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“Pour prier comme il nous plait, si nous sommes religieux. Pour écrire ce qu’il nous plait, si nous

sommes poetes.”

Antoine de Saint-Exupéry






Abstract

Cluster of differentiation 4 (CD4) is a receptor protein found on the surface of cells of the im-
mune system and is the primary receptor of the human immuno-deficiency virus-1 (HIV-1)
envelope glycoprotein 120 (gp120). The extracellular portion of CD4 is comprised of four
immunoglobulin-like domains of which domains 1, 2 and 4 contain disulphide bonds. The
disulphide bond in domain 2 is an allosteric disulphide bond which can alter protein function
through redox shuffling. Reduction of this bond is essential for gp120 binding and subsequent
HIV-1 host cell entry. However, reduced monomeric CD4 does not have any known physio-
logical function in CD4’s normal immune response. CD4 reduced in domain 2 is a functionally
distinct redox isoform of CD4 implicated in HIV-1 infection and is therefore, a target for an

anti-HIV-1 vaccine.

The aim of this work was to obtain biophysical and small-angle X-ray and neutron scattering
(SAXS and SANS) data which would explain how reduction of the second domain disulphide
bond affects CD4 structure and therefore its ability to bind to gp120. A novel cell-free pro-
tein expression (CFPE) protocol was developed to produce recombinant deuterium labelled
and un-labelled wild-type two domain CD4 (2dCD4-WT). 2dCD4-WT produced using CFPE
is demonstrated to be functional, correctly folded and suitable for SAXS and SANS by a series
of biochemical and biophysical techniques. Ablation of the second domain disulphide bond
is shown to cause relaxation of the domain so that 2dCD4-WT reduced in domain 2 has a
smaller hydrodynamic volume than its fully oxidised and fully reduced counterparts. For the
first time, deuterium labelled 2dCD4-WT in the gp120-bound and -unbound state is described
by SANS contrast variation analysis. Finally, size-exclusion chromatography coupled to SAXS
data on gp120-bound 2dCD4-WT is presented and validates the use of CFPE for the production

of recombinant protein for small-angle scattering studies.
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Chapter 1

Introduction

1.1 The Human Immuno-deficiency Virus (HIV)

According to the World Health Organisation, HIV is one of the world’s leading infectious
killers, with approximately 37 million people living with the HIV infection in 2016. HIV is par-
ticularly prevalent in low and middle income communities with more than 70% of the global
total of HIV cases arising in sub-Saharan Africa [1]. Figure 1.1 presents an overview of the
global distribution of HIV cases for adults aged 15-49, from which it is evident that Africa is
the most affected WHO area with 4% of the population testing positive for HIV. The advent of
highly active anti-retroviral therapy (HAART) has meant that an HIV diagnosis is no longer a
death sentence and has become a ‘liveable” chronic disease, but only to those who can afford
the ten thousand dollar price tag per year. With more than 50% of those infected with HIV un-
aware of their HIV status and approximately seven thousand individuals newly infected every
day [1], it is imperative that a prophylactic vaccination be developed, preventing the spread of

HIV.
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Prevalence of HIV among adults aged 15 to 49, 2016
By WHO region

Prevalence (%) by WHO region

Eastern Mediterranean: 0.1 [<0.1-0.1] | Europe: 0.4 [0.4-0.4]
Western Pacific: 0.1 [<0.1-0.2] Il Americas: 0.5 [0.4-0.5] | Global prevalence: 0.8% [0.7-0.9]
South-East Asia: 0.3 [0.2-0.3] I Africa: 4.2 [3.7-4.8] 0w e 3ssorsmens
I
The boundaries and names shown and the designations used on this map do nol imply the expression of any opinion whalsoever Dala Source: World Health Organization

£723% World Health

on the part of he World Health Organization conceming te lagal status of any country, lenitory, city or area or of its authorities, Map Production: Information Evidence and Research (IER) - Pt <4
¢ Organization

or conceming the delimitabon of its frenbrs or boundanies. Dotted and dashed ines on maps reprosent approximate border lines World Health Organizabon
farwhich fiere may notyet be full agreement

©WHO 2017. All nights reserved

FIGURE 1.1: Map showing the global distribution of HIV among adults aged 15-

49 in 2016 by World Health Organization region. Africa is evidently the continent

most heavily affected by HIV with approximately 4.2% adults aged 15-49 testing
positive for the virus. From: [1]

1.1.1 Discovery of HIV

HIV is a lentivirus of the retroviridae family. It was first identified as the infectious agent
resulting in the onset of acquired immuno-deficiency syndrome (AIDS) in 1983, when a reverse
transcriptase containing virus was isolated from the lymph node of a patient suffering with
persistent lymphadenopathy syndrome [2]. Later, three prototype viruses isolated from AIDS
patients were found to have identical properties: those of a lentivirus. This AIDS-causing
lentivirus was finally named the human immunodeficiency virus. Shortly after the discovery
and classification of HIV, a separate subtype was isolated in Western Africa, resulting in the

designation of the HIV-1 and HIV-2 subtypes known today [2].

Progression of the disease from HIV to AIDS is characterised by a CD4+ cell count of less than
200 per mm? of blood plasma, when the CD4+ cell count (cells on which CD4 is expressed) is
less than 14% of the total white blood cell population, or when an individual presents at least
one AIDS defining secondary illness including a myriad of invasive cancers and opportunistic

infections [3].



1.1. The Human Immuno-deficiency Virus (HIV) 3

1.1.2 Genome and Structure

The HIV-1 genome consists of 2 copies of single stranded RNA molecules [4], each 9.8 kb in
length and by means of differential RNA splicing, the HIV-1 genome encodes 9 different gene
products. The 9.2 kb unspliced genome gives rise to the Gag and Pol polyproteins, a singly
spliced 4.5 kb mRNA transcript encodes the Env, Vif, Vpr and Vpu proteins and finally the
multiply spliced 2 kb genome codes for the Tat, Rev and Nef proteins. Figure 1.2 shows the

different reading frames giving rise to the different genes and gene products.

