
This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation 
may be published without proper acknowledgement. For any other use, or to 

quote extensively from the work, permission must be obtained from the 
copyright holder/s. 



Biophysical studies of dynamic CD4 changes

implicated in HIV-1 infection

Jennifer Anne CHANNELL

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

Keele University

March 2019

http://www.johnsmith.com




iii

“Pour prier comme il nous plaît, si nous sommes religieux. Pour écrire ce qu’il nous plaît, si nous

sommes poètes.”

Antoine de Saint-Exupéry





v

Abstract

Cluster of differentiation 4 (CD4) is a receptor protein found on the surface of cells of the im-

mune system and is the primary receptor of the human immuno-deficiency virus-1 (HIV-1)

envelope glycoprotein 120 (gp120). The extracellular portion of CD4 is comprised of four

immunoglobulin-like domains of which domains 1, 2 and 4 contain disulphide bonds. The

disulphide bond in domain 2 is an allosteric disulphide bond which can alter protein function

through redox shuffling. Reduction of this bond is essential for gp120 binding and subsequent

HIV-1 host cell entry. However, reduced monomeric CD4 does not have any known physio-

logical function in CD4’s normal immune response. CD4 reduced in domain 2 is a functionally

distinct redox isoform of CD4 implicated in HIV-1 infection and is therefore, a target for an

anti-HIV-1 vaccine.

The aim of this work was to obtain biophysical and small-angle X-ray and neutron scattering

(SAXS and SANS) data which would explain how reduction of the second domain disulphide

bond affects CD4 structure and therefore its ability to bind to gp120. A novel cell-free pro-

tein expression (CFPE) protocol was developed to produce recombinant deuterium labelled

and un-labelled wild-type two domain CD4 (2dCD4-WT). 2dCD4-WT produced using CFPE

is demonstrated to be functional, correctly folded and suitable for SAXS and SANS by a series

of biochemical and biophysical techniques. Ablation of the second domain disulphide bond

is shown to cause relaxation of the domain so that 2dCD4-WT reduced in domain 2 has a

smaller hydrodynamic volume than its fully oxidised and fully reduced counterparts. For the

first time, deuterium labelled 2dCD4-WT in the gp120-bound and -unbound state is described

by SANS contrast variation analysis. Finally, size-exclusion chromatography coupled to SAXS

data on gp120-bound 2dCD4-WT is presented and validates the use of CFPE for the production

of recombinant protein for small-angle scattering studies.
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Chapter 1

Introduction

1.1 The Human Immuno-deficiency Virus (HIV)

According to the World Health Organisation, HIV is one of the world’s leading infectious

killers, with approximately 37 million people living with the HIV infection in 2016. HIV is par-

ticularly prevalent in low and middle income communities with more than 70% of the global

total of HIV cases arising in sub-Saharan Africa [1]. Figure 1.1 presents an overview of the

global distribution of HIV cases for adults aged 15-49, from which it is evident that Africa is

the most affected WHO area with 4% of the population testing positive for HIV. The advent of

highly active anti-retroviral therapy (HAART) has meant that an HIV diagnosis is no longer a

death sentence and has become a ‘liveable’ chronic disease, but only to those who can afford

the ten thousand dollar price tag per year. With more than 50% of those infected with HIV un-

aware of their HIV status and approximately seven thousand individuals newly infected every

day [1], it is imperative that a prophylactic vaccination be developed, preventing the spread of

HIV.
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FIGURE 1.1: Map showing the global distribution of HIV among adults aged 15-
49 in 2016 by World Health Organization region. Africa is evidently the continent
most heavily affected by HIV with approximately 4.2% adults aged 15-49 testing

positive for the virus. From: [1]

1.1.1 Discovery of HIV

HIV is a lentivirus of the retroviridae family. It was first identified as the infectious agent

resulting in the onset of acquired immuno-deficiency syndrome (AIDS) in 1983, when a reverse

transcriptase containing virus was isolated from the lymph node of a patient suffering with

persistent lymphadenopathy syndrome [2]. Later, three prototype viruses isolated from AIDS

patients were found to have identical properties: those of a lentivirus. This AIDS-causing

lentivirus was finally named the human immunodeficiency virus. Shortly after the discovery

and classification of HIV, a separate subtype was isolated in Western Africa, resulting in the

designation of the HIV-1 and HIV-2 subtypes known today [2].

Progression of the disease from HIV to AIDS is characterised by a CD4+ cell count of less than

200 per mm3 of blood plasma, when the CD4+ cell count (cells on which CD4 is expressed) is

less than 14% of the total white blood cell population, or when an individual presents at least

one AIDS defining secondary illness including a myriad of invasive cancers and opportunistic

infections [3].
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1.1.2 Genome and Structure

The HIV-1 genome consists of 2 copies of single stranded RNA molecules [4], each 9.8 kb in

length and by means of differential RNA splicing, the HIV-1 genome encodes 9 different gene

products. The 9.2 kb unspliced genome gives rise to the Gag and Pol polyproteins, a singly

spliced 4.5 kb mRNA transcript encodes the Env, Vif, Vpr and Vpu proteins and finally the

multiply spliced 2 kb genome codes for the Tat, Rev and Nef proteins. Figure 1.2 shows the

different reading frames giving rise to the different genes and gene products.

FIGURE 1.2: Schematic showing the 3 reading frames of the HIV-1 genome and
the resultant gene products after splicing. From: [5]

The Gag, Pol and Env polyproteins undergo cleavage to produce their respective functional

products. The Gag polyprotein is cleaved by viral protease to produce the matrix (MA), capsid

(CA) and nucleocapsid (NC) structural proteins of the virus as well as the smaller spacer 1 & 2

(SPC1 & 2) peptides and the P6 protein [6, 7]. The Pol polyprotein is processed to produce the

viral enzymes: reverse transcriptase (RT), RNase H, integrase (IN) and HIV protease (PR)[8].

The gp160 Env precursor protein is cleaved by furin proteins [9] from the host cell to produce

the gp41 and gp120 monomers which associate into a trimer of heterodimers to form the Env

spike (which is the viral attachment point to the human host cells).

The diagram depicted in figure 1.3 shows the configuration of the mature HIV-1 particle [10].

HIV-1 is comprised of a host-cell derived lipid membrane on which the only surface-exposed

viral protein is the Env-glycoprotein complex (Env spike). Under the surface of this plasma

membrane is the matrix formed by the MA protein. Within the viral matrix is the capsid which

forms a fullerene-like cone shape due to the pentamer of CA hexamers at one end and the

heptamer of CA hexamers at the opposite end [11]. The viral genome can be found within the

capsid and is closely associated with RT and NC [2].
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FIGURE 1.3: A section through HIV-1 showing the structure and organisation
of the mature viral particle. The Env-glycoprotein complex (Env), consisting of
gp41 and gp120 is the only viral protein complex exposed on the surface of the

viral particle and is heavily glycosylated. From: [10]
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1.1.3 Replicative Cycle

Figure 1.4 outlines the major steps of the HIV-1 infection cycle. After entry of the HIV-1 particle

into the host organism, the virus must bind to susceptible cell types.

1. Attachment: The infection cycle begins by initial attachment of the viral Env spike to

CD4+ cells, key interactions are described in detail in section 1.2.3. During this attach-

ment, gp120 binds to domain 1 (D1) of the CD4 receptor. This initial binding event trig-

gers a conformational change within the Env spike [12], causing exposure of the CD4

induced conformation and of the secondary receptor binding site which binds to the

chemokine receptor on the host-cell [13, 14]. The secondary co-receptor depends on the

tropism of the virus and the CD4+ cell type. X4 tropic viruses will bind to the CXCR4

G-protein coupled receptor (GPCR) and R5 tropic viruses bind to the CCR5 GPCR [15–

17].

2. Fusion: Upon co-receptor binding, further structural realignment within the envelope

causes exposure of gp41 and formation of the pre-fusion complex in which the fusion

peptide located at the tip of gp41 is inserted into the host membrane [18]. The trimerised

carboxy- and amino-terminal heptad repeat sequences of gp41 wrap around each other

to form a six-helix hairpin structure which bring the host and viral membranes within

proximity to allow viral/host-cell membrane fusion [19, 20].

3. Uncoating: Upon membrane fusion the fullerene-like viral capsid cone, containing the

viral RNA, RT and IN, as well as other accessory proteins, is released into the cell where

it is uncoated and the contents are released [6].

4. Reverse transcription: Viral RNA is reverse transcribed into proviral cDNA by viral re-

verse transcriptase [21].

5. Nuclear import: The viral cDNA and MA, and IN proteins then assemble into the pre-

integration complex (PIC) prior to nuclear import through the nuclear pore complex, di-

rected by Vpr [22, 23].

6. Integration: Within the nucleus the proviral DNA is irreversibly incorporated into the

host genome by the viral integrase enzyme which forms a tetrameric structure. Viral IN

is helped by host regulatory proteins [22, 23].
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7. Transcription: Viral Tat interacts with positive transcription elongation factor (P-TEFb) to

hijack host cell RNA polymerase II elongation control machinery and promote elongation

of viral mRNA [24, 25].

8. RNA export: The spliced viral mRNA transcripts are then exported for translation with

the help of the viral Rev protein. Rev binds to the Rev response element RNA to form a

ribonucleoprotein able to bind the Crm1 host export factor [26].

9. Translation: The viral mRNA is translated into protein using host ribosomes, tRNAs and

regulatory proteins into viral precursor proteins: Gag-Pol and Pol and the various viral

accessory proteins [27].

10. Assembly: The translated viral proteins are then packaged into new virus particles with

the help of the host ESCRT machinery [28]. Env is inserted into the membrane and Gag

and Gag-Pol bind the inner side of the membrane [29].

11. Budding: Viral particle budding off from the host-membrane is facilitated by interactions

between Gag and vacuolar protein sorting proteins, which are subunits of the ESCRT

machinery. As the viral particle forms it acquires host-cell lipid membrane [28, 30].

12. Release: The budding viral particle pinches off from the host membrane to become an

individual, immature virion with the help of Vpu which interupts tetherin membrane

tethering [28].

13. Maturation: The viral protease enzyme cleaves the viral precursor proteins to form the

matrix, capsid and nucleocapsid proteins as well as the protease, integrase and reverse

transcription enzymes, during the process of viral maturation in preparation for the next

cycle of infection [31].
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FIGURE 1.4: Schematic depicting the HIV-1 replicative cycle. (1) Attachment: viral gp120 binds CD4 and the CXCR4 or CCR5 co-
receptor. (2) Fusion: viral and host cell membranes fuse. (3) Uncoating: the viral capsid is uncoated releasing regulatory proteins and
the viral genome into the host cell. (4) Reverse transcription: viral RNA is reverse transcribed into cDNA by viral reverse transcriptase.
(5) Nuclear import: the viral genome is imported into the host cell nucleus. (6) Integration: the viral genome is incorporated into the
host cell genome. (7) Transcription: the viral genome is transcribed using host cell machinery. (8) RNA export: mRNA coding for
viral proteins is exported from the host cell nucleus. (9) Transcription: host cell machinery is used to transcribe viral mRNA into viral
precursor proteins. (10) Assembly: the translated viral proteins are assembled into a new viral particle. (11) Budding: the new viral
particle buds off from the host cell membrane using host ESCRT machinery. (12) Release: the budding viral particle is released from the
host membrane. (13) Maturation: the immature viral particle becomes mature after viral protease cleaves the viral precursor proteins.

Adapted from [32]
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1.2 The primary host-cell/viral interaction

1.2.1 The viral glycoprotein 120 (gp120)

gp120 function in HIV-1 infection

Glycoprotein 120 (gp120) is one of the two proteins along with gp41 to form the viral Env-

glycoprotein complex, located on the surface of the viral particle [33]. The function of gp120 is

to identify the correct cell type for infection followed by exposure of the cell-membrane fusion

machinery. gp120 binds to domain 1 of the CD4 receptor of human immune cells [34] which

induces structural realignments allowing the secondary receptor, either CXCR4 or CCR5, to

bind to the secondary receptor binding site of the CD4 induced gp120 conformation [14, 35].

Further structural rearrangements, after secondary receptor binding, result in the unveiling of

gp41, whose function is to bring the viral and host-cell membranes into close proximity for

membrane fusion. The gp41 fusion peptide anchors into the host-cell membrane as a type of

harpoon, triggering reorganisation of the trimerised N- and C-terminal heptad repeat motifs

[18]. The HR motifs wind around each other to ratchet the viral and host-cell membranes into

proximity for subsequent membrane fusion and HIV entry [19, 20] (fig. 2).

Atomic resolution structure of gp120

Kwong et al. 1998 were the first to describe the structure of the gp120 core by X-ray crystal-

lography [34] . The core of gp120 is formed of an inner and outer domain with respect to Env,

which are linked by a four beta-stranded bridging sheet (fig. 1.5). The inner and outer domains

lie approximately parallel to one another with the bridging sheet connecting the two domains

at their termini distal from the viral membrane. gp120 presents five constant regions (C1-5)

and five variable regions (V1-5) of which the latter are important for viral immune evasion

[36]. gp120 has many N-linked and a variable number of O-linked glycosylation sites which

are glycosylated with complex glycans to make up approximately 50% of its mass [37] and are

important for immune evasion [38]. gp120 also has 9 conserved disulphide bonds: C57-C74,

C119-C205, C126-C196, C131-C157, C218-C247, C228-C239, C296-C331, C385-C418 and C378-

C445 [37, 39]. Their significance is discussed in section 1.4.2.
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FIGURE 1.5: The gp120 core is comprised of an inner and an outer domain, con-
nected via a bridging sheet of beta-strands at the distal end from the viral mem-
brane. The inner and outer domains are formed by a complex fold involving
beta-strands (yellow) and alpha-helices (red). Flexible loops are shown in green.
gp120 has 5 variable loops (V1-5) and 9 disulphide bonds of which 7 can be seen
from this PDB entry (1G9M) and are indicated in cyan. CD4 binds the CD4 bind-
ing site in the crevice formed by the connection of the bridging sheet with the

inner and outer domains (black circle). Adapted from: [34]

With the advent of high-resolution cryo-electron microscopy (cryo-EM) and the development

of stable trimeric complexes [40] there has been an explosion of trimeric Env structures be-

ing submitted to the protein data bank (PDB). This has allowed the determination of un-

liganded [41], CD4-induced pre-fusion intermediate [42–45], and fusion [46] conformations,

which have helped in understanding the HIV-1 entry mechanism. They have shown that unli-

ganded Env adopts a closed position, whereas receptor bound Env adopts an open conforma-

tion whereby the gp120 protomers are displaced out and away from the gp41 trimer situated

beneath, allowing fusion peptide insertion and subsequent membrane fusion [47]. These high-

resolution structures are also important for structure-based immunogen design strategies for

raising broadly neutralising antibodies in the race to develop a prophylactic anti-HIV vaccine

1.2.4.
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1.2.2 The cluster of differentiation 4 (CD4) receptor protein

Biological function of CD4 and its role in HIV-1 infection

The CD4 receptor protein plays a role in both the innate and adaptive immune responses. How-

ever, it is also the primary receptor for the human immunodeficiency virus, binding the gp120

component of the viral Env trimer [48]. CD4 is a 55 kDa type 1 integral membrane glycoprotein

expressed on the surface of immune cells such as monocytes, monocyte-derived macrophages

and dendritic cells [2, 49]. However, it is found primarily on T-lymphocytes where its principle

function is to bind cooperatively the major histocompatibility complex class 2 (MHCII) ex-

pressed on antigen presenting cells (APCs) in combination with the T-cell receptor (TCR) [50].

This interaction results in the activation of the intracellular p56Lck src-family tyrosine kinase

[51] associated with the cytoplasmic tail of CD4.

The pseudo-dimer model proposed by Li et al. 2004 suggests that CD4 brings together en-

dogenous and agonist MHCII complexes which allows activation of many TCRs [51]. This

concomitant signal activation contributes towards the high sensitivity of T-cells to antigen as

determined by the correlation between p56Lck recruitment to CD4 and T-cell sensitivity [51].

Lck phosphorylates the immunoreceptor tyrosine activation motifs (ITAMS) on the cytoplas-

mic portion of CD3 (another receptor) [52]. SH2 domain tyrosine kinases are recruited to the

phosphorylated ITAMs to effect downstream signalling events which result in activation of

certain transcription factors [53]. This signalling cascade triggers activation of T-cells [53, 54].

MHCII and gp120 have been shown to bind functionally distinct regions of CD4 [55]. CD4

dimerisation has been shown to trigger activation of T-cells [56, 57] and is necessary for binding

to MHCII [58] which has been shown to be inhibitory to gp120 binding [59, 60]. Whilst the

precise mechanism for CD4 dimerisation is unclear [61–63], it is clear that gp120 and MHCII

bind functionally and structurally unique isoforms of CD4.

The atomic resolution structure of CD4

The human CD4 monomer is comprised of 4 ecto-domains (D1-D4, residues 1-371), a trans-

membrane domain (TM, residues 372-395) and a cytoplasmic tail (CT, residues 396-433) [64–
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67]. The extracellular portion of CD4 is composed of 4 concatenated immunoglobulin-like do-

mains of which each domain, except for D3, contains a single disulphide bond (fig. 1.6) [64, 67,

68]. Ig domains are commonly found in cell-surface receptors involved in the immune system

[69] and are defined by a 7-9 β-strand configuration forming a beta sandwich. The conserved

core consists of 4 beta-strands B, C, E and F with between 3 and 5 additional strands: A, C’,

C", D and G [64, 70]. The strands arrange themselves into two opposing beta-sheets to form a

beta-sandwich.

Three key crystallographic studies in the early 90’s allowed the determination of 2 two-domain

CD4 high-resolution structures: human 2dCD4 domains 1 and 2 [66, 67] and rat 2dCD4 do-

mains 3 and 4 [68] providing insights into the structure of the protein and its interactions with

viral gp120 and MHCII. Garrett et al. 1993 [71] built on these structures to solve the structure

of four-domain CD4 which indicates that there may be a flexible hinge between domains 2 and

3 required for function [72].

In domain 1 of CD4, the first beta sheet is composed of stands B, E and D and the second beta-

sheet contains the strands A, G, F, C, C’ and C", which folds across the first in an antiparallel

fashion. Domain 1 has the hallmarks of a variable immunoglobulin domain with a conserved

Arg residue at position 1 of the D-strand which forms a salt bridge to an Asp residue at the EF

junction and the FG corner, analagous to the CDR3 region of an Ig variable domain [64, 67].

There is also a conserved Trp28 residue in sheet C which is packed against the Cys16 residue

positioned in strand B that forms a disulphide bond with Cys84 in strand F [66, 67]. Domain 1

also is suggested to have a flexible region at the C’C" beta-turn [67].

Domain 2 is truncated to around 75 residues, with respect to the 100 of domain 1. Domain 2

therefore, has a different topology and displays characteristics of a constant Ig domain [64, 68].

The first beta sheet is comprised of strands A, B and E with the second containing strands C’, C,

F and G. Strand A of domain 2 is a continuation of strand G from domain 1 suggesting a certain

rigidity of the two-domained structure, with possible flexibility in the highly-conserved AB and

EF loops [66, 68]. The conserved Trp residue is lost in strand C of domain 2 and replaced by a

Cys residue to form a disulphide bond with the Cys residue in stand F (C130-C159) which is a

non-canonical Ig domain disulphide bond configuration [66, 67].
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The formation of a disulphide bond between C130 and C159 in D2 is rare because this position-

ing is unfavourable for the typical geometry of a disulphide bond [67, 73]. The disulphide bond

in domain 1 is positioned between the two beta-sheets whereas the disulphide bond in domain

2 is positioned between beta-strands of the same sheet which causes puckering of the sheet

[74]. Hence the geometry of this disulphide bond follows an unusual configuration classed as

–RHStaple [73], which is known as an allosteric disulphide bond and is described further in

section 1.3.

Similar anti-parallel beta-sandwich structures to domains 1 and 2 are observed in domains 3

and 4. Domain 3 has 9 beta-strands, similar to those of domain 1 and can be classed as a variable

Ig domain [64, 65, 68]. However, domain 3 lacks the disulphide bond usually found between

strands B and F [68]. Domain 4, like domain 2 has 7-beta strands and is classed as a constant

Ig domain [64, 65, 68]. Although unlike domain 2, domain 4 has a canonical Ig disulphide

bridge between cysteine residues in strands B and F, such as that found in domain 1. Domain 4

therefore has a more compact structure whereas domain 3 has a more open structure [68]. The

G to A strand continuation for domains 1 and 2 is conserved in domains 3 and 4 suggesting a

similar rigidity of the domains [68], linked by a proposed flexible hinge [54, 72].
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FIGURE 1.6: Beta-strands are shown in yellow, alpha-helices are shown in red,
flexible loops are shown in green and the disulphide bonds are shown as spheres
in cyan. This figure was made using PDB entry 1WIO [54]. The extra-cellular
receptor portion of CD4 is formed from 4 concatenated immunoglobulin-like do-
mains. Each domain is of a beta-sandwich structure formed by two anti-parallel
beta-sheets. From this orientation it can be seen that domains 1 and 4 contain
disulphide bonds which bridge the two sheets between strands B and F. Whereas
the disulphide bond in domain 2 is unusual in that it is formed between neigh-
bouring beta-strands of the same sheet. Domain 3 does not have a disulphide

bond and so is the least compact of the 4 domains.
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1.2.3 The CD4-gp120 interaction

Kwong et al. 1998 were the first to structurally describe the CD4-gp120 interaction [34]. CD4

binds gp120 in the crevice formed by the junction of the bridging sheet with the inner and

outer domains. The most significant interactions involve CD4 domain 1 residues Phe43 and

Arg59 (fig. 1.7) which form several, essential contacts with gp120 residues Asp368, Glu370 and

Trp427. Phe43 also interacts with Ile371, Asn425, Met426 and Gly473 and Arg59 also interacts

with Val430. There is an overall general complementarity in the electrostatic potential at the

interface between the two proteins, however, the positive region on CD4 is slightly displaced

with respect to the centre of the negative region on gp120 [34].

FIGURE 1.7: Domain 1 of CD4 interacts with the CD4 binding site on gp120 (black
box). The residues forming the key interactions are shown as sticks. Phe43 and
Arg59 from CD4 interact with Glu370 and Trp427 from gp120. Arg59 also forms
interactions with Val430 and electrostatic interactions with Asp368 (shown in yel-
low dashed lines). Phe43 also interacts with Ile371, Asn425, Met426 and Gly473
(not shown). CD4 is shown in purple and gp120 beta sheets are shown in yellow,
alpha helices in red and loops in green. Disulphide bonds are shown as space-

filled spheres. The diagram was made using PDB entry 1GC1.
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1.2.4 gp120 and CD4 as a target for vaccines

Anti-HIV vaccine design is far from trivial. The virus displays huge genetic variation and is

able to evade the immune system by using a highly error prone reverse transcriptase enzyme

which creates vast sequence diversity by recombinant and point mutations over the course of

infection within one individual [36, 75]. In addition, the virus employs myriad other strate-

gies including: conformation masking [76], steric occlusion [77], carbohydrate shielding and

shifting [38, 78], transient epitope exposure, [79], expression of non-functional Env [80, 81] and

general low density of functional Env [12, 82]. So while the immune system can generate an-

tibodies against these changes, their evolution is slower than that of the virus allowing viral

immune escape.

Most attempts to develop an anti-HIV vaccine are directed towards the Env complex on the

surface of the virus. gp120 and gp41 are the only viral encoded proteins expressed on the sur-

face of the virion so there is not much choice in terms of which protein the immune system can

target, in virus directed approaches. Conserved, functional epitopes on the Env complex are

the best candidates for immunogen development [75, 83–85]. Broadly neutralising antibodies

(bNAbs) to conserved antigens have been isolated from certain HIV-infected individuals called

’Elite neutralisers’ [85, 86] and have been characterised and mapped to such epitopes (fig 1.8

and table 1.1).

Epitope Antibody References

CD4 binding-site b12 [87]

(CD4bs) VCR01 [88, 89]

V1/V2 PG9 [90]

PGT145 [91]

Glycan V3 2G12 [92]

PGT128 [91]

Membrane proximal extended region 2F5 [93]

(MPER) 10E8 [94]

TABLE 1.1: The main conserved epitopes on the viral Env complex are the CD4
binding-site, the V1/V2 region, a cluster of conserved glycans at the V3 loop and
the membrane proximal extended region at the base of gp41. Adapted from: [84]
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FIGURE 1.8: Conserved, functional epitopes are the target areas on the Env spike
that broadly neutralising antibodies can be raised against in the development
of an anti-HIV vaccine. These conserved regions comprise the CD4 binding-site
which binds VCR01 (pink), the V1/V2 region which binds PG9 (green), a cluster
of glycans at V3 which binds PGT128 (dark blue) and the membrane proximal
extended region (MPER) at the base of gp41 which binds 10E8 (cyan). The gp120

core is shown in red. From: [84].

The main strategy being exploited for HIV-1 vaccine design is the development of immunogens

based on the structure and interaction of bNAbs circulating in the HIV-1 infected population.

The immunogens are designed to mimic the Env complex which are introduced into the body

to allow B-cells to raise antibodies with a broadly neutralising effect [75, 84, 85]. To this end,

soluble Env trimers, called "SOSIP trimers", are the latest and best native Env mimic for eliciting

broadly neutralising antibodies against the virus [43, 95].

There are also attempts to target CD4, rather than the Env complex. Since CD4 does not possess

the complex immune evasion techniques that Env does, targeting CD4 would be much simpler

in this respect. The difficulty in targeting CD4 lies, rather, in the fact that it is a host-cell protein

which serves a critical function in the immune response. With this approach it is essential that

a neutralising antibody either: (1) prevents gp120 binding by occluding the gp120 binding site

on domain 1, whilst still allowing interactions with the MHCII or (2) fixes gp120 to CD4 in the
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CD4 bound conformation, without allowing membrane fusion. For example, ibalizumab is a

humanised monoclonal antibody of murine origin [96] which potently blocks HIV-1 infection.

Ibalizumab binds to an epitope on domain 2 of CD4 in the BC loop at the interface of domains

1 and 2, opposite the MHCII binding epitope [97, 98]. Therefore, it has been shown to allow

normal immune function of CD4 [98]. Surprisingly, ibalizumab permits gp120 binding to CD4

[96] and it is therefore believed to exert its anti-viral effect by preventing structural realignment

within gp120, after the CD4 binding event, to inhibit gp41 function [98, 99].

1.3 Allosteric disulphide bonds and redox biology

Disulphide bonds are typically considered to serve structural or catalytic functions. Structural

disulphide bonds are generally associated with protein folding by providing a protective and

stabilising effect and are therefore believed to be inert. Catalytic disulphide bonds are located

at the active site of oxidoreductase enzymes catalysing redox shuffling events. Secreted pro-

teins function in the extracellular milieu which is a harsh environment abundant in oxidants

and proteolytic enzymes [100]. Disulphide bonds can act as protection against these conditions

due to their robust covalent nature. However, another class of disulphide bonds referred to

as the allosteric disulphides, such as that found in the second domain of CD4, are believed to

impact on protein function by shuffling of their redox state [73, 100]. Before they were offi-

cially classified as "allosteric" disulphide bonds [73] they were first referred to as "cross-strand

disulphides" [74].

1.3.1 Disulphide bond classification

The geometry of a disulphide bond is first classed by the sign of the χ 2, 3 and 2’ angles (fig.

1.9) into one of three basic categories: spiral, hook or staple and secondly by whether they

are left or right handed based on the sign of the chi 3 angle. Schmidt et al. 2006 analysed

the geometry and dihedral strains of some 6 874 unique disulphide bonds in over 2 700 X-ray

crystal structures and found that of the 20 types of disulphide bond identified from the sign of

the five chi angles that make up the bond, the allosteric disulphide bonds were all contained in

the -RHStaple configuration [73]. The -RHStaple has subsequently been considered a hallmark

of the allosteric disulphide bonds. According to the classification by Schmidt et al. 2006 [73],
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the signs for the chi angles of the -RHStaple class of disulphide bonds are therefore + - + - - or

- - + - +. The first domains of CD4 contain a typical structural disulphide bond of -LHHook

geometry and domain 2 contains a typical allosteric disulphide bond of -RHStaple geometry

(fig. 1.9).

(A) Five χ angles of a disulphide bond

(B) Domain 1 disulphide bond:
-LHHook

(C) Domain 2 disulphide bond:
-RHStaple

FIGURE 1.9: Schematic of a disulphide bond. (A) The five chi angles that de-
fine the classification of a disulpide bond [73]. (B) The disulphide bond in do-
main 1 is a -LHHook which is a common structural disulphide bond geom-
etry. (C) The disulphide bond in domain 2 is a -RHStaple which is a hall-
mark allosteric disulphide bond configuration. Grey = bond, yellow = sul-
phur atom, dark blue = nitrogen atom, light blue = carbon atom. The po-
sition of the chi angles are shown in green. The disulphide bonds were
taken from PDB entry 3CD4. The classification of the disulphide bond in
domain 1 was determined using the online disulphide bond analysis tool

(http://149.171.101.136/python/disulfideanalysis/search.html) [101].

1.3.2 Proteins containing allosteric disulphide bonds

It is becoming increasingly accepted that protein function can be modified by redox shuffling

of their allosteric disulphide bonds [102–104]. Many of the proteins which undergo such redox

shuffling events have been localised to the cell surface [105, 106] and are involved in immune

or homoeostatic functions [107–109]. The allosteric disulphide bonds in these proteins may act

as protein activation switches [102, 110].
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Lawrence et al. 1996 found that HIV-infected individuals presented with more surface thi-

ols on CD4+ and CD19+ lymphocytes than CD8+ lymphocytes [111]. They suggest that HIV

may preferentially activate CD4+ over CD8+ T-cells which is in keeping with the fact that HIV

infects CD4+ cells and necessitates a reduced monomeric isoform of CD4 in order to enter

host cells [112, 113]. They also showed that there are important correlations between surface

thiol concentrations and cell activation: on activation the concentration of cell-surface thiols in-

creases, suggesting that redox biology is indeed important in activation of these lymphocytes.

Finally, they demonstrated that there are surface thiol differences between lymphoid subsets

which may explain why different subsets respond differently to diseases that cause oxidative

stress such as HIV-1 infection.

Donoghue et al. 2000 used GSAO-B, (biotinylated 4-[N-(S-glutathionylacetyl)amino]arsenoxide)

which is a trivalent arsenical forming a high affinity ring structure with proximal dithiols, to

detect closely spaced thiols within cell-surface proteins by streptavidin-peroxidase detection of

the biotin moiety [105]. They focused on the closely spaced thiols as these thiols were more

likely to be susceptible to redox shuffling events and thus were most likely implicated in the

protein’s function. They found that both Thioredoxin (Trx) and protein disulphide isomerase

(PDI) incorporated the GSAO-B suggesting that both Trx and PDI contain closely spaced thiols.

They also found GSAO-B incorporation in 10 proteins on the surface of endothelial cells and

12 proteins on the surface of fibroblast cells and of these proteins, one of them was found to

be PDI. PDI is a known regulator of oxidoreduction at the cell surface and the other proteins

found containing proximal dithiols may be other regulators of oxidoreduction or, alternatively,

regulated by PDI. Ultimately their research shows that closely spaced thiols, which are likely

to impact the function of the protein in which they reside, can be found on different cell types,

corresponding to their difference in function.

A number of proteins involved in blood coagulation have been found to possess allosteric

disulphide bonds which appear to act as activation switches. Tissue factor (TF) which is in-

volved in the blood coagulation cascade contains two fibronectin type III domains in the ex-

tracellular portion, of which the C-terminal domain Cys186-Cys209 disulphide bond is of the

-RHStaple configuration and has been shown to be oxidised in active TF but reduced in inactive

TF. In addition, thiol alkylating agents have been shown to block TF activity which suggests

that this disulphide bond is essential for TF activity and may act as an activation switch [103,
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108]. Von Willebrand factor (VWF), which mediates the adhesion of platelets to exposed sub-

endothelium, contains a -RHStaple disulphide bond which may be found in lateral association

of VWF molecules to form Weibel-Palade bodies [114]. Other proteins found to be controlled

by allosteric disulphide bond switches include: βII-Tryptase [107], gp120 [115] and CD4 [63,

112, 113].

1.4 The importance of redox biology in HIV entry

The interplay between redox biology and HIV entry has been apparent for over two decades

[112, 113, 116, 117]. Allosteric disulphide bonds have been found in both the CD4 receptor on

the surface of T-cells [106] and the gp120 component of the Env complex on the surface of the

virion [74]. It is believed that CD4 binds gp120 in a monomeric reduced form [63, 113] which is

functionally distinct from dimeric, active CD4 [56, 57] and monomeric, oxidised, inactive CD4

[63].

When gp120 binds CD4, there are conformational changes in both proteins. CD4 is believed to

bend with a hinge-like action at the interface between domains 2 and 3 [118], bringing the viral

and host-cell membranes into proximity. gp120 exposes its CD4 induced epitopes which bind

to the secondary GPCR receptor: CXCR4 or CCR5, after which further structural alignments

ensue which are believed in part to be as a result of the cleavage of allosteric disulphide bonds

within gp120 [119]. This sequence of events results in viral/host-cell membrane fusion and

release of the viral genome and regulatory proteins into the host-cell. The specifics of the redox

events happening within CD4 (1.4.1) and gp120 (1.4.2) are discussed below.

1.4.1 The role of CD4 redox biology in HIV entry

Before the second domain disulphide bond of CD4 was classified as an allosteric disulphide

bond [73], it was recognised that disulphide exchange in domain 2 of CD4 is important for

HIV-1 entry into host cells [112]. Wouters et al. 2009, Matthias et al. 2003 and Matthias et

al. 2003b, describe the unusual geometry of the bond [74, 100, 112]. Unlike most Ig domain

disulphide bonds, which link β-strands in opposing sheets, the D2 disulphide bond links β-

strands within the same sheet [120] causing a puckering of the sheet [74]. The D2 disulphide
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is a -RHStaple disulphide bond which has an unusually short Cα-Cα distance of 3.92 Å. The

torsion energy is 4.74 kcal/mol which is high compared to 2.28 and 1.71 kcal/mol for the D1

and D4 disulphide bonds, respectively. Finally, from the enthalpy calculations of the three CD4

disulphide bonds, the D2 disulphide contributes least to the stability of the protein [112]. The

unusual geometry of the D2 disulphide bond resulting in its high dihedral strain means that it

is metastable and susceptible to reduction by oxidoreductases.

Since CD4 is the primary receptor for HIV-1 it was important to determine whether binding of

Env is sensitive to CD4 redox biology. Susceptibility of HIV-1 entry into CD4+ cells depend-

ing on the redox state of CD4 was evaluated by measuring viral gag DNA accumulation, and

results confirmed that reduction of monomeric CD4 was necessary for HIV-1 entry [112]. In

a later study, ablation of the D2 disulphide bond by mutation of the domain 2 cysteine pairs

to alanine (C130A and C159A) was shown to increase HIV-1 entry and Env-mediated cell-cell

fusion, independent of the chemokine receptor tropism of the virus [113]. However, gp120 can-

not bind monomeric, fully oxidised CD4 but can bind a monomeric and partially reduced form

of CD4 in which either D1 or D2 is reduced [63]. Since D1 contains a stable, structural disul-

phide bond and D2 contains a metastable, allosteric disulphide bond, CD4 reduced in domain

1 but oxidised in domain 2 is unlikely to exist physiologically. In addition, the evidence from

Matthias et al. 2002 and 2010 points towards gp120 binding to CD4 reduced in domain 2 [112,

113]. Therefore, the initial attachment of Env to CD4+ cells is determined by a functionally

unique CD4 ‘redoximer’ (redox isomer) in which the domain 2 disulphide is reduced.

Investigation into the physiological oxidoreductant which regulates CD4 redox biology sup-

ports the idea that the CD4 receptor is a functionally redox active protein. Both the protein

disulphide isomerase (PDI) and thioredoxin (Trx) proteins are secreted oxidoreductants which

bind to the cell surface to reduce disulphide bonds [63, 112]. Originally, PDI was believed to

be the oxidoreductase acting on CD4. However Trx, which is secreted by T-cells and binds to

their cell surface and localises to CD4 containing lipid rafts [121] has been shown to reduce

two-domain CD4 comprised of domains 1 and 2 (2dCD4) robustly after activation by thiore-

doxin reductase (TR) and may be involved in CD4 dimerisation [112]. T-cell and macrophage

activation has also been correlated with increased reduction of CD4 and secretion of Trx [112].

CD4 is found on active T-cells in a homodimeric form [56, 57] and whilst the precise mechanism

for dimerisation is unclear, there is evidence to suggest that the dimerisation mechanism could
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be through domain-swapped disulphide bond formation between the second domain cysteine

pairs [58, 62]. Bourgeois et al. 2006 showed that inhibition of CD4 dimerisation resulted in

increased HIV-1 entry [60] which reinforces the findings by Matthias et al. 2010 which states

that gp120 requires monomeric CD4 for binding [113]. In line with this, gp120 has also been

shown to have an inhibitory effect on Trx mediated dimerisation of 2dCD4 [63].

Lynch et al. 2006 carried out analysis of the full length (CT, TM & D1-D4) and extra-cellular

portions of CD4 (D1-D4) in which they determined the effect of reduction and disulphide ab-

lation by cysteine to alanine mutation on gel mobility [122]. They found that over time there

was a shift in band intensity from 55 kDa to 59 kDa and finally to a 110 kDa CD4 dimer in

the full length CD4 when exposed to a CD4+ cell stimulator. In addition they found that full

length CD4-WT and CD4-D2A (domain 2 disulphide bond knockout by Cys-Ala substitution)

resolved to the same molecular weight of 55 kDa whereas D1A and D4A (domain 1 and 4

disulphide bond knockout by Cys-Ala mutation, respectively) show a decrease in gel mobility,

resolving to an approximate molecular weight of 57 kDa. They attribute the lack of difference

in gel mobility as a function of D2 disulphide bond ablation to a less extensive Ig fold alteration

compared to D1A and D4A.

However, it is important to note that Lynch et al. 2006 [122] have not assessed the initial status

of the CD4 disulphide bonds in the WT protein, before reduction with DTT. Therefore, it is

presumed that the D2 disulphide is oxidised and thus the cysteines are in the same redox state

as those of D1 and D4. Another interpretation of this same data is that the D2 disulphide in the

WT full length CD4 is in fact reduced, hence there is no difference in gel mobility between the

WT and D2A proteins due to their being of the same conformation. This could be considered a

reasonable assumption taking into account the metastability of the domain 2 disulphide bond

described within this thesis.

1.4.2 The role of gp120 redox biology in HIV entry

gp120 has 9 disulphide bonds [34] of which 3 have been identified as allosteric [74]. By cre-

ating gp120 Cys-Ala mutants Anken et al. 2008 [39] found that of the allosteric disulphides

in gp120; the Cys126-Cys196 disulphide bond was dispensable for folding; the Cys296-Cys331

disulphide was indispensable for folding and the Cys385-Cys418 disulphide mutant was able
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to provide some function despite folding deficiency. While the labile disulphide bonds of gp120

have been shown to be sensitive to both chemical and enzymatic reduction [106], PDI is the pro-

posed physiological oxidoreductase acting on gp120 [123]. This idea is reinforced by the finding

that inhibition of lymphocyte surface-associated PDI prevents HIV infectivity [115, 117].

Ryser et al. 1994 first showed that PDI activity was necessary for the spread of HIV in cell cul-

tures, as inhibition of PDI by anti-PDI antibodies, bacitracin and DTNB appeared to disrupt

HIV infectivity [116]. Fenouillet et al. 2001 developed this work to show that PDI activity is

necessary for viral/host-cell membrane fusion and subsequent HIV entry, post-CD4 binding

[123]. In addition, they showed that surface-associated PDI is localised to CD4-enriched mem-

brane regions and that only the surface-associated PDI and not soluble PDI had an effect on

syncytium formation.

Gallina et al. 2002 went on to localise the post-CD4 binding action of PDI to the cleavage of

disulphide bonds in gp120, which resulted in the opening of a disulphide loop and confor-

mational changes within the viral protein [117]. They also confirmed the association of PDI

with CD4 on the surface of the target cells which implies that whilst the virus may be able to

attach to CD4 it requires the presence of PDI for membrane fusion and host cell entry. Finally,

they noticed that three of gp120’s disulphide bonds are located within the vicinity of the CD4

molecule, and therefore may be the disulphide bonds cleaved by PDI. Figure 1.10 suggests how

PDI may be associated with CD4 and gp120 leading to membrane fusion and HIV-1 entry.

Barbouche et al. 2003 [115] quantified the thiol content of gp120, pre- and post- CD4 and CXCR4

binding (from 0.5-1 mol of thiol/mol gp120 to 4 mol of thiol/mol gp120 pre- and post-binding,

respectively). They also found that gp120 with 2 mol of thiol/mol gp120 was able to bind CD4

but not CXCR4 and that PDI inhibition did not affect gp120 binding to CD4 or CXCR4. There-

fore, they suggest that two of gp120’s disulphides are reduced after CXCR4 binding which re-

sults in fusion competence of the Env complex. Their results indicate that these two disulphide

bonds may be two of the three disulphide bonds located between the V1/V2 and V4 loops.

Interestingly, two of these three disulphide bonds are allosteric disulphide bonds (C126-C196

and C385-C418) [115, 124].

Thioredoxin-1 [125, 126] and glutaredoxin-1 [124] have also been shown to reduce gp120 in

vitro. Since PDI inhibitors do not fully prevent HIV infectivity [123], it is possible that several
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FIGURE 1.10: (a) T-cell surface associated PDI localised to CD4 and may inter-
act with domains 3 and 4 of CD4 so that when CD4 binds gp120, (b) structural
realignment of the gp120 protein might include reorganisation of its disulphide
bond network. Redox shuffling within gp120 may expose the co-receptor bind-
ing site and prime gp41 for fusion by forming the fusion peptide (Fp). (c) gp41
forms N-terminal heptade repeat (NHR) and C-terminal heptade repeat (CHR)
helices that (d) fold parallel to one another so that (e) the CHR can wind around

the NHR to draw the membranes proximal for fusion. From: [119]

thioredoxin superfamily oxidoreductases are able to catalyse gp120 disulphide bond reduction

in vivo. Of particular note is the fact that the V3 allosteric disulphide bond (C296-C331) has

been shown to be cleaved by Trx-1 [125]. This has been proposed to regulate secondary receptor

binding.

It is clear from these studies that reduction of gp120 and CD4 disulphide bonds by one or more

oxidoreductases is essential for viral/host-cell membrane fusion and HIV entry. However,

whilst there is strong evidence to suggest that gp120’s allosteric disulphide bonds are involved

in conformational changes resulting in fusion competence, the precise role and reorganisation

of the disulphide bond network within gp120 has yet to be elucidated. Whereas for CD4 the

questions is why does gp120 necessitate a monomeric reduced form of CD4, since it only forms

interactions with domain 1? What is clear is that the redox biology involved in gp120 reduction,

HIV entry and the regulation of these process by oxidoreductases is interesting and complex.

1.5 Rationale of the PhD thesis

The overall aim of this PhD thesis was to use biochemical, biophysical and structural tech-

niques to characterise the impact of 2dCD4 redox state on its structure and therefore its ability
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to bind gp120.

It is becoming increasingly accepted that the redox biology of CD4 plays an essential role

in HIV-1 pathogenesis. While it has been shown that HIV-1 requires a partially reduced,

monomeric CD4 redox isoform for gp120 binding and subsequent HIV-1 entry into host cells,

the structural implications of the redox state of CD4 remain a mystery.

The minimal domain of CD4 required to bind gp120 is domain 1, whilst domain 2 contains the

allosteric disulphide bond of interest. Therefore, the idea was to use gp120 in combination with

wild-type two domain CD4 (2dCD4-WT) and 2dCD4 variants in which either their domain 1 or

2 disulphide bonds have been knocked out (D1A and D2A, respectively) by cysteine to alanine

mutation, in this thesis. The disulphide knockout variant proteins were to be used as redox

isomer mimics and were to be compared with 2dCD4-WT. This would allow characterisation

the structural changes of the 2dCD4 domains as a function of their redox state and thus the

ability of 2dCD4 to bind gp120 using small-angle X-ray and neutron scattering (SAXS and

SANS).

SANS was used in contrast variation studies, whereby the 2dCD4 component was match-out

labelled with deuterium and gp120 was measured in its unlabelled, protiated state. By using

contrast variation (section 2.4.3) it was possible to study the scattering from the complex in 0%

D2O and importantly the scattering of the individual components of the complex as a func-

tion of their match-out point. At the match-out point of gp120 it was possible to study the

scattering from the deuterated 2dCD4-WT (d-2dCD4). Unfortunately sample concentrations

and volumes did not permit the measurement of the scattering of gp120 in the complex at the

match-out point of d-2dCD4. The contrast variation studies were compared to the scattering of

the proteins in isolation. It was expected that conformational changes would be observed be-

tween the d-2dCD4-WT in isolation and when in complex with gp120 which would be compa-

rable to the structure of 2dCD4-D2A. Unfortunately, sufficient yield of the 2dCD4-D2A mutant

was not achieved and therefore this variant protein was not studied by small-angle scattering

(SAS).

The results obtained by SANS were followed by SAXS experiments conducted on the same

samples in an attempt to corroborate the data obtained through contrast variation studies. In
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addition, SEC-SAXS was employed to study the complex in order to ensure an ideal, monodis-

perse sample with no aggregation. SAXS was also used to study the effect of DTT concentration

on 2dCD4-WT thanks to the high-throughput capabilities of BM29 at the ESRF. It was expected

that conformational changes or modifications in the folding of 2dCD4-WT as a function of the

reduction of the disulphide bonds would be observed. This allowed better understanding of

how the disulphide bonds of 2dCD4 affect its structure and therefore function.

In order to achieve these goals, the following was carried out:

1. Optimisation of the expression and purification of hydrogenated and deuterated 2dCD4-

WT and variant proteins (chapter 3).

2. Functional, biochemical and biophysical characterisation of homogenous solutions of re-

combinant hydrogenated and deuterated 2dCD4-WT and variant proteins (chapter 4).

3. Biophysical and SAXS characterisation of the structure of 2dCD4-WT as a function of

disulphide bond integrity (chapter 5).

4. Biophysical characterisation of gp120 (chapter 6).

5. Match-out point determination of deuterated 2dCD4 and hydrogenated gp120 and sub-

sequent SANS contrast variation studies of the d-2dCD4/h-gp120 complex (chapter 6).

6. SANS/SAXS studies of the proteins in isolation (chapter 6).

7. SEC-SAXS studies of the 2dCD4/gp120 complex (chapter 6).

Upon reduction of the D2 disulphide it was predicted that there would be significant and pre-

viously uncharacterised structural realignment within CD4 to permit gp120 binding. The par-

tially reduced, monomeric CD4 which binds gp120 appears to be functionally distinct from

fully oxidised 2dCD4 and dimeric CD4 which binds MHCII and thus, may exist in a unique

conformation whose function serves only in binding gp120 of the HIV Env spike. Therefore, the

various conformations associated with the different redox states of CD4 present novel targets

for anti-HIV pharmaceuticals.
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1.6 A guide to the CD4 acronyms used in this thesis

Diagram Acronym Description

2dCD4-WT Wild type two domain CD4

(domains 1 &2)

d-2dCD4-WT deuterated 2dCD4-WT

h-2dCD4-WT hydrogenated (protiated)

2dCD4-WT

E-2dCD4-WT 2dCD4-WT expressed

in E. coli

B-2dCD4-WT 2dCD4-WT expressed

in B. choshinensis

CFPE-2dCD4-WT 2dCD4-WT produced using

cell-free protein expression

TABLE 1.2: 2dCD4-WT is composed of 2dCD4-Ox, 2dCD4-R1 and 2dCD4-R2. In
this thesis 2dCD4-WT was expressed using: E. coli (E-2dC4-WT), B. choshinensis
(B-2dCD4-WT) and cell-free protein expression (CFPE-2dCD4-WT). 2dCD4-WT
was also used in its hydrogenated and deuterated forms (h-2dCD4-WT and d-
2dCD4-WT, respectively). Domain 1 is shown in green and domain 2 is shown in

blue.

Diagram Acronym Description

1dCD4-D1 One domain CD4

domain 1

1dCD4-D2 One domain CD4

domain 2

TABLE 1.3: 2dCD4-D2A has had its cysteine residues at positions 130 and 159
replaced by alanine residues and mimics 2dCD4-R1 which is reduced in domain
2 and oxidised in domain 1. 2dCD4-D1A has had its domain 1 cysteine residues
at positions 16 and 84 substituted for alanine residues and mimics 2dCD4 which
is reduced in domain 1 and oxidised in domain 2. 2dCD4-C∆A has had both its
domain 1 and domain 2 cysteine residues substituted for alanine residues and

mimics 2dCD4-R2 which is reduced in both domains 1 and 2.
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Diagram Acronym Description

2dCD4-Ox Two domain CD4 (domains 1 &2)

oxidised in both

2dCD4-R1 Two domain CD4 (domains 1 &2)

reduced in domain 2

equivalent to 2dCD4-D2A

2dCD4-R2 Two domain CD4 (domains 1 &2)

reduced in both

equivalent to 2dCD4-D1A

TABLE 1.4: 2dCD4-WT exists in three different redox forms: fully oxidised
(2dCD4-Ox), reduced in domain 2 (2dCD4-R1) and fully reduced (2dCD4-R2).
The disulphide bonds can be knocked out by substituting the Cys residues for
Ala residues to produce a: domain 2 disulphide bond knockout (2dCD4-D2A), a
domain 1 and 2 disulphide bond knockout (2dCD4-C∆A) and a domain 1 disul-
phide bond knockout (2dCD4-D1A). The table shows the 2dCD4-WT redox iso-
forms and a schematic to help visualise the redox state of the cysteines. Domain

1 is shown in green and domain 2 is shown in blue.
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Diagram Acronym Description

2dCD4-D2A Two domain CD4 (domains 1 &2)

domain 2 cys replaced by ala

equivalent to 2dCD4-R1

2dCD4-D1A Two domain CD4 (domains 1 &2)

domain 1 cys replaced by ala

2dCD4-C∆A Two domain CD4 (domains 1 &2)

reduced in both

equivalent to 2dCD4-R2

TABLE 1.5: 2dCD4-D2A has had its cysteine residues at positions 130 and 159
replaced by alanine residues and mimics 2dCD4-R1 which is reduced in domain
2 and oxidised in domain 1. 2dCD4-D1A has had its domain 1 cysteine residues
at positions 16 and 84 substituted for alanine residues and mimics 2dCD4 which
is reduced in domain 1 and oxidised in domain 2. 2dCD4-C∆A has had both its
domain 1 and domain 2 cysteine residues substituted for alanine residues and

mimics 2dCD4-R2 which is reduced in both domains 1 and 2.
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Chapter 2

Experimental Methods

The theory behind the experimental techniques employed in this thesis is outlined in this chap-

ter. The specific protocols used for each technique are detailed in the results chapters: 3, 4, 5

and 6.

