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ABSTRACT

This thesis describes an investigation of the application of adaptive
filtering techniques in electrocardiography (ECG), with particular
reference to exercise testing. The main objective in this study was to
observe the effectiveness of adaptive methods for noise reduction. A
number of techniques, including averaging, were tested for comparison
and the limitation and inadequacy of these techniques in noise reduction
were used as the basis for extending the application of adaptive

filtering techniques.

The theory and application of adaptive filtering relating to noise
reduction in ECG has been developed, based upon the adaptive transversal
filter using the Uidrow-Hoff algorithm. The application of a new
version of the adaptive filter, referred to the minimal time-sequence
adaptive filter to enhance the ECG, was tested in order to improve

cancellation with less distortion.

The coherence function was studied as the basis for selecting electrode
placement for particular adaptive filtering applications. The adaptive
filtering technique was found to be an appropriate method for noise
reduction and can improve the signal-to-noise ratio by up to 15dB. It
was also found, through the assessment of the results presented from 22
patients, that the use of adaptive filters in the exercise ECG is

appropriate, after the removal of a d.c. variation.










































extended to the use of real data, and applied in exercise testing.
The results confirmed that a new version of adaptive filter uias not
particularly effective for signals such as evoked potentials when fast

adaptation was required.

Experimental investigation of the ECG signal enhancement by the method
of adaptive processing was performed in three stages. The first stage
was concerned with the identification of noise and spatial
characteristics with respect to electrode placement on the body
surface. It was observed from an examination of the correlation
properties of recordings obtained for various electrode placements,
that the ECG signal occupies the same frequency bands in each
recording and differs only in the type of noise contributed. In
general as electrode separation is increased, the correlation with
respect to the noise content decreases. |t was observed that a
minimum of 10mm separation between electrodes was necessary to

effectively apply the adaptive filtering process.

The second stage of the study was concerned with the removal of the
skeletal muscle activity by use of LMS adaptive filtering. Various
factors that influence the performance of the adaptive filtering upon
the output signal were examined. These included the convergence
factor y and the filter order N. Depending upon the statistical
character of the signal and the noise, these two factors can be

changed to achieve appropriate performance. A suitable value for the






Chapter One: Introductary Considerations

Introduction

Interest in high frequency electrocardiography as a source of clinical
information, otherwise inaccessible in the band limited conventional
electrocardiogram, has been apparent for well over three decades
(Langner, 1952 & 1953; Langner & Geselowitz, 1962; Geselowitz et al,
1962; Langner & Lauer, 1966; Boyle et al, 1966; Flowers et al, 1969;
Langner et al 1973; Sapoznikov & Ueinman, 1975; Shick & Powers, 197fl;
Chien et al, 190 ; Kim & Tompkins, 1981). In recent years the high
frequency electrocardiogram has been considered as a means of
investigating surface manifest events of the specialised conduction
system (Berbari et al, 1979; Uincent et al, 1900; Flowers et al, 1901;
Abboud & Saded, 1902; Mehra, 1902; Berbari et al, 1903), the detection
of late ventricular potentials (Simson, 1901; Simson et al, 1903;
Denes et al, 1903) and cyclo-stochastic perturbations (Prasad & Gupta,

1906 & 1961).

The lack of acceptance of high frequency electrocardiography as a
clinical complement to conventional electrocardiography is largely a
consequence of two factors:

(i) low amplitudes for the events of interest and the attendant
difficulties of separating signal from noise, and

(ii) the difficulty of confirming that events revealed within the

high frequency electrocardiogram and separated from noise, are of



cardiac origin and can be designated in a meaningful way.

The more conventional methods of increasing signal-to-noise ratio such
as fixed value filtering and signal averaging can provide

improvements, but offer little advantage in situations where the
spectral occupancy of the signal overlaps with that of the noise.
Moreover, the use of signal averaging obviates the detection of beat
by beat variations in the morphology of the high frequency
electrocardiogram. Adaptive filtering offers the prospect of
overcoming these limitations and, as a consequence of this, the basis
for more confident analysis and interpretation of the fine

morphological details of the surface electrocardiogram.



1.2 The surface electrocardiogram

The surface electrocardiogram represents a record of the body surface
potentials arising as a result of transmembrane current and voltage
variations in active cardiac muscle (Geselouitz, 1967). The
measurement of potential difference at the surface of the body for a
particular electrode configuration or lead can be represented by the
integral solution:

*a =/M(t)'za .du

in which is the potential difference for a lead or electrode
combination.
M(t) is the current moment density or the source of current within the
region of the active muscle fibres.

is a three component impedance vector characteristic of the

conducting medium between the current source and the electrode sites.
dy represents an element of volume of the medium in which the currents

are circulating.

The expression:
3 =JM(t) ZadU
clearly demonstrates that surface potentials are completely determined

by

(1) the factor, M(t), which relates totally to the electrical

activity within the heart, and



(il) the factor Za’ uihich relates totally to the geometry
and electrical characteristics of the conducting

medium and electrode positioning.

In view of the dependence of surface measured potentials on the scalar
product of tujo vectors, one of uhich is a lead vector, the surface ECG
is lead dependent and a standardised lead system is necessary for the
purpose of clinical electrocardiography. This standardised lead
system specifies electrodes attached to the right arm, left arm, left
foot and various chest leads 1 to U%, referred to a reference formed
by a combination of the three limb leads as (augmented lead
configurations) shown in figure 1.1a. Potential variations measured

between the pairs of limb electrodes constitute the three limb leads,

[, Il and III.

Figure 1.1b is a normal surface recording of potential variations
measured between the right arm and the left foot (lead Il) during a

normal cardiac cycle.

During each heart beat three principal electrical inscriptions may be
identified, the P-wave, the QRS complex and the T-wave. Between the
end of the P-wave the the beginning of the QRS complex, the normal ECG
shows a flat baseline which is conventionally regarded as isoelectric.
In actual fact it constitutes a period in which there is propagation

through part of the specialised conduction system, but because of the



03
to

ul



small muscle mass involved is not obvious in the surface ECG.

The action of the cardiac cycle is triggered by the electrical

impulses ulthin specialised cells that form part of the specialised
conduction system. The system includes the folloujing features:

() the sinoatrial node, SA, (the natural normal ‘'pace-maker' of the
heart)

(ii) the atrioventricular node, AU,

(iii) the bundle of His,

(iv) the bundle branches,

(v) the Purkinje fibres.

The initiation of the normal heartbeat is by the natural pacemaker of
the heart, the sinoatrial node (SA). First the atrial myocardium is
activated and the so-called depolarisation activity spreads throughout
the atrial muscle mass, giving rise to the P-uave in the ECE and
subsequent contraction of the atria. The activity then propagates
into the atrioventricular node (AV) where the propagation speed is
reduced and a delay occurs. This provides the mechanical advantage of
allowing the ventricles to be filled with blood from the atria before
they contract. After passing through the AU-node the depolarisation
wave propagates along the fibres of the bundle of His, whereafter the
ventricular muscle tissue (working myocardium) is activated into

depolarisation via the Purkinje network of fibres.



The spreading of ventricular depolarisation results in the QRS complex
and subsequent contraction of the ventricles. Sometime after
depolarisation each cell uiithin the cardiac musculature repolarises.
The repolarisation of the ventricular cells starts about ZDOms after
depolarisation, and is manifest in the ECG as the T-uHve. The
repolarisation of the atria is largely masked by the large QRS

complex.
Figure 1.2a shouis the schematic representation of the specialised

conduction system of the heart, and 1.2b is the electrocardiogram

showing the inscriptions referred to above.
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1.3 Propagation model for signal and noise

The contamination of an ECG signal by unwanted noise can often be a
problem especially in exercise ECG testing. At first sight the
application of simple fixed value filtering seems to be quite
sufficient for removing the noise from the ECG signal. However
overlap between the spectra of the signal of interest and that of the
unwanted noise will tend to distort the signal when the filtering is

applied.

Figure 1.3 shows the schematic representation of signal and noise

contributing to the surface recorded ECG.

In this model, y(t) is the surface recording of the signal plus noise.
X (t) and X1(t) represent the noise and signal, and ho(t) and h1(t)
represent the transfer functions for signal and noise between source
and surface of the body, u1(t) and u (t) are the signal and noise
components that originate from the internal resources s” and s™.
y(t) = ZX (t)
i=0 7

If this model were entirely representative then it would be a simple
matter to separate the noise from the desired signal and possibly
determine the nature of the original source of the signal. In
practice, because of the distributed nature of the system and the

complicated, distributed nature of the noise source, it is not

12






possible to make such d clear distinction.

Houeuer, this simple model is of conceptual value in so far as it
indicates that the source of the signal and the source of the noise
are not the same and that the tranfer characteristics betueen source
and surface can also be considered to be different for signal and
noise. Whilst in practice it is not possible to achieve filtration by
simple cancellation (as suggested by the simple model), filtration by
adaptive cancellation is seen as a possibility, particularly if the

noise sources can be sufficiently well characterised.



Adaptive techniques in signal processing

ne of the earliest techniques used for noise reduction in situations
where fixed value filtering was inappropriate has been the use of
coherent signal averaging. This technique gained in popularity
because of the ease with which it could be implemented, and the
significant improvement in signal-to-noise ratio that could be
achieved. The performance of this technique depends upon the signal
being repetitive and bearing a constant time relationship between
itself and the averaging trigger event. Moreover, the noise must be
uncorrelated with the signal. These requirements cannot always be
realised in practice. In these situations other methods are required
to achieve noise reduction. Adaptive cancellation is an example of
such a method in which a correlated reference is conditioned to allow
cancellation of the noise activity. A large part of this thesis is

devoted to the investigaiton and development of the technique.

Adaptive filtering emerged as a powerful technique almost 20 years ago
through the work of Uidrow (1966). Many applications have
subsequently been realised, including cancellation of AC interference
(Uidrow et al., 1975), cancellation of electrosurgical interference
(Yelderman et al., 1983), separation of donor and recipient
electrocardiograms obtained from heart transplant patients (Uidrow et
al., 1975), and enhancement of foetal electrocardiograms by

cancellation of the maternal ECG (Ferrara & Uidrow, 1982) as examples

15



f the application of adaptive filters for cancellation in

electrocardiography.

In recent years, interest has been revived in uide-band, or high
frequency, electrocardiograms ( . 5 - 1 or 2kHz) uith a view to
detecting, for example, events arising from the specialised conduction
system of the heart (Berbari et al., 1979; Vincent et al., 198B;
Flowers et al., 1981; Abboud & sadeh, 1982; Mehra 1982; Berbari et
al., 1983), late ventricular potentials (Simpson, 1981; Simpson et
al., 1983; Denes et al., 1983) and cyclo-stochastic perturbations
(Prasad & Gupta, 1980, 1981). In these wide-band EGG investigations,
where events to be detected may be below the noise level, an efficient
means of signal-to-noise enhancement is required. With these
applications in mind, adaptive cancellation is now being investigated
as a means of deriving noise-free, undistorted wide-band

electrocardiograms.

This technique can be illustrated by reference to figure 1.4 in which
two inputs are applied to the adaptive noise canceller, a primary
input containing a signal s(t) plus a noise n*(t), and a reference
input containing correlated noise n?(t). If the two noise sources are
highly correlated a perfect cancellation of H|*(t) can be achieved.
The adaptive filter conditions n*(t) to match Og(t) which is then
cancelled out from the primary input. Adaptive filtering also allows

the cancellation of noise in a situation where the noise and signal

16
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primary input > -

reference input >-

Figure 1.ii

s(t)+nn(t) ,
->

Block diagram of an adaptive noise

canceller. The reference noise source

nA(t) is filtered by the adaptive filter

to form a best least squares estimate

of the noise n_(t) in the primary signal
source, yielding a beat least squares
estimate of the signal s(t) of the canceller
output.
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Chapter Tuo: Characteristics of noise, Interference and artefact

2.1 Introduction

In this chapter consideration is given to the types of noise and
interference that accompany the electrocardiographic signal (ECG)
during recording. In deriving an ECG signal from the surface of the
body, many unwanted components of noise may be encountered. Some of
these components may be large in amplitude and obscure desired signals
which, for some signals, can be as small as 1 - 20 uU rms. Sources of
noise may be recognised within the body (bioelectric potentials), the
electrode-tissue interface and within the signal acquisition and
conditioning system. These sources of noise may also be considered to
be of internal or external origin as illustrated in figure 2.1.
Typically the components of noise include amplifier noise, tape
recorder noise, lead induced noise, electrode-tissue interface

effects, skeletal muscle noise and ac interference.

The acquired signal, depicted in figure 2.1 may be expressed in an
equation of the form:
y(t) = u(t) +m(t) + n(t) S 2.1
where y(t) is the surface signal

u(t) is the signal due to the electrical activity of the

cardiac musculature (ECG),

m(t) the skeletal muscle noise,

and n(t) the interference due to external sources

19









2.2 Mathematical modelling of signal and noise components of the

electrocardiogram

The purpose of an accurate mathematical representation of EGG signal,
muscle and noise components is to facilitate the theoretical

evaluation of various methods of separating the signal from the noise.
A mathematical model of the EGG signal, muscle and interference
components may be considered to include internal sources (u,i - un) due
to the electrical activity of the cardiac musculature which, by virtue
of the volume conduction properties of the thorax, may be detected as
a composite signal at the body surface. The component m(t) is the
skeletal muscle activity, n(t) denotes the external sources of noise
and interference, and y(t) is the surface recorded signal plus noise.

y(t) = u(t) + m(t) + n(t)

where Uj*(t) are the individual cellular components of cardiac

activity.

U(t) is to some extent a deterministic component of the surface

derived signal, m(t) + n(t) are nan-deterministic components.

Santopietro (197A,1977) assumed that both m(t) and n(t) have zero

mean.

22



Thus, considering expectations;

Elm(t)] = E[ n(1)] = 2.2
Therefore the ensemble average of equation 2.1 becomes:

E[ y(t)] = E[ u(t)] = u(t) 2.3
The power of y(t) may be derived in the following way;

Squaring equation 2.1

y*(t) = u*(t) + m*(t) + n*(t) + 2u(t)m(t) + 2u(t)n(t) + am(t)n(t) 7 k
Taking the ensemble average of equation 2.k

E [y'(t)] = E[u»(t)J + E[m»(t)] + E[n»(t)] + 2E[u(t).m(t)j + 2E[u(t).n(t)]
Since n(t) and m(t) are independent of u(t) and with each other, 2:5
2E[u(t)m(t)] = 2E[m(t).n(t)] =

Equation 2.5 therefore becomes:

E[y>(t) - u»(t)] = E[m»(t)] + E[n»(t)] ... 2.6
Santpietro (1977) suggested that as the isoelectric intervals are free of

the effects of the electrical activity of the heart, therefore the noise

and the interference are the predominant components within the isoelectric
intervals.

U(t) a

From equation 2.5

Ely’ (t)] = E[m>(t)] + E[n»(t)] N
And since n(t) is assumed to be stationary, the value of E[n*(t)] may be
considered constant within the isoelectric intervals. The power associated
with the isoelectric intervals may be considered to comprise primarily of
activity associated with skeletal muscle function, particularly during
exercise. liden considering the mathematical model depicted in figure 2.1

the following points should be taken into account:

23






2.3 Characteristics of noise and artifact present in the recorded EGG

In order to extend and facilitate the use of the model proposed in
section 2 .2, it is necessary to fully characterise the noise and

artifact components, n(t) and m(t), in equation 2.1.

The source of noise and artifact considered relevant in the process of

signal acquisition and conditioning are:

amplifier noise,

tape recorder noise,

lead effect,

electrode-tissue interface effect
skeletal muscle (EMG) noise, and

ac interference.

These components of noise and interference will he discussed

individually in the following sections.

25



2.3.1 Amplifier Noise

In situations where there is only a small input signal available, it
may be impassible to distinguish the signal from the background noise
and, since the signal of interest in an EGG recorded from the surface
of the body is within a range of microvolts, it is then essential to
amplify the signal to a level where it can effectively be subjected to

further signal conditioning and processing.

The amplifier gain was chosen so that the smallest signal of interest
could be detected at the output and selectively matched to the input
of analogue-to-digital converter. The maximum gain that could be used
was limited by the presence of the principal inscription of the EGG
signal, if distortion due to amplifier saturation was to be avoided.

A voltage gain of at least 70dB was found to be necessary, but it was
also desirable to make the gain variable between 70-100dB. The ful
specification of the instrumentation amplifier used is presented in

annex A.

G



2.3.2 Lead Considerations

The lead which constitutes the conductive pathway between the
electrode and the signal acguisition circuitry may be regarded as a
‘source’ of noise and interference. Noise may arise in leads due to
triboelectric mechanisms (Tam and Webster, 1977) and interference by
virtue of electromagnetic coupling. The interference signal due to
coupling is dependent upon the structure and screening of the lead,

the nature of the electromagnetic source and the length of lead.
Gordon (1975) suggested that static electricity was responsible for
the triboelectric noise which could affect the ECG recording from the

surface of the body by:

(i) causing the ECG baseline to drift in synchrony with the

motion of the lead, and,

(ii) causing high amplitude transient artifact that may result in

sustained saturation.

27



2.3.3 Electrode-tissue Interface

It is necessary uhen deriving recordings of bio-electric events from
the body surface to consider the influence of the electrode-skin
surface. The skin consists of three principal layers, the epidennis,
dermis and sub-cutaneous layer. The outermost layer, or epidermis,
consists of three sub-layers two of which actively maintain an outer
layer of dead material on the surface of the skin. This outermost
layer of the epidermis is termed the stratum corneum. The deepest of
the three sub-layers of the epidermis, the stratum germinativium is
characterised by cell formation and growth. As the cells grow they
are displaced outwards by newly forming cells beneath. The growing
cells pass through the second of the three sub-layers, the stratum
granulosum where they begin to loose their nuclear material and become

dead cells.

Electrically the characteristics of the stratum corneum are distincly
different from those of the living tissue that serves it. The stratum
corneum may be characterised by a membrane potential. The layer may
also be considered to exhbit both resistance and capacitance.

Moreover, the epidermal layer in total may be considered to exhibit
electrical characterisitcs that are similar to those of a parallel RC
circuit. The dermis and subcutaneous layer may be considered

electrically as pure resistance components.

An equivalent circuit of the akin may therefore be of the form shown

in figure 2.2. It would seem apparent from the equivalent circuit

20



electrode interface
impedance

contact resistance

figure 2.2  Equivalent circuit of the skin
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representation of the skin that a more stable electrode-interface,

suitable for recording bioelectrical events that are not of epidermal

origin, may be achieved if the effect of the stratum corneum potential

generator could be reduced. This may be achieved by suitable,

clinically acceptable, abrasion of the stratum corneum in order to
effectively bypass the potential generator and new components of this

outer sublayer of dead material.

30



2.3.i* Skeletal muscle (EMG) noise

One of the main sourcee of noise in ECG's, which will be dealt with in
detail in section 2.5, is the electrical activity arising from skeletal
muscle function. It is a major source of interference in the high

frequency EGG (Santopietro, 197+; Olivier, 193"*; Sato, 1982; Jones, 1982;
Miyano et al, 1980). The amount of skeletal muscle noise present in the
high frequency EGG for a resting state condition can be up to 10-15dB of

the random noise content. This can increase up to 20dB in the exercise EGG
test. The amount of muscle noise is also dependent upon the position of

the recording electrodes in relation to specific muscle masses.

In view of the problem of muscle noise in the study of the high frequency
electrocardiogram, it was considered important to establish in some detail
the characteristics of muscle noise in relation to conventional and
non-conventional lead placements. Section 2.5 deals with the procedures,

results and conclusions of a study to obtain this information.

The coherence spectrum was used as a means of characterising and comparing
the muscle activity recorded from different lead positions. The coherence
spectrum (coherence function) is defined as the ratio of the square of the
modulus cross-spectral estimate, to the product of the spectral estimate
from the two leads being considered. Goherence functions were investigated
for lead positions in the frontal plane of the thorax (see section 2.5).

Signals representative of these four channels are shown in figure 2.3.

31



The results presented in figures Z.U - 2,6 were categorised for essentially

three spectral regions:

(i) low frequency region, 100% coherence,
(ii) mid frequency region, 50% coherence,

(iii) high frequency region, 25% coherence.