Reading Frame

tat I

7 5-LTR p17 p24 p7_p6
2 ( 3-LTR
3 prot. P51 RT pIl5 P31 int . gpl20 ap41
vpr
o] 71000 2000 3000 4000 5000 6000 7000 8000 9000 9719
Base Pairs

FIGURE 1.2: Schematic showing the 3 reading frames of the HIV-1 genome and
the resultant gene products after splicing. From: [5]

The Gag, Pol and Env polyproteins undergo cleavage to produce their respective functional
products. The Gag polyprotein is cleaved by viral protease to produce the matrix (MA), capsid
(CA) and nucleocapsid (NC) structural proteins of the virus as well as the smaller spacer 1 & 2
(SPC1 & 2) peptides and the P6 protein [6, 7]. The Pol polyprotein is processed to produce the
viral enzymes: reverse transcriptase (RT), RNase H, integrase (IN) and HIV protease (PR)[8].
The gp160 Env precursor protein is cleaved by furin proteins [9] from the host cell to produce
the gp41 and gp120 monomers which associate into a trimer of heterodimers to form the Env

spike (which is the viral attachment point to the human host cells).

The diagram depicted in figure 1.3 shows the configuration of the mature HIV-1 particle [10].
HIV-1 is comprised of a host-cell derived lipid membrane on which the only surface-exposed
viral protein is the Env-glycoprotein complex (Env spike). Under the surface of this plasma
membrane is the matrix formed by the MA protein. Within the viral matrix is the capsid which
forms a fullerene-like cone shape due to the pentamer of CA hexamers at one end and the
heptamer of CA hexamers at the opposite end [11]. The viral genome can be found within the

capsid and is closely associated with RT and NC [2].
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.. » —Glycosylation
| gp120 env-Glycoprotein Complex

Proteins of Host Cell

Lipid Membrane
Matrix Protein

Capsid

Nucleocapsid Protease

Tat

Viral RNA Genome

Integrase  Reverse
Transcriptase

FIGURE 1.3: A section through HIV-1 showing the structure and organisation

of the mature viral particle. The Env-glycoprotein complex (Env), consisting of

gp41 and gp120 is the only viral protein complex exposed on the surface of the
viral particle and is heavily glycosylated. From: [10]
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1.1.3 Replicative Cycle

Figure 1.4 outlines the major steps of the HIV-1 infection cycle. After entry of the HIV-1 particle

into the host organism, the virus must bind to susceptible cell types.

1. Attachment: The infection cycle begins by initial attachment of the viral Env spike to
CD4+ cells, key interactions are described in detail in section 1.2.3. During this attach-
ment, gp120 binds to domain 1 (D1) of the CD4 receptor. This initial binding event trig-
gers a conformational change within the Env spike [12], causing exposure of the CD4
induced conformation and of the secondary receptor binding site which binds to the
chemokine receptor on the host-cell [13, 14]. The secondary co-receptor depends on the
tropism of the virus and the CD4+ cell type. X4 tropic viruses will bind to the CXCR4
G-protein coupled receptor (GPCR) and R5 tropic viruses bind to the CCR5 GPCR [15-
17].

2. Fusion: Upon co-receptor binding, further structural realignment within the envelope
causes exposure of gp4l and formation of the pre-fusion complex in which the fusion
peptide located at the tip of gp41 is inserted into the host membrane [18]. The trimerised
carboxy- and amino-terminal heptad repeat sequences of gp41 wrap around each other
to form a six-helix hairpin structure which bring the host and viral membranes within

proximity to allow viral/host-cell membrane fusion [19, 20].

3. Uncoating: Upon membrane fusion the fullerene-like viral capsid cone, containing the
viral RNA, RT and IN, as well as other accessory proteins, is released into the cell where

it is uncoated and the contents are released [6].

4. Reverse transcription: Viral RNA is reverse transcribed into proviral cDNA by viral re-

verse transcriptase [21].

5. Nuclear import: The viral cDNA and MA, and IN proteins then assemble into the pre-
integration complex (PIC) prior to nuclear import through the nuclear pore complex, di-

rected by Vpr [22, 23].

6. Integration: Within the nucleus the proviral DNA is irreversibly incorporated into the
host genome by the viral integrase enzyme which forms a tetrameric structure. Viral IN

is helped by host regulatory proteins [22, 23].
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10.

11.

12.

13.

Transcription: Viral Tat interacts with positive transcription elongation factor (P-TEFb) to
hijack host cell RNA polymerase II elongation control machinery and promote elongation

of viral mRNA [24, 25].

RNA export: The spliced viral mRNA transcripts are then exported for translation with
the help of the viral Rev protein. Rev binds to the Rev response element RNA to form a

ribonucleoprotein able to bind the Crm1 host export factor [26].

Translation: The viral mRNA is translated into protein using host ribosomes, tRNAs and
regulatory proteins into viral precursor proteins: Gag-Pol and Pol and the various viral

accessory proteins [27].

Assembly: The translated viral proteins are then packaged into new virus particles with
the help of the host ESCRT machinery [28]. Env is inserted into the membrane and Gag

and Gag-Pol bind the inner side of the membrane [29].

Budding: Viral particle budding off from the host-membrane is facilitated by interactions
between Gag and vacuolar protein sorting proteins, which are subunits of the ESCRT

machinery. As the viral particle forms it acquires host-cell lipid membrane [28, 30].

Release: The budding viral particle pinches off from the host membrane to become an
individual, immature virion with the help of Vpu which interupts tetherin membrane

tethering [28].

