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Abstract 

Placental membrane-derived mesenchymal stem cells (MSCs), with the advantages of being 

non-invasive and having fewer ethical issues, are a promising source for cell therapy. 

Gestational diabetes (GDM) alters the uterine environment and may affect the therapeutic 

potential of MSCs derived from placenta. Therefore, we evaluated the biological properties of 

amniotic (AMSCs) and chorionic membrane MSCs (CMSCs) from human GDM placenta in 

order to explore their therapeutic potential. In comparison of GDM-/Healthy- CMSCs and 

AMSCs, the immunophenotypes and typical stellate morphology of MSC were similar in 

CMSCs irrespective of disease state while the MSC morphology in GDM-AMSCs was less 

evident. GDM- and Healthy- CMSCs displayed an enhanced proliferation rate and tri-lineage 

differentiation capacity compared with AMSCs. Notably, GDM-CMSCs had a significantly 

increased adipogenic ability than Healthy-CMSCs accompanied by increased transcriptional 

responsiveness of PPARγ and ADIPOQ induction. The secretome effect of Healthy- and 

GDM- CMSCs/AMSCs by using conditioned media and coculture experiments, suggests that 

GDM- and Healthy- CMSCs provided an equivalent immunoregulatory effect on suppressing 

T-cells activation but a reduced effect of GDM-CMSCs on macrophage regulation. However, 

Healthy- and GDM- CMSCs displayed a superior immunomodulatory capacity in regulation 

of both T-cells and macrophages than AMSCs. In summary, we highlight the importance of 

the maternal GDM intrauterine environment during pregnancy and its impact on 

CMSCs/AMSCs proliferation ability, CMSCs adipogenic potential, and macrophage 

regulatory capacity.  

 

Keywords: Gestational diabetes mellitus (GDM), placental membrane, amniotic MSC, 

chorionic MSC, adipogenesis, immunomodulation 
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Abbreviations  

ADIPOQ, adiponectin; AMSCs, amniotic mesenchymal stem cells; CCL-17, chemokine (C-C 

motif) ligand 17; CMSCs, chorionic mesenchymal stem cells; CXCL-8, chemokine (C-X-C 

motif) ligand 8; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GDM, gestational 

diabetes mellitus; MRC1, mannose receptor C-type 1; MSC, mesenchymal stem cell; OD, 

optical density; PHA, phytohaemagglutinin; PMA, phorbol 12-myristate 13-acetate; PPARG, 

peroxisome proliferator activated receptor gamma 

 

Introduction  

Safe, effective, and reliable cell sources remain a major issue for use in regenerative 

medicine clinical applications. Bone marrow mesenchymal stem cells (MSCs) have now been 

widely and successfully used in clinical applications for a number of decades (Deans and 

Moseley, 2000). However, the limitations of adult stem cells have caused concerns, including 

their limited expansion capacities, scarcity within bone marrow, and the invasive and labour 

intensive isolation process which can associate with an increased risk of infection for the 

donor (Pittenger et al., 1999). Thus far, MSC derivation has been reported from a wider range 

of adult tissues including; fat, dental, and lung tissues and peripheral blood (Mimeault and 

Batra, 2006). The human placenta is also a plentiful and alternative source of stem cells 

(Pipino et al., 2013). 

 

The human placenta plays a vital role in fetal development and maternal health by 

regulating the metabolic interaction between the mother and fetus. As the intrauterine 

environment is closely related to placental state, pregnant complications have been associated 

with abnormal placentation (Hsiao and Patterson, 2012; Kim et al., 2014b). Gestational 

diabetes mellitus (GDM) is a common complication of pregnancy affecting up to 13% of all 
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pregnancies worldwide (Zhu and Zhang, 2016). It is defined as glucose intolerance resulting 

in hyperglycaemia with onset during pregnancy, and shares similar features to type 2 diabetes 

(Buchanan et al., 2007). Its prevalence is increasing due to changing pregnancy population 

demographics, such as maternal age, body mass index and changing dietary habits (Ferrara, 

2007; Hunt and Schuller, 2007). GDM affects both the mother and fetus during pregnancy, 

where maternal hyperglycaemia increases fetal weight and the risk of macrosomia (Kc et al., 

2015). Although GDM resolves following delivery, women who had a history of GDM 

remain at an increased risk of developing type 2 diabetes in later life. Similarly, offspring 

from GDM pregnancies have a higher risk of developing type 2 diabetes in adulthood 

(Bellamy et al., 2009; Boney et al., 2005).  

 

Given the environmental differences between GDM and healthy pregnancies, it is likely 

that MSCs derived from placentas will be affected by pregnancy complications. For example, 

a recent study reported the increased proportion of haematopoietic stem cells in cord blood of 

GDM pregnancy new-borns (Hadarits et al., 2016). In addition, perivascular stem cells from 

GDM pregnancy umbilical cords had lower cell yields and proliferative rate when compared 

to healthy pregnancies (An et al., 2017). Environmental factors can cause significant effects 

on cell populations and behaviours; therefore, understanding the biological properties of stem 

cells is important before applying these cells in clinical applications. 

