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ABSTRACT

We obtain results which describe the electromagnetic (EM) field
and some aspects of the fluid flow induced in a liquid metal by a
linear induction motor. The need for a theoretical description of
the motor and its influence arises from recent developments in the
production of flat glass. The EM equations are simplified by init-
ially assuming the liquid metal (which we refer to as 'the conductor!')
moves as a solid. In this way we include some magnetohydrodynamic
effects in the partially coupled hydrodynamliec and EM differential
equations.

In chapter one we describe the float glass process, provide
a physical description of a linear motor, discuss the appropriate
EM and hydrodynamic equations and give a survey of the relevant
literature. 1In chapter two we describe an experiment in which
liquid mercury is induced to move under'the action of a linear
motor. In chapter three we derive expressions for a simplified
model of a linear motor and obtain velocity profiles for a given
Hartmann number. This work is extended in chapter four to include
the effect of a superimposed shear flow. In chapters five and six
we describe the EM boundary layer regicn of the conductor. Two-
dimensicnal numerical results are obtained in chapters seven and
nine for the EM field induced in the conductor. In chapter eight
we examine the flow induced by a rectangular body force, of
constant magnitude at a fixed depth, decaying expronentially into
the conductor. Chapter eleven extends the magnetic dipole
analysis of chapter ten and gives three-dimensional numerical
results for-the EM field induced in the conductor by a linear
motor. Some aspects of the results of chapters two (the

experiment) ten and eleven are discussed in chapter twelve using

magnetic field line theory.
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PREFACE

Pilkington Brothers Limited have been concerned with the
use of linear motors to control tin flows in the bath used in
the manufacture of float glass. The travelling magnetic field
produced by @ linear motor interacts with the induced currents in
the molten tin which causes the metal to move. A need has
arisen for a theoretical description of the electromagnetic field
produced by a linear motor and its effect on the molten tin.

The work for this thesis was undertaken with financial
assistance from the Science Research Council under the Co-operative
Awards in Science and Engineering (CASE) scheme. I thank the
collaborating body, Pilkington Brothers Limited, for the opportunity
to work on this industrial problem and for providing experimental
facilities in St. Helens. I must also thank Mr S Wolfenden for
his help in the aquisition and construction of equipment for the
experiment described in chapter two. I give sincere thanks to
my supervisors Professor P C Kendall and Dr P Smith of the
University of Keele, and Mr A D Cunningham of Latham Research
Laboratories for their help, encouragement and thoughts. Finally
I thank Miss Janette Hudon for her invaluable help in the typing

of this thesis.
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1. INTRODUCTION

1,1 The Pilkington Float Glass Process.

For more than 250 years the principal method of plate glass production
was that of the cast type. Essentially, an amount of glass is melted in
a cast, rolled flat, then ground and polished. The process developed by
Pilkington in the period 1920 to 1950 extended the ideas of this
traditional method. [In the final form of this process a continuous ribbon
of glass was rolled from the melting tank and passed through an annealing
kiln. The ribbon was then ground on both surfaces at the same time with
enormous grinding wheels fed with progressively finer sand. The twin
grinder was driven by 1.5 Mii and this power was expended in grinding the
ribbon. However, this power output and the 20 per cent glass wastage
never made the process a good economic proposition (PILKINGTON, 1969,1977)

In 1957, after five years of development, the float glass process
came into production. In this process a continuous ribbon of glass moves
out of a melting furnace and floats along the surface of an enclosed bath

of molten tin (Ffigure 1.1).

The ribbon is held in a chemically controlled atmosphere long enough
for the irregularities to melt out and for the surfaces to become flat and
parallel . The ribbon is lifted from the tin at the entrance to the kiln

and is eventually cut into plates at the exit. To enable the lifting to



take place the glass ribbon must be brought to a plastic state before the
kiln entrance, and so a temperature gradient is enforced along the bath.
Because the surface of the molten tin is level, the glass becomes flat and
a ribbon is produced with uniform thickness, also the surfaces do not
require grinding or polishing. The thickness of the ribbon (from 1.5 mm
to 50 mm, but typically 6 mm) is altered by, amongst other things,
increasing its withdrawal speed. During the initial production of float
glass it was found that the large heat loss through the refractory side
walls of the bath caused an Iincrease in the viscosity of the molten glass
there, which in turn produced irregularitigs in the ribbon. In order to
eliminate this effect it was found necessary to eliminate the temperature
gradient transverse to the bath, and a method of circulating the (hot)
l1iquid tin from the centre to the (cooler)edges of the bath was required.
The constraint of minimum effect on the surface and flatness of the
pibbon had to be observed. In 1961 some linear induction motors were
built at Pilkington's in St. Helens, and later introduced into the float
bath suspended above the glass ribbon. The linear motors produce axial
travelling magnetlc fields which interact with the electrically conducting
tin causingvit to flow beneath the ribbon. When aligned transverse to the
bath, the motors circulate the liquid tin}(and thus the heat) from the
centre to the edges of the bath. The glass ribbon is of extremely low
electrical conductivity and is unaffected by the magnetic field, The
overall movement of the liquid tin is governed by the imposed shear flow
(from the movement of the glass ribbon) toéether with the induced
velocity profiles from thé linear motor's electromagnetic field. Linear
motors are also used to move the molten tin past heat sources.

At present the float process supplies 40 per cent of the Western
world's flat glass demand. Recent innovations include a bronze solar
control glass and the pulsed electrofloat. The solar glass is made using

an electrochemical system which drives metallic ions into the advancing



glass ribbon, at a controlled depth and intensity.. The pulsed electro-
float allows a range of patterns and colours to be put inside the glass,
leaving the surfaces free from the uneven textures of traditional patterned
glass, |

In all of these processes a linear motor can be used to advantage
and a study of the electromagnetic field and velocity profiles induced
in the liquid tin is both relevant and necessary. Because of the hostile
environment inside the bath, no measurements of any kind are possible
using today's technology. Neither has there been a study of the magnetic
field produced by a plant linear induction motor.

The aim of this thesis is to describe the electromagnetic field
produced by a linear induction motor and to describe the velocity profiles
it induces in molten tin. Because of the industrial nature of the thesis

and for ease of future research, a literature survey is also included.

1,2 Electromagnetic Induction and Magnetohydrodynamics.

Magnetohydrodynamics (MHD) is the study of the motion of an
electrically conducting fluid in the presence of a magnetic field. The
subject is also sometimes called 'magnetofluid dynamics' or 'hydromagnetics'.
The motion of a conducting material across magnetic field lines induces
an electric field in the system which cauées electric currents to flow
in the conductor. This is an extension of the results discovered
independently by Henry and Faraday in 1831 for a closed ecircuit in a
magnetic field. Faraday named this phenomenon electromagnétic (EM)
induction. Lenz gave the direction of the induced currents. The direction
is such that the magnetic field produced by the currents opposes the charge
in the magnetic field which created thems In addition, the flow of an
electric current across a magnetic field produces a body force, the Lorentz
force, which modifies the motion of the conductor. It is this inter-depend-

ance between hydrodynamics and electromagnetism which renders many MHD



problems both theoretically and practically difficult,

1.3 The Analysis of a Linear Induction Motor.

A flat linear induction motor (FLIM) is an 'unwound' version of its
rotary counterpart (LAITHWAITE, 1975), and the methods of analysis for the
rotational motor may be carried over to the FLIM - with suitable changes
to account for the finite length of the motor.

Electrical engineers are mainly concerned with the electrical
characteristics of induction motors, and have long used the equivalent
circuit concept and circuit theory (eg.KESAVAMURTHY and "BEDFORD 1958) and
solutions to Laplace's equation (e.g. PIGGOT, 1962) in their analysis.
Recently CULLIN and .BARTON 1958 constructed a theory of the induction motor
based on transmission line theory., We are mainly interested in the spatial
variation of the EM fleld and here Maxwell's equations yield the best
results -~ especially when combined with the travelling wave theory
(BARLOW, 1965) of induction motors. Further approaches to the study of

induction motors may be found in the comprehensive review of NASAR (1964).

1,4 Equations
l.4.1 Notation. The right hand Cartesian coordinate system is used

throughout; the véctors €, &,5 &4 denote unit vectors along the

x, y and z axis respectively, Subscripts 1, 2 and 3 denote the components
of a vector quantity, e.g. __._ﬁ=[3.,.‘8. ,B_,]s B e, +B.e, +Bye,

Alphabetical superscripts and subscripts will often be used to denote
parameters of significance or for clarification purposes, e.g.j?t Ke o

The superscript A denotes quantities in Fourier transformation space.
Script letters a‘( ’ {( ’ j ’ B denote scales of length, speed, time and
magnetic field respectively, Unless otherwise stated, rationalised MKS
units are used throughout. Finally we define the gradient and

Laplacian operators to be Vrg2+g 2 +r¢,2 Via 2 42 .2
b} ] ® x> i,- W
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l.4.2 Electrodynamic Equations. If we neglect displacement currents and

Hall currents, then Maxwell's equations are

V.8=0 (1)
V.&=gle | (2)
VW& = '%%- (3)
Va8 = /L} (#)

where @ is the magnetic induction in webers m> (=volt sec m~*); € is the

electric field in volts m™ ; 5- is the electric current density in amps m™*

(coulomb m-2s72); 9 is the. charge density; € the dielectric constant and
M is the magnetic permeability in henry m™' (=newton amp™ ). The magnetic
induction is related to the magnetic field g (sometimes called the
magnetising force, its units are amp-turns m™'), by

8 = Yz A (5)
We shall assume, unless otherwise stated, that M= po the permeability
of free space, where A, =47 x/0"" henry m™ ., SHERCLIFF (1965) gives a
detailed derivation of (1) to (5) and fully discusses the implication
behind the assumptions made above, in the MHD context. From (4) we have
the additional result for charge continuity _ :

V, ;- =0 (s)

If £’ is the total electric field and o is the electric conductivity in
mho m~', (mho=ohm™! , ohm=volt amp~'), then Ohm's law gives

04 = o f’ (7)
If the conductor is moving with a velocity ¥ in a magnetic induction B ,
the total electric field é/experienced by a moving fluid element is
£+(y,\ g) » Where ﬁ is the electric field in fixed axes. Thus Ohm's law

(7) becomes

04 = o ( €+ yva8) (8)
If we take the divergence of (8), using (6) and (2) we obtain
9% = -V.(yva 8) (9)

In general the right of (9) is non-zero in a fluid conductor and we conclude
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that there is a volume charge density inside a moving fluid; deviations
from this induced charge are dissipated extremely rapidly by displacement
currents (SCHWARTZ et al., 1964). From the MHD viewpoint, setting
Y. =0 over-describes the electric field and the solutions will be
inconsistent. Taking the curl of (4) , using (8) and (3) we obtain the
result

1V (Va8) = Va(vag) - 38 (10)
or, using (1) and the operator relation, curl curl = grad div - Vz,

77°8 +Va(vaB) = -}?— (11)
where 7= ( /w')" is the magnetic diffusivity, or magnetic viscoscity,
in m?s™' + The relative importance of the terms on the left of (11) can

be determined using dimensional analysis. We have

! E/\ (!A @)’ ~ Q@/ = _@_ﬂd = ?m ‘ (12)
17 78 | 7 8/* 1 '

The parameter K, 1s called the magnetic Reynolds number. IfR. is small

~ compared with unity (11) may be reduced to the diffusion equation

(V8- 2 (13)
Equation (13) shows that the magnetic field leaks or diffuses through the
(now stationary) electrical conductor. We conclude that for small K, the
magnetic field is not greatly affected by the motibn of the conductor.
The time scale | for the penetration of the magnetic field into the
conductor of depth a( is of order £ ‘/q, o If we denote the time scale for
the magnetic field variation by J then using (13) we can identify a depth
of penetration, ) » of the magnetic field into the conductor given by
S~ ( 7 J) K . When J<<T the magnetic field is concentrated close to
the surface of the conductor and the regions at distances greater than $
below the conductor have little effect on the induced EM field. The
parameter § 1is referred to as the 'skin depth', If the magnetic Reynolds
number is large compared with unity the first term on the left of (11) maj

be neglected and we have

Va(unB)=2E , (14)

t
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This equation is identical to that satisfied by the vorticity @ in an
ideal fluid, namely

Va(raw)=32 (15)
Equations (14) and (15) describe the convection of the magnetic field and
vorticity through the fluid. The interpretation of (15) 1s that vortex linmes
move with the fluid, so we interpret (14) to mean that the magnetic field
lines are 'frozen into' and move with the conductor. This result was
first stated by ALEVEN (1942). In the laboratory Rm 1is seldom large and
the frozen-in effect is barely noticeeble If R,, is neither large nor
small both terms on the left of (11) must be considered. In this case
both diffusion and convection of the magnetic field lines occur. The field
lines are 'dragged' through the conductor as they diffuse into it.

The force _3_L exerted by an EM field on a conductor is given by

_Z=$(§*!A§) = g & +}w_8_ (16)

However from (3) we see that |é|~ |8 T, and (2) gives |91~ € |€|£" whilst
(4) gives I}l ~ I@I//w( s 50 that the ratio of the first and second terms

on the right of (16) is

g &l ley* ( £ )Z
———————mea Ay € M ~ —e << 1
1§ +8] # e <3

where e,u:c"‘and C 1is the velocity of light., Thus in a moving liquid
the volume charge does .not appreciably contribute to the body force and‘ we
may take the force as |

RNy | (17)
The force 2 is a true body force, like gravity, and is usually called the
Lorentz body force. It is possible to show COWLING (1957) that the Lorentz
force may be interpreted as a tension B'//u along the magnetic field lines

together with a hydrostatic pressure 87/ 2n,

l.4.3 Hydrodynamic' Equations. The equation of momentum is

e %'__yg = ~-VP + 3_' + _%VV(V-X)-r VV‘! (18)

where ¢ is the density of the fluid inkgm ; P the (scalar) internal
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fluid pressure; 2? the body force and ¥ the viscosity of the fluid in
Pascal(zkg m™ 8~'). For a conducting fluid moving in a magnetic and
gravitational field we have, using (16)

éi = o‘ln 8 + e # (19)
where 4 is the gravitational acceleration. 'The mobile operator ﬁi{ is

defined by

The last two terms of (18) are the viscous forces. To the above we now

add the equation of continuity

%‘% +V.(ey)_-_.o (21)
which 1s a mathematical representation of the conservation of mass. In
this thesis we shall assume that all liquids are incompressible so that

() is a constant, and the thermodynamic equations required for compressible
flow are not necessary. Thus (21) reduces to
V.ovso | | (22)
It is apparent fhat (93_ in (19) may be included in the pressure term of
(18) so we choose to ignore the gravitational force throughout this
thesis. From (18) to (22) we obtain the Navier-Stokes hydromagnetic

equation
e{%+(z.V)_y}=-VP+}n§ +vVYy (29)

We can investigate the relative importance of the terms in (23) using
dimensional analysis. The ratio of the inertia term to the viscous term

is

lev. Vvl = QUM _ edd o
v vy v/t Y (24)
where [ is the Reynolds number for the flow., When Re is large the
inertia term dominates the viscous term and (23) remains non-linear in ¥ .
when Ke 1is small (the 'slow flow' approximation) we can neglect the

inertia term and (23) becomes linear in ¥ . If the Reynolds number is
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large, the effect of viscosity - is only important in regions close to the
boundaries (the boundary layers) or in regions of large velocity gradients.

Using (8) we see that the ratio of the Lorentz term to the viscous

term is

138l B _ gie) - HE

v 7y vl /&* " (25)

where Hy= B ( g) "2 1s the Hartmann number. This dimensionless
parameter was first used by Hartmann in 1937, It gives a direct estimate
of the relative importance of the Lorentz and viscous forces. When H..,

is large the viscous term can only compete with the magnetic term in regions
of large velocity gradients. These regions occur close to the boundaries,
and we can associate a boundary layer of width § = é‘ ( ZT.)" (the Hartmann
boundary layer) with these regions.

The ratio of the Lorentz term to the inertia term in (23) is

YR VY
lp(v.V)¥| L' LR Re

The ratlo Ha /Re is sometimes denoted by % , the magnetic pressure

number. In large Reynolds number flow we require Hu > Re%  for the

Lorentz force to compete with the inertia term. ; If the Hartmann number is

not large enough the magnetic field lines are partially excluded from

the moving 1iquid and concentrate in the boundary layers.

l.4%.4 Time Variation. Throughout we shall be considering EM sources
which oscillate with an angular frequency (v . In our analysis all solutions
of Maxwell's equations will also oscillate with this angular frequency.

We shall write, (i*==1 ), _
4(£.e)=l(t)ewt _@(z.e)=B_(z)e“"t €t =Epe™t

vhere only the real parts of 4 ’ @ and- § have physical meaning., Using (16)

we see that the Lorentz body force is

F=R(4)AR(8) | (28)
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where & denotes 'real part of'. . It can be seen that 3 may be written
as the sum of two parts, one dependent on time (having an angular
t
frequency 2w ), 3 , and the other, F , independent of time. Thus
F- 7'+F (29)
- . e es  (2F
If we average g over a period of oscillation (;—) it is easily shown

that the time averaged Lorentz force ;z is equal to F and we have

E-31% { J(e)a B'm} (30)
where ¥ denotes the complex. conjugate. In component form (30) becomes
E - ‘2‘:&[3;3;'3;3:,3—33-"3«3: ,3’,3:—3;3:'] (31)

1.4.5 .The Fourier Transformation. In ﬁuch of this thesis we are
concerned with the three dimensional behaviour of the EM field and velocity
profiles.. One extremely important tool in analyses of this type is the
double exponential Fourier transformation. Sufficiency conditions for the
transform to exist may be found in TITCHMARSH (1937) or CHAMPENEY (1973),
but for our purposes the sufficient condition is that the function to be
transformed has a finite number of discontinuities.

We shall define the n-dimensional Fourier transformation, although
we only use the cases n=l and n=2. Writing T = [x,%,,%X3,>X4] ,
Dalxl, %2, Xn] 5 SelpapasPirestn] » =LA77, P )
we define the Fourier transformation of the (n+l)-dimensional function

V.
M(5,2) with respect to 1 as M(3,2) where

F1(§,2) = 3,:{!‘1(1‘,2)} = S ...... J M(s,2) fjr'gd._g (32)

The corresponding inverse transformation is defined to be
Co oo

M(r2) = 3;{f:l(§,z)} = J fj ﬂ(ﬁ,z) C'”'S.L_é (33)

er )

We also have the following convolution results for the functions M(<£,z)

and N(r.z):

3:{”(1‘.:*-) N(rz)} * [ ﬁ(?,z) Kj(g-g,z) ds’ (31)

= a . Yyl

Jn{m(E.Z)N(&?-)} =] J M(z'2) N(1-5'z) dsg (35)
J



We shall also require Parseval's formula (see Champeney):
2 4

[[ M(f_',z)N‘(r,z}d_r =[ r‘m;z) &(g,‘z)cg (36)

]

l.4.6 Electromagnetic boundary conditions.
. Region (2]

Fig. 1.2 Defining Boundary Conditions.

A boundary between two media is shown in figure 1.2, . For the field
vectors € . ﬁ and ;6 we have
(a) The tangential component of _5; is continuous across
the boundary thus
1a(é-4)=2 (37)
(b) The tangential component of !_f is discontinuous across the
boundary by an amount ﬁ_ which measures the surface current
density, We note that the current density is to be interpreted
as & = f::z ($4) where § 1is the depth of pemetration of } into

—

£t]1 and (2] + Using (5) we have

(L -8)- & 1)

vhere 4, and u, are the magnetic permeabilities of {41 and (2]
respectively. When the regions are of finite conductivity
# =0 . When the conductivity of [2] becomes infinite the
EM field is excluded from [2] and a surface current f:_( exists,
(c) The normal component of magnetic induction is continuous across
the boundary, thus |
ﬂ.(@"@t)-‘—o (39)

The boundary conditions above still apply when the two media are

in relative motion (see ROBERTS, 1967). To the above conditions

we add the requirement that the EM field decays at infinity.,
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1.4.7 Hydrodynamic Boundary Conditions. We use figure 1.2 but the
region [Z] is now occupied by an incompressible viscous fluid moving with
velocity V(r) = [>U,V.w] =
(@ For a plane boundary moving with velocity \a(i) we have
v =vO0 (4o)
at the boundary.
(b) If the surface shear stress t is specified along a plane boundary
with unit normal 83 , we have
= [ , ] and V/= (41)

If ] is a vacuum, the surface shear stress is zero.

1.5 The Float Parameters

1,5.1 A Linear Induction Motor.

Fig. 1.3 The Float Bath Linear Motor

One of the float bath®"s linear motors is shown in figure 1.3, The
stator core is constructed of soft iron, laminated to minimise eddy current
losses. Thus the core®s electrical conductivity may be taken as zero.
Twelve teeth are attached to the stator core, each tooth wound with four
turns of insulated water cooled copper tubing except the end teeth which
have two turns. The teeth are connected in series according to the colour
codings R (red), Y (yellow) and B (blue ) - see figure 1.3. A three phase

electric current is applied to the colour group and the supply is said to
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be "balanced® if a phase difference in time of radians 1is maintained
between the colours. The whole arrangement is enclosed in a refractory

jJacket able to withstand the high temperatures inside the bath (British

Patent: 1,107,099).

A section of the float bath linear motor is shown in figure 1.4(a).
We assume the group > and group 3 windings are respectively phase advanced
and phase retarded by the amount -~ radians over the group R windings.
From the phase vectors in the circle diagrams we can deduce the shown
variation in magnetic flux with position along the motor axis. The upper
graph is assumed to correspond with the time t-o . It is apparent that
the magnetic Fflux moves along the motor axis in the direction of increasing
phase difference in the windings with a speed given by u /"za/a) ,where
> (-Zz) is the wavelength of the excitation and 21 is the distance
between adjacent teeth in the same phase. Can we attach a significance
to the parameter t ?

Without loss of generality we may consider the flux paths at t-0
for the float bath linear motor (figure 1.4 (b) ). These lines of magnetic
flux are easily obtained from consideration of the direction of the magnetic

field produced by each tooth at t-o , or by using the magnetic field line

Fig. 1.4 Flux Variation



-14-

analysis of chapter 12, It is apparent that the flux paths for this
motor are equivalent to cn array of eight magnetic poles (an extra pole
arises from the closure of flux at infinity). The distance T is seen

to be the magnetic pole pitch.

We shall now define the technical terms used throughout this thesis
when discussing linear motors; the stator (or primary) constitutes the
stator core and stator face (tooth/slot region) the electrical conducton
(plate or liquid metal) upon which the FLIM acts is called the rotor
(or secondary); the tooth pitch (C) is the distance between the centres of
adjacent teeth; the pole pitch (T) is half the distance between the centres
of adjacent teeth in the same phase and the navelength of the stator
excitation is twice the pole pitch ( A=2T ). The equivalent airgap (§.)
is the distance between the stator face and the secondary (4 ) corrected
for the serrated topology of the tooth/slot region. It is equal to l<g? 9

where k. , the CARTER (1926) airgap fringing coefficient, is given by

¢ (59m + ws)

K., =
¢ C(5gmtws) ~ Wi (42)

In (42) the parameter W is the width of the slot opening and G is the
length of the magnetic flux path: For machines with an open magnetic
circuit ie: a single inductor as in the FLIM,LAITHWAITE (1966) has shown
that ¢m , to a first approximation, may be taken as T/ . Using the
dimensions shown in figure 1.3, (which are also given in table 1.1),

we find Kc.=122.

1.,5.2 The Stator Excitation. When the magnetising current is balanced
the fundamental term of the magnetomotive force (MMF) for a three phase
induction motor may be represented by a forward moving travelling wave.
For an infinitely long and infinitely wide ('idealised') FLIM we have

(WATT, 1955)

MMF = F, s[,n(wt-a}-w) (43)
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where the peak MMF is given by

F, AZNIK,

([
In (43) and (44) « is the wavenumber ( =7/t ); N is the total turns

(44)

per phase; L the winding current; K. ='$im( —:J -%)'is the pitch factor (Cpis’
the coil pitch} and P is the number of poles '+ The coordinate Y is
chosen along the FLIM axis., If Vs is the synchronous speed of the
travelling wave then V5 =w/x ., If the magnetising current is unbalanced
a backward moving travelling wave is created which introduce§ extra power
losses. We shall assume the currents are balanced.

In theoretical analyses there are two main methods of representing
the winding configuration. The first method replaces the winding currents
and tooth slots by a distributed surface current on the stator face, (for
example FUKUSHIMA et al. 1963, 00I and WHITE 1970). This method we call
the case S . It is valid when the induction motor is series wound
(LAITHWAITE, 1965). The stator surface current density A is found by
differentating the MMF (43) with respect to 4 Changing to complex

notation we have

£ (wé -
o= ke, (45)
where Ks = 3T N IKux (46)
PT

The magnetic permeability of iron is not constant, but depends upon the
magnitude of the magnetic field. However, because it is of the order

10“ henry m™' we may assume - Jum ~ 0. From the boundary conditions
at the stator face (38) we see that case S excitation is equivalent to
specifying the tangential component of magnetic induction at the stator

face. Thus we have the following boundary condition at the stator face:

(we-wy)

Case S : Bz = /‘OKs \ & (47)

Where K5 1is given by (46). Using the parameters of table 1.1 we find

Ks=7850 Amp m~' for ki, =0.5
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In the second method we specify the normal component of magnetic
induction at the stator face, (for example; WANG, 1971), which is
valid when analysing parallel-wound motors. This method of analysis we
call case p , and the condition at the stator face is

Case P: $3» 8m C } (48)
We can obtain 37 in terms of the MMF using Amperes circuital rule

(SAY, 1963)

MMF = S < <9)

where the contour C is any closed flux path. It is easy to show that

under no load conditions (in the abscence of a rotor)

K - /=K. (50)

1.5.3 Finite Excitation._Effects. The results of 5.2 are in reality

applicable only to the central regions of a FLIM where the excitation

does not "see” the stator edges. However, a real FLIM if of finite length

and the discontinuities in the excitation at the ends of the stator

introduce pulsating components of the EM field which are superimposed on

the travelling field. This is called the "longitudinal end effect”,

(OKHREMENKO , 1960). The pulsating components induce shunt currents which

add to the power losses but they can be removed in several ways.

(@) Compensating poles. This is an external method proposed by

ELLIOT et al. (1966). Extra poles are added to the ends of the
FLIM and wound with a single phase a.c. supply (figure 1.5) so as
to cancel the pulsating components of the EM field in the travelling

wave region. This eliminates end loss but adds substantially to the

Fig. 1.5 FLIM with Compensating Poles
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length of the FLIM. The MMF in this case is given by
MMF = F,, {co: (wh-ay) - cos wt *9 I wt} (51)
where ?, is a parameter which includes the length of the compensating
poles.

(b) Grading the Winding. There are a number of ways of reducing

- the MMF to zero at the ends of the stator (BLAKE, 1956). One of
these is to wind the end-poles of a FLIM with half the standard
number of turns. In this way the magnetic field is reduced to
zero at the stator ends and no pulsating components appear., The
MMF here is of the form

MMF = ‘,'_'E“ { tos (we-ay) —~cos wb} (52)

' Grading the winding was the method used in the design of the float
bath linear motors.

(c) Sudan's method. This internal method, first proposed by SUDAN (1963)
removes the pulsating components by adding add;tional windings
within the travelling wave region., Sudan proposed to eliminate
the zero order end effects by using three instead of only one
‘travelling wave excited winding, The MMF in this case is of the

form

MMF = ; Fun Cos(wk = ot y) ‘ (53)

It is not difficult to consi&er-boundary conditions (51), (52) and

(53) at the stéfor faée:buf’ﬁe choose to assume thé excitation is a puré
travelling wave.

A real FLIM is also of finite width. The change in structure of the
EM field at the edges of a FLIM because of the discontinuity of the winding
curpent there, is called the 'transverse edge effect! (VILNITIS, 1966).
Throughout, we sball assume the excitation is of constant magnitude across
the stator width.

LIELPETER and TUTIN (1959) suggest a factor Kt 0.8-0.9 should be

introduced in Ks to include the longitudinal end effect.
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1.5.4 TFloat Parameters. The physical parameters involved in the float

process relevant to our work are given in table 1.1 .,

. Table 1.1 =~ Bath Parameters (mixed units)

FLIM PARAMETERS

Width (2a) 4 in. 101 mm | Current (T ) 150 A
Length ( 2&) 22,5 in.571.5mm | Voltage o0V
Height C 2§ in. . 5% mm | Frequency ( } ) 50 Hz

Airgap (¢) 0.5-3 in,12-76mm } Angular Freq. (w) 100 x Rad

Slot Width ( @:) 1.5 in.38.10mm |yavelength (A)  gin. 152 mm

Pole Pitch (T) 3 in.. 7¢ ™ |Wave Speed (Vi ) 7.6 m/s

: 25 ft/s
Tooth Pitch (¢) 2 in. Sl mm | Current Density ( Ki) 7850 A/m
Coil Pitch (Cp) 1 in, 25.4mm |Turns/Phase (N) 15

TIN PARAMETERS (SMITHELLS, 1955)

TEMP | DENSITY | VISCOSCITY | ELECTRICAL | HARTMANN | MAGNETIC

y CONDUCTIVITY | NUMBER | REYNOLDS

°c e » - NUMBER

Pascal =%

Kg/litre | (Poise,10°') mho/m PRk (S Ve ke
400 6.85 | 0.00137 1.946 x 10° | 23.6 1.19
500 6,78 | 0.00118 1.852 x 10° | 2u.8 1,13
600 6.71 | 0.00105 1.761 x 10° | 25,7 | .07
1} 800 6.57 | 0.00087 1.595 x 10° | 26.3 0.98

Tin Depth (L) 2.5 in. 63.5 mn

GLASS PARAMETERS

152-254 mm
Ribbon Speed (W) { 6~10 in/s
Thickness 2-10 mm.
Density 2.5 Xg/litre
Viscoscity 10°= 10" Pa -
- Electrical conductivity 1.7 mho/m
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1.6 The Applications of a Linear Motor-

The use of a FLIM in conjunction witﬁ\SOlid rotors has been adequately
described by GOLDHAMMER et al. (1968) and LAITHWAITE (1975). Its use
in the liquid metal industry. ranges from the pumping of liquid metal
coolants in the nuclear reactor (MULLER, 1866) to MHD power generation
(WOMACK, 1969) and the control of molten metal flow in the foundry
industry (ARMSTRONG, 1964). Other applications are given in PANHOLZER(1963)
and ROBINSON et al. (1972),

The use of a FLIM in the production of stainless steel is similar to
that in the production of float glass and so it is relevant to this thesis,
AEG~-Elotherm's ELDOMET system (HOEY et al., 1974%) involves the movement of
molten iron along an inclined channel from the furnace to a casting ladle,
by a FLIM placed underneath the channel (von STARCK 1971; EADY et al 1872),
BLOCK (1973) gives some experimental results for the ELDOMET system and
other EM runners and pumps. The ASEA company of Sweden developed (in 1939)
a FLIM to stir the molten iron inside an arc furnace, thereby increasing
the rate of metallurgical processes (REZIN, 1965; ELIASON & KALLING, 1968),
This two-phase FLIM is pléced underneath the furnﬁée and is capable of
developing a force of 500 N/m* which drives the shallow layer of molten
jpon at a surface speed of 1 m/s. when Vi = 4% m/s(SUNDBERG , 1969),

The FLIM operates on a very low frequency supply (0.5-2 Hz) to allow
diffusion of the magnetic field through the thick furnace base. Further
peferences on induction stirring may be obtained from the files of the

STUDSVIK company (Sweden), and COCHET et al. (1972).

1.7 A Survey of Linear Induction Motor/Pump Analyses

1.7.1 Definitions. A FLIM may be used in conjunction with a solid
rotor or with a liquid metal rotor., The latter configuration is that of
a flat linear induction pump (FLIP). It is possible to have a single

(SLIM, SLIP) or double (DLIM, DLIP) inductor arrangement (figure 1.6).
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Fig. 1.6 FLIM and FLIP Longitudinal sections.

Usually a FLIM is used to drive a vehicle (for example, a train)

along a fixed rotor (the"reaction rail® in this context). A FLIP, however

is fixed and it is the liquid metal which is induced to move. In all

FLIM analyses the solutions are found assuming the FLIM moves with a

constant speed V ; the excitation wavespeed relative to the fixed rotor

is then SVs , where the slip 5 is given by
s = Ffv. -V / Vs
) (59
Thus the induced EM field is a function of S . At start-up the slip is

unity and the induced propulsion forces are at a maximum. When the slip

is zero, the wavespeed equals the FLIM speed and the induced propulsion

forces are zero. The analysis of a FLIP is a true MHD problem and the

velocity of the liquid metal must be determined from the coupled Maxwell

and Navier-Stokes equations. However if we assume the liquid moves as

a solid with a constant velocity V the equations uncouple and we can

obtain first approximation solutions. Thus the analyses for a FLIM and

a FLIP may be considered identical.
Some possible models for the longitudinal and transverse sections

of a SLIM/SLIP are shown in figures 1.7 and 1.8 respectively.

cx0 W. moo At-
- r/t'
gffo 'fAt‘ ft. =77\~ End NI-y-
Y effects
c*0 y--y- R /™
a uasi-one dim. T_ i
@ Q () Quasi-two dim. (c) Two dimensional
( ldealised ( Finite o
excitation ) excitation ) ( Finite stator )

Fig. 1.7 Longitudinal Models
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Fig. 1.8 Transverse Configurations

1.7.2 Survey.

(@ One dimensional analyses. Here it is assumed the decay of the EM
field away from the stator excitation is negligible (no skin effect)
enabling the rotor to be replaced by a thin conducting sheet. Using

flux linkage arguments WILLIAMS et al. (1956) and KARO (1963)assess the
properties of short stator machines, of which the FLIM is but one example,
and discuss the longitudinal end effect. LAITHWAITE (1957,et.al.l1960)gives
some applications for the short stator machine. Building on previous

work LAITHWAITE (1965) introduces a design parameter G , the "goodness

factor™, which gives an indication of the usefulness of a machine, where

¢ _ o =

It can be seen that G is equivalent to the magnetic Reynolds number (12)

A machine is "good* or "bad® according as G » t or G < 1 . Using G and
the equivalent circuit concept NIX and LAITHWAITE (1966) perform a

detailed study of SLIMs for low speed applications. BOLDEA and NASAR (1975)
consider a finite stator with half wound end poles for case S excitation.

A transverse edge effect factor (BOLTON, 1969) and a skin effect factor
(KLIMAN and ELLIOT, 1974) are included in the analysis. Their results
indicate that the 1/« folding length for the decay of the EM field

beyond the stator end is approximately ( G “*), when S ~ 1 , which is
similar to the folding length derived by Bolton for the transverse edge

effect.
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ELLIOT et al. (196.6) develop design parameters for the induction
generator and included an analysis of compensating poles. CERINI and
ELLIOT (1968) show that i) thé end loss in an uncompensated generator is
the ohmic loss due to shunt end currents, and ii) the fluid ohmic
losses due to the compensatingfields are small compared with the shunt .
end loss. We note that the end effect resﬁlts of Laithwalte's work are
unfortunately of little use. He assumes zero induced current before the
étatcr entrance end and merely indicatesthat the induced currents are
non-zero beyond the stétor exit end.

SCHEIBER (1973) uses the Fitzgerald vector superpotential (the time
derivative of the electric Hertz vectof) to produce streamlines iﬁdicating
the end and edge effects for a rectangular travelling wave excitation placed
above arfipite sheet. KIRILLOV and LAVRENT'EV (1972) alsq produce some
results for a finite sheet but these are difficult to interpret. Further
references on the transverse edge effect may be found in the review
of VILNITIS (1966).

(b) Quasi-one dimensional analyses. All of the studies below use
Maxwell's equations to analyse FLIM models of type (a) in figure 1.7
(i) Induction machines. WEST and HESMONDALGH (1961) investigate
(case S) the problem of flux penetration in conducting media and
determine the properties of induction machines with large air gaps.
Their results indicate that 63 per cent of the flux from an iron
stator lies within a distance T/X from the stator face. The
case S analysis of STOLL and HAMMOND (1965) can be applied to the
SLIM. They show that the rotor may be regarded as infinitely
thick if its thickness is greater than the skin depth of the EM
field or if its thickness is greater than T/# . If neither of
these instances hold the authors conclude that the rotor can be
treated as a thin sheet with the neglect of eddy currents.
(ii) High speed ground transportation. The following papers deal with

the propulsion and levitation aspects of linear motors with



(iii)

(iv)
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application to rail transport. O00I and WHITE (1970) with a sheet

rotor case S analysis and WANG (1971) with a thick rotor case P

“analysis, consider the DLIM.  LIPKIS et al (1971) uses both case P

and case S analyses for the problem of a SLIM with a half space
rotor.

MHD power generation, (DLIP configuration).  JACKSON and PIERSON
(1966) analyse (case S) the material limitations in a MHD generétor
channei whilst WANG and DUDZINSKY(1967a) obtain (case P) a generator's
electrical characteristics. A comprehensive review of induction
generator experiments and theoretical analyses is given in

DUDZINSKY and WANG (1968).

Liquid metal pumps, (also see (f) and (g)).. VEZE and KRUMIN (1965)
consider (case S) the force solutions for a DLIP with phased
bilateral inductors. - VEZE and MIKEL'SON (1970) show their solutions
suggest a contactless method of exciting vibrations in a solidifying

ingot of liquid metal to control its structure.

(c) Quasi-two dimensional analysis. The following papers analyse the

longitudinal end effect with an infinite stator length (figure (L3.0)

(1)

MHD induction generator. The papers of JESTER and FANUCCI (1969)
and PIERSON (1971) use SUDAN's (1963) superimposed winding analysis
as a means of increasing the generator efficiency. Sudan used the
Fourier transformation technique to analyse a finite DLIP and
obtained series solutions. The zero modes of these solutions are
the major contributory factors in the end loss terms but by having
three different but suitably chosen windings on the stator face
Sudan found they could be eliminated. ENGELN and PESCHICA (1966)
develop electrical characteristics for a finite excitation (case S)
generator using the two sided Laplace transformation. MOSZYNSKI
(1966) and SUTTON and SHERMAN (1965) use the conformal tpansformation

to map the end regions into a rectangle within which the analysis
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is performed. Moszynski also discusses the use of insulating vanes
to reduce shunt end currents.

(ii) FLIM studies. NASAR (1969) gives a theoretical (case S) and
experimental account of the variations of the magnetic field
inside a DLIM using the Fourier transformation technique, He also
gives a survey of end effect studies. This work is extended to

a SLIM in NASAR and del CID's (1973a) paper.

Further references to end effect studies may be found in the review of
VALDAMIS (1966). The papers of KOZYRENKO (1971a, 1971b) suggest a method
of solving discontinuous boundary value problems for elliptic systems of
first order equations. The author assumes the velocity profile in a MHD
channel may be written as V = G(«,¥) Yx AVY | » X= (L), ¥Y=¥(r)and
Vi APY = V7B s Pf= B(L) Maxwell's equations are then reduced to
first order elliptic form in a canonical (w, £ , ¥ ) domain, For a given
G (o, ¥ ) the author obtains integral solutions for the end and edge
effects.
(d) Two dimensional studies. NASAR and del CID (1973a, 1973b) analyse
a finite length SLIM for high speed ground transportation using the model
of figure 1.7(b) and finite difference techniques. The theoretical results
of paper (a) agree favourably with the computational solutions.
(e) Three dimensional studies. As far as we are aware, the only three
dimensional analytic study of a FLIM configuration is that of OBERRETL (1973)
for the DLIM, He takes the loﬁgitudinal and transverse edge effects, the
end-winding field and the MMF harmonics into consideration. The rotor is
of finite thickness and finite width. The magnetic permeability of the
jron stators is taken as infinite enabling the magnetic field to be directly
related to the MMF at the stator surfaces.
(f) DLIP design studies.