2.1 Molecular Biology

2.1.1 Plasmid DNA preparation

Plasmids are circular molecules of supercoiled DNA which can be isolated from prokaryotes.

Plasmid DNA is extremely useful for the purpose of protein expression as genes of proteins of

interest can be ligated into purpose-designed plasmid DNA, called expression vectors which

are typically less than 10 kb in size. Expression vectors have specific features that allow single-

celled expression systems, such as bacterial or mammalian cells, to over express recombinant

proteins [127].

Typical features of expression vectors include:

• Antibiotic resistance gene - allows for the selective growth of only cells containing the

expression plasmid of interest e.g. ampicillin resistance gene which produces the beta-

lactamase protein localised to the periplasmic space that inactivates ampicillin.

• Restriction enzyme sites - allows for the easy cutting of the plasmid DNA with restriction

endonucleases e.g. Xho1 and ligation of the gene of interest by DNA ligases into the

expression plasmid.
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• Affinity purification tag - permits affinity purification of the protein of interest e.g. the

polyhistidine-tag which allows immobilised metal affinity purification.

• Origin of replication - recognised by DNA polymerase, DNA replication begins here,

allows replication of the plasmid.

• Promoter - recognised by RNA polymerase, transcription of the gene should start here.

Can be induced or repressed by regulatory chemicals allowing control of gene expression

and in prokaryotes these are often based on operons e.g. the lac promoter is induced

by addition of isopropylthiogalactoside (IPTG) and the trp promoter is repressed by Trp.

Expression vectors for expression in mammalian cells use different promoters to plasmids

for prokaryotic expression hosts e.g. the cytomegalovirus (CMV) promoter.

• Terminator - recognised by RNA polymerase, transcription of the gene stops here.

Plasmid DNA purification

Expression vector plasmid DNA, containing the gene or coding DNA for a protein of interest,

can be replicated and purified after transformation of highly-competent E. coli strains such as

Top10 (Invitrogen) and used for recombinant protein expression. This is done by first trans-

forming the expression vector into E. coli (see below) and then culturing the transformed cells

in varying volumes of culture media which will allow recovery of specific quantities of plasmid

DNA.

In order to recover the plasmid DNA the cells are first collected by centrifugation, resuspended

and then lysed using the alkaline lysis method. The plasmid DNA is then recovered using spin-

column based nucleic acid purification. The purified plasmid DNA can then be resuspended

in nuclease-free water and stored at -20◦C. Figure 2.1 outlines the steps for mini- and giga-prep

DNA purification.
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FIGURE 2.1: Schematic outlining the steps for mini-prep purification and giga-
prep purification of plasmid DNA. Mini-preps yield approximately 100 µg pure
plasmid DNA whereas giga-preps yield around 5 mg plasmid DNA. Adapted

from: [128, 129]
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2.1.2 Protein expression

Bacterial protein expression

Bacterial expression systems are generally the go-to expression hosts for recombinant protein

expression as they are usually well characterised and do not need expensive growth media,

producing high yields of recombinant protein. In this thesis work two different approaches to-

wards bacterial protein expression were used: the first was a traditional Escherichia coli expres-

sion host and the second a novel gram positive expression host called Brevibacillus choshinensis.

Expression vectors carrying the genes of interest are transformed into the expression host and

grown overnight at a specific temperature (usually around 37◦C) on agar/growth medium

plates supplemented with an antibiotic specific to the antibiotic resistance marker of the expres-

sion plasmid. The growth medium provides nutrients for the bacteria and the agar provides a

solid surface for the bacteria to grow on. The presence of the antibiotic ensures that only those

bacteria which contain the expression vector after transformation are able to grow.

Transformation Transformation is the process by which foreign DNA is introduced into a

bacterium. In a laboratory setting, the bacteria are treated chemically or physically in order to

become ’competent’ allowing the relative ease of DNA uptake. Incubating the cells in ice-cold

calcium chloride is a commonly used method for inducing chemical competence, increasing

the permeability of the cell wall and membrane to plasmid DNA. The cells are then stimulated

to take up the DNA, typically by a short and gentle heat-shock at 42◦C for 30 seconds. The

Tris-PEG transformation method [130, 131] is another technique which can be used for the

transformation of gram positive bacteria and was used in this thesis for the transformation of

B. choshinensis.

A colony is selected from the agar plate and used to inoculate a small amount of liquid growth

medium (usually 5-20 mL) supplemented with the antibiotic corresponding to the antibiotic

resistance marker of the expression plasmid. This culture is grown under specific conditions

in terms of period of time, temperature and agitation. This small volume of culture is called

a starter culture or pre-culture which will be used to inoculate the larger expression culture

(usually 500 mL -1 L) which is again inoculated with the appropriate antibiotic. The large

expression culture is again cultured at a precise temperature and agitation for a specific length
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of time. These parameters need to be determined by experimentation in order to obtain the

optimal conditions for high-yields of recombinant protein expression. If the protein coding

gene of interest is under the regulation of an inducible promoter then the expression culture

should be grown to an optical density at 600 nm (OD600) of between 0.6 and 0.8 at which point

the bacteria will be in the exponential growth phase. The culture is then grown using the pre-

determined precise growth conditions.

Cell-free protein expression

Cell-free protein expression (CFPE), cell-free protein synthesis (CFPS) or in vitro protein synthe-

sis utilises the protein synthesis machinery of cells in a test-tube reaction to produce recombi-

nant proteins. For in vitro protein synthesis derived from bacterial cells such as E. coli, a culture

of E. coli cells is grown in 2YT media at 37◦C and the growth curve is carefully followed by

measuring the OD600 regularly. When the cells reach the end of the exponential growth phase,

just before they reach the stationary phase, they are harvested by centrifugation because the

maximum amount of active ribosomes per cell are present at this stage of the growth curve.

The pelleted cells are lysed and the ribosomes (the protein translation machinery) are collected

as well as other necessary enzymes for transcription and translation. This ’lysate’ forms the

main part of the cell-free reaction.

The cell-free reaction is then set-up by the addition of tRNA, plasmid DNA containing the gene

or cDNA of interest, amino-acids, nucleotides, salts, cofactors and various other reagents which

allow the experimentalist to customise the protein synthesis. Another important element of the

CFPE reaction is the addition of an energy regenerating system which allows generation of

ATP as translation of mRNA transcripts into a polypeptide chain is an energetic process. The

reaction is left for approximately 12 hours at a defined temperature to be optimised by the user,

after which the synthesised protein can be purified directly from the reaction mixture.

This technique therefore, has advantages over cellular protein expression because the protein

synthesis step can be carried out in a much more controlled environment and importantly un-

couples protein expression from cell growth. In cellular protein expression parameters such

as temperature and growth media can be controlled but ultimately the experimentalist relies

heavily on the ability of the cells to carry out recombinant protein expression without having
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access to the protein synthesis step itself. Cell-free synthesis allows the experimentalist to con-

trol additional parameters which directly influence the protein synthesis reaction such as the

addition of deuterium labelled amino acids for neutron studies or triple-labelled amino acids

for high-resolution NMR studies. In addition, in vitro protein synthesis is much quicker than

classical cellular expression since the reaction can be set-up within an hour and the expression

step takes a matter of hours. Whereas with cellular expression the cells must be cultured fresh

each time which can take several days or even months when using mammalian expression

systems.

Mammalian protein expression

Glycosylated proteins (such as gp120) cannot be expressed in a native form in bacterial expres-

sion systems which lack the appropriate environment and enzymes for disulphide bond for-

mation and post-translational modifications. Therefore, immortal mammalian cell lines such

as chinese hamster ovary or human embryonic kidney are employed for expression of such

complex proteins.

Mammalian cells can be grown in adherent or suspension cultures using complex medium sup-

plemented with Gln and an antibiotic such as Geneticin® (G-418). Once confluent, adherent

cells can be grown in ridged roller bottles which allow the cells to adhere to the large surface

area and media to pass over the cells as the roller bottles are rotated in a bottle roller. Alterna-

tively, adherent cells can be grown in hyperflasks which have a large surface area due to the

many plastic layers inside the flask. Suspension cells can be grown in flasks with gentle agita-

tion. Mammalian cells divide every 24 hours or so compared to 20-30 minutes for bacterial cells

so culture growth is much slower. Protein expression is constitutive, meaning that it is continu-

ous, and recombinant proteins are usually tagged with an cell export signal so that the proteins

are secreted into the extra-cellular milieu. This means that protein can be collected over the

course of about a month by collecting the growth media every few days and exchanging it

with fresh growth media to allow the cells to continue to grow and express the recombinant

protein.
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2.2 Biochemical characterisation

2.2.1 Protein purification

Prior to protein purification there are some steps that may be required depending on how the

protein was expressed. For example if the protein was expressed inside the cell, as is common

with bacterial expression, then the cells need to be lysed. This can be done by treating the

cells with lysozyme (if they have a bacterial cell wall) followed by mechanical methods such

as: sonication, freeze-thaw, cell-disruption or homogenisation. If the proteins have been ex-

pressed into insoluble inclusion bodies then the inclusion bodies will need to be solubilised by

treatment with a chaotrope such as 6 M GuHCl or 8 M Urea. His-tagged proteins requiring sol-

ubilisation from inclusion bodies can be purified in their denatured form because the function

of the his-tag is not dependent on the tertiary structure of the protein.

Proteins which are secreted into the extra-cellular milieu can be purified directly from the ex-

pression medium. If the volumes are cumbersome, Viva Flow cassettes (Sartorius) can be used

to concentrate the protein into a smaller volume of expression medium. If the extra-cellular

milieu contains a large number of contaminating proteins then ammonium sulphate precipita-

tion can be used to precipitate the protein out of solution. This is done by adding ammonium

sulphate which increases the ionic strength of the solution. Proteins have different solubility at

high ionic strengths and so by using this method the number of contaminants can be reduced

by "salting out" the protein of interest at a given concentration of ammonium sulphate. The

protein salt can then be resolubilised into a smaller volume of buffer to facilitate purification.

Affinity chromatography

Affinity chromatography is a common purification technique based on the specific interaction

of a part of the molecule of interest with a molecule immobilised in a polymer matrix. While

antibodies specific to the protein of interest can be used to such effect, usually the easiest way

to carry out affinity purification is by introducing a coding sequence for an affinity purification

tag into the expression vector. The tag is translated with the protein sequence appearing at

either the amino or carboxy terminal depending on its location within the expression vector.

One of the most commonly used affinity tags is the polyhistidine-tag (referred to as his-tag
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FIGURE 2.2: The polyhistidine-tagged protein binds the Ni2+ ions. Imidazole has
a higher affinity than His for the Ni2+ ions and the protein is eluted. Imidazole
must be washed off the column in order for it to be re-used. Adapted from: [132]

hereinafter), consisting at least six concatenated His moieties, which has micromolar affinity

for Ni2+ and Co2+ ions, but a lower affinity for these divalent metal ions than imidazole.

The his-tagged protein in its impure crude extract is passed through a column packed with

Ni2+ ions immobilised in a chelator functionalised agarose or Sepharose matrix. The His moi-

eties form ionic bonds with the Ni2+ ions so that the protein of interest becomes bound to the

matrix of the column, whilst the purities flow through the column with little interaction with

the column. Since imidazole at high concentrations has a higher affinity for the immobilised

metal ions than His it disrupts the binding of the protein to the immobilised metal matrix to

recover the purified protein afterwards (fig 2.2). This technique is called immobilised metal

affinity chromatography (IMAC) and was used to purify all CD4 analogues as all were his-

tagged.

Gp120 was purified using a different form of affinity chromatography called carbohydrate

binding affinity chromatography. In this case the gp120 construct was not his-tagged because

the glycan shield of gp120 has an affinity for the carbohydrate binding proteins called lectins.

The affinity chromatography matrix consists of lectin from Galanthis nivalis immobilised on

agarose beads. The gp120 sugars bind the lectin proteins as they pass through the column and
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gp120 can be eluted from the column using the sugar methyl-α-D- mannopyranoside which

competitively binds the lectin proteins with higher affinity than the gp120 glycans.

Size-exclusion chromatography

Size-exclusion chromatography (SEC) separates biological macromolecules such as proteins

based on their hydrodynamic volume, which is related to their molecular mass. Gel-filtration

chromatography (GFC) is a SEC technique which separates biological macromolecules in aque-

ous solutions (as opposed to gel-permeation chromatography (GPC) which uses organic elu-

ents) [133]. GFC and SEC are used interchangeably hereinafter as GPC was not used during

this thesis work.

SEC is a fractionation method which allows: (i) purification of samples and (ii) characterisation

of the sample size. Samples are fractionated by their passage through a solid matrix column

which is comprised of particles with pores which the sample can penetrate, depending on their

size. The samples are "flowed" through the column by a mobile phase (buffer) which passes

around and through the particles of the matrix. Larger samples will not be able to enter the

pores and so have less mobile phase available to them, therefore they elute earlier from the

column (fig. 2.3). Smaller samples will be able to penetrate the particles of the matrix and

therefore elute later as they have more of the mobile phase to travel [134].

Elution from the column is tracked using in-line spectroscopy. Modern purification systems

have several UV detectors which can follow multiple UV traces such as the UV absorbance of

protein at 280nm, UV absorbance of nucleic acids at 260nm as well as the conductivity of salt.

Fraction collectors connected to the end of the column allow the separated samples to be col-

lected into discrete fractions for further analysis such as SDS-PAGE to identify the contents of

each peak and check the purity. The ability of a SEC column to fractionate samples of different

sizes is defined by the pore size of the polymer matrix and the size of the column. Smaller pore

sizes will be able to resolve smaller samples whereas larger pore sizes will fractionate larger

samples. SEC is said to separate macromolecules based on their size but since macromolecules

of the same molecular mass can have different shapes, leading to a difference in their ability to

access the pores, the separation is actually based on their hydrodynamic volume (VH). VH can

be calculated from Einstein’s viscosity law:
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FIGURE 2.3: Size-exclusion chromatography separates proteins based on their
size and form and therefore their ability to enter particles of a polymer matrix.
The red molecule is large and so cannot enter the particles, therefore it passes
straight through the column and elutes first. The blue molecule can enter through
some of the pores of the particles of the matrix, slowing down its passage through
the column with respect to the red particle and elutes second. The green molecule
is the able to enter all the particles of the matrix and therefore has the slowest
passage through the column of the three molecules and elutes last. From: [132]

[η] = 2.5
NVH

MM
(2.1)

Where MM is the molecular mass, N is the number of particles and [η] is the intrinsic viscosity

of the solute.

2.2.2 Concentration determination of proteins and nucleic acids

The concentration of proteins can be determined by using a spectrophotometer to measure the

UV absorbance at 280 nm (Abs280nm) of the aromatic residues Trp and Tyr and disulphide bonds

between Cys residues. The Abs280nm value can be converted into a concentration in mol L−1 by

use of the Beer-Lambert law [135]:

A = εcl (2.2)

Where l is the path length of the light through the sample in cm and ε is the molar attenuation

coefficient in M−1 cm−1. The molar attenuation coefficient is dependent on the Trp, Tyr and
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disulphide bond (s-s) content [136] of the protein:

ε280 = (5500× nTrp) + (1490× nTyr) + (125× ns−s) (2.3)

For double stranded DNA (dsDNA) such as plasmid DNA, the UV absorbance is measured

at 260 nm (Abs260nm) of the purines and pyrimidines. For dsDNA the average attenuation

coefficient at 260 nm is 0.020 µ mL−1 cm−1 so that an Abs260nm of 1 is equivalent to 50 µg/mL

dsDNA.

2.2.3 Sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

In order to quickly and qualitatively analyse a protein sample, sodium dodecyl-sulphate poly-

acrylamide gel electrophoresis (SDS-PAGE) is the go-to technique. Gel electrophoresis involves

separation of macromolecules based on their size (and to some extent their shape) through a

polymer matrix driven by an electrical field [137, 138]. For the separation of nucleic acids,

agarose is used as the polymer matrix but for proteins, polyacrylamide is used. The percentage

of polyacrylamide used in making the gel determines the pore size formed when the gel is set

and therefore the resolving power of the gel, similar to the concept of pore size in SEC. Higher

percentages of polyacrylamide correspond to smaller pore sizes whereas lower percentages of

polyacrylamide correspond to larger pores.

SDS-PAGE is a non-native technique which means that the protein is denatured to form a

random-coil. The protein is denatured by boiling for approximately 5 minutes in a buffer con-

taining bromophenol blue (which is used to track the migration through the gel) and SDS which

has a two-fold action: (i) protein denaturant (ii) surfactant covering the protein in an anionic

charge. The amount of SDS covering the protein and therefore the charge of the SDS-covered-

protein roughly corresponds to its molecular weight [139]. In addition to SDS, the sample

buffer can also contain DTT which will reduce any disulphide bonds present in the protein of

interest as disulphide bonds can affect the migration behaviour of proteins through the gel.

SDS-PAGE can therefore be carried out under reducing and non-reducing conditions.

The gel is comprised of two parts: (i) the neutral pH stacking gel which concentrates the pro-

teins before they pass into (ii) the basic pH separating gel. The two gel layers are designed to

have different pore sizes and ionic strengths. Prior to running the SDS-PAGE experiment, the
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gel is secured into the negative electrode chamber which is inserted into a buffer tank. Cathode

buffer is poured into the centre of the negative electrode chamber and anode buffer is poured

around the outside into the buffer tank. Samples are loaded into isolated wells of the gel and

one well is usually reserved for the molecular weight marker of reference proteins which re-

solve at specific molecular weights. An electric current is then applied to the gel within the

region of 100-200 V. The proteins then migrate through the gel as a function of their mass to

charge ratio. After the electrophoresis step the proteins can be visualised on the gel by stain-

ing with Coomassie Brilliant Blue which is a blue coloured dye which interacts electrostatically

with the amino and carboxyl groups of the protein [140].

(Examples of SDS-PAGE stained with Coomassie blue can be seen extensively in Chapter 3.)

2.2.4 Western blotting

While SDS-PAGE staining with Coomassie blue can be used to visualise protein presence non-

specifically, western blotting can be used as an alternative to Coomassie Blue staining to specif-

ically visualise the protein of interest. Western blotting is an immunohistochemistry technique

which uses antibodies to identify the protein [141]. Directly after an SDS-PAGE is run the

proteins are transferred onto a nitrocellulose membrane by electroblotting. During this pro-

cess the proteins are pulled from the polyacrylamide gel onto a nitrocellulose membrane. The

membrane is then "blocked" using a 5% milk solution to block any subsequent non-specific an-

tibody binding. After blocking an antibody specific to the protein of interest is used. Since most

recombinant proteins are tagged with a purification tag, the membrane is often incubated with

an antibody specific to the purification tag, such as an anti-his antibody in the case of 2dCD4-

WT. If the protein is not tagged then an antibody specific to the protein (e.g. a gp120-antibody

in the case of gp120), is necessary.

After incubation with the primary antibody, the membrane is washed to remove excess, un-

bound primary antibody. The membrane is then incubated with a secondary antibody which

has a reporter enzyme such as alkaline phosphatase (ALP) conjugated to it to enhance the sig-

nal. When the substrate is added, the ALP produces a chromogenic product indicating the

presence of the protein of interest. For higher sensitivity electrochemiluminescent (ECL) sub-

strates can be used. Since the primary antibody is specific to the protein of interest, western
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blotting is useful for looking for the presence of the protein of interest in whole cell extracts

where expression is weak, since the signal of the protein of interest can be lost in amongst the

bands of the other proteins when analysed by SDS-PAGE with Coomassie blue staining. In ad-

dition, western blotting has a much higher sensitivity than SDS-PAGE with Coomassie staining

as the signal is amplified by the reaction between the substrate and reporter enzyme which can

be allowed to reach saturation.

(Examples of western blots using an anti-His primary antibody can be seen in Chapter 3)

2.2.5 Enzyme-linked immunosorbant assay (ELISA)

Enzyme-linked immunosorbant assay is a technique which allows the detection (and to some

extent quantification) of macromolecules of interest using antibodies conjugated to an enzyme

which acts as a reporter label [142–144]. There are different types of ELISA such as the compet-

itive, sandwich or direct ELISA. For this thesis work the indirect ELISA was used.

The basic principle of the indirect ELISA is that the molecule of interest is immobilised on a

96-well plate followed by binding of a primary antibody, specific to the molecule of interest.

An enzyme-conjugated secondary antibody, specific to the primary antibody, is subsequently

bound, followed by the enzyme’s substrate. The reaction between the enzyme and substrate is

stopped by the addition of HCl to prevent saturation. The product of the enzymatic reaction is

coloured and in modern ELISAs ECL is used so that the absorbance at 450 nm can be measured

quantified using a micro-plate reader. This ELISA method is described as indirect because

the detection event is of the primary antibody by the secondary antibody, rather than direct

detection of the analyte.

2.2.6 Pseudo-viral neutralisation assay

The pseudo-viral neutralisation assay is a technique that has been developed to show, typically,

the efficacy of antibodies against different tier virions (tier 1 to tier 3) [145]. It functions by

incubating the desired protein with the virus and then addition of TZM-bl cells which express

CD4, CXCR4 and CCR5 on their surface [146] and contain a luciferase (firefly) reporter gene

which is under the regulation of the HIV tat promoter. The protein, or antibody, may then bind

to the virion leading to subsequent inhibition of entry of the virion into the TZM-bl cells.
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In the case where inhibition is not successful, and entry of the virion into the TZM-bl cells

can occur, this causes transcription of the HIV tat controlled luciferase gene during a normal

round of HIV infection, which results in transcription of the luciferase enzyme which catalyses

the reaction between Luciferin, oyxgen and ATP to produce Oxyluciferin, carbon dioxide, py-

rophosphate, AMP and light. Therefore, the greater the inhibition the lower the luminescence.

Figure 2.4 outlines how the experiment works.

The pseudo-viral neutralisation assay is therefore an ideal technique to test the functionality of

the 2dCD4-WT produced using the different expression systems studied: E. coli, B. choshinensis

and cell-free protein expression. The approach is based on the fact that the purified, recombi-

nant 2dCD4 variants should bind to Env on the virus, preventing the virus from binding to the

CD4 on the surface of the TZM-bl cells and therefore inhibiting viral entry into these cells and

transcription of the luciferase gene [146].

2.2.7 N-terminal protein sequencing

N-terminal sequencing is based on a technique called Edman degradation developed in 1950

[147]. The amino-terminal amino acid residue is labelled with phenyl isothiocyanate (PITC, fig.

2.5) under alkaline conditions to form a cyclical phenyl thiocarbamoyl derivative. The phenyl

thiocarbomyl is then cleaved under acidic conditions at the peptide bond adjacent to the car-

bamyl group to form a thiazolinone derivative. The thiazolinone derivative is extracted into

an organic solvent and acid treated, forming a phenyl thiohydantoin (PTH) amino acid deriva-

tive which can be detected by high performance liquid chromatography (HPLC, fig. 2.5)[148].

Each PTH amino acid derivative has specific HPLC behaviour allowing identification of the

amino acid. This cycle is then repeated to identify the following residue in the polypeptide

sequence. For the purpose of this thesis, N-terminal sequencing determined the first 6 amino

acid residues to confirm the presence of the desired protein by mass spectrometry.

The amino-acid derivatisation was originally performed manually and detection of the liber-

ated amino acid was done using thin layer chromatography [147]. Edman et al. 1967 [149]

developed the first protein ’sequenator’ which automated the process thereby decreasing the

sample volume requirements whilst increasing the accuracy. Modern N-terminal sequencing
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FIGURE 2.4: Pseudo-viral neutralisation assay measures the decrease in HIV-1
tat-regulated trranscription of the luc reporter gene. 1) HIV-1 binds to CD4 and
CCR5 or CXCR4 2) triggering activation of the tat promoter which triggers 3)
transcription of the luc gene. 4) The resulting luciferase enzyme reacts with lu-
ciferin to produce oxyluciferin and light. Proteins can be added to the reaction
to inhibit HIV-1 binding thereby inihibting luc transcription which means this
assay can be used to test neutralisation of HIV-1 using different inhibitory pro-
teins (usually antibodies). With increased protein (inhibitor) concentration, there

is decreased luminescence showing increased inhibition.
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is done using highly sensitive, sophisticated protein sequencers [148] such as the 492 Applied

Biosystems gas-phase sequencer with an in-line 140C HPLC unit used in chapter 5.

FIGURE 2.5: Schematic detailing the steps for N-terminal sequencing using Ed-
man degradation. Adapted from: [148]

2.3 Biophysical characterisation

2.3.1 Mass spectrometry

Mass spectrometry is a useful biophysical technique for the accurate determination of the mass

of a sample, whether the experimental mass is the same as the expected mass or not. It is

therefore used as a quality control step prior to further analysis. Applied to the field of neutron

scattering, mass spectrometry is used to estimate the percentage incorporation of deuterium in

a recombinant protein produced by in vivo or cell-free deuteration techniques.

Biophysical mass spectrometry functions by producing intact gas-phase ions of biological macro-

molecules of specific mass-to-charge (m/z) ratios. The ions are accelerated to specific velocities
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by applying an electric current which drives the ions into a mass analyser. In this work time-of-

flight (TOF) mass analysers were used. TOF mass analysers function on the principle that ions

of different m/z are accelerated with the same energy as they are produced by the ionisation

source but have a different velocity. Therefore, ions with smaller m/z ratios will arrive at the

detector more quickly than ions with higher m/z ratios [150].

Two different types ionisation technique were used in this work: liquid chromatography electro-

spray ionisation time-of-flight mass spectrometry (LC/ESI-TOF-MS) and matrix assisted laser

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF). These are considered

’soft’ ionisation methods as the energies used to induce the ionisation event are not high enough

to incur fragmentation of the sample.

Liquid chromatography/electrospray ionisation time-of-flight mass spectrometry

LC/ESI-TOF-MS is a mass spectrometry technique that is useful for studying proteins or pep-

tides with an m/z ratio of between 30-32 000. This technique was therefore useful for studying

2dCD4-WT. Prior to ionisation, the samples are diluted in acid denaturing conditions and then

trapped and desalted on a reverse phase-column [151]. Ionisation can then occur by applying

a voltage to the dilute sample in solution as it is ejected from a capillary with a fine gold-plated

tip, causing the dispersion of a fine spray of charged droplets [150, 152]. The voltage used for

the LC/ESI-TOF-MS experiments in this thesis was 4 kV in the positive ion acquisition mode.

Matrix assisted laser desorption/ionisation time-of-flight mass spectrometry

MALDI-TOF-MS can be used to study proteins with an m/z of up to 500 000 and was therefore

used for studying gp120. In MALDI-TOF-MS, a laser irradiates a mixture of the sample with

a chromophore matrix which expands rapidly into the gas phase. The matrix is designed to

absorb the laser radiation and in order to do so, is typically comprised of aromatic compounds

with carboxylic acid functional groups. The matrix used in the MALDI-TOF-MS experiments in

this thesis was sinapinic acid (fig. 2.6) dissolved in 50/50/0.1 water/acetonitrile/trifluoroacetic
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acid. The aromatic groups absorb the radiation from the laser which leads to subsequent des-

orption of both the matrix and biological macromolecule into the gas phase. There is an ioni-

sation event whereby protons are transferred from excited matrix molecules to the sample and

vice versa in both the solid phase and gas phase via collision [150, 153].

FIGURE 2.6: The matrix used in MALDI-TOF-MS experiments in this thesis work
was comprised of sinapinic acid which is an aromatic compound able to absorb

laser radiation.

2.3.2 SEC-MALLS-RI

Size-exclusion chromatography coupled to multi-angle laser light scattering and refractive in-

dex (SEC-MALLS-RI) is a powerful technique, providing useful information regarding the ab-

solute molecular weight, oligomerisation state, concentration, polydispersity and homogeneity

of the sample. When coupled to a chromatographic separation technique such as SEC, MALLS

allows determination of the presence of different molecular weight species in a sample since

SEC permits separation of different sized particles in solution and thus determination of the

homogeneity of the sample [154].

The refractive index can inform about the polydispersity of each particle as indicated by the

mass, whereby a fluctuation in mass indicates polydispersity. The RI component also allows

accurate determination of the concentration by measuring the change in refractive index with

respect to the concentration of the protein. The oligomerisation state of a sample can also be

determined since the absolute mass is given [150, 155]. SEC-MALLS-RI is, therefore, a useful

technique to control the quality of the samples prior to any small angle scattering experiment.

Particles of different size in solution are initially separated by SEC and the UV trace, measured

by a UV detector, allows the user to follow the presence of protein (or nucleic acid) as it is

eluted from the column [154]. Hereafter, the solution is illuminated by a laser light source as

it passes through a flow cell surrounded by a series of light scattering detectors positioned
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at different angles which measure the scattered intensity of light produced by the particles.

The light scattering can inform about non-protein contaminants which would not be observed

by the UV trace during SEC. Finally, the refractive index is measured and recorded by the

refractive index detector [13, 155]. The sample can also be recovered by elution into a fraction

collector, as is standard with SEC.

The absolute molecular mass of the particles can be derived from a MALLS experiment using

the Zimm [156] equation:
(K∗C)
R(θ)

=
1

MwP(θ)
+ 2A2C (2.4)

Where R(θ) is the Rayleigh ratio, Mw is the weight-averaged molecular mass, A2 is the second

virial coefficient which is measure of the interaction between the solute and solvent, C is the

concentration of the solvent and K* is a constant which defines vertically polarised incident

light:

K∗ =
4P2n2

0(dn/dC)2

λ4
0NA

(2.5)

Where NA is Avogadro’s number, n0 is the RI of the solvent, λ0 is the vacuum wavelength of

the incident light and dn/dC is the RI increment [155].

2.3.3 1D Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a technique which operates within the radio frequency

end of the electromagnetic spectrum. NMR is based on the principle that certain nuclei have

a spin which gives them both electrical properties and an angular magnetic momentum [150,

157, 158]. A nucleus of spin I has 2I + 1 energy levels (E) which are equally spaced:

∆E =
µB0

I
(2.6)

When an external magnetic field (B0) is applied at any angle relative to the moment, the nu-

clear magentic moment [157, 158] (µ) of the nuclei precesses about the direction of the applied

magnetic field with a frequency defined by Larmor:

V0 =
γB0

2π
(2.7)
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Where γ is the gyromagnetic ratio. The nuclear magnetic moment (µ) can be defined by:

µ =
γhI
2π

(2.8)

Where h is Planck’s constant.

In NMR the chemical dispersion or shift [159] (δ) is measured as the difference in resonance

frequencies between that of the nucleus of interest (Vx) and that of a reference nucleus (Vre f ):

δ =
Vx −Vre f

V0
(2.9)

The chemical shift of a nucleus is dependent on the surrounding electron density. The δ values

are recorded on an NMR spectrum in parts per million (ppm) and they define different nuclear

environments. Therefore, for a one-dimensional 1H NMR experiment, the chemical shift peaks

define different proton environments [160]. Most proton resonance peaks within a protein lie

within the region δ1 to δ13 (1 to 13 chemical sift in ppm), with resonance peaks for methyl

group protons at around δ1 and the amide group protons between δ7 and δ11 [150]. 1D proton

NMR can thus be applied to the study of the extent of folding of a protein.

In an extended, flexible polypeptide chain, the amino acid side groups are exposed to the same

solvent environment. This means that repeating amino acid residues throughout the polypep-

tide chain have a nearly identical 1Hδ such that the resonance peaks in the NMR spectrum of

a randomly coiled polypeptide, correspond roughly to the sum of their amino acid resonance

peaks. However, in a globular, folded, protein the protons experience a range of different en-

vironments. Some protons are found in solvent exposed regions but others are shielded from

the solvent and surrounded by other fragments of the polypeptide. In the case of the amide

protons, which are bound to nitrogen and are therefore labile, there is assumed to be complete

exchange with solvent deuterons in an unfolded polypeptide chain, whereas in a globular,

folded protein many of the amide groups are shielded from the solvent. Thus, in a 1D proton

NMR experiment, it is useful to look for the presence of amide and methyl proton resonances

outside of those experienced by a randomly coiled polypeptide, to obtain a qualitative idea of

how folded the protein is [150].
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The compactness of the protein can also be detected in a quantitative manner using a technique

called 1D Heterogeneity-Selective Optimised-Flip-Angle Short-Transient (HET-SOFAST) NMR

which measures the difference in the nuclear Overhauser [161] effect λNOE between a 1H ref-

erence and a 1H saturated spectra. λNOE reports on the local 1H spin network, measuring the

proton density and mobility at the amide proton sites. Since the protons of a well-folded glob-

ular structure are surrounded by other peptide fragments and generally shielded from the sol-

vent this allows efficient proton spin diffusion. On the other hand, for an unfolded polypeptide

chain the proton density is low therefore the proton spin diffusion is poor [162]. Therefore, low

values of λNOE define a compact structure whereas higher values of λNOE correspond to flexi-

bility and the degree to which the protein is unfolded. Figure 2.7 shows the 1D HET-SOFAST

NMR scale of polypeptide classifications.

FIGURE 2.7: 1D HET-SOFAST NMR gives a quantitative λNOE score on a scale
from 0 to 1.0 which describes the extent of folding of a protein. Adapted from:

[162]

2.4 Small angle scattering (SAS)

Small-angle scattering (SAS) is a powerful technique allowing determination of the shape, size

and interaction of particles in solution. Applied to biological systems SAS can be useful for:

high-resolution structure validation, determination of the low-resolution envelope structure,

the stoichiometry of a multimer or complex, conformational changes upon ligand binding. For
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this thesis work, the interest lies within the determination of conformational changes upon

complex formation.

2.4.1 Scattering theory

Whilst X-rays and neutrons are two different types of radiation which interact very differently

with their samples (explained later), the underlying principle and fundamental mathematics

behind small-angle scattering are common to both techniques. In both instances a monochro-

matic incident beam (k), interacts with the atoms of the sample with a wavevector of modulus:

k = |k| = 2π/λ (2.10)

To produce spherical scattered waves of which the scattered beam (k’) has a wavevector with

a modulus of:

k′ = |k’| = k (2.11)

Thus, the scattering is elastic because there is no change in the energy, that is to the say the

wavelength of the incident beam is equal to that of the scattered beam. Elastic scattering arises

due to the interference of scattered waves produced by the point scatters (atoms of the sample),

which have correlated positions in space (r), within the coherent scattering volume. In elastic

scattering only the direction of the wavevector changes, the magnitude stays the same [163]. A

wave has momentum:

p = h̄k (2.12)

The momentum transfer can also be given by:

q = k′ − k (2.13)

The scattering is isotropic because the particles are randomly oriented in solution with respect

to the incident beam. In a monodisperse ideal solution, rotational averaging of the scattered

intensity (I(q)) provides information on the size and shape of the particles suspended in solu-

tion:

I(q) = 〈I(q)〉Ω (2.14)
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Where Ω is the solid angle in reciprocal space. SAS measurements are made in reciprocal space

and are described by the scattering vector, q. As the scattering is isotropic, because the particles

are randomly oriented in a random spacial distribution, the scattered intensity is dependent on

the modulus of the momentum transfer:

q = |q| = 4π/λsinθ (2.15)

Where the scattering angle is 2θ at wavelength λ (λ=2π/k).

The reciprocal-space coordinates (q) are related to real-space coordinates (r) by Fourier trans-

form. In small-angle scattering inhomogeneities in the scattering-length/electron density de-

termined by the chemical composition of the scatterer are measured and the scattering length

density depends on the nuclei and the isotopes that comprise the scatterer. The scattering arises

from the contrast between the scattering-length/electron density distribution of the particle

(ρ(r))and the homogeneous solvent of constant scattering-length/electron density (ρs). Since

small-angle scattering cannot resolve interatomic distances (atomic length scales are not acces-

sible using this technique) it is not possible to separate the contributions of individual atoms

from the total scattering. All the distances within a particle are thererfore measured by SAS

as a distribution of their average scattering length density ρ(r). This is equal to the sum of the

total scattering lengths of the atoms per unit volume of the object or particle of interest [163].

The difference in the scattering length density of the particle compared to that of the solvent of

equivalent volume, yields the excess scattering length density:

∆ρ(r) = ρ(r)− ρs (2.16)

This is related to the scattering amplitude of the particles by a Fourier transform:

A(q) = =[ρ(r)] =
∫
V

∆ρ(r)e(iqr)dr (2.17)

Where V is the particle volume and A(q) is the scattering amplitude which cannot be measured

directly. It is possible, however, to measure the intensity (I(q)) which is related to the amplitude

by the following equation:

I(q) = A(q)(A ∗ (q)) (2.18)
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Which corresponds to the scattered energy. The scattering intensity can also be described by:

I(q) = P(q)S(q) (2.19)

Where P(q) is the form factor which corresponds to the scattering amplitude and S(q) is the

structure factor which is the intensity of the scattered radiation. S(q) describes the scattering

that arises from the interaction of the particles in solution, which becomes problematic for

determining P(q). Therefore, dilution series and extrapolation to zero concentration is used to

get around this. In ideal, monodisperse solutions S(q) = 1 so that P(q) can be determined and

therefore the structure of the scatterer can be calculated [164].

A monodisperse, ideal solution

For small-angle scattering it is important for the solution to be as ideal and monodisperse as

possible. Ideality refers to the lack of interactions between the particles in suspension, whether

they be attractive or repulsive. In other words the particles must be distributed with random

position and orientation within the solution with no spatial correlations that could contribute

to the scattering intensity. In an ideal solution there is a linear dependence on the concen-

tration. In theory the solution should be infinitely diulte to negate interparticle interactions.

Experimentally, it is useful to use a dilution series of the molecule of interest from relatively

concentrated to relatively dilute (10 mg/mL to 1 mg/mL). The data can then be extrapolated

to zero concentration [163].

Monodispersity refers to there being only one unique particle within the solution. That is to say

that the particle must be pure with a defined shape and size. Notably for biological samples,

the solution can be simultaneously chemically monodisperse but polydisperse in shape. A

common issue with protein samples is aggregation in which large aggregates of the same pro-

tein form so that the shape and size of the sample becomes polydisperse whilst maintaining a

monodisperse chemical formula [163].

In practice, protein aggregates causing polydispersity can be seen at low-q values: aggregation

manifests as an inflection of the scattering data at the lowest-q values measured. This arises

from the fact that the scattering is related to the square of the excess scattering length (∆ρ),

therefore, larger particles skew the scattering contribution disproportionately so that few large



2.4. Small angle scattering (SAS) 55

aggregates dominate. Prior to carrying out a SAS experiment it is therefore necessary to assess

the monodispersity of the sample using separate biophysical measurements by: dynamic light

scattering (DLS), multi-angle light laser scattering (MALLS) or analytical ulra-centrifugation.

Samples of 95% monodispersity or higher are considered suitable for SAS measurements [163].

MALLS was the method of choice used in this thesis work.

2.4.2 Small-angle X-ray scattering (SAXS)

In SAXS, the X-ray beam is scattered by the electron cloud surrounding the atom. The scattering

is proportional to the atomic number (Z) of the atom and SAXS is therefore concerned with

the electron density. The X-rays used in SAXS have relatively high energies (10 keV) with

wavelengths in the range of 0.1-0.15 nm and are typically produced by synchrotron radiation.

All of the SAXS experiments described within this thesis work were carried out on BM29 at

the ESRF. This beamline is specially adapted for the measurement of biological samples and its

configuration is outlined below.

The BM29 instrument at the ESRF

BM29, as the name suggests, is situated on bending-magnet 29 of the ESRF. It is a small-angle

X-ray scattering beamline operating at a wavelength range between 0.82 and 1.77 Å. BM29

is dedicated to the measurement of biological macromolecules thanks to its automated, high-

throughput set-up and high flux at the sample. In addition, specialised optics have increased

the q-range and reduced the parasitic scattering and measuring times, compared to the former

BioSAXS beamline: ID14-3 [165]. The diagram in figure 2.8 outlines the set-up of BM29.
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FIGURE 2.8: Diagram depicting the layout of the BioSAXS
beamline BM29 at the ESRF, Grenoble, France. From:
https://www.ill.eu/users/instruments/instruments-list/d22/characteristics/

[165]

Samples can be loaded using a state-of-the-art automated and temperature-controlled sample

changer, which has the capacity for a 96-well plate, PCR-tube, Eppendorf tube or Falcon tube

set-up, giving a maximum capacity of 288 separate aliquots for measurement [166, 167]. In

addition the sample changer allows the sample to be flowed through the capillary to reduce

the effects of radiation damage [166]. Alternatively, the samples can be loaded via the on-line

F/HPLC instrument which allows a purification step prior to SAXS measurement [168, 169].

Samples can also be loaded manually if necessary for specific experiments. The samples are

measured in a quartz glass capillary of either 1.8 or 1 mm in diameter. The capillary is washed

rigorously between samples as part of the automatic sample changer’s protocol.

2.4.3 Small-angle neutron scattering (SANS)

Neutrons are scattered by the nucleus of the atom and the scattering is therefore, not propor-

tional to the atomic number of the atom. Therefore SANS is concerned with the scattering-

length density and contrast. SANS requires thermal neutrons with wavelengths in the range

of 0.10-1.0 nm. Neutrons for SANS experiments can be produced at spallation sources or, in

the case of this thesis work, fission sources. The SANS experiments carried out in thesis were

conducted on the D22 diffractometer instrument at the ILL.
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The D22 instrument configuration at the ILL

D22 is a large-scale structure diffractometer which specialises in weakly scattering samples,

such as dilute proteins in solution, due to its relatively high flux at the sample of 1.2x108 neu-

trons cm2s−1 (for ∆λ
λ = 10%) with a wavelength range of 0.45 to 4 nm. The high flux is delivered

by using a horizontal cold source, a high-tech velocity selector with a short rotor length (25 cm)

and high transmission and a large beam cross-section (55 X 40 mm). The collimation length

which defines the virtual source-to-sample distance is achieved by a rotating-drum collimation

system providing 8 collimation lengths between 1.4 m and 17.6 m [163].

The sample is measured in a quartz cuvette with a path-length of 1-2 mm, which is contained

within a 22 position, thermostat-controlled sample changer. The 3He detector has an active

area of 1 m2 and can be moved horizontally at 50 cm intervals to achieve detector distances

between 1.1 and 17.6 m, inside an evacuated tube of 20 m in length and 2.5 m in diameter. This

allows D22 to access a large dynamic q range of 4x10−4 to 0.44 Å−1 (or 0.85 Å−1 with detector

offset)[170]. Figure 2.9 shows the configuration of the D22 instrument.

FIGURE 2.9: Diagram depicting the layout of the SANS instrument D22 at the
ILL, Grenoble, France. From: [170]

Contrast variation

Contrast variation is a powerful aspect of SANS which allows the isolation of the scattering

of a component in a complex such as of DNA in a protein-DNA complex. As such the ex-

ploitation of contrast variation adds an additional level of information which can be obtained

from a SANS experiment compared to what is attainable using SAXS. Contrast, as it appears to

neutrons, arises from the fact that each atom has a unique coherent and incoherent scattering

length.
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Atom H D C N O P S
Atomic mass 1 2 12 14 16 30 32
Z electrons 1 1 6 7 8 15 16
bX (10−12cm) 0.282 0.282 1.69 1.97 2.16 3.23 4.51
bN(10−12cm) -0.374 0.667 0.665 0.940 0.580 0.510 0.280

TABLE 2.1: The atomic mass, number of electrons and X-ray and coherent neu-
tron scattering lengths of the atoms most commonly found in biological macro-

molecules. From: [163]

Coherent scattering contributes to the SANS signal providing information on the structure.

However incoherent scattering can be considered as "noise" for the purpose of small-angle

neutron scattering studies and mainly arises from 1H [163]. Conversely in dynamical studies

the incoherent neutron scattering is the signal that informs on the movement of the atoms.

Since each atom has a unique coherent and incoherent scattering length, the scattering length

density of a molecule, is unique to its molecular composition within its molecular volume VM

and is represented thus:

SLD =
∑N

i=1 bi

VM
(2.20)

Where bi corresponds to the scattering length of N atoms.

Table 2.1 presents a list of the coherent neutron scattering lengths for the typical atoms which

are found in biological systems compared to their X-ray scattering lengths. Most interesting

is the difference between the coherent and incoherent scattering lengths of the two hydrogen

isotopes: protium and deuterium. Whilst protium has a negative coherent scattering length

and large incoherent scattering length, deuterium on the other hand has a positive coherent

scattering length and much smaller incoherent scattering length. In an experimental setting

this means that neutron scattering by deuterium contributes greater to the signal with less

noise whereas protium contributes strongly to the background. For biological systems this is a

useful phenomenon for the purpose of contrast variation studies whereby the experimentalist

can play with deuterium/protium contrasts for match-out studies [163].

Natural contrast exists between different biological macromolecules as indicated in figure 2.11.

At a given H2O/D2O ratio in the solvent the scattering length density of the macromolecule is

equal to that of the solvent and the macromolecule is rendered invisible to neutrons which is

called the match-out point. For hydrogenated proteins approximately 40% of the solvent’s hy-

drogens must be deuterium. The contrast can be increased by deuterium labelling the protein
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so that 75% of the protein’s non-exchangeable hydrogens are deuterated so that the match-out

point is roughly 100% deuterated solvent (fig. 2.10) [171].

FIGURE 2.10: Different biological macromolecules have different scattering-
length densities (SLD) due to the difference in their chemical composition. The
difference in SLD corresponds to a difference in the match-out point - the per-
centage of D2O at which the scattering of the solvent is the same as that of the

molecule. From: [171]

Deuterium labelling can also be exploited for isolating the scattering of molecules within a

complex. For example the solvent H/D ratio can be adjusted to look at the isolated scattering

from a protiated protein in complex with a deuterated protein [171]. Figure 2.11 outlines a

typical contrast variation SANS study.

FIGURE 2.11: In 100% D2O (A) the SLD of the deuterated protein is the same as
that of the solvent so only the protonated protein can be seen. In 40% D2O (B)
the SLD of the protonated protein is the same as that of the solvent so that the

deuterated protein is visible. From: [171]
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Deuterium labelling of proteins

In order to be able to fully exploit contrast variation during SANS studies, as mentioned pre-

viously, deuterium labelling is necessary. In order to obtain high levels of deuterium labelling,

whether that be match-out labelled (75% deuterated) or perdeuterated (100% deuterated), in

vivo deuteration is often the method of choice. The Deuteration Laboratory (D-Lab) based at

the Institute Laue Langevin is a facility which specialises in the deuteration of biological macro-

molecules using a variety of expression systems for neutron and NMR studies [171, 172]. All

deuteration work carried out in this thesis was done with the D-Lab at the ILL.

For recombinant deuterated protein production the most commonly used expression systems

for in vivo deuteration are Escherichia coli and Pichia pastoris which can be adapted to culture in

deuterated media and with a deuterated carbon source (in the case of perdeuteration). Since

deuterated media is expensive the most cost-effective way of expressing the protein using these

two expression systems is by fed-batch fermentation using a minimal medium. Using a fer-

menter allows the user to control the temperature, agitation, dissolved oxygen, pH and feed

to reach high cell-densities before induction. Under certain circumstances, some proteins will

not express well in these conditions in which case flask culture can be used. Silantes media

(Silantes) is a form of rich medium which exists in protiated and deuterated forms and can be

used for deuteration in flasks with a limitation to the OD600nm which can be achieved, due to

the composition of the medium. However, this is a more expensive method since the same high

cell-densities cannot be achieved as with fed-batch fermentation [171].

Prior to expression in a flask or fermenter the single-cellular expression host must first be

adapted to culture in deuterated conditions. This is done by a gradual process of culturing

overnight a small volume of deuterated media (9 mL) with a small volume of the protiated

culture (1 mL), followed by several passages of the deuterated culture into fresh deuterated

media. Over the course of the passaging process (at least 1 week) the chosen expression host

adapts to the deuterated media allowing higher cell-densities to be obtained. Expression tests

should also be carried out to ensure that the recombinant protein is still expressed in deuterated

conditions. After the final passage, a starter culture of approximately 200 mL is used to innoc-

ulate the fermenter. Appendix B.4.2 lists the ingredients for the minimal media used during

fed-batch fermentation.
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2.4.4 Data analysis

Guinier analysis

Guinier analysis of a 1-dimensional (1D) scattering curve is carried out by plotting lnI(q) vs q2

and is focused on the low-q range of the plot. Guinier’s law [173] is given by:

I(q) = I(0)e(
−q2R2

g
3 ) (2.21)

For qRg ≤ 1.3. From the Guinier analysis the forward scattering intensity at 0 angle (I(0)) and

the radius of gyration (Rg) can be determined. The I(0) is a useful parameter because it allows

determination of the MM of the particle in g mol −1 using:

MM =
I(0)× NA

C(∆ρv̄)2 (2.22)

Where NA is Avogadro’s number, C is the concentration in g cm3, ∆ρ is the contrast in cm−2

and v̄ is the partial specific volume of the protein. For proteins v̄ = 0.743 g cm−3 [174].

The I(0) must be corrected for the scattering of the cuvette or capillary, the transmission of the

sample, normalised by the concentration of the particle in solution and finally placed on an

absolute scale. For X-rays this is done by dividing the normalised I(0) by the measured I(0) for

water and multiplying by the absolute I(0) of water (1.632 x 10−2 cm−1). For neutrons the data

can be scaled to absolute intensity by using a direct measurement of the flux.

The Rg, which is defined as the mean square distance from the centre of mass, is another useful

parameter describing how the particle tumbles in solution and is, essentially, the measure of a

particle’s compactness [175].

The Rg is dictated by the slope of the data at low-q of a Guinier plot (lnI(q) vs q2) and should

be a straight line. It can also be be determined from the pair-distance distribution function.

In both instances care must be taken in analysing the Rg as aggregation manifests strongly at

low-q in the Guinier plot as deviation from a straight line and as a long tail at high-r (longer

distances) in the P(r) plot.
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Pair-distance distribution function (P(r))

The pair-distance distribution function (PDDF or P(r)) is a real-space representation of the

shape and size of the particle between the limits 0 ≤ q ≤ ∞. Since this interval is not ac-

cessible by the scattering curve, the PDDF is calculated by an indirect Fourier transform [176].

Ultimately the PDDF represents probability distribution, P(r), of distances joining volume el-

ements pairs within the particle, r, weighted by the product of the scattering density contrast

between the limits 0 and the maximum dimension, Dmax:

I(q) = 4π
∫ Dmax

0
P(r)

sin(qr)
qr

dr (2.23)

Kratky analysis

By plotting the data as I(q) x q2 vs q (Kratky plot, [177]) the shape of the curve alludes to the

extent of folding of the particle in solution. The relevant scattering features at high-q are am-

plified using this plot and it can be used for determination of the compactness of the sample. A

globular protein in solution will display a scattering intensity decay of q−4 which corresponds

to a bell-shaped Kratky plot. For an unfolded protein the scattering intensity decay is around

q−2 [178] which manifests as a plateau at high-q in the Kratky plot. Figure 2.12 depicts the

Kratky plot of particles of different compactness in solution, from which it can be seen that

unfolded particles display a Kratky plot which never tends to I(q) = 0.
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FIGURE 2.12: The Kratky plots for biological macromolecules exhibiting differ-
ent compactness is displayed. A globular particle exhibits a bell-shaped curve,
whereas the curve for an unfolded or flexible particle never converges to I(q)
= 0. From: https://www-ssrl.slac.stanford.edu/ saxs/analysis/assessment.htm

[179]
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Chapter 3

Concerning the expression and

purification of 2dCD4

3.1 Abstract

An important element of this thesis work involved the development of an expression system

for wild-type two domain CD4 (2dCD4-WT) which could produce sufficient quantities of pure,

soluble protein in both protiated and deuterated forms for structural studies. This task proved

to be non-trivial and the main bottle neck in allowing further or deeper analysis to be carried

out.