 

Placental stem cells with the ease of access, reduced ethical conflicts, and reduced age-

acquired DNA damage (Tsagias et al., 2011), are phenotypically similar to bone marrow 

derived MSCs, including plastic adhesion, immunophenotype, and lineage differentiation 

potential. In addition, it has also been suggested that the placental MSC provides a substantial 

expansion potential and delayed senescence (Brooke et al., 2008; Hass et al., 2011). The 
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placental membranes are formed from the extraembryonic mesoderm, and consist of the 

chorionic and the amniotic membranes. The chorionic (maternal side) and amniotic (fetal side) 

membrane are loosely connected together to line the amniotic cavity enclosing the fetus, from 

where chorionic mesenchymal stem cells (CMSCs) and amniotic mesenchymal stem cells 

(AMSCs) are isolated, respectively (Parolini et al., 2008). The amniotic membrane itself is 

used widely as a biomaterial for the treatment of burns, skin, and corneal transplantation, due 

to its anti-inflammatory, anti-microbial, anti-scarring, and anti-angiogenic properties 

(Mamede et al., 2012). The AMSCs present in the amniotic membrane help in regenerating 

damaged tissues via regulation of the immune response to facilitate transplantation and 

associated reductions in inflammation (Kim et al., 2014a). The chorionic membrane, also a 

rich source of MSC, remains poorly understood. 

 

Considering the importance of environmental impacts on MSC development, 

understanding fundamental biological properties is an essential first step to evaluate the 

therapeutic potential of each type of MSCs. In this study, explored the differences in the 

biological characteristics between CMSCs and AMSCs as well as the comparisons between 

GDM and Healthy pregnancies in order to provide further mechanistic understanding of 

GDM-/Healthy- CMSCs and AMSCs. 

 

Materials and methods 

Human tissue samples 

All placentas in our research were collected from Royal Stoke University Hospital, 

UK, after obtaining Research Ethics Committee and Health Research Authority approvals 

(Reference 15/WM/0342). Women undergoing Caesarean sections provided written informed 

consent to donate their placenta. Term placenta were collected from healthy donors (n=9) and 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

donors with GDM (n=9). The CMSCs/AMSCs isolation process was performed within an 

hour of collecting the placenta from Caesarean section, using the protocol by Marongiu et al 

(Marongiu et al., 2010).  

 

Isolation and culture of CMSCs/AMSCs and immune cells 

Amniotic membrane was manually peeled from the underlying chorionic membrane. 

As chorionic membrane is attached to maternal tissues, a removal of decidual tissue was 

required. The membranes were washed with PBS to remove blood clots and then placed in 

0.05% trypsin/EDTA solution at 37°C for 1 h. Membranes were then washed with PBS and 

followed by digestion with Collagenase type IV (Thermo Scientific, USA) at 37°C for 1-1.5 

h. During the digestion process, the membranes were checked every 15 mins and the 

incubation was stopped once the membranes were completely dissolved. The mobilised cells 

were  collected by centrifugation at 200g for 5 min, resuspended in Dulbecco’s Modified 

Eagle’s Medium (DMEM; Lonza, UK) consisting of 1% L-glutamine, 10% fetal bovine 

serum, 1% Penicillin-Streptomycin, and 1% non-essential amino acids (NEAA) and seeded at 

the density of 110
5
 cells per cm

2
. The immune cells lines, Jurkat and THP1 were obtained 

from Institute of Science and Technology in Medicine (Keele University, UK) and cultured in 

RPMI 1640 medium (Lonza, UK) supplemented with 10% fetal bovine serum and 1% 

Penicillin-Streptomycin. 

 

Characterisation of CMSCs and AMSCs 

CMSCs and AMSCs derived from GDM and healthy placenta were characterised 

through morphology analysis, cell surface marker expression by immunophenotypic analysis, 

and in vitro osteogenic, adipogenic and chondrogenic differentiation. 

Cell morphology analysis 
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Changes in cell morphology were detected by Olympus microscope and images were 

processed with Image-Pro Insight software. To analyse the cell length and surface area, 5 

images were taken from each sample from passage 0-2. Single cells that appeared clearly 

separated were used for analysis by Image J. Cell length was measured of the longest axis 

from the cell periphery. 

Immunophenotyping analysis 

Cells were harvested at passage 3 for analysis. Ten phycoerythrin (PE) conjugated 

antibodies (CD73, CD90, CD105, CD14, CD19, CD34, CD45, and HLA, IgG1 and IgG2 

(Miltenyi Biotec, Germany) were used– following the manufacturer’s recommended antibody 

volumes. MSCs were characterised using flow cytometry (Beckman Coulter Cytomics FC 

500 and CXP software, USA) and flow cytometry data were processed with Flowing 

Software 2. 

Trilineage differentiation 

Cells at the second passage were seeded and cultured in standard culture condition. 

Following cell adherence, the medium was replaced with a differentiation medium, which 

was changed every 3 days during the 21-day culture.  

To induce osteogenic differentiation and adipogenic differentiation, 2×10
4
 cells/well 

were seeded in 24-well plate and cultured in differentiation medium. Both differentiation 

medium used contained DMEM with 10% FBS, 1% L-glutamine, and 1% NEAA. For 

osteogenesis, medium was supplemented with 50 µM ascorbic acid, 10 mM β-glycerol 

phosphate, and 0.1 µM dexamethasone. For adipogenesis, medium was supplemented with 

0.5 µM dexamethasone, 0.5 mM isobutylxanthine, 10 µg/ml insulin, and 100 µM 

indomethacin. To induce chondrogenic differentiation, 1 x 10
5
 hMSC were resuspended in 8 

μl of medium and dropped in the centre of the well as a micromass. After 1-hour incubation 

in the standard culture condition to allow cells to adhere with the culture surface, 
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micromasses were then replenished with chondrogenic differentiation media, consisting of 

DMEM with 1% FBS, 1% L-glutamine, 1% NEAA and supplemented with 1% ITS, 0.1 µM 

dexamethasone, 50 µM ascorbic acid, 40 μg/mL L-proline, 1% sodium pyruvate, and 10 

ng/mL transforming growth factor 3 (TGF-3; Peprotech, UK). To evaluate the trilineage 

differentiation, the mineral deposition of differentiated osteoblasts was detected by Alizarin 

red; lipid accumulation in adipocytes was stained with Oil-Red-O; and proteoglycan-rich 

matrix accumulation in chondrocytes was detected by Alcian Blue. All the chemicals used 

were obtained from Sigma-Aldrich, USA. 

