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Abstract

This thesis is concerned with the spreading of a large mass of fluid under the influence

of gravity and viscous forces, referred to as a viscous-gravity current. The focus is

on a particular class of viscous-gravity currents which involve the spreading of a hot

fluid undergoing cooling as it flows. The flow of lava is a primary example and is what

motivates this work. The flow and cooling are strongly coupled. The fluid properties,

such as the viscosity, are temperature-dependent and flows also exhibit non-Newtonian

behaviour due to compositional changes as a result of cooling, such as an apparent

viscosity and a yield stress. Conversely, the flow convects the heat causing cooling.

A consequence of this is the development of dynamic flow patterns, such as fingering-

type instabilities, e.g., toe-shaped protrusions at an advancing lava flow front. These

behaviours have motivated theoreticians to understand the interplay between flow and

cooling and the mechanisms behind these instabilities.

This work develops a theoretical model of a planar liquid dome spreading down an

inclined substrate due to gravity. This model incorporates non-Newtonian and vis-

coplastic behaviour, a temperature-dependent viscosity and heat transfer boundary

conditions at the dome’s free surface and the underlying substrate. A power-law

and Carreau constitutive law is used to describe the non-Newtonian behaviour and a

Herschel-Bulkley constitutive law to model the viscoplastic behaviour. Two viscosity-

temperature relationships, an exponential and a bi-viscosity model, are considered.
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We combine numerical simulations and similarity solutions to perform a parameter

study on the influence of key parameters on the free surface shapes and spreading

behaviour, such as the apparent viscosity, yield stress, Péclet number (compares con-

ductive and convective heat transport), temperature-viscosity coupling constant and

the surface and substrate heat transfer coefficients. Our one-dimensional results reveal

a variety of free surface shape profiles, such as symmetric domes, slumped domes, pan-

cake domes and overriding fluid humps. A two-dimensional numerical linear stability

analysis reveals the stability characteristics of the above one-dimensional shapes to

a small-amplitude transverse perturbation. We have identified a fingering instability

based on a thermo-viscous mechanism. The viscosity-temperature coupling is identified

as the key parameter that controls the growth rate of the instability and the band of

unstable wavenumbers. We provide the necessary conditions on the base state for the

onset of the instability. The preliminary work undertaken here provides the basis for

doing a thorough theoretical analysis of the instability and for exploring the nonlinear

stability of the flow.
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Chapter 1

Introduction

1.1 Motivation

The spreading of a mass of liquid, such as a drop or a liquid layer, is ubiquitous in a

wide range of problems (see Oron, Davis & Bankoff [67] and Matar & Craster [27] for a

nice review of these). It has many important applications in industry, such as in coating

flows (e.g., coating a wall with paint) [62], in the spreading of radioactive material in

nuclear reactors [33], to name a few. It also occurs frequently in many geophysical and

environmental scenarios, such as in lava [40] and glacier [65, 71] flows and mudslides

[51]. In these large-scale geophysical and environmental flows, spreading is mainly

driven by the force due to gravity causing the liquid to flow down the underlying

surface (commonly referred to as a gravity current [49]). In small-scale flows, physical

effects such as surface tension (associated with the curvature of the liquid-air interface)

1
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and surface tension variations (e.g., due to chemicals such as surfactants which modify

the surface tension at the air-liquid interface) can also drive spreading flows [27, 62].

External forces due to, for example, an electric or magnetic field can also be applied

to control spreading which is useful in many industrial applications [27]. Lava and

glacier flows, mudslides and landslides can endanger life, even causing death in most

cases, and can damage or destroy infrastructure and buildings. Understanding the flow

behaviour is therefore important in order to develop strategies on how to control their

spreading and mitigate potential future disasters.

The main motivation of this thesis is to understand the variety of features associated

with the flow of lava. During a volcanic eruption the magma (molten or partial molten

rock) that is extruded through a vent is referred to as lava. The lava spreads on the sur-

face as a gravity current, forming a lava flow. They undergo cooling by transferring their

heat to the colder surrounding atmosphere or the underlying solid surface gradually

solidifying until they come to rest. There are many observed forms of lava flow which

depend on its composition, the effusion rate out of the vent, eruption temperature, cool-

ing rate and the ground topography over which the lava flows [40]. When lava is highly

viscous and the extrusion from the vent slow, it does not spread very far but expands it-

self into a mound around the vent as more and more magma is extruded into the dome’s

interior. This roughly circular mound is referred to as a lava dome (United States Geo-

logical Survey, Glossary - Dome; http://volcanoes.usgs.gov/vsc/glossary/dome.html).

Figure 1.1(a) shows a side view photograph of a lava dome in August 1981 which was
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formed within the crater of the volcano Mount St Helens after its final eruption in

October 1980. They can reach heights of several hundred metres and can grow steadily

for years. For example, the final explosive eruption of Mount St. Helens on October

1980 formed a lava dome within 30 minutes after the explosion and within a few days,

it was about 900 feet wide and 130 feet high. This dome grew intermittently for several

years between 1980 and 1987. It reached a height of approximately 800 feet and grew

to a diameter of 3,000 feet. Lava flows could also be more fluid-like if the viscosity of

(a) (b)

(c) (d)

Figure 1.1: Examples of some observed forms of lava flow. (a) Side view photograph
of Mount St. Helens’ lava dome in August 1981 which was over 500 feet high and
nearly 1300 feet wide; (b) lava channels formed between levées of solidified lava; (c)
and (d) ropy and toey pahoehoe lava flow. Photographs courtesy of the United States
Geological Survey.
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the magma feeding the eruption vent is very low [40]. If the effusion rate is large, they

produce rapid flows that can travel for long distances on the order of several kilometers

[24]. The largest of these flows are those observed in Hawaii, which start off as rapid,

open-channel pahoehoe flows. These flows are observed to produce their own channel

by constructing levées of solidified lava [45] (see Fig. 1.1(b)). The channel flows can

also form lava tubes, which are roofed channels in which the lava flow is completely

surrounded by solidified lava and therefore well insulated against any heat loss at the

surface [52]. Instabilities, usually associated with cooling, can lead to branching of the

channel flows or the advancing flow front into shallower flows with thin glassy surfaces,

referred to as pahoehoe lava [40]. Surface features such as a ropy appearance are ob-

served in some of these advancing flows (see Fig. 1.1(c)), in others, the advancing flow

front has toe-like protrusions (see Fig. 1.1(d)).

The rheology of lava is quite complex. It is not a pure liquid but is generally a multi-

phase and chemically heterogeneous system, comprising of a melt component, a crystal

component, gas bubbles and volatiles [30, 40]. The crystal and bubble volume frac-

tions are time and temperature dependent. The transition from liquid to solidified

lava occurs within a temperature interval determined by the liquidus (temperature

above which the material is completely liquid) and solidus (temperature below which

material is completely solid) temperatures. Lavas usually erupt above their liquidus

temperature undergoing cooling (and possibly solidification) as they flow. Hence, the

temperature of lava flows is usually in the range between their liquidus and solidus
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temperatures. Above their liquidus temperature, lava flows are generally Newtonian

liquids, e.g., basaltic lava (molten or partial molten basaltic rock) from volcanoes in

Hawaii erupt at about 1200o and have viscosities approximately 102-103 Pas. Below

the liquidus temperature, lava flows exhibit non-Newtonian characteristics such as a

shear-rate dependent viscosity (the apparent viscosity of the lava mixture) and a yield

stress. Its rheology can be described as a viscoplastic material which typically behave

on the macroscale as a single-phase liquid with no deformation when the applied stress

is below the yield stress and the material behaves as a rigid solid, but when the yield

stress is exceeded it begins to flow as a viscous liquid [3, 8, 30, 40]. This non-Newtonian

behaviour is due to the presence of crystals below the liquidus temperature. The appar-

ent viscosity and the yield stress of lava are a function of the temperature and volume

fraction of crystals [40]. The rheological properties of lava such as the apparent vis-

cosity and the yield stress play an important role in the dynamics and flow features

of lava flows. The phase transition associated with the solidification of lava due to

surface cooling can also play an important role. Solidification occurs by crystallisation

if the cooling rate is slow and by the formation of glass if the cooling rate is rapid. The

influence of solidification on the lava rheology is to increase the viscosity and the yield

stress. The formation of a solid crust (also referred to as talus or carapace) at the lava

surface, levées in channelised flows and tunnels in lava tubes are due to solidification

of lava by surface cooling.
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1.2 Laboratory and theoretical models related to

lava flow

Laboratory and theoretical models have complemented field studies in developing the

current understanding of lava flows and geological flow problems, in general. This has

resulted in the creation of the field of geological fluid mechanics, reviewed by Huppert

in 1986 [48].

We first consider the laboratory analogues of lava flow.

1.2.1 Laboratory analogue models

Most laboratory experiments of lava flows have focussed on their rheology using ana-

logue materials. The experimental flow configuration involves extruding the lava ana-

logue material from a small vent onto a horizontal or inclined substrate. These flows

have then been studied under isothermal and non-isothermal conditions to investigate

the morphology and dynamics of lava flows and their dependence on the three main

effects associated with lava flows: non-Newtonian effects of shear-rate dependent vis-

cosity and yield stress, temperature-dependent viscosity and yield stress and phase

transition due to solidification.

Huppert [46] used Newtonian liquids, such as silicone oils and glycerine, to model

the spreading of viscous gravity currents down an inclined plane. By following the
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motion, he was able to determine the speed of the advancing liquid front and its depth

before the current loses stability to a series of small amplitude rivulets which begin to

grow across the slope at critical distances down the inclined plane. The wavelength

of these patterns were shown to be controlled by the surface tension of the liquid and

independent of its viscosity. Lister [54] performed similar experiments as Huppert using

silicone oil, glycerol and sugar syrup to compare long-time theoretical predictions for

point liquid release on an inclined plane from a constant flux and constant volume

source with experiments (theoretical results discussed in §1.2.2).

Stasiuk et al. [80] performed experiments with warm glucose syrup to determine the

effects of cooling on the flow behaviour with strongly temperature-dependent viscosity.

Viscous-gravity currents of warm glucose syrup were released at constant rate into a

tank filled with cold water. Their results show that cooling is preferential near the

advancing flow front with the majority of the spreading fluid at a constant higher tem-

perature. In certain cases, the cooling produces a nearly horizontal free surface profile

and a steep flow front (like a pancake), rather than dome-shaped profile characteristic

of spreading on a horizontal plane.

Hulme [45] hypothesised that lavas are non-Newtonian liquids with a yield stress. Lab-

oratory measurements on flows of suspensions of kaolin slurries (materials that ex-

hibit viscoplastic behaviour) were conducted. The occurrence of structures similar

to levées on lava flows was predicted. He developed a theory for flows of Bingham

liquids (see §1.3.1) for the description of a Bingham material) on inclined planes (dis-
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cussed in §1.2.2). Blake [19] used Kaolin slurries to examine the effect of yield stress

on the spreading rate and shape of lava domes. His experiments show that a grow-

ing dome maintains a state of static equilibrium and provided a scaling law for the

dome height, H, as a function of its radius, R, density, ρ, and yield stress, τ0, related

by H ∼ (τ0R/ρg)1/2, and is independent of the effusion rate. Liu & Mei [55] perform

experiments to study the dynamics of fluid mud using a mixture of Kalonite (clay mate-

rial) and tap water to simulate mud. Balmforth et al. [5] considered the slow extrusion

of a Kaolin-water-slurry mixture on a horizontal plane to study the experimental ana-

logue of a slowly cooling lava dome. Osmond & Griffiths [70] obtained static lava dome

shapes from laboratory experiments in which slurries of kaolin in polyethylene glycol

(PEG) wax were extruded from a small source on an inclined plane. These shapes are

compared with those obtained from a theoretical solution of a static three-dimensional

shape of a fluid with a finite yield stress using their experimental configuration.

Bagdassarov & Pinkerton [4] investigate the effects of bubbles on the time-dependent,

non-Newtonian properties of vesicular melts experimentally using analogue materials

such as golden syrup and gum rosin. The shear-thinning behaviour of bubbly liquids

is shown to be dependent on the previous shearing history. This behaviour, referred to

as Thixotropy, is postulated to be caused by delayed bubble deformation and recovery

when subjected to changes in shear stress.

To investigate the effects of phase transition due to solidification, laboratory exper-

iments have used polyethylene glycol wax (PEG) or PEG-kaolin slurries, which cool
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and solidify as they flow under cold water. These are used to model the growth of a

surface crust on a spreading lava flow. These experiments have successfully reproduced

a variety of lava flow features observed in field studies by varying the flow rate, the

cooling rate and the inclination angle of the plane.

Fink & Griffiths [34] reproduced a variety of lava flow structures including levées,

surface wrinkling oriented normal to the flow direction, surface fractures, and pillows.

These are shown to be related to the growth rate of the surface crust. Their experiments

showed that when the ambient temperature was low enough, solid crust developed on

the surface of the spreading flow. Subsequent compression, extension and shear of the

flow surface resulted in a range of morphologic features similar to that seen on natural

lava flows. In Fink and Griffiths [35], laboratory simulations together with comparisons

of lava dome growth, lead to a classification of various lava dome growth regimes in

terms of their morphology. A sequence of four main types of dome were identified in

laboratory analogue experiments with a Bingham viscoplastic flow. They represented

an estimate of the yield strengths of the magma forming active domes based on data

for the effusion rate and composition.

Lava analogue experiments by Griffiths, Kerr & Cashman [41] using polyethylene glycol

(PEG) wax flowing down an inclined, open channel of rectangular cross-section under

cold water. Two distinct styles of solid crust distribution are observed: “tube” in

which there was a rigid solid roof over the flow for much of the length of the channel,

with the flow proceeding through an encased tube beneath and a “mobile crust” in
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which the flow surface along the centre of the channel was covered with solid, but

remained mobile (solid raft). The crust was carried freely downstream. Transitional

flow behaviour showed some elements of both the above regimes and was dependent

on time and distance down the channel.

Experiments have also explored transitions between the various dynamical flow regimes.

Blake & Bruno [20] have shown that the morphological transition from a uniform lava

flow to a compound lava flow corresponds to the dynamical transition from the viscous

flow regime to the surface crust controlled flow regime. Lyman et al. [57, 58, 59]

investigated fixed volume releases in a horizontal channel and found that solidifying

flows with no internal yield strength can initially spread in an inertial slumping regime

and a viscous flow regime, before a final regime where the yield strength of the growing

surface crust stops the flow. They also demonstrated that solidifying flows with an

internal yield strength can be stopped by either the internal yield strength or the

growing surface crust.

Garel et al. [38] investigate the coupling between the spreading of a solidifying flow and

its surface thermal signal through analogue experiments using PEG wax that solidifies

abruptly during cooling. They observe that the flow advance is discontinuous when

the effusion rate is low resulting in compound lava flows. At high effusion rates, flows

are less sensitive to solidification and exhibit a spreading behaviour similar to that of

viscous gravity currents. They conclude that the effusion rate of lava flows can be

retrieved from the surface thermal signature of lava flows. However, the prediction of
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lava advance as a function of effusion rate is difficult due to the chaotic spreading of

solidifying flows.

Robertson & Kerr [74] used polyethylene glycol and kaolin slurries to conduct ex-

periments for isothermal, cooling, and solidifying flows to quantify the effects of the

viscoplastic rheology and surface crust formation. An unyielded central plug region

was observed to be formed under isothermal and cooling conditions. In the solidifying

experiments, a tube regime, in which crust covered the entire flow surface and a shear-

controlled regime, with a mobile raft of crust in the channel centre, were identified.

Griffiths & Kerr [39] provide a nice overview of almost twenty years of their group’s

work using laboratory experiments and scaling laws to highlight the coupling between

cooling, solidification and flow in generating the variety of features observed in lava

flows.

1.2.2 Theoretical models

The general theoretical framework to model lava flows and mudflows is to consider

a viscous gravity current generated by either a point or line source spreading down a

horizontal or inclined plane (similar to the laboratory experiments). The spreading flow

is assumed to be laminar and to have a small aspect ratio, i.e., the characteristic liquid

thickness, H is much smaller than the spreading length, L, typical of such flows. This

assumption would be valid after the lava has flowed a sufficiently long distance away

from the vent. This allows lubrication theory (or a long-wavelength approximation) to
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be used to simplify the Navier-Stokes equations (see Acheson [1] and Ockendon [66]).

The leading-order equations in the small aspect ratio, commonly referred to as the

thin-layer or thin-film equations can then be used to determine the evolution of the

free surface of the spreading viscous gravity current. The leading-order evolution equa-

tion of the free surface using lubrication theory for a Newtonian viscous gravity current

spreading on an inclined surface is represented by an advection - diffusion Partial Differ-

ential Equation (PDE). The advection term corresponds to the horizontal component

of gravity with a characteristic speed proportional to the second power of the free sur-

face height (see Acheson [1] and Ockendon [66]). The diffusion term corresponds to the

vertical component of gravity and the diffusion coefficient is proportional to the third

power of the free surface height.

This framework has been used by several researchers to investigate various aspects of

viscous gravity currents, particularly, their rheology under both isothermal and non-

isothermal conditions, e.g., in glacier flows (Fowler [36, 37]), muds (Liu and Mei [55, 56],

[26]) and debris flows (Davies [28]). The main physical mechanism in these flows is the

balance between viscous forces and gravity and other effects such as surface tension

are negligible. This is in contrast to drop spreading problems in which surface tension,

surface tension gradients and intermolecular forces could also be important [27, 67].

Huppert [47] derived similarity solutions for the spreading of a viscous Newtonian

fluid over a rigid horizontal plane of volume proportional to tα, (α ≥ 0), in both

axisymmetric and planar geometries. The solution predicts that for the axisymmetric
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case, R ∼ t(3α+1)/8 and h ∼ t(2α−1)/4. For the planar case L ∼ t(3α+1)/5 and h ∼ t(2α−1)/5,

where R is the radial distance, L is the spreading length and h is the thickness. For

example, if α = 0 (representing spreading of a constant volume of liquid), then R ∼ t1/8,

h ∼ t−1/4 for the axisymmetric case and L ∼ t1/5, h ∼ t−1/5 for the planar case. The

solution agrees well with his laboratory experiments for fixed volume and flux release.

Lister [54] derived similarity solutions for the spreading of a Newtonian viscous gravity

current generated by a point or line source of fluid down an inclined plane in both

axisymmetric and planar geometries. The similarity solutions show that at late times

a fluid of volume proportional to tα spreads like L ∼ t(4α+3)/9 and thins like h ∼ t(2α−3)/9

from a point source, and L ∼ t(2α+1)/3 and h ∼ t(α−1)/3 from a line source. For example,

if α = 0, then L ∼ t1/3 and h ∼ t−1/3 from a line source. The spreading and thinning

rates are faster as the volume and flux of fluid increases and angle of inclination of

the plane increases. The flows are observed to be unstable across the slope in the

experiments similar to those observed by Huppert [47].

More complex non-Newtonian rheologies have also been investigated by several re-

searchers using the above flow configuration. Slow spreading of a Bingham plastic

fluid (see §1.3.1) has been investigated by Liu and Mei [55, 56] to model the dynamics

of mud flows. Liu & Mei [55] present a theory based on the shallow-water approx-

imation (similar to the lubrication approximation) to derive the evolution equation

of the free surface incorporating the yield stress and a yield surface (below the yield

surface, the fluid is yielding and is undergoing shearing motion while above the yield
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surface, there is plug flow, i.e., the flow speed is independent of depth). They show

that by including the yield stress, a variety of static free surface shapes exist which

are shown to be the final states of time-dependent motion. Also shown to exist are

steady gravity currents which propagate at constant speed without change of form.

Liu & Mei [56] use a modified Bingham plastic model based on bi-viscous fluids (fluid

with a much larger viscosity above the yield surface and a much lower viscosity fluid

in the region below the yield surface) to derive an approximate evolution equation for

the free surface. The bi-viscous fluids model removes an inconsistency of using the

Bingham plastic model to derive the thin-layer equations. The inconsistency in the

thin-layer theory for Bingham materials, e.g., Liu & Mei [55], is that the equations

are continued on to be derived at higher orders describing the lateral yielding motion

of the layer, even though a rigid plug flow is assumed. The bi-viscous models replace

the plug flow by a slowly yielding region. However, such bi-viscous models reduce to a

Bingham model on setting a particular parameter to zero which reduces identically to

the inconsistent theory above.

Hung and Garcia [44] extend the above theory to a Herschel - Bulkley fluid (see §1.3.1)

to model mud flows. Using a matched-asymptotic perturbation method, they derive a

uniformly valid solution over the entire spreading length by matching the inner region

near the advancing flow front (balancing both the horizontal and vertical components

of gravity and assumed quasi-static) and the outer region away from the front (where

horizontal gravity dominates the spreading). The results for the spreading and runout
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characteristics and the free surface shapes are shown to agree well with experiments

of Liu & Mei [55]. Balmforth & Craster [6] derive a self-consistent thin-layer theory

for the Bingham model which does not rely on applying any ad hoc approximations,

such as the bi-viscous models used by Liu & Mei [56]. The authors demonstrated how

lubrication theory could be formulated consistently to describe the existence of a fake

yield surface separating the flow into two layers: the bottom layer, which is referred

to as a region of fully plastic flow undergoing shearing motion, and the upper layer,

referred to as a pseudo-plug flow region, where the shear rate is nearly zero. The term

pseudo-plug means that the leading-order equations in this region predict a plug flow,

but which is weakly yielding at higher order. They also extended this theory to a

Herschel - Bulkley viscoplastic fluid model.

Using this theory, Balmforth et al. [5] modelled radially symmetric expanding lava

domes by treating the lava as a viscoplastic material over a flat horizontal surface ex-

truding from a point source. A variety of non-Newtonian and visoplastic rheological

models were considered such as the Power-law, Bingham and Herschel - Bulkley models.

Numerical and similarity solutions (based on volume increase in the dome proportional

to tα, where α ≥ 0) were derived that explore the effects of yield stress and shear thin-

ning on the dome evolution. In Balmforth et al. [10], the same model was generalized

to an inclined plane in 2 + 1 dimensions (two-dimensional planar co-ordinates x and

y and z = h(x, y) is the free surface. A variety of numerical and similarity solutions

are derived for the dome evolution depending on the yield stress and shear-thinning.
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These are then used to characterise the domes’ spreading and thinning rates. They

also derived explicit solutions for the dome evolution in the field-stress dominated case.

Dubash et al. [31] constructed the final shape of a two-dimensional viscoelastic slump

using two methods based on a small aspect ratio expansion and a slipline method

to reconstruct shapes for arbitrary aspect ratios (following the study by Nye [65]).

More recently, Hewitt & Balmforth [43] have extended the thin-film theory to model

thixotropic gravity currents flowing down an inclined plane. The rheological consti-

tutive law used to describe thixotrophy includes the degree of initial ageing and the

spatio-temporal variations of the microstructure during flow. Their results show that

a critical inclination angle needs to be exceeded for flow to be initiated that depends

on the ageing time. Above this critical angle and for relatively long ageing times, the

fluid dramatically avalanches down the plane with a characteristic fluid hump at the

advancing front. The flow is prone to a weak interfacial instability that occurs along

the border between structured and de-structured fluid. Experiments with bentonite

clay show qualitative similar behaviour to that predicted by the model.

Pritchard et al. [73] derived a general evolution equation for a shallow layer of gener-

alized Newtonian fluid undergoing unsteady two-dimensional gravity-driven flow on a

horizontal or an inclined plane. This procedure offers a means of obtaining shallow-flow

solutions for yield-stress fluids without explicitly tracking the yield surface within the

fluid. Studies have also investigated the role of variable topography on the spreading

characteristics, e.g., Bernabeu [16] and Osiptsov [68, 69], and including partial slip at
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the plane (Vedeneeva [79]), instead of the no-slip condition.

While the isothermal (constant temperature) spreading process of a viscous gravity

current has been well studied in the literature, comparatively fewer studies have inves-

tigated the non-isothermal effects in this context. Non-isothermal effects are important

when there exists a strong coupling between the flow and the temperature field due

to a strong dependence of the liquid properties on the temperature (e.g., its viscosity,

surface tension, yield stress, etc.) and the heat transfer between the bulk liquid and

the surroundings at the free surface and the underlying substrate.

Most non-isothermal mathematical models assume that, within the lubrication approx-

imation in which the dome evolves slowly, heat is conducted (or diffused) sufficiently

quickly across the thickness of the liquid layer compared to its convection by the flow,

the so-called low reduced Péclet number asymptotic limit. (The reduced Péclet number

is the product of the square of the aspect ratio and the Péclet number, which is the

ratio of the convective to the diffusive heat transport.) This allows simplification of

the temperature field depending on the boundary conditions applied at the free surface

and the underlying substrate. If the temperature is specified at both boundaries, this

limit results in a linear temperature profile vertical to the flow direction. On the other

hand, if heat transfer boundary conditions are applied, then the temperature is uniform

in vertical cross-sections at leading order in the aspect ratio, referred to as thermally

well mixed. To the next order, a one-dimensional convection-diffusion equation for the

temperature field can be derived.
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This framework has been applied in related thin-layer models. Numerous studies have

investigated thermocapillary effects (temperature-dependent surface tension). For ex-

ample, Ehrhard & Davis [32] investigated theoretically the spreading of a liquid over

a horizontal substrate subject to capillary, thermocapillary and gravitational forces.

Ajaev & Willis [2] investigate the surface tension gradient-driven flow due to non-

uniform heating resulting in the rupture of molten films on a horizontal substrate.

Studies more relevant to this thesis are those concerned with the effects of cooling on

the dynamics of a gravity current with temperature-dependent viscosity. Sakimoto &

Zuber [75] considered a cooling gravity current with a viscosity that has a power-law

dependence on time. This model was used to describe the plateau features observed in

pancake domes observed on Venus.

The flow from a point source of material with a more general temperature-dependent

viscosity was investigated by Bercovici [13]. He simulated free surface profiles that

develop a steep flow front followed by a central plateau. This work was agreement

with experiments performed by Stasiuk et al. [80]. Bercovi and Lin [14] discussed

the cooling of mantle plume heads using a temperature-dependent viscosity model.

Wyli and Lister [84] investigated instabilities in channel flows undergoing cooling at

the channel walls using a temperature-dependent viscosity model. This was used to

model fissure eruptions. This study was extended by Wall and Wilson [81] to consider

a broad range of temperature-dependent viscosity models. Wilson & Duffy [82, 83]

investigated the unsteady gravity-driven draining of a thin rivulet of Newtonian fluid
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with temperature-dependent viscosity down a substrate that is either uniformly hotter

or uniformly colder than the surrounding atmosphere. A general nonlinear evolution

equation was derived for a thin film of fluid with an arbitrary dependence of viscos-

ity on temperature. This model was then used to provide a complete description of

the steady flow of a slender rivulet. The PhD thesis of Sansom [76] was the first

comprehensive study to investigate the non-isothermal spreading of a viscous gravity

current on a horizontal substrate using three temperature-dependent viscosity models

(linear, exponential and bi-viscosity). This was motivated by the problem of spread-

ing of coolants in nuclear engineering. A nonlinear diffusion equation was derived for

the evolution of the free surface with the diffusion coefficient inversely proportional to

the temperature-dependent viscosity. Both the low reduced Péclet number asymptotic

limit as well as O(1) reduced Péclet number (in this case, convective heat transport

is comparable to vertical conduction of heat) are considered with boundary conditions

that either prescribe the temperatures or allow transfer of heat at the free surface and

the underlying substrate.

The numerical results for the 1 + 1 dimensional free surface shapes showed a com-

mon feature of the development of a steep flow front followed by a central plateau

(the pancake-type profile). This is caused by preferential cooling of fluid near the

flow front which forms a barrier, forcing the height at the front to grow as hot, less

viscous fluid continues to be fed in behind the front. They also showed that introduc-

ing perturbations along the flow front, transverse to the flow direction, can cause the
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development of fingering behaviour. This occurred when the coupling between the vis-

cosity and temperature fields was strong and sufficient amount of cooling was necessary

in order to produce a significant viscosity contrast along the flow front. The author

showed that the fingering patterns were caused by the viscosity gradients near the flow

front. Aspects of this thesis have been published in King et al. [53] and Sansom et al.

[77]. Balmforth [7] extend their earlier model of the spreading of a viscoplastic dome

over a horizontal plane to include non-isothermal effects. They modified the Herschel-

Bulkley constitutive law to include a temperature-dependent viscosity and yield stress.

Solutions were obtained for the growth of a vertically isothermal lava dome in the

asymptotic limit of low reduced Péclet number. They also considered the development

of non-axisymmetrical domes and used the thin layer model to explore the possibility

of fingering-type instabilities. Balmforth [11] extended their earlier study to allow the

reduced Péclet number to be O(1). An efficient computational algorithm is presented

for numerically solving the evolution equation of the free surface coupled to the tem-

perature equation, which depends on both the axial and the vertical coordinates. They

describe solutions similar to that presented by Sansom et al. [53, 76, 77] that illustrate

the dynamics of an expanding Bingham fluid with a temperature-dependent viscosity.

A key feature (also noted by Sansom [76]) highlighted in their results is that liquid

near the flow front gets chilled and is then overridden as the fluid expands, creating a

so-called collar of cold liquid. Two simpler models that further approximate the tem-

perature equation: a vertically isothermal theory (similar to Balmforth [7]), and a skin
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theory are compared to the O(1) reduced Péclet number numerical simulations. Bern-

abeu [15] generalized their earlier model [16] to include the non-isothermal viscoplastic

flow problem with temperature-dependent viscosity and yield stress on a general to-

pography. The governing equations were solved numerically by auto-adaptive finite

element methods allowing to track accurately the front position. Diniega et al. [29]

investigate the role of large change in viscosity due to small change in temperature in

the formation and propagation of preferred pathways in lava flows. they show that

these pathways are initiated when the temperature dependence of viscosity is suffi-

ciently strong. They are shown to form and stabilise over a distance depending on

the competition between the cooling rate and the low velocity with in the preferred

pathway.

Even fewer models, in the context of spreading viscous gravity currents, have con-

sidered phase transition associated with solidification. Bunk et al. [22] investigated

the spreading of melts on a horizontal substrate under the influence of solidification

of the underlying substrate. The influence of solidification on the spreading flow is

considered for volume proportional to tα and various regimes are identified for varying

α corresponding to complete solidification, retreating contact lines, stagnating contact

lines and advancing contact lines. Myers et al. [64] investigated the flow of a thin film

undergoing basal solidification on an arbitrary three-dimensional substrate. This mod-

elled the flow and accretion of ice on an aircraft wing. Zadrazil et al. [85] studied the

spreading, imbibition and solidification of a hot droplet on a cooler porous substrate.
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Their numerical results capture the essential dynamics which include: spreading and

imbibition accompanied by solidification within the pores leading to their blockage,

followed by contact line arrest and basal solidification of the droplet. The possibility

of solidified crust formation at the air-liquid interface is excluded from the above and

related studies. The crust can directly affect the dynamics by contributing additional

forces. For example, a solid shell-like crust may exert a tensile restraining force, as con-

sidered by Iverson [50]. Bourgouin et al. [21] investigate the axisymmetric evolution

of a lava dome enclosed by a brittle shell. They adopted Iverson’s assumption that the

thin boundary layer behaves like an ideal plastic membrane shell [50] which allowed

imposing a surface tension-like boundary condition for the normal stress at the free

surface. The level set computational method was used to track the evolution of the

deforming interface. Hale [42] developed a computational model for the axisymmetric

growth and evolution of a lava dome, including a deformable talus or carapace. The

dome is modelled as a fluid with a yield stress while the talus deformation is modelled

as a granular material. The growth of the talus and core were found to be strongly de-

pendent on the lava extrusion rate, degree of solidification, the friction angle associated

with the talus, and lava dome viscosity.

We can conclude from the above literature review that the main emphasis of the re-

search in the spreading of viscous gravity currents has been primarily on the non-

Newtonian rheological aspects of these flows under isothermal conditions. Few studies

have investigated the coupling between the flow and cooling and the morphological flow
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features and spreading characteristics associated with it. Sansom et al. [76, 53, 77]

and Balmforth et al. [7, 11] have made significant contributions in developing the

theoretical framework to investigate non-isothermal aspects of these flows. However,

these studies have investigated only spreading over a horizontal substrate and their pa-

rameter studies have been restricted to a weak coupling between the flow and cooling.

Although, thermoviscous effects (via the temperature-dependent viscosity) have been

postulated as the mechanism driving the fingering instabilities, these studies have been

unsuccessful in simulating them. We believe that the enhanced mobility of the current

due to the inclination of the substrate and its strong coupling with cooling will unravel

new flow features that may contribute to the finger instabilities not easily observed in

the previous studies.

1.3 Preliminary background on fluid rheology and

constitutive laws, energy equation and temperature-

dependent viscosity models

We provide below an introductory background on fluid rheology of Newtonian and non-

Newtonian fluids and their constitutive laws, the energy equation for non-isothermal

conditions and temperature-dependent viscosity relationships that are used in this

thesis. A table of the relevant parameter values for lava analogue materials and real

lava are provided in Table 1.1.
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1.3.1 Fluid rheology and constitutive laws

The study of the relationship between flow of viscous liquids in response to applied

stress is known as Rheology [18]. This field investigates the flow behaviour of liquids

such as foods, biological, polymers, slurries and other compounds. We consider a simple

two-dimensional shearing flow which is relevant to lava flows. Consider a thin layer

of a liquid placed between two parallel planes of area A? as shown in Fig. 1.2. We

consider a two-dimensional planar coordinate system, (x?, y?), horizontal and vertical

to the plane, respectively. The top plane is moved with constant velocity, U?, by the
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Figure 1.2: Schematic representation of unidirectional two-dimensional shearing flow.

application of a shearing force F ?, while the bottom plane is fixed. Let us assume that

a well-developed shearing flow that is parallel to the plane and linear in the vertical

direction, y?, is created due to this shearing force. In this context, the following
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definitions apply [25]:

(i) Shear stress: The shear stress, τ ?xy = F ?/A?, is defined by the force per unit

area, where the subscript in the shear stress τ ? represents the stress in the x?

direction acting on a plane whose normal is in the y? direction .

(ii) Shear rate: The shear rate (or rate of strain), γ̇?, is the velocity difference

between the planes divided by the distance between the two planes, i.e γ̇? =

U?/H? = du?/dy?, where u? is the flow speed in the x? direction and is assumed

to be linear in y?.

A liquid is referred to as a Newtonian liquid if the shear rate is proportioned to the ap-

plied stress. The constant of proportionality is referred to as the viscosity of the liquid

and measures the resistance of the liquid to the shearing force. For the unidirectional

two-dimensional shearing flow shown in Fig. 1.2, τ ?y?x? = µ?du?/dy? for a Newtonian

fluid and µ? is the fluid viscosity. The above relationship is also referred to as Newton’s

law of viscosity. The magnitude of the viscosity is not dependent on the shear rate

or shear stress and depends only on the material properties, temperature and pres-

sure. This means that when shear stress is plotted versus shear rate, the plot shows a

straight line with a constant slope µ passing through the origin (see Fig. 1.3). Table

1.1 shows the wide viscosity range for common materials [25]. For three-dimensional

flows in general, we have for a Cartesian coordinate system, (x?, y?, z?) the following
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stresses applied in the x, y and z direction, respectively [1].

