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Abstract

Background: Challenges in the conduct of systematic reviews have led to research

into and development of support tools targeting the process or specific stages. There

is a growing body of research into the use of text mining methods for citation screen-

ing support. However, these studies are reported with insufficient details to support

reproducibility and technical comprehensibility of the models.

Aim: To investigate transparency in the reporting of citation screening in systematic

reviews particularly as it relates to reproducibility and technical comprehensibility of

the models.

Method: A literature review was conducted to investigate the methods being used

for citation screening support and the type of information reported about them. Con-

sequently, a reproducibility assessment of studies was undertaken to systematically

assess the level of reproducibility of the studies and the factors responsible. This was

followed by two studies to investigate the structural complexity of the models being

used. A text mining based tool was developed to support citation screening and tool

support research.

Results: The review showed a growing body of research but a lack of technical in-

formation about models and reproducibility enabling information. The reproducibil-

ity assessment identified information essential to study reproduction and suggested a

checklist. The complexity assessment and feature enrichment studies reinforced the

need for complexity related information in study reports. The citation screening tool

demonstrated how a tool can be useful for both practice and research.

Conclusions: Research into text mining based tool support for citation screening

in systematic reviews is growing. The field has not experienced much independent

validation. It is anticipated that more transparency in studies will increase repro-

ducibility and in-depth understanding leading to the maturation of the field. The

citation screen tool presented aims to support research transparency, reproducibility

and timely evolution of sustainable tools.
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Glossary

Some of the terminologies used in this work has been derived from multiple discip-

lines. The glossary does not represent formal definition but an attempt to quickly

familiarise the reader to the concepts.

class — A set of specific target output attributes/groups/categories of the data.

classifier — Refers to a model created through the implementation of a classification

algorithm, that maps input data to a set of output categories.

conclusion validity — This type of limitation to the validity of a study concerns the

relaibility of the conclusions of the study.

construct validity — This type of validity limitation raises questions on how well

the design choices for the study is able to address the research questions.

external validity — This concerns limitations regarding whether the outcome of a

study can be genaralised to other situations.

feature — In text mining, this is a feature (or term) refers to an individual distinct

word/text unit that collectively compose the body of text.

fit — The process of creating a simplified representation (model) of a dataset in a

way that it can be generally used successfully given new data. For example, to

identify data similar to the one it was trained on.

internal validity — This is a type of validity limitation introduced by other bias

factors or conduct of the study.

learning — The mastering of the underlying distribution/pattern of a dataset and

the mapping of each data input to some target attribute.

model — An abstract representation of the real distribution of a dataset. It is the

artefact produced as a result of the training process.

negative class — Name used to represent the output category of no interest in a

dataset during classification.
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over-fitting — Describes a situation when the model too close to the reality. That

is, it ended up learning both the detail and the noise in its training data to the

detriment of its performance on new data.

pickle — A module in Python that implements binary protocols for serializing and

de-serializing a Python object structure. Pickling in Python refers to the process

of converting an object to byte stream for storage purposes and un-pickling is

the opposite..

positive class — Name used to represent the output category of interest in a dataset

during classification..

predict — Describes the process where a trained machine learning model attempt

to suggest the class of a new data given its underlying dataset’s classes.

scrape (scraping/web scraping) — The process of using automatic software to gather

specific (textual) information from websites.

stemming — The process of removing inflection (suffixes, prefixes and affixes) from

words to return them to their original root (stem) forms.

training — The process of providing a machine learning model with a set of data to

learn from.

weight — The value assigned to data points (or class of data) during weighting.

weighting — The process of assigning a multiplication ‘cost’ to data points in ma-

chine learning to empasize the importance or otherwise of the data (sometimes

used as class, term, feature or sample weighting).
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CHAPTER 1

Introduction

T his thesis presents a set of studies undertaken to investigate experimental

transparency in studies reporting the use of text mining techniques for auto-

matic citation screening in systematic reviews in relation to reproducibility and un-

derstanding of complexity of the text mining models. The work leads to the de-

velopment of a ‘transparent’ text mining based tool to support citation screening in

systematic reviews and set the stage for cross-team research collaboration.

This chapter describes the focus of the thesis, which concerns experimental trans-

parency, reproducibility and structural complexity of the models used in text mining

studies relating to automatic citation screening in systematic reviews. Reproducibil-

ity in this work implies the ability to reproduce study results through the replication

of their processes while complexity refers to the hypothesis the techniques utilize in

making the classification decisions. A brief introduction to evidence-based software

engineering, the systematic reviews process with an emphasis on citation screening

and the challenges of the method are provided. The research questions of the work

are outlined and the work’s motivation and objectives are explained. The novelty of

the thesis and its contribution to knowledge are pointed out. The chapter ends with

an outline of the structure of the thesis.

1.1 Background

A brief introduction to Evidence-Based Software Engineering (EBSE) and the Sys-

tematic Review (SR) process is presented in this section. The section also contains a

highlight of the SR process.

1.1.1 Introduction to EBSE

Evidence-based research and practice was initially adopted and has been successfully

practised in medicine (Sackett, Rosenberg, Gray, Haynes, & Richardson, 1996; McK-

ibbon, 1998; Reynolds, 2008). The success has lead to its adoption in other research
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areas like nursing, sociology, education, psychology etc. (Kitchenham et al., 2009;

on Evidence-Based Practice, 2006) and eventually Software Engineering (SE) (Kit-

chenham, Dyba, & Jorgensen, 2004).

In 2004, Kitchenham et al. (2004), suggested an evidence-based research ap-

proach, EBSE, to the SE community in order to bridge the gap between research

and practice. The objective of EBSE is to make available, empirical evidence to as-

sist practitioners make informed decisions when adopting SE techniques and prac-

tices (Dyba, Kitchenham, & Jorgensen, 2005). In consistency with evidence-based

medicine, EBSE requires the following five steps to execute (Dyba et al., 2005):

i) Convert a relevant problem or information need into an answerable question.

ii) Search the literature for the best available evidence to answer the question.

iii) Critically appraise the evidence for its validity, impact, and applicability.

iv) Integrate the appraised evidence with practical experience and the customer’s

values and circumstances to make decisions about practice.

v) Evaluate performance and seek ways to improve it.

Steps ‘ii’ and ‘iii’ are achievable through a methodical review of the literature - SR.

EBSE is therefore anchored on SR for the gathering of the right evidence. A detailed

report on how to conduct SRs in the context of SE is published in Kitchenham et al.

(2004) and updated in Kitchenham and Charters (2007), Kitchenham, Budgen, and

Brereton (2015).

Since its introduction and adoption, EBSE has continue to grow considerably in

different topics of SE. In a tertiary study covering the use of SR in SE between 2004

and 2008, 20 unique studies were found by (Kitchenham et al., 2009) with addi-

tional 33 in (Kitchenham et al., 2010) over the same period. By extending the

tertiary study search date to 2009, Da Silva et al. (2011) found an additional 67

studies. This, in addition to at least two annual conferences with emphasis on em-

pirical research and preference for SRs - the international conference on Evaluation

and Assessment in Software Engineering (EASE) and the international conference on

Empirical Software Engineering and Measurement (ESEM), are indicative that EBSE

(and invariably SR) has become an intrinsic part of SE research.

1.1.2 Introduction to systematic reviews

Literature review is an integral component of every research activity. Traditionally,

the task of searching, gathering and reviewing of literature are conducted in an ad-

hoc way. This approach exposed the practice to at least two identifiable flaws:

i) exhaustive coverage of existing literature is not guaranteed.

ii) the process is usually not repeatable.
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The poor quality of narrative reviews increased the quest for more formal methods for

producing a systematic and explicit way to provide up-to-date evidence on a subject

of interest. SR (also sometimes referred to as systematic literature review (SLR)), is

a literature review approach that provides a rigorous, dependable and ‘auditable’ re-

view methodology with the main goal of building an impartial and complete synthesis

of available empirical research evidence on a specific topic; thus, creating a focused

platform on which practically useful decisions and conclusions can be made (Kitchen-

ham et al., 2004; Kitchenham et al., 2015; Higgins & Green, 2011).

SR process consists of three major phases: planning, execution and document-

ation (Kitchenham et al., 2004; Kitchenham & Charters, 2007; Kitchenham et al.,

2015). These phases are further divided into stages. The phases, constituent stages

and the interaction between each of the stages is shown in Figure 1.1.

1.1.3 Systematic review process

The SR is conducted following a laid out approach decided before the process is

commenced. Figure 1.1 shows the three phases of the SR and 10 stages of activities

in the phase (Kitchenham & Charters, 2007). The stages of each phase are briefly

discussed in this section.

1.1.3.1 Planning phase

The goal of the planning phase is the production of a ‘protocol’ - a priori laid down

plan on how the review process will be conducted, candidate studies judged and

research questions to be answered by the review outcome. The planning involves

three stages:

i) research question: The first stage is the definition of questions that will provide

a direction to the need of the SR, the construction of the string for document

search and the types of data required to satisfy the inquiry (Kitchenham et al.,

2015; Kitchenham & Charters, 2007).

ii) protocol development: the second stage is the development of a review pro-

tocol. The protocol contains detailed definition of the process to be adhered

to during the review. This includes outlining the approach to undertake while

searching and selecting the candidate studies, conditions to be met by each

study for consideration in the review, the data to be extracted from each study,

assessment criteria, study allocation to reviewers etc.

iii) protocol validation: This includes running a pilot review to test the understand-

ing and relevance of the protocol prior to review scale application. This may

lead to the revision of the protocol. The protocol can be revised at any stage

when any inadequacy is identified.

3
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1.1.3.2 Execution phase

The guidelines specified in the planning phase are applied to the five tasks identified

for the execution phase. So, once a version agreed to by all members of the review

team is available the execution phase can commence. The five stages involved are:

i study identification: The first stage of the execution phase is to identify candid-

ate studies using the search strategy defined in the protocol. The coverage of

every possible research likely to be relevant to the review is key to the success

of this stage (Kitchenham et al., 2015; Kitchenham & Charters, 2007).

ii citation screening/study selection: The second stage of the execution phase is

the filtering of relevant studies from the outcome of the identification stage ap-

plying the criteria for inclusion and exclusion predefined in the ‘protocol’. This

is normally conducted in two steps: first, by removing the clearly irrelevant

studies based on the content of their titles and abstracts while the second one

is by reading the full content of the remaining studies to determine if they are

actually relevant based on the conditions set out in the inclusion/exclusion cri-

teria. For the sake of reliability, it is recommended that each article be screened

by at least two reviewers with a chance for resolution over any disagreement.

iii study evaluation: Following an agreement by the review team on a set of qual-

ified studies, their quality are assessed based on predefined criteria.

iv data extraction: Information in each study that qualifies for each data item

defined in the extraction form are extracted.

v data synthesis: The concluding stage of the execution phase is the collation

and aggregation of the extracted data with the intent of answering the research

questions.

1.1.3.3 Reporting phase

Once the review process is concluded, then it is time to formally document and report

all the processes and outcomes.

i) define strategy: At this stage the reviewers may define how the report is to be

written and organised in consonance with the protocol and the research ques-

tion. Further suggestions on the possible structure and contents of the report

can be found in (Kitchenham et al., 2015; Kitchenham & Charters, 2007).

ii) reporting and validation: The final stage is to formally write the review report

and possibly have it validated by an independent researcher.
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Figure 1.1: Systematic review process with task interactions

1.1.4 Systematic review experience in SE

The growing interest in empirical research and SR in particular has lead to useful

feedback on the use of the SR guidelines proposed by Kitchenham (2004). Several

researches have reported the guidelines as fit for purpose and have suggested areas

in need of improvement based on their experiences, expertise and needs (Staples &

Niazi, 2007; Brereton, Kitchenham, Budgen, Turner, & Khalil, 2007; Dyba, Dingsoyr,

& Hanssen, 2007; Riaz, Sulayman, Salleh, & Mendes, 2010; Turner, Kitchenham,

Budgen, & Brereton, 2008). An alternative guideline for SR in SE was proposed

by Biolchini, Mian, Natali, and Travassos (2005).

A tertiary study by Kitchenham and Brereton (2013) identified about 18 areas in

need of improvement suggested across experience studies. Some of these improve-

ment suggestions include procedural improvements while some advocate for tool or

other forms of external support. The challenge posed by the amount of time and

effort consumed by conducting a SR is common among the experiences (Riaz et al.,

2010; Babar & Zhang, 2009; Zhang & Babar, 2013; Petersen, Feldt, Mujtaba, & Matt-

sson, 2008; Brereton et al., 2007; Carver, Hassler, Hernandes, & Kraft, 2013). Some

studies have favoured the need for a tool to support the whole (design, conduct and

reporting) SR process (Zhang & Babar, 2013).

These drawbacks have positioned the processes involved in the conduct of the

SR as prime candidates for automated support tools. Staples and Niazi (2007) be-

lieve success in the automation may be achieved faster by targeting individual stages

rather than the whole process. Data extraction, study selection and data synthesis

have featured as the top areas in need of automated support (Staples & Niazi, 2007;

Hassler, Carver, Kraft, & Hale, 2014; Z. Yu, Kraft, & Menzies, 2016). Study identific-

ation is another area that has been identified to be manual and labour intensive that

could benefit from automated tools (Carver et al., 2013).
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SRs are conducted to gather evidence to improve the body of knowledge of any

particular subject, therefore, they are often repeatedly conducted at intervals to up-

date existing knowledge. The current rate of publications and the time it takes to

complete a review may make the findings of a review become out-dated quickly.

On average, a medical review takes one year from protocol development to publica-

tion (Borah, Brown, Capers, & Kaiser, 2017). So, a tool that preserves the states (of

each stage) of the previous review and update the states with new review exercise is

potentially useful at reducing repeated activities and updating findings.

A number of studies have been published on the subject of automated tools to sup-

port SR resulting in a range of tools. One of the prevailing approaches in the auto-

mation is the use of Machine Learning (ML) techniques, a computational method,

through Text Mining (TM). The Citation Screening (CS) stage is one of those that

had attracted the greatest interest in terms of applying TM techniques for SR sup-

port. More details on the current efforts at providing automated support for the

whole process and individual stage of the SR is discussed in Section 3.2. O’Mara-

Eves, Thomas, McNaught, Miwa, and Ananiadou (2015) reviewed 44 articles on the

application of TM to support the CS stage of the SR published between 2006 - 2014.

An additional 12 articles were found covering 2015 - 2018 (see Section 3.5). Only

five tangible tools have so far evolved from the studies reported in the articles - AB-

STRACKR (Wallace, Small, Brodley, Lau, & Trikalinos, 2012), Gapscreener (W. Yu

et al., 2008), SWIFT-Review (Howard et al., 2016), Rayyan (Khabsa, Elmagarmid,

Ilyas, Hammady, & Ouzzani, 2016; Ouzzani, Hammady, Fedorowicz, & Elmagarmid,

2016) and Fastread (Z. Yu et al., 2016).

Further issues associated with the use of computational methods, TM in this case

is to provide automated support tool for SR processes particularly the CS stage will

be further discussed in the next section.

1.1.5 Research motivation

Reporting scientific experiments in a way that the results can be understood and

independently reproduced is a standard requirement of scientific reporting. It is

however difficult to ensure computational experiments are well communicated and

reproducible (Goecks, Nekrutenko, & Taylor, 2010). The application of computa-

tional methods for building support tools for the conduct of the CS has its own draw-

backs particularly in effectively reporting and communicating the research process

to others. In an attempt to provide solution to some of the identified SR drawbacks

through automation with TM models, the computational methods employed lead to

other issues like research reproducibility and transparency, understanding and deal-

ing with the models’ complexity among others. Complexity in the ML context is

considered in terms of the comparative relation between the data size, the feature
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vector size (see Section 2.2.2) and the size of the classification algorithm’s hypothesis

space (Joachims, 1998). The lower the complexity of a model the better it has learnt

to generalize over the dataset. The larger the size of a dataset the better the learning

(chances) of a ML model and (possibly) the lower the model’s complexity.

The tools mentioned in Section 1.1.4 and studies reviewed in Section 3.3 have

shown the potential of TM techniques to improve reviewers’ experience in the CS

stage of the SR and possibly the quality of the review outcome. Specifically by re-

ducing the amount of reviewer time and effort spent selecting relevant studies and

reducing human bias applicable to this stage. Despite these advantages, the tools

and the 56 studies reviewed in Chapter 3 on the use of TM techniques to provide

automated support for the CS stage of SR have shown a lack of experimental trans-

parency. Independent researchers due to the multiple complex procedures of the

tools and methods are unable to independently reproduce the results or replicate

the processes. Consequently, the ability of independent researchers to understand

the complexity of the models which may be used to interpret their performance and

propose changes or improvements to these existing tools and methods is limited.

Reproducibility of experimental outcomes is a key phase of scientific enquiry,

which provides the foundation for understanding, integrating and extending exist-

ing results towards new discovery (Goecks et al., 2010). In a similar way, ‘good

reporting’ has been reported to be an essential component to future research devel-

opment (Miguel et al., 2014). Thus, good reporting and reproducibility are critical

to knowledge advancement and a shorter new discovery turnaround in an evolving

field. Only two of the tools have been reported independently evaluated, ABSTRACKR (Rath-

bone, Hoffmann, & Glasziou, 2015; Gates, Johnson, & Hartling, 2018) and Rayyan (Olofs-

son et al., 2017; Couban, 2016); none of the studies have their results independently

reproduced.

There have been many studies published on the use of TM techniques for auto-

matic CS. The field and awareness of the potential of this method is growing, ex-

perimental datasets are becoming more accessible thus the number and potentials

of studies are rapidly increasing. But all these are still with low levels of collabor-

ative research and independently reproduced results. There is an absence of study

replication and insufficient technical details in reports. Therefore an in-depth invest-

igation into the usefulness of these discovery evolution and enabling issues would be

beneficial to the research community.

1.2 Research Objectives

The overarching goal of this thesis is to investigate aspects of the quality of reports

in studies on automatic tools for CS in SR using TM techniques. Particularly, how

the information provided in the reports support reproducibility and understanding

7



Chapter One – Introduction

of the quality of the models being reported vis-á-vis model complexity. The specific

objectives of the thesis are to investigate:

i) transparency in TM based CS studies based on the level of information provided

on the experimental procedures and the resulting models.

ii) the conditions for the reproducibility of the study results and how this is satis-

fied by the studies.

iii) the need for reporting the complexity details of the TM models.

Three research questions were developed to guide the focus of this project:

RQ1: What information is required to improve experimental transparency in

studies reporting the use of TM techniques for automatic CS in SRs?

RQ2: What information is essential to the reproducibility of TM for CS studies?

RQ3: What information about model complexity should be included in TM

based CS studies?

1.3 Original contributions

This thesis reports a novel investigation into the issues surrounding experimental

transparency in reporting and how it affects study reproducibility and understanding

of the complexity of TM models in automatic CS studies. Specifically, the inadequa-

cies of the current reporting is established, and the most important information to

enhance the reproducibility of TM based automatic CS studies identified. More de-

tails about how specific units of the work have contributed to knowledge in this area

are enumerated below:

i) A mapping study, reported in Chapter 3 is the first in the field to investigate

the issue of transparency and to assess the information provided in studies re-

porting the use of TM techniques to support CS in SR. This work was presented

at the 20th International Conference on Evaluation and Assessment in Software

Engineering (Olorisade, de Quincey, Brereton, & Andras, 2016).

ii) The reproducibility assessment work reported in Chapter 4 is the first to invest-

igate reproducibility issues in the field. It is also the first to propose a checklist

of information that may ensure studies in this area are reproducible. Its findings

were reported in the Journal of Biomedical Informatics (Olorisade, Brereton, &

Andras, 2017c) and a workshop paper at the 34th International Conference on

Machine Learning (Olorisade, Brereton, & Andras, 2017b).

iii) The complexity assessment work reported in Chapter 5 is the first to investigate

complexity issues of the TM models for automatic screening of citations in SRs

8
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and the need to report complexity metrics. It is also the first time the Word2vec

will be investigated as a feature type in studies for automatic CS. The study

findings were presented as a short paper at the 21st International Conference

on Evaluation and Assessment in Software Engineering (Olorisade, Brereton,

& Andras, 2017a) with an expanded manuscript currently been reviewed for

publication in the Research Synthesis Methods journal.

iv) The feature enrichment work reported in Chapter 6 investigates the effect of

adding bibliography data to article title and abstract on the performance of

models and complexity. The study is the first to compare the performance and

complexity of models built from the traditional title and abstract (and optional

keywords) with those built by adding bibliography features to the title and

abstract. As at the time of writing this thesis, the findings from the study is

being prepared for a journal publication.

v) The CS tool - TeMACS presented in Chapter 7 is a web based document classific-

ation tool which aims to support reviewers in automatic screening of citations

in SRs. At the same time, it aims to support automated CS tool researchers by

providing information that may help in reproducing its processes and under-

standing the complexity of its models’ decision making. The CS tool is the first

of its kind that support explicitly, the transparency and reproducibility of CS in

SRs.

Despite the fact that this work is being conducted within a software engineering

locale, SRs are used in many disciplines. Research into automated support for CS

is most prevalent in the healthcare and software engineering fields. On providing

support for the CS stage, more work has been undertaken in the healthcare field.

Thus, the challenges highlighted and investigated through studies in this work affects

studies from other domains. Therefore, the contributions of this work are not limited

to software engineering but can be generalised to other domains.

1.4 Thesis organization

A short description of the chapters that constitute this thesis is presented in this sec-

tion. A pictorial representation of the relationship between the chapters is presented

in Figure 1.21.

In Chapter 2, a brief theoretical background on ML is provided. Two major learn-

ing approaches: the supervised and unsupervised learning were highlighted. The

1In the figure, if there are two possible paths exiting a node, different colours are used to indicate
the split. The split colours are maintained to highlight the branch path until the main path is rejoined;
at which point the initial colour is again used.

9
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chapter introduces TM with a presentation of its process. Performance metrics par-

ticularly those relevant to the studies reported in this work are also presented. The

background presented in the chapter provides a theoretical context for the work re-

ported in other chapters of the thesis.

In the early stage of the research, a mapping study which evaluates the type and

extent of information provided on the TM techniques that are being proposed for the

automatic screening of citations in SRs is conducted and presented in Chapter 3. The

review of the background literature has been presented through a combination of SR

methodology and supplementary literature search to ensure up to date information

is provided. The review establishes the need for more experimental transparency in

the reviewed articles and the potential to investigate support for reproducibility and

model complexity issues in candidate articles.

Driven by the outcomes of the review in Chapter 3, Chapter 4 presents a repro-

ducibility assessment. This study is aimed to assess the reproducibility of selected

studies, which are intended to provide automated support for the CS stage of SR.

The studies cover both software engineering and medical fields. The assessment is

based strictly on the information provided in the selected studies. The work identifies

a set of information items that can improve transparency of studies report and its re-

producibility. A checklist of these information items is proposed to guide researchers

and academic review process.

In continuation of building on the outcomes of the review in Chapter 3, Chapter 5

presents a study aimed at investigating model complexity and statistical validity is-

sues in TM models to support CS in SR from selected studies. The study builds

Support Vector Machine (SVM) models representative of typical models in the selec-

ted studies and explore their complexity through the number of Support Vector (SV)s

used by the models. The complexity is used to determine whether there is enough

concern to warrant its being reported beside being in compliance with scientific re-

quirements. The conclusion indicated high complexity in the models.

Chapter 6 presents a study aimed at investigating how the improvement in the

quality of the data with bibliography information will affect model performance and

complexity. The study replicates the classification approach in the previous chapter,

changing only the data content and the χ2’s α value for reducing the dimension of

the feature vector. The conclusions of this study show a strong promise at reducing

complexity and increasing performance but its not definitive.

The studies reported in Chapters 4 and 5 show possible effects of the absence

of critical information in TM based automatic CS study reports. Whilst maintaining

transparency vis-á-vis this information in compliance with the scientific requirement

for experimental transparency is useful, effectively communicating a computational

study to the extent of being reproducible is challenging. In Chapter 7, a novel trans-

parent tool - “Text Mining based tool for Automatic Citation Screening (TeMACS)” -

10
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for CS was introduced. TeMACS is a document classification is an open web-based

tool which incorporates some of the methods and outcomes of studies from previous

chapters to demonstrate how a CS tool can be developed to be useful for both SR

practitioners and automatic CS researchers. The design, development and features

of the tool are reported.

In Chapter 8, the findings from the different studies reported in this thesis are

brought together and discussed in relation to the original research questions.

In Chapter 9, the summary and conclusions from the research undertaken are

presented. Recommendations on the use TM based tools and reporting of their

corresponding experiments for automatic CS and suggestions for future work are

provided.

11
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Figure 1.2: Thesis organization12



CHAPTER 2

Theoretical Preliminaries

A brief overview of the basics of ML and TM being the core of the subject of

the studies in this work is presented in this chapter. The chapter presents

a quick introduction to the supervised, semi-supervised and unsupervised learning

approaches. The different processes involved in the conduct of TM experiments are

also explained. The chapter was rounded with a discussion on model assessment and

methods to improve model performance. These concepts underlie the theory behind

the work in this research.

In Section 1.1.4, the intensive amount of time and effort consumed by SR was

presented. The application of ML algorithms is being explored to support decision

making either of the whole SR process or its individual stages. The CS stage has

recorded the most success in terms of SR support research with the application of

TM techniques. All the studies evaluated in this research have employed one ML

algorithm or another. The subject of ML and TM are not native to SR research, there-

fore, the decision to present a brief overview of the concepts involved to introduce

some of the techniques that are relevant to this research.

Many research areas have continued to witness the application of ML techniques

to aiding their processes and methods. The case is similar with the application of

TM techniques to automatically screen citations during the conduct of SRs. For this

purpose, the use of TM related techniques is one of the approaches being explored.

TM involves the exploration of textual documents with the aid of analysis tools and

technologies to extract useful information. TM supports the “analysis of text with

machine using techniques from ML, Information Retrieval (IR), Information Extrac-

tion (IE), connecting them with the algorithms and methods of Knowledge Discovery

in Databases (KDD), Data Mining (DM), and statistics” (Hotho, Nürnberger, & PaaSS,

2005). TM is like DM but unlike DM, the artefact explored for interesting patterns is

not formalized database records but semi-structured or unstructured textual data in

documents. The main logic behind the technologies used in TM is that text is turned

into some form of structured numerical representation so that ML algorithms can be

13
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applied to large document databases.

Section 2.1 will present a high level overview of machine learning with pointers

to where further information can be sourced. This will be followed by a similar in-

troduction to TM in Section 2.2. An introduction to some model assessment metrics

particularly relevant to this project is presented in Section 2.3 followed by perform-

ance improvement discussions in Section 2.4. The chapter concluded with a summary

in Section 2.5.

2.1 Machine learning overview

Learning can be in or through many forms. It can be through the acquisition of

new knowledge or cognitive skills, effective representation of new knowledge or

new fact discovery through observation and experimentation (Carbonell, Michal-

ski, & Mitchell, 1983; Michalski, Carbonell, & Mitchell, 2013). An indication that

learning has taken place is the ability to remember, adapt and generalise to similar

situations at a future instance (Marsland, 2015). Given this premise, ML can thus be

described as being concerned with learning from data by machines basing their fu-

ture decisions on previous encounters of similar situations (Marsland, 2015; Murphy,

2012).

There are three major approaches to ML, supervised, unsupervised and reinforce-

ment learnings. Neither this project nor any of the studies reviewed in this thesis

touched on reinforcement learning, therefore, only the supervised and unsupervised

approaches will be described further in the following sections.

Reinforcement learning has found more use in dynamically interactive environ-

ments (Hafner & Riedmiller, 2011; Kaelbling, Littman, & Moore, 1996; Kober, Bag-

nell, & Peters, 2013). It involves mapping of input to a set of output like the super-

vised learning (as will be presented in Section 2.1.1) but unlike supervised learning

it is not aided by a list of output to learn from since in its case there is often too many

possibilities than could be exhausted and often not known ahead. Also, unlike the

unsupervised learning (in Section 2.1.2) it does not learn the underlying distribution

of the data. The task being addressed by studies contained in this work is a basic

binary classification problem which, following from the explanation presented, may

have been considered relatively trivial to apply a reinforcement learning algorithm.

Also, in reinforcement learning, there is a delayed feedback indicating the goodness

of a series of decisions, however this scenario does not fit the SR/ CS context where

decisions on inclusion/exclusion criteria are independent and based in principle on a

priori set criteria; reinforcement learning could therefore be considered applicable if

the inclusion/exclusion criteria would not be pre-set and the aim would be to learn

these as well. However, this is not appropriate in the context of SR. These reasons

(and may be more) might account for why the reinforcement learning approach was
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not found used in any of the work evaluated.

A possibly fourth type of learning approach is referred to as semi-supervised learn-

ing. Semi-supervised learning is a combination of both the supervised and unsuper-

vised learning. The model is trained with a limited number of input-output mappings

and it use the knowledge to project the output class of the rest of the data (Zhu, 2006;

Hady & Schwenker, 2013).

2.1.1 Supervised learning

Supervised learning is the process of creating a classifier that learns a set of rules

from provided instances to generalize to new ones (S. B. Kotsiantis, Zaharakis, &

Pintelas, 2007). In the process, a general inductive process, called the learner is fed

with some training set of documents D that have been labelled according to their

pre-defined classes C. The goal is to learn a mapping from input d to target output c

given the input-output pairs (Equation 2.1) (Murphy, 2012).

Φ = {(di, cj)}Ni=j;DXC → {T, F} (2.1)

The learner will generate a model (classifier) based on its observed characterisation

of the constituents of the different categories. Then, the classifier can be used to

determine the class of previously unseen documents based on the provided categor-

ies. In its simplest setting, each training input di is a n-dimensional vector of number

representations of the features. When cj is categorical, the learning problem is called

classification and it is called regression when the target output is real-valued.

The Support Vector Machine (SVM) is an example of a supervised ML technique

and as will be shown in Section 3.4.2, it is the most used algorithm among the

studies on automatic CS. A SVM is a supervised learning technique applicable to

both classification and regression. It is based on the structural risk minimization

theory introduced by Cortes and Vapnik (1995). In its simplest (linear) form, it

is a binary classification model that seeks an optimal separation margin (optimal

separating hyperplane) between the positive and negative examples (see Figure 2.1),

where margin refers to the minimal distance from the separating hyperplane to the

closest data points (Hearst, Dumais, Osuna, Platt, & Scholkopf, 1998; S. B. Kotsiantis

et al., 2007; Murphy, 2012).

Given a training set of input-output pair (xi, yi), i = 1, · · · , l where xi ∈ Rn and

yi ∈ {1,−1}, the SVM requires the solution of the optimisation problem in Equa-

tion 2.2 (Cortes & Vapnik, 1995).

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (2.2)
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Figure 2.1: Illustration of SVM classification for linearly separable data

subject to (yiw
Txi + b) ≥ 1− ξi, ξi ≥ 0

To classify non-linear data (Figure 2.2), the SVM transforms the input vector

into a very high dimensional feature space using non-linear transformation func-

tions (called the “kernel trick”), where the data points can be separated linearly

(Figure 2.3). In the non-linear case, the solution in Equation 2.2 is solved subject to

(yiw
Tφ(xi)+b) ≥ 1−ξi, ξi ≥ 0. Examples of some popular kernels: linear, polynomial,

radial basis function (rbf) and sigmoid are presented below:

K(Xi ·Xj) =


Xi ·Xj linear

γXi ·Xj + C polynomial

exp(−γ|Xi ·Xj|2) rbf

tanh(γXi ·Xj + C) sigmoid



Figure 2.2: Illustration of SVM classification of non-linearly separable data1
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Figure 2.3: SVM projection of non-linear data with kernel trick

The SVM’s decision is based only on data points closest to the margin called Sup-

port Vector (SV)s (A. Khan, Baharudin, Lee, & Khan, 2010; S. B. Kotsiantis et al.,

2007). The SVM have some other parameters apart from the kernel whose values

must be tuned to obtain optimal performance from the algorithm. Key of these para-

meters are the ‘C’ and gamma parameters.

‘C’ is a regularisation parameter which maintains the trade-off between achieving

a low error on the training data and minimising the norm of the weights - better

generalisation. As the value of ‘C’ increases the complexity of the model increases

which may lead the model to over-fitting its data. Given the objective function in

Equation 2.2, if ‘C’ is too large, the optimisation algorithm will try to reduce |w| as

much as possible leading to a hyperplane which tries to classify each training data

correctly (Alvarsson et al., 2014). This process will lead to the algorithm overfitting.

On the other hand, if the value of ‘C’ is too small, the objective function will take

the affinity to increase it a lot which will result in a large training error and by

implication, underfitting (Cherkassky & Ma, 2004a; Alvarsson et al., 2014).

The gamma parameter defines the extent of the reach of influence of a single

training data where ‘low’ values signifies ‘far’ and ‘high’ value signifies ‘close’. Gamma

can be seen as the inverse of the radius of the data samples selected as SVs (Alvarsson

et al., 2014). This means if the radius is too large, the region of influence of the SV

only includes the SV itself and regularisation with ‘C’ cannot prevent overfitting that

results. When the gamma is very small, the region of influence of any selected SV

covers the whole training data (Cherkassky & Ma, 2004a).

Following from the above discussion, it is clear that setting ‘C’ and gamma to

optimal values is key to the performance of the SVM algorithm. Some of the studies

reported in other parts of this thesis (Sections 4.2.1.4,5.4.6 and 6.3.2) explore the

use of SVM models in text classification.

1Source: http://www.statsoft.com/Textbook/Support-Vector-Machines

17

http://www.statsoft.com/Textbook/Support-Vector-Machines


Chapter Two – Theoretical Preliminaries

2.1.2 Unsupervised learning

Clustering is a prime example of unsupervised learning. In unsupervised learning, the

learner is provided with no predefined classes (C), only the input documents (D).

The goal is for the learner to explore characteristics of the instances and discover

“interesting patterns” that it will use to partition the instances into a finite number

of clusters (K) ensuring that members of a cluster share more similarities than those

of other clusters in the data (Fahad et al., 2014; Verma, Srivastava, Chack, Diswar, &

Gupta, 2012). According to Murphy (2012), this usually involves two steps. The first

step involves the estimation of the distribution over the number of clusters, p(K|D)

which is approximated as shown in Equation 2.3.

K∗ = argmax
K

p(K|D) (2.3)

The second step involves the estimation of the cluster each data point i belongs to as

shown in Equation 2.4.

z∗i = argmax
k

p(zi = k|di,D) (2.4)

where, zi is a latent variable explored by the model and zi ∈ {1, . . . ,K} denotes the

cluster assigned to data point i. There are several types of clustering techniques and

algorithms, the main ones and their examples are reviewed and explained in (Fahad

et al., 2014; Murphy, 2012).

2.2 Text mining: an introduction

The goal of TM is to exploit vast amounts of information from multiple documents

and sources by using automated means to categorise and characterise them into a

fixed number of (pre-defined) categories, where each document d can be in none, one

or more categories (Inzalkar & Sharma, 2015; Joachims, 1998; K. Sharma, Sharma,

Joshi, Vyas, & Bapna, 2017). The discussion on TM in this thesis will focus more

on text classification. The text classification process involves text retrieval, prepro-

cessing, dimensionality reduction, model training (or development) and assessment.

These steps are depicted in Figure 2.4 and discussed in more detail in the following

sections.

2.2.1 Data retrieval

In this age of big data, the data required for a TM task are often located in some

remote locations or may need to be retrieved from multiple sources e.g. websites.

Therefore, it is important to capture the source(s), nature and portion of the data and

the method used to retrieve them. The data may be stored in a database which will
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Figure 2.4: Text mining process

then require a retrieval method as simple as a Structured Query Language (SQL) or

located in multiple websites where the retrieval method will involve writing scripts to

automatically scrape the websites and extract targeted information from them. The

dataset may also be stored in an original format (e.g. json or eXtended Markup Lan-

guage (XML)) that may require writing of scripts to reformat and/or extract portions

of interest. In essence, the description of the data structure, storage and retrieval

method is always a good practice and essential to the TM process.

2.2.2 Preprocessing

Texts cannot be handled by the ML algorithms, thus they need to be converted into a

numerical format that can be processed and managed by algorithms. After retrieval,

the different words in all the documents of interest are separated into individual

words (tokenization) and collated in a single entity, a feature vector called Bag-of-

Words (BOW) (Lebanon, Mao, & Dillon, 2007). The BOW approach did not take

the semantic context of each word into consideration. Other Natural Language Pro-

cessing (NLP) approaches utilising the semantic context of each word exist but will

not be explored in this report. The preprocessing step involves tokenization, stop-

words removal and stemming or any other chosen NLP activities. The advantage

of undertaking preprocessing in text classification was reported in (Uysal & Gunal,

2014). These tasks are further discussed in the following sections.

2.2.2.1 Tokenization

Tokenization refers to the process of cleaning, extracting and separating individual

(unique) words in all the documents and storing them (usually) as independent
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terms (Miner, Elder IV, & Hill, 2012).

2.2.2.2 Stopwords removal

Another task sometimes undertaken in pre-processing is the removal of commonly

appearing ‘non-informative, non-content’ words in categories of prepositions, aux-

iliary verbs, articles, conjunctions, special characters and numbers. An example of

these stopwords is given in (Fox, 1989). These words are considered to convey no

particular meaning or are not useful to discriminate between documents. The effect

of removing them has been evaluated (Srividhya & Anitha, 2010). This has become

a common practice in TM studies.