Maturation: The viral protease enzyme cleaves the viral precursor proteins to form the
matrix, capsid and nucleocapsid proteins as well as the protease, integrase and reverse
transcription enzymes, during the process of viral maturation in preparation for the next

cycle of infection [31].
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FIGURE 1.4: Schematic depicting the HIV-1 replicative cycle. (1) Attachment: viral gp120 binds CD4 and the CXCR4 or CCRS5 co-
receptor. (2) Fusion: viral and host cell membranes fuse. (3) Uncoating: the viral capsid is uncoated releasing regulatory proteins and
the viral genome into the host cell. (4) Reverse transcription: viral RNA is reverse transcribed into cDNA by viral reverse transcriptase.
(5) Nuclear import: the viral genome is imported into the host cell nucleus. (6) Integration: the viral genome is incorporated into the
host cell genome. (7) Transcription: the viral genome is transcribed using host cell machinery. (8) RNA export: mRNA coding for
viral proteins is exported from the host cell nucleus. (9) Transcription: host cell machinery is used to transcribe viral mRNA into viral
precursor proteins. (10) Assembly: the translated viral proteins are assembled into a new viral particle. (11) Budding: the new viral
particle buds off from the host cell membrane using host ESCRT machinery. (12) Release: the budding viral particle is released from the
host membrane. (13) Maturation: the immature viral particle becomes mature after viral protease cleaves the viral precursor proteins.
Adapted from [32]
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1.2 The primary host-cell/viral interaction

1.2.1 The viral glycoprotein 120 (gp120)
gp120 function in HIV-1 infection

Glycoprotein 120 (gp120) is one of the two proteins along with gp41 to form the viral Env-
glycoprotein complex, located on the surface of the viral particle [33]. The function of gp120 is
to identify the correct cell type for infection followed by exposure of the cell-membrane fusion
machinery. gp120 binds to domain 1 of the CD4 receptor of human immune cells [34] which
induces structural realignments allowing the secondary receptor, either CXCR4 or CCR5, to
bind to the secondary receptor binding site of the CD4 induced gp120 conformation [14, 35].
Further structural rearrangements, after secondary receptor binding, result in the unveiling of
gp41, whose function is to bring the viral and host-cell membranes into close proximity for
membrane fusion. The gp41 fusion peptide anchors into the host-cell membrane as a type of
harpoon, triggering reorganisation of the trimerised N- and C-terminal heptad repeat motifs
[18]. The HR motifs wind around each other to ratchet the viral and host-cell membranes into

proximity for subsequent membrane fusion and HIV entry [19, 20] (fig. 2).

Atomic resolution structure of gp120

Kwong et al. 1998 were the first to describe the structure of the gp120 core by X-ray crystal-
lography [34] . The core of gp120 is formed of an inner and outer domain with respect to Env,
which are linked by a four beta-stranded bridging sheet (fig. 1.5). The inner and outer domains
lie approximately parallel to one another with the bridging sheet connecting the two domains
at their termini distal from the viral membrane. gp120 presents five constant regions (C1-5)
and five variable regions (V1-5) of which the latter are important for viral immune evasion
[36]. gp120 has many N-linked and a variable number of O-linked glycosylation sites which
are glycosylated with complex glycans to make up approximately 50% of its mass [37] and are
important for immune evasion [38]. gp120 also has 9 conserved disulphide bonds: C57-C74,
C119-C205, C126-C196, C131-C157, C218-C247, C228-C239, C296-C331, C385-C418 and C378-

C445 [37, 39]. Their significance is discussed in section 1.4.2.
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FIGURE 1.5: The gp120 core is comprised of an inner and an outer domain, con-
nected via a bridging sheet of beta-strands at the distal end from the viral mem-
brane. The inner and outer domains are formed by a complex fold involving
beta-strands (yellow) and alpha-helices (red). Flexible loops are shown in green.
gp120 has 5 variable loops (V1-5) and 9 disulphide bonds of which 7 can be seen
from this PDB entry (1G9M) and are indicated in cyan. CD4 binds the CD4 bind-
ing site in the crevice formed by the connection of the bridging sheet with the
inner and outer domains (black circle). Adapted from: [34]

With the advent of high-resolution cryo-electron microscopy (cryo-EM) and the development
of stable trimeric complexes [40] there has been an explosion of trimeric Env structures be-
ing submitted to the protein data bank (PDB). This has allowed the determination of un-
liganded [41], CD4-induced pre-fusion intermediate [42-45], and fusion [46] conformations,
which have helped in understanding the HIV-1 entry mechanism. They have shown that unli-
ganded Env adopts a closed position, whereas receptor bound Env adopts an open conforma-
tion whereby the gp120 protomers are displaced out and away from the gp41 trimer situated
beneath, allowing fusion peptide insertion and subsequent membrane fusion [47]. These high-
resolution structures are also important for structure-based immunogen design strategies for
raising broadly neutralising antibodies in the race to develop a prophylactic anti-HIV vaccine

1.2.4.
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1.2.2 The cluster of differentiation 4 (CD4) receptor protein
Biological function of CD4 and its role in HIV-1 infection

The CD4 receptor protein plays a role in both the innate and adaptive immune responses. How-
ever, it is also the primary receptor for the human immunodeficiency virus, binding the gp120
component of the viral Env trimer [48]. CD4 is a 55 kDa type 1 integral membrane glycoprotein
expressed on the surface of immune cells such as monocytes, monocyte-derived macrophages
and dendritic cells [2, 49]. However, it is found primarily on T-lymphocytes where its principle
function is to bind cooperatively the major histocompatibility complex class 2 (MHCII) ex-
pressed on antigen presenting cells (APCs) in combination with the T-cell receptor (TCR) [50].
This interaction results in the activation of the intracellular p56-°F src-family tyrosine kinase

[51] associated with the cytoplasmic tail of CD4.