The initial expression system used was the classical Escherichia coli expression host. Due to the

disulphide bond content of 2dCD4-WT, E. coli expresses 2dCD4-WT into insoluble inclusion

bodies. In order to obtain soluble, native protein, a denaturing purification followed by a re-

folding protocol was used. However, much of the protein was lost during the refolding step

and the resultant protein was generally not very stable.

The second approach used was a novel bacterial expression system called Brevibacillus choshi-

nensis which is a gram-positive bacterium that secretes many proteins into the extra-cellular

milieu. This secretion process allows the formation of disulphide bonds due to the oxidising

environment outside of the cell. Because the protein is secreted into the growth medium there

was a large volume of protein-containing solution to work with. Size-exclusion chromatogra-

phy also showed that the protein had a tendency to aggregate, so the yields were low and the

stability poor.
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The final expression system used was set-up in collaboration with the company Synthelis,

France, which developed a cell-free protein expression (CFPE) system to produce difficult-to-

express proteins. CFPE removes the constraints of in vivo protein production and decouples

protein synthesis from cell culture. Using their proprietary technology it was possible to pro-

duce both hydrogenated and deuterated 2dCD4-WT in soluble, stable forms with which SAXS

and SANS experiments could be carried out. Finally, the 2dCD4 domain 2 disulphide bond

knockout variant was expressed using CFPE but while the expression was good, there were

severe issues with stability and aggregation.

This chapter describes these developments to obtain pure, soluble and stable 2dCD4-WT which

was later biochemically and biophysically characterised in chapter 4 and used in SAXS and

SANS experiments in chapters 5 and 6.

3.2 Introduction

Conventionally, Escherichia coli is the traditional expression system, particularly when isotopic

labelling is required due to its fast replication rate, adaptability to isotopically labelled media

and relatively low cost [171]. However, for proteins containing disulphide bonds, such as CD4,

production in E. coli results in expression of the protein as insoluble inclusion bodies. Recovery

of soluble CD4 from inclusion bodies necessitates a denaturing purification protocol followed

by a laborious refolding protocol, often resulting in significant losses of protein and low yield

[63, 180].

Brevibacillus choshinensis is a laboratory strain of the bacterium Bacillus brevis which has advan-

tages over E. coli in that proteins can be secreted into the extracellular milieu [181]. This allows

the correct formation of disulphide bonds [182, 183], thereby bypassing the refolding steps re-

quired during E. coli expression. However, while Brevibacillus choshinensis grows well in 15N

labelled media [184], there is currently no literature which describes B. choshinensis growth in

deuterated complex media to produce the yields of deuterated protein required for neutron

structural studies.

The cell-free protein expression (CFPE) system is an attractive expression system for the pro-

duction of high quality protiated and deuterated protein for structural analyses by neutron
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scattering (such as small-angle scattering or reflectivity studies). CFPE has notable advantages

over other expression systems such as bacterial, yeast and mammalian systems as it liberates

the experimentalist from the constraints of cellular expression and decouples protein expres-

sion from cell growth. As such, the chemical composition of the cell-free reaction can be tailored

to meet the requirements of the experimentalist for the protein of interest.

In contrast to bacterial cell-based methods, cell-free protein expression (CFPE) allows produc-

tion of good yields of soluble protein in relatively small volumes [185, 186]. In addition, the

openness of CPFE means that the reaction composition can be easily adapted to the needs of

the experimentalist by the simple addition of specific reagents [187, 188]. For example the re-

action can be modified to promote the correct formation of disulphide bonds [189]. In the case

of deuteration for NMR or SANS, for example, unlabelled amino acids can be substituted by

deuterated ones [190, 191].

CD4, as the primary receptor of viral gp120, has been heavily studied in both its native and re-

combinant forms [34, 98, 121]. Most structural studies involving CD4 use recombinant CD4

produced using mammalian expression systems; the initial crystal structure study of two-

domain CD4 obtained in 1990 was carried out using recombinant CD4 from Chinese ham-

ster ovary cells [67]. While mammalian expression systems are excellent for the production

of high yields of soluble, unlabelled protein useful for SAXS or crystallography experiments,

they are not well adapted to small angle neutron studies or NMR experiments requiring iso-

topic labelling due to the requirement for complex growth media and their sensitivity to high

deuterium content in the growth media [171].

2dCD4-WT needed to be produced in milligram quantities in both protiated and deuterium

labelled forms in order to carry out subsequent analyses in this thesis which would address the

question of why 2dCD4-WT reduced in its second domain preferentially binds to gp120. Deu-

terium labelling of 2dCD4-WT was essential for SANS studies in order that the gp120/2dCD4-

WT complex be investigated using contrast variation SANS experiments. 2dCD4 in which its

second domain cysteine residues have been replaced by alanine residues (2dCD4-D2A) mimics

the partially reduced form of 2dCD4-WT and was therefore also required in milligram quanti-

ties in order that biophysical and structural analyses be carried out on this system.
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Therefore, this chapter describes the optimisation of expression of deuterium labelled and un-

labelled 2dCD4-WT. Expression was developed from the classical E. coli expression system,

through the novel gram positive B. choshinensis expression system to eventually arrive at an in

vitro cell-free protein synthesis protocol which produced sufficient yields of 2dCD4-WT for sub-

sequent biochemical, biophysical and small-angle scattering studies. Expression of the 2dCD4-

D2A was also explored but the protein appeared unstable, prone to aggregation and resulting

yields were not sufficient for further analysis.

3.3 Materials and methods

Details of the recombinant protein sequences and the expression vectors can be found in ap-

pendix A.2. The composition of the media, buffers and general protocols for SDS-PAGE with

Coomassie blue and anti-his western blotting can be found in appendix B.4.2.

3.3.1 Plasmid DNA preparation

The same protocol was used for all plasmid DNA preparation. An aliquot of E. coli Top10

chemically competent cells (Invitrogen) was incubated with 1 ng of plasmid DNA on ice for

30 minutes. The cells were heat-shocked at 42◦C for 30 seconds and placed back on ice for 2

minutes. 250 µL pre-warmed SOC (super optimal broth) media was added to the cells which

were incubated at 37◦C, 180 rpm for 1 hour. The cells were centrifuged for 10 minutes at 3

000 rpm and resuspended in 100 µL of the same media. The cells were plated on LB (Luria

broth) agar plates supplemented with 1 X antibiotic corresponding to the plasmid’s antibiotic

resistance gene (kanamycin for pETm11 and pMK-T and ampicillin for pET15b, pNCMO2 and

piVEX 2.3d). The plates were incubated overnight at 37◦C.

The pETm11 and pET15b constructs were provided by the HIV Pathogenesis Research Unit,

South Africa. The pMK-T construct was produced by Invitrogen. The pNCM02 construct

was produced by Miss Sarah Waldie using the TakaRa Brevibacillus Expression System II kit.

The piVEX2.3d constructs were produced by ProteoGenix, France and supplied by Synthelis,

France.
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Plasmid DNA mini prep

The Promega Wizard Plus SV Minipreps DNA purification system was used for the preparation

of plasmid DNA for the E. coli and B. choshinensis expression systems.

One Top10 colony from the overnight LB agar plate was incubated in 5 mL LB supplemented

with 1 X antibiotic corresponding to the antibiotic resistance gene of the plasmid. The culture

was incubated overnight at 37◦C, 180 rpm. The culture was centrifuged at 10 000 rpm in a

bench-top centrifuge for 5 minutes. The supernatant was discarded and any excess media was

removed by blotting the tube upside down on a paper towel.

The pellet was thoroughly resuspended in 250 µL of the cell resuspension solution by pipetting

and vortexing. 250 µL cell lysis solution was added and the tube inverted four times to gently

mix the solutions. The tube was incubated at room temperature for 5 minutes. 10 µL alkaline

protease aolution was added and mixed by inverting the tube four times. The tube was incu-

bated at room temperature for 5 minutes. 350 µL of the Wizard Plus SV neutralization solution

was added and mixed by inverting the tube four times. The bacterial lysate was centrifuged at

14 000 rpm at room temperature in a bench-top centrifuge for 10 minutes.

The cleared lysate was transferred to a spin column (provided in the kit) without disturbing

the white precipitate. The solution was centrifuged for 1 minute at room temperature at 14

000 rpm in a bench-top centrifuge. The supernatant was discarded. 750 µL of column wash

solution diluted in 95% ethanol was added to the Spin Column and the tube was centrifuged for

1 minute at room temperature at 14 000 rpm. The supernatant was discarded. 250 µL column

wash solution was added to the spin column and the tube was centrifuged for 2 minutes at

room temperature at 14 000 rpm. The spin column was transferred to a fresh 1.5 mL Eppendorf

tube and 100 µL nuclease-free water was added to the spin column.

The nuclease-free water and any excess ethanol from the column wash solution was removed

by lyophilysing the plasmid DNA. Once dry, the DNA was resuspended in 50 µL nuclease-free

water. The purified plasmid DNA was quantified by UV 260 nm measurement and stored at

-20◦C.
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Plasmid DNA giga prep

The QIAGEN Giga QIAfilter Plasmid Purification Kit was used for the preparation of large

quantities of plasmid DNA for use in the cell-free protein expression of 2dCD4-WT.

One Top10 colony from the LB agar plate was used to inoculate three 100 mL cell culture flasks

filled with 10 mL LB and supplemented with 1 X ampicillin. The starter cultures were incubated

for 8 hours at 37◦C, 250 rpm. 5 mL starter culture was used per 500 mL LB in a 2 L baffled cell

culture flask to a total volume of 2.5 L (5 X 500 mL), supplemented with 1 X ampicillin. The

cultures were incubated at 37◦C, 180 rpm overnight.

The cells were harvested by centrifugation at 7 000 rpm for 15 minutes at 4◦C. The pellet was

resuspended in 125 mL of buffer P1 containing 100 µg/mL RNase A and a 1:1 000 dilution

of LyseBlue, in a 1 L Schott bottle. The mixture was vigorously shaken to mix. 125 mL of

buffer P2 was added and mixed thoroughly by inverting the bottle six times. The mixture was

incubated at room temperature for 5 minutes. 125 mL of buffer P3 was added at 4◦C and mixed

by inverting the bottle six times.

The lysate was poured into a QIAfilter Mega-Giga cartridge attached to a 1 L Schott bottle and

incubated a room temperature for 10 minutes. The vacuum pump was used to filter the plasmid

DNA from the lysate. The pump was switched off and 50 mL of buffer FWB2 was added to

the QIAfilter cartridge and the precipitate was stirred gently with a sterile metal spatula and

the vacuum pump was switched back on again until all the liquid had been drawn through the

filter.

A QIAGEN-tip 1 000 was equilibrated with 75 mL buffer QBT and allowed to empty by gravity

flow. The filtered lysate was applied to the tip. The tip was washed with 600 mL buffer QC and

the flow through was discarded. The DNA was eluted with 100 mL of buffer QF. The DNA was

precipitated from the solution by adding 70 mL of room temperature isopropanol, subsequent

mixing and centrifugation at 12 000 rpm for 30 minutes at 4◦C. The supernatant was carefully

removed and the DNA pellet was washed with 10 mL of room temperature ethanol. The DNA

was centrifuged at 12 000 rpm for 10 minutes at 4◦C. The supernatant was discarded.

The pellet was air-dried under the fume hood and the DNA was dissolved in 10 mL of 10

mM Tris-HCl pH 8.5. The purified plasmid DNA was quantified by UV absorbance at 260 nm
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measurement and stored at -20◦C.

3.3.2 2dCD4 Expression in Escherichia coli

E. coli transformation

E. coli BL21* (DE3) (Invitrogen) cells were thawed on ice. 10 ng pET15b-2dCD4-WT plasmid

DNA (provided by Dr N. Cerutti at the HPRU, Johannesburg) was added to the cells and in-

cubated for 30 minutes on ice. The cells were subject to a 30 second heat-shock at 42◦C after

which 250 µL room temperature SOC media was added to the cells before incubating for 1

hour at 37◦C, 200 rpm. 50 µL was plated on 1 X ampicillin supplemented LB agar plate and

incubated at 37◦C overnight.

Expression of 2dCD4 in E. coli

25 mL LB, supplemented with 1 X ampicillin, was inoculated with one pET15b-2dCD4-WT

transformed BL21*(DE3) colony. The culture was incubated at 37◦C, 250 rpm overnight. 1 L

LB, supplemented with 1 X ampicillin, was inoculated with 20 mL of starter culture. The culture

was incubated 37◦C, 150 rpm until an optical density (OD) at 600 nm of 0.6 was reached and

the culture was induced by addition of 0.5 mM IPTG and transferring to 20◦C and cultured

overnight at 150 rpm.

Purification of 2dCD4 expressed in E. coli

Cells were collected by centrifugation (Beckman Coulter JLA 9 000) at 5 000 rpm for 20 minutes

at 4◦C, with fast acceleration, slow deceleration. The supernatant was discarded and the pellet

was resuspended in 25 mL 1 X PBS per 1 L cell culture. Lysozyme (hen egg white, Sigma) was

added to a final concentration of 0.5 mg/mL and stirred at 4◦C for 1 hour. The cell suspension

was flash frozen in liquid nitrogen and stored at -80◦C.

After three cycles of freeze thawing, the cell suspension was disrupted by sonication (Bioblock

Scientific VibraCell 75115) at 80% amplitude for a 1 minute pulse: 1 second on, 5 seconds off

with a 1 minute pause and stirring. 3-6 rounds of sonication were required depending on

volume and clearing of lysate.
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The lysate was centrifuged (Beckman Coulter rotor JA 20) at 16 000 rpm for 45 minutes at 4◦C.

Immobilised metal affinity chromatgraphy (IMAC) resin was equilibrated in H2O and buffer

and charged with 100 mM NiSO4. The supernatant was discarded and the recovered inclusion

bodies were resuspended in wash buffer 1 and homogenised to a fine suspension (Omni Tissue

Master 125 homogeniser). The homogenised solution was centrifuged at 16 000 rpm for 45

minutes at 4◦C with fast acceleration and slow deceleration. The supernatant was incubated

with the Ni IMAC resin, being careful to avoid adding genomic DNA to the resin and incubated

with stirring overnight at 4◦C.

The resin was collected by centrifugation at 3 000 rpm for 3 minutes and discarding super-

natant. The resin was washed five times with 25 mL wash buffer 1 each time (total wash

volume of 125 mL). The resin was then washed five times with 25 mL (total wash volume of

125 mL) wash buffer 2. The resin was resuspended in 10 mL elution buffer, the column (Bio-

Rad medium pressure 50 mL bed volume) was packed and incubated for 10 minutes. The CD4

eluant was collected and the elution repeated with 5 mL elution buffer.

2dCD4-WT expressed in E. coli refolding

The CD4 containing eluent was dialysed against 2 L chilled refolding buffer A overnight. The

resulting CD4 was dialysed against 2 L chilled refolding buffer B overnight. The CD4 elution

was dialysed against SEC buffer for 2 hours. The dialysis against SEC buffer was repeated

three times. The CD4 was concentrated using a 10 kDa molecular weight cut-off (MWCO)

Amicon®Ultra-15 centrifugal filter (Merck). The refolded CD4 was separated into 100 µL

aliquots, flash frozen in liquid nitrogen and stored at -80◦C.

Size-exclusion chromatography purification of refolded 2dCD4-WT

Before use, 2dCD4-WT aliquots were defrosted, pooled and filtered using Spin-X 0.2 µm cen-

trifugal filters (Corning) by centrifuging at 14 000 rpm for 1 minute. Filtered 2dCD4-WT was

loaded onto a HiLoad 16/600 Superdex™ 75 preparative grade (S75 pg) column (GE Health-

care) equilibrated in SEC buffer. CD4 was eluted at 1 mL/min into 1 mL fractions. CD4 con-

taining fractions were identified by SDS-PAGE with Coomassie blue staining.
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3.3.3 Deuteration of 2dCD4 in E. coli

Adaptation of E. coli to deuterated growth conditions

pETm11-2dCD4-WT plasmid DNA (provided by Dr N. Cerutti at the HPRU, Johannesburg)

was transformed into BL21* (DE3) as described in section 3.3.2. One colony was picked to

inoculate 2 X 10 mL LB supplemented with 1 X kanamycin. One culture was induced with 0.5

mM IPTG at an OD600 of 0.6 and cultured at 20◦C, 180 rpm overnight. Before the culture was

induced a 500 µL sample was taken for analysis by anti-his western blotting. While the other

was cultured overnight at 37◦C, 180 rpm overnight. After overnight culture the OD600 was

measured and a 500 µL sample was collected for analysis by anti-his western blotting from the

induced culture.

When the cells reached the late exponential growth phase, 2 X 1 mL of the uninduced LB culture

was used to inoculate 2 X 10 mL H-Enfors medium, supplemented with 1 X kanamycin and the

process was repeated. 2 X 1 mL of the uninduced H-Enfors culture was used to inoculate 2 X 10

mL 85% D-Enfors medium, supplemented with 1 X kanamycin and the process was repeated.

1 mL of the uninduced 85% D-Enfors culture was used to inoculate 1 X 10 mL 85% D-Enfors

medium, supplemented with 1 X kanamycin and cultured at 37◦C, 180 rpm overnight. This

was repeated 5 times for a total of seven passages into 85% D-Enfors medium.

Fed-batch fermentation to produce a high cell density culture

Fed-batch fermentation was carried out as described by Haertlein et al. 2016 [171].

The 10 mL of passage 7 was added to 150 mL 85% D-Enfors in a 500 mL plastic culture flask

(Corning) and supplemented with 1 X kanamycin. The starter culture was incubated overnight

at 37◦C, 180 rpm. The starter culture was used to inoculate 1.2 L 85% D-Enfors in a Labors

2.3 L fermenter which was computer-controlled using IRIS software (both Infors). The starting

OD600 was 0.18. After 24 hours the initial glycerol supply was depleted at the end of the initial

batch phase (OD600 of 3.9). The culture was thus supplied with fresh feed containing 12%

deuterated glycerol in the fed-batch phase. The pD was controlled by addition of NaOD to

maintain a constant pD of 6.4. The potential oxygen was maintainted at 30% by controlling the

stirring of the culture.
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At an OD600 of 15.8 (after 48 hours) the culture was induced by addition of 0.5 mM IPTG and

the temperature was reduced to 30◦C. The culture was stopped after 66 hours at a final OD600

of 17.8. 74 g of cell paste was collected by centrifugation at 6 000 rpm.

The total expression was tested for the LB culture before and after induction, the H and D-

Enfors culture after induction and the fermenter before and after induction with IPTG using

anti-His western blotting with colorimetric (nanogram sensitivity) and electrochemilumines-

cence (ECL) detection (femtogram sensitivity). The colorimetric detection used Western Blue®

substrate for alkaline phosphatase (Promega). Whereas the ECL detection used ClarityTM West-

ern ECL blotting substrate (BioRad).

3.3.4 2dCD4 Expression in Brevibacillus choshinensis

Glycerol stocks of B. choshinensis transformed with the pNCM02-2dCD4-WT clone were pre-

pared according to the manufacturer’s instructions (TAKARA). Expression was tested by anti-

his western blotting and SDS-PAGE with Coomassie blue staining analysis before storage at

-80◦C.

1 L 2SY media supplemented with 50 µg/mL of neomycin was inoculated with one vial of

B. choshinensis transformed with pCN-His-2dCD4-WT glycerol stock (1.8 mL). Subsequent,

expression was carried out at 30◦C, 120 rpm over 4 days.

Immobilised metal affinity chromatography (IMAC) purification of 2dCD4-WT expressed

in B. choshinensis

After 4 days expression the supernatant was collected by centrifugation at 8 000 rpm for 30 min-

utes. The supernatant was filtered through a 0.8 µm filter. Post-expression one of two methods

were used to concentrate the protein by reducing the volume of the expression medium, prior

to purification by nickel affinity chromatography: ammonium sulphate precipitation and viva-

flow concentration as outlined hereafter.

Ammonium sulphate precipitation of 2dCD4 expressed in B. choshinensis Salting out by

ammonium precipitation at 55% saturation was carried out at 4◦C to precipitate the protein out

of solution. The precipitate was collected by centrifuging the solution at 10 000 rpm, 4◦C. The
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supernatant was carefully discarded and the pellet was resuspended in loading buffer. The

suspension was then dialysed against this same buffer.

Vivaflow®concentration of 2dCD4-WT containing B. choshinensis expression media At 8◦C

the protein containing expression media supernatant (cells removed by centrifugation) was

loaded onto a Vivaflow®200 cassette (Sartorius) and passed through the cassette until a vol-

ume of approximately 100 mL was reached. The concentrated protein was dialysed against 2 X

2 L loading buffer, overnight.

Nickel IMAC The dialysed suspension was diluted 1:7 in loading buffer and loaded at 1

mL/min onto 5 mL HisTrap NiNTA column (GE Healthcare), equilibrated with loading buffer.

After loading, the column was washed with 10 column volumes (CV) wash buffer 1, followed

by 10 CV wash buffer 2. The protein was eluted in 2 mL fractions by a 100 mL 0-100% gradient

of elution buffer, followed by a further 5 CV of elution buffer. CD4 containing fractions were

identified by SDS-PAGE with Coomassie blue staining

Size Exclusion Chromatography

The protein containing fractions were pooled and dialysed into SEC buffer and concentrated to

load by a 5 mL loop into a S75 pg column equilibrated in SEC buffer. The protein was eluted

at 1 mL/min in 1 mL fractions. CD4 containing fractions were identified by SDS-PAGE with

Coomassie blue staining.

3.3.5 Deuteration of 2dCD4 in B. choshinensis

Expression tests of 2dCD4-WT in B. choshinensis in deuterated media

90 µL glycerol stock of B. choshinensis transformed with the pCNMO2-2dCD4-WT-His plasmid

was used to inoculate 50 mL of the following expression media in a 250 mL plastic cell culture

flask (Corning), supplemented with 10 X neomycin antibiotic:

• 2SY in 0% D2O (100% H2O)

• 2SY in 75% D2O
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• 2SY in 100% D2O

• 0% D-Silantes (100% H-Silantes)

• 0% D-Enfors (100% H-Enfors)

• 75% D-Silantes

The cultures were incubated at 20◦C, 150 rpm for 72 hours with samples being taken at various

time points (4, 7, 24, 28, 31, 49, 53 and 72 hours) to assess the progress of 2dCD4-WT expression

by anti-His western blotting and to follow the B. choshinensis growth curve by measuring the

OD600.

The expression test was repeated using: 2SY in 100% H20, 0% D-Silantes, 65% D-Silantes and

75% D-Silantes with anti-his western blotting analysis.

Purification tests of deuterated 2dCD4-WT

Supernatant containing 2dCD4-WT was dialysed against loading buffer. 10 µL magnetic beads

(Promega MagneHis Ni particles) suspension (supernatant removed) was incubated with 1

mL binding buffer at room temperature for 5 minutes with mixing. The binding buffer was

removed from the magnetic beads and 1 mL 2dCD4-WT containing supernatant was added

to the magnetic beads for 30 minutes at room temperature with mixing. The supernatant was

removed and a sample was kept for analysis by western blot and SDS-PAGE.

500 µL wash buffer 1 was added to the magnetic beads and mixed gently. The supernatant

was removed, keeping a sample for SDS-PAGE and western blot analysis. The wash was re-

peated three times for wash buffer 1. 500 µL wash buffer 2 was added and to the magnetic

beads and the washing procedure was repeated as for wash buffer 1 (three times in total). The

magnetic beads were incubated for 2 minutes with 100 µL elution buffer and gentle mixing.

The supernatant was removed and a sample kept for analysis by western blot and SDS-PAGE.

The elution process was repeated. The supernatant from each step was analysed by SDS-PAGE

with Coomassie blue staining and anti-His western blotting for the presence of 2dCD4-WT.
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3.3.6 Cell-free protein expression of 2dCD4

Plasmid DNA preparation

DNA coding for wild-type two domain CD4 (domains 1 and 2) from Homo sapiens, a trun-

cated form of UniProtKB entry P01730 (full-length CD4), was synthesised and cloned into the

pIVEX2.3d expression vector between Nde1/Xho1 restriction sites by Proteogenix. Two con-

structs were synthesised: one with an N-terminal TEV cleavable 6 X His tag and enhancer

sequence and the other with a C-terminal TEV cleavable 6 X His tag. Following expression

tests (see results), further experiments were carried out using the C-term His tag clone so as to

avoid any possible steric hindrance between gp120 and the His tag at the N-terminus.

Expression of 2dCD4-WT using CFPE

Analytical scale batch cell-free reactions were set up as per the protocol described by Kim et

al. 2006 [185] to assess the level of expression of soluble and insoluble 2dCD4-WT based on

varying expression conditions:

• Overnight expression: 20◦C and 30◦C

• 6 X His tag location: N-terminal and C-terminal

• Reaction volume: 50 µL, 1 mL and 10 mL

• Filter pore size: 0.20 µm and 0.45 µm

• Mg2+ concentration: 5 mM and 10 mM

• Deuterated amino acid concentration: 1, 2, 5, 10 and 20 mg/mL

Soluble and insoluble portions of the reactions were separated by centrifugation in a bench-

top centrifuge at 14 000 rpm for 30 minutes. The presence of 2dCD4-WT was determined by

western blotting and, in some cases, SDS-PAGE.

Cell lysate was prepared from the E. coli SHuffle strain by Vinesh Jugnarain at Synthelis. The

cell-free reaction was set up using the conditions determined from the results (see 3.4.4) and

was supplemented with 0.2% sodium azide to prevent bacterial contamination. The cell-free
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reaction was then filtered into the expression vessel before incubating for at least 12 hours at 40

rpm.

Purification of 2dCD4-WT produced using CFPE

After incubation overnight, the cell-free reactions were pooled and centrifuged at 5 000 rpm for

20 minutes. The supernatant was then diluted 1:5 with loading buffer and filtered through a

0.22 µm filter to remove any remaining debris prior to purification.

The diluted reaction was loaded at 1 mL/min onto a 5 mL HisTrap NiNTA column (GE Health-

care), equilibrated in loading buffer. The column was washed with 10 CV wash buffer 1, fol-

lowed by 10 CV wash buffer 2. The protein was then eluted in 1 mL fractions with 30 mL of

elution buffer.

Prior to SEC the CD4 containing fractions from the NiNTA purification were pooled and loaded

via a 5 mL loop, 4 mL at a time, onto a S75 pg column equilibrated in SEC buffer. The protein

was eluted at 1 mL/min in 1 mL fractions.

Deuteration of 2dCD4-WT using CFPE

The deuteration protocol for 2dCD4-WT in the cell free protein expression system was identical

to that for production of the protiated 2dCD4-WT with the exception for the addition of 2

mg/mL deuterated amino acids during the cell free reaction set-up.

3.3.7 Expression and purification of the 2dCD4 domain 2 disulphide bond knock-

out variant (2dCD4-D2A)

DNA coding for 2dCD4 whose Cys130 and Cys159 codons were replaced by ones coding for

Ala was synthesised and cloned into the pIVEX2.3d expression vector between Nde1/Xho1

restriction sites by Proteogenix. The sequence had a C-terminal TEV cleavable 6 X His tag.

A 50 mL CFPE reaction was set-up for expression of 2dCD4-D2A and purified by nickel IMAC

and SEC as described for 2dCD4-WT section 3.3.6. 2dCD4-D2A presence was detected by SDS-

PAGE with Coomassie blue staining and anti-His western blotting.
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2dCD4-D2A expression tests

50 µL 2dCD4-D2A CFPE reactions were set-up using the following conditions:

• Temperature: 16◦C and 20◦C

• Agitation at 20◦C: 0 rpm and 40 rpm

• n-Dodecyl β-D-maltoside: 0.25%, 0.5% and 1.0%

• Brij-35: 0.25%, 0.5% and 1.0%

The total and soluble expression was analysed using anti-His western blotting.

2dCD4-D2A purification test

Purification testing of 2dCD4-D2A was carried out using the same method as described for

purification testing of d-2dCD4-WT expressed in B. choshinensis (section 3.3.5). The purification

buffers were the same as those used for 2dCD4-WT produced using CFPE.

3.4 Results

3.4.1 Expression of 2dCD4-WT in E. coli

Due to the disulphide bonds present in domains 1 and 2 of 2dCD4-WT, it is expressed by E.

coli into insoluble inclusion bodies. Soluble protein can be recovered from the inclusion bodies

by collecting them by centrifugation and denaturing them using 8 M urea. The recombinant

protein can be purified in its denatured state because the His-tag, used for the affinity purifica-

tion of 2dCD4-WT, is a linear tag and does not depend on the tertiary structure of the protein.

After affinity purification, the purified protein can then be refolded (with significant losses in

yield) using a refolding protocol which involves slow dialysis and hence dilution of the urea,

under specific conditions. These include the presence of a chaotrope such as urea which is used

to denature the inclusion bodies and a redox system such as reduced and oxidised glutathion

(GSH/GSSG) to ensure correct formation of disulphide bonds.
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Purification of 2dCD4-WT from inclusion bodies

2dCD4-WT was purified in its denatured form by the addition of 8 M urea using a manual (no

fast-protein liquid chromatography machine) nickel immobilised metal affinity chromatogra-

phy (IMAC) purification. Figure 3.1 shows the steps of 2dCD4-WT IMAC purification analysed

by SDS-PAGE with Coomassie blue staining. The 2dCD4-WT elution samples appear quite

pure after just one round of IMAC purification. Most of the contaminating proteins did not

bind to the column as many contaminants can be seen in the flow through and wash samples,

but not in the 2dCD4-WT elution.

FIGURE 3.1: 2dCD4-WT was purified from inclusion bodies expressed by E.
coli BL21* (DE3) by denaturing them in 8 M urea before carrying out nickel
immobilised-metal affinity chromatography. Samples were taken from the nickel
column flow through, the wash and the elution fractions. No 2dCD4-WT appears
to elute in the flow through or wash which suggests that the protein is bound to
the nickel column. The elution fractions contain few contaminants which shows

that the wash step was effective in removing many contaminants.

After IMAC purification the protein was refolded by slow dialysis against a lower concentra-

tion of urea (4 M) with GSH/GSSG, a buffer with GSH/GSSG and no urea and then against 1 X

PBS three times. During the refolding process a large amount of white precipitate was formed.

As such the precipitate was separated from the soluble protein by centrifugation, followed by

filtration. The protein was then purified by SEC to remove any aggregates. The SEC chro-

matogram shown in figure 3.2a presents three peaks of which the first elutes just after the dead

volume of the S75 pg column (approximately 40 mL). There is a second small peak followed
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by a large peak. The contents of the peaks were analysed by non-reducing SDS-PAGE with

Coomassie blue staining (fig. 3.2b). 2dCD-WT is shown to be present in all three peaks.

The first peak elutes just after the dead volume of the column indicating that this species is

large. Since the SDS-PAGE analysis shows that only 2dCD4-WT is present in this peak this

suggests that the first peak is the result of a small amount of aggregated 2dCD4-WT. The sec-

ond peak contains 2dCD4-WT and a small amount of a protein band which resolves at an ap-

parent molecular weight approximately twice that of 2dCD4-WT. This band may correspond

to a disulphide bond linked dimer, since the SDS-PAGE was run in non-reducing conditions.

This peak may also correspond to incorrectly folded 2dCD4-WT. The final peak contains only

2dCD4-WT, so the fractions from this peak were pooled and concentrated for subsequent anal-

yses. The three closely space bands on the SDS-PAGE correspond from the bottom band up to;

the fully oxidised 2dCD4-WT (2dCD4-Ox); 2dCD4-WT reduced in domain 2 (2dCD4-R1) and

fully reduced 2dCD4-WT (2dCD4-R2) as shown by Cerutti et al. 2014 [63] by disulphide bond

knockout reducing and non-reducing SDS-PAGE mobility analysis.
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(A)

(B)

FIGURE 3.2: After 2dCD4-WT was refolded by slow dialysis against a 4 M
urea buffer followed by a 0 M urea buffer (both containing reduced and oxi-
dised glutathione), it was further purified by size-exclusion chromatography (A).
The elution fractions were analysed by SDS-PAGE with Coomassie blue staining
(B). Three peaks corresponded to aggregated 2dCD4-WT, a potential 2dCD4-WT

dimer and correctly folded 2dCD4-WT.

Optimising 2dCD4-WT expression in E. coli

Several attempts were made to optimise the expression of 2dCD4-WT in E. coli as follows:

• E. coli expression strain: SHuffle, Arctic Express, Rosetta, Rosetta Gami, Origami B, Sol-

uBL21 and BL21* (DE3)
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• Expression vector: pETm11, pET15b and pMK-T

• Expression temperature: 16◦C, 20◦C, 25◦C, 30◦C and 37◦C

• IPTG concentration: 0.1, 0.2, 0.3, 0.4 and 0.5 mM.

However 2dCD4-WT was not detected by SDS-PAGE with Coomassie blue staining nor by

anti-His western blotting. Eventually it was found that in addition to lysis of the cells by cell

distruption and lysozyme treatment, that the protein needed to be solubilised in 8 M urea in

order to enter the gel. The results of these tests have not been presented here because 2dCD4-

WT was not detected.

3.4.2 Deuteration of 2dCD4-WT using E. coli

For deuteration it was necessary to use a plasmid with a kanamycin resistance gene as opposed

to an ampicillin resistance gene. The ampicillin metabolising protein, beta-lactamase, is located

in the periplasmic space and is therefore at risk of being lost during deuteration which causes

the cell membrane to become leaky. In this situation, selectivity of only cells containing the

expression plasmid for 2dCD4 with the antibiotic resistance marker would be lost. The pro-

tein which inactivates kanamycin however, is located in the cytoplasm and is therefore not at

risk of being lost whilst the bacterium is cultured in deuterated conditions. Therefore, while

the pET15b expression vector with ampicillin resistance was used for expression of protiated

2dCD4-WT, the cDNA coding for 2dCD4-WT in the pETm11 expression vector was required

for production of recombinant deuterated 2dCD4 for subsequent SANS experiments.

Deuteration of 2dCD4-WT in E. coli

The BL21* (DE3) strain transformed with the pETm11-2dCD4-WT clone was used for deutera-

tion of 2dCD4-WT given the need for a kanamycin resistant clone and the inconclusive results

from the expression testing using different clones and hosts. From a 10 mL LB starter cul-

ture the BL21* (DE3) cells were passaged into protiated then 85% deuterated minimal media

(H and D-Enfors). Seven passages were made to allow the bacteria to adapt to growth under

deuterated conditions. The last passaged culture was used to inoculate a 150 mL 85% deuter-

ated minimal media starter culture. Finally the starter culture was used to inoculate 1.2 L 85%
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deuterated minimal media for cell culture by fed-batch fermentation over a three day period.

Samples were taken to assess expression throughout the adaptation and fermentation process.

Expression of 2dCD4-WT was assessed using anti-His western blotting (fig. 3.4.2) with colori-

metric (3.3a) and electrochemiluminescence (3.3b).

(A) Colorimetric (B) Enhanced chemiluminescent

FIGURE 3.3: The expression of 2dCD4-WT was tested before and after fed-batch
fermentation. (A) Colorimetric and (B) enhanced chemiluminesent detection was
used to identify BL21* (DE3) expression of 2dCD4-WT in LB, H-Enfors, 85% D-

Enfors and the fermenter in 85% D-Enfors.

No expression is observed with colorimetric detection in LB and D-Enfors. There was a small

amount of a expression prior to fermentation which increases slightly after fermentation. The

expression bands shown resolve to a higher molecular weight than the 2dCD4-WT control be-

cause the control is protiated, whereas the before and after fermentation 2dCD4-WT detected is

deuterated and is therefore of a higher molecular weight. Electrochemiluminescence detection

was also used as it has an enhanced detection level compared to that of colorimetric assays

(nanogram versus femtogram) with which there is a line spanning the LB before and after, the

85% D-Enfors and H-Enfors after induction tests. However this "band" could be noise since it

resolves to the same apparent molecular weight as the deuterated protein after fermentation.

The LB and H-Enfors bands should resolve to the same molecular mass as the control and

there should be a difference in expression before and after induction. However, if the control
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had suffered some degradation it may resolve at a molecular weight lower than that expected.

From the western blot the yield of the deuterated 2dCD4-WT (d-2dCD4-WT) yield was esti-

mated to be just 800 µg. This is an estimate before the refolding process during which much

of the protein yield is lost due to aggregation. Therefore the quantity of d-2dCD4-WT was not

sufficient for SANS studies which typically requires milligram quantities of d-2dCD4-WT. It

was thus necessary to explore other methods to prepare deuterated 2dCD4-WT.

3.4.3 Expression and secretion of 2dCD4-WT from B. choshinensis

Since development of a deuteration protocol in E. coli was unsuccessful, expression of 2dCD4-

WT in a novel gram positive expression host called Brevibacillus choshinensis was explored. B.

choshinensis has benefits over E. coli as an expression host because the protein is secreted in a sol-

uble form into the oxidising extracellular milieu, allowing the correct formation of disulphide

bonds, in disulphide bond containing proteins. The protein can therefore be purified from the

expression medium and there is no need to lyse the cells nor to carry out any refolding as was

the case with E. coli.

Purification of protiated 2dCD4-WT from B. choshinensis secretion

Since B. choshinensis secretes the protein into the expression medium, the main hurdle lied

in the processing of large volumes of supernatant (the cells are pelleted and removed from

the supernatant by centrifugation) which was rich in contaminants. Large volumes of super-

natant containing the protein of interested could be concentrated thereby reducing the volume

of supernatant to be processed. Two avenues for supernatant concentration were explored:

Vivaflow®cassette concentration and 55% ammonium sulphate (NH4)2SO4 precipitation (es-

tablished previously). Vivaflow®cassettes function by using a membrane to retain the protein

contents of the supernatant whilst filtering out some of the aqueous volume of the supernatant.

Whereas ammonium sulphate precipitation functions by "salting out" of the protein in which

the local ion concentration around the protein increases, thereby decreasing the solubility of

the protein until a stable protein-salt precipitant is formed.

Figure 3.4a shows the presence of protein by SDS-PAGE through the steps of nickel IMAC pu-

rification, while figures 3.4b and 3.4c show the elution of the protein off of the nickel column for
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the Vivaflow®(red) and ammonium sulphate (green) precipitation supernatant preparations,

respectively.

(A)

(B) Vivaflow® (C) Ammonium sulphate precipitation

FIGURE 3.4: 2SY supernatant (cells pelleted by centrifugation) was concentrated
by either a Vivaflow®casette (red) or ammonium sulphate precipitation (green).
(A) SDS-PAGE analysis of the nickel affinity purification of Vivaflow®cassette
concentration and ammonium sulphate precipitation, elution fractions of nickel
affinity purification from Vivaflow®concentration (B) and ammonium sulphate

precipitation (C).

The before and after concentration lanes in figure 3.4a show clearly that the Vivaflow®cassette

has concentrated the proteins present in the supernatant and that no protein came out in the
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waste supernatant. Compared with the load from the ammonium sulphate precipitation prepa-

ration, the Vivaflow®load has more protein contaminants present. The use of 55% saturated

ammonium sulphate precipitation allows some of the protein contaminants to be excluded as

they are not salted out of solution with the protein of interest since they require higher concen-

trations of ammonium sulphate to precipitate out of solution. Ammonium sulphate precipita-

tion can therefore act as an additional purification step prior to nickel affinity purification.

Indeed it appears that more 2dCD4-WT eluted off in wash 2 of the Vivaflow®supernatant

preparation than in the ammonium sulphate precipitation preparation. This may be due to sat-

uration of the nickel column with non-specific binding of protein contaminants. It also appears

from the SDS-PAGE showing the elution fractions, that more 2dCD4 was recovered from the

supernatant prepared by ammonium sulphate precipitation than by Vivaflow®concentration

(fig. 3.4b and 3.4c, respectively). To this end, ammonium sulphate precipitation was considered

the superior method for concentrating the supernatant and allowing maximum 2dCD4-WT re-

covery and was used in subsequent purifications.

After nickel IMAC the protein prepared by ammonium sulphate precipitation was further pu-

rified by SEC (fig. 3.5). The SEC chromatogram (fig. 3.5a) displays three peaks which were

analysed by SDS-PAGE (fig. 3.5b). The first peak eluted from the column just after the dead

volume which suggests that the contents of the peak are large. SDS-PAGE analysis of peak 1

shows that it contains many protein contaminants as well as 2dCD4-WT. This indicates that

the 2dCD4-WT in this peak is aggregated. 2dCD4-WT can also be found in peak 2 with some

higher apparent molecular weight contaminants. The third peak contains pure 2dCD4-WT.
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(A)

(B)

FIGURE 3.5: 2dCD4-WT expressed and secreted by B. choshinensis was purified
by SEC after nickel IMAC. (A) The SEC chromatogram shows three peaks whose
contents were analysed by (B) SDS-PAGE. Peak 1 contains many protein contami-
nants as well as 2dCD4-WT. The elution position of peak 1 (after the dead volume
of the column) suggests that this is formed of large aggregates. Peak 2 also con-
tains 2dCD4-WT as well as higher molecular weight protein contaminants. Peak

3 contains pure 2dCD4-WT.
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Deuterated 2dCD4-WT expression tests in B. choshinensis

Sufficient yields of deuterated 2dCD4-WT using the classical E. coli expression system were

not produced, so the novel Brevibacillus choshinensis expression system was used in an attempt

to deuterate 2dCD4-WT. The expression of 2dCD4-WT was tested in several different media

types with differing levels of deuteration. The growth of B. choshinensis was followed over 3

days by measuring the optical density at 600 nm (OD600) at various time points (fig. 3.6), at

which point samples were taken to test for expression by western blotting using an anti-His

primary antibody (fig. 3.7).

FIGURE 3.6: B. choshinensis transformed with the pNCM02-2dCD4-WT clone was
cultured over a period of 72 hours in different media with varying levels of
deuteration: 100% H-Silantes (red), 2SY in 100% D2O (orange), 100% H-Enfors
(purple), 75% D-Silantes (yellow), 2SY in 75% D2O (blue) and 2SY in 100% D2O
(green). Samples were taken periodically and their optical density at 600 nm was

measured.
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FIGURE 3.7: 2dCD4-WT was expressed in different media with differing levels
of deuteration using the B. choshinensis expression system: orange = 2SY in 100%
H2O, red = 100% H-Silantes, blue = 2SY in 75% D2O, yellow = 75% D-Silantes,
green = 2SY in 100% D2O and purple = 100% H-Enfors. Lanes: 1 = Molecular
weight (kDa), 2 = 4 h, 3 = 7 h, 4 = 24 h, 5 = 28 h, 6 = 31 h, 7 = 48 h, 8 = 53 h, 9 = 72

h, 10 = 2dCD4-WT control.

The western blot depicting the expression in 2SY media dissolved in 100% H2O (light water,

orange) is the control western blot as the conditions used were those described by the manu-

facturer (TAKARA). Between the control western blot and the one in which 2dCD4-WT was

expressed in 2SY dissolved in 75% D2O (blue) there does not seem to be much difference in the

overall level of expression, however expression starts after 31 h for the 2SY 75% D2O whereas

expression starts after 7 h for the control. For 2SY dissolved in 100% D2O (green) there is no

expression at all. Relating this result to the growth curves in figure 3.6 it can be seen that in fact

the cells did not survive culture in 2SY dissolved in 100% D2O.

The expression in 100% H-Silantes (red) is not as high as the 2SY 100% H2O and appears to drop

off at 72 h. The growth curve shows that the growth begins to drop off after 31 h. While the

cells grow to a higher optical density in 100% H-Silantes than in 75% D-Silantes, the expression
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appears to be comparable and, interestingly, maybe even higher for the deuterated media. The

expression appears to drop off again at 72 h which is reflected in the growth curve which

declines between 53 and 72 h. The lag period for the B. choshinensis cultured in 100% H-enfors

(purple) is long, lasting around 53 h. There is no expression detected in the western blot until

72 hours and is very faint. B. choshinensis cannot tolerate minimal media and is therefore is not

a suitable expression host for fed-batch fermentation.

Disregarding the 100% D2O and 100% H-Enfors conditions for which there was little to no cell

growth or 2dCD4-WT expression, it is apparent that B. choshinensis is able to reach higher cell

densities with the 2SY media conditions and in the absence of D2O. The stationary phase is also

achieved earlier in the absence of D2O. Furthermore, the cells appear to enter the death phase

earlier using the Silantes media.

The 2SY media was protiated and just dissolved in water of differing H/D ratios. As such the

level of deuteration possible using this approach is limited. Whilst the growth and expression

were reduced in the Silantes media, the carbon source as well as the other components of this

media are deuterated allowing a higher level of deuteration to be obtained. Silantes medium

cannot be easily used for fed-batch fermentation as it is an enriched medium but it can be used

for in-flask deuteration. Therefore, further testing was carried out on the D-Silantes condition.

Deuterated 2dCD4-WT expression tests in B. choshinensis using D-Silantes

As the expression of 2dCD4-WT was already low using 75% D-Silantes it was decided that

2dCD4-WT expression would also be tested in 65% D-Silantes. The expression of 2dCD4-WT

in 65 and 75% D-Silantes was compared (fig. 3.8) and the expression in 0% D2O 2SY and 100%

H-Silantes were used as non-deuterated media controls.

Little can be deduced from the SDS-PAGE (fig. 3.8a) as the expression bands of 2dCD4-WT are

very faint. However the western blot (fig. 3.8b) paints a clearer picture. The optimal expression

media is obviously the 0% D2O 2SY which was the control expression condition. After 1 day

there is greater expression in 65% D-Silantes than in 75% D-Silantes. In fact the expression band

is barely visible for the 75% D-Silantes. However, after 4 days of expression the expression in

75% D-Silantes is only slightly less than that in 65% D-Silantes. There is little difference in the
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(A) (B)

FIGURE 3.8: B. choshinensis was cultured in 2SY 0% D2O and Silantes media at
0, 65 and 75% deuteration (lanes 2 & 6, 3 & 7, 4 & 8 and 5 & 9, respectively).
Expression was tested after 1 and 4 days (lanes 2-5 and 6-9, respectively) and
tested by SDS-PAGE (A) and western blot (B). Lane 1 is the molecular weight

marker in kDa and lane 10 is a 2dCD4-WT control.

levels of expression at 65 and 75% D-Silantes, therefore both were taken forward in analytical

scale purifications.

Purification tests of 2dCD4-WT expressed in D-Silantes from B. choshinensis

Analytical purification tests were carried out using nickel conjugated magnetic beads (GE

Healthcare) which allow microlitre scale purifications of protein with milligram binding ca-

pacity. After purification, the intention was to get a better idea for the yields possible from

expression in 65 versus 75% D-Silantes. The pure protein could then be tested by mass spec-

trometry to determine the percentage deuteration possible using 65 versus 75% D-Silantes. 2SY

0% D2O (dissolved in 100% H2O, fig. 3.9a) was used first to test the analytical scale purification

conditions and 0% D-Silantes (100% H-Silantes, fig. 3.9b) was used as a control for the 65 and

75% D-Silantes analytical scale purifications (figs. 3.9c and 3.9d, respectively). The top panels

display Coomassie blue stained SDS-PAGE and the bottom panels show anti-His western blots.
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(A) 2SY 100% H2O (B) 0% D-Silantes

(C) 65% D-Silantes (D) 75% D-Silantes

FIGURE 3.9: 2dCD4-WT was expressed by B. choshinensis cultured in (A) 2SY
dissolved in 100% H2O, (B) 0% D-Silantes, (C) 65% D-Silantes and (D) 75% D-
Silantes. Analytical scale purifications were carried out using his-conjugated
magnetic beads. As the deuteration level increases the presence of 2dCD4-WT

in the elution fractions diminishes.
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From both the SDS-PAGE and western blots the presence of 2dCD4-WT in the elution is ob-

servably weaker in 0% D-Silantes medium, compared to 2SY in 100% H2O and then as the

deuteration percentage increases less and less 2dCD4-WT can be seen in the elution. Insuffi-

cient 2dCD4-WT was present in the elution fraction for analysis by mass-spectrometry. Further

deuteration tests in B. choshinensis were abandoned due to time constraints.

3.4.4 Cell-free protein expression and purification of 2dCD4-WT

The final expression system used for the production of protiated and deuterated 2dCD4-WT

was the cell-free protein expression system. CFPE allows decoupling of cell growth from pro-

tein expression and direct access to the chemical environment of recombinant protein synthesis.

CFPE of protiated and deuterated 2dCD4-WT was carried out in close collaboration with Vi-

nesh Jugnarain from Synthelis, France. Expression conditions were discussed collaboratively

but initial analytical scale cell-free reactions were set-up solely by Vinesh Jugnarain. Analysis

by western blot or SDS-PAGE was carried out by the author of this thesis. The cell paste for

cell-lysate preparation was either prepared by Vinesh Jugnarain or the author of this thesis but

cell-paste post-processing to produce the cell-lysate was solely prepared by Vinesh Jugnarain.

Large-scale cell-free protein expression reactions were set-up either by Vinesh Juganarain or

the author of this thesis. The precise protocols are not described because Synthelis is the owner

of these protocols and a non-disclosure agreement is in place between Synthelis and the Life

Sciences Group of the ILL.

Expression of protiated 2dCD4-WT

The first expression test carried out using CFPE was to determine the optimal temperature for

soluble 2dCD4-WT expression. Two reactions for an N-terminal tagged and C-terminal tagged

clone were set-up with one to be incubated at 20◦C, and the other to be incubated at 30◦C

overnight and the total versus soluble protein expression was assessed by anti-His western

blotting (fig. 3.10). At 20◦C it can be seen that both the total and soluble 2dCD4-WT expression

is higher than that at 30◦C for both clones. Further expression was therefore carried out at 20◦C.
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FIGURE 3.10: The total and soluble expression was tested using western blot for
the N-terminally and C-terminally TEV-His-Tagged 2dCD4-WT at 20◦C and 30◦C
to determine the optimal temperature giving the highest yield of soluble protein

for the cell-free reaction. Expression was higher at 20◦C for both clones.