τ ?x?x? = 2µ?
∂u?

∂x?
+

2

3
µ?
(∂u?
∂x?

+
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∂y?
+
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)
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)
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)
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(1.1c)

Also using symmetry based on the assumption that the fluid is isotropic, [18] we have

τ ?y?x? = τ ?x?y? , τx?z? = τ ?z?x? , τ
?
y?z? = τ ?z?y? . (1.2)

Any liquid that does not follow Newton’s law of viscosity (the proportionality relation-

ship between shear stress and shear rate) is classified as a non-Newtonian liquid. The

slope of shear stress against shear rate curve is not linear or does not pass through the

origin (see Fig. 1.3 for various non-Newtonian liquid behaviours). One then defines an

apparent viscosity for such liquids which is dependent on the shear rate. The subject

of rheology is devoted to the study of the behavior of such fluids. These fluids can be

classified into three categories [25]:

(i) Those fluids for which the rate of shear depends only on the value of the instan-

taneous shear stress.



27

(ii) Those fluids for which the relation between shear stress and shear rate depends

on both the duration of shearing and their kinematic history. These fluids seem

to exhibit a delayed response which fades with time.

(iii) Viscoelastic liquids: Viscoelastic fluids are those materials that exhibit both vis-

cous and elastic properties. The rheological properties of such a materials at

any moment of time will be a function of the recent history of the material. We

cannot describe it by simple relationships between shear stress and shear rate,

it also depends on the time derivative of both of these quantities. Examples of

viscoelastic fluids are polymer melt, bread dough and egg white.

In our study, we only consider non-Newtonian fluid behaviour classified in (i) above.

These fluids are referred as generalized Newtonian fluids (GNF). These fluids, in turn,

may be classified into three types:

(i) Shear thinning fluids: As the name indicates, the apparent viscosity of these

fluids decrease with increasing shear rate. A number of non-Newtonian materials

can be described as shear thinning fluids, e.g., grease, molasses, paint and starch.

(ii) Shear thickening fluids: The apparent viscosity of this type of fluid increases with

the shear rate. They are also called as dilatants fluids. Beach sand mixed with

water and peanut butter are common example of dilatants fluids.

(iii) Viscoplastic fluids: Viscoplastic materials are type of fluids characterized by a

yield stress. When the yield stress is exceeded by externally applied stress, the
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material will deform or flow. But if the externally applied stress is smaller than

the yield stress, then it behaves like a rigid solid. The common feature of these

type of materials is when left alone they simply sit and do not flow, unless they

are pushed sufficiently strongly, for example, mud and lava flows, landslides and

avalanches and biological materials like mucus are viscoplastic materials [12].

The relationship between the fluid shear stress and shear rate is mathematically de-

scribed using a constitutive law or equation.

Newtonian constitutive equation:

The Newtonian constitutive equation for compressible fluids is written as [60]

τ ? = µ?γ̇? − 2

3
µ? (∇?.u?)I ?, (1.3)

where

γ̇? =
[
∇?u? +∇u?T

]
, (1.4)

or

γ̇?ij =
[∂u?i
∂x?j

+
∂u?j
∂x?i

]
. (1.5)

For an incompressible Newtonian fluid

τ ∗ = µ∗γ̇∗, (1.6)
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Figure 1.3: Shear stress versus shear rate for a Newtonian and various non-Newtonian
fluids. Adapted from Chhabra et al. [25].

Generalized Newtonian fluid (GNF) constitutive equations:

The essential shortcoming of the Newtonian constitutive equation is that viscosity is

constant, whereas in many fluids the viscosity varies with the flow. In order to improve

the applicability of the Newtonian constitutive equation, it requires a development or

modification of the linear relationship between the stresses and the strain rates that

allow for variable viscosity, such a model is the GNF [8, 25]. We can write the stress

versus shear rate relationship as:

τ ∗ = µ∗(γ̇∗)γ̇∗, (1.7)
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where µ∗(γ̇?) is the non- Newtonian viscosity and γ̇∗ is the rate of strain tensor given

by Eq. (1.4). The second invariant of the strain rate tensor, γ̇∗, is given by

γ̇∗ = |γ̇∗| =
√

1

2
γ̇∗ : γ̇∗. (1.8)

Power law fluid:

The most widely used form of the GNF constitutive relation is for a power-law fluid

and is expressed by [18]

τ ∗ = kγ̇∗n, (1.9)

where k is the consistency index and n is the power index.

The above model can also be expressed as

τ ∗ = k∗γ̇∗n−1γ̇∗, (1.10)

and the viscosity for the power-law fluid is

µ∗(γ̇∗) = k∗γ̇∗n−1. (1.11)

Based on the value of the power-law index the fluids can be classified as shear thinning

(n < 1; see black curve in Fig. 1.3), Newtonian (n = 1; see green curve in Fig. (1.3))

and shear thickening (n > 1; see light blue curve in Fig. 1.3). For low shear rates

the power law model can give very inaccurate predictions since the apparent viscosity
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diverges for a shear thinning fluid and approaches zero for a shear thickening fluid (see

Myers [63]). When a fluid is subject to a range of shear rates, including very low values,

a different model must be used. Commonly used models include the Carreau and Ellis

models which can capture both the low and high shear Newtonian region. We use the

Carreau model in this thesis which can be written as:

µ?(γ̇?) = µ?∞ +
µ?0 − µ?∞

(1 + λ?2γ̇?2)( 1−n
2

)
, (1.12)

where µ?0, µ?∞ are the limiting viscosities at high and low shear rates.

Herschel-Bulkley fluid:

The Herschel-Bulkley model extends the power-law model to include both shear thin-

ning or thickening and a yield stress [8]. It is written as

τ ∗ =
[
k∗γ̇∗n−1 +

τ∗p
γ̇∗

]
γ̇∗ for τ ∗ ≥ τ ∗p ,

γ̇∗ = 0 for τ ∗ < τ ∗p ,

(1.13)

where τ ∗ = |τ ∗| =
√

1
2
τ ∗ : τ ∗ and τ ∗p is the yield stress (see dark blue curve for τ ∗p 6= 0

and n < 1 in Fig. 1.3). If τ ∗p = 0, then it reduces to a Power-law fluid, and if τ ∗p 6= 0 and

n = 1, it reduces to a Bingham fluid; see red curve in Fig. 1.3). The Bingham model

does not have the ability to deal with shear-thinning (or thickening) properties. The

Herschel-Bulkley model is more realistic since viscoplastic fluids usually exhibit both
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a yield stress and a non-linear viscosity [12], and are also commonly used to describe

many biological fluids, mud, clay, water slurries, etc.. There are many studies including

the Herschel-Bulkley rheological model (see [8, 16, 72]).

1.3.2 The energy equation

The general equation for the rate of change of heat energy per unit volume, ρ?c?pT
?, in a

material with density, ρ?, specific heat, c?p, thermal conductivity, κ?, thermal diffusivity,

κ?d = κ?/(ρ?c?p) and temperature T ? is given by (see Carslaw & Jaeger [23]):

(ρ?c?pT
?)
t?

+ (u?.∇?)(ρ?c?pT
?) = ∇?.[κ?d∇?(ρ?c?pT

?)] + µ?γ̇?2ij , (1.14)

where the last term represents heat energy generated through viscous dissipation or

friction. We will assume that both the density and specific heat are constant (see Table

1.1), so Eq. (1.14) can be simplified to

ρ?c?p[T
?
t? + (u?.∇?)T ?] = ∇?.[κ?∇?T ?] + µ?γ̇?2ij , (1.15)

This equation is supplemented by boundary conditions. In this thesis, we consider heat

transfer boundary conditions of the form:

−κ?(n? · ∇?T ?) = F ?(T ?), (1.16)
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where n? is the outward pointing normal and F ? is the heat flux at the boundaries.

Depending on the physical conditions, various forms are possible, e.g., thermal radi-

ation, convection by wind, convection and conduction in overlying water. We use a

simple form based on Newton’s law of cooling, so

F ?(T ?) = a?m(T ? − T ?a ), (1.17)

where a?m is a heat transfer coefficient and T ?a is the ambient temperature. Such a form

of the flux function has been used by Balmforth et al. [5, 11].

1.3.3 Temperature-dependent viscosity constitutive relation-

ships

As observed in Table 1.1, viscosity variations in temperature could be quite significant

in lava flows. Viscosity increases as temperature decreases and this relationship is

important in modelling the cooling of liquids, such as in lava flows. Figure 1.4 shows a

graph of viscosity versus temperature for various types of lava obtained from Diniega

et al. [29]. We observe that the viscosity variations are largest for lava with a high

silica content (e.g., Dacite and Rhyolite) and the viscosity contrast decreases for lava

with less silica content (e.g., Andesite and Basalt). The simplest viscosity relationship
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Figure 1.4: Measurements of viscosity versus temperature (solid dots) obtained from
Diniega et al. [29] for various types of lava. The solid lines are correlations using the
Arrhenius law given in Eq.(1.18).

based on the Arrhenius law is:

µ?(T ?) = µ?0e
−α?(T ?−T ?a ), (1.18)

where T ? is the temperature, T ?a is a reference temperature, e.g., the ambient temper-

ature), µ?0 is the viscosity at the reference temperature and α? is the decay constant.

This relationship has been used by Wall & Wilson [81] and Balmforth et al. [5, 11] and

Sansom et al. [53, 76, 77], in related problems. Another temperature-viscosity rela-

tionship considered in this thesis is a bi-viscosity model This relationship was proposed

by Wylie & Lister [84] and also used by Sansom et al. [53, 76, 77]. It can be written
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as:

µ? =


µ?e if T ? > T ?m,

µ?a if T ? < T ?m,

(1.19)

where µ?a = µ?(T ?a ), µ?e = µ?(T ?e ) (with µ?a > µ?e), T
?
a and T ?e are an ambient and

eruption temperature, respectively, and T ?m (T ?a < T ?m ≤ T ?e ) is a fixed temperature in

the solidus-liquidus transition.This relationship is a proxy of a nearly solidified layer

characterised by a higher viscosity.

1.3.4 Physical parameters values

In Table 1.1, we provide estimates for the parameters (in some cases at different tem-

peratures) and references they have been obtained from relevant to lava flows. These

include: the viscosity, µ?, density, ρ?, yield stress, τ ?p? , specific, c?p, and the thermal

conductivity, κ?. We observe that the most significant change is in the viscosity with

temperature compared to any of the other parameters. We will assume that all the

other parameters are constant and independent of temperature. Note that the yield

stress could also be strongly dependent on the temperature [40], but will not be con-

sidered here.



36

Liquid θ µ? ρ? τ ?p? c?p κ?

(oC) (Pa s) (kg/m3) (Pa) (J/(kg(oC)) (J/(m s(oC))
Water 20 9 × 10−4 998 0 4183 0.598

80 3 × 10−4 970 0 4200 0.667
Glucose syrup 21 1.3 × 102 1438 0
(Stasiuk et al. [80]) -13 3.2 × 105 0 2059 0.358
PEG 18 0.18 1126 0 2500 0.218
(Fink & Griffiths [35]) 25 1122 0
Kaolin-PEG wax 0.78 1450 84 1800 0.365
(Fink & Griffiths [35])
Kaolin-water 20 1360 44
1:1 by weight
Basaltic lava 1150 O(102) 2800 O(102) 1200 1.26
(Fink & Griffiths [35], 1400 O(10)
Diniega et al. [29] )
Silicic lava (e.g., Dacite) 800 O(108) 2600 O(105) 1150 1.26
(Fink & Griffiths [35], 1150 O(105)
Diniega et al. [29] )

Table 1.1: Physical properties of various liquids.

1.4 Thesis Aims and Objectives

The main aim of this thesis is to theoretically investigate the coupling between the fluid

flow and cooling on the flow features and spreading characteristics of liquid domes. We

extend the previous modelling studies by Sansom et al. [76, 53, 77] and Balmforth

et al. [7, 11] to consider the spreading of a viscous gravity current over an inclined

substrate. We incorporate non-isothermal effects, such as a temperature-dependent

viscosity and heat transfer conditions at the boundaries, to investigate the flow features

and the spreading behaviour, and the linear stability of these flow features to transverse

perturbations. We extend the previous modelling studies by Sansom et al. [74, 51, 75]

and Balmforth et al. [7, 11] to consider the spreading of a viscous gravity current over
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an inclined substrate. We believe that the additional flow mobility due to the downslope

of the inclined substrate coupled with the cooling could result in new flow features, such

as the piling-up of fluid near the advancing front, which is not observed in the above

studies. Moreover, they could also strongly influence the stability of the front transverse

to the flow direction. The absence of such flow features for spreading on a horizontal

substrate, in our opinion, is the reason why these studies cannot predict sustained

fingering instability. Furthermore, the current work aims to perform a systematic

parameter study to identify the necessary conditions based on the observed flow features

to fully characterise the existence of the fingering instability. We emphasis here that the

results presented in this thesis are purely theoretical; the validation with experiments

and field studies will be considered in the future.

1.5 Thesis outline

In this thesis, we extend the theoretical framework developed by Sansom et al. [76,

53, 77] and Balmforth et al. [7, 11] to investigate the spreading behaviour of a liquid

dome down an inclined substrate under isothermal and non-isothermal conditions. The

thesis outline is as follows.

In Chapter 2, we explore the one-dimensional spreading of an isothermal and Newtonian

planar liquid dome over an inclined substrate with a prescribed flowrate coming through

a source or vent on the underlying substrate. We reproduce the early and late-time
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similarity solutions by Huppert [47] and Lister [54] which are also validated with the

corresponding numerical simulations. In Chapter 3, the one-dimensional Newtonian

liquid model is extended to incorporate non-Newtonian effects of apparent viscosity

and yield stress. We reproduce early and late-time similarity solutions by Balmforth

et al. [5, 9] and also identify some new similarity solutions depending on the parame-

ter space, which are also validated with the corresponding numerical simulations. We

also discuss the effect of variations of the key parameters on the dome’s evolution.

Chapter 4 extends the model to incorporate non-isothermal effects and a temperature-

dependent viscosity. We focus on the asymptotic limit of a low reduced Péclet number

which enables the temperature field to be simplified to vary only in x and t, coupled

to an evolution equation for the dome’s free surface. We use numerical simulations

to determine the evolution of the spreading dome and temperature field. A thorough

parametric study is conducted to determine the influence of key parameters, such as

the Peclet number, heat transfer coefficients at the free surface and substrate, and

the decay constant, α?, in the exponential viscosity model, with and without a source

using two different type of temperature-dependent viscosity relationships, such as the

exponential and bi-viscosity models. We identify some new free surface shape profiles

which include a fluid hump overriding the front at the dome’s leading edge. In Chapter

5, we consider the reduced Péclet number, Per = O(1). The one-dimensional evolution

equation for the dome’s free surface is coupled to a two-dimensional (both vertical and

in the flow direction) advection-diffusion equation for the temperature. We use numer-

ical simulation to describe a variety of dome spreading shapes in different parameter
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regimes. We recover the Per � 1 asymptotic limit solutions of Chapter 4. In fact, we

are able to show that the one-dimensional temperature solutions from Chapter 4 for

low Per are in good agreement with their corresponding parameter values in Chapter

5. Chapter 6 considers the transverse stability of the one-dimensional solutions deter-

mined numerically in Chapters 4 and 5 (assumed frozen in time) to small-amplitude

perturbations imposed near the leading edge of the dome. Numerical results reveal the

existence of a new fingering instability. A thorough investigation of the parameters

are done to determine the mechanism behind this instability and to characterise and

classify its growth rate and dominant wavenumbers. Finally, in Chapter 7 we draw

some general conclusions and briefly describe the future work.



Chapter 2

The isothermal and Newtonian

spreading of a liquid dome down an

inclined plane

2.1 Introduction

This chapter investigates the evolution of an isothermal and Newtonian liquid dome

spreading down an inclined and pre-wetted plane. This problem is the simplest model

of a spreading gravity current under isothermal conditions. We extend this model to

include an influx flowrate coming from a source on the substrate to mimic lava flow

from a vent. We use similarity and numerical solutions to characterise the evolution of

the free surface for a range of parameter values corresponding to the source flowrate

40
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and the inclination angle.

The outline of this chapter is as follows. We formulate the one-dimensional mathemat-

ical problem in a Cartesian co-ordinate system in §2.2 which provides the governing

equations and boundary conditions for the flow. The lubrication approximation allows

simplification of the governing equations and boundary conditions to an advection-

diffusion PDE for the evolution of the one-dimensional free surface shape. In §2.3 we

derive late-time similarity solutions for the evolution of the free surface such that the

volume of liquid in the dome is proportional to tα, (α ≥ 0). These solutions are then

matched against those previously derived by Huppert [47] and Lister [54]. In §2.4, we

perform numerical simulations of the evolution equation to determine the free surface

shapes for a variety of parameter values. The numerical solutions are validated against

the similarity solutions. In §2.5 we discuss the main results.

2.2 Mathematical Formulation

Consider a liquid dome spreading under the influence of gravity down an inclined and

pre-wetted plane (see Fig. 2.1). Liquid is introduced into the dome through a source

at a fixed location on the plane. We introduce a Cartesian coordinate system (x?, z?)

with the x?-axis along the plane and the z?-axis normal to the plane. We denote the

free surface of the dome (the air-liquid interface) as z? = h?(x?, t?), (u?, w?) denote

the components of the liquid velocity in the x and z directions, respectively and p? is
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the pressure in the liquid. The liquid in the dome is assumed to be Newtonian with

viscosity µ? and its density is ρ?.

Figure 2.1: Sketch of a dome spreading down on an inclined plane.

2.2.1 Governing Equations

The two-dimensional governing equations are given by the conservation of mass and

momentum (see Acheson [1] and Ockendon [66]),

u?x? + w?z? = 0, (2.1a)

u?t? + u?u?x? + w?u?z? = − 1

ρ?
p?x? + g? sin θ +

1

ρ?
[∂?xτ

?
x?x? + ∂?zτ

?
x?z? ], (2.1b)

w?t? + u?w?x? + w?w?z? = − 1

ρ?
pz? − g? cos θ +

1

ρ?
[∂?xτ

?
z?x? + ∂z?τ

?
z?z? ]. (2.1c)

Here τ ?ij denote the liquid stresses.

The constitutive relation between the liquid stress and its rate of strain for a Newtonian
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liquid is written as:

τ ? = µ?γ̇?, (2.2)

where µ? is the liquid viscosity which is a constant and γ̇? is the rate of strain tensor.

γ̇? =
[
∇u? +∇u?T

]
=

 2u?x? u?z? + w?x?

u?z? + w?x? 2w?z?

 . (2.3)

2.2.2 Boundary conditions

At the surface of the plane, z = 0, we impose the no-slip boundary condition for the

velocity field. To model the source of fluid we specify a vertical velocity w?s(x
?, t?) at

the location of this source. Hence

u? = 0, w? = w?s(x
?, t?) at z? = 0. (2.4)

Similar to lava extrusions from vents on to inclined planes the source is assumed to be

a circular source with x?0 is the vent radius. Assuming Poiseuille flow through this vent

with liquid flux (per unit width), Q?
s, w

?
s can be written as:

w?s(x
?, t?) =

3Q?
s(t

?)

4x?0

[
1−

(
x?

x?0

)2
]
H(x?20 − x?2). (2.5)

Here, H(x?) is the Heaviside function.

The free surface z? = h?(x?, t?) is a material surface and is assumed to be stress free.
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Taking the pressure of the liquid in the dome relative to the air pressure and neglecting

surface tension, the normal stress at the air-liquid interface is written as:

(−p?I + τ ?) · n? = 0, at z? = h?(x?, t?), (2.6)

where, n?, the unit outward normal to the free surface z? = h?(x?, t?) is given by

n? =
∇? (z? − h?(x?, t?))
|∇? (z? − h?(x?, t?)) |

=
1√

1 + h?
2

x?

(−h?x? , 1) . (2.7)

The corresponding tangent vector to the free surface is given by

n? · t? = 0, ⇒ t? =
1√

1 + h?
2

x?

(1, h?x?) . (2.8)

We can write the normal and tangential component of Eq. (2.6) as

n? · (−p?I + τ ?) · n? = 0, ⇒ −hxτzx + τzz − p = 0, (2.9a)

t? · (−p?I + τ ?) · n? = 0, ⇒ −hx(τxx − p) + τxz = 0. (2.9b)

The kinematic condition at the free surface z? = h?(x?, t?) is based on this being a

material surface so that fluid particles which lie on the surface must always remain on

the surface. This implies that D
Dt

[z? − h?(x?, t?)] = 0 or

∂

∂t?
(z? − h?(x?, t?)) + u · ∇? (z? − h?(x?, t?)) = 0. (2.10)
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This can be written as:

h?t? + u?h?x? = w?. (2.11)

2.2.3 Nondimensionalisation and the lubrication (or long-wavelength)

approximation

Nondimensionalisation

To nondimensionalise the equations, we first need to select characteristic quantities

that describe the flow problem. We use a dome height H? to measure the length scale

in the z? direction and L?, for the dome length in the x? direction. The characteristic

length scale of the extruded dome, L?, is much greater than the characteristic height,

H?, so ε = H?/L? � 1 is the aspect ratio and is a small parameter. We measure the

velocities, u? and w?, by U? and εU? (scaled with ε to satisfy the continuity equation),

respectively, where U? is a characteristic speed of spreading which is determined below.

We measure pressure using a characteristic scale P ? which is also determined below.

We nondimensionalise time by L?/U?. We nondimensionalise the variables as follows:

x? = L?x, (z?, h?) = H?(z, h), (u?, w?) = (U?, εU?)(u,w), p? = P ?p, (2.12)

τ ? = µ?
(
U?

H?

)
τ, γ̇? =

(
U?

H?

)
γ̇, t? = (L?/U?)t.

The characteristic pressure P ? is chosen so as to balance the vertical liquid pressure gra-

dient and the vertical component of gravity. This gives P ? = ρ?g?H? cos θ (the hydro-
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static pressure). The characteristic speed U? is chosen to balance the horizontal liquid

pressure gradient and the liquid shear stress. This gives U? = (ρ?g?H?3)/(µ?L?) cos θ.

For lava domes, the dome length, L? = 100m, and height, H? = 10m and effusion rate

is 0.1 − 10m3/s (Fink & Griffiths [35]). Using the density and viscosity from Table

1.1, we obtain U? ≈ 10−4m/s. For lava analogues such as Kaolin-Water, experiments

(Balmforth et al. [5]) have used the dome length, L? = 0.1m, and height, H? = 0.01m

and effusion rate is 10−6m3/s. Using the density and viscosity from Table 1.1, we

obtain U? ≈ 10−3m/s.

On substituting the above into the governing equations, Eqs. (2.1), the nondimension-

alised governing equations are:

ux + wz = 0, (2.13a)

ε2Re(ut + uux + wuz) = −px + ε∂xτxx + ∂zτxz + S, (2.13b)

ε4Re(wt + uwx + wwz) = −pz + ε2∂xτzx + ε∂zτzz − 1, (2.13c)

The nondimensional parameters S = tan θ/ε is a measure of the downslope and the

Reynold’s number Re = (U?L?)/µ? ≡ (g?H?3/µ?
2
) cos θ, which compares inertial and

viscous effects and is assumed to be much less than one so that inertial effects are

negligible. The non-dimensional parameter estimates are (based on the above estimates

of the physical quantities): ε = 0.1, Re ≈ 10−5 and Qs ≈ 105 for lava and ε = 0.1,

Re ≈ 10−5 and Qs ≈ 105 for Kaolin-Water experiments.
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The dimensionless strain rate tensor becomes

γ̇ij =

 2εux uz + ε2wx

uz + ε2wx 2εwz

 . (2.14)

The nondimensional boundary conditions can be written as:

u = 0 and w(x, t) = ws(x, t), at z = 0. (2.15)

Here ws(x, t) = [3QsQs(t)(1 − (x/x0)2)/4]H(x2 − x2
0), where Qs is a dimensionless

parameter, Qs = Q?
s/(x

?
0εU) and Q?

s is a characteristic source flow rate (per unit width)

Qs(t) is a dimensionless time-dependent flux term. The dimensionless vent width is

x0 = x?0/L
?.

The nondimensional boundary conditions at z = h(x, t) are given by

ht + uhx = w , (2.16a)

p = ε2(τzz − εhxτxz), (2.16b)

τxz + phx = ε2hxτxx. (2.16c)
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The lubrication approximation

In order to reduce the governing equations we exploit the small aspect ratio (ε � 1)

[6], with Reynolds number of order unity at most. We pose an asymptotic expansion of

the variables in powers of ε: (u,w, p, h) = u(, w, p, h)0 +ε(u,w, p, h)1 + . . .. Substituting

these into the governing equations and boundary conditions, Eqs. (2.13,2.15,2.16) and

collecting terms of the same order in ε, we obtain of leading order:

u0x + w0z = 0, (2.17a)

−p0x + ∂zτxz0 + S = 0, (2.17b)

−p0z − 1 = 0, (2.17c)

τxz0 = p0 = 0, h0t + u0h0x = w0, at z = h0(x, t), (2.17d)

u0 = 0, w0 = ws(x, t), at z = 0. (2.17e)

Integrating Eq. (2.17c) and using the boundary condition for p0 in Eq. (2.17d) gives

p0 = h0(x, t)− z. Integrating Eq. (2.17b)and using the boundary condition for τxz0 in

Eq. (2.17d) and p0 above gives τxz0(x, z) = (S − h0x)(h0 − z). Using the shear stress

τxz0 , we obtain the leading order shear rate, u0z = τxz0 = (S − h0x)(h0 − z). Now, the

leading order liquid flux through a cross-section can be written as:

Q0(x, t) =

∫ h0

0

u0(x, z, t)dz = (z − h0)u0|h00 −
∫ h0

0

(z − h0)u0zdz =

∫ h0

0

(h0 − z)u0zdz.

(2.18)
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Using the expression for u0z above and the boundary condition for u0 in Eq. (2.17e), we

obtain Q0(x, t) =
1

3
h3

0(S − h0x). Integrating the continuity equation Eq. (2.17a) using

the boundary conditions in Eq. (2.17e) and substituting into the kinematic boundary

condition in Eq. (2.17d), one obtains the evolution equation for h0:

h0t +Q0x = ws. (2.19)

Using the expressions for Q0 and ws from above, we can write the evolution equation

for h0 as:

h0t +
1

3
[h3

0(S − h0x)]x = ws, where ws =
3

4
Qs0Qs(t)

[
1− (x/x0)2

]
H(x2 − x2

0). (2.20)

The second term on the left-hand side represent the contribution to the liquid flux in

the dome due to the horizontal component of gravity (convective term) and the vertical

component of gravity (nonlinear diffusion term).

Integrating Eq. (2.20) over the length of the liquid dome provides the total mass

conservation,

d

dt

∫ XN

XT

h0(x, t) dx =

∫ XN

XT

ws(x, t) dx = Qs0Qs(t), (2.21)

where the liquid dome lies in the region XT < x < XN , where XN is its leading edge

and XT its trailing edge. Qs0 = 0 corresponds to the spreading of a constant volume of

liquid in the dome. In §2.3, we consider self-similar evolution of dome shapes based on

power-law time-dependent behaviour of Qs(t) = αt(α−1), with α = 0 (constant volume),
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α = 1 (constant source flux), etc.

2.3 Late-time similarity solutions for power-law time-

dependent Qs(t)

We seek late-time similarity solutions of Eq. (2.20) such that the volume of liquid

released by the source onto the plane is proportional to tα(t ≥ 0), where α ≥ 0 (or

Qs(t) = αt(α−1)). This volume constraint (representing conservation of volume of liquid

in the dome) is written as:

∫ XN

XT

h dx = Qs0t
α + V0, (2.22)

where the flow lies in XT (t) < x < XN(t) and V0 is an initial volume of liquid in the

dome. It is convenient, when seeking similarity solutions, to consider the following

form of the evolution equation (equivalent to Eqs. (2.20, 2.21)),

h0t +
1

3
[h3

0(S − h0x)]x = 0, (2.23a)∫ XN

XT

h dx = Qs0t
α + V0. (2.23b)

There is no similarity solution to Eq. (2.23a) when both the convection and diffusion

terms contribute equally. However, as we show below, similarity solutions exist at

early times when diffusion dominates convection, at late time for the case S = 0 for
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spreading on a horizontal plane and at late time when convection dominates diffusion

(for the case S 6= 0 for spreading down an inclined plane). Below we derive similarity

solutions for these two cases for any value of α.

Late-time similarity solution for S = 0

We define the similarity variables

ξ =
x

tb
(
Q3
s0

3

)1/5
, h(x, t) = (3Q2

s0
)1/5taφ(ξ), (2.24)

where the exponents a and b need to be determined. Substituting in Eq. (2.23a), the

evolution equation can be written in the form

ta−1 (aφ− bξφξ) = t4a−2b
(
φ3φξ

)
ξ
. (2.25)

Setting

a− 1 = 4a− 2b⇒ 3a− 2b+ 1 = 0. (2.26)

Substituting the similarity transformation in Eq. (2.23b) gives

ta+b

∫ ξN

0

φ dξ = tα +
V0

Qs0

. (2.27)
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We choose a+ b = α so that

∫ ξN

0

φ dξ = 1 +O(t−α). (2.28)

We anticipate b > 0 since it is a spreading problem. Solving for a and b, we obtain

a = 2α−1
5

, b = 3α+1
5

. Therefore, the similarity variables can be written as:

h(x, t) =
(
3Q2

s0

)1/5
t
2α−1

5 φ(ξ), ξ =
x

t
3α+1

5

(
Q3
s0

3

)1/5
. (2.29)

For t� 1, the above equation shows that the maximum dome height (which for S = 0

is h(ξ = 0)), h ∼ t
2α−1

5 and the location of its front XN ∼ t
3α+1

5 . We also note that for

0 < α < 1/2, the maximum dome height decreases with time and increases otherwise.

Thus, Eqs. (2.25, 2.28) can be written as:

2α− 1

5
φ− 3α + 1

5
ξφξ =

(
φ3φξ

)
ξ
, (2.30a)∫ ξN

0

φ dξ = 1 +O(t−α). (2.30b)

Define z = ξ/ξN and φ(z) = ξβN φ̃(z), where the constant β will be determined below.

Substituting this into Eq. (2.30a), we obtain

ξβN

(2α− 1

5
φ̃− 3α + 1

5
zφ̃z

)
= ξ4β−2

N

(
φ̃3φ̃z

)
z
. (2.31)
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Choose β = 2
3
, this implies

(
φ̃3φ̃z

)
z

+
3α + 1

5
zφ̃z −

2α− 1

5
φ̃ = 0. (2.32)

Substituting the above change of variables into Eq. (2.30b), we obtain

ξN =
(∫ 1

0

zφ̃ dz
)−3/5

. (2.33)

Therefore

z =
x

ξN

(
Q3
s0

3

)1/5

t
3α+1

5

, h(x, t) = ξ
2/3
N (3Q2

s0
)1/5t

(2α−1)
5 φ̃(z), (2.34a)

(
φ̃3φ̃z

)
z

+
1

5
(3α + 1)zφ̃z −

1

5
(2α− 1)φ̃ = 0, (2.34b)

ξN =
(∫ 1

0

φ̃ dz
)−3/5

. (2.34c)

Eq. (2.34b) is solved numerically for any value of α > 0. The boundary condition

at z = 0 is given by φ̃z = 0 (from symmetry at x = 0). We can apply the Frobenius

method to determine a solution of Eq. (2.34b) in the neighbourhood of the point z = 1.

We seek a solution of the form φ̃(z) =
∑∞

m=0 am(1− z)r+m, where r is a constant to be

determined. Substituting this in Eq. (2.34b), we can show that the solution is given

by (for details see Appendix 1)

φ̃(z) =
[3

5
(3α+1)

]1/3

(1−z)1/3
[
1− 3α− 4

24(3α + 1)
(1−z)+O(1−z)2

]
, for z = 1−. (2.35)
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In practice, we choose z = 1 − δ, for δ � 1 specified. For arbitrary α, and using Eq.

(2.34b) with boundary conditions φ̃z = 0 at z = 0 and Eq. (2.35) at z = 1 − δ, the

solution can be obtained by numerically integrating Eq. (2.34b) by using FSOLVE

module in MATLAB (Release 2013a, The MathWorks, Inc., Natick, Massachusetts,

United States). The similarity solution is represented by the boundary-value problem

in Eq. (2.34b) along with the boundary conditions given by φ̃z = 0 at z = 0 and Eq.

(2.35) at z = 1− δ.

For α = 0 the solution of Eq. (2.30a) can be obtained analytically, where this equation

reduces to

−1

5
(φ+ ξφξ) =

(
φ3φξ

)
ξ
. (2.36)

Integrating and using the boundary condition φξ = 0, at ξ = 0 gives

−1

5
(ξφ) =

(
φ3φξ

)
. (2.37)

Integrating again and using φ = 0 at ξ = ξN , we obtain

φ =


( 3

10
)1/3(ξ2

N − ξ2)1/3, ξ < ξN ,

0, ξ > ξN ,

(2.38)

where ξN is given by

(
3

10

)1/3 ∫ ξN

0

(
ξ2
N − ξ2

)1/3
dξ =

(
3

10

)1/3

ξ
5/3
N

∫ π/2

0

sin5/3(θ) dθ = 1. (2.39)
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In the above, we have used the substitution ξ = ξN cos θ. This simplifies to

ξN =

(
3

10

)−1/5
(

1∫ π/2
0

sin5/3(θ) dθ

)3/5

. (2.40)

Using Mathematica, we obtain

ξN =

(
3

10

)−1/5(
1

0.841309

)3/5

. (2.41)

The solution, φ(ξ), as a function of ξ is shown in Fig. 2.2 for various values of α.

We observe that as α increases, although the free surface shapes look similar, the

length over which they have spread, ξN decreases and the maximum height, φ(ξ = 0),

increases. This is consistent with the fact that as α increases, the additional volume of

liquid from the source contributes more to inflating the dome rather than its spreading.