 

RNA extraction and real-time PCR 

Total RNA was isolated by Trizol Reagent (Invitrogen, USA), according to the 

manufacturer’s instruction. Complementary DNA was prepared from 1 μg of total RNA using 

High-Capacity cDNA Reverse Transcription Kit (Thermo Scientific, USA). Gene expression 

analysis was evaluated by real-time PCR using QuantiFast SYBR Green PCR Kit (Qiagen, 

Germany). Primer sequences for each gene are shown in Table 2. The relative expression 

levels of mRNA were normalized to GAPDH and the fold difference was calculated using the 

ΔΔCt method compared with controls. 

 

Cell growth and proliferation 

Cell numbers were counted every 2 days and the doubling time was calculated. 

Equation for doubling time = (T2-T1) × log 2/ (log N2 – log N1), where: T1, final time 

(hours); T2, initial time; N1, initial cell numbers; and N2, final cell numbers. Cell 

proliferation was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay (Sigma, USA), according to the manufacturer’s instruction. The absorbance of 

the samples was read at wavelengths of 570 nm. The results are presented as the mean ± SD 
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of triplicates, taking time as the horizontal axis and Optical density (OD) as the longitudinal 

axis. Cell viability was examined by using 0.4% trypan blue (Sigma) exclusion for living 

cells. The percentage of cell death was calculated by counting blue-coloured cells (dead cell) 

from a total number of 100 cells in a haemocytometer.  

 

PMA-THP1/MSC co-culture 

The effects of CMSCs/AMSCs on macrophage to M1 or M2 differentiation were 

evaluated by a co-culturing system. THP-1 cells were pre-treated with 50 ng/ml phorbol 12-

myristate 13-acetate (PMA; Sigma) for 24 h, washed with PBS to remove PMA and cultured 

in 50% RPMI and 50% DMEM, containing 10% FBS for 24 h to induce differentiation to 

macrophage. To co-culture PMA-THP1 with CMSCs or AMSCs, both cells were physically 

separated by cell-culture inserts (0.4 μM pore size, Millipore, Germany). PMA-THP1 were 

seeded at a density of 5 × 10
5
 cells/well to 12-well plates and treated with 20 ng/ml INFγ and 

10 pg/ml lipopolysaccharide (LPS) to induce M1 macrophage, 20 ng/ml IL-4 for M2 

macrophage or co-cultured with 5 × 10
5
 CMSCs/AMSCs. PMA-THP1 cells were placed in 

the lower layer and CMSCs/AMSCs were added to the upper layer. After co-culturing for 24 

h, RNA was extracted for real-rime PCR and the supernatants were collected for Elisa assay. 

 

Cytokines release and Enzyme Linked Immunosorbent Assay (ELISA) 

Jurkat T cells were stimulated with 5 μg/ml phytohaemagglutinin (PHA; Sigma) plus 

50 ng/ml phorbol 12-myristate 13-acetate (PMA; Sigma) to induce IL-2 release. THP1 cells 

were pre-treated with 50 ng/ml PMA and then treated with INFγ or IL-4 to induce TNF-α and 

IL-10 secretion, respectively. Supernatants were collected and tested for the presence of IL-2, 

IL-10, and TNF-α by Human TMB ELISA Development kit (Peprotech, UK) following the 

manufacturer’s instruction. 
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Statistical analysis 

One-way ANOVA and Tukey post-hoc tests or two-way ANOVA were used to 

determine the statistical significance of observed differences in the mean values among 

different groups by GraphPad Prism (GraphPad Software). The data was presented as mean ± 

SEM. Each data point represents the average of at least three independent experiments with 

three repeats in each experiment. A p-value below 0.05 was indicated as statistically 

significant (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001). 

 

Results  

AMSCs and CMSCs have distinct morphologies independent of disease state  

AMSCs and CMSCs lines derived from healthy (n=9) and GDM (n=9) placenta were 

used in this study. The details of each pregnancy are shown in Table 1.  

We compared MSC morphology in healthy and GDM pregnancies. CMSCs form healthy 

(H-MSCs) and GDM (G-CMSCs) pregnancies exhibited similar fibroblast-like morphologies 

from passage 0 and maintained the stable morphological features during the subsequent 

culture (Fig. 1A). Conversely, the morphology of AMSCs differed between healthy (H-

AMSCs) and GDM (G-AMSCs) groups where the H-AMSCs displayed a triangular or 

spindle shapes after seeding for 24 hours and the G-AMSCs, which attached more slowly, 

displayed reduced adherence and a more cuboidal shape (Fig. 1B). The CMSC length (the 

longest axis from the cell periphery) gradually increased and was longer than AMSCs 

between passage 0 to 2. The morphology of AMSCs became elongated in the subsequent 

passages, where more fibroblast-shaped cells were detected. Comparison between GDM and 

healthy pregnancies demonstrated that G-CMSC displayed comparable length to H-CMSCs 

(Fig. 1C), while G-AMSCs were shorter than H-AMSCs (Fig. 1D). Surface area 
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measurement indicated that AMSCs displayed a larger and broader surface area, on average s 

than CMSCs. There was no significant difference in surface areas between CMSCs or 

AMSCs taken from healthy and GDM pregnancies (Fig. 1E). We investigated whether the 

morphological differences were associated with MSCs phenotypic changes over the culture 

period via the examination of pluripotent (NANOG, OCT4), endodermal (SOX7, SOX17), 

mesodermal (FOXC1, TBX6), and ectodermal (NES, OTX2) lineage markers in H-/G- 

CMSCs/AMSCs from passage 0-3. Pluripotent and endodermal markers were detectable in 