Furthermore, since gp120 binds to the N-terminus of 2dCD4-WT which could result in steric

hindrance caused by the tagging the protein here, the expression levels of the two clones were

compared. From the western blot in figure 3.11, it is apparent that the expression of the C-

terminal tagged clone is better than the N-terminal tagged clone. In addition, it seems that

there are 2dCD4-WT degradation products formed with the N-term tagged clone, as indicated

by the lower molecular weight bands. All further reactions were therefore carried out using

the C-terminal tagged 2dCD4-WT clone.
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FIGURE 3.11: The total and soluble expression of N- and C-terminally TEV-
His-tagged 2dCD4-WT was tested using Western blot under reducing and non-
reducing conditions to see whether the location of the His-tag affected the ex-
pression and if the triple banding pattern corresponding to the three redox states
of 2dCD4-WT were present; 2dCD4-R2 (fully reduced, 28 kDa), 2dCD4-R1 (par-
tially reduced, 25 kDa) and 2dCD4-OX (fully oxidised, 22 kDa). The 2dCD4-WT
clone tagged at the C-terminus expresses better. In addition, there are evident

degradation products in the N-terminally tagged sample.

Finally, the effect of scaling up and of the filter pore size of the filtration step prior to incubation

was tested on the expression of the 2dCD4-WT. Interestingly, the expression of 2dCD4-WT

appears to diminish in the 1 mL reaction volume but remains similar for the 50 µL and 10 mL

reaction volumes (fig. 3.12). This could arise from the ratio of surface to air exposure since the

expression vessels were different for each reaction. The 50 µL reactions were carried out in a

microtube (Eppendorf), whereas the 1 mL reactions were carried out in a 50 mL Falcon tube and

the 10 mL reactions were carried out in a 100 mL conical flask (Corning). This result confirms

that scaling up is possible without any significant effect on protein expression. In addition,

there does not appear to be any difference in the levels of expression using different filter sizes

prior to leaving the reaction to incubate overnight. For the ease of scaling up, the 0.20 µm filter

size was chosen because vacuum 0.20 µm filters could be attached to sterile Schott bottles for

ease of filtration.
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FIGURE 3.12: Western blot was used to test the effect of reaction volume and filter
size through which the reaction was filtered before incubation on expression of
C-terminally TEV-His-tagged 2dCD4-WT. Three reaction volumes were tested:
50 µL, 1 mL and 10 mL and two filter sizes: 0.20 µm and 0.45 µm. Expression
appears similar in 50 µL and 1 0mL but weaker in 1 mL. Filter size does not seem

to have a significant effect.

Expression of deuterated 2dCD4-WT

Having established optimal conditions for the expression of soluble protiated 2dCD4-WT, the

conditions for deuteration of 2dCD4-WT using CFPE were investigated. Mg2+ ion concentra-

tion and the concentration of deuterated amino acids were compared to determine the best

conditions for soluble deuterated 2dCD4-WT expression. Figure 3.13 displays the western blot

results for the amino acid concentration screen using 5 and 10 mM Mg2+ (top and bottom west-

ern blot), respectively. In general, the expression seems relatively constant across the amino

acid concentrations with a slight increase in overall protein expression between 1 mg/mL and

2 mg/mL deuterated amino acids. The 5 mM Mg2+ expression test appears to display a very

slight increase in the ratio of soluble to total expression suggesting that the use of 5 mM Mg2+

in the reaction mixture either increases the production of soluble protein or reduces the pro-

duction of insoluble protein.

Therefore, the conditions selected for deuterated protein expression were 5 mM Mg2+ using 2

mg/mL deuterated amino acids to improve the cost efficiency of the reaction, since the expres-

sion was similar across the deuterated amino acid concentration screen.
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FIGURE 3.13: Two deuterated amino acids concentration screens were carried
out; one using 5 mM Mg2+ and the other using 10 mM Mg2+ in the reaction to
determine the optimal conditions for soluble deuterated 2dCD4-WT expression.
The overall expression is noticeably higher using 5 mM Mg2+ in the reaction
set-up. In addition, the portion of soluble protein appears higher using 5 mM
Mg2+. There is a slight increase in expression from 1 to 2 mg/mL but overall the

expression is relatively constant, regardless of the amino acid concentration.

Scaling-up and purification of cell-free protein expression of protiated and deuterated 2dCD4-

WT

During the scale-up process, it was noticed that the agitation speed of the reactions has a crucial

effect on protein expression. It was found that higher agitation produced cloudy reaction mix-

tures after incubation producing lower protein expression; this was particularly noticeable for

the 10 mL reaction. For scaling-up, slower agitation speeds ≤ 50 rpm were therefore used. To

minimise the impact of precipitant formation on subsequent purification, the CFPE reactions

were centrifuged after the 12 hour incubation and the supernatant diluted five-fold in loading

buffer before loading onto the NiNTA column.

Figure 3.14 depicts the chromatogram (3.14a) and SDS-PAGE analysis (3.14b) of the nickel

IMAC purification of a 50 mL CFPE h-2dCD4-WT reaction while figure 3.15 depicts the nickel

IMAC purification chromatogram (3.15a) and SDS-PAGE analysis (3.15b) of a 50 mL CFPE d-

2dCD4-WT reaction. Reaction volumes as high as 50 mL per 250 mL plastic conical flask were

used without compromising the yields.
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(A)

(B)

FIGURE 3.14: 50 mL cell-free protein expression reaction of protiated 2dCD4-WT
(h-2dCD4-WT) was diluted 1:5 in binding buffer containing 5 mM imidazole and
loaded at 1 mL/min onto a 5 mL prepacked Nickel HisTrap column (GE). The
column was washed with 10 column volumes (CV) of wash buffer 1 containing
1 M NaCl and 20 mM imidazole and then washed with 10 CV of wash buffer 2
containing 40 mM imidazole. The protein was eluted into 1 mL fractions with
gradient of elution buffer containing 300 mM imidazole. (A) Nickel IMAC chro-
matogram of h-2dCD4-WT. The flow through, washes and elution fractions were
tested for the presence of d-2dCD4-WT by Coomassie blue stained SDS-PAGE
(B). The numbers 1, 2, 3 and 4 correlate what is seen in the chromatogram with
the SDS-PAGE analysis. 1 = load/flow through; 2 = wash 1; 3 = wash 2; 4 =

elution.
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(A)

(B)

FIGURE 3.15: 50 mL cell-free protein expression reaction of deuterated 2dCD4-
WT (d-2dCD4-WT) was diluted 1:5 in binding buffer containing 5 mM imidazole
and loaded at 1 mL/min onto a 5 mL prepacked Nickel HisTrap column (GE).
The column was washed 10 column volumes (CV) with wash buffer 1 containing
1M NaCl and 20 mM imidazole and then washed with 10 CV of wash buffer 2
containing 40 mM imidazole. The protein was eluted into 1 mL fractions with
gradient of elution buffer containing 300 mM imidazole. (A) Nickel IMAC chro-
matogram of d-2dCD4-WT. The flow through, washes and elution fractions were
tested for the presence of d-2dCD4-WT by Coomassie blue stained SDS-PAGE
(B). The numbers 1, 2, 3 and 4 correlate what is seen in the chromatogram with
the SDS-PAGE analysis. 1 = load/flow through; 2 = wash 1; 3 = wash 2; 4 =

elution.

Following nickel IMAC purification, the protein containing fractions were pooled loaded di-

rectly onto a S75 pg size-exclusion column to be further purified. Examples of a h-2dCD4-WT
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and d-2dCD4-WT SEC chromatogram and subsequent SDS-PAGE analysis of the fractions can

be observed in figures 3.16 and 3.17, respectively. Yields between 2 and 3 mg per 50 mL CFPE

reaction for both hydrogenated and deuterated 2dCD4-WT were possible which allowed access

to further biophysical analyses and SAS experiments.

(A)

(B)

FIGURE 3.16: h-2dCD4-WT post NiNTA was further purified by size-exclusion
chromatography on an S75 HiLoad 16/600 column equilibrated in 20 mM Tris-
HCl pH 7.5, 300 mM NaCl, 5% sucrose. (A) h-2dCD4-WT SEC chromatogram.
The protein eluted at 1mL/min and was collected in 1 mL fractions. (B) The
presence and purity of h-2dCD4-WT was detected by SDS-PAGE with Coomassie

staining.
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(A)

(B)

FIGURE 3.17: d-2dCD4-WT post NiNTA was further purified by size-exclusion
chromatography on an S75 HiLoad 16/600 column equilibrated in 20 mM Tris-
HCl pH 7.5, 300 mM NaCl, 5% sucrose. (A) d-2dCD4-WT SEC chromatogram.
The protein eluted at 1mL/min and was collected in 1 mL fractions. (B) The
presence and purity of d-2dCD4-WT was detected by SDS-PAGE with Coomassie

staining.

3.4.5 Expression of 2dCD4-D2A by CFPE

Having successfully established a protocol for the expression of labelled and unlablled 2dCD4-

WT using CFPE, several experiments were carried out to test the expression of the 2dCD4 do-

main 2 disulphide bond knockout in which the cysteine residues had been replaced by alanine

residues (2dCD4-D2A).
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2dCD4-D2A purification

Using the same conditions as those described for production of protiated 2dCD4-WT using

CFPE (section 3.4.4), a 50 mL CFPE reaction of 2dCD4-D2A was set-up and purified by nickel

IMAC (fig. 3.18). Figure 3.18a shows the nickel IMAC UV Abs280nm chromatogram and figure

3.18b shows anti-His western blotting (top) and Coomassie blue stained SDS-PAGE (bottom)

analysis of the steps of the purification. 2dCD4-D2A is detected in the flow through and washes

which suggests that it did not bind well to the column.

After nickel IMAC purification 2dCD4-D2A was further purified by SEC (fig. 3.19). Figure

3.19a shows the SEC chromatogram and figure 3.19b shows SDS-PAGE analysis of the peaks

identified in the chromatogram. A large peak which elutes just after the dead volume of the col-

umn contains the highest concentration of 2dCD4-D2A, according to the SDS-PAGE analysis.

The position of the peak with regards to its elution volume and the content from the SDS-PAGE

suggests that this peak corresponds to aggregated 2dCD4-D2A. Peak 3 elutes at the expected

position of 2dCD4-D2A but also contains a contamintant which resolves at a lower apparent

molecular weight by SDS-PAGE analysis which may be a truncation product of the CFPE re-

action. Peak 4 contains a lower molecular weight contaminant. The final yield of 2dCD4-D2A

was just 1 mL at 0.08 mg/mL as much of the protein was lost due to aggregation.
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(A)

(B)

FIGURE 3.18: A 50mL 2dCD4-D2A CFPE reaction was set-up and purified by
nickel IMAC. (A) Shows the UV absorbance at 280nm to follow the protein dur-
ing the purification. (B) Shows anti-His western blot (top) and Coomassie blue
stained SDS-PAGE (bottom) analysis of the steps of the purification. 2dCD4-D2A
came off in the flow-through and washes which suggests that it did not bind well

to the column.
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(A)

(B)

FIGURE 3.19: The 2dCD4-D2A nickel IMAC elution fractions were pooled and
purified by SEC on an S75 pg. (A) SEC chromatogram of 2dCD4-D2A. (B) The
presence and purity of 2dCD4-D2A was assessed by Coomassie blue stained SDS-
PAGE analysis. A large peak eluted just after the dead volume of the column
which was shown to contain 2dCD4-D2A. This corresponds to a 2dCD4-D2A

aggregate and is the major 2dCD4-D2A peak.
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Stabilising 2dCD4-D2A produced by CFPE

In an attempt to increase the stability of 2dCD4-D2A produced by CFPE, the reaction conditions

were revisited. Firstly, the reaction temperatures of 16◦C and 20◦C at 40 rpm and 20◦C at 0

rpm were tested. The total and soluble expression was assessed by anti-his western blot (fig.

3.20). Lack of agitation appears to have a negative effect on soluble expression. However, the

temperature did not have any significant effect on the soluble expression.

FIGURE 3.20: 50 µL analytical scale 2dCD4-D2A CFPE reactions were set-up and
incubated at 16◦C and 20◦C with 40 rpm agitation and at 20◦C with no agitation
to see if this would affect soluble protein yield. The total and soluble expression
was tested using anti-His western blotting. No agitation has a negative effect on
the soluble expression. There is no difference in the soluble expression between

temperatures.

Secondly, expression in the presence of different concentrations of detergent in the reaction mix

was assessed. The addition of detergent was hoped to stabilise the protein by occluding patches

of hydrophobicity located on the surface of 2dCD4-D2A, such as that located at the domain

2/domain 3 interface, which may promote aggregation. n-Dodecyl β-D-maltoside (DDM) and

Brij35 detergents were added to analytical scale reactions at final concentrations of 0.25%, 0.5%

and 1.0%. The total and soluble expression was tested using anti-his western blotting (fig. 3.21).

0.25% DDM gave the best soluble expression of the reactions set-up using DDM. 0.5% Brij35

also gave good soluble expression however, the lane is streaky thus complicating the analysis.
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FIGURE 3.21: 50 µL analytical scale 2dCD4-D2A CFPE reactions were set-up us-
ing different concentrations of DDM and Brij35 detergent to see if this would
affect soluble protein yield. The total and soluble expression was tested using
anti-His western blotting. 0.25% DDM appears to give the best total and soluble

expression. At 0.5% Brij35 the lanes are streaky which confuses the analysis.

Finally, an analytical purification of 2dCD4-D2A with 0.25% DDM in the reaction mix was com-

pared to that without DDM by anti-his western blotting (fig. 3.22). The 2dCD4-D2A content of

each purification step appears the same for both purification with and without 0.25% DDM.

FIGURE 3.22: A 1 mL 2dCD4-D2A analytical scale CFPE reaction was set-up us-
ing 0.25% DDM in the reaction mix and purified using his conjugated magnetic
beads. This was compared to a reaction on the same scale with no DDM in the
reaction mix. Samples were taken at each step of the purification and tested for
the presence of 2dCD4-D2A by anti-His western blot analysis. The amount of
protein visible at each stage of the purification is comparable between the two

conditions.
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Due to unfortunate time constraints further analysis and development of 2dCD4-D2A expres-

sion and purification was not possible beyond this point.

3.5 Discussion

CD4, as the primary receptor of the HIV surface protein gp120, has been and continues to be

studied a great deal in both its native and recombinant forms. Recombinant CD4 expresses

poorly into insoluble inclusion bodies when produced using E. coli, therefore it is typically

produced in mammalian cells which allow the correct formation of its disulphide bonds. How-

ever, match-out labelling for SANS experiments is not possible using mammalian cells. E. coli

is the typical expression system used for match-out labelling of recombinant proteins using

fed-batch fermentation. Expression, purification and refolding of 2dCD4-WT from insoluble

inclusion bodies produced in E. coli was found to be extremely problematic. Therefore, expres-

sion in the gram positive bacterium B. choshinensis was explored, which allowed secretion of

correctly folded 2dCD4-WT into the supernatant. However development of a deuteration strat-

egy for 2dCD4 using B. choshinensis as an expression host proved challenging and expression

levels were insufficient to allow structural studies.

Eventually, through a collaboration with cell-free protein expression experts Synthelis, produc-

tion of 2dCD4-WT in both its deuterated and protiated forms was optimised and scaled-up

using cell-free protein expression from E. coli SHuffle cell lysates. CFPE proved able to pro-

duce sufficient quantities 2dCD4-WT suitable for biophysical, SAXS and SANS experiments

present in the subsequent chapters of this thesis. CFPE was used in an attempt to produce the

second domain disulphide bond knock-out protein; 2dCD4-D2A in which the second domain

Cys are replaced by Ala residues. Unfortunately, stable production of the disulphide knock-out

variant was not possible within the time-frame, given the initial and prolonged difficulties in

achieving sufficient yields of the wild-type protein.

3.5.1 Poor 2dCD4-WT yield from refolded E. coli expressed inclusion bodies

Several avenues were explored to improve expression of 2dCD4-WT in E. coli. While expression

of recombinant proteins by E. coli into insoluble inclusion bodies requires laborious refolding
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protocols to obtain correctly folded bioactive protein, one of the benefits of inclusion body for-

mation is usually that the recombinant protein is hugely over-expressed. However this did not

appear to be the case for 2dCD4-WT. Initially no expression was detected during total protein

fraction expression tests. Several expression tests were carried out including changing of the

expression vector, expression strain, expression temperature and IPTG concentration but no

2dCD4-WT was detected by western blot or SDS-PAGE. And yet 2dCD4-WT was still recov-

ered after isolation, solubilisation, purification and refolding from inclusion bodies expressed

by BL21* (DE3). It was eventually discovered that the expression of 2dCD4-WT into insoluble

inclusion bodies necessitated denaturation using 8 M urea .

When it came to preparing deuterated 2dCD4-WT for future SANS experiments fed-batch fer-

mentation was used and it was discovered that the expression samples required solubilisation

in 8 M urea in order for 2dCD4-WT to enter the pores of an SDS-PAGE to detect expression by

Coomassie blue staining or western blot detection of the His-tag. Once this was established,

expression of 2dCD4-WT was found to be very low. The total yield of 2dCD4-WT from the fer-

menter was estimated to be just 800 µg before solubilisation, purification and refolding which

would significantly decrease the yield obtained. Using E. coli as an expression host with fed-

batch fermentation was therefore not a suitable method for deuterium labelling of 2dCD4-WT.

In addition, the protein recovered from inclusion bodies was not very stable as attempts to

concentrate the sample above 1.5 mg/mL resulted in aggregation. This meant that even with

protiated 2dCD4-WT it was difficult to carry out any biophysical or structural analysis on the

protein.

3.5.2 Expression and secretion of 2dCD4-WT by B. choshinensis

By using B. choshinensis as an expression host for the production of recombinant 2dCD4-WT

there was no longer any need for a lengthy refolding protocol as the protein was secreted di-

rectly into the expression medium. However, with this came issues with the ease of purifi-

cation as there were large volumes of the expression medium supernatant (cells pelleted by

centrifugation) which contained many protein contaminants. This issue was partly resolved

by ammonium sulphate precipitation by concentrating 2dCD4-WT into a smaller volume of

supernatant during which some of the protein contaminants were removed in the process. In
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addition, expression took four days so while the lengthy refolding protocol was not needed

this time was lost elsewhere.

While expression of unlabelled 2dCD4-WT was generally good, a large portion of the protein

was found to be aggregated during the SEC purification step, post-IMAC purification. A large

peak which eluted just after the dead volume of the SEC column which was found to contain

2dCD4-WT was attributed to aggregation. Therefore the final yields of 2dCD4-WT from B.

choshinensis were low. Additionally, the protein was not particularly stable and concentrations

over 2 mg/mL were not attainable.

Several attempts were made to determine conditions in which B. choshinensis would grow in

deuterated media. B. choshinensis does not grow in minimal media [192], which suggests that

this bacterium is an amino acid auxotroph and so cannot synthesise all twenty amino acids. It

was also shown not to grow in 100% D2O but some growth was seen in partially deuterated

Silantes media. Some expression of 2dCD4-WT was also seen in D-Silantes but subsequent

yields after analytical purification of 2dCD4-WT were too low for determination of the percent-

age deuteration from growth in 65% and 75% D-Silantes by mass spectrometry as no protein

was detected (therefore the results are not shown).

3.5.3 Production of protiated and deuterated 2dCD4-WT using cell-free protein ex-

pression

Thanks to a collaboration established with Vinesh Jugnarain at Synthelis, sufficient yields of

deuterated and protiated 2dCD4-WT were achieved which allowed biophysical (chapter 4, 5)

and small-angle scattering studies (chapter 4, 6) to be conducted on the protein in isolation.

Initial expression tests allowed determination of CFPE reaction conditions which would yield

the most soluble expression. Thanks to the speed of the CFPE reaction, the optimal soluble pro-

tein expression conditions were determined rapidly compared to B. choshinensis which needed

several days of expression. The lengthy part of CFPE was in production of the lysate (approx-

imately 1 week) but when this was completed the reactions could be set-up and the protein

purified within 24 hours, which is a great advantage and made CFPE the fastest expression

method of the three used.
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Thanks to the openness of the CFPE reaction, match-out labelling of 2dCD4-WT was no more

complicated than the production of unlabelled 2dCD4-WT, requiring simply the addition of

deuterated amino acids rather than unlabelled ones to the reaction mix. The yield for d-

2dCD4-WT was also comparable to that for h-2dCD4-WT. The main drawback of using CFPE

for match-out deuteration therefore lies in the cost, as deuterated amino acids are expensive.

In general use of CFPE is costly because of the need for the tRNAs and energy regenerating

systems in order to carry out the protein synthesis reaction.

3.5.4 2dCD4-D2A variant production using CFPE

Having successfully produced 2dCD4-WT using CFPE, the same protocol was used in produc-

tion of 2dCD4-D2A. However, while the expression levels were good, the protein was found

to be unstable during nickel IMAC. This was surprising given the success had with the pro-

duction of 2dCD4-WT using CFPE. It is difficult to rationalise why this variant protein was so

unstable. The fact that the expression of soluble 2dCD4-D2A appears similar to that of 2dCD4-

WT using CFPE but that the protein is found to aggregate severely (as shown by SEC analysis)

suggests that the issue lies in the folding of 2dCD4-D2A (or lack thereof) when produced using

CFPE.

The addition of detergents to the reaction mix was used in an attempt to decrease any aggrega-

tion which may have arisen through hydrophobic interactions. The addition of 0.25% DDM had

little effect on the yield of 2dCD4-D2A in an analytical scale purification. However, subsequent

analysis was not carried due to insufficient time, which prevented any further experiments be-

ing carried out. The intention was to attempt to scale up the reaction with 0.25% DDM and

assess the protein using analytical scale SEC to see if the present of the aggregation peak seen

in the 50 mL SEC purification was diminished. The resulting protein with and without 0.25%

protein would then have been concentrated to see if the protein in 0.25% DDM concentrated to

a higher concentration than the 2dCD4-D2A without DDM. Mass spectrometry analysis could

then have been carried out to assess the purity.
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3.5.5 Future work

A protocol was established for production of deuterium labelled and unlabelled 2dCD4-WT

using CFPE, however the same cannot be said for 2dCD4-D2A. Unfortunately, due to time

constraints, a protocol for the expression of correctly folded 2dCD4-D2A was not developed.

Therefore the result of the presence of 0.25% DDM detergent on the stability of the protein was

not tested. However if the protein was initially incorrectly folded the presence of detergent

would not necessarily alter the stability of the protein. Use of CFPE for production of 2dCD4-

D2A does not provide any advantage over E. coli expression into inclusion bodies, if the protein

is produced in an incorrectly folded form. In future experiments it would be pertinent to assess

the presence of a chaperone protein system on the production of stable 2dCD4-D2A. Kang

et al. 2005 [193] used CFPE with over expression of either the GroEL/ES and DnaK/J-GrpE

chaperone system to produce soluble, active forms of aggregation-prone proteins. Introduction

of a chaperone protein system could help 2dCD4-D2A to fold correctly. If this was successful

then subsequent biochemical, biophysical and structural analyses could be carried out.

While CFPE was used in the context of match-out labelling for SANS contrast variation studies,

CFPE could also be used for per-deuteration for neutron crystallography. However this would

require setting up of the CFPE in a deuterated reaction buffer as well as using deuterated amino

acids. Alternatively, triple labelled amino acids could be used for NMR studies. Use of a high

resolution technique such as neutron crystallography or NMR would allow determination of

local, small structural realignments as a function of the redox state of 2dCD4-WT.

3.6 Conclusions

2dCD4-WT was expressed as insoluble inclusion bodies by E. coli which required solubilisa-

tion in 8 M urea before refolding, during which most of the protein yield was lost. Fed-batch

fermentation of an E. coli culture was carried out in 85% deuterated minimal media to express

deuterated 2dCD4-WT but the yield before refolding was under one milligram, which is in-

sufficient for small-angle scattering studies. B. choshinensis is a gram-positive bacterium which

secreted soluble 2dCD4-WT into the expression medium. However there were large volumes

of expression medium to process and the resultant yield was low as there was a significant
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amount of aggregation identified by size-exclusion chromatography. In addition, B. choshinen-

sis does not grow in minimal media and expression of 2dCD4-WT in rich deuterated media

was poor. Eventually, milligram quantities of both deuterated and protiated 2dCD4-WT were

produced using cell-free protein expression. Cell-free protein expression, although expensive,

was also the quickest of the three expression techniques used. Expression of the 2dCD4 domain

2 disulphide knockout variant (2dCD4-D2A) was comparable to that of 2dCD4-WT but size-

exclusion chromatography showed that the protein was aggregated. Further tests would need

to be conducted to establish a protocol for the production of correctly folded 2dCD4-D2A.
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Chapter 4

Biophysical characterisation of cell-free

expressed 2dCD4

4.1 Abstract

This chapter explores the characterisation of recombinant protiated and deuterated wild-type

two-domain CD4 (h- and d-2dCD4-WT) produced using the cell-free protein expression (CFPE)

system compared to protiated 2dCD4-WT expressed using Escherichia coli and refolded from in-

clusion bodies and 2dCD4-WT expressed and secreted by Brevibacillus choshinensis as described

in chapter 3, for use in subsequent small angle scattering studies described in chapters 5 and 6.

h- and d-2dCD4-WT produced by CFPE were shown to be functional using enzyme-linked

immunosorbant assay and a pseudo-viral neutralisation assay, with h-2dCD4-WT produced

using the E. coli and B. choshinensis expression systems as functional references. In addition,

standard and HETSOFAST one-dimensional proton nuclear magnetic resonance experiments

were carried out to assess whether the CFPE produced h-2dCD4-WT was correctly folded.

Size-exclusion chromatography couple to multi-angle laser light scattering and refractive in-

dex measurements, and mass-spectrometry were employed to analyse the monodispersity and

absence of proteolytic degradation of the protein after its purification. Mass spectrometry was

also used to determine the percentage deuterium incorporation and N-terminal protein se-

quencing to confirm that the correct protein was produced and that it was correctly processed

at its N-terminus.
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4.2 Introduction

As addressed in chapter 3, CD4 is typically expressed in mammalian cells for structural stud-

ies in complex with gp120 [34] or the engineered SOSIP trimers [43] (stable trimeric env-

glycoprotein complex mimic). However for this thesis work it was necessary to produce match-

out labelled 2dCD4 with deuterium so that it could be studied using contrast variation SANS

studies (chapter 6). Attempts were made to deuterate the protein in both E. coli and B. choshine-

sis expression systems but, unfortunately, the yields were low (approximately 0.25 mg/L) mak-

ing structural analysis difficult. Through a collaboration with Synthelis, La Tronche, France, it

was possible to establish recombinant production protocols for both protiated and deuterated

2dCD4-WT as described in chapter 3 which allowed structural analyses by both SAXS and

SANS. This chapter is concerned with the biochemical and biophysical characterisation of the

protiated and deuterated cell-free protein expressed (CFPE) 2dCD4-WT (hereafter referred to

as h-2dCD4-WT and d-2dCD4-WT) prior to its use for structural studies and; where possi-

ble, they are compared to refolded h-2dCD4-WT expressed in E. coli as inclusion bodies and

secreted B. choshinensis h-2dCD4-WT.

The functionality of CFPE produced h- and d-2dCD4-WT was compared to that of h-2dCD4-

WT expressed by E. coli and B. choshinensis using ELISA and pseudo-viral neutralisation assays.

Indirect ELISAs were used, whereby the detection event is of the primary antibody by a sec-

ondary antibody. The indirect ELISA method was first applied to an indirect-direct detection

of 2dCD4-WT, in which the primary antibody directly bound to 2dCD4-WT. For this ELISA

the antibody ibalizumab was used which binds to an epitope located opposite the gp120 and

MHC-II binding sites at the interface between domains 1 and 2 [97]. Binding of ibalizumab to

2dCD4-WT would directly indicate that the ibalizumab epitope is intact.

The second ELISA used an indirect-indirect detection of 2dCD4-WT, in which the primary an-

tibody detected a 2dCD4-WT induced epitope on gp120. The indirect-indirect ELISA used the

17b antibody which is an anti-gp120 antibody, binding to the CD4 induced (CD4i) epitope on

gp120. The CD4i epitope is only exposed on gp120 after CD4 has bound [35], therefore bind-

ing of the 17b antibody to gp120 indicates that the CD4 is able to bind to the CD4 binding site

(CD4bs) on gp120 thereby indirectly suggesting that the gp120 binding site on CD4 is intact.

With an increase in CD4 concentration it was expected that there would be an increase in the
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absorbance at 450 nm of the electrochemiluminescent substrate, corresponding to an increase

in primary antibody binding to their specific epitopes.

A second method used for testing the functionality of the 2dCD4-WT analogues was the pseudo-

viral neutralisation assay. During this assay the 2dCD4-WT analogues were used to inhibit the

binding of native CD4 from TZM-bl cells (containing a luciferase reporter gene) to a series of

tier 1 and 2 HIV’s with a non-HIV control [146]. With an increase in the 2dCD4-WT concentra-

tion it was expected that there would be a decrease in the absorbance at 450 nm as there would

be a reduction in HIV-1 tat mediated transcripton of the luc reporter gene, corresponding to

2dCD4-WT mediated inhibition of native CD4 binding to the viral Env protein (see Chapter 2

fig. 2.4). Also, it was predicted that the tier 1 viruses should be neutralised at lower concentra-

tions of CD4 than the tier 2 viruses.

A series of biophysical analyses were subsequently carried out on the CFPE-produced 2dCD4-

WT as a means of controlling for the quality of the protein produced. In-line with the functional

assays, standard and HETSOFAST one-dimensional proton nuclear magnetic resonance (1D

NMR) experiments were used as a biophysical assessment of the folding of the protein. Liq-

uid chromatography, electro-spray ionisation, time-of-flight mass-spectrometry (LC-ESI-TOF

MS) were used both as a means of testing the purity of the 2dCD4-WT analogues produced

in the different expression systems and to determine the percentage deuteration achieved us-

ing the CFPE system. N-terminal sequencing was used to confirm that the protein sequence

of the sample identified by mass spectrometry corresponded to that of 2dCD4-WT. Finally,

size-exclusion chromatography coupled to multi-angle laser light scattering and refractive in-

dex (SEC-MALLS-RI) was used to assess the polydispersity of the 2dCD4-WT and its stability

during freezing. Unfortunately, the NMR and SEC-MALLS-RI experiments could not be con-

ducted for comparison with the E. coli and B. choshinensis analogues because the sample yield

requirements were too high. Crystallisation of the 2dCD4-WT produced using CFPE was at-

tempted, however no crystals were produced and optimisation of the crystallisation process

was not carried out due to time constraints.
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4.3 Materials and methods

4.3.1 2dCD4 expression and purification

Protiated and deuterium-labelled 2dCD4-WT analogues were expressed and purified using the

E. coli, B. choshinensis and CFPE expression systems as outlined in chapter 3.

4.3.2 Gp120 expression and purification

Gp120 was also expressed and purified according to the protocols described in chapter 6.

4.3.3 Functional assays

Enzyme-linked immunosorbant assay

One maxisorb 96-well flat-bottomed plate (Nunc) per antibody (17b & ibalizumab) was coated

overnight at 4◦C with lectin (200 ng/well). The plates were blocked with 1% BSA (bovine

serum albumin) in PBS-T (phophate buffered saline-tween) for 1 hour at room temperature.

The CD4 variants were added to the plate (100-0.032 ng/well). 100 ng/well gp120 was added

to the plate. The CD4 was left to incubate with the gp120 for 1 hour at room temperature. The

CD4-induced epitope on gp120 was detected with the 17b antibody and the second domain of

2dCD4 with ibalizumab (30 ng/well). The primary antibodies were detected with 100 µL/well

anti-human ECL (enhanced chemiluminescence) HRP-linked (horse radish peroxidase) anti-

body from sheep (Sigma) at a starting concentration of 1:2 000. Washes were carried out using

1 X PBS-T. 100 µL TMB (3,3’,5,5’-tetramethylbenzidine, Thermoscientific) antibody was added

per well. After addition of 50 µL 1M HCl per well to stop the reaction, the absorbance at 450

nm was measured by an iMarkTM plate reader (BioRad).

Pseudo-viral neutralisation assay

A 1:3 serial dilution of the various 2dCD4-WT proteins was set up, in duplicate, in a 96-well

flat bottomed plate to a final volume of 195 µL with DMEM (Dulbecco’s modified eagle media)

growth media and 10% foetal bovine serum (FBS) (both GIBCO). The highest concentration
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used was 100 µg/mL and the lowest used concentration was 0.046 µg/mL. 25 µL was trans-

ferred from the dilution plate to each duplicate well across five 96-well flat bottomed plates,

each of which was used for one of five viruses. The following viruses were used for the assay:

6535, ZM53, DU156, SF162 and VSV-G, of which the latter is a non-HIV control. The viruses

were used at 4 000 TCID50/mL (tissue culture infectious dose 50%) with dilution in the growth

media stated above as necessary. 25 µL of diluted virus (200 TCID50/mL) was added to the

second lane of the plate, which acts as the virus -only control, and to all subsequent wells,

except for the cell-only control lane (first lane) of the plate.

The plates were incubated for 1 hour at 37◦C, 5% CO2. Meanwhile, the TZM-bl cells (NIH

AIDS reagents) were diluted to a cell density of 5x105 cells/mL in growth media at 70 µg/mL

DEAE dextran (Sigma). To prepare the cells, the growth media was discarded from the cell-

culture flask and the cells were washed with 10 mL 1 X PBS. The 1 X PBS was discarded and

the cells were treated with trypsin-EDTA (GIBCO) for 2 minutes at 37◦C, 5% CO2. 10 mL of

growth media was added to neutralise the trypsin and the cells were removed from the surface

of the cell-culture flask by pipetting. 10 µL of cell suspension was added to 10 µL countress dye

(Life Tech), of which 10 µL of this mixture was added to a countress cell counting slide (Life

Tech). The cells were counted and prepared to a cell count of 1x106 in the growth media. 186

µL DEAD dextran at a concentration of 7.5 mg/mL was added per 20 mL cell suspension. 20

µL of cell suspension was added to the cell-only control and then to all subsequent wells.

The plates were incubated at 37◦C, 5% CO2 for 24 hours. 130 µL growth media (DMEM sup-

plemented with 10% FBS) was added to each well and the plates were incubated for a further

24 hours at 37◦C, 5% CO2. To assess the luciferase activity and thus the inhibition of viral

entry into the TZM-bl cells 100 µL growth media was removed from each well, replaced by

100 µL Bright-Glo reagent (Promega) and incubated at room temperature for 2 minutes. The

Bright-Glo was then vigorously mixed by pipetting and 100 µL transferred to a white 96-well

flat bottomed plate (Corning). The luminescence of the reaction mixture in each white 96-well

plate was then measured using a GloMax Explorer (Promega).
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4.3.4 1D nuclear magnetic resonance

0.125 mM 2dCD-WT in 50 mM Tris-HCl pH 7.5, 300 mM NaCl with 5% sucrose was tested

by standard 1D NMR and 1D Heterogeneity-Selective Optimised-Flip-Angle Short-Transient

(HET-SOFAST) NMR using a 600 MHz spectrometer (Bruker) equipped with a standard HCN

probe, whose specifications are calibrated quarterly.

4.3.5 LC-ESI-TOF Mass-spectrometry

20 µL samples of hydrogenated 2dCD4-WT and deuterated 2dCD4-WT produced by CFPE

were prepared at concentrations of 2.10 and 2.26 mg/mL with and without 50mM DTT treat-

ment, respectively. 20 µL of E. coli expressed and refolded 2dCD4-WT and B. choshinensis ex-

pressed and secreted 2dCD4-WT were also provided with and without 50 mM DTT treatment

at concentrations of 1 mg/mL. The samples were provided to the IBS Mass Spectrometry plat-

form, Grenoble for LC-ESI-TOF MS analysis.

A 6210 LC/ESI-TOF mass spectrometer with an inline HPLC binary pump system (Agilent

Technologies) was calibrated in the mass-to-charge (m/z) 300-3 000 range with standard cali-

brants (ESI-L, Low concentration tuning mix, Agilent Technologies) before measurements and

mass spectra were recorded in the 300-3 200 m/z range.

Prior to analysis the samples were diluted in acidic denaturing conditions to a final concentra-

tion of 4 µM with solution A (0.03% trifluoroacetic acid [TFA] in water, Acros Organics). The

temperature of the samples was adjusted to 10◦C and the analysis was run by injecting 4 µL

of each sample. They were first trapped and desalted on a reverse phase-C8 cartridge (Zorbax

300SB-C8, 5 µm, 300 µm ID X 5 mm, Agilent Technologies) for 3 minutes at a flow rate of 50

µL/min with 100% solution A and then eluted with 70% solution B (95% acetonitrile, 5% wa-

ter, 0.03% TFA) at a flow rate of 50 µL/min for MS detection. The RP-C8 cartridge was then

re-equilibrated for 4 min with 100% solvent A at a flow rate of 50 µL/min.

MS acquisition was carried out in the positive ion mode with spectra in the profile mode. The

MS instrument was operated with the following experimental settings: ESI source temperature

was set at 300◦C; nitrogen was used as drying gas (7 l/min) and as nebulizer gas (10 psi); the

capillary needle voltage was set at 4 000 V. The spectra acquisition rate was 1.03 spectra/s. All
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solvents used were HPLC grade (Chromasolv, Sigma [apart from TFA, as mentioned previ-

ously]). The MS spectra were acquired and the data processed with MassHunter workstation

software (v. B.02.00, Agilent Technologies) and with GPMAW software (v. 7.00b2, Lighthouse

Data, Denmark).

4.3.6 N-terminal protein sequencing

200 picomoles of protiated 2dCD4-WT was supplied to the protein sequencing platform whereby

amino acid sequence determination based on Edman degradation was performed using an Ap-

plied Biosystems gas-phase sequencer model 492 (s/n: 9510287J). Phenylthiohydantoin amino

acid derivatives generated at each sequence cycle were identified and quantified on-line with

an Applied Biosystems Model 140C HPLC system using the data analysis system for protein se-

quencing from Applied Biosystems (software Procise PC v2.1). The PTH-amino acid standard

kit (Perkin-Elmer P/N 4340968) was used and reconstituted according to the manufacturer’s

instructions (900776 Rev D).

The procedures and reagents used were as recommended by the manufacturer. Chromatogra-

phy was used to identify and quantify the derivatised amino acid removed at each sequence

cycle. Retention times and integration values of peaks were compared to the chromatographic

profile obtained for a standard mixture of derivatised amino acids.

4.3.7 SEC-MALLS-RI

50 µL deuterated 2dCD4-WT at a concentration of 2.55 mg/mL was loaded via a pump (L2130,

Elite LaChrom) onto a Superdex 75 10/300 size-exclusion column (GE Healthcare) equilibrated

in 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 5% sucrose buffer, with an inline spectrophotome-

ter (L2400, Elite LaChrom). As the protein eluted from the column it passed through a flow

cell where the multi-angle laser light scattering signal was measured (Dawn Helios-u, Wyatt).

Finally, the refractive index was recorded by a refractometer (Optilab T-rEX, Wyatt) and the

protein collected by a fraction collector (BioRad). The data were analysed using the software

ASTRA6 (Wyatt Technology).



122 Chapter 4. Biophysical characterisation of cell-free expressed 2dCD4

4.4 Results

4.4.1 Enzyme-linked immunosorbant assay (ELISA)

The ELISA measurements show that all 2dCD4-WT variants are functional as demonstrated

by the CD4 concentration dependence on absorbance at 450 nm (fig. 4.1). Using the ibal-

izumab antibody it was possible to directly assess the conformational activity of 2dCD4-WT

analogues. The ibalizumab epitope is located at the interface between the first and second

domain of CD4, therefore requiring conformational integrity in order for the epitope to exist.

From the absorbance at 450 nm curves (figure 4.1a) it can be seen that there is a CD4 concentra-

tion dependence on ibalizumab binding, since the ibalizumab concentration was kept constant.

As the CD4 concentration increases, the absorbance at 450 nm increases because there are more

epitopes available for ibalizumab binding. This trend is apparent for all 2dCD4 variants.

FIGURE 4.1: Enzyme-linked immunosorbant assay of 2dCD4-WT produced in
different expression systems using a direct approach with the anti-CD4 anti-
body ibalizumab which binds directly to 2dCD4-WT (a) and an indirect approach
with the anti-gp120 CD4 antibody 17b which binds to the CD4-induced epi-
tope (b). Blue = E. coli expressed and refolded protiated 2dCD4-WT (h-2dCD4-
WT), orange = deuterated 2dCD4-WT produced using cell-free protein expres-
sion (CFPE), purple = h-2dCD4-WT from CFPE and green = B. choshinensis ex-
pressed and secreted h-2dCD4-WT. The absorbance of the reaction product be-
tween the secondary antibody conjugated horse radish peroxidase enzyme and
the TMB substrate at 450 nm is recorded as a function of the 2dCD4 concentration.
All proteins are functional shown by their 2dCD4-WT concentration dependence

on the absorbance at 450 nm.

The 17b ELISA was used to determine whether the gp120 binding site of the CD4 variants

was intact with an indirect approach. CD4 binding to gp120 should induce a conformational
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Ibalizumab 17b
No CD4 0.065 0.038

No primary antibody 0.043 0.039
No lectin 0.076 0.035

TABLE 4.1: No CD4, no primary antibody and no lectin control values for the
ibalizumab and 17b enzyme-linked immunosorbant assays.

change resulting in exposure of the CD4 induced site, detected by the 17b monoclonal antibody.

Figure 4.1b shows the average absorbance at 450 nm for duplicate samples as a function of

2dCD4-WT analogue concentration. The CFPE H-WT, D-WT and B. choshinensis WT variants

(orange, purple and green, respectively) exhibit very similar CD4 concentration dependence

on the absorbance at 450 nm (fig. 4.1b) and therefore the binding of 17b to the CD4i epitope.

Since both the 17b and gp120 concentrations were constant it can be said that the higher the

CD4 concentration, the higher the absorbance at 450 nm as more CD4i sites became available

for 17b binding. Measurements were also taken to control for the CD4 variants alone, gp120

alone, the lectin coating and the primary antibody.

While it appears that the 2dCD4-WT isoform produced in E. coli is slightly less active in both

ELISAs, the samples were only prepared in duplicate and therefore some caution is required in

extrapolating a correlation between the real binding efficiency of each 2dCD4-WT analogue. It

would not be appropriate to try to quantitatively analyse the difference in activity between the

various active 2dCD4 isoforms using statistics, given the qualitative way in which the ELISAs

were conducted i.e. with few repeats.

Table 4.1 lists the absorbance values for the control measurements without CD4, lectin and

primary antibody (for both the 17b and ibalizumab ELISA) all of which are considerably lower

than the absorbance values for the lowest CD4 concentration and can therefore be considered

as background absorbance values.

4.4.2 Pseudo-viral neutralisation assay

A pseudo-viral neutralisation assay was used to test the ability of the 2dCD4-WT analogues

to bind to viral Env, thereby inhibiting binding of native CD4 on TZM-bl cells. Five different

viruses were used: 6535, ZM53, DU156, SF162 and, a non-HIV control, VSV-G.
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As expected, the 2dCD4-WT analogues display weaker inhibition against the tier 2 viruses

(DU156 and ZM53), as shown both by their IC50 titers (table 4.2) and the neutralisation curves

(fig. 4.2b and c, respectively). This show that a higher concentration of CD4 is required to

neutralise 50% of the virus. For the ZM53 neutralisation assay all CD4 variants display similar

CD4 concentration dependent inhibition of the virus. However for the DU156 neutralisation

assay the E. coli and B. choshinensis 2dCD4-WT variants appear to be slightly less effective at

neutralising the virus.

Tier 1 Tier 2 Control
6535 SF162 ZM53 DU156 VSV-G

E. coli 1dCD4-D1 0.110 0.560 0.390 0.650 nil
E. coli 2dCD4-WT 0.160 0.020 1.110 1.880 nil
CFPE d-2dCD4-WT 0.088 0.014 0.532 0.538 nil
CFPE h-2dCD4-WT 0.089 0.012 0.404 0.592 nil
B. choshinensis 2dCD4-WT 0.170 0.020 1.040 2.090 nil

TABLE 4.2: The concentration (µM) at which 50% of the viruses were neutralised
by protiated 2dCD4-WT produced in E. coli, B. choshinensis, CFPE and deuterated
2dCD4-WT produced using CFPE. E. coli expressed domain 1 of 2dCD4-WT was
used as a control as the minimal binding domain for viral gp120 and VSV-G was

used as a non-HIV control.

The 2dCD4-WT analogues display stronger inhibition against the tier 1 viruses (SF162 and

6535) (fig. 4.2d and 4.2e, respectively), which was also expected. Compared to the tier 2 viruses,

a lower concentration of 2dCD4-WT is required to neutralise the virus (100% inhibition). This

can be observed in the neutralisation curves (fig. 4.2) as the curves plateau to 100% inhibition

at lower CD4 concentrations. There is an anomalous point in the E. coli 2dCD4-D1 curve for

the SF162 virus (fig. 4.2d) at a concentration of approximately 0.3 µM at which 0% inhibition

was observed. Since the rest of the 2dCD4-D1 curve follows the same trend line, it is likely that

this anomaly was due to pipetting error. The wells for this 2dCD4-D1 concentration may have

been missed when adding one of the reagents.

The VSV-G control virus shows residual neutralisation effects at higher CD4 concentrations

(fig. 4.2a). The IC50 values have not been extrapolated from the neutralisation data, had they

been, the values would be much higher than the highest concentration of the CD4 variants used

as not even 50% neutralisation was achieved with this non-HIV control. The small residual

"neutralisation" could be as a result of leaky expression of the luciferase gene.
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FIGURE 4.2: Pseudo-viral neutralisation assay was used to test the functionality of the recombinant 2dCD4-WT analogues produced
in different expression systems. Domain 1 of CD4 was used as a control (red line) as it is the minimal binding domain of viral gp120.
Protiated and deuterated CFPE 2dCD4-WT are shown in orange and purple, respectively. B.choshinesis expressed 2dCD4-WT is shown
in green and E. coli expressed 2dCD4-WT, in blue. CD4 concentration in µM was plotted against percentage inhibition of a series of
viruses: A. Control non-HIV virus VSV-G, B & C. Tier 2 viruses DU156 and ZM53, respectively. D & E. Tier 1 viruses SF162 and 6535.

All analogues are shown to be functional.
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4.4.3 One dimensional proton nuclear magnetic resonance (1D NMR)

1D NMR analysis was carried out to structurally assess the folding of 2dCD4-WT expressed

in the cell-free system. From the 1D NMR spectra in figure 4.3 important chemical shift dis-

persions can be observed in both the methyl proton region (0 to 1ppm) and the amide proton

region (8 to 10ppm) which are characteristic of a correctly folded protein. If 2dCD4-WT was not

correctly folded by CFPE, the 1D NMR spectra would have fewer features in the methyl and

amide proton regions. However, this is not the case as there are clear features in both proton

regions for 2dCD4-WT.

FIGURE 4.3: 2dCD4-WT produced using CFPE was subject to a standard 1D
NMR experiment to assess its folding. Important chemical shift dispersions can
be seen in the methyl and amide proton regions (0 to 1ppm and 8 to 10ppm,

respectively), indicative of a well-folded protein.

Additionally, 1D HETSOFAST analysis was carried out whereby the "compactness" of the pro-

tein is assessed. From the 1D HETSOFAST spectra in figure 4.4, the derived γNOE parameter is

calculated to be 0.40, revealing a dense proton network which corresponds to a correctly folded

protein conformation with a few flexible loops. According to the crystal structure [66, 67] these

flexible loops could be the C’C" loop of domain 1 and the AB and EF loops of domain 2.
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FIGURE 4.4: A 1D HETSOFAST experiment was carried out on 2dCD4-WT pro-
duced using CFPE to determine the compactness of the protein. The λNOE value

of 0.40 is indicative of a well-folded protein with a few flexible loops.

4.4.4 Mass spectrometry analysis of 2dCD4-WT

The expected molecular masses (as determined from the amino acid sequence by the ProtParam

tool available online from ExPASy [http://web.expasy.org/protparam/]) versus the experi-

mentally determined molecular masses of the 2dCD4-WT analogues produced in the different

expression systems are listed in table 4.3.

The molecular weight of the E. coli expressed and refolded 2dCD4-WT in the presence and

absence of 50 mM DTT are within the correct range for the fully oxidised and fully reduced

redox isomers at 21 296 vs 21 927 Da and 21 300 vs 21 299 Da for the expected and experimental

molecular mass in the absence and presence of DTT, respectively. There also appears to be a

dimer species present in both samples with and without the presence of 50 mM DTT which is

subject to the same reducing pattern. Interestingly, the DTT untreated sample has a molecular

mass 1 Da greater than that of the expected molecular mass for the fully oxidised isoform and
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Expression system Conditions Expected MW (Da) Experimental MW (Da)
E. coli protiated -DTT 21 296 21 297 & 42 593

protiated +DTT 21 300 21 299 & 42 597
B. choshinensis protiated -DTT 23 353 23 354

protiated +DTT 23 357 23 358
Cell-free protiated -DTT 22 687 57 197 & 22 697

protiated +DTT 22 691 22 569 & 22 700 & 22 727
deuterated -DTT 22 687 - 24 298 23 578 & 16 660
deuterated +DTT 22 691 - 24 302 -

TABLE 4.3: Expected molecular masses for the 2dCD4-WT analogues was deter-
mined using the ExPASy ProtParam online tool. The expected molecular mass
for the deuterated 2dCD4-WT is between that of the unlabelled analogue and the
expected perdeuterated mass in which all of the protiums are replaced by deu-
terium. The samples were tested with and without 50 mM DTT to control for the

contribution of the additional H to the molecular mass in the reduced form.

the DTT treated sample has a molecular mass 1 Da less than that of the expected molecular

mass for the fully oxidised isoform. This might suggest that one disulphide bond is oxidised

and that only one of the thiols in the other cysteine pair is reduced. However since this is

chemically very unlikely it is maybe an average of two forms and it is difficult to determine

the exact redox state of the sample. The three redox isomers are present on SDS-PAGE in the

E. coli expressed 2dCD4-WT so it may be as a result of smearing or averaging of the signal. In

any case, the addition of 50 mM DTT has a reducing effect on the protein. The same pattern is

observed in the dimeric species.

For the B. choshinensis expressed and secreted 2dCD4-WT, there is a similar pattern observed

as for the E. coli sample as the addition of DTT is causing a reduction event to occur. There is a

difference of 1 Da between the expected and experimental molecular masses, but a difference

of 4 Da between the DTT treated and un-treated samples, suggesting a shift from a completely

oxidised 2dCD4-WT to a completely reduced 2dCD4-WT. On SDS-PAGE the B. choshinensis

expressed 2dCD4-WT does not display the three bands corresponding to the fully oxidised,

partially reduced and fully reduced 2dCD4-WT bands (chapter 3), suggesting that the protein

is expressed in its fully oxidised form.