(i) No edge effects. WATT (1955, 1957) and ELLIOT et al (1965)

consider one dimensional analyses and derive expressions for such

quantities as the power developed, pressure head and efficiency.
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BLAKE (1956) gives a general analysis of all types of EM pump -
both induction and cdnduction. LIELPETER and TUTIN (1959) discuss
the optimum dimensions for a DLIP and give expressions for edge
effect and hydraulic loss factors. Apart from the compensating
pole analysis of Elliot et al., all of the papers above treat an
jdealised DLIP where there are no end effects. ELLIOT (1969)
discusses the effect of the number of slots, on the electrical
efficiency of an MHD generator, comparing the calculated
efficiencies with that of the ideal generator, ( t =5 ):‘

(ii) With edge effects. Here the channel width is assumed to be that
of the stator faces, allowing a Fourier representation in the
transverse variations of the EM field. The papers of OKHREMENKO
(1959, 1965a, 1965b) and VESKE (1965), besides considering the
overall aspects of pumping, derive such quantities as the pressure
attenuation factor and the demagnetisation coefficient. The
longitudinal end effect is not included in the above analyses

(g) DLIP flow profiles. Apart from the work of HARRIS (1967) there seems
to be no published work in the West on the velocity profiles induced in
travelling wave MHD pumps and'generators. Harris' solutions indicate the
velocity profiles under a bilateral travelling wave excitation (case S) may
be taken as those.of ordinary d.c. Hartmann flow, provided we introduce a
slip factor into the Hartmann number.

A large amount of work on this problem has been undertaken in the
U.S.S.R. TROPP (1968, 1969) uses the matched asymptotic expansion technique
to obtain (case P) solutions for the velocity field in a DLIP in inverse
powers of the Hartmann number. PETROVICH and ULMANIS (1969) solve -
numerically, using a pursuit method, the non-linear system of MHD equations
for the DLIP configuration. The papers of TKACHENKO (1970, 1972,‘1973) are
very important in that they produce second approximation analytic MHD solu-

tions for the induced flow in a DLIP. Maxwell's equations are solved

initially for a constant velocity stream and the Lorentz force produced
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is substituted in the Navier-Stokes equations, which can be solved (under
certain circumstances) to obtain the second approximation velocity profiles.
The solutions contain the parameters S (glip) and Hm (Hartmann nuﬁber) and
averaging the profiles across the channel gives, after some manipulation,

S = S(Hm). Thus MHD back reaction is included in the analysis. KIM (1970)
shows how to calculate the induced magnetic field in a DLIM by constructing
minimising sequences, using experimental velocity profile data, which are
to be substituted in a functional form df Maxwell's equations.

All of the above papers consider vélocity profiles induced by time
averaged Lorentz forces in anlidealised DLIP. MERKULOV et al. (1973) treat the
periodic flow of an inviscid fluid in the channel and give a ﬁictorial
representation of the flow development from t=0. Finally TROPP (1972) treats
the development of the flow when. a viscous fluid moves into a finite length
DLIP, by the singular pertubation method,but the analysis is extremely
complicated. It should be noted that TROPP does not actually give the flow
development in the entrance region of the DLIP, but merely shows how it may
be found.

Harris'! observation on the similarity of DLIP flow to Hartmann flow is
not reiterated by the Russian éuthors:
(h) Miscellaneous. An experimentallstud& of a DLIM has been performed by
VASIL'EV et al (1965), who conclude that aﬂ assumption of plane parallel
EM field in the gap can produce reasonable results. A complete discussion
of the physical, electrical and hydraulic aspects of the DLIP are given in
the books of LIYELPETER (1966) and VOLDEK (1970) whilst the physical and
electrical aspects of the DLIM are given in LAITHWAITE (1966) énd
YAMAMURA (1972). Yamamura's book is a 'state of the art survey' of
Japanese publications. There have been many symposia on MHD (for example,
SALZBURG, 1966 and RIGA, 1972) and further refefences may be found in

their proceedingsL
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1.8 Coplanar Flow with Constant Applied Magnetic Fields

Throughout we deal with steady state phenomena and simplified MHD
flow. No consideration is given here (and to our knowledge, elsewhere) on
the stability of the flow, the flow development and decay with time or the
entrance and exit flow profiles in a finite excitation induction. pump.
However, there has been a great deal of work on the abové topics in constant
applied magnetic field (Hartmann-type) flow, and for completness we include
a brief survey of these approaches.’ We shall confine the review to the
author, method of analysis and assumptions made.

(a) Stability. - STUART (1954; parallel field), WOOLER (1961; non-parallel
field), LOCK (1955; transverse field ~ Hartmann flow), CHEN and EAfON (1972;
parabolic inlet profile, asymptotic form agrees with LOCK), C. WANG (1974
free surface). |

(b) Flow development. ERASLAN (1967; parabolic profile at t=0, Laplace/
Fourier transform analysis), SLOAN (1971, 1973) extends a particular case
of Eraslan's work, SNEYD (1972; vérticity study at switch on and. switch-off)
(¢) Inlet profiles (finite fields).  SHERCLIFF (1956; heurisfic analysis,
jnviscid flow),-SUTTON and CARLSON (1961 pepturbation study, conformal
mapping of entrance region).HWANG and FAN (1963; finite difference, uniform
inlet profile), YUFEREV (1967; boundary iaygr analysis, Blasius inlet profile).
A new method of hydrodynamic inlet profile analysis'betweén parallel planes
was formulated by SPARROW et al. (19 ) based on a linearisation of the
inertia terms using a stretched axial coordinate. The following authors
have applied this analysis to MHD inlet problems: SNYDER (1965; coﬂstant
inlet profile),CHEN and CHEN (19723 parébo;ic inlet profile). HWANG et al.

(1966) use a finite difference apprbach for a uniform inlet profilé.

References to analyses of MHD channel flow are given in the reviews
of RYABININ and KHOZHAINOV (1969), HUNT and SHERCLIFF (1971) and
LIELAUSIS (1975). An interesting paper by TODD (1966) gives precise

conditions which distinguish between the Hartmann flow MHD generator, EM

pump, EM brake and MHD accelerator.
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2. A MAGNETOHYDRODYNAMIC EXPERIMENT

2.1 The Experiment

A model, designed* to analyse the effect of linear induction motors
upon liquid tin, was used to obtain flow profiles fop mercury (liquid
at room temperature), under the Lorentz force produced by a linear
induction motor placed ' above the mercury's free surface (plate 2.1),

The model (figure 2.1) consisted of an oval channel (7" wide) with
perspex base and sidewalls (electrically non-conducting) allowing a
depth of 13" of mercury. (Total weight : 155 Kg, 3 cwt.) The flow profiles
were measured at stations (a) - (k), (1) - (7), using a pitot tube/bulb
manometer/microammeter system, which measured the total head (Bernoulli)
pressure. Results were subsequently corrected fop internal fluid pressure
using a pitot-static arrangement,

The three laminated iron teeth of the motor (figure 2.2) were each
wound with a coil consisting of . seven turﬁs of insulated, water cooled
copper tubing, overlapping the width of the iron core at each end, A
three phase mains frequency supply used-in conjunction with a Berco rotary
regavolt (type number 121 AG 3E; 0-440V output at 25 A) and a Transformer
(type number P.1352; 6.25KVA), gave a power of 2.25KW from a current of
250A at an E.M.F. of 10V, The travelling magnetic fleld produced had a
wavelength twice the length of the motor, and effectively (because of the
relative dimensions of channel and motor width) had no component across

the width of the channel,

2.2 Results

A £ilm of oxide and dust repeatedly formed on the mercury surface
reducing the surface speed to zero. In order to Perform the experimegt
we had to frequently clean the mercury,whicﬁ intepruptgd the recording of
measurements., Other difficulties included fhe variation in roem temperature,

and the leakage of air through the sealed joints in the recording apparatus

% Dpesigned by M,Abrams, Models Laboratory, Pilkington Bros,, St Helens



Plate 2.1 The Model
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Plate 2.2 The Near Channel ( Downstream )

Plate 2.3 The Far Channel
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The mercury was quite turbulent throughout the near channel flow
(less turbulent in the far channel), and this was indicated by the variable
readings of the microammeter, which measured the total head pressure in
inches of water. Thus to obtain velocity profiles, the readings were
effectively 'time-averaéed'; the error involved in the profiles,

relative to the mean (time-averaged) velocity, is +30% at 2"/sec and

+ 7% at 10"/sec.

The effect of the motor on the fluid when the power was turned on was
immediate: a streaming of fluid downstréam of the motor appeared to
produce a slowly moving wave which returned around the channel until the
motion settled to a mean steady state with approximately zero pressure
gradient. All readings were taken in this mean steady state of motion.

Depth profiles across the near channel are shown in figures 2.3. and
2.3a. The progression of the fluid beneath the'motor is clearly shown
by a comparison of profiles at stations (c¢) and (d). Turbulent flow effects
(eddies, vortices) produced unreliable results (dashed lines indicate
possible profiles), and the effect of the channel walls can be clearly seen
by the small velocities recorded at stations 1 and 7. All profiles show
a hydrodynamic boundary layer of thickness § < 7 mercury depth. (Taking
a typical velocity and length as 10"/ sec and 15" respectively, the
theoretical boundary layer thickness ( $a %“f-() is of ;’Z) mercury depth).

The flow into the motor is more or less uniform with depth along the
outside (more 'laminar') region of the upstream channel.

Figure 2.4 illustrates the near-surface velocity profiies and the
visual effects of the surface motion, with dashed lines indicating the
probable profiles. The downstream flow was definitely not purely normal
fo the motor face: the mercury was streamed in the direction shown by
the arrows, producing a vortex which moved as indicated. There was some
backflow near fhe inside edgé of the channel, below the input side of
the motor - probably caused by the non~symmetric flow into the motor, local

eddy flows, and the unbalanced windings (see table 2.3), The unbalanced
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windings produce backward trévelling EM waves which oppose the motion.
- (see §1.5 and plates 2.2, 2,3)

Approximate flow rates were calculated from the root mean sqQuare
velocity at each station (Table 2.1), ineluding station (k), (figure 2.5)
in the far channel.. -Although results for the latter are more accurate
than those elsewhere (due to less turbulence because of the aligning of
the flow from the angle pieces), the flow rate calculated is not
necessarily an exact indication of the efficiency o6f the motor. The
true flow rate produced by the motor in the steady state is likely to
lie near the downstream flow rate, with local circulation accounting
for a large part of the difference.

-When copper strips were placed along the side walls beneath the motor
and short circuited, thereby allowing return flow of electriec currents
(conductivity of copper >> mercury) and thus an increased Lorentz force,
the flow rate increased (in the far channel) by 16%. Time did not permit

the measurement of near channel profiles for:this case,

Table 2,1 Flow Parameters

Station | RMS Velocity | Volumetric Flow Rate | Mass Flow Rate
"/s cm/s litre/sec Kg/sec
TL (a) 4,04 10,26 0.69 . 9.5
(b) 3.69 9,37 0.63 Av. 0.65 8.6 Av. 8.9
(e) 3.70 9.40 0.64 8.7
(d) 4,80 12.19 0.83 1 11.3
(e) 5.04 12,8 0.87 11.8
(£f) 5.25 13.34 0.%0 Av. 0.88 12.2 Av. 12,0
(g) 5,10 12,95 | 0.88 12.0
(h) 5.3 13.46 0.91 12.4
4 5.21 13.23 | 0.90 12,2
A (X) 5.2 13,21 | 0.45 6.10
' +16%
B (k) 5.96 15,14 0.51 - 7.00
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The magnitudes of the magnetic induction components 3 and &, were
estimated using a search coil / oscilloscope system. The standing waves
obtained on the oscilloscope Screen were photographed (with Polaroid £ilm)
and the height of each wave was measured from the subsequent photographic
image (with an error of approximately 5%). Unfortunately we did not have
access to instruments with which the absolute magnitudes of the components
could be measured so the results in figures 2.6 and'.2.7 have been made .
dimensionl;ass, taking @, at the surface (2z-.0) of the mercury, below the
centre of the end tooth, as the scale magnetic field. The reduction in ‘
magnitude (figure 2.6) of (33 with distance is large (90% fall fn 2.5 inches)
whilst the fall in &, is more gradual (about 60% fall in 2,5 inches), We
also found that the normal magnetic induction was the dominant component’

Table 2,2 Physical Parameters

Channel width 7in (178umm) Coil span (¢) 0.81in (20.6mm)
Mercury depth (L) 1.5in (38mm) Turns per phase 7

Motor length’ 1 Number of poles 2 -

Channel length ? |

Stafor length 2,75in (70mm) Electrical conductivity mho/m
Tooth width 0.5in (12,7mm) % ‘Mercury’ (20°C) 1.05x10°
Tooth gap 0.635in (15,9mm) oz Copper 5.8x107
Tooth height 3in (76mm) Density Hg(20°¢) =13,55gms/cc

Maximum velocity (V) 10in (25.4cm)/sec Viscosity Hg(20°C) =0,00155poise

Winding current (T) 250 A Reynolds number R, « C_x.‘- =85000
Power supplied 2,25 XW Magnetic Reynolds Numbers

Supply frequency 50 Hz Rmp = Jetim V I =0.073
Angulai' frequency (w) 1007z rad. Rw = Jocm Vo L 0. 23
Pole pitch (1) " 1.8 in (46mm) Skin depth §a (po0)™'% =3,46cms

1,75 10" (6.83.16 " |
Wave number (¢) n m ) Exponential decay factopz 1,12.z

Wave speed (Vs=w/t) 4.6 m/sec
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close to the FLIP; in fact we have Iﬁ,l ~ 3.5 '6,' at the stator edge.

The measured variation of @ with depth (figure 2.7) is indicative of an

exponential decay and we estimate the decay factor to be approximately

1.8z where z is the dimensionless ordinate pointing away from the mercury,

(the scale length for the system is taken to be the depth of mercury).

However, this factor is quite different from the theoretical factor

Table 2.3 Electrical Data
OVER MERCURY
.~ PHASE RED BLUE | YELLOW NEUTRAL
vdltage (v) 2.9 4.4 3.9 To neutral
Power (KW) .13 .82 o4 Total 1.59 KW
KVA .841 | 1.056 .64y
Power factor «1546 7765 | .9945
(KW/KVA)
OVER ATR
PHASE RED BLUE | YELLOW NEUTRAL
:
voltage (V) 2.9 4.4 3.9
Total
. .82 .65
Power (KW) 0.l 1.592 X
Current (a) 290 235 170 155
COOLING WATER
: VOLUME OF TIME OF POWER
TEMPERATURE ¢ |'° ,
C | rrow .| Frow SUPPLIED
IN OuT Ao | (Q cm?) (t secs)
—
Over Mercury 15.6 |48.9 [ 33.3| ux10® 350 1600 W
kY
Over Air 14,5 |47.6 || 33+1] #x10 338 1600 W
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(value 1l.1) obtained using the physical data in table 2,2. The difference
is largely due to the curvature of the magnetic field lines at the edges
of the SLIM which decrease the skin depth of the induced EM field (see §6,3)
Some electrical data (collected by S. WOLFENDEN) is given in table 2.3.

It is clear from the power data that the windings are very unbalanced
and it is likely that a strong backward-travelling wave was produced by
the SLIP (see § 1,5)s This wave would produce.a force opposing the flow
which perhaps explains the occufrence of backflow underneath face 1 in
figure 2.4, The heat absorbed by the cooling water was measured using a
standard thermometer and the figures obtained give a reasonable indication
of the power ( =%.2 x A® x Q/T Watts) supplied to heat the water. Using
(3.34), which is an expression for the total resistance of the copper
windings we find the power loss from the windings ( I” x resistance) to
be of a similar v%lue. Comparing the active‘power (~1.59 KW) with the
heat loss we conclude that most of the power supplied is dissipated iﬁ
the form of heat and that the SLIP operates on a very low efficiency.
This latter concluéion isrverified by congideration of the mercury flow.
Following a gtreamline from face 1 to face 2 of the SLIP we can obtain an
expression for the average pressure drop (A P) across the stator,
vizs AP = ¢ (Vo-V') /24 » Where V, and V, are the average velocities
at face 2 and face 1 respectively and ! is the gravitational acceleration,
(9.8 m/sec ). The power required to maintain the average flow rate Q
across the stator is QAP where Q~(0.88 - 0.65) litre /sec; (from table 2.1)
Using the data of tables 2.1 and 2.2 we find tﬁis power is approximately
0,001 W; the électrical efficiency of the SLIP is thus extremely small.
Applying Newton's second law (force = mass x acceleration) to the data in

table 2.1 we estimate the force developed by the SLIP is 270 N/m® .
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2.3 The measurement of liquid metal velocity profiles

In the previous section we mention some of the difficulties involved
when measuring velocity profileé using pitot tubes, However, there
are other methods of measurement, and these are Presented below for
completeness. Unfortunately the cpacity, high density and reactivity of
‘11quid metals restricts the choice of measuring device considerably. If
the 1liquid is in a hostile environment - extremely high temperatures or
a corrosive atmosphere - the choice of instrument is further narrowed.

The description below assumes that the environment is not hostile,

Por an estimate of the local flow rate a device called an electro~
magnetic flowmeter (SHERCLIFF, 1962) may be used. A constant magnetic
field is applied across.the channel or pipe and fluctuations’in the
induced currents are recorded throughlconducting plates placed on the
channel's side walls.. For the measurement of large velocities (y > 0.05m/s)
in stationary flow, the standard pitot-tube 1iquid manometer arrangement
is quite accurate. However in the boundary layer region near a surface
the pitot-tube's physical dimensions may kecome larger than the 8cale
leﬂgth of the region, and its_accuracy diminishes. This device ig also
insensitive to rapid fluctuations and cannot ﬁe used to measure turbulence,

For fifty years since KING (1914) wrote on the heat transfer fronm
cylinders, the hot wire anemometer has been the most important device
in 1iquid and gas flow measurement. KOVASZNAY (1965 ) surveys this
measuring technique and presents an extensive bibliography., Then in the
1950's a new technique was developed in the form of the hot film
anemometer. These sensing elements, of the same dimensions as the hot-wire
probes ( about 10*n in length), consist of a very thin platinum filnm
fused to a glass surface (LING and HUBBARD, 1956 and LING 1960), but
are more accuréte than hot wire sensors when used fop liquid or high
temperature supersonic flow. The principle of both types of sensor is the

same - the transfer of heat from the probe surface to the moving 1iquid,
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The hot-wire and hot-film devices work in two modes of operation. If the
heating current of the wire is kept constant and the variations in sensor
temperature are recorded as voltage drops across the sensor, then this is
called the constant current operation. The second mode of operation,

the constant temperature mode, is when the sensopr temperature is kept
constant, and fluctuations in the heating current are recorded, Yor a
comparison of the two types of sensors and their modes of operation,. see
WASSERMAN and GRANT (1973) and the DISA Probe Manual, Unfortunately
liquid metals tend to react with probe surfaces - both chemically and
electrically.. . For early work wiih mercury see SABJEN (1965) and MALCOLM
(1968), who deal with hot-wire and hot-film probes respectively, The
high conductivity of the mercury can also lead to local MHD effects:
interactions between the éurrent carrying sensors and the immediate
..environment produce induced currents which can modify the liquid motion
around the probes (MALCOLM , 1870),

After the completion of the experiment described in this chapter an
opportunity was provided for further work of’a more accurate nature, We
had planned to set up a model of the plant conditions. A FLIM was to be
placed above a bath of liquid mercury and the three dimensional velocity
profiles were to be meésured using a hot-film probe, Unfortunately, the
expense involved in the purchase of the probes from DISA was too large
for our budget and the proposed experiment was cancelled, For completeness
we have Included the address of DISA in the bibliography. As far as
we know they are the only suppliers of hot-film and hot-wire measuring

equipment in this country.



3. THE SINGLE SIDED FLAT LINEAR INDUCTION PUMP

3.1 Introduction

Here we obtain expressions for the EM field induced in an electrically
conducting half space by a SLIM placed on its surface. These expressions
are used to obtain estimates for the electrical and mechanical characteristics
of a SLIP.

As we have indicated in chapter one, the idea of imposing a travelling
wave along the surface of a conductpr to model an induction motor is nof
new. In this sense, our solutions to Maxwell's equations given below, are
not original. However, to our knowledge,our subsequent analysis of the :
variation of the EM field and our analysis of the SLIP, is new.

We assume the half space moves with a constant velocity parallel
to the direction of travel of the SLIM excitation. Consideration is glven
to the series-wound and parallel-wound excitations and we discuss their
different properties. The Lorentz body force acting on the half Spacevis
derived and then substituted in the Navier-Stokes equations which govern
fluid flow. An exact, stationary solution, for both the fixed and free
surface boundary conditions, is possible provided we assume no vertical.
fluid motion occurs. : Using an approximate analysis we discuss the effect
of a surface shear stress on the induced velocity profiles.
| Combining the exprgssions for the induced EM field and the velocity
préfiles:induced.by the Lorentz force gives a first approximafion for the
MHD action of a SLIP. A second‘approximatioh is made, obtainidg the siip
as a function of the Hartmann number, by succésch'iteration. Because
all golutions ape obtained as a function of the slip - and therefore the

Hartmann number - the characteristics of a SLIP. are anélysed in‘this

context.
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3.2 - The Induced Electrbmagnetic Field

Figure 3.i'illustrates the simplified model of a SLIM used in the
following analysis. Cartesian coordinate axes are chosen with origin on

the interface between regions I and II with the % axis pointing vertically

I 0':0. /;:oa

/\ /\ /-\—-)V; x
T TS
11 z

o >0 }L-}l.

Fig 3.1 an Idealised FLIM

downward., Regibn I mepresents the stator core of the SLIM and is taken to
be‘of zero conductivity and infinite magnetic permeability. Region IT

(%) 0) is an electrical conductor with magnetic permeability equal to that
of free space, / . We assume that a travelling wave excitation of the form
gHwE ~y)

is specified along =0 and that B, =0 there. We further

assume the induced EM field is also of the tbavelling wave form and write
s(wk-24) twit -ay) o ot
B(re)= Bzye Jiew =Ty e Cley)-Ene™ ™ ()

where only the real parts of@,} and € have physical significance. Fop
boundary conditions we choose the.case S, (1.47), and case P, (1.48),
excitations on Z=0 and impose damping as 2%w . The half space Z >0 is
assumed to move with a constant velocity

ve [o,V, o] | )
Substituting (2) in Maxwell's equation (1.11) and simplifying, using (1), we

obtain the induction equation in region II:

2 -
%* ={d*z(%"°‘iy)}§ (3)

We now introduce a scale length L (the molten tin depth) and introduce the
dimensionless variables 8’- ylw  Z=Z/L  ang «* =l . All references
to Y » % and « from here onwards refer to their dimensionless forms but

we shall ignore the star superscripts fop convenience. Thus (3) becomes

- (4)
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where braoxr (i;fiSPm) (5)
Here 8= (V; =V )/V; is the slip, Rz M¥:/x1 is the magnetic Reynolds
number and Vz = “*/x is the synchronous speed of the excitation. For

an open magnetic circuit the magnetic gap is WA/t and Laithwaite's
goodness factor (wl.55) becomes identical to Rw . The solution to (%) may
be written in the{ form - B =£—<’:‘" where €& is a constant to be found.

However, because B, is zero on %=0, it is zero everywhere. For this problem

Maxwell's equations (1.1) and (1.4) become respectively

gx = 1‘0!?2_ (6)
{8,
%LT“GO‘K f'ca-— U;_;—o Txao (7

Writing Y= ¥, 419, it is easy to show that
!
- X 1p3YY% }4'
e = o= +
o = & { (14 02 %2y (8)

(a) cCase S. Here 7B,(c) = poKs  where K is the stator surface current
density. The solution for & (2) is easily shown to be

B.(2) = ks €77 (9)
Substituting (9) in (6) we find

B (=) = "(%)/LL«K: e ¢10)
Substituting (9) and (10) in (7) we have

I (z) = (%Eé&") koesv® (11)
Remembering only the real parts of B_ and g have physical significance

we obtain for the induced EM field in II

i(wé-—'!g)} _ 2

@{E(z)e = s wosge e, +/U-K:'%' os(¢e3F 9) cj'agz (12)
L (ub-aw) xlsP X3 :

&{f( )¢ } Lw,, ) ws(¢ri-p) e = (13

where - h”‘-‘(o}‘/%) ¢= We'“g + 2 (14)

The Lorentz body force ‘Z is given by 3: @[}],‘ l?[@} » (1.28), and we

obtain after a little manipulation (substituting for ¢ from (1.4))



2%z :
%_ = o0ls € [/ - ”,:. Csz-P Q_V_f_a. Jom Z¢] (15)
Zoe @ e mag g iy ] (16)

where Qs =-/,¢.,K,‘a *s B /z,l~ {+1* and g,:O. We note that the first
terms of (15) and (16) are time independent - they correspond to the
time—-averaged Lorentz forces(§ l.u4.4).

Associated with the EM field is a skin depth § whepe

g = n' (17)

The force has a skin depth 3§ .

It is instructive to exaﬁmine in finer detail the dependence of B ang
J upon the slip and magnetic Reynolds number. We have assumed in the
above analysis that Kt is constant. From (9) we see that 8, is also
constant on 2=0. However examination of B; and J,  indicates that these |
quantities vary with S and R. on the surface of the conductor. . Denoting
the magnitude of B; and J, on Z=0 by Bw and Jo fespectively, we see

from (10) and (11) that

_feKs T = A S B
= = 2hm 18
G+ 5°R2 ) TN (eweny (18)

where we have written, using (8), j” = 0((“‘:"9;; )n" . For $%0 we
find  Fu=pki and T =0 vwhen ®,:0 , as expected. When R s large
we have B+ O(Rs%) and To-o (R.%) Thus for large R, , the normal
magnetic field disappears and the electric current density increases,
apparently without bound. However, associated with an increase in R, is

a decrease in the skin depth (17) which forces the electric current to
cluster near 2=0. The total current g_r below the surface of the conductor
is found by integrating (11) from £=0 to 3=00. We find

Tt = . _sK
R{F) = & (reieys ColwE-ag+ 7 -29) (19)

As Ru>w , (14) gives #> /s and we see from (19) that an induced surface

current density appears, equal in magnitude and phase to the inducing statop
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v current, and demagnetisation of the induced field is complete.
The variation of B, and 7, together with the time averaged components

of the body force, (15) and (16), as the slip varies,is shown in figure 3.2,

(b) Case P. Here B,(0) =Bwm , (1.48) where Bw is the peak normal
magnetic induction. The solutions for B(z) and I(2) can be found in a

similar manner to those of (a). We obtain

. ¢z .

’B(E—) = (:‘i) ’Kme, e, + Bm ﬁ-WE-e:; (20)
® S R,

JZZ) = pr . ) E!M (21)

Taking real parts we obtain

oy : GE
f{@(ﬁ)e/‘{we d;;)}= _L‘ﬂ B cog(qfw%wp)c, e, + B cos @ C-.r'z:g) (22)

R{ I“)ﬁi(w"")f= Ojim B cos(erme "% g,

(23)

Substituting for © from (15) and using (1.28) we obtain the following

expressions for the induced body force (with G“ =0 ).
b - e e cor ]
~2%Z .
g = Gue [‘f;+‘f;_aa.rz¢+9;amz¢j (25)

where @, = § By @:/z/ael. « The first terms of (24) and (25) correspond,
as before, to the time averaged forces. The skin depth is as before, (17).
The case S solutions can be recovered by substituting for B using
the first of (18). Here, however, B,. is held constant. We already know
that the EM field is excluded from the conductor whén ’R;wo and the
continuity conditions in this case wéuld require B, to be zero on 3:=0,
Examination of (20) on %=0 apparently leads to a contradiction, because a
discontinuity in B,(z) occurs. However, this discontinuity has been imposed
by us and does not appear from the solution of Maxwell's equations. Our
analysis is thus correct provided ®, #©. We see from (20) and (21) that

the magnitudes of Bz_ and J, on 220 are respectively

_ o™ Wy . o SRw G,
Bo= Bw (1+5*R,) T e (26
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(@) FORCE : CASE S (b) FORCE : CASE P

(c) CURRENT DENSITY CASE S (d) CURRENT DENSITY CASE p
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How is it possible to hold ®B,, constant when S and W, vary? We answer
this question by use of Ampéres circuital rule (1.49) on a circuit linking
the excitation on 220 with the region at infinity. Provided the physical
parameters for the stator MMF remain constant, we see from (1.46) and the

integral of (20) that

Bm

I « "
Ges?03)™ (27)

where L is the excitation current. To maintéin the constant voltage
operation with- 8. constant, the load current through the stator windings
must decrease with increasing s and P. according to (27).

The time averaged components of the body force, (24) and (25), are
similar to those obtained in (a). The variation of T% ,J; and the time

averaged force with slip, is shown in figure 3.2,

We see from (12), (13) and (22), (23) that the induced EM field is
advanced in phase over the inducing field, which is consistent with Lenz's
law (§ 1.2). Why should the induced cufrents be zero when the slip is zero?
When S=0 , the conductor 'sees' a sinusoidal standing wave and it can
gasily be shown using Maxwell's equations that in this special case no
electric currents are induced. This result indicates why the 'no load!'
condition ( S=0) giyes maximum efficiency - no mechanical work is expended
and the ohmic losses are coﬁfined to the §tator. Least efficiency will occur

at starting when 331,

3.3 Pump Characteristics

The forces consist of a time independent and time dependent component.,
The latter oscillates with a frequency twice that of the inducing field and
may be ignored over a time interval greater than its period of oscillation.
We can write, (1.29)

: ¢
| .Z(//Zf") = £z + f/y,t,.‘:) (28)
We shall work with the time averaged (s 1.4.4) domponent of the force Fa)
s I »

in the following analysis of an idealised sLIP.
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(a) The electromechanical power developed by the pump ‘?M is given by
pma JE._\L d¢voi) . (29)
Vo

where Vv is given in (2) and (vol) is the volume swept by the SLIP in the

fluid.

(b) The power loss from ohmic heating in the fluid, B s is given by

!
Pr = zuj .3 dfves) (30)
. VWie
where J is given in (11) and (21).
(¢) The hydraulic power loss, F; , may be estimateq from the results for
flow in a rectangular pipe of cross section A and length 24 » equivalent
to the volume swept by the SLIP, ( A =2ak where 2a is the SLIP width).

The pressure drop 4P across the length of the SLIP is given by (BARNA,1969)

. %
ALP = G %ﬁ e%f (31)

where (4 is the wall friction coefficient (friction factor), ¢ the fluid's
density and De= 2A/(2.4+L) is the equivalent diameter (the results ape
calculated on the basis of circular cross section). For smooth walls we
may use Blasius' empiricai rel:ation, (Re is the Reynolds number for the
flow (1.24)),

Ch= 0316/ RN (32)
which holds in the range 5x103< Re< 10°, For larger Reynolds numbers
(5x10%< Re < 3210%) Karméns relation is more appropriate and we have

1//2'? = 2.[13,0(?(./2‘—) -0.82
The hydrau;ic power loss | 'Eg = HVA;* and may be written in the form
= LpGl2avgg (i-5)* 2 (33)
(d) The stray losses, ﬁ s account for primafy copper loss, core loss, ..
stray-load loss and the windage loss. ALGER (1951) gives the following
formula for the primary copper loss

4.95 I*N* L, o
(A lo¢ ¢, (at 75°C) (34)

where L is the load ‘current; N the turns in sepies per phase; k¢ the mean
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length of turn in inches; €, the total cross section of copper in' the primary
slots in square inches. |
(e) The total power output is

Pee ?w.-rP,.-Q-P{,*'R (35)
(£) The electrical efficiency of the SLIP is '

o= PulP, 56)
(g) The complex form of Poynting's Theorem may be used to calculate the

power supplied to the fluid. We have

S 2o
where fae is the active power ( Bac= Pu+P. ) and B is the reactive
_(oscillatory) power; S’ is the surface of the contained fluid below the
SLIP whose unit normal is # . The electric field E is given by (1.8)
and we have v
E= =3 -val
(38)
The true internal power of a machine is the RMS current x RMS voltage. x power
factor (pf), where the power factor (cos 8) is given by (M.HARRIS, 1967)
601'9 = Pao /C ?a:“' P':) (39)

Performing the substitution in (a) and integrating, we obtain

Cs . s(-s)Rw (s); 2. 3¢i-5) Ru (p) (u0)

P -
" (restRE)E [(1ese2)Ear) ™ [(res2Ra)s +1]'"%
where Cg = FWAMK /4 and G = VA B:L‘/‘r/"' « From (b)

we obtain the ohmic loss as

Cs. 5*Rwm (8); _Cp. 3*Rw
P, = - = ' (P) (1)
s (o5l ) [ Gerpa)iy] [Gestru )2 1] %

For an idealised SLIP where winding and stator losses are negligible, (35),
(36) and (40), (41) give for the idealised efficiency

€=1-5s (42)
Result (42) is the standard ideslised efficiency for both rotary and linear

e e

induction machines. Further discussion on the efficiency of both compensated
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and uncompensated pumps may be found in BLAKE (1956). Substituting (38) in

(37) and performing the integration we find

Cg_‘ SQw Cp. sP
P = (s) ; P = (P) (43)
Y (it (i) bn]b [@rsridt 41 ]2 )
ayd 2
C 643?&)‘+l]¢ ] apayt z
P = s.( (s) ; Cr. [('” Rm) “Jl (P) (uu)

(t+5*Ra ) %

The ratio of reactive power to active power is the same in both cases and

is given by .
[GesRe)Z +4)

The power factor is obtained from (39) and is also the same in both cases.

We have

SRa /T
(14583)* [ 1+ (es22)3 ] L ’ (48)

Cos § =

The power factor for a SLIM is very low - when S ~ ?-'-“, cos 6 ~ 0,3, Results
(43) to (46) are appropriate where the skin depth of the EM field is less
than the conductor depth (k). When the converse is true we can neglect

the skin -effect and obtain the results

= Cs . S?\M ol L .
fac ————(l-"r‘ﬁ’&)% (E (s) ; G. sR., (%_—) (P)  (u7)

C,,[(H:‘i?.?)’ifl] wl S [hesiet it fuL ‘
G+ 505t (ﬁ () ; P [errel] (Tf) (P) (48)

Rt =
The power ratio and power factor are as before. Results (43) to (48) may
be compared with those obtained by WANG and DUDZINSKY (1967) for a DLIP with

a slit channel. They find

X spm ‘ .
fo 53R ©: ik ()
P,( o« ..-—-_——-----1 A l
145 R ®) (P)

cos® = SR /(‘*-“R«:){'
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The variation of FL ’ T} » € fﬁk and Fre with slip for two values of
the magnetic Reynclds number is shown in figure 3.4. We see that the
active and reactive gross power densities are limited in value for case S
excitations but increases without bound for the case P excitation., We
explain this as follows. When Ki or B,(0) is assumed constant the machine
operates as a constant current device. In this case when the slip S, or R,
(which is proportional to the conductivity of the working fluid) becomes
large enough the induced current tends to demagnetise the imposed field.
When Kﬂ, the normal magnetic induction, is held constant the machine
operates as a constant voltage device. For a sheet rotor the active power
the Dbecomes a linear function of slip, (47), as in a classical induction
machine. We have already shown, (27), that the load current must decrease

with increasing $ and Ku to maintain constant voltage operation.

3.4 Velocity Profiles Induced By An Idealised SLIP

3.4.1 General Solution. In general the flow of a liquid metal in an EM
field is not laminar, and varies in time and spacé with the EM body force
induced. However, with certain configurations it is possible to linearise
the Navier-Stokes hydromagnetic equation and obtain stationary solutions
for the velocity field;

Here we present an exact solution to the hydrodynamic equations :.
assuming the body force is that induced by an idealised SLIM over a
conducting half space. We sﬁow that the veloq}ty field induced is stationary
and that the oscillatory components of the induced body force dnduce an
oscillatory pressure gradient. The dimensionless hydromagnetic equations
(1.22). and (1.23) are’IESpectively:

V.v=o0 (49)
Q{Ll%+k(‘£-7)!}= L VP et ¥ +v Vv (50)

Where the Lorentz body force _,!7 is given by (15), (16) and (22), (23). 1If

we assume gf:ﬁo and no vertical flow is induced, then (49) implies laminar
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flow occurs and the velocity is pburely a function of £. We have

Y = V@) 2, (51)

Linearisation of (50) is now possible. We obtain

dv. _ kP _ 1 (52)
dz ! <

Y R 4

o2z 73 (53)

From (52) and (53) we find, on eliminating v , that the pressure P satisfies

the Poisson equation

1? LY g 3
B ()

. Using (15), (;6) and (20), (27) the piglit of (54) becomes respectively

(54)

s e {LN to4d ot cos 2 ~ [( -*')hﬂ'l ley‘} (55)

m-il iv*

e
20w e L{ e - 24y co.rz¢}
(56)

We seek a solution to (54) for P(y,a.t') whicil is consistent with (55) and
(56)+Writing
?(y.?‘*) =24, ff-vfik[ A * Al tos 2 N
. . o5 24 *A&mlmW}
then direct substitution of P in (54) gives ﬂ,m ) H:_,,, A,M by comparison

of terms. After some lengthy algebra we obtain

~2%2
P(’,z.t)= Q,.%,C {4’; + [0~ ‘E)vmﬂ@,z#.,d o 29 +L(§7P)7 (57)

A 2-% L

~2%2 .
5_ e IS, QY. ) :
Plyzt) = Q. { 7 } * “(‘f)o-zin (58)

Where we have assumed the constant applied external gradient L(

He

s

given. By dlfferentlatmg P wor.t Z we can recover (52). Thus we have
shown that all the y and ¢ variation is contained in the indyced pressure
and the solution to (51) for y(z) may be éarried out sihce the right of

(51) now contains only z variation, and constant terms. We have

»odv 3P e 2%E
el (T,., - K, (59)
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The solution to (59) is

LY T
viz)= ~sVqHs € +’%(¥)"% + Gz +C (60)

where we have substituted for Qs and Q,,, writing
g = 7 3 (yp® CASE S; 1/8%* CASEP (61)
4
The Hartmann number Hm =£L(§),ﬁ where &= o Ks op w » and C, , C, are constants

of integration, (which are found from the boundary conditions).

3.4.2, Surface Shear Stress .Analysis. . Because the plant SLIP is capable of
pumping the liquid tin both with and without the glass sheet on its upper
surface, we must consider both the fixed and free surface boundary conditions.

However. a more general analysis is possible using the idealised configuration

in figure 3.4

STATOR
z.-7 -l hokokll Lot £k &
. o s0 ‘aR’sap
Z 0 #
>0 Morton ey
£« 1 AN T I v v o
FixeD 8Asg z

Fig. 3.4 Idealized Configuration

. To obtain simple expressions we assume all flow is laminar and steady.
The stator is replaced by a smooth surface height g (dimensionless) above
the molten tin surface Z«o . The regioﬁ between Z=o0 and z. -9 is
assumed to be of zero conductivity and of viscoscity ¥ . This region will
model the air gap or the glass ribbon. We recover the fixed and free surface
boundary conditions by taking limiting cases for the viscoscity., If ( 3P)
is zero in the gap, the velocity profile induced by the moving molten tin

is a simple shear flow. Denoting the solution to (60) for the gap by V, ,

we have

V,(2) = %'L (z+9) (62)
where we have assumed V, (-g )20 , (viscous condition at a fixed boundary,
(1.40)), and the shear stress X on 2«0 is specified (V“é’_‘\:snk on =0,

(1.41)). For the molten tin we have V(1) =0 and (by equilibrium of surface
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shear stress) V%=KL on £=0 ., Solving (60) with these boundary

conditions we obtain
2z .
V(z) = SV q,Hm{f- -€ e 24 (1 z)] —b (af’) (-2) - Kh(1-g) (63)

The first term of (63) arises from the magnetlc forces, the second from
the pressure gradient and the third from the specified shear stress. Along
the interface 2Z=0 we must have continuity of the velocity (1.40) and so,

on equating (62) and (63), we find

-1
K. 2(33%+) (64)

= S s " -2¥ - LL 3
where K V‘} Han [2-‘*:"6 -1} v (yﬂe)‘ (65)

When Y,~® we recover the fixed sur-face.boundary conditions, and the
magnitude of the surface shear stress is l%g When v, ~o we recover the free
surface boundary conditions and K becomes zero.

