following sections. 

5.2.1 Disc Operating System 

The philosophy used here was to store all available programs on the discs, and transfer them 

into or out of the CPU store by means of a directory specification, also stored on the disc. 

Initiation of transfers could either be by direct call from the program, or by the operator, 

via the teletype. 

Each directory 'entry' contained the following information: 

a. Size of program or data block to be transferred. 

b. CPU storage location. 

c. Disc storage location. 

d. Address to which control jumps after transfer. 
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A program 'CALL' instruction would specify the number of the directory entry and the 

direction of transfer (into or out of the CPU store). Thus, by building up a suitable directory, 

any disc operation, from merely storing or fetching data, to calling and automatically 

executing programs, could be accomplished. 

A number of utility programs were included in the operating system as follows: 

1. Loader - for writing and initiating the whole system on the disc from a master tape. 

2. Data Transfer - enables any tape-core-disc transfer to be accomplished as specified via the 

teletype. 

3. Error Routine - arranges for type out of details when a program error occurs. 

4. Examine and Modify - allows the operator to inspect the value of (and modify if necessary) 

any program parameter. 

All programs, including those normally used only for off-line analysis, were stored on the disc 

during an experiment and could be called if desired. This immediate availability of programs 

was found to be a great asset during an experiment. 

5.2.2 The On-Line Experimenter Program 

This consisted basically of two parts: 

a. The real time phase (RTP). 

b. The analysis and control phase (ACP). 

Simplified block diagrams of the operations performed by these two phases are shown in 

Figure 5.1. More detailed flow charts appear in Appendix A. 

The Real Time Phase 

As its name suggests this is concerned with operations to be controlled in the external 

environment which require precise timing. It uses the real time clock facility. 

The RTP generates a series of time periods (called epochs) during which one stimulus would 

normally be presented and one response measured. It performs the following operations: 

1. Generates the basic timing sequence (Figure 5.2). 

2. Generates timing pulses to control stimulus presentation. 

3. Reads the AID converters and puts the data into a buffer. 
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-4. Senses external trigger pulses. 

5. Updates the on-line display. 

The following parameters govern the operation of the RTP: 

Nr = No. of data points read per channel per epoch. 

Nd = No. of units in delay period. 

Nw = No. of units in wait period. 

Tu = Time unit (usually 0.54 ms). 

Tm = Time scale multiplier. 

Nad = No. of multiplexor channels scanned. 

T 1 - T 9 = Timing pulse specifications. 

Int = 0 - external trigger of epoch start. 

Int = 1 - internal trigger of epoch start. 

The basic timing sequence is shown in Fig 5.2. It consists of four time periods defined as 

follows: 

td=NdTmTu 

tr= NrTm Tu 

tw=NwTmTu 

ta=Na Tm Tu 

Nd can be set from the external switch register and enables the read period to be shifted in 

time in order to overlap with that part of the response which is to be measured. 

Na is a random variable (constrained within defmed limits) enabling the epoch duration to 

be variable, resulting in aperiodic stimulus presentation. For periodic presentation Na can 

be set to zero. 

During the read period the N ad converter channels are scanned once every Tm x Tu 

milliseconds. Hence during one epoch a total of Nr x Nad data points are read in and stored 

in a temporary buffer, from which they will be collected and analysed by the ACP. 

The Analysis and Control Phase 

In this phase, which operates concurrently with the RTP, data collected by the latter is 

analysed and stored. Results of the analysis can be fed back to the RTP to modify the 

stimulUS parameters of subsequent epochs. 

S-9~' 



A variety of analysis methods were used, according to the needs of the particular experiment 

being performed. During the research the following techniques were developed: 

1. Normal averaging into a number of pre-defined categories. 

2. Calculation of standard deviations of the averaged responses. 

3. 'Running' average computation. 

4. Calculation of AEP component amplitudes (SIR routine). 

5. Stochastic search procedure ('Hill climber' program). 

Note that more than one of these could be used in a single experiment on the same set of data. 

Each of them will be described in more detail in the results sections. However, the technique of 

averaging into categories (Item 1 above) will be considered more fully here, as this formed the 

basis of most of the other methods. 

Category Averaging 

Suppose the Nr data points read in during a particular epoch 'p' for channel 'i' are: 

where oj' defines a particular 'category' to which this response belongs. 

The program computes the averages: N' 

A .. (t) = _1 .fiJ X .. (t) 
IJ N. '-, IJP 

J P= 
where Nj is the total number of epochs for category j. 

This facility enables a number of different stimuli to be presented in a random order and 

their responses can then be sorted out by the machine, which assigns a category to each stimulus 

type. 

Definition of category is, however, entirely arbitrary. It can be a function of stimulus or 

response, and can be assigned internally or externally. 

Other Features of the On-Line Experimenter Program 

a. 'HOLD' Facility: Using this the subject could, by means of a microswitch, stop the 

computer's analysis activity. This facility has a variety of uses, such as giving the subject a 
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chance to rest or readjust his position. While the 'hold' was in operation, stimulus 

presentation still continued. The experimenter also had a similar overriding switch. 

b. Errors: Throughout both phases various error checks were made. Whenever one of 

these came up an error routine was called from the disc and an error message was 

typed out on the teletype, identifying the error check. The computer then requested 

the operator if he wished to restart. 

c. Machine Speed: Although the basic instruction cycle times of the machine were very 

much faster than the 'real time' scale of the experiment, it was still possible for the 

machine to be too slow for the input data flow, particularly when a large number of 

AID converter channels were being used. If such a condition occurred one of the error 

checks would come up. The experimenter was then able to readjust appropriate program 

parameters on-line and proceed with the experiment. 

d. Data Storage: At the end of each run the experimenter was asked to decide whether or 

not he wanted the responses for that run stored on magnetic tape. He could scan over the 

results on the display to enable him to decide this, and then press a switch to initiate 

the storage program. The results could subsequently be displayed again and plotted out 

if required by using the DMP program. 

5.2.3 Data Manipulation Program rOMP) 

This program was designed to allow the AEP responses to be displayed and operated upon in 

various ways, thus permitting the experimenter to tryout various hypotheses on the data 

quickly and easily. A full description of it appears in section 6.4.5. 

5.3 Instrumental Errors 

When considering sources of uncertainty in our measurements we must distinguish between: 

1. Inherent Variability - owing to the uncertain nature of the physiological system being 

investigated. 
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· 2. Instrumental Errors - owing to imperfections in the measuring instruments. 

In this section we shall deal only with item 2. Item I will receive extensive consideration 

in Chapter 8. 

The second important consideration is to define exactly the quantity or measurement we 

are supposing to be in error. For the purposes of this section we shall take this to be the 

amplitude of an averaged evoked potential waveform, reconstructed from a set of 

quantised values. 

In the case of AEP measurement we can divide instrumental errors into two further 

categories: 

1. Digital Computation errors (rounding off, etc.). 

2. Quantisation errors (sampling at finite times and into discrete levels). 

The logic of our approach to instrumental errors will be as follows. We shall first obtain a 

rough estimate of the expected inherent variability of the results. Then we shall design the 

instrumentation so that the instrumental errors represent only a small fraction of the total 

variability. 

Most AEP amplitudes lie within the range 0 - 10 IlV, whereas the raw EEG out of which 

the AEP is extracted has a mean amplitude of between 10 - 50 Il V (depending upon subject 

and electrode position). Thus taking lOll V as the best value of the standard deviation of 

the EP owing to the noise, and considering an averaging run of 50 presentations, we obtain 

a best case standard deviation of the AEP of: 

10 

150 
= 1. 4}JV 

which with an AEP of 10 IlV represents a variability of about 14%. Normally the 

variability will be greater than this. 

5.3.1 Digital Computation Errors 

The basic computer word length is 12 bits. Higher precision can be obtained by using two, 

three, or even more 12-bit words to represent one number. Greater numerical range, but 

not precision, can be achieved by having an extra word to specify a mUltiplying factor, in 
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terms of a power of 2 exponent by which the number should be multiplied. This then 

gives a floating point representation. In general the more words used to represent a number, 

the greater is the precision but, as a penalty, the greater is the processing time and storage 

space taken up by the program. 

In a digital calculation it frequently happens that the number of digits in the result exceeds 

the maximum value and 'rounding off must be used. This leads to error in the result. 

For the calculations involved in the present work, error considerations were effectively 

reduced to making a choice between single-precision (12 bits) or double-precision (24 bits) 

arithmetic. In appendix B 1 it is shown that errors resulting from the use of double 

precision are likely to be negligible. A double-precision floating point program package 

was available for use on the PDP8 which was reasonably fast but occupied a fair amount of 

storage space. Since it would have to be in store even if it were to be used only once, it 

might just as well be used whenever there was no good reason for doing otherwise. Thus 

most computations were performed using double precision arithmetic. 

However, there was one particular operation where speed requirements precluded the use 

of the double-precision arithmetic. This was the operation of summing the raw EEG data as 

part of the computation of the AEP, which had to be done rapidly to keep up with the rate 

at which the real time data was being read in. It is shown in appendix B2 that is single­

precision fixed point arithmetic is used for this summing, an accuracy of approximately ±2% 

can be achieved, provided a rounding up and down procedure is adopted instead of the 

simple truncation normally used. 

5.3.2 Sampling and Ouantisation Errors 

A further source of errors in the measurement of AEPs arises out of the digitising process 

itself. The EEG voltage entering the AID converters is a continuous function which is 

measured only at discrete time points (this we shall call sampling) and the voltage 

measurements themselves are quanti sed into a fmite number of levels. Both these operations 

introduce errors, simply because information is lost. As with the digital calculation errors, 

the acceptable intervals of sampling and quantisation depend on the results required from 

the data. For instance, if only statistical parameters are required, then quantisation 

requirements are far less stringent than if a reconstruction of the analogue data is required 
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. (see Susskind 147). We shall assume, however, that the object of the measurement is to 

reconstruct the analogue data. 

Sampling and quantisation have been dealt with very thoroughly in the literature. 

Sources which have been used for the following arguments are Susskind 147 who gives 

a very good general theory, and Macy 104 who considers the particular problems relating 

to biological research. 

The Sampling Process 

A continuous waveform is to be sampled at certain times only. It is necessary to decide on 

the sampling interval (assumed constant) between successive samples. The choice will 

depend upon: 

1. The frequency spectrum of the data to be sampled. 

2. The desired spectrum of the reconstructed data. 

3. The acceptable error in the reconstructed data. 

A block diagram of the recording system is shown in Fig. 5.4. The filter characteristics 

selected will depend upon the required spectrum of the reconstructed data. The filter 

removes the unwanted information in the original data. 

The choice of sampling interval is usually made on the basis of the rather generalised 

sampling theorem which says - 'A continuous function can only be exactly represented 

by equi-spaced samples if the sampling rate is at least twice the highest frequency present 

in the function'. 

This is not quite good enough for our purposes, however, since we need some estimate 

of the actual error involved. 

The reconstruction error will depend upon: 

1. The spectrum of the raw EEG. 

2. The filter characteristics. 

3. The sampling interval. 

Macy 104 gives curves for a simple high pass filter, showing the relationship between 

sampling ratio (Rs), the filter cut-off characteristics, and the reconstruction error . 

. Sampling ratio is defmed as: 
Rs = ---1-

Ts.fc 
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-where Ts = sampling interval 

fc = filter cut-off frequency. 

Using these curves we shall calculate the approximate sampling interval required to give 

a reconstruction error of about 5%. The filter response of the EEG amplifiers used for this 

work is shown in Fig. 4.4. The roll off rate is about 12 dB/octave and the cut off frequency 

about 20 Hz. Using this data and referring to the curves in Macy, we find that a sampling 

interval of about 5 ms is required. This value can be considered as a guide only, and in 

practice a variety of sampling intervals were used, the most common being about 4.7 ms. 

Fig. 5.5 shows a typical spectrum measured for a well trained subject during a run (A) 

and during a rest period (B). 

Since the spectrum is not flat to above the filter cut off, this means that the energy 

present in the higher frequencies will be less than the above calculation assumes, and the 

error value assumed above will be pessimistic. 

Voltage Quantisation 

It was shown in appendix B2 that 8 bits or 256 levels had to be used for voltage 

quantisation in the AID converters. This was a result of the need to use single precision 

arithmetic for the summation process. In the case of quantisation the problem of how to 

calculate the error in reconstruction has not been solved explicitly, as was the case for 

sampling errors 147). However, we can make the following judgements which show that 

the 8 bits used are quite adequate for our purpose. The full range of 256 levels would be 

taken up by an AEP of about 15 J.L V. If we assume that the average AEP is abou t % of 

this value, then any direct measurement made on the reconstructed data would not be in 

error by more than ~28 of this, or about 1 %. Alternatively Y2 of the least significant 

bit corresponds to a voltage of about 15/512 ~ %0 J.L V, which is too small to be of any 

significance. 

5.3.3 Summary 

We have considered the following sources of instrumental error and have evaluated 

approximate values for the errors resulting from them. Taking as a 'norm' an AEP of 

4J.LV: 
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Floating Point Calculations - negligible 

Single Precision Summing - 2% 

Sampling at 5 ms intervals - < 5% 

Voltage quantisation - < 1% 

Thus we can safely say that instrumental errors are small compared with the inherent 

varia bili ty . 
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CHAPTER 6: ON-LINE INTERACTION 

6.0 The Man-Computer System 

For an efficient overall system we must attempt to develop an interface between experi­

menter and computer which fully exploits the special but differing abilities of man and 

machine in a close-coupled interactive system. In this chapter we consider the nature and 

efficiency of this interaction. There has been much literature written on man/computer 

interaction and useful discussions are given by Licklider 117, Edwards 52, Shackel 141 and 

Taylor 153. Most of these are, however, of a very general nature and do not consider in 

detail the mechanism of the interface between man and machine. MacKay and Fisher 102 

and David 43 do, however, consider the interface requirements which lead to efficient 

interaction. 

The interaction we are considering is between two basically very different mechanisms 

and we have to evaluate what leads to an efficient interface between them. To do this we 

must start by examining how each accepts and interprets information. For the machine 

this is relatively simple, but when we come to the man we find a complexity and variety 

which we can never hope to analyse completely. However, a considerable body of . 

experimental data exists to help us understand at least approximately how the human brain 

receives and interprets sensory information. The next section will review this. 

6.1 Perceptual Information Flow 

As pointed out by Cherry (p. 290 of 26), when examining human sensory processes we have 

to distinguish between two measures of input information flow: 

1. Capacity of the sense organs (receptors) - millions of bits/sec. 

2. Perceptual information rate, or the rate at which discriminating actions can be per­

formed - tens of bits/sec. 

The reasons for this redundancy is partly to provide a safety factor, but it is also useful 

for allowing efficient transformation from one coding scheme to another. 
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When considering man-computer interfaces it is the perceptual rate which is important 

and the most significant feature is that this rate is quite low. As Kidd 9l has pointed out 

'One can go far in task and system design on the basis of the simple principle that perceptual 

capacity has a distinct and stable upper bound'. 

We thus consider in more detail the human perceptual information rate. How do we 

evaluate a particular method of putting information into the brain? There have been three 

main ways: 

1. Verbal information rate (reading speed). 

2. Classification tasks. 

3. Reaction time measurements. 

For normal reading, Pierce and Karlin III estimate a rate of 30-40 bits/sec, and Cherry 

(26, p. 290) 50 bits/sec, using the value of 1.5 bits per letter given by Shannon 14l. 

Miller et al. 113 measured information rates for briefly presented letter sequences and 

found that for a SOD-ms duration of presentation, subjects were able to take in about 20 bits 

per presentation. Although the extension of this to a time average may be questionable, this 

does indicate an information rate of about 40 bits/sec. 

By measuring the reaction time to make a correct response, Hick 70 has shown that the 

choice reaction time increases as log N, when N is the number of choices. This indicates a 

constant rate of information flow. 

However, when we come to examine the situation in more detail, we find that this rate 

varies according to how the information is distributed among the senses, or perceptual 

dimensions. 

A very considerable amount of work shows that the brain is extremely good at dis­

criminating between two stimuli in the same perceptual dimension, if presented together or 

separated only by a short time interval. 

On the other hand the brain is relatively poor at identification within a given dimension. 

Miller 112 in an interesting paper which compares results from a large number of perceptual 

dimensions has suggested as a rough rule that 7 ± 2 separate alternatives is the maximum 

that can be classified by the brain in one dimension. 
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These results suggest that the brain has extremely good 'comparators' for assessing 

separate items of information received in a short space of time, but is either reluctant or 

unable to set up long term scale standards. 