Late-time similarity solution for S > 0

Now, we describe the late-time solution for any α with S > 0. We define the similarity

variables

ξ =
x

tb
(
Q2
s0

3

)(1/3)
, h(x, t) = (3Qs0)

(1/3) taφ(ξ). (2.42)
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Figure 2.2: The late-time similarity solution, φ, as a function of ξ for S = 0 and varying
α obtained from the numerical solution of Eq. (2.34b) using boundary conditions
φ̃z = 0 at z = 0 and Eq. (2.35) at z = 1− δ.

where the exponents a and b need to be determined. Substituting in Eq. (2.23a), the

evolution equation can be written in the form

ta−1 (aφ− bξφξ) +

[
t3a−b

(
S −

(
32

Qs0

)1/3

ta−bφξ

)
φ3

]
ξ

= 0. (2.43)

To obtain a sensible balance for t� 1, we require a balance between the unsteady and

convective terms. Hence, ta−1 ∼ t3a−b. Therefore, we require −2a + b = 1. Eq. (2.27)

will also hold,

ta+b

∫ ξN

ξT

φdξ = tα + +
V0

Qs0

. (2.44)

We choose a+ b = α so that

∫ ξN

ξT

φ dξ = 1 +O(t−α). (2.45)
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We anticipate b > 0 since it is a spreading problem. Solving for a and b, we obtain

a = α−1
3

and b = 2α+1
3

. Therefore, the similarity variables can be written as:

ξ =
x

t
2α+1

3

(
Q2
s0

3

)1/3
, h(x, t) = (3Qs0)

1/3 t
α−1
3 φ(ξ). (2.46)

For t � 1, the above equation shows that the maximum dome height h ∼ t
α−1
3 and

the location of its front XN ∼ t
2α+1

3 . We also note that for 0 < α < 1, the maximun

dome height decreases with time and increases otherwise. Thus, Eqs. (2.43, 2.45) can

be written as:

(
1− α

3
φ+

2α + 1

3
ξφξ

)
=

[(
S −

(
32

Qs0

)1/3

t−(α+2)/3φξ

)
φ3

]
ξ

, (2.47a)

∫ ξN

ξT

φ dξ = 1 +O(t−α). (2.47b)

Note that α > 0 so the last term in Eq. (2.47a) is much smaller compared to the first

two terms when t� 1. The late-time similarity solution satisfies

(
1− α

3
φ+

2α + 1

3
ξφξ

)
=
(
Sφ3

)
ξ

+O(t−(α+2)/3). (2.48)

Using the integrating factor φ3α/(1−α) to multiply both sides of the above equation, we

obtain

1

3

(
(1− α)ξφ

2α+1
(1−α)

)
ξ

=
(
S(1− α)φ

3
(1−α)

)
ξ

+O(t−(α+2)/3). (2.49)
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Integrating this equation with respect to ξ and applying the boundary condition φ(ξ =

ξT ) = φ0 (determined below), we obtain the solution in implicit form,

ξ − ξT = 3S

(
φ3/(1−α) − φ3/(1−α)

0

φ
2α+1
(1−α)

)
. (2.50)

We can show that φ0(ξT ) = (α
S

)1/3 (for details see Appendix 2). From our numerical

simulations, ξT ≈ 0 for t � 1, hence for our purposes we can take ξT ≈ 0, Using Eq.

(2.47b), the location of the leading edge of the front ξ = ξN , and the height there

φ = φN , can be written as (for detail see Appendix 2):

ξN =
3

2φ0

(
2α

1 + 2α

) (1+2α)
3

, φN =

(
1 + 2α

2α

) (1−α)
3

φ0. (2.51)

The similarity solution is represented by the implicit relationship between φ and ξ

given in Eq. (2.50), the solution can be obtained numerically using FSOLVE module

in MATLAB. Setting α = 1 (constant source flow rate) we can show that

φ(ξ) = 1, ξN = 1, φN = 1. (2.52)

For α = 0, we obtain

1

3
(φ+ ξφξ) =

[(
S −

(
32

q

)1/3

t−2/3φξ

)
φ3

]
ξ

. (2.53)
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For t� 1, Eq. (2.53) becomes

1

3
(φ+ ξφξ) =

(
Sφ3

)
ξ
. (2.54)

Integrating and using φ(ξ = 0) = 0 yields

φ =

(
1

3S
ξ

)1/2

, ξN =
3

22/3
S1/3, φN = (2S)−1/3. (2.55)

The solution for this is shown in Fig. 2.3 for S = 1 and various values of α. We observe

a similar trend as that shown in Fig. 2.2 for S = 0; the length over which the dome

spreads, ξN , decreases and the height at the leading edge, φN , increases. We note that

ξN is larger than that for S = 0 due to the additional contribution from the inclination

of the plane. Similar to the S = 0 case, as α increases, the additional volume of liquid

from the source contributes more to inflating the dome rather than its spreading. The

Figure 2.3: The late-time similarity solution, φ, as a function of ξ for S = 1 and varying
α obtained from Eq. (2.50).
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location of the leading edge of the dome, ξN , and the height there, φN as a function of

α are shown in Fig. 2.4. This is consistent with our earlier observations.

Figure 2.4: The location of the leading edge of the dome, ξN , and the height there, φN
as a function of α for S = 1.

Early-time similarity solution for S > 0

It is also worth considering the possibility of early-time similarity solutions for S > 0.

The main balance at early-time is between the unsteady and diffusion terms described

by the evolution equation in Eq. (2.25) for S = 0. For S > 0, this evolution equation

takes the form:

ta−1 (aφ− bξφξ) = t4a−2b
(
φ3φξ

)
ξ

+O(t3a−b). (2.56)

The O(t3a−b) term corresponds to the convection due to the horizontal component

of gravity. The volume conservation is given by Eq. (2.23b). At very early-time, we

anticipate the contribution to the change in volume from the source to be small. Hence,
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the volume conservation at these times is given by

ta+b

∫ ξN

0

φ dξ = Qs0t
α + 1. (2.57)

For t � 1, this is equivalent to the constant volume (or α = 0) case. Note that to

derive the above we have replaced the Qs0 with V0 in the similarity variables given in

Eq. (2.24). Hence, we require that 3a−2b+1 = 0 (as for the case S = 0) and a+b = 0

to remove the time dependence in Eq. (2.57). This gives a = −1/5 and b = 1/5. This

is analogous to the case α = 0 when S = 0. We note that the convective term neglected

in Eq. (2.56) is O(t−a+b) = O(t2/5) which is small for t� 1.

At early time when the volume contribution from the source now exceeds the initial

volume, the appropriate volume conservation is given by Eq. (2.23b). The similarity

solution is now identical to that derived for the case when S = 0 for any α. The

convective term neglected in Eq. (2.56) is now O(t(α+2)/5) which is still small for

t � 1. As t increases, the contribution from this term also increases and eventually

the similarity solution is identical to the late-time similarity solution for S > 0.

2.4 Numerical results

In this section, we seek the numerical solution of Eq. (2.20) for x ∈ [−L,L], where L

is the length of the computational domain. We assume that the plane is pre-wetted

with a precursor layer of thickness b. The boundary conditions specified are: h = b at
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x = ±L. We choose the initial condition to mimic a one-dimensional dome as follows:

h(x, t) = (1− x2)H(1− x2) + b, x ∈ [−L,L]. (2.58)

Our focus is in investigating the evolution of the dome height h varying the parameters:

the inclination angle, S = tan(θ)/ε, the source flow rate Qs0 and the source flux power-

law parameter α. In particular, we consider two cases corresponding to α = 0 (constant

volume or zero source flowrate, so Qs0 = 0) and α = 1 (constant flow rate). In all the

results shown below, we fix the source vent width x0 = 0.15 and the precursor thickness

b = 10−6 for horizontal plane and b = 10−3 for inclined plane. The length of the

computational domains L is chosen sufficiently large so that the boundary condition

h→ b as x→∞ is satisfied numerically.

The evolution equation, Eq. (2.20), is solved numerically using the Method of lines

[78, 61]. This is done as follows. We discretise the domain, [−L,L], into N + 1 points

xi = −L + (i − 1)∆x, i = 1, . . . , N + 1, where ∆x = 2L/N . Note that for S = 0

(horizontal plane), we use symmetry about x = 0 to only consider the domain [0, L].

We define a forward and backward finite difference for the spatial derivative as:

hx,i =
hi+1 − hi

∆x
, hx̄,i =

hi − hi−1

∆x
, (2.59)
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respectively. The spatial derivatives in Eq. (2.20) are then discretized as follows:

[(h3)i(S − hx̃,i)]x =
1

∆x

[
(h3)i+ 1

2
(S − hx,i+1)− (h3)i− 1

2
(S − hx,i)

]
, (2.60)

=
1

∆x

[
(h3)i+ 1

2
(S − hi+1 − hi

∆x
)− (h3)i− 1

2
(S − hi − hi−1

∆x
)
]
,

where (h3)i+ 1
2

= (h3)i+1+(h3)i
2

, (h3)i− 1
2

= (h3)i+(h3)i−1

2
. Using this, the discretised form of

Eq. (2.20), keeping the time derivative continuous, can be written as:

ht,i +
1

3∆x

[
(h3)i+ 1

2

(
S − hi+1 − hi

∆x

)
− (h3)i− 1

2

(
S − hi − hi−1

∆x

)]
= ws,i, i = 2, . . . , N,

(2.61)

where ws,i = 3
4
Qs0Qs(t) [1− (xi/x0)2]H(x2

i − x2
0). We use the boundary condition at

the end points, h1 = hN+1 = b. For S = 0 (horizontal plane), we impose the symmetry

boundary condition hx = 0 at x = 0. The evolution equation for h1 can then written

as:

ht,1 −
1

3∆x

[
(h3)1+ 1

2
(hx̃,2)− (h3)1− 1

2
(hx̃,1)

]
= ws,1, (2.62)

where (h3)1+ 1
2

= (h3)2+(h3)1
2

and (h3)1− 1
2

= (h3)1+(h3)0
2

. The symmetry boundary condi-

tion, hx = 0, when discretised using a centered finite difference scheme gives h0 = h2

and (h3)0 = (h3)2, where the subscript “0” corresponds to a fictitious point outside the

domain. Using this, Eq. (2.62), can be written as:

ht,1 =
1

3∆x2

[(h3)2 + (h3)1

2

(
h2 − h1

)
− (h3)2 + (h3)1

2

(
h1 − h2

)]
, (2.63)
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Hence,

ht,1 =
1

3∆x2

[
((h3)2 + (h3)1)

(
h2 − h1

)]
. (2.64)

The resulting system of ordinary differential equations given by Eq. (2.61) are then

solved in MATLAB (Release 2013a, The MathWorks, Inc., Natick, Massachusetts,

United States) using the stiff ODE solver ode15i. We also compare the late-time

behaviour of these solution with the corresponding similarity solutions derived in §2.3.

In Fig. 2.5, we show the evolution of h(x, t) at different times varying from t = 0−103.

The parameter values are S = 1 (corresponding to θ ≈ 6o) and Qs0 = 0 (constant

volume). We observe the s lumping of the dome as it spreads down the inclined plane

with a front developing at its leading edge. Fig. 2.6 show the evolution of h(x, t)

Figure 2.5: The evolution of h(x, t) for t varying from t = 0 − 103. The parameter
values are S = 1 (corresponding to θ ≈ 6o) and Qs0 = 0 (constant volume).
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at times varying between t = 0 and t = 0 − 103. The parameter values are S = 0

(horizontal plane) and Qs0 = 0 (constant volume). The spreading for this case is

symmetric about x = 0. We also observe that the spreading of the dome is much

slower compared to that shown in Fig 2.5. Fig. 2.7 shows the late-time similarity

Figure 2.6: The evolution of h(x, t) for t varying from t = 0 to t = 103. The parameter
values are S = 0 (horizontal plane) and Qs0 = 0 (constant volume).

solution for the evolution shown in Fig. 2.5 using the similarity variables ξ = x/t1/3

and φ = t−1/3h(x, t). The dashed line is the corresponding similarity solution, φ =

[ξ/(3S)]1/2. The agreement is good. Figure 2.8 shows that the late-time numerical

solution shown in Fig. 2.6 collapses to a single curve under the similarity scaling,

ξ = x/t1/5 and φ = t−1/5h(x, t). The dashed line in Fig. 2.8 shows the corresponding

similarity solution given by Eq. (2.38). This matches the numerical solution very well.

Figure 2.9(a,b) plot the leading edge of the dome (or location of the liquid front at the
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Figure 2.7: The evolution of h(x, t) shown in Fig. 2.5 using the similarity scaling
ξ = x/t1/3 and φ = t−1/3h(x, t). The dashed line is the similarity solution for this case,
φ = [ξ/(3S)]1/2.

Figure 2.8: The evolution of h(x, t) shown in Fig. 2.6 using similarity scaling , ξ =
x/t1/5 and φ = t−1/5h(x, t). The dashed line shows the corresponding similarity solution
given by Eq. (2.38).
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dome’s leading edge), xN , and the dome height, hN , at x = xN , respectively, versus

time, t. These are calculated from the dome evolution shown in Fig. 2.5 for S = 1

and Qs0 = 0 (constant volume). The maximum dome height, hN , is determined at

the leading edge of the dome from the numerical solution. The location of the leading

edge, xN , is the value of x at which this maximum height is attained. Figure 2.9(a,b)

also show the slopes which confirm that xN ∼ t1/3 and hN ∼ t−1/3 as derived in §2.3.

Figure 2.10 (a,b) plot the leading edge of the dome, xN , and the maximum dome

Figure 2.9: (a) Log-Log plot of the leading edge of the dome, xN , and (b) Semi-Log
plot of the dome height, hN , at x = xN , versus time, t using data shown in Fig. 2.5 for
S = 1 and Qs0 = 0 (constant volume). The slopes show that xN ∼ t1/3 and hN ∼ t−1/3.

height, h(x = 0), respectively, versus time, t. These are calculated from the dome

evolution shown in Fig. 2.6 for S = 0 and Qs0 = 0 (constant volume). The location

of the leading edge of the dome is calculated by the value of x where the dome height

first becomes less than a prescribed value (10−5 in the case shown). Figure 2.10(a,b)
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also show the slopes which confirm that xN ∼ t1/5 and hN ∼ t−1/5 as derived in §2.3.

Figure 2.11 shows the dome height h(x, t = 5× 102) for different values of inclination

Figure 2.10: (a) Log-Log plot of the leading edge of the dome, xN , and (b) Semi-Log
plot of the maximum dome height, h(x = 0), versus time, t using the data shown in
Fig. 2.6 for S = 0 and Qs0 = 0 (constant volume). The slopes show that xN ∼ t1/5

and hN ∼ t−1/5.

angles S = 0.7 (4o), 1 (6o), 2.145 (12o), 3.732 (18o) and Qs0 = 0 (constant volume). We

observe that the dome has spread over a longer distance and also thinned more as S

increases.

We now consider the case where α = 1. Fig. 2.12 shows the evolution of h(x, t) for

varying t = 0 − 2 × 102. The parameter values are S = 1, Qs0 = 4 and α = 1. At

early time, the strength of the source is sufficiently high and the build-up of fluid at

the source results in the dome height increasing near x = 0 without any spreading. At

later times, we observe the dome to spread down the incline with almost uniform height
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Figure 2.11: The thickness of spreading dome for varying inclination angles, S =
0.7 (4o), 1 (6o), 2.145 (12o), 3.732 (18o), with Qs0 = 0 (constant volume).

Figure 2.12: The evolution of h(x, t) with S = 1, Qs0 = 4 and α = 1 for varying
t = 0− 2× 102.
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behind its leading edge. This is due to the source being strong enough to constantly

supply liquid which replaces that due to spreading down the incline. Figure 2.13 shows

the evolution of h(x, t) shown in Fig. 2.12 using the similarity scaling given in Eqs.

(2.46) with α = 1 and Qs0 = 4 (so the exponents a = 0 and b = 1). The dashed

Figure 2.13: The evolution of h(x, t) shown in Fig. 2.12 using similarity scaling given
in Eqs. (2.46) with α = 1 and Qs0 = 4 (so the exponents a = 0 and b = 1). The dashed
line shows the similarity solution given by Eq. (2.50).

line shows the corresponding similarity solution given by Eq. (2.50). We observe that

the curves collapse onto the similarity solution under this scaling. Fig. 2.14(a,b) plot

the leading edge of the dome, xN , and the dome height, hN , respectively, versus time,

t. These are calculated from the dome evolution shown in Fig. 2.12 for S = 1 and

Qs0 = 4 and α = 1 (constant source flow rate). Figure 2.14(a,b) also show the slopes

which confirm that xN ∼ t and hN tends to a constant (≈ 1.21) as derived in §2.3.
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Figure 2.14: (a) Log-Log plot of the leading edge of the dome, xN , and (b) Semi-Log
plot of the dome height, hN , versus time, t using the data shown in Fig. 2.12 for S = 1
and Qs0 = 4 and α = 1 (constant source flow rate). The slopes show that xN ∼ t1 and
hN ∼ t0.

Figure 2.15: The evolution of h(x, t) between t = 0 − 2 × 102 for varying Qs0 =
0.13, 0.17, 1.3, 2.7, and S = 1 and α = 1.
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We now consider the influence of the flow rate Qs,0 on the evolution for S = 1 and

S = 0. In Figure 2.15(a,b,c,d), we display the evolution of h(x, t) between t = 0−2×102

for different values of Qs0 = 0.13, 0.17, 1.3, 2.7, respectively, for S = 1 and α = 1. For

low values of Qs0 , the dome height near the source initially decreases in time as the

dome spreads over the incline plane. At later time, the flow rate from the source is

sufficiently large to sustain a constant height dome as it spreads down the plane (see

Fig. 2.15(a)). For higher values of Qs0 , the flow rate from the source is sufficiently

large to sustain a constant height from early time (see Fig. 2.15(b,c,d)).

Fig. 2.16(a,b,c,d) show the evolution of h(x, t) for t varying between t = 0 to t =

200 for various values of the source strength Qs0 = 0.01(a), 0.06(b), 0.13(c), 0.16(d),

respectively. The parameter values are S = 0 and α = 1. For low values of Qs0 ,

the dome height near the source decreases in times as the dome spreads over the

horizontal plane (see Fig. 2.16(a)). For slightly higher values of Qs0 , we observe the

dome height to decrease near the source. However, at later times the accumulation of

liquid near the source results in the dome height increasing there as it spreads over

the horizontal plane (see Fig. 2.16(b,c,d)). We observe that for the above values of

Qs0 the source is not strong enough to overcome the spreading due to gravity and

the dome does not grow significantly. In Fig. 2.17(a,b,c,d), we display results for the

dome height h(x, t) for t varying between t = 0 to t = 5 × 102 with a stronger source

Qs0 = 1.33, 2.67, 4, 5.33, respectively. In this case, we observe that the dome height

grows significantly near the source and overcomes the spreading down the plane. It
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Figure 2.16: The evolution of h(x, t) for t varying between t = 0 to t = 5×102 for various
values of the source strength Qs0 = 0.01(a), 0.06(b), 0.13(c), 0.16(d), respectively. The
parameter values are S = 0 and α = 1.

Figure 2.17: The evolution of h(x, t) for t varying between t = 0 to t = 5 × 102 with
Qs0 = 1.33(a), 2.67(b), 4(c), 5.33(d), respectively. The parameter values are S = 0 and
α = 1.
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is clear from Fig. 2.18, for example, that the dynamics of the dome, related to its

continued growth and expansion, depends on the strength of the source parameter Qs0

(in the case shown in Fig. 2.18, Qs0 = 4, S = 0, α = 1 and time varies between t = 0

to t = 5× 102. There appears to exist threshold value of Qs0 where the fluid supplied

by the source is sufficiently large. This influences the growth and expansion of the

dome. Figure 2.19 shows that the numerical solution shown in figure 2.18 collapses to

Figure 2.18: The evolution of h(x, t) with Qs0 = 7, S = 0 and α = 1 for varying times
between t = 0 to t = 5× 102.

a single curve under the similarity scaling, x ∼ t4/5 and h ∼ t1/5, described in §2.3,

with α = 1. Figure 2.20 shows the variation of the position of the leading edge, xN

and the maximum height, h(x = 0), as a function of time for α = 1. The two graphs

confirm that xN ∼ t4/5 and h(x = 0) ∼ t1/5 for t� 1.
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Figure 2.19: The evolution of h(x, t) shown in Fig. 2.18 using the similarity scaling,
x ∼ t4/5 and h ∼ t1/5. The dashed line shows the similarity solution given by Eq.
(2.34b).

Figure 2.20: (a) Log-Log plot of the leading edge of the dome, xN , and (b) Semi-Log
plot of the maximum dome height, h(x = 0), versus time, t using the data shown in
Fig. 2.18 for S = 0, Qs0 = 4 and α = 1 (constant source flow rate). The slopes show
that xN ∼ t4/5 and h(x = 0) ∼ t1/5.
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2.5 Conclusions

In this chapter we investigate the spreading of a planar Newtonian liquid dome down a

pre-wetted and inclined substrate as a simple model for the spreading of viscous-gravity

currents. We assume isothermal conditions, so the liquid properties, particularly, the

viscosity are constant. A parameter study, particularly, the substrate inclination angle

(S = 0 corresponding to a horizontal plane and S > 0 for an inclined plane), source

flowrate parameter, α (α = 0 for constant volume and α = 1 for constant flowrate)

and the “strength” of the source, Qs0 , reveal their influence on the evolution of free

surface and the spreading characteristics.

Late-time similarity solutions of the evolution equation for the free surface provide

scaling relationships for the maximum dome height, hN , and the spreading distance, xN .

These similarity solutions are characterised by a volume of liquid proportional to tα,

(α ≥ 0), of liquid released by the source onto the plane. For S = 0, hN = h(x = 0, t) ∼

t(2α−1)/5 and xN ∼ t(3α+1)/5. For 0 < α < 1/2, hN decreases with time and increases

otherwise. For S > 0, hN = h(x = xN , t) ∼ t(α−1)/3 and xN ∼ t(2α+1)/3. For 0 < α < 1,

hN decreases with time and increases otherwise. While these similarity solutions have

been derived previously by Huppert [47] for S = 0 and Lister [54] for S > 0, we have

validated them with corresponding numerical solutions. Our numerical solutions when

scaled by the appropriate similarity variables collapse to the corresponding similarity

solution at late times.

Our numerical solutions reveal the dynamics of the dome evolution. Two distinct free
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surface shapes were identified from the numerical solutions and similarity solutions.

For spreading of a dome with constant volume (so α = 0), we observe

(i) a dome-shaped profile which thins and spreads in time for S = 0, and

(ii) a slumping dome with a steep front at its leading edge which also thins and

spreads in time observed for S > 0.

For spreading of a dome with constant flowrate (so α = 1), we observe

(i) for S = 0, a dome-shaped profile which grows in time depending on the source

strength parameter, Qs0 . There exists a critical value of Qs0 beyond which sig-

nificant dome growth in the dome height occurs, and

(ii) for S > 0, the dome height grows to a constant height balanced by the spreading

length.

The model and results presented in this chapter are theoretical and at best describe

qualitatively the dynamics associated with real spreading of viscous gravity currents,

such as lava flows. Nevertheless results such as the significant growth in the dome height

past a critical value of Qs0 predicted by the model could be linked to catastrophic events

related to dome collapse.



Chapter 3

The isothermal and non-Newtonian

spreading of a liquid dome down an

inclined plane

3.1 Introduction

In this chapter, we extend the one-dimensional Newtonian liquid model to incorpo-

rate non-Newtonian effects, such as apparent or shear rate-dependent viscosity and

yield stress. The constitutive relations between the liquid stress and its shear rate

for a general non-Newtonian and viscoplastic liquid described in §1.3.1, Chapter 1 are

considered. We use similarity and numerical solutions to characterise the evolution of

the free surface for a range of parameter values associated with non-Newtonian and

78
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viscoplastic effects along with the source flowrate and the inclination angle.

The outline of this chapter is as follows. In §3.2, we extend the one-dimensional math-

ematical formulation for a Newtonian liquid to include non-Newtonian and viscoplastic

constitutive relations for a Power-law, Bingham, Herschel-Bulkley and Carreau fluid.

The lubrication approximation is used again to reduce the governing equations to a

single PDE for the evolution of the one-dimensional free surface shape. In §3.3 we

derive late-time similarity solutions for the evolution of the free surface such that the

volume of liquid in the dome is proportional to tα, (α ≥ 0). Previously, Balmforth

et al. [5, 9] have identified similarity solutions for Power-law and Herschel Bulkley

models for constant volume spreading. We generalise these to general α and also ex-

plicitly compute the similarity solutions. In §3.4, we perform numerical simulations of

the evolution equation to determine the free surface shapes for a variety of parameter

values, in particular, the power-law index and the yield stress. The numerical solutions

are validated against the similarity solutions. In §3.5 we discuss the main results.

3.2 Mathematical Formulation

We consider a similar problem set-up as described in §2.2 of a liquid dome spreading

under the influence of gravity down an inclined and pre-wetted plane (see Fig. 2.1 for

a schematic). The liquid in the dome is assumed to be non-Newtonian.
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3.2.1 Governing Equations

The one-dimensional governing equations are given by the conservation of mass and

momentum, Eqs. (2.1). The constitutive relation between the liquid stress and its rate

of strain for a generalised non-Newtonian liquid is written as:

τ ? = µ?(γ̇?)γ̇?, (3.1)

where the function µ?(γ̇?) is the non-Newtonian liquid viscosity, γ̇? is the rate of strain

tensor given by Eq. (2.3) and γ̇? is the second invariant of the rate of strain tensor

given by γ̇? =
√

1
2
γ̇?ij γ̇

?
ij. We also require the second invariant of the stress tensor,

τ ? =
√

1
2
τ ?ijτ

?
ij.

The boundary conditions are given by Eqs. (2.4-2.11).

This problem is also nondimensionalised in the same way as in Chapter 2. We use a

constant reference viscosity, µ?R, in the nondimensionalisations used. The nondimen-

sional form of Eq. (3.1) is given by

τ = µ(γ̇)γ̇, (3.2)

where γ̇ is given by Eq. (2.14) and the dimensionless second invariants of the rate of
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strain and stress tensors are given by

γ̇ =
√

(uz + ε2wx)2 + 4ε2ux2, τ =

√
τ 2
xz +

1

2
ε2(τ 2

xx + τ 2
zz). (3.3)

We proceed in the same way as described in Chapter 2 in performing the lubrication

approximation for the leading order problem in ε. We follow the same sequence of

steps in solving the leading order problem until the expression for the leading order

shear stress, τxz0(x, z) = (S − h0x)(h0 − z). Using Eq. (3.2) and γ̇0 =
√
u2

0z = |u0z |,

we obtain the leading order relationship between the shear stress and the shear rate as

τxz0 = f(|u0z |)u0z . Using the expression for τxz0 , we obtain

f(|u0z |)u0z = (S − h0x)(h0 − z). (3.4)

This equation needs to be solved for a given function f(|u0z |) to obtain the leading

order shear rate, u0z . Proceeding in the same way as described in Chapter 2, we can

write the evolution equation as:

h0t +Q0x = ws, Q0(x, t) =

∫ h0

0

(h0 − z)u0zdz. (3.5)

The evolution equation is coupled with Eq. (3.4) for u0z .

We now consider different forms of the function f(|u0z |) in Eq. (3.4) corresponding to

constitutive relationships for a Power-law, Herschel-Bulkley and Carreau liquid.



82

Power-law model

For a Power-law model, we have

f(|u0z |) = K|u0z |n−1, (3.6)

where K = (K?/µ?R)(U?/H?)n−1, is a dimensionless liquid consistency index and n is

the power-law index. Eq. (3.4) becomes

K|u0z |n−1u0z = (S − h0x)(h0 − z). (3.7)

Hence,

u0z =
1

K
[|S − h0x|(h0 − z)]

1
n sgn(S − h0x), (3.8)

The flux, Q0 is then given by

Q0(x, t) =
1

K

n

2n+ 1

[
|S − h0x|(

1
n
−1)h

2n+1
n

0

]
(S − h0x). (3.9)

Thus, the evolution equation, Eq. (3.5) can be written as

h0t +
1

K

n

2n+ 1

[
|S − h0x|(

1
n
−1)(S − h0x)h

2n+1
n

0

]
x

= ws. (3.10)



83

Herschel-Bulkley Model

For a Herschel-Bulkley constitutive law,

f(|u0z |) = K|u0z |n−1 +
B

|u0z |
, (3.11)

where B =
τ?yH

?

µ?RU
? =

τ?yL
?

ρ?g?H?2 cos θ
is the Bingham number which compares the liquid yield

stress to the viscous stress. Eq. (3.4) becomes

[
K|u0z |n−1 + B

|u0z |

]
u0z = (S − h0x)(h0 − z), for τ0 = |τxz0| = |S − h0x|(h0 − z) ≥ B,

u0z = 0, for τ0 = |τxz0| = |S − h0x|(h0 − z) < B,

(3.12)

where τ0 is the leading order second invariant of the stress tensor (Eq. (3.3)). We

define a yield surface, z = Y(x, t), such that |τxz0| = B and u0z = 0 there. This implies

that |S − h0x|(h0−Y) = B at z = Y(x, t). Hence, Y = max(h0− B
|S−h0x |

, 0). Using the

definition of the yield surface, we can write Eq. (3.12) as:

[
K|u0z |n−1 + B

|u0z |

]
u0z = (S − h0x)(h0 − z), for z ≤ Y ,

u0z = 0, for z > Y .
(3.13)

One can solve the above for u0z to obtain:

u0z =


1
K
|S − h0x|1/n (Y − z)1/n sgn(S − h0x), for z ≤ Y ,

0, for z > Y .
(3.14)
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The flux, Q0 is then given by

Q0(x, t) =
1

K

n

(n+ 1)(2n+ 1)
|S − h0x|

1
n
−1Y

1
n

+1[(2n+ 1)h0 − nY ](S − h0x). (3.15)

Thus, the evolution equation, Eq. (3.5) can be written as

h0t +
1

K

n

(n+ 1)(2n+ 1)

[
|S − h0x|

1
n
−1Y

1
n

+1[(2n+ 1)h0 − nY ](S − h0x)
]
x

= ws,

(3.16)

where the yield surface, Y(x, t) = max(h0 − B
|S−h0x |

, 0).

Carreau Model

For the Carreau model, the constitutive law,

f(|u0z |) = µ∞ +
µ0 − µ∞

[1 + (λ|u0z |)2](
1−n
2

)
, (3.17)

where µ∞ = µ?∞/µ
?
R, µ0 = µ?0/µ

?
R and λ = λ?H?/U?. Eq. (3.4) becomes

[
µ∞ +

µ0 − µ∞
[1 + (λ|u0z |)2](

1−n
2

)

]
u0z = (S − h0x)(h0 − z). (3.18)

Define q = u0z and assume u0z ≥ 0. Then we can write Eq. (3.18) as:

f(q)q = |S − h0x|(h0 − z). (3.19)
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Taking the derivative with respect to z implies: |S − h0x|dz = −d(f(q)q)
dq

dq. Now,

(h0 − z) = f(q)q
|S−h0x |

, so q = 0 when z = h0 and q = q0, when z = 0 with f(q0)q0 =

|S − h0x|h0. Substituting these in Eq. (3.5), we obtain

Q0(x, t) =

∫ q0

0

f(q)q2

|S − hx|2

(
d[f(q)q)]

dq
dq

)
. (3.20)

The above equation can be written in the form:

Q(x, t) =
F (q0)

|S − hx|2
, F (q0) =

∫ q0

0

f(q)q2d[f(q)q)]

dq
dq, (3.21)

where q0 = q|z=0 is the shear rate at the substrate given by f(q0)q0 = |S − h0x|h0.

Substituting Eq(3.21) in Eq(3.5) we obtain the evolution equation

ht +

[
F (q0)

|S − h0x|2

]
x

= ws, (3.22a)

F (q0) =

∫ q0

0

f(q)q2d[f(q)q)]

dq
dq, (3.22b)

f(q0)q0 = |S − h0x |h0. (3.22c)
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3.3 Late-time similarity solutions for Herschel-Bulkley

time-dependent Qs(t)

Similar to §2.3 in Chapter 2, here we seek similarity solutions of the liquid dome

height evolution, Eqs. (3.10, 3.16), for the Power-law and Herschel-Bulkley constitutive

models, respectively. This is subject to the volume constraint (a total conservation of

mass) ∫ XN

XT

h dx = Qs0t
α + V0, (3.23)

where the flow lies in XT (t) < x < XN(t) and V0 is an initial volume of liquid in the

dome.

We seek similarity solutions for the evolution equation representing the Herschel-

Bulkley constitutive model:

h0t +
1

K

n

(n+ 1)(2n+ 1

[
|S − h0x|

1
n
−1Y

1
n

+1[(2n+ 1)h0 − nY ](S − h0x)
]
x

= 0,

(3.24a)∫ XN

XT

h dx = Qs0t
α + V0. (3.24b)

Special cases corresponding to B = 0 (Power-law liquid), α = 0 (constant volume) and

α = 1 (constant source flow rate) will be considered separately, if necessary.
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Late-time similarity solution for S = 0

We define the similarity variables

ξ =
x

tb
(

Qn+2
s0

( 2n+1
n

)n

)1/(2n+3)
, h(x, t) =

[(
2n+ 1

n

)n
Qn+1
s0

]1/(2n+3)

taφ(ξ), (3.25)

where the exponents a and b need to be determined. Substituting in Eq. (3.24a), the

evolution equation can be written in the form

ta−1 (aφ− bξφξ)− ta−b
1

n+ 1

[
(ta−b|φξ|)

1
n
−1(ta)

1
n

+1Y
1
n

+1 [(2n+ 1)φ− nY ] (ta−bφξ)
]
ξ

= 0,

(3.26a)

where Y = max

φ−B t−2a+b

|φξ|
[(

2n+1
n

)3
Qs0

]n/(2n+3)
, 0

 . (3.26b)

Setting

a

(
1 +

2

n

)
− b
(

1 +
1

n

)
= −1, (3.27)

removes any time dependence in Eq. (3.26a). For t � 1, Eq. (3.26b) has error

O(t−2a+b). Hence, we require b < 2a for the error to be sub-dominant for t � 1.

Now, a + b = α from the conservation of volume. Hence, we obtain a = α(n+1)−n
2n+3

,

b = α(n+2)+n
2n+3

. To satisfy the condition b < 2a, we require α > 3.
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Therefore, the similarity variables can be written as:

h(x, t) =

[(
2n+ 1

n

)n
Qn+1
s0

]1/(2n+3)

t
α(n+1)−n

2n+3 φ(ξ), ξ =
x

t
α(n+2)+n

2n+3

(
(2n+1

n
)n

Qn+2
s0

)1/(2n+3)

.

(3.28)

For t � 1, the above equation shows that the maximum dome height for S = 0 is

h(ξ = 0)) h ∼ t
α(n+1)−n

2n+3 and the location of its front xN ∼ t
α(n+2)+n

2n+3 . Therefore, for

α > 3, the late-time behaviour of Eq. (3.26) can be written as:

[
α(n+ 1)− n

2n+ 3
φ− α(n+ 2) + n

2n+ 3
ξφξ

]
− 1

n+ 1

[
|φξ|

1
n
−1φ

2n+1
n φξ

]
ξ

= O(t
n(3−α)
2n+3 ),

(3.29a)∫ ξN

0

φ dξ = 1 +O(t−α).