The pseudo-dimer model proposed by Li et al. 2004 suggests that CD4 brings together en-
dogenous and agonist MHCII complexes which allows activation of many TCRs [51]. This
concomitant signal activation contributes towards the high sensitivity of T-cells to antigen as
determined by the correlation between p56LCk recruitment to CD4 and T-cell sensitivity [51].
Lck phosphorylates the immunoreceptor tyrosine activation motifs (ITAMS) on the cytoplas-
mic portion of CD3 (another receptor) [52]. SH2 domain tyrosine kinases are recruited to the
phosphorylated ITAMs to effect downstream signalling events which result in activation of

certain transcription factors [53]. This signalling cascade triggers activation of T-cells [53, 54].

MHCII and gp120 have been shown to bind functionally distinct regions of CD4 [55]. CD4
dimerisation has been shown to trigger activation of T-cells [56, 57] and is necessary for binding
to MHCII [58] which has been shown to be inhibitory to gp120 binding [59, 60]. Whilst the
precise mechanism for CD4 dimerisation is unclear [61-63], it is clear that gp120 and MHCII

bind functionally and structurally unique isoforms of CD4.

The atomic resolution structure of CD4

The human CD4 monomer is comprised of 4 ecto-domains (D1-D4, residues 1-371), a trans-

membrane domain (TM, residues 372-395) and a cytoplasmic tail (CT, residues 396-433) [64—
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67]. The extracellular portion of CD4 is composed of 4 concatenated immunoglobulin-like do-
mains of which each domain, except for D3, contains a single disulphide bond (fig. 1.6) [64, 67,
68]. Ig domains are commonly found in cell-surface receptors involved in the immune system
[69] and are defined by a 7-9 B-strand configuration forming a beta sandwich. The conserved
core consists of 4 beta-strands B, C, E and F with between 3 and 5 additional strands: A, C/,
C", D and G [64, 70]. The strands arrange themselves into two opposing beta-sheets to form a

beta-sandwich.

Three key crystallographic studies in the early 90’s allowed the determination of 2 two-domain
CD4 high-resolution structures: human 2dCD4 domains 1 and 2 [66, 67] and rat 2dCD4 do-
mains 3 and 4 [68] providing insights into the structure of the protein and its interactions with
viral gp120 and MHCII. Garrett et al. 1993 [71] built on these structures to solve the structure
of four-domain CD4 which indicates that there may be a flexible hinge between domains 2 and

3 required for function [72].

In domain 1 of CD4, the first beta sheet is composed of stands B, E and D and the second beta-
sheet contains the strands A, G, F, C, C’ and C", which folds across the first in an antiparallel
fashion. Domain 1 has the hallmarks of a variable immunoglobulin domain with a conserved
Arg residue at position 1 of the D-strand which forms a salt bridge to an Asp residue at the EF
junction and the FG corner, analagous to the CDR3 region of an Ig variable domain [64, 67].
There is also a conserved Trp28 residue in sheet C which is packed against the Cys16 residue
positioned in strand B that forms a disulphide bond with Cys84 in strand F [66, 67]. Domain 1

also is suggested to have a flexible region at the C’C" beta-turn [67].

Domain 2 is truncated to around 75 residues, with respect to the 100 of domain 1. Domain 2
therefore, has a different topology and displays characteristics of a constant Ig domain [64, 68].
The first beta sheet is comprised of strands A, B and E with the second containing strands C’, C,
Fand G. Strand A of domain 2 is a continuation of strand G from domain 1 suggesting a certain
rigidity of the two-domained structure, with possible flexibility in the highly-conserved AB and
EF loops [66, 68]. The conserved Trp residue is lost in strand C of domain 2 and replaced by a
Cys residue to form a disulphide bond with the Cys residue in stand F (C130-C159) which is a

non-canonical Ig domain disulphide bond configuration [66, 67].
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The formation of a disulphide bond between C130 and C159 in D2 is rare because this position-
ing is unfavourable for the typical geometry of a disulphide bond [67, 73]. The disulphide bond
in domain 1 is positioned between the two beta-sheets whereas the disulphide bond in domain
2 is positioned between beta-strands of the same sheet which causes puckering of the sheet
[74]. Hence the geometry of this disulphide bond follows an unusual configuration classed as
-RHStaple [73], which is known as an allosteric disulphide bond and is described further in

section 1.3.

Similar anti-parallel beta-sandwich structures to domains 1 and 2 are observed in domains 3
and 4. Domain 3 has 9 beta-strands, similar to those of domain 1 and can be classed as a variable
Ig domain [64, 65, 68]. However, domain 3 lacks the disulphide bond usually found between
strands B and F [68]. Domain 4, like domain 2 has 7-beta strands and is classed as a constant
Ig domain [64, 65, 68]. Although unlike domain 2, domain 4 has a canonical Ig disulphide
bridge between cysteine residues in strands B and F, such as that found in domain 1. Domain 4
therefore has a more compact structure whereas domain 3 has a more open structure [68]. The
G to A strand continuation for domains 1 and 2 is conserved in domains 3 and 4 suggesting a

similar rigidity of the domains [68], linked by a proposed flexible hinge [54, 72].
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FIGURE 1.6: Beta-strands are shown in yellow, alpha-helices are shown in red,
flexible loops are shown in green and the disulphide bonds are shown as spheres
in cyan. This figure was made using PDB entry 1WIO [54]. The extra-cellular
receptor portion of CD4 is formed from 4 concatenated immunoglobulin-like do-
mains. Each domain is of a beta-sandwich structure formed by two anti-parallel
beta-sheets. From this orientation it can be seen that domains 1 and 4 contain
disulphide bonds which bridge the two sheets between strands B and F. Whereas
the disulphide bond in domain 2 is unusual in that it is formed between neigh-
bouring beta-strands of the same sheet. Domain 3 does not have a disulphide
bond and so is the least compact of the 4 domains.
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1.2.3 The CD4-gp120 interaction