It was assumed that the region in uhich the coherence function is under 25%
is due to interference, mains and tape recorder noise which contribute to
n(t) in equation 2.1. The term m(t) of equation 2.1 is likely to embrace
the middle frequency region in which the coherence is 50% of the figures
2~ - 2.6. This region could be clearly identified from the coherence
function derived for the isoelectric invervals, figures 2.7 - 2.9.
Components of the signal s(t) may also be encountered within this region.
In the low frequency band it is quite clear that most of it is associated
with the ECG signal s(t) and is highly coherent between the four channels
considered. It is also clear that less coherence can be found between any
pair of channels as the distance between them increases. Tables 2.1 and
2.2 summarise the relationship between the electrode placement with regard

to coherence function.
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Figure 2.4

fAreq. (Hz) (b) Freq, (Hz)

Comparison of coherence function between individual ECG
cycles between;

(a) channels 1 and 2
(b) channels 1 and 3

The bottom trace is the coherence average of the individual
cycles of channels 1, 2 and 3.
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Figure 2.5 CoinparisDn of coherence function between individual EGG
cycles between;

(a) channels 1 and
(b) channels 2 and 3

The bottom trace is the coherence average of the individual
cycles of channels 7,k and 2,3
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Table 2.1

Figure [Mumber Coherence between channels 1DD9% 50%
(Hz) (Hz)
2.6 1 and 2 110-140 10-40
420-440
2.6 1 and 3 90-160 420-440
2.7 1 and 4 - 110-140
360-370
2.7 2 and 3 110-140 330-360
2.2 2 and k - 110-140
180-190
2.8 2 and 4 110-140
410-430

Table 2.1 shous the coherence function between the four recorded

channels for the isoelectric interval.

Table 2.2
Figure Number Coherence function 100% coherence 50% coherence
between channels (Hz) (Hz)

2.k 1 and 2 0- 90 270-280
110-130 410-420
140-180

2.k 1 and 3 30- 90 210-220
110-130 410-420

2.k 1 and 4 10- 90 110-120

2.k 2 and 3 0- 90 190-250
120-180

2.5 2 and 4 10- 90 140-160

2.5 3 and 4 ID- 90 140-160

Table 2.2 shows the coherence function between the four recorded

channels for the ECG.



2.3.5 AC interference in the electrocardicgram

AC interference is one of the most common types of disturbance
encountered in recording ECE's from the surface of the body. This
section is concerned with the origins of electrical interference, and
the advantages and disadvantages of techniques used to reduce 5QHz
interference in surface ECG's (Huhta & Webster, 1973). Many
researchers have described, in detail, the mechanisms of coupling of
interference (5QHz) in the recording of ECG signals. Webster (1977)
has shown that interference may enter the amplifier input leads in
three ways:

(i) Capacitativa coupling which allows, via displacement, a current

to flow in the input leads.

(ii) Inductive coupling between current carrying conductors and the
input leads, in which the magnetic field induces an electromotive
force in the input leads. Ground loops allow interference by
induction into the loops established by injudicious connections

to ground.

(iii) Resistive coupling in which a conductive pathway is established
between a source of electrical activity and the recording

equipment.

Interference can be minimised by various procedures, such as skin

preparation, appropriate arrangement of the leads and electrodes,

careful earthing and shielding, and also by choosing a high
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Zi* Characteristic of noise and artifact present during exercise ECG

The exercise ECG is an important technique for indentifying cardiac
disorders that are not apparent from the resting state ECG, but may be
precipitated by the physical stress of exercise and then become
apparent in the ECG. Although the teat may be effective in this
respect the attendant muscle activity may, by virtue of the noise
produced, obscure events uithin the ECG. The quality of the recorded
ECG's depends upon factors such as electrode-skin preparation, choice
of electrodes, lead system and type of exercise test (Betts & Brown,
1976). Movement of the electrodes in relation to the skin may result
in base-line fluctuation correlated with periodic bodily activity and

other physiological sources of noise such as respiration.

Figure 2.11a shows an example for recording electrodes placed in lead
during exercise ECG. It shows the base-line fluctuation, while
figure 2.11b shows the recording of the same lead in the resting

state.
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2.5 Experimental method for muscle noise measurement studies

The main objective of this part of the study was to obtain EGG
recordings corresponding to lead | and leads parallel to lead | in the
frontal plane, under specified conditions relating to activation of
various major skeletal muscle groups, uith a view to selecting

appropriate lead positions for the adaptive filter technique.

Four leads uere recorded simultaneously, these being defined as
follows. For each of the subjects considered a reference electrode,
common to all leads was attached to the left leg. The first electrode
pair was placed with one electrode in each of the right and left
mid-clavicular lines at the level of the sternoclavicular junction and
the three remaining electrode pairs placed on the mid-clavicular

lines, imnediately below the first pair and separated at BDmm centres.

Recording Procedures

(i) With the subject at rest, one minute recordings for each lead
were obtained.

(ii) A one minute recording of each lead was obtained with the subject
bending his head forward and chin touching the cheat so as to
activate mainly platysma muscle, splenious capitis muscle and
semispinalis capitis muscle.

(iii) fl one minute recording was obtained for each lead with the head
inclined backwards, so as to activate mainly splenius capitis

muscle, semiapinalia capitis muscle and the platysma muscle.
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(iu) A one minute recording uas obtained for each lead ulth the
subject grimacing under conditions in which the
sternocleidomastoid muscle and platysma muscles were considered
to be activated.

(v) A one minute recording for each lead was obtained with the
subject's arms raised, the hands placed behind the neck and the
elbows brought forward. Under these conditions the trapezium and
deltoid muscles were considered to be activated.

(vi) A one minute recording was obtained for each lead with the
subject tensing the abdominal muscles. Under these conditions
the major and minor pectoralis muscles, together with the
deltoid, serratus anterior and external oblique muscles were

considered to be activated.

Results and Discussion

The results presented in this section will be used to predict, on the
basis of coherence function, the effectiveness of the methods used in
chapters 3 and k in cancelling noise and interference in different
electrode pairs. Santopietro (197A,1977) clearly assumed the
occupancy of the noise and interference to be within the isoelectric
intervals. The coherence was implemented for the combination of the
four channels in this region. The coherence function was also applied

for the ECG signal only.

Figure 2.12 shows the four channel recording of the ECG with the

subject at rest, uiille figure 2.13 shows the coherence function for
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Figure 2.12 The

surface recording of four channel of ECG

- channel 1
- channel 2
- channel 3
- channel k
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the isoelectric intervals of various channel combinations. These
results are in good agreement with the results presented in the
previous section. As the electrode separation increases the

attentuation of components in low frequency region varies.

Figure 2.1A shows the coherence function for recordings derived from
the four channels considered. The consistently high coherence value
in the frequency range 0-1DOHz suggests that this activity is due to
the EGG signal. In the mid and high frequency regions the
distribution of coherence function may be partly attributed to

artifacts and noise.

The slight decease in coherence that occurs as electrode separation
increases indicates a decrease in the level of shared activity, or
increase in random noise activity. At higher frequencies the activity
of the EGG is variable and some poorer coherence might he expected,

due to the relatively greater influence of noise.

The summary and general discussion of the result of experiments ii to

vi are presented in table 2.3 and 2.A.

50



[yY'MrUj

J.D 1.P

0 CDHERENCE;/FRED. BOOH:z o cdhererce/freo.
igure 2.ii* Comparison of coherence function of the first ECG cycle between

a - channel 1 (2,3,i*) and between the individual cycles themselves
b — the second ECG cycle of channel 1 (2,3,"+) and between the
individual cycles themselves
51

fM /V



2.6 Discussion

The results of the study of noise, interference and artifact have been
presented in this chapter. Methods have been desicribed to enable

identification of suitable electrode placement for adaptive processing.

A coherence function was used to predict the spatial correspondence between
activity in different electrode pairs for both signal and noise
independently. It was suggested that a high coherence value in frequency
range 0-10DHz is due to the activity of the heart signal only. At
frequencies above IDDHz, the ECG activity is small, and lower coherence
might be expected due to the greater influence of the skeletal muscle noise
and other artifacts. This seems to be in agreement with the consequences
arising from the overlap spectra of signal and skeletal muscle shown in

figure 8.1

At very high frequencies, in which the coherence function was seen to be
approximately D.25, tape recorder noise and any other random components

ujere considered responsible.

experiment was conducted to establish the identity of the primary muscle
mass activity that contaminates the ECG signal. A summary of the results

is presented in tables 2.3 and 2.A.

The results indicate the greater the spatial separation between lead pairs,
the lower the coherence; sufficient for selecting appropriate leads for

adaptive cancellation.
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Table 2.3

Experiment Coherence between channels
ii 1-2
1-3
1- k
iii 2 -3
2-40
iu 1-2
1 -
Vv 1- <

100%
Hz

0-80

0-50
75 - 90
1i»0 - 150

0-60
180 - 200

0-80
100 - 160
180 - 200

0-80

0-80
0 - it

0-40
80 - 110
140 - 220

50%
Hz

90
130
190

180

70
130

160

120
180
220

90

80
160

110

100
150
200

200

85
150

180

130
190
230

160

140
200

130

Table 2.3 shous the coherence function between the four selected

recorded channels for the complete EGG.
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Table 2.v

Experiment Coherence between channels 100% 50%
Hz Hz
i 1-3 D- 2D 70 - 120
120 - 17D
180 - 220
1- k 180 - 190 0 - 120
230 - 250
2 - k 120 - 180 0-35
i 1-4 50 - 65 0-20
75 - 130
iv 1-2 ID - if5 70 - 120
210 - 230 lif0 - 150
160 - 200
1-3 0 - if5 70 - 120
150 - 180
210 - 230
1 - if 150 - 180 0 - if0
210 - 230
v 1 - if 0-60 90 - 160
3 - if 20 - 100
200 - 230

Table 2,k shows the coherence function between the four recorded
channels for the isoelectric intervals.



Chapter Three:Techniques for Noise reduction

3.1 Introduction

The basic approach to the problem of investigating a signal corrupted
by interference or noise is to start by passing the corrupted signal
through a filter, with a view to suppressing the effect of the noise

or interference whilst leaving the signal unchanged.

This chapter provides a review of the previous work that has been done
on the extraction of signal from noise based on a priori knowledge of

both the signal and the noise. Extraction techniques of this kind are
referred to as fixed value filtering. In filtering of this type, the

coefficients do not change with the changing of statistical

characteristics of the signal
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3.2 Noise reduction using analogue filters

Knott (197if) introduced an analogue filter with the ability to reduce
interference at mains frequency and harmonics. This filter uas based
n the idea of a commutating RC network as shown in figure 3.1. The
advantage of this technique was its ability to track changes in the
mains frequency, enabling very sharp rejection characteristics by
using a low-pass filter. However, the technique has a disadvantage of
introducing a phase shift in the pass-band and causes a decrease in
the rejection performance. In recent years, advances in digital
technology and the development of fast fourier transform algorithms
have made the use of digital processing techniques practical for

spectral analysis of non-stationary waveforms and filtering.
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3.3 Noise reduction using digital filtering

There is a considerable amount of published uiork that deals with the
acquisition and enhancement of EGG signals from unwanted noise, and
has been well reviewed in a number of papers published within the last
fifteen years (Furno & Tampkins, 1983; Huhta & Webster, 1973; Johnson
et al., 1979; Haunitz & Widrow, 1973; Ribeiro et al., 1980; Sheild &

Kirk, 1981; Weerd & Hap, 1981; Winter, 1966)

In this section, the use of digital filtering as a means of reducing
noise is examined. In 1977, Lynn introduced a low-pass recursive
digital filter in which the Z-plane poles and zeros are placed inside
the unit circle. This filter has the advantage of a linear phase
response, but introduces a delay of 0.5a. Weavers et al., (1968) and i)
Lynn (1971) introduced a notch filter design which had the advantages
of a negligible delay, but involves a trade off between computer
storage and filter delay. Very good results have been obtained by the
use of recursive digital filters (Lynn, 1971). However, this type of
digital filtering still affects the high frequency signal component
and can also introduce 'ringing' if the frequency characteristic

cut-offs are very sharp.

Levkov et al.,(198L) introduced a digital method for 50Hz interference
Elimination. This technique is based upon computing the interference
amplitudes and subtracting these data from the original signal. This

method tends to preserve the high frequency components of the signal.
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Gregory and Willis (1983) introduced a new method of using a notch
filter in removing 5QHz interference. This microcomputer based filter
involves tuo stages in the elimination process:

(i) Learning phase, to ldentify the shape of the noise or
interference waveform by sampling the ECB signal during an isoelectric
interval, and saving these values as a table within the microcomputer
RAM based memory, and

(ii) the filter then synchronously subtracts the values in the table
from subsequent input signal samples to form the filter output

waveform.
In general, a digital filter operates by weighting and summing a
number of sample values of a sampled-data signal. Figure 3.2 shows a

diagram of a simple recursive filter

The relationship between the input x(t) and the output y(t) of a

linear digital filter is given by the convolution integral

y(t) =J h(t)X(t - t)dT o o o o Jef

Where hCx) is the weighting function of the filter. The frequency

response function of the filter, H(f), is the Fourier transform of h(x)

H(f) =f h(x) e"Jr*".dx e 3.2

A design for a low pass recursive digital filter is presented in
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Annex B, , ujhich uses the same shape of characteristics as those used
by Lynn (1977). Figure 3.3 shows the transfer characteristics of the
first order recursive digital filter for different coefficients, and the
effect of such filter conditioning on a noisy exercise ECG is

illustrated in figure 3.A. It can be seen that a higher number of
coefficients is better for the reduction of noise, but at the expense of
amplitude signal distortion (Taylor & Macfarlane, 197A). Table 3.1
summarises the signal improvement with respect to the number of the

filter coefficient.

Table 3.1
Number of
coefficient 7 9 15 21
Signal
improvement (dB) 13.38 12.27 11.71 9

From the table above it seems that the smaller the coefficient, the
greater the signal improvement but with less noise reduction, and vice
versa. The amount of signal improvement could be obtained if a known

simulated signal was used with different noise levels.

|f the noise power lies within the filter pass band, an error will arise
in the filter output waveform and since, during exercise tests, their
exists some spectral overlap between the noise and the desired signal,
the output signal is clearly altered by the action of the filter. This

is illustrated in figure 3.A.

It can be seen from figure 3.3 that the amplitude-frequonoy
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characteristic is far from ideal, suffering from a poorly defined
cut-off and substantial side lobes, the first side lobe having a peak

about 22% of that of the main lobe.

By adding a pole at Z = (1,0) in the unit circle, the side lobe is
reduced to about 5.1%, so improving the noise reduction, but at the
expense of an increased computational requirement (figure 3.5). One of
the advantages of digital filtering over conventional analogue filtering
is that the set of weighting coefficients may be altered to match the

requirement of the noise characteristic.

Often in recording electrocardiograms (EGG), a narrow band contaminating
signal such as 50Hz electromagnetic interference may obscure or degrade
the desired signal. The application of a digital notch filter may be
used to remove the 50Hz component. Again, this has the effect of
removing any 50Hz component within the signal itself, but it is
ineffective in removing any of the harmonics associated with the
interference component. Since the signal components in wide band
electrocardiograms may well occupy a frequency range up to 1 - 2 KHz

(Santopletro. 1977). the use of such techniques is limited.
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Figure 3.5 Transfer characteristics of the
recursive digital filter when the
side lobe is reduced by 5.1% for
different number of coefficients
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3.U Noise reduction using a transversal filter

One of the techniques examined in this study as a means of eliminating
noise from signal recording uas the use of transversal filtering. A
block diagram of a transversal filter la illustrated in figure 3.6.
This type of filter receives input samples which are then delayed and
multiplied by a set of weighting coefficients with all the products
summed within each time period to form the output samples.

Mathematically this process may be represented by the expression:

y(t) = r x(t - n)Ir

Where x(t) is the signal input to the IN-tap line and the output signal

is y(t).

A computer program was written (see Annexe ) to enable the calculation
of the number of weight coefficients required for a specific transfer
function of the filter. Figure 3.7 illustrates the impulse response
and transfer function for different weight coefficients of the
transversal filter. The performance characteristics for this

arrangement are illustrated in figure 3.9.

A greater noise reduction can be obtained by the use of this
technique, but such a reduction is at the expense of amplitude signal
distortion, especially at low input slgnal-to-noise ratios. The
improvement (SNR) can be estimated using a quantifiable input signal

that shows resemblance to the real data, and to which different
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amounts of noise can be added. Table 3.2 shows a summary of the

improvement using this technique for different weight coefficients.

Table 3.2

Number of Coefficient (N) 13 39 fli 199

Signal to noise
improvement (dB) 13.88 12.27 11.71 11.2

The advantages and disadvantages of transversal filters for achieving

improvement in signal-to-noise ratio may be summarised as follows:

Advantages of transversal filter

(i) a greater reduction may be obtained with higher input
signal-to-noise ratios.

(ii) Economy in the number of coefficients required to achieve a
reasonable improvement compared with other digital techniques

mentioned in previous sections.

Disadvantages of tranversal filter

(i) For low signal-to-noise ratios, distortion occurs.

(ii) Inappropriate for non-stationary data.

(iii) Little improvement observed for higher numbers of coefficients.
(iv) The value of coefficients do not vary with the variation of the

statistical characteristics of the input signal (fixed value

weight).
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(v) It is time consuming, and therefore not well suited for an

application in real time.

The results in this section clearly demonstrate that the use of
transversal filters yields an improved estimate of the signal in terms

of reduced noise activity, but uith an attendant amplitude distortion.



3.5 The USE of Wiener filter for improving signal-to-noise ratios in

electrocardiograms.

The Wiener filter is a particular form of digital filter which is used
to detect the signals that are masked by noise. The technique has
been examined for stationary and non-stationary signal and noise
components. The application of the Wiener filter to enhance the
signal-to-noise ratio in electrocardiograms is based on a complete
knowledge of the spectra of the ECG signal and the unwanted noise.

The mathematical basis for the transfer function of the Wiener filter
is presented below as a precursor to discussing the relative merits of
the technique for signal-to-noise improvement in exercise

electrocardiograms.

Assuming that the ECG recorded from the body surface can be expressed

as follows:

XiM(t) = s(t) + njA(t) i o=1,2... ... 3.A
tibere s(t) is the desired signal ECG and nj*(t) stationary noise with
zero mean. The assumption is made that s(t) and nj*(t) are

uncorrelated.

Taking the ensemble averaging of equations:

N
x(t) = s(t) +1 r n,(t) 3.5
L

0 <t<T

T is the duration of the ECG cycle.
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Taking the Fourier traneform of equation 3.2, i.e. transformation of the
ensemble average from time domain to frequency domain, denoted by x(u), the
pouer density spectrum of x(t) is

Be(iif) = X (u) x(u) ... 3.6
Assuming that the noise is not time locked and uncorrelated to the desired
signal, the expectations are:

E[*Mu)] = E [issCu)] +A[*nn(ui)] P I 4

lihere *xx, *ss, @®nn represent the power density spectra of the average,

the EGG signal and the noise respectively.

By averaging the power density spectra of all the Individual ensembles:
E[*xx(w)] = E [*xx(w)] = E [*ss(w)] + E [®nn(w)] ... 3.8

Where *nn(w) is the power density spectrum of x(t).

From equation 3.7 and 3.8, the spectra of signal and noise can be expressed

in terms of the average and pouer density spectrum of x(t):

ss(w) = N [*xx(w) - 1@xx(w)] 39
N1 N

and

nn(u) = N [inn(w) -1@xx(w)3 3.18
N1 N

therefore, the transfer functions of Wiener filter given by
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may be expressed in the form:

Hay - ML 1) 3 1

N1 Mi xx(uj)

This is the transfer function of the Wiener filter based on theoretical
spectra, and on a priori knowledge of both signal and noise. In general, a
priori knowledge of both signal and noise is not always available. In
these circumstances equation 3.12 may be expressed in terms of the spectra
>« (W)

M[1- 1 *xx(w)]

H(y)
-1 M ®xx (w)

The main disadvantage of the Wiener filter for use in enhancing the

signal-to-noise ratio of exercise ECGs are as follows:

(i) where spectral overlap between signal and noise occurs and the
signal is obscured by noise, the Wiener filter cannot
distinguish between the signal component and the noise
component, especially in the excercise ECG teat

(ii) this technique is suitable for stationary data only,

(iii) a priori knowledge of the signal and noise is necessary
for efficient application of the technique, and

(iv) distortion occurs when signal-to-noise ratio is low.

The main reasons that this technique has been considered in this study
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is that it prouldes an optimal estimate of the true signal, has been
used successfully for the estimation of evoked potential (de Weerd,

1981; de Weerd & hap, 1981)

The results presented in section 3.5 indicate that there is no
significant difference in separation of noise frequencies from signal
frequencies when signal and noise have the same spectral occupancy,as

in parts of the exercise ECG's.



3.6 Application of coherent signal averaging to noise reduction in

electrocardiograms

3.5.1 Noise reduction

For many years, signal averaging has been used in electrocardiographic
studies (Briller et al.,1956). In particular, signal averaging has
been used for reducing noise during surface recording of ECGs, for
enhancing foetal electrocardiograms in the presence of excessive noise
on the maternal electrocardiogram (Hon et al., 1964; Docker, 1971),
and for the detection of events of the Specialised Conduction system
(Trisaua et al., 1965; Berbari et al., 1973, 1979; Furness, 1976;

Vincent et al., 1978,1980).