(3.29b)

For α = 3, the late-time behaviour of Eq. (3.26) can be written as:

[
α(n+ 1)− n

2n+ 3
φ− α(n+ 2) + n

2n+ 3
ξφξ

]
− 1

n+ 1

[
|φξ|

1
n
−1Y

1
n

+1 [(2n+ 1)φ− nY ]φξ

]
ξ

= 0,

(3.30a)

Y = max

(
φ− B̃

|φξ|
, 0

)
, where B̃ =

B[(
2n+1
n

)3
Qs0

]n/(2n+3)
, (3.30b)

∫ ξN

0

φ dξ = 1 +O(t−α). (3.30c)
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For α < 3, there does not exist a late-time similarity solution for B 6= 0. However,

for B = 0 (or Y = φ), there exist a similarity solution for all α > 0. This late time

behaviour is also described by Eq. (3.29) with the error term in Eq. (3.29a) now

exactly zero. This is precisely the similarity solution for the Power-law model in Eq.

(3.10). Eq. (3.29a) can also be written as:

[
|φξ|

1
n
−1φ

2n+1
n φξ

]
ξ

+

[
α(n+ 2) + n

2n+ 3

]
ξφξ −

[
α(n+ 1)− n

2n+ 3

]
φ = 0, (3.31)

Define z = ξ/ξN and φ(z) = ξ
n+1
n+2

N φ̃(z). Substituting this into Eq. (3.31), we obtain

[
|φ̃z|

1
n
−1φ̃

2n+1
n φ̃z

]
z

+

[
α(n+ 2) + n

2n+ 3
zφ̃z −

α(n+ 1)− n
2n+ 3

φ̃

]
= 0, (3.32)

Also substituting the above into Eq. (3.29b), we obtain

ξN =
(∫ 1

0

zφ̃dz
)−(n+2)/(2n+3)

. (3.33)

Therefore

z =
x

ξN t
α(n+2)+n

2n+3

(
(2n+1

n
)n

Qn+2
s0

)1/(2n+3)

, h(x, t) = ξ
n+1
n+2

N

[(
2n+ 1

n

)n
Qn+1
s0

]1/(2n+3)

t
α(n+1)−n

2n+3 φ̃(z),

(3.34a)[
|φ̃z|

1
n
−1φ̃

2n+1
n φ̃z

]
z

+

[
α(n+ 2) + n

2n+ 3
zφ̃z −

α(n+ 1)− n
2n+ 3

φ̃

]
= 0, (3.34b)

ξN =
(∫ 1

0

zφ̃dz
)−(n+2)/(2n+3)

. (3.34c)
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Eq. (3.34b) is solved numerically for any value of α > 0. The boundary condition

at z = 0 is given by φ̃z = 0 (from symmetry at x = 0). We can apply the Frobenius

method to determine a solution of Eq. (3.34b) in the neighbourhood of the point z = 1.

We seek a solution of the form φ̃(z) =
∑∞

m=0 am(1− z)r+m, where r is a constant to be

determined. Substituting this in Eq. (3.34b), we can show that the solution is given

by

φ̃(z) = (n+ 2)1/n+2
[α(n+ 2) + n

2n+ 3

]n/(n+2)

(1− z)1/(n+2) + h.o.t, for z = 1−. (3.35)

In practice, we chose z = 1 − δ, for δ � 1 specified. For arbitrary α, and using Eq.

(3.34b) with boundary conditions φ̃z = 0 at z = 0 and Eq. (3.35) at z = 1 − δ,

the solution can be obtained by numerically integrating Eq. (3.34b) using FSOLVE

module in MATLAB (Release 2013a, The MathWorks, Inc., Natick, Massachusetts,

United States). The similarity solution is represented by the boundary-value problem

in Eq. (3.34b) along with the boundary conditions given by φ̃z = 0 at z = 0 and Eq.

(3.35) at z = 1− δ.

For α = 0 the solution of Eq. (3.34b) can be obtained analytically, where this equation

reduces to

− n

2n+ 3
(φ− ξφξ)−

[
|φξ|

1
n
−1φ

2n+1
n φξ

]
ξ

= 0. (3.36)

Integrating and using the boundary condition φξ = 0, at ξ = 0 gives

− n

2n+ 3
(ξφξ) =

(
|φξ|

1
nφ

2n+1
n

)
. (3.37)
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Integrating again and using φ = 0 at ξ = ξN , we obtain

φ =


[
( n

2n+3
)n(n+2

n+1
)(ξn+1 − ξn+1

N )
]1/(n+2)

, ξ < ξN ,

0, ξ > ξN ,

(3.38)

where ξN is given by

[(
n

2n+ 3

)(
n+ 2

n+ 1

)]1/(n+2) ∫ ξN

0

(
ξn+1
N − ξn+1

)1/(n+2)
dξ = 1. (3.39)

Using the substitution ξ = ξN cos(
2

n+1)(θ), this simplifies to

[(
n

2n+ 3

)(
n+ 2

n+ 1

)]1/(n+2)

ξ
( 2n+3
n+2 )

N

∫ π/2

0

sin( 2n+3
n+2 )(θ)dθ = 1. (3.40)

ξN ≡
[(

n

2n+ 3

)(
n+ 2

n+ 1

)]−1/(2n+3)
(

1∫ π/2
0

sin( 2n+3
(n+2))(θ)dθ

)( n+2
2n+3)

. (3.41)

The solution, φ(ξ), as a function of ξ is shown in Fig. 3.1 for various values of α

with n = 0.6. We observe that as α increases, although the free surface shapes look

similar, the length over which they have spread, ξN decreases and the maximum height,

φ(ξ = 0), increases. This is consistent with the fact that as α increases, the additional

volume of liquid from the source contributes more to inflating the dome rather than

its spreading. The results in Fig. 3.1 are similar to the results in Chapter 2 for a

Newtonian fluid, except for α > 1, the dome decreases in height and increases in

length compared to the Newtonian fluid. The opposite happens for α < 1. This is due

to the shear thinning for n = 0.6. In Fig. 3.2 we show the solution, φ(ξ), as a function
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Figure 3.1: The late-time similarity solution, φ, as a function of ξ for S = 0 with n = 0.6
and varying α obtained from the numerical solution of Eq.(3.34b) using boundary
conditions φ̃z = 0 at z = 0 and Eq.(3.35) at z = 1− δ.

of ξ for various values of n with α = 0. We observe that as n decreases, the dome

spreads less in comparison to a Newtonian dome. This is because the flow shear rate

is much less than one, so the viscosity increases as n decreases slowing the spreading.

Late-time similarity solution for S > 0

We define the similarity variables

ξ =
x

tb
(

Qn+1
s0

( 2n+1
n

)n

)1/(2n+1)
, h(x, t) =

[(
2n+ 1

n

)
Qs0

]n/(2n+1)

taφ(ξ), (3.42)
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Figure 3.2: The late-time similarity solution, φ, as a function of ξ for S = 0 with α = 0
and varying n obtained from the numerical solution of Eq.(3.34b) using boundary
conditions φ̃z = 0 at z = 0 and Eq.(3.35) at z = 1− δ.

where the exponents a and b need to be determined. Substituting in Eq. (3.24a), the

evolution equation can be written in the form

(aφ− bξφξ)ta−1 + ta−b
1

n+ 1

[
|ζ|

1
n
−1ta( 1

n
+1)Y

1
n

+1 [(2n+ 1)φ− nY ] ζ
]
ξ

= 0, (3.43a)

where Y = max

(
φ−B t−a

|ζ|
(

2n+1
n
Qs0

)n/(2n+1)
, 0

)
, ζ =

S −((2n+1
n

)2

Q
1/n
s0

)n/(2n+1)

ta−bφξ

 .
(3.43b)

We set

a

(
1 +

1

n

)
− b = −1. (3.44)

For t � 1, Eq. (3.26b) has error O(ta−b, t−a, t−b, t2a−2b). Hence, we require a− b < 0,

a > 0 and b < 0 for the error to be sub-dominant for t � 1. Now, a + b = α from

the conservation of volume. Hence, we obtain a = n(α−1)
2n+1

, b = α(n+1)+n
2n+1

. The condition
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a− b < 0 and b > 0 are staisfied for all α and n. For a > 0, we require α > 1.

Therefore, the similarity variables can be written as:

h(x, t) =

[(
2n+ 1

n

)
Qs0

]n/(2n+1)

t
n(α−1)
2n+1 φ(ξ), ξ =

x

t
α(n+1)+n

2n+1

(
(2n+1

n
)n

Qn+1
s0

)1/(2n+1)

.

(3.45)

For t � 1, the above equation shows that the maximum dome height for S > 0 is

h(ξ = 0)) h ∼ t
n(α−1)
2n+1 and the location of its front xN ∼ t

α(n+1)+n
2n+1 . Therefore, for α > 1,

the late-time behaviour of Eq. (3.43) can be written as:

[
n(α− 1)

2n+ 1
φ− α(n+ 1) + n

2n+ 1
ξφξ

]
+

1

n+ 1

[
S

1
nY

1
n

+1 [(2n+ 1)φ− nY ]
]
ξ

= (3.46a)

O(t
−(α+2n)

2n+1 , t−
n(α−1)
2n+1 , t−

α(n+1)+n
2n+1 ),

where Y = max

(
φ−B t−

n(α−1)
2n+1

|ζ|
(

2n+1
n
Qs0

)n/(2n+1)
, 0

)
, ζ =

S −((2n+1
n

)2

Q
1/n
s0

)n/(2n+1)

t
−(α+2n)

2n+1 φξ

 ,
(3.46b)∫ ξN

ξT

φ dξ = 1 +O(t−α). (3.46c)

For α = 1, the late-time behaviour of Eq. (3.43) can be written as:

[ξφξ] =
1

n+ 1

[
S

1
nY

1
n

+1 [(2n+ 1)φ− nY ]
]
ξ

+O(t−1), (3.47a)

Y = max
(
φ− B̃, 0

)
, ζ = S +O(t−1) where B̃ =

B

S
(

2n+1
n
Qs0

)n/(2n+1)
, (3.47b)

∫ ξN

ξT

φ dξ = 1 +O(t−α). (3.47c)
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Eq. (3.47a) reduces to

[ξφξ] =
1

n+ 1

[
S

1
n (φ− B̃)

1
n

+1
[
(n+ 1)φ+ nB̃

]]
ξ

(3.48)

For α < 1, there does not exist a late-time similarity solution for B 6= 0. However,

for B = 0 (or Y = φ), there exist a similarity solution for all α > 0. This late time

behaviour is also described by Eq. (3.46). This is precisely the similarity solution for

the Power-law model in Eq. (3.10) and is written as:

[
n(α− 1)

2n+ 1
φ− α(n+ 1) + n

2n+ 1
ξφξ

]
+
[
S

1
nφ

1
n

+2
]
ξ

= O(t
−(α+2n)

2n+1 , t−
α(n+1)+n

2n+1 ), (3.49a)∫ ξN

ξT

φ dξ = 1 +O(t−α). (3.49b)

Using the integrating factor φ
α(2n+1)
(1−α)n to multiply both sides of Eq. (3.49a), we obtain

n

2n+ 1

[
(1− α)ξφ

α(n+1)+n
(1−α)n

]
ξ

= S
1
n

[
(1− α)φ

(2n+1)
(1−α)n

]
ξ

+O(t
−(α+2n)

2n+1 ) = 0. (3.50)

Integrating this equation with respect to ξ and applying the boundary condition φ(ξ =

ξT ) = φ0 (determined below), we obtain the solution in implicit form,

ξ − ξT =

(
2n+ 1

n

)
S1/n

(
φ(2n+1)/(1−α)n − φ(2n+1)/(1−α)n

0

φ
α(n+1)+n
(1−α)n

)
. (3.51)

We can show that φ0(ξT ) = ( α
S1/n )

2n+1
n (for detail see Appendix 2). From our numerical

simulations, ξT ≈ 0 for t � 1, hence for our purposes we can take ξT ≈ 0, Using Eq.
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(3.49b), the location of the leading edge of the front ξ = ξN , and the height there

φ = φN , can be written as:(for detail see Appendix 2)

ξN =
(2n+ 1)

(n+ 1)φ0

(
α(n+ 1)

α((n+ 1)) + n

)α(n+1)+n
(2n+n)

, φN =

(
α(n+ 1) + n

α(n+ 1)

)n(1−α)
(2n+1)

, (3.52)

The similarity solution is represented by the implicit relationship between φ and ξ

given in Eq. (3.51).

For α = 0, we have using Eq. (3.51) and φ(0) = 0 that

φ =

[
nξ

(2n+ 1)S1/n

]n/(n+1)

, ξN =

[(
2n+ 1

n+ 1

)(
2n+ 1

n

)n/(n+1)

S1/(n+1)

] n+1
(2n+1

)

,

(3.53)

φN =

(
n+ 1

n
S

)−n/(2n+1)

.

For α = 1 (constant source flow rate), we have (by setting B̃ = 0 in Eq. (3.48)

[ξφξ] =
[
S

1
nφ

1
n

+2
]
ξ

(3.54)

This has solution φ(ξ) = 1, so ξN = φN = 1.

The solution for this is shown in Fig. 3.3 for S = 1 and n = 0.6, and for various

values of α. We observe a similar trend as that shown in Fig. 3.1 for S = 0; the

length over which the dome spreads, ξN , decreases and the height at the leading edge,

φN , increases. We note that ξN is larger than that for S = 0 due to the additional
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Figure 3.3: The late-time similarity solution, φ, as a function of ξ for S = 1 and n = 0.6
varying α obtained from Eq. (3.51).

contribution from the inclination of the plane. Similar to the S = 0 case, as α increases,

the additional volume of liquid from the source contributes more to inflating the dome

rather than its spreading. The results in Fig. 3.3 are similar to the results in Chapter 2

for a Newtonian fluid, except for α > 1, the dome decreases in height and increases in

length compared to the Newtonian fluid. The opposite happens for α < 1. This is due

to the shear thinning for n = 0.6. The location of the leading edge of the dome, ξN ,

and the height there, φN as a function of α are shown in Fig. 3.4. This is consistent

with our earlier observations. In Fig. 3.5 we show the solution, φ(ξ), as a function of

ξ for various values of n with α = 0. As in the case with S = 0, we observe that as n

decreases, the dome spreads less in comparison to a Newtonian dome. This is because

the flow shear rate is much less than one, so the viscosity increases as n decreases
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Figure 3.4: The location of the leading edge of the dome, ξN , and the height there, φN
as a function of α for S = 1.

Figure 3.5: The late-time similarity solution, φ, as a function of ξ for S = 1 and α = 0
varying n obtained from Eq. (3.51).
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slowing the spreading.

3.4 Numerical results

In this section, we seek the numerical solution of Eq. (3.16 for the evolution of the

dome height for the Herschel-Bulkley constitutive law. We do not present any numerical

solution for the Carreau model, Eq. (3.22). Realistically, =O(1) which combined with

the low shear stress associated with this particular spreading flow, makes the Carreau

model behave like Newtonian for these values of . For the Carreau model to capture the

non-Newtonian behaviour, one would need to increase by several orders of magnitude

which may be unrealistic.

For B = 0, Eq. (3.16) reduces to the Power-law model given by Eq. (3.10). The

computational domain is x ∈ [−L,L], where L is the length of the domain. We assume

that the plane is pre-wetted with a precursor layer of thickness b. The boundary

conditions specified are: h = b at x = ±L. We choose the initial condition to mimic a

one-dimensional dome as follows:

h(x, t) = (1− x2)H(1− x2) + b, x ∈ [−L,L]. (3.55)

Our focus is in investigating the evolution of the dome height h varying the parameters:

the power-law index, n and the Bingham number, B (comparing the strength of the

yield stress). These parameters are varied for two choices of the inclination angle,
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S = 0 (θ = 0o) and S = 1 (θ ≈ 6o), and two values of α corresponding to α = 0

(constant volume) and α = 1 (constant source flow rate). In all the results shown

below, we fix the source vent width x0 = 0.15 and the precursor thickness b = 10−6.

The length of the computational domains L is chosen sufficiently large so that the

boundary condition h→ b as x→∞ is satisfied numerically. The evolution equations

for the three models, Eqs. (3.10,3.16), are solved numerically using the Method of

lines [78, 61]. The numerical scheme is similar as that presented in §2.4. Numerical

investigation utilizing the Bingham and Herschel-Bulkley model are complicated by

the presence of the discontinuity in the derivative of the stress-strain rate relation, Eq.

3.11, and for ease in computation we use a regularization given by Balmforth et al.

[5, 9]. The complication arises due to the discontinuity in the derivative of the stress-

rate of strain constitutive law for the Herschel-Bulkley model. Following Balmforth et

al.[5], we regularise the constitutive law, Eq. (3.11) by assuming the fluid to be weakly

yielding at low strain rates, of the form, f(|u0z |) = K|u2
0z + µ2

1|(n−1) + B√
u20z+µ21

, where

µ1 is the regularising parameter.

To illustrate the typical features of the evolution of the free surface, we first present the

numerical results for Power-law and Bingham fluid which are compared to the corre-

sponding similarity solutions derived in the previous chapter. In Fig.3.6, we show the

numerical solution for a Power-law fluid with index n = 0.6 and S = 1 (corresponding

to θ ≈ 6o), with Qs0 = 0. The evolution of h(x, t) are shown for times varying from

t = 0− 5× 102. We observe the dome spreading down the inclined plane with a front
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Figure 3.6: Evolution of free surface shapes for t = 0 to t = 5 × 102 with n = 0.6,
S = 1 (corresponding to θ ≈ 6o) and Qs0 = 0 (constant volume).

developing at its leading edge. This free shape profiles are similar to the Newtonian

case. The spreading is much slower for this case because the flow shear rate is much less

than one, so the viscosity is much larger than that of a Newtonian fluid, hence slowing

the spreading. In Fig. 3.7, we show the evolution of h(x, t) for horizontal plane S = 0

at times varying between t = 0 and t = 5 × 102 with power-law index n = 0.6. The

spreading for this case is symmetric about x = 0 with Qs0 = 0. We also observe that

the spreading of the dome is much slower compared that shown in previous figure. This

is again due to the large viscosity at very low shear rates for a Power-law fluid. The

results in Fig. 3.8 show the late-time similarity solution for evolution shown in Fig.

3.6 using the similarity variables in Eq. (3.45). The dashed line is the corresponding

similarity solution, Eq. (3.54) where the late-time numerical solution collapse to a sin-
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Figure 3.7: Evolution of free surface shapes for t = 0 to t = 5 × 102 with n = 0.35,
S = 0 and Qs0 = 0 (constant volume).

Figure 3.8: The height field of constant mass is plotted using similarity scaling ξ =
x/t1/3 and φ = t−1/3h(x, t)
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gle curve. Figure 3.9 again shows that the late-times numerical solution shown in Fig.

3.7 collapses to a single curve under the similarity scaling, Eq. (3.28). The dashed line

Figure 3.9: The height field is scaled by ξ = x/t1/5 and φ = t1/5h(x, t) which are plotted
against the similarity solution.

in Fig. 3.9 shows the corresponding similarity solution given by Eq.(3.38) which is in

good agreement. Figure 3.10 plot the location of the liquid front at the domes leading

edge, xN , is determined at the leading edge of the dome numerically, this figure show

the slopes which confirm that xN and hN . The results in Fig. 3.11 show the leading

edge of the dome, xN , and the maximum dome height h(x = 0), respectively. These are

calculated from the dome evolution that shown in Fig. 3.7. similar for previous chap-

ter, the location of the leading edge of the dome is calculated by the value of x,where

the dome height first become less than 10−5, in this figure the slope confirms that xN

and hN . In Figs. 3.12, 3.13, we show the results for the dome height h(x, t = 5× 102)
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Figure 3.10: The variation in the length xNand height hN with time for n = 0.6 and
S = 1

Figure 3.11: Evolution of the dome height hN and length xN for n = 0.35 with t =
0− 5× 102
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Figure 3.12: The thickness for spreading dome computed numerically using the thin-
layer model with S = 1. Four snapshots of the domes at time 102 for various values of
n

Figure 3.13: The thickness for spreading dome computed numerically using the thin-
layer model with n = 0.6. Four snapshots of the domes at time 1− 5× 102 for various
values of S = 0.7 (4o), 1 (6o), 2.145 (12o), 3.732 (18o).
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for different values of power index n = 0.2, 0.4, 0.6, 0.8, 1, and inclination angles

S = 0.7 (4o), 1 (6o), 2.145 (12o), 3.732 (18o) for Qs0 = 0, respectively. We observe that

the dome have spreads over a longer distance and thinned more as n, S increases. Fig-

Figure 3.14: The evolution of the dome for four different power index n, n =
0.1, 0.2, 0.5, 0.95.

ure 3.14 show the same behaviour in previous figures where the dome has spread over

a longer distance as n increase. For the case of α = 1, Fig. 3.15 show the evolution of

h(x, t) for varying t = 0−2×102, with n = 0.1 and Qs0 = 4. The inclination is set to be

S = 1. The results in this figure illustrate that the upper section of the dome is almost

flat surface behind its leading edge. The strength of the source is sufficiently large and

the build-up of the fluid at the source results in the dome height increasing near x = 0

without any spreading. The results of the scaling numerical solution are presented in

Fig. 3.16 for t varying between t = 0 to t = 2 × 102 with α = 1 and Qs0 = 4. These
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Figure 3.15: Dome evolution for Qs0 = 4,n=0.1, S = 1 and t = 0− 2× 102.

Figure 3.16: The height field is scaled and plotted against the similarity solution.
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results show how this scaling converges to the exact similarity solution (dashed line)

for α = 1 in Fig. 3.3, where the curves collapses onto the similarity solution under

scaling variables (3.45). Similar in previous chapter, Fig. 3.17 plot the leading edge

Figure 3.17: Evolution of the dome height hN and length xN for Qs0 = 4

of the dome, xN , and the dome height, hN , respectively for varies time t. Figures

3.18, 3.19 are shows the dome height h(x, t = 200) for different values of power index

n = 0.05, 0.2, 0.5, 0.9, and inclination, S = 0.7 (4o), 1 (6o), 2.145 (12o), 3.732 (18o) for

Qs0 = 0.5. This figure illustrated that the dome become more thinner with spreading

over longer length as n and S increases. For zero inclination, Fig. 3.20 illustrate the

dynamics of the dome which related to its continued growth and expansion depending

on the strength of the sources Qs0 = 6.5 for t between 0 and 5 × 102. Figure 3.21

shows that the numerical solution shown in figure 3.20 collapse to a single curve under

the similarity scaling (3.28) with α = 1. The similarity solution for equations (3.34a)
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Figure 3.18: The evolution of the dome for four different power-law index n =
0.05, 0.2, 0.5, 0.9 for Qs0 = 0.5.

Figure 3.19: The thickness of spreading dome with Qs0 = 0.5 and n = 0.5 for varying
S.
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Figure 3.20: The thickness of spreading dome with Qs0 = 6.5 and n = 0.65 for t =
0− 5× 102

Figure 3.21: The height field is scaled by ξ = x/t4/5 and φ = t1/5h(x, t) which plotted
against the similarity solution.
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which is solved by the ode45 ( Runge Kutta-Fehlberg method) in MATLAB is shown

in figure 3.21, where the numerical solution of evolution equation converge to the simi-

larity solution. The red line in figure 3.21 shows the similarity solution which matches

the numerical solution very well. Hence, a Non-Newtonian fluid from a constant point

source spreads like t1/(2n+3). This again agrees with the similarity solution derived by

Huppert [47]. Fig. 3.22(a,b) plot the leading edge of the dome, xN , and the dome

Figure 3.22: The variation in the length xN and height hN with time for n = 0.65 and
S = 0.

height, hN , respectively, versus time, t. These are calculated from the dome evolution

shown in Fig. 3.20 for S = 1 and Qs0 = 6.5 and α = 1 (constant source flow rate).

We consider in Fig. 3.23 different values of power index n = 0.2, 0.4, 0.6, 0.8, 1 with

Qs0 = 6.5.

We now consider the influence of the yield stress and Bingham numbers, B, for con-
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Figure 3.23: The evolution of the dome for four different power index n, n =
0.05, 0.2, 0.5, 0.9 with Qs0 = 6.5

Figure 3.24: Inclined plane for S = 1. Shown are height (solid lines),h and the yield
surface (dotted lines), Y for (a) B = 0.0002, (b) B = 0.02, (c) B = 0.4, (d) B = 4 with
n = 1 (Bingham fluid) for constant volume at t = 0− 5× 103
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stant volume, Qs0 = 0, in Fig. 3.24 the results are show the effects of yield stress using

different values of B = 0.0002, 0.02, 0.4, 4 for t varying between t = 0 to t = 5 × 103.

Figure 3.25 shows that the late-time numerical solution shown in Fig. 3.24 collapses

Figure 3.25: The height field is scaled for varying B, (a) B = 0.0002, (b) B = 0.02, (c)
B = 0.4,(d) B = 4

to a single curve under the similarity scaling when B → 0 and match with similarity

solution. In Fig. 3.26 we show the maximum dome height, hN , which is determined

at the leading edge of the dome from the numerical solution with the location of the

leading edge, xN , from this figure we observe that the for small B, the curve is sim-

ilar for Newtonian. In Figs. 3.27 and 3.28, we display different value of B with

S = 0.7 (4o), 1 (6o), 2.145 (12o), 3.732 (18o) for Qs0 = 0. We observe from these figures

as S increases the dome spread over a longer distance depending on Bingham number.

In the case of horizontal plane, we illustrate the evolution of an extrusion onto zero
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Figure 3.26: Evolution of the domes length xN and height hN for various values of B
and n = 1.

Figure 3.27: Inclined plane for B = 0.0001 and n = 1. Snapshots of the thickness
(solid lines), h, and yield surface (dotted lines), Y , for varying S.
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Figure 3.28: Inclined plane for B = 5 and n = 1. Snapshots of the thickness (solid
lines), h, and yield surface (dotted lines), Y , for varying S.

Figure 3.29: Horizontal planar for n = 1. Shown are the height (solid lines), h, and
yield surface (dotted lines), Y , for (a) B = 0.1 (b)B = 0.5 (c)B = 1 (d) B = 20 for
constant mass at t = 0− 500.
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sloping plane in Fig. 3.29. The dome have B = 0.0002, 0.02, 0.2, 2 respectively and

n = 1 with x∗ = 0.15 for the vent radius, and S = 0. In this figure there are four panel

which illustrate that the spreading is decreases with increase the value of B. Here, the

’plug’ occupies roughly half of the fluid (Fig. 3.29(a, b)) and most of the fluid in Fig.

3.29(c, d). Figure3.30 shows that the scaling of numerical solution shown in figure 3.29

Figure 3.30: The height field is scaled for varying B.

collapse to a single curve with different ship under similarity scaling.

By taking Qs0 the form of a line source, we illustrate the results surface profile

and the evolution of length and height for fluids with different values of B. The re-

sults for B = 0.001, B = 0.5, B = 5, and B = 20, are shown in Figs. 3.31-3.37. In

inclination planer, for comparison, we show domes with four different values of B in

Figs. 3.31,3.34, and 3.35. The first two panel a, b in each figures are almost Newtonian,

whereas the second two panel in each figures c, d are dominated by yield stress, which
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Figure 3.31: Numerical solution showing the inclined of a two- dimensional fluid on
an inclined planar for S = 1. Snapshots of height (solid lines), h, and yield surface
(dotted lines), Y , for (a) B = 0.001 (b)B = 0.5 (c)B = 5 (d)B = 20 with a line source
Qs0 = 0.5, x∗ = 0.15 and n = 1.

Figure 3.32: The height field is scaled for varying B.
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Figure 3.33: Evolution of the domes length xN and height hN for various values of B
and n = 1.

Figure 3.34: A similar picture to Fig. 3.31, but for a dome with Qs0 = 2.
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Figure 3.35: A similar picture to Fig. 3.31, but for a dome with Qs0 = 7.

Figure 3.36: The height field is scaled for varying B.



120

Figure 3.37: Evolution of the domes length xN and height hN for various values of B
and n = 1.

occupies almost the whole dome and Y << h. The results of applying the similarity

scaling for evolution equation are shown in Figs. 3.32 and 3.36 where all the numerical

solution in Figs. 3.31 and 3.35 respectively are collapses to a single curve, we illustrate

from this figures, that the for B very small the numerical solution scaling matched

with the similarity solution for Newtonian one.

Figure 3.38 display the effect of using different inclination S = 0.7, 1, 2.145, 3.732

respectively. Here, the ’plug’ occupies roughly half of the fluid for all values of S.

The last three figures presents an illustration of the evolution of an extrusion onto

a horizontal plane. The dome have B = 1 and B = 10 for Qs0 = 2, 7, 14. The profiles

of the dome together with the corresponding yield surface illustrated how this dome

has a pseudo-plug and a yielding region. The similarity scaling of numerical solution
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Figure 3.38: Inclined planar for Qs0 = 2 and B = 0.5. Snapshots of the thickness (solid
lines), h, and yield surface (dotted lines), Y , for varying S.

Figure 3.39: Numerical solution showing the height filed of the domes at two-
dimensional fluid on an flat planar. Snapshots of height (solid lines), h, and yield
surface (dotted lines), Y , for (a) Qs0 = 2, B = 1 (b) Qs0 = 2, B = 10 (c) Qs0 = 7,
B = 1 (d) Qs0 = 7, B = 10 ,(e) Qs0 = 14, B = 1,(f) Qs0 = 14, B = 10,for n = 1.
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Figure 3.40: The height field is scaled for varying B.

Figure 3.41: Evolution of the domes length xN and height hN for various values of B
and n = 1.
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in Fig. 3.39 are illustrate in Fig. 3.40 using scale (3.28). In Fig. 3.41 we show the

maximum dome height, hN , with the location of the leading edge, xN , corresponding

to Fig. 3.39

3.5 Conclusions

In this chapter we investigate the spreading of a planar non-Newtonian liquid dome

down a pre-wetted and inclined substrate as a simple model to investigate the influ-

ence of non-Newtonian effects, such as the apparent viscosity and yield stress on the

spreading of viscous-gravity currents. We assume isothermal conditions, so the liquid

properties, particularly, the viscosity are constant. An extensive study of the system

parameters, particularly, the power-law index, n, and the Bingham number, B (mea-

sures the magnitude of the yield stress), along with S and Qs0 , reveal their influence

on the evolution of free surface and the spreading characteristics.

Late-time similarity solutions of the evolution equation for the free surface provide

scaling relationships for the maximum dome height, hN , and the spreading distance,

xN . These similarity solutions are characterised by a volume of liquid proportional to

tα, (α ≥ 0), of liquid released by the source onto the plane. For S = 0, hN = h(x =

0, t) ∼ t(α(n+1)−n)/(2n+3) and xN ∼ t(α(n+2)+n)/(2n+3). For B 6= 0, similarity solutions are

shown to exist for α > 3 with hN inceasing in time. For, α < 3, the yield stress grows in

time and eventually the dome attains a static shape in time (depending on B) with the
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yield surface, Y = 0, i.e., the entire dome becomes non-yielding. For B = 0, similarity

solutions exist for all values of α with hN increasing in time for α > n/(n + 1). For

S > 0, hN = h(x = xN , t) ∼ tn(α−1)/(2n+1) and xN ∼ tα(n+1)+n/(2n+1). For 0 < α < 1,

hN decreases with time and increases otherwise. For B 6= 0, similarity solutions are

shown to exist for α > 1 with hN inceasing in time. For α < 1, the dome attains a

static shape in time (depending on the value of B) for the same reason as for the S = 0

case. For B = 0, similarity solutions exist for all values of α with hN increasing in

time for α > 1. The similarity scalings have been derived previously by Balmforth et

al. [5, 9] for Power-law and Herschel Bulkley models for constant volume spreading,

Qs0 = 0. Our work has generalised these to general α. We also explicitly compute

these similarity solutions and are validated against corresponding numerical solutions

at late times.

Our numerical solutions reveal the dynamics of the dome evolution for variations in

parameter values, in particular, the power-law index n and the Bingham number, B.

The free surface shapes are similar to those reported in Chapter 2 for a Newtonian

liquid. The spreading rates are observed to decrease as the power-law index, n, de-

creases. This is due to the viscosity becoming very large in the limit of small shear

rates, therefore slowing down the spreading. For such low shear rates the power law

model might not be appropriate (see Myers [63]) for the reason above. We have for-

mulated the evolution equation for a Carreau model (not shown any simulations here)

which would be more applicable for a range of shear rates. We have also investigated
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the role of the yield stress via the Bingham number, B. The spreading is close to

Newtonian for small values of B; for intermediate values of B, there exists a growing

yield surface, Y , above which the fluid is non-yielding; for large B, the dome becomes

static in finite time with Y = 0, i.e., the entire dome becomes non-yielding.

In the next Chapter, we investigate the spreading of a liquid dome under non-isothermal

conditions.



Chapter 4

The non-isothermal and Newtonian

spreading of a hot liquid dome

down an inclined plane: the small

reduced Péclet number limit

4.1 Introduction

In Chapters 2 and 3, the spreading problem was investigated under isothermal con-

ditions. In this Chapter, we extend this model for a Newtonian liquid to include

non-isothermal effects, in particular, a temperature-dependent viscosity, which pro-

vides the coupling between the temperature field and the flow, and cooling effects due

126
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to heat transfer at the dome’s free surface and the underlying substrate. We follow

closely the previous modelling studies by Sansom et al. [76, 53, 77] and Balmforth et

al. [7, 11] for spreading of a viscous gravity current over an horizontal substrate.

The outline of this chapter is as follows. We formulate the one-dimensional mathemati-

cal problem in §4.2 which provides the governing equations and boundary conditions for

the flow and the temperature field. The lubrication approximation and the assumption

of the reduced Péclet number, Per � 1, allows simplification of the governing equa-

tions and boundary conditions to a system of two coupled PDEs for the evolution of

the one-dimensional free surface shape and the temperature field. In §4.3, we perform

numerical simulations of the evolution equations to determine the free surface shapes

and temperature fields for a variety of parameter values and two viscosity-temperature

models, the exponential viscosity and the bi-viscosity models. In §4.4 we discuss the

main results which include the existence of some new free surface shapes and their

parameter regime.

4.2 Mathematical Formulation

The fluid flow problem is the same as that described in §2.2 of a hot liquid dome

spreading under the influence of gravity down a colder inclined and pre-wetted substrate

(see Fig. 2.1 for a schematic). The liquid in the dome is assumed to be Newtonian

with constant properties, except, the liquid viscosity is dependent on the temperature.
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The liquid loses its heat via the colder free surface z? = h?(x?, t?) and substrate at

z? = 0.

4.2.1 Governing Equations

The governing equations for the flow are given by the conservation of mass and mo-

mentum, Eqs. (2.1). The two-dimensional governing equation for the temperature, T ?

in Cartesian coordinates, (x?, z?) is given by (see Eq. (1.15))

ρ?c?p(T
?
t? + u?T ?x? + w?T ?z?) = κ? [T ?x?x? + T ?z?z? ] , (4.1)

in a material with density, ρ?, specific heat, c?p, thermal conductivity, κ? and ther-

mal diffusivity, κ?d = κ?/(ρ?c?p). We neglect the contribution from viscous dissipation.