2.2.2.3 Stemming

Stemming is a language normalization step in text preprocessing (Miner et al., 2012).

A stemming algorithm removes inflection (suffix, prefix, or any other transformation)

from the different words and reduces each to its original root. This is to create

uniformity among similar words and reduce unnecessary duplicity. For example,

words like “going and gone” will both be reduced to “go”. It should be noted, that

despite being useful, this method has a downside of merging two or more words

with the same sound (homonyms) and spelling (homographs) but different meanings

and root as being the same e.g. book (noun), book (verb) and booking (present

participle of verb book), bookings (noun) four words of three categorical meaning

will all be reduced to “book”. The most widely used stemming algorithm is the

“porter stemming algorithm” (Porter, 1980).

2.2.3 Feature representation

After the text has been preprocessed, it is then encoded or weighted in numerical

form and stored in a data structure (feature vector) ready for the learning algorithm.

This step is called feature representation. The feature vector relies on the Vector

Space Model (VSM), an algebraic model for representing text documents. In VSM,

each document is mapped against the words that it contains using frequency based

schemes like term frequency (tf) or term frequency-inverse document frequency (tf-

idf). Given a document D, it can be represented with a vector as expressed in Equa-

tion 2.5,

D = (di1, d12, · · · , din); dij =⇒ weight of the jth term (2.5)

These representations are combined in a high dimensional term-document matrix

know as the Bag-of-Words (BOW). The BOW is the most commonly used vector to

represent a corpus prior to classification or clustering. The BOW is an orderless rep-

resentation of a document as the multi-set of its constituent words without regard for
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grammar but reflecting the importance of the word to the document (Korde & Ma-

hender, 2012). Some of the most commonly used feature representation techniques

(binary, term frequency (tf) and the term frequency-inverse document frequency (tf-

idf)) are briefly introduced below. For more details on feature representation or term

weighting and the different approaches and types, see (Ikonomakis, Kotsiantis, &

Tampakas, 2005; Sebastiani, 2002; Leopold & Kindermann, 2002).

2.2.3.1 Binary feature

The presence of a feature f in a document is denoted by a ‘1’ and its absence signified

by a ‘0’ in the term-document matrix irrespective of the number of times it occurred.

Given a document d, the binary representation of a feature f can be expressed as in

Equation 2.6 below:

h(f) =

1, if f ∈ d

0 otherwise
(2.6)

2.2.3.2 Term frequency

This is the representation of a term in a document by the number of occurrences of

such terms in the document. This can be expressed as shown in Equation 2.7:

tf(fi, dj) =
freqij

maxkfreqkj
(2.7)

2.2.3.3 Term frequency-inverse document frequency

The frequency representation is sometimes normalized and one of the often used

count normalization techniques to represent features is the tf-idf. tf-idf is expressed

as the relative frequency of a term or feature f in a specific document d normalised

by the inverse proportion of the feature over the entire document D product of the

tf and the feature’s inverse document frequency. The inverse document frequency

(idf) is obtained by taking the logarithm of the corpus size divided by the number of

documents containing the word. Given a document collection D, a feature f , and an

individual document d ∈ D, the tf-idf of f relative to d can be calculated as shown in

Equation 2.8 (Robertson, 2004; Salton & Buckley, 1988):

fd = freqf,d ∗ log(
|D|

freqf,d
) (2.8)

2.2.3.4 Word2vec

The word2vec is a predictive model for learning word embedding from raw text pro-

posed by Mikolov, Sutskever, Chen, Corrado, and Dean (2013). The model works
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by first creating a vocabulary from the training text data and then learning the vec-

tor representation of words incorporating an understanding of when and how often

words are used together in the representation (Mikolov, Sutskever, et al., 2013; Miko-

lov, Chen, Corrado, & Dean, 2013). It learns by creating a shallow neural network

architecture called the skip-gram model. The skip-gram model consists of an input

layer, a projection layer and an output layer to learn and predict nearby features.

The individual feature vector is trained to maximize the log probability of neigh-

bouring features in a corpus as expressed in Equation 2.9 (Kusner, Sun, Kolkin, &

Weinberger, 2015; Mikolov, Chen, et al., 2013), i.e., given a sequence of features

f1, · · · , fT ,
1

T

T∑
t=1

∑
j∈nb(t)

log p(fj|ft) (2.9)

where nb(t) is the set of neighbouring features of feature ft and p(fj|ft) is hierarchical

softmax of the associated feature vectors vfj and vft (see (Mikolov, Chen, et al., 2013;

Mikolov, Sutskever, et al., 2013) for more details). Average words word2vec is used

to represent features in the study reported in Chapter 5 (Section 5.4) and Chapter 6

(Section 6.3). The average word2vec incorporates the average of each word over the

given corpus.

2.2.4 Dimensionality reduction

The dimension of the feature vector is the number of documents in a corpus by the

number of unique terms in the corpus. It is not uncommon in text classification for

the size of this vector to run into orders of tens of thousands; a size of this magnitude

usually affects the performance, accuracy and processing power requirements of the

text classifier. This phenomenon is referred to as the curse of dimensionality. There-

fore, it is common practice to first reduce the dimension of the vector. Dimensionality

reduction involves the application of statistical manipulation activities to reduce the

vector size to a minimally manageable dimension by determining the set of terms

considered to be most descriptive of each document and at the same time discrim-

inative of others. The reduction process is achieved through feature selection and

feature extraction. These two approaches are further discussed below.

2.2.4.1 Feature selection

Feature selection is a term commonly used in data mining to describe the tools and

techniques available for reducing inputs to a manageable size for processing and

analysis. The aim of feature (term) selection techniques is to reduce the size of

the feature vector by removing the irrelevant features i.e. create a subset of the

original feature space with only the features deemed to have strongest predictive
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power (Ikonomakis et al., 2005; Refaeilzadeh, Tang, & Liu, 2009). This is achieved

by setting arbitrarily, the number of top features to select e.g. top 5%, ranked accord-

ing to scores from the methods. According to Sebastiani (2002), the process seeks a

set τ from the original set T of terms (|τ | � |T |) that results in the best performance

when used for term weighting. The most common feature selection algorithms are:

tf, Chi-square (χ2) statistic, information gain, and mutual information. These meth-

ods are discussed to the point and compared in (Forman, 2003; Y. Yang & Pedersen,

1997).

i) The χ2 statistic can be expressed as in Equation 2.10:

χ2(f, c) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+ B)× (C +D)
(2.10)

based on a two-way contingency table of feature f and class c where,

A is the number of co-occurrence instances of f and c,

B is the number of times f occurs without c,

C is the number of times c occurs without f,

D is the number of times neither f nor c co-occur, and

N is the total number of documents (Y. Yang & Pedersen, 1997). In feature

selection, the χ2 statistic is used to rank features in order of importance and

not used to make statements about dependence or independence of variables.

Therefore, the α value as used in TM feature selection corresponds to the value

of the top percentile of the ranked features to retain as training data. An al-

ternative choice found in the χ2 implementation for feature selection is the

actual number of top features to retain as against percentile. Throughout this

research, α value refers to the top percentile of features to retain based on the

result of the χ2 feature ranking technique.

ii) Mutual information is a measure used in statistical language modelling of words

associations and related applications (Y. Yang & Pedersen, 1997). Mutual in-

formation is mathematically expressed in Equation 2.11:

I(f, c) = log
Pr(f ∧ c)

Pr(f)× Pr(c)
(2.11)

which is estimated with,

I(f, c) ≈ log
A×N

(A+ C)× (A+ B)

In the information-theoretic sense, Mutual information measures how much

information a feature contains about a class. A measure of 0 indicates that the
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distribution of a feature given a class is no better than the feature’s distribution

in the whole document while the measure reaches its maximum if the feature

is a perfect indicator of the class.

iii) Information gain is used in ML as a measure of feature goodness. It utilised the

knowledge of the presence or absence of a feature in a document to measure

the amount of bits obtained for classification prediction. When a feature is

considered in isolation, the information gain results to a 0 value but when

considered with other features a predictive values is produced. The closer to 1

this value is, the better the feature is at helping a model make a good prediction

based on the classes.

Given a target output classes {ci}mi=1, the information gain can be expressed

generally as shown in Equation 2.12:

IG(f) = −
m∑
i=1

Pr(ci) logPr(ci)

+ Pr(f)
m∑
i=1

Pr(ci|f) logPr(ci|f)

+ Pr(f)
m∑
i=1

Pr(ci |̄f) logPr(ci |̄f)

(2.12)

where,

Pr implies the probability of its expression, and f̄ implies the situation where a feature

was not found.

The mutual information, information gain and the χ2 algorithms for feature se-

lection belong to the class of evaluation criteria used by a feature selection approach

called the ‘filter method’ (Jain & Singh, 2018). In the filter method for feature se-

lection, the selection is done independent of the implementation of any learning al-

gorithm. The method rank features based on certain evaluation criteria e.g. mutual

information, χ2 and many more (J. Tang, Alelyani, & Liu, 2014; Aggarwal, 2014).

The evaluation algorithms for the filter approach are deemed fast and efficient and

are so preferred on voluminous data. However, because they are executed independ-

ent of the learning algorithm, they tend to miss interaction among classifiers and

dependency of one feature over another and may lead to their failure to chose the

most ‘useful’ features (Ang, Mirzal, Haron, & Hamed, 2016).

2.2.4.2 Feature extraction

Similar to feature selection, feature extraction techniques are also used to reduce the

size of feature vectors but unlike feature selection, it does not perform ranking nor

use any weighting method but creates a more compact (new) feature set rather than
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removing the low-information features (Miner et al., 2012). The Principal Compon-

ent Analysis (PCA) and Latent Semantic Indexing (LSI) are two of the well-known

functions for performing feature extraction (Meng, Lin, & Yu, 2011; Uuz, 2011).

These two are briefly introduced below:

i) The PCA is a widely used dimensionality reduction method in ML. It provides a

guideline for how to reduce a complex high dimensional dataset to one of lower

dimensionality to reveal any hidden, simplified structures that may underlie

it (Jolliffe, 2002; Abdi & Williams, 2010; Murphy, 2012). PCA determines

the eigenvectors and eigenvalues of a matrix to project a dataset to a new

coordinate system (Jolliffe, 2002). The projection involves calculation of a

covariance matrix of a dataset to minimize the redundancy and maximize the

variance (Murphy, 2012; Fodor, 2002; Abdi & Williams, 2010). Given a dataset,

the covariance of X and Y is given as in Equation 2.13:

cov(X,Y ) =
N∑
i=1

(xi − x̄)(yi − ȳ)

N
(2.13)

where, x̄ and ȳ are means of X and Y respectively and N , the dimension of

the dataset. The covariance matrix is a matrix A with elements Ai,j = cov(i, j).

In order to map a high-dimensional dataset to a lower dimensional space, the

best low-dimensional space that minimizes the error between the dataset and

the PCA is determined by the eigenvectors of the covariance matrix using the

criterion in Equation 2.14: ∑K
i=1 λi∑N
i=1 λi

> θ (2.14)

where, θ is a predetermined threshold value, K is the selected dimension from

the original matrix of dimension N and λ is an eigenvalue (Fodor, 2002). A

common method for finding the eigenvalues and eigenvectors is the Singular

Value Decomposition (SVD). SVD is based on a linear algebra theorem which

states that a rectangular matrix A can be broken into the product of three

matrices:

a) an orthogonal matrix U ,

b) a diagonal matrix S, and

c) the transpose of an orthogonal matrix V .

The general approach for computing SVD is:

A = USV T (2.15)
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where,

A ∈ R(m×n) with (m ≥ n),

U ∈ R(m×m),

V ∈ R(n×n),

and S is a diagonal matrix of size R(m×n) and UTU = I, V TV = I; the columns

of U are orthogonal eigenvectors of AAT , the columns of V are orthonormal

eigenvectors of ATA, and S is a diagonal matrix containing the square roots

of eigenvalues from U or V in descending order (Murphy, 2012; Kumar &

Chandrasekhar, 2012).

ii) LSI is another method that relies on SVD but operates on the term-document

matrix. It provides dimensions with semantic relation where features in the

same dimension are usually topically related (Miner et al., 2012; Deerwester,

Dumais, Furnas, Landauer, & Harshman, 1990; Dumais, Furnas, Landauer,

Deerwester, & Harshman, 1988). LSI is a mathematical approach using SVD to

estimate the latent semantic structure that is possibly obscured by variability in

word usage. It extracts and represents the contextual meaning of words based

on usage by statistical computations applied to a large corpus of text. The logic

behind LSI is that the context in which words appear or not offer a set of mu-

tual constraints that largely determines the similarity of meaning of words and

sets of words to each other. The LSI relies on transformation like the PCA, so

the results are not just simple contiguity frequencies, co-occurrence counts, or

correlations in usage, but depend on a powerful mathematical analysis that is

capable of correctly inferring much deeper (latent) relations between features.

Though, the LSI makes no use of word order or morphology, it still manages to

extract correct reflections of passage and word meanings quite well.

2.2.5 Model training

After the feature selection or feature extraction process, the next step is to train one

or more classifiers using any ML algorithm of choice. A typical training during text

classification commence with the division of the dataset into three (or two) portions.

One portion usually larger than the rest is used to train the model, a second optional

portion is used for intermediate assessment (validation) of the model while a third

hold out portion is used for final assessment of the trained model (S. B. Kotsiantis,

Zaharakis, & Pintelas, 2006). Where the data size is relatively small, it is divided into

only two portions.

The choice of the classification algorithm to use is critical and always not definite

from inception of the model training process. Therefore, a common practice is to

undergo a model selection phase.
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Table 2.1: Confusion matrix

predicted

actual
Positive Negative

positive true positive (TP) false negative (FP)

negative false positive (FN) true negative (TN)

In model selection, since the underlying relationship pattern among features is

unknown, the idea is to let the data chose the model that best represents it. The

practice is to start out with several learning algorithms or same algorithm run against

a grid search of different parameter setting (Browne, 2000); each possible combina-

tion of parameters is then trained on the training set, after the training, the trained

model is tested on the validation set after which the best performing one(s) is/are

chosen to be tested on the hold out set (discussion on model selection is continued

in Section 5.2). This process often involves combining the grid search with Cross

Validation (CV) (more discussion on CV is presented in Section 2.4).

2.3 Model assessment

Following a successful training of a model of choice, it is tested for how it can perform

generally on input it has never encountered. The test portion (or hold out set) of the

input is used for this exercise. The input is fed into the model and the model output

is compared to the expected output based on pre-knowledge of the document classes.

The most basic metrics used to estimate classifier performance from which all others

are mostly derived are:

i) True Positive (TP): This is expressed as the of the count of positive class (relev-

ant) documents that are so classified by a model.

ii) True Negative (TN): The number of negative class (irrelevant) documents cor-

rectly classified as negative by a model.

iii) False Positive (FP): The number of negative documents that were wrongly clas-

sified as positive documents by a model.

iv) False Negative (FN): The number of positive documents misclassified as negat-

ive

These four measures are often presented in a grid form called the confusion matrix

as shown in Table 2.1. There are numerous other metrics for assessing the per-

formance of the TM model, a few of them relevant to the studies presented in this

thesis are presented as follows - recall (Equation 2.16), precision (Equation 2.17),

accuracy (Equation 2.18), F1 (Equation 2.19), Work Saved over Sampling (WSS)

(Equation 2.20) and Matthews Correlation Coefficient (MCC) (Equation 2.22).
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i) Recall: Recall is the fraction of correctly classified positive examples by the total

positive examples in the whole corpus.

recall =
TP

TP + FN
(2.16)

ii) Precision: Precision is the ratio of actual positive examples and the total positive

prediction.

precision =
TP

TP + FP
(2.17)

iii) Accuracy: Accuracy is the fraction of the total correct negative and correct

positive prediction by corpus size.

accuracy =
TP + TN

TP + FP + TN + FN
(2.18)

iv) F1: F1 score is the weighted harmonic mean of the recall and the precision.

F1 = 2.
precision.recall

precision+ recall
(2.19)

The closer to 1 the value of these measures - recall, precision, accuracy and the

F-measure - the better the performance of the model being measured.

v) WSS: given a certain recall level (rl), the WSS is the percentage of the articles

initially returned by the literature search which the researcher would not have

to read because they have been screened out by the model (A. M. Cohen, Hersh,

Peterson, & Yen, 2006). A WSS score of 0 or less at a particular recall level in-

dicates that the model would not be saving any work in relation to the number

of citations to be screened beyond a random choice. This measure is though

more suitable to a ranking algorithm (Howard et al., 2016).

WSS@rl =
(TN + FN)

N
− 1 +

TP

TP + FN
(2.20)

based on Equation 2.16, equation 2.20 can be alternatively expressed as:

WSS@rl =
(TN + FN)

N
− 1 + recall (2.21)

where rl refers to the recall level for which the measure is taken.

vi) MCC: MCC is a measure of the quality of the classifications of a binary classific-
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ation model (Matthews, 1975). Its value ranges from:

mcc(f) =


+1, perfect prediction

0, prediction not better than a random guess

−1, strong disagreement between the true data and the prediction

and can be expressed as shown in Equation 2.22.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.22)

Details on some of these and other model assessment metrics can be found in (Jap-

kowicz & Shah, 2011; Murphy, 2012; Japkowicz, 2013; Menardi & Torelli, 2014).

These metrics are used across the studies presented in this thesis (refer to Sections 5.5

and 6.4.4.1).

There is hardly any of the measures without its own weakness or bias. Consid-

ering the values in Tables 2.2(a) and 2.2(c), the result of precision and recall for

Tables 2.2(a) and 2.2(c) is equal. Though, they both exhibit similar positive recogni-

tion potential but the difference in the negative recognition potential (strong to nil)

was not reflected in both measures; accuracy will reflect this type of difference. Given

the values presented in Tables 2.2(a) and 2.2(b), accuracy will be 60%, however, the

performance distribution in both table differ. Table 2.2(a) is weak at detecting pos-

itive examples but strong at negative examples while Table 2.2(b) is vice versa. The

accuracy measure was in no way reflective of actual performance strength of the clas-

sifier behaviour in this case. Accuracy is not robust to classifier performance in a class

imbalance situation, given a dataset of about 95% negative example, a classifier that

indicates every sample as negative will have accuracy of 95% whereas a classifier

that is more critical will have a less accuracy value.

The MCC uses a correlation approach utilising all the four basic metric and may of-

ten produce a much more balanced evaluation of the prediction. However, in cases

where where there is no or very few FPs with few TPs at the same time, the MCC

may be relatively high (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000).

2.4 Performance reliability and improvement

In this section, two concepts - CV and ensemble methods are discussed. CV is a prac-

tice conducted to capture a model’s more reliable performance while the ensemble

method is employed to in most cases improve classification results by combining the

decision of multiple classifiers on the same data. These two concepts are further

introduced in following subsections.
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Table 2.2: Confusion matrix to illustrate metrics’ pros and cons

(a)

predicted

actual
Positive Negative

positive 2000 1000

negative 3000 4000

(b)

predicted

actual
Positive Negative

positive 4000 3000

negative 1000 2000

(c)

predicted

actual
Positive Negative

positive 2000 1000

negative 3000 0

2.4.1 Cross validation

Some level of assurance about the reliability of the future performance of a trained

model is important to practitioners. Therefore, to minimize the model prediction

error range and obtain a performance more representative of a model’s ability, the

process of CV is often employed. In CV, the whole input data is divided into equal

sized mutually exclusive subsets in such a way that all samples will at some point

act as training data and at other time as test data. Ensuring the learning algorithm’s

parameters are kept constant, multiple models are developed from different portions

of the dataset and tested each time on a different portion. The performance metrics

are recorded on each fold’s run and the average at the end is taken as the mean per-

formance of the model given the dataset (S. B. Kotsiantis et al., 2006; Schaffer, 1993;

Browne, 2000). Following are the possible ways of conducting cross validation:

i) k-fold CV: In a k-fold CV, the entire dataset is divided into k equal partitions

(called folds). Then, there will be k run of the training and testing process,

on each run, the model will be trained on k − 1 fold and tested on the kth

fold excluded from training (Refaeilzadeh et al., 2009). Different fold is se-

lected at on each run until all folds are exhausted. Figure 2.3 illustrates this

approach using a 5-fold CV. The fact that every data sample will be utilized as

a training and test data is seen as an advantage of k-fold CV. Also, the possible

error of mis-splitting or biased splitting of the dataset into test and train sets is

avoided (Witten, Frank, Hall, & Pal, 2016). k can be any number but the most

commonly used number is 10.

ii) Leave one out CV (LOOCV): In LOOCV, the splitting is done according to the
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Table 2.3: 5-fold CV illustration

K fold-1 fold-2 fold-3 fold-4 fold-5

k = 1 test set train set train set train set train set
k = 2 train set test set train set train set train set
k = 3 train set train set test set train set train set
k = 4 train set train set train set test set train set
k = 5 train set train set train set train set test set

number of available data samples. Therefore, with N -data samples, N splitting

is done and N − 1 samples are used for training while the nth sample is used to

test. This is an extreme case of the k-fold CV (Refaeilzadeh et al., 2009).

iii) n × k fold CV: Another popular CV approach is the n × k-fold CV, where k is

the number of folds (as defined for k-fold CV above) and n is the number of

repeated runs. The most popular of this approach is the 5× 2-fold CV.

A more general discussion on CV can be found in (Browne, 2000; Refaeilzadeh et al.,

2009).

The 5× 2 fold CV was used in the study reported in Section 4.2.1.4, the approach

was combined with the 2×5-fold CV in the studies reported in Sections 5.4.6 and 6.3.

2.4.2 Ensemble learning

An ensemble of classifiers is a set of classifiers whose individual decisions are com-

bined in some ways (usually by weighted or unweighted voting) to classify new ex-

amples (Dietterich, 2002; Rokach, 2005). The objective of using ensemble of classi-

fiers is to accomplish better accuracy on the training set and a better generalisation

over unseen data (P. Yang, Hwa Yang, B Zhou, & Y Zomaya, 2010; S. Wang et al.,

2009). Methods of constructing the best ensembles of classifiers is still an active

research area; some of the current general purpose approaches applicable to many

different algorithms are:

i) Bagging: Bootstrap Aggregation is a special case of model averaging approach;

it trains the classifier with different subset of the training examples, drawn ran-

domly with replacement over a certain number of times bootstrap replication.

On each run, a different subset of the training example is used to train a dif-

ferent classifier of the same type (Dietterich, 2002). The classifiers are then

combined through a majority decision. It has been pointed out in studies that

this method can achieve better generalisation by reducing variance (Breiman,

1998).

ii) Boosting: Like the bagging method, boosting also creates an ensemble of classi-

fiers through repeated sampling of the training example. A major difference is
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that boosting strives to provide the most informative training dataset for each

consecutive classifier (Opitz & Maclin, 1999; Freund & Schapire, 1996). Each

iteration of boosting creates three weak classifiers:

a) The first classifier C1 is trained with a random subset of the available

training data.

b) The training data subset for the second classifier C2 is chosen as the most

informative subset, given C1. Specifically, C2 is trained on a training data

only half of which is correctly classified by C1, and the other half is mis-

classified.

c) The third classifier C3 is trained with instances on which C1 and C2 dis-

agree.

The three classifiers are combined through a three-way majority vote.

iii) AdaBoost: Adaptive Boosting is a specific type of the Boosting approach. It ma-

nipulates the training examples to generate multiple hypotheses. It maintains

a set of weights (w) over the training examples which are adjusted on each

iteration l by invoking the learning algorithm to minimize the weighted error

on the training set and returns a hypothesis hl. The weighted error of hl is cal-

culated and applied to update the weights on the training examples (Freund &

Schapire, 1996). The essence of the weight changes is to assign more weight to

the misclassified training examples and less to those correctly classified by hl.

The final classifier

h(x) =
L∑
l=1

wlhl(x) (2.23)

is constructed by a weighted vote of the individual classifiers (Dietterich, 2002).

iv) Voting: Voting is one of the non-trainable combiners used in ensembles of clas-

sifiers. Voting operates on labels only, where dt,j is 1 or 0 depending on whether

classifier t chooses j, or not, respectively (Tax, Van Breukelen, Duin, & Kittler,

2000; Xu, Krzyzak, & Suen, 1992). The ensemble then chooses class J that

receives the largest total vote based on:

a) Majority (plurality) voting -
T∑
t=1

dt,J(x) = max
j=1,··· ,c

T∑
t=1

dt,J

b) Weighted majority voting -
T∑
t=1

wtdt,J(x) = max
j=1,··· ,c

T∑
t=1

dt,J
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2.5 Summary

The theoretical background that puts the methods and techniques used in the studies

reported in this thesis in context is presented in this chapter. The chapter presented a

brief introduction to supervised and unsupervised ML approaches. This was followed

by an introduction to TM and a description of steps of a typical TM process. A

discussion on CV as a means to reduce error in classification performance results and

ensure reliability in future prediction was presented with a discussion on ensemble

learning as a means to improve the classifiers’ performances through a combination

of multiple classifiers’ results.

The concepts and techniques presented in this chapter contributed to the studies

reported in different parts of this thesis. Specifically, the SVM was used for classi-

fication throughout; the CV approach and the tf-idf, word2vec, and binary feature

representations with the χ2 method were used in Sections 4.2.1, 5.4 and 6.3. These

techniques with ensemble voting technique contribute to the techniques implemen-

ted in the tool presented in Chapter 7.
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CHAPTER 3

Literature Review

A general overview of ML and TM was presented in Chapter 2. In this chapter,

the body of literatures related to this research will be reviewed where the

field’s usage of most of the subject presented in Chapter 2 will come up. The review

takes the form of a mapping study to analyse methods that have been used, how

they have been used and the information provided on their usage. The findings of

the study presented in this chapter provided the basis for the follow-up studies in the

research.

The motivation of this thesis was presented in Section 1.1.5. Particularly, the need

for transparency in studies on automatic CS in SRs using TM related techniques is

discussed. A mapping study of the literature is presented in this chapter. The aim

of the study is to analyse the methods being used and how much information and

justification is provided on (the choice of) each of the methods. This covers finding

out if:

i) the parameters for the techniques are set in an informed way;

ii) the methods are applied in a statistically valid way - considering data size and

method complexity;

iii) the methods are applied in a transparent way to enable independent reprodu-

cibility.

Two key discoveries from this study are: a dearth of essential information re-

garding the choice and use of the TM methods; and an absence of reproduction or

replication among the studies. Consequently, the need to investigate the provided

information as a source to determine the quality of the models and its usefulness on

the reproducibility of the studies.
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3.1 Introduction

As pointed out in section 1.1.2, EBSE is anchored on SRs. SRs are useful research

tools that seek to locate, collate, analyse and present evidence relating to a specific

topic of interest using a rigorous and unbiased approach (Kitchenham et al., 2015). It

begins with the development of a review protocol a priori laid down plan on how the

review process will be conducted, candidate studies judged and research questions

to be answered by the review outcome. This is followed by other stages of the review

process terminating with the reporting of the outcome (see Figure 1.1)

A mapping study provides an overview (often visual) of the research that has been

conducted and their results (Petersen et al., 2008), rather than perform an in-depth

evaluation of the research to answer certain research questions. Mapping studies in-

volve similar processes from protocol development, literature search, citation screen-

ing through to reporting (refer to Section 1.1.3), as SRs but because mapping studies

are more concerned about providing a structural classification and thematic analysis

of the research types and their results rather than evidence synthesis, the quality as-

sessment stage is excluded. Three key differences that exists between a SR and a

mapping study are presented below:

i) The primary studies are not evaluated for quality in a mapping study as the

goal is not to establish the state of evidence. Therefore, it does not include the

research quality assessment step (Petersen et al., 2008; Kitchenham & Charters,

2007).

ii) The mapping study may include more articles than the SR since the articles

are not studied as deep as it would have been in a SR (Petersen et al., 2008;

Kitchenham & Charters, 2007).

iii) Thematic analysis is a method of choice in a mapping study while meta analysis

is favoured in SR (Petersen et al., 2008; Kitchenham & Charters, 2007).

The research reported in this chapter was the first to investigate the technical in-

formation provided regarding the models being proposed in different studies and the

demonstration of awareness on the limitations of the algorithms adopted given the

different data sizes. The research focused specifically on the models proposed for

automatic CS using TM techniques.

This study and eventually other experiments in this project will consider research

and datasets covering both the medical and SE research on the automation of CS in

SRs. The following are the reasons for this choice:

i) These two fields not only have the SR in common as an element of their evid-

ence based research but are also the most active in the quest for automation

using TM techniques.

36



Chapter Three – Literature Review

ii) The medical evidence-based research has more labelled data that can be use-

ful for the exploration and development of predictive models needed in the

automation research.

iii) The CS process in both fields is the same, at least as far as the initial abstract-

title screening is concerned (see Section 1.1.3). Therefore, a predictive tool

should be able to learn from its data irrespective of the source of its input

source; hence, it should be able to work across the disciplines.

iv) More work has been undertaken in the medical field on this subject than SE.

A SR study (O’Mara-Eves et al., 2015) was published a few months before the

mapping study commenced, therefore, the literature search phase was substituted

with the adoption of studies included in the SR. The SR (O’Mara-Eves et al., 2015),

focussed only on non-technical aspects of the TM techniques used in its selected stud-

ies. The mapping study on the other hand focussed on the availability of information

related to the TM methods being used, including the description and explanation of

the methods, process of setting the parameters, assessment of the appropriateness

of their application given the size and dimensionality of the data used, performance

on training, testing and validation data sets, and level of reproduction or replication

among the studies. 35 out of the 44 papers from the SR were finally included for

the mapping study. In order to ensure that all relevant publications following the

mapping study were covered, a supplementary review of related literature published

since the mapping study was performed to ensure full coverage of relevant literat-

ures.

The study reported in this chapter have been published in the 20th International

Conference on Evaluation and Assessment in Software Engineering (Olorisade et al.,

2016).

3.2 Automation of the SR process

Automation of the individual stages or the whole process of the SR has continue

to attract the attention of researchers. Within software engineering, Marshall and

Brereton (2013), Marshall, Brereton, and Kitchenham (2014) undertook research

to investigate tools to support SR. There are research also undertaken to automate

specific stages in both healthcare and SE domains. A research on automatic study

identification and retrieval was published by Ghafari, Saleh, and Ebrahimi (2012).

Studies on automatic CS were reviewed by O’Mara-Eves et al. (2015), Tsafnat et

al. (2014) while 26 studies on automatic data extraction were reviewed by Jon-

nalagadda, Goyal, and Huffman (2015).
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3.2.1 Complete SR process automation

SLuRp, is a web based tool designed for the management of all types of data in-

volved in the SR process (Bowes, Hall, & Beecham, 2012). It was developed to

‘semi-automatically’ search and retrieve studies from limited databases, capture data

relating to the review being carried out, inclusion/exclusion criteria, reasons for ac-

ceptance/rejection, disagreement reconciliation and storage of full copies of included

papers. Another tool with similar functionality is SLR-Tool (Fernández-Sáez, Bocco,

& Romero, 2010). The tool uses TM techniques to enhance decision making. SLR-

Tool can store papers in pdf, communicate with bibliography management software

and can also collect and import data to Excel among other functions (Fernández-Sáez

et al., 2010). StArt, is a tool reported in the literature for managing all phases of the

SR except literature search however, it can read citations in ‘BibTex’ format. It can

rank papers and record information and decisions regarding each paper at different

phases of the review process (Hernandes, Zamboni, Fabbri, & Thommazo, 2012).

Another addition to these tools is SESRA, a web based SR management tool (Molléri

& Benitti, 2015).

Based on information provided in the papers, the major tasks of the SR supported

- limited or fully - by each of the tools are presented in Table 3.1. The ‘•’ sign indicates

supported feature, indicates otherwise. A more detailed comparative analysis of the

features offered by these tools can be found in (Marshall et al., 2014).

Table 3.1: Systematic review phase managed by the tools

SR Stage SLuRp StArt SLR–Tool SESRA

Protocol development • •
Study identification • • •
Study selection • • • •
Study evaluation • • • •
Data extraction • • • •
Data synthesis • • • •
Reporting • • •

3.2.2 Specific stages automation

A number of studies in recent reviews on methods for SR automation have indicated

that there are more studies published on the automation of specific stages of the SR,

most especially, CS and data extraction, than on the entire process (Jonnalagadda

et al., 2015; O’Mara-Eves et al., 2015). Work in this area is now focused beyond

basic - software support development of the SR processes and instead aims to create

intelligent system (using Artificial Intelligence methods) that can make independent

decisions and therefore reduce the human effort required in SR (Jonnalagadda et al.,
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2015; O’Mara-Eves et al., 2015). Study identification, CS and data extraction are the

three stages that are currently being focused upon based on available publications.

Works undertaken on these three stages are discussed below:

i) Study identification: A federated search tool has been developed to automate

searching and retrieval of literature across multiple databases (Ghafari et al.,

2012). Tool developers reported promising result from its use across more

than 10 databases. However, this tool is not publicly available nor has it been

independently evaluated.

ii) Citation screening: This stage has attracted the most attention in terms of an

individual SR stage automation (Marshall & Brereton, 2013). The majority

of the efforts to automate the CS stage are centred on TM techniques; these

are explored in the context of easing the task of selecting the relevant studies

from the results of the study search. Forty-four of these studies were reviewed

and reported in (O’Mara-Eves et al., 2015). The studies focused on a range of

interests, from reducing screening workload to prioritisation of documents for

screening. There is no overarching or widely accepted tool/method yet, but

results are promising.

iii) Data extraction: A recent review by Jonnalagadda et al. identified 26 studies

focused on automation of the data extraction stage in SR (Jonnalagadda et

al., 2015). The majority of the studies reviewed also used machine learning

techniques for automation.

More recently, Khabsa et al. have undertaken a work on the use of the ran-

dom forest technique for automatic CS, their method was embedded in a tool for SR

named Rayyan (Khabsa et al., 2016). Work was also undertaken by Mo, Kontonat-

sios, and Ananiadou (2015) on the use of Latent Dirichlet Allocation (LDA)–based

document representations to support automatic CS, the use of a similar approach

with active learning was reported in (Hashimoto, Kontonatsios, Miwa, & Ananiadou,

2016) and research using the active learning approach were undertaken by Z. Yu

et al. (2016), Timsina, Liu, and El-Gayar (2015). Work proposing the use of a semi-

supervised approach using label propagation was published in (Kontonatsios et al.,

2017). SWIFT-Review is the outcome of work undertaken by Howard et al. (2016).

Work using support vector machine and Unified Medical Language System features

was undertaken by Timsina, Liu, and El-Gayar (2016).

3.3 The mapping study

As mentioned in Section 3.1, largely mapping studies and SRs share common process,

this study was conducted in line with the guidelines proposed by Kitchenham and
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Charters (2007). A protocol was initially developed to guide the study process. The

protocol was reviewed by the project’s supervisory team which had on it a member of

the software engineering and systems research group1 (Prof. Pearl Brereton (OPB)),

a member of the Machine Learning (ML) and computational intelligence research

group 2 (Prof. Peter Andras (PA)) and another member of the software engineering

and systems research group (Dr Ed de Quincey (EDQ)) who was invited only for the

purpose of conducting the mapping study. The research questions are presented in

this section alongside the description of the process followed to conduct the study.

3.3.1 Research questions

The objectives of the study were to investigate transparency and appropriateness of

models proposed for automatically screening of citations during SRs. Transparency

refers to the level of information provided which may be useful to support reprodu-

cibility of the studies; while appropriateness refers to the indication of awareness on

the suitability of the proposed models within the context of the data they were gener-

ated from or their constraints or limitations within the same context. The study was

focused on automatic CS models using TM techniques, models from other techniques

or studies on the automation of other stages of the SR process were not considered.

Three research questions were created to address the objectives of this study:

1. RQA: What information is available on the use and distribution of specific

TM algorithms being proposed to automate CS in SR - How well are the al-

gorithms used described and/or justified in the context of use, what informa-

tion is provided about the data size and to what extent is the effect of data size

on the TM algorithms used taken into account?

2. RQB: What is the proportion of the included (positive example)/excluded (neg-

ative example) documents and how did the classifiers perform during training,

validation and testing given the metrics used?

3. RQC: How comparable are the results of the different studies reviewed?

3.3.2 Search strategy

As previously pointed out in the introduction to this chapter, this study did not involve

any new search for articles rather the included articles from the process of an existing

SR of TM based CS studies (O’Mara-Eves et al., 2015) were adopted. The adoption

of articles from the SR was considered appropriate because it was recent at the time

of conducting the mapping study and it was also comprehensive. The O’Mara-Eves

1https://www.keele.ac.uk/scm/research/compsci/softwareandsystemsengineering/
2https://www.keele.ac.uk/scm/research/compsci/machinelearningandcomputationalintelli-

gence/
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et al. (2015) review selected papers on TM methods or metrics that were applied to

the screening stage of a SR (or similar evidence review), however, the study did not

look at the methods in any depth since their intended audience were users of the

technologies rather than computer scientists.

3.3.3 Study selection criteria

Irrespective of the fact that the study adopted articles from an existing review, further

criteria were set to ensure only articles relevant to the mapping study were included

and others excluded:

• Inclusion criteria:

– The publication must be reporting the outcome of a research exercise/ex-

periment/case study/development.

– The topic of discussion or field of application must relate to ML algorithm

based classification model using TM technique.

– The context of use must be CS in SR.

• Exclusion criteria:

– Communications/opinion papers.