Pollack and Ficks 122 have shown that the information flow into the brain can be 

increased by using more perceptual dimensions and, with a binary choice in each dimension, 

they found that the brain can sustain a much higher input rate than if all the information 

was restricted to one dimension. 

Thus, as general rule, if we wish to maximise information rate into the brain via the 

normal senses, we should aim to use as many perceptual dimensions as possible. As an 

example, a display which added colour, motion and depth information to the usual two 

spatial dimensions would be perceptually more efficient in terms of information flow. 

6.2 The Man-Computer Interface 

Having discussed a few general findings about how the human brain can efficiently accept 

information, we now turn to see how this is relevant in the context of a man-computer 

interface. It is obvious when reviewing the literature on the subject that practical lim ita­

tions hamper the optimising of a man-computer interface, on the lines of maximising 

information flow .. For instance, it often happens that only limited means are available 

(e.g. a teletype machine) for the interface, which necessarily results in a very restricted 

communication link. In this case the rate of information flow may be limited by the hard­

ware of the interface rather than the human user's limitations. 

However, more advanced techniques, such as sophisticated visual displays, have been 

developed in recent years, and these make the optimisation of the interface with respect 

to the human user a much more realistic proposition. 

MacKay and Fisher (p. 26 of 102) discuss a number of features which a display should 

have if it is to make full use of the human perceptual characteristics. Briefly these are as 

follows: 

1. The display should be organised (both spatially and temporally) so as the minimise the 

decision time required by the human operator. 
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2. Trends or changes rather than absolute values should be displayed. This can be seen to 

be desirable for a system which is very good at discrimination, and for which 'novel' 

stimuli produce large responses. 

MacKay (98, quoted in 102) also makes the following, more psychological, points about the 

human in an interactive situation such as we are considering: 

3. 'The human operator normally adjusts coefficients in a problem until he observes a result 

satisfying given conditions ... The speed with which results can be obtained is therefore 

limited by the human rather than the instrumental element'. 

4. 'It is felt that normal human reasoning is much more akin to a stochastic than a deter­

ministic process, and that much of its essential character - ability to formulate 

hypotheses for example - may depend on this stochastic element'. 

To these we shall add two further observations: 

5. The human operator is never static and changes in two ways: 

a. He tires and becomes less efficient at a task if it has to be performed at a sustained 

stressful level, or if there is an unreasonable degree of interference or distraction 

(p. 163 of 92). 

b. On the other hand he also learns and can become more efficient at a particular task 

as he performs it more often. 

6. A human usually has an expectation, or 'cognitive set', in that he recognises more 

readily that which he expects to recognise. This can be taken a stage further to bring 

in deeper motives - he recognises not only what he expects, but also what he wants or 

needs to recognise. Thus display features which may run counter to observer expecta­

tion should receive greater emphasis or bias. 

Item 1 above, the requirement to minimise decision time, is perhaps the primary criterion. 

However, very seldom do we find this principle stated concisely, although we may quote 

Chambers and Bartlett 25 who say 'Thus optimum relationships hold between man and 

machine when the probability is a maximum that, on the basis of the information input 

from the external environment, man will select the appropriate effector response within a 

minimum of time'. 
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Much of the literature on this subject is concerned with ideals or general principles, and 

very little real quantitative work has been done. Yntema et a1. 177 have, however, measured 

user performance as a function of the response time of a computing system to an inter­

rogation from the user. They were considering an on-line conversational mode time shared 

system, with a limited (teletype) interface. 

6.3 Visual Displays Used in Electrophysiological Research 

A number of workers have devised computer generated displays for showing EP and single 

unit data. Most of these can only operate off-line. Burns 17 and Harris et a1. 64 describe 

interesting pseudo 3D off-line displays for EP data. The LINC system described by Clark 

and Molnar 211 has a number of display devices which can be used on-line. 

6.4 Description of Display Systems Developed for this Work 

Having discussed the criteria which determine how efficiently the human brain can accept 

and act upon presented information, we now describe the actual interactive techniques 

. developed for this research. 

For efficient interaction we must: 

a. Minimise decision time. 

b. Maximise perceptual dimensions. 

c. Show trends or changes. 

d. Whenever possible, use parallel operation of man and machine; and bear in mind the 

following more 'human' factors: 

e. Human beings learn. 

f. They tire under stressful conditions. 

g. They have a cognitive set. 

Point d. has not been specifically discussed, but is an obvious need in the interests of saving 

time. 

It is obviously impossible to incorporate these principles fully in any practical design. 

_They were thus treated as guidelines only, and it will be seen that the result is a practical 
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compromise. The limitations do in many cases lie in the actual hardware available. 

The following devices were available for transfer of information from computer to 

experimenter: 

1. Programmable display unit (see section 5.1.1) 

2. Teletype 

3. XY Plotter or Chart recorder 

4. Loudspeaker driven by a variable frequency tone generator 

5. A series of coloured lights. 

Each of these is considered separately as follows. 

6.4.1 Teletype 

This prints at 10 characters per second, which is much slower than reading speed. Thus the 

teletype was only used when a permanent record was required, or when it was not necessary 

for the experimenter to make an immediate decision using the presented data. 

6.4.2 XY Plotter and Chart Recorder 

These devices are ideal for presentation of non-alphanumeric data at high speed. They also 

give a permanent record, and provide an easy means of comparing the 'present' value of a 

parameter with a 'past' value, thus giving differential or change information. 

6.4.3 Audio Tone Generator 

This extends the perceptual dimensions into the auditory domain. Sounds are good 

attention diverting stimuli if novel, and can be used as effective warning signals. Two 

variables are available, pitch and amplitude, but in the present work only pitch was varied. 

6.4.4 Coloured Lights 

These indicated the state of a l2-bit output register (see section 5.1.5) and, by writing into 

this register at appropriate points in the program some indication of internal machine states, 

could be directly observed by the experimenter. Such devices cannot transmit much 
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·information but can be quickly interpreted by the user. Extra discriminating cues (above 

that of mere position) can be given by making the lamps of different colours. 

6.4.5 Programmable Display 

This constituted the major interactive device, and would command most of the experi­

menter's attention. The display actually observed during an experiment was that on a slave 

oscilloscope remote from the actual computer. Suitably programmed, anything from alpha­

numeric data to graphs could be shown. A feature also allowed particular parts of the dis­

play to flash on and off, and the brightness too was under program control. An especially 

significant advantage of this particular display unit was the fact that it did allow con­

tinuous presentation of the picture even when the main computer was performing its other 

operations. This feature was found particularly useful for meeting requirement d. above. 

Thus it can be seen that a very versatile display medium was available, but it did suffer 

from a few disadvantages: 

a. The plotting speed was about 15 J.ls/point. This precluded very complicated displays 

owing to the time taken to 'paint' the picture, which if too long (> 1 second) made it 

almost impossible to use. 

b. The number of display instructions had to be limited owing to the small size of the 

main store. 

c. Complicated displays take a long time to program. 

The above disadvantages militate against complex displays. However, with the guideline 

of minimum decision time, simple displays are in fact the most effective. Thus it was found 

much better to have a large number of relatively simple displays (each one containing the 

'bare bones' of the relevant information) rather than a few complicated displays. It may be 

argued that in some cases a complicated display is necessary, such as for instance, if one is 

interested in searching for a particular feature over a wide range of data. However, in this 

case it is often still better to stick to a simple display and incorporate the search dimension 

into some external control. 
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: Since the display is 'redrawn' at approximately 20 ms. intervals (this is the limiting value 

even for simple displays), it is ideal for 'dynamic' data presentation. Changes in data or 

conditions within the machine can be immediately observed and, since the 'update' rate is 

so fast, impressions of actual movement can be obtained. The former makes use of the 

brain's efficiency at discrimination, while the latter adds another perceptual dimension. 

Not all the display formats used will be described in detail. A few examples which serve 

to illustrate the use of the above principles will be described below. Later, displays 

appropriate to particular experiments will be mentioned briefly. 

1. Data Buffer Display 

The main AEP averaging program used a large data buffer in which were stored all the results 

for the current run. As the experiment proceeded the data in this buffer was continually up­

dated. A display was necessary in order to give the experimenter a picture of the data 

stored in this buffer. The following requirements had to be met by this display: 

a. It must be updated at least as fast as the data input to the main buffer. 

b. Only subsets of the data need to be presented. The display would be too complex to 

use efficiently if all the data were present at once. 

c. Quick selection of a particular data subset was necessary. 

d. Data on the screen had to be easily identified. 

A simple block diagram of how the buffer display worked is shown in Fig. 6.1. Require­

ment a. was easily met and, although the display was redrawn every 20 ms., in practice it 

was found quite adequate to update the display data every 64 ms. 

The display system functions as follows. Every 64 ms. a subset of the data in the main 

buffer was transferred into the display buffer and displayed. The particular data subset 

transferred was determined by the setting on an analogue potentiometer controlled by the 

experimenter. Thus by turning this potentiometer he could scan a 'window' over the data 

assembled on an imaginary 'map' and, owing to the rapid update rate, this scanning would 

appear to him immediately responsive, and essentially continuous. A picture of what this 

display was like is shown in Fig. 6.2. This form of display proved to be very successfu1. 
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the response N into axis B. Pressing the appropriate switch would form (A - B) and dis­

play the result in C, which can then be plotted out. 

6.5 Conclusions and Observations on Man-Computer Interaction 

The above has been a rather brief survey of the man-machine interface considerations, 

which have guided the development of the research techniques. The principal drawback 

has been the difficulty in quantifying these considerations. The displays and techniques 

described have been the result of continuous development, improving the displays as 

experience increased. The impact of human learning was very noticeable, and in a number 

of instances resulted in displays being made simpler to improve efficiency. 
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CHAPTER 7: PATTERN PRE-EXPOSURE EXPERIMENTS 

7.1 Introduction 

As has been stated in section 3.1 it is necessary when measuring EPs to present multiple stimuli 

and, to achieve reasonably short experimental durations, 'the ~nterstimulus period (ISP) should 

not be too long. However, decreasing the ISP has the unwelcome side effect of accentuating any 

interaction between successive responses. 

The response obtained to stimuli well separated in time approximates to the transient response 

of the visual system and a study of its waveshape may be expected to give information concerning 

successive stages of neural processing. Owing to the non-linearity of the system much of this 

information is lost if one measures only the steady state response of the system, by stimulating 

at a single high frequency and measuring the frequency components of the response. Such methods 

have been used by Regan 125,12', Spekreijse 145, Campbell and Maffei 23, and others, in studies 

where the interaction between responses is tolerated. 

Most previous work on the interaction between successive VEPs has been done using flash 

stimuli 7,2 7,48,54,1 40. These workers have all used paired flashes as stimuli and have studied 

changes in the responses as a function of the time interval between the flashes. The responses 

were very complex, but it was found that interaction occurred at least up to inter-flash intervals 

of about 300 ms. 

The only work so far reported on the interaction between pattern VEPs has been that of 

Campbell and Maffei 2 3, using alternating grating patterns. They found that the steady state 

EP to such a pattern was severely attenuated if the orientation of an adapting pattern was 

within about I S° of the test pattern. 

The series of experiments reported in this chapter were designed to investigate the effect of 

one stimulus on the response to a su.cceeding one, when the stimuli are tachistoscopically 

presented patterns replacing Ii normally 'blank' field. The second (test) stimulus can either be 

identical to or different from the first (pre-exposure) stimulus. Both these cases were investigated. 

7.2 Methods 

Stimulus 

Using the tachistoscope of Figure 4.2(a), three of the four fields were arranged to display three 
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patterns PI, P2 , P3 • (For some later experiments P3 was omitted.) The fourth field 

contained a 'blank' field, which was always, and only, illuminated when all the patterns 

were off, (logical NAND). 

The stimulus sequence used is illustrated in Figure 7.1. It consisted of four time intervals 

T I -T4 ,: 

TI - Pattern, PI 

T2 - Blank 

T3 - Pattern, PI or P2 

or P3 

T4 - Blank 

- Pre-exposure (PE) stimulus 

- Randomly selected test 

stimulus 

Duration 

- Preset 

- Preset 

- Preset 

- Randomly 

variable 

The variable T 4 resulted in an aperiodic presentation rate with a mean period of 910 ms, 

and a variation of ± 130ms. For large values of T I, T 2 or T 3 the mean period was 

lengthened accordingly. 

Subjects 

A total of four subjects were used, of whom two (DAJ, JGA) were investigated in some 

detail. As far as results go for the other subjects they showed similar features. 

Electrodes 

Five midline electrodes were used, and six channels (5monopolar, I bipolar) were recorded, 

as shown in Figure 7.1. The right ear lobe was used for the monopolar reference electrode. 

Response Analysis 

The test stimuli (PI' P2 , P3 ,) were presented in random order, and the computer 

automatically sorted out the responses into the three stimulus conditions, Le. PI PI' 

PI P2 , PI P3. Fifty responses were averaged for each condition, and at least two runs were 

made for each timing condition. The mean of these two results was taken. Normally a 

range of values of T 3 was used for each pair of T I , T 2, values, so that changes in EP 

thresholds could be observed. 
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The intermixing of the test patterns allowed differences in the responses to each of them 

to be measured under identical experimental conditions. It was found, particularly with 

monocular stimulation, that lhe responses were often rather small, and also variable from day 

to day. Thus it was important to do all the runs necessary for a given comparison during one 

experimental session. 

The test patterns, although intermixed randomly within a particular run, were placed in 

different tachistoscope fields, and it is possible that this may have introduced response 

differences unrelated to the patterns themselves (even though the fields were subjectively 

matched for brightness). That such field differences were negligible was shown by a control 

experiment in which the patterns were changed around between the various tachistoscope 

fields and their responses compared. 

The AID converter sampling interval was 8.1 ms and 96 samples per response.: were 

measured. The resulting sampling period of 780 ms was long enough in most cases to 

encompass both the PE and test responses. For experiment 1 and a few results in experiment 2 

a shorter averaging period of 520 ms was used. 

When T2 was fairly short (E;; 200 ms), the pre-exposure response would overlap that of the 

test stimulus, thus creating problems of measurement of the latter. To overcome this a 

method employed by a number of other workers (Ciganek 2'7 ; Schwartz and Shagass 140) 

was used. This involved subtracting the pre-exposure only response from that for the double 

stimulus. Assignment of zero level, with respect to which the amplitude of a particular 

peak is to be measured, was always a source of inaccuracy however, and because of this, 

in one particular case considered later, the results must be considered with some caution. 

Variance estimates computed on-line were used to calculate the ± 1 std. dey. limits shown 

on all the graphs. (These limits are omitted for some points, to avoid confusion, but are 

similar for the same electrode of the same subject.) The calculated limits take into account 

the variability of the zero level. 

7.3 Experiment 1 - Comparison of Identical Versus Random Pattern Presentation 

A preliminary experiment was conducted to determine if there was any difference between 

the response to a stimulus presented in a sequence of identical stimuli (condition 1) and the 
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response to the same stimulus presented within a random sequence of different stimuli 

(condition II). In this case T 1 = O~ i.e. no pre-exposure. Figure 7.2 shows the results 

for two subjects. Results for conditions I and II are given in the first two rows, and it 

can be seen that they are appreciably different. The third row shows results for condition 

III which was similar to condition I except that the interstimulus period was about three 

times its previous value. (In practice this was achieved by merely inhibiting the present­

ation of patterns P2 and P3). Again the responses are different, and it may be noted that 

certain components are larger in amplitude. 

These results demonstrate that the shape of a response depends on: 

a. the identity of the preceding pattern. 

b. the relative timing of the stimuli. 

7.4 Experiment 2 - Effect of Varying T 1 , T 2 and T 3 

For this experiment the following patterns were used: 

PI - short vertical bars - lower half field 

P, _ short 450 bars - lower half field 

P3 - short horizontal bars- lower half field 

Each bar subtended an angular area of 3.3' x 20' of arc at the eye. These particular 

patterns were chosen as it was desired to investigate the possible effects of different contour 

orientations on the responses. The lower half field was used because of its large responses. 