H-/G- CMSCs/AMSCs at early passages while the expression significantly reduced at late 

passages. Likewise, H-/G- CMSCs/AMSCs also expressed mesodermal lineage markers at 

early passage but the expression levels remained high at passage 3. Notably, FOXC1 and 

TBX6 were significantly higher in H-/G- CMSCs vs. H-/G- AMSCs at passage 1-2 and 2-3, 

respectively. Ectodermal lineage markers were undetectable in both H-/G- CMSCs and 

AMSCs. Collectively, with the reduction of pluripotent and endodermal markers but not 

mesodermal markers, H-/G- CMSCs and ASMCs appear to become increasingly committed 

to a mesodermal phenotype with increasing passage number (Fig. 2 and Fig. S1). 

 

CMSCs display an increased proliferative rate than AMSCs while GDM has an opposite 

impact on CMSCs and AMSCs doubling rates 

The proliferation capacity was evaluated during a 12-day culture window. H-CMSCs and 

G-CMSCs both evidenced a short lag-phase at day 0-4, followed by an exponential growth 

curve from days 4-12. On the other hand, the cell numbers of H-AMSCs and G-AMSCs 

slowly increased for the first 8 days and gradually reached plateau from day 8-12 (Fig. 3A). A 

lower proliferation capacity was exhibited in H-/G- AMSCs with a doubling time of 91.4 

hours for H-AMSCs and 81.6 hours for G-AMSCs compared to CMSCs from healthy and 

GDM placenta with doubling times of 37.9 hours and 44.0 hours, respectively (Fig. 3B). The 
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data indicated that CMSCs proliferate more rapidly than AMSCs and comparing the healthy 

and GDM group, G-CMSCs showed lower growth ability than H-CMSCs while AMSCs 

displayed the converse. 

A reduced metabolic activity in G-CMSCs was observed when compared to H-CMSC 

through the detection of cleaved MTT by metabolically active cells (Fig. 3C). This may 

simply reflect the reduced cell counts observed in the G-CMSCs population. However, 

between H-AMSCs and G-AMSCs the converse was noted where G-AMSCs showed a 

relatively higher metabolic level than H-AMSCs which was consistent with both previous 

cell number and doubling time observations (Fig. 3B-C). Cell viability was determined by 

trypan blue staining for non-viable cells during the time period measured with MTT. This 

showed 8-10% cell death in H-/G- CMSCs and AMSCs with no significant difference 

between time points in each group (Fig. S2). Overall, an enhanced proliferation ability was 

seen in H-/G-CMSCs than H-/G-AMSCs, where H-CMSCs showed an increased 

proliferation rate than G-CMSCs whereas the opposite was observed between H-AMSCs and 

G-AMSCs. 

 

GDM CMSCs/AMSCs and healthy CMSCs/AMSCs immunophenotypes are broadly 

comparable 

The immunophenotype of H-/G- CMSCs and AMSCs were comparable and displayed 

high levels of expression of typical MSC markers; CD73, CD90, CD105, and low levels of 

CD14, CD19, CD34, CD45 and HLA-DR. There was no significant difference between 

CMSCs and AMSCs in either GDM or healthy groups. However, CD45 expression was 

significantly higher in G-CMSCs/AMSCs when compared to their healthy counterparts; 

17.5% ± 2.0% in G-CMSCs, 7% ± 2.6% in H-CMSCs and 16% ± 1.0% in G-AMSCs, 6.3% ± 

1.5% in H-AMSCs (Fig. 3D and Fig. S3). 
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GDM environment promotes MSC lineage commitment toward adipogenesis 

H-/G- CMSCs and AMSCs were exposed to specific differentiation media to induce tri-

lineage differentiation as identified by histological staining (Fig. 4A). CMSCs from healthy 

and GDM placentas both exhibited a differentiation capacity towards all lineages examined. 

Osteogenic and chondrogenic differentiation were comparable between both CMSCs and 

AMSCs from healthy and GDM placentas. In contrast H-AMSCs and G-AMSCs displayed 

little or no adipogenic differentiation potential (Fig. 4B and Fig. S4). Quantification of Oil-

Red-O confirmed the histological observations with significantly more intense staining in G-

CMSCs after differentiation for 21 days (Fig. 4C).   

To investigate enhanced adipogenic differentiation potential in MSCs from GDM 

placenta, the basal levels of two adipogenic-associated factors, PPARγ and ADIPOQ, were 

examined before the induction for adipogenesis. G-CMSCs and G-AMSCs both showed a 2 

to 3-fold increase in ADIPOQ basal expression levels vs. healthy CMSCs/AMSCs (Fig. 4D). 

Likewise, higher PPARγ expression was exhibited in G-CMSCs than H-CMSCs (Fig. 4E). We 

further investigated the expression of PPARγ and ADIPOQ during adipogenesis at six 

different time points (day 0, 7, 10, 14, 17, 21). PPARγ and ADIPOQ expression in H-/G- 

CMSCs displayed elevation across the differentiation time course, peaking at day 14 and 

PPARγ decreasing thereafter while ADIPOQ remaining elevated (Fig. 4F-G). During 

adipogenic differentiation G-CMSCs expressed significantly higher levels of both PPARγ and 

ADIPOQ than H-CMSCs at every time point. Notably ADIPOQ was initially higher in G-