Equations (63) to (65) completely specify the velocity profile induced,

We shall consider the two limiting cases of ‘K separately,

3.4.3 Free Surface. When K s0 (63) reduces to

~2w

v(z)= sV q,H..: {e,"ﬁe, +zv(a-i)} ( )(n -2*) (66)
Equation (66) gives the free surface velocity profile induced in the
molten tin by an idealised SLIP excitation. However, the parameter y- is
a fﬁnct:.on of the slip and the slip is obtained from a knowledge of V/, the
average velocity of the working fluid. The average velocity may be found
by integrating (66) from Z=0 to #={ . Using the notation of
TKACHENKO (1970) we ma}; write (66) as the sum of MHD induced and pressure

induced average velocities, ( V.. and Ve respectively)

% gz -
viz) = \[, ﬁw...c :vm(‘ 2tV 2 (1-2%) e
() e <

1
where 4 =fV(Z)dz = 'V,;, f-% (68)
o

and %*VP = Sw(puz{(e‘Zﬂ-p)*{zv‘.’%} -l:.l(

) (69)
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3.4.4. Fixed Surface: When ¥ ~ o (62) reduces to

viz)= SVs- ?,HI: { 26-1“_’._6_7-“’.1"2} fn (:;) Z(1-2) (70)
which may be written as
-2-*, -zv,z
wz) = V, 12 + 6V} 2(i-2) (71)

(e‘L ‘>+ t(1+™)

where V is again given by (68), and

G R[] R,

3.4.5 MHD Effects. From (68), (69) and (72) we obtain the following

result (writing SVS = V; -V

o

Vv o= ?/H;'RL Vs + _r (73)
1+ 4 Hi R 1—+;H£71
-2V, 2%, 2
where R =(CZW. ') €+l P“ "L (3]’) free surface (74)

R. = ( -1‘ ) (C +1) P '&v )7) fixed surface (75)

2%

The slip S is given by

[ AV
S - @ @—_—— — 1%
1+ gt R {+9 HiR (78)

We see that MHD back reaction effects are included in (73) and (76).
For small’ l*n there is little interaction between the magnetic field and
the molten tin - the velocity V arises predominantly from the applied
_pressure gradient. As Hw=>® , V5V and the field is 'frozen into' the
fluid. The'slip in this case is zero.
Equations (73) and (76) are non linear in Y and respectively,
because er and K are functions of y, which, by (5), is a function of V .
The roots of these equations may be found using standard iterative procedures
(for example, the modified bisection method). The parameter g is given in (61)
The value of S obtained from (76), can now be substituted back into

(67) and (70) to give second approximation solutionhs whiéh include the MHD

effects.,



-50-

Fig»3,5 ~1 'C*1S  t* Ctil)

Fig. 3.6 Km* Z T* 152 cm C6 iv)



CSREIMB a9 g QO "I

i

00

HARTMANN NUMBER

3 R

H
Clv

[\
(0.0}

VH
(13

& 8

RS 8 @ N

K T



ro

HARTMANN NUMBER
cric»rodm™ctf>doo™



-61-

When the external applied pressure gradient is zero we obtain, using

(76), the following expression for the Hartmann number

i —s \h

Hv - (jti) «“
where, from (61), and from (74) and (75), i21%) . However from
® we have Y, "«.(o, s) and so *He« (V, *) . The value of W*

obtained from (77) is the required Hartmann number to maintain the flow
when « , and 5 are specified. The variation of slip with Hartmann
number for both the fixed and free surface boundary conditions iIs shown

in figures 3,5 and 3,6, In figure 3.5 we set equal to unity, and

Fig. 3.9 Velocity Profiles
the dimensional pole pitch x , Tk A is taken as 152mm (6 inches); in
figure 3,b we retain this value of Z but double , The effect of a
change in pole pitch is shown in figure 3,7 for the free surface slip and
in figure 3.8 for the fixed surface slip; ( 1 in both cases).

The induced velocity profiles for the free and fixed surface flows
are shown in figures 3.9 (&) and (b) respectively. Numerical results
indicate that the function Vii) / is largely independent (less than
one per cent variation) of the magnetic Reynolds number and the slip.
Mathematically! this is to be expected since the parameters 1?* and S occur
only in the product sf« ; thus a slip of 0.1 together with a magnetic

Reynolds number of value 2 is equivalent to a slip 0.2 with a magnetic

Reynolds number of value unity. When the applied pressure gradient is
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zero the average velocity'V is eqﬁal to Vi and so for a given Hartmann
nunber V' may be obtained from the graphs in figures 3.5 to 3.8, using
the relation V- (1-s)Vs |

The Hartmann number for the flow is determined primarily by the
scale magnetic field ( /K5 or Bu) . The stator surface current density
was derivedin §1,5 foran ideaiised SLIM, but can we apply the - formula (1.46)

in the design of a real linear motor? In §3.5 we show that this is so.

3.4.6 Example: The MHD Experiment. From table 2.1 we see that the
average mercury velocity underneath the SLIM is about 10 cm/sec and

thus with V= 4.4 m/sec we have S~1 . The magnetic Reynold's number

is equal to 0.23. Substituting for S and % in (46) we find that the
power factor is 0.11. Comparison with the measured power factor (table 2.1)
indicates that our idealised theoretical analysis produces a power factor
rather different than was observed. One of the reasons for this difference
may lie :'an the fact that the experimental SLIM was less thah a wavelength

long and so the idealised travelling wave analysis may be inappropriate.

3.4,7 Example: The Float Bath Linear Motor. Using the data of table
1.1 ve find Hw, the Hartmann number for the flow, is equal to 25 when
Ks=7350 A/m. From figure 3.8 we find the appropriate steady state
idealised slip produced by the SLIP is about 0.3, With R, equal to 1
we find the ideal characteristics are:
(a) from (29), the mechanical power developed T = 0.7 Hatts.
(b) from (30), the obmic loss %+ £.74 Watts, (corresponding t§ a
temperature ndse in the molten tin of 0, 4 °C/sec). .
(e) from.(32) and (33), the hydraulic power loss B = 18 Watts
when the Reynolds number R ~ 10° .
(d) from (34), the winding loss P = 19 Watts.

(e) from (35), the total power output P = 39,43 Watts,
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(£) from (36), the electrical efficiency . = 0,02 ..
(g) from (45) the power ratio = 6.8 .

(h) from {46), the power factor cos® = 0:14 ,

3.5 The Force Actin& On A Sheet Rotor

Recently HAWORTH (1976) has completed a simple experiment to assess
the driving force produced by the linear motors used in Pilkington's
float bath. He supported an aluminium sheet (1l.6mm thick) on ﬁakelite
rollers which rested on a bakelite sheet placed oﬁ the stator face of an
i{nverted SLIM. The force on the conducting sheet ( o, = 28,6 ¢,,), acting
tangential to the stator face, was measured by vertically hanging weights
(adjusted to maintain a stationary sheet), attached to the aluminium
sheet by a thin cord taken over a free running pulley. The experiment
was performed with =8 -pole (49,75 turns) 12-pole (79,75 turns) and lé-pole
(109,75 turns) three phase SLIMs. The internal parameters of each machine
are the same as those given in table l.1. The results indicated that
the force developed in the aluminum sheets was given by the empirical
relation:

F - {0.025 » 004 , o.<754}1t grams (8-pole,i2-pole,é-pole) (78)
where I was the electric current supplied. The width of the sheets
(2031mn) allowed 50mm overlap at the edges, and their length (0.76m, l.1lm,
1.372m for the8 ,12 s and lé~pole machines respectively) allowed 100mm
overlap at each eﬁd. Because the skin depth of the induced EM field (lcm)
is much greater than the sheet thickness we assume the field has little
decay with depth. From g;s) the force developed, when S»1 is thus given

by

F «~ . .’E . pho ke x (vol) Newtons

NI~

where (vol)m’ is the volume of aluminium. Substituting for the appropriate

parameters in K. (1.46)we find

F ~ {qfo_cs . 013, o.;e'}I‘ grams_ (79)
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In his DLIM study BOLTON (1969) indicates the transverse edge effect

(see §1.5)may be accounted for by a factor of approximately 0.7 in the
surface current density at the stator face. The longitudinal end effect
can be included through LIELPETER and TUTIN's (1959) factor of 0.8-0.9.
Thus the force can be reduced to about one half of its value in (79), and
we obtain very good agreement with (78). Thus the formula for Ks, given
by (1.46) should produce reliable quantative estimatés for the induced

forces in the molten tin.

3,6 A Finite SLIP

The results of §3.4 are, as-we noted, only applicable in the steady
state analysis of an idealised excitation of infinite expanse. Here we
consider an approximation to the flow developed when this excitation i§
made finite in length.

Consider the open sided SLIP, ABCD, shown in figure 3,10. The working

A\ . 2

L1

C

P/ v /v

Fig. 3.10 Idealized Model

£luld is drawn into the SLIP from the end AD and accelerated until a
maximum flow rate is attained at the exit end BC, If we ignore end and
edge effects, we may assume the idealised pumping force (15) is
maintained across the SLIP, and thus to a good approximation, we may
assume the working fluid moves with no transverse or vertical variation

underneath the motor. From figures 3,2 (a) and (b)we see that the
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pumping force may be considered proportional to the slip S , (certainly
when S>>0 ); averaging (1.15) across the channel depth and setting S=1

in the ¥-terms, we obtain, for the approximate pumping force

F = sT = s { of Ru . /u'(“ .(l-e«—aw‘)} (80)
2L (+tRI)' 2%,

where T is measured in Newtons / m?3 i s=(\, ~V)/Vi is the slip; and
Va dy/dt  1is the fluid velocity — the direction of y 1s taken
parallel with the travelling wave. We now apply Newton's second law to
the slug fiow underneath the motor, where the inducing force is given by
(80), and write

ot - (Vi-% ). T/ (81)

where ¢ is the demsity of the working fluid. Equation (81) is a reduction
of the hydrodynamic equation (1.81) and is applicable when (i) the inertia
terms are small, (ii) when the fluid viscos¢ity can be neglecte;d, and

(1ii) when the external pressure gradient is zero. However, even when
these conditions are not satisfied the solutions to (81) gives an estimate
of the flow development in the SLIP. Given y:o and V=v, when &t =o .

the solutions to (81) are

7= Vs( t - 1‘{' + ';;'éft) ™o (i-eF) ~ 8 (Vv )t e vt (gt<)(82)
Ve V(1-eF) vyt BUV-Va) b v,  (pbicr) (83)
where: ?=T/e'V's

3.6.1 Example: The MHD Experiment. Using the data of table 2.2

in the expression for T (80) we find T ~240 N/m® ., With V; = 4.em/sec,
p - 13.6 gns/cc we have g~ 8.8 x 10”* gec' ., béing the approximate
results (when gt<ct) of (82) and (83), with Y (the distance between
stations (¢> and «d> (figure 2, 1 )) equal to 12 ems, and V. (from

table 2. 1 ) equal to 9cm/sec, we find the time taken for the mercury to

traverse the distance Y is 1.1 secs, and the final velocity is 13 cm/sec,
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This final value for the velocity agrees reasonably well with that given

in table 2.1 , for station (d».

3.6.2 Example: The Float Bath SLIP, Using the data of table 1.1 in
the expression for T (80) we find Te 204 N/m* . WithV,= 7,6 m/sec
and p= 6.8 gns/cc we find g ~ 3.9 x 10" gec™ .

(a) Assuming the input velocity (v,) is Zero, we find the time taken
(using (82)) for the molten tin to traverse the length of the motor (0.6m)
is 6.4 secs, The final velocity is obtained from (83) and we find its
value is {9 cm/sec.

(b)  Assuming the input velocity is 20 em/sec (for example), the

appropriate time is about 2.6seconds and the final velocity is 27 cm/sec.

The results of (a) describe the flow at 'start up' when V,+0 .  For a
motor of width 10 cm and a molten tin depth of 6.4 cm we obtain a mass-flow
rate of 8.3 Kg/sec. It is clear from the results of (b) that when the
fluid velocity is non-zero at the SLIP entrance end (as is the case for

a non-zero pressure gradient, and also axial alignment of the SLIM with
the ribbon flow) the pumping ability of the SLIP decreases, and the SLIM

becomes a ‘'stirrer!'.
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4. THE EFFECT OF A SUPERIMPOSED SHEAR FLOW
ON AN IDEALISED SLIP.

4.1 Introduction

Consider the float glass process. The moving glass ribbon induces a
shear flow in the molten tin in regions away from the SLIP. As a section
of the ribbon passes below the SLIP the shear flow is modified by the EM
field. This chapter attempts to assess the flow modification when the SLIP
is aligned parallel to, and transverse to, the direction of motion of the
ribboﬁ.

We have previously considered (Chapter 3) the flow induced in an
electrically conducting liquid by an idealised SLIP when the upper surface
of the liquid is constrained to be both free and fixed. The EM body force
was calculated from a knowiedge of EM field induced in a conducting half
space moving with a constant velocity parallel to the direction of the SLIP
excitation. This choice of motion allowed us to obtain simple solutions
to Maxwell's equations, and later, to include MHD effects b& suitable
iterations. Herelhowever. we‘impose the shear velocity ys‘ on the half

space, where

¥, = Eu"("%‘) ’ Vo("-?_"—), o] (1)
The parameters (l and \,are constants (with dimensions of velocity); L is

a scale 'length (the tin depth) and Z is the vertical ordinate. The actual
velocity V of the half space is taken as

Viz)y = VYy,(zy =+ ¥2 = [u, v, o] (2)
where Yy is a velocity (yet to be specified) which allows the simplification
of Maxwell's equatlons and the inclusion of some MHD effects, as in Chapter 3.

Below (§4.2) we obtain the EM field induced in the half space for both

the parallel and transverse alignments of the SLIP. In §4.3 we give an
estimate of the velocity profiles induced in a liquid inductor of finite
depth by a SLIP in the transverse alignment, For the reasons discussed
in §4.2.2, it has not been possible to obtain the induced velocity profiles

when the shear flow is imposed parallel to the direction of the SLIP excitation.
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M-.2 The Induced Electromagnetic Field.

Figure 4.1 illustrates the simplified model of the SLIM used in the
following analysis. Cartesian coordinate axes are chosen with origin on
the interface between regions 1 and 1l with the Z axis pointing vertically

downwards. Region | represents the stator core of a SLIM and is taken to

be of zero conductivity and infinite magnetic permeability. Region 11 (the
half space is taken to be of non-zero conductivity and of magnetic
permeability equal to that of free space, - We assume that a travelling
wave excitation of the form C- is applied along the surface 2z —»o0
and that &r0 there (but not necessarily elsewhere). We assume that no
variation exists and so we have =0 . We further assume that the EM field
may be written in the form
Btoe1®"1-*"" (€))

.here only the teal parts of £ and/ have physical significance. For
boundary conditions we choose the case ESand case? excitations«!_«) and
(1.h8) respectively) and impose damping as 2-.*,. Using (2) and (3) in
Maxwell"s equation (1.11) we obtain the induction equation for region H.

2 di ’ Bs[ &, &, . ] @
In the derivation of W we have used Maxwell®s solenoidal
We see from (1) that the velocity Ufa) occurs only in its differentiated
form. Thus the MHD approximation can only be performed if the X component

of V) is a function of 2 . since the MHD bach reaction is proportional to
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the field line deformation, we may assume the X component of ¥Y; can be taken
as a shear flow. This problem does not arise for V() and so we can follow
the procedure of 53.2‘ for they component of Yz - Finally we have
Bz) = [-uc-z), v o] (5)

where the minus sign in the x component indicates that the magnetic field
lines will oppose the shear flow. Combining (1), (2) 'and (5) we have

V(z) = [W-U)(-2) 4. Ve(-Z2) , o] (6)
The constant velocities [ and V incorporate some aspects of the MHD effects
and will be evaluated at a later Stage in this analysis. We now introduce
the scale length | and the dimensionless variables y“a?/;., 2% 2/, oL a/L
All references to y » Z and x from here onwards ref;r to their dimensionless
forms but we shall ignore the superscripts for convenience. Substituting

(6) in (4) we obtain
d*g

dza, = ?"B E o 83 [?“"\)le ,01 (7)
where | s gt (4 1< Ron ) ‘ (8)
the slip 3Cz) - 1 - ¥ _ Ve Gv~-2Z) (9)

Vi v
In (8) Ku= V;L/mL is the magnetic Reynolds numbep based on the synchronous

velocity Vi-@lL/a of the travelling wave. The parameters ?...-(u..-LLZL- and
Rens = Vol /9 are magnetic Reynolds numbers based on the imposed shear flow.
For this problem the dimensionless form of Maxwell's equations (1.1) and

(1.4) become respectively

%_E_g - T B, (10)
porT = [-(aByedts) 48 | B ] (11)

Because B,(2)is not zero (cf. §3) we see that the current density vector
is three dimensional in nature. The solutions to (7) and (11), for the

magnetic field and current density respectively, will be found for two

special cases of the above configuration,
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4,2.1 Transverse Alignment. The shear. flow configuration transverse to
the direction of motion of the travelling wave is shown in figure 4.1(a)
Because V, is now zero, we have Ru,<0 ., The slip (9) reduces to the
standard form

s (i-v) /v; (12)

The solution to (7) is of the form Bsce” +?I 2,y where PIa)is a particular
integral, and & is a constant of integration. The boundary conditions
give C,sp because PI is shown to be zero on a<o . From equations (7)

9

(10) and (11) we obtain (using the methods of §3.2) the EM field induced

in region II:

(a) case S . Here & (o) =peKsy (147),where Ks is the statop surface curpent

density. We find

R s gkt [(‘)R.L)J - (13)
= Ks.e** 3
I S [-10( s R ( )Zem"'(w() = > ETE R,‘] (14)
From (3.8) we obtain
) Y .
Wi,z = ‘% {('+1‘9&)‘:1}’ (15)

Remembering only the real parts of @ and } have physical éignificance, the

true EM field in II becomes
(R{@(z)c“m'"w} 36}&’[ R 2%; Cos(¢-20+1) , tos g, __‘gw Cos (q;-g({)] (16)
R {;f(z)cém.uw . E,,;v.t[dl‘%:?& Cos (¢-0+T) , = X2 Ru o3 (4-0+T) ¢

’RZ..;LT oS($H+L) ..Qm. z Ces(¢-20) ] (’1'7”)

where 9 = htn"( ‘q"‘t and P = wb - Y -, 2 ' (18)

The Lorentz body force ? is given by 3- (2[}]/\ 0?[6’] (1.28), and we obtain
using (16) and (17)

').'Pi
7 = Rz ks)' € (1reor2p) ~ o Pu
’ FiviEL, e 414l :'4_ Goksf ™ {“" ¢+ “"(“" wj a9
/4.? = o’Ru.3 (pks) ¢’ 1= (os (2¢6-p) " -
T, { - i;‘:ﬂ.:z fuoka)'e " S p-48) (209
; PO 1 -1%% '
pots = ~Bon 2 (i) € 1-@s(2¢-48)] 4 i Gy e V. .
RIWIT 1 { J T v ime';"“ (o) .
- Rux'zs (i)t 202 { s 8 -cos(2¢-8) (21)

Ll
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(b) case P . Here ’5,10):3‘., ¢+ (1.48), where B. is the peak normal magnetic

induction on z-0 , We find

-VE -
B~ B e [—&uﬁ , e ’1] | (22)
Ig B LYE - .
J ;_‘Ic [ oS R ,iR,,z-#Qm.,-f_‘rz ?..‘.J (23)

The real parts of £ and 3 are:

8/ e.‘/u&-w) - el
k{_ 2) ] By € [ R, 2%1 s(¢-9), %1_@;(%9-}) ) ww} (24)

) c(wt-uy) . s '
(R{_(%)e ] 'BuLe [-otsemCOr¢,’ngco‘¢__‘g_‘4'_ws(¢-a)
Mo i 2l ?

- oz k’
m,,,?,,,, - os(¢-6 4 ) ] (25)

where ¥ and ¢ are given in (18). The Lorentz body force 7 is given by

(1.28), and we obtain using (24) and (25)

by -z 1 aye
/MZ = Pm,.BM.E-& (I*Lotf(?) 'ew‘.gmﬁ wsd + s -9)
+4 Givt b [ (2¢ } (26)
L T
P 2SR Bue s 24) -R., Bu wz* & (2¢-2p) (27)
24 B Ivi L
2 ke
lu.ff‘, = -P;.. &ch [:+w:(z¢-za)} + &S R B 141 e'm'z[:u}b Son (24 +0))
7k T 2xk
+ Rt B .Z‘G’MB[ wrf + cot(N-M] (28)
1™

Results (13) to (28) may be compared with the EM field solutions given
in §3.2. The magnetic induction vector is now fully three dimensional
although the extra component, B,, is of order R, , which may be neglected
when Rwi <<1 . Additional components 7, and T are added to the current
density vector but these components are also of ordep Rt . The Lorentz
force may be written, in the usual way, as the sum of a time dependent
term f%nd a time independent term: F ; '

?- gb+ d (29)
We see that f, is unchanged from its value in §3.2 but an extra component
':T’, exists. This force, which is proportional to fu, s tries to counteract
the stretching and bending of the magnetic field lines by the imposed shear

flow. Later we shall evaluate ., in terms of the Hartmann number using

a similar analysis to that in §3,y,
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4.2.2 Parallel Alignment. . The shear flow configuration parallel to the
direction of motion of the travelling wave is shown ir figure 4.1 (b).
Because WU, is now zero we must have ?u..:o « Because there are now no
inducing terms for 3,(z) in (7), the boundary conditions on zw imply that
this component of magnetic induction is zero everywhere.

(i) Exact formulation. We can reduce the induction equation (7) to the

form
d’l'B _ - -d/3
dsz 5@ [OD r '&& 83‘ o] (30)
In the derivation of (30) we have made the transformation
feo(brz)rt (31)
where = iutemx (32)
- t - * * — .V-*Vo
and ¥ -a([_usz.(l T)} (33)
1 3

The solution to (30) may be written as a linear combination of the two
independent Airy functions Ai(s), Bils), (see ABRAMOWITZ and STEGUN, 1965),
The basic properties of these functions have been included in Appendix I

for completeness. As §<<o .R«J(g)-na and so the solution to (30) is of the
form € A(5) where € is a constant to be found from the boundary conditions."

Introducing the notation

s= 1- V% (34)

L. Yyt
f Ve

the solutions for the EM field can be shown to be

Case S'.
A(s) M2 B (5
B gk [0, R (%) m.)] (35)
- - R ¥t l5)
wl ,bbz,[aS.R_::r.m),o,o] (36)
Case P:
_ Rer  &'(s) A (5)
B ’Kw [ o ? r’h ' A‘lfo) ’ F‘Tio) ] (37)
To B [-suPu. By o (38)
r~ W [ Mids,) ’ > ° ]
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The time averaged forces (1.31) are calculated as

case S F- &kx‘@[o y Sot Ruw 1™ -5 Ra ™ Als) Rism) (39)
I Rua ﬁ,’(:,} R | CED |

~i3
Case P [. Bw R o, sl [BIHI*  _us Pmﬁm;j(") {h‘(iz M (s*) (40)
3 2peh [ h(s0) | &gt ]

Results (35) to (40) exactly describe the EM field and Lorentz force

induced in a conducting half space by a travelling wave excitation when

the specified shear flow is imposed. A comparison may be made with the
results of §3.2. We see that a shear flow imposed barallel to the direction
of the travelling wave does not induce a body force transverse to this
direction - as we would expect from consideration of the symmetry of the
problem, The electric currents (36), (38) and the time averaged forces
(39), (40) are, as before, proportional to the slip, although in this case
we see from the latter of (34) that a velocity V, , representative of the
imposed flow is also included in S .

It is apparent that the hydrodynamic analysis of §3.3 may equally be
applied here. The slip in Chapter 3 was given by Sa-6ﬁ~V7/V§so if we
replace Y there by V=V, » (using the latter of (34)), we find the average
velocity here for the flow across the width of the channel, V", may be

written in a form similar to (3.73) as

1 ]
Ve G-ve) ot P’ L)
J+ A 1+ Hn A

whepe|4m is the Hartmann number (jeki(2)E on qugf)and P"an applied pressure
gradient. The parameter A arises from integrating the terms containing

in (39) and (40), as we have done in §3.u41. Unfortunately there do not °
appear to be simple expressions for thelrequired indefinite integrals and
we have been unable to represent the integfals in terms of known functions.
However, we see from (41) that it is the maximum value of the 1mposed

shear ve1001tys0%)s which dominates the back reaction effects by decreasing
the synchronous velocity of the SLIP excitation relative to the conductor.

When Vo<<Vy, the shear flow has little effect on the fluid motion and the
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resuits of §3.4 are applicable. .In this case the motion of the glass
ribbon is included by assuming the velocity in the surface 2:0 is equal to
Vo » the velocity of the ribbon.

We now consider an approximate analysis of the parallel configuration.

(ii) J.W.K.B..approximation. The third component of (30) is

dB; ~-5sB:=0 (42)
ds*

An approximate solution to (42) may be obtained using the JWKB 'phase
memory' method, which is applicable when § is large. Using (31) we find
B ‘& .
_ J (v “dz
B, = ce + of {¥tr2}™™) (43)
(¥'+rz) @

where C is a constant to be found from the boundary conditions. If the

case P boundary condition. is applied, we find from (10) and (11), using (43)

2¥/3r __'1-_(3‘"-;)*/;
B~3Bn¥re €7 [0, thie)™, arerz)™ ] )
" ¥t o B (v
Tk

The time averaged Lorentz body force (1.31) is

_z l ] ¢rz) ‘I I“;I
~ T Kwm . 3 L o . N i !
() P Bl o]

Equations (44) to (46) are in fact the asymptotic forms of (37), (38)
and (40), when ¥ is assumed large. The»results of §3.2 may be recovered
by expandiné (Xﬂri)"m » (n<lor6), as a power series neglecting terms
of order (t#/¥*)". This indicates that the imposed shear flow may be
neglected unless r=<>h?,vthat is, unless Rm~1

When Rmi>>1 , the imposed shear flow drags the magnetic field lines
through the conductor and this reduces the magnitude of the normal magnetic
field. This effect is equivalent to an increase in the electrical
conductivity since the field lines become clustered at the surface of the
conductor. Because T 1s proportional to Rus , (32),we can identify a skin
depth ¢(®.) for the EM field.

In their asymptotic form, the solutions to (30) do provide an adequate
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description of the EM field variation. Unfoftunately the induced body
force (46) remains rather complicated. The process of substituting this
force into the hydrodynamic equations and integrating w.r.t. = to find

the induced velocity profiles has not been found tractable. There does not

appear to be a solution to the indefinite integral (from(46))

“ ez’

- "
f(r‘*rrz)_ €  da e 1o -1
which can be written in terms of known functions.
The comments of (i) regarding the induced flow are equally appropriate
here, but the parametér A is now obtained from (46). If the velocity
profiles in this parallel configur&tion are required, we feel a different

approach to the problem may prove more successful.

4.3 The Induced Velocity Profiles

We shall only consider the flow induced in a liquid conductor for
the transverse configuration (§4.2.1). The dimensionless equations

governing fluid flow ({1.22) and (1.23)) are:

V.v =0 (47)

) .
(J{x—%+k(¥-7)¥}=*LVP+L'3 +vV1y_ (48)
We have already noted the similarity between %_ in §4,2.1 and ?‘ in §3.2,
and it was shown in §3.3 that a stationary solution exists for the velocity

component parallel to the direction of the travelling wave. We shall assume

the velocity ¥ may be written in the form

Ve [u{z)+£(/7,z.t) y war+ Wyze) |, o ] (49)

The inertia term (¥.V)y becomes (with %‘ .0)

(v.V)y = vz 3—5‘ 2, (50)

Taking the divergence of (48) using (49) ang (50), we find the pressure

satisfies the Poisson equation,

7P - L(%_'_;%) (s1)
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The third component of (48) gives

Combining (51) and (52), we see that (%P- k'},) is independent of y , and
s0,as in §3.4,a stationary solution for the second component of V. is possible
and we may set {//y,z.é} equal to zero.

Using (29), (49) and (50), we can reduce (48) to

v ..) - U+ v Il |« L ﬂz,t‘ ' (53)
{}yt* ( ( ““" + 2._) 7'2t)

st )7
vd'u _ L(P) - L*F(z (54)
a_z-" (ﬁo F. )
vdv - [P - W*F (55)
dz* (E)o 2 (I)

Here, the terms (§7 ig) represent the constant applied external pressure
gradient. It is apparent that ﬂ( will have the same time variation as :r’,c;
so + Y will oscillate with an angular frequency twice that of the inducing
field and thus méy be ignored whem discussing the overall motion of the
liquid.

Equation (55) is identical.to (3.59) and so the results of §3.4.4 hold
here. The pressure'? can be obtained from (51) by inspection, and we can
obtain solutions similar to (3,57) and (3.58). The slip (12) is thus given

by (3.76). Substituting for F, (%) in (54) we obtain (writing Ry = (lo-UIW)

d'u ~(3P) — (Uo=1L) Hm Ja Yy ettt
Aze 7(‘7{ > (-t p (2 ivir) € (56)
o :
= — Case S; A
where 7P ol 3 = Case P (57)

and Hm-&.(g)"is the Hartmann number, with 6:/%):, or Bwm + The solution
to (56) subject to the boundary conditions, 4l(s)s e, (1)=0 (see §1.4.7) is
(writing p = T‘%‘ )
-3 Pyl 4 3 ‘
= - 1 = - [ - d
u@)= U.(az)+2v@.g)°2{2 1) = (- u;Hm 2p {ze [irei-p) =€ [ienp] +

P
Following the procedure of §3.4.4 we may write (58) in the form

) » 2 Uy (-2) 16U, (2-0)zZ - %@, { “Liew- p)]+ (€- )+

“ea-0m) J es9)
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where 'R, - 5_‘-(’: l(l-r;';l)[hw.(l—?)] +Cz‘;‘_’;\'.)t(ﬁ_w-'1) * 7{(»—“‘.?) (- %) (60)
!
U= f ulz)dz = C(,g -+ ur + U, o (61)
o]
o 1L [P ' (62)
ur&* u? 3 Ue - |zv(¢:—x ©
W, « (-u) _ta.22%, | (63)
, T wy”

In the above U1 1is the average velocity of the liquid conductor across the
channel, Wyx is the average velocity of the iJﬁposed shear flow, Up the
average velocity induced by the pressure gradient, and Uw is the average
velocity induced by the back reaction of the EM field. Equations (59)
to (63) describe the flow induced by the SLIP when the glass ribbon moves

transverse to the direction of the travelling wave.

4.3.1 MHD Effects. From (61) to (63) we obtain the following expression

for the average vélocity U experienced by the liquid conductor

- W, 1*2Rtm , _Up (64)
1+ R, UL I+ R, W
where Ro= -—2p R /(26 (65)

As Hu>o0 , (64) gives U ->U‘¢u‘,as we would expect. When Hw= ®© the term
containing the average velocity due to the pressux;e gradient, U, , becomes
zero because the magnetic fi.eld lines resist the motion, but the term
containing Uy remains finite. “This apparent contradiction is explained
as follows. When Hy is finite, the shear flow we impose is 'seen' by the
whole depth of liquid conductor, but as Hs®w , the flow becomes stationary
below the surface Zz-o . However, the liquid 'sees' its surface moving with
an imposed velocity Ue » and since this is the only part of the liquid which
is moving we can say TC=- i, agreeing with (64) when Hu 1.

The average velocity due to the EM field U, is obtained from (63) and (64)

we have
* um = u&‘{ "‘V:' ’Pt

66
b+ Ry M (68
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Fig. 4.2 The Transverse Motion Induced for a given
Axial Slip

The variation of / UtF with axial slip and pole pitch (x) 1is
shown in figure 4.2. We consider three values of the pole pitch: £r. . 'U
and 21« >where To (1.309) is the pole pitch of the float bath motor
(15,2 cms), (see table 1.1). The magnetic Reynolds number (B*) is set equal
to unity for T>z, < We note that for a given Hartmann number (H») the
axial slip is obtained from figures 3.5 and 3.8. The results are identical
for the case S and case ? analyses.

The profiles induced by the action of the EM field (the third
expression on the right of (89) ) are shown, together with the total
velocity profile, (569), when UTp-o , in figure 4.3 (a) (for a slip of 0.1)
and in Ffigure 4.3 (b) (for a slip of 0.9). In both graphs we show the
variation over three values of T. , (as above). It is clear that in this

steady state configuration back flow occurs as the magnetic field lines
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12)
Profile Induced by EM Field/a, ( -~.Induced + Shear ) Ho
0 2 4 6 8 1.0 -4 -2 0 2 4 6 8 1.0
Fig. 4.3(a) Axial Slip s=0.1 1z, 2, 3:t/z )
0 2 4 6 8 1.0 -4 -2 0 2 4 .6 8 1.0
Fig. 4-3(b) Axial Slip s™0.9 Lh_pg.l U.— |S-¢dn

resist the motion of the imposed shear flow. Note that unlike the profiles
of figures 3.4(a) and 3.4(b), here there is a noticable dependence upon

the magnitude of the axial slip.

4.4 A Finite Width SLIP

The results of 84.3 are applicable to the steady state analysis of
an idealised SLIP. However, if the SLIP is of finite width, does the
working liquid have sufficient time to develop backflow?

Consider a section through an infinitely long SLIP, of finite width

(figure 4.4) with an imposed shear flow as shown. The origin for the
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coordinate system is taken at the entrance edge ft of the SLIP and the

axis is chosen transverse to the SLIP axis. A possible flow development

is shown at the points B and C ; at distances away from the exit edge

of the SLIP (») the profile returns to that of an imposed shear flow. (In

practice an inflow of material must occur in regions below the SLIP to

maintain continuity of flow). At A , because U <U* , there is no force

induced in the conducting liquid along the * axis. However at S (and C )

the deformation of the magnetic field lines induces a force in the liquid

so as to resist the flow. If we consider (as in 83.5) the motion of a “slug

of fluid beneath the SLIP we can obtain an estimate of the flow development
using Newton"s second law. The transverse force produced by the SLIP can
be obtained from (19) and (26); taking the force on Z -0 as representative

we can write:

?7T " (K-*-)a where S Z1 . . ©7
where £ 1is the density of the working fluid; U 1is the average velocity
of the fluid along the X axis and «. is the speed of the glass ribbon. The

parameter p is given by (67). The solution to (67) for the velocity U

given the initial conditions U - when t=o0 Iis

«fchr

- - NI
cl = U. - rte T < - (68)

Using (68) we cen describe the effects to be expected in the float bath

configuration. The solution for Ud of course invalid when ot,,

li must always be finite . but . } P
. tut we may consider the solution for Ot « ,

e
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as a reasonable estimate of the decrease in U with time. If the width
of the slip is d then the time taken for the slug to traverse the SLIP

is approximately 24 /. , and so, from the approximate solution in (68),

- 2
-we have U~ _(’—;_"(' g’-f)

4,4,2 Example. The Float Bath SLIP. Using the data of table 1.l and
the values of H. from figure 3.5: in the expression for @ , (67)., we find
Q@ ~ 0.4 (when S , the axial slip equals 0.9) and @ ~ 0,33 (when S =0,1)

with ¢ =6.8 gms/cc Wwe have _e"l ~w 0.5 %1070 sec”’ (s =0.9) and

%Q. A~ 0.02 sec”!

(s =0.1). Thus for the average velocity U , given by
(68), to change by 10 per cent we require t > 50 seconds (S =0.9) and
t > 0.5 seconds (S =0,1). For a SLIP of width 10 cms (4 inches) this
requires a ribbon speed (Us) 1less that O.4 cm/sec (S =0.,9) ~or-less than
40 cm/sec ( S =0.1).

The case S and case P analyses produce identical results.

We conclude that there is very little modification to the imposed

ghear flow in the float bath when the ribbon maves at its normal (see table

1.1) speed and the external applied pressure gradients are small.
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5. THE BOUNDARY LAYER REGIONS OF A SLIP

5.1 Introduction

In this chapter we present a heuristic analysis of the physical
processes involved in the boundary’layer regions of a SLIP. In §5.2 we
use the singular perturbation method to illustrate the importance of
certéin'physical parameters in the decay of the EM field. In §5.3 we
consider a pectangular excitation and obtain 1/¢ folding lengths for
the EM field decay both parallel and normal to the secondary conductor
surface. Finally, in §5.3 we use an order of magnitude argument to
compare the EM fields induced in the boundary layer regions under the

case 9 and case P analyses.

5,2 Shear Flow Parallel to the SLIP Axis

This problem has been an%lyséd in Chapter 4; in §4.2.2 we obtained
exact soiutions for the induced EM field in terms of Airy's functions.
These solutions were however éxtﬁemely complicated and only yielded
information concerning the behaviour of the EM field when asymptotic
estimates were used. IHowever it is possible to avoid a complex analysis
of the induction equations if all we require is a knowledge of the
asymptotic behaviour of the EM field. The method of approach used below
is the Singular Perturbation technique (VAN DYKE, 1964). This technique
may be used when a small parameter € occurs as a coeffieient of the
highest derivative in a differential equation. Over much of the range this
term can be considered negligible and the differential equation may be
peduced to one of lower order. The solution to this reduced equation is
called the 'outer solution'. In certain regions (the boundary layers),
the highest order derivative becomes large. A solution in these regions
(the 'inner solution') is obtained by performing a transformation of
the coordinates Sufficient to remove the ¢ coefficient. The complete

solution obtained is thus discontinuous, but an estimate of the continuous
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solution may be obtained by matching the inner and outer solutions in
an intermediate fegion.

" We shall use the model, notation and equations of Chapter 4 in the
following analysis. First we give a brief description of the problem.
An idealised SLIM is placed on the surface of an electrically conducting
half space (2>0) which is assumed to move with a constant velocity V .,
together with an imposed shear velocity;v;(p.Ej. parallel with the direction

of the travelling wave excitation,. (figure 5.1).

Vi Vi

.._._’S
A
V\,/[?UL Jj——),
;

Fig 5.1 The Idealized Configuration

The velocity V arises from the 'drag' of the magnetic field lines through

the conductor; we can identify a slip S, given by

s, = 1= Ve ) (1)
where Vs wl/e » (=« dimensionless), is the synchronous velocity of the
excitation. The parameter 5, is the slip at the surface of the conductor.
When the shear-inducing glass ribbon moves at the speed of the travelling
wave, (Vo~ Vi), the drag on the conducting liquid is small and so V~o .
In this case S.~0 and the shear flow influeﬁces the induced EM field
to a great extent. When V, is small (v, «V,)the motion of the glass ribbon
may be neglected. In this section we discuss the decay of the EM
field into the conductor when the parameters o, Rw and Rua are separately
considered large, (ﬂ;:\&lvﬁdy is the magnetic Reynolds number based on
the wave velocity and Rua® Vot./q, is the magnetic Reynolds number based

on the ribbon velocity).

We shall assume @,so throughout. For boundary conditions we use
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the case (4 excitafcion (33 =8m omn ?-=0) and decay of the EM fileld as z=oo
The reduced (dimensionless) forms of Maxwell's equations (1.11), (1.1)
and (1.4) appropriate for this.problem have been derived in Chapter 4.

We have respectively

A8 - (1+iSRu) B+ Rus Bp 21 (2)
dz*
.(:1_..._)83 = 1;01(82, (3)
dz
/«Ll - = —(1:0(’83*‘ ﬁ-’gz—t) 2, (L{,)
v Ve
where S(z) = 1 - o -ﬁ_(l—ZJ (5)

It is clear from (2) that the outer solutions, when o ,Ru and R.. are
large are the trivial cases with Bso . Consequently we shall only

consider the inner solutions.,

5.2.1 o Large. Writing of=' , (2) becomes

e* 4’8, = (l +isRe) B, + € R B2 (®)
dzs '
et 3;2'-3‘1 = (‘-(’iS'Em)g:! 7

From the definition of ?m we see that Ru = 0(e). We shall assume that

Ru. =0(1) . Equations (3) and (4) become respectively

¢ %32_3 = CuB, T, = "/;':k 2By + ;‘l‘%") (8)

The inner _solution is found by writing -—z=-¢"§ where n is chosen so as
to include the highest order differential in (6) and (7) when e is made

small. When n=1 and € >0, (6) and (7) reduce to

(},_"B: ~ 8. 48 ~ Ba ' (9)

L ds

and (8) becomes

dB : :
z}g'vt’Bz &J—'«a -ﬂl‘l\-(‘g’x‘r%l‘) (10)

The solutions to(9) using the first of (10) and the assumed boundary

conditions are

B, ~ {3n€-§ %‘~$m¢'f (11)
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Substituting (ll) in the second of (10) leads to Jro . Substituting back
for 2 in (11) we find the 1/e folding iength for the EM field decay is

€ (= 1/x) . Thus an increase in « (which implies a decrease in the pole
pitch) effectively reduces Rw (which is pProportional to the conductivity
and angular frequency of the excitation) and the skin depth of the EM

field tends towards that for a non-conductor.