The surface measured signal ia composed of a desired signal component
plus an unuianted noise component and, in applications such as those
cited above, the noise ia usually one or mere orders of magnitude
larger than the amplitude of the desired signal component. If the
frequency content of the noise component is higher or louier than that
of the desired signal component, conventional fixed value filters can
be used to attenuate the noise. However, if the frequency spectrum of
the noise partially overlaps that of the desired signal (figure 3.10),
conventional filtering alone ia not sufficient to achieve adequate

noise reduction.

Coherent signal averaging may be used to enhance the signal-to-noise

ratio, provided certain requirements are fulfilled.
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(i) A length of record with a continuous ECG signal, and

(ii) The proper alignment of the individual signals
Many researchers have investigated methods to determine the

reference point by which successive periods of recorded signal are
aligned for averaging. These methods include level sensing, slope

determination and pattern matching.

Following a detailed examination of signal averaging, a new method was
developed for achieving alignment. A lenth of record of successive
ECG cycles was stored in the computer memory. The length of record
needed for the averaging technique was baaed on the noise content and
heart rate (Furness, 1973). For small signal (1-1Gyv) investigation
during this study, a minimum noise level of 25uv (rms) was found to be
present during surface recordings. After determining the length of
record required for a particular application, the alignment of the

signal for averaging was performed using the following technique.

An appropriate sampling rate was selected tc avoid aliasing, and a
processing algorithm was used to search for the maximum in each ECG
cycle. The input data was segmented into 5D0 ms segments, the
position of peak signal level in each segment was then used to align
each cycle. The R wave was selected as the feature in the ECG cycle
in which a maximum was sought. After segmenting, the whole record
averaging was performed by summing all the segmented data and dividing
by the sweep count. Although sections of the isoelectric intervals
may overlap as a result of cycle to cycle variation, the FI! segments
are not affected in this way. In order to gainas much information as
possible from the frequency characteristics of the ECG, a sampling

rate of IKHz was chosen.



The coherent average of a signal y(t) can be represented

mathematical terms in the following way:

lihere 3|"(t) is the repetitive signal
N is the number of segments averaged,

y(t) is the averaging result.

If the signal y(t) contains an additive random noise n(t):

y(t) = s(t) +n(t)

y s (1) +n (1)

<
—
—
~
1
—_

If s(t) is repetitive and deterministic,

y(t) = s(t) +2 y n o(t)
~k=1
]

taking the expectation of equation 3.17

E[y(t)] = s(t) +2 2 E[ n (1)]
k=1

in

3.



therefore:

If ue assume the noise is independent and has zero mean,
E[y(t)] = s(t) signal only 3.19
If the samples were taken every T seconds, equation 3.15 becomes:
y(t|™+ 0T) = a(t|™ iT) + n(t|™+ iT)
= s(i) + n(t|™ iT) ... 3.2
Since the noise was assumed to have a zero mean and rms value of o, on
any particular repetition, the aignal-to-noiae ratio will be
S/N = s(iT)
a
after ( repetitions, equation 3.20 becomes:
N N N
Zy(tm+ iT) = | s(iT) + Z n(t™ + iT)
=1 k=1 k=1
the mean

is random and N samples are independent

Since the noise
square value of the sum of the n noise samples is IMo*, and the rms

value is -Jko.

the signal-to-noise ratio, after summation is

Therefore,
(S/N) |~ = 1yS(iT)  =/I\I(SN) . 3.23
W\lo
therefore, the summing of M repetitions improves the signal-to-noise

ratio by a factor of.".
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Thus if the noise exhibits a Gaussian distribution, the improvement in
signal-to-noise ratio is-/\l, uiiere N is the number of sweeps of the
averaging sequence (Trimble, 1968; Furness, 1976). Often the noise
that obscures the signal does not exhibit Gaussian distribution. In
such circumstances the improvement in signal-to-noise ratio can be

difficult to estimate theoretically.

Signal averaging can be considered as a filtering process in frequency
domain, its behaviour being likened to a comb filter (Trimble, 1968;
Budo, 196ii). The processmay be represented as the convolution of the
input signal with a trainof Nunit impulses which, when translated
into the frequency domain, yields the characteristic transfer function
of a comb filter.Every frequency component of the time locked signal
coincides with the centre point of a peak or 'tooth' of the comb

filter due to the synchronous pulses that are time locked to the
signal, s(t). The bandwidth of each tooth becomes progressively
narrower as the number of repetitions increases. In analytical terms

the bandwidth of the comb filter peaks satisfy the expression:

Af = D.886 Hz

Nt

idiere x is the period of the periodic signal and N is the sweep count.



3.6.2 Jitter effect

The objective of coherent signal averaging is to improve signal-to-noise
ratio to reveal a signal buried in noise. To do this without producing
distortion it is important to ensure stable triggering baaed upon a well
defined signal reference. Jitter, due to noise or base line variation, may
if present result in deterioration of the average as the number of sweeps
is increased. To investigate the effect of jitter due to noise, and to
develop a technique for the quantification of jitter, simulated data with
various levels of noise was processed using a PDP11/23 computer

Experiments were conducted in order to gain insight into the influence of
the noise on peak detection and its manifestation as jitter. The presence
of jitter clearly produces smearing in the results of the averaging

process, with consequential distortion.

The processing involved the following steps:

(i) The length of record required for the specific improvement in
signal-to-noise ratio was determined, and divided into
segments corresponding to the number of the repetitive
cycles (assuming the size of each segment or cycle
to be SOQms).

(ii) flbuffer space was allocated equal to the same length of the
record as in (i) and divided into 500ms segment lengths.

(iii) A routine was implemented to search for the peak within the
first 500ms of data and shifted to place the detected peak
in the middle of the buffer apace, and fill the right and

left of the buffer with the data of the first 5Q0ms.
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(iu) The search routine was repeated for the peak of the second SDOms
data and re-distributed in the second buffer. The process was
repeated until the whole of the data had been processed in
this manner.

(uy Different levels of noise were added to the individual buffers.

(vi) The new positions for the peaks produced by additions of the
noise were determined.

(vii) The difference between the respective peak positions were

determined as a measure of the jitter due to noise.

The simulated results so obtained illustrated that there was no jitter
effect when the data has a signal-to-noise ratio greater than itdB. The

jitter was found to he 2ms for data of signal-to-noise ratio less than ;tdB.

Figure 3.11 shows a clean recorded EGG signal. With different noise levels
added to it, the signal-to-nolse ratios were 23.7, 15.7, 9.7, 3.6, -5.86
and -7.2dB. figure 3.12 shows the overlap between a clean QRS complex and

anoisy QRS. It also shows the amount of jitter measured in each case.
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Figure 3.12 The auerlap betueen a clean QRS complex with a
QRS added to noise

(a) S/N = 9.7dB Jitter
(b) S/N = 3.6dB Jitter

Oms
Oms
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Figure 3.12 The overlap between a clean QRS complex with
a QRS added to noise

S/N = -7.2dB Jitter = 3.21ms
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3.5.3. Limitations on noise reduction by coherent signal averaging

Noise, in the context of this discussion, is any component other than

the signal required. The reduction of such components by this

technique can be affected by the following factors:

(i) the nature of the noise present in the inputsignal

(ii)y the correlation between signal and noise

(iii) the overlap of the spectral occupancy of thenoise andsignal

(iv) the wvariability in the time interval betweenthe trigger event
and the events to be detected,

(v) the jitter effect associated with the trigger routine.

Often the noise masking a signal is not random. The presence of 50Hz
interference for example can effectively obscure the signal in many
situations. Linder these circumstances it may he difficult to estimate
how much the noise will be attenuated. The presence of excessive ac
interference cannot be reduced effectively unless:

a) a large number of signals are averaged, or

b) most of the interference is filtered out, by using a notch filter.
Figure 3.13 shows a simulated ECG and the averaged output as a result

of LOO averages on a signal with LOOuv peak-to-peak, 50Hz

interference. The result widens the R wave and rounds off the peaks.
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3.6.i"

Disadvantages of coherent signal averaging

Although signal averaging may provide an improvement in

signal-to-noise ratio under appropriate conditions, the technique may

not be entirely appropriate for processing electrocardiograms. The

various disadvantages include:

(1)

(if)

The inability to detect transient small signal events uithin
each cycle of an ECG on a beat-by-beat basis.

In the case of skeletal muscle activity or the exercise ECG
test, some of the noise component is correlated with the
desired signal and averaging cannot distinguish between

the two. Distortion can therefore occur
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3.7 IMaise reduction using time-varying filter

In previous sections a Wiener filtering technique was described as a
means of reducing noise in the electrocardiogram. As this technique
is a time-invariant filtering process, it does not yield an optimal
result in dealing with a transient signal. A time-varying filter is
needed in order to cope with a transient waveform and to perform in an
optimal manner. The advantages of the time-varying filter technique
include:

(i) the ability to perform for non-stationary data,

(ii) no a priori knowledge of the signal and noise components is

required.

This technique has been fully explained by de Weerd (1981) and
successfullly applied to the problem of improving signal-to-noise
ratio of evoked potentials. The use of a time-varying filter was
investigated in this study as a method for reducing the background
noise from surface recorded ECG signals. The filter, which is based
upon an estimation of the time-varying power spectra of signal and
noise, assumes that the signal is identically repeating but is masked

by noise.

The signal and noise may be represented by an equation of the form:

ViMt) = s(t) + n;‘(t) . ... 3.25
i =1,2,3...... N
0<t<T

idiere s(t) represents the signal (le. the desired ECG signal), n4(t)
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represents noise (i.e. unwanted activity, such as muscle noise, and
50Hz interference), T is the duration of each cycle and N is tfe number
of repetitive cycles. The collection of cycles y (t) is referred to

as the ensemble.

DeWeerd and Map (1981) employed time-varying filters in the following

lijays

(i)  The use of a bank of proportional bandwidth filters, i.e
filters having a bandwidth proportional to their centre
frequency.

(ii) By taking Fast Fourier Transform, the power of the signal and
noise can be estimated, in each of these regions over the
entire record.

(iii) The ensemble average y(t) is modulated by the time-varying
coefficients.

(iu) The final estimate can be obtained by taking the sum of (iii).

This may be described mathematically:
N
S(t) = Z W (t).X (1) ... . 3.26

Where Xn(t) is the ensemble average record in the nth band,
Wr|(t) is the time-varying filter coefficient in the nth
frequency band, and

S(t) la the time varying filter (TV/F) estimate.

Figure 3.14 shows the block diagram of the construction of

the time-varying filter.

Time-varying filtering (TUF) was applied to electrocardiograms in

order to reduce the background noise, and the results depicted in
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figures 3.15 and 3.16 show an improvement in signal-to-noise ratio
beyond that of the averaging technique. However, this improvement

depends upon the spectro-temporal structure of signal and noise.

Figure 3.19 shows the spectrum of the input signal, after averaging
and after the application of the time-varying filter. From the
results it can be seen that the time-varying filter is more
appropriate than averaging in noise reduction. The technique was

applied to exercise ECGs and the results are presented in Chapter 7.

Simulated data was used in order to examine the improvement achieved
by using TUF on an artificial signal, to represent an ECG, together
with a noise component generated using software. TUF was performed
for different levels of added noise. Averaging was also performed for
comparative purposes using low sweep count. The results are depicted
in figures 3.17 and 3.18. The TUF technique gives better estimation
of the simulated signal that the averaging techniques for the sweep

count considered.

If signal and noise spectra overlap in time and frequency, as is
likely in the applications considered in this study, not only the
noise components are attenuated, but the signal components are

attenuated as well.
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Figure 3.15

Result of averaging and time-varying filter in which
the estimate of the mean square error was achieved
in if cycles.

(a) input signal

(b) result of averaging

(c) result of time-varying filter
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figure 3.16 Result of averaging and time-varying filter in ujhich the
estimate of the mean square error uas achieved in
Sk cycles

(a) input signal
(b) averaging result
(c) time-varying filter result
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(c)

(d)

figure 3.17 Results of averaging and time-varying filter in which
the estimate of the mean square error was achieved in
32 simulated cycles

(a) simulated input signal

(b) simulated signal and noise
(c) result of averaging
(d)

result of time-varying filter
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Figure 3.18 Results of averaging and time-varying filter in ijjhich

the estimate of the mean square error was achieved in
6k simulated cycles

(a) simulated input signal

(b) simulated signal and noise
(c) result of averaging

(d) result of time-varying filter
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Figure 3.19 The spectra of the input signal, averaging
and time-varying filter



3.8 Discussion and conclusion

This chapter has been concerned with the description and application
of different filtering techniques for noise removal from ECGs.
Although the techniques mentioned provide improvements in
signal-to-noise ratio, it is often at the expense of signal
distortion. This distortion may be considered to be due to the
inability of these techniques to change their characteristics to
follow the variation in the signal and noise. In situations where
signal fidelity is important, the distortion due to conditioning must

be minimised.

It has been noted that even inaccurate results can be obtained through
the use of averaging procedures in certain circumstances, but an

attempt was made to improve the way of conducting the technique.

A need was identified for a technique which has the ability to improve
signal-to-noise ratio and avoid signal distortion. Such a technique
requires the coefficients of the transfer function to vary with the
variation of signal and noise. Techniques of this kind may be
collectively referred to as adaptive filters and are considered in

detail in the following chapters.
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Chapter Four: Theory of Adaptive Filters

Introduction

The review of techniques used to extract a signal (EGG) from the
unwanted activity (noise) revealed that while improvments could he
obtained by use of time-varying filtering or transversal filtering,
the improvement was less than adequate for the applications in mind.
Tun main reasons may he considered to account for this result

(i) Lack of a priori knowledge of the signal and noise, and

(ii) The non-stationary nature of the signal.

A need was therefore recognised for a technique that could track or
follow the variation of the signal and noise, and have the ability to
perform without any a priori information of the signal and noise.

This type of filter was first introduced by lilidrow (1966) and the
group of filters in this category are known collectively as adaptive
filters. Adaptive filters are essentially self-design filters in
which the coefficients of the filter are internally and automatically
adjusted, based upon estimated statistical characteristics of input
and output signals. The statistics are not measured explicitly and
then used to design the filter. The filter design is achieved by
means of a recursive algorithm which automatically updates a set of

coefficients (weights) with the arrival of each new data sample.

An example of an adaptive transversal filter consists of a tapped

105



delay line, a variable weight change facility based upon the signal
infcrmaticn at the delay-line taps, a summer to add the weighted
signals, and circuitry to adjust the weights automatically. The
impulse response, determined by the coefficient settings and the
adaptation process. The latter automatically seeks an optimal response

through adjustment of the coefficients.

Figure <1 shows a diagram of a transversal adaptive filter.
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k.2 The concept of adaptive filtering

An essential feature of the adaptive filter (AF) is the adaptive

linear combiner as is illustrated in figure U.2. A stationary input
signal Xj(t) is sampled to form n sampled measurements where j
is the time index. FEach measurement is multiplied by a corresponding
weighting coefficient Wj, and the weighted measurements are combined
to form an output yj. This output is compared with a desired response
dj to form the error signal Ej(dj) and is used to train the adaptive

filter.

Two main objectives are sought in the operation of this type of filter

(i) to choose the weighting coefficient in order to minimise the
error signal, Ej , and

(ii) to find the weighted sum of input signals that best matches the
desired response, dj.

The jth output signal of the combiner is given by

Vi =E
i=1

and the error signal is given by

XJ-Vj. dj - E «/ij

The analysis in this section is based upon a stationary input signal






There are various uays of configuring the input signal Xj(t). For
example, if the inputs are taken from a tapped delay-line, the linear
combiner will form a transversal or finite impulse response (FIR)
filter, and the whole structure will be known as an adaptive
transversal filter, (ATF) (Uidrow et al.,1976). Such configurations
have been used to model an unknown system (LJIdrow et al., 1975) to
reduce interference in communication systems (Uidrow, 1901), reduce or
eliminate periodic interference in electrocardiography (Uidrow &
McCool, 1976), and broadband interference in the sidelobes of an
antenna array (lilidrow et al., 1976), to separate periodic and
broadband signals and detect very low level periodic signals (Uidrow

et al.,197ii).



i*.3 The LMS adaptive algorithm

Tun main processes may be recognised in the operation of adaptive
filters; training (adaptation) and operation. In the training process
the weights are readjusted, while in the operation process the output
signals are formed by weighting the tap delay-time signals (figure

i(.1) using the weights resulting from the adaptation.

In optimising a filter it is necessary to either minimize the mean
square error to approach the beat of linear filtering, as in Weiner's
theory of optimal filters, or maximize the signal-to-noise ratio

(Shensa, 1979).

Referring to figure ~.1, one can develop the theory of an adaptive
filter by using the mean square error approach. The output in terms
f the filter input and weights, equation it.1, may be rewritten using

amatrix notation.

yji=xJ. = wlXj V ....4.3
Nerex5=CX" , X*"_ 1, Xj_"mm

and W = WA WA WAL w P s

The main requirements of the adaptive algorithm are to select the
weights necessary to minimise the mean square error (MSE). By
squaring equation k.2 and taking the mean over the ensemble the MSE
can be formed.

ECej] = E[c"]- 2E[djXj] W + WM E[XjXj]U ... 4.6

uhich may be written as:
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E[erj] = - 2P.V + i*.7

Y u

ECdjXj] AP i*.8
"Alnj
XijXij XA.XnJ

A2jMU M2y

n
m

AR k.3

«*V

X X
nj nj

Where P is the cross correlation vector between the input signals and
the desired response, and R is the input correlation of the X- input

signals.

Since the input and the output are assumed to be statistically
stationary, the MSE is a quadratic function of the weights (McCool
& Widrow, 1976). This function has a minimum that can be obtained
by differentiating the MSE equation U.7 with respect to the

weight factor.
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to obtain the gradient v/ector VE[ej*, ]

Therefore:

7E[e*j] = -2P + 27 o 40

By setting the gradient to zero, the optimal weight vector is
obtained;

u =R P o ke

This is the matrix form of the Uiener-Hopf equation.

The exact solution from equation can he obtained, but is
impractical if the number of weights is large, or the data rate is
high since the process involves an NxIM matrix and may require as many
as N(I\I+1) autocorrelation and cross correlation measurements.
Moreovsr, in the case of a non-stationary signal, a continuously

repeated process is necessary.

In general autocorreaction and crosscorrelation functions are normally
unknown, and the Uiener-Hopf algorithm does not compute the
correlation matrices or matrix manipulations but requires that the
weight vector be adjusted from the estimates of the gradient to

approach the Ueiner solution.

The LMS algorithm is commonly based upon gradient estimation even
though it tends to be noisy compared with taking a true gradient
value. However, it can be minimised through careful application of

the adaptive algorithms for steepest descent (Widrow et al., 1976)



Method of gradient estimation

This method measures the gradient of the mean square error by

differentiating the MSE with respect to the weight vector.

If Ej is the mean square error, the differential with respect to the

weight vector is:

. 1t12
6 6 6 jJ,
Differentiating equation 4.Slwith respect to gives
- . it13
I
6 Id,
substituting it.13 into it.12 will give
&/ , it it
J ij
6 IV 6ldj"=
Therefore the gradient vector can be approximated as
C «“ A - - |t15
MEﬂ | E/| 2EJ IXJi

In order to estimate the gradient, the present input vector and the
error should be known according to equation it.15« This method

(gradient estimation) introduces noise (ldidrow, 1976), into the weight
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vector which la proportional to the speed of adaptation and to the
number of weights. This effect can be expressed in terms of a

dimensionless quantity called misadjustment (Widrow, 1966)



i(.3.1.1. Misadjustment due to gradient noise

It is evident from the previous section that, for adaptation by
minimising the mean square error, the faster the system adapts the
poorer ujill be the expected performance. For the Uiener optimum
solution the weights are adjusted according to equation ii.t1and are
based upon a priori knowledge of the statistics of the signal (an
ideal system). When the LMS algorithm is used, the expected level of
the mean square error will exceed that of the ideal system and the
Wiener solution of equation The longer the time constants for
adaptation the closer the expected performance is to the Wiener

optimum performance.

In using the LMS algorithm an excess of mean-square error will develop
which is called misadjustment and can be represented in the following

equation.