AMSCs than H-AMSCs but no significant induction during the differentiation period was 

seen (Fig. 4F). PPARγ displayed some upregulation in H-/G- AMSCs but not to levels seen 

with CMSCs (Fig. 4G). This indicates that H-/G-AMSCs have a limited adipogenic capacity 

in spite of G-AMSCs displaying increased basal expression levels of ADIPOQ and PPARγ.   
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Conditioned media from H-/G- CMSCs and AMSCs has a significant antiproliferative 

effect on T-cells 

To evaluate the immunoregulatory properties of healthy and GDM CMSCs/AMSCs the 

proliferation and inflammatory cytokines secretion of T-cells were investigated. Jurkat cells 

cultured in complete growth media (10%FBS) showed a steady increase in proliferation; 

however, a significant reduction in numbers was noted following on from exposure to either 

H-/G- CMSC or AMSCs conditioned media (CM) (Fig. 5A). PHA/PMA activated Jurkat cells 

also displayed a sensitivity to H-/G- CMSCs and AMSCs CM and similarly displayed a 

reduced proliferation rate following on from exposure (Fig. 5B). Noteworthy was that though 

CM from both H-/G- CMSCs and AMSCs suppressed Jurkat proliferation this was to a 

significantly greater extent with CM from H-/G- CMSCs. No differences were noted between 

healthy and GDM groups. Interleukin-2, produced from PHA/PMA stimulation, regulates 

proliferation and differentiation of activated T-cells. The supernatant from activated Jurkat 

cells cultured in H-/G- CMSCs CM contained significantly reduced levels of secreted IL-2. 

H-/G-AMSCs CM also suppressed IL-2 secretion; however, the suppressive effect was lower 

than that of H-/G-CMSCs CM (Fig. 5C).  

 

Distinct immunoregulatory properties of Chorionic MSCs evaluated by macrophage 

modulation 

MSCs modulate immune cell function through a variety of mechanisms. Macrophages 

are key regulators of initiation and control of inflammation, and are typically divided into two 

types: classically activated type 1 macrophages (M1), characterised by the production of pro-

inflammatory cytokines with an acute inflammatory phenotype, and alternatively activated 

type 2 macrophages (M2), secreting anti-inflammatory cytokines (Mantovani et al., 2004). 
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THP-1 monocytes were differentiated into macrophages using PMA (PMA-THP1, M0) 

followed by co-culture with H-/G- CMSCs or AMSCs. PMA-THP1 was activated by 

interferon-γ (IFN-γ) and lipopolysaccharide (LPS) in order to obtain M1 polarized 

macrophages or interleukin 4 (IL-4) for M2 polarization (Fig. 6A). Following co-culture of 

H-/G- CMSCs or AMSCs with PMA-THP1, THP1 were collected to examine the 

macrophage polarization. Inflammatory M1 macrophages express high levels of 

inflammatory markers, including IL-1β, IL-12, CXCL8, and TNF (Fig 6B-E). When co-

cultured with H-/G- CMSCs or AMSCs, there was no significant increase in IL-1β or IL-12 

inflammatory marker expression though some slight, significant, increases were noted for 

each these were either equivalent to or below control (Fig. 6B-C). Notably, CXCL8 and TNF 

were induced in PMA-treated THP1 while the expression was significantly suppressed after 

co-culturing with H-/G- CMSCs/AMSCs (Fig. 6D-E).  

On the other hand, anti-inflammatory M2 macrophages are characterised by increased 

expression of IL-10, MRC1, and CCL-17. High levels of M2 macrophage markers were 

detected when PMA-THP1 were co-cultured with CMSCs or AMSCs (Fig. 6F-H). Co-culture 

with H-/G- CMSCs produced significantly higher expression of MRC1 and CCL-17 than co-

culture with H-/G- AMSCs suggesting that CMSCs had a more profound effect on promoting 

M2 polarization than AMSCs. Moreover, no significant difference was detected in the ability 

to induce M2 macrophage differentiation in H-/G- AMSCs but in CMSCs higher MRC1 and 

CCL-17 expression could be observed in H-CMSCs than with G-CMSCs (Fig 6G-H) 

We further examined the pro-inflammatory cytokines, TNF-α, and anti-inflammatory 

cytokine, IL-10, which are secreted by M1 and M2 macrophage, respectively. No significant 

increase in TNF-α secretion (Fig. 7A) was seen but an upregulation in IL-10 (Fig. 7B) was 

detected when co-culturing PMA-THP1 with H-/G- CMSCs or AMSCs. Corresponding with 

M2 markers gene expression, we found that CMSCs and AMSCs derived from healthy or 
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GDM placenta were capable of promoting PMA-THP1 towards M2 polarization. Overall, H-

/G- CMSC displayed superior immunosuppressive capacity in modulating T cells and 

macrophages than H-/G- AMSCs. The GDM environment did not alter macrophage 

regulation ability in AMSCs though slightly attenuated the immunoregulatory effect of G-

CMSCs. 

 

Discussion  

The placenta that is usually discarded after delivery, is a valuable source of plentiful 

perinatal MSCs for regenerative medicine with few ethical issues. Cell therapy with 

placental-derived MSCs have already been applied to treat various disorders in animal 

models (Oliveira and Barreto-Filho, 2015) and some clinical applications, such as ischaemic 

stroke, Crohn’s disease, and idiopathic pulmonary fibrosis (Antoniadou and David, 2016; 

Pipino et al., 2013; Trounson and McDonald, 2015). However, few studies have investigated 

the differences in therapeutic potential between CMSCs and AMSCs. Chorionic and amniotic 

MSCs are developed from extraembryonic tissue and can be isolated from different layers of 

the placental membrane. The placental membrane contains both fetal and maternal 

components which may be a potential source of autologous treatment for both mother and 

child. In this study, we provided a thorough comparison of CMSCs and AMSCs; and to our 

knowledge, are the first to report the varying effects of the GDM environment in CMSCs and 

AMSCs.  