A typical set of responses is shown in Figure 7.3 using the values T 1 = 50 ms, T 2 = 300 ms, 

T 3 = 20 ms. The separate responses to PE and test stimuli are easily seen. The response 

is greatest on the lower part of the occiput, with a maximum at electrode 2 (3 cm above the 

inion), and very little on electrodes 4 and 5. For this subject, electrode 2 was thus selected 

for measurement, and for all the results given in this section, the amplitude of the prominent 

negative peak at about 130 ms latency was measured. At the bottom of Figure 7.3 the 

electrode 2 responses for the PE only are given. These were used to assign the zero level 

when measuring the amplitude of the test response. 

Each time interval T1 , T2 and T3 was varied independently, and Figures 7.4 - 7.8 show 

how the amplitude of the test response varied as a function of each of these. These results 
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were obtained in three experimental sessions. During each session the various timing 

conditions were selected in a random order. , 

7.4.1 Discussion of These Results 

Figure 7.4 shows the effect of varying T 3 in the absence of PE (T 1 = 0). A typical 

saturation phenomenon is obseorved at about 25-30 ms. The three patterns gave essentially 

identical responses, and thus any subsequently observed differences between them must be 

due to the nature of the PE. These results provide no evidence for a smaller AEP to the 

45° bars than to the vertical and horizontal bars. Maffei and Campbell ~ ~ ~ found such a 

difference using a grating pattern stimulus, but it is doubtful whether the present method 

was precise enough to show up such a small difference. Some psychophysical results 

& ~ 2:1, IS 1 have also indicated that the human visual system is more sensitive to vertical 

and horizontal directions than to oblique orientations. 

Figure 7.5 shows a similar plot of AEP .amplitude versus T 3, this time with the PE at 

TI = 50 ms. The response to pattern P3 is relatively little affected, while pattern P1 

(same as PE) is very substantially suppressed. The 45° bars (P:1 ) are slightly affected. 

Figures 7.6 and 7.7 show the dependence on TI . As before, it is found that pattern PI 

(identical with PE) is suppressed most, while P3 is least affected and Pl lies intermediate 

between the two. These also appears to be a critical value of T I above which the response 

falls off rapidly. For T 3 = 15 ms, this is about 30 ms (Figure 7.6) and for T 3 = 20 ms it 

is about 50 ms (Figure 7.7) and in general the longer T 3, the greater is the PE duration (T 1 ) 

needed for a significant effect. 

The effect of varying T:1 is shown in Figure 7.8. Even at T l = 500 ms the PE is still quite 

effective for condition PI PI' The apparent increase in response for small values ofTl 

(150 and 200 ms) seems to be due to enhancement of the test response by a late component 

of the PE response, an effect which makes the results at small values of T l rather difficult 

to interpret. 

It is interesting to compare these findings with those of Campbell and Maffei l 3 in a 

paper published after this work was done. They measured the steady state response to an 

alternating vertical grating after pre-exposure to a steady adapting grating at various other 
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. 
orientations. Their aim was to measure the angular width of orientation specific channels 

in the nervous system. Their results showed (Figure 9 in their paper) that the suppressive 

effect was confined to ± 15° about the vertical, whereas in the experiments reported here 

there was a definite effect at 45° and, if the PE were long enough, even at 90°. The 

stimulation and analysis conditions used by Campbell and Maffei were however considerably 

different from those used here. 

7.4.2 Possible Mechanisms 

The fact that suppression occurs even between perpendicular stimuli shows that the effect 

is more than just adaptation of orientation channels, although this mechanism probably 

operates in the case of identical pattern PE. Three possible hypotheses are proposed to 

explain these effects: 

1. The effect is purely retinal adaptation, and thus we should expect it to be roughly 

proportional to the extent of overlap of the PE and test patterns. Note however that if 

such a proportionality were found, it would not exclude a more central mechanism. 

2. The effect is central and stimulus-specific. Confirmatory evidence for this hypothesis 

would be provided if it were found that PE presented only to one eye suppressed the 

response to a test stimulus presented only to the other eye. 

3. The effect is central and non stimulus-specific. By this we mean that the suppression 

effect is independent of the nature of the PE stimulus (i.e. any arbitrary PE will do). 

That this cannot be the complete explanation has already been shown by the results 

quoted above. 

The following experiments were conducted to test these hypotheses. 

7.5 Experiment 3 - Effect of Pattern Shift 

In this experiment we ask whether or not overlap of the PE and test patterns is necessary 

for the suppression effect. A single pattern type was used, consisting of isolated horizontal 

bars as shown in Figure 7.9. Patterns Pl and Pa were as follows: 

P
l 

- PI pattern shifted vertically by Y2 pattern unit . 

• Pa - PI pattern shifted horizontally by Yl pattern unit 
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Note that in neither of these two cases does the pattern have any overlap with the PE 

pattern, Pl. 

Binocular stimulation was used, with T I = 50 ms and T 2 = 300ms. T:I was variable. 

The results are shown in Figure 7.9. It is seen that the shifted pattern curves lie midway 

between those for no PE and complete overlap, with the vertical pattern shift being slightly 

more suppressed than the horizontal shift. (The low value at T:I = 15 ms for P2 appears to 

be a spurious anomaly.) The differences are not large however compared with the 

standard deviations shown, and it was decided not to investigate the intermediate cases of 

partial overlap. 

This experiment shows that overlap is not necessary for suppression, but does not exclude 

the possibility that overlap is partially responsible for the effect. 

7.6 Interocular Transfer 

7.6.1 Experiment 4 

The 4-field tachistoscope was modified slightly so that independent stimuli could be presented 

to the two ~yes. This was achieved by placing appropriately oriented sheets of polaroid in 

front of the patterns, and providing the subject with polaroid spectacles. In this way the PE 

pattern (PI) could be presented to one eye, and the test pattern (P2 - same or different) 

to the other. Unfortunately the introduction of polaroid reduced the available intensity. 

In addition, monocular responses are smaller than binocular. These two factors contributed 

to make the measured responses rather small, with the consequent difficulty in establishing 

significant results. It was thus important to choose a stimulus pattern which gave a large 

response, and for this reason the zig-zag pattern shown in Figure 7.10 was used. 

In this experiment patterns PI and P2 were identical, and the results for two subjects are 

shown in Figures 7.10 and 7.11. For comparison the monocular results with no PE are 

shown. There was no significant difference between the two eyes with no PE, and so the 

mean is shown. It is seen that the suppression effect does transfer, but not completely; 

the responses to the non pre-exposed eye are always greater than those to the pre-exposed 
, 

eye. The results for subject JGA are less convincing, and it should be noted that his 

responses were very small for monocular stimulation. 
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In the case of subject DAJ (Figure 7.10) the effect on the left eye of PE to the right is 

greater than the effect on the right eye of PE to the left. This feature is also suggested from 

Figure 7.11 for the other subject. Both these subjects were right eye dominant. 

7.6.2 Experiment 5 - Interocular Transfer and Pattern Shift 

The conditions for this experiment were similar to experiment 4, except that in this case the 

effect of a PE pattern to one eye on a shifted pattern to the other eye was measured. The 

right eye was used for the PE since the result of experiment 4 had shown this eye to be the . . 
more effective. Both horizontal and vertical pattern shifts were tried, involving ove~lap and 

no overlap respectively. The results are shown in Figure 7.12, with comparison curves for no 

PE and complete overlap (with test stimulus to the right eye). The shifted patterns gave 

responses intermediate between the two limit conditions. Note that the suppression for 

partial overlap is slightly less than that for no overlap, particularly for larger values of T s. 

This suggests that when the interaction is central, overlap of the two patterns is less important. 

7.7 Discussion of Experiments 1-5 

The results support the conclusion that all the possible mechanisms proposed above play 

some part in the suppression effect. The occurence of interocular transfer indicates that the 

effect is at least partially central to the lateral geniculate nuclei, the anatomical location at 

which inputs from the two eyes converge. However in every case the suppression is always 

greatest when PE and test stimuli are identical, indicating that retinal processes could play 

some part. 

The significance of these results must now heconsidered in the light of subsequent studies 

in which the relative amplitudes of the individual components of the pattern VEPs were 

measured (Chapter 9). The results quoted above were for the response peak at about 130 ms 

latency, using a 6° stimulus field at about 40 cd/m2 luminance. The later studies reported 

in chapter 9 employed a 2-field tachistoscope with a 12° field and a greatly increased 

luminance of about 500 cd/m2
• With these later conditions the VEPs were in general larger, 

with shorter latency peaks. In particular a component peaking at about 70 ms (referred to 

as CI in chapter 9), which was barely detectable in the results of this chapter, was much more 

prominent. Also the latency of the second (negative) peak was reduced from 130 ms to 

100 ms (the C2 component of chapter 9). 
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The importance of measuring individual components, and the fact that these components' 

vary differently with the measurement conditions were not fully appreciated when this 

work was done. In spite of this however, the results reported above can be considered as 

valid for the second (C2) component of the pattern YEP. 

One result using the large 2-field tachistoscope has shown that the first two components 

of the response are differently affected by pre-exposure. Figure 7.13 shows the amplitudes 

of the first two components plotted as a function of the stimulus duration. Aperiodic . . . 
presentation was used, buUhe mean period was constant at 360 ms throughout. The 

stimulus pattern was a checkerboard of square size 12' in the lower half field. The 

amplitudes of the components were measured by the SIR routine described in section 9.2. 

It is seen clearly that of the two components C2, at about 100 ms latency, is suppressed . . 
more than Cl (at about 70 ms), especially at longer durations. It must be stressed that the 

stimulation sequence here was not the same as for the previous experiments (1-5). The 

PE was effectively the preceding stimulus and the 'PE to test' interval (T 2) was variable, 

owing to the aperiodic presentation. 

The two-field tachistoscope did not allow pre-exposure and test patterns to be different, 

neither were investigations of inter ocular transfer possible with it. It would be of interest 

to determine the interocular suppression effects for different peaks. If, for instance, it is 
• 

found that the suppression effect transfers for the second component but not for the first, 

then this would suggest that the first component is derived from an area of cortex in which 

there are predominantly monocularly driven neurons. 

A recent preliminary report by Kulikowski and Campbell 95 using a grating stimulus, has 

also indicated that pre-exposure affects the individual YEP components differently. 

7.8 Perpendicular Enhancement 

The two experiments reported in this section were designed to look for an evoked potential 

analogue to a particular type of visual after image. If a regular line pattern is observed for a 

period of about 10 sees, the after image seen consists of an array of moving lines perpendicular 
• I 

to those of the adapting pattern. This was investigated by MacKay 99,1 00 who called it the 

• 'Complementary After Image'. Wilson 1 68 has carried out further detailed investigations. 
I 
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A possible cause of the effect is that adaptation of orientation detectors in one direction 

produces a lowering of threshold for stimulation in the perpendicular direction, (Directional 

Satiation, as proposed by MacKay 99). It was suggested to the author by Professor MacKay 

that YEP measurements may provide some evidence to support this explanation. Accordingly 

some experiments were planned to answer the question: 'Can conditions be found under 

which adaptation (or PE) with a regular line pattern enhances the YEP to a perpendicular 

line pattern?' 

As has been reviewed in section 2.2, there is considerable evidence for orientation 

detectors in the visual system. The discovery by llubel and Wiesel (see section 2.2.2) of 

higher order hypercomplex cells responding to two orthogonal orientations provides some 

evidence for the grouping or pairing of mutually perpendicular directions in the visual system, 

which may provide a basis for the after effect. However there are two results which tend to 

indicate a negative answer to the question posed above. Recent workoby Campbell and Maffei 2 3 

has shown that, although the YEP reflects orientation selective channels, no enhancement with 

perpendicular adaptation was evident. They were however using different stimulus conditions 

from those used in this study, and they were not specifically looking for an enhancement effect. 

Psychophysical experiments by Campbell and Kulikowski 25 have failed to show any lowering 

of grating detection threshold with perpendicular grating adaptation. 

Experiments 6 and 7 were conducted to look specifically for increases in the VEPs to contoured 

patterns previously pre-exposed with a perpendicular pattern. It was evident from previous 

results that if T 1 is long enough and T 2 short enough suppression (and not enhancement) of the 

perpendicular pattern always occurs. However there were indications that for fairly short values 

of T 1 (20-30 ms) some enhancement might be present. Thus it was decided to investigate this 

range of timings more closely. 

1.B. 1 Experiment 6 

In this experiment the vertical (P.) and horizontal (P2 ) bar patterns used in experiment 2 

(section 7.4) were used. The results for two subjects are shown in Figures 7.14 and 7.15 

in which pre-exposure of one bar pattern with a perpendicular pattern is compared with 

pre-exposure using an identical pattern. There is some slight suggestion of an enhancement 

in the range T. ,... 10 ms in both figures but, as is seen from the std. dev. bars drawn on 
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the graphs, it is not really significant. The evidence for enhancement however rests solely 

on the observed differences between the responses at T 1 = 0 and T 1 = 10 ms. Comparison 

between these two conditions is complicated because of the interfering effect of the PE 

pattern response which makes zero level estimation difficult. Although control runs were 

done (see Figure 7.3) with no test pattern in order to estimate the zero level, this was not 

done for every value of T 1 , and there remains the problem that the methods of estimating 
• 

the zero levels in the two cases were different. 

7.B.2 Experiment 7 

For experiment 6 short bars were used as stimuli. It is possible that an enhancement effect 

may be more evident if the pattern contains only continuous contours. Experiment 7 was 

thus designed to compare a number of different mutually perpendicular pairs of patterns 

including continuous stripes. Unfortunately the latter sort of pattern has an inherent 

problem in that it gives very small responses. 

For this experiment the computer program was modified slightly. During each cycle, 

instead of presenting an identical PE stimulus followed by a randomly selected test 

pattern, the PE was now randomly either present or absent preceding a single test pattern. 

The test pattern consisted of contours perpendicular to the PE pattern, and the various pairs 

of patterns used are listed in table 7.1. As with the previous experiments the computer 
t 

automatically sorted the responses into two categories, i.e. with and without PE. 

Two typical responses are shown in Figure 7.16, from which the difficulty in assigning 

zero levels is apparent. 

Table 7.1 gives the values of the amplitude of the first negative peak (latency 130 ms) 

for the two conditions (with and without PE). The std. dev. estimate is also given. It is 

seen that the differences observed are nowhere near significant for any pattern pair. 

7.B.3 Condusions on Perpendicular Enhancement 

We conclude that if there is any enhancement effect it must be very small. It should be 

noted that the experimental conditions used here are rather different from those used by 

workers investigating the complementary after image. Wilson in his studies 16 a found 
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that at least several seconds were usually required to evoke an after image. Campbell and 

Maffei 23 used one minute of PE, and found no enhancement. 

Table 7.1 Results from Experiment 7 

Patterns 
Amplitude of Test Response 

Peak at Latency J 30 ms 

PE Test WithPE NoPE 

I I I I thin --------I I I I I 1. 7J,L V 11!IJ,LV , I I I ----
I I , ,lines ____ . 

1111 
----- 3.9J,LV 5.6J,LV 
--

~I~ ~ 8.3J,LV 8.3J,LV 

I I , Ithick ----, I I I ---- 11.1J,L V 10.6J,LV I I I 
I. ____ , I I ,lines ____ 

/V\N\/\ 
I\/IIV\A NWV\ 
NI/I.N\ MNV\ 12.8J,LV 12.2J,LV 
NWV\ • 

shifted 

--Noise S.OJ,LV S.OJ,LV --

Note: Standard deviation estimate ± 1.6J,LV. 

Experimental Conditions: Tl = 20 ms, T2 = 200 ms, T3 = 20 ms 

Electrodes - Active (2): 3 cm above inion 

Reference: right ear lobe 

Subject - DAJ (27.2.70). 
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CHAPTER 8: AVERAGED EVOKED POTENTIAL VARIABILITY STUDIES 

8.1 Introduction 

It was stated in section 3.1 that routine variance estimates would be made for all AEP 

measurements so that a proper assessment of their significance could be made. Thus 

AEP results presented elsewhere in this thesis are accompanied by such estimates. In 

this chapter we report on how such estimates were derived, and on experiments designed 

to investigate some properties of the variance itself. 

In the literature, treatment of AEP variability has been very mixed, ranging from 

complete neglect to - very extensive statistical analyses. However, numerous workers 

have drawn attention to the need for considering fluctuations in the individual responses 

which make up the AEP. In particular Brazier ~ ~ notes that information is lost through 

the process of averaging. Perry 1 1 8 and Walter 163 also stress the need to study AEP 

variances. Although in 1959 Barlow 6 reported on a simple analogue computer which 

gave running values of the AEP and its standard deviation, instrumental difficulties 

have often prevented subsequent workers from calculating AEP standard deviations. 