Misadjustment = M A Vi - P omin . . . .L.1S
min

A simplified formula for misadjustment may be expressed in the form:

2 p=1 Tp

where n is the number of weights, tp is the settling time and N time
constant of the filter adjustment weights (Widrow, 1956). The time
constant of the pth mode, tp, is related to the pth eigenvalue Xp of

the input correlation matrix R and also to the convergence,u. It may
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be expressed in the form:

APmSe = X it.18

Where X is a convergence factor that controls stability and rate of
adaptation. In a special case when all the eigenvalues are equal, all
the time constants will also be equal. This case only occurs when al

the input signal components are uncorrelated and are of equal power

Under these conditions the time constant may be expressed as

. it19

mse iy

In the above case the misadjustment will be proportional to the number

of weights and inversely proportional to the time constant and may he

written:
M=1 2. - =- = -2- ii.20
2 xXp ' 2x Ut

xp =T for all p

Substituting equation it.19 into equation it.2D, the misadjustment may

be expressed as:
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M= nyX

Where X max la the largest eigenvalue. Uidrow et al.(197i*, 1975)
suggested that a 10% misadjuatment is satisfactory for many
applications. An increase in the number of weights will improve the
performance of the adaptive filter but at the expense of an increase

inmisadjustment at a fixed rate of convergence.

It has been shown from more general considerations that for many
adaptive LMS systems, the misadjustment for small values of M(=: 0.25)
is approximately equal to

M = number of filter coefficients

number of training samples



i*.3.1.2. Stability of LMS algorithm

It has been shoun in the previous section that misadjustment can be
related to the speed of adaptation and to the number of weights being
adapted. It has also been shown (Uidrow, 1976) that unconditionally
stable operation of LMS algorithm can be obtained if < m< A1

where Xmax is the maximum eigenvalue of the input signal corﬂﬂétion
matrix (R). This eigenvalue can often be difficult to obtain.

However, stability can be assured without knowing X max as long asy

is kept within certain bounds.

For stability pis kept < Xmax. However, another important property
which can influence stability is the convergence time. This has been
shown experimentally with the time constant,Tp, (Widrow, 1976; Shensa,

1979) related to by the approximate relation:
1 .. . .L.23

The overall convergence is also limited by the smallest of the

eigenvalues, X min, and this sets the lower bound of the condition.

For stability;
max

jnin ... U2k
LXmin

Thus when the LMS algorithm is stable, transients must die out. |If

the algorithm is unstable on the other hand, the weight vector wil

grow.
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Choosing the number of coefficients

The choice concerning the number of weights depends upon the
application of the adaptive filter and, in accordance with the
sampling frequency, the desired filter frequency resolution. Based
upon these two parameter values, the number of weights may be

expressed as;

N = 2 sampling frequency ... . 4.25

resolution

Choosing a large number of weights for a transversal filter will
ensure a close approximation to the impulse response of the ideal
Uiener filter. However, increasing the number of weights also slows
the adaptive process (increases misadjustment) and increases the cost

of implementation.

In practice, misadjustment is often chosen first, set accordingly and
the value of the delay then chosen so that the filter weights peak at

the centre of the weight vector.



i».3.2 Method of steepest descent

The LMS algorithm for minimising the error function can be baaed upon
the method of steepest descent. This involves adjusting the present
weight vector by an amount opposite in sign and proportional to the

value of gradient vector, thus;

Wil = “ () . U.26
where Uj is the gradient vector and p the convergence factor which
controls the stability and rate of adaptation.
The gradient estimate takes the gradient of the square of a single
error sample, thus;

if.27
ANy =

]_

where 2j is the input vector.
The LMS algorithm can be written as

Uu.2B

where is the next weight vector.

For convergence of the LMS algorithm it is necessary that 1 >p >
|
eJMerex is the maximum eigenvalue.
max

Since the individual eigenvalues are rarely known and as R approaches
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positiv/e: t*R> Xmax

where t"R is the total input power.
Therefore, 1 > y>

is quite sufficient condition for convergence.

In seeking the minimum mean-square error (i.e. min)' the method of

steepest descent could be conducted as follows:

(1) Initial guess of where the minimum point of the Z} surface may be.
Then measure the gradient vector VZ} at the point cn the performance
surface corresponding to those in the set of initial values of the weights.
(2) the next guess is then obtained from the present guess by making a
change in the weight vector in the opposite direction to the gradient
uector.

If each change in the weight vector is made proportional to the

ferror-surface gradient vector:

lilj is the present guess
The performance function is quadratic, the gradient is a linear
function of weights.

VZ) = -2t (xd) + 2000 (x x)]
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4.4 Efficiency of adaptive algorithm

The Uidrow-Hoff method of steepest descent is most widely used in the
adaptive algorithm, in spite of its slow convergence and reduced
efficiency due to the misadjustment and rate of adaptation (Widrow,
1966). Uidrow has introduced a measure for the efficiency of the
adaptation process (algorithm) called efficiency measure (EM) and can

be written in the following form:

4.29
11
where N is the number of coefficients, M is the misadjustment and t is
the settling time. The latter may be defined in terms of the longest f1
Co
adaptive time constant, t as;
max
max - 4.30 33
For fixed adjustment EM increases with reduction of settling time per -<

number of weights.

For the situation in which all the eigenvalues are equal (ie. the same

time constant) equation 4.29 becomes;

4.31
However, when the time constants are different from one another
. 4.32
3 &- g max
p=1
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and since
N
max—— . it3s
N p=t T

therefore EM < A . ... k.3k
3

It may be concluded that the higher the difference between the
eigenvalues of R the lower will be the efficiency of the adaptation
process, and the longer the settling time for the same level of

misadjustment for the same number of weights.

In a case when data can be stored and used again and again for the LMS
algorithm to adapt, the weights will approach the Ulener-Hoff

solution;

W =R-V =R-V ... 4.35

The process will have misadjustment of

_ n_ number of weights ... .4.36
N number of weights of independent training system
In this case, the system settling time, or averaged time is N sample
periods. The efficiency measures of this data (repeated again and

again) for the adaptive process is therefore;
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if.5 Adaptive naise cancellation

The adaptive noise canceller (ANC) is one form of adaptive filter that
attempts to estimate a signal corrupted by noise. The performance of
adaptive noise canceller, illustrated in figure 1.A, has been studied
within the framework of Wiener filter theorem (Glover, 1977; Shensam,
1979, 1980; Widroui, 1976). The AIMC consists of two input channels and
one output channel, the primary input contains a signal s(t)
combined with an uncorrelated noise, n"Ct), and a reference input

which contains the noise n.j(t) which is uncorrelated to the signal
s(t) but correlated in some unknown way with the noise n*Ct). The
noise rij\Ct) is filtered to produce an output y(t) that is as close a
replica as possible to NjA(t). This output is subtracted from the
primary input s(t) + n*Ct) to produce the system output
Z(t) = s(t) + nMGt) - y(1) ... . A3
The function of an adaptive noise canceller is to use the reference
input to optimally cancel the correlated components of the noise, n*(t)

so providing a better estimate of s(t) at the output

This could also be done by a fixed value filter, but a priori
knowledge of a signal statistics is needed. Such information is not
often available for such a filter. So the use of an adaptive filter
idiich automatically adjusts its impulse response through an algorithm

tominimise the error signal, is needed.

An explanation of how an AIMC attempts to minimise the mean square

error when the signal statistics are unknown is presented below.

126

CJ

o't

03
-<



Assuming that s, and y are statistically stationary and n* is

correlated with ng, but uncorrelated with s, the output is;

Z=s+ng-y oo k.39
squaring;
Z*= 3" + (ng - y)’' + 2s(ng -vy) .. .. AA0

Taking expectation of both aides of equation A.AO yields the
relationship;

E[?] = E[a»] + E[(n* - y)*] + 2E[s(n" - y )] = E[s»] + EON™ - y»i]

A.A1
2E[s(n|® - y)] =0 because s is uncorrelated to n™ and y
Inminimising E[Z*] the signal power E[s*] will be unaffected,
therefore;
min ECZ*] = E[s*] + minECCnp. - y)*] .. .. AA2

When the filter has adapted, the filter output, y, is approximately
the least squares estimate of the primary noise ng .When E[(ng - y)*]
isminimised, E[(Z - s)’]is also minimised and from equation A.39;

(Z-s) = (n" -y) ... AAM
Adjusting the filter to minimise the total output power causes the
output, Z, to be a beat least square estimate of the signal, s, and

since the signal at the output remains constant, minimising the total

output will maximise the output aignal-to-noise ratio.

for the situation when the reference input n* is completely
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uncorrelated with the primary input n*, the adaptive noise canceller
uiill turn itself off and will not increase the output noise. In this

case the filter output, y, will be uncorrelated with the primary input

Therefore the output power will be
E[Z*] = E[(s + Oq)*]+ 2E[-y(s + n*)] + E[y*] = E[(s + n")"] + E[y"]

k. kk
Minimising output requires minimisation of E[y*] (all the weights have

zero value to bring E[y*] to zero).

It was considered important to examine the behaviour of this type of
filter under the following conditions:
(i) uncorrelated random noise present in both inputs,

(ii) signal components present in the reference input
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4,5.1. Uncorrelated noise present in both inputs

Figure 4.3 shows a single channel adaptive noise canceller with
correlated n,, n 1and uncorrelated m,O mﬁ»noise present in both
primary and reference inputs respectively. The primary input contains
the signal sJ.+ nD] + Dj while the reference input consists of a sum

of two other noises, mq_,and n1J where
J

Mi - J oA ... . 4.45

where h(j) is the impulse response of the reference channel whose
transfer function is H(Z).

n*j and n”j are urcorrelated since this originates from the same
source.

mgj and m"j are uncorrelated noise present in both channels.

The Wiener solution will be

W*(Z) = 6xd(Z) ... .4.46
6xx(Z)

where 6xd(Z) is the input cross correlation function and6xx(Z) is the

input autocorrelation function where:

5xx(Z) =6mYn("Z) +6nj"g(Z) |H(Z)| * ... 4.47
and
6 xd(Z) =6 n*n*Z) HZ'"’) ... 4.4B

the Wiener transfer function becomes:
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Bn AnA(Z)H(Z" ')
U (@) - U. kS
emAmA (Z) + 6nAnAiZ) | (2)]*
Equation k.k3 is independent of the primary signal spectrum 6ss(Z) and
of the primary uncorrelated noise spectrum Snii'mC Z) . If m" is zero
then 6m*m*(Z) is zero, therefore equation i*.50 uill become the optimal

transfer function of equation k.k9

U*(2) = _1 N R

The adaptive noise canceller uill filter the noise in the primary
input leaving the uncorrelated noise, m*, to pass uhile changing the

noise m» by the filter transfer function at the output

Widrou (1976) derived an expression for the improvment in

signal-to-noise power density ratio where signal-to-noise density

ratio is:
= Signal power density
noise power density
therefore the output signal-to-noise power density the
primary input signal-to-noise power density is
= Primary noise power spectrum .. . A.5

output noise power spectrun

= AL I .
Ppp™(2) A(Z) + A(DB() + B(D)
6 mm, (Z)
where A(Z) » oo A3
6 nn(Z)
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6mAmA (Z)
if.54

6m(Z) [H(Z) |»

Equation 4.52 represents the performance of the ideal noise canceller
which can be limited by the ratio of the uncorrelated noise density at

primary input to the correlated noise density at the reference input.

When both A(Z) and B(Z) are zero, an infinite improvement for the

noise canceller can be obtained. LJhen A(Z) and B(Z) are small,

misadjustment occurs (discussed for the adaptive filter in the

previous section). I
;i
1
35
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k.5.2 Effect of signal components present in the reference input

Figure k.5 represents an adaptive noise canceller (AIMC) in which the
reference input contains signal components and both the primary and
reference inputs contain additive correlated noise. For simplicity in
the following analysis the uncorrelated noise has been ignored (m* = m.|
=0). The reference input has a different pathway with a transfer
function of 1(Z), and the unconstrained Wiener solution is that of

equation k.kE> where:

6xd(Z) = 6ss(Z) 1(Z)“" + 6nn(Z) H(Z~") .. .. A5
and
6xx(Z) = 6ss(Z) |1(Z) I* + 6nn(Z) |H(Z) I .. .. k5B

which will converge to the solution of equation A.50 when [(z)
approaches zero. The transfer function of the propagation route from
the signal input to the noise canceller is [1 - 1(Z) W*(Z)], and that

from the noise input to the canceller output is [1 - H(Z) U)*(2)]

Therefore in considering the signal and noise components present at
the output of the noise canceller, it is Instructive to determine the

signal-to-noise density ratioqout(Z) where:

enn(z). M@ .. AT
6sa(Z):
uiiich can be written as

"out (A= A.56

Pref (M
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lihere PAghCZ) = 6ss(Z) |1(2)] ... . k.53
6m(Z) |n(2)]

From equation k.58 it can be seen that the output signal-to-noise
density ratio is inversely proportional to the reference input
signal-to-noise density ratio at all frequencies when convergence

occurs.

Ferrara & Uidrow (1981) have derived an expression for signal
distortion due to the presence of the signal component in the
reference input, and the amount of such distortion will depend upon

the amount of signal propagation through the adaptive filter

The signal component that appears at the filter output is -1(Z) liJ*(2).

[f 1(Z) is small then:

The spectrum of signal components which propagate to the noise

canceller output through the adaptive filter is

6ss(X) KZ) ... . 4061
H(Z)

Ferrar & Uidrow (1981) have defined a measure of such distortion,

D(Z), expressed as the ratio of the spectrum of the output signal

components that propagate through the adaptive filter to the spectrum

of the signal components at the primary input

D(Z) = 6as(Z) (1(2)ld* (2) I* 462
6aa(Z)
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The concept of adaptive signal enhancement

The principle of the adaptive channel enhancer may be examined for the
two channel arrangement illustrated in figure 4.5. The zeroth-input
channel contains signal s™ and noise which are uncorrelated. Input to
channel one contains a signal s* plus noise n*, which are also
uncorrelated but S|* and s* are assumed to be related but not

necessarily of the same waveform and the noise components, nj* and n* |,
are assumed to be uncorrelated with each other and with both signals §
and s*. Once the filter has adapted its impulse response, through the
IMS algorithm of the adaptive filter, and the power of the error is
minimised the filter output is then a beat least square estimate of sO

, (since M is uncorrelated with the input s* and n*)

A time delay is used to compensate for the various signal arrival

times. It is equal to half the adaptive filter length (number of
coefficients x update time) in the ‘'derived response' channel. From
figure 4.5 the error signal will be;

4.65
The unconstrained Wiener solution (discussed in previous sections) is;
W*(Z) = r''(2) P(2) . ... A.66
Considering now the multichannel signal enhancer of figure 4.6 and

assuming that the input signal is statistically stationary, the

adaptive filter will, after convergence, closely approach the Wiener
filter solution. If the inputs of figure 4.6 are xMj,------ and the
output y», the error signal will be;

=dj - yr ... 467
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u/iere dj is the desired response. For simplicity it is assumed that

the adaptive filter is noncaaual.

Considering further the Uiener solution; (l (Z) = r"*(Z)P(Z) . ... ii.68

R(Z) is the input spectral function which can be defined as;

<px x*(Z) (px"x~CZ)

R(Z) = (fXAXCZ)  ipx*X"CZ) ... k.G3

<DX"Xk(2)

Here the power density function is expressed as a Z-transform at the

real frequencies only (Uidrow, 1976).

Where (px"x*(Z) is the auto power density spectrum of the input x*,
since the input signal contains signal plus correlated noise, equation

4.69 can be rewritten as;

<p\NZ). . . (pshsN2) .
R(Z) = + ... L4.70
. .$"s"C2)
Since inputs are related to the other inputs by the transfer

function of A*(5), equation 4.70 can be written;
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Chapter Five: Theory and application of time-sequence adaptive filters

5.1. Introduction

Chapter four dealt with the theory of the adaptive filter for dealing
with stationary signals corrupted by noise. In this chapter another
important form of adaptive filter, usually used for non-stationary
data, is examined. This filter is also based upon the use of the LMS
algorithm for improvement in signal-to-noise ratio. The time-sequence
adaptive filter is applied mainly for two reasons;

(i) for use in the conditioning of non-stationary signals having
recurring, but not necessarily periodic statistical characteristics.
With a rapid change in the statistics of the signal, all the weight
vectors have to change freely in time in order to accommodate the
variation. This necessitates the operation of the filter with slow
convergence.

(ii) all the filters previously mentioned yield a substantial
reduction in noise but often at the expense of signal distortion,

especially with a low signal-to-noise ratio.

The time-sequence adaptive filter (TSAF) uses a multiple set of
adjustable weights (Ferrara, 1977). At each point in time, one and
only one set of weights is selected to form the filter output and is
adapted using the LMS algorithm. The selection of the set of weights
is continually synchronised with the recurring statistical character
of the filter input in order that each set is associated with a

particular error surface. After many adaptations of each set of

1A5
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ueights, the minimum paint on each error surface is reached, resulting
in an optimal time-v/arying filter. A priori knouledge of the
recurrence of each segment of the input data is needed in order to

synchronise the selection of the set of ueights.

Ferrara and bJidrou (1981, 1982) developed this technique and verified

its validity both theoretically and by computer simulation.
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5.2 The time-sequence adaptive filter (TSAF)

The adaptive transversal filter (ATF), consists of a tapped delay line
connected to an adaptive linear combiner which adjusts the weights
applied to the signal, derived from the taps of the delay line, and
combines them to form the output signal. A modified version of the
adaptive transversal filter includes a separate input, which when
muliplied by a bias weight and summed with other weighted signals,
forms the output. A bias weight is often used when both the filter

input and the desired response have a non-zero mean.
Suppose that the input signal vector Xj of the adaptive linear
combiner is defined as;

———- ... .51

These input signal components are assumed to appear simultaneously in

time.

The weighting coefficients wh, wh ----- wr, are adjustable.

The weight vector i is;

LT = [UA wh--mm mmeeee - WAl A ... 5.2
The filter output is equal

YA = XA = UMX e o o o 5*3

The error Ej idiich can be defined as the difference between the

desired response dj and Y™ and can be written as

1A7
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j J [ j j j "

The mean square error at time tj can be defined by Ej which is given
by;
. 5.5
.5.6
5.7

The Wiener weight vector Wj, which minimises the mean-square error may
be related to the correlation and cross-correlation matrices by

Wi* = Rj'V ... 58

Define Rj as a correlation matrix at time tj,

iOGEEX| X/ ... .59

and Pj a cross-correlation matrix,

Pj -ECdjX]) ... .5.18

For non-stationary data Rj and Pj are unknown. In using a
time-sequence adaptive filter the input data (non-stationary data) may
be considered to be composed of a finite number of stationary
segments, of known duration with respect to the signal recurrence
moment. Under these conditions, in which the Rj and Pj are considered
to be constant for stationary data, the solution for each stationary

segment is derived for a particular associated error surface.

In practice a time-sequence filter may be considered to be composed of

1i"8



a bank of LMS adaptive filters and has the ability ta track rapid
changes in the data input. The form of the TSAF is illustrated in

figure 5.1.

The number of weight vectors is finite, each corresponds to an error
surface which can be denoted by --- W,- Only one weight
vector is selected at anyone time and depends upon the error surface
required at that time. The error will be minimised by the LMS
algorithm when, after many adaptations, it becomes identical to that
of the Wiener weight factor. This results in the filter output being

the best least square match to the desired output
In operation, a sequence number is required to determine the
weight vector necessary at time j. When *j = i the ith error surface

is selected to form the filter output.

The time sequence adaptive algorithm is

y.= x;whji(j) .. 5.1
and
PN = N A for [ .. 5.12
or = otherwise.
Where is the value of the weight vector at time J.

Ferrara (1977) suggested that by using a different value for y, for
each weight vector, an identical loss in steady-state performance

(misadjustment) for each weight vector will occur. Also when the LMS
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algorithm is used, a different weight vector for each error surface in
the time sequence filter will be required in order to eliminate the
Wiener weight vector tracking error present, particularly for a

non-stationary signal

In order to reduce the effect of misadjustment, a slower adaptation is
required. Different kinds of error may arise in a time-sequence
adaptive filter. One source of error is due to the jitter and may he
influenced by Cj. The error may he overcome if ij can be chosen
perfectly in order that the time sequence adaptive filter can converge

in an optimal manner and is performed slowly.

A simple example using a computer simulated recurring signal can
illustrate the method of selecting the weight vector. It is
important, for TSAF to perform correctly, to choose the timing signal
(sequence number) Cj correctly, otherwise an error signal will arise

and distortion occur.

If each cycle of the ECG has the same period, then it is easier to

define one general weight vector for all the experiments conducted.

This signal is chosen before TSAF is applied and the way in which it

is chosen is as follows;

(i) select a suitable length of record,

(ii) apply two cursors, a fixed and a variable one,

(iii) select an appropriate point of measure within the record (e.g.
beginning of Q point),

(iv) move the second cursor to the right until the end of S point
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(v) REgister the amount of bins, (1 bin = 1 msec)
(vi) move the first cursor into the position of the second cursor
and start to move the second cursor for the next segment, and

(vii) repeat until the end of the record.

Figure 5.2 shows the application of TSAF applied to recover a signal
This figure also shows the placement of the weight vector.

Figure 5.2(a) shows the signal S to be recovered.

Figure 5.2(b) shows the white Gaussian noise added to the signal and

used as the filter input Xj

Figure 5.2(c) shows the switching of the filter on and off during the

recurring pulses of Xj by choice of the weight vector.