Derived from different layers of the same placental membrane, CMSCs and AMSCs 

display diverse biological characteristics. The elongated morphology of H-/G-CMSCs may 

be associated with enhanced differentiation potential towards certain lineages. During 

development, embryonic mesenchymal cell elongation initiates visceral myogenesis (Yang et 

al., 1999). Elongated morphology of bone-marrow MSCs showed enhanced ability towards 
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smooth muscle cells differentiation and tenogenic differentiation (Hamilton et al., 2004; 

Wang et al., 2013). Moreover, cell mobilisation is also characterised by an elongated cell 

morphology as the initial step for cell migration (Brabek et al., 2010; Friedl and Wolf, 2010). 

Increased cell length may indicate some enhanced MSC properties in H-/G-CMSCs vs H-/G-

AMSCs.  

The reduced proliferation rate of AMSCs compared with CMSCs is consistent with 

previous reports indicating the limited ex vivo expansion potential of AMSCs (Jaramillo-

Ferrada et al., 2012). We further investigated the difference in growth ability between GDM 

and healthy CMSCs/AMSCs. It has been suggested previously that umbilical cord derived-

MSCs from GDM women displayed decreased cell growth with early cellular senescence 

accompanied by expression of p16 and p53 (Kim et al., 2015). Alternatively, 

Pierdomenico et al. described MSCs obtained from umbilical cord of both healthy and 

diabetic mothers where the later demonstrated an increased proliferative ability along with 

an upregulation of CD44, CD29, CD73, CD166, SSEA4 and TERT (Pierdomenico et al., 

2011). We explored the GDM effect on CMSCs and AMSCs proliferation which indicated 

that G-CMSCs displayed reduced rates when compared to H-CMSCs while G-AMSCs, by 

contrast, showed higher proliferation rates than H-AMSCs. As AMSCs are derived from 

the amniotic membrane adjacent to the fetus, the higher proliferation rate of diabetic 

AMSCs may reflect features of GDM including heavier fetal weights on resultant cell 

phenotype.  

Emerging research has highlighted the importance of the intrauterine environment as a 

risk factor in the likelihood of offspring developing obesity and metabolic diseases (Gaillard, 

2015; Tamashiro and Moran, 2010). The underlying biological mechanism for the link 

between GDM and the increased risk of future diabetes is poorly understood, although the 

GDM environment has potential to modify the epigenetic state of fetal genes. Increased 
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methylation of PYGO1 and CLN8 genes in offspring exposed to a GDM environment is 

proposed as being associated with long-term adverse effects on fetal health (Lehnen et al., 

2013; West et al., 2013). GDM is associated with newborn hyperinsulinemia with effects on 

offspring fat mass seen until 6 weeks. Elevated preperitoneal adipose tissue in newborns is 

linked with increased risk of obesity in later life (Uebel et al., 2014). We found that the 

CMSCs and AMSCs differentiation potential are influenced by maternal environment during 

gestation. Under the same culture condition, elevated adipogenic differentiation was found 

in GDM-MSCs than with MSCs from healthy pregnancies. Moreover, higher basal 

expression levels of adipogenic-associated genes in G-CMSCs and subsequent lipid content 

associated with increased transcription factor expression during differentiation indicated an 

enhanced adipogenic potential when compared to H-/G- AMSCs. This suggests that the GDM 

environment itself may have less of a role in affecting fetal cell properties than that of the 

membrane itself.  

For successful clinical application of MSC therapy, the immunoregulatory potential of 

CMSCs and AMSCs is an important area of consideration. The immune responses mediated 

by T-cells may lead to cell transplant rejection or Graft-Versus-Host disease (Ingulli, 2010). 

MSCs have been reported to modulate the proliferation and function of immune cells by both 

cell-to-cell contact and the secretion of growth factors, cytokines, and chemokines 

(Kyurkchiev et al., 2014). Given that the placenta plays a critical role in fetomaternal 

tolerance and contains cells that display immunomodulatory properties, MSCs derived from 

placenta not only have superior immunomodulatory potential but also have therapeutic 

potential for the mothers and offspring (Ilancheran et al., 2009; Talwadekar et al., 2015). In 

our finding, CMSCs and AMSCs displayed differential levels of immunosuppressive 

capacities. H-/G- CMSCs showed superior immunosuppressive ability in inhibiting Jurkat 

cells proliferation and IL-2 secretion than with AMSCs. Moreover, MSCs are also involved in 
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regulating the innate immune response by modulating macrophage polarization and inhibition 

of inflammatory cytokines secretions (Glenn and Whartenby, 2014; Spaggiari and Moretta, 

2013). H-/G- CMSCs promoted macrophage differentiation toward M2 polarization and 

induced higher M2 marker expression than H-/G- AMSCs. Both CMSCs and AMSCs from 

healthy or GDM placenta possessed immunoregulatory properties, however, better 

immunosuppressive potential was observed in CMSCs than with AMSCs, particularly in 

CMSCs from healthy placenta. Several studies have already demonstrated the 

immunosuppressive potential of AMSCs, where they were able to inhibit LPS-induced 

inflammatory cytokines secretion by macrophages through the suppression of NF-Kb (Shu et 

al., 2015). However, we are the first to compare the immunosuppressive effect between H-/G- 

CMSCs and AMSCs. Notably, the GDM environment had no significant effect on the 

immunosuppressive ability of MSCs. Despite an increase in M2 marker expressions after co-

culturing THP1 with H-CMSCs, which might suggest a better macrophage modulation 

potential in H-CMSCs than G-CMSCs, G-CMSCs showed a competitive ability in regulating 

Jurkat activity and modulating cytokine secretion. Likewise, the responses from Jurkat cells 

treated with G-AMSCs conditioned media or macrophages co-cultured with G-AMSCs were 

similar to the result from H-AMSCs. 