5.2.2 Rw Large. Writing Ru= 1/¢ , (2) becomes

e 8 Ly (i) B« epa g, (12)

dz*

€ 0:33 = o (1445) By (13)
zl—

We shall assume both- o and Ry, are of order unity. When there is no
pressure gradient we may assume sd>o . If we neglect the product zV,
(since Z<<( in the boundary layer) the vapiable slip S becomes equal
to S. . Using the transformation zae%f , (12), (13), (3) and (4)

become respectively

jl?: = i«O(‘SgZ -+ € (0’-" G;_"’ euu.?'!) (14)
O:LSB: = 10*sBs + ex* By (15)
d8 . 14 -L y ‘
d—;-we"B,_ J= /@L(WIB:;‘*ELJ‘%QS) (16)

A first approximation solution to (14) and (15) is obtained by letting

¢-> 0 .« We find the trivial case Bao ,T,~0 is recovered, agreeing with
the known results for an infinitely conducting medium. A second approximation
solutign to (1%) and (15) is found by assuming 33‘5)-0(6"‘-). The solutions
obtained on letting €-»0 in this case can be shown to be

- § Jfoul's

f O
?z ~—'Bm/——s? e jﬁ“s
114

) —§/foats -
Bimve Bue M T bus e (17)
fo‘u
. [ (] L -‘/
Equations (17) indicate a skin depth (w $R«/2)" "nay be associated with

~

the decay 6f the EM field, Because O<<s<i, we know s',1 and conclude that

the skin depth is largely i_ndependent' of the slip. However we see from (17)

that the electric current (and thus the induced body force) is proportional
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to the slip. The tendency of the conductor to.exclude the EM field is

clearly shown by the order of @; in (17). When the conductivity becomes
i{nfinite (¢=>o0) the normal magnetic field disappears and the discontinuity
in the tangential field at the surface of the conductor sets up a surface

current density, (see §1.4.6).

5,203¢ Ruw, = o(fu)+ Here the imposed shear flow is as important as the
inducing excitation in the evaluation of the induced EM field. Because

Vo~ Vs , the surface of the conductor 'sees' a stationary excitation
and so V-0 . Thus s is proportional to 2 . A boundary layer transfom-
ation can be made but the solution to (2) still involves the Airy function.
However we c4an assess the effect of an imposed shear flow assuming the

simplified model of figure 5.2,

Fige 5,2 Simplified Shear Model

We divide a depth L of the conductor into N regions and let each
region move with a constant velocity parallel with the direction of the
travelling wave. Denoting the velocity of region = by V. , we assume

Voo <Ve  and 80 Soe> Sor (vhere from (5), S,r=i- V%:.s‘i’ )o If

V,QV'S s Soi~©  and the decay of the EM field is that of §5.2.1. 1In
region IT, V,<V; 80 S... >0 and the rate of decay is that given in
§5.2.2 which is greater than the rate of decay }in region I. This process
may be continued until the N'th reglon is reached. There we assume V=0

and 5,1 In this region we see the maximum rate of decay is achieved.

By letting N-w© and adjusting the velocities, the imposed shear flow can
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be recovered. There is thus a gradual increase in the rate of decay of
the EM field with depth into the conductor. We can obtain an expression
for the magnitude of the EM fleld at any depth as follows,
Using the simplified shear model above the magnitude of the EM

field at a depth Z; lyihg inside region +~ is proportional to
Q,P{_;‘L(; o/,)} . u‘:{-u,(%‘:_zr)} . Here of is the decay parameter
of region r obtained from the induction equation (2). We have

wp = (1455, Ru) "™ » with, from (5), S, = | - %,-’: - % (-aey
Letting N»» , we can write 1;7 ~ $%. ,» and replace 2'_' by an integral.
The exponential factor representing the EM field decay is then given by

jﬁﬂ(‘+.¢s;nmy“dg# s which gives, on performing the substitution for

o

s, » the expression previously obtained in §4.2.,2.(ii), which was

obtained from. the asymptotic expansion of the Airy function.

5.3 Finite Excitation.

Here we give an estimate for the boundary layer scale lengths of the
EM field induced in an electrically conducting half space by a SLIM, using
a rectangular travelling wave excitation of constant magnitude; Cartesian
axes are chosen with origin at the centre of the rectangular excitation
and 2 axis pointing into the conductor, (figure 5.3). The excitation is
taken to be of length 24 metres and width 2a metres to allow comparison of
the results obtained here with those of later chapfers. (Here we consider

a simplified form of this rectangular excitation).

Fig. 5.3 The Rectangular Excitation

The conductor is assumed to move with a constant velocity V given by

= [U,Vv, o] (18)

<
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We introduce a scale length L (the molten tin depth) and the dimensionless
variables x*« , 2*z/c ,«**k ,a*= /[, **,H#/*%.
All parameters will be assumed dimensionless from now on, so we ignore the

star superscripts. Substituting (18) in (1.11) we obtain the dimensionless

induction equation for the conducting region 2

I (19)

=/

) t -1
vur VvV A 1 3 6
Here we have written 1 ({,t>* =V 4L T2,,. Wu/ij and

are magnetic Reynolds numbers for the motion and V1 *c*>L/u
is the synchronous wave velocity.

Suppose we can identify a large parameter (which we write as ™ for
£ small) in the right of (19), then we can apply the singular perturbation
method of 8§5.2 to obtain boundary layer approximations for the induced
EM field. Because the differential terms on the left of (19) are all of

the same form we see that there are four main boundary layer regions:

Region | °(Ay » Of{h > 1 (idealised configuration)
Region 11 o %\ -~ 0 (y) » °(-1) (end regions)
Region 111 »1k) ~ O (fi) » 0 (*) (edge regions)
Region 1V ©ih) - 0 (ty ~°C(E£) (corner regions)

These regions, with the exception of 1V, are shown in figures 5.H, (cross

section in the (utt) plane) and 5.5, (cross section in the (x,i) plane),

together with the outer regions where ?-0 , Region 1V corresponds to

the corner areas and will not be considered in the analysis below. The

Fig. 5.H Cross Section in the (y,z ) Plane
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Fig, 5.5 Cross Section in the (x,z ) Plane

EM field solutions in 1 are those previously obtained in chapters 3 and 4
for an idealised excitation of infinite extent. The width of regions 11
and 11l will be the order of twice the skin depth (which is approximately
e"™* ).
5.3.1 Infinite Width Excitation. The configuration for this problem
is shown in figure 5.4. We have previously noted (81.5.3) that the
discontinuity in the excitation at y ti introduce8 pulsating coraponents
in regions Il. Because the EM field in Il does not "see” a pure travelling
wave we would expect the variation with distance to be largely independent
of the wave number « . This is certainly true beyond the excitation where
the induced fields arise largely from the end teeth of the motor. Thus we
can obtain first approximation solutions for the induced EM field in Il
using the following boundary conditions on z-o , using the form of (1.47)
and (1.48):

CaseS: f.** Sip Case P - Vi)]« 3* (20)
where Uy) is the Dirac delta function. As usual we"impose damping of the

EM field at infinity. For -simplicity we shall assume iU is small enough

to neglect the ten. 1 ~ In (19). Because X, is large, this neglect
is valid if “ when there is no X variation (19) reduces to
>T‘ )_ [13 [ .I‘w 8 (21)

We now define the one dimensional form, for y , of the fourier transform-

ation (1.32) and inverse Fourier transformation (1.33) as, respectively
®

J (22)

-
e
v
o
[l
-

h(i,i) -1 H ¢ J3 d
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Transforming (21) using the first of (22),gives

'8 _ B (23)
d z*
where ¥' o= g+ vat R , (24)

Transforming V.8-0, (1.1), we have

o8 A
;‘(__z}. = 1»1/ ’6; (25)

The boundary conditions (20) transform to
A A
Case S ¢ B(§i0) = amp, Ks case? : B,(30)= 27 B (26)
. . A
The solution to (23) is obtained in the form B = f—_e,'n, where the constant
C 1is found from the boundary conditions on 2o . Using (25) and (26)

we find, (with B0 ):

{ 3 ~¥Z
Case S Py ’_E_ = e Ks. € 2, - 1«,‘—2‘ _/u.Ks e,’“gs (27)
4
Case ? H 2'-1'; B; = ‘l';z Bm e:jtt g,_ -+ 3\" c’t‘ e, (28)
q

Inverting (27) and (28) by the latter of (22) and using the symmetry of
the kernels we find

¥t -
Case O : B, = 2piaK fc’. “37’7 d‘;, #By= ‘-Z,u.ksji, 675%% m dq, (29)

o

case P: B - J’Km[%énw%dz; 6 - 2%56’“@51;% (30)
[ o

The integrals in~ (29) and (30) are given in BATEMAN (1954), (p.16 and p.75)

Performing the integration, we find after simplification that:

Case 5 H _@ - .2/,(-’{3 {z gz"'; g—‘}} kl (/Z-th« (”szb) ) (31)
(§rez) '

‘ ¢
Case? H 33 = Zﬁm .E . K ( Vz“e"" (‘3‘*?')) > 32," I &d«; (32)
&

(9rz)'~ e d
In (31) and (32), K{(¢)is Bessel's modified function of the second kind
of order unity. We have not been able to obtain the solution for B, in

the case T analysis in closed form. It is immediately apparent that, in
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some circumstances, the choic;e of a case S or case P analysis should
be governed, not by physical constraints, but by the ease with which we
can obtain closed solutions. The form of (31) and (32) does not yield

a great deal of information, but using the asymptotic form of k,(&) s Viz:

ko)~ [T e ¢>> 1 (33)
we see that the EM field decays with an exponential factor { <«'R., (%"-‘).} "
We see that both the skin depth and longitudinal decay scale length are
of the same order, and equal to (L;ﬁ«)"‘z e.;’*, (figure 5.4). Using (1.4)
we can obtain expressions for the induced electric currents and from (1.3.1)

expressions can be derived for the induced body force. In this simplified

model however, these results are of little interest.

5.3,2 Infinite Length Excitation., The configuration for this problem

is shown in figure 5.5. Regions III are the edge effect regions previously
described in §1.5.3. The only Y variation arises from the travelling wave
source, so we assume the magnetic field varies as the source and write

' @(_r) = 3(::.2)&'“7.. Using similar arguments as in §5.3.1 for the

neglect of K. we meglect Ru, in (19) and the induction equation reduces to
‘ é'l }1 ' .
(;;.*3;;)@ - d'('*’ﬂ@m)_@ - (34)
where S= 1-V/Vg is the slip. The one dimensional form, for = , of

the Fourier transformation (1.32) and inverse Fourier transformation (1.33)

are defined as, respectively

A 3 - A —op
Hipz) = f“(lcz—)‘ﬁir‘ clx H(‘x,z) = 2‘_“7‘( Mipzye dp (35)
~% —ro
Transforming (24) using the first of (35), give
T R ' (36)
= Ve
where )’.t = P x #m(eishe) (37)

Transforming V.8:=0 , (1.1), we have, (compare (25)),

(1_35_ . < B (38)
dz
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We use the boundary conditions (20) and (26) replacing Yy by x and 4 Dby p .
The solutions to (36) are thus identical to those of (23), given by (27)
and (28), but g is replaced by « , and ¥ is given by (37). Making these
substitutions and inverting (27) and (28) using the second of (35) gives, .

using the symmetry of the kernels

oe o

vz ; ~z
case S : ’Bz_= .9744an € cos px dr 3 (BI = —23/u.h- 2e cospr dp (39)
© © v
o .YE o
case P: B, - 2.’&..&[76 Ces pxalp . By 2.8,.,} T ot (40)
o esprdp ;B ) e dp

As we would expect, the solutions are all even inx ., These integrals

may be evaluated using the results given in BATEMAN (p.17), and they can
be",-ﬁritten in terms of Bessel's modified functions ki(«¢), Ki(#) and Ki(p)
The asymptotic expansions of these functions are all of the form (33),

so we conclude the EM fieid decays with an exponential factor

r { at(1+¢s Rw)(y‘ﬂ’)}“" « We gee that both the skin depth and transverse
decay scale length are of the same order and equal to J}'_ {(h—:‘ﬁ«)'& 1T”. er ,
(figure 5.5). From (3.17) and (3.8) we see that the skin depth for regions
I and III is the same. However we would expect the cufvature of the field
1ines at the edges of the excitation to decrease the skin depth there, and
80 ef‘ must be regarded as an upper bound for the folding lengths, Unfor-
tunately we do not have any information concerning the decay of the EM field
away from the edge of the excitation towards region I. This decay is

largely dependent on the width of the excitation, and our Dirac function

boundary condition can only give an upper bound for the folding length.

5.4 Choice of Boundary Condition

Here we give an order of magnitude argument which illustrates the
differences between the case S and case P analyses., We assume an
excitation of the type used in the previous section (§5.3) is specified
on the surface of a conducting half space. We shall also refer to

figures 5. and 554+ In §5.2 we used a singular perturbation technique
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to obtain the width of the boundary layers and showed in §5.2,2 that the
boundary layer transformation when the conductivity is large contains the

small parameter

Using standard notation, writing __ﬂ/{' = Bls) e,-(ué-u;g ?Q[[ 0 Tit> ci(ub-a;)

1

the equation V.f=-0 , (1.1), and the equation for the electric current

density, (1.4), become respectively (assuming & <o )

%+%—3 = 1uf, | (41)
B: B .
phI-[B we, an sl

We now obtain estimates for the behaviour of both B and T 4n the
four reglons of §5.3.

(1) Region I. Here the conductor 'sees' a travelling wave of infinite
expanse and the only variation in 14 is that of the travelling wave
itself. Thus (41) implies o(B,;) « § ©(82), and to maintain the same
strength of field in the case 3 and case? analyses we require

Bw ~ S4eKs . Because there 1s no x variation, the electric currents
are all transverse to the direction of the travelling wave. Their

| magnitude is decided by the tangential magnetic field and we have

o(}l.kf.)»v —;‘o(e,).

(i2) Region II. Here the Y variation appears not only from the
travelling wave but also from the discontinuity of the excitation. For
large conductivity, with o of ordepr unity, (41) implies o(8,) ~0(8,),
since the Y and = boundary layers have similar width. To maintain
a similar strerigth field in the S and P analysies we require g«"’/"‘“ki .
There is no x variation here so the electric currents are as in (1).
However we see from (42) that o(uhJ) %—o( B,) and so an increase
in magnitude of the electric current density occurs in both analyses
towards the end regions of the excitation, |

(11i) Region III. Here the only variation appears in the travelling

wave and now the X variation is non-zero, Equation (41) indicates that
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ofBjJJ ~ i c(82) as in region I* However, (42) indicates the electric

current density is now three dimensional. It is apparent that

o (fiolLT,) ~ 0.,S5i) » ¢ ) 1-0CS») and o (7-,) ~

Thus the induced vertical currents may be considered small, and

circulation of the currents occurs mainly in the £x°) plane.

(iv) Region IV. The behaviour of the EM Ffield iIn this transition

region must be found by a suitable matching of the fields in regions 1,

11 and 11I.

In the case 5 analysis we hold constant along the length of the

excitation, whilst 33 is held constant in case ? . Using the arguments

of (i) to (iv) we can obtain the approximate variation of the EM field as

shown in figures 5.6 and 5.7

Fig.- 5.6 Approximate Boundary Layer Variation. Case 5.

Fig. 5.7 Approximate Boundary Layer Variation. Case ?.
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It appears that major differences between the two types of analysis
occur only in the entrance and exit regions of the excitation. The case S
analysis is characterised by a rapid increase in the magnitude of the
electric current and normal magnetic fields.there, whilst the case P
analysis produces a rapid decay of the magnitude of the tangential magnetic
field and a slow rise in the magnitude of the electric current. These
results may be applied to the induced body force given by (1.31). It is
easily shown that in region II both the normal and tangential forces for
the case S analysis are of order 5 times those of the case ? analysis.
Thus it appears that any fluid motion induced by a series wound SLIP is
largely impﬁlsive and occurs mainly in the entrance and exit regions of

the SLIP. In a parallel wound SLIP we expect the motion to be gradually

induced over the full length of the pump.
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6. THE EFFECT OF CURVATURE ON THE INDUCED

ELECTROMAGNETIC FIELD

6.1 Introduction:

Here we are concerned with the structure of a SLIM and the effect
this may have on the skin depth of the induced EM field. We have already
obtained (chapters 3 and 4) a skin depth for the EM field induced by an
idealised travelling wave excitation. We have also discussed (in §5.3)
the effects of a finite travelling wave excitation and we have obtained
some estimates for the boundary layer decay lengths. It is clear howevep
that the EM field produced by a SLIM will decay smoothly with distance
from the motor. The width and length of the SLIM also has some influence
on the decay parameters. Because the magnetic field iines remain closed,
it is clear they return from beyond the SLIM domain and so will 1lie
parallel to the stator face in regions close to the perimeter of the SLIM.
The skin depth of the induced EM field will thus vary from place to place.
fhe models we consider here attempt to incorporate these curvature effects
into the skin depth parameter; to do this we use the following configuration,

Cartesian coordinate axes are chosen on the surface of an electrically
conducting half space (z>o) as shown in figure 6.1, A magnetic induction
excitation with sinosuidal variation in magnitude is applied along the

surface of the conductor. (The form of this variation will be given later).

Fige 6.1 The Idealized Configuration

We assume the conductor moves with a constant velocity, vV s Darallel

with the direction of the # axis. The notation @ (£,8) = B(s )6Wtand
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1,.60['
//[,é) . J(t) e is used, where only the real parts of & and }

have physical significance. Introducing the dimensionless variables

KT mx/h, YTyl 2T /L, Row «wh®/q , Rur= Vi/y

where A 1is a scale length (taken to be the molten tin depth), Maxwell's
equations (1.1), (1.4) and (1.11) become (dropping the star superscripts

for convenience):

-)—;—f }7-)'),3 = O (1)

B 28, 3B o8 o 36,

T . [ 2B 25 9% 25
/OL’ " ¥z > ez Ix 2 ¥x ay] )
(%-*%"*}zr)g - i (R-ru)E )

We shall also write &R = R —®ws .« The solutions of (2) and (3) form

a complete description of the induced three dimensional EM field.

Previously we have assumed B, (£)=0 but this condition will not be applied
here. However it has been shown (eg. SCHWARTZ et al, 1964) that the

induced vertical currents are dissipated rapidly by the displacement current,

and so without loss of generality we shall assume J;(! ) =0 .« Thus we have

38, _ %
> - 3y ()

In §6.2 we use an approximation to thé EM field produced by a single
tooth of 3 SLIM to give an estimate of the skin depth for the induced EM
field. This process is also used in §6.3 but there we apply a suitably
adjusted travelling magnetic field which includes the dimensions of the

SLIM.

6.2 Single Tooth Approximation

provided the coil-wound teeth of a SLIM do not lie too close to one
another (the degree of closeness will be decided by the i/e folding length
for horizontal decay, which is of the order of thé skin depth ) we may
assume there is mo induction interaction between separate teeth. Thus
the excitation produced by a SLIM may be considered as a linear combination

of suitably phased magnetic sources. We now show that it is entirely
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possible to produce a travelling magnetic field from such a combination.

Consider the array of sources shown in figure 6.2, Their

“wp oo
fipe) e lpe™ o

!

3:‘-4 y=° y.‘ﬁ

G(Héf g)

.
< O > a

K 2

Fig. 6.2 An Array Of Phased Sources

one dimensional EM behaviour is governed by the function !(;) « We require
of course, J(?)H’o as lyl->o o We suppose the distance between adjacent
sources, & , is small (which is certainly true in regions away from the
SLIP when the appropriate scale length is the length of the motor). The
}three phase current supplied is assumed balanced (see §1.5.2) so the phase
difference between adjacent teeth is 27 /3 radians. Using the complex
form for the time dependence, ewk, we find the total magnetic field F(!;)

produced by the three sources of figure 6.1 is (writing % -J" , etc)g
-4 Jeg ‘o
F(?) = {}lyra)e e’1[4- /(7} + /(7—4) e }c‘ ¢

0’ . ) L
o~ [ 0.‘/ (9) cos & ~2ia /'lv)dw z—}}ew
= afe i) (5)
. 2 IR *
were A= (Y2210 wma gy Wi (22 @
A (,
Thus F(;) given by (5) is certainly of the travelling wave form, However
{t is unlikely that the form of j«;)'will produce a linear g9 s and so the
travelling wave will not be a pure sinusoidal one.
Consider now a single coil-wound tooth of width 24 (dimensionless)
and length 2¢ (dimensionless). A complete description of its EM field
can be made using Fourier series. To a first approximation we may assume

the normal magnetic induction at the surface of the conductor (figure 6.1)
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is given as
3, » 1, Cos ax cor fy )

where ABsi is the magnitude of ‘i3 at the centre of the tooth; <= 3- and
. The variation of ~ over the tooth is shown in figure 6.3.
Because we are only interested in the effect of curvature on the EM field

it does not matter that the source field (7) is cyclic in the x

and y
directions. Solving (3) for by the separation of variables technique,
subject to (8) on and decay as , we find

-Si
A3~ c°s OCX . COJ py - € (8)
where x = 1+pl -ctp ®
Fig. 6.3 Normal Magnetic Field
Substituting (8) in (1), using (4) we find
$ u*iocx. Cos <. - (@0))
("r)y J
- f cos kx. = fwc (@)
(ocvp)V
From (2) using (8) to (11) we find
o~ S @X  hM pij . Ks a2
fiokTi - -O=Pgi HS: doipr.e ' (13)

Equations (12) and (13) may be compared with (Il) and (10). We see that
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the spatial variation of B, is identical to that of J, and that of B, 1is
identical to J; .« This mathematical resuit is of course only applicable
to the idealised model of figure 6.3, However later work (Chapter 10)
using more realistic models also indicates a certain correspondence between
the above pairs. Integrating V.8 - pob I 5 (L), over a éurface S leads
to the result ;_{,@' = ff@.o!g where C 1s the perimeter of 5 . Thus
the magnitude of the iﬁd;;ed electric current at a point depends on the
curvature of the magnetic field lines there, so the mathematical result
connecting the magnetic induction and induced electric current is
consistent with the physical analysis.

The skin depth § for the induced EM field is obtained from the

-¥E
real part of e’ $ we find

7%

S { [(o‘l-*[!‘);ﬂ?‘]'/‘.f oc%‘:*} R ry (14)

171 our model § is constant over the domain of the tooth. In practice, &
will be the value of the skin depth in regions near the perimeter of the
tooth where the curvature of the magnetic field lines is at a maximum |
the centre of the tooth we know the curvature 1s small so.the penetration
ig greater and the skin depth increases. The value of $ there 18 found
by setting o=f=0 in ('14). The skin depth is increased by increasing
the width or length of the SLIM (since o~ I, , 3- & ), as we would
expect, becauge then the overall curvature of the magnetic field lines
decreases.

From (l.31) we obtain for the time averaged force

f = E;_@ { o ginux . cos"?j + ?‘ws‘dx.:da‘@y)ﬁ-izg(g{_“_} e (15)

2 pob ¥yl =3

This force exhibits a 'doughnut' shape with a central depression, raised
edges (coinciding with the tooth perimeter) and outer decay. It bears
a strong resemblence to the vertical force obtained in Chapter 10 for
a three dimenéional tooth. Unfortunately our model does not allow the

existence of horizontal force components (apart from purely oscillatory
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terms) and so cannot be applied directly in an analysis of the SLIM.
However, we feel the simple results of this section do provide a reasonahle

description of the EM field and vertical force induced by a single tooth,

6,3 Travelling Magnetic Fleld Analysis

In Chapters 3 énd 4 we analysed the EM field induced in a conducting
half sPaée by a travelling magnetic field of infinite expanse. In Chapter 5
we briefly discussed the effect of a finite travelling wave and its effect
on the conductor when using case S and case ? analyses. Later (Chapters
7 and 9) we give an exact analysis of the rectangular excitation but we
have been unable to obtain all of the results in closed form. Here we
{ntroduce finite effects by supposing the excitation has a sinosoidal
variation in magnitude superimposed on the standard travelling magnetic
field.

In the analysis below we make use of the complex plane and introduce

the two independent imaginary numbers *: and J » Where
1= jY0 -0 bt v#)] so  4#-1 (16)

The use. of (16) below greatly simplifies the solution of Maxwell's
induction equation. Choosing cartesian axes with origin at the centre of
the SLIM we impose the general travelling wave excitation on the surface
sz -0 , (see figure 6.4).

‘_;(d.xf ofua)

33(x'yl°) = Bwm cos (ﬁ’t-f/ﬁ;) | (17)

‘()"’ ) - + 0 '
i ?{’b’w e ”)} (18

Here =1 , /4.- E where 2d is the width of the SLIM and 2¢ is its length;
= @k/V, and V;:w‘-/\/,_ are wave numbers parallel to the x and ;1 axes
respectively based on the wave velocity Vv .[ Vi,V., o] « The notation

?, ? is used to denote the 'real part of'- with respect to 4 and '3
respectively. The parameter o, 1s included mainly for reasons of symmetry;

jts value is non zero only when the teeth are skewed on the stator face.
# pAlso used by PARK (1974), See §11.8.2
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We have chosen a nan-symmetric excitation (17) for convenience. A more
accurate representation of the normal magnetic induction would be

= 6w <o )x. COSMI. e which has lines of symmetry
parallel to the coordinate axes. The problem in this case can be simplified
by the introduction of the imaginary parameter k , where <I--1land k

is not the same as or j in (16). We would then be able to write

'Jowever, because we are only
interested in the effect of curvature on the skin depth, we can ignore
the skew Ffields and their periodicity along the coordinate axes.
The solution to (3) for 3, , subject to (18) ,,ay be accomplished

using the separation of variables technique. We find

- F
"%y £ c 19
F.
Where - e t—>»» e (20)
and R- oI - (21)

Substituting(l9) in (1) using (4) and (3) we find

V’(S): 3W 'Y'I( 4 - M e, (S -ﬁ:_" (22)
L»E -V1/

Kit) = r | * e ft (23)
Substituting (19), (22) and (23) In (@) we find

= *R. £ £ e-*
(21))
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fak L = =3 RBy 11;1:‘.) (25)

The Lorentz body force is calculated from 6,? gf { ;]A (?S? { @} o Using
the time averaged form é@[?(})a f’(@” » (1.41), where ¥ 18 the

complex conjugate with respect to 4+ , we find

2 . F' . a - T .
Fe -2Rp@lip (_"\L‘.Li' g€ | @ £t (26)
AR N

,Z/Aok ot
e LR g ‘K (’.‘""“')E;ff'u G?[Ec,'” } (27)
2fs b i Ry ] | ] |
F‘,‘ - _ Bag y 1Q (_l-_‘!_)E‘ Q:n . ¥ Y‘(/"J-n'd.. )E".CJ'; +
zar iR / YR+ 17" |
-
. A -t » Y, 28
u)? (2:) E,e _ [x { é:::l-) v }( )
i 4

Because ¥ is a function of both 1 and } we could write y-=v, G2+ 6,45 or

¥=W()+jtli) .+ Using the latter representation, we have from (21)

( ie-ﬁﬂ""/"l-* oG >+ d.") + ( 20 avir e l) (29)
= (iR+F) + 2jig (30)
[(F“'R‘— 45+ 2i0p)"™ iR+p ] ,"/ 7} o)

Wpiting 4,- &, ++ @_ we find, after a great deal of algebra
. RY 'Y , w\'a
b =z {(A 4R e R BT [(A‘wk‘@)"m] *R3 [(A‘wk‘p‘)‘—ﬁ] )

[(Aue‘fz*)‘&a] . +p } . (32)

where A = Tl R*-435" . Usually ox0 and ¢, = 001) 5 80 if the length of
the SLIM is large (24 >27) we may neglect the §-term of (30), and set

po . In this case Y is independent of J and we find

o [0t n] Y o

The skin depth § for the EM field is equal to ™' « A comparison of (33)
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may be made with (14), (in §6.2). As the width of the SLIM increases §$
K

increases because )(. Py ) decreases. When both 1 and'/, equal zero

(corresponding to a travelling wave excitation of infinite expanse) and

the teeth are not skewed («,-0) We recover the results for B2, I and F

of Chapter 3.

6.4 Summary

In this chapter we have obtained expressions for the skin depth of
the induced EM field which include curvature effects, These results
provide a better approximation to the 1/ folding lengths for the boundary
layer decay obtained in §5.3. Using the notatlon of figures 5.3 and 5.4
the new values of é;‘ and ¢, are obtained from (14) and (33) respectively.
The skin depth in region IV (the corner region defined in §5.3) is

obtained from (32).
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7. ELECTROMAGNETIC INDUCTION IN A UNIFORM HALF SPACE
BY A RECTANGULAR TRAVELLING MAGNETIC FIELD

7.1 Introduction

Here we obtain expressions for the EM field induced in a conducting
half space by a rectangular travelling magnetic field applied on the surface
of the half space. The half space is assumed to move with a constant
velocity V parallel with the direction of the travelling wave. Cartesian
coordinate axes are chosen with origin at one corner of the excitation
(which is of length 2b metres and width 2a metres) with the ? axis pointing

into the conductor (figure 7.1). The region above the conductor is

Fig. 7.1 The Rectangular Excitation

assumed to be non-conducting and of infinite permeability. The permeability

of the conductor is assumed to be that of free space.

A closed solution in three dimensions for the induced EM field does
not seem to be possible for this problem, so we consider two special
cases; the first is when the excitation is of infinite width (figure 7.2)

and the second is when the excitation is of infinite length (figure 7.3)

Fig. 7.2 Infinite Width Excitation Fig 7.3 Infinite Length Excitation



-106-

We assume the excitation 1s of constant maénitude over its width and
length. The unit block functions S, and S, are defined in terms of the

Heaviside unit step function H(35) as follows

Se = S.(2a,x) = Hexy— H(x-2a) (1)

S = S (2ky) = Ul - H(y-2s) (2)
The boundary conditions on the surface z~o for the magnetic field are

obtained by combining the case S5 and case ? idealised conditions

( (1.,47) and (1.48) respectively) with (1) and (2). We have, on 2+o

t(wt-uy)

dfwt-a
(s) 8 -85 e 7

@,: MK .S; (P) (3)
where J is taken as x for the infinite length excitation and Y for
the infinite width excitation. We shall assume throughout that 8«0
and that the EM field decays as z~>w
The velocity Y of the conductor is given by
v= Ve, (4)
where V is a constant speed. We shall assume all solutions to Maxwells
equations are of the travelling wave form specified in (3), and we write
Bere)= B e, Fecitre J(D ety Introducing a
scale length A (which we take to be the molten tin depth) we define
the following dimensionless variables; x¥s x /b, yn,y I, 22/
«*- ok, a*-a/e and 4%s £/4 . In the analysis below all
variables are assumed dimensionless so we discard the star superscripts.

Maxwell's dimensionless equations are obtained from (1.1), (1l.4) and

(1.11); we find

::._Bi+%%— e B, (s)
/
3% B
/(OL_J:[;??_;E__’tdB;, -_;_Eg , ?}%] (6)
y,r, l‘)z_ = 8 (1)
ISR VA | 4 -

where Y1 o= (14 is Rw ) : (8)
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and

s= (Vi-v) /v

is the slip; V;= wh/ot ig the synchronous
wave speed and K= Vs.‘—/of‘z

is the magnetic Reynolds number based
on the wave speed.

We now define the appropriate form of the Fourier transformation
(1.32) and inverse Fourier transformation (1.

33), for usé in this chapter.
The one dimensional exponential Fourier transformation of the function
M(5.z) with respect to § ,

and the corresponding inverse transformation
are defined as follows
o had
A *é“‘l . [ —':s\z
M(q.2) = fM(f.f)C dg M(s.2) . z.'..[ﬂ(*(,z)c
7
-to

0{7 (10)
- v
where § is taken as x and v is taken as ? for the infinite length

excitation, and § is taken as Y with ¢ as 9 for the infinite width

excitation. The one dimensional convolution result for the functions
Hisz) , N(5,2)

is obtained from (1.35). We have
37.[/%(7") "”Z'Z)} - [’”f"*) N(s-g,2) dg’
-0

(11)
7.2 Infinite Width Excitation

>
Here “-o

and Maxwell's equations (5) to (7) transform to
(using the first of (10) ):

_ZL% = ilurg) B, (12)
o[- 4R g (13)
/MokI 5 = - '(01*1,) 3 » O o]
iT | pg (1)
dz>
~where y© = ¢ g (15)
Transforming the boundary conditions (3) we obtain
Blgo) = ki §, (S) Ba(gor- B S, (p) (16)
A ﬁaiﬂ.,,__ 1
where 37 =

4};, (17)
The solution to (14) may be written in the form C e v

where £ ig
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a vector, independent of z , to be found from the boundary conditions (16),

Using (12) to (14%) we can easily show the solutions in transform space are

Case S : @ = paKs g‘? [O, 1, —i(d+3)] f—-“ (18)
Y
Trogth [ 2zt o o]e™  ay
caseP: B - 8,8 [0, ¥ 1]e ™ (20)
'j ’
o‘*q,
I:JV[M‘&,O:OJC-“ (21)

AL
Applying the inverse Fourier transformation (the second of (10)) to (18)

to (21) we obtain the following integral solutions in real space:
Case S: B K [ X (g e e (22)
sei Ba ek Sv["' TR ] 4,
ab

I = [ﬁj‘ §’ {W‘sﬂ«-au ,© ,o]C-nC'{,7A7 (23)

[¢ Y ~¥E_ -y
C&SG?S rg _%-.J‘S?{O, —0—:';;1}€ C 0(1/ (24)
I=§~"_J5{—~“‘“""°£z o, 0 ]e e"‘” (25)
Lope b Lo "i

We notice that the case P integral solutibns for B, and J, are Cauchy
Principal Value integrals with a singularity at t;. ~& o+ This singularity
can be removed using, for example, the method of Appendix I . For '3; we
obtain the result -
X't K & ¥ 9§
Bﬁ’_l?gc“fc”dg fS;Yc e Hay (26)

ax
e <o
A similar expression can be obtained fop J, + Ve now use the convolution

result (11) for the inversion of (22) to (25). For integrals with

kernals of the form 9( 1) the following result holds:
1 -vey - [
= TS 9(%) e dy 8(s) ds (27)

where 06(35) s 7 { a(.p} and the functions 9(@) can- be obtained from (22) to

(25) by observation. - Using the form of (26) fop B, and Ji in the
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case P solutions we can identify a basic kernal from which the remaining

A ¥z
kernals may be found, viz: §(9) <€ / ¥. Applying the inverse transformation

(the second of (10)) we have

0cs) = _Lfc ey =*_fe ;
)y Ty ol g) g
= 4 (BATEMAN p,17) 28
a8 k(¥T) p (28)
where ¥ = v ( Y*vr )% (29)

and K, 1s Bessel's modified function of the second kind of order zero.
The remaining functions 9(s5) can be found by differentiating (28)
partially with respect to Y or with respect to = using the recurrence
relations of Appendix I | Finally, using (26), (27) and (28) we can

reduce (22) to (25) to the form:

Case St B - pebs yiz, I,{f'_éi?} (30)
3, —g,u_os(aI,[k.,(z)} - K(})l’ ) (31)

i gab
T - ,’%(‘“I‘Q" Li®@)] -2 k.c;)/:u ) (32)
case P B, - 5%" e a*i ( ?xz—infvfﬁgz}tdﬁﬁ) (33)
3, - % vz L[kl (34)

* ‘ ' ) X
To-pede i | Tpsmre™, [aspes)
! sz Wy -h:w T y Zoih bé—lwf & (35)
s
. where 19{917)} = f 9(9)“? (36)
w24

7
and 91})}‘” - Ty - D(y-28) (a7)

Here the function K; is Bessel's modified function of order unity, We

can recover the infinite expanse of excitation solutions (chapter 3) by
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setting y:4& , letting k-7 and then using the following relations:

o

=) ¢ 2
Jl(v("" z57) ds o 2°T(m) K, (%#) (GRADSHTEYN,p.705) (38)
s Yz P gy

with K, tvz) = [E e (GRADSHTEYN,p.967) (39)

A

2¢2Z

where T?}u) is the Gamma function (GRADSHTEYN, p.933).

Unfortunately we have been unable to obtain closed solutions to the
integral in (36) with kernals of the type given in (28). It is possible
to approximate (36) assuming 265> 1 » and then evaluating the integral
when 9-‘24*e. for ¢ small., However this process merely indicates that
EM field decays beyond the edge 4~ 26 o+ Alternatively we can calculate
the curvature of the EM field by differentiating the results (30) to (35)
with respect to y but this leads to complicated algebra and the
behaviour of the EM field is difficult to ascertain. Some information can
be obtained regarding the skin depth of the EM fleld if we assume % is

large and use the asymptotic result

_T
k, (¥) ~ /5_’;‘; 4 Ne 0,1 > 1 (40)

Relation (40) .indicates that the 1/e¢ folding lengths in the Yy and z
directions are of the same order and equal to 1/&{¥l | agreeing with
chapters 5 and 6.

Numerical tables do exist for the Bessel functions of complex argument
(eg: LOWAN, 1947) but evaluation of the modified functions from these
tables is extremely arduous and cumbersome. Thus a direct quadrature
evaluation of 19{9Q>}1s difficult. Perhaps‘the best approach (and it
{s the approach adopted here) is to use the integral formulation for K (¥)

given in. (for example) ABRAMOWITZ and STEGUN (1965):
' T _zwhe
K.(s) = f e coh wt db (lu, F|< alz) (41)

The form of (41) allows the use of Gaussian quadrature in the evaluation
of 1;[9(7)} and if we reverse the order of integration we can produce

numerical solutions of high accuracy. Unfortunately this approach is not



~111-

very useful for (31) and (35) because we require a numerical evaluation

of three successive integrals. Computational results for the dimensionless
EM field components 82 (: 8, [{/5xt ) ., o), 33(= 'B;/{"—“%‘}) , (31),
and :Tl(= Ia/{:?-?) , (32), are shown in figures 7.% (a), 7.% (b) and
7.5 respectively. The physical parameters used in the computation are
those listed in table 1.1 for the Pilkington Float Linear Motor. Using
these dimensionless components we can calculate the dimensionless time-
averaged body force induced (1. 31) The two body force components, F2

‘and F3, are shown in figures 7.6 (a) and (b). The computation was performed
using Gaussian quadrature over [0, «) and Patterson's updated Gaussian
method over [744, 7]' . Both algorithms are available as subroutines in
the Nottingham Algorithm Group's (NAG) computer library.

We can describe the physical nature of the results as follows. The
symmetry of B2 (figure 7.% (a) ) has been imposed on the system by the
boundary conditions on z=0 . As we would expect this component of
magnetic induction is well-behaved. The asymmetry of B3 (figure 7.4 (b) )
and J1 (figure 7.5) is due to the motion of the magnetic field through
the conductor. At the entrance end of the excitation the magnetic field
lines are dragged through the conductor and a slight flattening occurs
there which reduces the normal magnetic field, and (by Stoke's theorem)
reduces the magnitude of the induced electric currents. However, because
the magnetic field lines are closed loops, the curvature of the magnetic
field must increase rapidly at the entrance edge (%.o) to allow the flux
1inkage, and so both B3 and J1 increase in magnitude there. At the exit
end of the excitation (4=%©) the magnetic field lines push through
the conductor forcing the magnetic flux to return from beyond the excitation
in the form of a shallow loop lying mostly parallel with the surface of
the conductor. This explains the decrease in B3 and the increase in J1
(due to the increased curvature of the magnetic field lines) at Y= 9.0
The large electric currents induced in a secondary, at the entrance and

exit ends of a finite excitation, are often referred to as 'shunt end
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currents'. The decay of the EM field beyond the edges of the excitation
is very rapid and does in fact correspond to the estimated lengths of
decay obtained in chapters 5 and 6. From figures 7.6 (a) and (b) we see
fhat the body force components are approximately of the same order and

may be considered constant along the length of the excitation.