The situation is less clear for the cell-free produced 2dCD4-WT. Looking first at the protiated

2dCD4-WT, the molecular weight of the DTT untreated sample is 10 Da higher than that pre-

dicted by the ProtParam programme. This difference is too large to be accounted for by 1H and

too small to be accounted for by a missing amino acid. What is more likely is that there is an

amino acid substitution somewhere in the sequence of the protein. For example the difference
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in the molecular weight between Pro and Ser is 10 Da. Upon reduction by 50 mM DTT the

species increases in molecular mass by 3 Da corresponding to three protons. Since the cell-free

produced 2dCD4-WT displays the triple banding pattern observed by SDS-PAGE (chapter 3),

this 3 Da increase may be due to a smearing of the peak due to the presence of partially reduced

and fully reduced isoforms. In addition, there appears to be a higher molecular weight species

present at 57 197 Da which is too large to be a dimer and too small to be a trimer. Interestingly,

when treated with 50 mM DTT the 57 197 Da species disappears which suggests that it may be

a higher oligomeric structure associated through CD4’s disulphide bonds. In its place there are

the appearance of 22 727 Da and 22 569 Da species.

The experimental molecular mass obtained for the deuterated 2dCD4-WT produced in the cell-

free system in the absence of DTT was determined to be 23 578 Da. However, a second smaller

species at 16 660 Da was also identified. This second species could be a truncation product

produced during the cell-free reaction. With the addition of 50 mM DTT, the mass spectrometry

yielded no clear results. The raw mass-spectra are presented in appendix C.2.

Percentage deuteration of 2dCD4-WT produced using CFPE

Following the mass spectrometry results for the protiated and deuterated 2dCD4-WT produced

by the cell-free system, the data given in appendix C.2 was used to calculate the percentage

deuteration from the mass-spectrometry results. This was done by first calculating the number

of non-labile H by multiplying the number of non-labile H per amino acid present in the protein

e.g. 2dCD4-WT has six alanine residues and per alanine residue four of the hydrogens are non-

labile. This was done for all twenty amino acids and the result was summed. For 2dCD4-WT

expressed in the cell-free system there are 1 214 non-labile H. The repeat calculation was carried

out for the number of labile H of which there are 399 in 2dCD4-WT expressed in the cell-free

system. The protiated mass, the non-labile hydrogen deuterated mass and the per-deuterated

mass are therefore calculated to be 22 690 Da, 23 904 Da and 24 302 Da, respectively.

The percentage deuteration of 2dCD4-WT as calculated by mass-spectrometry realised in H2O

is thus 73% and is determined by the following formula:

[
1− Nnon−exH −

MMH2O − 1HMM
Nnon−exH

]
× 100 (4.1)
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Where Nnon−exH is the number of non-labile H, MMH2O is the experimental molecular mass

realised in H2O and 1HMM is the protiated molecular mass.

4.4.5 N-terminal protein sequencing of 2dCD4-WT

N-terminal protein sequencing was used to determine whether the truncated form identified

by mass-spectrometry at 22 569 Da was as a function of the methionine loss. There were two

sequences found: MAHMKKVV and AHMKKVVL of which both are in accordance with the

2dCD4-WT sequence and the second of which indicates that the methionine, coded for by the

start codon at the beginning of the sequence, is missing.

4.4.6 Size-exclusion chromatography coupled to multiple-angle laser light scatter-

ing and refractive index (SEC-MALLS-RI)

SEC-MALLS-RI was used as a quality control step to determine the molecular mass, poly-

dispersity and stability after freezing of the deuterated 2dCD4-WT produced in the cell-free

system. The SEC step prior to analysis by the UV, MALLS and RI detectors allows separation

of particles in the sample solution, by size. The subsequent UV absorbance at 280 nm allows

the elution of the deuterated 2dCD4-WT to be followed, while the light scattering can provide

information about the size of the particle as well as non-protein contaminations that would not

be picked up in the UV 280 nm trace. In addition, the refractive index provides information on

the polydispersity of the sample.

The light scattering spectrum of the d-2dCD4-WT prior to freezing (fig. 4.5a, green curve)

shows a large peak which elutes early, suggesting the particle is large in size. The UV and

refractive index peaks (grey and blue curves, respectively) in this region are small compared

to the main 2dCD4-WT peak at 11 mL. This suggests that this large species eluting early is

probably a small amount of protein aggregate as large particles scatter skew the scattering of

light disproportionately compared smaller particles. The large refractive index peak eluting

at around 17 mL (blue) is likely to correspond to the sucrose in the buffer, which has a large

refractive index.
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(A)

(B)

FIGURE 4.5: d-2dCD4-WT was tested using SEC-MALLS-RI before (A) and after
(B) flash freezing in liquid nitrogen and storage at -80◦C. An observed molecular
mass (purple curve) of 20 370 Da (+-1.7%) was determined from the refractive
index for the sample before freezing (blue curve). After freezing an observed
molecular mass (red curve) of 15 800 Da (+-2.4%) was determined from the re-
fractive index (brown curve). The light scattering for the before (green curve)
and after (orange curve) freezing indicate the presence of a small amount of large
particles. The UV absorbance at 280 nm allowed the elution of d-2dCD4-WT be-

fore (grey) and after (yellow curve) freezing to be followed.

Analysis of the main protein peak at 11mL elution volume gives a molecular mass of 20 370 Da

(+-1.7%) which including the +-5% error of the machine gives a molecular mass close to but not
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exactly the 23 578 Da expected for the deuterated 2dCD4-WT species. The observed molecular

mass is shown across the peak in purple.

The SEC-MALLS-RI experiment was repeated on a sample from the sample purification of

d-2dCD4-WT that had been flash frozen in liquid nitrogen and stored at -80◦C for 1 hour to

test the freezing capacity of the protein for storage purposes. The UV, light scattering and

RI spectra (fig. 4.5 (b), yellow, orange and brown curves, respectively) look very similar to

that of the sample which has not been frozen. There is still the presence of a small amount of

aggregation; however the molecular weight determined from the UV peak has a significantly

lower molecular weight of 15 800 Da (+-2.4%) (red line across the peak) compared to the 23

578 Da measured by mass spectrometry for the full length, deuterated 2dCD4-WT. Figure 4.6

depicts a zoomed-in view of the main d-2dCD4-WT peaks before and after freezing which

shows that the UV peak for the d-2dCD4-WT after freezing (yellow) is slightly displaced to the

right with respect to the UV peak for the d-2dCD4-WT before freezing (grey).

FIGURE 4.6: A zoomed-in view of the overlaid d-2dCD4-WT peaks. The after
freezing (yellow) UV peak is slightly displaced to the right with respect to the
before freezing (grey) UV peak which suggests that the protein is smaller. This is
reflected in the molecular mass as the d-2dCD4-WT before freezing (purple line)

has a higher molecular mass than d-2dCD4-WT after freezing (red line).

The mass spectrometry analysis of deuterated 2dCD4-WT also showed that there was a trun-

cated form produced which has a molecular weight of 16 660 Da, which is in agreement with
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the molecular mass determined by SEC-MALLS-RI. The mass spectrometry samples had previ-

ously been flash frozen in liquid nitrogen and stored at -80◦C. This suggests that d-2dCD4-WT

does not store well as a frozen sample.

4.5 Discussion

2dCD4-WT was produced using E. coli, B. choshinensis and cell-free protein expression systems

as described in chapter 3. The yields of 2dCD4-WT produced in the in vivo bacterial expres-

sion systems were insufficient for the small-angle scattering studies to be carried out (chapter

6). This chapter is therefore restricted to the results of biochemical and biophysical analyses

conducted on the protiated 2dCD4-WT (h-2dCD4-WT) and deuterated 2dCD4-WT (d-2dCD4-

WT) produced from cell-free synthesis and where possible compared these to h-2dCD4-WT

expressed using bacterial expression systems.

4.5.1 2dCD4-WT produced using cell-free synthesis is functional and correctly folded

In order to provide an extra layer of validity to the physiological conclusions drawn from struc-

tural data it was necessary to assess the functionality, and folding, of the purified recombinant

proteins used in the study. If the protein in question is not functional or improperly folded,

then the meaningfulness of the structural conclusions drawn are questionable. This becomes

particularly important when using low resolution structural techniques such as small angle

X-ray and neutron scattering where there are risks in interpretation. To this end, ELISA and

pseudo-viral neutralisation assays were used to demonstrate that the purified, recombinant

2dCD4 analogues produced using the different expression systems are functional. Addition-

ally 1D-NMR was used to measure the extent of folding of cell-free produced 2dCD4-WT.

The ELISA results show that all 2dCD4-WT analogues are functional as demonstrated by the

CD4 concentration dependence on absorbance at 450 nm. For the ibalizumab ELISA this im-

plies that as the concentration of 2dCD4 increases more ibalizumab epitopes become available,

increasing ibalizumab binding, as one would expect. This results in more of the secondary

antibody being able to bind as there is a higher concentration of ibalizumab present and there-

fore there is greater amplification of the reporter signal by the TMB substrate reaction with the
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HRP conjugated to the secondary antibody. The 17b ELISA indirectly assesses the functional-

ity of CD4 because the antibody binds to the CD4 induced epitope on gp120, and not the CD4

itself, however the implications for the avidity of the reporter signal are the same as for the

ibalizumab ELISA.

Whilst it appears that the 2dCD4-WT isoform produced in E. coli is slightly less functional in

both ELISAs, the samples were only prepared in duplicate and therefore the sample size is

not large enough to draw accurate conclusions from statistics which could be employed with a

larger sample pool. It would not be appropriate to try to quantitatively analyse the difference in

activity between the various, active, 2dCD4 isoforms due to the qualitative nature with which

the ELISAs were conducted (see 4.5.3 for how this experiment could be developed).

Similarly to the ELISA data the pseudo-viral neutralisation assay shows that all 2dCD4 ana-

logues are functional as indicated by the CD4 concentration dependence on the absorbance at

450 nm. As the CD4 concentration increases there is a decrease in the reporter signal. As ex-

pected, the tier 1 viruses: 6535 and SF162 are more easily neutralised than the tier 2 viruses:

ZM53 and DU156 shown both by the shift to the right in the curves from the tier 1 viruses to the

tier 2 viruses and thus the resulting IC50 values which demonstrate that a higher concentration

of CD4 is necessary to neutralise 50% of the virus. As with the ELISA data it is inappropriate

to attempt to draw statistical significance from the data as the sample size is too small and the

assays were conducted in a qualitative rather than quantitative manner (see 4.5.3 for develop-

ment of this experiment).

Due to the sample requirements for 1D-NMR (600 µL of≥ 100 µM) it was not possible to test the

E. coli and B. choshinensis expressed 2dCD4-WT using this technique. The classical 1D-NMR ex-

periment showed that the h-2dCD4-WT produced important chemical shifts in both the methyl

and amide proton regions which are characteristic of a well-folded protein. Moreover, the 1D

HETSOFAST experiment yield a λNOE value of 0.4 which is indicative of a well-folded, com-

pact protein with a few flexible loops which are possibly attributable to the C’C" loop in D1

and the AB, EF loops in D2 of 2dCD4-WT.

The ELISA and pseduo-viral assays are essentially measures of folding as well as the 1D-NMR

technique, as the ibalizumab and 17b antibodies rely on structural epitopes at the D1D2 in-

terface of CD4 and the CD4 induced epitope of gp120, respectively. Taken with the 1D-NMR
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results, it can be concluded that the h-2dCD4-WT and d-2dCD4-WT analogues are folded and

functional.

4.5.2 Truncation products are produced using cell-free synthesis

Whilst the functional and folding studies of 2dCD4-WT gave a clear picture of the function-

ality and compactness of 2dCD4-WT. The SEC-MALLS-RI, mass-spectrometry and N-terminal

sequencing imply that the cell-free system produced truncated forms of 2dCD4-WT along with

a correctly sized 2dCD4-WT. Due to the sample requirements of SEC-MALLS-RI (≥ 2 mg/mL)

it was not possible to carry out experiments on the E. coli and B. choshinensis expressed 2dCD4-

WT using this technique.

The mass-spectrometry results for the 2dCD4-WT analogues produced by bacterial expression

systems in the absence of DTT yielded molecular masses which corresponded to the expected

values as determined using the online ExPASy programme. With the addition of DTT, reduc-

tion events can be observed for both analogues. The results are suggestive of partial reduction

for the E. coli analogue which may be caused by the three redoximers which are present in this

sample as seen by SDS-PAGE (chapter 3), introducing a broadening of the peak and a smearing

of the signal. This is not seen for the B. choshinensis expressed 2dCD4-WT suggesting that the

protein is expressed in its completely oxidised form and completely reduced by the addition

of 50 mM DTT. The E. coli expressed 2dCD-4WT presents a dimeric species in addition to the

monomeric species in both the presence and absence of 50 mM DTT.

A reduction event similar to that observed for the E. coli expressed 2dCD4-WT is seen for the

protiated analogue produced using CFPE. However the unreduced sample also contains a 57

kDa species which does not correspond to a dimer nor a trimer. This 57 kDa species could be

a non-CD4 contaminant or an oligomerisation of smaller truncated forms of the protein. Upon

reduction the higher molecular weight species disappears but two additional species close to

the expected molecular mass of 2dCD4-WT appear. One of these species looked as if it could

be caused by loss of the N-terminal methionine.

To test this hypothesis, N-terminal sequencing of the first 6 N-terminal amino acids was carried

out which demonstrated that there were indeed two N-terminal sequences of which one was

missing the first methionine residue. This loss of methionine could be explained by the action
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of the methionine aminopeptidase enzyme (MetAP) which performs the hydrolytic cleavage of

N-terminal methionine from newly synthesised polypeptides. MetAP1, present in eubacteria

such as E. coli, performs this hydrolytic cleavage co-translationally as the newly synthesised

polypeptide is produced from the ribosome. In addition, the 2dCD4-WT sequence fulfills the

sequence requirement of MetAP1 in which the P1’ position should be an amino acid residue

with a short R group such as alanine [194, 195]. E. coli derived MetAP1 enzyme which may

have been present in the CFPE lysate preparation since the cell-free lysates were made from E.

coli cultures.

Under non-reducing conditions there are two species present in the d-2dCD4-WT sample, of

which one corresponds to a deuterated full-length monomeric 2dCD4-WT species and the sec-

ond appears to be a truncated form resolving at 16 660 Da. From the difference between the

molecular mass between the protiated and deuterated forms, the percentage deuteration of

the labile-H was calculated to be 73%. Proteins that are match-out labelled using the standard

deuteration protocols developed by the Deuteration Laboratory (D-Lab) at the ILL’s Life Sci-

ences Group are approximately 75% deuterated at their labile-H positions and can be matched-

out in 100% D2O [171]. Therefore, 73% deuteration indicated that the match-out point of the

CFPE produced d-2dCD4-WT was likely just under 100% (section 6.4.2). Upon reduction, there

were no clear peaks (appendix C.2) from which to determine the molecular mass of the species

present in the reduced d-2dCD4-WT sample.

The SEC-MALLS-RI experiment showed that there was a small amount of large particles elut-

ing early from the column which was attributed to protein aggregates. The main d-2dCD4-WT

peak of the sample before freezing presented a molecular mass under that expected for the

deuterated protein. Whereas the main peak of the d-2dCD4-WT after flash freezing in liquid

nitrogen and storage at -80◦C presented a molecular mass of approximately 16 kDa which cor-

relates with the mass-spectrometry result showing a truncation product at 16 kDa. The molec-

ular mass of the d-2dCD4-WT before freezing may be of a slightly lower molecular mass than

expected because the resolution of the column may not have allowed sufficient separation of

full-length d-2dCD4-WT at 23 kDa and the 16 kDa truncated species or the 16 kDa species may

be co-purifying with the 23 kDa species.
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E. coli derived cell-free lysates have been shown to be susceptible to the translation of 3’-

degraded mRNA transcripts, the release of incomplete translation products and accumula-

tion of cleaved or partially degraded proteins [196] due to the lack of chaperone and degra-

dation mechanisms. The range of molecular weight species of CFPE produced 2dCD4-WT

would suggest that a number of truncation products had accumulated during the cell-free re-

action, which may contribute to the aggregation seen in the SEC-MALLS-RI. Additionally, as

the mass-spectrometry results were collected on a sample which had also been flash-frozen in

liquid nitrogen, these results suggest that the protein cannot withstand freeze-thaw treatment.

4.5.3 Future work

The ELISA and pseudo-viral neutralisation assays could be repeated with a larger sample size

in order to be able to use statistical testing to draw meaningful conclusions about the specific

activity of the different 2dCD4-WT analogues. By conducting the experiments in a more quan-

titative way it would be possible to determine which of the analogues has the highest specific

activity and whether the difference between the activity of the analogues is significantly dif-

ferent or not. It would also be interesting to repeat this experiment using the 2dCD4-D2A

mutant produced using the different expression systems. Since this isoform is the supposed

gp120 binding protein it should display higher functionality that 2dCD4-WT, which is a mix-

ture of the three redoximers, at the same concentration. In addition to assessing the function

by ELISA and pseudo-viral neutralisation assay, future studies could involve determination of

the affinity of the specific 2dCD4 isoforms for gp120. The determination of the Kd (dissociation

constant) for each isoform could also provide information as to whether the domain 2 knockout

(D2A) variant has a higher affinity for gp120 than the WT.

The mass-spectrometry experiment could be repeated using CFPE produced 2dCD4-WT that

had not first been frozen to determine whether production of CFPE truncation products is truly

aggravated by the freezing or freeze-thaw process. The protein could be sequenced entirely

rather than just sequencing the 6 N-terminal residues to determine at what point in the se-

quence the truncation occurs at or whether there are many more truncation products. It would

be useful to assess whether co-expression of chaperone proteins would reduce the production

of truncated proteins, or if use of CFPE lysates derived from an E. coli strain such as BL21

Star™(DE3) would improve mRNA stability.
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Finally, if higher yields of the E. coli and B. choshinensis analogues could be obtained, it would be

interesting to see how the SEC-MALLS-RI and NMR experiments differed between the 2dCD4-

WT analogues produced using the different expression systems. The instability of the 2dCD4-

WT analogues produced by the bacterial expression systems is not rationalised by their perfor-

mance in the assays to test the functionality; so it would be interesting to see whether the NMR

yields a less folded structure compared to the CFPE produced protein and whether there are

more aggregates by SEC-MALLS-RI.

4.6 Conclusions

Cell-free protein synthesis produces functional protiated and deuterated 2dCD4-WT as deter-

mined by ELISA, pseudo-viral neutralisation assay and 1D NMR. However, mass-spectrometry

and SEC-MALLS-RI results suggest that the protein is produced in a truncated 16.6 kDa form in

addition to the full-length 2dCD4-WT 22.6 kDa form which may be aggravated by freezing the

protein for storage. Using mass-spectrometry the percentage deuteration achieved using CFPE

was calculated to be 73% meaning that the match-out point for the d-2dCD4-WT is expected to

be under 100% D2O.
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Chapter 5

The effect of disulphide bond ablation

on 2dCD4-WT structure

5.1 Abstract

Wild-type two domain CD4 is a redox active protein which resolves at different apparent

molecular weights when analysed by non-reducing SDS-PAGE depending on its redox state.

This chapter describes how the redox state of 2dCD4-WT affects its hydrodynamic volume by

size-exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS). By analysing

SEC UV absorbance at 280 nm spectra, fully reduced 2dCD4-WT (2dCD4-R2) was found to

have a larger hydrodynamic volume than the redoximer mixture of fully oxidised 2dCD4-WT

(2dCD4-Ox) and partially reduced 2dCD4 in which the second domain disulphide bond is

reduced (2dCD4-R1). Contrasting with this, 2dCD4-Ox was found to have a larger hydrody-

namic volume than 2dCD4-R1 which alludes to a difference in the role between the structural,

stabilising disulphide bond in domain 1, and the allosteric, destabilising disulphide bond in

domain 2.

A shift in the distribution of the redoximers was observed by SDS-PAGE analysis of a DTT

titration on 2dCD4-WT expressed by E. coli and refolded from inclusion bodies and cell-free

protein expressed (CFPE) 2dCD4-WT. It was found that 2dCD4-WT produced using E. coli and

CFPE systems gave different initial starting distributions of the redoximers. CFPE produced

2dCD4-WT seeming to favour the R1 redoximer with E. coli producing a more even distribution

of 2dCD4-Ox and -R1.
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The DTT titration and SEC approaches to the isolation of the 2dCD4-WT redoximers were then

applied to a series of SAXS experiments to determine whether the shift in the SEC elution

volume as a function of disulphide bond reduction of 2dCD4-WT, translates to a difference in

the radius of gyration (Rg) and maximum dimension (Dmax) as determined by SAXS.

5.2 Introduction

As described in Chapter 1, 2dCD4 has been shown to be a redox active protein due to its al-

losteric disulphide bond in domains 2. Cerutti et al. 2014[63] showed that the different redox

isomers (redoximers) of 2dCD4-WT resolve at different apparent molecular weights as shown

by non-reducing SDS-PAGE (fig. 5.1). They correlated the apparent molecular weights of the

redox isoforms of 2dCD4-WT to the redox state of the disulphide bonds by generating a panel

of 2dCD4 disulphide knockout variant proteins in which the cysteine residues of the disulphide

bonds were substituted for alanine residues. In doing so they found that viral gp120 binds to

both the 2dCD4-D1A and -D2A variants (domain 1 Cys to Ala and domain 2 Cys to Ala muta-

tion) which mimic 2dCD4 reduced in its first and second domains, respectively (fig. 5.2). With

the metastable allosteric disulphide bond in domain 2, physiologically, only 2dCD4 reduced

in its second domain (rather than its first domain) is likely to exist. Table 5.1 gives a graphical

explanation of the 2dCD4-WT redox isomers and the cysteine to alanine variant proteins which

mimic these.

During recombinant expression, 2dCD4-WT is produced in a mixture of redox isoforms: fully

reduced (2dCD4-R2), domain 2 reduced (2dCD4-R1) and fully oxidised (2dCD4-Ox). In order

to be able to study the 2dCD4-R2 redoximer, which is the isoform uniquely binding the HIV-1

gp120 surface receptor, it is necessary to isolate it from the other isoforms of 2dCD4-WT. As the

disulphide bonds in 2dCD4-WT are sensitive to treatment with DTT [63], an initial DTT titra-

tion was tested to assess the effect of DTT concentration on the distribution of the redoximers

of E. coli expressed and refolded 2dCD4-WT. It was expected that as the DTT concentration

increased that there would be a shift in the distribution of the redox isomers in favour of the

2dCD4-R1 and -R2 forms.
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FIGURE 5.1: Reducing (top panel) and non-reducing (bottom panel) SDS-PAGE
with Coomassie blue staining analysis of 2dCD4-WT, 2dCD4-D1A (domain 1 Cys
to Ala substitution), 2dCD4-D2A (domain 2 Cys to Ala substitution) and 2dCD4-
C∆A (domain 1 and 2 Cys to Ala substitution). Oxidised 2dCD4-WT (2dCD4-Ox,
red) resolves to an apparent molecular weight of 22 kDa under non-reducing con-
ditions and 28 kDa when fully reduced. 2dCD4-D1A mimics 2dCD4-WT reduced
in domain 1 and resolves to an apparent molecular weight of 28 kDa both with
and without 50 mM DTT treatment. 2dCD4-D2A mimics 2dCD4-WT reduced in
domain 2 and resolves to an apparent molecular weight of 25 kDa under non-
reducing conditions and 28 kDa when fully reduced. 2dCD4-C∆A mimics fully
reduced 2dCD4-WT (2dCD4-R2, yellow) and resolves to 28 kDa. Therefore, the
band at 25 kDa above that of 2dCD4-Ox in 2dCD4-WT under non-reducing con-
ditions (bottom panel) can be attributed to 2dCD4-R1 (blue) since 2dCD4-D2A
resolves to the same apparent molecular weight and not 2dCD4-D1A. Adapted

from: [63]
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(A)

(B) (C)

FIGURE 5.2: 2dCD4-WT and Cys to Ala variant protein binding to gp120 was
analysed by SDS-PAGE. (A) gp120 pre-bound, bound and unbound 2dCD4-WT
was analysed by non-reducing SDS-PAGE. In the pre-bound and unbound frac-
tions 2dCD4-Ox and 2dCD4-R1 are observed. In the gp120-bound fraction only
2dCD4-R1 can be observed. 2dCD4-WT and the Cys to Ala variant proteins
were analysed by SDS-PAGE before (B) and after (C) gp120 binding. gp120
binds to both 2dCD4-D1A and 2dCD4-D2A but only binds to 2dCD4-R1 in wild-
type 2dCD4. Since 2dCD4-D1A (2dCD4 reduced in its first domain) is a non-
physiological redox isoform due to the instability induced by reduction of the
structural disulphide bond in domain 1, it was deduced that 2dCD4-WT binds
uniquely to 2dCD4-R1 in which the second domain disulphide bond is reduced.

Adapted from: [63]
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Function 2dCD4-WT redox isoform 2dCD4 disulphide bond
knockout variant

Resting T-cell 2dCD4-Ox

Binds gp120 2dCD4-R1 2dCD4-D2A

Unphysiological 2dCD4-R2 2dCD4-C∆A

Binds gp120 (unphysiological) 2dCD4-D1A

TABLE 5.1: 2dCD4-WT exists in three different redox forms: fully oxidised
(2dCD4-Ox), reduced in domain 2 (2dCD4-R1) and fully reduced (2dCD4-R2).
The disulphide bonds can be knocked out by substituting the Cys residues for
Ala residues to produce a: domain 2 disulphide bond knockout (2dCD4-D2A),
a domain 1 and 2 disulphide bond knockout (2dCD4-C∆A) and a domain 1
disulphide bond knockout (2dCD4-D1A). The table shows their corresponding
2dCD4-WT redox isoform equivalents and a schematic to help visualise the re-
dox state of the Cysteines and the disulphide bond knockout variant. Domain 1

is shown in green and domain 2 is shown in blue.
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5.2.1 Previous studies of 2dCD4-WT by SAXS

2dCD4-WT has previously been studied by SAXS in experiments carried out by Guttman et al.

2012 [72], Ashish et al. 2008 [118] and Ashish et al. 2006[197]. Ashish et al. 2006 [197] measured

2dCD4-WT and gp120 alone and in complex to gain an understanding as to how the confor-

mation of gp120 changes upon 2dCD4 binding. Their later study in 2008 involved looking at

how the structure of 2dCD4 and 4dCD4 changes as a function of its ligand: gp120 and the tick

saliva immunosuppressor Salp15. Guttman et al. 2012 [72] studied fully glycosylated gp120

and 2dCD4 in isolation and in complex to look for conformational changes in gp120. In each

experiment the 2dCD4 was acquired from the NIH AIDS reagents programme, which may be

testament to the difficulty in producing good quality 2dCD4 for SAXS, by the authors. The

resulting size parameters from these experiments reported for 2dCD4 are listed in table 5.2.

Publication Rg ((Å) from Guinier) Rg ((Å) from P(r)) Dmax (Å)

Ashish et al. 2006 and 2008 22.3 – 75

Guttman et al. 2012 20.9 21.7 73

TABLE 5.2: Previously reported size parameters Rg and Dmax for 2dCD4-WT as
determined by SAXS.

In this study, SAXS data were collected from 2dCD4-WT produced using the CFPE to identify

how reduction of the disulphide bonds in domain 2 affects the structure of the protein. It was

also interesting to compare the size parameters obtained with those already published.

5.2.2 Experiments to test the effect of reduction on 2dCD4-WT structure

Since the different redoximers resolve at different apparent molecular weights during non-

reducing SDS-PAGE, it was reasoned that it should be possible to separate the redox isomers

of E. coli expressed 2dCD4 by size-exclusion chromatography. SDS-PAGE functions by dena-

turing proteins and separating them based on their mobility through a polyacrylamide ma-

trix. SDS is used to provide a charge to the protein. The separation is thus based on their

charge which corresponds directly to their mass. However, it has been shown that under non-

reducing conditions, the presence of disulphide bonds can increase the mobility of a protein
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through the matrix which is attributed to the protein having a smaller (denatured) hydrody-

namic volume [198]. SEC also functions by separating proteins based on their mobility through

a polymer matrix and thus hydrodynamic volume, although this time in their native configu-

ration. The size-exclusion column contains pores which smaller proteins are able to enter, thus

larger proteins elute first as they are not able to enter the pores. Applying these principles to

the 2dCD4-WT redoximers it was expected that the 2dCD4-Ox form would have the smallest

hydrodynamic volume.

Following the biochemical analyses carried out on E. coli expressed 2dCD4-WT, SAXS anal-

yses were carried out on 2dCD4-WT produced using the cell-free protein expression system

to assess the effect of DTT, and therefore reduction, on the size parameters Rg and Dmax of

2dCD4-WT. CFPE produced 2dCD4-WT was used for the SAXS analyses as higher yields were

obtainable using this system, thus allowing for structural analyses.

In a first experiment, an initial concentration series of 2dCD4-WT in the absence of DTT was

tested. This would allow limited sample supply to be conserved for subsequent experiments

by avoiding repeating a concentration series (necessary for SAXS analysis to extrapolate to

zero concentration) for each DTT concentration of the DTT titration experiment. The optimal

concentration selected was a compromise between signal-to-noise ratio and mitigating inter-

particle effects. After which, the DTT titration was carried out using the robotic sample changer

on BM29 at the ESRF and it was predicted that with an increase in the DTT concentration, the

size parameters (Rg and Dmax) would increase.

Online SEC-SAXS was carried out on a 2dCD4-WT sample, produced using the cell-free system,

in the presence and absence of 50 mM DTT to see if the reduction by DTT caused a shift in the

presence of the UV 280 nm spectra peaks and a change in the size parameters Rg and Dmax as

derived from the Guinier analysis and pair-distance distribution function. Finally, SEC-MALLS

was used to assess the quality of the samples for aggregation, to observe how the position of

the UV 280 nm and light scattering peak shifts with respect to the elution volume and how the

molecular weight across the peaks changed upon reduction of 2dCD4-WT.
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5.3 Materials and Methods

5.3.1 Recombinant protein expression and purification

2dCD4-WT for the DTT titration and SEC redoximer purification was expressed in E. coli strain

BL21*(DE3) (Invitrogen) and purified from insoluble exclusion bodies by a denaturing nickel

IMAC protocol followed by a dialysis refolding protocol as detailed in Chapter 3 section 3.3.2.

2dCD4-WT for the SAXS DTT titration and redox SEC-SAXS was expressed and purified from

the cell-free protein expression system as described in Chapter 3 section 3.3.6.

5.3.2 DTT titration

7.25 µg 2dCD4-WT was incubated with the following concentrations of DTT for 1 hour at room

temperature: 0.1, 0.25, 0.5, 1.0, 5.0 and 10.0 mM with a 0 mM DTT control. Each sample was

then incubated with 25 mM iodoacetamide for 30 minutes at room temperature. 4 X non-

reducing LDS-loading buffer (Life Technologies) was added to each reaction mix and loaded

onto a 12% bis-Tris SDS polyacrylamide gel (Life Technologies).

5.3.3 SEC Purification of 2dCD4-WT redoximers

2dCD4-WT SEC Purification

A 120 ml preparative grade SuperdexTM 75 16/600 column (GE Healthcare) was equilibrated

in 1 X PBS and 2 mL of 1.4 mg/mL 2dCD4-WT was loaded onto the column and run at a flow

rate of 0.25 mL/min. 1 mL fractions were collected for analysis on non-reducing SDS-PAGE.

Superdex 75 16/600 calibration

The SuperdexTM 75 16/600 column was calibrated using the following protein standards (GE

Healthcare): 3 mg/mL apoprotinin (6.5 kDa), 3 mg/mL ribonuclease (13.7 kDa), 3 mg/mL

carbonic anhydrase (29 kDa), 4 mg/mL ovalbumin (43 kDa) and 3 mg/mL conalbumin (75

kDa).
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The protein standard mix was prepared in 1 X PBS. 500 µL was injected onto the column using

a 1 mL loop and the UV 280nm trace was followed as the proteins eluted at a flow-rate of 1

mL/min.

SDS-PAGE analysis of fractions

The 2dCD4-WT elution fractions from across the peak of the size-exclusion spectrum were

analysed by SDS-PAGE using a 12% Bis-Tris gel (Novex).

5.3.4 SAXS analysis of the effect of DTT on the size of 2dCD4-WT

SAXS was carried out on the small-angle scattering beamline BM29 dedicated to biological

samples at the ESRF.

Concentration series

Protiated 2dCD4-WT was purified using the CFPE method described in Chapter 3 section 3.4.4.

2dCD4-WT was concentrated to 8.1 mg/mL and a dilution series was prepared in 50 mM Tris-

HCl, 300 mM NaCl, 5% sucrose. The final concentrations measured were: 8.1 mg/mL, 3.9

mg/mL, 1.8 mg/mL, 1.0 mg/mL. 55 µL of each sample was added to PCR tubes which were

loaded into the robotic sample changer. 50 µL sample was flowed through the capillary and

exposed to the X-ray beam. 10 frames were measured at a rate of 1 s/frame.

DTT titration

The sample at 3.9 mg/mL produced data with a good compromise between signal to noise

ratio and inter-particle effects (see section 5.4.3) and therefore this concentration was chosen to

move forward with the DTT titration experiment. 247.5 µg 2dCD4-WT was used for each DTT

concentration. DTT was added to a final concentration of: 0 mM, 1 mM, 2.5 mM, 5 mM, 10 mM,

25 mM, 50 mM and the volume topped up to 55 µL with 50 mM Tris-HCl, 300 mM NaCl, 5%

sucrose (to increase the stability of the 2dCD4-WT). The samples were transferred to PCR tubes

and loaded into the robotic sample changer. 50 µL sample was flowed through the capillary
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and exposed to the X-ray beam. 10 frames were measured at a rate of 1 s/frame, as described

previously.

A small amount of sample was conserved to run on a 4-12% Bis-Tris SDS-PAGE gel. 18 µL was

loaded with 6 µL 4 X non-reducing loading buffer and 20 µL was loaded onto the gel. The

2dCD4-WT was visualised by Coomassie blue staining.

Redox SEC-SAXS

A SuperdexTM 75 Increase 3.2/300 (GE Healthcare) was equilibrated in 50 mM Tris-HCl, 300

mM NaCl, 5% sucrose. 55 µL (at 4.5 mg/mL) 2dCD4-WT was loaded onto the column and the

protein eluted at a flow rate of 0.1 mL/min into the capillary. The SEC was run for 30 minutes

and the frames were taken every second. The column was then re-equilibrated in the same

buffer containing 50 mM DTT. 55 µL 4.5 mg/mL 2dCD4-WT which had been pre-treated with

50 mM DTT for 30 minutes was then loaded onto the column and the measuring process was

repeated as previously stated.

Treatment of the data

Initial data treatment was done using the program PRIMUS [199] of the ATSAS suite of soft-

ware, whereby the multiple frames taken during the experiment per samples were averaged

after inspection for radiation damage using the data comparison function. Frames with a p-

value ≤ 0.05 were excluded from the averaging, as the difference was found to be statistically

significant. The p-value refers to the probability of the null hypothesis (the SAS curves are the

same) being true. At p-values of 0.05 or less the null-hypothesis is rejected and therefore the

curves are considered to be significantly different. Had the p-value been larger than 0.05 then

there would be less evidence to reject the null-hypothesis so the data would not be considered

significantly different. Post-averaging, the buffer scattering curves were subtracted from those

of the sample to yield the scattering arising from the protein samples, only. After subtraction,

the resulting curves from the concentration series were merged. Merging of the curves allows

the low-q region to be relieved of any inter-particle effects driven by high concentrations and

to increase the signal to noise ratio at high-q where the signal is low and the noise is high at

low concentrations.
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Buffer subtraction of SEC-SAXS data was carried out using the SCÅTTER software [200]. The

scattering instensity I(q) was plotted against the frame number which gives a similar looking

profile to a SEC chromatogram. 50-100 buffer curves were selected from a flat section of the

profile corresponding to buffer scattering. Auto-Rg was used to plot the Rg across the scattering

peak of the sample. Frames were selected where the Rg was constant, indicating the similarity

in particle size.

After the initial data treatment, the PRIMUS [201] and GNOM [202] programmes were used to

determine the Guinier derived I(0), Rg and the real space Rg, respectively.

SEC-MALLS-RI

55 µL 4.5 mg/mL 2dCD4-WT was measured by SEC-MALLS-RI in 50 mM Tris-HCl, 300 mM

NaCl, 5% sucrose. The instrument set-up comprised: a pump (L2130, Elite LaChrom) con-

nected to a Superdex 75 10/300 size-exclusion column (GE Healthcare), with a spectropho-

tometer (L2400, Elite LaChrom) to follow the absorbance at 280 nm, a multi-angle laser scatter-

ing device (Dawn Helios-u, Wyatt) and a refractometer (Optilab T-rEX, Wyatt). The software

used for analysis was ASTRA6 (Wyatt Technology). 2dCD4-WT in 0 mM DTT was run at a flow

rate of 0.5 mL/min and as it eluted off of the column the light scattering, refractive index and

UV absorbance at 280 nm was recorded. The column was then equilibrated in the same buffer

with the addition of 50 mM DTT. 55 µL 4.5 mg/mL 2dCD4-WT treated with 50 mM DTT was

loaded onto the column to repeat the experiment.

5.4 Results

5.4.1 DTT titration causes a shift in E. coli expressed and refolded 2dCD4-WT re-

doximer distribution

A dithiothreitol (DTT) titration was used to observe the influence of an increase in reducing

agent concentration on the band intensity and therefore the isoform of 2dCD4-WT present.

The SDS-PAGE analysis (fig. 5.3) shows that with a titration of increasing concentration of DTT

there is a shift in band intensity from the 22 kDa band to the 25 kDa band and to the 28 kDa

band. These bands correspond to the fully oxidised (OX, red arrow), partially reduced (R1,
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blue arrow) and fully reduced isoforms (R2, yellow arrow), respectively. This suggests that a

redox shuffling event has occurred during which a disulphide bond between a cysteine thiol

pair within 2dCD4-WT is reduced in the presence of DTT. With higher concentrations of DTT

it is expected that the 2dCD4-WT could be entirely reduced in which case only the 2dCD4-R2

form would be present and only one band at 28 kDa would be observed.

FIGURE 5.3: E. coli expressed 2dCD4-WT was treated with a 0, 0.1, 0.25, 0.5, 1.0,
5.0 and 10.0 mM DTT (lanes 2-8) to observe the effect of DTT on the distribution
of redox isomers. As the DTT concentration increases there is a shift in the band
intensity away from the 2dCD4-OX (red arrow) species in favour of the 2dCD4-
R1 and 2dCD4-R2 species (blue and orange arrows, respectively). Lane 1 shows

the molecular weight marker with the molecular weight in kDa.

5.4.2 Partially reduced 2dCD4-WT has a smaller hydrodynamic volume than oxi-

dised 2dCD4-WT

SEC was used to purify the redoximers of 2dCD4-WT according to their apparent molecular

weight, as observed by non-reducing SDS PAGE. Figure 5.4a shows the size-exclusion chro-

matogram for the 2dCD4-WT redoximer mixture with the calibration curve overlaid and fig-

ure 5.4b shows the elution of two different 2dCD4-WT isoforms (red and blue boxes). The

corresponding non-reducing SDS-PAGE (5.4c) analysis across these two peaks shows that the

smaller peak (red box - eluting first) corresponds to a 2dCD4-WT isoform which resolves at 22

kDa whereas the larger peak (blue box - eluting second) corresponds to a species of 2dCD4-WT

which resolves at 25 kDa.
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FIGURE 5.4: 2dCD4-WT was separated into its 2dCD4-Ox and 2dCD4-R1 forms
by SEC. (A) 2dCD4-WT was purified using size-exclusion chromatography. (B)
The S75 column was calibrated using known molecular weight protein stan-
dards and the two UV 280nm spectra were overlayed. There were two 2dCD4
redoximers present of which the one in the red box has a larger native hydro-
dynamic volume than the one in the blue box as it elutes from the column first.
The green squares denote the positions across the peaks from which fractions
were collected and run on the non-reducing SDS-PAGE in C. (C) The nature of
the species and their apparent molecular weight was analysed by SDS-PAGE.
2dCD4-OX (red box) was found to have a smaller unfolded hydrodynamic vol-

ume than 2dCD4-R1 (blue box).

The elution position of the two 2dCD4 species is unexpected given their resolution by non-

reducing SDS-PAGE for which one would expect the 25 kDa isoform to elute before the 22

kDa isoform. The S75 pg column was calibrated using standard globular proteins of known
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molecular mass before running the 2dCD4-WT. The peak corresponding to the 22 kDa species

resolves at a molecular weight lower than carbonic anhydrase at 29 kDa and therefore could

not be attributed to a 2dCD4-WT dimer.

Both SEC and SDS-PAGE separate proteins based on their hydrodynamic volume and mobility

through a polymer matrix. Whilst SDS-PAGE is a denaturing technique in which the tertiary

structure of proteins is disrupted to form a random coil, SEC is a native technique in which the

integrity of the protein structure is not compromised. If this is applied to the results observed

here, it suggests that the partially reduced 2dCD4-WT has a smaller native hydrodynamic vol-

ume than that of the fully oxidised form as determined by SEC. Additionally, applying the

same theory to the SDS-PAGE results this would suggest that the 25 kDa isoform has a larger

denatured hydrodynamic volume than that of the 22 kDa isoform.

From both the SEC and the (importantly) non-reducing SDS-PAGE data, the results show that

the integrity of the disulphide bonds is maintained suggesting that they have an impact on

the hydrodynamic volume of the protein. It might be expected that disulphide bond reduction

would release physical restraints on the random coil denatured protein so that it can adopt a

more flexible, open structure. In line with this, the fully oxidised form has both disulphide

bonds intact and therefore the denatured structure is more compact as the disulphide bonds

physically hold the random coil in a more compact structure. Conversely the opposite pattern

is observed for the native SEC technique. These results are summarised in table 5.3.

Technique 2dCD4-Ox VH 2dCD4-R1 VH

SEC (native) Larger native Smaller native

non-reducing SDS-PAGE (denaturing) Smaller denatured Larger denatured

TABLE 5.3: 2dCD4-Ox has a larger native hydrodynamic volume (VH) and a
smaller denatured hydrodynamic volume than 2dCD4-R1 as determined by SEC

and non-reducing SDS-PAGE, respectively.

5.4.3 Choosing a 2dCD4-WT concentration

The same experiments as carried out above were to be applied to SAXS experiments but in

order to conserve precious 2dCD4-WT sample, an initial concentration series was carried out

to determine which concentration of 2dCD4-WT resulted in an optimal signal-to-noise ratio,

and having the least interference from inter-particle effects. Subsequently, 2dCD4-WT was
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measured at: 1.0 , 1.8, 3.9 and 8.1 mg/mL using the robotic sample changer on BM29 at the

ESRF.

FIGURE 5.5: A concentration series of CFPE produced 2dCD4-WT was tested by
SAXS to determine the optimal concentration to use for a DTT titration. At low-q
there is a sharp inflection of the curve towards x = 0 which is characteristic of ag-
gregation. The 3.9 mg/mL curve gave the best compromise between signal:noise
and inter-particle effects. Green = 1.0 mg/mL, orange = 1.8 mg/mL, purple = 3.9

mg/mL, pink = 8.1 mg/mL.

The 1D scattering profile for the 2dCD4-WT concentration series after buffer subtraction is

shown in figure 5.5 It is evident that the samples are all subject to some inter-particle effect,

most likely to be aggregation considering the upward turn visible at low-q. Regardless of the

inter-particle effects the sample at 3.9 mg/mL appears to give the best compromise between

signal:noise and these inter-particle effects and therefore a concentration around 3.9 mg/mL

was chosen for the following DTT titration experiment.

5.4.4 Increasing DTT concentration causes a loss of 2dCD4-WT structure

The 1D curves for the DTT titration after buffer subtraction are shown in figure 5.6. Again, it

is evident from the upward turn of the curve at low-q that there are inter-particle effects which

indeed seem to worsen with increasing DTT concentration. Nevertheless, size parameters were
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DTT concentration Absolute I(0) MM Rg Rg (real) Dmax

(mM) (cm−1) (kDa) (Å) (Å) (Å)
0 1.45x10−2 22.4 26.0(+-0.3) 26.2 92.5
1 1.41x10−2 21.8 26.1(+-0.4) 26.2 101

2.5 1.44x10−2 22.2 26.3(+-0.3) 26.1 96.5
5 1.38x10−2 21.3 25.3(+-0.4) 26.3 99.0

10 1.48x10−2 22.9 27.0(+-0.7) 28.2 109
25 1.30x10−2 20.1 28.2(+-0.7) 28.5 116
50 8.69x10−3 13.4 28.9(+-0.8) 25.0 78.0

TABLE 5.4: The size parameters, Rg and Dmax, of 2dCD4-WT treated with increas-
ing concentrations of DTT were determined by SAXS. The Rg was calculated from
both the Guinier and P(r) analysis. The MM was calculated from the absolute I(0)
(corrected for concentration and scaled against the absolute scattering of water).
The Dmax was also determined from the P(r) analysis. With increasing DTT con-

centration there is a general increase in Rg and Dmax.

extracted from the data by Guinier and P(r) analyses and the MM was calculated from the I(0)

and these are listed in table 5.4.

FIGURE 5.6: CFPE produced 2dCD4-WT was treated with increasing concentra-
tions of DTT to observe the effect of DTT on its size and structure. At low-q there
is a sharp inflection of the curve towards x = 0 which is characteristic of aggrega-
tion. Red = 0 mM, green = 1 mM, blue = 2.5 mM, cyan = 5 mM, orange = 10 mM,

pink = 25 mM, purple = 50 mM.

The Guinier-derived Rg shows a steady increase in the Rg with the increase in DTT concentra-

tion except for the sample measured at 5 mM DTT which shows a decease in 1 Å from the 2.5

mM sample. The pattern then resumes and the Rg increases to 27.0 Å for the sample treated
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with 10 mM DTT. The real space determined Rg are generally in good agreement with the

Guinier-derived Rg for each sample (+/-1 Å), except for the sample measured at 50 Å which

displays a large discrepancy between the two Rg of 28.9 Å and 25.0 Å for the Guinier and real

space derived parameters, respectively. The trend for the real space Rg shows a steady increase

in the Rg from 0 to 5 mM DTT, followed by a 2 Å increase from 5 to 10 mM DTT and then a

sharp decrease to 25.0 Å for the 50 mM DTT sample which is neither in agreement with the

Guinier derived Rg nor the pattern of the real space derived Rg.

The same general pattern can be seen for the Dmax: with an increase in DTT concentration

there is an increase in the Dmax. However, the Dmax measurement at 1 mM DTT appears to

be anomalous as there is a large jump of 9 Å between the Dmax measured for the 0 mM DTT

sample and the 1 mM DTT sample. Again, the 50 mM sample is determined to be the smallest

with a Dmax of just 78 Å compared to the 92 Å of the 0 mM sample. The MM for 2dCD4-WT in

0 to 10 mM DTT are within 10% of the expected molecular mass (22.7 kDa) [163]. Upwards of

10 mM DTT the calculated MM are out of this range.

Whilst the size parameters show a general increase in the size of 2dCD4-WT as a function of

DTT concentration, it is particularly interesting to look at the Kratky plot for these data (fig.

5.7). As the DTT concentration increases it appears that the curves become more open and

tend less towards y=0. Relating this pattern back to the Kratky description in Chapter 2 section

2.4.4, it can be seen that this could be as a result of unfolding of the protein. At 0 mM DTT (red

curve) the Kratky curve is characteristic of a partially folded protein. As the DTT concentration

increases there does not appear to be much change in the Kratky curves between 0 and 10

mM DTT. However there is a distinct change in the shape of the Kratky curve at 25 mM DTT,

which suggests protein unfolding. There is another distinct change at 50 mM DTT where it

appears that the protein is completely unfolded. Taken with the MM data this suggests that

there is something significant happening after 10 mM DTT. However it is difficult to decipher

whether this is due to loss of structure due to disulphide bond reduction or whether this is due

to aggregation.
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FIGURE 5.7: CFPE produced 2dCD4-WT was treated with increasing concentra-
tions of DTT to observe the effect of DTT on its size and structure. The Kratky
plot shows a gradual loss of foldedness with an increase in DTT concentration
from 0 to 50 mM DTT. Red = 0 mM, green = 1 mM, blue = 2.5 mM, cyan = 5 mM,

orange = 10 mM, pink = 25 mM, purple = 50 mM.

Due to the aggregation of the samples, the size parameters cannot be accurately extracted since

the aggregation is quite significant and influences a large portion of the scattering curve. Re-

gardless, it appears that the increase in DTT concentration has an effect on the size and structure

of 2dCD4-WT. Relating this to the SDS-PAGE of the DTT titration (fig. 5.8), a shift in the band

pattern is observed in favour of 2dCD4-R2, as the DTT concentration increases from 0 to 1 mM

DTT, after which there appears to be little further change. However, according to the SAXS data

there appears to be a significant change as the DTT concentration increases above 1mM DTT.

The increase in DTT concentration appears to be causing the samples to aggregate more (fig.

5.6) and unfold (fig 5.7), so it is not possible to decipher whether the pattern of an increasing

Rg and Dmax with DTT concentration is a real feature or an artefact of the aggregation.

Interestingly, the E. coli expressed refolded 2dCD4-WT DTT titration (fig. 5.3) shows that 100%

reduction was not achieved with the range of DTT concentrations used. Therefore, higher DTT

concentrations were used for the CFPE 2dCD4-WT SAXS DTT titration. However, it appears

from the shift in the band pattern shown by the SDS-PAGE of CFPE 2dCD4-WT that full re-

duction was possible at a concentration of 1 mM DTT. This may be because the E. coli and
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CFPE protocols produce different distributions of the 2dCD4-WT redoximers. From the CFPE

preparation it would appear that the partially reduced form is the major band whereas in the

E. coli preparation the oxidised and reduced forms appear to be present in almost equivalent

quantities.

FIGURE 5.8: DTT titration of CFPE produced 2dCD4-WT at 0, 1, 2.5, 5, 10, 25 and
50 mM DTT (lanes 2-8). Lane 1 shows the molecular weight marker in kDa. The
samples were treated with DTT and then measured using SAXS to observe how

increasing DTT concentration affects the size parameters Rg and Dmax.

5.4.5 2dCD4-R2 is larger than 2dCD4-R1

Following the DTT titration SAXS experiment which produced low quality data, SEC-SAXS

was carried out on 2dCD4-WT at 0 mM and 50 mM DTT to determine whether the features

seen in the DTT titration were representative of what was happening to 2dCD4-WT in solution

with increasing DTT concentration, or whether this arose from an artefact of the aggregation.

The intention was to look for a shift in the SEC peak, which would indicate a change in the

hydrodynamic volume, as well as a change in the size parameters. SEC-SAXS was used to

minimise the inter-particle effects observed in the DTT titration. Any aggregation would be

eliminated by the size-exclusion step, allowing an accurate analysis of the size parameters and

the effect of complete reduction of the two disulphide bonds on the structure of 2dCD4-WT.

