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Abstract

Food fraud is becoming an increasingly di�cult challenge, with the ongoing global

expansion of food supply chains. Previously developed methods have been successful

in the detection of some instances of food fraud, however they struggle to detect more

subtle examples of fraud. Eggs are a food product that are susceptible to fraud, as the

di↵erences between authentic and fraudulent eggs are extremely subtle and di�cult to

detect. The intention of this work was to reveal how a metabonomic approach, using

liquid chromatography quadrupole-time-of-flight mass spectrometry followed by robust

statistical analysis, can be used to observe how di↵erent conditions and factors in the

production of poultry eggs a↵ect the metabolite profiles of the yolk and albumen of

the eggs. It aimed to show how the observed di↵erences between the eggs can lead to

the detection and identification of compounds that have potential as markers capable of

detecting instances of fraud.

The first study, and some aspects of the following two studies, conducted during this

research involved some preliminary work, and were carried out in order to optimise the

experimental designs for the remaining studies carried out throughout this research. The

optimum storage temperature and condition of metabolite extracts was determined, and

it was concluded that the age and diet of the laying birds should be kept the same both

within and between experimental groups in the same study.

The metabolite profile of the egg, particularly the albumen, was found to be a↵ected

by the age of the bird, and a compound found in the albumen that showed potential as

a marker of hen age was putatively identified. It was observed that di↵erent diets of the

hen a↵ect the metabolite profile of the egg di↵erently, and that they a↵ect the egg at

varying rates. Choline was discovered to be a suitable marker of egg age when eggs are

stored at 23 C, however refrigerated egg storage was found to inhibit its use as a marker.

Some putatively identified compounds were determined to have potential use as markers
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of liquid yolk storage time at 5 C. The cage stocking density of birds was found to have

an e↵ect on the metabolite profile of egg yolk, which was independent of the e↵ect of cage

population size. A compound that showed some potential as a marker of cage stocking

density was putatively identified. Several potential lipids were found to have a higher

abundance in barn egg yolk compared to cage egg yolk, and one of these potential lipids

was putatively identified. Little di↵erence was observed between the albumen metabolite

profiles of eggs from di↵erent housing systems.

The research presented in this thesis reveals that a metabonomic approach, using liquid

chromatography-mass spectrometry, can be successful in uncovering subtle di↵erences

between eggs from di↵erent backgrounds. It shows how this metabonomic approach, and

the observed di↵erences, can be applied to the development of methods for the potential

detection of fraud in the production and marketing of poultry eggs.
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1. Introduction

1.1 Aims

To introduce the concepts of food fraud and metabonomics, and how metabonomics

can be applied to food authentication studies.

To discuss how poultry eggs are a↵ected by food fraud, and the structure and for-

mation of eggs.

To introduce and discuss di↵erent classes of lipids.

1.2 Food Fraud

Food fraud is the act of intentionally deceiving consumers regarding food products, and

most often occurs for purposes of financial gain [1][2][3]. There are three main categories

of food fraud: adulteration, substitution, and misrepresentation of foodstu↵s, and these

can a↵ect a wide variety of products such as meat, dairy, fresh produce, alcohol, and

eggs, amongst others [2][3].

Food adulteration is the act of deliberately adjusting a food product in some way; by

either the use of extraneous ingredients, or the substitution of a current, high quality

ingredient for another, which may be inferior or substandard [1][4]. The European horse-

meat scandal of 2013, where beef products were found to contain horsemeat, is a good

example of food adulteration [2][4]. As well as being a moral issue, food adulteration
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is also a food safety concern, as these extra ingredients in the food products may be

allergens, which could be dangerous for allergy su↵erers.

Food substitution involves completely replacing one product with another, inferior

one, but advertising and selling it as the original product [5]. For example, it is possible

for bar sta↵ to refill an empty bottle of an expensive brand of liquor with a less expensive

brand and continue selling it to consumers at the higher price, as though it were still the

original brand. This enables them to increase their profit through fraudulent practices.