7.3 Infinite Length Excitation

Here £ #o0 but %7 =0 (with the notation of §7.1). Maxwell's

equations (5) to (7) transform to (uéing the first of (10) ):

:_L_Eg = i.uéa_ (42)

PP R NI w3)
i%, - 48 (u)

where ¢ e ¢t apt (us)

Transforming the boundary conditions we obtain

B(p.o) = po ks G (s B (p.0) = B §, (?) (46)

where S = (0 )/ 53 (47)

The solutions to (44) are found using the same method as that in §7.2,

we obtain
Case S : ’é =/,¢.r,3; [o L1, ..3‘_5](’;“ (48)
@
I oeppilmet | ole® o0
Case ?P: T_Aﬁ = Bm & [ o, gacg , ] e (50)

= &M 0 Y t*“ N .
‘Q— /;‘—CS;'[’(:LO‘_’."_:RL‘) ’ vp , (l%;_P.]e.f? (51)

Applying the inverse Fourier transformation (the latter of (10) ) to (48)
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to (51), we obtain

P -¢ i pa
Case J : Ba/”"—'(’JS-[O.%“i]C e P, (52)
ewm ) @
I = afl,[& [Lﬂ;"“s& . 5T e?]@"”c “"f (53)
Oo
case?: 8 - W[ [0, (o 1]e ey (54)
2N ~n ot
= (BW\ ¥ 1‘""‘0" R\« « # -“,z —“‘(’
3 &WLL )v["(L.d;,), ip, %g]e e gy (55)

The integrals in (52) to (55) are identical in form to .those in (22) to (25),
Applying the convolution result (11) and using a similar analysis as that

in §7.2 , we can write (52) to (55) in the following form. .

Case S: B = ks [o, vz L8P | [k,,(p)}] (56)

7. k [ o5 R L{kb(f)} + M)}x , ¥ I(.(I)}*
' 3

X-2a A-do

-w'z %@I“—“ ] (57)

Case P: B - ‘%« ( o, -y S;lz(w;zL{K(I)}) ez L[Ké;)}] (58)

I:?w[ (usP l“‘é“} 1.};{-?})’,—1‘}’

u/l.k
~v'z K (!'F’I" - {\f‘z ‘ m]" } ](59)
¥ r-zo ? 4z Ca & 20

In (56) to (59) we use the notation of (36) and (37) with Y replaced by x
and 24— replaced by 2a .

The infinite expanse solutions of chapter 3 can be recovered by
setting » equal to @ and letting a = using the results of (38)
and (39), Using the asymptotic approximation for Ki(¥), (40), we see
that the 1/¢ folding lengths for the decay of the EM field is equal to

1/®(«) for both the » and z coordinate axes, agreeing with
the results of chapter 5,
A numerical approach similar to that of §7.2 is used here for the

evaluation of the EM field solutions (56) to (59), and the results are

shown in figures 7,7 tq 7.9 (for the case S solutions) and in figures 7.10
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to 7.12 (for the case P solutions). The graphs show the dimensionless

variation of the induced EM field (magnetic induction / (/5:; or ) and

electric current density / ( %i or %Eu ) ). Because of the axial symmetry
of the solutions we have only shown the induced EM field from x>10. The
form of the induced EM field for this configuration is similar to that
described by the heuristic analysis of §5.4%. From figures 7.9 (a) and

7,10 (a) we see there is an increase in J1 at the edge (x+2.0) of the
excitation; this is merely a physical requirement of the conservation equation
V.7=0 . The minimum at x:2.© in figure 7.11 (a) arises because there

is a reversal in the decay of the normal induction (figure 7.11 (b)) with
depth there. The diagrams are mostly self-explanatory, but there is a
striking contrast in the EM field solutions of the two methods of analysis

- expecially in the induced EM body force. The pumpdng force (F2), (figure

7.8 (b), for case S , and figure 7.12 (b) for case P ) has similar

variation for the two analyses, however the remaining components of the

body force are quite different and the two methods of analysis produce

almost opposite effects. Apart from local circulation, the overall flow

in the (x 2 plane can be estimated from consideration of f2 and F3; it

appears that the case S excitation induces anti-clockwise circulation

whilst the case P excitation induces clockwise circulation of the

working fluid.

7.4 Fourier Inversion Using Contour Integration.

It is clear that the integral solutions of §7,2 ((22) to (25)) and

§7.3 ((52) to (55)) may be written in the general form
oo
) ~¥& & -v2
g [M(@.u)c 5, < ¥ dg (60)
-0
where we have chosen to use the notation of §7.2, From (15) we see that

the function 733717is a double-valued function in the complex Q-plane,

Writing ¥= J/(3-¢)g-da)the points @,,d. are called branch points and N(3)

is discontinuous on any contour encircling o,oraqa, ., HOwever,wfi) can be

made continuous in the complex plane by cutting this plane along a 1ine
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joining ¢ and &, (the branch cut) and forming a Riemann surface, (see
KNOPP, 1947). Thus (60) may now be evaluated along a contour in the
complex g-plane using Cauchy's residue theorem. However, in the construction
of a suitable contour care must be taken if we wish to apply Jordan's
‘Lemma (see, for example, GOODSTEIN, 1965). Basically, this lemma allows
the neglect of a line integral taken along a contour at infinity provided
the kernal of the intégral decays there. Consider the function QC".W
where from (17) §‘7 = (e*R) / 7 + The behaviour of each of the two
parts of this function in the upper and lower half planes of complex
q-space must be separately examined to ensure applicability of Jordan's
lemma. Three regions are constructed as follows (we use the notation C*

to denote the upper half of the q-plane and C~ to denote the lower half).
Region 1 (yeo) R{sg2bp}councet ;| Riagyico mcy

Region II (ocyc2i) (Q{id,',(zlw?)}?o wm " Ri-Yyl<o inc” p (61)

Region III (y>24) (& {‘V“*ﬂ’] <0 i € ; Ri-igy}<o wc- -

Similar regions (corresponding to x<o, 0Oe¢xe¢2a, x>2a ) can be
constructed for the infinite length excitation analysis. Finally we
consider tﬁe function 'ﬁ;wé. This decays exponentially with = along
any contour provided ®@(¥) >o  on that contour. Incorporating this
constraint with those of (61), we can construct a suitable contour in the
complex q-plane (which loops the branch cut) allowing evaluation of the
integral relation I in (60). Unfortunately the results we have obtained
using this method are extremely cumbersome and difficult to interpret and
so are not included here. We have also been unable to obtain a closed
pesult for the EM field solutions - the line integrals taken around the

branch cut do not appear to be reducible. However, with the notation

o‘(ub—“’) ﬂw&—d?)

Bire)- B and }(_r,e) ~ J(t)e some information

has been obtained from the contour solutions. We find that in region II

(underneath the SLIM excitation), the EM field solutions consist of the
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infinite expanse solutions of chaptef 3 plus end/edge effect terms. The
solutions in regions I and II (outside the excitation) consist solely
of end/edge effect terms. In the infinite length excitation case (§7.3)
the edge effects do not alter the travelling wave structure of £ and 7
but merely their spatial variation. However when the excitation’is made
finite in length (§7.2) the effects are different. In region II the end
effects consist of oscillatory terms which are superimposed on the travelling
wave structure of £ and 7 3 these terms are caused by the discontinuity
in the excitation:at y=o and 7.2! « These oscillatory terms dominate
the solutions in regions I and III (at infinity the travelling wave
excitation appears as a magnetic pole); in additjon, terms which include
the travelling wave effects are present, but fhese appear to decay with
distance away from the ends of the excitation. These results agree with
the ideas of §1.5 and the earlier results of this chapter.

Some of the ideas used here are incorporated in the contour analysis
of chapter 9. However because the integral solutions contain only even

powers of ¥ the kernals remain single valued.
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8, THE FLUID MOTION INDUCED BY A RECTANGULAR BODY FORCE

8,1 Introduction

It is clear from the complexity of the EM field induced in the
working liquid of a finite SLIP (see chapter 7) that any analytic solution
to the hydromagnetic equation (l.2§) for the ipduced velocity profiles
will be extremely cumbersome. However, to a fipst approximation, we
may assume the EM body force induced in the working 1liquid by a rectangular
SLIP is rectangular in nature and of exponential decay with depth, For
simplicity we assume the working liquid occupies the half space z »o .
(figure 8.1). Choosing the origin at the centre of the rectangular force,

which is taken to be of length 24 metres and width 2a metres, the body

Fig. 8.1 The Rectangular Force

force we apply is

Ea8lolpih, tle? S 500,y (1)
where S_(a,x) = H(xm)—H(x-a) 59(4.7) = H(yd-) -H(;-é) (2)

~and HGvis the Heaviside unit step function. In (1) B, is constant
with dimensions of magnetic field; o is a constant with dimensions of
electricai conductivity; /,, 2 l 3 are constants and P is a positive
real parameter. The parameters B. and o- ape included in (1) to enable
the Hartmann number to be introduced into the hydrodynamic analysis below.
To preserve symmetry the parameter J, is assumed non-zero for the moment,

although it will be set to zero when we consider the velocity profiles
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induced in the liquid.

Assuming the magnitude of the induced velocity profiles is sufficiently
small to enable the neglect of the hydrodynamic inertia terms (the 'slow
flow' approximation) we obtain exact solutions in the three dimensional |
Fourier transformation space for the induced velocity profiles under both
the fixed and free surface boundary conditions. Unfortunately, a closed
result for the inversion of these solutions does not seem to be possible.
However, by reducing the problem to two dimensions and concentrating on
the boundary layer regions of the induced flow, we f£ind an analytic
approximation can be made. From the simplified results we make certain
deductions concerning the relative importance to the flow of the body

force components induced by a SLIP.

8,2 Exact Solutions in Transform Space

The hydrodynamic equation for steédy state slow flow (neglecting the

inertia terms in (1.23) ) is
szy_ = VP -E (3)

where ¥ is the fluid viscosity '; y (£) its velocity; Pcr) the internal
pressure of the fluid and £(r) the body force (given by (1) ). Introducing
a scale length L we define the following dimensionless variables:

Kl Xl s Yre=Y/ln , B2zl a¥sale , £ b/n ,grpl , Pt Pulv
ind 'BUL(%) '~ (the Hartmann number). We write J}“:A/u_; (j~1,3).
Because all parameters ﬁill be assumed dimensionless from now on we shall

ignore the star superscripts. Equation (3) becomes
Ve = 7P = [Jo o, )a] S5y e " (1)
We also requiré the continuity equation (1.22)
Vv -0 (5)

we now define respectively the two~dimensional forms of the Fourier

transformation (1.32) and inverse Fourier transformation (1,33) of the

function r1(x.7.2) :
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%{Mcx.y.z)} = A(M/'f) =J M(!-y.!) C“P“”)Axdﬁ (e)
- w» .
2‘/M(p,7,2)}= M(x.,,z) . Q_#)'j[ ﬁ(P«?:Z) f;i(mw)ot,w; (7)

A g -y ~00
Using the notation -ﬁ[é}(a,x)f = §; and Q’lg’Z‘J-,(‘,? )} . §’ . the

transformed form of (4) in component form is:

d' _ ) = <ioP - $pe-F%
<. k*) iL vpP S/ﬂCF (8)
d‘ . A . A Pl _ F3
f) 0 - —ig® - Spef (@)
.d—t‘kl- & - O‘ p S‘i c aPE
dz+ = OT; - 3 (10)
where k* = p+gq’ Q)
A A A
and the notation v={uv,w], S=$& Sy is employed. The

transformation of the continuity equation (6) yields

AW~ ol el

g = tPU gV (12)
. ?

Applying the operator (éir ~-kt)  to (12) using (8) to (10) we obtain the

biharmonic equation

dz 3 L/‘ A '
5,—::) W = {k‘/z»f-p(ip}mic;}z)}SC’PZ (13)

If the velocity W becomes zero as Z —»w , the solution to (13) may

be written as

w={(1+Bz)e %+ Re-F* § (14)

U}

U]

{k‘/; +73(in1+ 1‘7‘,{.)} /((5‘..&)" (15)

In (14) the parameters A and B arise as ‘constants' (ie: independent'of z)

where R

of integration; we have A=A(py4g) and B=B(p4) . Using (8) to

(10), and (12),we obtain the harmonic equation for 13(.”:

&' P
dze )P - "{Fh*wiuc«;}.} S e-fe (16)

A
1f P>o as z—-a the solution to (16) can be written as

A

> . Ce-k® ~p=
P-ce™ _gefs (17)
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where Q = {F}z tiph +dc;,[.} /(F‘.n‘) (18)

and C-C(pig). Substituting (17) in (10) using (14) we find C.-2B .

. Substituting (17) in (8) and (9) and solving for & and V we obtain

<

v = -"if{fe'“ -cz e 4 {i@_:_’l} s et (20)

2K F‘L_.‘s
where D=D(pyg) and K=K (Pi§). We require four equations to evaluate
the functions A, B, D, and E; these equations are supplied by the boundary

conditions on the surface z2=0 .

8,2.1  Fixed Surface Solutions. °~ On the surface z=o , from (1.40) we
A A
have y =g  therefore Y¥=0 on E=o , and by (12) %_u‘_v_ 2o on

z-0 o Applying these conditions to (14), (19) and (20) we find

H-‘—"R-e ; B= R(B~k)§ 5 1'P:D=( ‘l:PQ-!a)E ; t.‘LE=("¢Q’fL),S‘

‘FI_KL 11_"&
and the solutions for the velocity and pressure become
i - {L’LZ-C"?R@«) - (___.""Q'f') (ﬂ"“~e““)} S (21)
e Pl_KL
o [ agE <R (gx) - Y9Q-p) (o-xe B2 S
V= [ % F ('?—-F) ( e ) } (22)
W= {Qze:“‘(p«) -R (ef“".cﬁ‘)} 5 (23)
P { aR(p-we™ -ae,"%} S (24)

f
8,2.2 Free Surface Solutions. On ==0 by (1.41) we have %‘lﬁao
&

A A A
‘5%"0 and w=0 8o %:o ’ %:o and wsp on z:0 . Also by

(12) (é:.!_,o on Zz=o . Applying these conditions to (1), (19)
z&
and (20) we find
__p. Ba @ERIR {.-}: z/k{_ }_(t«'—)k {w}
=~R 5 B ?ZK 11,: PYapt .‘;Q‘-" }F “i’
and the solutions for the velocity and pressure become:

4= {(+ r&-k)(e.—ﬁz_ 5™ +z_%(?=.,<.)R (i) c-kz} & 259

[
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V= [(*i& f) (C F2_ ge““‘-) 4 (74" R (1) C kz} § (26)
[
;[ (B )2k fz(e’l"-e“)}i (27)
2K
- { (et) Re*2 _ g e-f*] § (28)
Kk

8.3 Reduction of the Problem to Two Dimensions

A
Consider the function S M( P§s2). Its inverse Fourier transformation
(7) may be evaluated using the two-dimensional form of the convolution

theorem (1.34), viz:

¥ [M(M 2) N(pg. z)} J[ M(s,q,2) N (x5, y- 1,*) dgdq (29)

-85 -ad

Using the properties of «7'[5'} » (2), it is easy to show that
ata ;t&
?'[I 1Cpg.2)f f f M(s,1,2) ds dy (30)
When H(P-i.a) E H(k,z) where k 1s given by (11) we can derive

the result (see Appendix

= L) -l(?f" ) “.,A
M(s,q.2) = é&,)a_LfM(r.z)C 110(1941 = %,‘JM(&:).kJ;(Ke)dK (31)

where J,(kp) is Bessel's function of order zero and P §* 9t . If the
transformed solutions are of the form ipl‘:l(K- t) or wlz,f:\(k.e) we find
their inverse can be written as in the right of (31) but with Lo (xp)
replaced by Ji(kf) (see Appendix L ), Bessel's function of order

unity. However, from the second of (31) we see that the operator relations

% :-}3 y 192 -‘%i can be used. Substituting these relations in @,
(18),and R, (15),we find
q .
Q= (#s-dd 42 o (32)
R (=*s —,z,u -ng) e k‘) (33)

The transformed solutions in §8.2.1, and §8,2.2 can now be written in
integral form using the operator form of (@ and R ((32) and (33)) and

the convolution results (30), Unfortunately, we have been unable to
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obtain a closed analytic solution for the real-space results« A numerical
approach 1is possible, (although not performed here), because the form of
(31) allows the use of Gaussian quadrature over [0, w) and the kernal of
(30) is well behaved for reasonable values of x and vy ( |x]¢u and
lyl<ib-, say). However if we reduce the problem to two dimensions an
analytic approximation 1is possible.

A plan view of the body force is given in figure 8.2. Region A

corresponds to the case of zero ™ -dependence, whilst region B corresponds

2k

" QVC Fig. 8.2 The Two-Dimensional

¥ Regions Under Consideration
i

to zero x- dependence. We further simplify the problem by setting /, =0

8.3.1 Region f) (y~0) = with $\=0 , (32) and (33) reduce to

G “ ?h/Cf-hr* i R - (p-K~ €))
This region corresponds to a body force of infinite length; letting 6-/*,
in the second of (2) we find =1 and so Sij (Q-,M)-Vn (the
Dirac delta function). Thus for this region, the inverse transformation

30) reduces to
(30) i
A = (35)
X-G

where ftCi,0iz) is given by (31) with 1%]

Substituting for Q and R in (21) to (24) and (25) to (28) using
(34) and (35), the inverted solutions for the velocity and pressure

distributions become (with =o and o -

(i) Fixed boundary

XJA. r oo

k-7/,J J 1i A
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L1878

V= fzf f e - -F ) < I)(K(’) oicdg (37)
xX=0 0 —k .
Jy f Kzwe et (th—eff“)} i< Jol(kp) (38)
e b (1; I<") (ﬁz_";)a-
[ { 2k (g™t _ Ee:i“ } ik Tolicg) (39)
(BEx®H* pict

(ii) Free boundary

xta rw)
szJ f { 73 EeZe )y ke .(TO“—K‘)(sz)C.Ké}"l("fM‘“"s(“O)

4 7 (Fz__,‘;)b K(]""—K‘)‘ 'ak‘s
7%4 00
Vs /,J j (C-“— 'i?:e"“) K Jolkp) die d; (41)
x-0 G Pt

W= f3 { E {e'pie'“f (—E‘—K‘—)ze"“} kTolip) dicdg (42)

(121'"‘)1 r
Xa .00
P - f’J j {k Egn)exz_ et } i To(lcp) du_c‘} (43)
—a O (,FL__“;) T (T;'I;Ks)
8,3.2 Region ’K(ﬁ.—o). With ﬂ:o , (32) and (33) reduce to
1
= -~ & . _‘l—-a. . = -
Q= (3fs F8) e (rf F)Hf) (P-K') (u4)

Using a similar reasoning as in §8.2.1 for S.(ay) , the inverse

transformation (30) reduces to

7 {S’M(P1,42) anf M(@ ‘Z,%)d‘l (45)

where M(WZ 2) 1is given by (31) wlth e— { o“ .
Substituting for Q and R in (21) to (2u4) and (25) to (28), using
(44) and (45), the inverted solutions for the velocity and pressure

distributions become (with j,:o and 1“);0 ):

(i) Fixed boundary

w=0 (46)

Bt

y-+ ©

I

EeTaD (g 4 [%(Fﬁ'ﬂ'l)fh]( e Ft)}

Bl Bret

X KTlep) dicdg (47)
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& w0
W - f f Jﬂ"_‘t!ﬁz_ {z(gfme*f- e % ‘,’-““} i To Gep) clic oty (48)
o (Fre
P= f f [3(13"“@!» )_(E‘_e &E‘?‘)”‘l)e_r’%}kﬁ(k()o(k‘d.l (49)
J-&o (F1<V (B*<?)
(ii) Free boundary
(50)
e < (Ffs'f;%‘) I Ve
v:J [*’“ o~ ‘H@ 2 -y O Ximore ]
.‘,‘,o (13"‘) (?'K) ZK‘!\(‘; K‘)
¢ - X K wTo(Ke) dk J.L (51)
=f'[ {mz -fe_'étf:“é] M ) kTo(KP)O(k"(‘l (52)
"_o 2 ety
By
TTO Kz'- - -3 ’fz} . 53
P { ﬁ o ) (%)e i< Jolicp) dlicely (53)

8.4 Integral Evaluation

s

Examination of the results in §8,3.1 and §8.3.2 indicates that we

require an evaluation of certain integrals whose general form is represented

by

w
. " -kz
IM,,. (F,(’.z) = f K(F{"f:(;) < ok R{p}>o (54)

where w,n and f are positive integers. The integral I,..",,. is Cauchy
Principal Value'f‘with a singularity at K=p when ® is real. Because
the kernel of I,:.,. is continuous either side of this singularity we
can differentiate through the integral sign (see Appendix IL ) and

write

- ( .)m-« | ‘}t”) )6"\") { o
Lo Rt 7 ypes I"’(W")j w1 (55)

where I"or J‘ TI' (k'e e_-‘(z (56)
o Bt
1. o
= 23 [F-,r ~+ G‘-c,r} (57)
and For (‘z,r,z) - [ J',.(ke)e°k;dk (58)
o B«

* for m odd
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P -K‘-
Clr tpm - [ ZC0e" (59)
o
Substituting (57) into (55) we have

IM]I' = 6.') -');(U'l) {— (E‘l""GDf)} = (-’)m.'}\F“.,, {-‘i (F‘?l:‘ - C:.:')} (60)

where the form of F,., and G:L is specified by (54),

The integrals (54), (58) and (59) are of the Laplacian type, but we
have been unable to find evaluations of either theip general or particular
forms in the published literature, However, using the method of Appendix II
we can reduce the integrals to expressions which are the sum of closed
and integral results. First, we define the Laplace transformation of

Jr(xp) as
a({];-(k()} = J‘:-,(z), = [ J;(kg)c-mdk (61)

= er(e % Zl)‘l/z.{z +* (e‘&_*?;)'/; }"’ BATEMAN (p.182) (62)

We now reduce (58) and (59) using (61); the dashes denote differentiation
with respect to Z :

- (a) Consider F,',:.(‘S.(,é). We have

F:r (F' (’")~ e'p}.-- f ;TerQ)Cz(F*)dk

o p-w
so (Freb) = e** Toie) (63)
° -f& & _ Fd ©
thus F"" =€ f Tr(¢)c d¢ + F‘»f’ [‘g)(~0)} (64)
o
(b) Consider Gir (F.0.2) . We have
vo ’3(F"")
(fn,-(fnfti)e’ j Tr(be) A
, gtic
;80 (GI:I' e-p;)l = - e_z‘R T,— &3 (65)
o f'E Z§ ¢
thus G,r = € { [ 3',,(#):: Fo(;/ t G-,’,,. ((z,e,o)} (66)

Performing the differentiation on the left of (63) or (65) produces

. » h
recurrence relations for F...- and G.,, which can be used as an addition
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to their counterparts of (55). From OBERHETTINGER (p.34) we obtain the

result

Gor Cppoo) = fTr(ke) dic = T L {'ﬁlm-ﬁﬂ(’)} (67)
o Pre

Yar S Ym

where ‘j:(pe) is Anger's function of order v . The following relation

is given in LUKE (p.83):

©  _gpakt =t
W{Ta(ge)-lf»(pf)i = f e ff T at R(per>o (68)
Hu PR o

and WATSON (p.313) gives, when V=1

T _gpankt -1t
I e ¥ Tat - %Q"’{S,(fenua(ge) + 'n‘/.-qse)} (69)

o

where 5}((() is the Schlafli polynomial of order  ; Kr(f¢) is Weber's
function of order + and Yr(@p) is Bessel's modified function of the
first kind of order # . The function Kp(ff) can be written in terms

of the Struve function of order + , H,.(pp) , (Appendix I ) . The
properties of these special functions may be found in the texts of
GRADSHTEYN, WATSON, ABRAMOWITZ and STEGUN, or LUKE, but, for completeness,
their basic properties and recurrence relations are included in Appendix I .
Combining (86) and (67) ylelds the result for G:,(p.ﬁab. The evaluation

of F:‘. (F'.’" o) can be performed using OBERHETTINGER's result (p.37)

for T e(fspe) in (57). We have

o

I:,-(F»(.c) ;f e e = =L 1 Erlge) (70)
o F A

l_k‘
thus F,r (P1°) E!%f_‘—;’** = .C?;_’.'{ Sr(FU*NEr(p()MYr(pel} -1E.(gpy  (71)

OBERHETTINGER (p.37) lists a'particular case of (71), when =0 , and

agreement is found. We shall require the following particular results

Fn,o(f)f'o) “J; l%(:iﬁ) dg = (HO‘* Yo) g (Ho’“’o(fe) ; \/°‘Y'(P() ) (72a)
G:p (fl{«O) 5[ _TD_tke__) de = (Ho 'Yo) E—_ (721))
2 Brie

° - ( _ 2 2 .
FI)L (FIP'O) - f M) d,k = { -F.;el' -+ -?:-é (H.fy.) —'(Hg-k\/,)} { (72c)
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G, , (pg.0) sf L)y, . {- 2+ 2 (W, -(Hb-y,)} L
’ ( o Btk (e e ) 2
We supplement (60) with the following results for I:'r {g.p.0) obtained
from OBERHETTINGER (p.37)
e = K‘Jo(h?")
O.,o(p,(‘o) = ! FL_K,. dic - 7Y (73a)
K Jolxp) s ~K.
(;1..:)?‘ di 25 (73b)
= (zppNi-Ye) L (73¢)

k’To(t:e) dic

(F*e?)*
obtained using (60), (72) and (73).

and
The expressions for T, (gp2) are
Writing subk g2 s s , c= wbﬁpz ) Se Tuvhplé-er, Cp» coik F(é-2)

WpE BlpD N, s p@2ICy, Expp, Tr= Tr(e)
&

%‘! {} d¢ = P {} and :TL =/ we find

I0, = E(P§%.s] - st veho)

Il‘;o = ll (?{fo'cv‘i *CY0‘§H°>

2

l{ﬁ( ’P{i&} *?Zi} ."'SY¢ *'CHU)

I.,-=

I, = B (Pl o} - T@ +cY—sH)

: I ('P{iﬁda}‘?ffo.ww} —SX,-rcHo-gz{sH.,-()/,}
"t{SYI“’C(%“Ha)i)

L, = ig?
I;,. = -Z (?fi.y:aj«-pz {sYo —cHef - {CY,“’S(%_H.‘)} )

- -"'Z'I".3 (P{iych,j * CH:,“SYo 1"55{8 ""‘b’c\lﬁi + P{isﬂi
“tfsvirc(E-m)])

2

Iz.o -
(P 1T05] - 2} T &yf + 2 [ cVomsHo] + gz [V, ~c Ho]
| +(7{CY,+SC%-H1)Z)

3 —

1.,
-2 (3P {Rnt v Pl T e ~2T @+ 3{cHoms Vo]
*FZ{S’H’D"CYQ} ‘t’{SY;*’C(%—-“}“I)} >

%

Iz,o
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Io . (’P{i-&] _p{'j;'#q,} + %; {"gz_c_3s}-r 2._?_' {2C-FI.S}

22 4p?

+ 2 fpac-2s] + o fpzc-c]+ Vs fs-pzc] +25Y vecH

T
“tsY, ~2c 1) )

I, = -}';‘ (ﬁ Loewf+ & {pas-ac] + 2 th { 3-¢z.c.}+'z_z_. {pz.s -]

+ Ho pr.c = Yofz.s + 2¢Y + EsHS -bc V. ~ 25 HY )

T = ;tﬂ;;s -P{ i_u} ~ P{j’,.v"u} + & {Fz.c-sz—ﬁz.s.z_&tﬁ ,.fpz.c.l’-z‘_/_'

+ Ho {C+FZ.$3 -V { ??:C.-PSJ + ZSY,’-o- b.c.Hul— &S‘/o' -2c¢ H: )

The above expressions for Im:.r (¢ ¢:2) are exact. It is clear that to
evaluate the real-space solutions of §8.3,1 and §8.3.2 we require an
evaluation of finite integrals (of the type (35) and (45) ) whose kernals
are a combination of the functions In:.r above. Unfortunately this we
have been unable to achieve. However, the functions Yo, Ho, Y, and H,
together with f Hol4)d4 etc. are tabulated in ABRAMOWITZ and STEGUN and

so a numerical c.'thp:ooach is possible. But because the complexity of the
results for I:.,., ({:(.2) renders an evaluation using the special-function -
tables extremely cumbersome we choose to simplify the expressions for I:.f.
Our interest is mainly concerned with the behaviour of the solutions in
the regions close to the surface of the liquid where 2 is small. To
simplify the analysis we define a new variable ¢ = & and expand the
expressions Iu?,r in powers of ¢ retaining the first and second order
terms, for € small. Writing @=2¢ and I.:,,(F,p,g):-: I:.’f,_ (ppe)

we obtain

I:': = }!L, (Ho-€Y.) + oce®)

|

he df
Toe = :E (Y"‘eH") ” eo (e9etr)'s T ele)
]
ne T _ - de
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jIxe ‘{(Y o) T ‘de \
= - L .
heoe F ° o 2 + € A (G'v’#-t‘)"‘ (G"""‘)'L } + © Ce J

X3 .
L2 Ef et Gutren) ] ocen

Lo =L eth+b(25—cthev)] + ocen
'-;;'ae = ‘_{ZGYO "Hu"t (‘%-m*ey‘)} +OC&‘)

Tos = -c f' oo =B { 2Yo-3eHo -k (2= th)e -tY
*° 0 (€P¥D" & . ° IR -t 'i TOEN

4. - _
Lo = <L, T [ Sho-de Vot (et 2-4)] «ocer

¢ _ I ¢H  _ ul oyl
Tov = Pl 0 —th ctw 20!} +ocer

be _ -% -& _ 2 Iyt
Il,f. ‘}'F ¢t -E "'Q‘Y‘ EYO} + 0(€)

€
L, = 3; { Ho+ bW — 2t |+ oce)
%]
For the expressions Lu,s

we have expanded up to o(¢) because we

require these expressions only in the free surface results of §8.3.2

where the surface profiles correspond to ¢ =o . Before presenting the

final solutions we give the following integral results

#

6
dodt _ .
J @‘9 fi‘)"' [k M"(%)-{- éln(b-r ‘/tl*e., ) }
o

j J dodle . Wk bstaero
(€'9'+tYy's 24,1!(,4&. ko) ( Ei,lbel e 670, ba<o } toler)
)
= e Ly )& (notation) (74)

8.5 Approximate Solutions

The solutions given below describe the velocity and pressure

distributions close to the surface Z:0 (fopr fixed surface solutions)

and on the surface z-o0 (for free surface solutions), They are valid
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for lsl> ¢ (region A ) and Iyi>e¢ (region ® ), In view of the physical
data of table 1.1 (the float bath configuration ) we have chosen a=1

@:4 and F:S .

8.5.1  Region A

-8 - - -

/
Jlu
f—-To——-)
/’/
+
8

(i) Fixed surface. The integral solutions (36) to (39) can be

written in terms of Tur(f0.2) + We find

2 2 : Sled
!3 f‘zFIlaO* ZI’-A°+F(I:.° "'oz..oe:F‘) €3 x-0 (75)
xta
W T [ et
x-&
W = jsf {2{3 I} -2 - - O,‘o}c‘_f (77)
x-a
e A
N {w 1, -21, -pef gl f g (78)

Expressions (75) to (78) are exact, but because of the difficulty in
~n, &
their evaluation we choose to approximate using the results for JTu.r

and relation (72). We obtain the following simplified forms

fry+a
we e[;ﬂ[ Ho-Yo + & (&= e v.)] + oleY) (79)
2 vea v
§oxea j
= &7 2¢ ~ | (ho-Ye) ol } .
v lpﬁ g 2 l«/M_A M( s |+ ocen (80)
§oxea : A
W= €. fs. eL«]“ + 0Cer) (81)
p s¥-&

¥a S oped

P= '" s {?J (Ho-to)ds + [t(He -Y,) JLT&(()-]S-,M }-fo(e’) (82)

where k'Nsl y He=Helt) , Yo=Vole) and sign(g)= { | :>° .
- L0
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The velocity and pressure distributions obtained from (71) to (82)
are shown in figure 8.4. From (&) we see that the largest input velocity
occurs at the edge of the excitation, and, as we would expect is only
dependent on the imposed vertical force. This force forces the fluid
downwards in the central region of the SLIP and this fluid motion draws
in fluid from the edges. It appears that circulation transverse to the
SLIP axis sits over the full width of the excitation. As we would
expect from the symmetry of the problem, the axial velocity depends only

upon the magnitude of -

(i) Free surface. Following (i) we can write the integral solutions
(HO) to (43) in terms of X»', . However because we are mainly concer-
ned with the surface profiles we evaluate the solutions for n,v and P

directly on z=o . Of course w=-Q gy 3 , B we i3S He expressions

for T«,r N its calculation. We find after some manipulation
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(writing fcHjl ):

-} (Wo-Yoddi |

r, /i
a- fn | t(v-Hnyo 3 gxx
>*¢
v s (Howy) dj
W - -+ j - r b(Uo~Y»)
v o=, Ty
n/f>

Fig. 8.5 Free Surface.

The profiles obtained from (83) to (86) are shown in Ffigure 8.5.

/N, ?/Ji

Region B

Similar observations to those made in (i) can be made.

8.5.2 Region $ .

(83)

(84)

(85)

(86)
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(i) Fixed surface. Writing the integral solutions (46) to (49)

in terms of Im.r (fif/we find

u-o @7

hf k- #< 0 -1£ IK.-<rf 0,0 -/»ia", .)J<¥388>

U * n
where To/*j] < These exact solutions may be reduced using the results

(-

for It«r ($<(=*) » we Find:
nvT* F 1VFf
V* € e*x/2 | Htt'Y.+éiJ'H»+Vi) 1 y [ t"W® ‘YO K f (v J q.yl
of L Jvy-ozr d
A Ho~Yu) j* .etnL.-.j. = ofe*0
L ( ) » € oo D
1114

= e AN I + 0Ce*j 2)

T r i*r i
P= N _ [hCUO-Y.)*A*A)] j(93>
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The profiles for v and ? are shown in Ffigure 8.6. The symmetry

of the problem ensures u*o . Both the axial velocity v and the
pressure ? arise from the applied forces £ and - The vertical
force has maximum effect on v at the entrance and exit end of the
excitation, (@), as we would expect since this velocity arises because
fluid is drawn in to the centre of the excitation by the downward motion
of the fluid there. However, a comparison of the magnitudes in (&) and
(b) indicates that the vertical force has little effect on the flow unless

i*»/«. > We see from (b) that the flow extends fully across the width
of the excitation. A small amount of circulation will occur since W *o

but the effects will not be noticeable unless » is small.

(ii) Free surface. On z-o (apart from w ), the free surface integral

solutions (60) to (B3) reduce to (with t-/j1 ):

M «
(0] m)
(95)
(96)

©nN
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The profiles obtained from (95) to (97) are shown in figure 8.7.

Similar observations can be made as in (i) for these solutions.
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9% A REALISTIC MODEL FOR THE SLTM

9.1 Introduction

Until now we have assumed in our analysis of the SLIP that the

excitation is applied on the surface of an electrically conducting half

Here the excitation is assumed to be rectangular in shape (of

space.
length tr metres and width 4. metres) and is applied at a height | metres
above the surface of an electrical conductor (of thickness L metres),

with the

(figure 9.1). Cartesian coordinate axes are chosen as shown,

origin 0O taken at one corner of the projection of the excitation onto

the surface of the conductor.

Here, the Z axis is chosen to point away from the conductor. The

conductor is assumed to move with a velocity V , where

-of C , V., 0]

and U .V are constants with dimensions of velocity.

@

The form of (1,

allows the inclusion of some MHD effects as well as the shear flow induced

by the float bath’s moving ribbon. A more detailed discussion concerning

the use of (1) was given in chapters 3 and a. As in previOus ,,ork ,,

)

consider both the series-wound (case 5 ) and parallel-wound (case ?

excitations.
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In §9.2 we derive the three dimensional Fourier transformed EM field
solutions to this problem. For the limiting cases (when & or 4 becomes
infinite) we recover the infinite expanse excitation solutions (§9.3), the
finite length excitation solutions (§9.4) and the finite width solutions
(§9.5). Finally, in §9.6, we discuss the application of the results of

this chapter to the velocity profile analysis of an open-sided SLIP.

9,2 Analysis Of Maxwell's Equations

wt ‘e &
Writing @(f'l’)“ B“)C' ) }(r.b):l(r)c ¢ » Maxwell's equations
(1.1), (1.4) and (1.11) become respectively, using (1):

)gc 3B, )§3 -
ax E M Yz © (2)

RO RUNSTRR

—

12 ) 3z Ix 72 dx 2y (3)

1 }5‘*{;{'5;)?.=U(“§)%%—+V>_{g +1eB - UB, &, (4)
where 7 < /cpm is the magnetic diffusivity. We can identify three regions
of differing physical structure (figure 1.1); region 4I (the air gap) is
assumed non-conducting as is region III, whilst the conductivity of region
1I (the conductor)A is non-zero. The electric current density ,q. is
related to the total electric field Z ‘by $=2' (1.7). The magnetic
permeability is taken to be that of free space () throughout.

Taking the scale length as k , we define the following dimensionless
vapriables: Xx%= Xx/k, Y* < Yl , 2" E/te , a*ea/fu , el
L=h /ey Ro=0lq ) Rmix Ukly ) RupVify and =0tk . Here Ra,
and #.. are the magnetic Reynolds numbers for the motion of the conductor
and « 1s the ‘wavenumber of the travelling wave excitation. All
parameters will be assumed dimensionless frdm now on so we shall ighore
the star superscripts. The dimensionless forms of (3) and (4) become
( (2) remains the same)

8, 8, 28, 8, 8. >3‘]

Region II: /J.LJ=[-;7-F; IF Tk 2 g (s)

oo - . ‘ (6)
()-Pf )-5.0)2,).3 Ry, (1 z)_i?aw*ﬂu%g- +iRB - R, B e,
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Regions I and III: O = 38 38 2B 3B; ?_33_)_8_. ]
Pl 1‘_) c 1
et 37'+xz~ g 1R B (8)

The two dimensional form of the Fourier transformation (1.32), of the

function H(’I.y. Z2) , is defined as

. o0 ow
= N L(Px+9y)
Hhega] = iegm - Mgy ™y
- -
and the corresponding inverse transformation (1.33) is defined as
- A - ~
4, = . o4 v -i(prrgy)
Applying the transformation (8) to (10) w:find .
dg,  _ R L .3
g2 = 1B+ gl an
Transforming (5) to (8) we obtain

region 111 1§ [cipd, 9B o 5B “Péz*‘ié'] (12)

dz ? 3z
2 . ¥B_R.,[8
Iz = w [ B3 ,0, °J (13)
L R . '
where x = k + ¢ { p. ‘P ﬁ“ (‘(’1) "'i RQM;} (1"’)
and k%= ptegt (15)

Regions I and IIIl:

%z, . - 2 . = 2 ( 3
Leonigh  dBop® Bl g
8
g_; = k*B 17)

We now solve the above expressions to obtain the EM field induced in the
conductor. For the finite width case, (when a;a'x # © ), we shall take
the velocity to be constant along the direction of the x axis thereby
avoiding the complexity of Airy functions, (see chapter 3) which arise as
solutions to (1%). Unfortunately, ignoring the shear profile removes

the term 1?..,%, from (13) because this term arose from the derivative of the
gshear velocity. However, this does not affect the oveprall description

of the induced EM field when Ru, is small, but it does remove the vertical
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component of the electric current density which arises solely from the

A
term plu 33 .