– Natural language technique studies not using ML algorithm.

– Information retrieval or information extraction studies.

In order to avoid duplication, studies reported across multiple publications are con-

sidered together and where papers report multiple studies, the studies are considered

separately. The screening was done by myself since this process is considered a sec-

ondary screening in the mapping study.

3.3.4 Data extraction

The following data were extracted from each paper:

a) General

i) Study type

ii) Bibliographic information

iii) Study objective

b) Data information

i) Data source

ii) Corpus size
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iii) Feature set composition

c) Feature representation and dimensionality reduction

i) Feature vector

ii) Preprocessing information

iii) Feature selection technique

iv) Final feature size

d) Model choice

i) Classifier

ii) Variant algorithm

iii) Third party tool

iv) Proposed method (by author)

e) Training and assessment

i) Modelling approach

ii) Positive/negative sample ratio in training data/test

iii) Performance measure (train/test)

The review team consisted of four reviewers. Myself (BKO) as the lead reviewer,

extracted data from all the articles. The articles were randomly divided amongst the

other three reviewers (see Section 3.3) for data extraction except the bibliographic

information. The extracted data was stored using the Microsoft Excel application,

while the bibliographic information were stored with Mendeley 3. A pilot study

was initially conducted to assess the Excel form and reviewers’ understanding of

its fields. The extraction form was modified after the exercise to correct the incon-

sistencies identified. After the full data extraction, differences in the extracted data

were resolved through two meetings involving all the reviewers. Any outstanding

differences were resolved through meetings between the lead reviewer and the other

review team member concerned. No situation warranted inviting a third reviewer to

mediate in any of the latter resolution meetings.

3.4 Results

3.4.1 Data extraction

Each of the papers was identified by a Paper ID, and a Study ID to differentiate

where a paper reported the results of more than one study. Eight of the 44 articles

3https://www.mendeley.com/reference-management/reference-manager
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were excluded following study selection process because they did not fully meet one

or more of the inclusion criteria for the study while one was unpublished bringing the

total to nine. Three of the papers (P07, P28 and P36) were excluded because they are

communication between different research teams as a follow up discussion on their

previous studies’ results. Though, SR was discussed in P33, the technique used was

not ML based; no TM experiment was conducted in P44. Two of the studies (P16 and

P17) were excluded because the techniques used were neither ML based nor applied

within the SR context. Another paper (P31) was excluded because the focus of the

study was on the performance of different feature selection techniques and not the

classification model. An unpublished article (P35) included in the original review

could not be retrieved. The list of excluded papers is presented in Appendix A.1.

The total number of papers included was 35 with a total of 45 studies. Multiple

studies were recorded in serial numbers 1, 2, 10 and 35 (Table 3.2).

Table 3.2: List of included papers

Pa-
per
ID

Study
ID

Paper Title Paper Reference

P01
S01
S02
S03

Towards automating the initial screening
phase of a systematic review

Bekhuis and
Demner-
Fushman (2010)

P02

S04
S05
S06
S07
S08

Screening non-randomized studies for
medical systematic reviews: A compar-
ative study of classifiers

Bekhuis and
Demner-
Fushman (2012)

P03 S09
Feature engineering and a proposed
decision-support system for systematic
reviewers of medical evidence

Bekhuis, Tseyt-
lin, Mitchell,
and Demner-
Fushman (2014)

P04 S10
Combining relevancy and methodolo-
gical quality into a single ranking for
evidence-based medicine

S. Choi, Ryu, Yoo,
and Choi (2012)

P05 S11
Reducing workload in systematic re-
view preparation using automated cita-
tion classification

A. M. Cohen et
al. (2006)

P06 S12
An effective general purpose approach
for automated biomedical document
classification

A. M. Cohen
(2006)

P08 S13
Optimizing feature representations for
automated systematic review work prior-
itization

A. M. Cohen
(2008)
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Table 3.2: List of included papers (continued)

Pa-
per
ID

Study
ID

Paper Title Paper Reference

P09 S14
Cross-Topic Learning for Work Prioritiza-
tion in Systematic Review Creation and
Update

A. M. Cohen, Am-
bert, and McDon-
agh (2009)

P10 S15
Studying the potential impact of auto-
mated document classification on
scheduling a systematic review update

A. M. Cohen, Am-
bert, and McDon-
agh (2012)

P11
S16
S17

A Pilot Study Using Machine Learn-
ing and Domain Knowledge to Facilitate
Comparative Effectiveness Review Up-
dating

Dalal et al.
(2013)

P12 S18

A Prospective Evaluation of an Auto-
mated Classification System to Support
Evidence-based Medicine and Systematic
Review

A. M. Cohen, Am-
bert, and McDon-
agh (2010)

P13 S19
A visual analysis approach to validate
the selection review of primary studies in
systematic reviews

Katia R Fel-
izardo, An-
dery, Paulovich,
Minghim, and
Maldonado
(2012)

P14 S20
Using Visual Text Mining to Support the
Study Selection Activity in Systematic
Literature Reviews

Katia R Felizardo
et al. (2011)

P15 S21
The use of visual TM to support the study
selection activity in systematic literature
reviews: A replication study

Katia Romero
Felizardo, Souza,
and Maldonado
(2013)

P18
S22
S23

Building systematic reviews using auto-
matic text classification techniques

Frunza, Inkpen,
and Matwin
(2010)

P19
S24
S25

Exploiting the systematic review protocol
for classification of medical abstracts

Frunza, Ink-
pen, Matwin,
Klement, and
Oblenis (2011)

P20 S26
Automatic text classification to support
systematic reviews in medicine

Adeva, Atxa,
Carrillo, and
Zengotitabengoa
(2014)

P21 S27
A New Iterative Method to Reduce Work-
load in the Systematic Review Process

Jonnalagadda
and Petitti
(2013)
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Table 3.2: List of included papers (continued)

Pa-
per
ID

Study
ID

Paper Title Paper Reference

P22 S28
Improving the performance of text cat-
egorization models used for the selection
of high quality articles

Kim and Choi
(2012)

P23 S29

Using classifier performance visualiza-
tion to improve collective ranking tech-
niques for biomedical abstracts classific-
ation

Kouznetsov
and Japkowicz
(2010)

P24 S30
Classifying biomedical abstracts using
committees of classifiers and collective
ranking techniques

Kouznetsov et al.
(2009)

P25 S31
Text classification on imbalanced data:
Application to Systematic Reviews Auto-
mation

Yimin Ma (2007)

P26 S32
A Visual Text Mining approach for Sys-
tematic Reviews

Malheiros, Hohn,
Pinho, and Men-
donca (2007)

P27 S33
Facilitating biomedical systematic re-
views using ranked text retrieval and
classification

Martinez, Karimi,
Cavedon, and
Baldwin (2008)

P29 S34
A new algorithm for reducing the work-
load of experts in performing systematic
reviews

Matwin,
Kouznetsov,
Inkpen, Frunza,
and O’blenis
(2010)

P30 S35
Reducing systematic review workload
through certainty-based screening

Miwa, Thomas,
OMara-Eves,
and Ananiadou
(2014)

P32 S36

Pinpointing needles in giant haystacks:
use of TM to reduce impractical screen-
ing workload in extremely large scoping
reviews

Shemilt et al.
(2014)

P34 S37
Linked data approach for selection pro-
cess automation in systematic reviews

Tomassetti et al.
(2011)

P37 S38
Who should label what? Instance alloca-
tion in multiple expert active learning

Wallace, Small,
Brodley, and
Trikalinos (2011)

45



Chapter Three – Literature Review

Table 3.2: List of included papers (continued)

Pa-
per
ID

Study
ID

Paper Title Paper Reference

P38 S39
Toward modernizing the systematic re-
view pipeline in genetics: efficient updat-
ing via data mining

Wallace, Small,
Brodley, Lau,
Schmid, et al.
(2012)

P39 S40
Deploying an interactive machine learn-
ing system in an evidence-based practice
center

Wallace, Small,
Brodley, Lau, and
Trikalinos (2012)

P40 S41

Modelling Annotation Time to Reduce
Workload in Comparative Effective-
ness Reviews Categories and Subject
Descriptors Active Learning to Mitigate
Workload

Wallace, Small,
Brodley, Lau, and
Trikalinos (2010)

P41 S42
Active Learning for Biomedical Citation
Screening

Wallace, Small,
Brodley, and
Trikalinos (2010)

P42 S43
Semi-automated screening of biomedical
citations for systematic reviews

Wallace, Trikali-
nos, Lau, Brod-
ley, and Schmid
(2010)

P43
S44
S45

GAPscreener: an automatic tool for
screening human genetic association lit-
erature in PubMed using the support vec-
tor machine technique

W. Yu et al.
(2008)

P07, P16, P17, P28, P31, P33, P35, P36 and P44 were excluded (see Appendix A.1)

3.4.2 Algorithms: usage, information and justification

This section addresses RQA: What information is available on the use and distribution
of specific TM algorithms being proposed to automate CS in SR – How well are the
algorithms used described and/or justified in the context of use, what information is
provided about the data size and to what extent is the effect of data size on the TM
algorithm used taken into account?

Support vector machine (SVM) was the most used algorithm. It was used in 31%

of the studies, excluding its usage in Ensemble of classifiers, and has been used in

at least one experiment annually since 2006 (see Table 3.3). Ensemble of classifiers

was used in 22% (see Table 3.3 with pictorial representation in Figure 3.1) while

Naïve Bayes (NB) was used in 14% of the studies. About 50% of the studies tried

and reported more than one classifier. Their usage in the papers reviewed including
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other algorithms used is presented in Table 3.4.

Table 3.3: Classification algorithm used by year

Algorithm 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total %

SVM 1 1 3 1 4 1 4 1 16 31%

EvoSVM 1 1 2 4%

NB 1 1 1 2 2 7 14%

cNB 1 1 1 3 6%

KNN 1 1 1 3 6%

k-Means 1 1 2 4%

Decision
Tree

1 1 2 4%

WAODE 1 1 2%

NN 1 1 2%

Ensemble 1 2 3 1 2 1 1 11 22%

Regression 1 1 2%

Rocchio 1 1 2%

D. Se-
mantics

1 1 2%

Apart from the individual techniques, different variant options have been tried as

shown in Table 3.5. Less than 20% of the studies explained the algorithms they used

and provided some justification why the particular algorithm was chosen over others

in the context of their studies. None of the studies that used variants of an SVM

classification algorithm or optimisation settings, e.g., kernels, C or gamma values,

justified or provided insights into why they chose one option over others.

In 70% of the cases, the studies reported using open access ML implementation

frameworks like Weka (M. Hall et al., 2009) with different settings, mostly the de-

fault, without discussing why they (the settings) were suitable within the context of

their own experiment(s).

3.4.2.1 Data size

The summary of the corpus sizes used in the studies is presented in Figure 3.2. None

of the papers considered the impact of the corpus size on the statistical appropriate-

ness of the application of the ML methods that they used. In particular, the papers

describing the application of SVM did not report the number of SV in the final clas-

sifier, which is critical information to confirm that over-fitting by the classifier was
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Table 3.4: Classification algorithms used in different papers

S/N Algorithm Papers

1 SVM

P04, P06, P08, P09,
P10, P12, P20, P22,
P25, P27, P37, P39,
P40, P41, P42, P43

2 EvoSVM P01, P02

3 Naïve Bayes (NB)
P02, P03, P04, P20,
P25, P29, P34

4 K-Nearest Neighbour P02, P14, P20

5 K-Means P13, P14

6 Complement Naïve Bayes
(cNB)

P02, P18, P19

7 Decision Tree (DT) P01, P25

8 WAODE P01

9 Neural Network (NN) P05, P11

10 Regression P11

11 Ensemble
P30, P32, P38, P6,
P31, P18, P42, P19,
P23, P24

12 Rocchio P20

13 Distributional semantics
with relevance feedback

P21

avoided.

3.4.2.2 Feature representation

Except where explicit information was not provided, all the studies used the vector

space model – ‘Bag-of-Words (BOW)’, for feature representation (Korde & Mahender,

2012; Kumar & Chandrasekhar, 2012). Frequency based representations was the

most used while seven have used binary feature representation (Table 3.6). Some

studies also experimented with multiple n-grams (Bekhuis & Demner-Fushman, 2012;

Bekhuis et al., 2014; A. M. Cohen, 2008; A. M. Cohen et al., 2012, 2010).

3.4.2.3 Feature selection techniques

Feature selection (FS) techniques used across the studies are: term frequency (tf),

term frequency-inverse document frequency (tf-idf), information gain (IG), Okapi
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Table 3.5: Classifier variants usage

S/N Classifier Variant Studies
Respective
years

1 SVM

Linear Kernel P04, P37,
P41

2012,
2011,
2010

Radial Basis Function kernel P01, P04,
P32, P43

2010,
2012,
2013,
2008

Polynomial Kernel P04 2012

Sigmoid P04 2012

Epanechnikov (degree 3, 4) P01 2010

Active Learning P30, P37,
P39, P40

2014,
2011,
2012,
2010

2 KNN K = 1 P02 2012

3 Naïve Bayes
Multinomial P2, P4

2012,
2012

Complimentary P02, P03
2012,
2014

4 Neural networks
Voting Perceptron P05 2006

Generalized Linear Model P11 2012

5 Regression Gradient boosting machine P11 2012

6 Ensemble

Voting P06, P18,
P19

2011,
2006,
2010

Bagging P32, P38
2013,
2012

Unspecified P24, P30,
P42

2009,
2009,
2014,
2010

Query by Committee P23 2010
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Figure 3.1: Number of classifiers used in the studies

Figure 3.2: Corpus size range used across all studiesa

a In the figure label, yk1 =⇒ y ∗ 1000 + 1.
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Table 3.6: Feature representation techniques usage

S/N Feature representation technique Count

1 Term frequency based 25

2 Binary vector 7

3 SOSCO 2

4 No Explicit Information 4

Figure 3.3: Feature selection/extraction techniques distribution

BM25 (BM25), bi-normal separation (BNS), odds ratio (OR), signed margin distance

(SMD), normalized compression distance (NCD), cosine distance (CD), covariate

shift (CS), aggressive under sampling + weighting (AU + W), linked document en-

richment (LDE) and random indexing (RI). The techniques and the number of times

each was used across all the studies is presented in Figure 3.3. There are situations

where studies did not provide information concerning how FS was handled, ‘INP’ was

used to signify such in Figure 3.3, whilst ‘NA’ implies ‘Not Applicable’, for situations

with no information. About 50% of the studies used multiple techniques to compare

performance. Feature extraction approach was rarely used, LDA was used in (Miwa

et al., 2014) and topic modelling in (Bekhuis et al., 2014).

3.4.2.4 Proposed tools and algorithms

Some of the studies have proposed novel tools, approaches or algorithms. An SVM

based tool called GAPScreener was proposed by W. Yu et al. (2008), ABSTACKR,
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an Active Learning based system was proposed in (Wallace, Small, Brodley, Lau, &

Trikalinos, 2010, 2012). A ranking algorithm was proposed in (Kouznetsov et al.,

2009; Kouznetsov & Japkowicz, 2010), while an approach tagged ‘ranked-retrieval-

re-rank’ was proposed in (Martinez et al., 2008); a factorized form to cNB was pro-

posed in (Matwin et al., 2010). Tomassetti et al. (2011) proposed an enriched ap-

proach for feature selection based on linked data. A ‘metacognitive Multiple Experts

Active Learning (MEAL)’ algorithm was proposed in (Wallace et al., 2011).

3.4.2.5 Third party frameworks

Machine learning toolboxes were used to carry out the experiments reported in 28

of the papers. The main toolboxes used are: WEKA (M. Hall et al., 2009), Pro-

jclus (Paulovich & Minghim, 2006), Revis, PEx tool 4, Pimiento (Adeva & Calvo,

2006), RapidMiner 5, LibSVM 6 and SVMLight 7.

3.4.3 Class imbalance and classifier performance

This section addresses RQB: What is the proportion of the included (positive example)/ex-
cluded (negative example) documents and how did the classifiers perform during train-
ing, validation and testing given the metrics used?

The average percentage ratio of the positive to negative examples in the corpus

used for 90% or more of the studies is 10%:90%. The studies tried to maintain this

ratio in the training and test data (stratified sampling). This issue of class imbal-

ance was handled in different ways across the studies, a summary of the different

approaches used was reported in (O’Mara-Eves et al., 2015).

The majority of the studies used a Cross Validation (CV) approach for building

the models. This was as a result of the relatively small sizes of the datasets (see

Figure 3.2) used across the studies. The 5 × 2-fold CV was used in (Bekhuis et al.,

2014; A. M. Cohen et al., 2010; A. M. Cohen, 2008; A. M. Cohen et al., 2012; A. M.

Cohen et al., 2006; Kouznetsov et al., 2009; Matwin et al., 2010), 10-fold CV was

used in (Bekhuis & Demner-Fushman, 2012, 2010; S. Choi et al., 2012; Adeva et

al., 2014; Kouznetsov & Japkowicz, 2010; Tomassetti et al., 2011; Wallace et al.,

2011) and 5-fold CV was used in (Dalal et al., 2013). Kouznetsov et al. (2009),

Kouznetsov and Japkowicz (2010) used both 5 × 2 and 10-fold CV with stratified

random sampling; multiple n-way CV with n ranging between 2 to 256 increasing by

power of 2 was used in (A. M. Cohen et al., 2009) and cost rejection sampling was

used in (A. M. Cohen, 2006).

4http://infoserver.lcad.icmc.usp.br/infovis2/PEx
5https://rapidminer.com/
6https://www.csie.ntu.edu.tw/ cjlin/libsvm/
7http://svmlight.joachims.org/
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In terms of performance metrics, (mean) recall, (mean) precision, (mean) F and

the area under the receiver operating characteristics curve (AUC) were mostly used.

High recall implies few false negatives in the result while high precision implies few

false positives. The F-measure is a weighted harmonic mean assessing the precision-

recall trade-off and AUC is the probability that a model will rank a randomly chosen

positive sample higher than a randomly chosen negative sample. Mean recall was

95% and above in (Bekhuis & Demner-Fushman, 2012, 2010; A. M. Cohen et al.,

2006; Frunza et al., 2011; Kouznetsov & Japkowicz, 2010; Matwin et al., 2010;

Tomassetti et al., 2011; W. Yu et al., 2008; Wallace, Small, Brodley, Lau, Schmid, et

al., 2012) while it was below 95% in (S. Choi et al., 2012; Kouznetsov et al., 2009).

Precision on the other hand was over 10% in (Bekhuis & Demner-Fushman, 2012,

2010; W. Yu et al., 2008; A. M. Cohen et al., 2006; Frunza et al., 2011; Kouznetsov

et al., 2009; Kouznetsov & Japkowicz, 2010). AUC was used in (A. M. Cohen, 2008;

Dalal et al., 2013; Kouznetsov & Japkowicz, 2010; Martinez et al., 2008; Miwa et

al., 2014; W. Yu et al., 2008) and the result was over 0.5 in all the studies. A. M.

Cohen et al. (2006) proposed the WSS metric based on the amount of manual work

saved. This measure was also used in (Frunza et al., 2010; Jonnalagadda & Petitti,

2013; Martinez et al., 2008; Matwin et al., 2010) to determine how much manual

screening effort was saved given the classification result. Training performance was

mostly sustained during testing or CV.

3.4.4 Result comparability

This section addresses RQC: How comparable are the results of the different studies
reviewed?

The datasets used in more than one paper are presented in Table 3.7 along with

the classifiers and metrics used. Where classifiers are compared in a study ‘>’ is used

to denote ‘better than’ and ‘≈’ used to denote ‘equal or similar’ in respect of reported

performance values, otherwise, the classifier used is just listed under comment. The

table is not presented for the purposes of comparison but to gain insight into study

variability based on dataset, metrics and classification model. It can be inferred

from the extent of variability in metrics and techniques (comment) in Table 3.7 that

datasets are being reused without any actual relation to the results (and/or process)

of previous experiments that had used the same data.

Comparing the performance of classifiers from different experimental settings is

not trivial in ML. The performance of classifiers is usually specific to the context

of use, thus, it is not easy to compare classifiers trained and used on different data-

sets (Sebastiani, 2002) or from different experiments (Baharudin, Lee, & Khan, 2010;

S. B. Kotsiantis et al., 2006). It may be possible to compare, when the same dataset is

used for different classifiers in different experiments, but if, for example, the dataset
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was not split in exactly the same way the comparison is still questionable. This is the

case with most of the studies reviewed in this study; a few of them used the same

dataset in their experiments (Table 3.7), and there was no record of whether a rep-

lica of the training set and test set in an experiment was repeated in another. Based

on the used of same dataset, some researchers have attempted to compare results

with other studies used (A. M. Cohen et al., 2006; A. M. Cohen, 2011; Jonnalagadda

& Petitti, 2013; Matwin, Kouznetsov, Inkpen, Frunza, & O’blenis, 2011). None of the

studies provided explicit information on which portion of their dataset was used as

training and test portions or in each fold of CV as the case may be.

Table 3.7: Studies with common dataset

S/N Dataset Paper ID Metrics Comment

1 DERP

P4 AUC SVM

P29 WSS@95% FCNB

P22 accuracy SVM

P08 AUC SVM

P01
Recall, precision,
F1

EvoSVM > WAODE >
NB

P10 Recall, precision, F SVM

P27 WSS, AUC SVR

P06 Un SVM

P21 WSS Relevance feedback

P5
Recall, precision,
F1, WSS

Perceptron

P08, P09,
P12

AUC SVM

2 TrialStat SR

P18
Recall, precision,
F, WSS

cNB

P19 Recall, precision, F SVM ≈ NB

P31 Ensemble

P24
Recall, precision,
workload save

Ensemble

P23 False negatives Ensemble

3 COPD

P37 U19
MEAL (SVM) > PAL
(SVM)

P41 U19

SVM(coFeature) >
(Simple) > (Ran-
dom) > (Features
Simple)

P42 Yield, burden SVM (AL)
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Table 3.7: Studies with common dataset (continued)

S/N Dataset Paper ID Metrics Comment

P30
Utility, coverage,
AUC

Ensemble SVM

4 Proton beam

P40 SVM (AL)

P41 U19

SVM(coFeature) >
(Simple) > (Ran-
dom) > (Features
Simple)

P42 Yield, burden SVM Ensembles

P30 Utility, coverage Ensemble SVM

5 Micro nutrients

P41 U19

SVM(coFeature) ≈
(lp) > (Random) >
(Simple) > (Features
Simple)

P42 Yield, burden SVM (AL)

P30 Utility, coverage Ensemble SVM

3.4.5 Threats to study validity

Some of the design decisions impose limitations on the construct validity of the study

from the possibility of incomplete identification of existing research because no in-

dependent literature search was conducted. As mentioned in the introduction of this

chapter, the articles evaluated in this study are limited to those included in a previous

SR. The study results therefore, are affected by the completeness of the published SR.

However, the articles reviewed in the update search did not cite or report any article

published prior to the conclusion of the review and not reviewed in it. However,

since the articles adopted from the SR were not updated through a new search to

include any other relevant articles published since February 2014 (a gap of one year)

for the mapping study, it is likely, that some articles are missed. However, relying on

a SR which has a more stringent searching and study identification requirement than

a mapping study (Kitchenham et al., 2010), it is possible that the included articles

are representative of the field. A supplementary literature update has since been

conducted to ensure all relevant articles has been considered between the period the

mapping study was completed and the submission of this thesis (see Section 3.5).

Another threat imposes an internal validity on this study from the possibility of

bias during the process of agreeing on values of extracted data. As mentioned in

Section 3.3.4, there arose situations where there were disagreements in the extrac-

ted data between BKO and each of OPB, PA and EDQ. Although, the disagreements
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were resolved locally between BKO and each team member, the fact that one of the

reviewers is a PhD student with two professors and a lecturer might have influenced

the outcome. Every effort was however made to avoid this by ensuring different

parties concerned were given the chance to make an explicit presentation of their

understanding from which a common agreement was sought.

3.5 Literature update

Other research has been undertaken in this field by other researchers after the map-

ping study was concluded. Twelve research articles consisting of three secondary

and nine primary studies have been further identified and are reviewed in this sec-

tion (see Table 3.8).

Three of the articles are some form of review or analysis of existing techniques

or metrics. A research white paper exploring the potentials of TM techniques in

the automation of the SR or any of its sub-processes was published by the United

States’ Agency for Healthcare Research and Quality (AHRQ) (Paynter et al., 2016).

A SR of current methods and metrics being used in automatic CS was undertaken

by (Saha, Ouzzani, Hammady, & Elmagarmid, 2016) and a comparative analysis of

semi-supervised approaches being explored in CS studies was undertaken by J. Liu,

Timsina, and El-Gayar (2016). These are excluded from further analysis as they

would not have met the inclusion criteria set for the mapping study.

The findings from these studies is still consistent with the initial mapping study.

The SVM algorithm continue to dominate, it was used in five out of the nine primary

studies (Timsina et al., 2015; Z. Yu et al., 2016; Hashimoto et al., 2016; Timsina

et al., 2016; Mo et al., 2015). Document prioritisation was used in (Howard et al.,

2016) whilst the random forest (ensemble) algorithm was explored in (Khabsa et

al., 2016). Semi-supervised learning approach to learning seem to be gaining more

popularity either through label propagation and/or active learning methods (Kon-

tonatsios et al., 2017; Timsina et al., 2015; Z. Yu et al., 2016; Timsina, Liu, El-Gayar,

& Shang, 2016; Hashimoto et al., 2016).

The BOW model using the tf-idf weighting method was used for feature repres-

entation in five studies (Z. Yu et al., 2016; Howard et al., 2016; Timsina et al., 2015,

2016; Timsina et al., 2016). The LDA was used to select and represent the features

in (Mo et al., 2015; Howard et al., 2016) and topic modelling with a neural network

vector space representation was used in (Hashimoto et al., 2016). The spectral em-

bedding technique was used by Kontonatsios et al. (2017) for feature representation.

In terms of models assessment techniques, studies appeared to be shifting focus to

measures that are indicative of the amount of time and effort saved rather than recall

and precision. The work saved over sampling was used in four studies (Khabsa et al.,

2016; Howard et al., 2016; Timsina et al., 2015; Timsina et al., 2016). Yield, burden
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Table 3.8: List of updated papers

S/N Paper Title
Paper
Type

Paper Reference

1
Supporting systematic reviews using
LDA–based document representation

Primary
study

Mo, Kontonatsios,
and Ananiadou
(2015)

2
SWIFT-Review: a text-mining work-
bench for systematic review

primary
study

Howard et al. (2016)

3
How to Read Less: Better Machine As-
sisted Reading Methods for Systematic
Literature Reviews

Primary
study

Z. Yu, Kraft, and Men-
zies (2016)

4
Active Learning for the Automation of
Medical Systematic Review Creation

Primary
study

Timsina, Liu, and El-
Gayar (2015)

5
Topic detection using paragraph vec-
tors to support active learning in sys-
tematic reviews

Primary
study

Hashimoto, Konton-
atsios, Miwa, and
Ananiadou (2016)

6
A semi–supervised approach using la-
bel propagation to support citation
screening

Primary
study

Kontonatsios et al.
(2017)

7
Using Semi–supervised Learning for
the Creation of Medical Systematic Re-
view: An exploratory Analysis

Primary
study

Timsina, Liu, El-
Gayar, and Shang
(2016)

8
Advanced analytics for the automation
of medical systematic reviews

Primary
study

Timsina, Liu, and El-
Gayar (2016)

9
Learning to identify relevant studies
for systematic reviews using random
forest and external information

Primary
study

Khabsa, Elmagarmid,
Ilyas, Hammady, and
Ouzzani (2016)

10
EPC methods: an exploration of the
use of text–mining software in system-
atic reviews

Sec-
ondary
study

Paynter et al. (2016)

11
A large scale study of SVM based
methods for abstract screening in sys-
tematic reviews

Sec-
ondary
study

Saha, Ouzzani, Ham-
mady, and Elmagar-
mid (2016)

12

A comparative analysis of semi–
supervised learning: The case of art-
icle selection for medical systematic
reviews

Sec-
ondary
study

J. Liu, Timsina, and
El-Gayar (2016)

and Utility are three metrics proposed by Wallace, Small, Brodley, Lau, and Trikalinos

(2010). The yield and burden Wallace, Small, Brodley, and Trikalinos (2010) were

used in (Hashimoto et al., 2016; Kontonatsios et al., 2017), the two metrics were

used in combination with Utility in (Kontonatsios et al., 2017). Recall and precision
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were however used in (Mo et al., 2015; Timsina et al., 2015). The precision-recall

curve, receiver operating curve, F1 and accuracy were used in (Mo et al., 2015). The

recall vs studies reviewed curve was used in (Z. Yu et al., 2016).

Apache Lucene and Termine are the two third party tools used in (Mo et al.,

2015).

The datasets used in more than one study (considering them together with the

mapping study in this case) are: COPD used in (Hashimoto et al., 2016; Mo et al.,

2015; Kontonatsios et al., 2017); the Evidence-based Practice Center (EPC) review

data used in (A. M. Cohen et al., 2006) was either fully or partly used in (Z. Yu et

al., 2016; Timsina et al., 2015; Timsina et al., 2016; Timsina et al., 2016) and the

Protonbeam used in (Mo et al., 2015).

The work of Khabsa et al. was incorporated as part of Rayyan - a tool for con-

ducting SRs (Khabsa et al., 2016; Ouzzani et al., 2016), Zhe Yu et al. packaged their

approach into a CS tool called Fastread (Z. Yu et al., 2016) and Howard et al. pack-

age their document prioritisation approach into a tool they called SWIFT_Review,

which they proposed as a TM framework for SRs (Howard et al., 2016).

Common datasets (4 from the 15 EPC review dataset used by Cohen et al.) and

metrics used provided Timsina et al. (2016) the ground to compare their result (recall

and precision) with that of A. M. Cohen et al. (2006). Z. Yu et al. (2016) extended

the datasets for their experiment beyond software engineering datasets to include the

15 EPC review datasets used by A. M. Cohen et al. (2006) to enable them compare

the performance of their model with Cohen et al.’s. Hashimoto et al. (2016) has also

compared their results to the work of Miwa et al. (2014).

3.6 Replication/reproduction practice

Replication or reproduction issues were not actually part of the mapping study’s

primary objectives, it became hard to ignore them given the number of studies re-

viewed and the absence of independently replicated or reproduced studies or re-

search teams building on the work of others.

Replication/reproduction of experiments is an established practice in science and

engineering to underpin theories and techniques, especially in a growing field of

research (Basili, Shull, & Lanubile, 1999; Olorisade, Vegas, & Juristo, 2013). This

principle has also been recognized and encouraged in software engineering demon-

strated by the existence of research groups with ‘empirical’ or ‘evidence based’ at-

tached to their names (González-Barahona & Robles, 2012). Study reproduction

with the same, similar or different datasets are useful to verify, extend or comple-

ment existing results (Vegas, Juristo, Moreno, Solari, & Letelier, 2006; F. J. Shull,

Carver, Vegas, & Juristo, 2008).

Considering the nascent stage of SR in SE and the application of TM to the auto-
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mation of some of its stages, it is thus important for independent research teams to

reproduce published studies in whole or part as a means to establish efficiency, ma-

turity and applicability of proposed methods and techniques (J. Miller, 2005; F. J.

Shull et al., 2008).

Replications in the studies reviewed were often conducted by the same research

groups. One such in-team replication undertaken by Wallace et al. led to the cre-

ation of a tool tagged ABSTRACKR (Wallace, Small, Brodley, Lau, & Trikalinos, 2010,

2012). An independent evaluation of ABSTRACKR was undertaken in (Rathbone et

al., 2015).

It was noted that some of the studies have been attempting some form of rep-

lication; in fact six datasets were found to be used by more than one study (see

Table 3.7). In addition, Cohen et al. and Matwin et al.’s teams are already com-

paring model results based on use of the same dataset (A. M. Cohen, 2008, 2011;

Matwin et al., 2010, 2011), Felizardo et al. have also replicated their study (Katia R

Felizardo et al., 2011; Katia Romero Felizardo et al., 2013). However, more research

needs to be done given the fact that SR is now increasingly being adopted across dis-

ciplines from medicine to social science, SE and computer science. In order to build

useful tools, research teams may require access to data used in studies from other

disciplines which may not be as readily available compared to data from within the

discipline. More comparisons to existing results were found in Timsina et al. (2016),

Z. Yu et al. (2016) which compared the result of their research to that of A. M. Co-

hen et al. (2006), Matwin et al. (2010). However, the variables that change from

one study to the other were often too many for a consistent replication. What is cur-

rently being witnessed is more of a result comparison than a progressive replication

of studies.

3.7 Discussion

The results of this study serve as a basis for the programme of research reported in

this thesis. In this section, the implications of the literature review are discussed.

Summarily, the goals of the mapping study were:

i) To analyse the TM methods being used in CS automation studies

ii) To investigate how much information were reported about these methods

iii) To establish any justification provided for the choice of the methods

The SVM algorithm has been reported to have the advantage of coping with high

dimensional data without significant impact from class imbalance (S. B. Kotsiantis

et al., 2006). It is less affected by the size of its input and requires moderate samples

for training (Baharudin et al., 2010; S. B. Kotsiantis et al., 2007; Sebastiani, 2002).
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It is also suited to high feature to low training instance situation (Ikonomakis et

al., 2005). These facts might have accounted for the performance recorded and

substantial use of the support vector machine in the studies. Attempts to ensure

more reliable classification performance results might have accounted for the high

use of ensemble methods as well. Naïve Bayes on the other hand did not perform

well.

The corpus sizes used across the studies as shown in Figure 3.2 suggest that the

majority of the experiments used corpus sizes that calls into question the statistical

reliability of the classification model built through such corpus. There was rarely any

justification across all the studies for the different decisions about the choice of a

certain technique or approach within the context of use.

Insufficient information made it hard to assess the process and statistical valid-

ity of the majority of the studies, for example, none of the studies that used SVM

reported the number of SVs they found. Similarly, in the case of the application

of neural networks, there was no information on the number of neurons or hidden

layers used. Thus, it is hard to judge how overfitting was controlled and to what

extent the complexity of the classifier was considered. There was no mention of the

bias/variance trade-off characteristics of the classification algorithms and the impact

of the data size in this context. The role data size plays in learning, generalisation

ability and classification performance of a model was not emphasized in any of the

studies. Notably, the positive to negative example ratio with the number of effective

parameters (complexity) is quite important to determine the size of data necessary

for the statistical validity of a model; the higher the complexity and the lower the

positive to negative ratio, the more data is required to train an appropriate model.

Albeit a lot of studies are already published in this area, there is yet to be any con-

crete headway commensurate with the amount of research effort so far. Obviously,

there is a need for more collaborative effort among research teams. Public availability

of data and process description need to be considered for convenient study reproduc-

tion. More efforts need to be channelled into tools packaged for cross-domain use.

Overall, the study finding shows that in respect of RQA, the SVM and ensemble

method as the most used algorithms with no justification given in the majority of the

cases as to why an algorithm is preferred to another neither did the studies explicitly

discuss the effect the small sizes of the data could have on the models. In respect

of RQB, the positive examples was found to be on the average less than 10% of the

data sizes. The CV was found used heavily among the studies evaluated. This is an

indication that the effect of the small size of the datasets and the skewed positive-

negative examples might have been acknowledged even if not explicitly discussed.

The recall, precision, F-measure and AUC remain the favourable metrics across the

studies. In respect of RQC, the study finds that there is not much consistency among

the studies to establish ground for a meaningful comparison of the studies’ results.

60



Chapter Three – Literature Review

3.8 Summary

The mapping study and supplementary review reported in this chapter explored the

TM methods that are currently being proposed to reduce the time and effort expen-

ded on screening of citations in SRs. It also investigated the information provided

on the methods and the effects of data size on classification decisions, including any

justification given for the choice of the models.

A set of 44 papers included in an existing SR on the subject were adopted. After

the study selection process, 36 papers were initially included for this study. 35 pa-

pers were finally included after one of the papers (unpublished) could not be loc-

ated. An additional search for relevant literatures not covered in the SR (covering

the period between February 2014 to January 2018) identified 11 more papers (see

Section 3.5).

The results showed that the field is steadily growing with varying tools and meth-

ods being proposed. Support vector machine was found to be the predominant

method. The use of active learning methods appeared to be attracting increasing

interest in more recent studies to provide minimal label possible for effective classi-

fication. The BOW on the tf-idf representation was found to be the most popular way

to represent features for classification. WSS was also found to be attracting growing

attention as a metric for assessing classifier performance. On comparability of result,

few studies were found comparing their results to one or two others, the research

undertaken by A. M. Cohen et al. (2006) is being used by most as a benchmark.

However, it was interesting to notice a lack of any actual reproduction or replica-

tion of studies. There was lack of technical information related to the models being

used and why they were chosen. There were no information regarding experimental

processes, model parameter settings and how the settings were determined.

This chapter has identified how research into investigating how the information

contained in studies in this domain support reproducibility is required, how likely

complex and statistically valid are the TM models being proposed for automatic CS

and the possibility of a tool for automatic CS with sufficient details to support the

independent reproduction of its results.