(u?, w?) are the flow speeds in the x? and z? directions, respectively. The constitutive

relation between the liquid stress and its rate of strain for a Newtonian liquid with

temperature-dependent viscosity is written as:

τ ? = µ?(T ?)γ̇?, (4.2)

where µ?(T ?) is the temperature-dependent liquid viscosity and γ̇? is the rate of strain

tensor given by Eq. (2.3). The boundary condition for the flow are given by Eqs.

(2.4-2.11). The boundary conditions for the temperature, T ? are as follows. At the
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free surface z? = h(x?, t?), we impose a heat flux boundary condition:

−κ?n? · ∇T ? = a?m(T ? − T ?a ), (4.3)

where a?m is a heat transfer coefficient (assumed constant) and T ?a is the ambient tem-

perature (assumed constant), and n? is the outward-pointing normal given by Eq.

(2.7). This assumes that the heat flux is proportional to the temperature difference

across this boundary, referred to as Newton’s law of cooling. We can write Eq. (4.3)

as:

κ?

(
1 +

(
∂h?

∂x

)2
)− 1

2 (
∂T ?

∂z
− ∂h?

∂x

∂T ?

∂x

)
= −a?m(T ? − T ?a ). (4.4)

At z? = 0, we impose the following heat flux boundary condition (see Balmforth et al.

[7, 11]):

κ?T ?z? = ρ?c?p(T
? − T ?e )w?s + b?s(T

? − T ?s ), (4.5)

where T ?e and T ?s are the eruption and substrate temperature, respectively (assumed

constant), b?s is a heat transfer coefficient at the substrate and w?s(x
?, t?), given by Eq.

(2.5), is the vertical velocity at the location of this source (or vent), i.e., |x?| ≤ x?0,

where x?0 is the vent radius. The first term on the right-hand-side of Eq. (4.5) models

the contribution of the heat flux at the vent which is assumed to be proportional to

both the temperature difference across the vent and the flow speed there, whereas

Newton’s law of cooling is applied away from the vent, as represented by the second

term on the right-hand-side of Eq. (4.5).
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The non-dimensionalisation of the flow variables are the same as in §2.2.3 in Chapter

2. We define: T ? = T ?a + ∆?T ?θ (0 ≤ θ ≤ 1), ∆?T ? = T ?e − T ?a . Note: θ = 0, implies

T ? = T ?a and θ = 1, implies T ? = T ?e Using this, Eqs. (4.1,4.3,4.5) in dimensionless

form are:

ε2Pe[θt + uθx + wθz) = [ε2θxx + θzz] , (4.6a)

θz = ε2Pe(θ − 1)ws + bε2(θ − θs), at z = 0, (4.6b)

θz = ε2hxθx − aε2θ
√

1 + ε2h2
x, at z = h(x, t). (4.6c)

Here Pe = (ρ?c?pU
?L?)/κ? = U?L?/κ?d, is the Péclet number (compares convective

to diffusive heat transport; assumed to be O(1)), the reduced Péclet number, Per =

ε2Pe � 1, a = a?mH
?/(ε2κ?) and b = b?sH

?/(ε2κ?) are the heat transfer coefficients at

the free surface and substrate, respectively, and θs = (T ?s − T ?a )/(T ?e − T ?a ).

Let θ(x, z, t) = θ0(x, z, t)+ε2θ1(x, z, t)+. . .. Substituting into Eq. (4.6) gives to leading

order in ε:

θ0zz = 0, (4.7a)

θ0z = 0, at z = 0, h(x, t). (4.7b)

Integrating and applying the boundary conditions gives θ0(x, z, t) = θ0(x, t). At O(ε2),
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we obtain:

θ0t + uθ0x =
1

Pe
[θ0xx + θ1zz ] , (4.8a)

θ1z = Pe(θ0 − 1)ws + b(θ0 − θs), (4.8b)

θ1z = h0xθ0x − aθ0. (4.8c)

After rearranging Eq. (4.8a) and integrating with respect to z from z = 0 to h, together

with the boundary conditions, Eqs.(4.8b,4.8c), we obtain

h0xθ0x − aθ − (Pe(θ0 − 1)ws + b(θ0 − θ0s)) = Pe(h0θ0t + θ0xQ0)− h0θ0xx, (4.9)

where the fluid flux, Q0 =
∫ z=h0(x,t)

z=0
u0 dz. Dropping the subscripts, the leading order

temperature field is given by

θt +
Q0

h
θx −

hx
hPe

θx =
1

Pe
θxx −

1

hPe
[aθ + b(θ − θs)]−

ws
h

(θ − 1). (4.10)

We will determine the flux Q0 from the flow speed u0 as shown below. Using the

constant reference viscosity, µ?R, the non-dimensional form of Eq. (4.2) is given by

τ = µ(θ)γ̇, (4.11)

where γ̇ is given by Eq. (2.14).

We proceed in the same way as described in Chapter 2 in performing the lubrication
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approximation for the leading order flow problem in ε. We follow the same sequence of

steps in solving the leading order flow problem until the expression for the leading order

shear stress, τxz0(x, z) = (S − h0x)(h0 − z). Using Eq. (4.11), we obtain the leading

order relationship between the shear stress and the shear rate as τxz0 = µ(θ0)u0z . Using

the expression for τxz0 and the fact that θ0 is independent of z, we obtain

µ(θ0)u0z = (S − h0x)(h0 − z). (4.12)

Noting that θ0 is independent of z, we can integrate the above with respect to z and

using the boundary condition u0(z = 0) = 0, we obtain

u0 =
(S − h0x)

µ(θ)
(h0z −

z2

2
), Q0 =

∫ z=h0(x,t)

z=0

u0 dz =
(S − h0x)h

3
0

3µ(θ)
. (4.13)

Proceeding in the same way as described in Chapter 2, we derive the evolution equation

as:

h0t +
1

3

[
h3

0

µ(θ0)
(S − h0x)

]
x

= ws, (4.14)

where

ws =
3

4
Qs0Qs(t)

[
1− (x/x0)2

]
H(x2 − x2

0). (4.15)

Hence, the coupled flow and thermal problem can be written as (dropping the sub-
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script):

ht +
1

3

[
h3

µ(θ)
(S − hx)

]
x

= ws, (4.16a)

θt +
Q

h
θx −

hx
hPe

θx =
1

Pe
θxx −

1

hPe
[aθ + b(θ − θs)]−

ws
h

(θ − 1), (4.16b)

Q =
(S − hx)h3

3µ(θ)
, (4.16c)

ws =
3

4
Qs0Qs(t)

[
1− (x/x0)2

]
H(x2 − x2

0). (4.16d)

The viscosity-temperature relationship, µ(θ), is given by the non-dimensionalised form

of Eqs. (1.18,1.19) given in §1.3.3 in Chapter 1.

µ(θ) = e−αθ, (exponential model) (4.17a)

µ(θ) =


µe if θ > θm, (Bi-viscosity model)

µa if θ < θm.

(4.17b)

Here, α = α?(T ?e − T ?a ), µe = µ?e/µ
?
R, µa = µ?a/µ

?
R and θm = (T ?m − T ?a )/(T ?e − T ?a ).

4.3 Numerical Results

In this section, we seek the numerical solution of Eq. (4.16) for x ∈ [−L,L], where L

is the length of the computational domain. We assume that the plane is pre-wetted

with a precursor layer of thickness b1. The boundary conditions specified are: h = b1
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and θx = 0 at x = ±L. The initial conditions for h and θ are chosen as:

h(x, 0) = (1− x2)H(1− x2) + b1, θ(x, 0) = 1, x ∈ [−L,L]. (4.18)

Our focus is in investigating the evolution of the dome height h varying the key parame-

ters related to the non-isothermal conditions: the Péclet number, Pe, the heat transfer

coefficients, a, b, at the free surface and substrate, respectively, the decay constant, α,

in the exponential viscosity-temperature relationship and µa and µe in the bi-viscosity

model. We consider variations in the above parameters for S = 0 (horizontal plane)

and S = 1 (plane inclined at angle of approximately 6o), and for constant volume or

zero source flowrate (Qs0 = 0) and constant flow rate. The length of the computational

domains L is chosen sufficiently large so that the boundary condition h→ b1 and θx = 0

as x→∞ is satisfied numerically for the range of times considered here. The evolution

equations for h and θ, Eqs. (4.16a,4.16b), are solved numerically using the Method

of lines [78, 61]. The numerical discretisation scheme for h is described in Chapters

2 and 3. We follow a similar discretisation scheme for θ with an up-winding scheme

to discretise the convective term (second and third terms on the left-hand-side of Eq.

(4.16b). In all the results shown below, we fix the source vent width x0 = 0.15, the

precursor thickness b1 = 10−3 for S = 1 and b1 = 10−5 for S = 0 and the temperature

at the substrate, θs = 0 (or T ?s = T ?a ).

Strictly speaking, the asymptotic expansion in §4.2.1 takes the limit ε ≥ 0 with Pe =

O(1). However, for this asymptotic theory to work, we require the reduced Péclet
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number, Per = ε2Pe � 1. For lava, ε ∼ 0.01 − 0.1, so Pe � 104. For the results

to follow, we choose the Péclet number in the range 0 < Pe < 104. One needs to

be cautious when applying the asymptotic theory in the range of the higher Péclet

numbers, Pe = 102 − 104. Justification of this is shown in Chapter 5, which considers

the theory for Per = O(1). The range of validity of the vertical isothermal theory

presented here is shown to be in good agreement for the higher range of Péclet numbers

considered here and even beyond, e.g., Pe = 105, 106.

We first consider the results for S = 0 (horizontal plane) and Qs0 = 0 (constant volume

drop) using the exponential decay viscosity model. Figure 4.1 shows the evolution of

h(x, t) with α = 0 corresponding to the isothermal case with µ(θ) = 1. This isothermal

case is also obtained in the limit of Pe→ 0. The time range shown is for 0 ≤ t ≤ 30.

This case is equivalent to the fluid being at the ambient temperature θ = 0. We

observe the characteristic dome-shaped spreading with a steep front at its leading

edge as described in Chapter 2. As Pe → 0, the cooling is significant over the entire

domain resulting in the temperature quickly dropping to its equilibrium value, θ = 0

(or T ? = T ?a ) and the evolution of h(x, t) is similar to that of isothermal spreading

with µ(θ) = 1. This can be clearly seen in Fig. 4.2(b) with Pe = 0.1, α = 2, a = 0.2

and b = 0.3 where the temperature drops very quickly from its initial condition, θ = 1,

to zero due to significant cooling to the surroundings. The corresponding evolution

of h(x, t) is shown in Fig. 4.2(a) which is similar to Fig. 4.1. The cooling is much

less rapid as the Péclet number is increased (see Fig. 4.3(b) for Pe = 102). This
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Figure 4.1: The evolution of h(x, t) for t varying between t = 0− 30 corresponding to
the isothermal constant volume case with µ(θ) = 1. The parameter values are: S = 0,
α = 0, Qs0 = 0 and θs = 0.

Figure 4.2: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0− 30
with Pe = 0.1, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.
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cooling is more pronounced near the leading edge of the advancing front where h is

small, compared to elsewhere. This is due to the rate of heat loss being inversely

proportional to h (see second term on the right-hand-side of Eq. (4.16b). We note here

that the temperature in the precursor film ahead of the advancing front is the same as

that near the front which is not shown in Fig. 4.3(b) and the subsequent temperature

profiles in the rest of this chapter. Figure 4.3(b) shows the gradual decrease in the

temperature to its equilibrium value, θ = 0, over the entire domain. The resulting

increase in the liquid viscosity is not as rapid as in the previous case with Pe = 0.1,

so that the liquid in the dome is more mobile and the spreading is faster than before

(see Figure 4.3(a)). Increasing the Péclet number, further reduces the cooling (see

Figure 4.3: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0− 30
with Pe = 102, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

Fig. 4.4(b) for evolution of θ(x, t) with Pe = 104) which is now more localised near
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the leading edge of the front with the bulk of the drop at the initial temperature,

θ = 1 (or T ? = T ?e ). This in turn decreases the viscosity resulting in faster spreading

(see Fig. 4.4(a) for evolution of h(x, t) with Pe = 104). We also note that due to the

increased contribution of convection as the Péclet number increases, the temperature is

transported a slightly longer distance by the flow compared to the case with Pe = 102.

In the limit as Pe→∞, we would expect negligible heat loss and the evolution would

Figure 4.4: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0− 30
with Pe = 104, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

be the same as isothermal spreading except with a smaller viscosity, µ = µe = e−2,

corresponding to θ = 1 (or T ? = T ?e ). In Fig. 4.5, we show the evolution of the location

of the leading edge of the dome, xN (Fig. 4.5(a)) and the dome height at its centre,

hN = h(0, t) (Fig. 4.5(b)), for varying Péclet number Pe between 0.1 ≤ Pe ≤ 104.

We observe that the results are bounded above and below by the two isothermal cases
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corresponding to Pe → ∞ and Pe → 0, respectively. For µ = e−2, we can confirm

that xN ∼ t1/5 and hN ∼ t−1/5 which is in agreement with the spreading rates and

similarity solution derived in Eq. (2.29) in §2.3 of Chapter 2.

Figure 4.5: The (a) leading edge of the front, xN , and (b) the maximum in h, hN =
h(0, t), as a function of time, t, for various Péclet number, Pe. The parameter values
are: α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

By increasing α in the exponential viscosity relationship, the coupling between the flow

and temperature increases. Figure 4.6(a, b) show the evolution of h and θ for Pe = 104

and α = 7 for t = 0 − 30. We observe a change in shape from that of a dome-shaped

profile that spreads and thins (see Fig. 4.4(a) for Pe = 104 and α = 2) to a long

developing plateau region with a steep front at its leading edge (a pancake-shaped

profile; see Fig. 4.6(a)). The temperature profile is similar to that for Pe = 104

and α = 2, except that the cooling is much more significant near the front region
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(Fig. 4.6(b)). We also note that the higher value of α would result in much lower

viscosities, hence increasing the mobility and the spreading rate of the dome (compare

Fig. 4.4(a) for α = 2 with Fig. 4.6(a) for α = 6 for the same timeframe, t = (0− 30).

Figure 4.7 shows h(x, t = 30) for α = 6 and varying Péclet number, Pe. We observe

Figure 4.6: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0− 30
with Pe = 104, α = 7, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

two distinct types of profiles: a pancake-shaped profile with a long plateau middle

region and a steep front at its leading edge is observed for Péclet numbers roughly

between 103 ≤ Pe ≤ 104. For Pe < 104, we observe the usual dome-shaped profile

spreading and thinning with a steep front at it’s leading edge. In Fig. 4.8, we show the

evolution of the location of the leading edge of the dome, xN (Fig. 4.8(a)) and the dome

height at its centre, hN = h(0, t) (Fig. 4.8(b)), for varying Péclet number Pe between

0.1 ≤ Pe ≤ 104 and α = 6. The same trends hold as in Fig. 4.5 for α = 2, except that
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Figure 4.7: The dome height, h(x, t = 30), for α = 6 and varying Péclet number, Pe,
with Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

the spreading rates are higher for α = 6 due to the lower viscosity resulting in the dome

spreading over a longer distance compared to α = 2, particularly for higher values of

Pe. For lower values of Pe, the spreading is largely independent of α. This is due

to rapid cooling that occurs at these values of Pe lowering the temperature to θ = 0

over the entire domain. The next set of results show the influence of the heat transfer

coefficients, a and b, on the evolution of h and θ. Figure 4.9(a, b) show the evolution

of h(x, t) and θ(x, t), respectively, for Pe = 102, α = 2 and a = b = 0 for time varying

between t = 0 − 30. The temperature θ = 1 for all time since there is no heat loss or

cooling and spreading of the dome is isothermal with viscosity, µ = e−α = e−2. Figure

4.10(a, b) show the evolution of h(x, t) and θ(x, t), respectively, for Pe = 102, α = 2 and

a = 0.02 and b = 0.03 for time varying between t = 0− 30. There is minimal heat loss
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Figure 4.8: The (a) leading edge of the front, xN , and (b) the maximum in h, hN =
h(0, t), as a function of time, t, for various Péclet number, Pe. The parameter values
are: α = 6, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

Figure 4.9: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0− 30
with Pe = 102, α = 2, Qs0 = 0, θs = 0 and a = b = 0.
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or cooling for the times shown and spreading of the dome is close to isothermal. Figure

4.10(c, d) show the evolution of h(x, t) and θ(x, t), respectively, for Pe = 102, α = 2 and

a = b = 10 for time varying between t = 0− 30. The cooling is much more pronounced

for these higher values of the heat transfer coefficients resulting in a rapid decrease in

temperature to the ambient temperature, θ = 0. The evolution of h(x, t) is similar to

the isothermal case with viscosity µ = 1 corresponding to θ = 0. We now consider the

Figure 4.10: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with a = 0.02 and b = 0.03 and (c) h(x, t) and (d) θ(x, t) with a = b = 10. The other
parameter values are: Pe = 102, α = 2, Qs0 = 0 and θs = 0.

effects of an influx of liquid from a source or vent with flowrate, Qs0 = 7. Figure 4.11

shows the constant viscosity case, µ = 1 (corresponding to α = 0) for t = 0− 20. The

strength of the source is sufficiently strong to drive both the spreading of the dome as

well as building-up of liquid around the vent. These results show a good agreement with

those in Chapter 2. Fig. 4.12(b) shows the temperature profile for Pe = 104. There is
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Figure 4.11: The evolution of h(x, t) with an influx flowrate, Qs0 = 7, for t varying
between t = 0−20 corresponding to the isothermal constant volume case with µ(θ) = 1.
The parameter values are: S = 0, α = 0 and θs = 0.

noticeable cooling near the front and We also observe steepening near the front (Fig.

4.12(a)). Decreasing Pe to 102, we observe that the cooling is now more distributed

over the entire dome length rather than localised at the front (Fig. 4.13(b)). We note

that θ = 1 always at the source x = 0 since the temperature here is always at the

eruption temperature T ?e . Consequently, the free surface shape now looks more like a

dome with not as much pronounced steepening near the front (Fig. 4.13(a)). Lowering

Pe further (not shown here) would increase the cooling even further over the length

of the dome resulting in the evolution of the dome approaching the isothermal case

corresponding to µ = 1 or θ = 0. In Fig. 4.14, we show the evolution of the location

of the leading edge of the dome, xN (Fig. 4.14(a)) and the dome height at its centre,

hN = h(0, t) (Fig. 4.14(b)), for varying Péclet number Pe between 0.1 ≤ Pe ≤ 104
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Figure 4.12: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 = 5,
for t varying between t = 0− 20 with Pe = 104, α = 2, θs = 0, a = 1 and b = 2.

Figure 4.13: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 = 7,
for t varying between t = 0− 20 with Pe = 102, α = 2, θs = 0, a = 1 and b = 2.
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Figure 4.14: The (a) leading edge of the front, xN , and (b) the maximum in h, hN =
h(0, t), as a function of time, t, for various Péclet number, Pe. The parameter values
are: α = 2, Qs0 = 7, θs = 0, a = 1 and b = 2.

with Qs0 = 7, a = 1 and b = 2 and α = 2. The same trends hold as before, except

that the spreading rates are much higher due to the additional flowrate from the source

and monotonically approach the Pe → ∞ limit as Pe increases (unlike the previous

cases). The dome height at the centre also increases due to the flowrate from the

source and is now bounded above by the isothermal limit (unlike the previous cases

where hN was bounded below by the isothermal limit). The results also appear to be

not sensitive to changes in Pe suggesting that the flow behaviour is primarily driven by

the source flowrate, at least for the value of Qs0 = 5 used here. Figures 4.15, 4.16 show

h(x, t) and θ(x, t) for a lower source flowrate Qs0 = 0.65 for Pe = 104 and Pe = 102,

respectively, with α = 6, a = 0.2 and b = 0.3 and t = 0−20. The source flowrate is not

strong enough to expand the dome over its initial shape as in the previous case. Fig.
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4.15(a) shows the development of a front with a lengthening plateau behind while Fig.

4.16(a)) shows a spreading dome getting steeper at its leading edge. The temperature

profiles are similar to the earlier scenarios with more localised cooling for higher Péclet

numbers and at low Péclet numbers, the cooling is more distributed over the length of

the dome.

Figure 4.15: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 =
0.65, for t varying between t = 0 − 20 with Pe = 104, α = 6, θs = 0, a = 0.2 and
b = 0.3.

We next consider the results for S = 1 (plane inclined at angle of approximately 6o) and

Qs0 = 0 (constant volume drop) using the exponential decay viscosity model. Figure

4.17 shows the evolution of h(x, t) with α = 0 corresponding to the isothermal case

with µ(θ) = 1. This isothermal case is also obtained in the limit of Pe→ 0. The time

range shown is for 0 ≤ t ≤ 30. This case is equivalent to the fluid being at the ambient
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Figure 4.16: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 =
0.65, for t varying between t = 0 − 20 with Pe = 102, α = 6, θs = 0, a = 0.2 and
b = 0.3.

temperature θ = 0. We observe that the spreading is non-symmetric about x = 0 and

the dome slumps as it spreads with a steep front at its leading edge as described in

Chapter 2. As Pe → 0, the cooling is significant over the entire domain resulting in

the temperature quickly dropping to its equilibrium value, θ = 0 (or T ? = T ?a ) and the

evolution of h(x, t) is similar to that of isothermal spreading with µ(θ) = 1. This can

be clearly seen in Fig. 4.18(b) with Pe = 1, α = 2, a = 0.2 and b = 0.3 where the

temperature drops very quickly from its initial condition, θ = 1, to zero everywhere

due to significant cooling to the surroundings. The corresponding evolution of h(x, t)

is shown in Fig. 4.18(a) which is similar to Fig. 4.17. The cooling is much less rapid

as the Péclet number is increased (see Fig. 4.19(b) for Pe = 10). This cooling is

more pronounced near the leading edge of the advancing front and the trailing edge
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Figure 4.17: The evolution of h(x, t) for t varying between t = 0− 30 corresponding to
the isothermal constant volume case with µ(θ) = 1. The parameter values are: S = 1
(approximately 6o inclination), α = 0, Qs0 = 0 and θs = 0.

Figure 4.18: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with Pe = 1, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.
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of the dome where h is small, compared to elsewhere. This is due to the rate of heat

loss being inversely proportional to h (see second term on the right-hand-side of Eq.

(4.16b). Figure 4.19(b) shows the gradual decrease in the temperature to its equilibrium

value, θ = 0, over the entire domain. The resulting increase in the liquid viscosity is

not as rapid as in the previous case so that the liquid in the dome is more mobile and

the spreading is faster than before (see Figure 4.19(a)). Increasing the Péclet number,

Figure 4.19: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with Pe = 10, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

further reduces the cooling (see Fig. 4.20(b) for evolution of θ(x, t) with Pe = 103).

The cooling is now more localised near the dome’s edges and in the bulk of the drop

the cooling is comparatively much lower. This in turn decreases the viscosity resulting

in faster spreading (see Fig. 4.20(a) for evolution of h(x, t) with Pe = 103). We start

to see the formation of a characteristic fluid hump-like structure developing near the
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dome’s leading edge as it spreads over the inclined plane (Fig. 4.20(a)). This is due

to the strong temperature contrast near the leading edge during the spreading process

(Fig. 4.20(b)). The temperature behind the leading edge is much higher than that

ahead; the increase in mobility due to the reduced liquid viscosity results in the hotter

liquid piling-up over the relatively colder liquid ahead of it resulting in the development

of the hump in the free surface shape near the leading edge. At earlier time, this hump

has not yet developed because the temperature contrast is not sufficiently strong for

the above mechanism to apply. As time progresses, the temperature contrast starts

getting stronger and we observe the gradual development of this fluid hump. Increasing

Figure 4.20: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with Pe = 103, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

the Péclet number to Pe = 104, we still observe the development of the fluid hump

(Fig. 4.21(a)) near the leading edge. We note here that it takes much longer for
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the temperature contrast there to become sufficiently strong compared to the earlier

case, hence the delay in the development of the fluid hump (compare Fig. 4.21(a) for

Pe = 104 with Fig. 4.20(a) for Pe = 103). We also note that the size of the fluid

hump is larger than the earlier case for Pe = 103. The hot liquid in the hump region

is at a higher temperature (θ = 1) compared to the earlier case making its viscosity

relatively smaller, hence more mobile which results in a larger hump. In Fig. 4.22, we

Figure 4.21: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with Pe = 104, α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

show the evolution of the location of the leading edge of the dome, xN (Fig. 4.22(a))

and the dome height at its leading edge, hN = h(xN , t) (Fig. 4.22(b)), for varying

Péclet number Pe between 0.01 ≤ Pe ≤ 104. We observe that the results are bounded

above and below by the two isothermal cases corresponding to Pe→∞ and Pe→ 0,

respectively. For µ = e−2, we can confirm that xN ∼ t1/3 and hN ∼ t−1/3 which is
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in agreement with the spreading rates and similarity solution derived in Eq. (2.46) in

§2.3 of Chapter 2.

Figure 4.22: The (a) leading edge of the front, xN , and (b) the maximum in h (i.e.,
height of the front), hN = h(xN , t), as a function of time, t, for various Péclet number,
Pe. The parameter values are: α = 2, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

Fig. 4.23 shows the evolution of h(x, t) and θ(x, t) using the same parameter values

as in Fig. 4.20, except α is increased from α = 2 to α = 6.5 and Pe = 103. The

temperature profile (Fig. 4.23(b)) is similar that shown in Fig. 4.20(b). Although the

range in temperature in both cases are similar, the larger α gives a lower viscosity at

higher temperatures resulting in more mobility, hence increased spreading rate. For

the same reason, we also observe that the fluid hump at the leading edge (Fig. 4.23(a))

is much bigger than that shown in Fig. 4.20(a). This is again due to the much hotter

liquid in the hump being more mobile than the colder liquid in front, resulting in the
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liquid piling-up behind the front. Figure 4.24(a, b) show the evolution of h(x, t) and

Figure 4.23: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with Pe = 103, α = 6.5, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3.

θ(x, t), respectively, for Pe = 104, α = 2 and a = 0.02 and b = 0.03 for time varying

between t = 0− 30. There is minimal heat loss or cooling within the bulk liquid with

significant cooling confined to the leading and trailing edges of the spreading dome

(Fig. 4.24(b)). The spreading is close to isothermal with µ = µe = e−2 or θ = 1

(Fig. 4.24(a)). Figure 4.24(c, d) show the evolution of h(x, t) and θ(x, t), respectively,

for the same parameters as above, except a = 5 and b = 10. The cooling is much

more pronounced near the edges for these higher values of the heat transfer coefficients

while the bulk liquid is at a much higher temperature (Fig. 4.24(c)). This results in

a strong temperature gradient leading to the formation and development of a liquid

hump near the leading edge (Fig. 4.24(a)) which is very similar to that observed in Fig.
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4.21(a). Fig. 4.25 is a parameter survey in (a = b, Pe) space with α = 2 and S = 1

Figure 4.24: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
with a = 0.02 and b = 0.03 and (c) h(x, t) and (d) θ(x, t) with a = 5, b = 10. The
other parameter values are: Pe = 102, α = 2, Qs0 = 0 and θs = 0.

(inclination angle approximately 6o) to show the existence of free surface shapes, h(x, t)

with and without a fluid hump near the leading edge. If we were to extend the above

investigation in two-dimensional (a = b, Pe) space to three-dimensional (a = b, Pe, α)

space, we would speculate that the regions of humps would expand as α increases. We

also speculate that the height of the fluid hump would get bigger as α increases (e.g.,

see Fig. 4.23 for α = 6.5). This is due to the liquid viscosity difference between the

hotter bulk liquid behind the front and the colder liquid at the front being even more

enhanced for larger values of α.

We now consider the effects of an influx of liquid from a source or vent with flowrate,
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Figure 4.25: Parameter survey in (Pe, a = b, α) space to show existence of free surface
shapes, h(x, t) with and without a fluid hump (or ridge). The parameter values are:
α = 2, 4, 6 and S = 1 (inclination angle approximately 6o).

Qs0 = 7. Figure 4.26 shows the constant viscosity case, µ = 1 (corresponding to

α = 0) for t = 0 − 20. The strength of the source is sufficiently strong to drive both

the spreading of the dome as well as building-up of liquid around the vent over the

initial dome shape. These results show a good agreement with those in Chapter 2.

Figure 4.27(a, b) show the evolution of h(x, t) and θ(x, t) for Pe = 104. The source

flowrate is Qs0 = 7 and the heat transfer coefficients are a = 0.2 and b = 0.3. Localised

cooling is observed near the front’s leading edge. The strong temperature contrast near

the leading edge and the constant flowrate provided by the source results in the free

surface profile developing a fluid hump at it’s leading edge which increases in size as

time progresses (see Fig. 4.27(a)). Figure 4.28(a, b) show the evolution of h(x, t) and

θ(x, t) for Pe = 102. The source flowrate is Qs0 = 7 and the heat transfer coefficients
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Figure 4.26: The evolution of h(x, t) with an influx flowrate, Qs0 = 7, for t varying
between t = 0−20 corresponding to the isothermal constant volume case with µ(θ) = 1.
The parameter values are: S = 1, α = 0 and θs = 0.

Figure 4.27: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 = 7,
for t varying between t = 0− 20 with Pe = 104, α = 2, θs = 0, a = 0.2 and b = 0.3.
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are a = 0.2 and b = 0.3. There is much more significant localised cooling near the

front’s leading edge compared to the earlier two cases. There is some cooling observed

in the bulk liquid too (Fig. 4.28(b)). The strong temperature gradient results in the

development of a fluid hump near the front’s leading edge which also grows as time

progresses (Fig. 4.28(a)). Figure 4.29(a, b) show the evolution of h(x, t) and θ(x, t)

Figure 4.28: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 = 7,
for t varying between t = 0− 20 with Pe = 102, α = 2, θs = 0, a = 0.2 and b = 0.3.

for Pe = 10. The source flowrate is Qs0 = 7 and the heat transfer coefficients are

a = 0.2 and b = 0.3. Similar to the earlier cases, there is significant cooling localised

around the front’s leading and trailing edges. The temperature in the bulk liquid is

non-uniform decreasing from the vent towards the leading edge (Fig. 4.29(b)). This

is unlike the earlier cases where the bulk liquid is almost uniform and at the vent

temperature, θ = 1. The resultant difference in viscosity and hence the mobility leads
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to an almost linear increase in the front height from the vent to it’s leading edge (Fig.

4.29(a)). Decreasing the Péclet number further (results not shown here) would result

Figure 4.29: The evolution of (a) h(x, t) and (b) θ(x, t) with an influx flowrate, Qs0 = 7,
for t varying between t = 0− 20 with Pe = 10, α = 2, θs = 0, a = 0.2 and b = 0.3.

in the temperature over most of the front to be at the ambient temperature, θ = 0,

except around the vent where θ = 1. This would lead to the front having an almost

uniform height which would be similar to the isothermal case as Pe → 0 or θ = 0

(see isothermal case in Fig. 4.30(b) for the height at the front, hN , which stays almost

constant over time). Figure 4.30(a, b) show the evolution of the location of the leading

edge of the front, xN (Fig. 4.30(a)) and the maximum height of the front, hN = h(xN , t)

(Fig. 4.30(b)), for varying Péclet number Pe between 10 ≤ Pe ≤ 104 with Qs0 = 7,

a = 0.2 and b = 0.3 and α = 2. The same trends hold as before and the evolution

of xN and hN is bounded above and below by the isothermal cases corresponding to
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Figure 4.30: The (a) leading edge of the front, xN , and (b) the maximum in h (i.e.,
height of the front), hN = h(xN , t), as a function of time, t, for various Péclet number,
Pe. The parameter values are: α = 2, Qs0 = 7, θs = 0, a = 0.2 and b = 0.3.

either Pe→ 0 or Pe→∞.

We now present some numerical results using the bi-viscosity model given by Eq.

(4.17b). We set µa=1, µe < µa = 10−2 and θm = 0.5 (note: 0 < θm < 1). We set

µe = 0.01 to obtain a large viscosity ratio between the region with the temperature less

than θm and that with θ greater than θm. The initial temperature of the dome is θ = 1.

We only show selected numerical results where the free surface evolution using the bi-

viscosity model is structurally different from the previous results using the exponential

viscosity model, keeping all other parameters the same. In Fig. 4.31 for spreading on

a horizontal plane, the results with Pe = 104 gives a free surface profile with a much

steeper flow front and an almost flat plateau region behind it (Fig. 4.31(a)) compared
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to that with the exponential viscosity model (see Fig. 4.4(a) with the same Péclet

number). This is due to the sharp increase in viscosity near the front’s leading edge

where θ ≤ θm = 0.5 (Fig. 4.31(b)). The temperature profiles (Fig. 4.31(b)) are similar

to the previous profile using the exponential viscosity model with the same Péclet

number (see Fig. 4.4(a)). Increasing θm = 0.9 (keeping all other parameters fixed as in

Figure 4.31: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 0, Pe = 104, Qs0 = 0, θs = 0, a = 0.2, b = 0.3,
µa = 10−2 and θm = 0.5.

the previous case), shows similar evolution of h(x, t) but the spreading is considerably

slower (compare Figs. 4.32(a) and 4.31(a)). The temperature profile (Fig. 4.32(b))

although shows less cooling near the leading edge of the front compared to the one

above (see Fig. 4.31(b)), the viscosity is much higher there for θ < θm = 0.9 resulting

in the slower spreading rate of the front, in this case. The next figure considers the

evolution of h(x, t) and θ(x, t) over a horizontal plane including the flowrate from the
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Figure 4.32: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 0, Pe = 104, Qs0 = 0, θs = 0, a = 0.2, b = 0.3,
µa = 10−2 and θm = 0.9.

source using the bi-viscosity model. Figure 4.33(a) shows enhanced spreading compared

to the equivalent case using the exponential viscosity model (see, e.g., Fig 4.12(a) for

Pe = 104). The leading edge of the front is also much steeper and the free surface

much sharper. The temperature profile although similar to those using the exponential

viscosity model (see, e.g., Fig 4.12(b) for Pe = 104), the viscosity near the leading edge

is much lower there for θ < θm = 0.5 resulting in the enhanced spreading rate and the

sharper feature, in this case. Figure 4.34(a, b) considers the evolution of h(x, t) and

θ(x, t) for spreading over an inclined plane, with Pe = 104, µe = 10−2 and θm = 0.5.

Fig. 4.34(a) shows the free surface profile with the development of the fluid hump only

at much later times. This is in contrast to that shown previously in Fig. 4.21(a) where

the fluid hump starts developing much earlier. This is explained from the temperature

profile shown in Fig. 4.34(b). θ ≥ θm = 0.5 for much of the early times, so the viscosity
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Figure 4.33: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 0, Pe = 104, Qs0 = 7, θs = 0, a = 0.2, b = 0.3,
µa = 10−2 and θm = 0.5.

is lower (µ = µe = e−2) and the evolution is similar to the isothermal case of a spreading

front with decreasing thickness. However, at later times θ < θm = 0.5 near the leading

edge, so the viscosity now is much larger here (µ = µa = 1) compared to the bulk

liquid. This temperature contrast then kick-starts the mechanism for the development

of the hump as explained previously. Figure 4.35(a, b) considers the evolution of h(x, t)

and θ(x, t) for spreading over an inclined plane, with Pe = 104, µe = 0.2 and θm = 0.5.