In summary, human placenta is comprised of several stem cells niches that mostly 

originate from extraembryonic tissue, and connect to maternal tissues, which may be a 

promising autologous source for cell therapy in both the mother and her offspring. Bone 

marrow MSCs isolated from elder donors have been reported to have reduced biological 

activity, thus leading to poor therapeutic potential (Mueller and Glowacki, 2001). Insufficient 

numbers of MSCs or impaired MSCs function from patients with rheumatoid arthritis and 

diabetes, respectively, have also been reported (Cianfarani et al., 2013; Sun et al., 2015). 

Therefore, an understanding of MSC behaviour under different growth environment is 
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essential. In this study, we provide a comparison between CMSCs and AMSCs from healthy 

and GDM placenta, and evaluate the biological characteristics of both. This information 

could contribute to the future development of autologous cell therapy for women or children 

from GDM pregnancies and regenerative medicine approaches of using MSCs derived from 

GDM placenta.  

 

Conclusions 

CMSCs and AMSCs have distinct biological properties. The superior proliferation, 

differentiation and immunomodulatory properties in CMSCs than AMSCs make them a 

promising alternative source for autologous cell transplantation. In addition, we demonstrated 

the importance of the maternal GDM intrauterine environment and its differential effects on 

CMSCs and AMSCs. 
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Table 1. Maternal and fetal characteristics. 

 Healthy (n=9) GDM (n=9) p value 

Age (years) 30.1 ± 1.68 30.1 ± 2.32 0.38 

BMI (kg/m
2
) 25.2 ± 1.76 32.4 ± 2.95 0.17 

Gestational age (weeks) 38.7 ± 0.22 38 .0 ± 0.41 0.11 

Infant weight (g) 3425 ± 85.43 3611 ± 151.5 0.09 

Gender (female/male) 9/0 4/6
a
  

a
 Included one non-identical twins placenta 

 

Table 2. Primer sequences for genes of interest. 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

ADIPOQ  AGGCCGTGATGGCAGAGATG CTTCTCCAGGTTCTCCTTTCCTGC 

CCL-17 CGGGACTACCTGGGACCTC CCTCACTGTGGCTCTTCTTCG 

CXCL-8 CTGGCCGTGGCTCTCTTG CCTTGGCAAAACTGCACCTT 

FOXC1 CACCCTCAAAGCCGAACTAA GTTCGCTGGTGTGGTGAATA 

GAPDH ACTTCAACAGCACACCCACT GCCAAATTCGTTGTCATACCAG 

IL-1β ATTCTCTTCAGCCAATCTTCA TATCCCATGTGTCGAAGAAG 

IL-10 TCAGCAGAGTGAAGACTTTC CCTTGCTCTTGTTTTCACAG 

IL-12 AAAGGACATCTGCGAGGAAAGTTC CGAGGTGAGGTGCGTTTATGC 

MRC1 ACCTCACAAGTATCCACACCATC CTTTCATCACCACACAATCCTC 

NANOG CCCAGCCTTTACTCTTCCTACCAC GATTCCTCTCCACAGTTATAGAAGGGA 

OCT4 GTCCGAGTGTGGTTCTGTA CTCAGTTTGAATGCATGGGA 
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PPARG GCAGGAGATCTACAAGGACTTG CCCTCAGAATAGTGCAACTGG 

SOX7 CTGCTGAACTGGTCCCTAAC TTGCGGGAAGTTGCTCTAA 

SOX17 CCGCGGTATATTACTGCAACT ACCCAGGAGTCTGAGGATTT 

TBX6 CACTCCATGCACAAGTACCA GCTGTCACGGAGATGAATGT 

TNF GATCCCTGACATCTGGAATCTG GAAACATCTGGAGAGAGGAAGG 
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Figure legends 

Figure 1. The morphology of human (A) H-/G-CMSCs and (B) AMSCs from primary 

culture to passage 2. Images of passage 0 were taken after seeding for 7 days; images of 

passage 1 and 2 were taken 5 days after subculture. (C-D) Analysis of cell morphology. Cell 

length of H-/G- CMSCs and AMSCs were measured from passage 0-2. (E) Cell surface area 

was measured at passage 2 of each group. Data was based on 150 cells per population, 

analysed by Image J, and results represent the mean ± SEM. Scale bar = 200 μm. 

Figure 2. Lineage marker examination. The changes of pluripotent (NANOG, OCT4), 

endodermal (SOX7, SOX17), and mesodermal (FOXC1, TBX6) lineages markers in H-/G-

CMSCs/AMSCs with increasing passage numbers were examined via real-time PCR. The 

data shown represent the mean ± SEM of 3 independent experiments.  

Figure 3. Proliferation ability and immunophenotyping of Healthy- and GDM- 

CMSCs/AMSCs at passage 3. (A) Cell numbers were counted every two days for a 12-day 

period, indicating greater proliferative ability for CMSCs than AMSCs. Results are presented 

as mean from three replicates, n=6. ***p < 0.0001, indicates statistical significance H-

CMSCs vs. G-CMSCs; ###p < 0.0001 indicates statistical significance H-AMSCs vs. G-

AMSCs (B) Cell doubling time for CMSCs/AMSCs from healthy and GDM placenta was 

calculated based on cell counts at passage 3. Triplicates of each group were investigated in 

every placenta sample, n=9. (C) Metabolic activity (cell viability/proliferation) was assessed 

by measuring the MTT dye absorbance in a 12-day period. Cells from every donor were used 

to perform MTT assay and all assays were conducted in triplicate. OD was read at 

wavelength of 570 nm. Results represent mean ± SEM, n=6. (D) Immunophenotypic 

characterisation of H-/G- CMSCs and AMSCs. The graph compared the positive percentage 

of MSCs marker expressions in H-/G- CMSCs/AMSCs. Similar levels of CD marker 

expressions were observed in GDM and healthy MSC except for the marginally higher CD45 
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expression. The data represent the mean ± SEM of 5 independent experiments.  