I1
Figure 5.2(d) shows the result of time-sequence adaptive filter to
recover signals of figure 5.2(a). o
1
The effect of adding more noise is illustrated in figure 5.3(b), and r7

AS

in applying time-sequence adaptive filtering, the results shown in

figure 5.3(d) were obtained.
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(d)

Figure 5.2 Result of applying time-sequence adaptive filter to a noisy
input, the figure shows:

(a) the simulated ECG signal only S

(b) the tujo input simulated ECG added to a different white noise
(c) the control vector

(d) the result of the time-sequence adaptive filter to recover

signal 5.

153



SVo”S

g N Y My

ru (c)

SA A (d)

figure 5.3 Result of applying time-sequence adaptive filter when the noise
added is twice as large as in Figure 5.2, the figure shows:

(a) simulated ECG only

(b) simulated ECG added to a tdnlte noise
(c) control vector
(d) the output vector of time-sequence adaptive filter to

estimate the signal at figure 5.3a simulated
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5.3 Summary and conclusion of TSAF

The time-sequence adaptive filter described in the previous section is
another form of adaptive filter (AP) suited for non-stationary data
having a recurring statistical character. This sort of filter
requires no prior knowledge of the signal except the time of
occurrence of the statistically stationary segments in order to set

the weight vector for the appropriate filter operation.

The time-sequence adaptive filter (TSAF) may seem to require longer
computing time compared to that of the conventional LMS filtering, but
in actual fact it is essentially the same. However, the memory
requirements are quite different. The amount of input data needed for
the TSAF to converge to time-varying solution is greater than that of
the LMS adaptive filter to converge to time-invariant solution.

Therefore, more memory is required for the TSAF.

One of the disadvantages of the TSAF is that it does not offer better
approximation in the case of fast adaptation to a transient signal
compared to an LMS adaptive filter, if more than two error surfaces
are Involved. This problem may be alleviated to some extent by the
use of only two error surfaces, one to accommodate noise and one to
accommodate a recognised signal segment. This may be referred to as

the minimal time-sequence adaptive filter (MTSAF).
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5,k Minimal time-sequence adaptive filter (MSAF)

The minimal time-sequence adaptive filter is based upon similar
theoretical considerations to those of the other adaptive filters
considered and the use of the LMS algorithm, but differs slightly in
the way the weight vector (U") is derived. As a result, the MSAF
provides a better performance than AF or multi-error surface TSAF,

under transient conditions.

It will be shown in this section, that in terms of non-statlonarity
and transient signal considerations,the minimal time-sequence adaptive
filter is more appropriate for the ECG applications examined in this
study than the other versions of adaptive filter identified. The
results using real data have supported the view that the minimal
time-sequence adaptive filter can offer better recovery of the signal
than the other filters. The results of the application to

electrocardiography are presented in Chapter 6.
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The concept of minimal time-sequence adaptive filter

The objective of this part of the study was to obtain some

experimental evidence regarding the use of the minimal time-sequence
adaptive filter for the enhancement of the ECG signal and, having
established the non-stationarity and transient characteristics of the
input signal, to use such techniques in order to achieve an optimal
estimation of the signal. The structure of the minimal time-sequence
adaptive filter (MTSAF) is based upon a similar configuration to that
of the TSAF described at the beginning of this chapter. It differs in
the sense that it uses only two sets of weights, one for the
non-stationary segments of the signal and the other for the stationary

noise segments.

The use of the control signal is essential for the weight set to
converge to the optimal solution for each segment. To illustrate
this, a block diagram (figure 5.A) shows how an ECG signal can be
classified into two main segments. One represents the noise which
mainly occupies the so-called isoelectric intervals, which are
considered to be stationary and the other is the signal expressed in

the QRS complex as non-stationary (Santopietro, 197A)



LM5 adaptive
filter

Z

Input - N - OQOutput
LMS adaptive
filter
Error
Input —
Control vector Control vector for
for leoelectric P, QRS and T wave

figure 5.k (a) Shows houi the minimal time-sequence adaptive filter is
applied to the ECG signal

(b) Shows the control vector for minimal time-sequence
adaptive filter.
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5.U.Z Filter performance

In the adaptive filter only one set of coefficients was used
throughout adaptive filtering. In the MTSAF only two set of
coefficients were used. During the isoelectric intervals, the noise
statistics are stationary and the first set of weights adapts
accordingly, whilst the other set remains unchanged until a signal

segment is detected.

Although this technique is simple to implement, it also uses a fewer

number of weights compared to the multi-vector TSAF, as shown

e
diagramatically in figure 5.3. The mean square error (MSE) was 1
computed for both stationary and non-stationary signals forming the
filter output. This procedure was repeated for different coherence
values ranging from 0.2 - 1.0 in a 0.2 step, i.e. 0.2, 0.i*, 0.6, 0.8 s
Ff

and 1.0. In addition, results were obtained by using three different
levels of SNR, approximately A, 3 and 15dB. Each filter was also
applied using two values of y, equal to 0.1 and 0.001, to permit the

effect of adaptation speed to be examined.

Figures 5.5 and 5.7 show typical filter outputs for selected cases.
The first is the primary input, followed by two groups of 3 records
corresponding to AF, TSAF and MTSAF outputs used with two other
convergence factors, m at 0.1 and 0.001 (i.e. low and high adaptation

speeds).

The TSAF performs in the same manner as the MTSAF, but is not as
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"lgure 5.6 Comparison of three adaptive filters (AF, TSAF and MTSAF) using low
SNR (SNR = 9d0), the figure shows:

(a) the two input signal and noise

(b) the result of adaptive filter
(c) the result of time-sequence adaptive filter
(d) the result of minimal time-sequence adaptive filter

the convergence factor is Q.0C1.
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figure 5.7 Comparison of three adaptive filters (AF, TSAF and MTSAF) using low
SNR (SNR = IA.AdB), the figure shows:

(a) the two input signal and noise

(b) the result of adaptive filter
(c) the result of time-sequence adaptive filter
(d) the result of minimal time-sequence adaptive filter

the convergence factor is . 1.
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effective in removing noise in the non-stationary segments. The
results in figures 5.5 and 5.5 suggest that the repetitive transient
signal corrupted by stationary noise can be filtered better by using
the minimal time-sequence adaptive filter than by either the basic AF

or TSAF, especially when the signal energy is high.

MeQ dr?:
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Chapter Six: Applications of adaptive filters In Electrocardiography

6.1 Introduction

In order to establish confidence and gain experience in the use of
adaptive filters of the form described in Chapters k and 5 for
applications in electrocardiography, various reported uses were
re-examined. New applications directed at the extraction of signals
from skeletal muscle noise and the identification of cyclo-stochastic

perturbations have been identified and investigated.

Adaptive filtering was chosen for the following reasons:

(1) to overcome the limitations imposed by conventional fixed value

filters when the signal exhibits non-stationarity,

(i) to yield more effective results without a priori information
concerning the nature of the signal or noise, and

(iii) to acconnmodate situations in which the spectral occupancy of

the signal overlaps with that of the noise.

Applications of adaptive filters in electrocardiography have, to date,
included cancellation of AC interference (Clark, 1976), cancellation
of electro-surgical interference (Yeldman et al., 1983), separation of
donor and recipient electrocardiograms obtained from heart transplant
patients (Uidrow, 1975) and enhancement of foetal electrocardiograms

by cancellation of the maternal ECG (Uidrow et al., 1975)
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The principles applied in these applications were examined and the
technique extended to the use of adaptive filters to detect events
arising from the specialised conduction system of the heart,
previously achieved using signal averaging (Berbari et al, 1973;

Ellis, 1976; Hoopen & Reuver, 1972; Oldenburg & Macklin, 1977; Rhyne,
1959). Consideration uas also directed at the use of adaptive filters
for detecting cyclo-stochastic perturbations in surface
electrocardiograms. (Simulated signals were used to determine the

effectiveness of the technique for both these applications.)

A comprehensive study uas also undertaken to determine the
effectiveness of adaptive filtering for the removal of skeletal muscle
activity from exercise electrocardiograms. This study is reported in
full in the follouing chapter. The results of the pilot studies and
simulations presented in this chapter provided the basis for

proceeding with the exercise ECG investigation.

166



6.2 AppllcatiDns of basic adaptive filters in Electrocardiography

6.2.1 Adaptive cancellation of AC interference

A problem often encountered in the recording of electrocardiograms
(ECG's) from the surface of the body is the presence of unwanted 5QHz
interference. An adaptive noise canceller which has been described in
detail in Chapter k is one of the techniques which has been used in
this study to overcame (or remove) this noise. In this application
the primary input to the adaptive noise canceller is taken from the
ECG amplifier, and reference input (safely derived) from a suitable

5QHz source.

Being a single frequency noise component, only two weights are
required to cancel AC interference, one operating on the zero phase
shifted version of the reference and one operating on a 90 degree
phase shifted version of the reference, as illustrated in figure 6.1.
The two weighted versions of the reference are summed to form the
filters output, which is subtracted from the primary input containing

the ECG signal and an AC interference.

Choosing combinations of the values of the weights allows the

reference waveform to be changed in magnitude and phase in such a way
that it cancels the AC Interference in the primary channel. A sampling
rate of IKHz was used in the study undertaken. Effective cancellation
can be achieved within one to two cycles of the electrocardiogram.
Figure 6.2 shows a result of AC interference cancellation with low

signal distortion.
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6.2.2 Signal extraction from skeletal muscle noise by adaptive

filtering

Skeletal muscle activity ia a source of noise that can present
problems, especially in exercise electrocardiograms and uide-band
EGG'S. As a precursor to the full study of adaptive filtering for
exercise ECG enhancement, this section uiill only deal uiith the basic
technique of adaptive channel enhancement to extract the ECG signal
from the skeletal muscle noise. The requirement for this technique is

tyo correlated signals, but uncorrelated noise components.

An investigation yas undertaken to identify two channels in yhich the
ECG signals were correlated and the muscle noise uncorrelated. It yas
found that a 100mm electrode distance was quite appropriate for this
application. Tuo channels uiere recorded, the primary input yas taken
from a conventional lead I, and a bipolar lead in the frontal plane at
the level of the 10th rib, as a reference input. The skeletal muscle
activity in these leads yas found to be sufficiently uncorrelated to
alloy the application of the adaptive process and an estimate of the

signal-to-noise ratio improvement in lead | to be obtained.

The experiments yere carried out for five subjects yith a record
length of 20A8 bin values, and a sampling rate of IKHz. It yas found
that the most effective improvement in signal-to-noise ratio yas
achieved yith a convergence factor,m, of 0.001 and 6k yeights.
Unfortunately this yas not yithout some signal distortion. A ful

investigation of the signal distortion ia presented in Chapter 8.
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After selecting the appropriate lead position as described in section
2.S, the adaptive channel enhancement was first tested using simulated
data in uihich the primary input ujas composed of a simulated EGG added
to simulated white noise. The reference input consisted of the same
simulated EGG added to a different amount of white noise

The amount of noise added into both channels was sufficient to yield a
very poor signal-to-noiae ratio. The reason for this was to examine
how the channel enhanement technique would behave under conditions of
low signal-to-noise ratio. Figure 5.3(a) shows the computer simulated
signal, while figure 6.3(b) shows the simulated white noise

components. Figure 5.3(c) shows the two inputs to the channel
enhancer, the primary and the reference inputs. Figure 6.3(d) shows
the filter output of the channel enhancer. From the result indicated
in figure 6.3(d), it is seen that there is a large improvement in

signal-to-noise ratio.

The effect of adding more noise to the simulated signal is shown in

figures 6.4(c) and 5.5(c).

Table 5.1 summarises the improvement in SNR expressed in dB's with

respect to the amount of noise added to the input signals.

Table 6.1
Input signal-to-noiae ratio (dB) Improved S/N ratio (dB)
3.47
9.3
15.
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Figure 5.3 Result of applying adaptive filtering technique to
simulated data (SNR = 15dB)

(a) shous the simulated EGG signal

(b) the simulated EGG added to white noise

(c) the output of adaptive filter to estimate
the simulated signal in (a)
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Result of applying adaptive filtering technique to
simulated data (SNR = 9.3dB)

(a) shous the simulated ECG signal

(b) simulated ECG added to a uhlte noise

(c) the output of adaptive filter to estimate
the simulated signal in (a).
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Figure 6.5 Result af applying adaptive filtering technique to
simulated data (SNR = 3.i*7dB)

(a) shows the simulated ECG signal

(b) simulated ECG signal added to a white noise

(c) the output of adaptive filter to estimate
the simulated signal in (a)
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It is seen that the improvement is high uith high input

signal-to-naisB ratio. The experiment was conducted with the input
signal in both primary and reference channels of the channel enhancer
being identical and well defined. The experiment was also carried out
with the weight vector having SU weights together with the convergence

factor of . 1 to yield the best signal-to-noise improvement

The adaptive channel enhancer described earlier was also applied to
real data. The data was obtained from electrodes placed in the
frontal plane on mid-clavicular lines at the level of the IDth rib
and at the level of the first intercostal space, and yielded the

primary and reference inputs respectively.

Figure 6.6(a,b) shows the two input channels to the enhancer, while
figure 6.5(c) indicates the improved output. As shown in figure
6.i*(c) the improvment in signal-to-noise ratio was 5.6dB, but in this
case the amount of muscle noise was not severe. The filter was also
tested under conditions where the muscle noise was high, so providing
a lower input signal-to-noise ratio. The improvement measured at the
output was in this case found to be 9.9dB and 1D.7dB respectively and

the effects are illustrated in figures 6.7 and 5.8 respectively.

It can be concluded that, providing the input channels are not highly

contaminated with muscle artefact, the improvement in SNR (>BdB) can

be considerable.
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Figure 6.6 Result of multichannel enhancement to reduce skeletal
muscle component, the figure ahoua;
(a) frontal plane lead in which electrodes positioned in
mid-clavicular line at level of IGth rib
(b) frontal plane lead in which electrodes positioned in
mid-clavicular line at level of 1st intercostal space.

(c) adaptively enhanced frontal plane lead (b)
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(c)

Figure 6.7 Result of multichannel enhancement to reduce skeletal muscle
component, the figure shows:

(a) frontal plane lead in which electrodes positioned on
mid-clavicular line at level of 10th rib

(b) frontal plane lead in which electrodes positioned on
mid-clavicular line at level of 1st intercostal spece.

(c) adaptively enhanced frontal plane lead (b)
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Figure 6.8 Result of multichannel enhancement to reduce skeletal muscle
component, the figure shows:
(a) frontal plane lead in which electrodes positioned on
mid-clavicular line at level of 10th rib.

(b) frontal plane lead in which electrodes positioned on
mid-clavicular line at level of 1st intercostal space.

(c) adaptively enhanced frontal plane lead (b)
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6.2.3 Application of adaptive filtering to enhance the foetal

electrocardiogram

Liidrowj (1975) has shown how adaptive filtering may be used to extract the
foetal ECG from the mixed foetal and maternal EGG by using an adaptive
filter (AF). By taking the primary input to be the lead taken from the
abdominal electrodes of the mother and the cheat lead to be the reference
input containing, in effect, the maternal ECG only, AF may be applied to

extract the foetal signal.

It may appear in the first instance that a simple subtraction would be
sufficient for enhancement, providing that all records are simultaneous and
there are no variations in amplitude or phase component. In reality the
situation is more complex as the recording of these two channels will
include interference and noise components due to muscle activity or 50Hz
interference for example. Two simple simulations to model this situation
ijere examined. Figure 6.9(a) shows a reference input which contains the
simulated maternal ECG (chest lead), and figure 6.9(b) stcws the primary
input which contains the reference input plus the eimulated foE'/el ECG.
figure 6.9(c) shows the result of the noise cancellation in which the

foetal signal is clearly enhanced.

more exacting application in which both channels contain signals heavily
contaminated with noise was also examined. Figure 6.10(a) and figure
6.10(b) show the input to the noise canceller, while figure 6.10(c) shows
the output of the WJC. Figure 6.10(c) shows that the adaptive filtering is
Quite limited in cases there the signal to noise ratio is low, as in foetal

ECG recordings, for example.
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Figure 6.9 Shews the application of the adaptive flter to
the foetal ECG (simulated)

(a) Reference input, simulated maternal ECG (chest lead)

(b) Primary input containing reference input plus
simulated foetal ECG.

(c) Enhancement of foetal signal by noise cancellation

Input Signal/Nolse ratio 7.2dB., signal improvement
11.95dB.
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Figure 6.ID Shows the application of the adaptive filter to
the foetal ECG (simulated)

(a) and (b) input to noise canceller,
(c) Enhancement of foetal signal by noise cencellation

Input Signal/Noise ratio 1.8dB., signal

improvement
10.7dB.
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6.2.<* Application of adaptive filtering in the identification of

cyclo-stochastic perturbations

The early detection of ischaemic heart disease and other cardiac
disorders can have an important bearing upon the treatment and/or
managment of the condition. Various, ECG based, techniques have been
proposed and investigated for this purpose (Prasad et al., 1978) and
the phase invariant signature algorithm (PISA) (Prasad & Gupta, 1980)
ia one of them. The basis of the PISA technique involves the
consideration of the surface ECG both as a function of time and as a

function of phase, (from to 2%).

If X(*) is the surface recorded ECG uihich contains S(i) the ECG signal
generated by a healthy heart, N(*) the background noise which is not
correlated with S(*), P(®) the perturbation due to the disorder in the
heart which is coherent with S(*), then

X(") = 8(") + N(i) + P(%)

The PISA technique involves the detection of P(i) from X(§), assuming
that only S(*) is stationary, P(*) is phase-locked to the cardiac

cycle and also that IM(*) has a random distribution.

To implement this technique, the following procedure is adopted;

(i) Acquisition of a recording of 50 or more cycles of ECG,

(ii) digitisation and conversion from the time domain to the phase
domain,

(iil) acquisition of the average, in order to obtain S(i) from X(i),
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(iv) subtraction of S(i) from X(*), to obtain N(®) and P(«), and
(tf)  the power in the random components is then averaged over

many heartbeats as a function of phase ().

The power distribution of which is independent of the phase, is
uniformly distributed over the phase () - 2«, while the power of
distribution of the random component of P(*), which is phase-locked to
the cardiac cycle, appears as peaks occurring at the particular phase
f the cardiac cycle. Small or low PISA signatures are considered

indicative of a healthy heart and vice versa (Prasad & Gupta, 1901).

Detection of small random peaks or events within the ECG may be more
effectively achieved by use of adaptive filters. The use of adaptive
filters may be considered superior to other forms of filtering for ECG
perturbation analysis for a number of reasons;

(i) The collection and analysis of real data revealed the virtual
impossibility of recording a set of ECG cycles without any
variation in the amplitude of the QRS complex, even for a
healthy normal person. This variation contributes to P(*)

(ii) Perturbations may be removed by averaging, so precluding the
technique as a means of detecting them.

(iii) In using adaptive filtering it was found that less data was

necessary to achieve the same results as the PISA method.

Figures 6.11 - 5.15 show a set of recorded ECG cycles which were
aligned in order for averaging to be performed. The vaiation in

amplitude of the QRS complex is clearly apparent. The result of the
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fAigurs 6.11 The result of applying PISA to rau data of ECG, the figure shous:

(a) the individual ECG

() the average of all the ECG's in (a)

() the difference between the average and the Individual
cycle.

(d) the result of PISA.
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Hgure 6.12 The result of applying PISA to rau data of ECG,

(a) the indi.vidual ECG
(b) the average of all the ECG's in (a)

(c) the difference betuieen the average and the individual
cycle

(d) the result of PISA

the figure shows:
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the individual ECG
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the result of PISA.
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PISA technique can be seen in figures 6.11(d) - 6.15(d). The result
of the PISA in this case is due to the variation of the QRS complex
and may therefore constitute a serious artifact in applying the
technique in the clinical situation. It has been difficult to record
data from patients in which the PISA technique could be applied, as
shown in previous figures (6.11 - 6.15). PISA technique was applied
to a normal recorded signal and it is concluded that there will always

be an artefact due to QRS variation.

To investigate the usefulness of PISA to detect small events within
the QRS complex, 12 individual EGG cycles, selected from figures 6.11
- 6.15 were examined, in which the difference between the average of
the 12 cycles with respect to the individual selected cycles was
almost zero. This is shown clearly in figure 6.12. Note that there

is no artefact appearing since there is no QRS variation.