Food misrepresentation can present in several di↵erent forms, but is essentially mis-

leading the consumer regarding the origins of the product [1][6]. Some food products may

be advertised as originating from certain countries, making them particularly desirable,

when they were actually grown or produced elsewhere [6]. It may be less expensive to im-

port these products from di↵erent countries, tempting companies to mislead consumers

about the origins of the products. As organic produce can be sold at a higher price

than conventionally grown/farmed produce, due to the lower yields and costs associated

with organic certification [7], food misrepresentation also occurs with the mislabelling

of conventional products as organic [6][7]. In fact, this type of food fraud has increased

in occurrence over recent years, due to the increasing demand of consumers for organic

produce [5]. The supply of organic produce from the agricultural industry is struggling to

keep up with the demand from consumers and so companies are importing products from

less reliable sources, which may mislead these companies about the agricultural origins

of their products [5].

Food fraud is an age-old problem that can be traced back thousands of years to the

ancient Roman and Greek civilisations, which had laws regarding the adulteration of wine

[5]. Evidence has been found of fraudulent wine and olive oil dating from the ancient

Roman times [1], and fraudulent practices have continued through the Middle Ages and

into modern times [5]. Although food fraud is not a new issue, due to the modern

globalisation of food supply chains, the problem of food fraud has expanded in recent
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years, increasing the vastness of its impact [1][3][8].

As consumer awareness of food fraud is increasing [1][9], particularly following the

horsemeat scandal throughout Europe in 2013 [3][10], the trust that consumers have in

Food Business Operators (FBOs), and their produce, is decreasing [2][3]. This can result

in a lack of sales, causing negative economic implications not only for FBOs, but also

for the government due to a loss of value added tax (VAT) from sales [2]. Economic

issues can also arise from product recalls and authenticity testing of products following

the discovery of fraudulence [3]. It has been estimated that globally, food fraud costs

approximately US49billion a year [11].

The European Union has various laws and regulations in place in order to control the

production and marketing of food products, and FBOs are responsible for ensuring that

these are followed within all areas of the food business that they govern [12]. The EC

Regulation 178/2002 lays down the principles and requirements of food law, and states

that the aim of food law is to prevent food adulteration, misleading or deceptive practices,

and any type of fraudulence with respect to food products [12].

In the United Kingdom, the Food Safety Act of 1990 covers the legislation regarding

food fraud. In this act there are two sections dedicated to consumer protection. Section

14 states that it is an o↵ence to sell any food products that are not of the nature, or

quality expected by the consumer, and section 15 makes it an o↵ence to falsely describe

any food products that are for sale for human consumption, whether it be mislabelling

the products or false advertisement [13]. In the Unites States (US) the Federal Food,

Drug and Cosmetic Act prohibits the adulteration and misbranding of food products

[14].

As the issue of food fraud is becoming increasingly problematic, and there are laws

and regulations aimed at preventing food fraud, it is important to have a way of detecting

instances where it has occurred. Having a method that is capable of uncovering cases

of food fraud, that does not simply rely on inspections and identifying inconsistencies
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in paperwork, would help to prevent instances of food fraud from occurring. It would

potentially result in the detection of fraud prior to selling the products to the consumer,

and it would also act as a deterrent due to the increased risk of being caught. Metabo-

nomics is an increasingly popular technique that is being employed in food fraud studies,

to develop methods of detection of food fraud a↵ecting various di↵erent food products

[15].

1.3 Metabonomics

Metabonomics is the comprehensive profiling of low molecular weight species (<1000Da)

[16] in organic tissues and biofluids, and the observation of how these profiles are a↵ected

by both intrinsic and extrinsic factors [17][18]. Metabonomics is often confused with,

or referred to interchangeably with, metabolomics. However, these two disciplines are

slightly di↵erent; metabolomics is the study of the complete metabolome, i.e. all of the

metabolites present in a biological system, whereas metabonomics is the study of how

the metabolite profile changes in response to internal and external stimuli [19][20].

Systems biology involves the integration of a range of di↵erent omics disciplines, all

aimed at learning and understanding more about biological systems at increasingly lower

levels [16][21]. Genomics is the study of genes and DNA, transcriptomics is the study

of RNA, proteomics is the study of proteins, and the most recent omics technology,

metabonomics, is the study of the metabolites that make up the metabolome [16][18].

Genomics Transcriptomics Proteomics Metabonomics

Figure 1.1: Diagram showing omics disciplines involved in systems biology
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Examples of some biomolecules that make up the metabolome are: amino acids, car-

bohydrates, lipids, and vitamins, as well as various other metabolites that are involved

in biosynthesis and biodegradation pathways [21].