Other literature that had significant influence on this research, including those

that are related to SRs in other domains such as healthcare and social science (see

Section 1.1), TM and ML (see Sections 2.2 and 2.1), efforts at ensuring reprodu-

cibility of computational studies (see Section 4.1.1) and model selection considering

complexity (see Section 5.2), are discussed elsewhere in this Thesis.
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Reproducibility Assessment

O ne of the findings from the review presented in Chapter 3 is a lack of sufficient

information in the studies reporting automatic CS experiments. Particularly,

information on the technical details of the models and the experiments’ processes. A

lack of replicated or reproduced studies by independent researchers was also identi-

fied. In this chapter, how well the information contained in the study reports support

their reproducibility is further investigated. Identification of factors responsible for

the reproducibility of automatic CS studies based on TM techniques will contribute

to answering one of the research questions of this research. The investigation is ap-

proached in two forms, first is an attempt to actually reproduce six of the 35 studies

included for the review in Chapter 3 and second is the development of an evaluation

protocol combining the literature and experience from first exercise to assess 33 of

the 35 studies (two were excluded) for reproducibility. The findings provide insight

into the basic set of information required of an automatic CS study to enhance its re-

producibility chances. A checklist is proposed based on the study results. The findings

from this study have been reported as a journal article in (Olorisade et al., 2017c), as

a workshop paper and a poster at the Reproducibility in Machine Learning workshop

of the 34th International conference on machine learning, ICML’17 (Olorisade et al.,

2017b).

4.1 Introduction

In Chapter 3, 45 studies were identified from 35 articles on TM based techniques for

automatic screening of citations in SRs. This study found the information provided

on the models and the study process in the articles to be inadequate particularly in

revealing the quality of the models. The review also identified a lack of independ-

ent replication or reproduction among the studies. Though, it found some studies

comparing their results to others and even sometimes adopting some of the methods

for data preparation in the other study. Whilst this is promising in a relatively new
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field of research like this, there was no evidence to support that they were (intended)

replication or reproductions of the earlier studies.

The importance of reproducibility in an emerging field like this is summed in the

words of Aarts et al. (2015), innovation points out paths that are possible; replication
points out paths that are likely; progress relies on both. The study reported in this

chapter addressed reproduction issues in the automatic CS studies by assessing how

easy it is to reproduce the results published in 33 articles. The 33 articles are part of

those selected for the review in Chapter 3. The reported study entailed three steps:

a reproduction attempt of six studies, development of an assessment framework on

experience-driven identification of elements of the TM process essential to reproduc-

tion and a systematic assessment of the 33 studies based using the framework. The

assessment attempted to reveal the reproduction strength or otherwise of each study

and identified the element(s) that contributed to it.

The rest of this chapter is organised as follows: The conduct of the reproduction

analysis is the focus of Section 4.2.1. Section 4.2.2 presents the definition of the

assessment framework by defining the TM process elements to us for assessing each

article, the attributes of each element as well as values and tags to measure the

attributes and summarise the measured values of the attributes. The application

of the assessment framework is presented in Section 4.2.3. The results from these

activities is presented in Sections 4.3.1, 4.3.2 and 4.3.3 with the limitations of the

study results in Section 4.3.4. An update information on the datasets used in the

study is presented in Section 4.4. This is followed by a discussion of the study in

Section 4.5 and a summary in Section 4.6.

4.1.1 Reproduction of computational studies

The issue surrounding the ability of independent researchers to reproduce computa-

tional studies has been identified in the past few decades and researchers have made

several proposals about how to make computational studies reproducible. Mesirov

(2010), Davison (2012) advised cultivating reproducibility into a habit and everyday

research culture before its effect can be successfully noticed in publications.

Explicit and unambiguous description of processes and results is the first step to-

wards ensuring independent researchers can clearly understand a study to the level

that it can be reproduced by them (Mesirov, 2010). Undocumented implicit know-

ledge is often the main impediment to the implementation of proposed algorithms

and models (Crick, Hall, & Ishtiaq, 2014).

Technology can support reproducibility (Hothorn, Held, & Friede, 2009). For

example, it has been suggested that researchers should utilize whenever they can,

available libraries and packages that are easily accessible to the public, are robust

and are continually maintained (Davison, 2012; Mesirov, 2010). Cross platform soft-
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ware should be chosen where possible for experiment purposes (Crick et al., 2014;

Davison, 2012). However, it is practically impossible to capture all the decisions

and situations during a computational study, so employing an automatic means of

storing the details of every decision, process and result is encouraged (R. D. Peng,

2011; Sandve, Nekrutenko, Taylor, & Hovig, 2013; Davison, 2012). GitHub and

other similar version control applications can aid capturing of the different stages

and changes in experiments as well as providing long term storage and access to the

digital artefacts (R. D. Peng, 2011; Sandve et al., 2013; Davison, 2012).

Public repositories and publishers are helping to ensure digital components of

publications are available to readers (Mesirov, 2010; R. D. Peng, 2011); however, this

does not guarantee that a study will be reproducible. Understanding the provided

files is key to making independent (active) use of them but data files are still format-

ted haphazardly; partially or insufficiently annotated (Ioannidis et al., 2009; Rung

& Brazma, 2013); codes are poorly commented while graphs and charts are sparsely

annotated amongst other issues (Wilkinson et al., 2016). Though, the digital com-

ponents storage provision facilities is a step in the right direction.

In order to ensure reproducibility, comparability and generalizability of studies,

the Information Retrieval (IR) community have dedicated considerable efforts (not-

ably) to the standardization of data formats to facilitate uniform storage, access and

exchange of data, as well as the creation of common evaluation methods for tech-

niques (Comeau et al., 2013; Zobel, Webber, Sanderson, & Moffat, 2011). Notable

initiatives that have pushed research achievements in IR are TREC1, CLEF2 and NII

Testbeds and Community for Information access Research (NTCIR)3 (Agosti et al.,

2012; Freire, Fuhr, & Rauber, 2016; Ferro, 2017). These efforts are inherently bene-

ficial to and directly utilized in TM research. Some of the experimental collections

used in TM are part of the experimental collections from real domains of interest

like medicine, made available through the efforts of IR research at ensuring reprodu-

cibility and comparability in the field (Zobel et al., 2011). An example is the TREC

collection, one of which is the corpus used in this work and in studies reviewed in this

work. The evaluation metrics proposed and used in IR research are also beneficial to

and utilized by TM studies (Hersh, 2005).

The Big Data to Knowledge (BD2K), trans-National Institute of Health (NIH) ini-

tiative has been established to facilitate the standardization, discovery and reuse of

digital assets in biomedical research through innovative approaches and tools so that

machines without human intervention can automatically access and (re)use study

data. This initiative led to the agreement on the Findable, Accessible, Interoperable

and Reusable (FAIR) principles that should guide such big data driven research. The

1http://trec.nist.gov/
2http://www.clef-initiative.eu/
3http://research.nii.ac.jp/ntcir
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guidelines for these principles are described in (Wilkinson et al., 2016) and a sample

tool implementation is provided in (Wilkinson et al., 2017).

These principles along with other aims of the BD2K initiative4 support reprodu-

cibility of experiments by facilitating digital assets discovery (open knowledge) for

verification, knowledge advancement and community wide research engagement.

The realization of the BD2K objectives will not only be useful to biomedical research

but also for the general science communities’ effort on reproducibility of scientific

research.

Data format is also key to access and reuse. Researchers should attempt to store

their data in common formats (Crick et al., 2014) like the comma separated values

(csv) or similar formats. This way, other researchers will find it easier to retrieve and

manipulate the data.

Prior to publication, it has been suggested that researchers should conduct a re-

producibility check by asking colleagues not involved in the research to attempt to

reproduce their studies based strictly on the information contained in their manu-

script. This way, it will be possible to anticipate areas of ambiguities and insufficient

information (Ioannidis et al., 2009; Mesirov, 2010; Sandve et al., 2013).

Though reproducibility is not a license to a study’s correctness, validity or quality,

it is however, a precursor to these qualities as utilizing these principles will not only

aid the reproducibility of studies but also further the development of the means to

ensure it.

4.2 Study reproducibility

The conduct of the study is discussed in this section. The study involved three steps:

i) Reproduction analysis: this step is an attempt to reproduce the results for six

studies. The six studies were selected because they were shared a common

dataset.

ii) Assessment framework definition: this step involved the identification of relev-

ant assessable elements of the TM process, definition of values to measure the

elements and tags to summarise the assessment.

iii) Reproducibility assessment: this step involved the application of the assessment

framework in step ii to each of the studies.

The objective of this study was to investigate how reproducible are the results of

the TM studies on automatic CS. This is achieved by attempting to replicate some of

the studies, taking note of the factors that contributed to the success or otherwise

of ‘their reproducibility’ and using the experience to methodically evaluate the rest.

4https://commonfund.nih.gov/bd2k
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Reproducibility refers to the ability to independently reproduce the results reported

in each of the studies by replicating the experimental steps based exclusively on the

information provided in the reports.

4.2.1 Reproduction analysis

The experience during the attempt to reproduce six of the experiments is discussed

in this section. For the reproduction analysis, six studies (A. M. Cohen et al., 2006;

Matwin et al., 2010; Kim & Choi, 2012; A. M. Cohen et al., 2012, 2009, 2010) based

on various topics in the Drug Evaluation Review Program (DERP) datasets were se-

lected, particularly the topics contained in the Text REtrieval Conference (TREC)

2004 Genomics track corpus5 (A. M. Cohen & Yen, 2014). The datasets are part of

the DERP reports made available through the collaboration between the Cochrane

Centre and the Evidence-based Practice Center (EPC) of the Agency for Healthcare

Research and Quality (AHRQ) (A. M. Cohen et al., 2006). From now on, this dataset

will referred to as the DERP dataset.

4.2.1.1 Data retrieval

Despite the prevalence of the datasets among the studies, none of the studies made

the subset used for their studies available for reuse. The closest reusable information

was the PMID information and the link to the raw dataset provided in (A. M. Cohen

et al., 2006) which was found to be obsolete. The updated link5 as at the time this

study was undertaken has also become invalid as at the time of writing this thesis 6.

The raw dataset contained 50 reviews of 4,367,228 articles, separated into a few

files in two major formats - eXtended Markup Language (XML) and Standard Gener-

alized Markup Language (SGML). The subset required for this study was 15 reviews

of 18,733 articles. The documentation for the datasets was provided in 10 files which

had to be studied to understand the structure and content of the data files. A parser

was subsequently developed to retrieve the datasets of interest from the whole set

using the Pubmed Identification (PMID) provided by A. M. Cohen et al. (2006).

4.2.1.2 Preprocessing

It was fairly possible to replicate the text pre-processing steps reported in the studies.

Though, there were no intermediate results provided in any of the studies reports

that could be compared to except (A. M. Cohen et al., 2006). Some of the studies

also adopted the preprocessing as described in (A. M. Cohen et al., 2006). The

preprocessing activities (see Section 2.2.2 for more details on these steps in TM)

5http://skynet.ohsu.edu/trec-gen/data/2004/
6. The datasets are currently hosted at https://dmice.ohsu.edu/trec-gen/data/2004/
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involved items (ii) – (v) as enumerated below and discussed in Section 2.2. Item (i)

was an activity specific to (A. M. Cohen et al., 2006).

i) appending special tags to features from the Medical Subject Heading (MeSH)

and publication type before the preprocessing steps as was done in (A. M. Co-

hen et al., 2006; Matwin et al., 2010).

ii) stopwords removal – removing commonly used words (e.g. articles and pre-

positions) referred to as stopwords.

iii) tokenization – breaking the sentences into words or phrases known as features.

iv) feature representation – representing or encoding the features in a numeric

usually binary or frequency based - format.

v) storing all tokens in a feature vector using the BOW approach.

The preprocessing steps in A. M. Cohen et al. (2006) were followed for this study

since they provided the most explicit discussion with intermediate results. Accord-

ingly, a distinction was made between three types of features from the corpus – title

and abstract, the MeSH terms and publication type. These MeSH terms were appen-

ded with ‘mh’ while the publication type were appended with ‘pt’ to distinguish them

from similar title and abstract terms. These terms were appended before removing

any stopwords. Cohen et al.’s article was not clear on whether the appending was

performed before or after the removal of stopwords. The features were represented

in a binary format in a BOW.

4.2.1.3 Feature selection

The feature selection process as presented in Section 2.2.4 is part of the methodolo-

gies used to reduce the dimension of the feature vector without losing any important

information, and often lead to improved performance of the predict models. In this

study, the χ2 method (see Section 2.2.4) was used according to the process repor-

ted in (A. M. Cohen et al., 2006). The RapidMiner data science platform7 and the

FSelector 8 (version 0.21) package in ‘R’ for feature selection were employed for this

purpose.

4.2.1.4 Model training

New algorithms were proposed in (A. M. Cohen et al., 2006; Matwin et al., 2010;

A. M. Cohen et al., 2009) but no implementation (or reference to it) were provided

for the algorithms they proposed, therefore, the base algorithms in each case were

used for the purpose of the experiment. The experiments were conducted with the

7https://rapidminer.com/
8https://cran.r-project.org/web/packages/FSelector/index.html
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simple Perceptron and SVM algorithms in Python’s ‘sklearn’ package (Pedregosa et

al., 2011) and the implementation of the ‘votedperceptron’ algorithm provided in

Weka (with no weighting) (M. Hall et al., 2009), which is the algorithm that was

modified in (A. M. Cohen et al., 2006).

The data from the different reviews in the dataset were kept and used in the order

maintained in the file provided by Cohen et al. 5. The supporting materials – codes

and data files – to aid the reproduction of this study was hosted on github9. The

parameters set for the different classifiers built from the SVM and the perceptron

algorithms are presented in Tables B.1 and B.2 respectively.

In both cases, the sample weight for the negative class to positive class was set

at 1:4 during training. This sample weighting was chosen following (A. M. Cohen et

al., 2006), which used the same weight for some of the studies reported there. The

best performance for each of the fifteen studies was recorded at different weights

in (A. M. Cohen et al., 2006), the weighting of 1:4 showed a consistent acceptable

performance comparable to the best cases for all studies (in some cases providing the

best results) (A. M. Cohen et al., 2006). Thus, a consistent value ratio of 1:4 that

generally performed well was chosen for the purpose of experimentation.

The studies mostly used the cross validation approach during model training. This

might be due to the (relative) small size of the datasets. The ‘StratifiedKFold’ method

from Python’s ‘sklearn’ package was used to divide the datasets into training and

test data for the 5x2-fold CV. The method ensured maintaining the negative:positive

class ratio in both the training and test data as was in the original dataset. The

random_state parameter of the method was set to a value of ‘67’ (chosen at random),

during the partitioning for the cross validation. The random_state is the seed of

the pseudo-random number generator used when shuffling the data. The shuffling

ensured that each run of the algorithm produced different results.

4.2.1.5 Model assessment

The average precision, recall and F1 scores were calculated using the precision_score,

recal_score and F1_score methods in ‘sklearn’. The average parameter in these meth-

ods was set to binary corresponding to a binary classification. Refer to Section 2.3

for brief definition of the metrics.

4.2.2 Assessment framework definition

The approach proposed by (González-Barahona & Robles, 2012) was adopted and

modified to suit this study’s need in line with the TM process described in Section 2.2

and depicted in Figure 2.4. González-Barahona and Robles (2012) identified a set

of information elements required to support the reproducibility of SE studies based

9https://github.com/raylite/reproducibility-data
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Table 4.1: Values describing the attributes

S/N Attribute Values

1 Identification Complete (Classical), Partial, No, N/A

2 Description Complete (Textual), Partial, No, N/A

3 Availability Private, Public (Free), No, N/A

4 Persistence Likely, Unknown, N/A

5 Flexibility Complete, Partial, No, N/A

on data. The elements were: data source, retrieval methodology, raw dataset, study

parameters, extraction methodology, processed data, analysis methodology and res-

ults dataset (González-Barahona & Robles, 2012). Their proposal built on the Know-

ledge Discovery in Databases (KDD) schema proposed by Fayyad, Piatetsky-Shapiro,

and Smyth (1996) where data, selection, target data, preprocessing, preprocessed

data, transformation, transformed data, data mining, patterns, interpretation/evalu-

ation and knowledge were identified as the elements composing the KDD process.

In their study, González-Barahona and Robles (2012) defined five attributes and

some possible values that can be assigned to the attributes. The five attributes are:

i) Identification (location): where the information element can be accessed e.g.

web-link.

ii) Description: level of published details provided about the information element

including it’s internal organization and structure, and its semantics.

iii) Availability: a measure of the difficulty involved to currently access or acquire

the information element.

iv) Persistence: the possibility of the information element being available for future

use.

v) Flexibility: how adaptable is the information element to different formats and/or

environments.

These attributes can be assessed independently of each other based on the available

information in a publication. The values that can be assigned to each attribute are

listed in Table 4.1.

The values in bracket are possible replacements used when most appropriate in

the context of this study. Further details on the adaptation of the elements as suited

to this study are presented later in this section.

González-Barahona and Robles (2012) also defined a set of six (summary) as-

sessment tags (Table 4.2) that may be combined, as applicable, to summarize the
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strength or otherwise of the contribution of an element to the reproducibility of a

study.

Table 4.2: Summary assessment tags

S/N Tag Meaning

1 U Usable for reproduction

2 D Usable for reproduction with some difficulty

3 N Not usable for reproduction

4 + Future availability is foreseeable

5 * Flexible

6 - Irrelevant

In accordance with the procedure of González-Barahona and Robles (2012), the

identified elements for this study are presented in Section 4.3.2. The relationship

between the identified elements in the TM process is depicted in Figure 4.1. The

difference between this process and Robles et al.’s proposal are:

• the data source element was added to capture data retrieval

• the interpretation/evaluation step is replaced with model assessment

Figure 4.1: Detailed TM process with intermediate output

These elements were assessed using the attributes and values (with minor adapta-

tion) as proposed by González-Barahona and Robles (2012) (see Tables 4.3 and 4.1).

The interpretation of the values varies according to the attribute-element context.

The meanings as used in this study are provided below:
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• Complete: This value was associated with three attributes – identification, de-

scription and flexibility. It implies that basic information needed to locate or

identify the element in question based on the attribute was provided. For ex-

ample, in the case of raw datasets, this may imply the general name of a par-

ticular dataset with the associated link from where it can be retrieved. Notable

variations are:

– Classical: the term ‘classical’ was sometimes used (instead of complete)

under identification, if one of the traditional ML algorithms was used out

of the box with no (significant) alteration. This term was preferred to

indicate that insufficient description may be tolerated in such cases.

– Textual: ‘Textual’ was used (under description) to indicate a new method,

tool or algorithm proposed by the researchers and described only with text

in the publication with neither source code nor executable file provided.

• Partial: This value was associated with identification, description and flexib-

ility attributes. It was was used to indicate situations where the information

provided about an element was too general or insufficient to be reproduced.

For example, a dataset (source) named with no link information to its exact

webpage but rather to the index page of the provider where the researcher will

be left to try and navigate to the desired resource.

• No: No implies complete absence of an attribute.

• N/A (Not Applicable): This implies the attribute was not applicable to the ele-

ment in question. For example, for a study that did not make use of any of the

information elements described above, the corresponding entries will be N/A.

• Likely: This value applies to the persistence attribute if there was a possibility

that a relevant element is likely to be available for future access.

• Private/Public/Free: These terms were associated with the availability attrib-

ute. The term private was used to indicate elements, in this case data or tools,

located but inaccessible due to extra constraints like membership, application,

subscription etc. imposed before access may be granted. ‘Public’ on the other

hand meant that the dataset (raw or processed) was provided for public use.

‘Free’ was used in the case of a tool used that is available for free download.

• Unknown: This value was used in association with the ‘availability’ attribute,

when it was not easy to determine whether or not a relevant element will be

available for future access.

Not all attributes were defined for every element. Presented in Table 4.3 is an ex-

ample of the set of attributes applicable to each element.
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Table 4.3: Attributes-element combination

Data sources Datasets Technique Parameters Tools/Algorithms

Identification • • • • •

Description • • • • •

Availability • • •

Persistence • • •

Flexibility • •

4.2.3 Reproducibility assessment

After the attempt to reproduce the experiments reported in the six papers, the exper-

ience provided a solid basis for the evaluation of how easy it might be to reproduce

the rest of the studies and to identify what factors might influence the extent of

their reproducibility. In each study, the different information elements (depicted in

Figure 4.1 and explained in Section 4.3.2) were identified, then the assessment at-

tributes and their associated measuring values highlighted in Section 4.2.2 were used

to indicate a measure of the extent of usefulness (in supporting reproduction) of the

provided information. The assessment framework was applied to 33 studies.

4.3 Results

In this section, the results of the three basic activities of this study described in Sec-

tion 4.2 are presented.

4.3.1 Reproduction analysis

The outcomes from the reproduction analysis of the six studies (described in Sec-

tion 4.2.1) are reported in this section. The difficulties encountered were very sim-

ilar across all of the studies. Nevertheless, when there is a need to show a concrete

example, (A. M. Cohen et al., 2006) which provides the most detailed step by step

measurable outputs will be referred to.

Generally, it was difficult to acquire the raw/cleaned dataset used in the studies.

Often the referenced web links were either broken or pointed to the index page of

the hosting institution. In most cases, however, there was no link even to the loca-

tion of the raw dataset. The papers contained sufficient information that identified

the classification algorithm used but the provided information was not effective to

reproduce the classification results. Beyond the standard algorithms, all the studies

attempted something new to try to optimize the performance of the traditional al-
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gorithms and mitigate the effect of any known (citation) text classification problems

like class imbalance. However, they provided only textual descriptions of the changes

or at best an algorithm of the changes but not the code that was used.

Starting from the dataset, an analysis of the details available in each of the studies

are as below:

• The link to supplementary materials provided in (A. M. Cohen et al., 2006)

was broken. The new link was located but the cleaned extracted dataset was

not provided. The site contained a web link to the TREC 2004 Genomics Track

webpage but not directly to where the raw data was supposed to be located; the

direct link5 that was found during the course of this study. As at the time of writ-

ing this thesis, this link has also become invalid with the new link provided6.

They also provided a file with the PMIDs for the datasets they used.

• (Matwin et al., 2010) referenced the information provided in (A. M. Cohen et

al., 2006).

• Dataset source or location was not provided in (Kim & Choi, 2012).

• Data source or body providing the data was named in (A. M. Cohen et al., 2012,

2009, 2010) but neither a link nor any other retrieval information was provided

for the dataset used.

The complete dataset based on the PMID index file made available by A. M. Co-

hen et al. (2006) could not be retrieved from the OHSU repository for the TREC 2004

datasets. 18,431 data files were retrieved from the directories: “2004_TREC_ASCII

MEDLINE_1” and “2004_TREC_ASCII_MEDLINE_2” out of the 18,733 data files that

made up the 15 reviews used in (A. M. Cohen et al., 2006; Kim & Choi, 2012; Matwin

et al., 2010). The 302 missing files (see Table 4.4 for the number of studies retrieved

for each topic) could not be located. Thus, the reproduction analysis relied on an

incomplete dataset, which was a significant setback from the perspective of repro-

ducibility. In order to circumvent this problem, the corresponding author of (A. M.

Cohen et al., 2006) was contacted requesting the extracted dataset used in their ex-

periment and stated our mission but got no response. (A. M. Cohen et al., 2012,

2009, 2010) used part or all of this dataset and also additional data.

The information provided about pre-processing and feature selection was mostly

useful for reproduction across the papers. The feature representation used was only

reported in (A. M. Cohen et al., 2012). There was no explicit explanation of the

representation. In (A. M. Cohen et al., 2006), the paper describes how they selec-

ted statistically significant features using the χ2 method with 0.05 α level, thus it

was easy to compare results. The two applications used (Rapidminer and Fselector)

provided consistent results for more than top 50% of the selected features and above

80% in total for all the selected features. Despite this, it was impossible to produce
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Table 4.4: Retrieved corpus size(s) and number of top features α = 0.05 (Cohen et
al.’s appears in italics)

Review topics Corpus χ2 top
features

MeSH
features

PubType
features

ACEInhibitors
2498 242 54 7
2544 210 40 5

ADHD
845 115 39 0
851 80 24 0

Antihistamines
308 31 10 1
310 29 9 0

AtypicalAntipsychotics
1115 173 44 7
1120 302 71 8

BetaBlockers
2043 129 26 3
2072 194 42 5

CalciumChannelBlockers
1190 166 43 4
1218 329 77 5

Estrogens
362 102 26 4
368 233 44 5

NSAIDs
389 146 39 5
393 242 51 5

Opioids
1883 78 25 0
1915 55 14 0

OralHypoglycemics
493 97 22 3
503 234 55 4

ProtonPumpInhibitors
1314 165 40 4
1333 206 54 6

SkeletalMuscleRelaxants
1610 67 14 4
1643 11 2 2

Statins
3402 173 39 5
3465 467 87 6

Triptans
657 226 42 6
675 121 22 3

UrinaryIncontinence
322 137 37 6
327 215 45 5
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the exact number of features for a 0.05 confidence interval using the χ2 method with

Cohen et al.’s. This might have been caused by the lack of complete dataset in the

first place. Another possibility is that there might have been some fine-tuning steps

not reported in the paper because the discrepancy in the number of features found

in this study and theirs was too wide in some cases. The results of the data retrieval

and feature selection are presented in Table 4.4 alongside the results (in italics) of

same exercise by A. M. Cohen et al. (2006).

The 5x2-fold CV average results for precision, recall and harmonic mean (F1)

are presented in Table 4.5, alongside an extract from Cohen et al.’s results (A. M.

Cohen et al., 2006) in italics. The results were based on the number of top features

reported in (A. M. Cohen et al., 2006) rather than the study’s result from applying the

χ2 method at alpha = 0.05. The ‘votedperceptron’ precision values from this study

were better than Cohen et. al.’s but the recall and F1 scores were worse. The lower

recall in this case accounted for the higher precision values, since there is always a

trade-off between recall and precision. But the simple perceptron and SVM showed

comparable and sometimes lower recall with higher precision performance compared

to Cohen et al.’s. This showed that the results of the studies could be reproduced

only if the authors were to provide sufficient information on experimental procedure

and data. If we had access to the full dataset, it might still be impossible for us to

get the exact classification outcomes given that randomization is usually involved

in the procedures of text classification algorithms and none of the papers provided

access to neither the data partition nor the indices they used for the training and

test/validation sets. They only provided proportion information about training and

test sets (i.e. what percentage of the data was used for these purposes). The seed

value used (if any), would have been sufficient to reproduce any randomised step

but that was not provided either.

Table 4.5: 5X2-fold CV results

Review topics Method
Preci-
sion

Recall F1

ACEInhibitors

Cohen 0.0387 0.9561 0.0745
Votedperceptron 0.414 0.101 0.16
Simple perceptron 0.11 0.86 0.19
SVM 0.15 0.75 0.25

ADHD

Cohen 0.0945 0.9200 0.1713
Votedperceptron 0.53 0.514 0.521
Simple perceptron 0.35 0.95 0.50
SVM 0.46 0.94 0.62

Antihistamines

Cohen 0.0502 0.8500 0.0948
Votedperceptron 0.571 0.467 0.517
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Table 4.5: 5X2-fold CV results (continued)

Simple perceptron 0.40 0.83 0.53
SVM 0.40 0.98 0.57

AtypicalAntipsychotics

Cohen 0.1534 0.9493 0.2642
Votedperceptron 0.582 0.533 0.556
Simple perceptron 0.42 0.80 0.53
SVM 0.33 1.00 0.49

BetaBlockers

Cohen 0.0334 0.9286 0.0644
Votedperceptron 0.459 0.201 0.279
Simple perceptron 0.19 0.85 0.31
SVM 0.18 0.97 0.30

CalciumChannelBlockers

Cohen 0.0952 0.9460 0.1730
Votedperceptron 0.581 0.447 0.503
Simple perceptron 0.38 0.78 0.49
SVM 0.41 0.97 0.26

Estrogens

Cohen 0.2252 0.9725 0.4044
Votedperceptron 0.645 0.440 0.519
Simple perceptron 0.32 0.83 0.44
SVM 0.38 0.96 0.54

NSAIDs

Cohen 0.2631 0.9317 0.4103
Votedperceptron 0.651 0.568 0.603
Simple perceptron 0.36 0.95 0.51
SVM 0.44 0.92 0.59

Opioids

Cohen 0.0092 0.9467 0.0182
Votedperceptron 0.359 0.068 0.114
Simple perceptron 0.04 0.84 0.07
SVM 0.08 0.56 0.14

OralHypoglycemics

Cohen 0.4004 0.9471 0.4561
Votedperceptron 0.35 0.86 0.49
Simple perceptron 0.67 0.75 0.68
SVM 0.28 1.00 0.44

ProtonPumpInhibitors

Cohen 0.0602 0.9373 0.1132
Votedperceptron 0.519 0.301 0.380
Simple perceptron 0.26 0.80 0.38
SVM 0.24 0.93 0.38

SkeletalMuscleRelaxants

Cohen 0.0055 1.0000 0.0109
Votedperceptron 0.428 0.067 0.120
Simple perceptron 0.03 0.94 0.05
SVM 0.04 0.67 0.08
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Table 4.5: 5X2-fold CV results (continued)

Statins

Cohen 0.0311 0.9647 0.0603
Votedperceptron 0.272 0.039 0.070
Simple perceptron 0.07 0.87 0.12
SVM 0.11 0.69 0.19

Triptans

Cohen 0.0365 0.9583 0.0703
Votedperceptron 0.647 0.634 0.641
Simple perceptron 0.45 0.92 0.82
SVM 0.48 0.93 0.63

UrinaryIncontinence

Cohen 0.1559 0.9850 0.2691
Votedperceptron 0.473 0.465 0.465
Simple perceptron 0.33 0.84 0.46
SVM 0.26 0.97 0.41

Overall, based on the reproduction analysis experience, it can be concluded that

it is difficult to reproduce the studies. This difficulty could have been significantly

reduced if the studies had made available the datasets they used, the seed value

for each of the randomisation steps or the data partition or indices for the training

and test/validation sets, and the implementation details of any algorithm or method

used.

4.3.2 Definition of the assessment framework

The following information elements were identified as being required to support

the reproducibility of TM application in the context of CS following the attempt to

reproduce results of the six studies:

i) Data source: The actual location of the raw dataset – direct web-page.

ii) Raw data: The whole of the dataset retrievable from (i). Necessary information

may include the description of the internal structure of the dataset, the retrieval

method, the file format(s) etc.

iii) Dataset: The focused dataset used in a particular TM experiment which may

be the whole of (ii) or a subset. Information required may involve any new

location of the extracted dataset, the extraction technique and the portion ex-

tracted.

iv) Pre-processing: This involved preprocessing steps of tokenization and noise

removal from the resulting dataset.

v) Feature representation: The method used for numerical encoding of the fea-

tures.
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vi) Feature Selection: The feature selection/reduction approach used with suffi-

cient details.

vii) Dimensionality reduction: Any other method used to further reduce the dimen-

sionality of the feature vector beside feature selection.

viii) Data partitions: Partitions (or indices) of the data used for the different clas-

sification operations – training, testing and or validation or seed value used to

control randomised partitioning.

ix) Modelling: Details of the ML algorithm used for mining the text, seed values

for randomisation control, algorithm parameters and code or executable file for

newly proposed algorithms.

x) Model assessment: The testing or validation approach used.

xi) Third party framework: Available ML software or packages used during the

experiments.

xii) Custom method: This referred to algorithms or techniques proposed by the

authors in a study.

4.3.3 Reproducibility assessment

Based on the information elements, attributes, values and tags defined in Sections 4.3.2

and 4.2.2, the reproducibility of 33 studies on the application of TM to CS in SRs

were assessed. A typical detailed assessment of a study is shown in Table 4.6 while

the overall assessment is presented in Table 4.7.

The issues related to data sources and datasets posed a key challenge to repro-

duction as information found in 28 (85%) of the papers (in both elements) are only

useful with some difficulty while four (12%) were found not to have useful inform-

ation about the data source and six (18%) about the dataset. 13 (39%), 16 (48%)

and 11 (33%) of the papers respectively provided pre-processing, feature selection

and dimensionality reduction information that was fully useful to reproduction; an

additional six (18%), eight (24%) and four (12%) respectively with some difficulty.

This implied an average of five (15%) with either irrelevant or not useful inform-

ation. Pre-processing and feature representation recorded values higher than 30%

on no useful information mainly because the authors might have assumed implicit

understanding thereby failing to mention what steps were specifically taken in data

cleaning e.g. were stopwords removed. This information is necessary because there

have been situations where experiments were conducted with stopwords. In the

terms of data split, only five (15%) articles provided information that may be useful

for reproduction. The information about the ML algorithms could be used for repro-

duction in nine (27%) articles and with difficulty in another 19 (57%). However,

information provided on custom (proposed) methods in three (9%) articles were
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Table 4.6: A typical assessment output of a study (see footnote for abbreviations in
column 1)

Ele-
ments

Identifica-
tion

Descrip-
tion

Availabil-
ity

Persist-
ence

Flexibil-
ity

Assess-
ment

DS Partial No Private Likely N/A D+

Dataset No No Unknown
Un-
known

No N

PP Classical Complete N/A N/A N/A U
FS Classical Complete N/A N/A N/A U
DR Classical Complete N/A N/A N/A U
Split No Partial N/A N/A N/A D
Tech-
nique

Classical Partial N/A N/A N/A D

Testing Complete Partial N/A N/A N/A D
TPF Complete Complete Free Likely No U+
CM N/A N/A N/A N/A N/A —

Note: DS – Data source; PP – Pre-processing; FS – Feature selection; DR – Dimensionality re-
duction; Split – dataset partition; Technique – Modelling technique/algorithm used; Testing –
testing or cross validation technique; TPF – Third party framework and CM – Custom method.

found to be useful, 16 (48%) with difficulty while 13 (39%) had no provision for this

element.

Validation and testing information were found useful for reproduction in 13 (39%)

of the articles and with some level of difficulty in 12 (36%). Finally, all third party

tools or frameworks used in the studies were found to be free and accessible. The

information provided on them was sufficient to locate the tools.

4.3.4 Threats to study validity

Certain threats limiting the validity of the study in three ways can be identified.

The first affects the internal validity originating from the subjective nature of the

defined elements and assessment process. Each study was assessed based on the

understanding of the information provided in the papers. The defined elements are

however based on experience and previous research that has defined elements for

similar processes. The elements were defined as a general framework to cover the

TM process and is subject to future refinement. It however suffices for the purpose

of illustrating reproducibility in this study. The attribute values and summary tags

are also categorical metrics and are subjectively assessed. However, as independent

assessors, the evaluator had no vested interest in any of the candidate studies neither

was the work of any of the study team members involved.

The second type of validity threat relates to construct validity stemming from
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Chapter Four – Reproducibility Assessment

the studies involved in the assessment which were chosen based on a SR published

in 2015 and thus may not represent the whole research area particularly studies

published after the review was conducted.

The last threat imposes a limitation on the conclusion validity based on the fact

that the assessment was conducted by a researcher with no other corroboration to

cross-check correctness and validate judgements. Multiple assessors would have been

preferable. Nevertheless, the effort was purely for academic and research progress

with no preference or bias for/against any of the studies or authors of the studies

assessed. So, while this threat was acknowledged, multiple assessors might not have

had any significant impact on the outcome.

4.4 Data retrieval update

The EPC datasets retrieved for this study formed the bulk of the datasets for other

studies reported in this thesis. Therefore, after the conclusion of this study, efforts

continued at locating the full sets of data for the 15 reviews of the TREC 2004 data-

sets used in (A. M. Cohen et al., 2006). The complete datasets were later successfully

retrieved and used in subsequent work. Further details on how the full set was re-

trieved is presented in Section 5.4.1.

4.5 Discussion

It was not possible to reproduce any of the results of the original studies during

the reproduction analysis because the complete dataset could not be retrieved and,

for all six studies, critical data usage information were missing. In particular, more

information was needed about how the dataset was partitioned and about the seed

values used for randomization.

Some of the papers assessed for reproducibility (e.g. P1 – P9, as shown in

Table 4.7) did exhibit some potential for reproducibility providing good accessibil-

ity to raw datasets and useful explanations of their preprocessing, feature repres-

entation and dimensionality reduction processes. However, for many of the papers,

information about dataset partitioning was inadequate.

In addition, access to and information about the dataset used and details about

the algorithms used in the studies were insufficient for reproduction. In particular,

information about parameters and new (proposed) algorithms was lacking.

Generally, the accessibility of third party tools was good but there was no assur-

ance about their persistence and flexibility.

As a result of this study, a checklist (Table 4.8) based on the information elements

identified in Section 4.3.2 was proposed.
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The reproduction analysis and reproducibility assessment in this study revealed

that the studies were hard to reproduce due to missing information regarding access

to and availability of raw, target or processed datasets. Reproduction by independent

research teams was possible but with different levels of difficulty specific to each

study.

Studies in this field need to be reported with more information than is currently

the practice, to aid independent reproduction of the studies. One possibility would

be to create a common repository where research results can be stored along with as-

sociated datasets, partition information and process details (Gentleman et al., 2004).

This would ensure persistence and availability of datasets, as well as providing ad-

ditional experiment information not included in publications. Making the full code

used during experiments available is advised. Also, communication may improve

between researchers due to the need for further explanation or elicitation of undoc-

umented tacit knowledge or ideas used in the original experiment (F. Shull et al.,

2004; Vegas et al., 2006).

Data and process descriptions need to be made publicly available in order to

support study reproduction and consequently enhance external validation and ma-

turity chances of claims and discoveries. It will also help improve the availability

of evidence about the effectiveness of the methods that have been proposed for the

application of TM techniques to CS in SRs.