The boundary condition on z:{ is

(s) 32(1.%&)’/"'(‘5“,3*% s (P) 8, ("‘7'“)=3mf:“’f-f7 (18)

where Sa( 25, (x.a) s H(x)-H(x-a) 5 S’i S,(;,@): Hly) - H(;-,&) (19)

where H(x)is the Heaviside unit step function; thus 3. and 33 are unit
block functions of length @4 and y respectively, Transforming (18) using

(9) we have, on Z =4

() Blpg.h)=ps S @) Bilpgh)- B § (20)

where § = S (pia) §? (g-x,6) (21)

pas o 2 ' &g - ’

with Sx, (Pta) = 'e't ?" I S’ (i-l{,.‘) = Cj ($ “J-— 1 (22)
P v(3-«)

The solutions to (13) and (17) subject to (11) are easily found using
standard techniques. Introducing the vector functions M (pg), NC Pg)
?(p»i ) QCpg) and R( P>3) as 'constants' of integration and applying

the condition that the EM field decays as Z-=»-p , we find

Region I: B - ﬂ e‘z‘f-l_v e % (23)
ve -
Region II: B-Pe +Qe Y . PICE) 2, (24)
KZ
Region III: B-Re (25)

where PI(Z) is the particular integral of (13), which is non-zero when

Ry # 0.

g.2.1 The Evaluation of the Constants of Integration. It has been
stated (1.39) that the magnetic induction B is continuous across a
A

poundary. Because all media interfaces are in the (x:y) plane both B

and (by .(11) ) 6‘2} are continuous across a boundary. Assuming the
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case S boundary conditions on 2-4

bave
(i) on =z-4

Using (23) and (20)
Using the first of (16)

Thus (26) becomes

(ii) on =z-=0o

Using (23) and (24)

(iii) on z~--1

Using (24) and (25)

(the first of (20) ) is applied, we

M,c“{* N,e:d' - peKs s (26)

kW, = ~ig s and kN, = -1q Nz
N,c“~“:e.f“= *;f../«nﬁ. (27)
Moen, = Pra, (28)
H;H\I, = P+ &, (29)
k(Ms-Ng) = ¥ (F-@q) (30)
Pe¥eqe’ - RLET (31)
Ret+@e’ = Rye™ (32)
X(?ge".-a,e')= kR e™™ (33)
kR = -ty R (34

Using the first of (16)

Equations (26) to (34) give nine independent equations in the nine’

unknowns which can now be found by, for example, direct substitution.

Expressions for these constants are listed in Appendix I .

constants for B,

the boundaries to obtain

To find the

”~

we use the third of (16) and continuity of B, across

in region I: M.* “g‘,‘ H. N~ % N, (35)
= B
in region II R, 3 Ra (36)
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on zaso P+, =M, +N, - PI (o) (37)

~¥ -
on Za-1 TevaeYa e o prcay (38)

when Ry =0 , (and so Pr(Zz)=0 ), we find 'P.=%?; and 6?,-*-%@;
The third component of (12) indicates that in this case no vertical
currents are induced in the conductor, This is a steady~state result and
is consistent with the knowledge that induced vertical currents are

subject to free decay with time (see chapter 5).

9,2,2 The Solutions in Transform Space, Substituting for the constants
of integration in (23) to (25) we can obtain the magnetic induction vector

and using (12) we can obtain the induced electric current. The results are:

CaseS H
Region I: (the lower sign is to be taken for é—, )
A . ks $ ft’v@,ikl({(g)'c"-gc"‘: {e‘fi}{.l*_g}im)a-«)‘e‘* (39)
- ‘?;AsY * | "
A A "
Reglon II: B joreS [pT,gT, i3] + poks§ Ru [ixy,0.0] T (40)
fAs il"’?ﬂs )
/J‘L Is /“KJ-S. ['1,?.0](’1K‘)§ + ‘k$~§-&\. O,ik;G’,’ k‘ ('41)
ST red wsi]
where Flz) = smbrz [onb ¥ -2 (42)
. Yeoh vz ~ 43
G (k2> 7[{ o (43)
and P(kr) = wd ¥(itz) + -;‘- ok YOiez) (44)
T[(k.?) a Yddr(w?) + K ek Yorz) (45)
A,kh) = Y snb Viokd kb + i \'e“a t ‘%‘MY. ook b  (us)
Region III: ﬁ F-3 /‘(¢K3.§ - [ P.?, 4‘.(] . K&K(lr't) (l}'])

x>
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Case :

There is a relationship between the boundary conditions in (20)
A
which can be obtained from (39), Using the value of B: on z-4 we see
that the case P solutions are obtained by replacing /l.Ks in (39) to

(47) by (-i.z,‘&,, As /K“A,.) where

Batid) = Lok ¢ sinkick « b e“+§mzr.uo&kk (48)

We note that the terms containing Ru in (40) and (49) are only to
be included when ‘%-o (p=©) « The solutions in region II have been
written in a form which allows the use of contour integration for the Fourier
transformation inversion. An alternative formulation is given in Appendix

which is more helpful when describing the physical behaviour of the EM field.

9.3 Infinite Expanse Excitation

Here, the functions Silx,a) and Sza(g.ﬁ) in (19) are evaluated
when both o and £ Dbecome infinitely large. In this case we have
Ss1, S” -1 so 3»: 2 5ep) f,.zn 521) thus using (21) gs&t)’ﬂp) §G-0)
where S(p is the Dirac delta function. Applying the inverse transformation

a~

(10) to (40) and (1) using this value of S we obtain the following

golutions in real space:

Region II ; Case S:

B fﬁf‘_ [O,T(, e d] - pebsa [iu;ﬁ,o.o] (49)
As , 2%

pob T o puks (20) [<8,0,0] - peks. R [0, 406G, ~o*5 T ] (50)
hs 2YA,

where §‘§('{‘” » W=Tlez), AS'AS(‘(\")) G"G’(J.Z)) 535(‘*.?)

and from (1%) ¥*a €+ i(Co-aRur) = a*(1+ isRW) . (51)
where s=(V:--V)/V; is the slip; R~ Vb/ml is the magnetic

ngnold's number based on the wavespeed V; s wh /ot .
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- ase - The solutions here are identical to those in (49) and (50)

apart form the parameter which should be replaced by the term

As [<“A~) where A* -A*, (X,1) }

IT we set /(=0 and neglect upgoing waves we can reduce (1*9) and (50)

to the solutions previously obtained in chapters 3 and 4 (this process is

made easier using the form of the solutions in Appendix JH _From (46)

and (48) we see that the magnitude of the EM field decreases with an

increase in Ji « When i(‘A} 1 we identify the decay factor but

for smaller values of «4 the decay factor is not quite so apparent however

(cojA uA) is a good approximation.

9.4 Finite Length, Infinite Width Excitation

A section through the configurati —_0”

figure 9.2. We consider an excitation finite in length but infinite in

width ( so £ -0 ) = The function (the first of (19) ) equals

unity when A becomes infinite so * =t . Thus from (21) we

j~rve  s= ZItScfftyv*'*) where (from the second of (22) )

} \V = *V(y*)~ 1 <52>

Applying the inverse transformation (10) to (40) and (41) with the value

of s above we obtain the following integral expressions for the EM field
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induced in the electrical conductop:

Case S :
B = /«.ng{ (o, T, 14 2] _ R [i437,0 o]}s c'"”d‘), (53)
Ay 2¥'as
~0
/J,LZ:/)-K:]{ f" /] O] (1‘ ’)é Qm [O,tgG '15.7[]} S’ ;¢‘1 (514)
, 2 Ag 2Y*A,
Sn :
case P:
f{[o,-.iz 18] _R. L3, o,o]} "”41 (55)
2 XA
/L{,LI: %J{ [’-’0,0](]11")5 - Ry fo' G, ‘18711} I, c"fval; (56)
-” 1 A 2% 8w

where 5’7 is given by (50); k":vi,‘ and from (15)
Y= 9%+ (R -4 Rur) (57)

Similar expressions to (53) and (56) may be obtained for the magnetic
induction in regions I and III but these are of no immediate interest and
are not presented here. We wish to evaluate (53) to (56) using contour
integration in.the complex g-plane, Because we shall - use Jordan's
Lemma, the construction of a contour in the q-plane is made according to
the behaviour of the function 5 c i (see §7,4), Denoting the upper
half g-plane by C* and the lowepr half by €% we identify three regions

é - Ll
according to the decay of the two terms of Se ‘?7, which by (52)
-4 g (k- -v
e shv e ! ) an eVt

are: nd _ » The regions are:
1(§-at) V-0
Region A (y<o); €W decays in C” ; e‘tiby decays in C*

Region B (o<y<§): e~ decays in C~ ; e ¥y decays in C*

Region C (’75‘ ): et gecays in C- : e “¥(é-y) decays in C°

At first sight it may be thought that we have to consider the branch

point Y0 . However, expanding the hyperbolic functions of ¥ (present
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in T§$ Ar and A*. ) in a power series iIndicates that ~ only occurs
as an even power and so branch points do not arise. The function K *
(which contains two imaginary branch points at ¢t ,0‘v) is single valued,
in the complex g-plane. From (62) we see there is a simple pole at

~=* for all the solutions and there is also a simple pole at ,0 in
the case V solutions (65) and (56). Both poles lie on the real axis.

Two simple poles X* « are obtained from the Um terms when

Using (67) we see that
(G8)

Following NASAR and DEL CID1973(a) we use the iterative method of Muller

(see CONTE and DE BOOR, 1965) to find the complex zeros of A 3 and A*,

In general there will be an infinite number of them, but we only use

a small number of zeros in the integral evaluations below. Denoting

a zero of A (either A s or A,*) by Wj ; we can factorise A as

/\(<p} NN where D(<p is a polynomial incp . The residue of A

at the simple pole is equal to D(Vj-) , However differentiating

A with respect to @ we have A"ty) = T>(%)*") @ ad so 2x<>) = A'(t))
The contours around which we choose to evaluate (63) to (66) are

shown in Ffigure 9,3. Included in this diagram are the infinite radius

semi-circles V ,\/ around which the line integral contribution vanishes

by Jordan®"s Lemma. The roots of A are denoted by % (in C* and C*

respectively).

Indentations around the poles at @=ni and to=0 are also shown .

Fig. 9.3 Contours in the
(@)

Complex qg-plane
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Using Cauchy's Residue theorem and standard contour integration methods
(some of which were described in §7.4) we can invert (53) to (57) and
obtain exact expressions for the EM field in real space. The following
notation is used to simplify the algebra: T(v) = 'JTf , §(«r:) - §; , Y)Y

MUx*) €%, B(x?) =D, 3(+7) = 5‘ y 3005, G(4})= G}, G(x*)e GF,
Subscripts « and © are used when we consider the contribution from the
poles g=x and §=0 respectively. We note the contribution from the

loops at Q= and ¢ =0 is half that obtained from the residues at

those points. We also use the notation  .lim { 2-’)(‘} .t =T
S X%

The case .5 solutions for the magnetic induction vector are:
Region A
B- Ks 2 [o, 7 ,igg] *Tiztet o T TR I W L0
x /% S 4 > ) VX _’R’"‘E[‘EJ“'J,O,O] ¢ P e
45 (4) 2007 Al Y-«

+°

. A2+ Xt
- &ks.-?w r+E’[1g"X’,0"01_(€. S}—.’) |) e_-”(” (59)

. _L ZAS(’X‘) Xf‘a{
Region B
B = %K’.g [0,l7U 8] R T [ipw,0,0] | i
As (%) S 20F AYL) (¥ -=)
* ot . - iy~ %
; (“’T' B R T [45]%50,0] e
As () 2o o) [/ (G -)
~Rupets. | 7 [iXx5,0,0] E‘e'”"’; e [iavgt, 0, 0] g* X SR
24:0x) . (x-x) 22 (x). ()
speri{ Lo, i3] R Livge, 0,01T | €% (60)
As(ot) . a(Y“)n. Oy(w)

Region C
cO ’ Tr}.. » "w;i;] _Qm,.‘"{ Li:;w}' ,0 ,0] | - e:.co";“d) e'_i\r;a

8 - K. =
MR g o —
ST 2 0% astly) Y-

— poKs R &7, [ig"x-,o,o] £ | __e;l(r'—a) e_cz-s
(81)

20:(x) A mot
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In the evaluation of (59) to (61) we find the o ontribution from the branch
point at g =0 1is zero. Notice that the last term of (60) is equal to (49),
thus the magnetic induction in the central region of the excitation is made
up of the idealised result (49) plus end effects (the remaining terms of
(60). The magnetic induction in regions A and C apise solelj-( from these

end effect phenomena. |

The case S solution for the electric current density is:

Region A
potI = pers ([.im%’)"”°]§f _ Rulo i &, -5l
£ N - X
4 A Ut‘) 2 (Y:)" A;(“'I)

W)\ ¢ doe -
{ - 9 ' J? + /“ k‘ r\v R‘“ [o , 1xf Gvo s -('xr)‘ﬁ* ’] '-Ci“(i'l.f) C‘-IX}
= 5 'X—- (62)

4 - 2A.0x%) —

Region B
pid = g % ( Ei(R-G R, 0,0 & Rulo, iy ,-tprs ]| £
K 20))" Aoty (ke

-

- —1( L, =4t + ‘ . blyTewy ¥
([M )00 % A lo,ivg ;-(‘*;’J”SN]) H

A . "
2 ” 2()':) Alx(‘\":) t“’;—d
- S vy : .
- RW/UOKS r [o ? tx G ? —(x.)‘g.E.] e , -+ 1’ [o ;f’X'G", -(kr)‘sﬁE-'] ew(r—‘)e—'l.y
244 (x-) T (x-d) Zarin) o

-t

MeKs . ['i(e"—“R“l),O)o] ad_ Rus [O, 1ot G, )'0‘3&7‘}] C “(63)

A S
e 2 X As(x)
Region C
S - (R-¢ - e .
Habd = potes & (E A,a"it)so,O]iﬁ,_‘?..[o, WG, 951 ]
.1(‘4") . 2(‘3_)‘ ';(w;) .
_ pvHv-a) -ty \
(_I___Q__‘_ ,) 14 _ &L&L’,_ﬁ' . [o,‘ﬂ."‘x‘(}',-(”;a-s.] '_ed(x—.a) -'\,K.”
K 244 (x7) e (64)

The comments made previously concerning the magnetic induction apply equall
y

to the electric current density,
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The case P solutions for the magnetic induction and electric current

density (setting Ru, equal to zero for brevity) are:

Region A

(65)

-
.

e . b\ -y Liba
B=8, 3 | Lo 3] (e ‘ -1) e’ +‘3., [o,-iT,,0](€ -1)
" i Wy Al () ] -a 2o €9

o [ o3 (Y- - -t
/,,Lg',gwa (+% ,0,0] (C L )C 4 +’K,[a>,«i,o,o](¢ f1) (66)

Waug) \ Y-o Auto) %)
\
Region B
o . . shig-v) _ivt : . X
B = B 2 Lo,-iTy , ¥ ]. e | € W o, el e
e Y3 Qi () (%7 € aduy) (%)
. N Y
vg, Lov -, 01 (€50 g [0t amle (67)
. 1‘“"’:-“) _iﬁf' R R 'w‘
k7=3w{; [id;,0,0] € ~¢ 4 [hﬁ,',o,o]e,”a
#ons 0 W AL (¢ W -a) S Aul(vD) . 4y-a)
; Ally) ¢ 4 Swlvy) -
. ik :
g [#%,0,0] (¢7%1) - 8, [13.,0,0] € (68)
Sw(9) == K L (at)
Region C

- o o by ) _iw‘g b )

@ = ~Bum :, EO ,’37]-‘ » Y é'}] (e ’1)(’ ’ _31«[0"i7r°;01(c fj)r (69)
U; Al (4) “ - Dilo) )

J

o we (Hup-v) ¥ i ]
/““I - B 2 [¢$ ,0,0] (e‘ i _1) Pl —er [i%.,0,0] (e""‘fi) } (70)
Yy amip) \ e Aul0) )

o

Again, the comments made for the magnetic induction in (59) to (61) apply
equally to (85) to (70). However we see that 3, and J, in this case
contain an evaluation at the pole 4-0 This contribution (which is
pemoved as [ly/~»>o ) is a major cause of the end effects in regions A and
c . If (g"“-‘l ) equals zero the end effect terms largely disappear;
thus for maximum efficiency we require & = 27123 (=) or 2nT  where 3

is the wavelength of the excitation and T the pole pitch), This
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observation has also been made by LAITHWAITE (1965) using a one dimensional
analysis. His result was obtained by specifying that T-T dy =0

°
(ie: the net surface produced by the stator is zero). The above constraint
can be avoided by changing to a Gramme-ring winding (for a description

see LAITHWAITE,. 1975) which allows the use of fractional pole pitch

machines.

9,4,1 [Example. We evaluate the expressidns above using the physical
and electrical data of table l.l(the float bath configuration).

The first nine roots of A;(4) , (48), are tabulated in figures 9.4
(for C* ) and 9.5 (for €~ ) for three values of A (corresponding to
0.5 inches, 1.5 inches and 3 ihches). Similarly the first nine roots of
Awm (@) are tabulated in figures 9.6 (for C* ) and figure 9.7 (for C~ )
The positions of these roots in the complex q-plane are also shown; extra
poots have been plotted for completeness. From (58) we find

A* = =1 S~ 416l X (18I = % L4l

The EM field solutions (59) to (70) were evaluated using these
values of *qf and X* . The results are shown in figure 9.8 (case S ;
vapiation with =z , & =0.5 inches), figure 9.9 (case P ; variation with =z,
A =0.5 inches), figure 9.10 (case S ; variation with R , zo) and
figure 9.11 (case P ; variation with A » 270 ). Note that in these
results we have set Ru, = 0 and Rw, = 0.02 . The diagrams show the
dimensionless EM fields: B =8 /(pkor Buw) , T =T /(Liks or pmi/Bu)

The dimensionless time-averaged forces are recalculated using (1,31).

It is clear from figures 9.4 to 9.7 that the larger R 1is, the more
roots are required. In fact, for 4 =0.2 we found six roots were sufficient
to produce results within a tolerance of 5 per cent. However, for 4 =1.2
we required around twelve roots to produce the same accuracy. We did
in fa;:t compute the first fifteen roots of & and A. in C*and ¢~ - these
proots follow the same line and seperation indicated by the diagrams of figures

9.4 to 9070
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Discussion of the results: The 2z and & variation of the EM fields
in figures 9.8 to 9.11 is largely self explanatory. A good agreement in
terms of spatial variation and magnitude is found between the case S
results of figure 9.8 and figures 7.4 to 7.6 of chapter 7, (Note that a
factor of T occurs when relating these two sets of resulfs, because of
the assumed dimensionless forms). The applied uniform stator surface current
density induces a uniform and well-behaved EM field in the conducting
secondary. However if each coil in the same phase is connected in parallel
(case P ) so as to produce a uniform normal magnetic induction, the
stator surface current density is forced %o assume a form similar to that
of a single coil placed along the length of the stator.,

This explains the features of T1 and %2 in the case P results of
figures 9.9 to 9.11. Note that the magnitude of the potential levitating
force is twice that of the pumping force. It is apparent that parallel
connection will induce a large amount of circulation in 1iquid conductor
secéndaries; thus a parallel connected SLIP has greater potential for

stirring (but not pumping) than its sepies wound counterpart,

Calculations were also performed to assess the contribution from the
imposed shear flow to the induced electric currents and magnetic induction,
The case S results are shown in figure 9.12 for several values of z ,
Great difficulty with convergence was encountéred close to the end regions

yro and y:q (the graphs show the result of including fifteen roots
of As(3) ). Physically, because the fields are obtained from the curvatupe
produced when the EM field (induced by the statop excitation) {s bent to
one side of the stator axis, we would expect a gradual decrease in
magnitude of all the extra components towards the ends of the excitation
where the magnetic field lines are both less dense and less 'taut', The
dashed lines in figure 9.12 are extrapolatiéns of the results based on

the above reasoning. The calculated results do, however, give a true

indication of the field variation in the centpal regions of the excitation,



162

(@ B1
° 4
Fig.- g.n The EM Field Induced- by the
Applied Shear Flow (H= .2 )
Because JI . o(l) , it is clear that we reguire Rx_ £ for the effect

of an imposed shear flow to become noticeable.

9.4.2 Sudan®s Compensating Method. The compensating method proposed
by SUDAN (1963) is to modify the transformation of the stator surface
current density (for the case S solutions) to remove the two zero-order

modes Of the Fourier series solutions for the EM field, (59) to (W). The
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zero order modes arise from the solution of As(4):0 and are ziven in
figures 9.4 and 9.5. The contribution from these modes is removed if the
transform of the stator surface current density, K,g (where S is given
by (52) ) is made to include the term (4-%')(9-¥)  in the numerator.
The resulting expression needs a pole of order .7,’ in the denominator to
satisfy the conditions of Jordan's Lemma. The actual current distribution
is then given by inverting this modified expression. The evaluation

of the subsequent integral is easily performed since the contour contains
only simple poles on the real axis if the denominator is taken as
@-%)(4-%) (§-ta) » Where o4 and o, are (real) wave numbers to be

specified. We thus require the complex stator surface current density

K(;) to be

i&(q-) -t
kiy) - [ (27 1) goerrgvr . e ey (1)

2t (32 )(q-54) (G0

This integral is evaluated similarly to (53) and (54). The resulting

current distribution is given by; (writing &3 = (4-%*)(q-€)):

{JON ~thy ok (h-n) o
(1) e (™)™
fon A . 4 Q) L & =1)T @)
Region lksC7) 3 Ks (o) (s oty +(u’,'al>(°/;-°") (72)

Re gion B

) da-v) | _iuy TR -
Kip = 3w § 200yl 2 0)E a0y 4 @0,) ™M L)
@)=y ©4-v) oty -0y (0%~ N w0ty )

Region C Kity) = >« G2)

Equations (72) and (73) represent the superposition of three separate
tpa;qelling wave windings with wave numbers o/ , o/, and o/, » The magnitude
of each winding is obtained from consideration of individual terms. From
practical considerations we require K (y) to be zero in regions A and ¢

(when 5’<‘°‘ and y>6). Thus we require

By Xy
e, -1 =0 = 0(‘ = o + 2‘:\—“ wm mka,u" (#O)
f;-;&m-«o 1 ~ (7
- =0 = oly = ol .
P oy -+ Zi\::ﬂ‘ n m‘e?u (n#tmaro)



-16U-

The modified form of ft.IP can now be substituted in (59) to (69)

which can be evaluated as before, in theory, any of the Fourier series

modes can be removed by the above method, but in practice the physical

dimensions of the machine are the deciding influence, without further

analysis little can be inferred about the optimum choice of * and ,,

in their investigation of a slit channel DLIP MHD generator,

PIERSON (1970) and SODM (1963) use _ For the 1104t Dath

. o N
linear motor 1 ~ St and so (with W, el ) <, _0.75 and V, 1.28

However,

for these values of » and m . Further investigation on the effect of

the values of mand n on the pumping ability of the SLIP is required.

However, from the results of chapter 3 it is clear that an increase in

flow rate occurs for an increase in K the magnetic Reynoids

number based on the synchronous velocity of the excitation. Thus we
require wave numbers smaller than « for an increase in the pumping
ability of a compensated SLIP, and wave numbers greater than « Tfor an increase
in the stirring ability of a compensated SLIP,

We note that Sudan®s method of end compensation can only be used with

versatility when there is more than one slot per pole.

9.5 Infinite Length, Finite Width Excitation.

*-—_
\ )
*
L__T* crha
E T ®">0
1 a-o

Fig. 9.13 Section in the (*,? )-plane

A section through the configuration of figure 9.1 is shown in figure

9 13. We consider an excitation finite in width but infinite in length

since all y variation is contained in the travelling wave).

Vi S
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The function 39(7.@) (the second of (19) ), equals e ¢ vhen £ o , so
5’7 = 27 §(q-#) « Thus from (21) we have S = 2% $(g-) S:v(f:a)

where (from the first of (22) )

S(pa) = ™71 /43 %)

Applying the inverse transformation (10) to (40) and (41) with the ai:ove

~

value of S we obtain the foilowiI;g integral expressions for the EM field

induced in the electrical conductor (case S solutionsg only):

L4

- [ L7 em, iets] o e Pap

B = Sk <Y (78)
7 . -ty {~«, o] * 2 e -P*
I = pkse (ke Rey,
o Tea n
L4 S
where K oty p? and ¥ k4 4 (Rom ) (78)

We can evaluate (76) and (77) using contour integration in the complex
p-plane as in §9.4, We identify three regions of interest; region D (x<o)
region E (o<x<a)and region F (x>a) , As before the choice of
contour for each region is made to ensure the applicability of Jordan's
Lemma. However we see that there are branch points at k.o Y fu:t ‘e,
and a branch line must be constructed, (see §7.4), joining p=+'w with
p= -i« . Thus we not only require a summation over the residues of
but also the evaluation of a finite integral which. arises from a line
integration around the branch loop.

We choose not to perform the integration above since extensive‘
results for this have been obtained in §7.3 when f =0 ang the conductor

is treated as a half space.

9.6 The Induced Velocity Profiles,

The problem of viscous flow into a finite applied EM field is extremely
complex., Some progress has been made with Hartmann-type flow (see §1.8)
but apart from the work of KOZYRENKO (1871 a, 1371 b ) we are not awape

of any work with finite travelling wave fields.
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Below we give a brief order-of-magnitude argument for the expected

Tlow development.

9.6.1 Finite Length, Infinite Width Excitation.

Fig. 9.14 Flow regions in the (;** )-plane

Consider the flow of a viscous conducting liquid into the SLIP shown
in figure 9.14. We can separate the flow into thin boundary layers close
to the surfaces Z-o and a-i , and a free stream in the centre of the
channel. In the boundary layers we can assume the velocity is one
dimensional (parallel with the j, axis) and of small magnitude. Over most
of the free stream flow, the velocity may also be considered one dimensional

and parallel with the y axis. However, close to the entrance and exit

regions, y=0 and respectively, there is a rapid change in the
velocity with y. . From the continuity equation V.v =o0 we see that
and 50 . (see S5.3) « Find w ,oCvJ

there. Thus circulation in the tya) plane occurs mainly in the entrance
and exit regions of the SLIP. The extent of this circulation can be
estimated from the graphs in figure 9.8, the results of chapter 5 or from
the Fourier series solutions of §89.4. Using the latter our estimate of
the i/e fTolding length for the induced body forces (and thus the
circulating flow) is I/<£ {¢4/] for the entrance end and for

the exit end (see figure 9.14).
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9.6.2. Finite Width, Infinite Length Excitation.

Following 89.6.1 we can identify a free stream and a boundary layer

for the flow (figure 9.15), In the central region of the SLIP the fluid

is induced to move along the } axis (into the paper) with a velocity
dependent only on 2 . From Fv,0 We have $ + *-£-0 and so W.o<u,
in the regions where & -*>(£) , (@t x”~ and *»<* ). The width

of these circulatory regions is of the same order as the width of the

regions in 89.6.1. We conclude that the conducting liquid is drawn in

from the regions outside the excitation (where y =0 ) towards the central

axis where vizZ) dominates. The flow pattern would resemble a helical

spiral (figure 9.16).

Fig. 9.16 Spiral flow pattern.
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10, ELECTROMAGNETIC INDUCTION IN A UNIFORM PLANE SHEET

BY AN OSCILLATING MAGNETIC DIPOLE

10.1 Introduction

We have shown (in chapter 6) that it ig possible to form a travelling
magnetic field by superimposing suitably time-phased magnetic sources.
Thus ppoviding‘we can neglect mutual induction effects between adjacent
teeth it is possible to deduce the total EM field of a LIM from a
knowledge of the EM field produced by a solitary tooth. The field of
a single tooth (which resembles that of a bar magnet) may be approximated
by (for example) the superposition of magnetic dipole sources over a
tooth volume., |

The EM field produced by a magnetic dipole source placed in free
space is well known, but when electric conductors ape introduced inte
the configuration the source field is modified by the secondary fields
generafed in the conductors, and simple analytical expressions for the total
EM field are difficult to obtain. For the SLIM/SLIP configuration, the
secondary can be represented by a conducting slab of infinite extent, and
the primary can be modelled by placing the magnetic dipole above the slab
with its axis normal to the slab surface. If the slab is of finite
depth continuity conditions at its upper and lower surfaces must be
considered before complete solutions to Maxwell's equations can be obtained,
This problem is considered in chapter 1l. Here we consider the physically
simpler and more tractable problem of a slab with conductivity o apg
thickness 4 , where d is allowed to become infinitely small but
Ja“,(ca)=)c » Where & is the integrated conductivity (which is non-zerg)

~o

This 'thin sheet' configuration is applicable to problems where the skin
depth of the induced EM field is greater than the slab thickness,

The most important work on thin sheets was that of PRICE (1943)

who obtained the boundary condition at the Surface of the sheet in terms
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°f the non-uniform distribution of conductivity and the scalar magnetic
potentials of the inducing and induced fields. Other methods and further

references are given in the review of ASHOUR (1973). The problem
considered here and the solutions we obtain are not new - RIKITAKE (1966)
derives integral expressions for the magnetic potential using Price"s
method - but our solutions are obtained using a different method of
analysis. Using this method, which was first suggested by RODEN (1964)
and later modified by HUTSON et al (1972), we derive a linear integral
equation connecting the electric current density at the surface of the

conductor with the inducing magnetic potential. Integral solutions to

this equation for the current density are obtained using Fourier

transformation techniques.

10.2 The Integral Equation

The method of derivation is that given in Hutson et al. We consider

a particular result of their more general analysis. An integral solution
is obtained for the EM field produced by an oscillating vertical magnetic
dipole placed above a thin sheet of constant integrated conductivity

occupying the plane of cartesian coordinate space, (figure 10.1)

The £ axis is chosen so as to point into the conductor.

Fig. 10.1  Thin Sheet Model

Suppose ' iIs the vector potential of the induced magnetic

induction vector <&'(E,t? defined such that

- = Va and V.t£‘. 0 Q)
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Denoting the scalar electric potential by 4(f,t) the electric field & (fi.t)

is given by
€= -3¢ -3 -xvV¢ (2)

where WAZ(ft) = A%(g, k) is the magnetic vector potential of the
dipole field in absence of the conductor S . We assume all the EM field
solutions have the same time variation as the source and write:

Bl - Ble™ | Elre) ~Emet Li0.0.Tcsre'™t , Aeres- peeyet=t

and %(rt)= 4(f)e it We similarly define the fields with superscript

1: and o
Using Ohm's law (1. 7 ) the current density J(f) in .S becomes

TekE « -iox( A+Q~) - x Py -

We also have (FERRARO, 195%)

. . J(z') os’ 4
ﬂ(s-ﬂﬁ.”r (¥)

where the integration is w1th respect to the primed variable. Combining

(3) and (4) we have the result (writing 7= ‘—‘L/“)

T(s) + 5w f 09 ds' v Vyerr = -3 8% sy S (5)
474 Ig-¢') '
s
For an infinitesimal horizontal current loop (vertical magnetic dipole)

we have J; =E3 = A37=0 and (5) gives %:}:o « From (3) since V.J:0

we have V'¢=o0 » and so ¥ must be constant to satisfy the decay

conditions at infinity. Thus (5) becomes, writing 1. [ =, Y2}

£ [xhyh2) 0,
J) - _L’.Jf (£) du'dyt = -iux Q%15 (6)
" aw

-y
For a vertical magnetic dipole of moment M=w [o0,0,¢] , situated at
the position [ o, o,~4] in free space, the result of Ferrapo (p

gives

/2
A%(t) = m [7,—1,0]/{x‘+3»+ (mmt}‘ )

This choice of m corresponds to a magnetic dipole orientated towards the
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conductor when t:0 .
Equation (6) is an integral equation of the Fredholm type with a
symmetric kernel. We now derive integral solutions to (6) for Jrt)

using the Fourier transformation technique.

10.3 Solutions in Transform Space

From (1.32) and (1.33) we define the two dimensional Fourier

transformation and inverse transformation of the function M ‘”%2 ) as,

respectively,

g:{mx-y.z)} = f1 (pg,2) = ff“(x-g z) Cd ”wabxo!7 (8)

-0 =00

7;{ f:lfr"v.z)} = Mluy,2) ’(Z) ” fi pgoes <7 ZLM (9)

-0 -3

The two dimensional form of the convolution result (1.35) is

My NG .z) = M Gelg2) N Censgogh 2) il * (10)
g / ) ity

—b-
Transforming (6) using (8) and relation (10),we find
T L 7 + 2 - . Aow .
I W'Q'i[»uf = -vex A (11)

The solution for 2 in (11) may be written in two ways:

A

A PR -eaa
! o L] -
4nqy iri
~ \ ¥ A N L
or J = oy A~ «+ (wmuw/ﬂwﬂb }’ { !'5} (13)

w gt
i )
The form of (13) makes clear the relationship: total current = source

currents + induced currents; however, for ease of analysis we use the

result of (12).

Transforming (7) using (8) we have

Aos W P7*99)
A (pg2) = M [/ Lyp-x,07e” d,wl; (14)
A 1 % f? * @,g,s}?/a.
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The evaluation of the integral on the right of (14) is accomplished
using symmetry arguments for the reduction of the exponential factor
in the kernel to trigonometric functions, and the following integral

results given in the text of BATEMAN (1954 ):

cos e dx 2 _
oj‘ {"'1* *21}3‘. (9%2‘)D‘0 k.(?d ,0:‘) (p.ll)
, 1, 20 . - Fic
f y K (p 'ﬁ*z)/)uv»q,; dy = Tq € (p.,112)
o (g 2Pk
where K*< p*+q? (15)

and K()is Bessel's modified function of the second kind of ordep unity.

- . ~el(Bh)
We find A"~ = 2omn [g,-p.ole (16)

We also require the transformation of 7, + Using (8) we have

J c(fhyg)
dx
?z III “‘*3 - "LJ (17)

Using symmetry arguments for the kernel of (19) and the following

integral results from Bateman

Cos Px dx
J‘ (;:4—??:;;7‘ %(PW) (p.11)
IS A—) - Q-Kz (p.“g)
[ Ko (PVyrez 6057,70‘} = . <
°

where K is given in (15) and Ke(g)is Bessel's modified function of the

second kind of zero order; (17) becomes:

+ .Lf = af _-k&
%{o:l * < | (18)

Substituting (18) and (16) in (12) we obtain the following result for

the transformation of the electric current density:

A

2 b

Jd = anxom fq,.-r,o]e_ /(KM:F) (19)
where we have written ¢ = /2q . Transforming (4) using (8) we find

A - oo 1. Y {m} (20)

= fm
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Substituting (18) and (19) in (20) we find

~K(h+3)

B = pemxom Lycnele -

K {x+wp)
The induced magnetic induction B'-ya A* .« It is easy to show using

(21),that
-le#E)

BY = (Mpxwm) [-p.-q ,ix] € (22)
(K-n'.r)

10.4 Solutions in Real Space

The magnetic induction vector @ for the total field is given by

——

B =Bt B> (23)
where B" = Pa A"  becomes, using (7),
- =3,
B~ w [-3x(2e) -3y (2rh) (70‘*7‘)-3(3%)‘] fx‘+7‘+(z+4)‘} e

Inverting (19) and (22) using (9) we find

™ ce

Lq,-p) 0 -ch 4Geeqp)

J- = W X

= LR ot Ck+ipd Olqu’ (25)
P~ : ~wdhed) _oox

E' !5:"“"”‘[ C-?>-9, "KJ. e e (2 lﬂi,)dft‘?, (26)

(k+cfp)
Unfortunately is does not appear possible to write the integral expressions

in (25) and (26) in terms of known functions, However, some information

can be gained using the analyses below.

10.4.1 Series Expansion Method. If g 1is assumed large (implying
a large integrated conductivity since = wmX/2), the following result

can be used:

(koip 1 = G 5 e i -
n-op
(Bateman)
J 6-“200-! px - dp = zq, . ‘q (‘;\/x“,,.%‘) /(xl'*?")
0

(x‘;*gl.‘,zb)“-

fq,K("l,Jx%z') cosw dq, = 1£ (x%sr)'t
o]
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v
the solutions for J and B may be written:

| M, - ¥ ,&
/.‘_J_' = bwm [7,4,0] w{» Ge) T {W} (28)

. ) _ > , . r3
gt = wm Z‘ (‘F) “3&-(‘7 { 3[1 ?'07 (A*T);g— “e o,x‘ ]f‘*‘z 1y, (29)
neo (x*eyts @Ge)) (x*ag* ged)*)2

The total magnetic induction is then given by (23), Results (28)
and (29) are exact but, unfortunately, convergence is extremely slow., For
a first order approximation (m=o) we see that the total normal magnetic
field ( §L+ g ).§3 equals zero on %=0 , as we would expect since this
is the infinite conductivity case (‘5771) « In this case the discontinuity
in the tangential magnetic induction at § accounts for the surface
current density and the boundary condition (1.38) is satisfied, The
behaviour of the electric current density is dominated by that of its zero
mode. From (28) we see that along Xx=0O and y=o the electric current
is at its maximum magnitude when y= thi and »x=ths respectively, These
points correspond to regions where the magnetic field spontaneously |
forms inside the conducting sheet at a time t=0" (see chapter 12) and
their position agrees with the physical reasoning of that chapter,

For a finite 4§ further terms must be included in the evaluation of

J and 2 and the series must be summed numerically, This is not performed

here.

10.4.,2  Simplified Solutions.  Consider the function ”(x\y,z ) ; if
A
/CI(M,? ) = M (k,a) where k is given by (15) we can derive the result

(see Appendix I ):

g

A

A ~v(prg9)
Mxy,2) =@j;p g hlka)e dpdy = ;‘-ﬂ f“(ﬁ%).k‘a—o(kp)dk (30)
R [+

g

where Jo(kp) is Bessel's function of order zero, and (1='x‘+ul~ « If the
transformed solutions are of the form 4'fﬁ(k.2) or 1‘1,#3(:.2) we find
their inverse can be written as in the right of (30) but with Tolxp)

replaced by Ji(kf) , Bessel's function of order unity (see Appendix 1 ),
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However, using the operator notation £ =<ip % -3 and the form
of (30), the results (25) and (26) can be reduced to:

oo
2 -
/,QI = Zw;Ft' [ %) - %,, O] f K. ;TO(KE)Q Mdk (31)
o) (k*JF)
N A r R t ) ~kthtz)
3 = mﬁz [ Mz ,3‘3}! ,—('-3;1+%;-~)] TJ’L(kp)e ol (32)
" ° (kfif)‘

The use of operators in (31) and (32) ensures the convergence of the integ-

rals. It is clear that we require an evaluation of the integral I , where

. Tt A
IK) = f_'_i_(':f_)__f_ o (33)
o +tf .

Integrals of this type have been encountered in chapter 8., It does not
seem possible to write I in terms of known functions - except for particular
values of g and «ﬁ » We can expand Tof k¢) as a power series and integrate
term by term but this leads to a summation of sine and cosine-integral
functions. A numerical approach is possible using Gaussian quadrature
over [0,0¢) . Alternatively T can be reduced using the method of
Appendix II.

Because we require simple results (a full numerical evaluation of the
EM field of a SLIM is performed in chapfer 11) we merely consider the
behaviour of I when g is large and 4 is small, corresponding to a

dipole source placed close to a sheet of large conductivity. We have the

result o

Jolkp) . .
I6) = ‘m—) dr o Ho(ipor~ Yolspe) (OBERHETTINGER p«6)

[~

= Kolfp)~i {L(M)—Lo(gp)} (34)

where He(s) is Struve's function of order zero; Yo(1), Ki(5) and To(s)

are Bessel functions of order zero and ho(§)is Struve's modified function of
order zero. Basic definitions and recurrence relations for these functions
are given in Appendix I ; further relations are given in the texts of
ABRAMOWITZ and STEGUN (1965) and GRADSHTEYN (1965). From Appendix

we have the asymptotic results (j¢ >>1)

: i ‘
Ko (FP] ~ .g_ ‘ZE%S IO(F()"&'O(F?)A« i;‘? _QZJ(;)"}' E (35)
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We can now obtain expressions for the asymptotic behaviour (? large,

R(fL? ) of J and 3' on §' by substituting (34) in (31) and (32), using

(35) and carrying out the differentiation. We find

. - -Bt .
el ~ 2mp [y, -xs o] {‘/:i:'% “”';-:;-;s} (36)
* . o T -f¢ .
R AR LS s 8
~ mp [o,o, 1] {L?'?? + i@ .%;‘Ee } (37)

Results (36) and (37) describe the decay of T and B i at distances
away from the dipole source. The total magnetic induction is given by (23),
Because the physical variation of the electric currént density and
magnetic induction is described by the form of & { Je ‘M} and & { 8 c‘;"t}
respectively, we see that R {1} and ®R[B] describe the field at & =o
whilst #{I} and #{E} describe the field at &~ Z, « From (36) an.d
(37) we see that the induced currents and tangential magnetic induction
decay exponentially in S at k=0 when the source field is at its maximum.
When b =-X, the source field is momentarily zero and these fields
decay inversely proportional to (distance)’. Similar arguments may be ..
applied to the normal magnetic induction. As in §10.4.1 , the total normal
magnetic induction on S’ is zero at t=0 . This agrees with physical
reasoning since we have only considered the first term in the P ~expansion
and this corresponds to the infinitely conducting case.
A full consideration of the behaviour of the magnetic field produced

by an oscillating magnetic dipole placed above a plane conductor is given

in chapter 12.
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11. A COMPLETE LINEAR MOTOR ANALYSIS

11.1 Introduction

Using a more detailed model than in previous chapters we obtain integral
expressions for the EM field induced in a plane secondary conductor by a
LIM. This model takes into account both the presence of the LIM core and
the three dimensional structure of the stator face. The integral expressions
ape evaluated numerically using the physical data for the float bath SLIM

(table 1.1) and the structure of the induced EM field is shown in three

dimensional graphic form.