Variability usually had to be more crudely estimated (e.g. by comparing two responses 

recorded under identical stimulus conditions). Even the CAT averager does not allow 

calculation of standard deviation; this normally requires a general purpose digital computer. 

Burns and Melzack 1 8 and Ruchkin 1 3 7 have employed ingenious cumulative summation 

methods for detecting variability, but they are not very precise. 

Off-line digital computers were first used to calculate AEP standard deviations 

(e.g. Brazier 1 5 and Burns 17), and more recently a computer has been used on-line 

by Horvath 73 who measured auditory AEP's in the cat cortex. Horvath's techriique has 

been followed up in this work, for pattern appearance AEPs (section 8.5). 

The above has been largely a review of methods, as there has been very little quantitative 

data published on AEP variances. No work has so far been reported for pattern AEPs. 

This literature surveY'· would not be complete without some reference to the various 

attempts to apply to EP data more sophisticated statistical techniques than normal averaging. 
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Among the most important we mention multivariate analysis, Donchin 4 5 ; discriminant 

analysis, Walter 162; principal component analysis, John et al B B ; adaptive filters, 

Freeman 5 B and Woody 171. The main aim of much of this work has been to reduce the 

dimensionality of EP data. Most results show that it is possible to reduce AEP data to 

3-6 dimensions (parameters) but, although very sophisticated mathematically, it is 

difficult to relate these results to hypotheses about the underlying physiological 

mechanisms. A difference of emphasis is noted here. Most workers mentioned in this 

paragraph use simple stimuli (e.g. flashes) and very complex response analyses. This is to 

be compared with the work reported here, which uses more carefully constructed stimuli, 

but with a relatively straightforward response analysis. As a consequence their work is of 

little direct relevance here. 

Rigorous analysis of the EEG signal is far from simple. The measured EEG voltage after 

a stimulus is usually assumed to be a mixture of stimulus evoked activity, 'the response', 

plus apparently random 'noise', The noise gives rise to short term high frequency 

fluctuations, owing to the low frequency cut off of the recording apparatus. The response 

itself can also vary in magnitude and shape, owing to habituation, etc., and this (in addition 

to the noise) contributes to the observed standard deviation of the averaged waveform. In 

contrast to the noise, response variations are likely to be longer term ones, lasting for many 

stimulus periods. 

Further complications arise because responses from successive stimuli can interact with 

each other (see chapter 7) and with the noise. These interactions may confuse variance 

estimates, but on the other hand may help to uncover features about the underlying 

physiological processes. The second series of experiments reported in this chapter are 

attempts at investigating these interactions. 

Plan of the Chapter 

The initial experiments (section 8.3) investigate variability, in terms of the conventional 

standard deviation (s.d.) of the pattern appearance AEP, with respect to:-

1. Electrode position - section 8.3.1. 

2. Stimulus or no stimulus - section 8.3.2. 
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3. Retinal area and position - section 8.3.3. 

4. Latency - section 8.3.4. 

Section 8.4 explores more carefully a latency effect observed during the initial 

experiments, and demonstrates a case of signal and noise interaction. 

Section 8.5 (running average experiments) describes experiments to investigate long 

term changes (over minutes) of the pattern appearance AEP. 

8.2 Computation Method 

In terms of the notation given in chapter 5, the standard deviation for a particular response 

is given by:-

2 1 
S .. (t) = 

IJ N.-1 

N' 

~[X .. (t) - A .. ( t )1 2 L IJP ,IJ ~ 
J p=1 

Where Aij(t) is the AEP previously defined in section 5.2.2. This is simply shown to be 

equivalent to:-

2 
S .. (t) = 

IJ 

In practice the sums -

1 
N.-l 

J 

~ X.! (t) L IJP 
P 

N' 

~ X.~ (I) L IJP 
p=1 

and 

- .1!L A~, ( t) 
N.-l 1 J 

J 

~ X.~ (t) L IJP 
P 

were accumulated in the computer's data buffer during each averaging run, and then at 

the end of the run a routine (MS) was automatically entered which computed Aij and 

Sij. Thus for every single data point (latency t) of the AEP a corresponding value of Sij 

was available. 
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Typical std. devs. (i.e. Sij(t» with their associated responses are shown in Figure 8.1 (a). 

The superposed traces are from two separate runs using identical stimuli. Note that Silt) is 

relatively independttt of t for the examples given. 

For most of the results given in chapter 9 the mean value of Aij over brief sampling periods 

was calculated (by means of the SIR routine described later). In these cases the corresponding· 

mean value of Sij over the same or similar periods could also be computed. These are named 

SO, S I, S2 etc. in an analogous way to the corresponding CO, C I, C2, etc. components of 

chapter 9, (see Figure 9.1). 

Thus we define, 

and similarly for S2, S3 etc. (Note that there is no 'zero level' subtraction.) 

Typical positions for these short duration sampling periods are shown by horizontal bars below 

the upper traces on Figure 8.l(a). In the following initial experiments the sampling period for 

S2 was t = 131-159mS, and the mean value of this component over several runs was calculated 

and plotted. 

From the computed values of SO, S I, etc. we may also estimate the standard deviations of the 

corresponding C I, C2, etc. 

To do this we have to make the not too unreasonable assumptions that the data points within 

one sample are fully correlated, although the samples themselves are drawn from independent 

distributions. 

Thus Std. Dev of C I = (similarly for C2 etc.) 

N = total no. of presentations included in C 1. However since in practice it was found that 

SO ~ SI etc. this reduces to - Std. Dev. ofCI, C2, C3 s::::l 50% 
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8.3 Initial Experiments 

The measurements reported in this section were obtained during the same experiments 

as those of chapters 7 and 9. Relevant experimental details are recorded on the 

accompanying graphs. 

8.3.1 AEP Variances 

Figures 8.2 - 8.5 show plots of variance distribution over the head for four subjects. 

Sample S2 (i.e. mean value of Sij(t) over t = 131 - 159 ms) is plotted versus electrode 

position: Be~id~s being an average over time each point is also an average over several 

runs (usually 8), all with the same stimulus condition. (Note that the ± 1 std. dev. bars 

shown on each plot refer to the values of S2 themselves.) Electrode placings and stimulus 

pattern were the same as those described in chapter 9. Stimulus duration was 25 ms 

except for the lower part of Figure 8.4 where it was 400 ms. 

For subject DAJ, this distribution was measured on several occasions, but was always 

substantially the same as Figure 8.3. 

8.3.2 AEP Variance - With and Without Stimulus 

The dashed curves on Figures 8.3 - 8.5 show the distribution of S2 with no stimulus 

under otherwise similar conditions to the solid curves. The no stimulus curves will simply 

give the RMS value of the raw EEG, since the average in this case is zero. 

8.3.3 AEP Variance - Retinal Position and Area of Stimulus Pattern 

The two solid plots on Figure 8.3 show distributions for left and right half field stimuli. 

It is seen that the difference between them is far from significant. A similar result was 

found for other comparisons using different retinal positions of the stimulus. 

Figures 8.4 and 8.5 each show three plots (solid lines) giving distributions for stimuli 

occupying Y2, ~ and 1/8 of the stimulus field. The results show a small, but barely 

significant, increase with retinal area stimulated. 
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AEP Variance - Dependence on Latency (t) 

Normally, Silt) was found to be independent of t, see Figure 8.1(a). However, occasionally 

a systematic dip in the Silt) trace was observed approximately coincident with the 

response. Two examples are shown in Figure 8.1(b). This effect is investigated more closely 

in section 8.4. 

8.3.5 Discussion 

1. The S2 distributions are very similar for all subjects. The most significant feature is the 

steady increase from inion to vertex .. The transverse distributions for subjects JC and 

MAS are almost symmetrical, whilst those for DAJ and SH increase to the left. The 

absolute magnitudes vary somewhat, those of subj. SH being particularly large. 

2. Note that the longitudinal S2 distributions are not the same shape as those of the 

response itself, the latter usually rising to a peak between electrodes 3 to S (see plots 

in chapter 9, e.g. Figure 9.6). 

3. The duration, retinal position and area of the stimulus have almost no influence on the 

standard deviation. There is a slight, but barely significant, rise in S2 with stimulus 

area (Figures 8.4 and 8.5). 

4. The 'no stimulus' S2 distribution (Le. the raw EEG, or noise) is slightly greater than, but 

the same shape as, the 'with stimulus' distribution. 

S. The above four points, and particularly No.4, strongly suggest that the noise alone is 

responsible for the variability, a not altogether surprising result. The greater value of S2 

with no stimulus could be the result of increased random activity or a rhythm because 

the subject has nothing interesting to look at. 

6. The small dip in the plot of Sij(t) vs. latency is significant. To observe such a 

reduction in s.d. when an evoked response is present runs contrary to the commonly 

held assumption that the response and noise components of the EEG voltage are 

independent. To see this, consider what is implied by the independence assumption:­

Suppose Xi(t) = Ri(t) + Ni(t) 

where Ri(t) and Nit) are response and noise respectively of the measured signal 

Xi(t) to the ith stimulus. Bendat 8 has analysed in depth this situation (using 
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standard statistical theory). He has calculated the expected s.d. of Xi(t), assuming 

Ri(t) and Ni(t) to be independent. We quote his results for two cases. 

a. If successive responses are independent, or non-correlated:-

S~( t) + S~( t) 
n 

b. If successive responses are fully correlated (essentially this means a constant 

response to all stimuli):-

= 

Where - SA' (t) = Variance [Xi(t)] for n samples. 

- SR(t) and SN(t) are similarly defined. 

The true situation will be somewhere between these two cases, i.e. successive signals 

are partially correlated. However it is noted that since SN' (t) is the same whether or 

not a response is present, the addition of a response can only increase SA' (t). If a 

decrease is observed there must be interaction between response and noise, i.e. the 

independence assumption must be wrong. We can pursue this further and suggest the 

hypothesis that the so-called 'response' does not exist independent of the noise, and is 

in fact nothing more than a temporary correlation of the noise with the stimulus. In 

other words it could be that part of the noise periodically 'locks in' with the stimulus, 

and the result shows up as a non-zero average, which we call the response. If this were 

so we should expect the s.d. reduction to be observed more generally, and this 

possibility prompted the experiments of the next section. 

8.4 Response - Noise Interaction 

Following the observation reported in 8.3.4 that a plot of s.d. vs. latency at times showed 

a small but systematic reduction during, or a little after, the response, a special experiment 

(DAJ 13/3/71) was conducted to investigate this effect more closely. Subj. DAJ appeared 

to display the effect consistently; other subjects did not, but this could have been because 
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it was not obvious from the pen recorder plots, and so the following experiments used 

the more accurate sampling method. 

In particular the question was asked whether the s.d. reduction was a general 

phenomenon to be observed for all AEP's of this type and, if not, what special conditions 

were necessary for its generation. If the former alternative were the case this would be 

evidence in support of the 'noise synchronisation' origin of EP's mentioned in 8.3.5 (6). 

8.4. 1 Method 

The stimulus conditions were similar to the other experiments except that the mean inter­

stimulus period (lSP) was made longer in order to observe more carefully the latency 

effects on the s.d. Five sampling periods SO - S4 at times shown on Figure 8.6(c) were 

used. Three averaging conditions were employed:-

1. No stimulus 

2. Stimulus with synchronised averaging 

3. Stimulus with un-synchronised averaging 

Condition (3) was achieved by recording the raw EEG on a tape recorder, and then 

replaying it later as input to the averaging program, but using a slightly increased 

repetition frequency for the latter. The aperiodic averaging periods rendered the chance 

of any spurious synchronisation negligible. For instrumental reasons it was not possible to 

record all electrodes under this condition. 

Condition (3) was included to provide a reference s.d. derived from the same runs as 

condition (2). This was because it had already been shown that 'no stimulus' - .: 

condition (1) - runs tended to give larger s.d.s than the 'with stimulus' runs. 

8.4.2 Results 

The results are shown on Figures 8.6(a) and (b) for a stimulus duration of 20 ms, and 

8.6(c) for 250 ms (two electrodes only shown). Plots are shown for each electrode 

(number encircled). Conditions (1) and (3) show a more or less constant s.d. with 

latency, as we should expect. Condition (2) however shows quite large variations, 

particularly for the midline electrodes 4, 5 and 6, and for the transverse electrodes. The 
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minimum s.d. occurs at about 250 ms, which is during the late components of the AEP. 

If the stimulus duration is longer, the s.d. reduction persists for longer, as Figure 8.6(c) 

shows. 

However, although very marked for subj. DAJ, after careful analysis the effect was not 

observed for two other subjects tested (MAS and SH). Only SH showed a suggestion of a 

reduction at about 260 ms latency. 

8.4.3 Discussion 

The net result is that the s.d. reduction is not observed-in all cases and the hypothesis 

proposed above is not supported. The effect does occur for subj. DAJ, but only for some 

electrodes. 

An explanation of the effect was discoyered by closely examining the responses themselves. 

For subj. DAJ, these were often found to display a decaying oscillatory discharge following 

the response and approximately at the a frequency. It was in these cases that the s.d. was 

Ilo 

also usually found to show the reduction during the period of the discharge. This discharge 

phenomenon has attracted the attention of a number of workers, Walter 1 63 , Cohn 3 I , 

Cazzullo 24 ; and Peacock I I 6 has investigated it in some detail for flash stimuli. He concludes 

that the effect is basically a triggering of the ~ rhythm mechanism by the stimulus. The.(t 

rhythm continues but only the ftrst few cycles are seen in the averaged response because 

of variability of the oc frequency. This mechanism would explain exactly the observed 

reduction in s.d .. The temporary synchronisation with the stimulus of part of the noise EEG 
h 

(Le. the a: -{(thm) results in a reduction of the s.d. 

Previous workers have also observed that the after discharge only occurs in subjects 

showing well developed Ci activity. DAJ was such a subject, whereas the other subjects 

tested were not. In addition the electrodes displaying the greatest s.d. reductions were over 

those regions of the scalp where the iIt rhythm is highest. 

8.5 Running Average Experiments 

8.5.1 Introduction 

In the previous sections of this chapter we have considerd short term variability, over the 

duration of one averaging run. In this section we report on some measurements concerned 

with longer term (over minutes) variations in the AEP. 
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It is well-known that many physiological responses tend to habituate, or decrease, if the 

stimulus is repeated for some time. Pattern AEPs may be no exception, but if a series of 

responses is averaged over a period of time all information about habituation would be 

lost. 

An investigation into the long term variations of the AEP would thus reveal the presence 

of steady correlated changes in the response, in addition to the random noise fluctuations. 

Brazier 1 4 and others have suggested that the VEP may display long term variations. 

Some have attempted to measure these, Barlow 6, Bums 1 8 ,Bogacz et al. 1 3 using flash 

stimuli, while others have tried to relate these variations to psychological variables, such 

as arousal, attention and vigilance (lsgur and Trehub 79, Haider et al. 62 , Ritter and 

Vaughan 1 34). No very consistent picture of longer term AEP variability can however 

be derived from these results. Armington 3 has observed short and long term variations 

in the VEP, and does report increased responses to the first few (5-6) stimuli at the start 

of a long sequence. None of the above workers has used patterned stimuli. 

A variety of techniques have been used to assess the on-going variability of the AEP. 

The simple analogue computer of Barlow 6 and the cumulating sum method of Burns 1 8 

have already been mentioned. The technique employed by Horvath 73 was adapted here, 

whereby the value of the AEP (at a particular latency), averaged over a prescribed number 

of responses preceding the current stimulus, was plotted on a chart recorder versus time, 

as explained in the next section. 

8.5.2 Experimental Method 

The full on-line capability of the experimenter program was used so that the 'running 

average' could be plotted out as the experiment proceeded. The overall experimental 

set-up is shown in Figure 8.7. 

After each stimulus presentation a two-stage calculation was performed. 

a. Computation of a weighted AEP to N previous stimuli. This was displayed on a CRT. 

b. Computation of the mean ampitude of the above AEP during a specified brief 

sampling period. The result was plotted out versus time on an X-Y plotter. 
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Suppose the current stimulus is the pth and an individual response is Viet), then 

stage (a) of the program computes. 
P 

Va(t) = LfCP-i) .Vi(t) 

i=l 

Where f(p-i) is an arbitrary weighting (or decay) function which determines the 

contribution of any particular response to the overall average. f can be an exponential 

or linear decay function, but for all the results given in this section a rectangular function 

was used, specified by:-

fen) - .L - N 

f(n) = 0 

when n < N 

when n ~N 

Effectively this gives the normal AEP over the N stimuli preceding the current one. 