Kwong et al. 1998 were the first to structurally describe the CD4-gp120 interaction [34]. CD4
binds gp120 in the crevice formed by the junction of the bridging sheet with the inner and
outer domains. The most significant interactions involve CD4 domain 1 residues Phe43 and
Arg59 (fig. 1.7) which form several, essential contacts with gp120 residues Asp368, Glu370 and
Trp427. Phe43 also interacts with Ile371, Asn425, Met426 and Gly473 and Arg59 also interacts
with Val430. There is an overall general complementarity in the electrostatic potential at the
interface between the two proteins, however, the positive region on CD4 is slightly displaced

with respect to the centre of the negative region on gp120 [34].

gp120 core e , \L gp120/2dCD4 interaction
/. \ ke
‘ Trp27
B Glu37
A L \ e371
%= Phe
sn42 N
A4 Asn304R
Val430 4=
Arg59
Domain 1 Y
2dCD4

Domain 2

FIGURE 1.7: Domain 1 of CD4 interacts with the CD4 binding site on gp120 (black
box). The residues forming the key interactions are shown as sticks. Phe43 and
Arg59 from CD4 interact with Glu370 and Trp427 from gp120. Arg59 also forms
interactions with Val430 and electrostatic interactions with Asp368 (shown in yel-
low dashed lines). Phe43 also interacts with Ile371, Asn425, Met426 and Gly473
(not shown). CD4 is shown in purple and gp120 beta sheets are shown in yellow,
alpha helices in red and loops in green. Disulphide bonds are shown as space-
filled spheres. The diagram was made using PDB entry 1GC1.
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1.2.4 gp120 and CD4 as a target for vaccines

Anti-HIV vaccine design is far from trivial. The virus displays huge genetic variation and is
able to evade the immune system by using a highly error prone reverse transcriptase enzyme
which creates vast sequence diversity by recombinant and point mutations over the course of
infection within one individual [36, 75]. In addition, the virus employs myriad other strate-
gies including: conformation masking [76], steric occlusion [77], carbohydrate shielding and
shifting [38, 78], transient epitope exposure, [79], expression of non-functional Env [80, 81] and
general low density of functional Env [12, 82]. So while the immune system can generate an-
tibodies against these changes, their evolution is slower than that of the virus allowing viral

immune escape.

Most attempts to develop an anti-HIV vaccine are directed towards the Env complex on the
surface of the virus. gp120 and gp41 are the only viral encoded proteins expressed on the sur-
face of the virion so there is not much choice in terms of which protein the immune system can
target, in virus directed approaches. Conserved, functional epitopes on the Env complex are
the best candidates for immunogen development [75, 83-85]. Broadly neutralising antibodies
(bNADbs) to conserved antigens have been isolated from certain HIV-infected individuals called
"Elite neutralisers’ [85, 86] and have been characterised and mapped to such epitopes (fig 1.8
and table 1.1).

Epitope Antibody | References
CD4 binding-site b12 [87]
(CD4bs) VCRO1 [88, 89]
V1/V2 PG9 [90]
PGT145 [91]
Glycan V3 2G12 [92]
PGT128 [91]
Membrane proximal extended region 2F5 [93]
(MPER) 10E8 [94]

TABLE 1.1: The main conserved epitopes on the viral Env complex are the CD4
binding-site, the V1/V2 region, a cluster of conserved glycans at the V3 loop and
the membrane proximal extended region at the base of gp41. Adapted from: [84]
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FIGURE 1.8: Conserved, functional epitopes are the target areas on the Env spike

that broadly neutralising antibodies can be raised against in the development

of an anti-HIV vaccine. These conserved regions comprise the CD4 binding-site

which binds VCRO1 (pink), the V1/V2 region which binds PG9 (green), a cluster

of glycans at V3 which binds PGT128 (dark blue) and the membrane proximal

extended region (MPER) at the base of gp41 which binds 10E8 (cyan). The gp120
core is shown in red. From: [84].

The main strategy being exploited for HIV-1 vaccine design is the development of immunogens
based on the structure and interaction of bNAbs circulating in the HIV-1 infected population.
The immunogens are designed to mimic the Env complex which are introduced into the body
to allow B-cells to raise antibodies with a broadly neutralising effect [75, 84, 85]. To this end,
soluble Env trimers, called "SOSIP trimers", are the latest and best native Env mimic for eliciting

broadly neutralising antibodies against the virus [43, 95].

There are also attempts to target CD4, rather than the Env complex. Since CD4 does not possess
the complex immune evasion techniques that Env does, targeting CD4 would be much simpler
in this respect. The difficulty in targeting CD4 lies, rather, in the fact that it is a host-cell protein
which serves a critical function in the immune response. With this approach it is essential that
a neutralising antibody either: (1) prevents gp120 binding by occluding the gp120 binding site

on domain 1, whilst still allowing interactions with the MHCII or (2) fixes gp120 to CD4 in the
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CD4 bound conformation, without allowing membrane fusion. For example, ibalizumab is a
humanised monoclonal antibody of murine origin [96] which potently blocks HIV-1 infection.
Ibalizumab binds to an epitope on domain 2 of CD4 in the BC loop at the interface of domains
1 and 2, opposite the MHCII binding epitope [97, 98]. Therefore, it has been shown to allow
normal immune function of CD4 [98]. Surprisingly, ibalizumab permits gp120 binding to CD4
[96] and it is therefore believed to exert its anti-viral effect by preventing structural realignment

within gp120, after the CD4 binding event, to inhibit gp41 function [98, 99].