11.2 Single Tooth Analysis

Our starting point, as in chapter 10, is an analysis of the EM fleld
produced by a solitary tooth. In that chapter it was suggested that a
tooth's EM field could be found by the superposition of magnetic dipole
sources over the volume of a tooth. This procedure is adopted here but
jnstead of a magnetic dipole we shall use the electric current filament
suggested by CLEMMOW and DOUGHERTY (1969 ) as the basic constituent in our
field analysis. The magnetic dipole configuration can be recovered by
'bending' the current filament into a closed infinitesimal current loop
(this we achieve using iine intggration techniques). Our assumption that
the EM field of a LIM can be dedﬁced from a linear addition of individual
sources is equivalent to the physical assumption that we can neglect
mutual induction between adjacent teeth. Thus our results will be valid
providing the tooth pitch ¢, (the distance between adjacent teeth) is
large enough = we may arbitrarily define the minimum tooth pitch in terms
of the folding length for the idealised EM field of a solitary tooth
obtained in §6.2 which is given by (6.14). Thus as far as a solitary tooth
is concerned the stator core is of infinite length along the motor axis
(except for the end teeth which fsee' a semi-infinite stator core). The

core is of course finite in width. Mathematically it is far easier to
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consider a stator core of infinite expanse iIn the plane of the stator
face since this avoids complicated corner and edge boundary conditions.
Because soft iron tends to enhance a magnetic field (it increases the

number of magnetic field lines per unit area) it is clear that an overhang

STATOft

Nk/-Ci>NX>ocroR

Fig. 11.1 The Single Tooth Configuration

of stator core will slightly exaggerate the true extent of a tooth"s EM
field. However this does not affect the applicability of the results
obtained here to the design and performance of linear motors with finite
cores.

The single tooth model is shown in figure 11.1. A tooth of length
2Em™width ¢junhand height (U)m , is placed on the lower side of a stator
core as shown. Cartesian axes are chosen with.origin on the surface of a
plane electrical conductor (thickness L metres) and the 2 axis is
chosen to point away from the surface. The base of the tooth is assumed
to be at a height ~ metres above the conductor and the stator core
occupies the region >7>/ .

He introduce the soft iron stetor core into the mathematical analysis

through a boundary condition (to be specified) at 2 * £ . The magnetic
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permeability of soft iron is very large (typically » and it is
normally field dependent. The iron is also subject to hysteresis effects
changes in magnetic flux density lag behind changes in the applied field.
Here we assume (as in all of this thesis) that hysteresis effects may be
ignored (but see JAMIESON (1968)*for an analysis where the hysteresis
curve is approximated by Heaviside step functions) and that the iron is
fully saturated (i.e. & /# = constant). If we assume the stator is
laminated its electrical conductivity o- may be considered zero and so
no surface currents can form on the core face. (This remains consistent
with previous work using the case 5 boundary condition because there
the tooth gap structure was replaced by a continuous current sheet which
was placed on the stator core ).

IT we regard as infinitely large, then for the tangential
component of magnetic induction, &t , to remain finite on the iron side
of the core face we must have infinitely small there, since by (1.5)

&L n * Fr°m the boundary condition (1.38) we see that for a
laminated core is continuous across the core face. However, in the
air gap, ~ and so we conclude the boundary condition on the
magnetic induction at the core face is 4 .o - The normal component

of magnetic induction is continuous across the stator face by (1.39)

Stato™ coat i¢s n cr=°
,\W NANTANNNNVV WS\ e o AW o sNNNW NN N\_AAA NN \
TOOT* sicr/ a=o (’u
A 1- 1*Z.
A\Zr GBB . cx<  zb)
I - ~a- Z"o

QI M oo
VA B B By A B B A A A B B T A VA B AV AR A A S B VRV A

ff. 0

Mctd -

Fig. 11.2 The Mathematical Model

* JAMIESON R A (1968) Eddy-current effects in anlSr! 7
rotors™ Proc. IEE, 115, 6, 813-820. ° N * yne”™°~ed iron
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The mathematical model we use is shown in figure 11.2, Region T
(z>4&) is the stator core, region H (A»z>0) is the tooth/slot/air gap
region, region Il (0>z>-.) 1is the electrical conductor and region IV

(z<-+) 1is a non-conductor. The magnetic permeability of ] is taken

to be infinite but in all other regions it is taken to be that of free

space, u, °

11.3 The Field Equations

11.3.1 The Working Equations Of Region Il . Clemmow and Dougherty define
an electric current filament JJ 1) at the point f.f, to be
-j(.f) = € S(x-x) f(g-;.) Jce-z) = & S(L-10) (1)
where & is a constant vector’defining the orientation of the filament and
S5(s) is the Dirac delta function. We place the time varying filament
ai' {j‘“é at the point £«fo in region [I . In what follows we «
assume all solutions to Maxwell's equations have the same time variation

as the source and write (with the usual notation ) B = Bs) e,“"",

QU‘ » e
Ege) = E0)e™y Jiryy. et

It is clear from (1) that <}('.')
does not satisfy the charge continuity equation V.J, =0 , (1.6), at 4:£,
This discrepancy can be rectified by introducing a potential F(f)siepcr)
(where L 1is a scale léngth) which sets up a space charge at f=1,
allowing continuity of the electric currents there, The total current in
region II is defined to be

I - 4-VE (2)
The functioﬁ £ 1is related to the electric potential &, but the
dimension of ¥ /%. is that of electric conductivity. The continuity

equation V. Irso’ is satisfied providing & is chosen so that

V- 73 -
From (1.4) we have
VI‘ @. = /"‘IT (u)

Taking the curl of (4) using the relation curl curl = grad div - Vz. we

# , with dimensions of current density
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find, using (2) and the relation curl grad = 0,
VB = —pVaj (5)
We now define the dimensionless variables x*:x/, LT TIUNY A% YR
a'sa/n , bP=b/n, d*sd/n, I =R /W ,Ctsclh, Aenjy PTECN
and 2Zo* =%, /4 where k is a scale length (taken to be the thickness of
the conducting region). We shall also write B3 /}«L + Only starred
variables will be used from now on so0 we ignore the stapr superscripts,
Substituting for ? in (3) using (1) we find the 'current' potential
P(r) satisfies the following dimensionless equation
(éx‘ )‘;‘ :;) ¢ - (C! ;-x + Cz:_y. +Gs S}z) SOy Styy0) §(e-z0 (6)
Similarly from (5) we obtain the following dimensionless equation for B
)z*) E. a2, -G, C.;‘.X-q%] () (o

)Z‘
In dimensmnless component form (4) becomes, using (2) and (1)

22080 382, 28] [ac]san (30,2, 3]

ETRTHTY (8)
11.3.2 The Equations of Region DI . In the conductor the electric
current density J is that induced by the source in region O ; it is
related to the induced magnetic induction B by (1.4). We have
R EEER] (#)
where B is obtained by solving (1.11). We shall assume the conductor
moves with a constant velocity V' parallel with the Y axis. Writing
¥> Ve, the dimensionless form of (1.11) becomes
(-‘f+ -,‘E;:,+ :;) B = tRB +Ru %%— (10)
where ]eo._c',i_l,‘, and Fua = l{f_» is the magnetic Reynolds number fopr the
motion of the conductor.l
11,3.3 The Equations of Region IV . Here the conductivity is zero,
so (l.4) reduces to the following equations
L S L | (11)

?9-’” 42 . IX  Ix ¥
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(1.11) becomes (_3_“+ _;_,,311‘:) 3 = o (12)

In all three regions we have from (1.1)

28 L8 38 _ o (13)
% ¥y o

The three dimensional partial differential equations (6), (7), (10) ana (13)
are solved for ¢ and B using the Fourier transformation technique of |
previous chapters. The nature of the discontinuities in these equations
and the boundary conditions for the EM field are made clearer by considéring

the transformed differential equations in the three regions.

1l.4 The Transformed Field Equations

The two dimensional form of the Fourier transformation (1.32) for

the function ﬁ(x.y.z) is defined to be

~ _ Pxog?)
Mpg.2) = 1 {M(a; e) [[ My, e’ cbx dy (1)
The corresponding inverse transformation (1.33) is defined as
7147,7)
M(1~y 2) = J {M(Mz)] (zt)' f”(pq,z)e odp g (15)

11.4.1 Region Il . Applying the transformation (1%) to (6) we obtain

ﬁ
for the function @(p.y,2):

2 2 . R '(?"’*170
(__ _K )¢ - (-v?C: ~19Cu+cy d ) e’ $(z-2.) (16)
da ,
The Fourier Transformation of (7) becomes
dz+ ;
d* _ o 2 _ _ci(fm”.) e d
! ) 2 . '.(”{"77")
(B -%)8& = ve (pa-g ) Itz (19)
The Fourier transformation of (8) becomes
i B-ah = ipd e et
ig B - gh P 2> (20)
.5 o, — e d ¢ v(Platgpn)
vphoe 1z WP rae $(z-3) (21)
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. A . ” "(Plof”o)
where in (16) to (22)
K e e g (23)

11.4,2 Region II[ « The transformed forms of (9) and (10) ape respectively

‘A . ” ” " A . oa oA
T-[-af-dp, Bk phegd] (24)
A’B - '3
s : (25)
where Y = k' v d (RomgRun) (26)

11.4,3 Region IV . The transformed forms of(1l) and (12) are respectively

_\;1,33: g%_ ; -3; = ~ur8§ 3 f'82= 1’8, (27)
4B _ B (28)
Zb

In all three regions we have, transforming (13)
ol SURETY SRPIY § (29)

dz

11.5 Boundary Conditions

11.5.1 Physical Conditions. From (1.38) and (1,39) we see that B is
continuous across a boundary; because all boundaries in this problem are
in the (x.y) plane we conclude that both 'E and ;—‘-% (by (29)) are
continuous across the interfaces at 20 and Z--1 . For reasons
mentioned in §11.2, we take both B, and B, equal to zero at the stator
face, SO i‘zo and §1=O on Z = 'l\ .

Physically, because region I is non-conducting it is clear that the
normal component of _:IT should vanish on the stator face (which is

consistent with the specification that 2, and B, are zero there) and

also vanish on the surface on the conductor. Thus we require %% =0

~
(and so ‘5"9 =0 )on z-o and Z--1 . Finally we assume the EM field
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decays as Z-»-w in region [\ .

11.5;2 Discontinuity Conditions on z-z, . Consider the equation

2, [3
%- K' = o §(z-3.) » where \I':*;(Z) + Integrating across
the discontinuity at Z-2. we find [g‘% ]z_ -k‘ﬁr dz «x , This
Al z°¢
result indicates that 3‘_* is discontinuous across z. 2. by the amount
z _

ol .

An examination of the equation d% _iy = 49 . $(z-2) 1s made
dz dz

clearer using the substitution Y= do . After substitution we find
z
d {48 —wp} = d fusz-zr] , which inplies a8 _yep .
dz oz dz [ } ’ mp s C’IE-‘ -k‘0 —dS(?"&) -r?

where § is a constant. This equation is similar to that considered earlier,
Integrating across the discontinuity at z-z, 1leads to the result . ::l
(which equals 4(z) ) is discontinuous by an amount o« there. Applyj_n;
the above analysis in (16) to (19) it is clear that the results of table

. L pxe )
11.1 hold (writing £ = C‘(P e )for the discontinuities acposs Z-2, .

A . "~ A A A A
Field ¢ ﬁ‘—fi B Beojdlo ) ak ) dBy
z dz z
Discontinuous .
by Ec, -E(;,c,ﬂ;c,) E¢, -Ee, E.c\;cg Eipey & (3¢,-4¢))

Table 11.1 The Field Discontinuities at zZ-z,

We note that the results of table 1l.1 satisfy the discontinuity conditions

required by (20) to (22),

11.6 Solutions in Transform Space

4 ' A
11.6.1 ¢(f>.¢1u‘z) . - - Subject to the condition z‘T'f.-.-o on z+£ and
‘ z

A
Z=0  we see the solution for ¢ in region I (4 >270) is of the form:

- D, wih K(A-
@ e Z >z 50)

Dy coh Kz ZE < T
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Applying the discontinuity conditions of table 11.1 for &> and ;Lg’ we

obtain two equations connecting the two constants P=Dy(pe) and Daad, (pg):

D, ok k(R-%) - D o K = Kcq ' }
(31)
D nh kh-z) +D, wub 1kz, = i€ (Pea+gcy) /i

The solutions obtained to (31) for D, and D, (which are given in Appendix I¥)

can be substituted in (30) to give the following solution for ¢ (po:2)>

( .
Cs anh kz o «(h-3) . i(pcwg,c.) o k2, @oh «(k-2) ( )
. 27 Ze
J ank Kb k o &
Vol
¢ = E . (32)
=C3 amb k(h-2.) ol ez 1(Pa%s) ol z ook ik -2
- +
bk b, K o kR (z<%)
L Y

11.6,2 i(?o‘]ﬂzy

A A

(i) Region IL . Subject to the condition B=0 , B,=0 on Zsh , we

see from (17) and (18) that the solutions for 3 and B in ocz<R are

’%‘,2 = hi,o owh w(h-2) Z 7 %o

(33)
H:,z e ¥, N:,,_ e k2 r P

where L, L, etc. are constants (functions of p and 9 only), Applying the

- A A
discontinuity conditions of table 11.1 for B, , & , 3_2.' and %l% we find

{L«} ok i (h-2,) — {M‘} e {”’}c"“' = {Ec‘} (35)
Ll ﬂ; I 'EC|
R cod « (R-%) -[Ma} &KZ.* Na} ke _ 93

{L,} M, {N, £ {-Pc, f (35)

(ii) Region H « The solution to (25) may be written in the form

A ¥ -¥E
B-lTevge (36)

where [ and @ are constant vectors.
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(iii) Regionﬂ « The solution to (28) may be written in the form

- KE

B-Re (37)

where B is a constant vector,

It is clear that applying the boundary conditions discussed in §11.5
produces a system of algebraic linear equations connecting the constants
in (34) to (37). This system can be solved either by matrix methods
(using Cramer's rule) or by direct substitution. To aveid unnecessary
complication we shall use only the boundary conditions relevant to our

direct substitution approach outlined below.

(a) Our starting point is the solution for L, and N, in terms of M‘ by
combining the lower of (34) and £35). Thus we have h,= k, (M, )
and N, :z=N.(M,)
(b) On Zz:0 ’g,_ is continuous. Using (36) and the lower of (33) we find
T.+Q, =M. +N. . Combining this result with (a) gives P, =7, @,,M,)
(c) On Z=- ’/8; is continuous. Using (36) and (37) we find
e, e’ = R.eF + Using (b) we see that ®@,=q, (R,, M,)
(d) The normal component of magnetic induction, %3 » In region [T is
now found in terms of L, (in 272 ) and M,,N, (in z<= ) using (20)

a A
and the results for @ and B, in (30) and (33) respectively. Thus

we have (using (a) )

A

By (L) . E>%e s where L =i (M,)
A
B = . o

B.a(MA,N:.) z <z, » Where Np= Ny (1)

(e) On Z:0 , %, and ‘}?g are continuous. Using (36) and (d) we can
find both Bz and ®; in terms of M, . Thus we have ﬁ“”ma)sﬂsﬁﬂxth,)
(£) In region IV, we have, from the third of (27) using (37), R=9% /p
The second of (27) gives tjue result ’%, = :'—kcf?-‘ eXZ
(g) On Z.-1, both é, and ‘_g‘.;—'- are continuous. Using (36) and (f) we

can eliminate R, to give P;a 7,(Q;)and then substituting for P, gives
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Ro=R (@),
(h) Combining the results of (e) and (g) gives the expression
7, (M,) = fa (8:(M:)) which enables an algebralc expression to be found
for M. .

(1) Having found M, we can obtain algebraic expressions for B and Qi
(using (e) ), R, (using (g) )y @ and P (using (b) ), L, and N,
(using (a) ). Thus %, is now completely specified in region II by (d).

(j) The e;cpression for i. in the three regions can be found by repeating
the above analysis, However, the procedure can be shortened by
using the symmetry of (34) and (35), In many of the equations for
we can immediately obtain their correct form by replacing (-E«) by

A

(€¢.) and (~pG) by (46) in the appropriate expression for B, .

Direct substitution of the constants into (33), (36), (37), (d)
and (£) leads to a complete description of the magnetic induction in
the three regions. Expressions for the constants above are given in

Appendix IZ. We see from these expressions that:

(i) The vertical component of the electric current filament C; only
appears in the expressions for kiy hay M,,ﬁ" N,and N; . We conclude
that vertical source currents in region II do not affect the magnetic
£ield (nor the electric currents)induced in region I0I. This is
perhaps to be expected since we specified that the normal component
of electric current should be zero on the conductor surface. The
conductor, of course, screens the source from region [V so the
magnetic field is also independent of ¢, there,

ii) The following relations hold; pfi.47 and P8.=9@ o+ From
the third component of (24) it is clear that these relations specify
the condition that 5’, (and so J; ) is zero inside region II[ . We
conclude that the induced currents are all in the plane of the conductor,

physically, unless free charges are available in the plane conductor
]

the electric current cannot form closed loops out of the (xy) plane,
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?gcause we have neglected displacement currents (see chapter 1)
fhe time of relaxation for the conductor becomes infinitely large and
free charges are instantly dissipated. However, by (1.9), 1if
v (L/ a B)#0 the motion of the conductor itself induces free charges
(for example when V=V(z) ) and J; 1is not necessarily zero everywhere,
Mathematically, we see by taking the curl of (10) using (9), that J,
also satisfies (10); however the only solution to (25) (the transform

A

of (10) subject to J;=0 on Z-0 and z.-1 when v-Ve, is the

trivial one.

~

For brevity we shall give the solution for B inside region ]]] (the

conductor) only(see Appendix I¥ for the remaining solutions). We find

,’é _Ef?]Y(1a- 76 Yk zrere_ ~¥2
HERHE b AR R
B, = iE (49-2a) ok x(R-2) ‘(Ym) e, eVt (39)
A I '
where A = {(‘g;)g"-}} Yo kf o+ {(%‘5)@‘2 1} k acnk il (40)

The electric current density is given by (24) but for brevity it is not

included here.

11.7 Tooth Construction -

i

From the analysis of §11,6.,2 it is clear that for region 1T (the
conductor), unlike region II (the air gap/stator face), only components
of the source currents parallel with the conductor surface have any influence
on the induced EM field, Thus as far as stator losses are concerned,
vertical source currents merely produce ohmic losses and so the stator
windings should be layered parallel with the stator face. Henceforth we

ghall assume €3=0 ,

 ox+
11.7.1 Coil Configurations., Writing E;ef(r ”o)in (38) and (39) we

(% ) ¢ ( pXe
CEIP) ana ¢ e M

see that the terms Ge appear in the transformed

field expressions. These terms arise from the current element positioned
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at the point (o,fy) in the plane 2*» in real space (figure 11.3).

Writing X* umHXx6 and the position of the current element

Fig. 11.3 The Plane £=Z0

in relation to the fixed reference point (u,v) can be obtained by choosing
appropriate values for *c and ~ . 1f the orientation of the element
is along the line ~ ,Wwe may write S =£/,U ,0]] where
X< is a small positive increment in the direction of the x -axis and I

the magnitude of the applied current. Thus we have,for a current element

I & C (29 @D

Note that the choice of £ here implies the alternating current is Fflowing
in the direction of /f? at b=o0 ,
Combining an infinite number of current elements along the line
yxtfx.r-} between the points [*>>%) and , (see figure 11.3),
is equivalent to integrating (41) with respect to r £ between X, and x2 .

This infinite summation produces a finite line current for which

+ @ orjle a2

We note that this result can be extended to include the effects of a

current sheet. For example, writing > =X.7 i RO ok & - and

integratine 0.2) with respect to e from o to N0 includes the effect of

a trapezoidal current sheet (of length t and slant height ) Hhose

vertices lie at the points (Xx,-, (x. L
* g="»1j3 )
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It is clear from figure 1l.4 that any closed current loop can be
obtained by combining the appropriate number of finite line currents. If

the polygonal loop has N sides and the N vertices lie at the points

34 Ceany
l iy
(W,V) fe f."ﬂ;‘at)
M
An _-- %
(Xma ¥
0 > *

Fig. 11l.4 An Arbitrary Polygonal Current Loop

(X)) 5 (X3, 42) 5. ... »(Xu,4s) o then the appropriate form of (4¢,-pea)

for the loop vwhen the current is anti-clockwise in direction at t =o is

from (42)

(43)

—

(P49 V) 3 A (pray 19+
E(‘}Q'PC;) - T 6‘ 4 . Z ¢ -owp {e’& prawgIx,, e:(f u.w:cn}

e A (Qedap)
where: (%, , Iuur) (l..g.) and oy = Lﬁl‘:‘ = <= is the slope of the n'th
pogpes
side of the polygon. For a rectangular coil of length 24 and width 2a
we find (writing K%< prvg? ) using (u43)

. . . ¥4 v, )
4yt I 4m (par ¥ (9b) e’ ey (44)

82

If we require a loop with curvature (eg. circle or ellipse) we may use

E(ga-pes) =

the parametric form of’ the curve's cartesian equation., As an example we
shall consider the elliptical current loop whose semi-major axis is of.
length n and semi-minor axis is of length m . Using the parametric form

(mwid, niué)  we can write (s 4e) = (UyV) v(mcosD, wand)e  An element of
the elipse is orientated in the direction & & T, [-wsf, mes® 0] 5@
(for anti-clockwise current at t<p ) where §¢ is a small angle,

Summing current elements around the ellipse is equivalent to integrating
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with respect to 0 from 0 to 2% » SO for an ellipse we have

27
- C(upevy) X S (Preoi® 4
Elag-pa) = ~T.¢ (n«;mﬂ«-m?wsf}) € f ' 1M°)«.13
0 . .
= 2rnl ¢ T(w). TP (45)
where ¢z 4y'pr 4 nq* and Ji(4) {is Bessell function of order

unity, In the derivation of (45) we have used the results of Appendix
Setting mana.s+ (50 Yark ) produces the appropriate expression for
a circular current loop of radius r .
We can obtain expressions for an infinitesimal recttangular current loop
and infinitesimal circular current loop using the limiting forms of (uy)
and (45) respectively. Letting a, 4 and r become small it is clear that
both expressions (using Ji(w)aA 1.v when Y is small) reduce t‘o the vertical
magnetic dipole form

. ¢ (pu+qv) '
Ecthgocap)y = v M. e+ e° pevy (u46)

here Am{4asT} =M i . 2 .
whe 2::{ } (using (u44)) and ﬁ«:: {ﬂr I} =M (using (45)).
Here M (which is of dimension current x area) is the strength of the

dipole .

11.7.2. Tooth Configuration., 1In §11.,2 it waé suggested that the
magnetic field produced by a solifary tooth could be found by the super-
position of an infinite number of dipole sources over the tooth's volume.
If we write (4,v) = (w'yv) + (ue,v,) in (46), where (uv') 1is a reference
point and integrate (46) with respect to U; and Vi over the surface 3 ,
which is taken as a section through a tooth of length 28 and width 2a y We
produce expression (44), This shows that the effect of a superposition of
dipole sources over a surface J is equivalent to the effect of a line
current placed on its boundary. A superposition of dipole sources over a
tooth volume is therefore equivalent to placing finite current sheets on
the containing sides, For a tooth placed at a height d above the conductop
and of length (£-4) this is achieved by integrating (38) and (39) with

respect to Z, from Z,=d to z, =4 using expression (u44),
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Hitherto we have assumed that the tooth is placed normal to the face

of the stator. However, our analysis, apart from assuming all coil windings

are parallel with the stator face, places no restriction on the structure

of a vertical section through the tooth. For example, consider the teeth

of figure 11.5. The first tooth is a circular cone of generator angle *

and the second a rectangular- skewed tooth normal to the stator face. For

the cone we have -(“where r is the cone radius at ».*.

With this value of r in (as), the magnetic field induced hy the cone

in the conductor is obtained by integrating (38) and (39) with respect

to 70 from Z,ad to Ze—--ix . For the slanted tooth we write

w,v) w (ﬁ-,vLitﬁ;S,)-;ﬁé? where I, and I, indicate the extent of the

skew along the X and y axes at . ,, ,and [ v, ,~

the centre of the tooth at the core face. Here, however, we restrict our

analysis to the single tooth of rectangular cross section placed normal

to the stator core.

We note that expressions for the magnetic Ffield induced in a secondary

conductor by a polygonal DC current coil can be obtained by substituting
(3 in (38) and (39) with w (the angular frequency of the time variation)

equal to zero. Thus the Tfield expressions obtained by LEE and MENENDEZ (1974)

and MENENDEZ and LEE (1975) for a non-conducting region GZof magnetic

permeability can be obtained from our general analysis.
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11,8 Solutions in Real Space

The real space solutions for the magnetic field of the tooth are
obtained by substituting (u4) in (38) and (39), integrating with respect
to Z. from Z.=d toAz.-& » and then inverting the expressions using
the inverse transform (15). However, the form of the solutions is less
cumbersome if we use the magnetic dipole result (46) in place of (u4)
and superpose the dipole sources over the tooth volume after Fourier
inversion,

Using the analysis of §11.6.2 and the eipressions for the constants
of integration in Appendix I/ , we find a complete description of the
magnetic dipole field in real space is given by the following expressions:
(with Ru;70) 0o

B, (I,z7z.) = N (u- ")J“’”g"“ -2). k* {-wrﬁkzp+
[v]

I[ (L;E 1'1] ot k- z,)} Titep) dic (47)

co Pas
B,(I,z<3) = M (u-x)[ Lm‘-k(ﬂ\—‘&.)' Kt {M Kz +
' ¢ wnd o .

-}

ree . )
[ - )ctrl] A«'ikl-f 2)} J-,lxp. el (u8)

- Y whb k(h-z)y 2 [{¥ek) v vE X3
B (m) - M« )I A K {()'k)e‘e’ -< }ZT.(kg)dk (49)

¢
' cothr(b-z) 3y ¥
80 (m) = m L(:’”)J W LY E I(Ke) ok ' (50)
where pr= (u-rt+ oy (51)

The appropriate expressions for B, are obtained by replacing the

factor u-x)/p by (ﬁy} /¢ in (47) to (50).

33 (n Z?Zo) = n [wa‘k{‘{)' k‘{ w#{lklo't)'[(hk)ﬁ 1} w"‘“—"'—-—;‘k(“.;)} L(Kf)dk (52)

o

_ r ,
B, (I, 2¢%) = c;f\l‘kiﬁ&) K { whez+ 7[( ':)C 1] °_f_’é:‘ii)} JTu(xp) otk (53)
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oo
, . Y Yre -3¢ -
B (m) = -Mf ‘:ﬁ’%f_ﬁ'_e‘_})_z"‘. {(rf: et e "} Tolip) dic (54)
B (W) = -ah %‘-‘)ﬁ%ﬁi’ gkt ’é)Q:( Jolep) olie (55)
[+]

In the derivation of (47) to (55) we have used the inverse Fourier

transformation result:

-+ T
[f Fk) e V(pxr “dfd‘? ZWIK.FCK) J—o(RJ?:F)

-0 o )

which is discussed in Appendix II .

Integrating (49) and (54) with respect to 4 from -a toa , v from
-4 to & and 2, fromd to { , gives the following simplified expressions
for the magnetic field induced in the conductor by a tooth of rectangular

cross section with axis passing through the origin,

oo vl
YM (b-d 3 -
M f ot il h-d ) {(‘: ) A ﬂ}f {7;(&@:) —I(Fe:)}d,v_dk" (56)
o )
[ 'u‘{a
Y b k(A-d) Yk} av ¥z . .
B, =M f A " {(rk e’ ﬂ}[ {TJKW ‘I(K?-;)}Mo‘-k (57)
o M-‘—G
A (-
- -N[ n:ik d> {(ﬁ:n)c enén}j f ‘I’(KP’ Ldn e (58)
_ ° Us-o V-
. 14 v
where P: "{(a $x) +(V-y) } i (’; = [(u-x)‘*«r‘i-yﬂl (59)

and ¢ is given by (51). The electric current density is found by inverting
(24) using (38) and (39) or by substituting (50) to (58) in (). We find
* s

for the special case Rmvn=o0

G

7 - -il"]! R, -ﬂ‘!ék(&«:u,k{{r_ﬂ‘ Sk [ [L(K(J., -‘L(k(,)}o(u de  (60)
[T RSN
v*#

L
v.-
with, of course, Jyzo . The integrals in (56) to (61) were evaluated
numerically using Gaussian quadrature ovep [0,%) and Patterson's updated
e

Gaussian method over [-4,6] and [« ‘.aq « Both algorithms are available
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as subroutines in the Nottingham Algorithm Group's (NAG) computer library,
The NAG library also contains a function subroutine for the evaluation of
the Bessel function J.(<p) to five decimal places. The degree of accuracy
obtained in any quadrature routine depends on the number of sampling points
used, so we must speak in terms of 'relative accuracy'. For values of [x|
and (4! less than 2a and 28 respectively we estimate the error in our
results to be at the most 2 per cent. At greater distances from the tooth
the error rises to 5 per cent except for B3 where it may be as large as
10 per cent (due to the triple integration required by (58))}

The values of the parameters used in (56) to (61) are taken from the
float bath data listed in table l.l. Their dimensionless values are given
in table 11.2. When these parameters include a pole pitch of 76mm (from
table 1l.1) the set of parameters is referred to as 'Data 1'. For a pole
pitch of half this value (38mm) the set of parameters is referred to as

'Data 2'0

Tooth Width (2a ) 1.6 Tooth Length (2&) 0.2

Height of stator face above conductor surface (d) 0.2 (12mm)
Height of stator core above conductor surface (& ) 1.05
Height of tooth ( A-4 ) 0.85

Pole Pitch (T ) 1.2 Slot Width (ws ) 0.6

] Data 1
Tooth Pitch (¢) 0.8

pole Pitch (T ) 0.6 Slot Width (ws ) 0.2
] Data 2

Tooth Pitch (<) O.4

Table 11.2 Dimensionless Parameters

Results for the modulus of magnetic induction are shown in figures
11.6 (variation with depth) and 11.11 to 11.13 (on 220 ). The electric

current density is shown in figures 11.7 (variation with depth) 11.15 and
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Fig. 11.6 Variation of Magnetic Field With Depth

Fig. 11.7 Variation of Electric Current Density with Depth

11.16 (on 2-o0 ). We have used the notation J/M
where M is the strength of the tooth ( - The time averaged
body force [TBI, JBH, TB3] = ¥£ {T* g*j / , (i.31),is shovm in

figures 11.8 to 11.10 (variation with depth) and 11.17 to 11.19 (on 2-0 )
We have also evaluated the inverse of (32) for the current potential; its
modulus on Z-o 1is shown in figure 11.14, where Pr=

In all of the above results we have neglected back reaction effects

( Re<i=° )e
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Fig. 11.8 Body Force Variation (X-cpt.) With Depth ("=09
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Fig. 11.10 Body Force Variation (Z-cpt.) With Depth
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11.8.1 Observations On The Results. We briefly note the more
important espects of the results. Figures 11.6 to 11.10 clearly show an
exponential decay with depth although the actual rate of decay depends

on the position in the plane of the tooth (see chapter 6). We see that

the variation of ]Ji| and [62) is similar, as is the variation of |72/ and 18|
This result has been noted in the idealised analysis of §6.2 where it has
been phyéically-eﬁplaiﬁéd.usipg-Stoke's theorem. It is clear from figures
11.17 to 11,19 that the induced body force components all have their

maxima around the perimiter of the projection of the tooth in the conductor.
At the centre of this projection the body force is of course zero since
jnduced currents are zero there. Although it appears that the normal body
force is always of a 'levitator' nature it is clear that the force in the
plane of the tooth reverses direction beyond the tooth perimeter. From:an
analysis of the body force variation we conclude that the overall flow
induced in mqlten tin by a solitary tooth is similar to that shown in
figure 11.20. (The cross section inlthe diagram may be taken as the (x,&)-
or (3.1)-plane). The points <, and C. are points beyot{d the perimeter

of the tooth corresponding to points where the direction of the tangential
body force changes.

v _ . o
Wpiting B =8 +iB8; , we have the result &EBCM} = |8] e ) where

¢ = h‘”‘-' (B:/8¢) . Thus |8] gives the behaviour of the magnetic induction
averaged over a period of oscillation (%5) whilst its behaviour at any
time t is given by Bewswt -8 jowwt , Similarly for # and ¥ . The
significance of the real and imaginary parts of the EM field is fully
considered in chapter 12 so we shall not present a discussion here. However,
graphs of these fields are included in Appendix IV , and their structure
is analysed there using the magnetic field line theory described in

chapter 12,

11.8.2 Application Of The Theory To Geophysics. One of the methods

of analysing the structure of the Earth depends on making electrical or
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or electromagnetic measurements, at the surface, of the effect of artificial
or natural (tellaric) currents in the Earth. Artificial currents can be
produced by conductive, inductive or transient (pulse) methods but we

shall only consider the second of these here. Telluric currents (which

are believed to arise from ionospheric currents) can be represented
theoretically by line currents or current sheets placed above the Earth's
surface (see CAGNAIRD, 1953) whilst the source for the inductive method
(usually current coils or cables) can be modelled by a magnetic dipole

or line current array (see WAIT, 1951). A connected problem is the use

of ground-based magnetic dipoles to probe the magnetosphere (for example
FRASER-SMITH and BUBENIK, 1974). Because the Earth is usually assumed to
be a horiaontally stratified half space, it is clear that the method of
solution of the induction problem developed in this chapter for the
analysis of a SLIM may equally be applied in the above areas of geophysics.
By removing the stator core boundary condition at z=«4& , the expressions
(47) to (55), which describe the field of a vertical magnetic dipole
placed at a height %, above the conductor surface, can be reduced to

the well-known expressions for a magnetic dipole placed above a two-layer
Farth (see for example, WEAVER and THOMPSON,(1370) -asymptotic expansion
for large % ). Neglecting up going waves reduces (47) to (55) to the

well known results for a magnetic dipole outside a semi-infinite conductor
(see for examplet GORDON, (1951a) - evaluation for #Z=o ), References

for other source configurations can be found in the review of WEAVER (1973),
Apart from various asymptotic reductions and some special cases it does

not seem possible to write the integral expressions in (47) to (50) in
terms of known functions. However approximate expressions for the EM field
produced by a horizontal line current and horizontal magnetic dipole
placed above a conducting half space, have been derived by PARK (1974) and
WEAVER (1971) respectively. Both authors use an image method whereby an

image source is placed at a complex depth below the conductor surface.

* and Appendix IV
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Although we do not claim that the theory described in this chapter
for the analysis of EM induction is stratified media is as significant
as that developed by PRICE (1950), GORDON (1951b) or WEAVER (1970),
(see WEAVER (1973) for a résumé of the authors®™ methods), it is clear that
we can duplicate many of the published results with relative ease and the
initial use of a current element source allows more complex primary

source configurations to be constructed.

11.9 The EM Field of a SLIM

As we have described in §11.2 the EM field of a SLIM is found by
combining the EM field of individual, suitably phased and positioned,
coil-wound teeth. The diagrams in figures 11.11 to 11.19 show the extent
to which we have evaluated a tooth"s field - we have obtained data for the
region e<>x< Sa./z , o<y< 2T , where x 1is the pole pitch of the float
bath motor. Using symmetry arguments we can obtain a complete set of
data for the rectangle ix)< Sa./i_ f 1™ czx , (the symmetry properties

for the field components are shown in their respective diagrams).

Fig. 11.21 The extent of a tooth"s influence
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Axial sections through two FLIMs are shown in figures 11.21 (a) (the
float bath motor (Data 1) - see figure 1) and 11.21 (b), (Data 2), together
with the extent of each tooth's influence. Suppose that y(,)eiw&. represents
the behaviour of an EM field component for a single tooth (when x and z
are fixed), where jlg) is a complex function, then the field of the motor
is given by j" (7)e""’t , where

2y (m-1) /3
}e ‘ (62)

/"(7) = Cnﬂé Fen £(9+30) {H(ygm)—u(;-gcu)

N3 ms)

In (62), the point Yo is chosen as the point O in figures 11.21(a)
and (b); 8@ 1is a parameter which specifies the phase of the colour groups
at t =0 3 ¢ is the tooth pitch; gee)=cli-m-3) , (Data 1), or glerz=clirmetv),
(pata 2); H(s) is the Heaviside unit step function and the summation is over
the three phases with four teeth per phase. The parameter «,,,, equals 0.5
if m+n = 2 or 7 ,otherwise it equals unity - this is to include the effect
of half-wound end teeth. It is clear from the nature of (62) that }"(«;) will
only be a smooth function if the rate of decay of Jiy) is sufficiently
large to ensure that no jumps occur at the point where adjacent tooth-fields
overlap.
Because only real expressions have physical meaning, the actual field

F.8f"es] becomes, on writing /"< R 4iF , F=l)f) cos{wt+ W'(%)} .
For a full description of the behaviour of F for a SLIM we require an
evaluation of (62) over the range of values of = and z . However, we
are mainly concerned with the induced EM field - the character of which is
jndicated by the fields behaviour on z=-o (the conductor surface), In
figureys 11,22 to 11,37 we show® the variation with « and Yy of the magnitude
of the functions |IP| and coc hy), where Aiy)= | —i—:—f , along the
plane Z =o , %hen the pole pitch is that in Data 1 (the data for the float
path FLIM - see figure 11.21 (a) ). The discrete function f” is found

by substituting the data obtained from (56) to (61), (which specifies the

# The graphs were plotted using H Williamson's FORTRAN subroutine HIDE
(Algorithm 420, Hidden-Line Plotting Program, Communications 6f the ACM,

15, 2, 1972).
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function }(97 ), into (62)., 1In the derivation of the results we have sget

¢ equal to zero which means that the magnitude of the colour group Y is

at a maximum when t=0 (ie: the phase of ¥ is zepo at ts0 ), Correspond-
ing graphs for the induced EM field and body forces in the Data 2
configuration (reduced pole pitch - see figure 11,21 (b) ) are shown in

figures 11,39 to 11.47,

11.9.1 Some Observations on the Results, Clearly, a FLIM consists of

a combination of groups of teeth - each group containing three teeth
(-7-8) - so we would expect the source field (and induced field) to be
cyclic along the FLIM axis (with adjustments for the half-wound end teeth),
This behaviour is clearly seen in the results of figures 11.22 to 11,37 and
figures 11.39 to 11.47,

(i) Data 1. Because we would expect cos ﬁt;) to be a well-behaved
function a comparison between the phase and modulus diagrams indicates

the validity of the modulus results. The phase diagrams for 7B{ (figure 11,23)
and 7! (figure 11.31) indicate that figures 11,22 (161 ) and 11.303( i7)
are accurate representations of the appropriate induyced fields. Figure 11,27
indicates that the form of |B3l(figu:e 11.26) is accurate for the region
X<2a « However, in the phase diagrams of B2 (figure 11.25), PoT (figure
11.29) and J2 (figure 11.,33) the effect of combining finite sets of data
is clearly seen by the discontinuities in the plot, For the potential,
PoT » the phase diagram indicates that the regions between the red(®) and
yellow (Y) phases are irregular, but it is difficult teo interpret the error
(if any) in )por] (figure 11.28) because the Plot is smooth there, The
phase diagram for 72 indicates that the peaks in |72} (figure 11,32) at the
second, third and fourth red (R) tooth should be removed, however the
overall form of the plot appears to be correct. A comparison between the
phase diagram and modulus diagram for B2 (figurés.ll.Z#, 11.25) 1eéds us
to believe that a more accurate result for 82| ig that indicated by the

dashed line in figure 11,38,



Fig* 11*38 Corrected form of |6£].-

Incorporating the above discussion in the body force diagrams, we

conclude that the form of TBI figure u.3*) 1is correct,

apart from the peaks along the second, third and fourth K-teeth, that

the form of «3 “1«}* Stf) , figure u .35, appears raasonably

but i1t is difficult to compensate for the suggested change in la.>and that

figure U 36 <«,,> and figure U37’(*>C. )

induced pumping

the plot of

gives an accurate representation of the structure of the

force. We see that this force is sometimes positive. sometimes negative,

and conclude that the direction of the axial motion of the working fluid~

in a SLIP varies according to position and that the overall pumping action

of the SLIP is an averaged (nett) effect. We see that the vertical force

is always of a levitator nature and that its maximum magnitude is four

times greater than that of the horizontal force. Although we cannot

deduce the form of the flow of the working fluid parallel with the SLIP

axis, the flow transverse to the pump will be concentrated at the four

regions indicated by the peaks in figure 11.3d and is likely to he of the

form shown in figure 11.20. It is clear from figures 11.3d to 11.37 that

the body force®s influence is almost confined to the area mapped by the

projection of the SLIP in the conductor.