The increased viscosity for θ ≥ θm = 0.5 results in less mobility of the hotter liquid, so

the evolution is similar to the previous case but the development of the fluid hump is

retarded compared to the free surface profile shown in Fig. 4.34(a). Figure 4.36(a, b)

considers the evolution of h(x, t) and θ(x, t) for spreading over an inclined plane, with

Pe = 104, µe = 0.2 and θm = 0.9. The higher value of θm = 0.9 allows the temperature

contrast at the leading edge and the resulting viscosity contrast to be applicable in
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Figure 4.34: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 1, Pe = 104, Qs0 = 0, θs = 0, a = 0.2, b = 0.3,
µa = 10−2 and θm = 0.5.

Figure 4.35: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 1, Pe = 104, Qs0 = 0, θs = 0, a = 0.2, b = 0.3,
µa = 0.2 and θm = 0.5.
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the development of the fluid hump at early times unlike the above two cases where

θm = 0.5. Figure 4.37(a, b) considers the evolution of h(x, t) and θ(x, t) for spreading

Figure 4.36: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 1, Pe = 104, Qs0 = 0, θs = 0, a = 0.2, b = 0.3,
µa = 0.2 and θm = 0.9.

over an inclined plane with a flowrate from a source, with Pe = 102, Qs0 = 7, µe = 10−2

and θm = 0.5. The evolution of both h(x, t) and θ(x, t) are similar to that using the

exponential model for a similar Péclet number shown in Fig. 4.28(a, b). The main

differences are that the fluid hump develops much earlier and is much bigger (Fig.

4.37(a)) than the one with the exponential viscosity model. Again this is due to the

enhanced mobility of the bulk liquid due to its lower viscosity in the bi-viscosity model

compared with the exponential viscosity model. The temperature profiles look very

much similar in both except we observe a local maximum in the temperature near

the leading edge of the front (Fig. 4.37(b)) which is not observed in the exponential

viscosity model (see Fig. 4.20(b)). This local maximum in temperature coincides with
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the maximum in the fluid hump where the heat loss is less than that around it (note

the rate of heat loss is inversely proportional to the h). We observe that this local peak

gets bigger as the peak in fluid hump region gets bigger.

Figure 4.37: The evolution of (a) h(x, t) and (b) θ(x, t) for t varying between t = 0−30
using the bi-viscosity model with S = 1, Pe = 102, Qs0 = 7, θs = 0, a = 0.2, b = 0.3,
µa = 0.2 and θm = 0.5.

4.4 Conclusions

In this chapter we use the thin-film flow equations coupled to a vertically isothermal

theory for the temperature based on the asymptotic limit of Per � 1 to investigate

the spreading and cooling of a hot Newtonian liquid down an inclined plane. We

consider non-isothermal conditions which include a temperature-dependent viscosity

and heat loss due to cooling at the free surface and substrate. A very important

feature during the spreading process is the localised cooling near the leading edge of
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the dome’s free surface where the rate of heat loss is maximum. An extensive study of

the system parameters, particularly, the Péclet number, Pe, the decay constant in the

exponential viscosity model, α, and the heat transfer coefficients, a and b, reveal their

influence on this localised cooling. The magnitude of this localised cooling and the

resulting temperature and viscosity contrast there results in a variety of free surface

shape profiles.

For spreading on a horizontal substrate (S = 0), we recover the free surface shapes

previously identified in the studies by Sansom et al. [76, 53, 77] and Balmforth et al.

[7, 11]. These include,

(i) a dome-shaped profile with a steep front at its leading edge which thins and

spreads as it evolves (see Figs. 4.1-4.4) for low values of α, and

(ii) a flattened region (or plateau) with a much steeper front at its leading edge,

similar to a pancake-shaped profile, for larger values of α and Pe (see Figs. 4.6,

4.7). The spreading rate of these structures is also much higher than the dome-

shaped ones.

If we take a = b and survey the three-dimensional parameter space, (Pe, a = b, α),

we expect that for low values of α we would only observe dome-shaped profiles; as α

increases past a critical value, we would also see pancake-shaped profiles developing

for intermediate values of Pe. This region of pancake-shaped profiles would gradually

expand as α increases. We speculate that as α becomes larger this region will gradually

shrink and eventually we will observe only dome-shaped profiles and the spreading will
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be near isothermal. This visual representation in (Pe, a = b, α) parameter space is

crucial to the stability analysis in Chapter 6.

The new results in this chapter are related to spreading down an inclined substrate

(shown for S = 1, with approximately 6o inclination angle). The localised cooling

mechanism described above also holds here. In addition, the mobility of the dome is

also enhanced due to the inclination (contribution from the horizontal component of

gravity). Our parameter study reveals two distinct free surface shapes:

(i) a slumped dome-shaped profile with a steep front for either small or very large

Pe (see Figs. 4.17-4.19), and

(ii) a slumped profile with a fluid hump overriding the steep front at its leading edge

for intermediate values of Pe (see Figs. 4.20, 4.21).

We observe that as α increases (increased coupling between the viscosity and tem-

perature) so does the height of the hump. The viscosity contrast between the cold

liquid near the leading edge and the hot liquid in the interior is further enhanced as α

increases resulting in the increased hump height. Including a constant flowrate liquid

at the source or vent results in sustained increase in the hump-shaped profile. The bi-

viscosity model shows free surface profiles which are much sharper and steeper than the

corresponding profiles using the exponential viscosity model. The parameter survey in

(a = b, Pe) space (see Fig. 4.25) shows the regions with and without a humped profile

for low values of α. We expect the humped profile region to expand as α increases,

gradually getting smaller for larger values of α and then approaching isothermal be-
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haviour. This visual representation will be useful in analysing the transverse instability

in Chapter 6.

As mentioned previously, the large values of Pe considered here may violate the Per �

1 asymptotic limit underpinning this vertically isothermal theory. We will show in

Chapter 5, which considers Per = O(1), the range of validity of the asymptotic theory

presented here.



Chapter 5

The non-isothermal and Newtonian

spreading of a hot liquid dome

down an inclined plane: O(1)

reduced Péclet number

5.1 Introduction

In Chapter 4 we investigated the asymptotic limit of the reduced Péclet number, Per =

ε2Pe � 1, where the Péclet number, Pe = O(1), the so-called vertical conduction

(or diffusion) dominated scenario of heat transport (also referred to as the vertically

isothermal or well-mixed scenario). This enabled the non-isothermal problem to be

170
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reduced to a one-dimensional evolution equation for the temperature, θ(x, t), coupled

with the evolution of the free surface, h(x, t) via a temperature-dependent viscosity,

µ(θ(x, t)). In this chapter we relax the conduction dominated limit to include Per =

O(1) or greater in order to consider heat transport by both convection and conduction

(or diffusion). This allows us to consider, for example, the convection dominated case

for Pe� 1 where the fluid in the dome’s interior is hot and insulated between a colder

skin (or diffusive boundary layer) near the free surface and the substrate

5.2 Mathematical Formulation

The fluid flow and temperature problem are the same as that described in Chapter 2,

§2.2 and Chapter 4, §4.2, respectively, of a liquid dome spreading under the influence

of gravity down an inclined and pre-wetted substrate (see Fig. 2.1 for a schematic)

with hot liquid at temperature, Te and flowrate, Qs(t) coming through a vent at a

specified location on the substrate. The liquid in the dome is assumed to be Newtonian

with constant properties, except, the liquid viscosity is dependent on the temperature

modelled by either the exponential viscosity or bi-viscosity model.

5.2.1 Governing Equations

The governing equations for the flow speed (u?, w?) in the x? and z? directions, respec-

tively, and pressure, p?, are given by the conservation of mass and momentum, Eqs.
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(2.1). The boundary conditions for the flow problem at the free surface, z? = h?(x?, t?),

and substrate, z? = 0, are given by Eqs. (2.9,2.11) and Eq. (2.4), respectively. The

governing equations for the heat energy measured by the temperature, T ?, is given by

Eq. (4.1) in a material with density, ρ?, specific heat, c?p, thermal conductivity, κ? and

thermal diffusivity, κ?d = κ?/(ρ?c?p). We neglect the contribution from viscous dissipa-

tion. The boundary conditions for the temperature at the free surface and substrate

are given by Eqs. (4.3,4.5), respectively.

The nondimensionalisation of the flow variables and temperature are the same as in

§2.2.3 in Chapter 2 and Chapter 4, respectively. We proceed in the same way as

described in Chapter 2 in performing the lubrication approximation for the leading

order flow problem in ε. We follow the same sequence of steps in solving the leading

order flow problem until the expression for the leading order shear stress, τxz0(x, z) =

(S − h0x)(h0 − z). Using the Newtonian constitutive relationship between the stress

and shear rate, we obtain the leading order relationship between the shear stress and

the shear rate as τxz0 = µ(θ0)u0z . Using the expression for τxz0 , we obtain

µ(θ0)u0z = (S − h0x)(h0 − z). (5.1)

The leading order liquid flux through any cross-section, Q0(x, t) is given by

Q0 =

∫ z=h0(x,t)

z=0

u0z(h0 − z) dz = (S − h0x)

∫ z=h0(x,t)

z=0

(h0 − z)2

µ(θ0)
dz. (5.2)
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Proceeding in the same way as described in Chapter 4, we derive the evolution equation

as (dropping the “0” subscript):

ht +Qx = ws, Q = (S − hx)
∫ z=h(x,t)

z=0

(h− z)2

µ(θ)
dz, (5.3)

where

ws =
3

4
Qs0Qs(t)

[
1− (x/x0)2

]
H(x2 − x2

0), (5.4)

Following Chapter 2, the two-dimensional temperature field, θ(x, z, t), and the bound-

ary conditions at z = 0 and z = h(x, t) can be written as:

Per[θt + uθx + wθz) =
[
ε2θxx + θzz

]
, (5.5a)

u = (S − hx)
∫ z

0

(h− ź)

µ(θ)
dź, w = −

∫ z

0

uxdź + ws, (5.5b)

θz = Per(θ − 1)ws + ε2b(θ − θs), at z = 0, (5.5c)

θz = ε2hxθx − ε2aθ
√

1 + ε2h2
x, at z = h(x, t). (5.5d)

Here the reduced Péclet number, Per = ε2Pe = O(1), Pe = (ρ?c?pU
?L?)/κ? = U?L?/κ?d,

is the Péclet number (compares convective to diffusive heat transport; assumed to be

O(1)), a = a?mH
?/(ε2κ?) and b = b?sH

?/(ε2κ?) are the heat transfer coefficients at the

free surface and substrate, respectively, and θs = (T ?s − T ?a )/(T ?e − T ?a ).

The left-hand side terms in Eq. (5.5a), apart from the time derivative, represent the

convection terms, the right-hand side term is the diffusion term. For large Per the
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temperature evolution is dominated by convection, and for small Per, the temperature

evolution equation is dominated by diffusion. The evolution equations for h(x, t) and

θ(x, z, t) including the boundary conditions for θ at z = 0 and z = h(x, t) are:

ht +Qx = ws, (5.6a)

Q = (S − hx)
∫ z=h(x,t)

z=0

(h− z)2

µ(θ)
dz, ws =

3

4
Qs0Qs(t)

[
1− (x/x0)2

]
H(x2 − x2

0),

(5.6b)

Per[θt + uθx + wθz) =
[
ε2θxx + θzz

]
, (5.6c)

u = (S − hx)
∫ z

0

(h− ź)

µ(θ)
dź, w = −

∫ z

0

uxdź + ws, (5.6d)

θz = Per(θ − 1)ws + ε2b(θ − θs), at z = 0, (5.6e)

θz = ε2hxθx − ε2aθ
√

1 + ε2h2
x, at z = h(x, t). (5.6f)

The temperature field is coupled with the free surface evolution by applying a temperature-

dependent viscosity law, µ(θ). Similar to the previous chapters, the viscosity laws which

we considered are the exponential and bi-viscosity models.

In order to solve the temperature evolution equation numerically, it is useful to map

the temperature field, θ(x, z, t), onto a rectangular domain. We apply the following

change of variables:

x̄ = x, z̄ =
z

h(x, t)
, t̄ = t. (5.7)
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The chain rule gives

∂

∂x
=

∂

∂x̄
− z̄hx

h

∂

∂z̄
,
∂

∂z
=

1

h

∂

∂z̄
,
∂

∂t
=

∂

∂t̄
− z̄ht

h

∂

∂z̄
. (5.8)

Applying the above change of variables, the new set of transformed evolution equations

for h(x̄, t̄) and θ(x̄, z̄, t̄) can be written as:

ht̄ +Qx̄ = ws, (5.9a)

Q = h3(S − hx̄)
∫ z̄=1

z̄=0

(1− z̄)2

µ(θ)
dz̄, ws =

3

4
Qs0Qs(t)

[
1− (x̄/x0)2

]
H(x̄2 − x2

0), (5.9b)

θt̄ + uθx̄ + (w − z̄uhx̄ − z̄ht̄)
1

h
θz̄ =

1

h2Per
θz̄z̄, (5.9c)

θz̄ = hPer(θ − 1)ws + bh(θ − θs), at z̄ = 0, (5.9d)

θz̄ =
ε2hhx̄θx̄

1 + ε2z̄h2
x̄

− ahθ

1 + ε2z̄h2
x̄

, at z̄ = 1. (5.9e)

We need to determine the transformed velocity field, (u,w). In order to do this, the Eq.

(5.1) is first transformed and solved for horizontal velocity component which implies

uz̄ = h2(S − hx̄)
(1− z̄)

µ(θ)
. (5.10)

Using the continuity equation in transformed variables gives

wz̄ = z̄hx̄uz̄ − hux̄. (5.11)
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Integrating Eq. (5.10) subject to u = 0 on z̄ = 0 gives

u(x̄, z̄, t̄) = h2(S − hx)
∫ z̄

0

(1− ź)

µ
dź, (5.12)

Substituting Eq. (5.10) and (5.12) into transformed continuity equation, we obtain

wz̄ = h2hx̄(S − hx̄)
z̄(1− z̄)

µ(θ)
− h∂x̄

(
h2(S − hx̄)

∫ z̄

0

(1− ź)

µ(θ)
dź

)
. (5.13)

Integrating with respect to z̄ and using the condition w = 0 on z̄ = 0 implies

w = h2hx̄(S − hx̄)
∫ z̄

0

ź(1− ź)

µ(θ)
− h∂x̄

(
h2(S − hx̄)

∫ ź

0

(∫ ´́z

0

(1− ź)

µ(θ)
d´́z

)
dź

)
+ ws.

(5.14)

The above equation can be simplified by changing the order of the integration. An

integral of the form ∫ ź

0

∫ ´́z

0

f(x, z, t)dźd´́z, (5.15)

on interchanging the order of integration becomes

∫ ź

0

∫ ´́z

0

f(x, z, t)dźd´́z =

∫ ź

0

f(x, z, t)(z − ź)dź. (5.16)

Therefore Eq. (5.14) can be written as:

w(x̄, z̄, t̄) = h2hx̄(S−hx̄)
∫ z̄

0

ź(1− ź)

µ(θ)
dź−h∂x̄

(
h2(S − hx̄)

∫ z̄

0

(1− ź)(z̄ − ź)

µ(θ)
dź

)
+ws.

(5.17)
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5.3 Numerical Results

Equations (5.9, 5.12, 5.17) are solved numerically along with the viscosity-temperature

relationship, µ(θ).

Eqs. (5.9a, 5.9b) for h(x, t) are solved for x ∈ [−L,L], where L is the length of the

computational domain. We assume that the plane is pre-wetted with a precursor layer

of thickness b1. The boundary conditions specified are: h = b1 at x = ±L. The two-

dimensional evolution equation for the temperature, θ(x, z, t), Eq. (5.9c), is solved for

(x, z̄) ∈ [−L,L] × [0, 1]. The boundary conditions are given by Eqs. (5.9d,5.9e) at

z̄ = 0, 1, respectively, and θx = 0 at x = ±L. The initial conditions for h and θ are

chosen as:

h(x, 0) = (1− x2)H(1− x2) + b1, θ(x, 0) = 1, x ∈ [−L,L]. (5.18)

Our focus is in investigating the evolution of the dome height h and the temperature

θ varying the key parameters related to the non-isothermal conditions: the reduced

Péclet number, Per, the heat transfer coefficients, a, b, at the free surface and sub-

strate, respectively, the decay constant, α, in the exponential viscosity-temperature

relationship and µa and µe in the bi-viscosity model. We consider variations in the

above parameters for S = 0 (horizontal plane) and S = 1 (plane inclined at angle of

approximately 6o), and for constant volume or zero source flowrate (Qs0 = 0) and con-

stant flow rate. The length of the computational domains L is chosen sufficiently large
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so that the boundary condition h→ b1 and θx = 0 as x→∞ is satisfied numerically.

Equations (5.9, 5.12, 5.17) are solved numerically using the Method of Lines [78, 61].

Equations 5.9a, 5.9b for the evolution of h(x, t) are discretised using finite differences

in the same way as described in §2.4 in Chapter 2. We use the trapezoidal rule to ap-

proximate the integral in the expression for Q(x, t) in Eq. (5.9b). The two-dimensional

convection-diffusion equation, Eq. (5.9c), is discretised on a rectangular grid using a

finite difference scheme. We use a second order finite difference scheme to discretise

the second order derivatives (the terms corresponding to diffusion) and an upwinding

scheme for the first-order derivatives (the terms corresponding to convection). The

boundary conditions at z̄ = 0, 1, Eqs. (5.9d,5.9e), are used to determine fictitious

points, if required, to discretise the derivatives near these boundaries. The horizon-

tal and vertical velocities, (u,w), respectively, in Eqs. (5.12, 5.17) are discretised as

follows:

uij = −h2
i

(
S − hi − hi−1

∆x

)
IAij, (5.19)

wij = −h2
i

[(
hi − hi−1

∆x

)(
S − hi − hi−1

∆x

)
IBij

]
− hi

∆x

[
ICi+ 1

2
h2
i+ 1

2

(
S − hx̄i+ 1

2

)
− ICi− 1

2
h2
i− 1

2

(
S − hx̄i− 1

2

)]
, (5.20)

where IA =
∫ z̄

0
(1−ź)
µ(θ)

dź, IB =
∫ z̄

0
ź(1−ź)
µ(θ)

dź and IC =
∫ z̄

0
(1−ź)(z̄−ź)

µ(θ)
dź, and the integrals

are approximated numerically using the trapezoidal rule.

We first consider the results for S = 0 (horizontal plane) and Qs0 = 0 (constant volume
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drop) using the exponential decay viscosity model. Figure 5.1) shows the evolution of

h(x, t) for t = 0 − 30 with α = 0 (µ = 1 or θ = 0). We observe the characteristic

Figure 5.1: The evolution of h(x, t) for t varying between t = 0− 30 corresponding to
the isothermal constant volume case with µ(θ) = 1. The parameter values are: S = 0,
α = 0, Qs0 = 0 and θs = 0.

dome-shaped (or lens-shaped) spreading with a steep front at its leading edge (see Fig.

5.1) as described in Fig. 4.1 in Chapter 4. Figure 5.2(a) shows h(x, t) for t varying

between t = 0 − 30 and the contour plot for θ(x, z, t) at times t = 1 (a), t = 14 (b)

and t = 30 (c) with α = 2, Per = 0.1, a = 0.02 and b = 0.03. Note that these

temperature profiles are superimposed on the corresponding free surface shape (shown

by the thicker curves). The temperature quickly drops to zero over the entire dome
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due to quick heat loss by vertical diffusion. The free surface profile shows little effect

from the temperature field. The evolution of h is similar to the isothermal results in

Fig. 5.1 and Fig. 4.2 in Chapter 4. Increasing to Per = 102, Fig. 5.3(a) shows that the

Figure 5.2: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 0.1, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

spreading dome develops a steep front at its leading edge due to cooling there and the

resulting increase in viscosity. The temperature profiles in Fig. 5.3(b− d) clearly show

loss of a large amount heat and consequent cooling near the flow front with the bulk

liquid in the dome remaining almost at uniform and higher temperature. Note that

there is a thin diffusive boundary layer or skin near the free surface and the substrate
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where cooling also occurs, but which is not fully resolved in the simulations shown.

The evolution of h and θ is also consistent with that in Fig. 4.3 in Chapter 2 with

Pe = 102. Increasing to Per = 104, we observe from the contour plots shown in Fig.

Figure 5.3: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 102, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

5.4(b−d) for θ(x, z, t) that the cooling is now much more localised near the dome edge

forming a collar of cooler liquid with the overlying hot bulk liquid in the dome is close

to θ = 1, the initial temperature. The collar of cooler liquid is formed due to advection

of the cooler liquid at the surface being deposited to the dome edge. Increasing to

Per = 106 (Fig. 5.5) and Per = 108 (Fig. 5.6), we observe from the contour plots



182

Figure 5.4: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 104, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.
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shown in Fig. 5.5(b − d), 5.6(b − d), respectively, for θ(x, z, t) that the collar of cold

liquid is now even more localised near the drop edge due to re-heating by the overlying

hot bulk liquid in the dome which is approximately at θ = 1. The cooled skin at the

free surface and substrate, and the collar of cold liquid are not resolved for Per = 108.

The evolution of h(x, t) approaches that of the isothermal case (see Fig. 5.5(a), 5.6(a)).

In Fig. 5.7, we show the evolution of the location of the leading edge of the dome, xN

Figure 5.5: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 106, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

(Fig. 5.7(a)) and the dome height at its centre, hN = h(0, t) (Fig. 5.7(b)), for varying

Péclet number Pe between 0.1 ≤ Per ≤ 108. We observe that the results are bounded
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Figure 5.6: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 108, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.
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above and below by the two isothermal cases corresponding to Per →∞ and Per → 0,

respectively. For Per = 108, we can confirm that xN ∼ t1/5 and hN ∼ t−1/5 which

is in agreement with the spreading rates and similarity solution derived in Eq. (2.29)

in §2.3 of Chapter 2. Figure 5.7(a) shows a non-monotonicity in xN for larger Péclet

Figure 5.7: The (a) leading edge of the front, xN , and (b) the maximum in h, hN =
h(0, t), as a function of time, t, for various reduced Péclet number, Per. The parameter
values are: α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

numbers approximately in the range 105 ≤ Per ≤ 106. xN is smaller for values of Per

in this range in comparison to Per ≥ 106. The lower xN is due to the increased cooling

near the front (see Fig. 5.5, compared to say Fig. 5.4) resulting in a larger viscosity

and slowing down of the front. On the other hand, hN , is monotonic as Per increases,

approaching the Per →∞ limit.

By increasing α in the exponential viscosity relationship, the coupling between the
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flow and temperature increases. Figure 5.8(a) shows h(x, t) and the contour plot for

θ(x, z, t) at times t = 1 (a), t = 14 (b) and t = 30 (c) for Per = 106 and α = 7. We

Figure 5.8: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 106, α = 7, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

observe that the spreading rate is much faster compared to the corresponding case with

α = 2 (see Fig. 5.5). This is due to the cooling for this case now even more localised

at the dome edge (note that the localised collar of cooled liquid is not resolved here)

compared to the corresponding case with α = 2 (see Fig. 5.5(b − d)). Figure 5.9(a)

shows h(x, t) and the contour plot for θ(x, z, t) at times t = 1 (a), t = 14 (b) and

t = 30 (c) for Per = 104 and α = 7. Figure 5.9(a) shows severe steepening of the
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Figure 5.9: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 104, α = 7, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.
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flow front in comparison to the corresponding case with α = 2 (see Fig. 5.4(a), with a

change in shape from that of a dome-shaped profile with a steep front (see Fig. 5.4(a)

for Pe = 104 and α = 2) to a pancake-type profile with a steep front and a long

developing plateau behind it. The severe steepening of the flow front is due to build-

up of very viscous fluid there causing the fluid to push this cooler region and develop

the steep flow front. The cooler region is now more vertically spread across the front

(Fig. 5.9(c, d)) compared to the more localised scenario for α = 2 (see Fig. 5.4(c, d)).

The results in Figs. 5.10 and 5.11 show the influence of increasing the heat transfer

coefficients a and b with Per = 104 and α = 2. We clearly observe that increasing a

and b slows down the spreading rate. This is due to enhanced cooling due to heat loss,

hence increased viscosity, over the entire bulk liquid within the dome for larger a and b

compared to smaller values, where the cooling is confined near the leading edge of the

front and the rest of the bulk liquid is almost uniformly at a higher temperature, hence

lower viscosity. We now consider the effects of an influx of liquid from a source or vent

with flowrate, Qs0 = 5. Figure 5.12(a) shows h(x, t) for t varying between t = 0 − 20

and the contour plot for θ(x, z, t) at times t = 1 (b), t = 12 (c) and t = 20 (d) with

Qs0 = 5, α = 2, Per = 102, a = 0.02 and b = 0.03. The free surface profiles show

an expanding and spreading dome (Fig. 5.12(a)). The temperature profiles show little

heat loss near the flow front for early time (Fig. 5.12(b)). For later times, the heat loss

is more noticeable resulting in an expanding layer of a very viscous fluid collar forming

near the edge of the flow front and above the substrate causing the hotter fluid behind

to overhang over this cooler region. The degree of overhang may be strongly influenced
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Figure 5.10: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 104, α = 2, Qs0 = 0, θs = 0, a = 2×10−4 and b = 2×10−4.
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Figure 5.11: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 104, α = 2, Qs0 = 0, θs = 0, a = 1 and b = 2.
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Figure 5.12: The evolution of (a) h(x, t) for t varying between t = 0−20 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 12), and (d) θ(x, z, t = 20) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with Per = 104, α = 2, Qs0 = 5, θs = 0, a = 0.02 and b = 0.03.
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by the flowrate of the hot liquid feeding from the vent.

We next consider the results for S = 1 (plane inclined at angle of approximately 6o) and

Qs0 = 0 (constant volume drop) using the exponential decay viscosity model. Figure

5.13 shows the evolution of h(x, t) with α = 0 corresponding to the isothermal case

with µ(θ) = 1. This isothermal case is also obtained in the limit of Pe→ 0. The time

Figure 5.13: The evolution of h(x, t) for t varying between t = 0− 30 corresponding to
the isothermal constant volume case with µ(θ) = 1. The parameter values are: S = 1
(approximately 6o inclination), α = 0, Qs0 = 0 and θs = 0.

range shown is for 0 ≤ t ≤ 30. This case is equivalent to the fluid being at the ambient

temperature θ = 0. We observe that the spreading is non-symmetric about x = 0 and

the dome slumps as it spreads with a steep front at its leading edge as described in

Chapters 2, 4. Figure 5.14 shows h(x, t) for t varying between t = 0−30 and the contour

plot for θ(x, z, t) at times t = 1 (a), t = 14 (b) and t = 30 (c) with S = 1, Qs0 = 0,
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α = 2, Per = 106, a = 0.02 and b = 0.03. The evolution of h(x, t) (Fig. 5.14)(a) is

Figure 5.14: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 106, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

similar to that for the isothermal case with µ = µe = e−2 or as Pe → ∞ (not shown

here). The temperature appears almost uniform (θ ≈ 1) in the bulk liquid, except

for cooling in a skin near the free surface and substrate (a diffusive boundary layer).

The results with Per = 104 are shown in Fig. 5.15(a) for h and (b − d) for θ(x, z, t).

We observe the formation of a collar of cooler liquid between the dome edge and the

substrate. This slows down the spreading rate compared to the late-time results with

Per = 106. Decreasing the reduced Péclet number to Per = 102, localises the cooling
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Figure 5.15: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 104, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.



195

to near the dome’s edge and in the bulk of the drop the temperature is much higher

(Fig. 5.16(b − d)). For later times, the temperature profiles show significant cooling

Figure 5.16: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 102, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

near the front with an almost vertically uniform temperature profile (Fig. 5.16(b−d)).

This in turn increases the viscosity there resulting in slower spreading compared to

the larger Per cases. We start to see the formation of a characteristic fluid hump-like

structure developing near the dome’s leading edge (Fig. 5.16(a)). The temperature

behind the leading edge is much higher than that ahead; the increase in mobility due

to the reduced liquid viscosity results in the hotter liquid piling-up over the relatively
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colder liquid ahead of it resulting in the development of the hump in the free surface

shape near the leading edge. Figure 5.17 shows the results when Per = 1. The cooling

Figure 5.17: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 10, α = 2, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

is much more localised to near the leading edge of the front, while the bulk liquid behind

is much hotter (Fig. 5.17(b− d)). The formation of a fluid hump near the leading edge

is also observed for this case (Fig. 5.17(a)). It is much sharper and steeper than the

earlier case with Per = 102 due to the increased mobility of the fluid behind the front.

Increasing to α = 3, with Per = 102 gives the results in Fig. 5.18.

A fluid hump still exists at the leading edge of the front (Fig. 5.18(a)); the spreading is
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Figure 5.18: The evolution of (a) h(x, t) for t varying between t = 0−20 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 12), and (d) θ(x, z, t = 20) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 102, α = 3, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.
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faster than the corresponding case with α = 2 (see Fig. 5.16(a)). The hump in this case

is slightly bigger in height and sharper than that for α = 2. The temperature profiles

show that the maximum cooling is near the front causing the fluid humps to form, the

mechanism identified in Chapter 4. Decreasing Per to 0.1 with α = 3, the free surface

Figure 5.19: The evolution of (a) h(x, t) for t varying between t = 0−20 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 0.1, α = 3, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

profiles at later times to be similar to the isothermal case (Fig. 5.19(a)). However, at

early time there exist fluid humps (Fig. 5.19(a)). The temperature difference between

the front and the bulk liquid behind is still sufficiently strong (Fig. 5.19(b))) for the

fluid behind to be more mobile than that ahead, resulting in the flow forming a fluid
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hump. As time progresses, the cooling at the front progresses into the bulk liquid

resulting in the temperature within the dome to be θ = 0 (Fig. 5.19(c, d))). Fig. 5.20

shows h(x, t = 20) for α = 3, a = 0.02 and b = 0.03 and varying Péclet number, Pe.

Figure 5.20: The dome height, h(x, t = 20), for α = 3 and varying Péclet number, Pe,
Qs0 = 0, θs = 0, a = 0.02 and b = 0.03.

We observe two distinct types of profiles. A slumped dome-shaped profile with a fluid

hump at it’s leading edge is observed roughly for Péclet numbers roughly between

10 < Per < 103. For Per > 103 and Per < 10, we observe the usual slumped dome-

shaped profile with a steep front at it’s leading edge but no fluid hump. The results in

Figs. 5.21, 5.22 show the effects of varying the heat transfer coefficients a and b. They

show that for low values of a, b, the cooling is localised near the front with the majority
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Figure 5.21: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 102, α = 2, Qs0 = 0, θs = 0, a = 2 × 10−4 and
b = 3× 10−4.
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of the bulk liquid being isothermal with temperature close to unity (Fig. 5.21b − d).

As a and b are increased, we observe that the cooling not only occurs near the front

but also within the bulk, although not as high as that near the front (Fig. 5.22(b−d)).

The increased viscosity in this case slows down the spreading rate and the evolution is

close to the isothermal case with θ ≈ 0. Fig. 5.23 is a parameter survey in (a = b, Pe)

Figure 5.22: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 102, α = 2, Qs0 = 0, θs = 0, a = 2 and b = 3.

space with α = 2 and S = 1 (inclination angle approximately 6o) to show the existence

of free surface shapes, h(x, t) with and without a fluid hump near the leading edge.

If we were to extend the above investigation in two-dimensional (Pe, a = b) space to
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Figure 5.23: Parameter survey in (Pe, a = b) space to show existence of free surface
shapes, h(x, t) with and without a fluid hump (or ridge). The parameter values are:
α = 2 and S = 1 (inclination angle approximately 6o).

three-dimensional (a = b, Pe, α) space, we speculate that the regions of humps would

expand as α increases. We also speculate that the height of the fluid hump would

get bigger as α increases. This is due to the liquid viscosity difference between the

hotter bulk liquid behind the front and the colder liquid at the front being even more

enhanced for larger values of α. We now consider the effects of an influx of liquid from

a source or vent with flowrate, Qs0 = 5. Fig. 5.24 shows the influence of the flowrate

with Per = 104, α = 2, a = 0.02 and b = 0.03. The free surface profiles (Fig. 5.24(a))

show that using a large reduced Péclet number leads to almost isothermal spreading

with low viscosity. The temperature profiles (Fig. 5.24(b− d)) show minimum cooling

within the bulk liquid with a cooler collar region forming around the edge of the front

and the substrate. Decreasing the reduced Péclet number to Per = 102, in Fig. 5.25,
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Figure 5.24: The evolution of (a) h(x, t) for t varying between t = 0−20 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 12), and (d) θ(x, z, t = 20) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 104, α = 2, Qs0 = 5, θs = 0, a = 0.02 and b = 0.03.
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the free surface profiles show a noticeable growing hump over the majority of the dome

(Fig. 5.25(a)). The temperature profiles show maximum cooling near the flow front

Figure 5.25: The evolution of (a) h(x, t) for t varying between t = 0−20 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 12), and (d) θ(x, z, t = 20) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 102, α = 2, Qs0 = 5, θs = 0, a = 0.02 and b = 0.03.

causing build up a very viscous and cold fluid near the flow front. The hot interior

fluid piles-up over this cooler region and develops a fluid hump. The mechanism is

similar to the case of zero flowrate, except that the constant flowrate through the vent

increases the volume of hot fluid piling-up into the fluid hump. The next set of results

with flowrate, Qs0 = 0.5 and Per = 104, and varying the heat transfer coefficients are

illustrated in Figs. 5.26 (for h(x, t)), 5.27 (for corresponding θ(x, z, t)). The results
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in Fig. 5.26 show the effects of increasing a and b superimposed on the free surface

shape profiles. Figure 5.27 show that the temperature profiles quickly cool down for

increasing a and b, where sufficiently large values of a and b lead to the free surface

profile developing the growing hump. The temperature profiles show similar behaviour

to the previous figures (Fig. 5.21-5.22).

Figure 5.26: The evolution of h(x, t) for t varying between t = 0− 30 with Per = 104,
a = 2 × 10−4 and b = 3 × 10−4 (left panel), Per = 104, a = 0.2 and b = 0.3 (middle
panel) and Per = 104, a = 2 and b = 3 (right panel). The other parameter values are:
S = 1, Qs0 = 0.5 and θs = 0.