Va(t) was displayed on the CRT, and Figure 8.8(a) shows a typical display. 

Stage (b) computes the mean ampitude of Va(t) over two short sampling periods 

~ to and ~ tl , the difference between these is plotted out on the chart recorder as the 

'running average' R, where:-
\ 

[

tl'tAt. 

R = it; VaCt).dt 

t. 

This is illustrated in Figure 8.8(b). The Mo sample sets a zero level and is measured at 

the start of the trace before the response itself arrives. ~ to was typically 20 ms. 

Mo and ~tl can be set by the experimenter and in particular tl can be adjusted during 

the experiment by means of an analogue potentiometer. The sampling period (~tl ) 

can thus be moved along the response such that is lies underneath a desired peak. 

The trace on the XY plotter then gives the current value of the selected AEP peak 
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Procedure 

Before each run IOJlV pulses were used to calibrate the chart recorder. These are seen on 

some of the results. 

The subject was given a stimulus condition and, by means of the HOLD facility, himself 

controlled the periods during which the running average was recorded, at times obeying 

instructions from the experimenter. Thus the subject could adjust himself comfortably 

before starting the run, and also terminate the recording if the strain proved too much. 

The recording periods were intentionally long. 

For some experiments the subject was given an audible indication of the magnitude of 

the running average. This was a variable frequency tone generated simply by feeding the 

'Y' plotter input also to a Wavetek voltage controlled oscillator (Type 112), see 

Figure 8.7. 

Three subjects (DAJ, JGA, SH) were used in a total of 6 experiments. The normal AEP 

was also recorded in most cases, and measurements on this and its variance were cross­

checked with the running average. Precise stimulus conditions are detailed in the results. 

In general they were chosen (from previous experiments) to give a large well-defined 

response. In all cases the stimulus sequence was blank - pattern - blank. 

8.5.3 Experimental Results 

Typical running average traces are shown in Figures 8.9 and 8.10. In all cases N = 16. 

The traces were very similar for all subjects tested, and for this reason only sections from 

two experiments are shown. The traces appear in short sections, with intervening returns 

to zero, during which the subject rested. tl values are given below each section, and it can 

be seen how tl influences the mean level of the trace. The horizontal time scale is given 

below each plat. 

The following features were observed:-

1. The dashed line through each section marks the normally measured AEP at the 

appropriate ti value. The dash-dotted lines give the ± 1 s.d. limits, (adjusted for 

16 samples). These should, on average, enclose about 66% of the trace. Agreement 

is good, as we should expect. 
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2. Several 'no-stimulus' sections are shown, and in most, but not all cases, these show 

increased short term fluctuations. 

3. The general characteristic of all records is that of a relatively small H.F. variation 

superimposed on a larger, longer term, variation, the latter having a period of very 

approximately 30 secs. It is obvious that the random noise is far from completely 

smoothed out. The 'no stimulus' traces show this. The longer term variations are 

slightly more pronounced when the stimulus is present, indicating that these are 

genuine fluctuations in the response and are not due entirely to the noise. 

4. Usually, but not always, in the first part of a section, just after a rest period, the 

running average is greater than the long term average. See Figure 8.9. This is in 

agreement with the above mentioned observation by Armington 3 • 

5. There is very little evidence of a steady decline in the response after the initial high peak, 

although one or two sections do show it. Low periods do occur but the response nearly 

always recovers at a later time. 

6. There was no observable reduction in the variability when the subject was receiving 

audio feedback, Figures 8.10 parts (2) and (3). 

8.5.4 Discussion 

A precise picture of longer term AEP variations cannot be obtained from these results 

because of the inadequate suppression of the noise. Further suppression could be 

achieved by increasing the number of previous responses included in the running average 

(N), but this cannot be pressed too far, otherwise the variations in the response will also 

be smoothed out. An attempt was made to reduce the noise variation using a method 

which had an unforeseen side effect, rendering it valueless. This prevented trials with 

larger values of N, but there is obvious scope for further work here. 

Nevertheless we can say that there appears to be no persistent habituation effect, or 

long term reduction of the pattern AEP during a long stimulus sequence. On the other 

hand, there are indications of longer term cyclic variations in the AEP of the order of 

30 secs. period. This is comparable with the duration of many averaging runs, and if 

genuine would mean that variance estimates calculated as in the previous sections of 

this chapter could be underestimates. 
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This is easily seen to be the ease by observing that the averaging period (if less than 

30 sees.) could well be during a period of consistently high or consistently low AEP. 

Some evidence of cyclic variations has also been reported by Bogacz et al. 1 3 using 

flash stimuli, but the period seemed somewhat longer, about 2 mins. 

Audio feedback offers no help. This is probably because the fluctuations are due to 

factors beyond the subject's control. Some insight was obtained from subjective reports 

during a long run. The sustained fixation does, after a while, force a loss of accommodation 

and an increase in blink rate. The AEP falls, but accommodation is soon recovered and 

the response rises again. The feedback provided confirmation that periods of low·signal 

were in fact also those of fixation difficulty. 
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CHAPTER 9: SEPARATION OF PATTERN EVOKED POTENTIAL SOURCE 

LOCATIONS BY MEANS OF SCALP DISTRIBUTION STUDIES 

9.1 Introduction 

In this chapter we show how computerised measurement of pattern appearance AEP scalp 

distributions can provide evidence to support the hypothesis that different component 

peaks of the responses have spatially separate cortical sources. Furthermore, if these 

sources are assumed to be dipole sheets perpendicular to the cortical surface, and if fairly 

well substantiated assumptions are made concerning the retinotopic projection of the 

visual field on to the visual cortex, then in the case of at least two of these components, 

probable cortical sources can be assigned. 

The background for this chapter has already been covered in chapter 2. In particular we 

refer to the evidence for retinotopic projection on the visual cortex in man (section 2.2), 

the previous work on pattern AEP distributions by Jeffreys (section 2.5.4), and the evidence 

to suggest that the visual cortex behaves as dipole sheet generators (section 2.3). The 

results reported here are an extension of Jeffrey's work, using computerised methods of 

measuring the components, and was done in conjunction with him. It is also reported by 

Jeffreys and Axford 86,87. 

The previous work by Jeffreys 84 summarised in section 2.5.4, had shown that the pattern 

appearance responses consisted of three principal peaks at approximate latencies 80 ms, 

110 ms, and 180 ms. These have been called the C 1, C2, C3 components respectively, and 

it is the possible source locations of CI and C2 which are the concern of this chapter. 

Owing to the increased luminance used, compared with Jeffreys' earlier work, the component 

latencies here are somewhat lower than those originally reported by him. 

The principal stimulus variables were the size and position of the pattern in the visual 

field. Other stimulus parameters were in general chosen to give a good sized response. 

Previous experiments had shown that a stimulus pattern with plenty of contour, a duration 

. of 20 - 30 ms and an interstimulus period of about 600 ms gave such a response. A longer 

duration and shorter ISP tended to attenuate certain peaks, as described in chapter 7. The 

analysis procedure was aimed at separating out the component peaks by integrating over 

short sections of the response, as described below. 
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9.2 Methods 

Stimulus Presentation 

The two field tachistoscope shown in Figure 4.2(b), and described in section 4.1 was used. 

The diameter of the field was 12°. 

The stimulus pattern was an array of black isolated squares, of side and separation 14' of 

arc. Various sections of the pattern were made up to cover the desired fraction of the 

visual field. This is shown shaded on the plots. The square sides were always vertical and 

horizontal. 

Stimulus duration = 25 ms 

Stimulus luminance = 540 cd·/m2 

Subjects 

A total of four were used, with one (DAl) tested more extenSively. 

Electrodes 

Normally 8 longitudinal along the midline, and 7 transverse (sometimes 9) as shown in 

Figure 9.1. The level of the transverse row was chosen from pilot experiments to be roughly 

where the maximum response was in the longitudinal direction. The common electrode 

was 5 cm above the inion (no. 4) for subjects DAJ, JSC and MAS, but 2.5 cm for SH 

(no. 3). The right earlobe was used for reference and the left earlobe was grounded. 

Program 

The basic averaging program (section 5.2.2) was used, with an additional routine called 

SIR (Segment Integration Routine) which was entered after each averaging run. This 

computed the amplitudes of the various AEP components. 

Other measurement parameters were:­

Interstimulus period - aperiodic 585 - 735 ms 

Sampling interval- 4.7 ms 

No. of samples per response - 64' 

Averaging duration - 300 ms 
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No. of presentations/run - 50 

Run Time - 35 sees. 

Normally two runs under identical conditions were recorded, and the plots superposed. 

For the component amplitudes the mean of the two runs was taken. 

Response Analysis 

The SIR routine operated as follows. A number of sampled periods, CO, CI, C2, C3, were 

assigned prior to the experiment, and the routine computed the mean value of the response 

during each period. The fIrst sample (CO) always started at the beginning of the trace and 

provided a zero level, which was then subtracted from all the other values. 

and similarly for C2, C3. 

V(t) = A.·Ct) 
IJ 

J
Ato 

- it. oV(t). dt 

is the AEP (see Figure 9.1). 

The duration of the zero level sample (Mo) was usually 37 ms. Scaling was automatic, 

and scaling factors were set within the computer for each EEG channel by means of lOll V 

calibration pulses at the start of the experiment. A switch on the control panel could set 

the SIR routine into 'calibrate' mode. The calibration was checked at the end of the 

experiment. 

Standard deviations were computed for the component values as described in section 8.2.2. 

These are shown only on Figure 9.2; but for a given subject and electrode may be taken as 

valid for Figures 9.3 to 9.11. They take into account the variability of the zero level sample. 

The results of the next section are shown as plots of C 1 etc. as a function of position on 

the scalp, i.e. spatial distributions. 

The actual sampling periods used for the C I , C2, C3 components were selected by care­

ful examination of previous recordings for the subject concerned. They were:-

co - 0-37 ms 

Cl - 52-80 ms 
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C2 - 85-113 ms (DAJ, 94-122 ms) 

C3 - 150-178 ms 

9.3 Results 

For each of the four subjects responses were measured for the four half field, the four 

quadrant field, and the eight octant field positions of the pattern. The results are plotted 

in Figures 9.2 - 9.8 grouped as follows:-

Component Cl - 4 subjects - ~ field distributions - Figure 9.2 a, b, c, d 

y.. field distributions - Figure 9.3 a, b, c, d 

1/8 field distributions (right) - Figure 9.4 a, b, c, d 

1/8 field distributions (left) - Figure 9.5 a, b, c, d 

Component C2 - 4 subjects - ~ field distributions - Figure 9.6 a, b, c, d 

y.. field distributions - Figure 9.7 a, b, c, d 

Component C3 - Subject MAS- ~ field distribution - Figure 9.10 

The electrode numbers are shown below each plot. 

Although distributions for all three components and four subjects were recorded, out 

of the large volume of data thus generated, only the above are presented here. 

Also measured were the responses to Vz field annular regions of pattern, moving 

progressively further from the centre of the field. These results are shown in Figure 9.8 

(Cl) and Figure 9.9 (C2). 

Figure 9.11 shows the result of a control experiment to determine the effect of moving 

the reference electrode. It will be discussed later. 

The following observations are made on the above results, which will be discussed in more 

detail in section 9.4. 

1. With some exceptions all subjects show roughly the same distribution for the same 

stimulus condition. In some cases we note that the shape of the distributions agree, 

but they differ in zero level. This was often traced back to a spurious shift in the zero 

level sample, which was common to all electrodes. 

2. It is quite evident that stimulation of different areas of the visual field gives significantly 

different distributions. This holds for both C 1 and C2, but is less true for C3. 
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3. It is also evident that C 1 and C2 have different and apparently independent 

distributions. In general the transverse Cl distributions are bipolar, and the longitudinal 

ones mono-polar, whilst for C2 most distributions are mono-polar. A notable exception 

to this is the C2 upper field distribution for subject SH (see Figure 9.6d). 

4. For the Cl transverse distributions,left hand field stimuli give distributions which are 

positive to the right, negative to the left, and vice versa for the right hand field stimuli. 

This is particularly evident for full 12 field stimulation, but much less so for octant field 

stimulation. 

5. Dashed lines on the ~ and ~ field plots show the sum of the distributions of the 

constituent ~ and 1/8 field components respectively. In most cases agreement with the 

solid plot is remarkably good, for Cl, C2 and C3. Sometimes the shapes agree well, but 

there is a zero shift, no doubt due to the effect mentioned under, (1) above. This extends 

Jeffreys' 27 earlier finding that the two 12 field stimulation responses could be added to 

give a good approximation to the full field response. This summation property can some­

times lead to a cancelling effect whereby a larger stimulus area has a smaller and less 

well-defined distribution than its constituents. A good example of this is the left half 

field C2 distribution of subject MAS (Figure 9.6b) which is in fact composed of two much 

larger but opposing quadrant field responses (Figure 9.7b). In cases where one subject 

appears to be rather out of line with the others, the anomaly can often be traced back to 

a particular octant response. For instance, the vertical lower right octant for subject SH 

(Figure 9.4d) gives a CI component which is negative on the left hand side of the head, 

compared with positive for the other subjects. This anomaly influences all the other 

responses involving that particular octant. 

6. The C2 quadrant responses (Figure 9.7) show a very high degree of left-right similarity 

(Le. corresponding left and righf quadrants have very similar distributions), and in nearly 

every case upper field quadrants have monopolar positive distributions, while those of 

the lower half field have negative ones. (The upper half field for subj. SH is the only 

exception.) Note also that the maximum of the transverse distribution is nearly always 

on the contralateral side of the head. 
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7. Further differences between CI and C2 becomeJ apparent from the distributions for 

different annular regions (Figues 9.8 and 9.9). For CI most of the response comes 

from the periphery of the field, whereas for C2 it is the central region which gives a 

major contribution, particularly for the upper field. 

9.4 Discussion 

9.4.1 General Remarks on Cl and C2 Sources 

Initially we shall confine our discussion to the CI and C2 components. Our aim is to see 

what we can infer about AEP sources from these results. The evidence can be summarised 

as follows:-

A. The temporally separate components Cl and C2 have different and apparently 

independent distributions over the scalp. 

B. Stimuli to different parts of the visual field give responses with different distributions. 

This holds for both Cl and C2 components. 

C. Responses to stimuli to different parts of the visual field display an additive property. 

This also holds for both C I and C2 components. 

. D. The two components CI and C2 have different pre-exposure suppression properties 

(chapter 7). 

From these we can infer:-

I. Evidence C suggests that the responses arise from sources responding independently to 

different retinal areas. 

2. Evidence B suggests that the responses to different retinal areas arise from spatially 

separate sources. 

Thus we can reasonably suppose that we might look for the sources of these AEPs in 

regions of retinotopically mapped cortex, since these parts of the cortex have the required 

property that areas responding to different parts of the retina are spatially separate. 

The conclusions from Band C apply equally well to C 1 and C2. 

3. Evidence A and D suggest that Cl and C2 may well arise in different retinotopically 

mapped regions. Such regions are known to exist. 
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These conjectures will be further strengthened if it can be shown that the observed 

distributions agree at least qualitatively with the known topography and retinotopic 

mappings of the visual cortex. 

If this can be done then each component can be assigned to a particular source. To do 

this we have to make an assumption about the type of cortical source involved in generating 

the response. As explained in section 2.3 we shall assume the dipole sheet model. 

Jeffreys 8 4 has already suggested that Cl comes from the striate cortex and C2 from the 

extrastriate (visual II) area. That C2 follows C I in time further supports this argument, 

since we know from single unit work that the striate and extrastriate areas probably 

represent successive stages of neural processing. The measured distributions reported above 

provide strong supporting evidence for these source suggestions, as will be shown below. 

9.4.2 Component C 1 

Suppose this comes from the striate cortex. What distributions would we expect? We 

shall make the following assumptions:-

1. The cortex behaves as a surface negative dipole sheet with the dipole axis perpendicular 

to the surface. 

2. The interhemispheric or medial fissure and the calcarine fissure have the rather idealised 

form shown in Figure 9.12, where the areas A -II project to the visual field regions as 

shown. 

3. The regions X on Figure 9.12 (on the occipital pole) will be the central foveal projection. 

This will be neglected in the present discussion but will be considered later. 