1.3 Allosteric disulphide bonds and redox biology

Disulphide bonds are typically considered to serve structural or catalytic functions. Structural
disulphide bonds are generally associated with protein folding by providing a protective and
stabilising effect and are therefore believed to be inert. Catalytic disulphide bonds are located
at the active site of oxidoreductase enzymes catalysing redox shuffling events. Secreted pro-
teins function in the extracellular milieu which is a harsh environment abundant in oxidants
and proteolytic enzymes [100]. Disulphide bonds can act as protection against these conditions
due to their robust covalent nature. However, another class of disulphide bonds referred to
as the allosteric disulphides, such as that found in the second domain of CD4, are believed to
impact on protein function by shuffling of their redox state [73, 100]. Before they were offi-
cially classified as "allosteric" disulphide bonds [73] they were first referred to as "cross-strand

disulphides" [74].

1.3.1 Disulphide bond classification

The geometry of a disulphide bond is first classed by the sign of the x 2, 3 and 2" angles (fig.
1.9) into one of three basic categories: spiral, hook or staple and secondly by whether they
are left or right handed based on the sign of the chi 3 angle. Schmidt et al. 2006 analysed
the geometry and dihedral strains of some 6 874 unique disulphide bonds in over 2 700 X-ray
crystal structures and found that of the 20 types of disulphide bond identified from the sign of
the five chi angles that make up the bond, the allosteric disulphide bonds were all contained in
the -RHStaple configuration [73]. The -RHStaple has subsequently been considered a hallmark
of the allosteric disulphide bonds. According to the classification by Schmidt et al. 2006 [73],
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the signs for the chi angles of the -RHStaple class of disulphide bonds are therefore + - + - - or
- - + - +. The first domains of CD4 contain a typical structural disulphide bond of -LHHook
geometry and domain 2 contains a typical allosteric disulphide bond of -RHStaple geometry
(fig. 1.9).

e 2NEA —ay ' X o

3

(A) Five x angles of a disulphide bond

(+ 1

(B) Domain 1 disulphide bond: (¢) Domain 2 disulphide bond:
-LHHook -RHStaple

FIGURE 1.9: Schematic of a disulphide bond. (A) The five chi angles that de-
fine the classification of a disulpide bond [73]. (B) The disulphide bond in do-
main 1 is a -LHHook which is a common structural disulphide bond geom-
etry. (C) The disulphide bond in domain 2 is a -RHStaple which is a hall-
mark allosteric disulphide bond configuration. Grey = bond, yellow = sul-
phur atom, dark blue = nitrogen atom, light blue = carbon atom. The po-
sition of the chi angles are shown in green. The disulphide bonds were
taken from PDB entry 3CD4. The classification of the disulphide bond in
domain 1 was determined using the online disulphide bond analysis tool
(http://149.171.101.136/ python/disulfideanalysis /search.html) [101].

1.3.2 Proteins containing allosteric disulphide bonds

It is becoming increasingly accepted that protein function can be modified by redox shuffling
of their allosteric disulphide bonds [102-104]. Many of the proteins which undergo such redox
shuffling events have been localised to the cell surface [105, 106] and are involved in immune
or homoeostatic functions [107-109]. The allosteric disulphide bonds in these proteins may act

as protein activation switches [102, 110].
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Lawrence et al. 1996 found that HIV-infected individuals presented with more surface thi-
ols on CD4+ and CD19+ lymphocytes than CD8+ lymphocytes [111]. They suggest that HIV
may preferentially activate CD4+ over CD8+ T-cells which is in keeping with the fact that HIV
infects CD4+ cells and necessitates a reduced monomeric isoform of CD4 in order to enter
host cells [112, 113]. They also showed that there are important correlations between surface
thiol concentrations and cell activation: on activation the concentration of cell-surface thiols in-
creases, suggesting that redox biology is indeed important in activation of these lymphocytes.
Finally, they demonstrated that there are surface thiol differences between lymphoid subsets
which may explain why different subsets respond differently to diseases that cause oxidative

stress such as HIV-1 infection.

Donoghue et al. 2000 used GSAO-B, (biotinylated 4-[N-(S-glutathionylacetyl)amino]arsenoxide)
which is a trivalent arsenical forming a high affinity ring structure with proximal dithiols, to
detect closely spaced thiols within cell-surface proteins by streptavidin-peroxidase detection of
the biotin moiety [105]. They focused on the closely spaced thiols as these thiols were more
likely to be susceptible to redox shuffling events and thus were most likely implicated in the
protein’s function. They found that both Thioredoxin (Trx) and protein disulphide isomerase
(PDI) incorporated the GSAO-B suggesting that both Trx and PDI contain closely spaced thiols.
They also found GSAO-B incorporation in 10 proteins on the surface of endothelial cells and
12 proteins on the surface of fibroblast cells and of these proteins, one of them was found to
be PDI. PDI is a known regulator of oxidoreduction at the cell surface and the other proteins
found containing proximal dithiols may be other regulators of oxidoreduction or, alternatively,
regulated by PDI. Ultimately their research shows that closely spaced thiols, which are likely
to impact the function of the protein in which they reside, can be found on different cell types,

corresponding to their difference in function.

A number of proteins involved in blood coagulation have been found to possess allosteric
disulphide bonds which appear to act as activation switches. Tissue factor (TF) which is in-
volved in the blood coagulation cascade contains two fibronectin type III domains in the ex-
tracellular portion, of which the C-terminal domain Cys186-Cys209 disulphide bond is of the
-RHStaple configuration and has been shown to be oxidised in active TF but reduced in inactive
TF. In addition, thiol alkylating agents have been shown to block TF activity which suggests

that this disulphide bond is essential for TF activity and may act as an activation switch [103,
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108]. Von Willebrand factor (VWE), which mediates the adhesion of platelets to exposed sub-
endothelium, contains a -RHStaple disulphide bond which may be found in lateral association
of VWF molecules to form Weibel-Palade bodies [114]. Other proteins found to be controlled
by allosteric disulphide bond switches include: BII-Tryptase [107], gp120 [115] and CD4 [63,
112, 113].