Taking the same set of selected cycles, simulated low level signals
were added to each cycle (figure 6,17a) and the PISA technique was
once again applied to the composite signals (figure 6.17b). The
results are shown in figures 6.17d and 6.17e. Thus the PISA technique

is shown to be effective in revealing the embedded signals.
It is quite apparent from figure 6.17e that the peak which appears

within the area of QRS is due to the variation of the simulated signal

of figure 6.17a.
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figure 6.16 The
(a)

(b)
(c)

(d)
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result of applying PISA to raw data of ECG, the figure shows

the individual ECG
the average of all

cycle
the result of PISA.

the ECG's
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6.3 Application of time sequence adaptive filtering to

Electrocardiography

The application of time sequence adaptive filtering (TSAE) for noise
reduction is introduced in this section. Several experiments were
performed using the TSAF. Computer simulations were performed and
results compared with the results obtained using basic LMS adaptive

filtering.

The TSAF technique was applied using simulated data for two particular
ECG signal recovery applications, enhancement of the foetal ECG and
detection of cyclo-stochastic perturbations. Using real data, the
technique was applied to enhance exercise electrocardiograms by
adaptive cancellation of skeletal muscle noise. In this case the two
recorded channels contained signal components for which the precise
waveforms could differ, but exhibited correlation with each other. The
skeletal muscle noise components were uncorrelated with each other and
with the signal waveform from channel to channel. Figure 6.18 shows
two recorded channels and the result can be seen in figure 6.18c. The
best estimation of the signal was obtained by time-sequence adaptive
filter (figure 6.19c). The operation of time-sequence adaptive filter
was carried out under the control of the selected weight vectors.
Figure 6.20 Illustrates how the weight vectors relate to the ECG

cycle.

The presence of high amplitude signal components (QRS complex), can

cause a significant disturbance in the filter weights and hence result
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(c)

26,18 Results representing time-sequence adaptive filter to reduce
skeletal muscle activity, the figures shew:

(a) Frontal plane lead on mid-clavicular line at level of 1st
intercostal apace

(b) Frontal plane lead, electrodes positioned on mid-clavicular
line at level of 10th rib
(c) Time-sequenced , enhancing frontal plane lead (a)

193



(c)

:J86.19 Results representing time-sequence adaptive filter to reduce akeletal
muscle activity, the figures shou:

(a)
(b)
(c)

Frontal plane lead on mid-clavicular line at level of 1st
intercostal space

Frontal plane lead, electrodes positioned on mid-clavicular
line at level of 10th rib

Time-sequenced, enhancing frontal plane lead (a)
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6.3.1 Application of time-sequence adaptive filtering to foetal ECG

(Simulated data only)

In recording the foetal ECG using electrodes placed on the abdomen of
the mother, the foetal component can be obscured by skeletal muscle
noise and the maternal ECG. Basic LMS adaptive filtering may be used
to enhance the foetal ECG by channel enhancement, but the complex,
non-stationary nature of the signal results in severe signal
distortion. Further Improvement may be achieved by using
time-sequenced adaptive filtering. For both the AF and TSAF methods
for enhancing the foetal ECG, two abdominal leads are recorded, one

constitutes the desired response and the other the filter input

Because the foetal ECG signal components are correlated between the
two channels, but the interference due to muscle noise uncorrelated,
the adaptive filter will attempt to pass the foetal ECG input signal
component while at the same time attenuating uncorrelated muscle

noise. By using a conventional LMS adaptive filter, a substantial
reduction of the background muscle noise may be achieved, but not
without severe foetal ECG signal distortion. The main reason for this
is that the LMS adaptive filter is unable to track the fast recurring
but variable features of the foetal ECG (non-stationary). Thus a
time-sequence adaptive filter was considered for overcoming this

problem.

Figure 6.22 shows two simulated channels of abdominal ECG in which

there are substantial amounts of muscle noise. Figure 6.22c shows the
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reHult of TSAF in attempting to reduce the noise uiithout distorting the
simulatec foetal ECG. The signal-to-noise ratio uas 10.9dB and the

improvement in S\IR due to Ilire-sEquence adaptive filter, 15.2dB.

Figure 6.23 shows the results of a oompilLter simulation in which SIR is
3.90B, and figure 6.23c¢c shows the result of appiyirg time-sequence adaptive

filtering to the simulated foetal ECE only.

All tte weight vectors in the TSAF contain 6A weight values plus a bias
usight, and tte filter operates with a convergence factor of . 1. In

both cases the recurrirg Eiimulated foetal ECG was obscured by the addition
of white noise (E/M = 3.9dB) and subsequently extracted using the TSAF (S/(\l
=1D.9dB). The output- of ttie time-E:equence adaptive filter after

convergence is shown in figure 6.22¢c and 6.23c.

It can be seen from the result of figures 6.22 and 6.23 that the
time-sequence enhancing of the simulated foetal ECG does not employ
cycle-tc-cycle avEraging. The individual variation in a simulated foetal
shape, and cycle-tc-cycle intervals, can be retained. In a real situation,
the technique of titre-Siequence adaptive filtering will not be effective
unless the foetel EEG can be identified and the control vector set

accordingly.
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6.3.2 Time-sequence adaptive filter applied to cyclo-stochaatic

perturbation

The prevalence of heart disease in our society has emphasised the
importance of early identification (Prasad et al., 1970; Gupta, 1980)
A diagnostic technique ulth a louj risk is of obvious advantage over
the presently available diagnostic techniques which have certain
limitations and are Inappropriate for detecting heart disease in its

early stages.

This section deals with a further application of time-sequence
adaptive filtering for extraction and detection of the abnormal events
within the electrocardiogram. These abnormal events generally occur

within the QRS complex and are indicative of cardiac muscle damage

The study of this application was conducted on simulated data in which
two simulated EGG's with different noise levels were used. Smal
signals were introduced within the QRS complex to represent the
abnormality due to cyclo-stochastic perturbation. Adaptive filtering

was applied in the time-sequence mode to detect these events.

Results depicted in figure 6.2A illustrate the output of TSAF after
convergence. The results suggest that the TSAF technique would be a
valuable diagnostic tool for the detection of such disorders.

Currently no other technique la available that effectively detects
such perturbations, except from PISA (phase-invariant signature
algorithm) averaging. The limitation of the PISA technique due to

artifact has been demonstrated in section 6.2.A.
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(a) and (b) Inputs to time-sequence adaptive filter
(c) Simulated perturbation in (a) and (b)*
(d) Control vector

(e) Qutput of time-sequence adaptive filter

*(c) amplified 100 times.
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6.i* Conclusions

This chapter has been concerned primarily with a review of the
application of adaptive and time-sequence adaptive filters to some
previously recognised problems, together with two new applications.
One is for the extraction of skeletal muscle noise from exercise ECG's
by use of two chest leads, and the application of an adaptive signal
enhancer and the second for the detection of cyclo-stochastic

perturbations.

Although the time-sequence adaptive filter is only an extension of the
adaptive filter principle, it has particular advantages for the
application considered. However, for optimal estimation of a
non-stationary signal having a recurring statistical character,
knowledge is required of the time of occurence of the recurring
signal, in order for the filter to switch between weight vectors. I\

other a priori knowlege is required.

A wide range of conditions were examined and encompassed high and low
correlations between the noise records. The results of the study
confirm the superiority of TSAF cancellation in the cases presented,
compared to the basic AF. This advantage is most significant when the

coherence and SMR are high.

The results presented in this chapter also show the spatial use of

time-sequence AF which, in comparison with the conventional LMS

method, yields less distortion and better S/N performance.
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Chapter seven: Application of adaptive filters In exercise

electrocardiography

7.1 Introduction

In previous chapters, the case for using adptive filters for
enhancement of the ECG signal derived from a subject in the resting
state has been presented, uith particular attention to the use of
time-sequence adaptive filters in the form of channel enhancers. In
this chapter a full study of these techniques, applied to exercise ECG

tests, is presented.

The ECG is an integral part of exercise testing in which the abjective
is the assessment of the functional efficiency of the heart and
circulation. Continuous recording during exercise is essential both
for safety and for the recognition of changes that could otherwise be
missed if ECG's were obtained on a sample basis throughout the
exercise period. Using the ECG, various indices may be derived that
can be related to functionality. Uarlous features and factors such as
ST segmented variations, QU/QT ratio, changes in T-wave morphology and
variations in TU segment and U-wave morphology provide clinical
information that forms part of the functional assessment (Gupta &

Prasad, 1980; Journee & Manen, 198"*; Goovaets et al., 1978)

Whilst careful preparation for ECG recording is mandatory in exercise

testing, muscle activity during exercise may yield sufficient noise

that important features of the ECG become obscured. Adaptive
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7.2 Types of noise present in exercise electrocardiograms

The presence of noise, artefacts and baseline variations are the main
causes of signal masking in exercise electrocardiograms, and care must
be taken to minimise the influence of the noise components upon the
signal. The tests were carried out with data recorded during:

(a) bicycle ergometer teats and,

(b) the Master Step tests.

These techniques are adequately described elsewhere (Rautaharju, 1965;
Thakor, 1978; Winter, 1966, 1969; Worthuis et al., 1979). Adaptive
filtering was used for the extraction of the noise components produced

by exercise test and the base-line variations.

In this section two sets of experiments are reported, based upon
recordings obtained from a group of patients in which two bipolar lead
configurations were used. One set involved recordings from the
conventional U leads system in which /4 and |/ were taken. The
second set of recordings was obtained using the chest leads in which
one of the electrodes was placed in the frontal plane and positioned
inmid-clavicular line at the level of the 10th rib, while the other
was positioned on the mid-clavicular line at the level of the first

intercostal apace.
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7.3 The effect of the base-line variation

A problem may arise when adaptive filtering techniques are applied to
exercise EGG data obtained in the presence of base-line variation.

The variations are mainly due to the presence of the electrode
movement and respiration effects, both of which can affect filter
performance. The moat prominent base-line variation is a periodic
variation due to respiration (Ferrara & Uidrow, 1981) and in applying
conventional signal averaging the signal derived can be severely

distorted.

Since adaptive filtering of the Exercise EGG is restricted to a
specific length of record, the removal of the dc and low frequency
components is an important pre-requisite to applying the adaptive
filter. This is not possible if continuous filtering has to be

performed.

Several methods have been considered in this study to remove the DC
and base-line fluctuations, one of which involves their removal from
cycle-to-cycle of the data record. This was done by using five second

data segments, and resulted in much smaller base-line fluctuations.

Figures 7.1 and 7.2 show the Influence of DC and base-line
fluctuations through successive cycle segments of the data record. In
performing the experimental work, some difficulties were encountered
in applying the above method. By processing each cycle independently

discontinuities occur at the boundaries and this method is therefore
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*qit data
ijue 7.i*(a)
(b)

High pass Adaptive Qutput data
filter filter

A block diagram of a high pass filter prior to an adaptive
filter in order to remove the dc drift

Magnitude response characteristics of a recursive digital
high pass filter
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7.4 Application of adaptive filters to exercise EGG using a bipolar

lead configuration

Many problems may be encountered in recording exercise
electrocardiograms (Winter, 196S). They include the choice of stress
test, movement of the subject, the choice of electrodes, choice of
lead configuration and the limitation of the technique and processing
systems. Artefacts and Interference can, to some extent, be reduced
by momentary cessation of the exercise whilst the recording is
obtained (Thakor, 1978). Although the choice of electrodes and lead
systems for exercise electrocardiography have been investigated by
others (Webster, 1977; Thakor & Webster, 1980), it was considered
necessary to re-examine these choices in considering the application

of adaptive filtering.

By using a non-conventlonal lead configuration such as presented in
figure 7.7, the signals developed between any two pairs of electrodes
may be regarded as almost ldentical. However, the noise arising at
each of these electrode pairs can be found to be largely uncorrelated,
depending upon the distance of separation between electrode pairs.

For the exercise study, the first pair of electrodes was placed in the
mid-clavicular line at the level of the first Intercostal apace and
the second pair placed at the positions of the 10th rib, as shown in
figure 7.7. The recordings obtained from these two lead
configurations were digitised and entered directly into a computer
memory for analysis. The subjects were, in each case, asked to

exercise for exactly the same period of time as that stipulated in the
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exercise pragramne, to a state where they could safely do no more.

After recording the data, the base-line variations were removed and
three types of adaptive filtering were applied, in order to enhance
the EGG signal above the noise. The experiments were conducted simply
to establish the ability and behaviour of the adaptive filter
technique with regard to the enhancement of the signal in the very

noisy conditions produced by muscle activity during exercise.

The results obtained showed a substantial reduction of noise for al
three types of adaptive filter and provided an EGG recording in which
underlying cardiac abnormalities could be more readily recognised.
Comparisons with processed ECG's from normal healthy subjects
indicated that the technique was not introducing artefacts that could
be mistaken for cardiac abnormalities. The Improvement of
signal-to-noise ratio of the minimal time sequence adaptive filter
appeared to be much higher than the time-sequence adaptive filter and
the adaptive channel enhancer. However some signal distortion was

observed.

Three sets of results are presented in this section, for the three
types of filtering considered. These are:

(i) when the subject was at rest

(ii) when the subject was exercising under the load of 7lii, and
(ill) when the subject was exercising under the load of ISli).

The loadings are representative of those imposed during exercise

testing and the higher the load, the more noise due to muscle activity



was encountered. The EGG signal hoiuev/er appears to exhibit little changE:
ir magnitude with respect to loading. Figures 7.8 - 7.17 show the selected
results of the 22 patients investigated using the adaptive filter

technique. The number of weights was chosen to be and the convergence

factor . 1 for all the data used.

From the results of this analysis it is quite apparent that distinct
impicvEinents can be made in the reduction of noise by adaptive filtering.
Improvements in the signal-to-noise ratio of the exercise EGG can be
achieved using real-tiiTie technique of adaptive filtering. This technique

can also retain information on a cycle-tc-cycle basis.
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Figure 7.8 The result of applying high pass filter to remove do and baseline
fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shouis:

(a) the two recorded channel necessary for adaptive filter
to perform, the convergence factor was D.0Q1, and it
was 6k weight coefficients

(b) the result of high pass filter prior to adaptive filter
for U. lead
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Figure 7.9 The result of applying high pass filter to remsue dc and baseline
fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shows:

(a) the two recorded channels necessary for adaptive filter
to perform, the convergence factor was 0.001, and it
was 5if weight coefficients

(b) the result of high pass filter prior to adaptive filter
for lead
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Figure 7.10 The result of applying high pass filter to remove do and baseline
fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shows:

(a) the two recorded channels necessary for adaptive filter
to perform, the convergence factor was 0.001 and it was
6k weight coefficients

(b) the result of high pass filter prior to adaptive filter
for U. lead

222



Figure 7.11 The result of applying high pass filter to remoue dc and baseline
fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shows:

(a) the two recorded channels necessary for adaptive filter to
perform, the convergence factor was 0.001 and it was
6k weight coefficients

(b) the result of high pass filter prior to adaptive filter
for |\ lead
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Figure 7.12 The result of applying high pass filter to remove do and baseline
fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shows:

(a) the two recorded channels necessary for adaptive filter to
perform, the convergence factor was . 1 and it was
6k weight coefficients

(b) the result of high pass filter prior to adaptive filter
for lead
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Figure 7.13 The result of applying high pass filter to remove do and baseline

fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shows:

(a) the two recorded channels necessary for adaptive filter to
perform, the convergence factor was . 1 and it was
5i* weight coefficients

(b) the result of high pass filter prior to adaptive filter
for lead
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I e (b)
Figure ~.AU The result of applying high pass filter to remove dc and baseline
fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shoijjs:
(a) the two recorded channels necessary for adaptive filter to
pprform, the convergence factor was . 01 and it was
Eik weight coefficients
(b) the result of high pass filter prior to the adaptive filter
for the 7. lead
p'
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Figure 7.15 The result of applying high pass filter to remove do baseline

fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure shouis:

(a)

(b)

the tixi recorded channels necessary for adaptive filter to
perform, the convergence factor uias 0.001 and it uas
weight coefficients

the result of high pass filter prior to the adaptive filter
for the
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Figure 7.17 The result of applying high pass filter to remove do baseline

fluctuations and then applying the adaptive technique to remove
the skeletal muscle activity, the figure above shous:

(a) the two recorded channels necessary for adaptive filter to
perform, the convergence factor uas . 1 and it ujas &U
weight coefficients

(b) the result of high pass filter prior to the adaptive filter
for the V. lead
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7.5 Adaptive filter applied to the U-lead data

Having developed the technique for bipolar leads and examined the
performance for data obtained from healthy subjects, attention uias
directed to data obtained from the exercise test clinic. Data was
recorded from 22 patients varying in age between 3D - 56 years. The
objective was to adaptively filter the exercise ECG's and reveal
abnormalities that would otherwise be obscured by noise. Sane of the
patients exhibited a normal ECG, but the majority of the recordings

indicated the existence of a cardiac abnormality.

The data was collected from the patients using a U-lead configuration
(Ut - Ug), but the channel recordings were taken from only two leads,
lead U* and lead UM. This was considered adequate to test the
technique. The recording procedure and the preparation of patients

were carried out in a conventional manner

The exercise programme was conducted using a bicycle ergometer with
the provision of 2-A stages of loading. The patients were asked to
peddle for three minutes under the starting load of 75U, then the load
was increased to IDDIJ, 15DUlI, 2DDIU for three minutes each. Recordings
were obtained for each load and a rest of 5 minutes was allowed
between loadings. The recordings were of one minute duration and the
data was recorded onto magnetic tape using an FM tape recorder
(specification in Amex 0). The data was played back for the
application of the adaptive filtering techniques. After the removal

of the DC base-line, variations in the data were subjected to the
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three types of adaptive filtering described in section T.U.

Analysing the results obtained from the data, it uas found that
adaptive filters provide an effective means of achieving noise
reduction and alloujed the identification of ECG abnormalities
otherwise obscured. From the results depicted in figures 7.8 - 7.17
it can be seen that the adaptive filter exhibits the best performance
in terms of noise reduction and minimisation of distortion, with a

signal-to-noise improvement of 8.6d0's.

In examining other techniques for extracting noise from exercise
ECG's, it was found from the results in figures 7.18 - 7.20, that an
improvement in the signal-to-noise ratio can be achieved by using
signal averaging but prevents identification of beat-to-beat changes.
The time-varying filter exhibited a significant improvement in the
signal-to-noise ratio (5.5dB), but this technique also exhibited loss

in signal-to-noise information, as in the averaging process.
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7.6 SuTtmary and conclusion

As Indicated in chapter tuo, a number of simple precautions have to be

taken in order to achieve good EGG recordings, especially during
exercise testing. These factors include:

(i) electrode-skin preparation

(ii) choice of electrode

(iii) choice of lead system

(iv) type of exercise test

(v) possible sources of interference.

In this chapter the results for the removal of the base-line
variations have been presented. The presence of these variations
dramatically degrade the effectiveness of the adaptive filter. The
results obtained after conditioning for base-line variations suggest

that of the techniques employed and characteristics chosen (i.e.

parameter, number of coefficients, convergence factor u), the adaptive

filtering technique provides better abjective results than the other

forms of filter mentioned in chapter three.
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Chapter Eight: Comparison of adaptlv/e filtering techniques

8.1 Introduction

In previous chapters the application of filtering techniques for the
reduction of the noise and artefact that corrupt the ECG signal,
especially during exercise testing, have been studied and results
presented. In this chapter a complete examination of the spectral
occupancy of noise and signal is presented together with their use in

the choice of adaptive filtering for particular applications.

The advantages which can be gained by using adaptive filtering have
already been described. It was shown in Chapter three that many
filtering techniques and signal averaging for the raw data are the
most common signal processing methods applied. These achieve noise
and artefact reduction by removing frequency components which lie
outside the signal bandwidth, but also reduces components that overlap
with the signal components. It is in this latter respect that these

previous methods are of limited use.

In this chapter experimental work is described which establishes the
manner in which adaptive filters may be best applied for ECG
conditioning, in order to achieve improvement in signal-to-noise ratio
with the minimum of distortion. The amounts of distortion for each of

the adaptive filters examined are also presented.
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8.2 Spectral analysis of the electrocardiogram

Spectral analysis provides information about the frequency content of

a particular signal. The results of spectral analysis may be of use

in electrocardiography in;

(i) in devising and using efficient processing techniques that uil
reduce interference and noise, and

(ii) in helping to devise techniques that will improve the diagnostic
capabilities of the high frequency and exercise

electrocardiogram.

Spectral analysis usually requires long data records and the

statistical property of stationarity. |In order to accommodate

non-stationarity, data was partitioned into segments in which

stationarity could be considered to apply.