4.5.1 Reproducibility checklist

The findings in this study lead to the suggestion of a checklist (with the prelimin-

ary version (version 1.1) presented in Table 4.8) to support the reproducibility of

TM studies and CS automation studies in particular. The checklist was built on the

TM elements defined in Section 4.3.2. Unlike the mainstream ML studies on image

classification where some benchmark datasets have been standardized and are eas-

ily retrievable through ML packages like ‘keras’ (Chollet, 2015), text data (e.g. SR

datasets) still exist in various forms and repositories. Efforts of initiatives like the

TREC10 in the information retrieval domain are commendable and have been helpful

at making shared corpora available for TM research. Therefore, there is the need to

distinguish between the type of dataset information provided in a study, whether it

was the raw data or the actual subset ((target dataset), if only part of a larger set)

was used in a study.

The checklist can be used by authors reporting TM experiments for CS in SR or

any text classification experiment to help improve reproducibility.

Reviewers may also use the checklist to assess the level of reproducibility of TM

studies in the context of CS for SRs. It is expected that the checklist will continue to

10http://trec.nist.gov/
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Table 4.8: The preliminary draft of the reproducibility enabling information checklist
for TM studies - version 1.1

Item
No. Information elements Yes No N/A

1 Original location of the raw dataset

2
Provided link to local copy of:
a. Raw dataset
b. Target dataset
c. Cleaned dataset

3
Described the internal structure of:
a. Raw dataset
b. Target dataset
c. Cleaned dataset

4 Data retrieval method details
5 Data extraction method described
6 Pre-processing details
7 Feature representation technique
8 Feature selection technique
9 Dimensionality reduction technique
10 Final feature vector download link
11 Training algorithm

12

Custom algorithm
a. Text
b. Code
c. Algorithm
d. Executable file

13 Model assessment method
14 Detailed model assessment result
15 Necessary seed values provided

16

Training/test data partition available or indices
provided
a. Link to data partitions provided
b. (link to) Indices provided
c. Seed value provided

17 Provide name and version number of third party
or external software package used
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be evaluated and refined by other researchers. The checklist is in partial compliance

with the FAIR principle as described in (Wilkinson et al., 2017). The data source and

storage details will ensure the data is Findable, while being hosted on the internet at

a published address will ensure it is Accessible. Interoperability is still a challenge,

given that the data is being stored in popular formats on general-purpose reposit-

ories making it usable by humans, but not automatically usable by machines. The

information about data format and partitioning will facilitate the Reusability of the

data.

4.5.2 Checklist application

In a separate activity, the checklist (version 1.1) (Table 4.8) was revised, particularly

in terms of the brevity and clarity of its wordings. In the revision, some items later

considered redundant or extraneous (e.g items 3, 4 and 5 of Table 4.8) were re-

moved. An application of the revised version (version 1.2) of the checklist to present

a characterization of its elements is reported in this section using 30 of the studies

assessed in Section 4.2.3. Apart from being a sample application of the checklist,

this exercise also adds credence to the reproducibility assessment of the studies by

investigating whether information useful to reproduction of the studies as suggested

in the checklist was made available in the studies. A ‘Y’ was recorded if information

was found, an ‘N’ if no (useful) information was found and an ‘X’ if the element was

not relevant in the context of a particular study.

A compressed result of the application is presented in Table 4.9 with more details

shown in Table 4.10. The summary from Table 4.9 is further presented in a grouped

bar chart (Figure 4.2) to visually project the distribution and any correlation between

(or across) the different entries of the aspects.

The results according to each item of the checklist are analysed below:

Dataset: The summary presented in Table 4.9 (with more details in Table 4.10 and

Figure 4.2) shows that 26 (87%) of the studies provided information on the original

location of the raw dataset they used but only three (10%) shared a local copy of the

dataset while none of the studies made the subset, restructured or cleaned dataset

they eventually used for their studies available.

Preprocessing: The details regarding the conduct of the preprocessing activities

which included stopwords removal, stemming, feature representation etc. was found

in 17 (57%) of the studies while 21 (90%) of the studies superficially discussed their

feature representation approach.

Dimensionality reduction: Though, dimensionality reduction is a key TM process

due to the generation of large but sparse feature vector during preprocessing but

the typical benchmark datasets size in SRs (particularly, the ones used in the studies

reviewed) are relatively small compared to what is obtainable in image classification
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benchmark datasets. This may be why 25 (83%) of the studies did not report con-

ducting any activity to reduce the dimension of their feature vector. But, five (17%)

did reduce the dimension of their vector but only three (10%) gave an account of

how they went about it. None of the studies made a copy of their final feature vector

available for independent use while only one ((A. M. Cohen et al., 2006)) provided

intermediate preprocessing output that can be used for future reference.

Data partition: None of the studies provided any information on the portions of

data used for either training or testing beyond basic ratio information.

Model training: All the studies provided some details about the training of their

models. However, of the 17 (57%) that proposed some new techniques, none of them

provided access to their technique’s code, four (13%) provided an algorithm of their

techniques, only one (3%) made executable file available while 16 (53%) provided

only a textual description of their techniques.

Model assessment: All the studies were able to describe how their models were

assessed.

Table 4.9: Summary of the Assessment of 33 studies based on the checklist (version
1.2)

Item No. Elements Yes No N/A

1 Original location of the raw dataset 26 4 0

2
Provided link to local copy of:
a. Raw dataset 3 27 0
b. Target dataset 0 0 0

3 Pre-processing details 17 13 0
4 Feature representation technique 21 9 0
5 Feature selection technique 8 19 3
6 Dimensionality reduction technique 3 2 25
7 Final feature vector – download link 0 30 0
8 Training algorithm 30 0 0

9

Custom algorithm
a. Text 16 1 13
b. Code 0 16 14
c. Algorithm 4 12 14
d. Executable file 1 15 14

10 Model assessment method 30 0 0
11 Detailed model assessment result 30 0 0
12 Randomization seed values 0 28 2

13

Training/test data partition available or indices provided
a. Link to data partitions provided 0 30 0
b. (link to) data indices provided 0 30 0
c. Seed value provided 0 30 0

14
Software information
a. Name provided 23 6 1
b. Version details 0 29 1
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Table 4.10: Checklist (version 1.2) application on 30 studies for essential reproduc-
tion information

Item No. Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Original location of the raw dataset Y Y N Y Y Y Y Y Y Y Y Y Y N N

2
Provided link to local copy of:
a. Raw dataset N N N N Y N N N N N N N N N N
b. Target dataset N N N N N N N N N N N N N N N

3 Pre-processing details Y Y Y N Y Y Y Y Y Y N N N Y N
4 Feature representation technique Y Y Y N Y Y Y Y Y N Y N N Y N
5 Feature selection technique Y N X X X X X Y Y X X X N X X
6 Dimensionality reduction technique X N X X X X Y X X X X X X X X
7 Final feature vector — download link N N N N N N N N N N N N N N N
8 Training algorithm Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

9

Custom algorithm
a. Text Y Y X Y X X X X Y X Y X X Y Y
b. Code N N X N X X X X X X N X X N N
c. Algorithm N N X Y X X X X X X N X X N N
d. Executable file N N X N X X X X X X N X X N N

10 Model assessment method Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
11 Detailed model assessment result Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
12 Randomization seed values N N N N N N N N N N N N N X X

13

Training/test data partition available or indices provided
a. Link to data partitions provided N N N N N N N N N N N N N N N
b. (link to) data indices provided N N N N N N N N N N N N N N N
c. Seed value provided N N N N N N N N N N N N N N N

14
Software information
a. Name provided N Y N N Y Y Y Y Y Y Y N N Y Y
b. Version details N N N N N N N N N N N N N N N

Table 4.10: Checklist (version 1.2) application on 30 studies (continued)

Item No. Elements 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 Original location of the raw dataset Y Y Y Y Y Y Y Y N Y Y Y Y Y Y

2
Provided link to local copy of:
a. Raw dataset N N N N N N N N N N Y Y N N N
b. Target dataset N N N N N N N N N N N N N N N

3 Pre-processing details Y Y Y N N N Y N Y N Y N N N Y
4 Feature representation technique Y N Y Y Y Y N N Y Y N Y Y Y Y
5 Feature selection technique Y Y Y Y X X X N X X Y X X X X
6 Dimensionality reduction technique X X Y X X X X N Y X X X X X X
7 Final feature vector — download link N N N N N N N N N N N N N N N
8 Training algorithm Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

9

Custom algorithm
a. Text X Y N X Y X Y Y Y X Y Y X Y Y
b. Code X N N X N X N N N X N N X N N
c. Algorithm X N N X N X N N N X Y Y X N Y
d. Executable file X N N X N X N N N X N N X Y N

10 Model assessment method Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
11 Detailed model assessment result Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
12 Randomization seed values N N N N N N N N N N N N N N N

13

Training/test data partition available or indices provided
a. Link to data partitions provided N N N N N N N N N N N N N N N
b. (link to) data indices provided N N N N N N Y N N N N N N N N
c. Seed value provided N N N N N N N Y N N N N N N N

14
Software information
a. Name provided Y Y Y Y Y N Y Y Y Y Y X Y Y Y
b. Version details N N N N N N N N N N N X N N N
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Figure 4.2: Distribution of studies containing information to support reproducibility

Randomization control: 28 (93%) of the studies performed operations that in-

volved some randomization in the algorithm execution. However, none of them

provided any information on how this was handled.

Software information: The studies generally (∼ 75%) provided the main software

used in their studies. Where they all failed (100%) was in providing the particular

details of associated modules and packages as well as their respective version inform-

ation.

4.5.3 Conclusions from the checklist application

The application of the checklist (version 1.2) on the 30 studies as summarized in

Table 4.9 showed that the major points of reproducibility failure are related to:

i) Access to target dataset: the copy of the dataset(s) used (Table 4.9, item 2)

by studies. All the entries has zero value, consequently, no bar in Figure 4.2.

The exact copy of dataset used in a study is particularly important as dataset

host site or location may become inaccessible at any time. A good example of
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this situation is the case of invalid address discovered for the EPC dataset twice

within the course of this research as reported in Section 4.2.1.

ii) Custom method: the new methods proposed in the studies (Table 4.9, item

9). Providing access to the implementation or executable files of the proposed

methods will go a long way to ensure that ambiguities and misinterpretations

are eliminated during the reproduction process as against mere text description.

iii) Randomization control: this refers to the seed values (or any other techniques

used) to control randomization involved in the studies (Table 4.9, item 12).

Even if every other piece of information required is provided, the presence of

similar seed values (where necessary) as used in the original study is the only

way to ensure the same process is repeated exactly as before.

iv) Partitioning information: the data partitions (Table 4.9, item 13) used at dif-

ferent stages of the study. This is essential as found for example in image re-

cognition datasets like the Canadian Institute For Advanced Research (CIFAR)

or Modified National Institute of Standards and Technology (MNIST) image

datasets where the testing and training sets are provided for uniformity and

comparability across experiments. Training a model with different sets of data

has the potential to alter the outcome of what the model learned.

v) The names and version numbers of the different modules and packages con-

tained in the software environment used for the studies (Table 4.9, item 14b)

of the table.

The artefacts in this list are critical to reproduction. It could be possible to repro-

duce some of the other reproducibility factors not in the list above if not provided

supposing the items in this list are provided.

The checklist application revealed that less attention was paid to the provision of

datasets for replication use. Apart from access to the raw dataset, providing access to

the different partitions used for training, evaluating or testing purposes had not been

given proper attention. As an alternative, with sufficient information and access to

ordered dataset, seed value information and algorithms used for the partition will be

sufficient but it can be seen in Figure 4.2 that the assessed studies failed to provide

these essential information.

According to Table 4.9, researchers usually provide the name of the dataset or

its host. It should be realized that providing the name of a popular dataset or that

of its provider may sometimes be insufficient to have studies reproduced. Beyond

the raw dataset, there may be need for extraction of part and even cleaning of the

retrieved subset. Independent researchers should be able to get hold of the exact

(ordered) replica, of the dataset used in studies else reproduction may be impossible.

Therefore, rather than give data or host name, it is more appropriate to provide
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access to the subset of the data that was used in particular experiments since most of

the available dataset like the TREC are usually large and hardly used completely in a

single experiment. Otherwise, a link to the raw dataset, access to the code used for

extracting the portion used and details of the fields used will suffice.

Given the constant maintenance and updates of software packages, it is import-

ant to provided specific details of the software environment used during the course

of a study (Sandve et al., 2013). A notable example is the deprecation of the module

used for CV in Python’s ‘sklearn’ (version 0.17), the cross_validation module was dis-

continued for the model_selection module in version 0.18 upwards to perform similar

function but with a different interface. It was a similar situation for the ‘auto’ option

for the class_weight parameter (to cater for class imbalance) in most sklearn’s clas-

sification modules which is now deprecated for the ‘balanced’ option. On the same

dataset both class_weight options will produce different results. Other examples in-

clude the current changes in the various interfaces of Keras 2.0 compared to previous

versions.

A further revision and validation of the checklist (version 1.3) on new studies is

presented in Section 8.3.1.

4.6 Summary

The study reported in this chapter has evaluated the potential for being reproducible

in 33 studies using a systematic qualitative assessment approach. A set of elements

of the study process, attributes of the elements, values to provide a measure of the

attributes and tags to summarise or judge the overall observation were defined for the

reproducibility assessment. In addition, the checklist was applied on the 30 studies

to visually explore how the listed elements are characterized.

Considered as a whole, the results of this study indicated that the assessed stud-

ies cannot be fully reproduced. However, if the different steps of the studies are

considered separately, each of them exhibited different levels of reproducibility. The

third party frameworks used were the easiest to identify and access followed by the

datasets used which can be located with some difficulties similar to the case of re-

producing the training and testing methods used in studies. Explicit information

concerning datasets, study parameters (particularly randomization control) and soft-

ware environment are lacking in most studies and consequently hinder their repro-

ducibility. It was also found that when researchers propose new methods, they only

explain it in the study and at best provide some form of algorithms about it. Code

implementations and/or executable files are usually not made available for the com-

munity’s future use. The field thrives on the availability of public datasets; therefore,

researchers should do more by making their knowledge more accessible for easier

development and advancement of the body of knowledge.
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Chapter Four – Reproducibility Assessment

The results of this study have provided a useful insight into the information re-

quired to be captured in TM study reports to enhance their reproducibility. This has

led to the creation of a preliminary version of a checklist in this study. Details of

a novel transparent tool developed to screen citation for SRs purpose are provided

in a later chapter (Chapter 7). Parts of its design were informed by this study, the

review presented in Chapter 3, investigation of model complexity and role of feature

representations in Chapter 5 and investigation into feature enrichment presented in

Chapter 6.
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CHAPTER 5

Reporting model complexity in CS studies

L ack of technical information (relating to study processes and models), provided

in studies on automatic screening of citations using TM techniques was iden-

tified in Chapter 3. This raised a concern about the possible effect of this lack of

information, particularly in connection to the fundamentals of scientific research re-

quirements vis-á-vis study reproducibility which is a general requirement and model

complexity which is particular to computational studies. A study assessing the ef-

fect of the lack of technical information relating to study processes was reported in

Chapter 4. 33 studies were assessed for reproducibility and the information provided

was found to be insufficient to reproduce any of the studies. The information needed

to support reproducibility was subsequently identified and combined into a checklist.

This chapter investigates the effect of the lack of technical information relating to

models. To this end, the complexity of the models was investigated to substantiate

the need to include information related to model complexity in the study reports for

more transparency. The complexity of ML models as used in this study generally

refers to the consideration of the number of parameters a model uses in its decision

making and it’s hypothesis function relative to the size of its training data size (Ris-

sanen, 1983; Myung, 2000). This is usually indicative of the models’ quality and how

well it generalize over the datasets.

This chapter develops and assesses the complexity of hypothetical SVM models with

performances representative of those found in the literature. The complexity was

measured based on the number of SVs each model used for decision making com-

pared to their training data sizes. The results of this study show that even if a study

exhibited a high classification performance, it might still have a high complexity

which is in turn a concern about its generalizability over the data as the classification

performance might have, for instance, been due to overfitting. The study therefore

recommends that studies provide complexity related information about their models

alongside classification performance results. The findings of this study have been

reported in (Olorisade et al., 2017a).
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5.1 Introduction

The study reported in this chapter addressed the need to provide information related

to the complexity of the models. The study developed SVM models and assessed the

number of SVs used by the models in decision making alongside the classification

performances. In a Support Vector Machine (SVM) model, the number of SVs is the

determinant of its complexity (See Section 2.1.1 and Figure 2.1 for more details on

SVs and SVM). 19 datasets – four from software engineering and 15 from the health-

care research – were used. The four SE datasets are from reviews by Kitchenham1,

Hall (T. Hall, Beecham, Bowes, Gray, & Counsell, 2012)2, Wahono (Wahono, 2015)

and Radjenovic (Radjenovi, Heriko, Torkar, & ivkovi, 2013). The 15 medical reviews

datasets are from the DERP dataset (A. M. Cohen et al., 2006; A. M. Cohen & Yen,

2014). The effect of feature representation techniques was also investigated in the

study by using two approaches to represent the features. The binary and Word2vec

feature representation techniques were used. The models were built using the cross

validation approach, each model was assessed using the mean of the recall, precision

and the number of SVs used.

Since it was not possible to fully reproduce any of the existing studies as reported

in Chapter 4 (Sections 4.3.1 and 4.3.3), SVM models with performance represent-

ative of what is obtainable in the existing studies were built for the purpose of this

study. The SVM algorithm has been chosen for this study because it was one of the

most widely used, used in 31% of studies on the automation of CS as reported in

Section 3.4.2.

The rest of this chapter is structured as follows: A brief background on model

selection is presented in Section 5.2 while the methodology of the study is focussed

on in Section 5.4. The outcomes of the study are highlighted in Section 5.5, followed

by the study limitations in Section 5.7 and discussions in Section 5.8. The chapter is

concluded with a summary in Section 5.9.

5.2 Model selection and complexity

The relevance of model selection in classifiers was mentioned in Section 2.2.5. The

option of selecting the best model in ML is not usually a straightforward one. The rule

of thumb is to select a model with the least generalization error (see Sections 2.2.5

and 2.4 for relevant discussions on model selection practices). A good model is one

with low generalization error and low tendency to overfit (Nannen, 2010; Rissanen,

1983). Given two possible representations or models of data, the Occam’s razor prin-

1This dataset is provided by Prof. B. Kitchenham
2The Hall, Wahono and Radjenovic datasets were recreated and used in (Z. Yu et al., 2016) and

made available by its author.
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ciple dictates that, all other things being equal, the simpler or less complex of the two

should be preferred (Domingos, 1999b, 2012). Consequently, the understanding of

this principle has generated a few controversies based on different interpretations

and drawing of unsupported conclusions between simplicity and accuracy (Domin-

gos, 2012). Simplicity in this context refers to the representation generated from a

less complex hypothesis (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987; Domin-

gos, 1999b), which may be easier to understand, and/or explained.

There are a number of ways to determine the complexity of a model, such as

Minimum Description Length (MDL) (Grünwald, 2000; Hansen & Yu, 2001) and

Kolmogorov complexity (Chaitin, 1969; Kolmogorov, 1965; Solomonoff, 1964). The

MDL seeks a model that yields a suitable balance between model accuracy and com-

plexity given the sample size and data complexity (A. Barron, Rissanen, & Yu, 1998).

Kolmogorov complexity is the length of the shortest program a finite string can be

computed from (Grünwald, 2000). Originally used in information theory, it is lately

becoming more popular in computational studies. In essence, applied to compu-

tational models, it implies the simplest hypothesis a data can be represented or ap-

proximated from. In the case of models with multiple components, the often adopted

measure of complexity is the measure of structural complexity, which is given by the

number of components of the model. This approach is valid in particular, when each

component of the model can be expected to have the same level of complexity as any

other component of the model.

5.3 Complexity in SVM classification models

The number of SVs is indicative of the complexity of the SVM classification mod-

els (Cristianini & Shawe-Taylor, 2000; Cortes & Vapnik, 1995). The statistical theory

of the SVM is based on the assumption that the algorithm uses as few SVs as possible

to make its decision (see Figure 2.1). A significant advantage of the SVM is that since

it requires only a small number of SVs, it is robust to small sample sizes or situations

where the number of features is more than the number of samples because it needs

only a few of the samples as SVs (Baharudin et al., 2010; Ikonomakis et al., 2005).

In order to benefit as much as possible from this aspect of the SVM classification,

it is important to assess a range of options for the SVM classifiers, including differ-

ent kernels and complexity penalty values (‘C’) - parameter selection (Cherkassky &

Ma, 2004b). The generalisation error of a SVM is proportional to the ratio of the

dimension of the data and the total number of vectors and also grows with the di-

mensionality of the data (Niyogi & Girosi, 1999; A. R. Barron, 1993; MIT, 2007;

Abu-Mostafa, 2012; Bartlett & Shawe-Taylor, 1999; Steinwart, 2003).

In SVM, the higher the number of SVs, the more complex the model is and the

higher the possibility of classification error and overfitting. According to A. Barron
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et al. (1998), learning in models is a function of the hypothesis, representation and

optimization. There is hardly any optimization done by a SVM model, when (almost)

all the dataset acts as SVs. Such models are almost equivalent of a nearest neighbour

classifier using all available training data. Consequently, the statistical validity of

SVM models, where a large fraction of the training data constitute SVs, is comparable

to the statistical validity of nearest neighbour classifiers based on the full training

data. As new/more data, advanced knowledge and improved algorithms become

available, complexity details is key to determining if new models are actually better

and smarter or just fitting to the data noise like (most of) the ones shown in this

study.

5.4 Complexity assessment

This study was conducted following the basic text mining steps as highlighted in Sec-

tion 2.2 (depicted in Figure 2.4). The models were developed using the SVM method.

Each model was developed using two feature representation types - binary and the

Word2vec representations, based on the four reviews datasets from SE (Kitchenham,

Hall, Wahono and Radjenovic) and 15 datasets from medical reviews (A. M. Cohen

et al., 2006; A. M. Cohen & Yen, 2014). The study process consisted of steps as

described in Section 2.2. The core of this study was conducted using methods from

the ‘sklearn’, the Natural Language Toolkit - NLTK and the gensim packages from

Python with some custom codes particularly for sentence parsing for the Word2vec

representation.

The goal of this study was to investigate complexity concerns about TM models

for automatic screening of citations in SRs and establish the need to report relevant

information about them alongside other performance measures. The investigation

was conducted by developing SVM models with similar performance to what is ob-

tainable in the literature and measure their complexities.

5.4.1 Data retrieval

Three of the software engineering datasets (Hall, Wahono and Radjenovic) were from

previous SRs recreated for the purpose of automatic CS study by (Z. Yu et al., 2016).

The Kitchenham dataset was also from a previous SR, labelled and made available

by one of the authors, Prof. Barbara Kitchenham. The 15 healthcare datasets as

mentioned in Section 5.1 are part of the DERP datasets and made open as part of the

TREC datasets. However, in contrast to the retrieval approach for the same dataset

described in Section 4.2.1.1, an alternative source was explored in this study.

The articles’ PMID provided by Cohen et al. in a supplementary file3 to (A. M.

3http://skynet.ohsu.edu/~cohenaa/systematic-drug-class-review-data.html
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Cohen et al., 2006) guided the identification and retrieval of relevant papers from

the “PubMed” database. It was noticed that one of the PMIDs is no longer valid4. The

studies and the number of documents in each review are presented in Table 5.1. The

normalized distribution of the positive to negative samples is presented in Fig. 5.1.

Table 5.1: Corpus retrieved for each review

Review
Corpus
size

Neg-
ative
class

Pos-
itive
class

Kitchenham 1704 1659 45
Hall 8911 8805 106
Wahono 7002 6940 62
Radjenovic 6000 5962 48
ACEinhibitor 2544 2503 41
ADHD 851 831 20
Antihistamines 310 294 16
AtypicalAntipsychot-
ics

1120 974 146

BetaBlockers 2072 2030 42
CalciumChannelB-
lockers

1218 1118 100

Estrogens 368 288 80
NSAIDs 393 352 41
Opioids 1915 1900 15
OralHypoglycemics 503 367 136
ProtonPumpInhibit-
ors

1333 1282 51

SkeletalMuscleRelax-
ants

1643 1634 9

Statins 3465 3380 85
Triptans 671 647 24
UrinaryIncontinence 327 287 40

5.4.2 Text preprocessing

Prior to the commencement of the preprocessing step, the datasets were initially

shuffled. Preprocessing in this study involved the process of splitting the text into

4This is a possibility hinted by Cohen et al. on the webpage. “12168612” updated to “11757504”
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Figure 5.1: Normalized distribution of relevant-irrelevant candidate articles

individual words (tokenization), removing unwanted words (stopwords) and char-

acters (numbers, special characters etc.), creating a “Dictionary” from the corpora

by merging all the corpus’ texts (for each dataset) and numerically encoding the text

data (see Section 2.2.2). The healthcare data consisted of the articles’ titles, abstracts

and the Medical Subject Heading (MeSH) as was used in (A. M. Cohen et al., 2006)

while the SE data consisted of only the titles and abstracts. The English stopwords

were removed and only the features that appeared in a minimum of two documents

and in a maximum of 80% of the corpus were retained. Following this step was the

initial splitting of the datasets for the purpose of selecting optimal parameters for

training the final model. 70% of each dataset was used for selecting optimal para-

meters for the models where the data size was above 1000 and 80% otherwise. The

seed values used across this study were chosen randomly for experimental and re-

production purposes (in line with recommendations from Section 4.5), since none of

the previous studies in the field reported any. The number of features resulting from

this operation for each of the studies is shown in Table 5.2.
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Table 5.2: Top Selected Features

Review Feature size Selected top features

Kitchenham 5436 267

Hall 11781 589

Wahono 10895 545

Radjenovic 9860 493

ACEinhibitor 5754 210

ADHD 3591 80

Antihistamines 2105 29

AtypicalAntipsychotics 4131 381

BetaBlockers 5567 194

CalciumChannelBlockers 4111 329

Estrogens 2489 233

NSAIDs 2409 242

Opioids 5512 55

OralHypoglycemics 2759 234

ProtonPumpInhibitors 3942 206

SkeletalMuscleRelaxants 5835 11

Statins 7240 467

Triptans 3035 121

UrinaryIncontinence 2315 215
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5.4.3 Feature representation

The features were represented in both binary and Word2vec forms (see Section 2.2.3

for definitions of these representations). The packages used for the preprocessing of

both features as described in Section 5.4.2 are different. While the ‘sklearn’ pack-

ages were used for the binary representation, the NLTK package (Bird, 2006) with

custom codes was used to preprocess the Word2vec representation. After removing

the stopwords and tokenizing the texts, a word to vectors model was then trained

with the aid of the Word2vec method in the gensim package. This model was used

to transform the corpus to ‘average word features’.

5.4.4 Feature selection

The dimensionality of the resulting feature vectors was reduced using the χ2 method

in the sklearn’s model selection routine to select top features that were found to be

significant at 0.05 α level according to the values reported in (A. M. Cohen et al.,

2006) for the medical datasets. Owing to the lack of any benchmark study for the

SE datasets, the same procedure was followed as closely as possible. The number of

total features and of the top features retained is shown in Table 5.2.

5.4.5 Parameter selection

The top features resulting from the operations described in Sections 5.4.2 and 5.4.4

were used in a grid search cross validation (optimizing for recall) to select the best

combination of SVM parameters that gave highest recall. Recall is the simplest metric

that can convey to a systematic reviewer how many of the relevant articles have been

correctly identified by a model. This is important in SRs (particularly in the medical

domain where it may be critical to ensure all available evidence is retrieved). Thus,

recall was made the primary metric to select the model parameters. The grid search

CV parameter was set to two to simulate the cross validation approach that was later

used for the model on the whole dataset.

5.4.6 Model training and assessment

Three types of SVM models were developed from each of the datasets:

i) binary feature with non-linear kernel

ii) Word2vec feature with linear kernel

iii) Word2vec feature with non-linear kernel

The models were trained with the best model parameters for each dataset re-

turned from the parameter selection step described in Section 5.4.5. The models
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Table 5.3: Datasets split size for cross validation

Review
Negative
sample

Positive
sample

Kitchenham 829 22

Hall 7044/1761 85/21

Wahono 5552/1388 5012

Radjenovic 4762/1200 38/12

ACEinhibitor 1252 21

ADHD 415 10

Antihistamines 147 8

AtypicalAntipsychotics 487 73

BetaBlockers 1015 21

CalciumChannelBlock-
ers

559 50

Estrogens 144 40

NSAIDs 176 21

Opioids 950 8

OralHypoglycemics 184 68

ProtonPumpInhibitors 641 26

SkeletalMuscleRelax-
ants

817 5

Statins 1690 43

Triptans 324 12

UrinaryIncontinence 143 20

were trained and assessed using the 5X2-fold CV. The CV approach was changed to

2X5-fold for the Hall, Radjenovic and Wahono datasets because they are relatively

larger. The size of train/test partitions for the negative and positive during the cross

validation is shown in Table 5.3. The training and test set was shown for the Hall,

Wahono and Radjenovic datasets that used the 2X5-fold CV while a single number

was shown for the rest of the datasets that used used the 5X2-fold CV since the train-

ing and test are equal in each fold. The CV process was described in Section 2.4.1.

Each dataset was split with different seed values on each fold run. The recall,

precision, accuracy and number of SVs were accumulated and averaged. The details

required for the reproducibility of this study as guided by the finding from Chapter 4

are provided in Appendix C. The software environment information is presented in

Table C.1.
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In CS for SRs, full recall of all relevant studies is usually the primary target. Thus,

the models with highest recall for the positive class were chosen for each review.

The results for the different models given the two variants of feature representations

and the 19 reviews are shown in Tables 5.4, 5.5 and 5.6. The performance metrics

– recall, accuracy and precision, are the mean and standard deviation values over

the ten runs. Apart from the usual recall and precision metrics, the mean and stand-

ard deviation of the number of the SVs that each of the models used in making its

classification judgements is shown - this characterises the complexity as well as the

statistical validity of the SVM classifiers as described in Section 5.3.

5.5 Results

The model assessment results (recall, precision and accuracy) are presented in this

section alongside the models’ complexity assessment indicated by the number of SVs.

Three different SVM models with similar recall performance - two built with

Word2vec features (linear and non-linear kernels), and the third with binary features

from non-linear kernels - were built for each review. The results of the Word2vec lin-

ear kernel, Word2vec non-linear kernel and the binary non-linear kernel models are

respectively presented in Tables 5.4, 5.5 and 5.6. In addition to the metrics values,

the non-linear kernel model tables (Tables 5.5 and 5.6) contain the values of three

key parameters - kernel name, C and gamma.

The Word2vec linear kernel models (Table 5.4) and the non-linear kernel (rbf

and sigmoid) models (Table 5.5) presented similar performances across all data sets.

The linear kernels exhibited poor performance with the binary features for which the

non-linear kernels showed better performance (Table 5.6). Consequently, the results

of the binary features based on linear kernel models had been excluded.

5.6 Results analysis

The results of the study is further analysed in this section. In particular, the t-test

method is used to test for any significance difference in the total number of SVs used

by the different models from the same dataset. The result of the t-test is presented

in Table 5.7. The linear kernel based (Word2vec feature) models used a significantly

(p < 0.05) fewer SVs in nine cases than their non-linear counterpart, while the non-

linear Word2vec models used fewer SVs than the linear kernel Word2vec models in

four cases. There was no significant difference between the SVs used by the two

models in the remaining six cases (Table 5.7).

In 13 cases, the linear kernel Word2vec models used fewer SVs than the binary

feature non-linear kernel models. There was no significant difference in the SVs used
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Table 5.4: Word2Vec Linear Kernel (W2V-L)

Review Mean Performance (5x2-fold CV) Support vectors configuration

precision recall accuracy neg pos parameters5

Kitchenham 0.05± 0.01 0.91± 0.08 0.56± 0.04 1029± 50 10± 1 linear, 100

Hall 0.11± 0.01 0.97± 0.04 0.90± 0.01 1778±185 12± 2 linear, 1.0

Wahono 0.07± 0.00 0.94± 0.06 0.88± 0.01 1609±113 8± 1 linear, 1.0

Radjenovic 0.05± 0.01 0.90± 0.09 0.86± 0.03 1411±184 8± 1 linear, 1.0

ACEinhibitor 0.07± 0.02 0.94± 0.04 0.78± 0.05 595± 88 7± 1 linear, 1.0

ADHD 0.08± 0.01 0.93± 0.09 0.75± 0.01 251± 43 4± 1 linear, 1.0

Antihistamines 0.06± 0.00 0.90± 0.12 0.22± 0.06 141± 6 4± 1 linear, 40.0

AtypicalAntipsychotics 0.17± 0.02 0.92± 0.05 0.40± 0.09 420± 43 25± 4 linear, 1000

BetaBlockers 0.05± 0.01 0.89± 0.07 0.63± 0.05 675± 68 8± 2 linear, 1.0

Calcium...Blockers 0.12± 0.01 0.92± 0.06 0.45± 0.07 477± 45 20± 2 linear, 100

Estrogens 0.32± 0.01 0.92± 0.06 0.56± 0.03 121± 8 12± 2 linear, 1000

NSAIDs 0.15± 0.02 1.00± 0.00 0.38± 0.06 157± 5 5± 1 linear, 1.0

Opioids 0.03± 0.00 0.81± 0.11 0.76± 0.05 482± 44 4± 1 linear, 1.0

OralHypoglycemics 0.28± 0.01 0.98± 0.02 0.30± 0.02 182± 2 33± 2 linear, 10000

ProtonPumpInhibitors 0.06± 0.01 0.91± 0.07 0.47± 0.09 542± 56 9± 1 linear, 1.0

Skeletal...Relaxants 0.01± 0.01 0.66± 0.23 0.53± 0.11 610± 83 4± 0 linear, 1.0

Statins 0.05± 0.00 0.92± 0.04 0.56± 0.06 1250± 83 14± 2 linear, 1.0

Triptans 0.06± 0.00 0.97± 0.06 0.44± 0.07 286± 16 4± 1 linear, 1.0

UrinaryIncontinence 0.20± 0.03 0.93± 0.07 0.53± 0.11 122± 15 6± 1 linear, 100
5Parameter — kernel, C, gamma

by the two models in one case and the binary non-linear kernel model used fewer SVs

in the remaining one case. In 12 cases, the Word2vec non-linear kernel models used

significantly (p <0.05) fewer SVs than the binary features non-linear kernel models

(Table 5.7). In two cases, the binary non-linear kernel models used significantly

(p <0.05) fewer SVs than the Word2vec non-linear kernel models and there was no

significant difference between the two in five cases (Table 5.7).