Firstly, by comparing the UV 280nm spectra in figure 5.9, a slight shift in the position of the

peak can be observed. The peak for the 2dCD4-WT treated with 50 mM DTT is shifted to the

left with respect to the untreated 2dCD4-WT, indicating that the hydrodynamic volume of the

fully reduced 2dCD4-WT is larger than that of the 2dCD4-WT in which the partially reduced

isoform is the majority species.

The curves to be included for analysis were first subject to autoRg to determine which curves

contained species of a similar Rg. The frame number was plotted against the UV trace and the
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(A) (B)

FIGURE 5.9: 2dCD4-WT with and without 50 mM DTT was analysed by SEC-
SAXS. (A) 2dCD4-WT with (blue) and without (red) 50 mM DTT was analysed by
SEC-SAXS. (B) A zoomed in view of the UV Abs280nm spectra show that 2dCD4-
WT treated with 50 mM DTT elutes slightly before 2dCD4-WT without DTT treat-
ment. This suggests that the reduced 2dCD4-WT (with 50 mM DTT) has a larger

hydrodynamic volume than the unreduced 2dCD4-WT (without 0 mM DTT).

Rg was determined across the 2dCD4-WT peak (fig. 5.10). The Rg are not that flat across the

peak so the mid selection of the peak from frames 1017 to 1072 and from 1042 to 1091 for the

50 mM and 0 mM DTT treated samples were selected. These curves were therefore chosen for

buffer subtraction and further analysis.

(A) (B)

FIGURE 5.10: 2dCD4-WT with (A) and without (B) 50 mM DTT SEC-SAXS inten-
sity and autoRg data were plotted against the frame number. The buffer frames
were taken from a flat section of the data before the protein peak. The Rg was not
flat across the peak so the sample frames were taken from the mid-section of the

peak.

From the 1D scattering curves after buffer subtraction in figure 5.11 the use of SEC-SAXS ap-

pears to have eliminated the inter-particle effects which were observed in the DTT titration 1D
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FIGURE 5.11: CFPE produced 2dCD4-WT was tested using SEC-SAXS for the
effect of 50 mM DTT on the structure of 2dCD4-WT. The red curve corresponds to
2dCD4-WT without DTT treatment (0 mM DTT) and the blue curve corresponds

to 2dCD4-WT with DTT treatment (50 mM).

scattering curves. Therefore, the size parameters extracted from the data are a more accurate

representation of the size of the 2dCD4-WT. The Rg calculated by both the Guinier and P(r)

analysis (table 5.5) are within good agreement of each other for each data set, which is an indi-

cator of the good quality of the data. An increase in the Rg and Dmax of 2dCD4-WT is observed

with the addition of 50 mM DTT. From the P(r) in figure 5.5, the curves tend smoothly towards

P(r) = 0 which also indicates that the data is of good quality. The curves are of a similar shape,

with the bump at around 50Å corresponding to the two Ig domains of 2dCD4-WT. At P(r) =

0 the curves have a tail which could be caused by the His-tag which was uncleaved from the

protein during purification to avoid sample loss.

DTT concentration (mM) Rg (Å) Rg (real Å) Dmax (Å)
0 24.6(+-0.2) 25.2 94

50 25.1(+-0.2) 26.2 105

TABLE 5.5: The SEC-SAXS Rg determined from the Guinier analysis and the Rg
and Dmax determined from the P(r) analysis of 2dCD4-WT with and without 50
mM DTT treatment. 2dCD4-WT post-50 mM DTT treatment is larger than with-

out DTT treatment.

Interestingly the Kratky plot for the SEC-SAXS data (fig. 5.13) tells a different story to that of

the DTT titration. In this instance the curves are both indicative of a well-folded protein, as
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FIGURE 5.12: 2dCD4-WT with (blue) and without (red) 50 mM DTT treatment
was analysed by SEC-SAXS. The P(r) function shows that the sample treated with
50 mM DTT has a larger Dmax than the sample without DTT treatment. The shape

of the P(r) function corresponds to the two Ig domains of 2dCD4-WT.

they approach the x-axis. In the DTT titration the 50 mM sample was indicative of an unfolded

protein. Comparing this to the SEC-SAXS data, this would suggest that the Kratky results

were a function of the increase in the aggregation with the DTT concentration, causing the

protein to denature. This could also account for the aberrant real space Dmax and Rg which were

abnormally small compared to the trend observed, in which there was an increase in 2dCD4-

WT size with DTT concentration. If the protein was unfolded, combined with aggregation,

then the size parameter analysis is inaccurate and these values are not representative of what

was actually happening in solution.
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FIGURE 5.13: 2dCD4-WT with (blue) and without (red) 50 mM DTT treatment
was analysed by SEC-SAXS. The Kratky curves for both the 0 and 50 mM DTT

treated samples are characteristic of a well-folded protein.

The SEC-MALLS-RI data (fig. 5.14) show a high refractive index and light scattering signal at an

elution volume of around 11 mL for the 0 mM DTT (5.14a dark purple and lilac, respectively)

and 50 mM DTT (5.14b dark green and light green, respectively) treated 2dC4-WT. The UV

280 nm spectra and molecular mass data in figure 5.14c show a slight off-set between the two

spectra. The curve recorded from 2dCD4-WT treated with 50 mM DTT (yellow) curve is shifted

slightly to the left with respect to the 0mM DTT treated 2dCD4-WT curve (blue).

The orange and blue scatter curve across the peak of the two UV 280 nm spectra correspond to

the molecular mass in Daltons for the 50 mM and 0 mM DTT treated 2dCD4-WT, respectively.

The molecular mass of 2dCD4-WT in 0 mM DTT appears less stable across the peak than that of

the protein in 50 mM DTT. This suggests that the sample without DTT may be less polydisperse.

Indeed, the calculated molecular mass across the peaks were 22 020 Da (+-10.8%) and 22 050

Da (+-7.1%) with polydispersity indexes of 1.007(+-6.9%) and 1.001(+-4.4%) for the 0 mM and

50 mM DTT, respectively. The molecular weight is within agreement of the expected value

of 22 691 Da, however the errors are high and the polydispersity indexes are indicative of

polydispersity as they are both greater than 1.000.

There is also a large light scattering signal at an elution volume of around 7 mL, which is likely
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to be a very small amount of a large particle. The particle is large because it elutes at a low

elution volume of the column however, as large particles disproportionately scatter more light,

it is likely that the contaminating particle is present in a small proportion (i.e. less than 5%)

regardless of the large scattering signal it produces. The light scattering of the contaminant in 0

mM DTT is more significant than the contaminant in the 50 mM DTT sample. This contaminant

is likely to be aggregation as the samples were tested via SEC-MALLS-RI 48 hours after the

SAXS experiment and, as was observed in the DTT titration SAXS experiment, 2dCD4-WT has

a tendency to aggregate.
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(A) 2dCD4-WT without 50 mM DTT

(B) 2dCD4-WT with 50 mM DTT

(C) 2dCD4-WT with and without 50 mM DTT treatment

FIGURE 5.14: 2dCD4-WT in 0 mM and 50 mM DTT was tested using SEC-
MALLS-RI to assess the quality of the samples tested using SEC-SAXS. (A) The
normalised light scattering, refractive index and UV Abs280nm spectra for 2dCD4-
WT in 0 mM DTT (grey, green and blue, respectively) are shown. The molecular
mass is shown across the main protein peak in Daltons in purple. (B) The nor-
malised light scattering, refractive index and UV Abs280nm spectra for 2dCD4-WT
in 50 mM DTT (red, brown and orange, respectively) are shown. The molecular
mass is shown across the main protein peak in Daltons in yellow. (C) The UV
absorbance spectra at 280 nm and molecular weight in Daltons of 2dCD4-WT in
0 mM DTT (blue and purple, respectively) and 50 mM DTT (orange and yellow,
respectively). The UV spectrum for the 50 mM DTT treated samples is shifted to
the left with respect to the spectrum for 2dCD4-WT in 0 mM DTT suggesting that

the protein in 50 mM DTT has a smaller hydrodynamic volume.
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5.5 Discussion

CD4 is the primary receptor for HIV-1, binding the gp120 component of the viral envelope

complex. CD4 possesses a metastable, allosteric disulphide bond in its second domain whose

redox state may impact on its biological function as indicated in the literature [63, 113]). gp120

binds a novel redox isomer of 2dCD4 in which the second domain, allosteric disulphide bond

is reduced suggesting that this protein may have a unique structure and is therefore a target

for HIV-1 entry inhibitor and anti-HIV-1 immunogen design. The wild-type two-domain CD4,

consisting of domains 1 and 2, exists in 3 different redox states due to the resident disulphide

bond of each domain, as shown by knocking out of the disulphide bond and assessing the mo-

bility on non-reducing SDS-PAGE . The disulphide bonds of recombinant 2dCD4-WT have also

been shown to be sensitive to reduction by DTT [63]. Recombinant 2dCD4-WT produced using

E. coli and refolded from inclusion bodies and cell-free protein expression systems has been

shown to contain a mixture of the oxidised (Ox), reduced in domain 2 (R1) and fully reduced

(R2) redox species. A combination of manipulation of the redox state using DTT titrations and

SEC was used in combination with SAXS to try to characterise the behaviour of the 2dCD4-WT

redox isomers.

Using a DTT titration against 2dCD4-WT expressed in E. coli, a shift in the band intensity was

observed from the lower apparent molecular weight species to the higher apparent molecular

weight species with an increase in DTT concentration. This can be attributed to a reduction in

the disulphide bonds of 2dCD4 which causes a decrease in the gel mobility [198]. Full reduction

of E. coli expressed 2dCD4-WT was not achieved at the maximum concentration of 10 mM DTT,

since all three bands were present, nor was there a DTT concentration at which the 2dCD4-R1

species was isolated. Conversely, for the 2dCD4-WT produced by CFPE, full reduction was

possible at just 1 mM DTT. This could be explained by the fact that the initial distribution of

redoximers was different, with the partially reduced isoform being the major species present,

therefore less DTT was required to fully reduce both disulphide bonds. A higher initial starting

concentration of DTT was used with CFPE produced 2dCD4-WT as full reduction had not been

achieved with the E. coli expressed 2dCD4-WT.

When the CFPE produced 2dCD4-WT DTT titrated samples were measured by SAXS, an in-

crease in the size parameters was observed with increasing DTT concentration. An unfolding
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of the structure was also indicated from the Kratky plot. This reduction event is mostly of the

first domain structural disulphide bond, since the SDS-PAGE of the DTT titration indicated

that the primary species present in the CFPE 2dCD4-WT in 0 mM DTT is the 2dCD4-R1, where

the second domain allosteric disulphide bond is already reduced. The increase in the size pa-

rameters Rg and Dmax was corroborated by the SEC-SAXS experiment in which CFPE treated

2dCD4-WT was tested with and without 50 mM DTT. However, whilst the 50 mM DTT concen-

tration showed anomalous values in the DTT titration that are likely to be due to aggregation,

the SEC-SAXS samples were free from aggregation and therefore provide a more accurate pic-

ture of the state of fully reduced 2dCD4-WT. It was unclear whether the unfolding seen in the

Kratky plot of the DTT titration was an accurate representation of what was happening in solu-

tion or whether it was an artefact of the aggregation. After testing the samples using SEC-SAXS

it appears that the unfolding observed was due to denaturation of the protein because of the

relatively high DTT concentration. The results observed for the DTT titration SAXS experiment

are therefore not representative of native 2dCD4-WT behaviour.

In addition to the increase in the size parameters Rg and Dmax observed by SEC-SAXS, a differ-

ence in the hydrodynamic volume of the 2dCD4-WT with and without 50 mM DTT treatment

was observed. The UV 280 nm absorbance peak was shifted to the left with the addition of

50 mM DTT at which point the protein is completely reduced. This indicates an increase in

the hydrodynamic volume of the protein as it elutes more quickly from the column. Since the

CFPE produced 2dCD4-WT in 0 mM DTT was primarily in the R1 form, as seen from the SDS-

PAGE, this indicates that the 2dCD4-R2 has a larger hydrodynamic volume than the 2dCD4-R1

form, as expected. However, the inverse pattern is seen by the size-exclusion purification of

the 2dCD4-OX and 2dCD4-R1 redoximers, whereby the oxidised form of the protein elutes

first and the partially reduced form elutes second. This suggests that the oxidised form of the

protein has a larger hydrodynamic radius than the partially reduced form.

The SEC-MALLS-RI data showed the presence of aggregation but given that any aggregation

was eliminated from the 2dCD4-WT signal by the SEC step, this poses no problem for the

SAXS data analysis as SEC-SAXS was used and would eliminate any such contaminants. The

monodispersity was also questionable across the protein peaks. However, the SEC-SAXS sam-

ples were freshly prepared and only the scattering curves in the Rg vs I(0) plot with a stable

Rg indicating their similarity were used for the SEC-SAXS analysis. The same UV spectra shift
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was seen for the SEC-MALLS-RI data as for the SEC-SAXS data. Considering the columns used

in the two techniques have differing resolution, this reinforces the idea that this is a real feature

observed and not a result of aggregation.

5.5.1 Relating the data to the disulphide bonds in 2dCD4-WT

The SEC behavior of the 2dCD4-WT redox isomers suggests that the R2 species has a larger

hydrodynamic volume than the R1 form and that the OX form also has a larger hydrodynamic

volume than the R1 form. Given the findings by Owen et al. 2016 [203] suggesting that domain

1 has a stabilising effect, it is predicted that the R2 form has a larger hydrodynamic volume

than the OX form, with the R1 having the smallest hydrodynamic volume as outlined in figure

5.15. Further work is required to confirm this. The difference in the hydrodynamic volume and

the surprising finding that R1 has the smallest hydrodynamic volume can be reasoned by the

difference in the properties of the disulphide bond in domains 1 and 2.

The disulphide bond in domain 1 is a stable, structural disulphide bond which serves to pro-

vide structural integrity to the domain. The torsional strain is low because of the geometry of

the bond in which the disulphide bond is formed between the two beta sheets of the Ig-like do-

main. On the other hand, the disulphide bond in domain 2 is a metastable allosteric disulphide

bond which can undergo redox shuffling events to affect the function of 2dCD4-WT ([112]). The

bond is formed between two cysteines in neighbouring strands of the same beta sheet, which

is a geometrically unusual configuration, causing the disulphide bond to have a high dihedral

energy and be under high torsional strain.

Due to this high dihedral energy and torsional strain of the disulphide in domain 2, reduction

of this highly strained bond could cause an energetically favourable relaxation of the beta-

strands involved in the bond. The allosteric disulphide bond in domain 2 causes puckering

of beta-strands C and F, thus reduction of this disulphide bond may allow relaxation of this

puckering effect. This relaxation could result in a slight shrinking of the domain as the beta

strands packed against this disulphide bond may shift inwards, allowing the domain to adopt

an energy minimal conformation. Conversely it is possible to imagine that reduction of the

structural disulphide bond in domain 1 would cause this domain to lose its structural integrity

which would result in an increase in the size.



5.5. Discussion 167

FIGURE 5.15: 2dCD4-R1 (middle, blue) which binds gp120, was found to have
the smallest hydrodynamic volume of the three redox isomers. 2dCD4-Ox (right,
red) which is found on resting T-cells and 2dCD4-R2 (left, yellow) which does not
have a physiological function, were both found to have a larger hydrodynamic
volume than 2dCD4-R1. The data do not provide information as to whether
2dCD4-R2 has larger, smaller or the same hydrodynamic volume as 2dCD4-Ox.
2DCD4-R1 has previously been shown to be the most stable redox isoform [203].
Domain 1 is shown in green and domain 2 is shown in blue. Reduced disulphide
bonds are denoted by -SH or HS- and oxidised disulphide bonds are denoted by

-S—S-.
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As stated above, the SEC and SEC-SAXS experiments suggest that the order in hydrodynamic

volume of the redoximers is: R2>/=/<Ox>R1. This can be related to the disulphide properties

above. 2dCD4-R1 has its domain 1 disulphide bond intact which is the lowest energy config-

uration for this domain and the domain is at its smallest hydrodynamic volume. The domain

2, allosteric disulphide bond is reduced which is the lowest energy state for this domain and

it is also at its smallest hydrodynamic volume [203]. 2dCD4-Ox, which also has domain 1 its

energetically favourable configuration, has its domain 2 disulpide bond intact, which is en-

ergetically unfavourable, causing the domain to have a larger hydrodynamic volume as the

disulphide bond causes the beta strands to be pulled together which may cause displacements

of the sheets further away from the allosteric disulphide bond. Finally, 2dCD4-R2 has 2dCD4-

WT in its most energetically favourable form but the domain 1 disulphide bond is reduced,

so the structural integrity of this domain is compromised the hydrodynamic volume of this

domain increases.

This pattern is not seen in the non-reducing SDS-PAGE data because the proteins are denatured

forming a random coil. So those disulphide bonds which are intact serve to increase the elec-

trophoretic mobility of the random coils through the polyacrylamide matrix of the gel as they

hold the random coil in a tighter structure. Therefore the denatured hydrodynamic volume of

the redox species is not the same as the native hydrodynamic volume. This trend is reflected

by the size parameters derived from the SEC-SAXS data as the Rg and Dmax increase with the

addition of 50 mM DTT.

5.5.2 2dCD4-WT previously measured by SAXS

2dCD4-WT has previously been studied by SAXS in isolation and in complex with two of its

ligands: gp120 and Salp15. The reported values for the Guinier Rg are 22.3 and 20.9, the real

space Rg was 21.7 and the Dmax were 73 and 75 Å (table 5.2). Whilst these values are not in

line with the Rg and Dmax found in this study (fig. 5.5) the redox state of the 2dCD4 used in

the previous studies was not stated. The 2dCD4 used previously was not produced in the cell-

free system, it was expressed in E. coli and refolded from the inclusions bodies. In addition, the

2dCD4-WT used in this study had an uncleaved His-tag with an intact TEV cleavage site which

probably caused the sample to appear larger. This is also suggested by the P(r) data from the
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SEC-SAXS experiment since there appears to be a tail as the curve approaches r=Dmax, P(r)=0.

Cleaving the His tag may result in smaller size parameters for the CFPE produced 2dCD4-WT.

5.5.3 Future work

The DTT titration should be repeated using lower concentrations of DTT to observe how the

distribution of the reodximers changes for the CFPE produced 2dCD4-WT. This could also be

altered by changing the redox potential during the CFPE reaction. In order to avoid aggre-

gation which badly affected the analysis of the DTT titration SAXS data, SEC-SAXS should

be employed with the lower DTT concentrations to see how the size parameters Rg and Dmax

change during the transition between the R1 and R2 redox species. If it would be possible to

isolate the fully oxidised form by using oxidising reagents then the hydrodynamic volume of

the oxdised and reduced forms could be compared, as before, using SEC to complete the model

shown in figure 5.15.

During this thesis work it was not possible to purify a stable 2dCD4-D2A mutant form us-

ing the cell-free system. Although the CFPE 2dCD4-WT in the absence of reducing agent ap-

pears to be primarily present in the R1 form there was still a small amount of the R2 and OX

forms present as seen by the SDS-PAGE. Producing a soluble, stable 2dCD4-D2A variant pro-

tein would allow effective isolation of the 2dCD4-R1 species for analysis by SAXS to determine

its structure. It would be useful to cleave the His-tag from the 2dCD4 to see if the size param-

eters fall in line with those previously reported. It would also be interesting to look at the SEC

behaviour of the individual domains in isolation in the presence and absence of DTT.

Ultimately, SAXS is a low resolution technique allowing the determination of the global size

and shape of macromolecules in solution and does not provide the capability to look at the local

structure around the disulphide bond. It would be interesting to look at the high resolution

structure of the oxidised and reduced forms by either X-ray crystallography or high-resolution

NMR without inducing radiation damage.

Finally, neutron scattering techniques could be used. Neutron crystallography would allow

unambiguous determination of the redox states of the disulphide bonds since the hydrogens

can be viewed using this technique. In addition, the samples would not be at risk of radiation

damage which is particularly worrisome for samples containing disulphide bonds. However,
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due to the necessity for perdeuteration, followed by crystallisation, neutron crystallography

is a non-trivial technique for difficult samples such as 2dCD4-WT. SANS experiments were

carried out in chapter 6, however, due to the long measuring times required because of the

lower flux and the tendancy of 2dCD4-WT to aggregate (as seen in the concentration series

and DTT titration experiments), it was difficult to obtain reliable data for 2dCD4-WT let alone

studying the effect of the modulation of the disulphide bond redox states with DTT. SEC-SANS

[204] has recently been developed and might be an interesting supplement to the SAXS study.

5.6 Conclusion

2dCD4-R1 has been shown to have the smallest hydrodynamic volume of the three redox iso-

mers. 2dCD4-Ox and 2dCD4-R2 have both been shown to have a larger hydrodynamic volume

than 2dCD4-R1 but it has not been determined whether 2dCD4-R2 has the same or a larger hy-

drodynamic volume than 2dCD4-Ox. 2dCD4-R1 has also been shown to have a smaller Rg

and Dmax than 2dCD4-R2. The size difference maybe explained in terms of the reduction of

the allosteric disulphide bond in domain 2, causing a relaxation of the domain by releasing the

high-torsional strain in the bond, which is of unusual geometry. 2dCD4-WT has a tendency to

aggregate and so is most appropriately studied by size-exclusion chromatography coupled to

small-angle scattering. While, the importance of the reduction of the domain 2 disulphide bond

for gp120 binding still remains unclear, this work has shown that there is a change in the size

of 2dCD4-WT as a function of its redox state, which alludes to the presence of conformational

dynamics which may be necessary for interaction with gp120.
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Chapter 6

Characterisation of gp120 and

small-angle scattering analysis of the

complex

6.1 Abstract

A significant effort was required to establish an expression protocol for 2dCD4-WT that pro-

duced sufficient yields of recombinant, unlabelled and deuterium labelled protein for small-

angle neutron and X-ray scattering (SANS and SAXS) studies in this thesis work, as described

in Chapter 3. The resulting SANS experiments have allowed determination of the size and

shape of 2dCD4-WT and gp120 in isolation and whilst in complex, through the exploitation of

protium/deuterium contrast and match-out labelling. Whilst size-exclusion chromatography

coupled to SAXS (SEC-SAXS) has allowed determination of the global envelope structure of

2dCD4-WT analogues produced from different expression systems in complex with gp120.

The biophysical characterisation of a gp120 monomer/dimer by mass-spectrometry and SEC

coupled to multi-angle laser light scattering and refractive index is also addressed in this chap-

ter. Following which the results of several SANS experiments carried out on the D22 diffrac-

tometer at the ILL are presented. The first of which was to determine the global match-out

point of the highly glycosylated protiated gp120 viral protein (h-gp120). The aim of the sec-

ond experiment was to determine the match-out point for the deuterium labelled 2dCD4-WT

(d-2dCD4-WT) protein produced using the cell-free system. Then the final experiment utilised
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the match-out points determined in the first two experiments to determine the structure of

the h-gp120/d-2dCD4-WT complex and the d-2dCD4-WT bound to matched out h-gp120. In

the final experiment, SAXS was also carried out on the same samples on the BM29 bioSAXS

beamline at the ESRF in an attempt to corroborate the SANS data obtained.

Finally, a series of SEC-SAXS experiments were conducted on the gp120/2dCD4-WT analogue

complexes with the 2dCD4-WT produced from three different expression systems: E. coli re-

folded, B. choshinensis secreted and cell-free protein expressed (CFPE). SAXS data has already

been published for the gp120/2dCD4 and 4dCD4 complexes, so the complex data collected in

this thesis served as a way of ensuring that the data correlated with that already published to

validate the B. choshinensis and CFPE expression systems as means of producing 2dCD4-WT

for small-angle X-ray scattering studies.

6.2 Introduction

The atomic resolution X-ray crystal structure of the 2dCD4-WT/gp120 core complex was first

determined in 1998 and demonstrated the interactions between key CD4 residues: Phe43 and

Arg59 and numerous gp120 residues including Asp368, Glu370 and Trp427 [34]. However, in

this study, gp120 was truncated at its N- and C-termini, in its V1-V3 loops and deglycosylated.

In addition, the complex was bound with the 17b broadly neutralising antibody which binds

the CD4 induced epitope on gp120 to stabilise the highly flexible gp120 core, thus fixing the

complex in the 17b bound form. The complex was therefore missing parts of the vital V3-loop

necessary for co-receptor binding and the glycan shield which is essential to viral immune

evasion.

Since then, there have been several small-angle X-ray scattering studies of 2dCD4-WT (D1 and

D2), 4dCD4-WT (D1-D4), gp120 and their respective complexes [72, 118, 197]. These SAXS ex-

periments have allowed investigation of the complex of the full-length gp120 monomer in its

glycosylated form. Ashish et al. 2006 examined the complex with E. coli expressed 2dCD4-WT

[197] and again in 2008 with 4dCD4-WT expressed in E. coli [118]. Size parameters were deter-

mined from both experiments but only the experiment with 4dCD4-WT suggested that there

is a conformational change upon gp120 binding. This conformational change was suggested

to occur at the D2/D3 interface, whereby the extended rod-like shape of CD4 would bend
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in this region to facilitate host-cell/viral membrane fusion, by bringing the viral and host-cell

membranes into proximity for subsequent V3-loop/co-receptor driven structural realignments.

Guttman et al. 2012 found that there were extensive rearrangements within the V1/V2 loop re-

gion of gp120 upon 2dCD4-WT binding but they did not draw attention to the 2dCD4-WT

component of the complex [72]. The previously published size paramaters determined from

SAXS experiments on 2dCD4-WT, gp120 and the complex are presented in table 6.1.

Publication Sample Rg (Å) Dmax (Å)

2dCD4-WT 22.3 75

Ashish et al. 2006 gp120 dimer 43.6 166

2dCD4-WT-gp120(dimer) complex 44.4 165

2dCD4-WT 20.9 73

Guttman et al. 2012 gp120 monomer 37.1 130

2dCD4-WT-gp120(monomer) complex 37.0 135

TABLE 6.1: Published size parameters Rg and Dmax for 2dCD4-WT, gp120
monomer and dimer and their respective complexes as determined by SAXS.

There are therefore no SAS data which explore the relationship between the structure of CD4 as

a function of its redox state and its ability to bind gp120. In addition, there are no small-angle

neutron scattering (SANS) studies to describe the gp120/CD4 complex. SANS lends itself to

the study of protein-protein complexes, such as the gp120/CD4 complex, as contrast variation

studies can be performed. In SANS it is possible to exploit contrast variation by moderating

the scattering length density (SLD) of both the solvent (by altering the heavy/light water ratio)

and the protein (by deuterium labelling) to observe the scattering of just one of the protein

partners within the formed complex (see Chapter 2 for a detailed explanation).

In this chapter, contrast variation SANS studies of a protiated-gp120 and deuterium-labelled

2dCD4-WT complex (h-gp120/d-2dCD4-WT) were conducted. The aim was to determine the

low-resolution envelope structure as well as the extent of folding and size parameters, such

as the radius of gyration of gp120-bound and un-bound d-2dCD4-WT. Since only the partially

reduced isoform of 2dCD4-WT (2dCD4-R1) can form a complex with gp120 (as addressed in

chapters 1, 3 and 5), it was expected that differences would be observed between the 2dCD4-

WT in isolation and in complex with gp120 which could suggest why ablation of the second
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domain disulphide is essential for gp120 binding to CD4.

Prior to study of the structure of the h-gp120/d-2dCD4-WT complex by SAS, the h-gp120

component was first characterised. gp120 from two different HIV-1 subtypes (or clades) was

compared: gp120 BAL which is from a subtype B HIV-1 and gp120ZACAP45 which is from a

subtype C HIV-1. Subtype B affects mostly western communities, whereas subtype C is pre-

dominantly found in sub-Saharan Africa and parts of Asia. The two gp120 subtypes were then

characterised biophysically using mass spectrometry to determine the level of glycosylation.

After this the gp120ZACAP45 subtype was further analysed using size-exclusion chromatogra-

phy coupled to multi-angle laser light scattering and refractive index (SEC-MALLS-RI).

The contrast match point (CMP) of gp120ZACAP45 was determined by measuring the SANS

signal in a series of D2O solvent contrasts. This was repeated for the cell-free protein expressed

(CFPE) d-2dCD4-WT to determine its CMP. Subsequently the h-gp120, d-2dCD4-WT and the

respective complex was studied using contrast variation SANS.

Following SANS, the samples were also tested by SAXS in an attempt to cross validate the

data obtained by SANS. Finally, the gp120/2dCD4 complex was studied using size-exclusion

chromatography coupled to SAXS (SEC-SAXS) with 2dCD4-WT produced in the E. coli, cell-

free protein expression (CFPE) and B. choshinensis expression systems (described in chapter 3).

The SEC-SAXS aimed to corroborate both the SANS data obtained and the description of the

gp120/2dCD4-WT complex in the literature to validate the CFPE and B. choshinensis expression

systems as means of producing proteins for SAS experiments.

This chapter is split into three sections: (I) biophysical characterisation of gp120 (section 6.3),

(II) small-angle neutron scattering (section 6.4) and (III) small-angle X-ray scattering (section

6.5.2), in order to facilitate the explanation of the methods and results, before the discussion in

section 6.6.
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6.3 Part I: Biophysical characterisation of gp120

6.3.1 Materials and methods

Stably transfected HEK293 cell culture

HEK293 FreeStyle cells which had been stably transfected by the pCIneo-gp120BAL or pcDNA

3.1(-)A012-gp120ZACAP45 were provided by Dr Mark Killick at the HIV Pathogenesis Re-

search Unit in Johannesburg, South Africa. 1 mL of human embryonic kidney 293 FreeStyle

(HEK293FS, Life Technologies) cell suspension, stably transfected with the BAL or CAP45 plas-

mid, was defrosted and diluted 1:10 in 9 mL of room temperature 293 FreeStyle expression me-

dia (Life Technologies) in a T75 flask (Falcon) and supplemented with 1 X G418 antibiotic (Life

Technologies). The cells were incubated at 37◦C, 5% CO2. After 4 days the cells were collected

by gentle centrifugation at 500 X g and gently resuspended in 15 mL fresh expression medium

supplemented with 1 X G418 antibiotic until the cells were homogeneously distributed in the

media. The resuspended cells were gently pipetted into a T250 cell culture flask (Falcon).

When the cells formed clumps they were centrifuged and the expression media was changed as

described above. When the cells became adherent, the media was changed by gently pouring

off the old media and gently pipetting 15 mL of fresh expession media into the flask. For

expression in roller bottles: three T250 flasks worth of confluent cells were required and for

hyperflask expression: eight T250 flasks worth of confluent cells were required. When the cells

became confluent, the cells from the appropriate number of T250 flasks were resuspended in

15 mL of the old expression media before transfer to the expression vessel.

gp120 expression

The stably transfected HEK293FS cells were cultured in 100 mL 293 FreeStyle media (Life Tech-

nologies), supplemented with 0.5 X G418 (Life Technologies) in roller bottle flasks (Corning) at

37◦C, 5% CO2 and in 560 mL 293 FreeStyle media, supplemented with 0.5 X G418. The super-

natant was collected by centrifuging at room temperature for 5 minutes at 1 000 rpm, filtered

through a 0.8 µm filter and stored at -20◦C. The supernatant was harvested every 2 days for 1

month.
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gp120 purification

The gp120ZACAP45 clone was not His-tagged, however due to the extent of glycosylation of

the protein and the affinity of glycans for lectin, purification by lectin affinity was exploited,

using agarose immobilised lectin (Sigma). Whilst gp120 BAL was His-tagged, lectin-affinity

purification was used for its purification.

The total harvested supernatant was defrosted and incubated with 2 mL lectin overnight at 4◦C

with stirring. A 50 mL bed volume medium-pressure column (BioRad) was packed manually

and the flow through collected. The resin was washed with 4 column volumes (CV = 50 mL)

0.5 M NaCl in 1 X phosphate buffered saline (PBS). The column was then washed with 4 CV

1 M NaCl in 1 X PBS. The column was washed with 2 CV 1 X PBS. Finally gp120 was eluted

with 25 mL 1 M α-D-methylmannopyranoside (MMP) (Sigma) and the column washed with 1

X PBS into the eluent.

The resin was incubated overnight at 4◦C with the flow through from the column packing to

repeat the purification to ensure maximum gp120 recovery from the supernatant. The purified

gp120 was concentrated using an Amicon®Ultra-15 centrifugal filter (Merck) with 1 X PSB

washing to remove the MMP, flash frozen in liquid nitrogen and stored at -80◦C.

Matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF

MS)

MALDI TOF mass spectra of gp120 BAL and gp120ZACAP45 samples were measured with an

Autoflex mass spectrometer (Bruker Daltonics, Bremen, Germany) operated in linear positive

ion mode. External mass calibration of the instrument was performed using protein calibration

standards (Bruker Daltonics). The gp120 samples were mixed in a ratio 1:1 (v:v) with sinapinic

acid matrix (Sigma, 10 mg/mL in water/acetonitrile/trifluoroacetic acid, 50/50/0.1, v/v/v)

and 1-2 µL of this mixture was deposited on the target and allowed to air dry. Mass spectra

data were processed with Flexanalysis software (v.3.0, Bruker Daltonics).
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Size-exclusion chromatography coupled to multi-angle laser light scattering and refractive

index (SEC-MALLS-RI)

50 µL gp120ZACAP45 at a concentration of 13 mg/mL was loaded via a pump (L2130, Elite

LaChrom) onto an alaytical SuperdexTM 200 10/300 size-exclusion column (S200 ag, GE Health-

care) equilibrated in 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 5% sucrose buffer, with an inline

spectrophotometer (L2400, Elite LaChrom). As the protein eluted from the column it passed

through a flow cell where the multi-angle laser light scattering signal was measured (Dawn

Helios-u, Wyatt). Finally, the refractive index was recorded by a refractometer (Optilab T-rEX,

Wyatt) and the protein collected by a fraction collector (BioRad). The data were analysed using

the software ASTRA6 (Wyatt Technology).

gp120 monomer/dimer separation

500 µg gp120ZACAP45 was incubated with 5 mM DTT for 1 hour at room temperature. 500 µL

was injected via a 1 mL loop onto a S200 ag column equilibrated in 20 mM Tris-HCl pH 7.5, 300

mM NaCl, 5% sucrose buffer. The protein was pumped through the column at a flow rate of 0.5

mL/min and the elution was collected in 500 µL fractions. The fractions were analysed for the

presence of gp120 by SDS-PAGE analysis with Coomassie blue staining. The same procedure

was repeated without DTT treatment to compare the UV280nm spectra.

6.3.2 Results

gp120 purification

2 L of FreeStyle expression media from gp120 BAL and ZACAP45 preparations (referred to as

BAL and CAP45 henceforth), from which HEK293FS cells had been removed by centrifugation

and filtration before freezing, were defrosted and purified using lectin affinity purification.

After purification, 16 µL of 1.0 mg/mL BAL and 1.2 mg/mL CAP45 were added to 4 µL loading

buffer and analysed by SDS-PAGE with Coomassie blue staining (fig. 6.1).

The BAL sample appeared less pure than the CAP45 sample, as can be seen from the greater

number of contaminating bands of different apparent molecular weight as compared to CAP45.

The presence of the contaminating bands would have skewed the concentration determination
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of BAL to appear higher than the actual concentration of just BAL within sample. Therefore,

the CAP45 sample also displays greater yield as well as purity. The BAL band resolves at a

molecular weight between 100 and 150 kDa whereas the CAP45 band resolves to a molecular

weight between 75 and 150 kDa. This is because the CAP45 band is very large due of over-

loading of the sample onto the gel.

FIGURE 6.1: The purified and concentrated gp120 BAL and gp120ZACAP45
strains were compared by SDS-PAGE to determine which preparation yielded
the highest purity. The BAL sample appears to have more contaminating bands at
different molecular weights than does the CAP45 sample. The molecular weight
marker of standard proteins on the left-hand side of the gel displays the molecu-

lar mass in kDa.

Determination of percentage glycosylation of gp120 by MALDI-TOF-MS

MALDI-TOF mass-spectrometry was used as a way to assess the precise molecular mass of the

two gp120 strains: BAL (fig. 6.2a) and CAP45 (fig. 6.2b) and, as a result, the extent of their

glycosylation. Figure 6.2a presented a main peak with a molecular mass of 89 703 Da and two

smaller peaks at 44 481 and 179 797 Da for BAL. The predicted molecular mass for the protein

portion of gp120, determined from the amino acid sequence using the ProtParam tool from

ExPASy (https://web.expasy.org/protparam/), is 57 213.4 Da. Therefore, the molecular mass

of the glycosylation was calculated to be 32 490 Da from the difference in the mass. CAP45 6.2b

displayed a main peak at 86 843 Da with smaller peaks at 43 390 and 173 086 Da. Using the same

method, the molecular mass of the protein portion was calculated to be 54 802.9 Da, therefore

the glycan portion was determined to be 32 040 Da. BAL is therefore 36.2% glycosylated and
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CAP45 is 36.9% glycosylated. However, the percentage glycosylation is only an estimate as the

total molecular mass of the protein is shown to be very heterogeneous by the broadness of the

peaks of the MALDI spectra. This is because the HEK293FS cells do not uniformly glycosylate

the proteins.

In both gp120 preparations the presence of a smaller peak at approximately half the molecular

mass of the main peak can be seen. These correspond to a fragmented 2+ ion as indicated on

the figure whereas the main peak corresponds to an unfragmented 1+ ion. Finally, the presence

of a dimeric species is also observed which corresponds to the small peak of a larger molecular

mass of 179 797 and 170 386 Da for the BAL and CAP45 species, respectively. The dimeric

molecular mass is not precisely twice that of the monomer due to the heterogeneity of the

glycosylation.
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(A)

(B)

FIGURE 6.2: The (A) gp120 BAL and (B) gp120ZA CAP45 strains were analysed
by matrix assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass
spectrometry to determine the molecular mass of the glycans. From the mass
difference between the protein portion determined using the ProtParam tool and
the experimentally observed molecular mass, the molecular mass of the glycans
was determined to be (A) 32 490 Da and (B) 32 040 Da. Dimeric species were also

observed for both strains.
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Estimation of the composition of the gp120 glycans

Panico et al. 2016 mapped the entire glycoprofile of HIV-1 BAL and found that of the 24 gly-

cosylation sites approximately 20 are high mannose glycans, 3 are complex glycans and 1 is a

hybrid glycan [205]. High mannose glycans usually contain between 4 and 9 mannose moieties

so 6 was taken as an average. The complex glycans frequently consist of a varying number

of hexose, N-acetylglucosamine and a fucose moiety and so these were approximated to a ra-

tio of 3:5:1. Finally the hybrid glycans often contain hexose and N-acetylhexosamine which

were approximatd to a ratio of 5:3 This information was applied to the gp120ZACAP45 used in

this study. This gave a total molecular mass of 30 237 Da which left a difference of 1 802 Da

according to the mass spectrometry results which showed a mass of 32 040 Da worth of gly-

cans. 1 802.86 Da equates to roughly 10 additional mannose moieties which is possible given

the 4-9 potential mannose moieties per high mannose glycosylation site. The total molecular

mass was thus 31 710.42 Da which is inline with the mass spectrometry results and therefore

a good estimate of the sugar composition with a molecular formula of C1068H2118N18O1031. Ta-

ble 6.2 summarises the sugar composition estimation applied to gp120ZACAP45 expressed by

HEK293FS cells.

Sugar Molecular formula MM (Da) Repeats/gp120 monomer
Man C6H12O6 180.16 130
Hex C6H12O6 18016 23
Fuc C6H12O5 164.16 1

HexNAc C8H15NO6 221.21 18
TOTAL C1068H2118N18O1031 31 710.42

TABLE 6.2: The glycan composition of gp120 was estimated using data obtained
from glycoprofiling of gp120 BAL by Panico et al. 2016. gp120 has 24 glycosyla-
tion sites of which 20 display high-mannose, 3 display complex and 1 displays
hybrid glycans. Man = mannose, Hex = hexose, Fuc = fucose and HexNAc =

N-Acetylhexosamine.

SEC-MALLS-RI shows a monomer/dimer distribution

SEC-MALLS-RI (fig.6.3) was used following mass-spectrometry to confirm the presence and

distribution of the supposed gp120 monomer and dimer of the CAP45 subtype. gp120ZACAP45

was chosen to take forwards in further work, as the SDS-PAGE analysis (fig.6.1) showed that

higher yields of greater purity gp120 were possible using the CAP45 versus the BAL subtype.
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The light scattering (orange curve) shows the presence of large particles at 6 mL. Since the

UV280nm trace (grey curve) and refractive index (blue curve) show a very small peak at this

elution volume this suggests that this peak corresponds to a small amount of aggregation.

There are two main protein peaks at around 10 and 12 mL of which the first, larger peak is

approximately twice the size of the second, smaller peak suggesting that there is twice the

concentration of the larger species than the smaller one. The molecular masses were calculated

for the two peaks of which the first, larger peak has a molecular mass of around 155 200 Da

(+-1.4%, yellow crosses) and the second, smaller peak has a molecular mass of around 75 990

Da (+-1.5%, green asterisks), corresponding to a gp120 dimer and monomer, respectively.

FIGURE 6.3: gp120ZACAP45 was tested using size-exclusion chromatography
coupled to multi-angle laser light scattering and refractive index to test the poly-
dispersity of the sample. The light scattering (orange curve) shows a large parti-
cle which elutes at 6 mL and two smaller peaks eluting at 10 and 12 mL. The UV
trace at 280 nm (grey curve) and refractive index (blue curve) show a very small
peak at 6 mL, a large peak at 10 mL and a smaller peak at 12 mL. The molecular
mass for the peaks at 10 and 12 mL (yellow crosses and green asterisks, respec-
tively) were in the range of 155 200 Da (+-1.4%) and 75 990 Da (+-1.5%) which
correspond to a gp120 dimer and gp120 monomer, respectively. The column used

was an analytical grade SuperdexTM 200 10/300 (GE Healthcare).

gp120 dimers can be separated by treatment with DTT and SEC

The monomer and dimer peaks from the SEC-MALLS-RI experiment were pooled separately

and re-run on a S200 ag size-exclusion column to observe the separation. The monomeric peak

(green box) is shown in the chromatogram in figure 6.4a and it can be seen that there is still

some dimer remaining in the pooled monomer sample which suggests that the resolution of
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the S200 ag column is not good enough to fully separate the two species. The process was

repeated for the dimeric species (fig. 6.4b) from which it can be seen that whilst the dimeric

peak (red box) is the main species, there is contamination from the monomer.

(A) gp120ZACAP45 monomer separation

(B) gp120ZACAP45 dimer separation

FIGURE 6.4: Following the SEC-MALLS-RI experiment, the gp120 fractions
across the monomer and dimer peak were pooled separately and re-loaded onto
an analytical grade SuperdexTM 200 10/300 (GE Healthcare) size-exclusion col-
umn to further purify the monomeric (A, green box) and dimeric (B, red box)
species. Incomplete separation is observed in the chromatograms. Dark blue
curve = UV absorbance at 215 nm, green curve = UV absorbance at 280 nm, cyan
curve = UV absorbance at 260 nm, red curve = conductivity, light blue line =

temperature in degrees Celsius.

In an attempt to improve the monomer:dimer ratio, CAP45 was incubated with 5 mM DTT for

1 hour prior to separation on an analytical grade S200 size-exclusion column (fig. 6.5a). This

was compared to SEC purification of CAP45 in the absence of DTT (fig. 6.5b). With the addition

of DTT the proportion of CAP45 monomer increases, shown by the increase in the size of the

monomeric peak. However, this causes further "blurring" of the monomeric and dimeric peaks

into one another due to the limited resolution of the column. Therefore, whilst it is possible to

enrich the sample with monomer with the addition of DTT, it appears to make the subsequent

separation by SEC more complicated.
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(A) gp120ZACAP45 with 5 mM DTT

(B) gp120ZACAP45 without 5 mM DTT

FIGURE 6.5: Treatment with 5 mM DTT followed by purification by size-
exclusion chromatography using an analytical grade SuperdexTM 200 10/300 (GE
Healthcare) column was used to increase the yield of gp120 CAP45 monomers.
(A) With treatment of 5 mM DTT there is an increase in the proportion of
monomeric species present, however the separation resolution of the column is
not sufficient. (B) In the absence of DTT there is significantly more dimer present

than monomer and the peaks overlap.
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6.4 Part II: SANS analysis of d-2dCD4-WT, h-gp120 and the complex

Three SANS experiments were carried out:

1. Determination of the protiated glycoprotein 120 (h-gp120) match-out point

2. Determination of the deuterated wild-type two-domain CD4 (d-2dCD4-WT) match-out

point

3. Use of the match-out point data to exploit contrast variation to determine the scattering

structure of the complex and its individual components.

The experimental parameters are detailed in table 6.3 and the details of each experiment are

explained thereafter.

Parameter Value
Wavelength (Å) ( ∆λ

λ ) 6 (+-10%)
Detector distances (m) 1.4, [5.6 (gp120 CMP only)] & 8.0
Collimation (m) 2.0, [2.8 (gp120 CMP only)] & 8.0
Q-range (Å−1) 0.036 - 0.62
Temperature Ambient
Cuvette path length (mm) 1
Beam shape Rectangular

TABLE 6.3: The experimental set-up for the D22 instrument at the ILL.

6.4.1 Match-out point determination of protiated gp120

Native gp120 is highly glycosylated; however the glycosylation pattern is dependent on sev-

eral factors including the HIV clade and subtype from which the gp120 originates and the

mammalian cell line in which it is expressed [206–208]. The protiated gp120 used in this exper-

iment (gp120ZA CAP45, referred to henceforth as h-gp120) is derived from HIV-1 clade C and

recombinantly expressed using HEK293FS cells.

Due to the extent of glycosylation (36.9%), h-gp120 has two phases (components): one of pro-

tein and one of carbohydrate. It was therefore expected that the global match-out point of

h-gp120 would fall somewhere between the match-out point for that of the protein phase and

that of the sugar phase. The protein phase of h-gp120 should have a match-out point of around

42% D2O, as is characteristic for non-glycosylated proteins, whereas the sugar phase should

have a higher match-out point due to a higher density of hydrogens of which many are bound
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to oxygen, are therefore labile and can exchange with the deuterium in the solvent. In order

to determine the global match-out point of h-gp120 (including the protein and sugar portions),

the SANS signal was measured for h-gp120 in a series of D2O contrasts.

Sample preparation

1 mL purified gp120ZA CAP45 (as described in section 6.3.1) was split into two equal volumes

(500 µL) and dialysed into 0% D2O and 100% D2O 20 mM Tris pH 7.5, 50 mM NaCl buffer,

respectively. The 500 µL 0% and 500 µL 100% D2O CAP45 were then mixed in different ratios to

give the following contrast series: 0, 20, 40, 60, 80 and 100% D2O. Due to low sample volumes

the 0% and 100% contrasts were measured first and the samples mixed in different ratios to

make 190 µL sample volumes, thereafter.

Experimental contrast match-point determination of h-gp120

After data reduction, merging of the data collected at 5.6 m and 2.0 m detector distances and

subtraction of the scattering contribution from the buffer, the square root of the forward inten-

sity at 0 angle (I(q=0)) for each of the contrasts (corrected for concentration, cuvette thickness

and transmission) were plotted against D2O% to determine the global match-out point for h-

gp120 (fig. 6.6).
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FIGURE 6.6: Protiated gp120ZA CAP45 was measured by SANS in a series of D2O
contrasts. The square root of the I(0) determined from the Guinier region of each
contrast, corrected for the concentration and transmission of the sample and the
thickness of the cuvette, was plotted against the percentage of D2O. The match-
out point of protiated gp120ZA CAP45 is found at the x-axis intercept (y=0) at

45.2% D2O.

The linear fit shows a contrast match-point of 45.2% for h-gp120.

6.4.2 Determination of the contrast-match point of deuterated 2dCD4-WT

The Deuteration Laboratory, through extensive experimentation, has developed a series of

standard protocols for perdeuteration and match-out labelling of biological macromolecules

necessary for neutron crystallography, and small-angle neutron scattering or neutron reflectiv-

ity experiments, respectively. These standard protocols are predominantly based on the use of

the Escherichia coli and Pichia pastoris expression systems [171].

During a standard contrast variation SANS experiment of a protein-protein complex in which

a hydrogenated protein is complexed with a deuterated protein produced in E. coli; the hy-

drogenated protein is usually matched-out at approximately 42% D2O and the recombinant

protein is deuterated to a level of approximately 75% giving a match-out point at or close to

100% D2O. This 75% deuterium incorporation is possible by using a minimal growth media

containing 85% D2O and protiated glycerol. Perdeuterated protein can be used for SANS stud-

ies of a protein in order to increase the contrast of the perdeuterated protein relative to the
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solvent. However contrast-matching of the protein is not possible when it is perdeuterated be-

cause the scattering length density is higher than that of 100% D2O. In other words the SLD of

the solvent is lower than that of the protein and it cannot be matched-out.

CFPE, as used during this experiment, functions by setting up an in vitro reaction for protein

expression whereby the protein production machinery (ribosomes) is harvested from E. coli

grown in hydrogenated conditions and the remaining ‘ingredients’ for protein synthesis are

added (DNA, tRNA, amino acids etc. as detailed in chapter 3). By substituting hydrogenated

amino acids for deuterated ones the resulting protein should also be deuterated, with some

back protonation due to the use of light water solvents. Therefore, the extent to which the

2dCD4-WT would be deuterated and the SLD and the resulting CMP was unknown. The per-

centage deuteration of d-2dCD4-WT was calculated to be in the region of 73% D2O, as shown

by mass spectrometry (see chapter 4), so the CMP was predicted to be slightly lower than 100%

D2O solvent. Perdeuteration of 2dCD4-WT would have added additional complexity to the

deuteration process using CFPE as the reaction would need to have been dialysed against a

deuterated buffer to avoid back-protonation. Since perdeuteration was not necessary this av-

enue was not explored.

Sample preparation

In order to test the experimental match-out point, 1 mL deuterated 2dCD4-WT produced using

CFPE at 1.5 mg/mL was divided equally between two midi-GEBA flex (6-8 MWCO, Millipore-

Merck) and dialysed into 100 mL 0% and 100% D2O 20 mM Tris pH 7.5, 150 mM NaCl, respec-

tively. Dialysis was carried out at 8◦C, changing the dialysis buffer once and dialysing for at

least 2 hours each time. After dialysis, the concentrations of 2dCD4-WT in 0 and 100% D2O

were 1.8 and 1.2 mg/mL, respectively. Due to sample availability limitations, the d-2dCD4-WT

at the 0 and 100% D2O contrasts were measured first and the subsequent D2O contrasts (20,

40, 60 and 80%) were made by mixing the 0 and 100% D2O d-2dCD4-WT in the correct ratios

thereafter.
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Experimental contrast-match point determination of deuterated 2dCD4-WT

The neutron scattering data were measured for d-2dCD4-WT at detector distances of 1.4 and 8

m for 0, 20, 80 and 100% D2O. Due to an error in the experimental sequence only 8 m data were

collected for 40 and 60% D2O. After the data reduction, the 1.4 and 8 m data were merged and

the buffer contribution was subtracted from that of the sample. The I(0) data were extracted

from the Guinier analysis for the 0, 20, 80 and 100% data. The square root of I(0) corrected for

the thickness of the cuvette and the concentration and transmission of the sample was plotted

against the percentage D2O as shown in figure 6.7. From the match-out point plot the y=0

intercept is found at 90.5% D2O. Data treatment was carried out using the PRIMUS programme

of the ATSAS suite of software.