Previous investigations have shown that moat of the power in the ECG
signal lies below a frequency of itOHz, while a very small amount of
power has been measured in some patients at frequencies up to 500Hz
(Santopietro, 1971; Berbari et al., 1976). Many researchers concluded
that the low level energy at higher frequencies was not of clinical
importance. Figure 8.1 shows the spectrum for skeletal muscle
activity at frequencies above 100Hz, between ¢*0 and 60dB below the

level of the peak spectral components of the ECG signal
To obtain the spectral estimates of the signal the auto-spectra of the

two channel records from the surface of the the body were derived

using the discrete Fourier transform (DFT). The cross-spectral
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Dhue 8.1 ghows the recording of clean and heavily contaminated ECG

with

(a)

b

skeletal muscle, the figures show:
ECG with skeletal muscle activity
clean ECG only

muscle activity only

the spectrum of the muscle activity and the
spectrum of the ECG only
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estimates were also computed for these tiijo channels to determine the

coherence between them. The discrete Fourier transform (DFT) was

calculated using the Fast Fourier Transform algorithm (FFT)

Two major limitations of FFT spectral analysis have been identified

(Levy & Linkens, 19»*; Linkens, 1902).

(i) The extent to which the Fourier Transform is a limitation on
frequency resolution.

(ii) In using the FFT analysis, windowing of the data is inherent in
the method. This causes leakage which gives the impression
that energy in the main lobe of the spectrum leaks into the

side lobes, obscuring and distorting the spectral structure.

A full cosine window was applied in order to reduce the effect of

spectral leakage.

In this study some observations were made on the recorded, analysed
data obtained from 22 subjects. The results indicated a clear
difference in the occupancy of the spectral content of the
noise/Interference. They also indicate a small range of variation for
spectral content of the ECG signals, derived from the population of

the subjects examined.

The main ECG signal power occupied the frequency range 0 - 00Hz and
the noise power was AO - 60dB below the main signal for frequencies
over 100Hz. The results also indicated some overlap between the

spectrum of the noise and spectrum of the signal especially over the
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8,3 Coherence analysis

The coherence function uas derived for tuo important reasons;
(i) it incorporates both the auto- and cross-spectral information
of the signal and noise, and
(ii) it provides an estimate of the degree to which the two channels
correspond in the frequency domain.
The coherence function was derived using the auto- and cross-spectral
estimates according to the expression:
coherence function _ Sxy(f
(spectrum)
Sx(f)Sy(f)
Coherence function is a measure of the spectral corresponence between

two signals, presented as a parameter, normalised at each frequency

independently (Roth, 1971).

A coherence of unity indicates that the signals in two channels

correspond perfectly in spectral terms over the frequency range

considered whilst a coherence of zero, indicates that the signal in

txith channels are not related at all. |Intermediate values between

and 1 indicate the degree to which the spectral contents compare

(Bendat, 1962, 196U). Intermediate values may arise through:

(i) presence of extraneous noise,

(ii) a non-linear process relating the two sources of signal (and
hence introducing non-linearity related components), and

(ill) additional inputs.

The coherence functions computed for the experimental data shown in
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figures 0.2 - 8.if clearly illustrate that from 100 - 5Q0Hz there is a
lack of coherence between the two channels, but at low frequencies
from - 100Hz the coherence is 1, indicating a 100% correspondence

between the two channels.

The coherence functions computed for signals derived from electrodes
placed as shown in figures 8.5 for a given value of separation, were
found not to differ for the frequencies between 0 - 100Hz. However
they do exhibit small variations depending on the distance between the
electrodes, over the range 100 -500Hz. This can be seen in figure

8.6. As the distance between electrodes is reduced, so the coherence
functions between them tend to 1. These results suggest the use of
coherence as the basis for selecting electrode placement for

particular adaptive filtering procedures.
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ure 8.E The comparison of the coherence function between three recorded sets of
data, separated by Bern

(a) the coherence function between channel

1 and channel 2 (set1)
(b) the coherence function between channel

1 and channel 3 (set?2)
(c) the coherence function between channel 2 and channel 3 (set3)
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(a) the coherence function between channel 1 and channel 2 (set 1)
(b) the coherence function between channel 1 and channel 3 (set 2)
(c) the coherence function between channel 2 and channel 3 (set 3)
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ure 8,i*
recorded

(a) the
(b) the
(c) the

The coniparisDn of the coherence function between three sets of

data, separated by 6cm.

coherence function between channel 1 and channel 2 (set 1)
coherence function between channel 1 and channel 3 (set 2)
coherence function between channel 2 and channel 3 (set 3)
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‘wre 8.5 Three channels are recorded, electrodes placed as shown.
There is a distance of 10mm between each pair of electrodes.
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Sure 8.6 The comparison of the coherence function between three sets of
recorded data, separated by 16cm.

(a) the coherence function between channel 1 and channel 2 (set 1)

(b) the coherence function between channel 1 and channel 3 (set 2)
(c) the coherence function between channel 2 and channel 3 (set 3)
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a.i* Choice of adaptive filter

This section deals with the choice of algorithm and adaptive filter
technique, based upon a study of characteristics of both signal and
noise in typical surface electrocardiograms. Many algorithms have
been derived and investigated for particular applications (Nuttal,
1981). In this study the LMS algorithm was selected for its stability

and ease of use and found to be quite adequate.

One of the factors influencing the choice of adaptive filter is the
nature of the signal Itself and the degree to which the signal is
statistically stationary. The use of LMS algorithm used in this study
uas found adequate to acconnmodate the slow statistical changes of ECG

signal

The results presented in previous sections show that a significant
improvement can be obtained by using the LMS algorithm and an
appropriate choice of adaptive filter configuration. To achieve
satisfactory performance selection of the parameter values that
influence the accuracy and resolution of the filter constitute an
important initial consideration. Their choice is considered in the

following section.
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8.5 Initial selection of filter parameter values

TuD main parameters affect the adaptive filter performance. These are
the number of weights and the convergence factor which together
control the accuracy of the adaptive filter and the speed to
convergence. Ulidrow et al. (1975) have reported that the nunber of
weights can be determined based upon the ratio of the sampling

frequency to the desired frequency resolution.

Once the number of weights has been determined, the initial value of
convergence factor can be chosen according to the percentage of
misadjustment that can be tolerated. This is normally chosen to be
approximately 10%. Selection in this way is only acceptable when the
data is stationary. If the signal is non-stationary the initial
selection of p is inappropriate since the convergence factor p should

track the variation of non-stationary data.

Experimentally it was found that a number of weights, M between 3Z-6k
gave satisfactory results. Uhilst it is quite difficult to determine
the value of the convergence factor, p, theoretically it is relatively
easy to obtain the value experimentally. For the filter used in this
study it was found that the best convergence could be achieved when p

has a value of . 1, but faster convergence requires a higher value.
The results presented in figures 8.7 and 8.8 show that when N is set

to , better cancellation can be achieved for a p value of . 1 than

can be achieved for values of D.1 and 0.01. This indicates that
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Figure 0.7 A comparison of the effect of the filter convergence
factor upon adaptive filter, the filter order N=

(a) the two input channels required for adaptive filter

(b) convergence factor = 1
(c) convergence factor = . 1
(d) convergence factor =0.1
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Figure B.8 A comparison of the effect of the filter convergence
factor upon adaptive filter, the filter order N = &k

(a) the tujo input signals
(b) convergence factor = 0.01
(c) convergence factor = . 01
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slower convergence is to be recommended for this type of application.
A further study uias conducted to investigate the effect of filter
order upon the performance of the adaptive filter. The convergence
factor u was chosen to be D.0Ql and the same data filtered for various
values of WM (128, 6U, 32, 16, 8). Table 8.1 summarises

signal-to-noise improvement with respect to filter order.

Table 8.1

Signal-to-noise ratio with respect to filter order (I\).

Filter order Signal-to-noise
(N) improvement (dB)

8 5.8

16 7.62

32 8.35

6k 11.77

128 8.1D

The results are presented in figures 8.9 and 8.ID. The degree of
improvement in noise reduction is clearly influenced by the number of
weights, and the use of 6k yielded the best results in the study
conducted. Figure 8. ID shows a plot representing the signal-to-noise

ratio improvements with respect to the number of weights employed.

Two main factors influence the performance of the adaptive filter. Dne
is the choice of the convergence factor p which must be selected to
obtain an optimal convergence without the risk of instability. The
experimental results show that when m is D.DD1, convergence appears
optimal. The other factor is the choice of filter order N. This must

be large enough to accommodate all significant statistical changes in

the signal.
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(c)

(f)

Figure 8.9 A comparison of the effect of filter order upon adaptive filter

of EGG signal, the convergence factor |i = 0.0DI

(a) the two input channels required for adaptive filter
(b) filter order N = 8

(c) filter order N = 16

(d) filter order M= 32

(e) filter order N = 6A

(f) filter order M= 128
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Figure 8.10 A cbmparisan of the effect of filter order upon adaptive filter
of ECG signal, the convergence factor u = .001

(a) the two input channels required for adaptive filter
(b) filter order M= 8

(c) filter order N = 16

(d) filter order M= 32

(e) filter order M= 64

(f) filter order N = 120
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8.6 Conparisan of the adaptive filtering results

Several experiments concerning the application of adaptive filters are
presented below. Firstly a computer simulation comparing the results
of various adaptive filters in channel enhancement form. Secondly |,
the three versions of adaptive filter were applied to reduce skeletal

muscle noise in exercise electrocardiograms.

The aim of the comparison was to determine which filter was likely to
be most effective for achieving noise reduction with least signal
distortion. Two channels of simulated ECG signal were mixed with
different but known levels of noise and the noise reduction

performance determined for various filter configurations. The results
indicate that although in all three filter types there is an
improvement in signal-to-noise ratio, considerable distortion occurs
especially in using the basic LMS channel enhancer (figures 8.11 and

8.1i%).

In a further comparison, three filters were examined in applications
to minimise noise due to skeletal muscle activity in static and

exercise ECG's.

The parameter values were chosen to be the same for each filter; M=
6" and p= . 1. The bandwidth of the signal was 500Hz and sampled
at a rate of IHHz. Figure 8.15 shows signal-to-noise improvement

versus noise for the three adaptive filters.
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Figure 8.11 Comparison of filter outputs for the basic adaptive filter (AF),
time-sequence adaptive filter (TSAF) and minimal time-sequence
adaptive filter (MTSAF) using simulated data, SNR = D.SdB,
adaptation speed y = . 1, filter order N = 6A

(a) simulated ECG only

) the tuo input channel to adaptive filter

) the result of adaptive filter

) the result of time-sequence filter

) the result of minimal time-sequence adaptive filter
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Figure 8.12 Comparison of filter outputs for the basic adaptive filter (AF),
time-sequence adaptive filter (TSAF) and minimal time-sequence
adaptive filter (MTSAF) using simulated data, SNR = 5.5dB,
adaptation speed p = .001, filter order N = 6A

(a) simulated ECG only

(b) two input channels to adaptive filter

(c) result of adaptive filter

(d) result of time-sequence filter

(e) result of minimal time-sequence adaptive filter
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Figure 8.13 Compariaon of filter outputs for the basic adaptive filter (AF),
time-sequence adaptive filter (TSAF) and minimal time-sequence
adaptive filter (MTSAF) using simulated data, SNR = 7.7dB,
adaptation speed m = Q.0DIm filter order M= 6A

(a) simulated EGG only

(b) two channel input to adaptive filter

(c) result of adaptive filter

(d) result of time-sequence adaptive filter

(e) result of minimal time-sequence adaptive filter
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Figure 8.1i* CompariBon of filter outputs for the basic adaptive filter (AF),
time-sequence adaptive filter (TSAF) and minimal time-sequence
adaptive filter (MTSAF) using simulated data, SNR = 13.2AdB,
adaptation speed m = 0.001, filter order N = 5A

(@) simulated ECO only

two input channels to adaptive filter

result of adaptive filter

result of time-sequence adaptive filter

result of minimal time-aeqgence adaptive filter

o

c
d
e
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Figures 8.16 show the results of applying these filters in exercise tests.
They again illustrate the advantage of the time-sequence and minimal
adaptive filter in revealing signal buried in noise. The results also
illustrate the ability to extract a signal from lead in comparison with
lead \/4, where the signal components are from the same source but exhibit

different structural features.

Inapplying a filter for noise reduction, distortion will invariably occur
the amount depending upon the filter used. Two reasons may be suggested
for this:

(i) low signal and high noise levels, and

(ii) overlap of signal and noise spectra.

In order to develop techniques in which sensible convergence with minimal
distortion could be achieved, a method was devised for measuring the amount

of distortion. This is presented in the following section.
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figure 8.16 Comparison of filter outputs for the basic adaptive filter (AF)
time-sequence adaptive filter (TSAF) and minimal time-sequence
adaptive filter (MTSAF) using real exercise ECG. The adaptation
speed u = . 1, filter order M= 6A

(a) the input channels to the adaptive filter
result of adaptive filter

(b)
(c) result of time-sequence adaptive filter
(d) result of minimal time-sequence adaptive filter
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a.7 Signal distortlinn

Signal distortion can be defined as the extent to which a system or
carponent fails to reproduce accurately at its output, the form of the
input. At least two charinels are required for the application of the basic
adaptive filter, the primary channel which coritEiina the signal and noise,
and a second input that contains a noise-free reference signal uihich ie
ccrrelated to the noise in the primary input. The available reference

input may contain lou-ievel signal components in addition to the correlated
noise in the primary input end still be accommodated by the adaptive noise
canceller. However, under these conditions the low-level signal components
will cause some cancellation of the primary input signal and distortion

yill occur et the filter output.

Inapplying the time-sequence or multichannel adaptive filter for the
applications stated earlier, the requirement for cancellation is for two
input channels in whicf both can contain signal plus noise. However, for
effective results the noise components should be unccirelated, and the
signals, which need not be of the same waveshape, should exhibit the Scime

frequercy spectra.

Signal distortion normally occurs in the use of these adaptive filters when
the spectra of the signal and the noise overlap. For Example, figure 3.1D
shows that in the lower frequency range 0 - 70Hz, the noise components
overlap with the ECG signal components (although the noise Is 22dB below
the signal power). The amount of noise depends upon the activity of the
steletal muscles, as discussed fully in Chapter two, and of the

interference from external sources. Therefcre the amount of distortion

depends upon:
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(i) signal-to-noise ratio at the input

(ii) the amount of overlap between signal and noise spectral
components, and

(ill) the channel propagation characteristics for the signal in
propagating through the adaptive filter.™

The results indicate that the higher the signal-to-noise ratio at the

input, the lower will be the distortion at the output

Two separate seta of experiments were carried out to examine
distortion in the P, QRS and T waves. The first of these involved the
use of simulated data mixed with white noise as a filter input.
Different levels of white noise were added to the same simulated ECG
signal and the performance of the filters examined. Figure 8.17 shows
the simulated ECG which is represented by a dotted line, superimposed
upon the filtered result of a simulated ECG corrupted by noise. The
figure shows;

(a) the signal and noise with different noise levels in the top trace,
(b) the results of using an LMS adaptive filter in the middle trace,
(c) the results of time-sequence adaptive filtering in the bottom

trace.

The distortion values were calculated and are presented in graphical
form in figure 0.18. In this figure the top trace indicates the
distortion in applying adaptive filter for four noise levels in the P,
QRS and T waves, while the bottom trace shows the same signals after
applying the time-sequence adaptive filter. It is clear that less

distortion arises in using the time-sequence adaptive filter than the
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use of the basic adaptive filter in a channel enhancer form. This is
due mostly to the fact that in the use of the channel enhancer the
adaptive filter may start to converge very effectively within the
isoelectric intervals, but on entering the QRS or T waves the
coefficients become disturbed, and distortion occurs. However, in the
tIme-seguence adaptive filter, each segment is controlled by a

particular set of weights and disturbance of the weights is avoided.

The results of the real data study are presented in figures 6.2D and
8.19. Again, the advantages of time-seguence adaptive filter over
channel enhancer are well indicated, although the use of more than two
input channels in the channel enhancer methods can reduce distortion

considerably, but at the expense of increased cost

Figure B.21 shows the percentage improvement in distortion of the
time-seguence adaptive filter over the channel enhancer. It also
shows that the amount of distortion is increased in both technigues as
the noise level is increased. Experimentally, the amount of
distortion is found to be approximately 2%. The output noise level
can be reduced if more than two input channels are used with the

appropriate choice of adaptive filter
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NOISE LEVEL

Figure 8.21'i Represents the percentage improvement in distortion
of adaptive and time-sequence adaptive filters.

The distortion is measured by taking the root mean
square (RMS) value of the output to the RMS value cf
the input.

270



a.8 Conclusion

The presence of noise and artifacts can obscure important features in
EGG records during patient monitoring and during exercise testing.
Several approaches to ECG filtering have been proposed in Chapter
Three, and adaptive filtering selected as a technique for further

study.

Since, in practice, both noise and artifacts may overlap within the
frequency band of ECG . 5 - 100Hz, complete separations of signal
and noise using the non-adaptive filtering techniques mentioned in
Chapter Three is impossible. Adaptive filtering may overcome this
problem but the result is a compromise between distortion of the

signal and reduction of noise and artifact

In this chapter the result of adaptive filtering technique in the form
of channel enhancer and time-sequence adaptive filtering have been
presented for both simulated and real data. The amount of distortion
arising as a result of filtering after applying the appropriate
parameter values, has been calculated and presented. The results
suggest that the time-sequence adaptive filter can reduce noise and
artifacts with less signal distortion, especially in P and T waves,

compared with adaptive channel enhancer.
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Chapter Nine: Conclusions

9.1 General Discussion of results

The experimental results in the previous chapters have demonstrated
that significant improvment in the recording of ECE can be obtained by
enhancement of the ECG signal from the skeletal muscle activity using
the application of adaptive filtering. The results also demonstrated
the superiority of the adapitive filtering over the other filtering

processes, including signal averaging.

The ability to use adaptive filtering in the applications considered
is based upon the observation that the ECE signals in tuo discrete
leads are highly correlated, uihilst the noise is largely uncorrelated
particularly if the leads are ujell separated. In applying the
adaptive techniques, a number of assumptions were made. Among these
it was assumed that tuo channels could be distinguished in uhich the
noise contents uere uncorrelated uith respect to each channel and to
the ECG signal. The results Indicated that such channels could indeed

be distinguished.

Perfect cancellation can be obtained if the conditional requirement of
adaptive channel enhancer is fully met. In practice, perfect
cancellation cannot be achieved. [f, for any reason, some of the
background noise components uere in one uay or another correlated uith
signal components, then distortion occurs. Distortion for various

versions of adaptive filters uere examined and the results uere
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presentBd as in figures 8. — 6.2U. Time-seguence adaptive filters
were found to exhibit less distortion than the basic adaptive filter.
It uas also found that higher signal-to-noise improvement can be
obtained if more than two channels are used in the adaptive filtering

process.

The use of time and minimal sequence adaptive filters appear to have
been justified as a means of tackling the problem of the
non-stationarity of a signal and its effect upon the performance of
the enhancement process. Although at one stage consideration was
given to applying faster algorithms, appropriate selection of the

convergence factor obviated this need.

The most important application considered for adaptive filtering in
this study was its use in exercise electrocardiography. The study has
shown that successful noise cancellation can he accomplished and it is
likely to be accepted as an important attribute in obtaining good
exercise ECG's. Although some difficulties were encountered in these
experiments especially in cases where excessive base line variation
was evident, a method was developed to overcome this problem. These
results indicated a substantial improvement by use of adaptive
filtering and the superiority of the technique over many others,
especially for precordial leads when two channels such as and

are readily available for inputs to the adaptive filters.

Detection of low level signals, representative of those associated

with the specialised conduction system, may be facilitated by the use
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of adaptive filters. The initial results, based upon simulated data,
indicate the possible advantages of using this method. Further research is

required.

Some difficulties with the use of adaptive filters were overcome in the
early stages of this research. These involved the proper selection of
filter order and the convergence factor. The study has shown in general
that successful noise cancellation can be achieved and the results
presented in Chapters six, seven and eight indicate the best parameter

values for adaptive filtering.

Inmost of the experiments reported in the study, it has been found that
the minimal time-sequence adaptive filter can exhibit a superior result in
signal-to-noise improvement compared with the basic and time-sequence

adaptive filter.
Ih practical terms, the technique could he applied to reveal microvolt

events within the ECG, providing attempts are made to obtain recordings

that exhibit high initial values of slgnal-to-noise ratio.
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9.2 Suggestions for further work

There are a number of issues arising out of this investigation that
could form the basis of future research. One is the application of
the adaptive filtering process for the detection, further study and
verification of cyclo-stochastic perturbations. These perturbations
and the associated abnormalities have been investigated by the PISA
method (Prasad & Gupta, 1981, 1981). Simulations of cyclo-stochastic
perturbations in noise have been used as the basis of enhancement
studies using adaptive filtering and the results appear quite

promising.

Because of the importance of the specialised conduction system in
determining the sequence of activation of the working myocardium and
in turn to the mechanical events of the heart, the surface acquisition
of potential variations related to the system are likely to be of

diagnostic value.

A further area for future study is the use of dual channel minimal
time-sequence adaptive filters to cancel out the noise due to skeletal
muscle activity during exercise electrocardiography, by using
different convergence factors in each particular segment of the EGG.
Further improvements in signal-to-noise ratio and reduced distortion

may be expected.