Thus we have eight independent planar sheet generators which we shall assume give rise 

to the respective octant responses. 

Theoretical predictions for the octant distributions using a simple dipole model are 

shown in table 9.3. The model is described as follows:-

1. For each octant region we assume that the dipole sheet behaves as a single dipole 

oriented perpendicular to a radius vector of a sphere (the scalp). 

2. The surface potential distribution resulting from such a dipole has been computed and is 

shown as a f amity of curves in Appendix C 1. 

3. The response distribution predictions in table 9.3 are appropriate sections of this 

distribution assuming the following:-
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a. Scalp effective radius = 9 cm. 

b. The striate cortex dipoles are all very close to the midline. 

c. Depth of striate cortex dipoles = 2.5 cm. 

d. The occipital pole is approximately under the inion. 

e. Adjacent electrodes (at 2.5 cm separation) subtend about 160 at the centre of the 

sphere. 

4. For the Yz and ~ fields these primary octant distributions are merely added. 

Half-field Responses 

Each halffield will excite four of the regions A-H. However, in each case the dipoles in two 

of these regions will be oppositely directed and thus will tend to cancel. The appropriate 

areas are listed in table 9.1, which also shows the calculated longitudinal and transverse 

distributions expected. Comparison with the measured distributions (Figure 9.2) shows the 

agreement to be quite good. Table 9.1 and the plots of Figure 9.2 have been laid out 

similarly to aid the comparison. Notable exceptions are any SH distribution involving the 

lower right hand quadrant, and the left and right half field longitudinal distributions for 

subjects SH and MAS. Theory predicts zero responses which are not observed in the latter 

cases. 

Quadrant Field Responses 

Again refer to Figure 9.12. Each quadrant excites two of the regions A-H. These will be 

perpendicular to each other and we shall assume that their responses can, be vectorially 

added. The quadrant areas and the calculated resultant distributions are listed in table 9.2. 

These again compare very well with the measured distributions (Figure 9.3) although there 

are exceptions. 

Octant Field Responses 

Calculated distributions are listed in table 9.3 for the eight octant regions A-H. Comparison 

with the appropriate measured distributions for the four subjects shows a fair degree of agree­

ment, although it is now less precise. When comparing it should be borne in mind that the 
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zero level could be shifted. 

Perhaps the most obvious discrepancies are the longitudinal distributions for octants 

adjacent to the vertical meridian. Theory predicts zero response for these, but the 

measured responses are frequently as big as those for the horizontal octants. 

Eccentricity of Stimulus Pattern 

Refer to Figure 9.8. It is known from anatomical studies that the central foveal region 

projects to the exposed area of striate cortex at the occipital pole - or to the regions 

marked X on Figure 9.12. Moving into the periphery the projection gets progressively 

deeper into the interior medial and calcarine fissures. 

Thus we should expect that those parts of the visual field giving C I responses most in 

agreement with our model would be towards the periphery of the field. This is indeed 

the case as Figure 9.8 shows. The central 10 of the field appears to contribute very little 

to the C 1 distribution, and most of the half field response comes from beyond ZO from 

the centre. 

In addition it is observed that the central 10 and 20 distributions are much more 

interindividually variable for CI than for C2 (see Figure 9.9). This could be the result of 

small, but topographically variable, fissures known to exist towards the posterior end of 

the calcarine fissure. Contributions from the exposed striate regions (X) could also be 

responsible for the vertical octant field discrepancies noted at the end of the previous 

section. 

9.4.3 Component C2 

Suppose this component comes from the extra striate cortex on the upper and lower 

surfaces of the occipital lobe. In this case the topography of the cortex is less complicated. 

Most of the extrastriate mapping will be on the outer surfaces of the lobes, except perhaps 

some of the field near the vertical meridian, part of which may well be represented on 

the mesial surfaces of the two hemispheres. Whereas with the striate cortex we could 

reasonably assume upper/lower symmetry, this is certainly not the case for the extrastriate. 

The dipole sheets representing the upper and lower half fields will be roughly perpendicular, 

as was assumed both by Jeffreys 84 and Michael and Halliday 11 1 • 
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The regions representing the visual field in the extrastriate are shown in Figure 9.13. 

The cortical surfaces are likely to be rather curved, and thus we may expect to have more 

difficulty in calculating the dipole fields for the smaller areas of stimulation. Hence we 

shall not attempt to predict individual octant responses from the model but restrict our­

selves to the_half and quadrant fields. 

Suppose that the extrastriate cortex is laid out roughly as shown in Figure 9.13. The 

dipole sheets representing the lower half field regions P and S will have equivalent dipole 

.directions perpendicular to the scalp surface and, for the two quadrants, angled slightly 

away from the midline. On the other hand, the dipole sheets representing the upper half 

field regions Q and R will give equivalent dipole directions approximately parallel to the 

scalp surface. These may also be angled away from the vertical medial plane, but less so 

than for the lower half field projection. 

The dipole model described above was used to calculate the extrastriate quadrant 

distributions and these are shown in table 9.5. The assumptions were:-

a. The lower half field dipoles are directed 150 away from the midline and are at a depth 

of about 1.5 cm below the scalp surface. In this case the curves of Appendix C2 were 

used. These give the potential distribution for a dipole parallel to the radius vector. 

b. The upper half field dipoles are directed 100 away from the midline and are at a 

depth of about 2.5 cm below the scalp surface. Appendix C 1 curves were used. 

C2 Quadrant Field Responses 

The calculated distributions for the quadrant fields are shown in table 9.S. Each has a 

simple monopolar form, and it must be stressed that these are only very approximate, 

especially for the longitudinal distributions, where the only valid prediction we can make 

would be the polarity ofthe distribution. However, they are seen to agree well with 

those measured (Figure 9.7) although there are exceptions, notably that JSC shows very 

small responses to the lower half field quadrants (Figure 9.7c), and subj. SH (Figure 9.7d) 

shows predominantly negative upper field responses, whereas theory predicts positive 

ones. 

9-42 

hI""" 
• j 'J 



Extra st riate cort ex Visual field 

" 

Medial fissure 

Fig. 9. 13 

Extrastriate Sources - Idealised Model 

'C 

.t. 
~ 

-.J 
~ ... ~ 



Table9 . 4 Extrastriate Half Fi eld Responses 

Stimulat ed Area s 
Long . 

P 5 

Q R 

R 5 

P Q 

Table 9.5 Extrastr ia te Quadrant Responses 

St imulat ed Area 
Long . 

p 

Q 

R 

5 

Tr ans. 

Trans. 

~ 
I 

~ 
I 

I) • • ' ., 



All subjects except SH show positive longitudinal distributions for the upper fiel~ quad­

rants, in agreement with the model. However it is obvious that the measured distribution 

is broader and has a maximum further forward than the dipole model predicts. Some 

possible explanations for this are suggested in section 9.5. 

The left-right similarity of the C2 quadrant responses has already been mentioned. This 

is strong evidence against the hypothesis that C2 comes from the striate cortex, since such 

a source would involve oppositely directed dipoles on the internal mesial surfaces; there is 

no sign of this in the distributions. 

Many of the transverse quadrant distributions show contralateral maxima. This is 

compatible with the model in that the curved outer surfaces of the extrastriate cortex 

would give equivalent dipoles angled slightly away from the vertical plane. 

C2 Half Field Responses 

Predictions from the model are shown in table 9.4, and should be compared with the 

observed distributions of Figure 9.6. Agreement is very good for the upper and lower half 

fields, which show large responses, positive for the upper half field, negative for the lower. 

This is because the constituent left and right quadrant fields have very similar distributions, 

and summate to give the bigger, basically monopolar, half field distributions. The only 

anomaly is the upper field distribution for SH which is negative. 

By contrast good agreement is not apparent for the left and right half fields. Inspection 

of Figure 9.6 also shows a high degree of inter-subject variability. However, since upper and 

lower field quadrants are of opposite polarity we expect some cancellation to occur, and 

some of these distributions are quite small (e.g. left half half fields for subjects MAS and 

JSC). In most cases, however, the cancellation is incomplete, presumably because the 

dipoles representing the upper and lower fields are not parallel. In fact their relative 

orientation may be very subject dependent, thus accounting for the differences observed. 

The model predicts a bipolar distribution, but is likely to give poor agreement because 

o(the above mentioned discrepancy between model and measurement for the upper 

field quadrants. 
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C2 Annular Regions 

Refer to Figure 9.9. These results show clearly that for C2 (in contrast to Cl) a much 

greater proportion of the response comes from the central part of the field, particularly 

for the upper half field. For subj. DAJ almost the entire upper field response comes 

from the central 10. (Subj. SH again shows anomalous results). 

These results indicate that if the extrastriate source location for C2 is correct, the cortex 

deep underneath the occipital lobe, corresponding to the very top of the visual field, 

contributes very little to the response. 

This is not true for the lower half field, where both foveal and peripheral representation 

in the extrastriate cortex lie exposed on the top surface of the occipital lobe. The response 

distributions behave as we might expect from these considerations, adding extra evidence 

to support the hypothesis that the C2 component comes from the extrastriate cortex. The 

intersubject variability is less for these C2 annular regions than for C I, no doubt reflecting 

the relative flatness of the extrastriate, compared with the highly convoluted striate cortex. 

9.4.4 Influence of Reference Electrode 

Figure 9.11 shows that the right ear lobe location· of the reference electrode used for all 

the previous results is not too critical. Changing the reference to either the chin or the 

left ear lobe does not substantially alter the distributions. The importance of reference 

electrode position should not be under-estimated however. (Michael and Halliday I II 

have reported on a case where the choice of reference e/trode position significantly 

affected the conclusions drawn from the results.) If our assumption of dipole-like 

sources is correct, every measurement we make is a potential difference between two points 

in the dipole field, and thus the position of' both electrodes is important. No reference is 

truly 'indifferent', as some reported discussions on the subject assume. However, with 

multi-electrode recording it is much more convenient if a reference can be chosen which is 

in a region where the dipole field gradients of all sources being considered are small, so 

that the position of the reference is not critical. That the right ear lobe reference meets 

this condition is shown by the result of Figure 9.11. Note too from this figure that for 

left and right half field stimuli the small responses actually measured on the two ear lobes 

(with respect to the chin) are compatible with the dipole model proposed. 
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9.5 Further Discussion - Mainly on Limitations and Disagreements 

9.5.1 Limitations of the Cortical Model 

Many of the anomalous distributions observed can probably be explained by individual 

peculiarities in the cortex of the subject concerned, but this could not be checked. Perhaps 

the most severe unknowns are the orientations of some of the internal cortical surfaces 

with respect to the surface of the head. A good example is the plane of the calcarine fissure. 

The angle that this makes with the surface is probably ·variable with subject and so also 

would be the zero potential plane of any dipole source in the fissure. This may explain 

why some Cl longitudinal upper and lower half field distributions are bipolar for some 

subjects, and not for others. 

The assumed 'square-cornered, smooth surfaced' model of the cortex is obviously only a 

very crude approximation. The real cortex is heavily convoluted, and particularly at the 

posterior end of the calcarine sulcus, has many small interindividually variable fissures. 

These small fissures would tend to make the response to smaller stimulus areas less 

predictable, and variable with subject - as was observed. On the other hand for large 

stimulus areas the perturbations caused by small fissures would tend to cancel, resulting 

in good agreement with theory for the half field responses. 

It is sometimes observed that the two octant distributions for a given quadrant are more 

similar than the dipole model would predict. This suggests that there is some overlap or 

spill-over from one octant projection to its neighbour. Several possible reasons are advanced 

for this. It may be that the octant projection is not quite as we have supposed. The 

transition from vertical to horizontal cortex may not coincide exactly with the 45° 

directions in the visual field. The cortex has rounded corners, also tending to make octant 

responses similar. It is also possible that eye movements could be the cause of this 

overlap effect. 

A further deviation could occur if the calcarine fissure was not horizontal ( or perpend­

icular to the medial fissure). The effect here would be to make the two adjacent octant 

responses similar in one half field (upper or lower), but opposing in the other half field. 
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This is shown below, where we suppose the fissure to be angled downwards. 

calcarine 

medial 

Some of the results for C I actually show this effect (subjs. DAJ, MAS, and JSC in 

Figures 9.4 and 9.5). 

The electrical characteristics assumed for the model are also grossly over-simplified. 

The sources are really dipole sheets, not isolated dipoles. We have also neglected the layers 

of skull and scalp which have differing conductivities. Both of these factors tend to make 

the distributions more diffuse and widespread - a feature which is in fact observed. The 

surface distributions are broader than seems justified from the cortical dimensions. As 

Vaughan 160 has pointed out, the signals from large dipole sheet generators are attenuated 

much less with increasing depth than single dipoles. This could explain why we get quite 

large responses from some peripheral field areas which we know project to regions quite 

deep in the cortex. 

The additive property of the responses to different stimulus areas holds well for the half, 

quadrant and octant fields, but it is not so good for the annular regions. This can be seen 

by visual inspection of Figures 9.8 and 9.9, although the summated annular region 

distributions are not actually plotted. The additive property may break down in this case 

because dividing a pattern ,up into annular regions introduces relatively more extra 'edge' 

than radial division. The edge itself probably contributes something to the response. 

9.5.2 Comments on the Analysis Method 

It seems evident that the technique of isolating components and plotting them as spatial 

distributions has proved vastly superior for investigating underlying AEP mechanisms 

than mere inspection of the AEP traces. 
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The method does however rely on latency constancy of the components. Previous 

results by Jeffreys have shown that latency varies with over-all luminance, but seems 

independent of pattern size or location. For the current series of experiments luminance 

was held constant, and component latency variations were then much less than the durations 

of the sampling periods. 

Although the latency of the various components is reasonably constant, the components 

do overlap somewhat. Thus, since the samples were of finite duration, there may be some 

contamination of one component with another. This however is only really serious when we 

have a very large component next to a very small one. 

The 'baseline to peak' measure for each component seems amply justified in view of the 

apparent independence of successive components. A 'peak to peak' measure, involving two 

components, has been used by a number of workers (in particular Halliday and Michael u,i II 'in 

source location studies) and in view of the results presented above the meaningfulness of 

this measure must be questioned. Nevertheless with a baseline to peak measure there is 

still the problem of choosing a suitable baseline or zero-level. 

The 37 ms period immediately following the stimulus onset was used here. This comes 

before the first components of the response and proved to be adequate. Estimates of error 

in the components must (and did) include residual noise in the zero level sample. 

Stray noise during the zero level sample is often common to all electrodes, causing a shift 

in the distribution, but maintaining its shape. This holds only if all electrodes are recorded 

simultaneously, and demonstrates once again the desirability of simultaneous recording at 

all electrode positions. 

9.6 Conclusions 

1. Measurement of pattern appearance AEP scalp distributions has shown that different 

components have spatially separate sources. 

2. Responses to stimulation of different retinal areas can be linearly summated. 

3. The longitudinal and transverse component distributions as a function of retinal area 

stimulated are consistent with the hypothesis that the CI component (52-80 ms) comes 

from the striate cortex, and the C2 component (85-113 ms) from the extrastriate. 
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4. In spite of broad agreement between the measured distributions and those predicted 

some anomalies were observed, which could not be explained. Peculiarities in the 

cortical topography of the subject concerned may be the cause of these. 
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CHAPTER 10: EVOKED POTENTIAL STOCHASTIC SEARCH TECHNIQUES 

10.1 Introduction 

In this chapter we enquire whether it is feasible to make the computer conduct an 

automatic search operation which finds the stimulus conditions necessary to produce a 

desired EP response characteristic. The results presented are very preliminary. They 

represent feelers into the possibility of evoked potential automatic searches, and into the 

problems involved. Nevertheless, although practical reasons limited the experiments to 

searches in one dimension, the method was successful, and shows promise for further 

development. 

We define the search procedure with reference to the diagram of Figure 10.1 (a). The 

'experimenter'. man or machine, adjusts the 'm' dimensions of the stimulus to achieve 

maximum (or minimum) response, f. In general he is not interested in the path taken 

to reach the optimum, other than that it should be efficient. 

To make such a search possible the dependence of the response on the stimulus should 

be continuous and well-behaved, a condition which we shall assume holds for the 

physiological system under investigation. 

Automatic search methods fall into two classes, depending upon whether or not the 

response is affected by noise. 