1.4 The importance of redox biology in HIV entry

The interplay between redox biology and HIV entry has been apparent for over two decades
[112, 113, 116, 117]. Allosteric disulphide bonds have been found in both the CD4 receptor on
the surface of T-cells [106] and the gp120 component of the Env complex on the surface of the
virion [74]. It is believed that CD4 binds gp120 in a monomeric reduced form [63, 113] which is
functionally distinct from dimeric, active CD4 [56, 57] and monomeric, oxidised, inactive CD4

[63].

When gp120 binds CD4, there are conformational changes in both proteins. CD4 is believed to
bend with a hinge-like action at the interface between domains 2 and 3 [118], bringing the viral
and host-cell membranes into proximity. gp120 exposes its CD4 induced epitopes which bind
to the secondary GPCR receptor: CXCR4 or CCRS5, after which further structural alignments
ensue which are believed in part to be as a result of the cleavage of allosteric disulphide bonds
within gp120 [119]. This sequence of events results in viral/host-cell membrane fusion and
release of the viral genome and regulatory proteins into the host-cell. The specifics of the redox

events happening within CD4 (1.4.1) and gp120 (1.4.2) are discussed below.

1.4.1 The role of CD4 redox biology in HIV entry

Before the second domain disulphide bond of CD4 was classified as an allosteric disulphide
bond [73], it was recognised that disulphide exchange in domain 2 of CD4 is important for
HIV-1 entry into host cells [112]. Wouters et al. 2009, Matthias et al. 2003 and Matthias et
al. 2003b, describe the unusual geometry of the bond [74, 100, 112]. Unlike most Ig domain
disulphide bonds, which link B-strands in opposing sheets, the D2 disulphide bond links B-
strands within the same sheet [120] causing a puckering of the sheet [74]. The D2 disulphide
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is a -RHStaple disulphide bond which has an unusually short C,-C, distance of 3.92 A. The
torsion energy is 4.74 kcal/mol which is high compared to 2.28 and 1.71 kcal/mol for the D1
and D4 disulphide bonds, respectively. Finally, from the enthalpy calculations of the three CD4
disulphide bonds, the D2 disulphide contributes least to the stability of the protein [112]. The
unusual geometry of the D2 disulphide bond resulting in its high dihedral strain means that it

is metastable and susceptible to reduction by oxidoreductases.

Since CD4 is the primary receptor for HIV-1 it was important to determine whether binding of
Env is sensitive to CD4 redox biology. Susceptibility of HIV-1 entry into CD4+ cells depend-
ing on the redox state of CD4 was evaluated by measuring viral gag DNA accumulation, and
results confirmed that reduction of monomeric CD4 was necessary for HIV-1 entry [112]. In
a later study, ablation of the D2 disulphide bond by mutation of the domain 2 cysteine pairs
to alanine (C130A and C159A) was shown to increase HIV-1 entry and Env-mediated cell-cell
fusion, independent of the chemokine receptor tropism of the virus [113]. However, gp120 can-
not bind monomeric, fully oxidised CD4 but can bind a monomeric and partially reduced form
of CD4 in which either D1 or D2 is reduced [63]. Since D1 contains a stable, structural disul-
phide bond and D2 contains a metastable, allosteric disulphide bond, CD4 reduced in domain
1 but oxidised in domain 2 is unlikely to exist physiologically. In addition, the evidence from
Matthias et al. 2002 and 2010 points towards gp120 binding to CD4 reduced in domain 2 [112,
113]. Therefore, the initial attachment of Env to CD4+ cells is determined by a functionally

unique CD4 ‘redoximer” (redox isomer) in which the domain 2 disulphide is reduced.

Investigation into the physiological oxidoreductant which regulates CD4 redox biology sup-
ports the idea that the CD4 receptor is a functionally redox active protein. Both the protein
disulphide isomerase (PDI) and thioredoxin (Trx) proteins are secreted oxidoreductants which
bind to the cell surface to reduce disulphide bonds [63, 112]. Originally, PDI was believed to
be the oxidoreductase acting on CD4. However Trx, which is secreted by T-cells and binds to
their cell surface and localises to CD4 containing lipid rafts [121] has been shown to reduce
two-domain CD4 comprised of domains 1 and 2 (2dCD4) robustly after activation by thiore-
doxin reductase (TR) and may be involved in CD4 dimerisation [112]. T-cell and macrophage

activation has also been correlated with increased reduction of CD4 and secretion of Trx [112].

CD4 is found on active T-cells in a homodimeric form [56, 57] and whilst the precise mechanism

for dimerisation is unclear, there is evidence to suggest that the dimerisation mechanism could
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be through domain-swapped disulphide bond formation between the second domain cysteine
pairs [58, 62]. Bourgeois et al. 2006 showed that inhibition of CD4 dimerisation resulted in
increased HIV-1 entry [60] which reinforces the findings by Matthias et al. 2010 which states
that gp120 requires monomeric CD4 for binding [113]. In line with this, gp120 has also been

shown to have an inhibitory effect on Trx mediated dimerisation of 2dCD4 [63].