The number of SVs in general was large in the resulting models from the data in

this study. Practical experience has shown that the appropriate ratios for good gener-

alisation are typically 2% – 5% and less than 2% for large volumes of data. Natural

Language Processing (NLP) data is usually high dimensional and the number of data

points relative to the dimensionality of the data is relatively small. Given the previ-

ously noted reasons, i.e. that the generalisation error of SVMs grows with the number

of SVs and the dimensionality of the data, it is very important for NLP applications

of SVMs to keep the number of SVs low. The fact that many more SVs were found

in the study’s SVM classifiers may mean that in this case the SVM optimization was
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Table 5.5: Word2Vec Non-linear Kernel (W2V-NL)

Review Mean Performance (5x2-fold CV) Support vectors configuration

precision recall accuracy neg pos parameters6

Kitchenham 0.04± 0.00 0.97± 0.05 0.31± 0.12 1314± 16 10±0 rbf, 1000

Hall 0.11± 0.01 0.97± 0.04 0.90± 0.01 1778±185 12±2 sigmoid, 1000

Wahono 0.07± 0.00 0.94± 0.06 0.88± 0.01 1609±113 8± 1 sigmoid, 1000

Radjenovic 0.03± 0.01 0.97± 0.05 0.76± 0.03 2558±136 9± 1 sigmoid, 100

ACEinhibitor 0.08± 0.02 0.92± 0.06 0.82± 0.05 488± 96 7± 1 rbf, 1000, .001

ADHD 0.06± 0.01 0.99± 0.03 0.60± 0.005 386± 20 5± 1 rbf, 1000, .001

Antihistamines 0.05± 0.00 0.90± 0.12 0.19± 0.06 142± 6 4± 1 sigmoid, 1000

AtypicalAntipsychotics 0.15± 0.01 0.97± 0.04 0.26± 0.09 476± 5 16±3
sigmoid, 10000,
.001

BetaBlockers 0.05± 0.01 0.89± 0.07 0.63± 0.05 675± 68 8± 2
sigmoid, 1000,
.001

Calcium...Blockers 0.11± 0.01 0.94± 0.06 0.35± 0.10 517± 37 20±2 sigmoid, 10000

Estrogens 0.26± 0.02 0.97± 0.04 0.39± 0.08 138± 4 12±1 sigmoid, 10000

NSAIDs 0.18± 0.02 1.00± 0.01 0.53± 0.06 139± 10 5± 1 sigmoid, 1000

Opioids 0.01± 0.00 1.00± 0.00 0.45± 0.05 890± 25 4± 1 sigmoid, 10

OralHypoglycemics 0.27± 0.03 1.00± 0.00 0.27± 0.00 183± 1 40±7 sigmoid, 1000

ProtonPumpInhibitors 0.04± 0.00 0.97± 0.04 0.15± 0.12 637± 7 9± 1
sigmoid, 100,
.001

Skeletal...Relaxants 0.01± 0.00 0.96± 0.12 0.29± 0.13 763± 50 4± 1 rbf, 100, .001

Statins 0.03± 0.00 0.99± 0.01 0.26± 0.07 1647± 27 14±1
sigmoid, 100,
.001

Triptans 0.06± 0.01 0.98± 0.05 0.40± 0.07 292± 15 4± 1 sigmoid, 100

UrinaryIncontinence 0.20± 0.04 0.93± 0.07 0.52± 0.12 123± 15 6± 1 rbf, 10000
6Parameter — kernel, C

complicated and slow, which eventually lead to an early stop of the optimizers before

achieving any significant optimization. Consequently, the statistical validity of these

results was likely to be relatively limited, or in other words the likely error bounds

were large and the likelihood of wrong classifications was also relatively large. The

models from three of the SE datasets (Hall, Wahono and Radjenovic) might have

however learnt better and show lower complexity since they used only about 30%

of their training data as SVs. This might be because their data size is larger than

the rest, so the model had enough examples to learn from and make a more robust

decision relying on fewer number (ratio) of data samples.
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Table 5.6: Binary Non-linear Kernel (B-NL)

Review Mean Performance (5x2-fold CV) Support vectors configuration

precision recall accuracy neg pos parameters7

Kitchenham 0.06± 0.01 0.90± 0.12 0.61± 0.01 1326± 3 26± 2 rbf, 1.0

Hall 0.27± 0.03 0.94± 0.05 0.97± 0.00 2813±173 41± 2 sigmoid, 1.0

Wahono 0.18± 0.02 0.86± 0.06 0.96± 0.00 2102± 84 36± 2 sigmoid, 1.0

Radjenovic 0.14± 0.03 0.76± 0.10 0.96± 0.01 1958± 79 28± 1 sigmoid, 1.0

ACEinhibitor 0.12± 0.02 0.82± 0.08 0.90± 0.02 964± 104 16± 1
sigmoid, 1.0,
.001

ADHD 0.12± 0.01 0.95± 0.05 0.83± 0.02 390± 31 9± 1 rbf, 1.0, .001

Antihistamines 0.06± 0.03 0.53± 0.40 0.50± 0.37 146± 3 7± 1 rbf, 10, .001

AtypicalAntipsychotics 0.23± 0.03 0.86± 0.07 0.59± 0.09 477± 14 47± 3 rbf, 1.0, auto

BetaBlockers 0.06± 0.02 0.82± 0.16 0.67± 0.24 986± 63 14± 1
sigmoid, 1.0,
.001

Calcium...Blockers 0.22± 0.04 0.77± 0.06 0.74± 0.06 499± 25 34± 2 rbf, 1.0, auto

Estrogens 0.39± 0.03 0.93± 0.07 0.66± 0.04 136± 3 27± 1 rbf, 1.0, auto

NSAIDs 0.30± 0.04 0.93± 0.03 0.76± 0.04 173± 3 14± 1 rbf, 10, .0001

Opioids 0.10± 0.09 0.74± 0.22 0.73± 0.37 947± 9 7± 1
sigmoid, 1.0,
.001

OralHypoglycemics 0.28± 0.01 0.97± 0.05 0.33± 0.04 183± 1 43± 3
sigmoid, 1.0,
.001

ProtonPumpInhibitors 0.10± 0.01 0.82± 0.12 0.71± 0.07 602± 48 17± 2 rbf, 1.0, .001

Skeletal...Relaxants 0.00± 0.00 0.01± 0.00 1.00± 0.00 817± 0 5± 1 rbf, 1.0, .001

Statins 0.08± 0.02 0.82± 0.09 0.75± 0.07 1439±147 31± 2
sigmoid, 1.0,
.001

Triptans 0.12± 0.02 0.82± 0.12 0.76± 0.09 309± 31 10± 1 rbf, 1.0, .001

UrinaryIncontinence 0.37± 0.06 0.80± 0.08 0.80± 0.05 135± 10 15± 2
sigmoid, 1.0,
auto

7Parameter — kernel, C, gamma

5.7 Threats to study validity

The study is mainly limited by threats affecting its external validity caused by the

specific datasets used, the values of the parameters and data partitions. The per-

formances of the SVMs used in this study are not necessarily generalizable. The

majority of the sample sizes are quite small with considerably imbalanced classes.

Though, this characteristics is representative of the real life systematic reviews data-

sets and attempts were made to reduce the effect of a one-off result through cross

validation and averaging the performance results.

During the grid search for the model with the best recall, the results were limited

to the bound of values set for each parameter. It was impractical for us to exhaust

105



Chapter Five – Reporting model complexity in CS studies

Table 5.7: Paired t-test result for difference in number of SVs

Study No.
W2V-L vs
W2V-NL

W2V-L vs
B-NL

W2V-NL vs
B-NL

Kitchenham 0.0000*,- 0.0042*,- 0.0051*,-

Hall 0.8905 0.0042*,- 0.0051*,-

Wahono 0.9985 0.0042*,- 0.0051*,-

Radjenovic 0.0000*,- 0.0042*,- 0.0.0051*+

ACEinhibitors 0.0248*,+ 0.0000*,- 0.0000*,-

ADHD 0.0000*,+ 0.0000*,- 0.489

Antihistamines 0.0000*,- 0.0019*,- 0.0026*,-

AtypicalAntipsychotics 0.0319*,+ 0.0005*,+ 0.0048*-

BetaBlockers 1.00 0.0000*,- 0.0000*,-

Calcium...Blockers 0.0615 0.0583 0.793

Estrogens 0.0004*,- 0.0000*,- 0.0000*,-

NSAIDS 0.0002*,+ 0.0000*,- 0.0000*,-

Opioids 0.0000*,- 0.0000*,- 0.0000*,-

OralHypoglycemics 0.0043*,- 0.0000*,- 0.375

ProtonPumpInhibitors 0.0007*,- 0.0136*,- 0.132

Skeletal...Relaxants 0.0003*,- 0.0000*,- 0.0098*,-

Statins 0.0000*,- 0.0025*,- 0.0036*,+

Triptans 0.4704 0.0333*- 0.0745

UrinaryIncontinence 0.9361 0.0042*- 0.0051*,-

* indicates cases where there is significant difference based on p-values (<0.05);
+ indicates the first model used more number of SVs;
- indicates the first model used fewer number of SVs.

all viable values, especially for ‘C’ and gamma. The values were however carefully

chosen around the set of values where the models have shown to exhibit better per-

formance and control overfitting. Similarly, it was impractical to explore setting the

seed to every possible values beyond the ones reported, therefore the outcome of all

randomization possibilities could not be explored and their effect on data partitions

and the results. Other seed values could have had effect on the results observed for

recall and precision, the effects may not have been significant and there was no indic-

ation the number of SVs used by each model could have been significantly reduced

due to this.
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5.8 Discussion

The results of this study and its analysis show that the models with binary features

and non-linear kernel, show a higher number of SVs than the Word2vec based models

that were built using the linear and non-linear kernels - Figures 5.2 and 5.3 show

respectively, bar plots of normalized ratios of the number of negative and positive

SVs used by each model in each review.
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Figure 5.2: Normalized size ratio of negative SVs

This difference in the number of SVs is particularly noticeable in cases where the

sample sizes are substantial with high class-imbalance. It was sufficient to use linear

kernels to achieve high classification performance with the Word2vec representation

of the features of the classified texts - the results obtained with non-linear kernels are

similar. In the case of binary feature representation, the same performance level or
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Figure 5.3: Normalized size ratio of positive SVs

higher can be achieved only with non-linear kernels. This indicates that the separator

of the two classes in the data has a more non-linear nature in the case of text repres-

entation using binary features. Tables 5.4 and 5.5 show that models generated using

Word2vec features have comparable performances and in some cases the number of

SVs for the linear kernels were significantly smaller than for non-linear kernels and

in other cases the reverse was true. Tables 5.4, 5.5 and 5.6 show that models us-

ing the Word2vec and binary features could have similar performances, however the

number of SVs were significantly higher for models working with binary features and

non-linear kernels. The bar charts of the average number of negative and positive

samples used as SVs with their respective error margins by the different models are

displayed in Figures 5.4 and 5.5.

Two approaches for feature representation binary and average word vector were

explored. The binary features were better modelled by SVMs with non-linear kernels,

while the average word vector features have a possibility of being modelled by either

the linear or the non-linear kernel were explore machines for each review. With this
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Figure 5.4: Negative samples used as training and SVs

approach, three models with similar performance for each of the reviews were stud-

ied. Taking complexity into account and the principles of model selection discussed

in Section 5.2, the preferred SVM models are the ones that use linear kernels in most

of the cases. The linear kernel based models were less complex than the non-linear

ones in terms of the number of SVs in seven or 13 cases (as the case may be) and have

comparable data description performance (i.e. recall and precision) with the models

with non-linear kernels. This study has shown that it is possible for a model with

high performance to have high complexity. Therefore, it is not sufficient to report
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Figure 5.5: Positive samples used as training and SVs

only the performance results without complexity information. The study has also

shown that using different feature types could lead to different level of complexity in

models from the same data. Therefore, it is beneficial to explore and report a range

of model parameters and particularly feature representations before optimisation of

machine learning based models used for text classification.

Of course, results would be different for datasets with different class distributions

and size. However, currently available SR datasets are relatively small for effect-

ive robust model learning and are typically highly imbalanced. The larger SE data-

sets showed more robust learning by using the smallest SV ratio particularly in the

Word2vec feature based models. This is indicative of the role of dataset size in im-

proved model learning, better generalization and invariably reduced complexity of

models. Therefore, in order to reduce the number of SVs in a SVM model, an alternat-
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ive way may be to increase the dataset size using the over-sampling method (Wallace,

Trikalinos, et al., 2010; A. M. Cohen, 2006). This method had been used in previous

studies, but the number of SVs were not reported; which was the main issue being

addressed by this study reporting of more details for improved third party ‘under the

hood’ understanding of the models’ quality and performances.

Providing such information will not only be fulfilling a basic scientific requirement

to aid comprehensibility and reproducibility but also help independent researchers

who may be relying on or researching into such models see beyond performance

metrics. They may then be able to answer the ‘why’ question of ‘what’ they observe

which may lead to the process of ‘how’ it can be improved.

5.9 Summary

The study reported in this chapter has investigated the possibility of complexity and

validity concerns surrounding the TM models currently being proposed for the auto-

matic screening of citations in systematic reviews. The study consequently made a

case on the need for study reports in this field to contain alongside classification per-

formance results, model related information revealing the complexity and validity of

such models. This will first be in compliance with the scientific knowledge require-

ment with this type of research and in addition, give independent researchers a better

understanding of the model and more grounds for reproducibility, comparability and

improvement.

Complexity is a phenomenon common to all models, however, the specific com-

plexity measure differ from model to model. In some models, it may be determined

by the number of estimators or the count of non-zero points; in a tree algorithm

it may be measured by the number depth of the tree and the number of leaves.

This study only illustrated with the SVMs. The complexity information will indic-

ate whether a model had actually learnt from or fit to the noise of its underlying

data. The results of the study has shown that it is possible for a model to have good

performance but still have inherent complexity and validity concerns. It has thus

justified the need to provide corresponding information on these key concepts as a

scientific need, for quality assessment and for the purpose of further research.

The study experimented with 19 reviews datasets - four from software engineer-

ing and 15 from the medical research. Support vector machines were developed

based on binary features and Word2vec features. Represented with the binary fea-

tures, the datasets were found not to be linearly separable by the SVM. However, this

changed with the Word2vec representation. On the average, the Word2vec features

based models with linear kernels also used fewer SVs than their non-linear kernel

counterpart and the binary features based models with non-linear kernels.

The results of the study have shown that it is possible for a model to exhibit good
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performance but have inherent complexity and validity concerns. Thus, it justified

the need for the provision of complexity related information specific to each model

in reports to facilitate understanding, reproduction and extension of the studies. The

findings in this study have also provided the basis for investigation into how the

performance observed can be improved without increasing the models’ complexities.

This idea will be explored in Chapter 6 where it will be investigated whether using

bibliography data can improve the quality of input to compensate for the relatively

small data sizes and class imbalance between the relevant and irrelevant articles and

eventually improve the classification performance of the models.
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CHAPTER 6

Feature Enrichment

T he complexity study reported in Chapter 5 identified the risk of high com-

plexity in existing models being proposed for automatic CS in SRs. This is

potentially as a result of small datasets and thus motivated the need for study reports

to include information that may reveal the level of complexity of the proposed mod-

els. This chapter investigates the effect of using bibliography information to try to

improve the performance of models without increasing their complexity. The study

uses the same dataset and follows the same process as in Section 5.4 but in this case

two sets of features are prepared for each dataset, one as in Section 5.4 and the

second with bibliography features added. The performance and complexity (in terms

of the number of SVs used) of models from each corresponding set are compared and

a t-test is used to investigate any actual difference in the complexities based on the

number of SVs. The findings in this study indicated that the inclusion of bibliography

data holds the potential to improve the performance of the automatic CS models.

Though, no definitive pattern could be drawn on the effect of the bibliography in-

formation on the performance of the CS models in the DERP datasets and one (the

smallest) of the SE datasets, it is however clear that the inclusion of the bibliography

data is more likely to improve or sustain the model performance than impair it.

6.1 Introduction

The study reported in this chapter investigated the effect of adding bibliography data

to the articles’ titles and abstracts that was used in the complexity study reported

in Chapter 5. This study used the same datasets and classification models as used

in the complexity study (Chapter 5). In addition, the bibliography data for each

candidate article was downloaded, cleaned and added as input data for the TM pro-

cess. The pre-processing and feature representation was the same as described in

Sections 5.4.2 and 5.4.3 respectively. The feature selection stage however explored

the use of (new) variable α values for the χ2 method in contrast to the uniform 5%
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value recommended in (A. M. Cohen et al., 2006) for the DERP datasets. This is par-

ticularly motivated from the fact that no such benchmark existed for the SE datasets.

It also served as an opportunity to explore other values for the DERP datasets. The

goal of feature selection was to reduce the feature vector dimension by selecting the

smallest possible top features that resulted in the highest performance of the model

been built.

The rest of this chapter is structured as follows: An overview of the class imbal-

ance problem is presented in Section 6.2. The conduct of the study is presented in

Section 6.3 with results in Section 6.4. The limitations to the study are highlighted

in Section 6.5 followed by discussion in Section 6.6 and a summary to the chapter in

Section 6.7.

6.2 Mitigating class imbalance effect

As discussed in Section 2.1, supervised ML algorithms typically learn patterns under-

lying the example data and project the knowledge to predict similarity or otherwise

of new data to the learned example (Murphy, 2012). A major problem in using these

algorithms for classification purposes in automatic CS is the small number of relev-

ant (positive class) examples to learn from compared to the number of irrelevant

(negative class) examples. The proportion of relevant to irrelevant class examples

is typically 1%-5% of the total data size. This situation is referred to as class imbal-

ance (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Imbalanced data classes impair

the performance of classification models in ML.

Owing to the highly imbalanced nature of the data classes in SRs and its con-

sequent effect, researchers working on automating the CS stage continue to explore

ways to make up for the shortage of relevant class examples.

Some of the methods the community have explored to address this situation are:

a Cost Assignment: Assignment of different costs or weights to training samples (Domin-

gos, 1999a).

b Data resampling: The repeated sampling of the original data either by over-

sampling or under-sampling (Japkowicz, 2000; Kubat & Matwin, 1997):

• Over-sampling: This involves including repeated or multiple instances of

the minority class samples to make up for its under-representation during

training.

• Under-sampling: The process of under-sampling involves reducing the

samples of the majority class to create a ‘reasonable’ representation pro-

portion between the majority and the minority class samples.
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c SMOTing: Using the synthetic data produced from the Synthetic Minority Over-

sampling Technique (SMOTE) (Chawla et al., 2002). The SMOTE combines

both the over-sampling and under-sampling techniques to produce new data

samples of both classes in the proportion specified by the user.

d Feature enrichment: An approach used in text classification to improve model

performance by adding other possibly useful information, sometimes from (ex-

ternal) sources (Hu et al., 2008; P. Wang & Domeniconi, 2008). In the context

of automatic CS with TM techniques it can be said to be the inclusion of other

data beyond title and the abstract (that would have been ordinarily assessed

by a human) e.g. pre-trained embedding (sometimes from external sources),

keywords, subject classification data, cited articles etc. to provide more inform-

ation that could potentially strengthen the probability of identifying similarities

or differences between articles (P. Wang & Domeniconi, 2008; Hu et al., 2008;

Khabsa et al., 2016).

Despite these efforts, there is yet to be an acceptable solution to the problem of

stemming the effect of class imbalance in building TM models to automatically screen

citations. The use of bibliography information to enrich the dataset is explored in the

study reported in this chapter.

Introducing external data as a way of enriching the base data is one way the com-

munity continue to explore to tackle the effect of class imbalance on model learning.

This approach attempts to leverage the machine speed and power by increasing the

basic textual input data (titles and abstracts) to provide (possibly) more information

from each article that could further show which ones are related or not.

One of the earliest attempts at feature enrichment in automatic CS research was

the addition of Medical Subject Heading (MeSH) and the MEDLINE publication type

data to the abstract and title (A. M. Cohen et al., 2006). A number of studies have

used a similar approach. In (Bekhuis & Demner-Fushman, 2010) the authors men-

tion using metadata alongside title and abstract and the authors of (A. M. Cohen,

2008) mention using MeSH and Natural Language Processing (NLP) features. Katia

R Felizardo et al. (2012) used the mapping of citations to the contents that contain

them to create article clusters for the identification of relevant citations.

Khabsa et al. used co-citation and clustering features to improve the feature

quality of 15 SRs dataset in (Khabsa et al., 2016). For co-citation they worked on the

assumption that if two articles are cited together in a third article, then both articles

are likely to be on a similar subject. Therefore, either of the two articles that was

not initially included in the dataset to be classified is retrieved and included as a

positive sample. They further used the brown clustering algorithm (Brown, Desouza,

Mercer, Pietra, & Lai, 1992) to create word clusters containing related words. With

the cluster, each word is represented with a code that refers to a cluster of similar

115



Chapter Six – Feature Enrichment

words which might have appeared in the training corpus.

6.3 Feature enrichment study

This study followed and built on the process described in Section 5.4. Any differences

are highlighted in this section. The goal of this study is to investigate the effect of

using the bibliography data to enrich the input data - title and abstract, in automatic

CS with TM techniques on the overall performance of the classification models.

6.3.1 Data retrieval

As indicated in the introduction to this section, the conduct of this study derive from

the approach described in Section 5.4. This section therefore is built upon the data

retrieval process described in Section 5.4.1. However, in this study, two sets of data

were prepared for each of the 19 reviews used. The first set - TiAbs(MeSH), contained

title and abstract with an additional MeSH feature for the 15 clinical review datasets.

The second set - TiAbs(MeSH)Ref, contained the first set and the full reference list

for each candidate article (where available, accessible and retrievable).

Based on the data retrieval process described in Section 5.4.1, the TiAbs(MeSH)

set were readily available. Custom scripts were written to automatically search and

retrieve the reference list to make up set two. The process followed to retrieve the

reference list for each candidate article in each of the two reviews set (SE and EPC)

used is described below:

i) SE dataset

a) the full article link provided for the four SE reviews were used to search

for the articles in the publishers’ website.

b) where possible and available the bibliography for each candidate article

were automatically extracted.

ii) EPC dataset

a) the PMIDs provided in the supporting material to (A. M. Cohen et al.,

2006) were used to automatically search the pubmed database1 for avail-

able information on each candidate article content of each of the candid-

ate.

b) the information of the publisher(s) providing access to the full content of

each article were scraped from the information.

1https://www.ncbi.nlm.nih.gov/pubmed/
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c) this information (if one was found) was used to traverse the publishers’

site for an attempt to retrieve the desired reference list for each of the

candidate articles

The retrieved reference texts were initially cleaned of Hypertext Markup Language

(HTML) tags and any Universal Resource Locator (URL) information before being

merged with TiAbs(MeSH) data to form the set two data - TiAbs(MeSh)Ref.

6.3.2 Feature selection

The top features (selected after ranking) to reduce the dimension of resulting fea-

ture vector were determined using the χ2 method as was described in Section 5.4.4.

However, instead of selecting the top 5% features (α = 0.05, refer to Section 2.2.4.1

for discussion on χ2 and α in feature selection context) as used in (A. M. Cohen et al.,

2006), a set of fresh values (between 1% and 50%) were explored mainly because

no study has established such benchmark for the SE datasets and also to investigate

other possible values for the DERP datasets. This goal was achieved by setting the

α-value in the sense of optimality defined in this study.

The rest of the steps not described are the same as was described in Section 5.4

6.4 Results

The findings from the study are presented in this section.

6.4.1 Data retrieval

The number of candidate articles for each review and their class distribution is shown

in Table 5.1. The number of references found per review is shown in Table 6.1 with

detailed distribution according to the classes in Table 6.2.

6.4.2 Feature representation

As was discussed in Section 5.4.3, the binary features produced good results only

with the non-linear kernels of the SVM. The Word2vec feature representation on the

other hand showed comparable performance with both the linear and non-linear ker-

nels of the SVM. Therefore, models were built from the binary-non-linear, Word2vec-
linear and Word2vec-non-linear feature representation-SVM kernel combinations.

6.4.3 Dimensionality reduction

Setting α = 5% for χ2 in Section 5.4.4 did not result in the exact values as given

in (A. M. Cohen et al., 2006) for the DERP datasets, this in addition to the fact that
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Table 6.1: Number of references retrieved per study

Review Not found Found

Kitchenham 60 1644

Hall 408 8503

Wahono 313 6689

Radjenovic 347 5653

ACEinhibitor 1533 1011

ADHD 484 367

Antihistamines 192 118

AtypicalAntipsychotics 707 413

BetaBlockers 1182 890

Calcium...Blockers 770 448

Estrogens 206 162

NSAIDs 223 170

Opioids 1123 791

OralHypoglycemics 295 205

Proton..Inhibitors 802 531

Skeletal...Relaxants 1079 564

Statins 2040 1425

Triptans 367 304

UrinaryIncontinence 178 149
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Table 6.2: Class distribution of retrieved references

Review
Positive class Negative class

Not found Found Not found Found

Kitchenham 2 43 58 1601

Hall 1 105 407 8398

Wahono 2 60 311 6629

Radjenovic 1 47 346 5616

ACEinhibitor 24 27 1509 994

ADHD 7 13 477 354

Antihistamines 12 4 180 114

AtypicalAntipsychotics 77 69 630 344

BetaBlockers 15 27 1167 863

Calcium...Blockers 44 56 726 392

Estrogens 41 39 165 187

NSAIDs 20 21 203 149

Opioids 8 7 1116 784

OralHypoglycemics 68 68 230 138

Proton...Inhibitors 23 28 779 503

Skeletal...Relaxants 5 4 1074 560

Statins 47 38 1993 1387

Triptans 7 17 360 287

UrinaryIncontinence 18 22 160 127
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there exists no known similar benchmark on the SE datasets, informed the decision

to explore different values to confirm which value would result in a reduced vector

dimension with highest ‘acceptable recall’ value. ‘Acceptable recall’ value in this con-

text implied the highest possible value of recall where the model still exhibited some

discriminatory power over the dataset. It was interesting to find that better recall

values can be obtained for the datasets at values of α other than 0.05.

Starting with the binary features of the TiABs(MeSH) data, it was found that

each of the datasets performed best for different α-values with the χ2 method used.

However, the majority of the datasets seemed to start recording high (≥ 90%) recall

performance at around α = 5% top percentile value. The performance around the 5%

percentile is consistent with the findings reported in (A. M. Cohen et al., 2006). The

different alpha values used and their corresponding feature size for the TiAbs(MeSH)

data are presented in Table 6.3a. The TiAbs(MeSH) data recall performance results

are used as a benchmark to search for the appropriate reduced dimension of the

TiAbs(MeSH)Ref data that will produce equal, close enough or better recall per-

formance than was initially observed in the TiAbs(MeSH) feature SVM models. The

resulting feature sizes and their corresponding α values are shown in Table 6.3b.

6.4.4 Model assessment

6.4.4.1 Performance measures

With the binary feature, the TiAbs(MeSH)Ref data exhibited better recall values than

the TiAbs(MeSH) data in 12 reviews, equal in four and worse in two. The models

could not produce any useful results for the ‘SKeletalMuscleRelaxants’ data despite

the fact that it is larger than some other datasets in the collection. This might be

because it has the smallest number of positive candidates (9 compared to the negative

class size of 1634, see Table 6.2).

Tables 6.5a and 6.5b show the results of the SVM linear models for the TiAbs(MeSH)

and TiAbs(MeSH)Ref Word2vec features respectively. The tables show that the Ti-

Abs(MeSH)Ref data has higher recall in nine reviews, lower in seven reviews and

equal to the TiAbs(MeSH) data in three reviews.

With the Word2vec feature representation and SVM non-linear kernels, the Ti-

Abs(MeSH)Ref data showed higher recall in six reviews (Table 6.6b), lower recall

values in nine reviews and equal recall values in four reviews compared to the Ti-

Abs(MeSH) data (Table 6.6a).

Considering the MCC, which is a measure that takes all the four basic model

performance measures (TN,FN, TP and FP ) into account, the TiAbs(MeSH)Ref

data recorded higher values in 11 of the 19 reviews compared to the TiAbs(MeSH)

data with the non-linear kernel of the SVM and Word2vec feature (Tables 6.6b

and 6.6a). For the binary feature the TiAbs(MeSH) feature (Table 6.4a) recorded
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Table 6.3: χ2 selected top features

(a) TiAbs(MeSH) data

Reviews Initial size α value final size

Kitchenham 5730 4 227

Hall 11834 8 947

Wahono 11137 6 668

Radjenovic 10165 5 508

ACEinhibitor 4933 5 246

ADHD 3017 4 122

Antihistamines 1570 2 31

AtypicalAntipsychotics 3237 3 98

BetaBlockers 4724 4 192

Calcium...Blockers 3462 4 138

Estrogens 1861 18 339

NSAIDs 1790 21 376

Opioids 4661 1 46

OralHypoglycemics 2112 10 211

Proton...Inhibitors 3299 5 165

Skeletal...Relaxants 4826 1 48

Statins 6150 5 308

Triptans 2372 5 118

UrinaryIncontinence 1691 30 5075

(b) TiAbs(MeSH)Ref data

Reviews Initial size α value final size

Kitchenham 20095 3.8 763

Hall 44302 5 2215

Wahono 41800 2 836

Radjenovic 33929 1 339

ACEinhibitor 3808 1.8 248

ADHD 7680 4 307

Antihistamines 2983 3.5 105

AtypicalAntipsychotics 7920 3 236

BetaBlockers 14510 4 580

Calcium...Blockers 90332 6 542

Estrogens 4780 10 478

NSAIDs 4457 21 936

Opioids 12034 0.9 116

OralHypoglycemics 5050 8 404

Proton...Inhibitors 8251 2.5 206

Skeletal...Relaxants 11723 1 118

Statins 19454 3 584

Triptans 4969 3 150

UrinaryIncontinence 3634 15 545 121
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Table 6.4: Binary feature non-linear kernel

(a) TiAbs(MeSH) data

Reviews
Mean Performance Support vectors Configuration

precision recall accuracy WSS MCC neg pos parameters2

Kitchenham 0.04±0.01 0.93±0.04 0.44±0.16 0.35±0.11 0.12±0.03 1352 ± 1 25 ± 1 rbf, 1.0

Hall 0.33±0.03 0.93±0.04 0.98±0.00 0.90±0.04 0.55±0.03 2238 ± 152 48 ± 2 sigmoid, 1.0

Wahono 0.19±0.02 0.91±0.09 0.97±0.00 0.86±0.09 0.41±0.05 1947 ± 84 38 ± 2 sigmoid, 1.0

Radjenovic 0.13±0.03 0.77±0.11 0.96±0.01 0.72±0.11 0.31±0.05 1961 ± 96 28 ± 1 sigmoid, 1.0

ACEinhibitor 0.14±0.02 0.84±0.06 0.91±0.02 0.74±0.05 0.32±0.03 898 ± 58 15 ± 1 sigmoid, 1.0, .001

ADHD 0.13±0.02 0.95±0.05 0.85±0.02 0.78±0.05 0.32±0.03 316 ± 33 10 ± 0 rbf, 1.0, .001

Antihistamines 0.06±0.02 0.59±0.37 0.46±0.35 0.04±0.07 0.02±0.04 139 ± 16 8 ± 0 rbf, 10, .001

AtypicalAntipsychotics 0.22±0.02 0.81±0.04 0.59±0.06 0.32±0.04 0.25±0.03 465 ± 16 39 ± 2 rbf, 1.0

BetaBlockers 0.05±0.02 0.91±0.10 0.63±0.17 0.52±0.11 0.17±0.04 1009 ± 15 14 ± 2 sigmoid, 1.0, .001

Calcium...Blockers 0.23±0.03 0.77±0.07 0.76±0.04 0.49±0.06 0.33±0.04 441 ± 30 29 ± 2 rbf, 1.0

Estrogens 0.36±0.03 0.97±0.03 0.61±0.05 0.38±0.04 0.41±0.04 141 ± 2 28 ± 2 rbf, 1.0

NSAIDs 0.33±0.04 0.94±0.06 0.79±0.03 0.64±0.04 0.48±0.04 165 ± 9 15 ± 2 rbf, 10, .0001

Opioids 0.06±0.05 0.81±0.22 0.55±0.45 0.36±0.32 0.13±0.12 904 ± 136 6 ± 1 sigmoid, 1.0, .001

OralHypoglycemics 0.29±0.02 0.97±0.05 0.33±0.07 0.05±0.05 0.09±0.07 184 ± 0 40 ± 4 sigmoid, 1.0, .001

Proton...Inhibitors 0.08±0.02 0.88±0.08 0.61±0.11 0.46±0.07 0.19±0.03 624 ± 30 16 ± 1 rbf, 1.0, .001

Skeletal...Relaxants 0.00±0.00 0.00±0.00 0.99±0.00 0.00±0.00 0.00±0.00 735 ± 103 4 ± 0 rbf, 1.0, .001

Statins 0.06±0.01 0.87±0.08 0.67±0.10 0.52±0.04 0.18±0.02 1584 ± 114 27 ± 2 sigmoid, 1.0, .001

Triptans 0.11±0.04 0.81±0.14 0.68±0.21 0.47±0.11 0.22±0.06 307 ± 27 10 ± 1 rbf, 1.0, .001

UrinaryIncontinence 0.25±0.01 0.88±0.12 0.55±0.25 0.35±0.18 0.28±0.15 143 ± 2 17 ± 1 sigmoid, 1.0, auto

2Parameter — kernel, C, gammaa

aIn this and similar following tables, the default ‘auto’ value is used for gamma where not explicitly
stated. Note that the value used by the algorithm in such a case remains unknown

(b) TiAbs(MeSH)Ref data

Reviews
Mean Performance Support vectors Configuration

precision recall accuracy WSS MCC neg pos parameters3

Kitchenham 0.03 ± 0.01 0.94 ± 0.0 0.24 ± 0.21 0.16 ± 0.16 0.06 ± 0.05 1327 ± 1 28 ± 1 rbf, 1.0

Hall 0.36 ± 0.04 0.93 ± 0.0 0.98 ± 0.00 0.90 ± 0.08 0.24 ± 0.57 2002 ± 244 37 ± 2 sigmoid, 1.0

Wahono 0.13 ± 0.04 0.94 ± 0.00 0.94 ± 0.02 0.87 ± 0.06 0.33 ± 0.06 2408 ± 491 32 ± 3 sigmoid, 1.0

Radjenovic 0.09 ± 0.01 0.85 ± 0.01 0.93 ± 0.01 0.78 ± 0.11 0.26 ± 0.03 1642 ± 237 15 ± 1 sigmoid, 1.0

ACEinhibitor 0.06 ± 0.02 0.84 ± 0.11 0.70 ± 0.24 0.53 ± 0.19 0.17 ± 0.06 1250 ± 3 13 ± 2 sigmoid, 1.0, .001

ADHD 0.12 ± 0.03 0.91 ± 0.08 0.82 ± 0.06 0.71 ± 0.04 0.28 ± 0.04 348 ± 50 8 ± 1 rbf, 1.0, .001

Antihistamines 0.06 ± 0.02 0.65 ± 0.33 0.42 ± 0.34 0.05 ± 0.1 0.03 ± 0.06 144 ± 10 8 ± 0 rbf, 10, .001

AtypicalAntipsychotics 0.15 ± 0.03 0.95 ± 0.07 0.27 ± 0.17 0.10 ± 0.13 0.09 ± 0.1 487 ± 1 42 ± 3 rbf, 1.0

BetaBlockers 0.04 ± 0.02 0.90 ± 0.14 0.46 ± 0.27 0.34 ± 0.19 0.11 ± 0.05 1015 ± 0 17 ± 2 sigmoid, 1.0, .001

Calcium...Blockers 0.12 ± 0.03 0.92 ± 0.08 0.41 ± 0.17 0.26 ± 0.11 0.17 ± 0.06 556 ± 7 37 ± 2 rbf, 1.0

Estrogens 0.23 ± 0.01 0.99 ± 0.01 0.29 ± 0.05 0.07 ± 0.05 0.13 ± 0.05 143 ± 2 31 ± 2 rbf, 1.0

NSAIDs 0.35 ± 0.02 0.96 ± 0.04 0.81 ± 0.02 0.67 ± 0.04 0.50 ± 0.03 160 ± 4 18 ± 0 rbf, 10, .0001

Opioids 0.06 ± 0.08 0.83 ± 0.23 0.38 ± 0.46 0.21 ± 0.27 0.1 ± 0.14 909 ± 124 6 ± 1 sigmoid, 1.0, .001

OralHypoglycemics 0.28 ± 0.02 0.97 ± 0.05 0.32 ± 0.03 0.05 ± 0.05 0.06 ± 0.07 181 ± 1 48 ± 4 sigmoid, 1.0, .001

Proton...Inhibitors 0.08 ± 0.03 0.90 ± 0.09 0.48 ± 0.26 0.35 ± 0.19 0.15 ± 0.08 633 ± 16 16 ± 2 rbf, 1.0, .001

Skeletal...Relaxants 0.00 ± 0.00 0.1 ± 0.03 0.89 ± 0.3 0.00 ± 0.00 0.00 ± 0.00 583 ± 191 4 ± 0 rbf, 1.0, .001

Statins 0.06 ± 0.01 0.87 ± 0.08 0.66 ± 0.09 0.52 ± 0.06 0.17 ± 0.02 1602 ± 108 28 ± 3 sigmoid, 1.0, .001

Triptans 0.09 ± 0.05 0.86 ± 0.15 0.47 ± 0.36 0.30 ± 0.25 0.14 ± 0.12 318 ± 18 9 ± 1 rbf, 1.0, .001

UrinaryIncontinence 0.21 ± 0.05 0.90 ± 0.07 0.55 ± 0.15 0.35 ± 0.12 0.27 ± 0.08 143 ± 2 15 ± 1 sigmoid, 1.0

3Parameter — kernel, C, gamma

better MCC values than the TiAbs(MeSH)Ref feature (Table 6.4b) in all the reviews.

With the linear SVM kernel and Word2vec feature however, the TiAbs(MeSH)Ref data

(Table 6.5b) showed higher MCC values than the TiAbs(MeSH) data (Table 6.5b) in

nine reviews and equal values in one review.