In the noise:free case a given stimulus value gives precisely the same response each time 

it is presented. In the noisy situation this is not so, and the measured responses are assumed 

to be randomly distributed about a mean value, which is defined as the 'true' value for that 

particular stimulus. 

The noise-free and noisy situations in general demand different search techniques, and 

the latter only will be consideredfurther. For a review of both methods see Wilde 166. 

The 'noisy' search (or stochastic search) has been considered theoretically by a number 

of workers, who have established stringent conditions for convergence. This work will be 

briefly reviewed in the next section. The section following that will describe the method 

selected for the evoked potential search, and the final sections of this chapter will present 

some experimental results obtained. 
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10.2 Review of Stochastic Search Procedures 

10.2. 1 Theory 

The various methods described in the literature are all basically similar and assume the 

separability of 'signal' and 'noise'. In simple terms all procedures involve measuring the 

response to a stimulus and then selecting the next stimulus on the assumption that the 

measured response was the 'true' value and not affected by the noise. On this basis, if 

the noise is random, its effects will average out as the search continues and the procedure 

will eventually converge on the desired optimum. The theoretical work reviewed is 

mainly concerned with defining the necessary conditions for convergence, which must be 

met by the stimulus-response function, the recursive relation, and the noise. 

Robbins and Monro 177 proposed a search scheme to find a root of the equation:-

f(x)-K=O 

where f(x) is subject to noise. They discussed the conditions under which the scheme 

would converge. 

Kiefer and Wolfowitz 93 adapted this procedure to find the maximum (or minimum) of 

the function f(x). Their recursive relation was:-

x = X ~ .2.D. [f( X + C ) - f(x - c ~ 10 1 n+1 n 2 c n n n n ~ ...... ....... . 
n 

If the procedure is followed, then as n -+ .. , Xn will converge on a maximum or minimum 

off(x). -
~.an' and 'en' are numbers which must obey certain rules if convergence is to be achieved. 

In general an and Cn will decrease with the iteration count n. en is seen to be a 'spread', 

or increment, parameter over which the gradient of the function is measured, whilst a n is 

a 'weight' parameter governing how much value we assign to the newly measured gradient, 

and thus how much we shift the operating point. Note that two measurements of fare 

needed at each i,J(teration. 

The methods proposed by the above authors were extended into a general theory by 

Dvoretzky 5 1 , who formulated a set of weak conditions for convergence, and showed that 
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some of the limits set by previous workers were in fact unnecessary. Dvoretzky isolates 

the noise component from the error-free deterministic search procedure (as embodied in 

the recursive relation) and places separate conditions on each. We shall not give his 

conditions in full as they are rather abstract formulations. Instead we shall give his 

restrictions on the noise, and sequences for an and Cn in eqn. 10.1 above, which satisfy 

his conditions. Thereby their meaning is more readily apparent. 

Noise Conditions 

If Rn = noise component of the response, and E[x] = mean of x 

then E [ Rn] = 0 .................... 10.2 
00 L E [R~J < 00 ........... 10.3 

n=1 
The first condition merely states that the noise must be unbiassed, otherwise the operation 

of the recursive relation will be distorted. The second condition states that the variance of 

the accumulated error due to the noise must be finite. Both these conditions are normally 

met by EEG 'white' noise. Note that there is no restriction on the stationarity of the noise, 

which is fortunate, as this does not always hold for EEG. 

Other Conditions 

00 

lim. an = 0 
n~ .. 

~ a - 00 ....... 10.5 L n-
n=1 

} .............. 10.4 

f [ ~~r < 00 ......... 10.6 

n=1 

These ensure that the search does converge (eqn. 10.4), but also that it does not happen 

too soon (eqn. 10.5). Eqn. 10.6 states that the spread parameter, Cn, must decrease faster 

than the weight parameter, an· 

Th a - 1 e sequences:- n - n (p > I) 

satisfy the above conditions. 
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With p = 4, they were used by Wolfendale I 69 in psychophysical experiments, and also 

in the work reported here. 

The Kiefer-Wolfowitz method is for search in one dimension only. Blum 12 and 

Sacks I 38 have extended it to 'm' dimensions, using slightly different recursive relations:-

Blum 

+ (an) fr[f( I + ) _ ( '>] Xn+1 = Xn - cn ~ Xn cn f Xn ' .............. .. 

.................. , [f( X~ + en) - f ( X~)] } 

x ± (an) fl[f ( X I + C > - f( X I - C >] ............ .. 
n 2cn ~ n n n n ' 

Sacks 

.................... [I( X~ + en) - f( X~ - en) ~ 

where X - (x 1 X 2 X 3 ............ .......... xm > 
n - n' n' n' , n 

is now a vector representing the position in the search space at the nth iteration, 
i 1 2 i nn 

and (Xn±Cn > = (Xn,Xn' ................ ,Xn±Cn' ................ ·,Xn> 
(Superscripts refer to dimension, subscripts to iteration.) 

Thus at each stage the gradient is measured independently along each of the dimensions. 

This results in (m + 1) measurements per stage for the Blum method and 2m for the Sacks 

method. In spite of the greater number of measurements, the Sacks relation is claimed to . 
be more eff(cient. 

The above theorists have been concerned with proving that the search will converge. Others 

have proposed ways of improving the speed of convergence, but always within a system 

which complies with the Dvoretzky conditions. Among these Kersten 91 has suggested that 

the factors an and Cn should be decreased only when the gradient of the response changes 

sign. This keeps the search moving quickly in areas away from a peak. Kersten has also 
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suggested a speed-up feature called 'step-normalisation', whereby only the sign of the 

measured gradient is used, not its absolute value. This accelerates the search over flat 

regions. 

10.2.2 Other Experimental Work 

Computerised search methods have been used in psychophysical experiments by Taylor 

and Creelman 1 52, Uttal 1 5 7 , and Wolfendale 1 69,170. 

Wolfendale used basically the Sacks relation with the Kersten speed-up methods. His 

technique showed the greatest applicability in the EP field and was modified for the present 

work. 

In the field of EPs, response-stimulus feedback (using a computer) has been tried in an 

operant conditionirig situation by Fox and Rudell I 5 7 for cats, and Rosenfield et a1. I 36 

for humans. However, these are not strictly search procedures of the type considered in 

this chapter. 

10.3 The Evoked Potential Search Method 

10.3.1 General Remarks 

In EP work a number of factors militate against fast efficient hill climbing:-

1. The noise is high and typically 4 - 5 times the signal. 

2. The noise is not stationary and may not be ind ependent of the stimulus. 

3. The human nervous system is very labile, and the form of the physiological function 

being explored may change with the applied stimuli. (The phenomenon of the 'spongy 

hill'.) 

A further practical consideration is that the search must be done on-line within a 

reasonable experimental time scale, and with a fairly small computer. This precludes the 

use of very complex mathematical operations. Of the difficulties mentioned, the high 

noise does not in principle prohibit convergence, it merely prolongs it. However the 

severity of the noise may well influence the search method chosen. The stationarity of 

the noise is not a necessary condition of Dvoretzky and will be ignored. The spongy hill 

phenomenon was actually observed and will be considered later. 
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It was decided to make the search multidimensional and to use the Kiefer-Wolfowitz 

relation with a simpler extension to m dimensions than either the Blum or Sacks methods-­

dispensing with the independent gradient measures.. along each dimension, which these 

methods use. Since the high noise means that most of the gradients measured will be wrong 

anyway, it was considered reasonable to make each successive measurement part of an 

advance along all dimensions. Thus the next stimulus point was chosen partly on the basis 

of the gradient measured from the previous two readings, and partly from a randomisation 

process. The result is a simple, quickly computed, recursive relation, as described below. 

10.3.2 Recursive Relation and Explanation 

Upper case variables refer to vectors of m dimensions. Lower case variables refer to scalars, 

and where appropriate the superscipt refers to the dimension. 

Let X - [X 1 x2 x3 .............. xm] 
n - n' n' n' , n 

-x [_1 -2 -3 _m] n= xn'xn'xn' .. · .. ·· .. · ...... ,xn 

n = 1,2,3, .......................................... . 

fn = measured response to stimulus Xn. 

- actual stimulus vector. 

- 'best-guess' value in 

stimulus space. 

- iteration count. 
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The recursive relation is:-

where 

and 

with 

= Wo 
n 

Xn - Xn_1 
IXn - Xn_11 

s 
s = :2 

n n4 

= [e1
n e2 (3 ............ em] , n' n' , n 

........... (10.7) 

........... (10.8) 

- unit vector along 

direction Xn - X n _ 1 
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Notes 

l.wn and Sn correspond to the parameters an and Cn respectively in the Kiefer- Wolfowitz 

relation. 

2. En is a vector of m independent gaussian random numbers each of mean zero and variance 

unity. This is the origin of the randomisation process. 

3. The procedure is initiated as follows:-

P min I P max I Pstart I Wo and So are input parameters. 

Explanation 

Eqn. 10.7 is the basic recursive relation (+ for a max. search, - for a min. search). Xn 

represents the 'best guess' of the position of the maximum or minimum at the start of the 

nth stage. However the actual stimulus presented at stage n is not Xn but Xn, which differs 

from Xn by the randomisation factor Sn En (eqn. 10.8). After the nth stimulus has been 

presented and its response measured, Xn is modified according to eqn. 10.7. 

The operation is best illustrated by means of the diagram in Figure 10.2, which shows a 

2D search. Xn is at point A. The program calculates Xn in a random direction in the space 

around Xn (point P), and the stimulus is presented at P. As a result Xn is modified to 

Xn + 1 (point B), from which point another random direction is selected for the stimulus 

Xn + 1 (point Q), and the operation repeated. Note that the vector AB is parallel to ~Xn == OP, 

and thus the shift in Xn always takes place along the direction of the difference between 

the two previous stimuli. 

Since the spread parameter Sn decreases quite rapidly with n, the difference between 

Xn and Xn gets smaller as the search proceeds. Thus the search characteristically starts with 

a high random activity, with the stimulus position jumping about all over the place. 

Nevertheless, the accumulating results of each random excursion gradually polarise the 
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motion of Xn, and after a while the process settles down and moves towards the desired 

optimum. In these later stages it is the Wn parameter which predominates. The random­

isation technique proved to be an excellent method for getting the search moving out of 

any flat regions in the surface being explored. 

The above recursive relation has not been shown to meet the Dvoretzky conditions. It 

is sufficiently close in structure to other relations, which do meet the conditions, to have 

confidence in it. Subsequent experiments showed that itdoes lead to convergence. 

10.3.3 Action at Boundaries 

It is necessary to assign limits to the m-dimensional space being searched. The modification 

rule when one of the values goes outside the limits can have a profound effect on the 

search. The rule chosen here was quite simple - values beyond a limit were set equal to 

the limit. This rule worked very well because the randomisation feature would bring the 

search away from the boundary if the optimum was within the limits. If the optimum 

was outside the limits, the stimulus point would remain close to the boundary. 

10.3.4 Computer Program Details 

The program was divided into two parts: 

a. The 'Measure' phase 

b. The 'Adjust' phase. 

The measure phase was basically the experimenter program described in section 5.2.2, . 
modified slightly to receive an em' dimensional stimulus specification from the adjust 

phase, and transmit back to the adjust phase the value of the response 'r. (See Figure 

1O.l(b» 

The adjust phase incorporated the hill climber program, which computed the recursive 

relations, etc. given above. It also kept a record of the progress of the search, and at the 

end of each run the values of n, Xn and fn were stored on magnetic tape. It was from 

these run records that the time course plots shown in section 10.4 were made. 

Within the adjust phase each component (xn) of the stimulus vector had a value 

between 0 and 1, such that 0 corresponded to the external value Pmin., and 1 to the 
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external value Pmax. Hence if Px is a given external value then:-

Px - Pmin 

Pmax- Pmin 

The response 'f was in all cases the difference between the mean amplitudes over two 

sampling periods, one of which was a zero level sample, as dermed in Figure 10.1 (c). 

This is essentially the same measure as the C I, C2, etc. components of chapter 9 and 

the running average of section 8.5, except that only one response is included. The latency 

of the second sample could be adjusted by the experimenter to lie on a particular response 

peak, exactly as in the running average experiments. 

10.3.5 Initialisation 

At the start of each search the following information was requested from the experimenter -

m = No. of dimensions 

Wo = starting value of w. 

So - starting value of s. 

and for each dimension - Pmin = min. value boundary 

Pmax = max. value boundary 

Pstart = starting value of this dimension 

The initialisation then entered a routine to allow the operator to calibrate the external 

apparatus against the scales set in the machine. The output stimulus was first set at the 

Pmin. values for all dimensions, allowing the experimenter to set up the apparatus 

accordingly. After that Pmax. and Pstart followed similarly and then the program was ready 

to start the search. 

10.3.6 On-line Displays 

The on-line CRT display was that used for the running average experiments, see Figure 8.8(a). 

In addition, the time course of the stimulus parameter Xn (one dimension only) was 

recorded on an XY plotter. (For the rotating sector experiments the same plotter also 

controlled the stimulus.) 
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10.3.7 Initial Trials 

Using a one-dimensional search the program was tried out on a simulated hill. This 

consisted of a partially differentiated pulse, the duration of which was the search para­

meter. Its amplitude was roughly that of a typical response. Tape recorded EEG was 

mixed in with this pulse as a source of noise. The program behaved as expected and this 

trial enabled rough estimates to be made of appropriate values for Wo and so. 

10.4 Results 

One dimensional searches were carried out using the following stimulus dimensions:­

(a) Stimulus duration 

(b) Azimuth of a rotating sector pattern. 

In other respects the stimuli were of the same type as used in the previous experiments 

(Le. brief pattern appearance into an otherwise steadily illuminated blank field), so that the 

results could be correlated with already known response characteristics. Stimulus type (b) 

yielded the more important results and will be described first. 

10.4. 1 Rotating Sector Searches 

Experiment 1 - Dep~ndence on Search Parameters 

The experimental arrangement is shown in Figure 10.3. The pattern was a 400 sector of 

'visual noise', rotated about the centre of the visual field by means of an XY plotter servo. 

This rotating pattern was fixed into one field of the 2-field tachistoscope (Figure 4.2(b» 

and illuminated for 25 ms each cycle. The electrode positions were as shown in Figure 10., 

This form of stimulus was chosen because:-

(a) It was free from the spongy hill problem. 

(b) It was relatively easy to mechanise. 

(c) The shape of the hill was known to have some well defined peaks and valleys. 

The response peak chosen was CI (60 -90 ms), and the shape of the hill to be climbed 

was first mapped out using the normal averaging program, and the same apparatus, taking 

readings every 250
• This is shown in Figure 10.4. 
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This hill was then searched using the hill climber program, and Figures 10.5 and 10.6 show 

the time course of searches using different values of Wo and so. The starting and boundary 

parameters were as shown. The program was set to search for a minimum and it is seen 

that most searches terminate at approximately the right minimum value which, from 

Figure 10.4, should be about 75°. 

Comments 

1., Consider Figure 10.5 and observe how the progress of the search is influenced by the 

value of woo If Wo is large the progress is erratic, and in the case of Wo = .02 it is so 

erratic that quite near the beginning of the search it 'jumps' over the peak at 125°, and 

from then on stays near the upper boundary, trying to reach the bottom of the valley 

beyond that boundary. As Wo is made smaller the process becomes stable (wo = .002), 

but if Wo is too small it becomes sluggish and, for Wo = .00 I, is still gradually rising 

towards the optimum after 1 Y2 minutes. These results demonstrate that the value of 

Wo must be determined by trial and error. 

2. The effect of varying So is shown in Figure 10.6. Here we see that So influences the 

variability towards the beginning of the search, which is understandable as the decay 

of Sn is quite rapid. Again there is one case (so = 0.5) where it jumps over the peak. 

3. The termination values are very slightly different on Figures 10.5 and 10.6, particularly 

the latter. The cause of this may well have been some slight slippage of the belt drive 

to the rotating sector, thus making the actual angle slightly out of step with that in 

the machine. Rapid changes near the start of the search made this slippage difficult 

to prevent. 

10.4.2 Experiment 2 - Variation with Sector Width 

How does the search behave if the response amplitude is decreased? To answer this 

question the search was repeated using progressively smaller sector angles (30°, 20° , 

10° and 5°). In this case the pattern was an array of isolated squares of side and separation 

14' ~f arc. The results are shown in Figure 10.7, and it is seen that even with a 5° sector 

(which was only a single radial row of squares) the search was successful. 
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Since the precise position of the minimum probably varies with sector angle, we would 

not expect the searches of Figure 10.7 necessarily to terminate at the same point. Neither 

would we expect them to be the same as Figures 10.6 and 10.7, owing to the difference in 

stimulus pattern. 