FIGURE 6.7: Deuterated wild-type two-domain CD4 (d-2dCD4-WT) was mea-
sured by SANS in a series of D2O contrasts. The square root of the I(0) deter-
mined from the Guinier region of each contrast, corrected for the concentration
and transmission of the sample and the thickness of the cuvette, was plotted
against the percentage D2O. The match-out point of d-2dCD4-WT is found at

the x-axis intercept (y=0) at 90.5% D2O.

6.4.3 Contrast variation analysis of the h-gp120/d-2dCD4-WT complex

Having experimentally determined the match-out points for the deuterated 2dCD4-WT ex-

pressed in the CFPE system (90.5% D2O) and the hydrogenated, fully glycosylated gp120 ex-

pressed by HEK293 mammalian cells (45.2%); the d-2dCD4-WT/h-gp120 complex could be

analysed using contrast variation.
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Sample preparation

Preparation of h-gp120 monomer/dimers and gp120-unbound d-2dCD4-WT in different D2O

contrasts: h-gp120 monomers and dimers were prepared in 0% D2O buffer by SEC as de-

scribed in section 6.3.1 and half was dialysed into 90.5% D2O buffer. d-2dCD4-WT was pre-

pared in 0% D2O buffer by SEC. After measurement by SANS, the d-2dCD4-WT was dialysed

into 45.2% D2O buffer.

Preparation of the d-2dCD4-WT/h-gp120 complex in different D2O contrasts: The d-2dCD4-

WT/h-gp120 complex was formed by incubation of d-2dCD4-WT with monomer enriched h-

gp120 at a ratio of 4:1 based upon molecular mass for 1 hour at room temperature. Monomer

enriched h-gp120 was prepared as described in section 6.3.1 by addition of 5 mM DTT to the

monomer/dimer mixture prior to purification by SEC.

The CD4-gp120 complex was then purified from the heterogeneous mixture by size-exclusion

chromatography using a preparative grade SuperdexTM 200 16/600 column attached to an

ÅKTA purifier (both GE Healthcare), equilibrated in 50 mM Tris-Cl pH 7.5, 150 mM NaCl,

5% sucrose, 45.2% D2O. The protein was eluted at a flow rate of 1 mL/min into 1 mL fractions

which were subsequently analysed by SDS-PAGE.

After measurement in the 45.2% D2O buffer, the complex was re-purified by SEC to eliminate

any aggregation that may have accumulated during the SANS measurement and simultane-

ously exchange the buffer into the 0% D2O buffer. Unfortunately, there was not enough mea-

surement time to measure the complex in the 90.5% D2O buffer.

Data treatment

The buffer and sample curves measured at 1.4 m and 8 m were merged after which the back-

ground scattering was subtracted from that of the protein by subtracting the buffer scatter-

ing curve from that of the sample. The Guinier analysis and the Kratky analysis normalised

against the Rg was carried out using the SCÅTTER software. P(r) analysis was carried out

using the GNOM programme [202] from the ATSAS package [199]. For the MM calculation

of d-2dCD4-WT the SLD was calculated using the MULCH online calculator (http://smb-

research.smb.usyd.edu.au/NCVWeb/input.jsp).
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Analysis of the size parameters from the SANS data

The samples measured are summarised in table 6.4 and includes the size parameters deter-

mined from the SANS data. The Rg determined from the Guinier plot and the Rg determined

from the P(r) function for each data set are mostly consistent (+-2Å) which is indicative of an

accurate determination of the Rg.

The discrepancy shown by the Rg for d-2dCD4-WT in 45.2% D2O could be due to aggregation

which skew the data at low-q and thus affects accurate determination of the Rg. Alternatively

this could be because the contrast between the d-2dCD4-WT and 45.2% D2O solvent is low,

therefore the signal is weak. The error is also large for the complex in 45.2% D2O. Since the

gp120 is matched out at this contrast, the scattering in this sample should be from the d-2dCD4-

WT alone. Therefore, the data is also noisy since the relative concentration of d-2dCD4-WT is

low and the contrast between the d-2dCD4-WT and 45.2% D2O solvent is low as mentioned

previously.

In addition, the size parameters for each of the samples are mostly consistent with respect to

the published data in table 6.1. The results obtained for the complex fall between those of

the two complexes published with monomeric and dimeric gp120 and therefore may represent

an average of the two. Since the complex was in a monomer/dimer mixture enriched with

monomer, this could explain why the size parameters determined in this SANS experiment fall

between those published by Ashish et al. 2006 and Guttman et al. 2012 who studied the gp120

dimeric and monomeric complexes, respectively [72, 197].

Finally, the size parameters for each sample at their respective contrasts are also consistent (+-

2Å), except for the complex. This is to be expected since the gp120 is matched out at the 45.2%

D2O contrast, as mentioned previously. Thus the size parameters for the complex in 45.2% D2O

should be comparative to those for d-2dCD4-WT. Since the Rg and Dmax of the gp120-bound d-

2dCD4-WT in 45.2% D2O are smaller than that for the d-2dCD4-WT in isolation. This could be

indicative of a change in the compactness or conformation of 2dCD4-WT upon gp120 binding.



192 Chapter 6. Characterisation of gp120 and small-angle scattering analysis of the complex

Sample D2O Absolute I(0) MM Rg (error) Rg real Dmax

(%) (I[0]/c) (cm−1) (kDa) (Å) (Å) (Å)
d-2dCD4-WT 0 0.058 20.2 20.2 (+-1.7) 22.1 77
d-2dCD4-WT 45.2 0.013 13.7 25.5 (+-3.0) 21.9 78.5

gp120 monomer 0 0.058 144.1 33.9 (+-1.8) 34.4 123
gp120 monomer 90.5 0.050 94.8 32.7 (+-0.5) 33.6 121.5

gp120 dimer 0 0.122 299.9 44.6 (+-0.8) 46.6 158
gp120 dimer 90.5 0.114 217.5 44.8 (+-1.4) 45.3 160

Complex 0 0.098 134.1 40.4 (+-0.9) 41.8 141
Complex 45.2 0.025 13.4 21.6 (+-4.1) 19.4 70

TABLE 6.4: SANS data were collected on deuterated wild-type two-domain CD4
(d-2dCD4-WT) in isolation and in complex with unlabelled gp120 (h-gp120) in
0 and 45.2% D2O contrasts of which the latter is the match-out point of the h-
gp120. SANS data were also collected on the h-gp120 monomers and dimers in
isolation in 0 and 90.5% D2O contrasts of which the latter is the match-out point
of the d-2dCD4-WT. The Rg and Dmax size parameters were calculated from the
Guinier plot and P(r) function. The Rg all within the limit qRg ≤ 1.3. Finally the
molecular mass was calculated from the I(0) extrapolated from the Guinier plot.

Molecular mass analysis from the SANS data

The MM was calculated from the I(0) obtained by SANS using equation 2.4.4 as described

in Chapter 2 and is also shown for each of the samples in 6.4 . The online contrast variation

calculator: MULCh [209] was used to determine the ∆ρ2
M term of equation 2.4.4 for gp120 using

the glycan composition estimate shown earlier. The MM for d-2dCD4-WT in 0% is close to the

expected value of 23.7 kDa for the deuterated protein but this is not the case for gp120-bound

and -unbound 2dCD4-WT in 45.2% D2O for which the MM is 20 kDa smaller than expected.

Conversely the MM for the gp120 monomer and dimer in 0% D2O are significantly larger than

the 86.8 kDa and 173.6 kDa expected. Finally the complex in 0% D2O is 24 kDa larger than the

110.5 kDa.

Given the broadness of the mass spectrometry peak for gp120 and the subsequent estimation

of the nature of the sugars, it is unsurprising that there are large discrepancies in the theoretical

and experimental molecular mass as determined by SANS in samples containing gp120. For

d-2dCD4-WT the difference in the experimental and theoretical mass at 0% D2O may be down

to the poor signal-to-noise ratio which made I(0) determination from the Guinier region non-

trivial. For d-2dCD4-WT in 45.2% D2O and when bound to gp120 in 45.2% D2O the signal-to-

noise ratio was even poorer due to the reduced contrasts between a deuterated protein with a

CMP of 90.5% D2O measured at 45.2% D2O. The accuracy of the MM calculation from SAS data

is approximately 10% in any case because of the limitations of concentration determination by
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UV absorbance at 280 nm [163].

Analysis of the graphical representation of the d-2dCD4 bound and unbound SANS data

The graphical representation of the data for d-2dCD4-WT and the complex is shown in figure

6.8. Figures 6.8a and 6.8b show a double-logarithmic representation of the one-dimensional

(1D) SANS curves. In this format it is clear that the signal from the d-2dCD4-WT is low and

that the sample suffers from a small amount of aggregation, as indicated by the up-turn of the

data at low-q. The scattering from the complex in 45.2% D2O (fig. 6.8b, purple) mimics that of

the d-2dCD4-WT (fig. 6.8a) which shows that the gp120 has been successfully matched-out at

this contrast.

The Guinier plots in figures 6.8c and 6.8d show a relatively flat Guinier region, after truncation

of the first 20 data points which were indicative of aggregation, with oscillation above and

below the Guinier fit (black line) due to the noisiness of the data. The signal was stronger

for the complex in 0% D2O (fig. 6.8b, orange) as the contrast between the d-2dCD4-WT and

the 0% D2O was stronger, therefore there is less fluctuation and the Guinier fit passes through

the points with greater linear correlation than for the complex in 45.2% D2O (purple) and the

d-2dCD4-WT in figure 6.8a.

Whilst their Dmax are similar, the shapes of the P(r) functions (fig. 6.8a) for d-2dCD4-WT in 0%

(pink) and 45.2% (grey) D2O are different. The P(r) function for d-2dCD4-WT in 45.2% D2O

shows a large distribution (P[r]) of smaller distances (r) with a second smaller distribution of

larger distances which is indicative of a bi-lobular type structure. However the clear difference

seen in the two size distributions present the 45.2% d-2dCD4-WT is far less evident for the 0%

d-2dCD4-WT, as there is only a slight bump present as the distribution tends towards Dmax.

This could be an artefact of poor buffer subtraction due to buffer mismatching, the poor signal

to noise ratio or aggregation rather than an actual structural feature of the d-2dCD4-WT.

The shape of the 45.2% complex P(r) function (fig. 6.8d, purple) is similar to that of the 45.2%

d-2CD4-WT. There is an additional bump in the P(r) of the complex at 45.2% D2O which is

likely caused by the aggregation, as seen in the double-logarithmic plot. The P(r) function for

the 0% complex shows no obvious features, a fairly even distribution across all distances and
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a slightly less steep slope towards Dmax. The P(r) function of the 0% complex is suggestive of a

globular structure close to that of a sphere.

Finally, Kratky plots normalised against the Rg determined from the Guinier range are dis-

played in figures 6.8g and 6.8h for d-2dCD4-WT and the complex, respectively. As with the

correlation between the P(r) functions there are again clear similarities for the 45.2% d-2dCD4-

WT (grey) and 45.2% complex (purple) with an unusual difference compared to the 0% d-

2dCD4-WT. The shape of the normalised Kratky of d-2dCD4-WT and the 45.2% complex is

indicative of an unfolded or disordered protein as the curves do not form an asymptote to the

x-axis at higher qRg values. The shape of the normalised Kratky for the 0% complex, however,

is indicative of a folded protein as the curve is asymptotic to the x-axis at higher-q values.



6.4. Part II: SANS analysis of d-2dCD4-WT, h-gp120 and the complex 195

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 6.8: Graphical representation of the gp120-bound and un-bound d-
2dCD4-WT SANS data. (A) and (B) show a double-logarithmic representation
of the 1D SANS scattering curves of d-2dCD4-WT and the complex, respectively.
(C) and (D) show the Guinier regions for the d-2dCD4-WT (deuterated wild-type
two domain CD4) and complex (h-gp120/d-2dCD4-WT), respectively. The P(r)
functions are shown in (E) for d-2dCD4-WT and (F) for the complex. Finally,
the Kratky plots normalised against the Rg determined from the Guinier plot
are shown in (G) (d-2dCD4-WT) and (H) (complex). d-2dCD4-WT and the com-
plex in 0% D2O solvent are shown in pink and orange, respectively. Whereas
d-2dCD4-WT and the complex in 45.2% D2O solvent are shown in grey and pur-

ple, respectively.
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Analysis of the graphical representation of the gp120 monomer and dimer SANS data

The graphical representation of the SANS data for the gp120 monomer and dimer can be found

in figure 6.9. The double logarithmic plots for the monomer and dimer in figures 6.9a and 6.9b

indicate that there was a good signal to noise ratio and that there was no aggregation as the

curve plateaus and there is no upwards turn of the curve at low-q. The signal is weaker because

there is more noise for the samples in 0% D2O for both the monomer (yellow) and the dimer

(red) due to the large incoherent scattering contribution from the high light water content of

the solvent. The linearity of the Guinier fits (figs. 6.9c and 6.9d, black line) are indicative of

monodisperse samples absent of aggregation. However, the 0% contrasts are noisier for the

afforementioned reason.

The shape of the P(r) functions are similar for the gp120 monomer (fig. 6.9e) and dimer (fig.

6.9f), although the Dmax is larger for the dimer so there is a larger distribution of distances for

the dimer than the monomer. The P(r) functions are indicative of a globular shape close to that

of a sphere. The normalised Kratky plots display an almost bell shaped curve that forms an

asymptote to the x-axis which is indicative of a well-folded, globular protein.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 6.9: Graphical representation of the gp120 monomer and dimer SANS
data.(A) and (B) show a double-logarithmic representation of the 1D SANS scat-
tering curves of the gp120 monomer and dimer, respectively. (C) and (D) show
the Guinier regions for the gp120 monomer and dimer, respectively. The P(r)
functions are shown in (E) for the gp120 monomer and (F) for the gp120 dimer.
Finally, the Kratky plots normalised against the Rg determined from the Guinier
plot are shown in (G) (gp120 monomer) and (H) (gp120 dimer). The gp120
monomer and the dimer in 0% D2O solvent are shown in yellow and red, re-
spectively. Whereas the gp120 monomer and the dimer in 90.5% D2O solvent are

shown in green and blue, respectively.
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Comparison of the SANS and X-ray crystal structure data of 2dCD4-WT and the complex

The CRYSON programme [210] from the ATSAS suite of software for SANS data analysis

was used to compare the published X-ray crystal structures of 2dCD4-WT and the 2dCD4-

WT/gp120 complex to the SANS data collected for d-2dCD4-WT and the d-2dCD4-WT/h-

gp120 complex. For d-2dCD4-WT in isolation the PDB entry 3CD4 (2dCD4-WT) was used and

for the d-2dCD4-WT/h-gp120 complex the PDB entry 1GC1 (gp120/2dCD4-WT/17b antibody

complex) was used with the structural information for the 17b antibody removed.

CRYSON functions by first calculating the theoretical SAS pattern from the crystal structure

and then comparing this to the experimental SANS curve. Their similarity is modelled by the

χ2 value which is calculated by the software. A value close to 1 indicates that the theoretical

scattering curve generated from the crystal structure and the experimental SANS curve are

identical. The result of the CRYSON comparisons are shown in figure 6.10. The SANS curves

for 0% D2O (fig. 6.10a, pink) and 45.2% D2O (fig. 6.10b, grey) appear to fit relatively well at

low-q to the theoretical scattering curve (black line) calculated from PDB entry 3CD4 for d-

2dCD4-WT . Above approximately 0.1 Å−1 the experimental and theoretical scattering curves

diverge. The χ2 values are 2.101 and 1.395 for the data at 0% and 45.2% D2O, respectively,

indicating that the SANS data collected at 45.2% D2O is a better fit to the X-ray crystal structure

of 2dCD4-WT than the SANS data collected at 0% D2O.

The SANS data for the complex in 0% D2O (fig. 6.10c, orange) does not fit the theoretical scat-

tering curve calculated from PDB entry 1GC1 and as such a χ2 value could not be calculated.

This result is unsurprising given the fact that the gp120 measured by SANS was glycosylated

with no truncations in any of its variable regions. In addition the 1GC1 PDB entry corresponds

to the complex in the presence of the 17b antibody and so, even though the X-ray diffraction

coordinates from the 17b had been deleted from 1GC1, the 2dCD4-WT/gp120 complex was

locked in the 17b bound conformation. The SANS data collected on the complex at 45.2% D2O,

which corresponds to the gp120 bound conformation of 2dCD4-WT, was compared uniquely

against the 2dCD4-WT component of the 1GC1 PDB entry rather than the 2dCD4-WT/gp120

data of 1GC1 because gp120 was matched out at this D2O contrast, as mentioned previously.
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(A) d-2dCD4-WT in 0% D2O (B) d-2dCD4-WT in 45.2% D2O

(C) d-2dCD4-WT/h-gp120 complex in 0% D2O (D) d-2dCD4-WT/h-gp120 complex in 45.2% D2O

FIGURE 6.10: CRYSON [210] analysis was carried out to compare the SANS data
obtained for d-2dCD4-WT in isolation and in complex with gp120 to the theoret-
ical SANS curve generated from the X-ray crystal structure. χ2 values demon-
strate the closeness-of-fit of the theoretical and experimental data. The experi-
mental SANS data is shown in coloured crosses and the theoretical SANS data is

shown as a black line.

Given that the SANS data for gp120-unbound d-2dCD4-WT in 0% and 45.2% D2O and gp120-

bound d-2dCD4-WT in 45.2% D2O match the theoretical small-angle scattering of the corre-

sponding 2dCD4-WT and gp120-bound 2dCD4-WT X-ray crystal structures at low-q, this sug-

gests that the size and shape of the d-2dCD4-WT with and without gp120 is similar to that of

the 2dCD4-WT in the crystal structure (since the low-q data contains information on the size

and shape of the particle).

Ab initio modelling of gp120-bound and -unbound 2dCD4-WT

Given the interesting CRYSON results ab initio modelling was carried out to calculate a dummy

atom model from the SANS data to which the X-ray crystal structure of 2dCD4-WT could be

compared visually. However, considering the uncertainty of the quality of the data from the

Kratky plot (which suggests mis-folding or poor buffer subtraction), any results from further

processing of the data using ab initio modelling should be treated with extreme caution when
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attempting to draw meaningful conclusions from the data (see section 6.6.3 for a detailed dis-

cussion).

The DAMMIF programme [201] from the ATSAS package was used to determine the envelope

structure from the P(r) function which contains the information on the real space distances

within the particle. DAMMIF was run in slow mode to improve the reconstruction of the ab

initio models. 50 iterative repeats were used to produce 50 ab initio models which were com-

pared using the DAMAVER [211] suite of programmes to align and average the models and

determine their goodness-of-fit. The normalised spatial discrepancy (NSD) value was calcu-

lated for pairs of models to find the best alignment in three-dimensions. Any models with an

NSD of less than 2 were excluded from the average. This generates a damaver model which

is an average of the models with an NSD below 2 and a damfilt model which is filtered to a

specific cut-off volume to remove low occupancy and loosely connected dummy atoms.

The ab initio model of d-2dCD4-WT in 0% D2O is presented in figure 6.11 with the X-ray crystal

structure of 2dCD4-WT (PDB entry 3CD4) superimposed using the SUPALM [212] function

of the SASpy plugin for PyMOL. The beta-strands are shown in yellow, alpha-helices in red,

flexible loops in green and the domain 1 and 2 disulphide bonds are shown as spheres. The

grey envelope represents the damaver model. The smaller pink mesh envelope represents the

damfilt model. In 0% D2O, gp120-unbound d-2dCD4-WT comprises two spherical lobes joined

by a bridging region, from which the flexible loop joining beta-strands F and G in domain 1

protrudes from the model (6.11a and 6.11b).

Compared to gp120-unbound d-2dCD4-WT in 0% D2O, the gp120-unbound d-2dCD4-WT in

45.2% D2O appears similar in shape and size (fig. 6.12). The damaver model is shown again

in grey with the damfilt model shown in grey mesh and the X-ray crystal structure is superim-

posed. The flexible loop between beta-strands F and G in domain 1 is shown to jut out again

from the model as with the d-2dCD4-WT in 0% D2O. The main difference is that domain 2

appears significantly smaller (fig. 6.12c and 6.12d).

While the bi-lobular structure of the model of gp120-bound d-2dCD4-WT in 45.2% D2O (fig.

6.13, damaver model = grey, damfilt model = purple mesh, the crystal structure of the complex

is superimposed) generally resembles that of the gp120-unbound d-2dCD4-WT model in 0 and

45.2% D2O, there appears to be a slight conformational change on gp120 binding (fig. 6.13b).
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Where the two domains (domains 1 and 2) appear linearly stacked in the gp120-unbound mod-

els of d-2dCD4-WT, there appears to be a hinge or elbow action in the gp120-bound d-2dCD4-

WT which results in domain 2 being slightly roated around the z-axis with respect to domain

1. Also of note is that domain 2 of the X-ray crystal structure does not fit as well within the

dammif model with a significant part of the A and B beta-strands protruding from the model

in domain 2 (fig. 6.13a and 6.13b). With a CRYSON calculated χ2 value larger than that for

gp120-unbound d-2dCD4-WT in 45.2% D2O, this supports the suggestion that there is a change

on gp120 binding.

The diameter of each lobe in the x and z planes were measured as well as the total length in the

y plane of each of the damaver models in WinCoot as summarised in table 6.5.

Model Domain Plane Distance (Å)
1 x 42

z 42
0% d-2dCD4-WT 2 x 40

z 39
1&2 y 97

1 x 36
z 37

45.2% d-2dCD4-WT 2 x 28
z 28

1&2 y 92
1 x 24

45.2% gp120-bound z 25
d-2dCD4-WT 2 x 18

z 22
1&2 y 69

TABLE 6.5: WinCoot was used to measure the maximum distances of the x and
z planes for domains 1 and 2 individually and the distance along the y plane
spanning domain 1 and domain 2 for each of the damaver ab initio models of
gp120-unbound and -bound d-2dCD4-WT in 0% and 45.2% D2O contrasts, gen-
erated using DAMMIF. The ab initio model of gp120-bound d-2dCD4-WT was

shown to be the smallest in all planes.

From these approximate distances it would indeed appear that d-2dCD4-WT is larger when

gp120-unbound and that on gp120 binding the bend observed in figure 6.13b causes the length

of the protein to shrink in size. Additionally, there appears to be a shrinking of the width of do-

main 2, first in 45.2% D2O and then on gp120 binding. This is supported by the size parameter

determination in table 6.4 which shows that, on gp120-binding, d-2dCD4-WT becomes more

compact indicated by a smaller Rg and Dmax.
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(A) Front-view (B) Rotation by 90◦

(C) Domain 1-view (D) Domain 2-view

FIGURE 6.11: ab initio model of d-2dCD4-WT in 0% D2O. A) Front-view, B) rota-
tion by 90◦, C) domain 1-view and D) domain 2-view. 50 ab initio models were
generated using the DAMMIF programme in slow mode and the best-fit models
were compared, averaged and filtered by assessing their goodness-of-fit using
the DAMAVER suite of programmes. The dammfilt (pink mesh) and damaver
(grey surface) models were aligned with the X-ray crystal structure of 2dCD4-WT
(PDB entry 3CD4) in PyMOL using supalm of the SASPy plugin. The 2dCD4-WT
ab initio model shows two lobes of which one comprises domain 1 and a second
lobe comprises domain 2. The two lobes are joined by a narrower bridging region
which comprises the long G beta-strand in domain 1 which becomes strand A in
domain 2. Finally, there is a protrusion from the domain 3 face of domain 2 which
is attributable to the uncleaved His-tag. Beta sheets are shown in yellow, alpha
helices are shown in red, flexible loops are shown in green and the disulphide

bonds are shown as balls.
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(A) Front-view (B) Rotation by 90◦

(C) Domain 1-view (D) Domain 2-view

FIGURE 6.12: ab initio model of d-2dCD4-WT in 45.2% D2O. A) Front-view, B)
rotation by 90◦, C) domain-1 view and D) domain 2-view. 50 ab initio models were
generated using the DAMMIF programme in slow mode and the best-fit models
were compared, averaged and filtered by assessing their goodness-of-fit using the
DAMAVER suite of programmes. The dammfilt (grey mesh) and damaver (grey
surface) models were aligned with the 2dCD4-WT portion of the X-ray crystal
structure of the 2dCD4-WT/gp120 complex (PDB entry 1GC1) in PyMOL using
supalm of the SASPy plugin. The 2dCD4-WT ab initio model shows two lobes
joined by a narrower bridging region. One of the lobes comprises domain 1 and
a second smaller lobe represents domain 2. The bridging region between the
two lobes comprises the long G beta-strand in domain 1 which becomes strand
A in domain 2. Finally there is a protrusion at the domain 3 face of domain 2
attributable to the uncleaved His-tag. Beta sheets are shown in yellow, alpha
helices are shown in red, flexible loops are shown in green and the disulphide

bonds are shown as balls.
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(A) Front-view (B) Rotation by 90◦

(C) Domain 1-view, through gp120 (D) Domain 2-view

FIGURE 6.13: At 45.2% D2O which is the contrast match point of the hy-
drogenated gp120 (h-gp120), only the neutron scattering from the deuterated
2dCD4-WT (d-2dCD4-WT) can be seen. A) Front-view, B) rotation by 90◦, C) top-
view through gp120 and D) bottom-view of the ab initio model of d-2dCD4-WT
in complex with gp120. 50 ab initio models were generated using the DAMMIF
programme in slow mode and the best-fit models were compared, averaged
and filtered by assessing their goodness-of-fit using the DAMAVER suite of pro-
grammes. The dammfilt (purple mesh) and damaver (grey surface) models were
aligned with the 2dCD4-WT portion of the X-ray crystal structure of the 2dCD4-
WT/gp120 complex (PDB entry 1GC1) in PyMOL using supalm of the SASpy
plugin. The 2dCD4-WT ab initio model shows two lobes of which one comprises
domain 1 and is proximal to gp120 and the second smaller lobe comprises do-
main 2. A wide stalk joins the two lobes and comprises the long G beta-strand
in domain 1 which becomes strand A in domain 2. Beta sheets are shown in yel-
low, alpha helices are shown in red, flexible loops are shown in green and the

disulphide bonds are shown as balls.
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6.5 Part III: Small-angle X-ray scattering analysis of 2dCD4-WT, gp120

and the complex

6.5.1 SAXS analysis of samples previously measured by SANS

24 hours after the end of the SANS experiment the samples were transferred to BM29 at the

ESRF where they were measured using SAXS, with the intention of corroborating the SANS

data that had been collected.

Sample preparation

A dilution series of three concentrations was prepared for each sample. The highest concentra-

tion was that measured in the SANS experiment was diluted 1:2 and 1:4 in the corresponding

buffer to produce the middle and lowest concentrations. The samples were centrifuge filtered

using 0.22 µm Spin-X filters (Corning) prior to placing them in the robotic sample changer to

remove any precipitant from the sample.

Sample measurement

10 frames were measured per sample as it flowed through the capillary exposed to the X-ray

beam. After radial averaging, each frame was compared against all others within that sample

measurement using the data comparison function of Primus [213] from the ATSAS package

[199]. Any frames which differed significantly (p≤0.05) were excluded from the curve averag-

ing.

The low-q data of the low-concentration data was merged with the mid-q data of the middle

concentration and the high-q data of the highest concentration in an attempt to mitigate the

effects from concentration-induced aggregation and poor signal from the lowest concentration

sample. The background scattering was subtracted from that of the protein by subtracting

the buffer curve from the corresponding sample. The resultant curves were analysed using

SCÅTTER to determine the Rg, I(0) and Rg normalised Krakty plot [200]. GNOM was used to

determine the P(r) function [202].

The experimental parameters are listed in table 6.6.
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Parameter Value
Energy 12.5keV
Detector distance (m) 2.867
Q-range (Å−1) 0.025-60
Temperature Ambient

TABLE 6.6: The experimental set-up for the BM29 beamline at the ESRF.

Analysis of the size parameters of the SANS samples determined by SAXS

Table 6.7 outlines the parameters obtained. The Rg for each sample is relatively consistent

between the two D2O contrasts and between the Rg determined from the Guinier region and

that determined from the P(r) function, except for the d-2dCD4-WT in 45.2% D2O. The data are

consistent between the SANS and SAXS derived size parameters for d-2dCD4-WT and gp120

monomer in 0% D2O. For the other samples, the size parameters determined by SAXS are

significantly larger than those that were determined from the SANS experiment (table 6.4).

The MM was calculated for the samples using equation 2.4.4 from the I(0) determined from the

Guinier analysis. The MM calculations for the complex are within the 10% accuracy limit [163].

However the MM calculations for all other samples are significantly lower than expected. This

indicates that the data is of poor quality. For gp120 this is, again, unsurprising given the esti-

mations made with regards to the sugar content, the incomplete dimer/monomer separation

and the heterogeneous distribution of the sugars as shown by mass spectrometry (fig. 6.2). The

graphical representation of the d-2dCD4-WT data (below) show that the data quality is very

poor and therefore not at all representative of d-2dCD4-WT.

Compared to the published data, the results for d-2dCD4-WT, the gp120 monomer in 0% D2O

and the complex in 0 and 45.2% D2O are similar. For the other samples the size parameters de-

rived from the data collected are larger. The discrepancy between the SANS and SAXS derived

size parameters and between the published data can be partly understood by looking at the

graphical representations of the data.

Analysis of the graphical representation of the SAXS data of d-2dCD4-WT

It is apparent from the double-logarithmic representation of the d-2dCD4-WT SAXS data in

figure 6.14a that the samples are heavily aggregated. Both the 0% (pink) and 45.2% D2O (grey)

gp120-unbound d-2dCD4-WT curves are bi-phasic which is suggestive of two populations.
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Sample D2O Absolute I(0) MM Rg (error) Rg real Dmax

(%) (cm−1) (kDa) (Å) (Å) (Å)
CFPE d-2dCD4-WT 0 3.841x10−3 5.9 23.1 (+-0.7) 24.4 78
CFPE d-2dCD4-WT 45 1.026x10−2 15.8 44.1 (+-1.3) 52.4 240

gp120 monomer 0 2.674x10−2 41.2 36.2 (+-0.2) 36.7 125
gp120 monomer 90.5 2.681x10−2 41.4 38.4 (+-0.3) 38.7 140

gp120 dimer 0 4.803x10−2 74.1 49.9 (+-0.3) 50.4 190
gp120 dimer 90.5 4.831x10−2 74.5 48.8 (+-0.3) 49.4 178

complex 0 6.661x10−2 102.7 46.8 (+-0.3) 45.9 155
complex 45 1.470x10−1 226.6 44.8 (+-0.4) 46.2 158

TABLE 6.7: SAXS data was collected on BM29 at the ESRF samples after measure-
ment by SANS on D22 at the ILL.

The Rg presented in the Guinier plot (fig. 6.14b) show two clearly different Guinier regions

of different gradient which explains the difference in Rg observed between d-2dCD4-WT in 0

and 45.2% D2O. The steepness of the slope of the Guinier region for d-2dCD4-WT in 45.2%

D2O is indicative of a larger particle, reflected by the larger Rg of 44.1Å, which is due to the

presence of an aggregate of d-2dCD4-WT. Whereas the shallow slope of the Guinier region for

d-2dCD4-WT in 0% D2O is indicative of a smaller particle reflected by the smaller Rg of 23.1Å,

which could be representative of d-2dCD4-WT as this is close to the Rg determined by SANS

and the published Rg for 2dCD4.

The P(r) functions in figure 6.14c show the same pattern of a much smaller Dmax for the d-

2dCD4-WT in 0% compared to 45.2% D2O. The P(r) functions presented are not accurate rep-

resentations of the d-2dCD4-WT due to the evident polydispersity of the sample shown by the

double-logarithmic and Guinier plots (figs. 6.14a and 6.14b). The P(r) function of d-2dCD4-WT

in 0% D2O (pink) resembles the shape of the P(r) function found for d-2dCD4-WT by SANS

(fig. 6.8e), however the curve does not tend smoothly towards the x-axis and ends abruptly

suggesting the Dmax may have been underestimated. The P(r) function for d-2dCD4-WT in

45.2% D2O (grey) is very bumpy and shows a very large Dmax due to the aggregation. The

Kratky plot in figure 6.14d also suggests that the proteins are unfolded. Thus the SAXS re-

sults for d-2dCD4-WT are indicative of heavy aggregation and cannot be taken as an accurate

representation of the structure of d-2dCD4-WT. Rather, combined with their difference to the

SANS results (which were already suggestive of a small amount of aggregation), these results

show that d-2dCD4-WT is prone to aggregation over time. There was a 48 hour time delay

between the end of the SANS experiment and the beginning of the SAXS experiment therefore,

the proteins had time to aggregate.
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(A) (B)

(C) (D)

FIGURE 6.14: Graphical representation of the d-2dCD4-WT data measured by
SAXS. (A) shows a double-logarithmic representation of the 1D SAXS scattering
curves of d-2dCD4-WT (deuterated wild-type two domain CD4). (B), (C) and (D)
show the Guinier regions, P(r) functions and dimensionless Kratky plots, respec-
tively. d-2dCD4-WT in 0 and 45.2% D2O solvent are shown in pink and grey,

respectively.

Analysis of the graphical representation of the SAXS data of the d-2dCD4-WT/h-gp120 com-

plex

A small amount of aggregation is observed in the double-logarithmic plot for the complex in

0 and 45.2% D2O (fig. 6.15a, orange and purple, respectively) by the up-turn of the data at

low-q but not to the same extent as was observed for d-2dCD4-WT in isolation. The Guinier

regions (fig. 6.15b) are flat and of the same gradient which is reflected by the similarity in Rg

for the two D2O contrasts. The P(r) functions are the same shape and tend smoothly towards

the maximum dimension at Dmax. Their shape is indicative of a globular structure, similar to a

sphere. Whilst the Dmax determined by SAXS is slightly larger than that determined by SANS

the shape of the curves is the same. Finally, the dimensionless Kratky plot suggests that both

proteins are relatively well folded with what could be a small amount of flexibility, although

this could also be an artefact of the aggregation, as the curves tend towards the x-axis but do

not asymptote it.
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(A) (B)

(C) (D)

FIGURE 6.15: Graphical representation of the d-2dCD4-WT/h-gp120 complex
data measured by SAXS. (A) shows a double-logarithmic representation of the
1D SAXS scattering curves of the d-2dCD4-WT/h-gp120 complex (deuterated
wild-type two domain CD4 in complex with protiated gp120). (B), (C) and (D)
show the Guinier regions, P(r) functions and dimensionless Kratky plots, respec-
tively. The complex in 0 and 45.2% D2O solvent are shown in orange and purple,

respectively.

Analysis of the graphical representation of the SAXS data of the gp120 monomer and dimer

Again, a small amount of aggregation is suggested by the upwards turn of the double-logarithmic

plot of the gp120 monomer in 0 (yellow) and 90.5% (green) D2O in figure 6.16a and for the

dimer in 0 (red) and 90.5% D2O (blue) in figure 6.16b. When compared to the smoothness of

the double-logarithmic plots of the 1D SANS data (fig. 6.9a and 6.9b, for the monomer and

dimer, respectively) at low-q, the presence of this slight upwards turn is clear. The Guinier

regions for both the monomer (fig. 6.16c) and the dimer (fig. 6.16d) are flat and of relatively

consistent gradient, reflected by the similarity in the Rg determined for both D2O contrasts for

the monomer and dimer.

Whilst the P(r) for both the monomer and dimer (figs. 6.16e and 6.16f, respectively) appear

very similar in shape as those obtained by SANS (figs. 6.9e and 6.9f, respectively) the Dmax is

globally larger for both the monomer and dimer as determined by SAXS. Finally, the Kratky

plots in figures 6.16g and 6.16h are indicative of globular, folded proteins with a small amount
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of flexibility as the curves tend towards the x-axis but do not form an asymptote with it. Again

this could also be an artefact of the small amount of aggregation seen in the double-logarithmic

plots.
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 6.16: Graphical representation of the gp120 monomer and dimer data
measured by SAXS.(A) and (B) show a double-logarithmic representation of the
1D SAXS scattering curves of the gp120 monomer and dimer, respectively. (C)
and (D) show the Guinier regions for the gp120 monomer and dimer, respectively.
The P(r) functions are shown in (E) for the gp120 monomer and (F) for the gp120
dimer. Finally, the Kratky plots normalised against the Rg determined from the
Guinier plot are shown in (G) (gp120 monomer) and (H) (gp120 dimer). The
gp120 monomer and the dimer in 0% D2O solvent are shown in yellow and red,
respectively. Whereas the gp120 monomer and the dimer in 90.5% D2O solvent

are shown in green and blue, respectively.
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6.5.2 Size-exclusion chromatography coupled to small angle X-ray scattering anal-

ysis of the 2dCD4-WT/gp120 complex

Since there was evidence of aggregation in the d-2dCD4-WT/h-gp120 complex measured by

SAXS using the robotic sample changer, SEC-SAXS was used as a way to ensure the monodis-

persity of the sample by adding an in situ SEC purification step, prior to passing directly into

the sample capillary where it is exposed to the X-ray beam. This helps to ensure both homo-

geneity and ideality of the sample which cannot be guaranteed when using the robotic sample

changer as the samples remain static for a period of time before measurement.

Therefore SEC-SAXS measurements of d-2dCD4-WT produced using the CFPE system in com-

plex with h-gp120 were performed and compared to SEC-SAXS data collected on the complex

formed with h-2dCD4-WT expressed in the E. coli and B. choshinensis expression systems.

Sample preparation and measurement

The 2dCD4-WT expressed using E. coli and refolded from inclusion bodies (referred to hence-

forth as E-2dCD4-WT) and gp120ZACAP45 were used to form the complex as described above.

A Superdex™ 200 increase 3.2/300 (GE Healthcare), equilibrated in 20 mM Tris-HCl pH 7.5,

300 mM NaCl, was used to reduce dilution of the sample during the SEC process. The com-

plex was concentrated to 7.8 mg/mL and 50 µL was loaded onto the column. The protein was

eluted at a flow rate of 0.1 ml/min and SAXS frames were measured every second.

In a second experiment gp120ZACAP45 and 2dCD4-WT expressed and secreted by Brevibacillus

choshinensis (referred to hereinafter as B-2dCD4-WT) was tested using SEC-SAXS to verify the

B. choshinensis produced 2dCD4-WT behaves the same way in solution as the E. coli analogue.

The Superdex™ 200 increase 3.2/300 column was configured in the same set-up using 20 mM

Tris-HCl pH 7.5, 300 mM NaCl. The complex was concentrated to 5.3 mg/mL and 50 µL was

loaded onto the column. As the protein was eluted at 0.1 mL/min, SAXS frames were measured

every second.

In a final experiment, deuterated 2dCD4-WT produced in the cell-free protein expression sys-

tem (referred to henceforth as CFPE-d-2dCD4-WT) was complexed with hydrogenated gp120

and concentrated to 13.7 mg/mL. The Superdex™ 200 increase 3.2/300 was set-up in the same
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(A) (B)

(C)

FIGURE 6.17: The SAXS intensity (coloured curve) was plotted against the
Rg determined for each frame. (A) E. coli expressed 2dCD4-WT in complex
with gp120ZACAP45. (B) B .choshinensis expressed 2dCD4-WT in complex with
gp120ZACAP45. (C) Cell-free protein expressed deuterated 2dCD4-WT in com-
plex with gp120. The selection of the buffer frames is indicated by the black and
white hashed colomn where the intensity and Rg were flat. The sample frames
were selected across the intensity peak where the Rg remained relatively flat, in-

dicating a consistent size (coloured column).

way using 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 5% sucrose. 50 µL was loaded onto the

column and the protein was eluted at 0.1 mL/min, measuring SAXS frames every second.

Selecting the buffer and sample frames

In order to select which frames correspond to the buffer and which correspond to the complex,

the insensity and Rg was plotted for each frame number (fig. 6.17). Where the intensity and

Rg are flat and low before the peak the scattering from these frames comes only from the back-

ground. Fifty frames approximately in the middle of this flat range were selected and averaged

to represent the background scattering. To select the sample frames, frames across the middle

of the peak which showed a flat Rg were selected. The flat Rg suggests a consistent size and

that the scattering curves were of a complex of an approximately similar size.
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After selection of the background and sample SAXS frames, the background curves were av-

eraged and subtracted from the averaged sample frame curves using the SCÅTTER software

[200]. Following averaging and subtraction, the 1D scattering curves of the gp120/2dCD4-

WT analogue complexes could be analysed as described above for the robotic sample changer

measured samples (section 6.5.1).

Size parameter analysis of the complex determined from SEC-SAXS data

Table 6.8 lists the parameters extracted from the data (fig. 6.18). The Rg determined from the

Guinier region and from the P(r) function are consistent within +-2Å which suggests that the

quality of the data is good for each of the data sets. The E-2dCD4-WT/gp120 complex is the

smallest of the three with an Rg of 37.3Å as determined from the Guinier region, which is in

accordance with the data published on the monomeric gp120 complex [72] (table. 6.1). The

B-2dCD4-WT/gp120 and the CFPE-d-2dCD4-WT/gp120 complexes have an Rg of 48.8 and

46.6Å, respectively and as such, are both larger than the dimeric gp120/2dCD4-WT complex

[197] (table. 6.1).

The CFPE-d-2dCD4-WT/gp120 complex has the largest Dmax of the three complexes. The B-

2dCD4-WT and CFPE-d-2dCD4-WT appear to have smaller Dmax than those published for the

gp120 dimer/2dCD4-WT complex. Whereas the E-2dCD4-WT has a Dmax 10Å larger than that

published for the monomeric gp120/2dCD4-WT complex. These observed differences could

be as a result of the presence of the gp120 monomer/dimer mixture as discussed previously.

Sample Concentration Rg I(0) Rg Dmax

(mg/mL) (Å) (cm−1) (real, Å) (Å)

E. coli 2dCD4-WT/gp120 7.8 37.3 5.78x10−3 37.7 145

B. choshinensis 2dCD4-WT/gp120 5.3 48.8 1.9x10−2 49.0 155

CFPE d-2dCD4-WT/h-gp120 13.7 46.6 3.74x10−3 48.9 159

TABLE 6.8: gp120 in complex with 2dCD4-WT produced in E. coli, B. choshinensis
and CFPE expression systems was measured using SEC-SAXS. The Rg, Dmax and

Porod volume size parameters and their corresponding I(0) are listed here.
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Analysis of the graphical representation of the SEC-SAXS data of the complex

The SEC-SAXS data is graphically represented in figure 6.18. The double-logarithmic plot in

figure 6.18a shows that the CFPE-d-2dCD4-WT/gp120 complex (purple curve) displays a slight

upwards turn at low-q which is characteristic of aggregation in samples measured using the

robotic sample changer. However, since these samples were measured using the SEC-SAXS

set-up, it is expected that any aggregation would have been separated from the sample, eluting

at a low elution volume due to its large size. The upwards turn seen here at low-q could also

be demonstrative of radiation damage. The B-2dCD4-WT/gp120 complex (green) and the E-

2dCD4-WT/gp120 complex (blue) do not exhibit the same inflection at low-q but this cannot

be attributed to the deuteration of 2dCD4-WT as deuteration has been shown to provide some

protection against radiation damage [214].

Since deuterated protein is more prone to aggregation it could be that the protein aggregated

as it eluted from the column. The quartz capillary in which the sample is measured by the

SAXS beam is not washed during a SEC-SAXS run and the flow rate of the SEC-SAXS run is

determined by the maximum flow rate supported by the column (0.1 mL/min). For a 50 µL

sample measured using the robotic sample changer with 10 frames measured every 1 s, the

flow rate can be estimated to be approximately 0.3 mL/min. This means that the flow rate

achievable is higher using the robotic sample changer than by SEC-SAXS. With these factors

taken into account the CFPE-d-2dCD4-WT/h-gp120 complex may have aggregated along the

capillary before measurement by the SAXS beam.

The Guinier regions are flat but of differing gradients, hence the difference in the Rg observed in

table 6.8. The shapes of the P(r) functions in figure 6.18c are similar, especially for the B-2dCD4-

WT/gp120 and CFPE-d-2dCD4-WT/gp120 complexes. The Dmax for the E-2dCD4-WT/gp120

complex is 10-14 Å smaller than that for the other two complexes and has a more gradual tail off

at the x-axis towards Dmax. Finally, the shape of the dimensionless Kratky plots (fig. 6.18d) are

characteristic of well-folded, globular proteins as the curves return towards and are asymptotic

to the x-axis.



216 Chapter 6. Characterisation of gp120 and small-angle scattering analysis of the complex

(A) (B)

(C) (D)

FIGURE 6.18: Graphical representation of 2dCD4-WT (wild-type two domain
CD4) analogues in complex with gp120. (A) shows a double-logarithmic rep-
resentation of the 1D SAXS scattering curves. (B), (C) and (D) show the Guinier
regions, P(r) functions and dimensionless Kratky plots, respectively. blue = E. coli
h-2dCD4-WT/h-gp120, green = B. choshinensis h-2dCD4-WT/h-gp120, purple =

CFPE d-2dCD4-WT/h-gp120.

6.6 Discussion

Small-angle neutron and X-ray scattering was used to obtain structural information on 2dCD4-

WT and gp120 in isolation and when complexed. Where the biophysical characterisation of

2dCD4-WT was previously addressed in chapter 4, prior to SAS experiments, the characteri-

sation of gp120 by MALDI-TOF mass-sepctrometry followed by SEC-MALLS-RI is addressed

here. While both the gp120 BAL and gp120ZACAP45 analogues were shown to form monomers

and dimers, the CAP45 species was selected due to superior yield and purity for further experi-

ments. The contrast-match point of protiated gp120ZACAP45 and deuterated 2dCD4-WT were

then calculated to be 45.2% and 90.5% D2O, respectively, by measuring their neutron scattering

signal in a series of D2O contrasts to allow contrast variation studies of the complex. SAXS

measurements were then carried out on the sample which had been measured by SANS in an

attempt to corroborate the data obtained. Finally, SEC-SAXS data were collected on the 2dCD4-

WT/gp120 complex using deuterated 2dCD4-WT expressed using CFPE as well as protiated
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2dCD4-WT produced using the E. coli and B. choshinensis expression systems.

6.6.1 Analysis of gp120

gp120 is expressed as a monomer and a non-physiological dimer

The presence of gp120 monomers and non-physiological dimers was confirmed by SEC-MALLS-

RI and suggested that the monomer dimer ratio was approximately 1:2. Finzi et al. 2010 [215],

showed that gp120 can be expressed as abnormal disulphide-linked dimers when produced by

over-expressing cells, and dimer formation is exacerbated when the V2 loop is intact. These

dimers are described as non-physiological as they are not produced in the physiological HIV-1

infection cycle. They were able to decrease dimer formation by introducing a point mutation at

Leu 111 to Ala 111, as well as separating the gp120 dimer by use of reducing agents. By the ad-

dition of 5 mM DTT it was possible to enrich the gp120 sample with monomer. However subse-

quent separation by SEC was non-trivial due to increased overlapping of the monomer/dimer

peaks. Full-separation would have resulted in significant sample loss, therefore for SAS studies

the gp120 was enriched with monomer prior to complex formation. In addition, monomeric

and dimeric gp120 species were measured by both SANS and SAXS and the size parameters

determined corroborated with the published data.

gp120 glycosylation complicates analysis of SAS data

SAS data analysis of gp120 was non-trivial due to the glycosylation of the protein. The SLD

of sugars is different to that of protein because the atomic composition of a sugar molecule is

different to that of a protein (few nitrogen atoms) and therefore their neutron scattering be-

haviour is different. Since recombinant gp120 glycosylation patterns are heavily dependent

on the HIV-1 subtype from which they are derived and the cellular expression system used to

produce them the identity of the complex glycans was unknown [205, 207]. A labour intensive

glycoprofiling analysis using mass-spectrometry would have been necessary to accurately de-

termine the nature of the complex glycans on the surface of the protein. Given the extent of

glycosylation determined by mass-spectrometry (36.9% total mass) and the large heterogeneity

shown by the broadness of the peaks, this would have been a mammoth task which was outside
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the scope of this thesis given the difficulties in developing a deuteration protocol for 2dCD4-

WT. For an example of the analysis required for this, the reader is directed to work carried out

by Cao et al. 2017 [216] who determined the global glycoprofile of gp120 BAL expressed by

293F cells. From this work it is clear that the glycoprofile is complex and heterogeneous. An

estimate of the sugar composition was made using data from Panico et al. 2016 so an estimate

of the MM could be made [205]. However the analysis was not stretched as far as ab initio

modelling on any samples containing gp120 given the ambiguity around the sugars.

Since this thesis work was more concerned with the structure of 2dCD4-WT and it was possible

to match-out the gp120 component of the complex using contrast variation, this allowed the

study of d-2dCD4-WT by SANS without too much complication from the gp120 as a result of

the monomer/dimer state, or the glycan phase.

6.6.2 gp120-bound and un-bound 2dCD4-WT analysis

2dCD4-WT is more stable when in complex with gp120

Whilst there is evidence of severe aggregation of the d-2dCD4-WT measured by SAXS, shown

by the bi-phasic double-logarithmic plot suggestive of two populations, there is only a small

amount of aggregation present in the d-2dCD4-WT/gp120 complex sample. Similarly some

aggregation can be seen for the SANS measurements of the d-2dCD4-WT in isolation which is

not seen in the measurement of the complex. The presence of aggregation was also shown by

SEC-MALLS-RI in chapter 4. In addition, concentration of 2dCD4-WT was non-trivial as the

protein often crashed out of solution to form an insoluble precipitant at concentrations above 1

mg/mL regardless of the expression system used and whether it was deuterium labelled or not.

Conversely when bound to gp120, concentrations upwards of 10 mg/mL were achieved for the

complex with no obvious signs of aggregation in the low-q region of the SANS and SAXS data.

Combined, this suggests that 2dCD4-WT is more stable when bound to the complex.