The TiAbs(MeSH)Ref data appeared to be saving more work over random sampling

in 15 out of the 19 reviews (see WSS in Table 6.6b and 6.6a). Given the binary fea-
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Table 6.5: Word2vec feature with linear SVM kernel

(a) TiAbs(MeSH) data

Reviews
Mean Performance Support vectors Configuration

precision recall accuracy WSS MCC neg pos parameters4

kitchenham 0.06 ± 0.01 0.91 ± 0.08 0.59 ± 0.04 0.48 ± 0.08 0.16 ± 0.02 957.0 ± 79.0 11.0 ± 1.0 100

Hall 0.11 ± 0.01 0.97 ± 0.04 0.91 ± 0.01 0.86 ± 0.03 0.31 ± 0.02 1732.0 ± 242.0 12.0 ± 1.0 1

Wahono 0.07 ± 0.01 0.96 ± 0.05 0.89 ± 0.01 0.84 ± 0.05 0.25 ± 0.02 1533.0 ± 119.0 9.0 ± 1.0 1

Radjenovic 0.05 ± 0.01 0.92 ± 0.1 0.87 ± 0.02 0.78 ± 0.08 0.2 ± 0.02 1442.0 ± 185.0 10.0 ± 1.0 1

ACEInhibitors 0.08 ± 0.02 0.96 ± 0.04 0.8 ± 0.05 0.74 ± 0.04 0.24 ± 0.03 590.0 ± 101.0 7.0 ± 1.0 1

ADHD 0.08 ± 0.0 0.96 ± 0.08 0.75 ± 0.02 0.68 ± 0.06 0.24 ± 0.02 252.0 ± 33.0 4.0 ± 1.0 1

Antihistamines 0.06 ± 0.0 0.9 ± 0.11 0.21 ± 0.11 0.07 ± 0.04 0.04 ± 0.03 140.0 ± 7.0 5.0 ± 1.0 40

AtypicalAntipsychotics 0.18 ± 0.01 0.9 ± 0.04 0.45 ± 0.05 0.24 ± 0.03 0.2 ± 0.02 417.0 ± 13.0 28.0 ± 1.0 1000

BetaBlockers 0.05 ± 0.0 0.91 ± 0.06 0.64 ± 0.04 0.53 ± 0.03 0.16 ± 0.01 683.0 ± 58.0 8.0 ± 1.0 1

Calcium...Blockers 0.13 ± 0.01 0.92 ± 0.04 0.47 ± 0.04 0.32 ± 0.03 0.19 ± 0.02 461.0 ± 26.0 20.0 ± 1.0 100

Estrogens 0.3 ± 0.02 0.93 ± 0.04 0.52 ± 0.05 0.26 ± 0.04 0.3 ± 0.03 125.0 ± 8.0 12.0 ± 1.0 1000

NSAIDS 0.15 ± 0.01 1.0 ± 0.0 0.39 ± 0.03 0.28 ± 0.03 0.21 ± 0.02 158.0 ± 2.0 6.0 ± 0.0 1

Opiods 0.03 ± 0.01 0.8 ± 0.12 0.78 ± 0.06 0.57 ± 0.1 0.13 ± 0.03 469.0 ± 65.0 4.0 ± 1.0 1

OralHypoglycemics 0.28 ± 0.01 0.99 ± 0.01 0.3 ± 0.02 0.02 ± 0.02 0.07 ± 0.04 183.0 ± 1.0 34.0 ± 3.0 10000

Proton...Inhibitors 0.06 ± 0.01 0.94 ± 0.05 0.44 ± 0.09 0.35 ± 0.06 0.15 ± 0.02 545.0 ± 56.0 9.0 ± 1.0 1

Skeletal...Relaxants 0.01 ± 0.0 0.64 ± 0.28 0.55 ± 0.14 0.2 ± 0.21 0.03 ± 0.03 581.0 ± 136.0 4.0 ± 1.0 1

Statins 0.05 ± 0.01 0.93 ± 0.03 0.56 ± 0.05 0.46 ± 0.03 0.15 ± 0.01 1252.0 ± 73.0 15.0 ± 1.0 1

Triptans 0.06 ± 0.01 0.94 ± 0.12 0.45 ± 0.11 0.36 ± 0.07 0.15 ± 0.02 283.0 ± 27.0 4.0 ± 1.0 1

UrinaryIncontinence 0.2 ± 0.03 0.94 ± 0.07 0.5 ± 0.11 0.33 ± 0.08 0.26 ± 0.05 128.0 ± 16.0 5.0 ± 1.0 100

4Parameter — C

(b) TiAbs(MeSH)Ref data

Reviews
Mean Performance Support vectors Configuration

precision recall accuracy WSS MCC neg pos parameters5

Kitchenham 0.04 ± 0.01 0.88 ± 0.12 0.44 ± 0.13 0.3 ± 0.06 0.1 ± 0.02 1204.0 ± 112.0 14.0 ± 2.0 1
Hall 0.16 ± 0.01 0.97 ± 0.03 0.94 ± 0.01 0.9 ± 0.03 0.38 ± 0.02 1492.0 ± 250.0 12.0 ± 1.0 1
Wahono 0.11 ± 0.01 0.98 ± 0.03 0.93 ± 0.01 0.9 ± 0.02 0.31 ± 0.01 1255.0 ± 150.0 9.0 ± 1.0 1
Radjenovic 0.07 ± 0.01 0.96 ± 0.07 0.9 ± 0.01 0.85 ± 0.05 0.25 ± 0.01 1197.0 ± 123.0 8.0 ± 2.0 1
ACEInhibitors 0.08 ± 0.02 0.91 ± 0.07 0.8 ± 0.06 0.7 ± 0.07 0.23 ± 0.04 607.0 ± 123.0 7.0 ± 1.0 1
ADHD 0.09 ± 0.01 0.97 ± 0.05 0.75 ± 0.03 0.7 ± 0.03 0.25 ± 0.01 236.0 ± 33.0 4.0 ± 1.0 1
Antihistamines 0.05 ± 0.0 0.84 ± 0.19 0.2 ± 0.19 0.0 ± 0.05 0.0 ± 0.04 136.0 ± 22.0 5.0 ± 1.0 10
AtypicalAntipsychotics 0.2 ± 0.01 0.83 ± 0.05 0.53 ± 0.03 0.28 ± 0.02 0.22 ± 0.02 359.0 ± 19.0 33.0 ± 3.0 1000
BetaBlockers 0.04 ± 0.01 0.86 ± 0.05 0.58 ± 0.07 0.43 ± 0.06 0.13 ± 0.02 793.0 ± 74.0 10.0 ± 1.0 1
Calcium...Blockers 0.13 ± 0.01 0.93 ± 0.03 0.48 ± 0.04 0.34 ± 0.04 0.21 ± 0.03 484.0 ± 19.0 21.0 ± 2.0 10
Estrogens 0.36 ± 0.02 0.94 ± 0.04 0.62 ± 0.04 0.38 ± 0.03 0.4 ± 0.03 104.0 ± 7.0 12.0 ± 1.0 100
NSAIDS 0.14 ± 0.01 1.0 ± 0.01 0.37 ± 0.06 0.26 ± 0.05 0.2 ± 0.03 168.0 ± 5.0 7.0 ± 1.0 1
Opiods 0.04 ± 0.0 0.82 ± 0.17 0.82 ± 0.03 0.64 ± 0.14 0.15 ± 0.02 424.0 ± 35.0 5.0 ± 1.0 1
OralHypoglycemics 0.33 ± 0.02 0.91 ± 0.03 0.47 ± 0.04 0.16 ± 0.03 0.23 ± 0.04 165.0 ± 8.0 30.0 ± 2.0 10000
Proton...Inhibitors 0.05 ± 0.0 0.92 ± 0.08 0.37 ± 0.08 0.27 ± 0.03 0.11 ± 0.01 576.0 ± 44.0 11.0 ± 2.0 1
Skeletal...Relaxants 0.0 ± 0.0 0.26 ± 0.23 0.69 ± 0.11 −0.06 ± 0.17 −0.01 ± 0.03 530.0 ± 111.0 4.0 ± 0.0 1
Statins 0.04 ± 0.0 0.94 ± 0.04 0.5 ± 0.04 0.42 ± 0.03 0.13 ± 0.01 1365.0 ± 65.0 16.0 ± 2.0 1
Triptans 0.06 ± 0.01 0.94 ± 0.08 0.47 ± 0.12 0.38 ± 0.07 0.15 ± 0.02 269.0 ± 37.0 6.0 ± 1.0 1
UrinaryIncontinence 0.17 ± 0.01 0.95 ± 0.09 0.44 ± 0.06 0.28 ± 0.05 0.23 ± 0.03 122.0 ± 13.0 7.0 ± 1.0 10

5Parameter — C

ture and SVM non-linear modelS the TiAbs(MeSH)Ref (Table 6.4a) has higher WSS

value in four reviews and equal values in four. In Word2vec based linear kernel

SVM models the TiAbs(MeSH)Ref data (Table 6.5b) has higher MCC values than the

TiAbs(MeSH) data(Table 6.5a) in 10 of the reviews.

6.4.4.2 Complexity measures

The TiAbs(MeSH)Ref data used fewer support vectors than the TiAbs(MeSH) data

across all the SE datasets except the Kitchenham dataset as shown in the number of

support vectors reported in Tables 6.4b, 6.5b and 6.6b. There is variation across the

rest of the datasets of the number of support vectors used for both sets of the data.
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Table 6.6: Word2vec feature non-linear kernel

(a) TiAbs(MeSH) Features

Reviews
Mean Performance Support vectors Configuration

precision recall accuracy WSS MCC neg pos parameters6

Kitchenham 0.04 ± 0.01 0.98 ± 0.04 0.36 ± 0.13 0.32 ± 0.11 0.11 ± 0.03 1299.0 ± 28.0 11.0 ± 1.0 rbf, 1000, 0.001

Hall 0.11 ± 0.01 0.97 ± 0.04 0.91 ± 0.01 0.86 ± 0.03 0.31 ± 0.02 1732.0 ± 242.0 12.0 ± 1.0 sigmoid, 1000, 0.001

Wahono 0.07 ± 0.01 0.96 ± 0.05 0.89 ± 0.01 0.84 ± 0.05 0.25 ± 0.02 1533.0 ± 119.0 9.0 ± 1.0 sigmoid, 1000, 0.001

Radjenovic 0.03 ± 0.0 0.96 ± 0.07 0.76 ± 0.02 0.72 ± 0.06 0.15 ± 0.01 2560.0 ± 170.0 9.0 ± 1.0 sigmoid, 100, 0.001

ACEInhibitors 0.09 ± 0.02 0.92 ± 0.06 0.83 ± 0.05 0.74 ± 0.04 0.25 ± 0.03 486.0 ± 103.0 7.0 ± 1.0 rbf, 1000, 0.001

ADHD 0.09 ± 0.01 0.95 ± 0.08 0.76 ± 0.02 0.69 ± 0.06 0.24 ± 0.02 210.0 ± 28.0 4.0 ± 1.0 rbf, 1000, 0.001

Antihistamines 0.06 ± 0.0 0.92 ± 0.1 0.18 ± 0.11 0.06 ± 0.04 0.05 ± 0.02 141.0 ± 7.0 4.0 ± 1.0 sigmoid, 1000

AtypicalAntipsychotics 0.15 ± 0.01 0.96 ± 0.03 0.29 ± 0.06 0.14 ± 0.04 0.14 ± 0.02 466.0 ± 12.0 24.0 ± 2.0 sigmoid, 10000, 0.001

BetaBlockers 0.07 ± 0.01 0.82 ± 0.05 0.76 ± 0.05 0.57 ± 0.07 0.19 ± 0.03 469.0 ± 54.0 9.0 ± 1.0 sigmoid, 1000

Calcium...Blockers 0.12 ± 0.01 0.93 ± 0.03 0.45 ± 0.04 0.31 ± 0.03 0.19 ± 0.02 472.0 ± 26.0 20.0 ± 1.0 sigmoid, 10000

Estrogens 0.24 ± 0.02 0.98 ± 0.03 0.32 ± 0.08 0.08 ± 0.06 0.13 ± 0.08 141.0 ± 4.0 12.0 ± 1.0 sigmoid, 10000

NSAIDS 0.17 ± 0.01 1.0 ± 0.01 0.51 ± 0.03 0.4 ± 0.03 0.28 ± 0.02 145.0 ± 4.0 5.0 ± 1.0 sigmoid, 1000

Opiods 0.02 ± 0.0 0.98 ± 0.05 0.6 ± 0.06 0.57 ± 0.06 0.1 ± 0.01 736.0 ± 41.0 4.0 ± 1.0 sigmoid, 10

OralHypoglycemics 0.27 ± 0.0 1.0 ± 0.0 0.27 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 184.0 ± 0.0 45.0 ± 5.0 sigmoid, 1000

Proton...Inhibitors 0.04 ± 0.0 0.98 ± 0.04 0.13 ± 0.09 0.07 ± 0.06 0.04 ± 0.03 639.0 ± 4.0 8.0 ± 1.0 sigmoid, 100, 0.001

Skeletal...Relaxants 0.01 ± 0.0 0.9 ± 0.2 0.31 ± 0.2 0.21 ± 0.08 0.04 ± 0.01 740.0 ± 103.0 4.0 ± 1.0 rbf, 100, 0.001

Statins 0.03 ± 0.0 0.98 ± 0.02 0.26 ± 0.06 0.22 ± 0.06 0.08 ± 0.02 1647.0 ± 27.0 14.0 ± 1.0 sigmoid, 100, 0.001

Triptans 0.06 ± 0.01 0.94 ± 0.12 0.42 ± 0.12 0.33 ± 0.07 0.14 ± 0.02 288.0 ± 25.0 5.0 ± 0.0 sigmoid, 100

UrinaryIncontinence 0.17 ± 0.04 0.93 ± 0.07 0.37 ± 0.2 0.19 ± 0.16 0.15 ± 0.12 131.0 ± 15.0 6.0 ± 1.0 rbf, 10000

6Parameter — kernel, C, gamma

(b) TiAbs(MeSH)Ref data

Reviews
Mean Performance Support vectors Configuration

precision recall accuracy WSS MCC neg pos parameters7

Kitchenham 0.03 ± 0.01 0.93 ± 0.09 0.21 ± 0.22 0.12 ± 0.15 0.04 ± 0.05 1308.0 ± 35.0 13.0 ± 2.0 rbf, 100, 0.001
Hall 0.16 ± 0.01 0.97 ± 0.03 0.94 ± 0.01 0.9 ± 0.03 0.38 ± 0.02 1492.0 ± 250.0 12.0 ± 1.0 sigmoid, 1000, 0.001
Wahono 0.11 ± 0.01 0.98 ± 0.03 0.93 ± 0.01 0.9 ± 0.02 0.31 ± 0.01 1255.0 ± 150.0 9.0 ± 1.0 sigmoid, 1000, 0.001
Radjenovic 0.09 ± 0.01 0.96 ± 0.07 0.92 ± 0.01 0.87 ± 0.05 0.27 ± 0.01 942.0 ± 103.0 10.0 ± 2.0 rbf, 1000, 0.001
ACEInhibitors 0.08 ± 0.02 0.91 ± 0.07 0.8 ± 0.06 0.7 ± 0.07 0.23 ± 0.04 607.0 ± 123.0 7.0 ± 1.0 sigmoid, 1000, 0.001
ADHD 0.09 ± 0.01 0.97 ± 0.05 0.75 ± 0.03 0.7 ± 0.03 0.25 ± 0.01 236.0 ± 33.0 4.0 ± 1.0 sigmoid, 1000, 0.001
Antihistamines 0.05 ± 0.01 0.85 ± 0.19 0.2 ± 0.19 0.01 ± 0.07 0.01 ± 0.05 136.0 ± 22.0 5.0 ± 1.0 sigmoid, 1000
AtypicalAntipsychotics 0.16 ± 0.01 0.95 ± 0.04 0.34 ± 0.07 0.18 ± 0.05 0.17 ± 0.03 459.0 ± 18.0 26.0 ± 2.0 sigmoid, 10000, 0.001
BetaBlockers 0.05 ± 0.01 0.83 ± 0.05 0.65 ± 0.07 0.47 ± 0.05 0.14 ± 0.02 708.0 ± 83.0 10.0 ± 1.0 sigmoid, 1000
Calcium...Blockers 0.13 ± 0.01 0.93 ± 0.03 0.48 ± 0.04 0.34 ± 0.04 0.21 ± 0.03 484.0 ± 19.0 21.0 ± 2.0 sigmoid, 10000, 0.001
Estrogens 0.29 ± 0.02 0.96 ± 0.02 0.48 ± 0.04 0.25 ± 0.04 0.29 ± 0.03 132.0 ± 3.0 13.0 ± 1.0 sigmoid, 10000, 0.001
NSAIDS 0.17 ± 0.01 0.99 ± 0.02 0.48 ± 0.04 0.37 ± 0.03 0.26 ± 0.02 153.0 ± 9.0 7.0 ± 1.0 rbf, 1000, 0.001
Opiods 0.02 ± 0.0 0.99 ± 0.04 0.63 ± 0.03 0.61 ± 0.04 0.11 ± 0.01 726.0 ± 42.0 5.0 ± 1.0 rbf, 100, 0.001
OralHypoglycemics 0.28 ± 0.01 0.95 ± 0.03 0.33 ± 0.04 0.04 ± 0.03 0.06 ± 0.08 179.0 ± 3.0 32.0 ± 2.0 rbf, 1000, 0.1
Proton...Inhibitors 0.05 ± 0.0 0.92 ± 0.08 0.37 ± 0.08 0.27 ± 0.03 0.11 ± 0.01 576.0 ± 44.0 11.0 ± 2.0 sigmoid, 100, 0.01
Skeletal...Relaxants 0.01 ± 0.0 0.86 ± 0.2 0.16 ± 0.16 0.01 ± 0.06 0.01 ± 0.01 806.0 ± 28.0 4.0 ± 0.0 sigmoid, 100, 0.001
Statins 0.03 ± 0.0 0.98 ± 0.03 0.22 ± 0.07 0.18 ± 0.05 0.07 ± 0.01 1655.0 ± 26.0 15.0 ± 1.0 rbf, 100, 0.001
Triptans 0.04 ± 0.0 1.0 ± 0.0 0.07 ± 0.05 0.03 ± 0.04 0.02 ± 0.03 324.0 ± 0.0 5.0 ± 1.0 sigmoid, 100, 0.001
UrinaryIncontinence 0.17 ± 0.01 0.95 ± 0.09 0.44 ± 0.06 0.28 ± 0.05 0.23 ± 0.03 122.0 ± 13.0 7.0 ± 1.0 sigmoid, 10000, 0.001

7Parameter — kernel, C, gamma

6.5 Threats to study validity

This study is limited by threats imposed on its external validity as highlighted for

the complexity study in Section 5.7. In addition, notwithstanding the fact that the

datasets used in this study cut across two fields - SE and healthcare, there is still not

enough evidence to generalise the findings. Only four reviews have been used from

SE and three of them addressed similar topics while the medical review datasets are

relatively small in size.

The study is also affected by a conclusion validity from the indication that includ-

ing the bibliography data may improve model performance. Further investigation

is required to explain or establish the noted differences across the datasets. The
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performances observed in this study are limited to SVM models and the feature rep-

resentation types used. Though SVM has been reported as one of the leading text

classification models and often used in automatic CS research.

6.6 Discussion

The overall results of the study indicate that the effect of adding the bibliography

data to the input data is uncertain. This may be due to the low reference retrieval

rate (generally below 50%) recorded in the DERP datasets which are in the majority.

If the SE datasets where the average reference retrieval rate are approximately

95% were considered in isolation, it can be seen from Tables 6.4a and 6.4b that

there is an improvement in the recall with the TiAbs(MeSH)Ref data in three of the

four datasets. In Table 6.5, the TiAbs(MeSH)Ref data show equal or higher recall in

three reviews. This pattern is repeated with the non-linear kernel in Table 6.6. In

Table 6.4, the TiAbs(MeSH)Ref data (Table 6.4b) shows higher WSS performance in

two reviews, equal performance in one and lower in one. However, in the Word2vec

representation, the TiAbs(MeSH)Ref data (Tables 6.5b and 6.6b) record higher WSS

values in three of the four reviews. On closer inspection, the dataset where the WSS

values were less in these two cases is the Kitchenham review which is the smal-

lest among the datasets. This pattern was also noticed with the MCC where the

TiAbs(MeSH)Ref data had higher MCC values in three of the four SE datasets ex-

cept the Kitchenham (see Table 6.5 and Table 6.6). The WSS performance of the

TiAbs(MeSH)Ref data was however the other way around for the binary representa-

tion where the TiAbs(MeSH) data had higher values in all four datasets.

In terms of complexity, it was observed that the three relatively large SE datasets

used on average, only about 30% of their training data as support vectors against an

average of about 90% in other smaller sized datasets. This showed that the models

from these (larger) datasets had likely learned to generalise better, and are likely to

be more robust and less complex than those from the smaller datasets. This further

emphasized the importance of data volume in the learning of the ML algorithms

during the training phase. In SVM, the smaller the ratio of the support vectors used,

the better the model had learnt from the data pattern and thus, the better it can

generalise over other examples.

Based on the findings of this study, it is not clear yet whether adding the refer-

ence information to the datasets can automatically increase the performance of a TM

model for automatic CS. More work needs to be put into investigating the factors that

contributed to the improved performance in some cases and not in others. Neverthe-

less, this study has shown that the chances of sustaining or recording an improvement

in a model’s performance by adding the bibliography information is higher than the

chances of recording a lower one.
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We note in the retrieved bibliography data that (usually) only one of the authors’

names is fully spelled out. This may result in loss of information that may be vital

to the establishment of an association between articles that might have cited similar

authors due to a common subject since the initials are removed during preprocessing

leaving only one name each from the authors. Access to the full author names in

the databases could have aided more, the discrimination of the documents. The

same situation affects abbreviation of journal names which could have contributed

to linking articles with similar journal names.

6.7 Summary

The study reported in this chapter has investigated the impact of adding the biblio-

graphy data to title and abstract for the purpose of building TM models for automatic

screening of citations in SRs. 19 review datasets were used in the study, four from

the SE domain and 15 from the medical domain. Two different sets of the data were

prepared from each of the datasets, one with titles and abstracts (with MeSH for the

medical data) and the second with bibliographies added to the titles and abstracts.

These were used to build and compare SVM models with binary and Word2vec fea-

tures as was reported in Section 5.4.

The results of the study have shown that the TiAbs(MeSH)Ref set exhibited higher

or equal recall, MCC and WSS in the three larger SE datasets with the different

feature representations and model kernels. The performance varied when it comes to

the smaller DERP datasets and one SE dataset. However, there were more instances

of higher or equal performances than lower. No distinct pattern could be established

for the complexity in the smaller datasets, but the three larger SE datasets used fewer

number of support vectors across when augmented with the reference information.

Given the pattern established in this study, no definitive conclusion could be drawn

on the impact of the bibliography information on the performance of the CS models.

It was however clear that the inclusion of this data is more likely to improve or sustain

the model performance than impair it.
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TeMACS - A CS Tool

T he review presented in Chapter 3 identified a lack of some essential informa-

tion in CS studies using TM techniques. The review also identified five tools

that has evolved from the studies. A lack of reproduction was identified among the

studies. A work undertaken to investigate the reproducibility of CS studies is presen-

ted in Chapter 4. The reproducibility study identified a set of information to aid the

reproducibility of TM based CS studies. The need to report complexity related in-

formation was found in the complexity assessment study reported in Chapter 5. In

this chapter, a TM tool for Automatic CS (TeMACS) is presented. The key features

of how the tool supports transparency by the way of conforming with the findings of

previous studies in this research are presented. More design and development details

are presented in Appendix D.

The tool combines the findings and recommendations from the various work high-

lighted above to show how a tool can provide the type information necessary for

transparent reporting when used to conduct CS research. The tool provides feed-

back about its operations to aid the reproducibility and technical understanding of

the model used. TeMACS is a document classification tool particularly useful for a

repeat SR where labelled data from a previous review can be made available to train

a model and use it to classify the data for the new SR. It can also be used to classify

large datasets where a part of a dataset can be labelled to train a model in order

to classify the rest. Once a model is trained, users can then use it multiple times to

re-classify data of future reviews on the same subject. The motivation behind the

development of this tool, its main features and possible effect on the provision of

support for CS in SRs and the research community is presented.

7.1 Introduction

As discussed in Section 1.1.5, a number of studies have been undertaken to invest-

igate tool support for automatic screening of citations in SRs. A collection of studies
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across healthcare and SE reporting the potentials of TM techniques for the automa-

tion of the CS stage in SRs were identified in (O’Mara-Eves et al., 2015). A review

focussed on the quality of information provided in these studies which narrowed the

44 studies reviewed in (O’Mara-Eves et al., 2015) to 35 and identified additional

nine primary studies was conducted (see Chapter 3). A variety of methods being

proposed were found and five of them have been packaged as a tool. Whilst these

studies and tools are useful, reproduction and independent validation of their results

and processes still remains a challenge. This is a situation that may affect the timely

evolution of a sustainable solution to the problem of automatic CS using TM based

techniques borne out of complementary and collaborative efforts, and independently

reproduced results.

There is an ongoing effort to increase the awareness of available TM tools to

support SRs as a whole or any of its stages. For example, the AHRQ published a white

paper which identified 111 TM based tools that partially or fully support the conduct

of SRs (Paynter et al., 2016). The list is comprehensive and considers support of SR

conducts in general (including commercial tools). Thus, most of the tools reported

are out of the scope of this project. However, three relevant tools that are part of the

studies reviewed in Chapter 3 listed are:

i) Abstrackr - a web-based tool using active learning for document classifica-

tion (Wallace, Small, Brodley, Lau, & Trikalinos, 2012). This tool has been

independently evaluated and reported in (Rathbone et al., 2015).

ii) Gapscreener - a free SVM-based stand-alone application for automatic CS (W.

Yu et al., 2008).

iii) Rayyan - a SR tool with an integrated TM technique for CS (Khabsa et al.,

2016).

While SWIFT-Review (Howard et al., 2016) is a tool from a relatively new study,

Fastread (Z. Yu et al., 2016) is a tool from a study still being reviewed and are

thus not captured on the list. The techniques in both tools have been discussed in

Section 3.5.

This chapter introduces TeMACS, a TM based tool for automatic CS developed

for use by both reviewers and CS support tool researchers across any discipline (see

Figure 7.1). It is a simple document classification tool useful for the purpose of

automatic screening of citations in situations where previous labelled data of the

same subject could be made available for the purpose of training an initial model.

The classification and reporting approach in the tool had been heavily influenced by

the work reported in this thesis (e.g. the feature representation used, the classifier

and outcome data reported to users). TeMACS was developed using a Model-View-

0the tool can be accessed through http://bitly.com/temacstool
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Figure 7.1: TeMACS home screen

Controller (MVC) paradigm with Python 2.7, FLASK, redis, redis-queue, MySQL and

jQuery.

7.2 TeMACS features

The main features of TeMACS are described in this section; namely, creating a ‘pro-

ject’, creating a ‘new model’, reusing ‘existing model’ for new prediction, ‘load data’,

‘view data’ and ’build model’. The high level depiction of transition of the ‘views’ is

shown in Figure 7.2. The tool’s key operations are further discussed in the following

sections.

7.2.1 Create project

A system user (reviewer) can create a new project by providing a name for the project

(Figure 7.3). The process creates a project with the ‘project_name’ if it does not

already exist and updates the ‘projects’ field of the reviewers table. A new model is

also automatically initiated as part of the process.
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Figure 7.2: High level information flow in TeMACS

7.2.2 Create new model

A model is automatically created as part of a new project creation. However, users

are also able to initiate the creation by providing the name of the parent project for

the model they intend to initiate (see Figure 7.4). The model creation process queries

the ‘name’ field of the ‘models’ table of the database to ensure the model’s name is

unique. During model creation, the ‘models’ field of the ‘projects’ table is updated.
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Figure 7.3: New project creation screen shot

Figure 7.4: Screen shot of the new model creation page

7.2.3 Load data

After users have successfully submitted the request for a ‘new project’ or ‘new model’

or ‘reuse model’ they can then upload their dataset by navigating to its location on

their system and selecting the file which must be in a ‘comma separated values (csv)’

format (Figure 7.5). Users must click the ‘upload’ button to upload and view top ten

rows of the uploaded file and a distribution of the relevant and irrelevant articles in

the corpus (Figure 7.6). If the wrong data has been chosen, users have the choice to

go back and chose a different dataset. If satisfied with the dataset, users can initiate

the TM process by clicking the ‘build model’ button (Figure 7.6).
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Figure 7.5: Screen shot of the load data page

Figure 7.6: Screen shot of the view data page

7.2.4 Build model

Users can build classifiers based on their dataset by clicking the ‘build model’ but-

ton on the ‘view data’ view (Figure 7.6). From this point on, the whole document

classification process takes place in the background. When the background task is

initiated, a ‘task ID’ is generated and the ‘job_id’ field of the ‘models’ table is up-

dated; the background task is polled at intervals to determine its state of execution,

the view is updated intermittently when the process is ongoing (Figure 7.7).

The architecture for the process of running the classification process in the back-

ground, polling for update and updating the view is presented in Appendix D.1.2
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Figure 7.7: Screen shot of ongoing classification process

(Figure D.7).

When the process is completed, multiple fields of the ‘models’ table are updated.

The following information are saved to the database:

i) seeds - a ‘dict’ structure of the different seed values used in the classification

process. They are:

a) shuffle_seed - used for the initial shuffling of the dataset before selecting

half of it for the purpose of selecting the best fitting parameters.

b) split_seed - the seed value used in the splitting of the dataset initially for

selecting best parameters.

c) gridsearch_seed: the seed value used during the grid search process to

select the best parameters.

d) cv_folds_seed - a list of seeds used in the ‘stratifiedKfold’ module for par-

titioning the dataset during CV.

ii) best_model_params: a ‘dict’ structure of the best model parameters for each

model and feature representation types.

iii) feature_vec - a string pointing to the directory of the location of fitted (trained)

feature representation object for future transformation of new data.

iv) chi_object - the file directory of the trained χ2 object for future transformation

of new dataset.

v) trained_models - the file directory of the trained classifier objects that can be

used for future prediction without retraining.
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vi) assessment - a record of the models’ performance during development. Only

the four primary metrics - TP, TN, FP and FN are recorded.

vii) included - indices of the dataset predicted as positive by the model.

viii) excluded - indices of the dataset predicted as negative by the model.

ix) start_time - a record of the classification process’ start time.

x) end_time - a record of when the classification process terminated.

xi) software_env - a record of the names and versions of the software packages

used in the process.

The view is also updated to indicate completion as shown in Figure 7.8. An email of

the results is subsequently sent to the registered email of the user. A sample of the

email is shown in Figure 7.9.

Figure 7.8: Screen shot of complete classification process

The background process follows the TM steps discussed in Section 2.2 and depic-

ted in Figure 2.4. The particular activities of each step as it pertains to the application

are described below.

7.2.4.1 Data retrieval

The data in this case is provided by the user and uploaded through the ‘load data’

view (Figure 7.5). The dataset is stored temporarily in a folder during the classi-

fication process and deleted after its completed. The raw user data is not stored

permanently by the application, only derived artefacts like the trained feature vector

and classifier are stored for the purpose of reuse.
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Figure 7.9: Screen shot of the email sent on completion of the model training and
prediction

7.2.4.2 Parameter selection

The second step during the course of ‘build model’ in the application is to select

parameters (C and gamma) for the SVM classifiers. This involves three activities:

i) Data shuffle: Prior to any action, the data is initially shuffled with a captured

seed value.

ii) Data split: After shuffling, the dataset 50% of the dataset is used to train tem-
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porary models to determine the parameters to use in training the final model.

This is done for each feature representation type - binary and Word2vec.

iii) Initial fit: The 50% of the data from step ‘ii’ is used in this step to fit primary

models to determine parameters for use in the final classification. The process

of selecting the parameters of the ‘best model’ also involves determining the

optimal α-value to use in the χ2 method for feature selection.

The ‘best model’ for each feature representation is ‘pickled’ and saved on the hard

drive while their storage locations are saved in the database.

7.2.4.3 Preprocessing

The features were transformed separately into binary and Word2vec representations.

Other preprocessing included the steps described in Section 2.2.2 except stemming.

7.2.4.4 Dimensionality reduction

The χ2 statistic (introduced in Section 2.2.4) is used for feature selection. The α-

value to select the top features is automatically determined using the 50% data split

as described during ‘parameter selection’.

7.2.4.5 Model training

The three types of models based on the two feature representation types that had

been used in this research are trained in this tool. Models are trained with the saved

best models on the whole dataset using 5 × 5-fold CV. The training prediction for

each fold is stored, the predictions from each model at the end of the CV process is

ensembled and a final prediction selected through ‘voting’. Only the basic metrics of

TN, FN, FP, andTP are reported. Every other metrics can be further independently

calculated from these metrics as desired by any user. These predictions and metrics

are sent to the user at the end of the process.

7.2.4.6 Final models

At the end of the model building process, a final feature vector, χ2, and classifier ob-

jects are fitted over the whole dataset and saved for future reuse. These are used to

process dataset when new predictions with existing models are initiated. Figure 7.10

shows the snapshot of a folder containing the final trained artefacts for a particu-

lar dataset. The artefacts combined with the information provided to the user as

mentioned in Section 7.2.4 makes model re-use and re-training possible.
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Figure 7.10: Screen shot of folder containing the trained classification model and
feature vectors saved for future reuse

7.2.5 Reuse model

There are situations where reviewers(also called users) will want to update a previ-

ous review, in such cases a previously trained model in TeMACS on a the same topic

can be re-used to automatically screen the new citations. Users are able to reuse an

existing model for new predictions. The user will need to provide the name of the

parent project and the specific identifier of the model to use (Figure 7.11). This will

query the ‘name’ fields of the ‘projects’ and ‘models’ tables to establish existence and

relationship between the model, project and the user. The predictions will be emailed

to the user’s email after the process execution. The information necessary to reuse

a model would have been made available to the user during the initial training of a

model on the subject (see Sections 7.2.4 and 7.2.4.6).

7.3 TeMACS reproducibility support

The development of TeMACS is driven by the finding of the various studies in this

research. Particularly, the need for more transparency to enable reproducibility and

increase model quality understanding through provision of complexity details. TeM-
ACS is developed as a prototype to demonstrate how a tool for CS can be transparent

to ensure its processes are reproducible and understandable. In order to ensure this,
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Figure 7.11: Screen shot of the model reuse page

during the model training stage as described above (refer to Section 7.2.4), the tool

saves data useful for the reproduction of its process driven by the propositions in

the revised reproducibility checklist presented in Section 4.5.2 and updated in Sec-

tion 8.3.1. The information stored by the tool and made accessible to users are listed

in Section 7.2.4).

The tool does not retain the original dataset. Instead the trained objects gener-

ated from the data are stored to facilitate reusability. It also provides various seed

values to recapture the state of randomised processes (data split, shuffling and mod-

elling) used during each fold of the CV. The right over the data download link (as

recommended in the checklist, Section 8.3.1) still resides with the user, as the tool

does not store any raw data. In place of feature representation, final feature vector

links, the tool stores the trained models for these artefacts including the trained clas-

sification models. The parameters of the different SVM algorithms are also provided.

It is believed that these set of information as informed from the checklist will support

the reproducibility of the tool’s process.

7.4 Limitations of the TeMACS

A key limitation of teMACS is the supervised learning algorithm it implements since a

labelled set of data which is not usually available is required to train a model. Effort

in future updates will be geared towards experimenting with and incorporating a

semi-supervised approach.

Another limitation is its support for single users only. A typical review involves

multiple reviewers, the current version of teMACS supports only single user mode.
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A future update will incorporate the multi-user collaboration mode. The tool had

been developed as a prototype. Its functionality as described in this chapter has

not been independently verified neither has the its support for reproducibility being

independently verified as well. As a new tool, it takes some time to start receiving

user feedback. It is anticipated that the feedback will support the presentations in

this chapter as care has been taken to ensure its functionality.

7.5 Conclusions and future direction

This chapter has introduced TeMACS, a TM driven tool built to support reviewers in

automatic CS during the conduct of SRs. It also aims to support TM based automatic

CS research by providing information to improve the reproducibility of its process

and technical details of its models that may be used to determine, for example, their

complexities. This tool was developed in response to the lack of a tool whose oper-

ations are made transparent enough so that other researchers can evaluate, under-

stand, reproduce and be able to extend it (possibly through collaboration). In line

with the objectives of this project, the implementation has shown that it is possible to

have an independent tool to conduct a citation screening research and have enough

details of the operation to prepare the report of the exercise besides the classification

results.

A major part of the methods implemented in TeMACS was informed by the find-

ings of studies reported in this thesis. For example, the reproducibility study (Chapter 4)

informed the type of details captured besides the classification results. The feature

representations that were explored with the SVM algorithm (in Chapters 4, 5 and 6)

were implemented in the tool alongside ensemble method reported in Chapter 3 to

be the second most used method beside the SVM.

The tool will be made available free for public use with codes accessible from

‘Github’ for interested researchers to contribute to its development and continuous

evolution. Users can also send feedback and suggestions through the application

interface.

On future development for TeMACS, the methods implemented in the tool will

be increased with more flexibility for user options on their preferred methods and

classification approach. The extensions will also include integrating automatic data

retrieval from a number of databases. Algorithms will be optimized and updated

as need be, existing implementations will also continue to be refined for improved

user experience. A foreseen risk is the possibility of increasing difficulty in managing

the extensions, software updates and dependency between different packages as the

system grows. Therefore, the lifespan and relevance of TeMACS will rely more on the

involvement, contribution and support from the SR and automatic CS communities.

Efforts at publicity will be geared towards its integration into the SR toolbox (Mar-
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shall & Brereton, 2015) and it will be presented and demonstrated among the SR

and automatic CS research communities.

140



CHAPTER 8

Discussion

C hapter 7 describes the features of a ‘transparent’ CS support tool and the mo-

tivation behind it. The outcome indicates the possibility of a tool useful for

supporting CS in SRs and at the same time be transparent enough to promote re-

search on the subject through operational transparency. This chapter aggregates all

the work undertaken and reported in this thesis and qualitatively discusses them

against the original research questions listed in Chapter 1.

8.1 Introduction

The main aim of this thesis was to investigate experimental transparency in studies

using TM techniques to support CS in SRs; vis-á-vis the extent of technical inform-

ation reported and how the information affects reproducibility of the studies and

understanding of the complexity of the models. As part of this investigation, a ‘trans-

parent’ tool to support CS in SRs and its research was developed.

Three research questions were listed in Chapter 1 to be answered in order to fulfil

the set aim of this research. The questions once again are:

RQ1: What information is required to improve experimental transparency in

studies reporting the use of TM techniques for automatic CS in SRs?

RQ2: What information is essential to the reproducibility of TM for CS studies?

RQ3: What information about model complexity should be included in TM

based CS studies?