The next set of results consider the evolution of h(x, t) and θ(x, z, t) using the bi-

viscosity model (see Eq. (4.17b). We set µa=1, µe < µa = 10−2 and θm = 0.5 (note:

0 < θm < 1). We set µe = 0.01 to obtain a large viscosity ratio between the region with

the temperature less than θm and that with θ greater than θm. The initial temperature

of the dome is θ = 1. We only show selected numerical results where the free surface
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Figure 5.27: The contour plot for θ(x, z, t = 5, 15, 25) for Per = 104, a = 2 × 10−4

and b = 3 × 10−4 (left panel), Per = 104, a = 0.2 and b = 0.3 (middle panel) and
Per = 104, a = 2 and b = 3 (right panel). The temperature profiles are superimposed
on the corresponding free surface shape h highlighted by thicker curves. The parameter
values are: S = 1, Qs0 = 5 and θs = 0.
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evolution using the bi-viscosity model is structurally different from the previous results

using the exponential viscosity model, keeping all other parameters the same. Sitting

Per = 102, and µe = 0.01, θm = 0.5 gives results shown in Fig. 5.28. The jump in the

Figure 5.28: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 0, Per = 102, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3, µe = 0.01
and θm = 0.5.

viscosity occurring where θm = 0.5 affects the free surface profiles. The height profiles

show a steep flow front at early time caused by the sharp increase in viscosity near the

front as seen in Fig. 5.28(b). For later times the discontinuity is not noticeable and the

temperature is almost everywhere less than θm producing a very viscous cold region.



208

Increasing θm = 0.9, Fig. 5.29(a) shows the free surface profiles to be similar to the

Figure 5.29: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 0, Per = 102, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3, µe = 0.01
and θm = 0.9.

isothermal case where almost everywhere the temperature is less than θm. Increasing

µm = 0.8 which resulted in decrease of the viscosity contrast over the liquid. Fig. 5.30

shows the results for this case. It can be seen that the free surface profile spreads as in

the isothermal case. In Fig. 5.31, the inclusion of the source flowrate with Per = 102

and Qs0 = 0.5 gives the results for free surface profile similar as in the Qs0 = 0 case.

The temperature profile shows that cooling is significant near the flow front causing
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Figure 5.30: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 0, Per = 102, Qs0 = 0, θs = 0, a = 0.2 and b = 0.3, µe = 0.8
and θm = 0.9.
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Figure 5.31: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 0, Per = 102, Qs0 = 5, θs = 0, a = 0.2 and b = 0.3, µe = 0.01
and θm = 0.5.
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the leading edge to become steep. This is because the temperature of the liquid in the

dome has θ < θm. Again increasing θm = 0.9, Fig. 5.32 shows the results that are

Figure 5.32: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 0, Per = 102, Qs0 = 5, θs = 0, a = 0.2 and b = 0.3, µe = 0.01
and θm = 0.9.

similar to the α = 2 case with less spreading. In the following set of results, we consider

the bi-viscosity model with spreading over an inclined plane with S = 1. First, sitting

µe = 0.01 and θm = 0.5 gives again a large viscosity ratio between the region with the

temperature less than or greater than θm. Figure 5.33 with Pr = 1 shows the results

for the free surface profile with significant hump arising at a early time but decreases in
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size as time progresses. The viscosity difference at θm = 0.5 is shown to influence the

Figure 5.33: The evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 1, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03, µe = 0.01
and θm = 0.5.

temperature at early time due to a cooler and hence more viscous region developing

near the flow front and a hotter and less viscous region behind it (Fig. 5.33(b)). This

results in the hotter mobile liquid flowing over the colder liquid ahead, hence forming

a fluid hump (Fig. 5.33(a)) at early times. As time progresses, the temperature profile

for later times is less than θm over the entire dome, hence µ(θ) = 1 holds everywhere.

The final set of results shown in Fig. 5.34 considers the same parameters as the case
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shown above, except increasing θm to θm = 0.9. We clearly observe suppression of

the fluid hump at early time. This is due to the temperature quickly dropping below

θm = 0.9, hence not enabling the full influence of the viscosity contrast in comparison

to the previous case with θm = 0.5 (Fig. 5.34(b)). As time progresses, the temperature

is below θm (Fig. 5.34(c− d)) and the spreading progresses with µ = 1 and is similar

to the isothermal case (Fig. 5.34(a)).

Figure 5.34: he evolution of (a) h(x, t) for t varying between t = 0−30 and the contour
plot for (b) θ(x, z, t = 1), (c) θ(x, z, t = 14), and (d) θ(x, z, t = 30) (the temperature
profiles are superimposed on the corresponding free surface shape h highlighted by
thicker curves), with S = 1, Per = 1, Qs0 = 0, θs = 0, a = 0.02 and b = 0.03, µe = 0.01
and θm = 0.9.
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5.4 Conclusions

In this chapter we use the thin-film flow equations coupled to a two-dimensional

advection-diffusion equation for the temperature to investigate the spreading and cool-

ing of a hot Newtonian liquid down an inclined plane for the reduced Péclet number,

Per = O(1). We consider non-isothermal conditions which include a temperature-

dependent viscosity and heat loss due to cooling at the free surface and substrate. Our

results highlight a very important feature during the spreading process which is the

cooling near the dome’s rim where the rate of heat loss is maximum. The extent of

this cooling could range from a collar of colder liquid near the dome’s rim to one where

the temperature isotherms become almost vertical across the dome (Balmforth et al.

[7, 11]). An extensive parameter study reveals the influence of the system parameters

on this cooling, particularly, the Péclet number, Pe, the decay constant in the expo-

nential viscosity model, α, and the heat transfer coefficients, a and b. The resulting

temperature and viscosity contrast arising due to the cooling near the dome’s edge

results in a variety of free surface shape profiles.

For spreading on a horizontal substrate (S = 0), we recover the free surface shapes

previously identified in the studies by Sansom et al. [76, 53, 77] and Balmforth et al.

[7, 11]. These include,

(i) a dome-shaped profile with a steep front at its leading edge which thins and

spreads as it evolves (see Figs. 5.1-5.6) for low values of α, and
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(ii) a flattened middle or plateau region with a much steeper front at its leading edge,

similar to a pancake-shaped profile, for larger values of α and Per (see Figs. 5.9).

The spreading rate of these structures is also much higher than the dome-shaped

ones.

The new results in this chapter are related to spreading down an inclined substrate

(shown for S = 1, with approximately 6o inclination angle). The cooling mechanism

described above also holds here. In addition, the mobility of the dome is also enhanced

due to the inclination of the substrate. Our parameter study reveals two distinct free

surface shapes (see Fig. 5.20):

(i) a slumped dome-shaped profile with a steep front for very large Per (see Figs.

5.13-5.14 and possibly small Per (results not shown here), and

(ii) a slumped profile with a fluid hump overriding the steep front at its leading edge

for intermediate values of Per (see Figs. 5.16-5.18).

We observe that the hump height increases as α increases. Including a constant flowrate

liquid results in sustained increase in the hump-shaped profile (Fig. 5.25, 5.26).

The free surface profiles, particularly, the pancake and hump-shaped profiles, obtained

in Chapter 4 using the approximate theory valid for ε2Per � 1 are also reproduced

here for small and intermediate values of Per and α. Although we have not made a

direct comparison between both sets of results, based on the nearly vertical isotherms

observed in the temperature profiles for this parameter range, we can be confident
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about the validity of the approximate theory.

Encouraged by this, we will investigate the transverse stability of these one-dimensional

free surface shapes using the small Per reduced model for the temperature field coupled

to the thin-film equation. This will be done in Chapter 6.



Chapter 6

The non-isothermal and Newtonian

spreading of a hot liquid dome

down an inclined plane: stability of

transverse perturbations

6.1 Introduction

In this chapter we extend the non-isothermal problem from the previous two chapters to

2 + 1 dimensions, (x, y), and the free surface, z = h(x, y, t). Encouraged by the results

using the small reduced Péclet number asymptotic limit in Chapter 4 and their validity

shown in Chapter 5, we consider this asymptotic limit here for the temperature field

217
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with θ(x, y, t). Our goal is to investigate the transverse stability of the one-dimensional

solutions (the base state) for h and θ obtained in Chapter 4. The base state is usually

represented by a steady-state (time-independent) solution of the system, however, Eqs.

6.33 do not have a steady state. One way to analyse the linear stability of such solutions

is to assume that the basic state is slowly varying in time or quasi-steady. One can

then freeze the basic state and superimpose the transverse perturbations on it. These

perturbations are assumed to vary on a much faster timescale compared to the basic

state. An alternative way is to perform a transient analysis (see, e.g., Matar et al.

[27]. Our focus is in investigating the evolution of h, and temperature θ, particularly

the growth rate and wavenumber of any transverse spatial instability that develops in

time over the base state.

The outline of this chapter is as follows. In §6.1.1 we formulate the problem and state

the governing equations and boundary conditions. Lubrication theory is used to sim-

plify the equations to two coupled PDEs in h(x, y, t) and θ(x, y, t). In §6.2, we perform

a numerical stability analysis to determine the stability of transverse perturbations on

a prescribed base state. In §6.3, we discuss the mechanism(s) underlying the fingering

transverse instability observed in numerical simulations.

6.1.1 Governing Equations

The three-dimensional flow of a Newtonian liquid of constant density, ρ?, and variable

viscosity, µ?, are given by the conservation of mass and momentum which is written in
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a Cartesian co-ordinate system, (x?, y?, z?) as (see Acheson [1] and Ockendon [66]):

u?x? + v?y? + w?z? = 0, (6.1a)

u?t? + u?u?x? + v?u?y? + w?u?z? = − 1

ρ?
p?x? + g? sin θ +

1

ρ?
[∂?xτ

?
x?x? + ∂?yτ

?
x?y? + ∂?zτ

?
x?z? ],

(6.1b)

v?t? + u?v?x? + v?v?y? + w?v?z? = − 1

ρ?
p?y? +

1

ρ?
[∂?xτ

?
y?x? + ∂?yτ

?
y?y? + ∂?zτ

?
y?z? ], (6.1c)

w?t? + u?w?x? + v?w?y? + w?w?z? = − 1

ρ?
p?z? − g? cos θ +

1

ρ?
[∂?xτ

?
z?x? + ∂?yτ

?
z?y? + ∂z?τ

?
z?z? ],

(6.1d)

where (u?, v?, w?) are the flow speed in the x?, y? and z? directions, respectively, τ ?ij

denote the liquid viscous stresses, p? is the liquid pressure, g? is the gravitational force

and θ is the inclination angle of the substrate. The energy equation governing the

temperature, T , is given by (see Carslaw & Jaeger [23]):

ρ?c?p
[
T ?t? + u?T ?x? + v?T ?y? + w?T ?z?

]
= κ?

[
T ?xx + T ?yy + T ?zz

]
, (6.2)

where c?p is the specific heat of the liquid, κ? is its thermal conductivity or alternatively

the liquid’s thermal diffusivity is κ?d = κ?/(ρ?c?p). The constitutive relation between

the liquid stress and its rate of strain for a Newtonian liquid is written as:

τ ? = µ?(T ?)γ̇?, (6.3)
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where µ? is the liquid viscosity and γ̇? is the rate of strain tensor given by The dimen-

sionless strain rate tensor becomes

γ̇? =


2u?x? u?y? + v?x? u?z? + w?x?

u?y? + v?x? 2v?y? v?z? + w?y?

u?z? + w?x? v?z? + w?y? 2w?z?

 . (6.4)

The viscosity is dependent on the temperature by a constitutive relationship. We use

the exponential viscosity model throughout this chapter and is given by:

µ?(T ?) = µ?0e
−α?(T ?−T ?a ), (6.5)

where T ?a is a reference temperature (e.g., the ambient temperature), µ?0 is the viscosity

at the reference temperature and α? is the decay constant.

6.1.2 Boundary conditions

As discussed in Chapter 2, we impose the no-slip boundary condition for the velocity

field at the surface of the plane z? = 0, with the flow speed from the source given

by w?s(x
?, y?, t?) taken as a vertical velocity. Therefore u? = 0, w? = w?s(x

?, y?, t?)

at z? = 0. Assuming Poiseuille flow through this vent (assumed rectangular between

|x?| ≤ x?0, |y?| ≤ y?0, where (x, y)?0 is the half-width of the source), with liquid flux, Q?
s,
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w?s can be written as:

w?s(x
?, y?, t?) =

9Q?
s(t

?)

16x?0y
?
0

[
1−

(
x?

x?0

)2
][

1−
(
y?

y?0

)2
]
H(x?20 − x?2)H(y?20 − y?2), (6.6)

where H(x?) is the Heaviside function. As discussed in Chapters 3, 4, the Newton’s

law of cooling is considered at the free surface, z? = h?(x?, y?, t?) and the substrate,

z? = 0. The form of the boundary condition for the substrate at z? = 0 is

κ?T ?z? = ρ?c?p(T
?(x?, y?, 0, t?)− T ?e )w?s + bs(T

?(x?, y?, 0, t?)− T ?s ), (6.7)

where T ?e and T ?s are the eruption and substrate temperatures, respectively (assumed

constant) and b?s is a heat transfer coefficient. Such a form of the flux function has

been used by Balmforth et al. [5, 11]. On the free surface, z? = h?(x?, y?, t?), we have

−κ?(n? · ∇?T ?) = F ?[T ?(x?, y?, h?, t?) = a?m(T ?(x?, y?, h?, t?)− T ?a ), (6.8)

where a?m is a heat transfer coefficient at the free surface and T ?a is the ambient tem-

perature. Such a form of the flux function has been used by Balmforth et al. [5, 11].

Taking the pressure of the liquid in the dome relative to the air pressure and neglecting

surface tension, the normal stress at the air-liquid interface is written as:

(−p?I + τ ?) · n? = 0, at z? = h?(x?, y?, t?), (6.9)
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where, n?, the unit outward normal to the free surface z? = h?(x?, y?, t?) is given by

n? =
∇? (z? − h?(x?, t?))
|∇? (z? − h?(x?, t?)) |

=
1√

1 + h?
2

x? + h?
2

y?

(
−h?x? , h?y? , 1

)
. (6.10)

The corresponding tangent vectors to the free surface in the x? and y? directions are

given by

n? · t?x = 0, ⇒ t?x = 1√
1+h?

2

x?
+h?

2

y?

(1, 0, h?x?) , (6.11a)

n? · t?y = 0, ⇒ t?x = 1√
1+h?

2

x?
+h?

2

y?

(
0, 1, h?y?

)
. (6.11b)

We can write the normal and two tangential components of Eq. (6.9) as

n? · (−p?I + τ ?) · n? = 0, ⇒

1√
1 + h?

2

x? + h?
2

y?

[−2h?x?τ
?
zx − 2h?y?τ

?
yz + 2h?x?h

?
y?τ

?
xy + τ ?zz + h?

2

x?τ
?
xx + h?

2

y?τ
?
yy]− p? = 0,

(6.12a)

t?x · (−p?I + τ ?) · n? = 0, ⇒

h?x?(τ
?
zz − τ ?xx) + τ ?xz(1− h?

2

x?)− h?x?h?y?τ ?yz − h?y?τ ?xy = 0, (6.12b)

t?y · (−p?I + τ ?) · n? = 0, ⇒

h?y?(τ
?
zz − τ ?yy) + τ ?yz(1− h?

2

y?)− h?x?h?y?τ ?xz − h?x?τ ?xy = 0. (6.12c)

The kinematic condition at the free surface z? = h?(x?, y?, t?) is based on this being a

material surface so that fluid particles which lie on the surface must always remain on
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the surface. This implies that D
Dt

[z? − h?(x?, y?, t?)] = 0. This can be written as:

h?t? + u?h?x? + v?h?y? = w?. (6.13)

6.1.3 Nondimensionalisation and the lubrication approxima-

tion

We define an aspect ratio ε = H?/L?, where L?, is a typical length scale in the flow

direction and H?, is a characteristic dome height. Also, U?, is a typical flow speed in

the x? and y?−direction which is determined below, µ?R, is a reference viscosity, the

pressure is measured using a characteristic scale P ? = ρ?g?H? cos θ (the hydrostatic

pressure). The equations are nondimensionlised by introducing the following:

(x?, y?) = L?(x̃, ỹ), (z?, h?) = H?(z̃, h̃), (u?, v?, w?) = (U?, εU?)(ũ, ṽ, w̃), p? = P ?p̃,

(6.14)

τ ? = µ?
(
U?

H?

)
τ̃ , γ̇? =

(
U?

H?

)
˜̇γ, µ? = µ?Rµ̃, θ? =

(T ? − T ?e )

∆T ?
, t? = (L?/Ũ?)t̃.

The characteristic speed U? is chosen to balance the horizontal liquid pressure gradient

and the liquid shear stress. This gives U? = (ρ?g?H?3)/(µ?L?) cos θ.

Dropping the tilde notation, the dimensionless equations for the flow and energy can
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be written as:

ux + vy + wz = 0, (6.15a)

ε2Re [ut + uux + vuy + wuz] = −px + S + ε∂xτxx + ε∂yτxy + ∂zτxz, (6.15b)

ε2Re [vt + uvx + vvy + wvz] = −py + ε∂xτyx + ε∂yτyy + ∂zτyz, (6.15c)

ε4Re [wt + uwx + vwy + wwz] = −pz − 1 + ∂xε
2τzx + ε2∂yτzy + ε∂zτzz, (6.15d)

ε2Pe [θt + uθx + vθy + wθz] =
[
ε2θxx + ε2θyy + θzz

]
, (6.15e)

The nondimensionalised constitutive relation between the liquid stress and its rate of

strain for a Newtonian liquid is written as:

τ = µ(θ)γ̇. (6.16)

The viscosity is dependent on the temperature by a constitutive relationship. We use

the exponential viscosity model which in dimensionless form is written as:

µ(θ) = e−αθ, (6.17)

The dimensionless strain rate tensor becomes

γ̇ =


2εux ε(uy + vx) uz + ε2wx

ε(uy + vx) 2εvy vz + ε2wy

uz + ε2wx vz + ε2wy 2εwz

 . (6.18)
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The nondimensional boundary conditions at z = 0 can be written as:

u = 0, w = ws(x, y, t), at z = 0, (6.19a)

θz = Peε
2(θ − 1)ws + bε2(θ − θs), at z = 0. (6.19b)

The nondimensional boundary conditions at z = h(x, y, t) are given by

ht + uhx + vhy = w, (6.20a)

p =
ε

[1 + ε2(h2
x + h2

y)]
(τzz + ε2h2

xτxx + ε2h2
yτyy − 2εhxτxz − 2εhyτyz + 2ε2hxhyτxy),

(6.20b)

τyz(1− ε2h2
y) + εhy(τzz − τyy)− εhxτxy − ε2hxhyτxz = 0, (6.20c)

θz = ε2hxθx + ε2hyθy − ε2aθ
√

1 + ε2h2
x + ε2h2

y. (6.20d)

In the above, ws(x, t) = [(9Qs0Qs(t))/16] [1− (x/x0)2] [1− (y/y0)2]H(x2
0 − x2)H(y2

0 −

y2), where Qs0 is a dimensionless parameter, Qs0 = Q?
s0
/(x?0y

?
0εU) and Q?

s0
is a char-

acteristic source flow rate. The dimensionless vent width is (x0, y0) = (x?0, y
?
0)/L?.

The dimensionless parameters are: S = tan θ/ε, is a measure of the downslope, the

Reynold’s number, Re = U?L?/µ?R ≡ (g?H?3/µ?
2

R ) cos θ, compares inertial and viscous

effects and is assumed to be O(1), the Peclet number, Pe = (ρ?c?pU
?L?)/κ?, com-

pares convective and diffusive heat transport, the heat transfer coefficients at the free

surface and substrate, b = (bsH
?)/(ε2κ?) and a = (amH

?)/(ε2κ?), respectively, and

α = α?(T ?e − T ?a ), is the decay constant in the exponential viscosity model.
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Assuming ε2 � 1, the leading order equations governing the flow can be written as,

using the lubrication approximation:

ux + vy + wz = 0, (6.21a)

−px + ∂zτxz + S = 0, (6.21b)

−py + ∂zτyz = 0, (6.21c)

−pz − 1 = 0, (6.21d)

τxz = p = 0, ht + uhx + vhy = w, at z = h(x, t), (6.21e)

u = 0, v = 0, w = ws(x, t), at z = 0. (6.21f)

Integrating Eq. (6.21d) and using the boundary condition for p in Eq. (6.21e) gives

p = h(x, t) − z. Integrating Eq. (6.21b) and using the boundary condition for τxz in

Eq. (6.21e) and p above gives τxz(x, z) = (S − hx)(h − z),using the same way gives

τyz(x, z) = (−hy)(h−z) Using the shear stress τxz, and τyz, we obtain the leading order

shear rate,

uz = (S − hx)
(h− z)

µ(θ)
, vz = (−hy)

(h− z)

µ(θ)
. (6.22)

Now, the leading order liquid flux through a cross-section can be written as:

Q(x)(x, y, t) =

∫ h

0

(h− z)uzdz, Q(y)(x, y, t) =

∫ h

0

(h− z)vzdz. (6.23)
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Using the expression for uz, and vz above and the boundary condition for u, v in Eq.

(6.21f), we obtain

Q(x)(x, y, t) = (S − hx)
∫ h

0

(h− z)2

µ(θ)
dz, Q(y)(x, t) = (−hy)

∫ h

0

(h− z)2

µ(θ)
dz. (6.24)

Integrating the continuity equation Eq. (6.21a) using the boundary conditions in Eq.

(6.21f) and substituting into the kinematic boundary condition in Eq. (6.21e), one

obtains the evolution equation for h:

ht +Q(x)
x +Q(y)

y = ws. (6.25)

Using the expressions for Q(x), Q(y) and ws from above, we can write the evolution

equation for h as:

ht +

[
(S − hx)

∫ h

0

(h− z)2

µ(θ)
dz

]
x

+

[
(−hy)

∫ h

0

(h− z)2

µ(θ)
dz

]
y

= ws, (6.26)

where ws(x, t) = [(9Qs0Qs(t))/16] [1− (x/x0)2] [1− (y/y0)2]H(x2
0−x2)H(y2

0−y2). The

flow is coupled with the temperature field via the viscosity relationship µ(θ). The

nondimensionalised governing equation and boundary conditions for the temperature
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field are given by:

[θt + uθx + vθy + wθz] =
1

ε2Pe

[
ε2θxx + ε2θyy + θzz

]
, (6.27a)

θz = Peε
2(θ − 1)ws + bε2(θ − θs), at z = 0, (6.27b)

θz = ε2hxθx + ε2hyθy − ε2aθ
√

1 + ε2h2
x + ε2h2

y, at z = h(x, y, t). (6.27c)

We consider the asymptotic limit similar to Chapter 4, where the Péclet number,

Pe = O(1), so that the reduced Péclet number, Per = ε2Pe � 1. This is called

the conduction-dominated scenario. The heat transfer coefficients, a, b = O(1). Let

θ ' θ0(x, y, z, t) + ε2θ2(x, y, z, t) + . . . Substituting into Eq. (6.27) gives to leading

order:

∂2θ0

∂z2
= 0, θ0z = 0 at z = 0 and z = h0(x, y, t). (6.28)

This implies θ0 = θ0(x, y, t). Hence, θ ' θ0(x, y, t) + ε2θ2(x, y, z, t) + . . .. Substituting

this in Eq. (6.27) gives

θ0t + uθ0x + vθ0y =
1

Pe
[θ2zz + θ0xx + θ0yy] , (6.29a)

θ2z = h0xθ0x + h0yθ0y − aθ0, at z = 0, (6.29b)

θ2z = Pe(θ0 − 1)ws + b(θ0 − θ0s), at z = h0(x, y, t). (6.29c)

Integrating Eq. (6.29a) from z = 0 to h0(x, y, t) and using the boundary conditions
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Eqs. (6.29b), (6.29c), we obtain

h0xθ0x + h0yθ0y − aθ − [Pe(θ0 − 1)ws + b(θ0 − θ0s)] = Pe(h0θ0t + θ0x

∫ h0

0

u dz + θ0y

∫ h0

0

v dz)

− h0θ0xx − h0θ0yy. (6.30)

Dropping the subscripts, the leading order temperature field is thus gives by

θt+[
Q(x)

h
− hx
hPe

]θx+[
Q(y)

h
− hy
hPe

]θy =
1

Pe
[θxx+θyy]−

1

hPe
[aθ+b(θ−θs)]−

ws
h

(θ−1),

(6.31)

where

Q(x) =
1

3

h3

µ(θ)
(S − hx), Q(y) =

1

3

h3

µ(θ)
(−hy). (6.32)

Thus, the evolution equation for the free surface and the temperature field are given

by:

ht +Q(x)
x +Q(y)

y = ws, (6.33a)

θt + [
Q(x)

h
− hx
hPe

]θx + [
Q(y)

h
− hy
hPe

]θy =
1

Pe
[θxx + θyy]−

1

hPe
[aθ + b(θ − θs)]

− ws
h

(θ − 1), (6.33b)

Q(x) =
1

3

h3

µ(θ)
(S − hx), Q(y) =

1

3

h3

µ(θ)
(−hy), µ(θ) = e−αθ, (6.33c)

ws(x, t) =

[
9Qs0Qs(t)

16

][
1−

(
x

x0

)2
][

1−
(
y

y0

)2
]
H(x2

0 − x2)H(y2
0 − y2). (6.33d)

Eq. (6.33a) shows the contribution to the evolution of h from the fluxes Q(x) and Q(y)
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in the x and y directions, respectively, due to the horizontal and vertical component of

gravity. The evolution of the temperature, θ, given in Eq. (6.33b) shows the contribu-

tion to the heat transport due to: convection by the flow (second and third terms on

the left-hand-side), diffusion or conduction (first and second term on the right-hand-

side), het loss or cooling to the colder surrounding air and substrate and the gain in

heat coming from the source (last term on the right-hand-side).

6.2 Numerical results

In this section, we examine the nonlinear stability of Eqs. 6.33 to small-amplitude

transverse perturbations superimposed on a base state flow and temperature field us-

ing two-dimensional numerical simulations. The base state flow and temperature are

represented by one-dimensional (y-independent) solutions that have been computed in

Chapter 4. We seek 2π-periodic solutions in y of Eqs. 6.33a and 6.33b for−L1 ≤ x ≤ L2

and 0 ≤ y ≤ 2π, where L1 and L2 are arbitrary lengths of the computational domain

in the x direction. Eq. 6.33a and 6.33b are supplemented by two boundary conditions

at x = −L1, L2 ∀ 0 ≤ y ≤ 2π, which are given by h = b1 and θx = 0. We assume that

the plane is pre-wetted with a precursor film of thickness b1 as in the previous chapters.

These boundary conditions characterise a flat precursor and zero temperature gradient

far ahead and behind of the spreading dome. We impose periodic boundary conditions

at the transverse y boundaries, y = 0, 2π.
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We start our simulations from two types of initial conditions for h and θ which represent

the y-independent base state solutions. These are:

(i) a parabolic dome shape, h(x, 0) = (1 − x2)H(1 − x2) + b1 (H is the Heaviside

function) and uniform temperature, θ(x, 0) = 1, for all −L1 ≤ x ≤ L2, used in

the one dimensional simulations in Chapters 4, 5, and 6,

(ii) the quasi-steady solutions for h(x) and θ(x) at specific times obtained numerically

in Chapter 4. These quasi-steady solutions are chosen based on characteristic fea-

tures of the free surface shapes of h observed during their evolution while varying

key parameters such as the Péclet number, Pe, the heat transfer coefficients, a

and b, linked to the rate of cooling, and the decay constant, α, in the expo-

nential viscosity model. For S = 0, i.e., spreading over a horizontal plane, two

characteristic free surface shapes are observed; a spreading dome-shaped profile

and a pancake-type profile (a flattened plateau region with a steep front at its

leading edge). For spreading over an inclined surface, we always observe a tilted

dome-shaped profile with a steep front at its leading edge, with or without a fluid

hump (or ridge) overriding the front. We choose the initial conditions for this

case based on Fig. 6.1 which is a parameter survey in (a = b, Pe) space with

α = 2 and S = 1 (inclination angle approximately 6o) to show the existence of

free surface shapes, h(x, t) with and without a fluid hump near the leading edge.

The parameter value pairs marked on Fig. 6.1 are the parameter values of Pe

and a = b, respectively, for which the corresponding free surface profile at some
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prescribed time is chosen as the initial condition to represent the base state for

the two-dimensional stability simulations.

Figure 6.1: Parameter survey in (Pe, a = b, α) space to show existence of free surface
shapes, h(x, t) with and without a fluid hump (or ridge). The parameter values are:
α = 2, 4, 6 and S = 1 (inclination angle approximately 6o). The parameter value
pairs shown are the parameter values investigated in the two-dimensional stability
simulations.

We introduce localised periodic transverse perturbations (localised around the leading

edge of the dome) of a given wavenumber to the above initial conditions of the form:

[h(x, y, t), θ(x, y, t)] = [hb(x), θb(x)]+A cos(kπy)e[−K(x−xN )2], (x, y) ∈ [−L1, L2]×[0, 2],

(6.34)

where hb(x) and θb(x) are the initial conditions for h and θ, respectively, k is the

wavenumber and A is the amplitude of the 2-periodic transverse mode, K controls the

width of the localised perturbation which is applied at x = xN , the location of the
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leading edge of the dome or front.

We are interested in investigating and simulating the existence of a fingering instability

when the dome spreads to a much longer distance (simulation type (ii) above). In this

scenario, the order of a wavelength in the transverse y direction is much smaller than

the spreading length. We do, however, consider evolution of transverse perturbations

of the order of a wavelength superimposed on the initial dome shape (simulation type

(i) above) with the caution that the dome curvature would be important for the longer

wavelengths. We speculate that the instability, if it exists, would develop when the

initial dome shape spreads to a longer distance, which we can check by considering this

scenario.

The evolution equation for h(x, y, t) and θ(x, y, t) given by Eqs. (6.33a), (6.33b are

solved numerically using the Method of lines [78, 61]. This is done as follows. We

discretise the domain, [−L1, L2] for x, intoN+1 points and [0, 2] for y, intoM+1 points.

Hence, xi = −L1 + (i− 1)∆x, i = 1, . . . , N + 1, and yi = (j − 1)∆y, j = 1, . . . ,M + 1,

where ∆x = (L2 + L1)/N , and ∆y = 2/M . For S = 0 (horizontal plane), we use

symmetry about x = 0 to only consider the domain [0, L1]. We define a forward and

backward finite difference for the spatial derivative as:

hx,ij =
hi+1j − hij

∆x
, hx̄,ij =

hij − hi−1j

∆x
, (6.35a)

hy,ij =
hij+1 − hij

∆y
, hȳ,ij =

hij − hij−1

∆y
, (6.35b)
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where h,ij represents a quantity evaluated at (xi, yj). The spatial derivatives in Eq.

(6.33a) are then discretised as follows:

[
(
h3

µ
)ij(S − hx̃,ij)

]
x

=
1

∆x

[
(
h3

µ
)i+ 1

2
j(S − hx,i+ 1

2
j)− (

h3

µ
)i− 1

2
(S − hx,i− 1

2
j)
]
, (6.36a)[

(
h3

µ
)ij(−hỹ,ij)

]
y

=
1

∆y

[
(
h3

µ
)ij+ 1

2
(−hy,ij+ 1

2
)− (

h3

µ
)ij− 1

2
(−hy,ij− 1

2
)
]
, (6.36b)

where (h
3

µ
)i+ 1

2
j =

(h3/µ)i+1j+(h3/µ)ij
2

, (h
3

µ
)i− 1

2
j =

(h3/µ)ij+(h3/µ)i−1j

2
,

hx,i+ 1
2
j =

hi+1j−hij
∆x

, hx,i− 1
2
j =

hij−hi−1j

∆x
, and hy,ij+ 1

2
=

hij+1−hij
∆y

, hy,ij− 1
2

=
hij−hij−1

∆y
.

Using this, the discretised form of Eq. (6.33a), keeping the time derivative continuous,

can be written as:

ht,ij +
1

3∆x

[
(
h3

µ
)i+ 1

2
j(S − hx,i+ 1

2
j)− (

h3

µ
)i− 1

2
(S − hx,i− 1

2
j)
]

+
1

3∆y

[
(
h3

µ
)ij+ 1

2
(−hy,ij+ 1

2
)− (

h3

µ
)ij− 1

2
(−hy,ij− 1

2
)
]

= ws,ij, i = 2, . . . , N, j = 2, . . . ,M.

(6.37)

The prescribed boundary conditions, h(−L1, y) = h(L2, y) = b1, give h1j = hN+1j = b1.

Periodicity is applied to h at the y boundaries.

In the same way we discritize the temperature evolution equation, Eq. (6.33b), using
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an up-winding discretisation scheme for the convection term in x, as follows:

θt,i + (ax)ij

[
(θij − θi−1j)

∆x

]
+ (ay)ij

[
(θij+1 − θij−1)

2∆y

]
=

1

Pe

[
(θi+1j − 2θij + θi−1j)

∆x2
+

(θij+1 − 2θij + θij−1)

∆y2

]
+ cijθij, i = 2, . . . , N, j = 2, . . . ,M

(6.38)

where (ax)ij =
h3ij

3µijhij
(S − hx,i− 1

2
j) −

h
x,i− 1

2 j

hijPe
, (ay)ij =

h3ij
3µijhij

(S − hy,ij− 1
2
) −

h
y,ij− 1

2

hijPe
and

cij = aθ+b(θ−θs)
hijPe

+ ws(θ−1)
hij

. The boundary condition θx(x = −L1, L2, y) = 0 is used to

determine the fictitious points for the evolution equation of θt,1j and θt,N+1j using the

above scheme. Periodicity is applied to θ at the y boundaries.

The growth rate and wavenumber of the dominant instability modes are investigated

for variations in key parameters: the Péclet number (compares convective to vertically

diffusive heat transport), Pe, the heat transfer coefficients, a and b (linked to the rate of

cooling) and the decay constant, α (controls the change in viscosity with temperature)

in the exponential viscosity model. In all the results shown below, we fix the source

flow rate Qs0 = 0 (constant volume spreading), the precursor thickness, b1 = 10−5 for

simulations with S = 0 (horizontal plane) and b1 = 10−3 with S = 1 (inclined plane

at an angle of approximately 6o) and the length of the computational domains L is

chosen sufficiently large so that the boundary condition h → b1 as x → ∞ is satisfied

numerically. We have tested the accuracy and convergence of our numerical scheme by

reproducing the y-independent solutions shown in Chapter 4 for a variety of parameter

values. Next, we investigate the transverse stability of these solutions using the initial
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condition given in Eq. (6.34).