Finally we note that the phase diagrams indicate the EM field is of

the travelling wave form since coi f\(y) ~ cox oy , where is the

wave number and 1*2-t is the wavelength of the excitation.
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(i1) Data 2. Here we are mainly concerned with the effect of a change

in pole pitch on the induced EM field and body force. Consider a longitud-
inal section of a FLIM ~ a decrease in Pole pitch means a decrease in the
spacing of the windings, which implies an increase in the fluctuation of
field quantities along the FLIM axis and a decrease in fluctuation transverse
to the axis. This explains the increase in uniformity of [BL) and [32),
(figures 11,40 and 11.42) over the Data 1 results, The form of 1821 in
figure 11.41 is a compressed veréion of that in figurg.ll.ﬁﬁ. The structures
of the vertical force (figure 11.47) and the horizontal force (figure 11,44
and figures 11.45, 11.46) are similar to those in the Data ) case although
here they are of smaller magnitude and the transverse force ig more evenly

distributed along the motor.

11.9.2 Design Consideratipns, Although we have not actually evaluated
the solitary tooth expressions (56) to (61) for various values of the
parameters 4,4, o0 and A , it is stil3 possible to estimate the effect

of a change in their value on the pumping action of a SLIP. From figures
11.36, 11.37 and‘figures 11,45, 11,46 we see that the averaged pumping
force produced by a SLIP is proportional to the SLIp's width, 2a , e
have previously observed (figure 11,18 and §11.8.1) that the force produced
by a solitary tooth pushes fluid symmetrically away from the tooth axis -
this is clearly the reason why the pumping force of a SLIP has an
oscillatory nature. Thus we would expect the pumping efficlency of a

SLIP to increase if we can construct a stator face in such a way that the
working fluid 'sees', not an array of phased teeth, but a continuous
excitation. For example this is achieved by increasing the parametep

(the height of the teeth above the fluid) but this decreases the magnitude
of the induced EM field. Perhaps the most effective method for the SLIP's
discussed in this chapter (where the coil width ~ tooth length and coil
helght‘~'tooth height) is to increase the ratio tooth 1ength(z$) tooth

height (R) . This is in agreement with rotary machine theory (eg. SAY 19¢3 )

Other factors influencing the design of g SLIP are discussed in chapter 13,
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12. MAGNETIC INDUCTION IN AN ELECTRICAL CONDUCTOR

DUE TO OSCILLATING SOURCE FIELDS EXPLAINED AND

ANALYSED IN TERMS OF MAGNETIC MERGING

12,1 Neutral Points

In éhapter 11 we obtained integral expressions for the EM field of
a tooth 6f a ELIM. From these expressions we have calculated and illustrated
the variation of the magnetic field and electric current density on the
surface of a conductor. The EM field at any time 1s given by the expression
ﬁw, wt - J s wb s where R and J are the real and imaginary ..
components of the field, However it is quite difficult to evaluate this
expression by merely observing the appropriate diagrams and performing
the manipulation. Fortunately there 18 another approach - magnetic field
1iﬁe topology. This extremely valuable tool was first discussed by
DUNGEY (1968a) in the context of electrodynamic phenomena and later by
DUNGEY (1968b) and SWEET (1968) to explain the electrical discharge theory
of solar flares. It should be noted that ﬁagnetic field lines are a
mathematical device and do not exist physically. The following analysis
is due to DUNGEY: (1968a). 4
From Maxwell's solenoidal equation V.8=O we see that the magnetic

£lux f@ dS through any cross section is constant. This equation also
allows the repreaentation of the magnetic field by a vector potential JQ
such that B =Fa /. Integrating the latter expression over a surface
S pounded by a contour (o4 gives the result gﬁ .d¢ 18 constant along
a tube of flu#. For two dimensional phenomena we may write ﬁ = »4. (x,y) 2,
and 8o A is constant on a tube of flux. We shall assume a line of force
{s equivalent to a very thin tube of flux, and so A 1is constant along a
1ine of force. The electric current density 4: /{—,. Vat | and so

o } = —V*4 2, . Now suppose the system is in equilibrium, then

the nett force acting on a line of force is zero. The Lorentz body force



~225a

is given by the expression }A @ + We have assumed that /A~ » the magnetic
permeability Is constant everywhere. The total force.on the line of force
‘e / /A &, ol = ,;[ T ( Ao Q) aJ » The latter vector result can now
be evzluated. With [ B.0 , P, 043 © and, because of the symmetry,

Q{I V)8 -0 , we have the result f(f V). .0 and so Jl is also
constant on a line of force. At a neutral point B-o and so the latter
integral is automatically satisfied and L can take any valye, However,
since A is also constant on a line of force we have the result V}l - F(R)
where f is an arbitrary function of /. This is a standard equation and
an obvious solution I8 A = }w« x*+p g+ £y and we have

= é’x*ﬁﬁ)l +6@x+<7)‘ - s From this result two types of
neutral point can be distinguished: the lines of force in the neighbourhood
of a neutral point may be elliptic or hyperbolic, and the neutral point
will be called an O-type in the formep case, and an X-type in the latter,
At an O-type neutral point lines of force can 8row out or shrink into
the point., At an X~type neutral point flux is created or destroyed
according to the breaking or connecting of magnetic lines of force at
that point. It can be seen that in free space, when él equals zero, only
X-type neutral points can occur, Further details may be found in
Dungey (1968a), chapters three and six.

We are now in a position to analyse-the EM field; at any time,
without the previously described complications, The field 1line topology
is unique at any instant of time and can be described by a suitable
superposition of O-type and X~type neutral points. In§12,2 we analyse
the field line topology for a dipole source, which is the building block
for our FLIM analysis. This work is extended to a dipole array in§12,3,
In€l2.4 we describe the forces to be expected from a dipole source over
one period of oscillation. Finally inf{12,5 ye give an explanation of one

of the observations- in the experiment of Chapter 2.
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12,2 Oscillating Dipole Suspended Above an .Electrical Conductor

Here we consider the magnetic field line topology of an oscillating
magnetic dipole (period /2w .seconds) placed at a point P , height A
above an electrical conductor. The region o<z < -~-d is taken to be of
finite, non-zero conductivity whilst the regions z%o , ',54-.01 are ..
assumed to have zero conductivity.

starting from figure 12.1(a) the changes in the magnetic fleld over
the interval t=o© fo €= um/wo are explained as follows. Throughout we
shall refer to one section of the axially symmetric system. The cycle
begins when the dipole has maximum strength at t:0 , The magnetic field
is compressed close to the surface of the conductor, S « At infinity .
(denoted by dashed lines) the magnetic field is at its maximum and
orientated in the direction of the dipole. As time increases the fileld
at infinity decays with that of the dipole source and an X-type neutral
point forms spontaneously on the surface of the conductor at X, to allow
the near topology to restructure itself into an O-type neutral poiﬁt 04
just below the surface ( (b) and (c¢) ). The neutral points lie at a
distance o(h) from the axis, because at high conductivities the only
gcale length available to the dipole is h, its height above the c§nductor.
The induced electric currents in the conductor are now centred on 0,. As
the dipole source field decays the induced currents push the neutral point
X, upwards towards P. At t = T/ (quarter cycle, diagram (e) ).the
X point reaches P and disappears with the dipole field: The field at
infinity is now solely due to the induced currents which are at their
maximum-’ The second quarter of the cycle now begins with a reversal of
the dipole source. To facilitate the directional change in the magnetic
field the near topology restructures itself forming a partition boundary C,
with a source at X,and sink at X, (£f). The neutral points X,, X, are
formed spontaneously with the dipole reversal, occupying positions on the

axis above and below P, The increase in magnetic pressure within this
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boundary forces the points X,, X, to move along the axis away from P.

The compression of the»field lines at S retards the movement of X, but X,
moves rapidly to infinity, (g). The point X, reaches infinity when the
magnetic pressures from the dipole and induced electric‘currenta balance (h)
A reversal at infinity now occurs, and the boundary C, flips around to
surround the O-type neutral points, (i). As the source fleld increases

in magnitude the magnetic pressure forces the boundary C, to constrict

and thg 0 points move towards each other, 1. - Finally at ¢ « m/w (half
cycle) the source field is at a maximum and the neutral points converge

to a point somewhere on the axis, coalesce and disappear, (k). The
~reversal of the system is now complete. The cycle repeats itself in the
interval t=¥/> to &-2%/w , but with the magnetic fiald line topology
reversed in direction.

The time development of the magnetic field (and by extension, the

electric current density and electric field) can be estimated by taking

the in phase configuration (a) multiplied by cos wt » and adding the
out of phase configuration (e) multiplied b& ~Sfwt wt o« Here 'in phase!
and ‘out of phase' is the state of the system relative to the source

field, and corresponds to the real and imaginary parts respectively of

the Maxwell solutions. This process would duplicate the pictorial

representations (a) to (k).

12,3 An Array of Phased Dipales

Although the magnetic field of a FLIM is three dimensional in nature,
its dominant characteristics may be described by the study of a cross
section along the axis of the motor. The magnetic field of this section
can be modelled by line currents, placed in suitable positions, representing
| the coil windings on each tooth. The topological nature of the magnetic

field of a line current is similar to that of a dipole so we can use the

analysis of §12.1.
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Consider the array of line currents illustrated in figures 12.2 and
12.3.. There is a phase dlfference of 231' seconds between #djacent dipole
sources, (corresponding to a three phase supply). Consider first the
four diagrams of figure 12,2, We have illustrated the basic configurations
which must occur in the field line topology between two adjacent sources.
The system begins at Eso0 with the left line current (P) at its
maximum strenghh, (a). The right line current (Q) is increasing its
strength as the induced currents in the conductor decay. - The magnetic
pressure from P and Q is balanced by the neutral line N, N, which extends
to the X-type neutral poiﬁt at infinity, X, » It should be noted that
the point X, is a single point and that for clarity only, we have drawn
the topology with several points denoted by X, « The lines at infinity
are drawn dashed. The O-type neutral peint O, is the 1nduced electric
current of the dipole Q. As time increases, (b), a neutral point 0,
forms due to the decay of P whilst the increase of magnetic pressure from
Q expands the field line boundary C. The upper X~type point X,now moves
off to infinity whilst the lower, X, , compresses the field lines due to
0. The néutral line N,N, now disappears as & new X~type neutral point,
x3 , which is formed at infinity, moves to allow the reversal of the field
at infinity from Q, (¢). The point X; re-emerges from infinity to constrict
0, in the field l1ine boundary C. Finally at &= ™/2< P blinks out
and the topology is dominated by the induced currents from 0, « Meanwhile
an X-type neutral point X, has formed to allow Q to decay in strength, (d).
We have thus described the basic configurations posaible for the system.

Figure 12.3 extends these ideas to a full linear motor. However because
of the symmetry involved, the éomplete variation in the topology can be
represented by considering two instants of time with an array of only four
teeth. The diagrams (a) and (b) are self explanatory. It appears that
the travelling nature of the magnetic field can be interpreted as the motion

of the neutral line NN, along the axis of the motor, (this motion will

however, be extremely unsteady).
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12.4 The Lorentz Force Produced By An Oscillating Magnetic Dipole.

It may be expected that the Lorentz body force induced in an electrical

conductor by an oscillating magnetic dipole could be oscillatory and

average to zero over a period of oscillation. However we can sec from

the force analysis of figure 12.1, which is shown in figure 12_.u, that

this is not so in general. We have drawn the induced body force as shown

by the vertical and horizontal arrows, the length of which indicates the
magnitude of the force at the two points P and ¢ on the surface of the

conductor. The diagrams (@) to (F) are self explanatory, except for the

lines M and N which are taken to be the regions of zero horizontal force.

In diagrams (e) and (h) we illustrate the variation of the horizontal

force over the period of oscillation at P and Q. It can be seen that

for most positions in the conductor there will exist a non-zero time

averaged force which has the potential to move an electrically conducting

fluid towards the regions containing the O-type neutral points.
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12.5 The Experiment-of Chapter 2

In this section we present an explanation of the increase in flow rate
for the mercury experiment (Chapter 2) when highly conducting side walls
were added. A cross section of the motor/channel configuration is
illustrated in figure 12_.5(a) The induced currents form closed loops and
these are shown in plan in (b). The regions R,, r, indicate the return
areas for the induced electric current.

It is possible to model the magnetic field of the cross section shown
in (@ by placing line currents at P and Q on the sides of the stator, (C).
At fr.o . the induced electric currents are at their minimum (as are the
induced forces) but they gradually increase to a maximum at t= n
(quarter cycle) when the line currents »blink out®, (d) The disappearance
of the source causes two O-type neutral points to form (denoted by O, , O ).
The distance between 0, and OA (equal to 2d, say) gives the distance
between return areas R, and , because the O-points are the areas of
maximum current density. The addition of highly conducting side walls
allows greater conduction of electric currents, and the O-type neutral
points move to O , 0° , thereby increasing the distance R, Rx to 2d" (say)
Thus we have, shown that the addition of highly conducting side walls
decreases the distance between the return currents and the side walls,

which increases the length of the induced currents across the channel.

Fig- 12.5 The Effect of Conducting Side Walls.
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However, in the regions between R, and R, » the .pumping force is
that along the axis and is given by the product /, 83 (usual notation),
The total force across the channel is given by _-[ aj, B, lx . Because

B; constant along this length (at a given depth), an increase in the
total force is proportional to an increase in the length of 04, e If we
assume two dimensional steady flow occurs beneath the motor, we may
assume the average velocity is proportional to the force applied. Finally
we have the result ( V is the average velocity):

ViV o~ dlid (1)
Here V" is the average velocity with highly conducting side walls. In a
recent paper by HEWSON-BROWNE and KENDALL (1973) it is shown that O-type
neutral points can form at a distance vd‘ from the edge of a conductor,
where:

de ~ (47 pore)” (23

Here K =0cD - - i8 the in‘cegrated‘ conductivity - - ( D is the
conductor thickness and o its conductivity)., If we assume that the
addition of a thin highly conducting sheet ( [<<a ) effectively increases
the length of the conductor, then the decrease in distance Ad, with the

addition of the sheet may be taken as

Ade ~ de- f (3)

ga

Here £ is the width of the sheet, o; its conductivity, a is half the width
of the channel and o; the conductivity of mercury. We have s a-de

and d'= a+dde ~de o Substituting for d and d' in (1) gives the
increase in flow rate for the system.l With the parameter values given

in chapter 2,equation (1) predicts an increase in flow rate of 20%.
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13. CONCLUSION

13.1 Summary

Some of the more important results we have obtained for the
single sided linear induction pump (SLIP) are: |
(1) Design relations for an idealised SLIP (chapter 3)
(11) Induced velocity profiles for an idealised SLIP (chapters
2 and 4) which take into account some MHD effects
(i11) Estimates for the rate of decay of the induced EM fielq
with depth and beyond the edges of the motor (chapters
5 and 6)
(iv) Two—dimensional results for the induced EM field (chapters
7 and 9) ‘
(v) Three dimensional results for the induced EM fielq
(chapter 11)
We have also included a survey of the relevant published literature
(§1.7, $§1.8);an estimate of the flow profiles induced in a liquid
by a rectangular body force (chapter 8); an account of an
experiment performed at Pilkington's'and a discussion of magnetic
field line theory (chapter 12) which is applied to a linsar motor'sg
tooth (chapters 10 and 11),.

Although the work is not included in this theslis, we have
obtained three dimensional expressions in transform space for the
velocity and pressure distribution induced in a conducting liquid
of finite depth, by the force expressions derived in chapter 11 for
a SLIM, in the slow flow configuration. Briefly, we can obtain
the transformation of the magnetic induction B induced by a SLIM
in the conductor (region III, figure 11.2) by combining suitably
placed and phased magnetic induction eXpressions for a solitary

tooth (obtained from (11.38)and(11,39) ). The transformation of
the induced electric current_z'can thus be found using (11,24).
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Clearly we can write j’(’m,;) = g('ore': c’") and %(w;,z)- > (det:e:n
where w,p,¥, ¢ and P are functions of p and 9 . Navier-Stokes
equation for slow flow (obtained from (1.18) is V'ee?PP-¢ ,
where F«3}®[7a8% «}(1s8" +3%8) 15 the time averaged Lorentz body
force. We now transform this equation usin§'2?e two dimensional form
of (1.32), where (for example) -7:{14@"} =_{-L3£r‘.1‘,7)»§°(7-r', ;—.;',1)4,,97:
(using the convolution result (1.34) ). Becausel and 2 are
separable in Z we can now solve the ordinary differential equations
in the transformed hydromagnetic equations for ¥ (subject to the
‘boundary conditions specified in $§1.4.7) and’$ » Obtaining the
solutions in convolution form. A Fourier inversion can then be
made using (1.33). It can be seen that we require an evaluation
of four successive integrals. Attempls were made to evaluate the
solutions using standard numerical quadrature routines, but the amount
of computation required exceeded the avallable computer time.
Following METZ and GANDHI (1974) we attempted to use SINGLETON's
(1969) fast fourier transformation (FFT) algorithm (see
GENTLEMAN and SANDE, (1966)) in order to increase the speed of
computation. Some results were obtained but we have disregarded
them since their accuracy is questionable. Recently however
SINGHAL et al (1975) have succeeded in using a Padd rational
‘approximation for the evaluation of a two dimensional complex
Laplace transform inversion. Their method may well prove useful
for the inverse Fourler transformation part of our integral

expressions but this remains a problem for further research.

132.2 Factors Influencing The Design of a FLIP

Although many of the results and equations obtained in

this thesis are derived from idealised models they can still be

used to predict the performance of a realistic SLIP, (see for

example § 3.5). In the work below we shall assume the stator

is series wound (case S ),
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Using the ildealised form (3,40) for the mechanical power
developed by a SLIP, P. » We see that for a fixed slip s and pole
pitch T , we can write Pu=k'/(Ru) where K, 15 the stator surface
current density and~/ a function of the Magnetic Reynolds number,
fw » based on the synchronous velocity of the excitation, Clearly
P < K™ and by figure 3.2(a) we see that an increase in the
value of % increases the magnitude of 7, .

Consider first the parameter ks . By (1.46) we have (for a
fixed pole pitch) ki o ﬂ%ny where N i1s the number of turns per
phase, I the winding current,? the number of magnetic poles and
K, = s (E.T) 1s the pitch factor ( ¢, is the coil pitch),
The simplest method of increasing K, is therefore achieved by
increasing N or I . The value of the parameters K, and P can be
adjusted by, amongst other méthods, layering the stator windings
or increasing fhe number of slots per pole (this does, of course,
alter the pole pitch). These are standard procedures 4in rotary
machine theofy and are diécussed in the texts of SAY (19632) ang
ALGER (1951). Also since Carter's fringing coefficient (1.452)
gives an indication of fringing losses it is clear that losses are
reduced by decreasing the width of a stator slot.

The magnetic Reynolds number fm= Vi &9 | where Vi. w/et 4
the synchronous wave velocity (e is the excitation frequency),

A= W/T is the wave number and M e/ where o is the
electrical conductivity of the working fluid and e the magnetic
permeability of free space. For a fixed pole pitch the only
excitation parameter involved is w , However, care must be taken
to ensure that w is not increaseq unduly because the skin depth
for the EM field (3.17) is proportional to - and the fluild flow
for large w 1s confined to regions close to the glass ribbon's
surface (see figure 3.9), which increases the surface shear stress

on the glass.
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Above we assumed that the pole pitch was Ffixed. At first
sight, since \£f£=cot/7l , it might appear that large pole pitches
are desirable. However in chapter 11 we showed that large pole
pitches produce oscillatory flow beneath the SLIP and the pumping
of the working fluid is then a net effect. With this in mind and
the fact that (from (@ .#6)) K*< >/Z it is clearly desirable to
have a SLIP with small pole pitches, even though this decreases the
synchronous velocity of the excitation. This result can also be
deduced from the idealised graphs in figures 3.5 to 3.8.

Perhaps the simplest method of iIncreasing the pumping rate
is to place two identical SLIM®"s adjacent to each other with their

excitations fully synchronised (see figure 13.1). This should (at

least) double the flow rate since a larger bulk of fluid sees an

infinite expanse of excitation. We can iIncrease the effective length
of a SLIP by placing two identical synchronised SLIMs end to end.
Since this doubles the total turns per phase and the number of
pole pitches, the stator surface current density Ks remains
unchanged. However, combining (3.82) and (3*83), which are
idealised expressions describing the flow development in a SLIP we
see that Fflow rate induced increases as the square root of the
effective SLIP length. The above procedure may therefore prove
useful.

We note that the efficiency of a SLIP can be improved using the

compensating methods described in 51.5.3. Unfortunately the
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compensating pole method produces a stator overhang which may be
undesirable and the .superimposed winding method may not be cost
effective since it requires a great deal of electrical hardware.
Finally, we observe that the analysis above is unlikely to
be directly applicable to parallel-wound (caseP ) motors. However,
following the observation made in chapter 7 that the body force
induced by such motors is not conducive to pumving we choose not

to discuss their design here.

13.3 Suggestions For Further Work

Apart from the few papers mentioned in the survey of §1.7
there seems to be very little published work on the flow profiles
induced by an axially finite flat linear induction pump (FLIP),
(whether single sided (SLIP) or double sided (DLIP), and we have
not found any papers concerned with the flow development with time
or the stability of the flow in such a pump, except for specific inlet
profiles (KOZYRENKO, 1971a 1971b). To our knowledge there have not
been any theoretical or computational analyses of the flow induceq
by a FLIP offinite width - the working fluid is always assured to
be fully contained 1n a channel which lies within the extent of
the travelling wave excitation.

For én improvement in the Ilatnesé of float glass we clearly
require a more detalled description of the flow induced in the
baths molten tin by an open sided SLIP. In this context and with
the above comments 1n mind we suggest thé following topics as
worthwhile areas of research:

(2) An analytical study of the flow develorment and stability of
the flow in an axially finite SLIP assuming no transverse

flow variation. In this context the work of KOZYRENKO (19714,

1971b) and MERKULOV et al. (1973) is worth further consideration,

It is possible that the constant applied magnetic fielqd work

of SPARROW et al. (1964) on inlet profiles, and CHEN & EATON



(b)

(c)
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(1972) on stability can be extended to cater for travelling
magnetic flelds.

A study of the flow deyelopment and stability of the movement
of a body of liquid (which, in the float bath, has a shear
profile) into a finite travelling magnetic fleld aligned

transverse to the flow.

Here the approaches used by the authors in §1.8 for an
analysis of stability and flow development in the constant
applied magnetic field configuration may prove useful.

A full three dimensional numerical study of the coupled
hydrodynamic and electromagnetic equations with boundary

conditions appropriate to the float bath SLIF configuration.

A numerical approach will allow the incluslion of inertia

terms for the fluid flow, and avoid the MHD approximation

(the assumption that the fluld velocity ¥ can be treated as
a constant in Maxwell's equations) used in all of the

analytical studies of a SLIP published to date.

Since a two-dimensional study will of necessity preceed a three
dimensional one, the results of NASAR and DEL CID's (1973a,
1973b) numerical study of a SLIM may be used for comparison.

If a finite difference technique is used, the results of

MONSON (1972) and BREWITT-TAYLOR & WEAVER (1976) may prove
useful in obtaining appropriate boundary conditions for the
corners of the stator core (assuming a realistic model for the
motor is used), if the magnetic permeability and electric

conductivity 1s assumed to be different than that of free

space.
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APPENDIX I -~ Special Functions

Here we list only the particular results required in our work. Further
properties of the‘functions below are given in the texts of ABRAMOWITZ &
STEGUN (AS), GRADSHTEYN & RYZHIK (GR), LUKE (L) and WATSON (W). We use
the convention that Greek letters p,u , etc. are written for parameters
which may take arbitrary values but Latiﬁ letters, m,n , etc., for the
cérres;mnding parameters if they are restricted to integral values. The

parameter Z is assumed complex.

A. BESSEL Functions (AS, GR, L and W)

We use Bessel's functions of the first kind, J,(z); of the second kind
Ys(z) & of the modified first kind, I.(¥) , and of the modified second
kind, k%»(2?.

(i) Limiting forms for Small Argument. When v is fixed and z-= o

Tzy ~ t2)”/Tvey  (V#=1,~-2,-2,..)

)

Yo(z2) ~ ()TN (G2)” @iz}>o 5 Yolz) ~ ?;r-&?z

To(zr~ G2 [ Tive) (ve-1,-2,-3,...)

kv(@) ~ s 7)™ Rizlvo ; ktz)~ -byz

(ii) Asymptotic Expansions for Large Arguments. When ¥ is fixed and jz{»e0.

184311
J(z) = f;-’; {co=(2-{n-3;—.:)+ e O(\zl“)} Ga«gzl<1r)

1982
Yo(z) = {52 {J‘w' (2 ~iva—Lm) + € o(l%l“)j (logz)<n)

To(2) = '3”2'{' - Ay o( £ (legzi< )
Kv(%) = 213 6-3'{1 “+ 4%’;-_‘ 1—0(%‘)} >(|&‘22’< 13 )
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(iii) Recurrence Relations. .6(z7 is any Bessel function,

z j,;_, (2) +2 by, (@) = Ly bycx)
dga/—' (2) - rg)’f.[ CZ) = & }Z .,6,(‘&)

Special Results. () is any Bessel function.

(iv)
‘g—n(z') = (-I)”-,g.”(Z)
dd? .To(z) = ‘7—‘('2‘)
(v) Integral Expressions,

i
VZSme
rC s ub dp a {'1+ (-l)"}'rr Jutz)

u

Aziml
C gm0 we = {1 = (0] ai Tutz)

Ov—t 9

~2wht
< ot db = Ku(z)

Qw3

B, AIRY Functions (AS, L)

A pair of linearly independent solutions to the differential equation

;_;;wtv -ZW(EF)=0 are the Airy functions (=) and Bi(z) .
(i) Limiting Porms for Small Argument.

i) = 3" (it ';"—'.2) - 372+ 32%) + o(es)
T'(%) ] ) G

4
B = (3] 3008y - 2B (arazy ] v o(ay
(% (k)
(ii) Asymptotic Expansion for Large Arguments,

hlz) ~ 7 7%z % e—% -
1 (lem el <n)

- 4y 23
Bil(z) ~ Ttz “ e™ (lomzy < @W/3)
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C. STRUVE, ANGER and WEBER Functions

(as)
Here we consider the Struve function Hw(z) ;

modified Struve function,
ky{9); Anger function, Jj(z) and Weber function E,(z) .

(1)

Recurrence Relations: ( /= 3’; )

1 v
Hoo + How = 2:3-9‘”-9 » L2
v T(ve3g )
L)
Hﬂ-l - H‘~’1,' = aH:) — (‘k?)
T T(vr2l)
hey —hyer = ?.Lq -+ Q_/L?:._
Im T(veIg)
>
= 22U, ~ b2
Lﬂ-\ 'fk)ﬁ-] v JTF(WT(_)

(ii) Special Results.,

Ho'm = th

£~ oo

, Ho(z)~Ye(z) ~ = { 31- g“;+ '—;'—;‘:'}'* O(‘{‘v) 0“'92(47()

z>e, H@-t@ ~ 211+ L - 22Te0(h) (legejen)

Talz) = Tulz)

Eo(z)

[}

|
T
-~
z

E|(‘Z’)

D., SCHLAFLI Polynomial Sw(e) .

(WA)

g| (&) = gé‘ g;(k) ES %—1_ S?(t)- 2 tb

2
tt o Sele) = i tlt%
E. GAMMA Function [(2), (As)
Plwmyent T(k)s
Tea) TC-2) =

-Z r'(‘—l') T(z) = Tt Cosecmz
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APPENDIX II - Intepral Reductions

A. Fourier Integrals.

Consider the integral

o oa i(pre
Ia-!; _£(°’P'*F’i/) F(Jp‘-u;')c ( q‘“dpcl.}

where ®, f are constants and F is an arbitrary function. Writing

x=peosl 3 Y- pFnm b p-kosh, 9 =k4um9 we can reduce L to the form
27 oo
' . ~VKg OS5 (-0 )
I = IJ("‘W‘ﬁ*'FM‘P) K*F(x) € ¢ de dy
© 9
This expression can be further reduced by writing ¢-6 = -4 and using

the integral results of RA(v) in Appendix I. We find

o
T = am (ofw:9+p.;u'ne)f Fuo . k* T (xp) i
o}

B, Laplacian Integral

Consider the integral

O
~kol ‘
Tep - [ SR ac @l (11.1)

T GG<) e~ X (kP

we have EFdI("‘,F9= [ =

o

ol

o
o & o —
n i e tup] - et etme ™ - P

integratj.ng. we have I(J.p) s f,-‘u {"JEMF Gst) Aot -fI(o‘F)} (1r1,2)

Qe
s
where Tlo,p) = Y
o k-
Similarly the integral
f G(k) ~ ko
Teap - ] =AM (11.3)
o
of - - .
can be reduced to T\ -ef {fe T Ceyole 4+ J'(O.F)} (II.4)
‘ °
where Tcop) = Gy

o Fif
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Only for some particular values of the parameters W.F and the function Gix)
are the integrals in (II.1) and (II.3) tabulated in the standard texts
(BATEMAN, GRAﬁSHTEYN and RYZHIK etc.). In this thesis we are mainly
concerned with the value of I(J.f) and J{4p) for ¢ small. Usually
(1I.1) and (11.3) only give a first approximation (for «~o0 ) since
expanding the exponential function, e'm{ » in a power series often
destroys the convergence of the integrals. However, providing we can
obtain a value for the Laplace transformation of ((«),(&w)),the reduced
pesults (II.2) and (II.4) give further approximations, since the magnitude
of the integral expressions in these results are of order 0( + When @ is
real (and positive) the procedure above is a useful technique for removing
the singularity at k={8 in the Cauchy Principal Value (CPV) integral (II.l),
In the derivation of (II.2) and (II.4) we have assumed ‘that we can

differentiate with respect to o through the integral signs of (II.1l) and

I ’P“‘W’)u‘
o k-p

for the differentiation to be valid are (i) its kernal should be continuous

(11.3). It can be shown that the conditions on the integral I=

on [0,¢) » and (ii) all the partial derivatives of its kernal should be

continuous in [o,%) . The result holds even if I is CPV, as we shall

show, If F is real we have o
N P(K‘d) ?(Kld)
T = Lun { f -t ic j
€0 0 pee K-

Clearly the kernal Pl#) . over the intervals (o, §-€] and [pt€,oe)

is continuous if Pe) is continuous, so providing the partial derivatives

of POwsi=)  exist, we can differentiate with respect to « and obtain

- (s—e oo
YI = A { > P a fa P(r.w w‘}
X e . Tk-p e Ak

which is the required result.
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" APPENDIX III =

Additions to Chapter 9

case O Constants of Integration

M, = peke

N & {(U*K)‘C«n-(Y~K)‘}
M-V

M : = poks {(Yvk) ‘e“:- (Y—'c)‘}

Calyc) &s
T O
Zi,(Y«)A:
N, = +p=Ks (t0)p {t"'.l}
JAs 9
N, = peles (Yex) {e,“q_}
24¢
Ny = —pSs. gk (Y4k) {e,”,j_}

29 Ds

= | . ket
P, = '/,(oKr E:%{ () )C

|

. LY
’P E e . L ny) e
* e As ( ¥

_— e
98¢
' (kaY)
@, = e P Rz peke. 20 €
4sq (v-w)bs
(kev)
Ry = — poks X R. = /u.|<,-. 2%¥K €
s (¥) Ag
: ' Ca LetY)
Q; = /A&KJ‘ 1:kL 722 = /MKJ. vy £
}As Y@k Ds

The case P solutions are recovered by replacing /“L’; by

- fiqlk)(?m As/Ay) in the above constants,
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APPENDIX IV - Additions to Chapter 11

A. Expressions for the constants of integration.

- ok gz 4E c) w2k Kk
D = Res vk KKk * (asg )mﬂk&

-Ec MK(‘»'!.) 41_5( Gerac ’r{!k"‘\'&)
s o e I A A e

"
>
]

L' = {EC‘. cooh % *i_éz;C;MK& -E?a»‘\k(—a-&,)r(alc'-fc.)x
K

‘[' - (w‘)ff"] /xa }/M Kb

b

‘ V v Ly -
M= {~ Ec, wh k(h-%) +EX corh kth-3o) p(ga-pcs) |} T (!‘-:‘f» ¢ ]e-
2 2xtA

- 1'501,(; outz k(-2 } /M K4,

2k

N, =! Ecy, whi(h-a) + LEYCs bR + EXwhclhn) plge-pey) x
2

2K

[l- ;,—;eJ/zw‘A}/Muoﬂ

k,:{~5q,w1&""- «tE ?C;MK& -E\'u:’\k(ap\-&-)@(ctq.?c.))‘
. < .

[1 - e ] fron | okt

Mls{ Eq w&kw—w « EV kRt giaa-pey [1 = e )] e~
axtD

+ .__‘Erc,MklA-?-)} /MM

2k

N, = { E ¢, ok (b-®) —vE pcs oenk Klht) _.Ech{w(k-z-)‘}(c;q-pc‘) X
2 2Kk

[1- Gl /ewa ] Jouh ch.
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Y
B = E(@+k) PY (9G4-PG%) e’ b th-1e)
P (Y-K) &

P = E(r+) 9 ¥(gGa-p=dC 2V osbicch )

K2(Y-k) o
Q) = ~EPY(}a-Pa) Corh (4 -2.)
xia

& = ~-EqV¥(94-pa) corh <(h-3)
kA

Ty = AE(Y*R) éﬂ(q,C.'PC;) @dw(h-2o)
Y«) o

®y = 1€ (94-pa) cosbx(h-2)
N

B. Transformed iﬁaggetic induction _(horizontal source G eo )

3 (I,2<2) = -E iﬁkm 2) {Cz’m"‘z *P"(Nfa"i&) Gk)cql]o«wﬁmﬁ 1)}
k'A

f&: (ﬂ ,2<&) = E o u:ll\—%){c, bk “Z/Y(Pcl-‘i") [(?5)@'[1] MK(&-IJ}
prhich T KS

B (n ,2<3) = +E codh kil | Pa-16) {-u»ﬁkl —“+ "[G’%)C‘!l] Wik k(&-ﬂ}
Yo 1k % Y N

é, (I ,z7%)= E Mklﬁ-@) {czaﬂkz, P‘((pﬁ-;;c.) [(?’ -1]‘_,,1..(([\,&) }
Mk‘ kto

g (T,27%) » -E onbx(he) {c.w‘kz» +4¥(pa~gc) [(Ve)e- 1]M~(L-a-;}
TRl Ty

ﬁz (O, 272) = v€ whk(b-2) (pcz—;c.)i -~ wih k& T[G« 11]w&k(£-m]
sh ik kA
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28 n .’a&]

%“ (m—) E\' (151 ?C;) wge\ Km—b) £. [(Vr_

%, (mr) = g Y (§4-pa). k(b €. [&‘)¢’Ye‘*_gn]
K'a ,

A
B (M) = 1E _(4G-p&) torhrth-2a) [C;« Wett, o 72

Fas

é, (V) = 2E . PY(§u-pa) b kth-&) {,Kz (res

K(Yv-)y AN

B (V) = 2E. 97 (4u-pa) whklbam) CCe (e1e)

k(Y1)

63 (m) = 2iE Y (151 PG C,orctk(l\q.) _cgz_e(*n'v-)

e o

C. Vertical magnetic dipole solutions (cylindrical coordinates (v,9,Z> )

(i)} 2-layer Earth.

B (I ,27%) = ff— ¥ { w‘-ﬂwY[@« e’ ‘l 'kh}:ﬂcmauq
A

B, (O, 272) = Mfc l: m‘k?**[@—'h"l]f— }T(vp)dk
“y

S

B( O ,2¢a) = ﬁ[ e e {Mwﬁlci Y LC’«)e‘r 1] f Ty(x) dx

©

B: (T, 2¢3) - Mf e [ -odie « v [(5o) T 2] e Ttup) e
b

Rr(ﬂl) ) ﬁf ﬁ-kz' oy {(; >Cnrae ~“}T‘(kp)0‘4:

B (TT) =-M Y e P et “’ {Q:‘:)QZY€“+€~ }Te(t@) K
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B () - amf e sy M v Tl ic
o Q('u) Dy

—kgo x(\+2) vy
B, () - 2Hf€ Klve e % (kp) o
° Q-k) a,

ihere A, = [(?:‘f)ez ]7* [G: |

(ii) Haif space.

— Ko
Be (Z,2%2) = M| € K[ anh T, + “’ }.T.(uce)d«

[
e

6s (O,2.2) = —wvana@-« )_’_' 5 Jolicp) dic
. S
-:3-
B (]' ?<?‘) M£ < Mpz -+ YC }7‘(“,{”0“,
Yk

B (T,2<%) = ! ~ iz 3’:' j‘)’(rp)dr

T ~Ks
b(m - M YETee T

° Ttk
kB (m)- -Mf e et Jolicp) i

° ¥tic

D. The EM field induced by a solitary tooth

‘The resulf.s presented here are an addition to those of §11.16, Here
we use the magnetic field line analysis of chapter 12 to discuss the
stpgcture on the conductor surface, 2o , of the real and imaginary parts
of the (complex induced EM field shown in figures IV.1 to 1V,6,

Writing 8rer = (Be+ inﬁz)e"‘\wt » We see that B, corresponds to the

magnetic induction induced by the tooth isince at -0 the secondary



O 0O 0 0O = rorofuro* u



YSTFtR



YSTRR






-252-



-253-

T

(J3+11-614

4118 A

“Bi4

rpnrrpnn-pooT

wr Trp~r

©

(it

[o)]

©

PJ
©






Fig. IS-5tA)
IMRG PRRT OF T2

(DRTR1, Z-0. 0)1

IM (TS)
070 -

.07 —



go

czo

Dyo



256

fields are momentarily zero) and -8, corresponds to the magnetic induction
produced by the induced currents (since at t = /22 the source field is
momentarily zero). The magnetic induction at any time ¢ is given by

R{B(L.)} = B wswk - B, imwt . Similarly we may describe

400 - (TariTe]e™t and  @lned = (desiB)e™t

We note the following: (i) the diffusive action of the conductor is

indicated by the less rapid decay with distance of the secondary field
( (b) in figures IV.1 to IV.6) compared with the source field ( (a) in
figures IV.1 to 1V.6), (ii)the magnitudes of the secondary fields are, in
general, one tenth those of the source fields, (iii) the orientation of the
magnetic field lines for a section along the Y ~-axis when the tooth
pesembles a dipole source agrees with our magnetic field line analysis.of
a vertical magnetic dipole (figure 12.1) and (iv) the changes in direction
of the real and imdginary parts of B3 (figures IV.3(a) and IV.3(b))
indicate the positions of the '0'-type neutral points between the times

Lo and &= T/w (for a section along the x axis, the coll-wound tooth

resembles two widely-spaced line currents, so the secondary currents are

image sources).
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