In addressing RQ1, the need for more transparency in TM techniques based stud-

ies to support CS, premised on the findings from the work undertaken to investigate

this, is presented in Section 8.2. A response to RQ1 based on the findings from the

work is presented in Section 8.2.3. The work undertaken to provide a response to

RQ2, the level of reproducibility of current studies and identified information to aid
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study reproducibility are established and discussed in Section 8.3 with a focussed re-

sponse to RQ2 presented in Section 8.3.2. In response to RQ3, the work undertaken

to ascertain the possibility of current models being complex and motivate the need

for focussing on it starting from reporting is presented in Section 8.4. A response

to RQ3 is presented in Section 8.4.3. A discussion on the CS tool developed with

combined findings from the different work conducted in this project is presented in

Section 8.5. Future directions and recommendations for CS tool researchers and

users are highlighted in Chapter 9.

8.2 Experimental transparency in CS studies

In this section, a discussion of the work undertaken to explore the current TM tech-

niques and models to support the CS stage in SRs is presented. Research activities,

undertaken to investigate the level of transparency in TM-based studies to support

CS (or study section as referred in some domains) include:

i) Literature review to identify TM methods for CS support and information re-

ported about them.

ii) Reproducibility assessment to evaluate the reproducibility of CS studies and

identify the effect of relevant factors.

The overall findings from these research activities are brought together in Sec-

tion 8.2.3 to provide a summarized response to RQ1.

8.2.1 Literature review

In Chapter 3, a literature review to identify TM methods and practices being explored

for automatic CS in SRs was reported. A variety of classification methods (supervised

learning) were found being mostly explored. A small number of studies also explored

clustering (unsupervised learning) with visualizations. The results revealed a young

but growing field with promising results. The SVM and the ensemble methods have

attracted the most research attention with the trend recently shifting towards semi-

supervised learning approach, particularly, the active learning method. Owing to the

nascent stage of the field, only five of the 44 studies reviewed have resulted in a tool

for general use. The focus of the studies has been more on saving reviewers’ time

and effort during CS. This is even more evident in the focus on recall, precision and

one of the custom metrics proposed - WSS - which has been found used in several

other studies as a measure of the methods’ potential. The amount of time and effort

consumed by SRs activities is one of the concerns raised by the SRs community as

discussed in Chapter 1 (see Section 1.1.4). Results reported in the studies have not

been independently reproduced; only two of the tools have received independent

142



Chapter Eight – Discussion

evaluation. The studies are however positive about the potential of their results and

the independent evaluation of the tools have been positive. Based on the results of

the review, there is scope to perform a transparency investigation of the studies to

establish the sufficiency of the information made available. Particularly as it con-

cerns reproducibility and understanding of the models’ complexity - two key areas

an emerging computation research field. The literature review made the following

contributions to the project:

i) Current TM methods for CS and their usage were identified.

ii) Available TM based tools (evolving from the reviewed studies) were identified.

iii) A need for more transparency in the studies was established.

8.2.2 Reproducibility assessment

Subsequent to the literature review, a reproducibility assessment study was conduc-

ted to investigate the reproducibility of the CS studies and identify factors that con-

tribute towards it. The investigation took the form of a qualitative assessment. It

consisted of three main activities: an initial attempt to actually reproduce six of the

studies that are based on common datasets, identification of the factors that contrib-

uted to the reproduction attempt and the development of a systematic assessment

framework, and a systematic assessment of 33 studies based on the framework. The

framework was inspired by the work of González-Barahona and Robles (2012). The

studies were strictly assessed based on the information provided in the reports. The

results of the reproducibility assessment identified elements of TM experiments that

are critical to the reproducibility of study results but are often not found in the re-

ports. Undertaking this investigation contributed the following to the project:

i) The feasibility of reproducing TM-based CS studies was investigated.

ii) The lack of information to enable reproducibility of the studies was reinforced.

Specifically, studies on CS support with TM techniques were assessed for repro-

ducibility for the first time.

iii) The specific information vital to reproducibility were identified and a checklist

produced.

8.2.3 Response to RQ1

What information is required to improve experimental transparency in studies reporting
the use of TM techniques for automatic CS in SRs

The findings of this research have determined that automatic CS studies based on

TM techniques can do with more transparency in reporting. The studies are concen-

trated on reporting superficial details on the conduct of their studies and performance
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results. These information are sufficient to understand the studies but not enough

to, for example reproduce the results or understand and interpret the the models’

performance. More of the reports have been about what was done but not how (and

with what) it was done. The community need to put more work into the standardiza-

tion, quality, type or level of information to be provided in studies. This is particularly

important given the nascent stage of the research area, the contribution poof a sus-

tainable tool to the conduct of SRs and the role of SRs in providing evidence-backed

practice evolution in a discipline. The reproducibility assessment further reinforce

the fact that the information currently being provided are insufficient, at least as far

as study reproducibility is concerned. Overall, more work is needed in providing a

structural framework and reporting guidelines for automatic CS studies.

8.3 Reproducibility essentials

In this section, a discussion of the work undertaken to investigate the information

elements critical to the reproducibility of CS studies based on TM techniques is

presented. Chapter 4 presented an investigation to determine the reproducibility

of CS studies. As recapped in Section 8.2.2, the research takes the form of a three

steps activity. The reproducibility attempt considered as a whole was not successful,

varying level of reproduction was accomplished at different stages from the different

studies. The experience became useful at identifying the role of each element found

reported or otherwise. An evaluation framework was subsequently developed to as-

sess 33 studies. The reproducibility assessment lead to the development of a checklist

of identified essential study elements to aid reproducibility. 14 information elements

were captured in the checklist to be used as a guide for authors and reviewers. The

checklist is validated in Section 8.3.1 against the nine literature update that were

not part of the initial assessment from which it was created. The results showed a

need for improved reporting before the studies can be reproducible. It particularly

identified important elements that are often downplayed in studies.

8.3.1 Checklist validation and update

In this section, the outcome of an activity to validate the the reproducibility check-

list (see Section 4.5.1) is presented. The validation was conducted using the nine

primary studies from the literature review updates (see Section 3.5). This activity

was conducted to examine the consistency and relevancy of the checklist’s items to

new studies and identify any improvement needs. The activity was also conducted

to identify any possible change in reporting pattern in new studies. The result of the

validation is presented in Table 8.1. Three updates were effected in the new version

of the checklist (updated items 1, 4 and 7 are in italics). The justification for adding
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Table 8.1: Validation of checklist with nine review update studies

Item
No.

Elements UP1 UP2 UP3 UP4 UP5 UP6 UP7 UP8 UP9

1 Dataset identification Y Y Y Y Y Y Y Y Y

2
Original location of the raw
dataset

Y Y N Y Y Y Y Y Y

3

Provided link to local copy of:

a. Raw dataset N N Y N Y N Y Y Y

b. Target dataset N N N N N N Y N N

4 Feature set Y Y N Y Y N Y Y Y

5 Pre-processing details Y N Y N Y Y Y Y Y

6
Feature representation tech-
nique

Y Y Y Y Y Y Y Y Y

7

Dimensionality reduction approach:

a. Feature selection X X Y X Y X Y X X

b. Feature extraction X Y X Y X Y X Y Y

8
Final feature vector – download
link

N N N N N N N N N

9 Training algorithm Y Y Y Y Y Y Y Y Y

10

Custom algorithm

a. Text X X X X Y X Y Y X

b. Code X X X X N X Y N X

c. Algorithm X X X X Y X Y N X

d. Executable file X X X X N X Y Y X

11 Model assessment method Y Y Y Y Y Y Y Y Y

12
Detailed model assessment res-
ult

Y Y Y Y Y Y Y Y Y

13 Randomization seed values N N N N N N N N N

14

Training/test data partition available or indices provided

a. Link to data partitions
provided

N N N N N N N N N

b. (link to) data indices provided N N N N N N N N N

c. Seed value provided N N N N N N N N N

15

Software information

a. Name provided Y N N N N N Y N Y

b. Version details N N N N N N N N N
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the two new items 1 and 4, and amending item 7 is given below:

i) Dataset identification (item 1): During the validation exercise, it became clear

that the initial version of the checklist did not provide explicitly for the name of

a dataset. This is particularly useful for public and benchmark datasets being

utilized for research purpose. The initial item 1 - Original location of the raw
dataset was found inadequate to cater for this requirement. More so that a

location may be a web link and not necessary a name. In a case where the

location is missing, the name can assist in locating the dataset.

ii) Feature set (item 4): The feature set refers to the columns of interest from a

dataset used for the classification purpose. For example, title, abstract and any

other useful columns like keywords, references etc. This item was missing in

the version 1.1 of the checklist presented in Section 4.10 but now brought back

to replace item 3 in version 1.0 presented in Section 4.8. This is a key element

to knowing what features or columns of a dataset were used in certain studies.

iii) Dimensionality reduction approach (item 7): This item is a refinement of items

8 and 9 in Table 4.8 which corresponds to items 5 and 6 in Table 4.10. The

amendment became necessary because feature selection and feature extraction

are different approaches to reducing the dimensions of the feature vector for

improved performance (see Section 2.2.4).

The pattern noticed in Table 8.1 is consistent with the pattern presented in Table 4.10.

It is however notable that five (56%) of the nine studies assessed provided a link to

the location of their raw datasets against 10% in Table 4.10. An improvement was

also found in the preprocessing information provided in updated studies, from 57%

to 77% (7 out of nine studies). The same improved trend was noticed in information

provided on custom methods, particularly noticeable is UP7 which provided all the

four possible details expected about their tool including coding and implementation.

The study actually reported being motivated by the reporting and reproducibility

challenge identified in the literature review (Chapter 3) presented in (Olorisade et

al., 2017a).

8.3.2 Response to RQ2

What information is essential to the reproducibility of TM for CS studies?
With regards to RQ2, the findings of this research has established the fact that the

information currently reported in CS studies does not sufficiently support reproduc-

tion. Consequently, 14 information elements that are essential to the reproducibility

of CS studies based on TM techniques were identified. They include some often

overlooked information like seed values not found reported by any study but without

which reproducing a study result will be almost impossible. These elements are a
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result of the reproducibility investigation conducted on 33 studies. The validation

of the elements on nine new articles as presented in Section 8.3.1 showed that the

elements are sufficient to evaluate the reproducibility of a study. Further validation

and refinement are however required including ranking of the elements in order of

importance. The possibility of a tool providing such information as recommended in

this study is demonstrated by the output of TeMACS as discussed in Chapter 7.

8.4 Complexity reporting motivation

A discussion of the work undertaken to investigate the need to report model com-

plexity related information in CS studies using TM techniques is presented in this

section. The research activities, undertaken to investigate complexity concerns in

automatic CS studies using TM techniques include:

i) Complexity assessment to investigate complexity concerns in CS models to

motivate the need to include model complexity information in studies.

ii) Feature enrichment to investigate the effect of including the full bibliography

data on the performance and by implication, the complexity of CS models.

The findings from these research activities are discussed together in Section 8.4.3

in response to RQ3.

8.4.1 Complexity assessment

The literature review identified an array of general information lacking in the studies

for automatic CS. This lack of information was investigated further and narrowed

to if and how it affects the reproducibility of the studies in Chapter 4. Information

regarding the complexity of the models was also found lacking. Apart from being an

important aspect of (statistical) computational models, reporting of model complex-

ity will be fulfilling a basic scientific requirement. The complexity assessment was

conducted to investigate the robustness of the models being proposed through their

complexity. The study was conducted with the aim that if the investigation finds high

complexity in the models, reporting the complexity related information is important.

Since it was established from the reproducibility assessment that the studies could

not be reproduced, to accomplish the objectives of this investigation, hypothetical

models representative of a typical model found in the studies were developed. Mul-

tiple feature representations were explored with the SVM algorithm. The SVM makes

its classification decision based on the SVs- data nearest to the hyperplanes (see Fig-

ure 2.1). Therefore, its complexity is determined by the size of its SVs in relation to

its training data size. In addition to other performance metrics recorded, the SV size

for each model was also recorded. The results indicated a high complexity across all
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the models developed with performances similar to top performances witnessed in

the CS studies. The binary feature models with non-linear kernels exhibited relat-

ively higher complexity compared to the Word2vec feature linear kernel models. The

contributions of this investigation to the project are as follows:

i) Potential concerns for complex models were found and the need to report com-

plexity related information was established.

ii) Multiple features were explored which revealed differing linearity and com-

plexity in the resulting data and models. It was the first time the Word2vec

features were explored in automated CS study.

iii) The first study to explores complexity issues in TM-based automatic CS studies.

The complexity study equally established the need for complexity information to

be considered by studies. This will assist independent researchers understand how

to particularly interpret future performance of the models as well as improving it.

8.4.2 Feature enrichment

The feature enrichment investigation took the same form and process as the com-

plexity assessment except for the addition of the bibliography data to the feature

set. The findings from the investigation were not consistent. Three relatively larger

SE datasets showed improvement in performance and lower complexity with biblio-

graphy data than without. The performance and complexity varied across the rest of

the healthcare datasets and one SE that are relatively small. Nevertheless, the study

shows that the addition of bibliography data is more likely to improve a model’s

performance and complexity than impair them. This investigation contributes the

following to the project:

i) It is the first to explore the of use full bibliography data with Word2vec features.

ii) It finds the potential of bibliography data at improving model performance and

complexity.

8.4.3 Response to RQ3

What information about model complexity should be included in TM based CS studies?
The findings of this research have determined that complexity information is es-

sential in automatic CS studies. The information will enable proper assessment,

understanding and interpretation of the models particularly in the context of future

performance. The complexity information will also assist in the reproduction of study

results. The complexity indication differ for different learning algorithms, the size of

the SVs is used in this research for SVMs. The complexity information relevant to the
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algorithm being used should be provided in studies to maintain more transparency

on the models’ actual performance. In that case, it will be easier for independent

researchers to determine if a model has overfit to achieve reported performance or

otherwise.

8.5 Transparent CS tool

In Chapter 7, the features of a CS tool - TeMACS was presented. The different research

work presented in this thesis informed the development of the tool and contributed

to its features. The findings from the complexity assessment and feature enrichment

studies in Sections 5.4 and 6.3 contributed to the method implemented in the tool.

The findings from the literature review in Chapter 3, the reproducibility assessment

in Chapter 4 and the complexity assessment in Chapter 5 contributed to the type of

information collected and made available to the users when new models are trained.

TeMACS is the only tool that has been developed with a view to aid other researchers

at understanding its processes by providing information which can be used to recre-

ate, reproduce and revalidate its processes and results. Despite being currently useful

in situations where labelled data are available or where previous reviews could be

recreated to access labelled data, TeMACS saves object instances built from its data,

therefore, shorter turnaround time for reuse in future review updates and ensuring

consistency in the way the data is preprocessed. TeMACS’ support for reproducibility

is hoped to pave way for its timely advancement and a general timely advancement in

the research for automatic CS tool using TM techniques. The functionalities of teM-
ACS as described in this work remains to be independently verified being a new tool.

The extent to which the data it produce also supports independent reproduction of its

process will is also yet to be validated by an independent researcher. It is anticipated

that other researchers will use the tool and assess its support for reproducibility.

8.6 Threats to research validity

Some of the key threats to the validity of the work presented in this thesis are brought

together in this section, categorised under the different types of validity threats. The

limitations of TeMACS as a tool for automatic CS has bee presented in Section 8.5

with further discussion in Section 9.2.

8.6.1 Construct validity threats

The initial literature reviewed in this project relied on an existing systematic review

conducted on similar subject by O’Mara-Eves et al. (2015). Though, the literature list

was later updated to cover for the period between when the review was published
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and this project, there is a possibility that some paper may not have been covered

either in the review by O’Mara-Eves et al. (2015) or the update search. However,

every effort is made to ensure that the list covers all available literature until the

writing of this thesis by checking continually for any possible new publication. An-

other approach employed is the checking of the reference list of the new articles

identified in the update literature search for any missed publication.

8.6.2 External validity threats

The datasets used in the various work reported in this thesis covers only the health-

care and SE fields. As discussed in Section 1.1.1, SR in other disciplines with their

own datasets that are not covered in this research. The healthcare and SE datasets

used also covers a small sector of the fields’ research themes. The investigations un-

dertaken in this project are however not specific to the data used. The experience

can thus be easily generalized within the context of the investigations.

Model complexity is a statistical phenomenon valid for any computational al-

gorithm. Whilst the concept can be generalized across the field, the SVs measured

in the relevant work in this research are specific to the SVM algorithm used. Com-

plexity measures of other algorithms are not covered in this research, studies using

other algorithms will have to record complexity measures that are suitable to such

algorithms.

The model performances of the SVMs reported are not necessarily generalisable.

They were generated from datasets that are considered relatively small from the ML

perspective and are highly imbalanced. The CV method was nevertheless used to

mitigate overfitting. The performances observed are also limited to the parameter

settings used and the random (seed) value options. It is impractical to exhaust all

possible options particularly of seed values to know which brings out the best per-

formance in the algorithm.

8.6.3 Internal validity threats

The assessment metrics defined in Section 4.2.2 are based on the experience of the

researcher guided by two previous researches that had attempted similar definitions.

The studies were also assessed based on the researcher’s understanding of their con-

tents. It is believed that the reproducibility metrics definition and assessment suffices

for the purpose of this work and are subject to future refinement.

8.6.4 Conclusion validity threats

The systematic assessment presented in Section 4.2.3 was conducted subjectively

by a researcher. A corroboration from at least one other researcher would have
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given more reliability to the outcome. Nevertheless, its not likely the outcome might

have changed from having researchers assess the studies because the exercise was

conducted purely for research with no preference for any of the studies involved.

There were indications from the feature enrichment study presented in Chapter 6

that adding bibliography data to article features for the purpose of automatic CS

could improve the performance of the models. This finding however cannot be def-

inite since the performance was not consistent across all the datasets. This calls for

a need for further investigation into the definite effect of bibliographic data addi-

tion to citation features or other possible factors that might be responsible for the

inconsistency in the models’ performance trends. The model performances reported

throughout this work are limited to SVM models, the parameters chosen, the feature

representation types and the feature ranking methods used.

8.7 Summary

This chapter has combined the findings from all the work undertaken in this pro-

ject and discussed them against the original aim and research questions set out in

Chapter 1. The extent to which the different work undertaken in this research has

been able to answer the research questions was clarified. An update to the repro-

ducibility checklist was also presented and validated against the literature review

update. The development of TeMACS and how it combines the different work of this

research was also presented. There still exist opportunities for further improvement

in this research in spite of the work conducted in this research. Therefore, future dir-

ections and recommendations of this research are also specified in Chapter 9 towards

improvement of reporting and ultimately support for CS in SRs.
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CHAPTER 9

Conclusions and Future Work

T his chapter presents the summary of the research undertaken in this project

and conclusions. Some thoughts on the CS tool are presented alongside sug-

gestions for future work and recommendations for CS practitioners and researchers.

9.1 Summary and conclusions of the research

The overarching goal of this research is to investigate experimental transparency in

automatic CS studies. In the course of this investigation, how and what information

can aid the reproducibility of the studies and understandability the complexity of the

models were explored. A CS tool was also developed as part of the investigation.

The project commenced with a literature review (in the form of a mapping study),

the review aimed to identify the methods being used in CS studies and the level of in-

formation and justification provided for the methods. The literature review identified

a growing field with a moderate number of studies but a lack of technical information

that can help in in-depth understanding and interpreting of the performance of the

models across the studies. Alongside this finding, the study also identified a lack of

reproduction or replication in the research area. The results implied that relying on

the studies, independent researchers may be limited to a superficial understanding of

the models and thus, find the result hard to reproduce. In addition, the results of the

studies have not been independently corroborated and are generally still claims by

their authors. These findings provided the motivation for investigating how the in-

formation about the studies affected their reproducibility and understanding of their

complexity.

33 studies reporting the use of TM for CS were assessed for reproducibility. The

study consist three stages: firstly, an attempt was made to actually reproduce the

results of six of the studies; secondly, the experience of the reproduction attempt was

used to develop a reproducibility assessment framework; and thirdly the framework

was used to assess the 33 studies. The assessment focussed on how well the in-
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formation provided in the studies can support their reproduction. The results of the

work identified information elements of TM for CS experiments essential for their

reproduction. The results further identified the information that is often provided

and those often overlooked but is critical to reproducing the results of the studies.

Based on the experience from the reproducibility assessment, an initial version (ver-

sion 1.1) of a CS study reproducibility checklist was developed. In an independent

but complementary research activity focussing on assessing suitability, brevity and

clarity of the checklist items the first refinement of the checklist (version 1.2) was

applied to 30 studies. The checklist was further updated to Version 1.3 and validated

on nine new studies from the literature review update.

15 healthcare and four SE review datasets were used in the work undertaken to

assess structural complexity in CS models. To conduct this study, SVM models whose

performance are comparable to those obtainable in existing studies were developed.

Two types of feature representations (binary and Word2vec) were explored. The

binary feature representation gave acceptable performance only with the non-linear

kernel while the Word2vec representation performed well with both the linear and

non-linear kernels. In addition to other metrics, the size of the SVs of the SVM models

were measured to explore the complexity in the decision making of the models over

the datasets. The results of the work identified high levels of complexity in the mod-

els, however, the Word2vec representation with the linear kernel models presented

complexity lower than their non-linear counterparts while the Word2vec–non-linear

kernel models also presented complexity that was relatively low compared to their

binary-non–linear kernel counterparts. The results suggest that it is important that

model complexity information and how model selection decision are documented in

studies.

To explore how model performance can be improved without increasing complex-

ity, the studies used in the complexity assessment were reused with an additional

feature - the bibliography data. The feature enrichment study followed that same

process as the complexity assessment. But in the feature enrichment study, two sets

of models were developed, one with bibliography data added to the features and the

other without. The results show that three of the SE datasets that are relatively large

showed a consistent performance improvement in terms of recall, precision, MCC

and WSS and lower complexity with the the addition of bibliography data. Perform-

ance varied with the rest of the datasets however, there were more instances where

bibliography enriched datasets exhibited an equal or better performance. Overall,

the work finds that the addition of bibliography data to a dataset is more likely to

improve the performance and lower complexity of the model than impair it. Though,

more investigation is required to further explore the noticed variability.

The methods and findings from the different research activities in this project have

been combined and packaged into a tool for automatic CS. The tool was developed
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to support the CS stage in SRs and at the same time make enough information about

its processes available to support further research for its improvement and progress

in the research area.

This research project provides useful insight into the need for more transparency

in the reports of CS studies. An in-depth technical understanding of the models is

still limited and results are hard to reproduce based on current studies. Though,

the results of the studies are promising more independent empirical evidence is still

required to verify the results and even improve the quality of the models. Only two

of the five tools identified that emerged from some of the studies, have been in-

dependently evaluated. More independent evaluation of the tools is also required.

The reproducibility assessment checklist and CS tool presented in this thesis aim to

support the CS stage of SR by enhancing transparency and facilitating collaborative

checking, verification and reproduction of processes and results. The CS tool is par-

ticularly developed to serve as a template for future development of transparent tool

for CS.

9.2 Future directions for the CS tool

In this section, some potential future refinements for the tool are presented and

discussed.

The MVC paradigm used in the development of TeMACS ensured that it is easily

extendable and adaptable. Easy adaptability of the tool is pertinent given the nascent

stage of the research area and the focus of the tool on encouraging independent

contribution towards a collaborative solution. It is anticipated that as a result of

this research, the field will witness more reproduced work with new solutions and

knowledge built on pre-existing ones. As the field’s knowledge and solutions evolve,

so should the tools to deliver them without necessarily reinventing the wheel. As

the field grows, alternative approaches might become suggested, tools might require

new features etc., this is why TeMACS has been developed ready for adaptation of

any of its components with minimal or no effect on the rest.

One key feature the tool will require is to support user collaboration. This fea-

ture will give multiple users access to a single project. The tool currently associates

projects to a single user. This is sufficient for the purpose of screening citations. But

given the fact that a typical SR involves more than one reviewer, it will be good if

other reviewers can have access to use the prediction model built for their project.

The tool currently is most useful for repeat reviews where labelled data from the

previous review exists or can be recreated. Efforts at improving the relevance and

usefulness of this tool will be to incorporate an unsupervised learning approach or

semi-supervised learning that will require the labelling of a very small proportion of

the dataset and automatically project the class for the rest of the data. Thereby, the
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tool will become applicable to new SRs with no pre-existing labelled data.

The current rate of research publications demands that SR are updated constantly

than before, hence they become stale quickly. Since documents are static, there

should be means to capture SRs and allow them to evolve with time not only in

reports but also in process. TeMACS currently saves its trained models (for feature

representation, feature selection and classification) just to be reapplied on future

data. A future refinement will be to take this step further and add the possibility of

updated training. That is, after stored models have being used to classify new data,

the models’ learning will be updated with the features and classes of the new data.

Other researchers are encouraged to use the tool and investigate if the inform-

ation provided, combined with the description of its operation are sufficient to in-

dependently reproduce its results. It would be beneficial if other researchers build

upon the tool’s idea, recommend refinement or expansion options of the information

provided by the tool as well as the reproducibility checklist.

9.3 Recommendations and future work

In this section, recommendations are provided for both SR and CS support research-

ers.

There had been several studies reporting the use of TM techniques to support

the CS stage in SRs. The majority of the studies have used the supervised learning

approach combined with the ensemble method. The current trend seems to be shift-

ing towards semi-supervised learning. The SVM remains the most used algorithm

due to its versatility with textual data and robustness to imbalanced data classes.

The majority of the studies report their experiment process with some assumptions

about the reader, which often results in vital information about the studies not being

made explicit. There seems to be much concentration on reporting the performance

capability of the models and not much on the information that can support the repro-

duction of the studies and technical understanding to interpret the performance of

the models. Reproduced results through study replication have not been witnessed

much in the field. Five tools have emerged from the studies, however there has not

been much work conducted to validate the tools independently. It may be that some

of the tools and methods proposed in other studies are useful for reliable screening

of citations in SRs, nevertheless more work need to be undertaken to validate the

tools, reproduce the study results and improve the quality of information provided

in the studies before any recommendations can be made. To identify the information

necessary to be recorded for a study to enhance its reproducibility, researchers are

recommended to use the reproducibility checklist (more information on the checklist

can be found in Section 8.3.1 with background information in Chapter 4) as a guide

and use TeMACS (see more information in Chapter 7) to automatically collect this
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information during the SRs.

CS support researchers are recommended to use and explore TeMACS on how

reproducibility enabling information can be incorporated into a tool. They are also

encouraged to validate the results of the tool independently and contribute the find-

ings as a basis for future developments.

For the purpose of speedy maturation of CS with TM based techniques, review-

ers are encouraged (where available) to utilise tools support for their SR tasks and

endeavour to give constant feedback on their experiences to the developers. Re-

searchers are also encouraged to utilize the information guidelines provided in the

checklist and implemented in TeMACS when reporting their studies, evaluating a tool

or developing a tool. As the studies continue to increase and more tools emerge, it is

suggested that further work to investigate the studies’ reproducibility and suitability

as well as evaluate the tools be undertaken. The work reported in this thesis has

provided a platform for new research in the research area to be undertaken.

Based on the findings of this research a community agreed workshop on possible

minimum information guidelines which may be based on the checklist proposed and

exemplified in the tool is recommended. This will aid in ensuring the scientific in-

tegrity of the literature, improve technical understanding, promote consistency and

foster experimental transparency. Further research to investigate the relationship

between model complexity and reliability of future prediction, and transparency, re-

searcher’s knowledge of TM techniques and reproducibility are suggested. Much of

the focus of the investigations and the tool is placed on transparency particularly as

it supports reproducibility and understanding the complexity of the models in auto-

matic CS studies using TM techniques. It is suggested that future work be undertaken

to investigate other possible factors that may improve evolutionary solution among

the studies. Improving the reproducibility of studies may encourage independent re-

searchers to build on existing results which eventually may lead to a timely evolution

of a more robust solution. It is anticipated in this research that reproducible studies

will strengthen the claim and build more confidence in the proposed method and

pave the way for timely advancement. It is therefore suggested that an investigation

into the relationship between study reproducibility, the emergence of collaborative

solutions and the acceptance rate within the community of the outcome of such col-

laboration be investigated in the future. The essence of this research is towards the

production of viable support for the CS stage in SRs, it would be beneficial to invest-

igate if/how the progress and practices from this research area affect the progress

and practices of similar efforts focussed on supporting other SR stages and the whole

SR process. It is also suggested to investigate inter-operability among the tools sup-

porting the different SR stages.
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APPENDIX A

Excluded Papers

The set of papers excluded from the mapping study discussed in section 3.4.1 is

presented in Table A.1 below.
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Chapter One – Excluded Papers

Table A.1: List of excluded papers

S/N
Pa-
per
ID

Paper Title Paper Reference

1 P07
Performance of support-vector-machine-based
classification on 15 systematic review topics eval-
uated with the WSS@95 measure

A. M. Cohen (2011)

2 P16
Combining relevance assignment with quality of
the evidence to support guideline development

Fiszman et al. (2010)

3 P17
Semantic processing to support clinical guideline
development

Fiszman, Ortiz,
Bray, and Rindflesch
(2008)

4 P28
Direct comparison between support vector ma-
chine and multinomial naive Bayes algorithms for
medical abstract classification

Matwin and
Sazonova (2012)

5 P31
Parameterized contrast in second order soft co-
occurrences: A novel text representation tech-
nique in text mining and knowledge extraction

Razavi, Matwin, Ink-
pen, and Kouznetsov
(2009)

6 P33
Towards evidence-based ontology for supporting
Systematic Literature Review

Sun, Yang, Zhang,
Zhang, and Wang
(2012)

7 P36
Performance of support-vector-machine-based
classification on 15 systematic review topics eval-
uated with the WSS@95 measure

Matwin, Kouznetsov,
Inkpen, Frunza, and
O’blenis (2011)

8 P44 How can we find relevant research more quickly?
Thomas and OMara
(2011)

9 P35
An extension of the systematic literature review
process with visual text mining: a case study on
software engineering

Not found
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APPENDIX B

Explanation of Terms in Reproducibility Study

B.1 Tags in Table 4.7

U(Usable for reproduction): This option was used if the information provided for a

certain element are precise and was useful to repeat the study action. This is normally

associated with a combination of ‘complete’ tag in ‘identification’ and ‘description’;

and ‘public’ in ‘availability’ attributes.

D (Usable for reproduction with some difficulty): Any variation in the identification,

description and public attributes from the description above will likely result in a ‘D’

measure if the information was still found useful. For example, if a data source was

precisely described but it was stored on a private repository requiring certain mem-

bership or the researcher had to take some personal initiative to achieve the expected

task.

N (Not usable for reproduction): This indicated the case when the information provided

does not help the reader in any way to repeat the author’s action(s).

+ (Future availability is foreseeable): This sign is used to indicate that a concrete

artefact e.g. tool or dataset will still be available in foreseeable future. May be be-

cause it’s open source, well maintained, funded, managed or because it‘s been around

for some time with an active team and technical support etc.

* (Flexible): The asterisk sign is used to indicate perceived level of flexibility of:

i) Data: In terms of storage or format. The ease of the possibility to transform it

from one format or storage technology to another.

ii) Tools, algorithms or techniques: Was the method or tool written in a popular

language with codes made available to the public and easy to modify and/or

extend?

- (Irrelevant): Used when an attribute is irrelevant to a given element.

The tags are an overall decision on how useful to reproducibility was the informa-

tion provided in the study being assessed regarding each information element and
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its attribute rating. Table 4.6 provides an example of the attributes judgement per

information element for a sample study. In the table, data source has an assessment

of ‘D+’, the ‘D’ simply implies that the information regarding the data source given

in the study being assessed was found useful (i.e. a reader can use it to find the

data) but with some level of difficulty (e.g. the link given was to a general page and

the reader have to figure out how to navigate to the specific data webpage). The

‘+’ implies that the data was likely to be persistent may be because it’s hosted in a

public well maintained website or provided by a reputable body that is interested to

continue in available.

B.2 Model parameters

The parameter settings for the SVM and the perceptron models presented in Sec-

tion 4.2.1.4 are shown in the Tables B.1 and B.2. Other parameters not shown for

either algorithm are left at their default values.

Table B.1: SVM parameters settings

Parameter Value

C 1.0

class_weight ‘balanced’

B.3 Some terms/phrases in Table 4.8

Following are the definitions of some of the phrases used in Table 4.8:

Raw dataset: This refers to the whole body of the dataset in its original form, in situ-

ations where the study under review utilized only a subset of a larger data body. For

example, the TREC 2004 dataset consists of 50 DERP review topics where some of

the studies reviewed in this study used only 15 or at most 24. The raw dataset in this

case is the complete 50 review topics because they were bundled together. Any user

will first have to download the whole set before extracting the part required. This

Table B.2: Perceptron parameters settings

Parameter Value

penalty ‘l1’

class_weight ‘balanced’

shuffle True

random_state 0
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may sometimes be the same as the target dataset when the whole set is being used.

Target dataset: The target dataset is the subset (data) of interest in its original form,

for a particular study in cases where the data used for the study is part of a larger

set. An example is the 15 review topics used in A. M. Cohen et al., 2006 which is a

subset of the 50 review topics of the TREC 2004 dataset. This may sometimes be the

same as the raw dataset.

Cleaned dataset: This is the processed (through preprocessing or any other data

cleaning approach) version of the target dataset.

Internal structure: This entry requires the researcher to describe the different head-

ings under which each data record was categorized and which part is of interest to the

study. For example, the TREC 2004 used 50 or more categorical heading to describe

each document, part of which are: Title, Abstract, MeSH tag, PMID, publication type,

publication year etc. The storage format and order of heading arrangement might

also be useful.

Data retrieval method: Information about how the dataset was packaged or stored

and what method was used or will be required to gain access to the data e.g direct

download from a universal resource locator (URL) or automated retrieval (e.g. web

scraping) because the dataset are not bundled together or are from different sources.

Data extraction: Most of the data files are sometimes too large to be opened directly

or loaded into memory at once, so, after gaining access to the raw dataset, how were

the records of interest for each datum extracted. This is more useful in cases where

only partial record of each datum is desired. Again, using the TREC 2004 dataset as

an example, most of the studies reviewed were interested only in four information -

title, abstract, MeSH and the publication type out of about 50 information available

for each document.

Custom algorithm: In situations where a researcher proposed a new or an improve-

ment to an existing algorithm, the type of description provided for this proposal will

determine how well or not it can be reused.
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APPENDIX C

Reproducibility Information

Following are information to support the reproduction of studies reported in Sec-

tions 5.4 and 6.3.

i) Initial dataset shuffle seed: 29

ii) StratifiedKfold seed: 37, 71, 21, 61, 55

iii) SVM parameters:

a) Gamma: auto

b) C: 1, 10, 100, 1000, 10000

c) Kernel: rbf, linear, sigmoid

d) Model random state: 37, 71, 21, 61, 55

e) Sample weight: 1:4

f) Class weight: balanced, None

iv) Word2Vec model

a) Features: as in Table 5.2.

b) minimum word count: 10

c) context window: 15
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Table C.1: Software information

S/N Software packages Version

1 Python
2.7.12
64bit

2 Ipython 5.1.0
3 Scipy 0.18.1
4 Numpy 1.11.3
5 Sklearn 0.18.1
6 Pandas 0.19.2
7 NLTK 3.2.2
8 Gensim 1.0.1
9 Matplotlib 1.5.3
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APPENDIX D

TeMACS - Design and Development Details

The design and some of the development details of TeMACS is presented in this

chapter as a supplement to the discussion of the tool presented in Chapter 7.

D.1 TeMACS features

The user management module of the tool is presented in this section.

D.1.1 Managing a user profile

The user profile management section of the application consists of four functionalit-

ies:

i) register - create user account

ii) login - provide users with access to user area of the application

iii) password reset - enable users to recover lost/forgotten password

iv) logout - the logout module performs house cleaning operations, particularly by

deleting files saved for temporary use (notably the user’s dataset) and log the

user out of the application’s user area.

D.1.1.1 Register

To begin using the system, the user must be successfully logged into the application.

The home page presents a link in text (Figure 7.1) for new users to register with

the application. Users are able to register to create an account in the application by

providing:

i Name - The user’s name

ii email: The email of the user for communication purpose

iii password: A unique password for the protection of the user’s profile
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iv organization: The user’s affiliation

When the Register button (Figure D.1) is submitted, it sends a Hypertext Transfer

Protocol (http) post request to the new_user controller which queries and the name,
email, password, and organization fields in the reviewers table of the database, en-

sure the user profile is unmatched by any existing record, create the user and sends

(through http response) a success message and returns to the login view or a failure

message to the register view. A class diagram of the back-end database is presented

in Figure D.2.

Figure D.1: Screenshot to register new user

D.1.1.2 Login

Registered users are able to log into (from the top right corner, link in Figure 7.1

or a redirection from a successful new user registration) the user area to use the

application. A use-case for the user login is presented in Figure D.3. The login form

contain username (email) and password fields to login, a password reset option and

an option to register if new User (Figure D.4).

Submitting the login form sends a http post request to the login controller which

queries the username and password fields of the reviewers table, verify the particulars

match stored values and log the user in or sends error message. The controller sends

a success back to and log the user into the user application home - the dashboard
view (Figure D.5), or sends a failure message back to the login view.
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Figure D.2: ER diagram for the application

D.1.1.3 Password reset

Users are able to reset lost or forgotten passwords, in the process a time bound (24

hours) token is generated with a link sent to the user’s email to reset their passwords.
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Figure D.3: Login use-case

Figure D.4: TeMACS login page

D.1.2 Architecture for the background tasks

The architecture and technologies for running tasks in the background is presented

in Figure D.7 below.
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Figure D.5: TeMACS dashboard

Figure D.6: Screenshot for requesting new password
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Figure D.7: Architecture for running the classification process in the background
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