10.4.3 Stimulus duration Search 

From earlier results it was known that the amplitude of the C2 component (95 - 120 ms) 

as a function of stimulus duration showed a broad maximum at about 20 - 30 ms (see 

Figure 7.13). This was the first 'hill' to be searched using the hill climber program, but 

owing to an unwanted side effect, this stimulus variable was abandoned in favour of the 

rotating sector. The side effect is nevertheless interesting in its own right and is reported 

below. 

When stimulus duration was fIrst tried as the search dimension the results were very 

erratic, with no consistent termination point. If however Wo was made very small and 

constant, the search behaviour became more consistent; but instead of terminating at some 

defined value, the duration would steadily increase far beyond the known peak of the hill. 

Typical behaviour was like that shown in Figure 10.8, (which is a tracing of the original X-Y 

plotter trace). This was a very long run (about 8 mins) and at the points marked R the 

subject rested (using his HOLD facility). It is obvious that no convergence is taking place, 

the variable is still rising even after 8 minutes. 

Interaction between successive responses provided an explanation for this (and acknowledge­

ment is given to Dr. D.A. Jeffreys for suggesting it). It is basically the 'pre-exposure' effect, 

which tends to make the search favour long values of the duration. In chapter 7 it was 

shown how a long pre-exposure before a short stimulus tends to atten/uate the response to 

the latter; and thus if the search has a series of long stimuli followed by a short one, the 

latter will be small and the program 'thinks' the gradient of the hill is positive towards the 

longer duration. It reacts by making the next stimulus yet longer. This is an example of 

a hill the shape of which depends upon the route followed in searching it (a 'spongy' hill). 

The existence of such a phenomenon must be carefully considered when using search 

methods like this. Some ways of circumventing it are discussed below. 
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10.5 Discussion 

1. The experiments with the rotating sector have demonstrated that an automatic search 

is possible with evoked potentials, and under the conditions used the search terminated 

reliably on the correct optimum. Nevertheless, it must be pointed out that several 

factors favoured a successful search, and it cannot be guaranteed that with more general 

conditions the method would be equally successful. The favourable aspects were:-

1. The hill chosen had a deep valley (-3#lV) adjacent to a large peak (+7#lV). 

2. A well trained subject was used (DAJ). 

3. The search was in one dimension only. 

The method shows promise however, and would be worth developing further. This is 

considered in chapter 11. 

2. The spongy hill phenomenon could be a severe limitation on search experiments of this 

type. It can be overcome by allowing sufficient time between stimuli for the system to 

recover, but this would give long and inefficient experiments. However, to save time it 

may be possible to conduct several independent searches in parallel, making use of the 

recovery period between two stimuli Of one search to present stimuli belonging to others. 

Two interspersed searches (one for a maximum, the other for a minimum) were used by 

Wolfendale 1 7 °jn a psychophysical experiment. The purpose in this case was to prevent 

the subject detecting any trends in the sequence of stimuli. 
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CHAPTER 11: CONCLUSIONS, GENERAL DISCUSSION, 

AND SUGGESTIONS FOR FURTHER WORK 

11.0 Summary of Results 

Particular results have been discussed at the end of each chapter, where such discussion was 

most appropriate. In this final chapter we try to piece together some more general 

conclusions. 

Major conclusions from each experimental chapter are summarised below. In all cases the 

findings refer to a restricted class of stimuli, i.e. a short pattern appearance ( - 25 ms) into 

an otherwise continuously illuminated diffuse field. 

Pre-exposure Results (chapter 7) 

1. Preceding a pattern appearance stimulus with an identical or different (pre-exposure) 

stimulus attenuated the AEP to the latter. The degree of attenuation depended in 

detail on the timing and nature of the pre-exposure, but was always greatest when the 

PE and test stimuli were identical. The results were somewhat inconclusive as to the 

origin or mechanism of the suppression other than that it was at least partially central. 

In the light of the subsequently discovered significance of pattern AEP components, some 

of these experiments would be worth repeating, using the component separation technique. 

AEP Variability (chapter 8) 

1. The main conclusion was that the stimulus had a minimal effect on the observed 

variability, which seemed to be almost entirely due to independent noise sources. 

2. Apart from one subject who showed a rhythm synchronised with the stimulus, attempts 

to show that the variability reduced when a response was present produced negative 

results. The hypothesis that there is a constantly active neural population which acts 

either in synchrony with a stimulus or randomly. was not supported (at least for this sort 

of stimulus). 

3. 'Running average' experiments indicated that long term pattern AEP changes were cyclic 

rather than steady decays. 
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Component Analysis (chapter 9) 

1. AEP components at particular latencies were isolated by computer integration over 

short latency ranges. Two early components were defined CI (52-80 ms) and C2 

(85-113 ms). 

2. Longitudinal (midline) and transverse scalp distribution studies showed Cl and C2 to 

be compatible with the hypothesis that they originate from independent spatially 

separate sources. 

3. Distributions for Y2 and ~ field stimulation were in most cases good approximations to 

the appropriate sum of the constituent ~ and lis field distributions. This held for both 

C1 and C2. 

4. The shapes of the distributions were in most cases compatible with surface negative 

dipole sources located in the retinotopically mapped striate cortex for C 1, and extra­

striate cortex for C2. 

5. Some of the measured distributions disagreed markedly with the predictions. 

Stochastic Searches (chapter 10) 

1. A method was developed which reliably converged in one dimension under restricted 

experimental conditions. 

Sections ILl and 11.2 consider the component analysis and stochastic search results 

respectively. Criticisms, limitations, and possible extensions to the work are included. 

11.1 Component Analysis 

Note that the results do not prove that CI and C2 come from the striate and extrastriate 

cortex respectively, only that the observations are compatible with these sources. 

Unfortunately it is theoretically not possible to determine uniquely the distribution of 

volume generators from surface potential measurements. Some assumptions have to be 

made about the topography of the likely sources before a component can be assigned to a 

particular source. 

However, if by further experiments we can confirm that an individual component comes 

with some certainty from a particular cortical region, then a study of this component 
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(as a function of selected stimulus variables) may be expected to reveal properties of the 

cortical source itself. 

11. 1. 1 Some Criticisms 

1. Eye movements were not restricted, other than by voluntary fixation. It is possible that 

the observed differences in scalp distributions could have been produced by changes in 

the pattern of eye movements when patterns were presented in different parts of the 

visual field. It may be possible to check this by presenting some composite patterns, 

e.g. non-adjacent octants, which would tend to have counteracting eye movement 

tendencies. Repeating some of the experiments using a stabilised retinal image would be 

the most satisfactory way of settling this point however. 

2. Some results showed glaring anomalies (e.g. subj SH). Unusual cortical topography was 

considered in chapter 9 to be the most likely cause of these. If this could be proved to be 

the case by X-rays or other suitable methods, then the conclusions would be greatly 

strengthened. 

3. Only four subjects were tested in detail, although Jeffreys 86 had earlier shown (by 

rough inspection of the AEP traces) that a group of 12 subjects showed similar features. 

The detailed component study should be extended to more subjects. 

4. The dipole model was very crude and could easily be improved in three ways:-

a. By using dipole sheets instead of isolated dipoles. 

b. By using a more exact cortical topography, taking into account curves, folds, cortical 

magnification, etc. Actual surface topography, determined by X-rays or other methods, 

could also be included. 

c. By taking into account the differing conductivities of cortex, skull, and scalp. This has 

already been covered by a number of workers 1 33,160. 

The numerical integration power of mod~rn computers should render the calculations 

involved quite tr~ctable. 
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11. 1.2 Extension Experiments 

1. Eccentricity Mapping 

In the reported experiments only 1800 annular regions were tried (Le. over Y2 field). However 

by measuring annular region C I and C2 distributions within one octant it may be possible 

to detect movement of the source along the cortex surface as eccentricity is changed. Thus 

we may expect that for C I the source will move deeper into the cortex with increasing 

eccentricity. For C2 the expected movement will depend upon whether the stimulus is in 

the upper or lower Y2 field. For the lower Y2 field we may expect the source to move 

anteriorly along the top surface of the occipital lobe, whilst for the upper Y2 field it should 

move deeper into the brain on the under surface of the lobe. 

2. C3 Component 

Attempts should be made to identify the source of C3. Does this come from a human 

Visual III. region? Testing (as above) with various annular regions at different eccentricities 

may help to uncover the mapping direction. 

3. Pre-exposure to Components 

The differing effects of pre-exposure on C 1, C2, and C3 should be investigated and may help 

to uncover features about the function of the source areas. 

4. Pattern Complexity 

Jeffreys 180 has established that in general the amplitude of pattern AEPs increases with the 

complexity of the stimulus pattern. MacKay 10 1 has suggested that this can be interpreted 

as evidence for 'lateral inhibition between high-order feature-sensitive elements'. We also 

know from single unit work in cats and monkeys that nerve cells in the cortical visual areas 

I, II and III are concerned with progressively more complex aspects of the structured visual 

field. If the same is true for humans then we may expect the dependence of at least eland 

C2 on pattern complexity to be different, with the higher order pattern features making a 

greater contribution to C2 than to C1. 

A start was made at investigating this during the research, but before the computerised 

component isolation method was developed. It was inconclusive and was not pursued. The 
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main problem was how to quantify 'pattern complexity" and the initial attempt defined 

two sorts of feature - (A) contour types, and (B) relationships between contour types:-

viz. A-type B-type 

Straight edge Spatial frequency 

Corner 

Curved edge 

Orientation 

Connectedness 

Depth information 

Regularity 

Each feature may be expected to stimulate. one or more neuron populations (channels) in 

the visual system, with the more complex features represented later in the analysis chain. 

Some ingenuity would be required here to devise series of stimulus patterns which vary 

one feature, but keep others constant. A careful study of the behaviour of the individual 

response components as a function of these features may yield interesting indications of the 

purpose of the cortical source. 

5. Monocular Stimulation 

If a particular cortical region contains neurons which are predominantly monocularly driven, 

then one may expect the AEP from that region to show a significant decrease if monocular 

rather than binocular stimulation is used. Normally AEPs are reduced slightly if only one eye 

is stimulated, and a careful study of the relative decreases of different components may reveal 

eye preference characteristics of the sources. There are already indications a., that C 1 is 

reduced more than C2 for monocular stimulation. This could indicate that the striate cortex 

contains a higher proportion of monocularly driven neurons. This is compatible with the 

monkey finding C 6~ ., a and see section 2.2.3) that simple cells in the striate cortex are 

predominantly monocularly driven. 

11.2 Search Techniques 

The progress made in search techniques can only be regarded as a start. During the research 

it was soon realised that the noise represented a severe restriction on any search method, and 

until an efficient general method of searching in the presence of noise was developed, not 
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much progress would be made. The technique reported was preceded by several other 

unsuccessful methods. The main problem seems to be how to make the maximum use 

of each individual measurement, and it is significant that all the unsuccessful methods 

attempted to do some averaging to reduce the noise of a result before making a decision 

about it. The reported method did not. 

Note the generality of the method; the stimulus space can be: any number of dimensions 

and provided the desired response characteristic can be defined as the maximum of a 

continuous scalar function, any search can be conducted. 

It was not without its problems however. One was the very real restriction of limited 

computer core storage. The program described almost filled that available on the POPS. 

A more fundamental problem was that of translating the stimulus variables within the 

computer into real stimulus control. Variables such as time or simple stimulus position 

are relatively easy to mechanise, but when we consider somewhat more interesting variables 

such as the pattern features mentioned in the previous section, it is not so simple. A CRT 

display may be the answer here. If a suitable stimulus space specifying pattern content 

can be defined and mechanised it may yield some very interesting results. 

11.3 Final Remarks 

AEPs measured on the human scalp are always going to be at a disadvantage compared with 

more direct physical measurements made on the exposed brain. 

Nevertheless I believe that the work reported in this thesis is a significant step forward in 

AEP experimental techniques, and in our understanding of the probable source locations of 

AEPs to pattern appearance stimuli. 
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APPENDIX 81: COMPUTATIONAL ERRORS FROM ROUND-OFF 

AND TRUNCATION 

The follo~ing· considers cumulative error that builds up as a result of a series of comput­

~tional steps. It is concerned only with errors introduced by floating point arithmetic 

operations, and takes no account of error in the operands themselves. 

Define - Absolute error, ey ( of quantity y) 

- Relative error, ey = :;1 
y 

Suppose numbers are to base om', and 't' significant digits are used. 

A maximum possible relative error (emax) can be specified, depending on the rounding 

algorithm, as follows:-

For truncation - max absolute error = 1 x least significant digit. 

:. emax = m l
-

t 

For rounding (up and down) - max absolute error = Yl x least significant digit. 

:. emax = Yl m l
-

t 

Addition 

If 'n' numbers are added sequentially:-

y = ( ...... «(XI + X2) + X3) + X4) + .................... + xn) 

Thus ey <: [(n-l)x, +(n-l)x:z +(n-2)x3 + .................... +xn] emax. 

Suppose all the x's are approximately equal and have mean value ~. 

:. y = nx 
and £I <: [(n - 1) + Yln (n - I)]emax. 

x 
ifn» I, :. ey<:~emax .................... BI 

Multiplication 

, If on' numbers are mutliplied seqllentially:-

y = ( .......... «(x, . Xl) • X3) • X4) •••••••••••••••••••••• xn) 



Thus ey ~ (XI • X2 • X3 • •••••••••••••••••••• • Xn)n emax 

:. ey'" n emax .................... B2 

Thus in general multiplication gives a greater error than addition. 

The largest increases in.relative error come when two nearly equal numbers are subtracted. 

For multiple divisions the resultant maximum error is roughly the same as for multiplication. 

Hence it can be seen that for most operations (provided we do not take small differences), 

the maximum error is roughly proportional to the number of operations. 

Application to Double Precision Arithmetic in the PDP8 

The PDPB word length is 12 bits, and thus double precision arithmetic will give 23 significant 

bits (one bit is used as a sign bit). Truncation is used. 

Hence t = 23, m = 2, and emax = ~2 ~ 2.5 X 10- 7 

tf we allow ey = 0.0 I, then from eqn. B2 

n::> °i~l x 107 = 40,000 

i.e. for a maximum relative error of 1% one would need 40,000 serial multiplications. 

From the above considerations, it is concluded that the used of double precision arithmetic 

is unlikely to introduce significant error into any of the experimental computations. 



APPENDIX 82: SINGLE PRECISION SUMMING ERROR 

The process of computing the AEP involved the sequential summation of about 100 raw EP 

responses. Timing constraints dictated that this operation must use fixed point single 

p~ecision arithmetic (11 significant bits). 

If rounding up and down is used:-

t.= 11, m = 2, and emax = l' ~o = ~ 

and thus from eqn. B 1, for n = 100, , 

ey < l~Q x 2648 

:. ey < 2.4% 

Note that if simple truncation were used the maximum relative error would be twice this value. 

Dynamic Range and Overflow 

A further consideration with this summing operation was the chance of overflow. Since fixed 

point arithmetic was being used, the summed value could not be allowed to exceed the range 

limits of a 12 bit binary word ( i.e. ± 2048). 

This can be expressed in terms of the following inequality:-

2048 ~ Max AEP x Amplifier Gain XrA/D Conv. 1 xr Max no. of response~ 
~Conversion factod lin AEP J 

(VJl.V) (G) (C units/Volt) (N) 

Typical design values were:- V = 15Jl.V 

G=5x104 

N = 100 

The value of C was chosen such that the inequality holds. 

The dynamic range of the AID convertor was fixed at ± 5 Volts, but the effective number 

of bits to which this range corresponded within the computer could be adjusted (i.e. the value 

of C). Suppose this number of bits is 'm':-

2m 
then c=lO 

and 2048;> 15 x 10- 6 X 5 x 104 X tIT x 100 

i.e. m < 8.1 



In practice the AID converter switch was set to provide a 9 bit conversion, which was 

then rounded (up and down) to 8 bits by the program. 

With 100 responses included in the AEP, the net effect was that a maximum AEP of 

± 15J,J. V was allowed before overflow occurred. If the number of responses was lower, this 

limit was higher, in direct proportion. 

If overflow did occur, it was easily observed on the display, and the particular AEP could 

be rejected. No direct program action was taken on overflow. 
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