Further research is required on the use of multichannel recording,

especially with respect to precordial leads in which the signals
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occupy the same frequency spectrum, but exhibit different morphology.
Having achieved good results with simulated data, it is expected that
the application uiill improve the slgnal-to-noise ratio, dependent upon

the number of channels used.

The principal conclusion to be derived from this study is that the
channel enhancer together with time and minimal sequence adaptive
filters provide the basis for improvement of ECG recording systems
capable of reducing high levels of noise, of differing
characteristics. Moreover, it provides the basis for systems that
could extend the clinical usefulness of surface derived ECG's by
revealing events that are otherwise obscured. Such systems would
initially find application in research studies, hut the results may
eventually lead to the use of such techniques in routine clinical

practice.



AmEX A

The apeclflcatlon of InEtrumentatlion amplifier

Introduction

The AA30 instrumentation amplifier used in this study (Drmed Limited) is
primarily designed for EGG with ten standard lead positions and provides
patient isolation and protection from diathermy burns. This amplifier is
not connected to any input circuit within the cabinet, but it has its own

front panel input socket.

The full specifications for the amplifier are listed below:

Specification
Sensitivity Input of 3CJl«v/division to 25Gyv or 1.5mU to 1Z.SmU
for lvolt across 1DK ohms load.
Gain Steps 2.5mU, 5mV inputs for Ivolt across 1DK ohms load,
or 5Qyv, 10Dyv, 2GOuv/division.
Fine gain control gives 0.25 to 1.75 times each range.
Gain Accuracy +2% range to range.
Gain Stability +G.G3%/°C over the range D“C to AO“C
Zero Stability Leas than 0.7% of f.s.d./“C.
Input Circuit Differential, I[OMohms resistance isolated from ground.
Common mode, input capacitance 17GpF in parallel
with 68 ohms. A five-way isolated ECG socket is
mounted on the front panel
Leakage Current 12yA with ZkO volts at 5DHz applied to the input
circuit.
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H.F. Frequency -3dB at 5kHz.

H.F, Cut -3 dB at IB, 25 and 5QHz +2B%, uiith 6dB octave roll-off

Time Constant 3.5 seconds, +2B%.

CVMR Ratio Greater than 1BB,00:1 (IBBdB) at 1.5Hz and 50Hz.
Electrode resistance imbalance less than ZKohms.

Common Mode +5BB volts peak, d.c to 5BHz.

Voltage Range

Nominal Butput +1 volt.

Maximum Butput +2.5 Volts.

Maximum Butput +1.2mA.

Slew Rate of Greater than 5BmV/uS.

Butput Resistance 13B ohms

Noise Level Less than B.5 division on chart or 2ByV peak-to
peak at maximum band-width on oscilloscope, with
1 Kohm source.

The unit can withstand an input overload of 5KV,
phase or anti-phase, for up to 1.5mS.

Anti-blocking Automatic anti-blocking mutes the amplifier for one
second in the presence of an overload signal. The
amplifier is muted when the lead selector switch
is operated.

Calibration A ImV +2% internal calibrate signal can be injected
in series with the input.

Power Requirements +12V at 77 A, -12U at 52mA. Pijnp supply, L.25MHz

+1% at IV peak-to-peak +2% and B.5mA.
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The ADC has a range of -5 to +5 volts, uhile the tape recorder has a
maximum output of approximately I.itvolts rms, an additional
pre-amplification was used in order to provide a full use of the ADC

resolution.

In order to process the data recorded using PDP 11/23, it is necessary to
sample and store the raw data. To do this a sampling rate of 1 and 2 msec,
was chosen. To avoid error is sampling due to aliasing, it is well-known
that signal components must not exist above half the sampling frequency,

which is known as Nyguiat frequency.



Annex B

A Design for a lou-pass digital filter

A low-pass digital filter was designed similar to the filter presented

by Lynn (1971), with a linear phase in which the poles and zeros lie on

the unit circle in the Z-plane. The pole-zero configuration of a

low-pass digital filter can be seen in Figure Bl

A low-pass filter with an integral constant k = 3 can be described by

its 2-plane transfer function H(2), which may be expressed
set of 2-plane poles and zeros as fallows:
H(Z)
(2-p,,)(2-P2)(2-P3) X(2)

where z".zMjZ*,.... are 5-plane zeros.

prAjLpAP L are 2-plane poles.

k is a constant

X(2) is the 2-transform of the input

Y(2) is the 2-transform of the output

The recursive filter relationship in the time domain is

Y(n) = Y(n-3) -3Y(n-2) +3Y(n-1) -X(n-21) +3X(n-1A) -3X(n-7) +X(n)

uhere Y(n) represents the present output sample value,

in terms of a

. B1

Y(n-1) represents the previous output value, and so on, and

the X terms represent input sample values.

B1
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I ~ plane third order

Figure HI Pole - zero configuration of a lou-pass digital
filter having linear-phase characteristics.
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Annex C

This annex shows the program list for applying an adaptive transversal
filter to the ECG. In its early investigation, using 32 filter order
uiith o.o1 convergence factor, it also shows a subroutine to plot the
input/output result.

Dimension IDATA (2,360Q),W(32)
Common IDATA, |1SAM
DATA I\ISAM/360D/, | «:DF/32/
DATA U/32*.01/
Type 1D
Format (' LMS Adaptive Transversal Filter'//' Enter U:'§)
Accept 11,U
Format (FID.s)
IPOINT=I\1COF+1
Type 9
Format (' Use Data From File?'§)
Accept 15, IReply
If (IReply.IME. 'Y')Goto s
Open (Unit=3,Marne = 'DY0:3Dat', Type = 'Unknown',
0 CarriageControl = 'None', ERR=99, Form = ‘'Unformatted')
Read(3) IDATA, ISAM
Close(Unit=3)
Goto 22
8 Type 1A
Format ('Enter Sampling Period:'$)
Accept 11, SAM
[ SAM=SAM*1DQD.D
Read Input Samples
Call ADC(ISAM,IDATA.2,MSAM,|FLAG, )
IF(IFLAG.ME.|) Goto 2
Type 20



Format ('ADC Error")

Goto 1
2 Open (Unit=3,Name="DYD:3DAT".TYPE="UNKIMDIiJN",
6l Err=99, CarriageControl = ‘'None', Form = ‘'Unformatted"')

Write (3) IDATA, [SAM
Close (Unit=3)
22 Type 15
15 Format ('Plot Input Waveform?(Y/N)'$)
Accept IS, IReply
Format (A1)
if (Reply. EQ.'Y')Call Plot (1)
Form Qutput and Error
DO 300 I=IPoint, NSAM
Y=0.0
DO 200 0=1, NCOF
Y = Y+LKJ)*IDATA(1, | - 0)
200 Continue
E = IDATA(2, | -D-Y
Updata Coefficients
C=2*U*E
D0100 0 = 1,NCOF
W(0)=1J(J)+C*IDATA(1, 1-J)
100 Continue
IDATA(2, | -NCOF)=Y
IDATAd, I-NCOF)=E
300 Continue
Type 17
17 Format ('Plot Noise Canceller Output?'$)
Accept 16, Reply
[f (IREPLY. EQ'Y' IREPLY)
Type 18
Format (' Plot Filter Qutput?'$)
Accept 16. Reply
If (IREPLY. EQ'Y') Call Plot 2



19

99

10

11

13

1A

17

18

15

100

21

22

Type 19

Format (' Continue?'s)
Accept 16, IREPLY

[f (IREPLY. EQ. 'Y') Goto 1
Stop

Stop 'File Error’

End

Subroutine Plot (1)

Dimension IDATA (2,3600)

Common [IDATA, |SAM

Type 10

Format ('Enter Starting Coordinates"'$)
Accept 11. IX, 1Y

Format (21A)

Type 13

Format ('Enter Amplitude Scale Factor"''$)
Accept U.1YS

Format (15)

Type 17

Format ('Enter Time Scale (MS/MM): '$)
Accept 18, TScale

Format (F8,3)

Type 15

Format ('Enter Trace Duration (MS):'$)
Accept 18. Time

Call Move (IX,IDATA 11,1)/1YS+lY)
INC=1SAM/(100.*TScale)

N=Time*1000 ./ISAM

DO 100 0=1,N

Call Draw (J*INC, IDATA (1,0),1YS+lY)
Continue

Call Move (IX.1Y)

Type 21

Format ('Repeat?'!)

Accept 22, |IReply

Format (A1)

If (IReply,EQ,'Y" Goto 1)

Return

End
C3



Annex D

Most of the tape recorders produce some noise within the recorded
signal. Surface recording of the EGG were recorded on the low noise
BASF tape using a Bell and Howell FM recorder having the following

specifications:

Gain Unit

Bandwidth 0.1-6 KHz

Signal to noise ratio AedB Rms with the noise canceller on
AQdB 532 without the noise canceller

Total harmonic (1 - g?%

distortion

Input level 1 volt r.m.s.. (2.5 p.p)

Input impedance 100k



Annex E

Method to test the Statlonarlty of the ECG

Any biomedical data can be characterised in terms of its statistical
properties (Bendat, 1962, 196A). Stationarity means that the
statistical properties computed over the ensemble of all the data must
not vary with time. The statistical property of a signal can be
evaluated by its mean and its variance, or by its power spectrum if it

is in frequency domain.

The test of stationarity may be conducted by either of the following
methods:
(a) The ensemble test, which can be conducted by taking the ensemble
average of the data with respect to time. |f the result of the ensemble
average does not vary with the variation of time, the data la said to be
stationary, otherwise, the data la non-statlonary.
(b) A progressive mean test (Bendal & Peirsol, 1966), Implemented in
the following way;
(i) by taking a length of record sampled in accordance with the
Nyquist criterion,
(li) segmenting the record into Mequal time Intervals,
(ill) calculate the mean values of the individual segmented intervals,
(iv) calculate the mean square value of the whole record,
(v) choose an appropriate percentage level of significance, a= 0.05.
(vi) by taking the mean square value as a line of reference on the

plots of mean values against number of samples, the number of 'runs

El



is determined. A ‘'run' may be defined as the number of times the data

is partitioned by the mean square value line.

If the number of runs falls within the values cited in Table El for

specified limits, then the data is said to be stationary.

The record was segmented into N = 10, 20 and 100 segments and the means

were plotted with respect to the number of samples (figures El, E2 and

E3).

The teat indicated that the data considered was stationary, with N = 10

and 20 and becoming non-stationary as N increases to 100.



Values of r such that Prob Cr >r ] =a, luhere n = N. = N, = IW2
nid n n “ot \

n=N/2 0.99 0.975 0.95 0.05 0.025 0.01
5 2 2 3 8 9 9
6 2 3 3 10 10 11
7 3 3 4 11 12 12
8 i < 5 12 13 13
9 h 5 6 13 14 15

10 5 6 6 15 15 16

11 6 7 7 16 16 17

12 7 7 8 17 18 18

13 7 8 9 18 19 20

1 8 9 10 19 20 21

15 9 10 11 20 21 22

16 10 11 11 22 22 23

18 11 12 13 24 25 26

20 13 [i» 15 26 27 26
25 17 18 19 32 33 34
30 21 22 24 37 39 40
35 25 27 28 43 44 46
it0 30 31 33 48 50 51

i 3i* 36 37 54 55 57

50 38 40 42 59 61 63
i"3 45 46 65 66 68

wi 49 51 70 72 74

“ 52 54 56 75 77 79

70 56 58 60 81 83 85
75 61 63 65 86 88 90
80 65 68 70 91 93 96
85 70 72 74 97 99 101
0 U 77 79 102 104 107
95 79 82 84 107 109 112
100 8 i 86 88 113 115 117

Table adapted from Bendai & Pelrsol, 1966.
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iuU. DBT C 0)

NO. OF SBMPI-E 1.0
Figure E1 The plat of the mean with respect to number
of samples.
Number of samples N = ID
Number of runs = 6

n=="=25

a - between 0.95 and D.D25

the mean square value is 9.k x ID* , the data behave
stationary.
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NO. OF SFIMPt-E 20
Figure E2  The plot of mean uiith respect to number of samples

IMumber of samples M= 20

Number of runs =7

@ - between 0.95 and 0.025

the mean square value is it.72 x 10‘, the data behave
stationary.
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NO. OF SfIMPIE 3-02  jtj.0

Figure E3 The plot of mean with respect to number of samples

Number of samples = 102
Number of runs = B
n = 51

The data behave non-stationary.
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Annex F

The Hardiiiare and Softuiare Aspects of Signal Processing

A DEC POP 11/23 was already selected for the Device Application Group in
the Physics Department for the reasons of compatibility with the existing
departmental equipment, sharing of software and hardware experience both

internally and externally.

The PDP 11/23 was obtained with the following configuration:

LSl 11/23 processor with Memory Management Unit (MMU)
128 Kbytes DRAM

Twin RXD2 floppy disc drives

16-channel multiplexed analogue input to 12 bit ADC
Digital I/0 interface

Quad serial line interface, and

ROM bootstrap board

Two RKo5 hard disk drives were added later providing SMB of storage
In addition the peripherals included an LA36 DecUJriter, LUatanabe digital
plotter which was later replaced by a Gould colourwriter digital plotter
and a Televideo 192C UDU, all serviced via serial lines.
The ADC has a range of -5 to +5 volts, while the tape recorder has a

maximum output of approximately 1.4 volt rms, and additional

F



pre-amplification was used in order to provide a full use of the ADC

resolution.

In order to process the data recorded using the PDP 11/23, it is necessary
to sample and store the raw data, to do this a sampling rate of 1 and 2
msec was chosen. To avoid error in sampling due to aliasing, it is well
known that signal components must not exist above half the sampling

frequency, which is known as the IMyquist frequency.

Digital signal processing package

The software package was developed to perform routine spectral analyses
such as power spectrum, correlation and coherence, adaptive filter such as
adaptive noise cancellation, transversal filter and time-sequence adaptive
filter. The sub-routines are based on programmes described by the digital
processing connmittee (1978) and by Carter and Ferrie (1979), whilst the

other programmes are developed by the author, and by Uinski (1985).

An example of spectral analysis, parameters and commands required is

described below.

For spectral analysis, each required the results of fast-fourrier transform
(FFT) on the raw data, this could he done by the Command SXY, which wil
compute the spectra Gxx, Gyy and the cross spectrum ReCGxy] and Im[Gxy],
which is stored for use by subsequent commands: LPS, CCF, ACF, CDH, which

can be called after executing SXY in any order

F2



Parameters required

NFT

PoU

Description

Format

Length of segment of data, it could be given when calling
SXY, or otherwise previous value is used, which must
be >A and <512, which should not exceed the input data

record.

is computed to be the next power of 2 that is>I\IIMN = 1DD,
NFT will be made equal to 128. This is the FFT segment

length, max length = 512

‘percentage overlap'. Data records larger than 512 cannot
be processed as one record since max.FFT is 512. A percentage
overlap of 0, 50 and 75 may be used as a argument when

SXY is called, otherwise the previous value is used.

the sampling rate in ysec. It is only needed to determine

the frequency range of the spectra.

of commands

Do initial computations to obtain spectra Gxx, Gyy, and
Gxy for use by other command
SXY \J* Ug

U| is the input 'X' vector



Ug is the input 'Y' vector
these must be the same size or an error message appears,
NNN sets the segment size for FFT, it should be a power of 2
if it is not a power of 2, zero's are automatically added
to make it so, which will degrade the accuracy of the
spectral estimates, so it is best to use a power of 2 if

possible.

PoU selects the percentage overlap if more than one segment is
I L needed to process data,

set to , 50 or 75 only.

After executing the comnand SXY, the following command may be used as

required.
(a) Log power spectrum (LPS)

Format LPS U”(U2)
The log of the power spectra Gxx (and Gyy) are computed from Gxx (and Gyy)
and put into and ~2 specified. If ~2 is omitted, only Gxx is stored

in \ly
The size of U. and U, is important, for an N-point FFT there are N + 1
2 7
values for the spectrum, the first being the dc component. The size of IYFT

determines the size of the power spectrum vector ie. NF + 1.

(b) Autocorrelation function (ACF)

FA



Format ACF U*\/2)
Canputes the ACF of 'X' (and 'V if Ug is specified) input data record from

the inverse FFT of the power spectra Gxx and Gyy. Because the ACF is

symmetric, only one half la provided. The size of (and UM) must not
exceed I\FT + 1, it could be less if desired.

2
For large values of NFT, it is convenient to have and equal to a

power of 2 for plotting and display. The autocorrelation of X is put into

and the autocorrelation of Y la put into "2~

(c) Crosscorrelation function (CCF)

Format CCF U”(U2)

From the cross-spectrum GXY, the crosscorrelation function is obtained from
the inverse FFT and the result is put into |/ Because the CCF is not
generally symmetrical, |/ must be equal to NFT in size. It may be smaller
if only a part of the CCF is required. If U2 is specified it contains the

impulse response of the function.

(d) Coherence function (COH)

Format COH (U2) (V3)
Several functions are provided by this command. The value of the magnitude
square coherence (MSC);

i* = Gxy .Gxy
Gxx.Gxy



is stored in . This can take values in the range 0-1, nxjst not exceed
T

if Ug is provided, it will contain the log power cross-spectrum,

if Uj is provided, it contains the phase cross-spectrum in degree,

if U is specified, it contains the modulus of the transfer function Hj*(f)

X
in dB.

Example:

Having two vectors fl and B of size 512 each and sampled at I[KHz, obtain the
spectral function.

IKHz sampling means IMyquist frequency of 5DDHz, so any data components
above 500Hz will alias back into D-50DHz band. Thus this is the frequency
range.

To determine the resolution, the power spectrum will be stored in a vector
of size'257 512 + 1 and will represent 50DHz. As the first bln
represents the dc. component:

WIM is 512 and sd is NFT

S.resolution = 500 “ 1Hz

512

To get log power spectrum:

SXY A B 512
IPS ufiere . ang are of length 256
Aq A2 gives auto-correlation function. A" and A2
of length 256
CCF gives cross correlation function and impulse response,

and length 256
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For resolution less than 1Hz, it is required that the sampling frequency
must be smaller, i.e, less than 5DDHz, but this depends upon the bandwidth

f the input signal.

SniE of the Dlapac Commands and parameters are listed below

H :List help information

EX jExecute the commands in the named command file
R iCreate a command file

STP iStop the progranme

m iSend all output to UDU

PRI iSend all output to printer

AP jAllocate a parameter given name, type, location
P iSet the named parameter to the given value

LP jList the values of all parameters

INC iIncrement named parameter by given constant

DEC iDecrement named parameter by given constant

AL jAllocate space for named array given dimensions and start
DE iDeallocate storage for the named array

MAP jList a map of storage allocation

L jList the named array

SAM jSample ADC and store in memory

P iPlot vector

D iDisplay vector

iControl the plotter directly
iPlot axes using T/LIN/LOG, I\DX, INDY, (Y-axis text), (Box)

LR %

iDrive the Gould colourwriter directly



:Scale the v/ector by a constant

:Shift the vector by a constant

:Add the first vector to the second vector
:Subtract first vector from second vector
‘Multiply first vector by second vector
:0ivide first vector by second vector
:Clear the vector to zero

:Copy the first array to the second

Write the array to disk 1

:Read array from disk file

:Generate sineiiiave for given period
rSimple statistics - min, max, mean, sun, standard dev,
rms power
S :Signal/noise power ratio given noisy signal and
signal vectors
:CcnputB the spectra of X and V
:Compute log power spectrum
:Canpute autocorrelation function
:Qjnpute cross correlation function
iConpute coherence
:Simple adaptive filter

:Time-sequenced adaptive filter

To perform the axes,the following command should be executed:

T
AX - QN - NDX - NDY - 'y axix test' - BOX
LOG
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T is the plot of the time against amplitude
LIN Linear plot for coherence
log Log plot for transfer function and log power spectrum

NDX, NOY are the number of divisions in the X and Y axes

An example of performing adaptive filtering

It is required that four arrays are allocated with the same size, i.e, 2048

bin, the following command should be executed:

A A 2048 1
A a 2048  s$21
A Y 2048  $41
A E 2048  $61

The above allocation is the name of the array A and 0 and the two required
inputs to the adaptive filter. Y is the output of the adaptive filter
iihile E is the error. They are all of size 2048 and they are all placed in

a specific position in the storage, as it will be shown in the map.
It is also required to allocate the number of coefficient by AL )64 $81
that means allocate an array called U of size 64 and standard from position

81.

Tc perform the adaptive filter it is required to set the a value to the

F9



convergence factor y , i.e.

The cctnnand is:
AFABVE

The follcuing map show the

location of the arrays

consist of 256 blocks of 128 words.

3 i 5 6
A R A A
B B B B
Yy vy vy y
E E E E

1

9 1B 11 12 13 "k

F1Q

1, and tc set a delay of A + 1.

in the storage which

15 16
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