Figure 4. Differentiation potential of H-/G- CMSCs and AMSCs. (A) Representative images 

of tri-lineage differentiation of CMSCs and AMSCs derived from healthy and GDM 

placentas. Healthy- and GDM- CMSCs/AMSCs were induced to differentiate toward 

osteogenic lineage and stained with Alizarin red to identify calcified matrix, adipogenic 

lineage was verified by Oil-Red-O to identify lipid accumulation, and chondrogenic lineage 

was detected by Alcian blue staining. (B) Further analysis of adipogenic potential in H-/G- 

CMSCs/AMSCs was examined by Oil-Red-O stain after 21 day of differentiation. Scale bar = 

200 μm. (C) Quantification of lipid accumulation by detecting the absorbance of Oil-Red-O 

extracts with isopropyl alcohol. The mean OD values represented the triplicates from 5 

separate experiments. (D) Basal expression levels of ADIPOQ and (E) PPARγ were examined 

before inducing differentiation, n=8. Time course of adipogenic marker expressions – (F) 

ADIPOQ and (G) PPARγ, during differentiation process were analysed by qPCR. The data 

shown represent the mean ± SEM of 5 independent experiments.  

Figure 5. Immunomodulatory effects of CMSCs and AMSCs derived from GDM and healthy 

placentas. Jurkat cells were cultured in the presence of healthy and GDM CMSCs/AMSCs 

CM (A) without activating with PMA/PHA or (B) with 50 ng/ml PMA and 5 μg/ml PHA. 

Cell proliferative ability was measured by MTT assay in a 5-day period. A significant 

reduction in Jurkat cell proliferation was observed, which showed more pronounced effect on 

suppressing cell proliferation by H-/G- CMSCs CM than H-/G- AMSCs CM. 
#
p < 0.001 H-

/G-CMSCs versus 10%FBS, ^p < 0.001 H-/G-AMSCs versus 10%FBS (C) IL-2 secretion 

after PHA/PMA stimulation was measured by ELISA from day 0-3, which showed 

significantly diminished secretion of IL-2 in the presence of CMSCs/AMSCs CM. Results 

represent mean ± SEM of 5 independent experiments. 

Figure 6. Healthy- and GDM- CMSCs/AMSCs modulate macrophage polarization through a 
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co-culture system. (A) A schematic diagram of the macrophage polarization procedure. THP-

1 cells were pre-treated with PMA and either stimulated with IFN-γ/IL-4 or co-cultured with 

CMSCs/AMSCs. After co-culture for 24 h, cells were washed and RAN was extracted for 

gene expression analysis using qPCR for (B-E) M1 macrophage markers - IL-1β, IL-12, 

CXCL8, TNF and (F-H) M2 macrophage marker - IL-10, MRC1, CCL-17 expressions. The 

data are expressed as fold changes of 6 independent experiments. Statistical significant 

indicates the relative expression compared to PMA-treated control(M0). 

Figure 7. Cytokines secretion from PMA-THP1 in H-/G- CMSCs or AMSCs co-culture was 

examined by ELISA. (A-B) Supernatant was collected after 24 h and measured for secreted 

TNF-α and IL-10 expression levels. Results represent mean ± SEM of 6 independent 

experiments.  

 

Supplementary Figure 1. Lineage markers examination in DMEM and DMEM/F12 culture. 

The changes of pluripotent (NANOG, OCT4), endodermal (SOX7, SOX17), and mesodermal 

(FOXC1, TBX6) lineages markers in H-/G-CMSCs/AMSCs with increasing passage numbers 

in two different growth media were examined via real-time PCR. The data shown represent 

the mean ± SEM of 3 independent experiments.  

 

Supplementary Figure 2. Cell viability determined by trypan blue staining during a 12-day 

period. The percentage of cell death was calculated by counting blue-coloured cells (dead 

cell) from a total number of 100 cells in a haemocytometer. Results represent mean ± SEM of 

6 independent experiments.  

 

Supplementary Figure 3. Immunophenotypic characterisation of H-/G- CMSCs and AMSCs. 

The Table indicates the positive percentage of MSCs marker expressions in H-/G- 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

CMSCs/AMSCs at passage 2 and 3. The data represent the mean ± SEM of 5 independent 

experiments.  

 

Supplementary Figure 4. Adipogenic potential in H-/G- CMSCs/AMSCs at early passages 

(passage1 and 2) was examined by Oil-Red-O stain after 21 day of differentiation. Cells were 

cultured in DMEM and induced adipogenesis by differentiation media. Scale bar = 100 μm. 

Quantification of lipid accumulation by detecting the absorbance of Oil-Red-O extracts with 

isopropyl alcohol. The mean OD values represented the triplicates from 3 independent 

experiments. 
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Highlights 

 Chorionic MSCs have a longer morphological aspect and reduced surface area vs. 
amniotic MSCs. 

 Chorionic MSCs display superior proliferation and tri-lineage differentiation potential vs. 
amniotic MSCs. 

 GDM CMSCs display an enhanced adipogenic capacity in comparison to Healthy CMSCs. 

 GDM MSCs and Healthy MSCs’ secretome demonstrate the ability to supress IL-2 
secretion and induce M2 macrophage polarisation. 
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