We first consider spreading over a horizontal plane (S = 0). Figure 6.2 shows the

evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for times, t = 0 (initial condition),

t = 10 and t = 30 with Pe = 106, α = 2, a = 0.2 and b = 0.2. The base states for this

Figure 6.2: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 0, Pe = 106, α = 2, a = 0.2, b = 0.2, k = 6,
A = 0.02, hb(x) = (1− x2)H(1− x2) + b1 (H is the Heaviside function) and θb(x) = 1 .

case are hb(x) = (1−x2)H(1−x2)+b1 (H is the Heaviside function) and θb(x) = 1. We

impose a transverse perturbation with wavenumber k = 6 and amplitude A = 0.02 only

on hb(x) (see Fig. 6.2(a)). We observe that the perturbations quickly decay to zero and

the one-dimensional evolution is the same as that shown in Fig. ?? in Chapter 4. The
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same behaviour is also observed for any other value of k (results not shown here). We

have also investigated varying Pe (Pe = 10−1− 106) with all other parameters fixed as

above and the perturbations are observed to decay to zero for all wavenumbers k and

the corresponding one-dimensional evolution is the same as that shown in Figs. 4.1 -

?? in Chapter 4. Figure 6.3 shows the evolution of h(x, y, t) (a−c) and θ(x, y, t) (d−f)

for times, t = 0 (initial condition), t = 10 and t = 30 with Pe = 103, α = 10, a = 0.2

and b = 0.2. The base states for this case, hb(x) and θb(x) are obtained by running

the one-dimensional simulations until t = 4; hb(x) has a pancake-shaped profile. We

impose a transverse perturbation with wavenumber k = 3 and amplitude A = 0.02 on

both hb(x) and θb(x) (see Fig. 6.3(a, d)). We observe that the perturbations in h and

θ increase in wavenumber from k = 3 at t = 0 to k = 6. The h perturbations appear

to grow with a small growth rate while the θ perturbations grow quite dramatically as

time progresses (Fig. 6.3(e, f)). We observe the initial perturbation in θ growing into

lengthening finger-like protrusions with a higher temperature at the tip compared to

the ends. This temperature contrast leads to a viscosity difference (lower at the tip

than at the ends) resulting in growth of perturbations in h, although quite small for

the case shown here. We have not continued for longer time but speculate that the

perturbations in h will lengthen with time keeping the same wavenumber k = 6.

Next, we consider the case of an inclined plane with S = 1 (inclination angle approx-

imately 6o). Figure 6.4 shows the evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f)

for times, t = 0 (initial condition), t = 10 and t = 30 with Pe = 102, α = 2, a = 0.5
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Figure 6.3: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 0, Pe = 103, α = 10, a = 0.2, b = 0.2, k = 3
and A = 0.02.
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and b = 0.5 (marked on Fig. 6.1). The base states for this case, hb(x) and θb(x) are

Figure 6.4: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 102, α = 2, a = 0.5, b = 0.5, k = 3 and A = 0.02.

obtained by running the one-dimensional simulations until t = 2; hb(x) has a slumped

dome-shaped profile with a steep front at its leading edge, without a fluid hump. We

impose a transverse perturbation with wavenumber k = 3 and amplitude A = 0.02 on

both hb(x) and θb(x) (see Fig. 6.4(a, d)). We observe that the perturbations quickly

decay to zero and the evolution of h and θ is one-dimensional. The same behaviour

is also observed for any other value of k (results not shown here). Figure 6.5 shows

the evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for times, t = 0 (initial con-
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dition), t = 10 and t = 30 with Pe = 104, α = 2, a = 0.02 and b = 0.02 (marked

on Fig. 6.1). The base states for this case, hb(x) and θb(x) are obtained by running

the one-dimensional simulations until t = 5; hb(x) has a slumped dome-shaped profile

with a steep front at its leading edge, without a fluid hump. We impose a transverse

perturbation with wavenumber k = 3 and amplitude A = 0.02 on both hb(x) and θb(x)

(see Fig. 6.5(a, d)). We observe that the perturbations quickly decay to zero and the

evolution of h and θ is one-dimensional. The same behaviour is also observed for any

other value of k (results not shown here). The results for increasing a = b = 10 with

Figure 6.5: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 104, α = 2, a = 0.02, b = 0.02, k = 3 and A = 0.02.
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all other parameters fixed (marked on Fig. 6.1) as in Fig. 6.5, are shown in Fig. 6.6

for h(x, y, t) (a − c) and θ(x, y, t) (d − f) for times, t = 0 (initial condition), t = 10

and t = 30. The base states for this case, hb(x) and θb(x) are obtained by running

the one-dimensional simulations until t = 2; hb(x) has a slumped dome-shaped profile

with a steep front at its leading edge, with a fluid hump. We impose a transverse

Figure 6.6: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 104, α = 2, a = 10, b = 10, k = 3 and A = 0.02.

perturbation with wavenumber k = 3 and amplitude A = 0.02 on both hb(x) and θb(x)

(see Fig. 6.6(a, d)). We observe clearly in this case that the both the base states lose

their stability to a fingering instability. The fingering instability is more dramatic in
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the temperature field. The mechanism is the same as described for the earlier case but

much more dramatic. Along a finger protrusion in the temperature field, θ is maxi-

mum at the tip compared to its ends, so the fluid viscosity at the tip is then greater

than that at the ends. This results in fluid moving faster near the tip than at the

ends which leads to the lengthening of the finger in h. Conversely, since the rate of

cooling is inversely proportional to h (Eq. 6.33b), along a finger h is higher at the

tip compared to the ends, so the tip will cool at a slower rate than the ends which

would then maintain the temperature difference necessary to sustain the finger in θ.

In addition, the enhanced advection at the tip compared to the ends would result in

lengthening of the temperature finger protrusions, completing the cycle. The same

fingering behaviour is also observed for k = 1, 2, 4, 5 but the growth rate of the fingers

is less than that shown for k = 3 (results not shown here). Any perturbations with

wavenumber k ≥ 10 are observed to be damped out (not shown here), suggesting a

cutoff wavenumber of k ≈ 10 for this case. Figure 6.7 shows the evolution of h(x, y, t)

(a − c) and θ(x, y, t) (d − f) for times, t = 0 (initial condition), t = 10 and t = 30

with Pe = 106, α = 2, a = 2 and b = 2 (marked on Fig. 6.1). The base states for this

case, hb(x) and θb(x) are obtained by running the one-dimensional simulations until

t = 5; hb(x) has a slumped dome-shaped profile with a steep front at its leading edge,

without a fluid hump. We impose a transverse perturbation with wavenumber k = 3

and amplitude A = 0.02 on both hb(x) and θb(x) (see Fig. 6.7(a, d)). We observe that

the perturbations in h decay to zero while those in θ are much slower to be damped

out. The same behaviour is also observed for any other value of k (results not shown
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here). The results for increasing a = b = 200 with all other parameters fixed (marked

Figure 6.7: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 106, α = 2, a = 2, b = 2, k = 3 and A = 0.02.

on Fig. 6.1) as in Fig. 6.7, are shown in Fig. 6.8 for h(x, y, t) (a − c) and θ(x, y, t)

(d− f) for times, t = 0 (initial condition), t = 10 and t = 30. The base states for this

case, hb(x) and θb(x) are obtained by running the one-dimensional simulations until

t = 4; hb(x) has a slumped dome-shaped profile with a steep front at its leading edge,

with a fluid hump. We impose a transverse perturbation with wavenumber k = 3 and

amplitude A = 0.02 on both hb(x) and θb(x) (see Fig. 6.8(a, d)). We observe that

the both the base states lose their stability to a fingering instability. The character-
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Figure 6.8: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 106, α = 2, a = 200, b = 200, k = 3 and A = 0.02.
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istics of this instability are similar to the previous cases and the mechanism is also

the same. Figures 6.9, 6.10 show the results using the same parameter values as in

Fig. 6.8, except the wavenumbers are k = 2 and k = 5, respectively. The evolution of

the fingering instability is very similar and they appear to have similar growth rates,

atleast by inspection. The cutoff wavenumber for this case was observed to be k ≈ 10.

We now consider the influence of increasing α. Figure 6.11 shows the evolution of

Figure 6.9: Evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 106, α = 2, a = 200, b = 200, k = 2 and A = 0.02.

h(x, y, t) (a − c) and θ(x, y, t) (d − f) for times, t = 0 (initial condition), t = 10 and

t = 30 with Pe = 104, α = 4, a = 20 and b = 20. The base states for this case, hb(x)
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Figure 6.10: Evolution of h(x, y, t) (a− c) and θ(x, y, t) (d− f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 106, α = 2, a = 200, b = 200, k = 5 and A = 0.02.



247

and θb(x) are obtained by running the one-dimensional simulations until t = 4; hb(x)

has a slumped dome-shaped profile with a steep front at its leading edge, with a fluid

hump. We impose a transverse perturbation with wavenumber k = 3 and amplitude

A = 0.02 on both hb(x) and θb(x) (see Fig. 6.11(a, d)). We observe that the both the

base states lose their stability to a fingering instability with similar characteristics as

the previous cases. The cutoff wavenumber for this case is also k ≈ 15. The growth

rate in this case is much higher than the case shown in Fig. 6.6 with a lower value of

α = 2. Figure 6.12 shows the evolution of h(x, y, t) (a − c) and θ(x, y, t) (d − f) for

Figure 6.11: Evolution of h(x, y, t) (a− c) and θ(x, y, t) (d− f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 104, α = 4, a = 20, b = 20, k = 3 and A = 0.02.
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times, t = 0 (initial condition), t = 10 and t = 30 with Pe = 106, α = 4, a = 300

and b = 300. The base states for this case, hb(x) and θb(x) are obtained by running

the one-dimensional simulations until t = 4; hb(x) has a slumped dome-shaped profile

with a steep front at its leading edge, with a fluid hump. We impose a transverse

perturbation with wavenumber k = 3 and amplitude A = 0.02 on both hb(x) and θb(x)

(see Fig. 6.12(a, d)). We observe that the both the base states lose their stability to a

fingering instability. The cutoff wavenumber is k ≈ 15 for this case. The growth rate

is much higher than the case shown in Fig. 6.8 with a lower value of α = 2.

Figure 6.12: Evolution of h(x, y, t) (a− c) and θ(x, y, t) (d− f) for time, t = 0 (a, d),
t = 10 (b, e) and t = 30 (c, f) with S = 1 (inclination angle approximately 6o),
Pe = 106, α = 4, a = 300, b = 300, k = 3 and A = 0.02.
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6.3 Conclusions

In this chapter, we have investigated numerically the transverse linear stability of the

one-dimensional solutions (the base states) for h and θ obtained in Chapter 4. We have

successfully shown the existence of a new fingering instability in h and θ in Pe, a, b

and α parameter space.

We have identified the mechanism underlying this fingering instability, based on a

thermo-viscous mechanism. This involves a delicate coupling between the thermal and

flow fields. A temperature difference across the length of a finger results in a viscosity

contrast there. This leads to a difference in mobility across the finger, resulting in

lengthening of the finger. h is also higher at the tip compared to the end of the finger

which results in the rate of cooling to be less at the tip compared to the ends. This

maintains the temperature difference across the finger which sustains the growth of

the finger. Our results show that the increased mobility for S > 0 due to horizontal

gravity enhances this fingering instability. Previous stability studies by Sansom et al.

[76, 53, 77] and Balmforth et al. [7, 11] have attempted to simulate this instability for

spreading on a horizontal plane (S = 0) but could only identify a transient instability.

Based on this thermo-viscous mechanism we obtain a band of unstable wavenumbers;

the much higher wavenumbers are damped out by diffusion in h and θ. The band of

unstable wavenumbers and their growth rates depend on the parameter values of Pe,

a, b and α through the corresponding base state. We have shown that a necessary

condition for instability to occur is based on the characteristic shape of the base state.
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Pancake-shaped profiles (for S = 0) and slumped dome-shaped profiles with a hump

(for S > 0) are shown to become linearly unstable while dome shapes (for S = 0)

and slumped domes without a hump (for S > 0) are shown to be linearly stable. It is

uncertain what might happen near the boundaries between the two different shapes.

It is worth noting that a similar fluid hump profile is observed in drops spreading

down an inclined surface under isothermal conditions and has been shown to be a

necessary condition for linear instability (see Bertozzi & Brenner [17]). Surface tension

and surface tension gradients are important in such flow scenarios. We observe that

the growth rates and the band of unstable wavenumbers increase with α. Increasing

α, enhances the coupling between the thermal and the flow fields and we expect a

more dramatic fingering instability. We would need to determine numerical dispersion

relationships between the growth rate and the wavenumber to better understand the

dependence on the parameters.

In conclusion, we have clearly identified a thermo-viscous fingering instability for non-

isothermal spreading down an inclined substrate. While previous studies by Sansom et

al. [76, 53, 77] and Balmforth et al. [7, 11] have attempted to show their existence, ours

is the first study to successfully simulate the fingering instability. Additional analysis

is required to fully characterise this instability. This will be reported in a paper which

is being currently compiled for submission to the Journal of Fluid Mechanics.



Chapter 7

Conclusions and future work

In this thesis we have theoretically modelled the spreading of a hot liquid dome under-

going cooling as it flows down an inclined substrate due to gravity. This model incor-

porates non-Newtonian and viscoplastic behaviour, a temperature-dependent viscosity

and heat transfer boundary conditions at the dome’s free surface and the underlying

substrate. These key ingredients are essential to capture the strong coupling between

the flow and cooling inherent in these flows. We have combined numerical simulations

and similarity solutions to perform an extensive parameter study on the influence of key

parameters on the evolution of the dome’s free surface and spreading behaviour, such

as the apparent viscosity, yield stress, Péclet number, temperature-viscosity coupling

constant and the surface and substrate heat transfer coefficients.

The influence of non-Newtonian and viscoplastic effects in the context of this problem

under isothermal conditions have been well studied (Balmforth et al. [5, 9]). Our

251
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contribution has been in identifying new similarity solutions for general volume con-

straints and these are validated against numerical experiments. We have shown that

for a constant flowrate from a source or vent, there exists a critical value of the source

flowrate beyond which the dome will grow in height significantly. This prediction could

be linked to catastrophic events related to dome collapse.

Our results for the non-isothermal spreading down an inclined plane provide new in-

sights into some important physical mechanisms that were not accessible from previous

studies (Sansom et al. [76, 53, 77] and Balmforth et al. [7, 11]). Previous studies have

only considered spreading over a horizontal plane. We have shown that enhanced mo-

bility due to the inclination of the substrate leads to the existence of a fluid hump

overriding the steep front at the leading edge of the dome. We have also been able to

characterise the variety of one-dimensional free surface shapes in parameter space. This

was useful when we considered their stability to transverse perturbations. The main

highlight of this thesis is in identifying a new fingering instability and the underlying

thermo-viscous mechanism. While previous studies by Sansom et al. [76, 53, 77] and

Balmforth et al. [7, 11] have attempted to show their existence, ours is the first study

to successfully simulate the fingering instability. The preliminary work undertaken

here provides the basis for doing a thorough theoretical analysis of the instability and

for exploring the nonlinear stability of the flow.

There are limitations to this study. Our non-Newtonian and viscoplastic study is under

isothermal conditions. In reality, the yield stress (and to some extent the power law
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index) strongly depend on temperature. Balmforth et al. [7, 11] have considered this

temperature dependence on spreading over a horizontal plane. The interaction between

the pseudo-plug region (which starts forming from the surface) and surface cooling is

important when the cooling boundary layer at the surface advances into the plug region,

otherwise the plug shields the dome from cooling. As part of future work, we would

need to extend our model of spreading down an inclined plane to include temperature-

dependent non-Newtonian effects and their influence on cooling. Probably more than

temperature-dependent non-Newtonian effects, a key ingredient missing in this work is

phase transition due to solidification. It is likely that the results reported here might

not be applicable when solidification by the formation of a surface crust is taken into

account. We would need to include solidification effects into any future extensions of

our model. The lubrication approximation is not valid where there are steep changes in

the fluid height. We see that at the leading edge of the spreading front there are large

gradients, in particular, in the cases where the leading edge develops a fluid hump.

In addition, we observe in Figs. 5.25, 5.26, 5.27 and 5.33 for the cases where the

flux through the vent is large or the bi-viscosity model is used with a large viscosity

contrast, that the vertical length scale of the fluid hump is comparable to the horizontal

length scale which question the validity of the lubrication model in these scenarios. To

test the validity of our results full numerical simulations of the Navier-Stokes equations

and boundary conditions would need to be undertaken using, for example, boundary

element or finite element methods.
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In conclusion, the work presented in this thesis provides new theoretical insight into

the flow-cooling coupling mechanism that is inherent in spreading of hot flows un-

dergoing cooling. This insight would form the basis for future developments of this

model to incorporate additional effects mentioned above and to transfer knowledge to

experimentalists and geophysicists interested in characterising such flows.



Bibliography

[1] D.J. Acheson. Elementary fluid dynamics. Oxford University Press, 1990.

[2] V.S. Ajaev and D.A. Willis. Thermocapillary flow and rupture in films of molten

metal on a substrate. Phys. Fluids, 15(10):3144–3150, 2003.

[3] C. Ancey. Plasticity and geophysical flows: A review. J. Non-Newtonian Fluid

Mech., 142:4–35, 2007.

[4] N. Bagdassarov and H. Pinkerton. Transient phenomena in vesicular lava flows

based on laboratory experiments with analogue materials. Journal of Volcanology

and Geothermal Research, 132:115–136, 2004.

[5] N.J. Balmforth, A.S. Buridge, R.V. Craster, J. Salzig, and A. Shen. Visco-plastic

models of isothermal lava domes. J. Fluid Mech., 403(37-65), 2000.

[6] N.J. Balmforth and R.V. Craster. A consistent thin-layer theory for Bingham

Plastics. J. Non-Newtonian Fluid Mech., 84:65–81, 1999.

[7] N.J. Balmforth and R.V. Craster. Dynamics of cooling domes of viscoplastic fluid.

J. Fluid Mech., 422:225–248, 2000.

255



256

[8] N.J. Balmforth and R.V. Craster. Geomorphological Fluid Mechanics, volume 582,

chapter 2, pages 34–51. Springer - Verlag Berlin Heidelberg, 2001.

[9] N.J. Balmforth, R.V. Craster, A.C. Rust, and R. Sassi. Viscoplastic flow over an

inclined surface. J. Non- Newtonian Fluid Mech., 139:103–127, 2006.

[10] N.J. Balmforth, R.V. Craster, and R. Sassi. Shallow viscoplastic flow on an inclined

plane. J. Fluid Mech., 470:1–29, 2002.

[11] N.J. Balmforth, R.V. Craster, and R. Sassi. Dynamics of cooling viscoplastic

domes. J. Fluid Mech., 499:149–182, 2004.

[12] N.J. Balmforth, I.A. Frigaard, and G. Ovarlez. Yielding to stress: Recent devel-

opments in viscoplastic fluid mechanics. J. Non-Newtonian Fluid Mech., 46:4–35,

2014.

[13] D. Bercovici. A theoretical model of cooling viscous gravity currents with

temperature-dependent viscosity. Geophys. Res. Lett., 21:1177–1180, 1994.

[14] D. Bercovici and J. Lin. A gravity current model of cooling mantle plume

heads with temerature-dependent bouyancy and viscosity. J. Geophys. Res.,

101(0):3291–3309, 1996.

[15] N. Bernabeu, P. Saramito, and C. Smutek. A new shallow approximation for

tridimenesional non- isothermal viscoplastic lava flows. unpublished, August 2014.

[16] N. Bernabeu, P. Saramito, and C. Smutek. Numerical modeling of non- Newtonian



257

viscoplastic flows: Part II. Viscoplastic fluids and general tridimenesional topogra-

phies. International Journal of Numerical Analysis and Modeling, 11(1):213–228,

2014.

[17] A. Bertozzi and M. Brenner. Linear stability and transient growth in driven

contact lines. Phys. Fluids, 9:530539, 1997.

[18] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager. Dynamics of

Polymeric Liquids, volume Volume 2: Kinetic Theory. John Wiley and Sons Inc.,

2 edition, 1987.

[19] S. Blake. Viscoplastic Models of Lava Domes, pages 88–126. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1990.

[20] S. Blake and B.C. Bruno. Modelling the emplacement of compound lava flows.

Earth and Planetary Science Letters, 184:181–197, 2000.

[21] L. Bourgouin, H-B. Muhlhaus, A.J. Hale, and A. Arsac. Studying the influence

of a solid shell on lava dome growth and evolution using the level set method.

Geophysical Journal International, 170:1431–1438, 2007.

[22] M. Bunk and J.R. King. Spreading melts with basal solidification. Z. Angew.

Math. Mech., 83(12):820–843, 2003.

[23] H.S. Carslaw and J.C. Jaeger. Conduction of heat in solids. Oxford University

Press, 1980.



258

[24] K. V. Cashman, H. Pinkerton, and P. J. Stephenson. Long lava flows. J. Geophys.

Res., 103:27281–27289, 1998.

[25] R.P. Chhabra and J.F. Richardson. Non- Newtonian Flow and Applied Rheology:

Engineering Applications. Elsevier Ltd., 2nd edition, 2008.

[26] P. Coussot. Mudflow rheology and dynamics. In IAHR Monograph Series.

Balkema, 1997.

[27] R.V. Craster and O.K. Matar. Dynamics and stability of thin liquid films. Rev.

Mod. Phys., 81:1131–1198, 2009.

[28] T.R.H Davies. Large debris flows: a macro-viscous phenomenon. Acta Mechanica,

63:161–178, 1986.

[29] S. Diniega, S.E. Smrekar, S. Anderson, and E Stofan. The influence of

temperature-dependent viscosity on lava flow dynamics. J. Geophys. Res. Earth

Surf, 118:1516–1532, 2013.

[30] M. Dragoni. Physical modelling of lava flows. Annali Di Geofisica, 15(5):1179–

1187, 1997.

[31] N. Dubash, N.J. Balmforth, A.C. Slim, and S. Cochard. What is the final shape

of a viscoelastic slump? J. Non-Newtonian Fluid Mech., 158:91–100, 2009.

[32] P. Ehrhard and S.H. Davis. Non-isothermal spreading of liquid drops on horizontal

plates. J. Fluid Mech., 229(0):365–388, 1991.



259

[33] G. Engel, G. Fieg, H. Massier, U. Stegmaier, and W. Schutz. Kats experiments to

simulate corium spreading in the epr core catcher concept. In H. Alsmeyer, editor,

Proceedings of the OECD Workshop on Ex-Vessel Debris Coolability, pages 148–

155. Forschungszentrum Karlsruhe, 2000.

[34] J.H. Fink and R.W. Griffiths. Radial spreading of viscous-gravity currents with

solidifying crust. J. Fluid Mech., 221:485–509, 1990.

[35] J.H. Fink and R.W. Griffiths. Morphology eruption rates, and rheology of lava

domes: Insights from laboratory models. J. Fluid Mech., 84:125–143, 1998.

[36] A.C. Fowler. A mathematical analysis of glacier surges. SIAM J. Appl. Maths.,

49:246–263, 1989.

[37] A.C. Fowler. Modelling ice sheet dynamics. Geophys. Astrophys. Fluid Dyn.,

63:29–65, 1989.

[38] F. Garel, E. Kaminski, S. Tait, and A. Limare. Analogue study of the influence

of solidification on the advance and surface thermal signature of lava flows. Earth

and Planetary Science Letters, 396:46–55, 2014.

[39] R. W. Griffiths and K.C. Kerr. Coupling of cooling, solidification and gravity-

driven flow. In Procedia IUTAM, volume 15, pages 165–171. Elsevier, 2015. IU-

TAM Symposium on Multiphase flows with phase change: challenges and oppor-

tunities, Hyderabad, India (December 08 December 11, 2014).



260

[40] R.W. Griffiths. The dynamics of lava flows. Annu. Rev. Fluid Mech., 32:477–518,

2000.

[41] R.W. Griffiths, R.C. Kerr, and K.V. Cashman. Patterns of solidification in channel

flows with surface cooling. J. Fluid Mech., 496:33–62, 2003.

[42] A.J. Hale. Lava dome growth and evolution with an independently deformable

talus. Geophysical Journal International, 174(1):391–417, 2008.

[43] D.R. Hewitt and N.J. Balmforth. Thixotropic gravity currents. J. Fluid Mech.,

727:56–82, 2013.

[44] X. Huang and M.H. Garcia. A Herschel-Bulkley model for mud flow down a slope.

J. Fluid Mech., 374:305–333, 1998.

[45] G. Hulme. The interpretation of lava flow morphology. Geophys. J. R. Astron.

Soc., 39:361–383, 1974.

[46] H.E. Huppert. Flow and instability of a viscous gravity current down a slope.

Nature, 300(2), December 1982.

[47] H.E. Huppert. The propagation of two-dimensional and axisymmetric viscous

gravity currents over a rigid horizontal surface. J. Fluid Mech., 121:43–58, 1982.

[48] H.E. Huppert. The intrusion of fluid mechanics into geology. J. Fluid Mech.,

173:557–594, 1986.



261

[49] H.E. Huppert. Gravity currents: a personal perspective. J. Fluid Mech., 554:299–

322, 2006.

[50] R.M. Iverson. Lava domes modeled as brittle shells that enclose pressurized

magma. In J.H. Fink, editor, Lava Flows and Domes: Emplacement Mechanisms

and Hazard Implications, volume 2, pages 47–69. Springer, 1990.

[51] A.M. Johnson. Physical Processes in Geology. Freeman, San Francisco, 1970.

[52] J. P. Kauahikaua, K. V. Cashman, T. N. Mattox, K. Hon, C. C. Heliker, M. T.

Mangan, and C. R. Thornber. Observations on basaltic lava streams in tubes from

kilauea volcano, Hawaii. J. Geophys. Res., 103:27303–27324, .

[53] J.R. King, D.S. Riley, and A. Sansom. Gravity currents with temperature-

dependent viscosity. Comput. Assist. Mech. Eng. Scl., 7(1):251–277, 2000.

[54] J.R. Lister. Viscous flows down an inclined plane from point and line sources. J.

Fluid Mech., 242:631–653, 1992.

[55] K.F. Liu and C.C. Mei. Slow spreading of a sheet of Bingham fluid on an inclined

plane. J. Fluid Mech., 207:505–529, 1989.

[56] K.F. Liu and C.C. Mei. Approximate equations for the slow spreading of a thin

sheet of Bingham plastic fluid. Phys. Fluids A, 2:30–36, 1990.

[57] A. W Lyman and R.W. Kerr. Effect of surface solidification on the emplacement

of lava flows on a slope. J. Geophys. Res., 111:B05206, 2006.



262

[58] A. W Lyman, R.W. Kerr, and R.W. Griffiths. The effects of internal rheology and

surface cooling on the emplacement of lava flows. J. Geophys. Res., 110:B08207,

2005.

[59] A. W Lyman, E. Koenig, and J.H. Fink. Predicting yield strengths and effusion

rates of lava domes from morphology and underlying topography. J. Volcanol.

Geotherm. Res., 129:125–138, 2004.

[60] F.A. Morrison. Understanding rheology. Oxford University Press, USA, 2001.

[61] K. W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equa-

tions. Cambridge University, 1994.

[62] T. G. Myers. Surface tension driven thin film flows. In The Mechanics of Thin

Film Coatings. Wiley, 1996.

[63] T.G. Myers. Application of non-Newtonian models to thin film flow. Phy. Rev.

E, 72:066302, 2005.

[64] T.G. Myers, J. Charpin, and S. J. Chapman. The flow and solidifiction of a thin

fluid film on an arbitrary three-dimensional surface. Phys. Fluids, 14:2788–2803,

2002.

[65] J.F. Nye. Mechanics of glacier flow. J. Glaciol., 2:82–93, 1952.

[66] H. Ockendon and J.R. Ockendon. Viscous flows. Cambridge University Press,

August 1995.



263

[67] A. Oron, S. H. Davis, and S. G. Bankoff. Long-scale evolution of thin liquid films.

Rev. Mod. Phy., 69:931–980, 1997.

[68] A.A. Osiptsov. Steady film flow of a highly viscous heavy fluid with mass supply.

Fluid Dynamics, 39:47–60, 2003.

[69] A.A. Osiptsov. A self-similar solution to the problem of lava dome growth on an

arbitrary conical surface. Fluid Dynamics, 38:846–853, 2004.

[70] D.I. Osmond and R.W. Griffiths. The static shape of yield strength fluids slowly

emplaced on slopes. J. Geophys. Res., 106(16):241–250, 2001.

[71] M.F. Perutz. Glaciology - the flow of glaciers. The Observatory, 70:64–65, 1950.

[72] H. Pinkerton and G. Norton. Rheological properties of basaltic lava at sub- liquidus

temperatures: Laboratory and field mesurements on lavas from Mount Etna. J.

Volcan. Geotherm. Res., 1995.

[73] D. Pritchard, B.R. Duffy, and S. Wilson. Shallow flows of generalised Newtonian

fluids on an inclined plane. J. Eng. Maths., 94(1):115–133, 2014.

[74] J.C. Robertson and R.W. Kerr. Solidification dynamics in channeled viscoplastic

lava flows. J. Geophys. Res., 117:B07206, 2012.

[75] S.E.H. Sakimoto and M.T. Zuber. The spreading of variable-viscosity axisymmet-

ric radial gravity currents: applications to the emplacement of Venusian “pancake”

domes. J. Fluid Mech., 301:65–77, 1995.



264

[76] A. Sansom. Spreading gravity currents with temperature-dependent viscosity. PhD

thesis, University of Nottingham, 2000.

[77] A. Sansom, J.R. King, and D.S. Riley. Degenerate-diffusion models for the spread-

ing of thin non-isothermal gravity currents. J. Eng. Maths, 48(1):43–68, 2004.

[78] G. D. Smith. Numerical Solution of Partial Differential Equations: Finite Differ-

ence Methods. Macmillan, third edition edition, 1985.

[79] E.A. Vedeneeva. Lava spreading during volcanic eruptions on the condition of

partial slip along the underlying surface. Fluid Dynamics, 50(2):203–214, 2015.

[80] M. V.Stasiuk, C. Jaupart, and R. S. J. Sparks. Influence of cooling on lava-flow

dynamics. J. Geol., 21(0):335–338, 1993.

[81] D.P. Wall and S.K. Wilson. The linear stability of channel flow of fluid with

temperature-dependent viscosity. J. Fluid Mech., 323:107–132, 1996.

[82] S.K. Wilson and B. R. Duffy. On the gravity-driven draining of a rivulet of

fluid with temperature-dependent viscosity down a uniformly heated or cooled

substrate. J. Eng. Math., 42:349–372, 2002.

[83] S.K. Wilson and B. R. Duffy. Strong temperature-dependent-viscosity effects on

a rivulet draining down a uniformly heated or cooled slowly varying substrate.

Phys. Fluids, 15:827–840, 2003.

[84] J.J. Wylie and J.R. Lister. The effect of temperature-dependent viscosity on flow



265

in a cooled channel with application to basaltic fissure eruptions. J. Fluid Mech.,

305:239–261, 1995.

[85] A. Zadrazil, F. Stepanek, and O.K. Matar. Droplet spreading, imbibition and

solidification on porous media. J. Fluid Mech., 562:1–33, 2006.



266

Appendix 1

In order to solver Eq. (2.34b) numerically, we need to determine a solution of Eq.

(2.34b) in the neighborhood of the point z = 1 using Frobenius method. consider Eq.

(2.34b)which can be written as:

3φ̃2φ̃2
z + φ̃3φ̃2

zz +
1

5
(3α + 1)zφ̃z −

1

5
(2α− 1)φ̃ = 0. (7.1)

Consider Frobenius method

φ̃ =
∞∑
k=0

ak(1− z)k+r = a0(1− z)r + a1(1− z)1+r + ..., (7.2)

where k, r are constant. Substituting in Eq. (7.1) and ignoring high order terms, we

obtain

3
[
a2

0(1− z)2r + 2a0a1(1− z)2r+1
] [
a2

0r
2(1− z)2r−2 + 2a0a1(1− z)2r−1

]
+[

a3
0(1− z)34 + 3a3

0a1(1− z)
] [
a0r(r − 1)(1− z)r−2 + a1r(r + 1)(1− z)r−1

]
−

1

5
(3α + 1)z

[
a0r(1− z)r−1 + a1(r + 1)(1− z)r

]
−

1

5
(2α− 1) [a0(1− z)r + a1(r + 1)] = 0. (7.3)

Assuming (1−z)r−1 ∼ (1−z)r−1 implies r = 1/3, substituting in Eq. (7.3 ), and solvrd
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for a0 we obtain

a0 =

(
3

5
(3α + 1)

)1/3

, (7.4)

in the same way we obtain

a1 =
3a0(2α− 1)

24(3α + 1)
. (7.5)

Substituting Eqs. (7.4) and (7.5)into Eq. (7.2), we obtain

φ̃(z) =

(
3

5
(3α + 1)

)1/3

(1− z)1/3

[
1− 3(2α− 1)

24(3α + 1)
(1− z) +O(1− z)2

]
. (7.6)

Appendix 2

Consider Eq. (3.49a)

[
n(α− 1)

2n+ 1
φ− α(n+ 1) + n

2n+ 1
ξφξ

]
=
[
S

1
nφ

1
n

+2
]
ξ
. (7.7)

Integrating with respect to ξ and using Eq. (3.49b) for ξNT = 0 gives

α(n+ 1) + n

2n+ 1
ξNφN − α = S

1
n

(
φ

1
n

+2

N − φ
1
n

+2

0

)
. (7.8)

If S
1
nφ

1
n

+2

0 = α, this implies

φ0 =
( α

S1/n

) n
2n+1

, (7.9)
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and if α(n+1)+n
2n+1

ξNφN = S
1
nφ

1
n

+2

N , implies

φN =

(
ξN
S1/n

)(
α(n+ 1) + n

2n+ 1

) n
n+1

. (7.10)

Now, from Eq. (3.51) for ξT = 0, we have

ξ =

(
2n+ 1

n

)
S1/n

(
φ

(n+1)
n

N − φ
(2n+1)
(1−α)n
0 φ

−α(n+1)−n
(1−α)n

N

)
. (7.11)

Substituting Eq (7.10) into the above equation, we obtain

ξN =

(
α(n+ 1) + n

(2n+ 1)S1/n

)
ξN − φ

2n+1
(1−α)n
0

[(
ξN
S1/n

) n
n+1
(
α(n+ 1) + n

2n+ 1

) n
n+1

]−(α(n+1)+n)
(1−α)n

.

(7.12)

To simplify this equation, we setB =
(
α(n+1)+n

(2n+1)S1/n

)
, A = φ

2n+1
(1−α)n
0

[(
1

S1/n

) n
n+1

(
α(n+1)+n

2n+1

) n
n+1

]
,

and C = 1
( 2n+1

n
)S1/n , then Eq. (7.12) can be written as:

CξN = BξN − Aξ
α(n+1)+n
(n+1)(α−1)

N , (7.13)

which implies

ξN =

(
B − C
A

) α(n+1)+n
(n+1)(α−1)

. (7.14)

Hence,

ξN =
(2n+ 1)

(n+ 1)φ0

(
α(n+ 1)

α(n+ 1) + n

)α(n+1)+n
(2n+1)

. (7.15)
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Now, substituting above Eq. into (7.10), we obtain

φN =

(
α(n+ 1) + n

α(n+ 1)

)n(1−α)
(2n+1)

φ0. (7.16)
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