The reason for this increase in stability may be due to the redox biology at play within 2dCD4-

WT in relation to gp120 binding. The 2dCD4-WT produced using the CFPE and E. coli expres-

sion systems were expressed as a mixture of redox states: fully reduced (2dCD4-R2: reduced

in D1 and D2), partially reduced (2dCD4-R1: oxidised in D1 and reduced in D2) and fully ox-

idised (2dCD4-OX: oxidised in D1 and D2) and there is evidence to suggest that the partially
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reduced form is the most stable (5). Therefore in the redoximer mixture it might be expected

that the less stable 2dCD4-R2 and -OX forms aggregate in solution. However, during complex

formation the 2dCD4-R1 form binds to gp120 when the two proteins are mixed, after which

the complex is isolated from the unbound 2dCD4-R2 and -OX by a size-exclusion chromatog-

raphy step prior to measurement by SAS. Since there is evidence suggesting that the 2dCD4-R1

redoximer which uniquely binds to gp120 is the most stable of the three redoximers, then this

would explain why 2dCD4-WT in the complex is more stable; as it consists solely of the stable

2dCD4-R1 isoform. Hence the absence of aggregation suggested by the low-q data for the com-

plex. Whereas the 2dCD4-WT contains a mixture of the less stable 2dCD4-R2 and -OX isoforms

as well as 2dCD4-R1 explaining the aggregation seen at low-q in the SAS data.

d-2dCD4-WT may exist in a more compact form when bound to gp120 as shown by SANS

In line with the finding that 2dCD4-WT is more stable when bound to gp120. The SANS con-

trast variation data suggest that 2dCD4-WT is more compact when bound to gp120 than in iso-

lation. Both the Rg and Dmax for the d-2dCD4-WT/h-gp120 complex in 45.2% D2O are smaller

than those found for the d-2dCD4-WT in 0 and 45.2% D2O alone. At 45.2% D2O the h-gp120

is matched out because the SLD of the solvent is equal to that of the gp120 component of the

complex. Therefore the scattering observed for the complex in 45.2% D2O is solely that of the

d-2dCD4-WT. Since the d-2dCD4-WT is a mixture of the 2dCD4-R2, -R1 and -Ox redoximers it

is not possible to tell whether this apparent shrinking in the size of the 2dCD4-WT bound to

gp120 is as a function of gp120 binding or whether its just as a result of the 2dCD4-R1 isoform

being selected by gp120 to form the complex.

The redox isomers in the 2dCD4-WT mixture could possibly have three distinct Rg and Dmax

given the results in chapter 5, which suggest that the 2dCD4-R1 is the smallest of the three

redoximers. Therefore the Rg and Dmax determined for d-2dCD4-WT could be an average of

each of the three isoforms, weighted by their proportion of the d-2dCD4-WT redoximer mix-

ture. To this end the Rg and Dmax observed for gp120-bound d-2dCD4-WT in 45.2% D2O could

be the size parameters for the 2dCD4-R1 in isolation as well as bound to gp120, if there is no

conformational change within CD4 on gp120 binding which has been previously suggested

from X-ray crystallography and SAXS data [34, 197]. Conversely these may be the size param-

eters for 2dCD4-R1 when bound to gp120 due to conformational changes within the protein
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which are distinct from the size parameters from 2dCD4-R1 in isolation. In order to determine

whether either of these hypotheses are correct, it would be necessary to isolate the 2dCD4-

R1 isoform from 2dCD4-R2 and 2dCD4-Ox or use the Cys to Ala disulphide bond knockout

variants to this effect.

SAS data does not match that of the X-ray crystal structure

Perhaps the most pertinent result from this chapter is the finding that the SAS data collected for

gp120-bound and -unbound 2dCD4-WT does not validate the X-ray crystallography data. The

CRYSON data (fig. 6.10), which compared the SANS data against PDB entries 3CD4 and 1GC1,

suggests that the low-q data containing information on the size of the protein was similar but

that the high-q data containing information on the shape is quite different. This could be be-

cause of the redox shuffling events at play within CD4 which have not been taken into account

during X-ray crystallographic studies. However the 2dCD4-WT construct in PDB entry 3CD4

contains just 182 residues whereas the CFPE expressed d-2dCD4-WT possesses an N-terminal

his-tag with cleavage site and therefore the two cannot be precisely compared. Similarly the

gp120 used in this thesis has no truncations and was fully glycosylated so similar precautions

in analysing the scattering data against the theoretical scattering from the crystal structure are

necessary.

Using the X-ray coordinates and reflection data from PDB entry 4H8W [217], which shows the

crystal structure of 2dCD4-WT in complex with gp120 and the antibody N5-i5, 2Fo-Fc and Fo-

FC electron density maps were calculated using refmac (fig. 6.19). Figure 6.19a which shows

the domain 1 structural disulphide bond shows no positive nor negative electron density in the

Fo-Fc map around the disulphide bond indicating that the bond is present. Whereas interest-

ingly in figure 6.19b there is negative electron density (at σ = 3) around the domain 2 allosteric

disulphide bond which adds some ambiguity as to whether the disulphide bond is oxidised or

reduced. This could be because the disulphide bond is not present in the X-ray data because

the isoform of 2dCD4-WT bound to gp120 has shown to be reduced in its domain 2 disulphide

bond [63]. Alternatively this could be as a result of ionising radiation from the X-ray beam

which causes the disulphide bond to be reduced, especially since this disulphide bond has

been shown to be metastable [63, 203] and is therefore more sensitive to ionising radiation.
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(A) Domain 1 structural disulphide bond

(B) Domain 2 allosteric disulphide bond

FIGURE 6.19: 2Fo-Fc (σ = 1) and Fo-Fc (σ = 3) electron density maps of the disul-
phide bonds in domains 1 (A) and 2 (B) of 2dCD4-WT when bound to gp120. The
Cα carbons of the disulphide bonds are circled in white and the disulphide bonds
are shown in white boxes. The electron density maps were calculated using the
X-ray reflection data and coordinate files of PDB entry 4H8W which is a crys-
tal structure of 2dCD4-WT in complex with gp120 and the antibody N5-i5 [217].
Interestingly there is no negative electron density shown around the domain 1
disulphide bond, whereas there is negative electron density around the domain

2 disulphide bond.
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The relationship between the structure of 2dCD4-WT, its dynamics and gp120 binding

Given the complexity of CD4 binding under certain redox conditions to gp120, the crystal

structure may not reveal the subtleties of this dynamic redox process. Owen et al. 2018 [218]

explored the dynamics of 2dCD4 as a function of domain 1 and domain 2 disulphide bond

ablation using protium/deuterium exchange mass-spectrometry. They found regions of high

dynamics (corresponding to more than 50% deuteration) at the gp120 binding site in 2dCD4-

WT. They also found that ablation of the second domain allosteric disulphide bond decreased

the dynamics of the domain whereas ablation of the first domain structural disulphide bond

increased the dynamics of the domain which supports the findings in chapter 5 and by Owen et

al. 2016, that a reduced domain 1 disulphide bond decreases the stability of the protein whereas

a reduced domain 2 increases the stability of the protein [203].

Additionally, it was found that ablation of the second domain disulphide bond had allosteric

effects, which increased the dynamics of domain 1, in a similar fashion as if the domain 1 disul-

phide bond had been reduced. In line with the finding by Cerutti et al. 2014 that gp120 binds

to an isoform of 2dCD4 in which either the domain 1 or domain 2 disulphide bond is reduced

(see 5.2) [63], Owen et al. 2018 [218] suggest that increased dynamics around the gp120 binding

site allowing greater solvent accessibility are necessary for gp120 binding to 2dCD4. The gp120

binding site spans beta-strands C, C’ (which contains the key Phe43 residue), C", and D and the

alpha-helix DE (which contains the key Arg59 residue). Since the domain 1 disulphide bond

is the stable structural bond, its reduction (shown to destabilise the domain) is unlikely to oc-

cur physiologically. Whereas the domain 2 disulphide bond has been shown to be metastable,

prone to redox shuffling events and is therefore the allosteric disulphide switch triggering the

increased dynamics in domain 1 required for gp120 binding. Completely reduced 2dCD4-WT

(2dCD4-R2) cannot bind to gp120 which is explained by loss of tertiary domain 1 structural

integrity by reduction of the domain 1 disulphide bond, as discussed in chapter 5.

Reduction of the domain 2 disulphide bond must therefore confer small structural realignments

to domain 1 in order for the increase in dynamics of the gp120 binding site to occur. Figure 6.20

and table 6.9 show the C-α distances along βC and βF of domains 2 and domains 4 of CD4

which are the most structurally similar. Domain 2 contains the allosteric disulphide bond of

interest formed between beta-strands C and F whereas domain 4 contains a canonical structural
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disulphide found in Ig domains between strands B and F. The acquisition of the disulphide

bond between the beta-strands of the same sheet in domain 2 has caused the domain to pucker

at the disulphide bond, shown by a short C-α distance of 3.78Å, which is the shortest C-α

distance along the interface of the two strands.

(A) Domain 2 C-α distances along βC and βF

(B) Domain 4 C-α distances along βC and βF

FIGURE 6.20: The C-α distances along the strands βC and βF of domain 2 (A)
and domain 4 (B) were measured in WinCoot. Domain 2 (from PDB entry 3CD4)
contains a strained disulphide bond formed between βC and βF whereas domain
4 (from PDB entry 1CID) contains an unstrained disulphide bond between βB
and βF. The C-α distances are listed in table 6.9 and read from left to right across

6.20a and 6.20b.

Reduction of the second domain allosteric disulphide bond could therefore induce relaxation
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Domain 2 Domain 2 Domain 4 Domain 4
C-α residues C-α distance (Å) C-α residues C-α distance (Å)

Pro126-Gln163 5.34
Ser127-Leu162 5.80
Val128-Val161 4.56
Gln129-Thr160 5.02 Met129-165 4.29
Cys130-Cys159 3.78 Arg130-Ser164 5.61
Arg131-Thr158 5.33 131-Leu163 5.85
Ser132-Trp157 5.01 Ile132-Leu162 5.11
Pro133-Thr156 5.81 Leu133-Cys161 4.69

Lys134-Gln160 5.35
Gln135-Trp159 4.30

TABLE 6.9: The C-α distances along the strands βC and βF were measured in Win-
Coot. The Cys130-Cys159 C-α distance is the shortest where the Trp159 residue
in strand C and replaced by a Cys residue to form a disulphide bond of unusual

geometry with strand F.

within this domain as the strained bond would no longer be pulling the neighbouring beta-

strands together. Structural realignment triggered as a result of this reduction event could

then be transferred from domain 2 to domain 1 thereby increasing the dynamics at the gp120

binding site. For example, this could happen through a subtle inward motion of the opposing

beta-sheets of domain 2 which could be communicated to domain 1 through the shared domain

1 βG domain 2 βA strand.

6.6.3 Using SAS to study 2dCD4-WT, gp120 and the complex

SEC-SAS is a more suitable method for carrying out SAS measurements on 2dCD4-WT

Given the propensity of 2dCD4-WT to aggregate in solution as shown by both SANS and partic-

ularly by SAXS, when using the robotic sample changer, and the reduced effect of aggregation

in the SEC-SAXS experiment, this suggests that SEC coupled to small-angle scattering mea-

surements are the most suitable way of studying this system. For SAXS this does not pose too

much of a problem as SEC columns with small bed volumes such as the S200 increase column

used for studying the complex mean that the sample does not suffer from too much dilution

with smaller sample volumes (50 µL sample in 3 mL column volume). In addition, due to

the high-flux of the SAXS beam the sample measurements are short which allows snap-shot

’images’ to be taken as the sample elutes from the column. Indeed, this technique was used

previously in chapter 5 to study the effect of ablation of the domain 2 disulphide bond on the
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structure of 2dCD4-WT, when there was evidence of aggregation in the samples when using

the robotic sample changer.

However for SANS in situ SEC purification is more problematic especially for a system where

2dCD4-WT cannot initially be easily concentrated to high concentrations. SEC-SANS is a rela-

tively new technique and was first reported by Jordan et al. 2016 [204]. The main issue lies in

the low neutron beam flux compared to that of X-rays. The sample measuring times for static

SANS measurements are in the range of minutes or hours for protein samples since they are

weak neutron scatterers. Therefore for SEC-SANS of 2dCD4-WT (a relatively small protein for

which initially high concentrations are difficult to achieve) would necessitate long measuring

times in the cuvette as the signal would be low. Longer measuring times would negate the

usefulness of the in situ SEC step as the sample would have time to aggregate and would thus,

not be snap-shot of the protein as it elutes from the column.

Although SEC-SANS would be problematic for measuring 2dCD4-WT in isolation or with

gp120 matched-out, this would be an excellent answer to the difficulties in isolating gp120

monomers and dimers. By using SEC-SANS the gp120 could be purified straight into the neu-

tron beam by use of the in situ SEC step. This would reduce sample loss in preparation of

the individual monomeric and dimeric species prior to the experiment and would also allow

data collection on monodisperse monomeric and dimeric gp120 . Since gp120 is a large pro-

tein (compared to 2dCD4-WT) it can be measured by SANS in lower concentrations thus the

dilution caused by the SEC step would have less impact on the signal to noise ratio. Addition-

ally, shorter measuring times would not pose as much of a problem for measurement of gp120

compared to 2dCD4-WT.

Finally, SEC-SANS could be used to measure the complex in 0% D2O where both components

are visible since the complex is large. At the match-out point of gp120, however, the same

difficulties would be faced as with measurement of d-2dCD4-WT alone.

SAS data quality

There are signs in the SANS data which suggest that the gp120-bound and unbound 2dCD4-

WT data quality is poor. From the double-logarithmic plot (fig. 6.8a) of the SANS data the

signal to noise ratio was low and there was evidence of aggregation at low-q, which was shown
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initially by SEC-MALLS-RI data of d-2dCD4-WT in chapter 4. In addition, the shape of the P(r)

functions (fig. 6.8e) do not match which may be because P(r) analysis was non-trivial due

to the noisiness of the data. Finally, the shape of the Kratky curves (fig. 6.8g) are indicative

of an unfolded protein. However, the ELISA, pseudo-viral neutralisation assay and 1D-NMR

experiments from chapter 4 all showed that the protein was correctly folded. So the shape of

the Kratky and P(r) plots may instead be explained by poor buffer subtraction. This could be

because of buffer mismatching which is a common error in SANS due to errors in the D2O

contrasts and the dialysis often used for changing the buffer.

The SAXS data collected on the gp120-unbound 2dCD4-WT was undoubtedly of poor quality

as the double-logarithmic plots (fig. 6.14a) show the presence of multiple species. Many of the

curves were left out of the analysis of the SAXS data as they were identified as being signif-

icantly different (p≤0.05) to the other curves by the data comparison function of the Primus

programme [213] of the ATSAS suite of software [199]. These curves were different because of

radiation damage to which 2dCD4-WT appears sensitive. The reason for this sensitivity may

be due to its disulphide bonds. Even though gp120 also possesses disulphide bonds it does not

appear to be as sensitive to ionising radiation damage which could be because of its glycosyla-

tion which may act as a protectant against ionising radiation considering glycerol and sucrose

can be used to protect against ionising radiation damage. Aggregation was also shown to be

present in the gp120-bound 2dCD4-WT sample so SEC-SAXS was used as a way of counteract-

ing this.

Regardless, ab initio modelling of the SANS data presented models which make reasonable

biological sense. However, in order for conformational changes to be observed in 2dCD4-WT

as a function of its redox state they would need to be large, dramatic structural realignments

within the protein which is not necessarily the case. The differences observed were under 10 Å

difference, which is the approximate resolution limit of the technique. The interpretation of the

data is therefore speculatory and further work using high resolution techniques is necessary in

order to confirm or reject the suggested reasoning of the patterns in the data.



6.6. Discussion 227

6.6.4 The use of B. choshinensis and CFPE as recombinant protein expression meth-

ods

The SAXS data collected on samples containing d-2dCD4-WT produced using CFPE was gen-

erally shown to be aggregated. The samples measured by SAXS after measurement by SANS

were thus not freshly prepared, had been kept in D2O buffers and exposed to the neutron beam

at ambient temperature and then left at 8◦C for 24 hours post-SANS prior to being measured

by SAXS. So it is unsurprising that the SAXS data was of low quality. In addition, the SEC-

SAXS measurement of the CFPE produced d-2dCD4-WT in complex with gp120 shows signs

of radiation damage or aggregation. Therefore, it is difficult to say from this data that the CFPE

produced protein is suitable for analysis by SAXS from the SAXS data. However, we have

already seen in chapter 5 that this sample behaves well by SEC-SAXS when unlabelled and

freshly prepared. The B. choshinensis expressed protein behaved well in the SEC-SAXS mea-

surement as there was no sign of radiation damage. This may be explained by the fact that the

sample was freshly prepared.

6.6.5 Future work

Ultimately, in order to determine whether there really is a difference in the size and confor-

mation of gp120-bound and -unbound 2dCD4-R1 with respect to the 2dCD4-WT redoximer

mixture, it would be necessary to fully isolate this isoform from the mixture of redoximers in

2dCD4-WT. Then SEC-SANS could be used to measure d-2dCD4-WT in order to eliminate any

aggregation prior to exposure to the neutron beam and to negate the effects of ionising radia-

tion damage by exposure to the X-ray beam. Alternatively, this could be achieved by producing

the 2dCD4-D2A variant protein in which the D2 disulphide has been knocked-out by cysteine

to alanine substitution, which would also negate the potential damage to the disulphide bond

by ionising X-ray radiation for use in SAXS with confidence. Another interesting SAS study

would involve segmental labelling of 2dCD4-WT. Alternative segmental labelling of domain

1 and domain 2 would allow the study of how the individual domains change in size as a

function of their redox state.

Dynamics have been shown to be at play in this complex redox switch system, whereby re-

duction of the domain 2 disulphide confers increased dynamics to the gp120 binding site. It
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would be interesting to use quasi-elastic neutron scattering look at the protein and solvent dy-

namics of the system. However this would necessitate very large quantities (100 mg to 1 g) of

both hydrogenated and deuterated protein, which are not feasible considering the difficulties

obtaining tens of milligrams of sample for SAS experiments.

Unfortunately sample availability proved a significant barrier in measuring all the samples and

contrasts necessary to complete a full contrast variation study of the complex. Measurement of

the complex in 45.2% and 0% D2O was prioritised over measurement of the complex at the con-

trast match point of d-2dCD4-WT because this thesis work is more concerned with structural

realignments within the CD4 counterpart of the complex rather than gp120. In addition, with

the lack of information concerning the glycan phase of gp120, further processing of the gp120

data was not possible. In order to fully analyse the 2dCD4-WT-bound and -unbound gp120

samples a full glycoprofile study using mass-spectrometry would need to be carried out. Al-

ternatively gp120 could be deglycosylated and the volume of the sugars could be calculated

from the difference between the glycosylated and unglycosylated forms. The unglycosylated

gp120 species could also be measured and this compared to the fully glycosylated gp120. Mod-

ifications such as those performed by Finzi et al. 2010 [215] could also be made to gp120 such as

those to prevent the dimeric species from forming. The alteration of the structure or function

of gp120 could be controlled for by characterising the modified gp120 using techniques such as

ELISA and SEC-MALLS-RI.

Small-angle scattering was the method of choice because SANS studies using contrast varia-

tion would allow the study of the envelope structure of d-2dCD4-WT when bound to h-gp120.

However, unless the confirmational changes on gp120 binding were extreme these were un-

likely to be reliably detected by SANS due to the low resolution of the technique. Therefore, it

would be preferable to study this system using high resolution techniques such as crystallogra-

phy. The 2dCD4-WT/gp120 complex has already been studied using X-ray crystallography but

there is doubt concerning the second domain disulphide due to the negative density around

the second domain disulphide bond, the fact that the system is disulphide bond rich and that

disulphide bonds are sensitive to X-rays. It would be interesting in future X-ray crystallogra-

phy studies to couple raman spectroscopy measurements to shooting crystals of the complex

with X-rays to look for changes in the raman spectrum as a result of disulphide bond break-

ing. Low X-ray dose crystallography could also be used to reduce the risk of ionising radiation
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damage.

Alternatively neutron crystallography could be used. The advantage of neutron crystallo-

graphic studies of this system would be two-fold (i) neutrons are non-destructive (ii) the pro-

tonation (or rather deuteration) state of the thiols could be mapped since neutrons can detect

hydrogen atoms to determine the redox state of the domain 2 disulphide bond of 2dCD4-WT

when bound to gp120. However, this would require 100% perdeuteration of both 2dCD4-WT

and gp120. This would be very challenging as a deuteration strategy for gp120 would need

to be developed since this protein was recombinantly expressed in mammalian cells and deu-

terium is toxic to mammalian cells. In addition, stabilising mutations would need to be made

to gp120 and the complex may even necessitate the presence of a stabilising antibody as with

many of the current X-ray crystal structures of this system. The other limitation with crystal-

lography is of course the need for crystals and for neutron crystallography these need to be

large compared to X-rays.

Another high resolution technique which could be used is NMR. The benefit of NMR is that

the complex could be measured in solution thereby negating the need for crystals. However,

because the system is quite large (over 100 kDa) triple labelling would be necessary (2H, 13C

and 15N). For 2dCD4-WT this would be relatively easy although expensive to do using the

CFPE system as triple labelled instead of deuterium labelled amino acids could be added to

the reaction to produce the triple labelled protein. However, for the mammalian expressed

gp120 this task would be significantly more complicated considering that deuterium is toxic

to mammalian cells as mentioned previously. Instead a triple labelling system would need to

be developed which would probably mean that fully glycosylated gp120 would be out of the

question.

Finally, cryo-electron microscopy (cryo-EM) could be used but the risks for ionising radiation

damage are similar to with X-ray crystallography. The complex with monomeric gp120 is on

the small side for cryo-EM but the stable Env trimer mimics the so-called SOSIP trimers [43, 95]

(trimeric gp120 and gp41 with stabilising mutations) could be used. There are several cryo-EM

structures with 2dCD4-WT in complex with the SOSIP trimers, however the resolution is not

quite high-enough to be confident about the presence of the second domain disulphide bond

and the grids are blasted with a powerful electron gun so the question of the effect of ionising

radiation damage is the same as with the X-ray crystal structure.
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6.7 Conclusions

Unmodified gp120ZACAP45 is expressed as both a monomer and dimer by HEK293 cells and

approximately 37% of its total mass is comprised of a heterogeneous array of glycans. The

global match-out point of the gp120 protein and its glycan shield is 45.2% D2O. However

the chemical composition of the gp120ZACAP45 glycans from HEK293 cell expression was not

characterised, therefore detailed analysis of gp120 alone and the gp120 component of the com-

plex was not possible. d-2dCD4-WT produced in the CFPE system has a match-out point of

90.5% D2O and may form a more compact structure on gp120 binding due as a result of the

ablation of its second domain allosteric disulphide bond as determined by SANS. The SAXS

measurement of the samples previously measured by SANS was of poor quality, thus further

analyses were not pursued. SEC-SAXS analysis of the 2dCD4-WT analogues produced using

the bacterial expression systems yielded good quality data. While the gp120-bound d-2dCD4-

WT produced using CFPE suffered from radiation damage, the SANS data indicate that this

recombinant protein synthesis technique is suitable for production of deuterated protein for

study by SANS. This chapter, therefore, validates the use of B. choshinensis and CFPE as meth-

ods of recombinant protein expression for use in SAS studies.
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Chapter 7

Conclusions and future work

7.1 Conclusions

CD4 is a cell surface receptor found on cells of the immune system and is the primary recep-

tor for HIV-1. CD4 is comprised of four concatenated immunoglobulin-like domains of which

domains 1, 2 and 4 contain disulphide bonds. Domain 1 forms interactions with viral gp120

which forms part of the viral envelope glycoprotein complex and contains a structural disul-

phide bond. The disulphide bond in domain 2 has been classified as an -RHStaple disulphide

bond [73]. This type of disulphide bond is the hallmark configuration for a group of disulphide

bonds called the allosteric disulphide bonds, which are believed to affect protein function by

redox shuffling of their disulphide bonds [74]. Reduction of the disulphide bond in domain

2 has been shown to be essential for gp120 binding to CD4 [63] and subsequent HIV-1 entry

into host cells [112]. CD4 is therefore a redox active protein and is believed to be found as

an oxidised monomer in its inactive form [63] and as a domain swapped dimer in its active

form which does not bind gp120 [56, 57]. The monomeric redox isoform of CD4 which binds

gp120 in which its domain 2 disulphide bond is reduced is functionally and therefore probably

structurally unique.

The aim of this work was to use biochemical, biophysical and structural techniques to charac-

terise the impact of the redox state of 2dCD4 on its structure and therefore its ability to bind

gp120. 2dCD4, referring to domains 1 and 2 of CD4, was used instead of the full four-domain

extracellular portion of CD4 since domain 1 is the minimal gp120 binding domain and domain

2 contains the allosteric bond, also essential to gp120 binding. The intention was to compare

the structure and behaviour of 2dCD4-WT to a disulphide knockout variant form of 2dCD4
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called 2dCD4-D2A, whose second domain cysteine residues had been substituted for alanine

residues. 2dCD4-D2A was to be used in order to understand how ablation of the second do-

main disulphide bond affects 2dCD4 structure and why this is essential for gp120 binding. This

was to be done primarily using contrast variation SANS studies for which the CD4 component

of the complex would need to be deuterium labelled.

Chapter 3 describes the investigation and the optimisation of the expression of 2dCD4-WT us-

ing three quite different expression systems, prior to testing the expression of 2dCD4-D2A. The

first of these was the classical E. coli expression system. 2dCD4-WT was expressed by E. coli

into insoluble inclusion bodies which necessitated denaturation and refolding in order to ob-

tain soluble protein during which much of the protein was lost, significantly reducing yields.

The second expression host used was B. choshinensis which secretes 2dCD4-WT into the expres-

sion medium, however the expression was lengthy, there were large volumes of expression

medium containing many non-2dCD4-WT proteins which were also secreted and the ultimate

yields were low. B. choshinensis was also shown to not grow in minimal media and 2dCD4-WT

expression in deuterated Silantes media was poor. Finally, sufficient yields of both unlabelled

and labelled 2dCD4-WT were achieved using cell-free protein expression (CFPE). However,

while expression of 2dCD4-D2A was comparable to that of 2dCD4-WT using CFPE, the pro-

tein was shown to be prone to aggregation due to issues with folding and was therefore not

suitable for further characterisation.

After optimising the expression of 2dCD4-WT, the protein was biochemically and biophysically

characterised, as described in Chapter 4. 2dCD4-WT from CFPE was shown to be functionally

active and correctly folded by enzyme-linked immunosorbant assay, pseudo viral neutralisa-

tion assay and 1D NMR experiments. Mass spectrometry analysis showed that deuterium la-

belled 2dCD4-WT was 73% deuterated at its non-labile hydrogen positions but also indicated

that a truncation product with an observed molecular weight of 16.6 kDa was formed. This

was confirmed by size-exclusion chromatography coupled to multi-angle laser light scatter-

ing and refractive index (SEC-MALLS-RI) data. SEC-MALLS-RI also showed that there was a

small amount of aggregation present which could be separated from 2dCD4-WT by the in situ

SEC step which suggested that SEC coupled to small-angle scattering would be the best way

to analyse the sample.
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Biophysical characterisation of the fully oxidised (2dCD4-Ox), reduced in domain 2 (2dCD4-

R1) and fully-reduced (2dCD4-R2) redox isomers of 2dCD4-WT was performed, as described

in Chapter 5. Qualitative analysis of the hydrodynamic volume of the different redox isomers

by SEC showed that 2dCD4-R1 has the smallest hydrodynamic volume. This was reasoned to

be as a result of relaxation of domain 2 due to reduction of the metastable allosteric disulphide

bond [203]. 2dCD4-Ox and 2dCD4-R2 where shown to have larger hydrodynamic volumes

than 2dCD4-R1 but the data did not allow determination of whether 2dCD4-R2 was larger

than 2dCD4-Ox or vice versa.

Attempts to corroborate the SEC data were made using small-angle X-ray scattering (SAXS)

experiments as presented in Chapter 5 . A DTT titration using the robotic sample changer on

BM29 at the ESRF suggested that an increase in DTT concentration caused unfolding or a loss

of structure. However, it was difficult to uncouple this as a real effect as a result of disulphide

bond reduction from aggregation. 2dCD4-WT with and without 50 mM DTT treatment was

hence tested using SEC-SAXS which suggested that the 2dCD4-WT treated with 50 mM DTT

(which was therefore fully reduced as shown by its non-reducing SDS-PAGE mobility) was

slightly larger than 2dCD4-WT without 50 mM DTT treatment.

Chapter 6 assessed the structure of 2dCD4-WT whilst in complex with gp120, after determina-

tion of the match-out point of deuterium labelled 2dCD4-WT (d-2dCD4-WT, 90.5% D2O) and

unlabelled, fully glycosylated gp120 (45% D2O). d-2dCD4-WT was measured by small-angle

neutron scattering in its gp120-unbound form and compared to its gp120-bound form with

gp120 visible (in 0% D2O) and gp120 matched out (in 45% D2O). d-2dCD4-WT bound to gp120

(with gp120 matched out) was found to have a more compact structure due to a slight bend

between domains 1 and 2 and ab initio modelling suggested that domain 2 shrinks slightly in

size. Since 2dCD4-WT in isolation is a mixture of the three redox isomers (2dCD4-Ox, -R1 and

-R2) it was difficult to uncouple this conformational change on gp120 binding from this being

the structure of 2dCD4-R1, since this is the redox isoform binding gp120. This work adds some

ambiguity to the current high-resolution crystal data, since the crystallographic data appears to

show the presence of at least a partial disulphide bond in the 2dCD4/gp120 complex. The crys-

tal data may therefore not show the full extent of the dynamic structural realignment required

for CD4 to bind to gp120.

Finally, SEC-SAXS data was also collected on gp120 in complex with 2dCD4-WT expressed and
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refolded from E. coli inclusion bodies, B. choshinensis secretion and CFPE soluble production

which corroborated the published size parameter data, thereby validating B. choshinensis and

CFPE as novel recombinant expression systems for unlabelled and labelled protein for SAS

experiments.

Ultimately this thesis work has shown that: (i) CFPE is a suitable expression system for the

production of soluble, functional, match-out labelled and unlabelled recombinant protein suit-

able for biophysical and structural studies; (ii) reduction of the highly strained second domain

disulphide bond of 2dCD4 causes this domain to become smaller so that 2dCD4-R1 (the redox

isomer that binds to gp120) has a smaller hydrodynamic volume than 2dCD4-Ox and 2dCD4-

R2. This is due to an energetically favourable domain relaxation in domain 2 [203], thanks to

the release of the pinch point in the middle of the beta strands at the disulphide bond. Reduc-

tion of the disulphide bond in domain 2 is believed to have an allosteric effect on the gp120

binding site in domain 1. The reduction of the disulphide bond in domain 2 is communicated

to domain 1 to increase the dynamics at the gp120 binding site to facilitate gp120 binding as

shown by Owen et al. 2018 [218].

These previously undescribed structural differences as a function of the redox state of the disul-

phide bonds within 2dCD-WT lay the foundations for future studies to obtain high-resolution

data on this system. High-resolution structural data would show on an atomic level the subtle

differences in 2dCD4-R1 that cause it to be more compact and potentially how the structural

changes as a result of reduction of the second domain disulphide bond are relayed to domain

one, increasing its dynamics at the gp120 binding site that in turn allow the CD4 receptor to

bind gp120. Understanding the unique structure of 2dCD4-R1 would allow development of

anti-CD4 directed immunogens that would prevent HIV-1 binding and therefore entry without

necessarily interrupting the normal immune function of CD4.

7.2 Future work

In order to concretely determine what the effect of domain 2 disulphide bond ablation is on

the structure of 2dCD4 and how this compares to 2dCD4-WT (the redox isomer mixture) and

2dCD4-R2 (fully reduced 2dCD4-WT), further work needs to be carried out in order to establish
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an expression protocol for correctly folded 2dCD4-D2A using CFPE. With soluble deuterium la-

belled 2dCD4-D2A the SANS contrast variation studies of the d-2dCD4/gp120 complex could

be repeated and the data compared to that obtained for 2dCD4-WT. Access to even low resolu-

tion SAS data obtained 2dCD4-D2A in the gp120-bound and -unbound states would alleviate

some of the ambiguity as to whether there is a difference in structure between 2dCD4-WT,

2dCD4-D2A and both bound to gp120.

As mentioned above, high-resolution structural data is needed to decipher the local structural

changes around the disulphide bond and allosteric changes that confer increased dynamics to

the gp120 binding site in domain 1. High-resolution X-ray crystal structural data already exists

for 2dCD4-WT in complex with gp120 but does not fully reflect the dynamic redox shuffling

events required for 2dCD4 to bind to gp120. Equally cryo-EM data exists for 2dCD4-WT with

the soluble Env trimer but the resolution is too low to determine the redox state of the disul-

phide bond in domain 2. Use of the 2dCD4-D2A variant protein would allow determination

of the structure of 2dCD4-R1 at the point of gp120 binding. Ultimately, high-resolution data

collected on gp120-bound and -unbound 2dCD4-D2A would help inform as to how allosteric

redox switches can affect protein function depending on their redox state so their implications

in disease and infection, such as HIV-1, can be better understood.
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Appendix A

Plasmids and cDNA sequences

A.1 2dCD4 clones

A sequence alignment of the cDNA for 2dCD4-WT expressed in E. coli, B. choshinensis and CFPE

and the cDNA for the 2dCD4-D2A variant expressed in CFPE is shown here. The respective

vector maps for each expression system are also shown.

FIGURE A.1: Sequence alignment of the cDNA for the 2dCD4-WT pro-
tein which was expressed in: E. coli, B. choshinensis and by CFPE with
an N-terminal and C-terminal His-tag and the cDNA for 2dCD4-D2A
variant protein. Sequence alignment was done using Clustal Omega

(https://www.ebi.ac.uk/Tools/msa/clustalo/).
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FIGURE A.2: Vector map for the pNCMO2 plasmid used for expression of N-
terminal His-tagged 2dCD4-WT in B. choshinensis. The cDNA was inserted be-

tween the Nco1 and Xho1 restriction sites.

FIGURE A.3: Vector map for the pET15b plasmid used for expression of C-
terminal His-tagged protiated 2dCD4-WT in E. coli. The cDNA was inserted be-

tween the Xho1 and Nde1 restriction sites.
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FIGURE A.4: Vector map for the pETm11 plasmid used for expression of C-
terminal His-tagged deuterated 2dCD4-WT in E c.oli. The cDNA was inserted

between the Nco1 and Xho1 restriction sites.

FIGURE A.5: Vector map for the piVEX2.3d plasmid used for expression of N-
terminal and C-terminal His-tagged 2dCD4-WT and the 2dCD4-D2A variant pro-

tein. The cDNA was inserted between the Nde1 and Xho1 restriction sites.
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A.2 gp120 clones

A sequence alignment of the cDNA for gp120 BAL and gp120ZACAP45 is shown here. The

respective vector maps are also shown.

FIGURE A.6: Sequence alignment of the cDNA for the gp120 BAL and
gp120ZACAP45 proteins. Sequence alignment was done using Clustal Omega

(https://www.ebi.ac.uk/Tools/msa/clustalo/).
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FIGURE A.7: Vector map for the pcDNA 3.1(-)_A012 plasmid used for expression
of untagged gp120ZACAP45 in HEK293 cells. The cDNA was inserted between

the EcoR1 and BamH1 restriction sites.

FIGURE A.8: Vector map for the pCIneo plasmid used for expression of C-
terminal His-tagged gp120 BAL in HEK293 cells. The cDNA was inserted be-

tween the Xho1 and EcoR1 restriction sites.
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Appendix B

Buffer recipes

B.1 Bacterial growth media

B.1.1 Liquid growth media

• 1 L LB: 25 g of pre-mixed LB powder (Sigma, 10 g bacto-typtone, 10 g NaCl, 5 g yeast

extract) was dissolved in ddH2O to a final volume of 1 L.

• 1 L 2SY: 40 g bacto-soytone (BD BactoTM), 5 g yeast extract (BD BactoTM) were dissolved

in ddH2O to a final volume of 900 mL and sterilised by autoclaving as described below.

20 g glucose and 150 mg CaCl2 · 2H2O were dissolved in ddH2O to a final volume of 100

mL and filter sterilised using a 0.22 µm vacuum filter (Corning) and added to the sterile

soytone and yeast solution.

Liquid growth media were sterilised by autoclaving at 121◦C, 15 psi for 30 minutes.

B.1.2 Enfors minimal medium

• 1 L H-Enfors: 6.86 g (NH4)2SO4, 1.56 g KH2PO4, 6.48 g Na2HPO4 · 2H2O, 0.49 g (NH4) H

citrate and 5 g glycerol were dissolved in ddH2O to a final volume of 998 mL and ster-

ilised by autoclaving as described below. 1 mL sterile 1 M MgSO4 and 1 mL sterile metal

salts solution were added to the sterile media under the biological fume hood.

• Metal salt solution: 0.23 g L−1 MgSO4, 0.50 g L−1 CaCl2 · 2H20, 16.7 g L−1 FeCl3 · 6H2O,

0.18 g L−1 ZnSO4 · 7H2O, 0.16 g L−1 CuSO4 · 5H2O, 0.15 g L−1 MnSO4 · 4H2O, 0.18 g L−1

CoCl2 · 6H2O and 20.1 g L−1 Na EDTA.
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• 1 L 85% D-Enfors: the components as listed above were dissolved in 85% D2O. The

medium was filter sterilised rather than by autoclaving.

• 4% NaOD: 10 mL NaOD (10 M stock) was diluted with 90 mL of D2O and filter sterilised.

• Feed for fermenter: 30 g glycerol was diluted in 85% D-Enfors and sterilised by filtration.

B.1.3 Solid growth media

• 500 mL LB-agar: 12.5 g pre-mixed LB powder (Sigma, 5 g bacto-typtone, 5 g NaCl, 2.5 g

yeast extract) and 7 g agar (Sigma) were added to a final volume of 1 L with ddH2O.

• 500 mL 2SY-agar: 20 g bacto-soytone (BD BactoTM), 2.5 g yeast extract (BD BactoTM) and

7.5 g agar were dissolved in ddH2O to a final volume of 450 mL and sterilised by auto-

claving as described below. 10 g glucose and 75 mg CaCl2 · 2H2O were dissolved in dH2O

to a final volume of 100 mL and filter sterilised using a 0.22 µm vacuum filter (Corning)

and added to the sterile soytone and yeast solution.

Solid growth media were sterilised by autoclaving at 121◦C, 15 psi for 30 minutes. Before the

liquid cooled down it was poured under a biological fume hood into sterile plastic petri dishes

(25 mL per petri dish) and 1 X antibiotic was added. The media was allowed to solidify before

storing at 4-8◦C.

B.2 Antibiotic stock solutions

• Ampicillin: 100 mg mL−1 in ddH2O and stored at -20◦C

• Kanamycin: 30 mg mL−1 in ddH2O and stored at -20◦C

• G-418: 50 mg mL−1 in 1 X PBS (sterile) and stored at 4◦C

• Neomycin: 10 mg mL−1 in ddH2O and stored at -20◦C
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B.3 Purification buffers

B.3.1 E. coli purification buffers

• Wash buffer 1: 1 X PBS, 20 mM imidazole, 8 M urea, 2 mM β-mercaptoethanol, 0.5 M

NaCl and 50 mM glycine

• Wash buffer 2: 1 X PBS, 50 mM imidazole, 8 M urea, 2 mM β-mercaptoethanol, 0.5 M

NaCl and 50 mM glycine

• Elution buffer: 1 X PBS, 500 mM imidazole, 8 M urea, 2 mM β-mercaptoethanol, 0.5 M

NaCl and 50 mM glycine

• Refolding buffer A: 1 X PBS, 50 mM glycine, 10% w/v sucrose, 1 mM EDTA, 1 mM GSH,

0.1 mM GSSG, 4 M urea, 15.6 mM NaOH (pH 9.6)

• Refolding buffer B: 1 X PBS, 15 mM Na2CO3, 35 mM NaHCO3, 10% w/v sucrose, 1 mM

EDTA, 0.1 mM GSH, 0.01 mM GSSG (pH 9.6)

• SEC buffer: 1 X PBS, 10% w/v sucrose

1000 X PBS contains 80 g NaCl, 2 KCl, 26.8 g Na2HPO4 · 7H2O and 2.4 g KH2PO4. The pH is

adjusted to pH 7.4 using HCl and the volume is made up to 1 L with ddH2O.

B.3.2 B. choshinensis purification buffers

• Loading buffer: 100 mM Tris-HCl pH 8.0, 300 mM NaCl and 5 mM imidazole

• Wash buffer 1: 100 mM Tris-HCl pH 8.0, 1 M NaCl and 20 mM imidazole

• Wash buffer 2: 100 mM Tris-HCl pH 8.0, 300 mM NaCl and 40 mM imidazole

• Elution buffer: 100 mM Tris-HCl pH 8.0, 300 mM NaCl and 300 mM imidazole

• SEC buffer: 100 mM Tris-HCl pH 9.0, 300 mM NaCl, 5% w/v sucrose

B.3.3 CFPE purification buffers

• Loading buffer: 20mM Tris-HCl pH 7.5, 300 mM NaCl and 5 mM imidazole
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• Wash buffer 1: 20 mM Tris-HCl pH 7.5, 1 M NaCl and 20 mM imidazole

• Wash buffer 2: 20 mM Tris-HCl pH 7.5, 300 mM NaCl and 40 mM imidazole

• Elution buffer: 20 mM Tris-HCl pH 7.5, 300 mM NaCl and 300 mM imidazole

• SEC buffer: 20 mM Tris-HCl pH 7.5, 300 mM NaCl, 5% w/v sucrose

B. choshinensis and CFPE IMAC purifications were done using an ÅKTA prime plus system

(GE Healthcare). SEC purifications were done using either: ÅKTA purifier (GE Healthcare) or

BioLogic DuoFlowTM or NGCTM (both BioRad) fast protein liquid chromatography systems.

B.4 SDS-PAGE

12% Tris-Tricine gels were cast using the components outlined in table B.1. 10 or 15 well combs

were added to the top of the gel and they were left to polymerise. The gels were stored moist

at 4-8◦ before use. SDS-PAGE was run using a Mini-Protean®tetra vetical electrophoresis cell

connected to a PowerPacTM universal power supply (both BioRad). Cathode buffer was poured

into the middle of the chamber and anode buffer around the outside of the chamber (see below).

Samples were mixed with 5 X reducing loading buffer and boiled for 5 minutes before loading

onto the gel. The gel was run at 150 V until the gel front reached the bottom of the gel.

Components 12% Resolving gel (mL) 4% Stacking gel (mL)
30/0.8% Bis/Acrylamide 12 1

3 M Tris-HCl pH 8.45 10 3
10% SDS 0.3 0.1

100% glycerol 3 -
10% ammonium persulphate 0.3 0.1

TEMED 0.03 0.01
Add ddH2O to a final volume 30 mL 12 mL

TABLE B.1: Ingredients for the 12% resolving gel and 4% stacking gel to make
12% Tris-Tricine SDS-PAGE.

• Cathode buffer: 121.1 g Tris base, 179.2 g tricine and 10 g SDS were dissolved in ddH2O

to a total volume of 1 L.

• 10 X anode buffer: 242.g Tris base was dissolved in 500 mL ddH2O. The pH was adjusted

to 8.9 with concentrated HCl and diluted to a final volume of 1 L with ddH2O.
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After an SDS-PAGE run was complete the gel could be either: (i) stained with Coomassie blue

or (ii) transferred onto a nitrocellulose membrane for western blotting.

B.4.1 Coomassie blue staining

For Coomassie blue staining the gel was incubated with agitation for 30 minutes in Coomassie

blue stain. The stain was removed and the gel was destained by incubation with destain and

tissue to soak up the excess Coomassie blue until the protein bands became sufficiently clear

against the background stain.

• 1 X Coomassie blue stain: 2.5 g Coomassie blue G-250 was dissolved in 520 mL 96%

ethanol and 100 mL 100% acetic acid and diluted to a total volume of 1 L with ddH2O

• 1 X destain: 313 mL 96% ethanol and 200 mL 100% acetic acid were diluted to a total

volume of 4 L with ddH2O.

B.4.2 Western blotting

For western blotting the proteins were transferred from the SDS-PAGE to a Trans-Blot®mini

nitrocellulose membrane using a Trans-blot®TurboTM transfer system (both BioRad). After

transfer, the nitrocellulose membrane was blocked for 1 hour with 5% w/v blocking solution.

The blocking solution was removed and the membrane was incubated with the primary anti-

body solution for 1 hour. The primary antibody solution was removed and the membrane was

washed three times for 5 minutes each time in PBS-T. The membrane was incubated with the

secondary antibody solution for an hour then washed as described previously. The membrane

was then developed with 5 mL Western Blue®stabilised substrate for ALP (Promega) for 10

minutes. The membrane was washed with ddH2O before a picture was taken.

• Blocking solution: 5% w/v milk in PBS-T (1% v/v PSB with 0.05% w/v Tween)

• Primary antibody solution: 1:3 000 primary antibody (mouse anti-His, Sigma) in blocking

solution

• Secondary antibody solution 1:7 500 secondary antibody (goat anti-mouse ALP conju-

gated, Sigma) in blocking solution
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Appendix C

Mass spectrometry analysis of

2dCD4-WT analogues

C.1 Mass-spectra of 2dCD4-WT analogues

The liquid chromatography, electro-spray ionisation, time-of-flight mass spectra (LC-ESI-TOF

MS) and the deconvoluted spectra for the 2dCD4-WT analogues expressed using E. coli,

B.choshinenesis and cell-free protein expression (CFPE) are presented here. This appendix cor-

responds to the LC-ESI-TOF mass spectrometry results summarised in chapter 4 section 4.4.4.
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FIGURE C.1: (a) Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum of E. coli expressed h-2dCD4-WT in 0 mM DTT. (b) Deconvoluted
liquid chromatography, electro-spray ionisation, time-of-flight mass spectrum of
E. coli expressed h-2dCD4-WT in 0mM DTT. A primary species at 21 297 Da cor-
responding to an oxidised monomer and a secondary species corresponding to

an oxidised dimer at 42 593 Da were observed.
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FIGURE C.2: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of E. coli expressed h-2dCD4-WT in 50 mM
DTT. (b) Deconvoluted LC-ESI-TOF MS. A primary species at 21 299 Da corre-
sponding to an reduced monomer and a secondary species corresponding to a

reduced dimer at 42 597 Da were observed.
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FIGURE C.3: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of B. choshinensis expressed h-2dCD4-WT in 0
mM DTT. (b) Deconvoluted LC-ESI-TOF MS. A single species at 23 354 corre-

sponding to an oxidised monomer was observed.
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FIGURE C.4: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of B. choshinensis expressed h-2dCD4-WT in
50 mM DTT. (b) Deconvoluted LC-ESI-TOF MS. A single species at 23 358 Da

corresponding to a reduced monomer was observed.
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FIGURE C.5: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of h-2dCD4-WT produced using cell-free pro-
tein expression in 0 mM DTT. The spectrum is very noisy. (b) Deconvoluted LC-
ESI-TOF MS. A primary species at 57 197 Da which does not correspond to an
h-2dCD4-WT dimer or trimer and a secondary species at 22 697 Da correspond-

ing to an oxidised h-2dCD4-WT monomer were observed.
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FIGURE C.6: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of h-2dCD4-WT produced using cell-free pro-
tein expression in 50 mM DTT. A repeating pattern of multiple peaks can be ob-
served. (b) Deconvoluted LC-ESI-TOF MS and a zoomed-in view of the main
peak (insert). A primary species at 22 700 Da corresponding to a reduced h-
2dCD4-WT monomer is observed. A slightly lower and slightly higher molecular

mass species are observed at 22 567 and 22 727 Da, respectively.
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FIGURE C.7: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of d-2dCD4-WT produced using cell-free pro-
tein expression in 0 mM DTT. A repeating pattern of multiple, broad peaks can be
observed. (b) Deconvoluted LC-ESI-TOF MS with a zoomed-in view (insert). A
primary species at 23 578 Da which corresponds to an oxidised, partially deuter-
ated 2dCD4-WT monomer and a secondary species at 16 660 Da corresponding
to a CFPE truncation product were observed. The main 23 578 Da peak appears

broad with many sub-peaks.
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FIGURE C.8: (a)Liquid chromatography, electro-spray ionisation, time-of-flight
mass spectrum (LC-ESI-TOF MS) of d-2dCD4-WT produced using cell-free pro-
tein expression in 50 mM DTT. The spectrum is noisy with irregular peaks. (b)
Deconvoluted LC-ESI-TOF MS. The data analysis was non-trivial as many peaks

of differing molecular weight were observed in the denconvoluted spectrum.

C.2 Percentage deuteration determination of 2dCD4-WT

The percentage deuteration achieved using deuterated amino acids in the cell-free protein ex-

pression reaction was calculated from the difference between the hydrogenated and deuterated

molecular mass determined from mass-spectrometry.
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(A)

(B)

(C)

FIGURE C.9: The percentage deuterium labelling using the cell-free protein ex-
pression method was calculated using the following spread sheets. (a) The hy-
drogenated mass (b) non-labile H deuterated mass and (c) full deuterated mass
were calculated to be 22 690, 23 904 and 24 032 Da, respectively. (b) The number of
non-labile (1 214) and labile H (399) were calculated and (c) from the experimen-
tal mass determined by mass-spectrometry in H2O (23 578 Da), the percentage

deuteration was calculated to be 73%.
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List of activities

Publications

• Owen, G.R., Channell, J.A., Forsyth, V.T., Haertlein, M., Mitchell, E.P., Capovilla, A., Pa-

pathanasopoulos, M. and Cerutti, N.M. (2016) ’Human CD4 metastability is a function of

the allosteric disulfide bond in domain 2’, Biochemistry 55, pp. 2227-2237.

Conferences with oral contribution

• 24th Congress and General Assembly of the International Union of Crystallography,

August 2017 - Hyderabad, India: Structural studies of dynamic CD4 changes relevant to

HIV-1 infection.

• FASEB: Functional Disulfide Bonds in Health and Disease, July 2016 - Steamboat Springs,

USA: Studying the allosteric disulphide bond in domain 2 of human CD4 relevant to HIV-

1 infection.

• European Conference on Neutron Scattering, September 2015 - Zaragosa, Spain: SANS

studies of the host-pathogen interaction underlying HIV infection: towards rational anti-

viral therapy.

Awards

• UK Neutron and Muon Users’ Meeting, June 2016 - Warwick, UK: Best poster prize.



274 Appendix D. List of activities

Courses and other conferences

• HERCULES European School on neutrons and synchrotron radiation of science, 2016 -

Grenoble, France: poster contribution

• Crystallography tutorial, 2016 - Grenoble France

• Introduction to advanced and emerging biophysical methods for integrative biology -

2, 2016 - Grenoble, France

• All you need is neutrons 2, 2016 - Grenoble, France: oral contribution

• Introduction to advanced and emerging biophysical methods for integrative biology -

1, 2015 - Grenoble, France

• All you need is neutrons 1, 2015 - Grenoble, France: oral contribution

• HIV R4P conference, 2014 - Cape Town, South Africa

Student days and user meetings

• NMUM, 2016 & 2017 - Warwick, UK: poster contribution

• PSB student day, 2015-2017 - Grenoble, France: poster and oral clip contributions

• ILL student day, 2015-2017 - Grenoble, France: poster and oral clip contributions

• ESRF users’ meeting 2015 & 2016 - Grenoble, France: poster and oral clip contributions.
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