Lynch et al. 2006 carried out analysis of the full length (CT, TM & D1-D4) and extra-cellular
portions of CD4 (D1-D4) in which they determined the effect of reduction and disulphide ab-
lation by cysteine to alanine mutation on gel mobility [122]. They found that over time there
was a shift in band intensity from 55 kDa to 59 kDa and finally to a 110 kDa CD4 dimer in
the full length CD4 when exposed to a CD4+ cell stimulator. In addition they found that full
length CD4-WT and CD4-D2A (domain 2 disulphide bond knockout by Cys-Ala substitution)
resolved to the same molecular weight of 55 kDa whereas D1A and D4A (domain 1 and 4
disulphide bond knockout by Cys-Ala mutation, respectively) show a decrease in gel mobility,
resolving to an approximate molecular weight of 57 kDa. They attribute the lack of difference
in gel mobility as a function of D2 disulphide bond ablation to a less extensive Ig fold alteration

compared to D1A and D4A.

However, it is important to note that Lynch et al. 2006 [122] have not assessed the initial status
of the CD4 disulphide bonds in the WT protein, before reduction with DTT. Therefore, it is
presumed that the D2 disulphide is oxidised and thus the cysteines are in the same redox state
as those of D1 and D4. Another interpretation of this same data is that the D2 disulphide in the
WT full length CD4 is in fact reduced, hence there is no difference in gel mobility between the
WT and D2A proteins due to their being of the same conformation. This could be considered a
reasonable assumption taking into account the metastability of the domain 2 disulphide bond

described within this thesis.

1.4.2 The role of gp120 redox biology in HIV entry

gp120 has 9 disulphide bonds [34] of which 3 have been identified as allosteric [74]. By cre-
ating gp120 Cys-Ala mutants Anken et al. 2008 [39] found that of the allosteric disulphides
in gp120; the Cys126-Cys196 disulphide bond was dispensable for folding; the Cys296-Cys331

disulphide was indispensable for folding and the Cys385-Cys418 disulphide mutant was able
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to provide some function despite folding deficiency. While the labile disulphide bonds of gp120
have been shown to be sensitive to both chemical and enzymatic reduction [106], PDI is the pro-
posed physiological oxidoreductase acting on gp120 [123]. This idea is reinforced by the finding
that inhibition of lymphocyte surface-associated PDI prevents HIV infectivity [115, 117].

Ryser et al. 1994 first showed that PDI activity was necessary for the spread of HIV in cell cul-
tures, as inhibition of PDI by anti-PDI antibodies, bacitracin and DTNB appeared to disrupt
HIV infectivity [116]. Fenouillet et al. 2001 developed this work to show that PDI activity is
necessary for viral/host-cell membrane fusion and subsequent HIV entry, post-CD4 binding
[123]. In addition, they showed that surface-associated PDI is localised to CD4-enriched mem-
brane regions and that only the surface-associated PDI and not soluble PDI had an effect on

syncytium formation.

Gallina et al. 2002 went on to localise the post-CD4 binding action of PDI to the cleavage of
disulphide bonds in gp120, which resulted in the opening of a disulphide loop and confor-
mational changes within the viral protein [117]. They also confirmed the association of PDI
with CD4 on the surface of the target cells which implies that whilst the virus may be able to
attach to CD4 it requires the presence of PDI for membrane fusion and host cell entry. Finally,
they noticed that three of gp120’s disulphide bonds are located within the vicinity of the CD4
molecule, and therefore may be the disulphide bonds cleaved by PDI. Figure 1.10 suggests how
PDI may be associated with CD4 and gp120 leading to membrane fusion and HIV-1 entry.

Barbouche et al. 2003 [115] quantified the thiol content of gp120, pre- and post- CD4 and CXCR4
binding (from 0.5-1 mol of thiol/mol gp120 to 4 mol of thiol /mol gp120 pre- and post-binding,
respectively). They also found that gp120 with 2 mol of thiol /mol gp120 was able to bind CD4
but not CXCR4 and that PDI inhibition did not affect gp120 binding to CD4 or CXCR4. There-
fore, they suggest that two of gp120’s disulphides are reduced after CXCR4 binding which re-
sults in fusion competence of the Env complex. Their results indicate that these two disulphide
bonds may be two of the three disulphide bonds located between the V1/V2 and V4 loops.
Interestingly, two of these three disulphide bonds are allosteric disulphide bonds (C126-C196
and C385-C418) [115, 124].

Thioredoxin-1 [125, 126] and glutaredoxin-1 [124] have also been shown to reduce gp120 in

vitro. Since PDI inhibitors do not fully prevent HIV infectivity [123], it is possible that several
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FIGURE 1.10: (a) T-cell surface associated PDI localised to CD4 and may inter-
act with domains 3 and 4 of CD4 so that when CD4 binds gp120, (b) structural
realignment of the gp120 protein might include reorganisation of its disulphide
bond network. Redox shuffling within gp120 may expose the co-receptor bind-
ing site and prime gp41 for fusion by forming the fusion peptide (Fp). (c) gp41
forms N-terminal heptade repeat (NHR) and C-terminal heptade repeat (CHR)
helices that (d) fold parallel to one another so that (e) the CHR can wind around
the NHR to draw the membranes proximal for fusion. From: [119]

thioredoxin superfamily oxidoreductases are able to catalyse gp120 disulphide bond reduction
in vivo. Of particular note is the fact that the V3 allosteric disulphide bond (C296-C331) has
been shown to be cleaved by Trx-1 [125]. This has been proposed to regulate secondary receptor

binding.

It is clear from these studies that reduction of gp120 and CD4 disulphide bonds by one or more
oxidoreductases is essential for viral/host-cell membrane fusion and HIV entry. However,
whilst there is strong evidence to suggest that gp120’s allosteric disulphide bonds are involved
in conformational changes resulting in fusion competence, the precise role and reorganisation
of the disulphide bond network within gp120 has yet to be elucidated. Whereas for CD4 the
questions is why does gp120 necessitate a monomeric reduced form of CD4, since it only forms
interactions with domain 1? What is clear is that the redox biology involved in gp120 reduction,

HIV entry and the regulation of these process by oxidoreductases is interesting and complex.

1.5 Rationale of the PhD thesi