There are two broad categories of metabonomic studies; targeted and non-targeted

[19][22]. Targeted studies can be useful when particular biological pathways are known

to be a↵ected by the factor that is being investigated, as the experimental methods

can be tailored to particular compounds or compound classes that are found in that

pathway [19][22]. Non-targeted metabonomic studies are preferred when it is unknown

which biological pathways may be a↵ected, as they aim to profile as many metabolites,

or small biomolecules, as possible, in order to get a more holistic view of the metabolome

[19][22]. Non-targeted studies generate large amounts of data, providing information on

thousands of compounds found in the samples. From this data it is possible, through the

use of statistical workflows, to discover compounds that show a significant trend between

the di↵erent sample sets in the study [22]. If just one of these compounds is identified,

following further work and larger, targeted metabonomic studies, it could become a known

biomarker relating to the factor under investigation.

1.3.1 Metabonomics in Food Fraud

Metabonomics is a relatively recent discipline that is becoming increasingly popular,

particularly within areas of research such as: disease diagnostics, toxicology, environ-

mental research, as well as food authentication studies [15][18][23]. It is particularly well

suited to authentication studies which investigate the detection of food fraud, as it is ca-

pable of exploring the more subtle di↵erences in food products in order to detect instances

of fraudulent activity. Most cases of food fraud are undetectable by the human senses;

the colour, smell, and taste of the fraudulent products are almost indistinguishable from

true authentic products [24]. Therefore, various scientific methods have been developed

that are capable of detecting the di↵erent types of fraud a↵ecting various food products
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[15][25].

However, some cases of food fraud can be particularly di�cult to detect, for example

the adulteration of olive oil with hazelnut oil [15], as the chemical compositions of the

fraudulent and authentic products are very similar. Other cases of food fraud can be even

more subtle than this; food misrepresentation can be particularly di�cult to identify as

the chemical and physical characteristics of the fraudulent products are the same as the

authentic products, however the origins of the products may not be the same as what is

advertised on the label [1][6]. There is no way for the consumer to identify whether any

misrepresentation has taken place, and as the di↵erences between true, authentic products

and the misrepresented products are so subtle, it is di�cult to detect inauthenticity, even

through the use of scientific methods. However, as non-targeted metabonomic studies

aim to gain information about as many di↵erent compounds and compound classes in

the samples as possible, they are likely to be capable of uncovering some compound

di↵erences between authentic and fraudulent samples.

1.4 Poultry Eggs

1.4.1 Fraud in Poultry Egg Production

Eggs are an example of food products that are susceptible to fraudulent misrepresen-

tation [2]. In England and Wales, it is the responsibility of Egg Marketing Inspectors

(EMIs) from the Animal and Plant Health Agency (APHA) to carry out inspections and

enforce legislation outlined in the APHA Guidance on Legislation Covering the Marketing

of Eggs [26].

There are four main farming methods of egg production: cage, barn, free range, and

organic [27]. The average U.K. farm-gate price of eggs is approximately 30p greater for

free range eggs than it is for cage eggs [28], and by comparing the supermarket prices

of eggs it can be observed that cage eggs are the cheapest to buy, whilst organic eggs
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fetch the highest price. Therefore, there is the potential for eggs to be mislabelled with

a false farming method, in order to sell them at a higher price and make an increased

profit. Laying hens that are used in organic egg production must be fed an organic diet,

which consists of di↵erent ingredients to the conventional diets that are fed to other, non-

organic birds [29]. However, this organic feed is more expensive, creating the temptation

for farmers to feed the organic birds a conventional diet, in order to avoid the higher

costs of organic feed.

Eggs must be labelled with a producer code, to enable the eggs to be traced back to

their production site, and even to a specific flock of birds at that site [30][31]. However,

this allows cases of misrepresentation, such as labelling the eggs with incorrect farming

methods, or falsely labelling them as locally sourced , to be easily discovered. There-

fore, producers may be tempted to mislabel the eggs with false producer codes, to avoid

detection.

In 2012 the legislation regarding the cage size for laying hens changed, and stated

that all cages must be enriched cages, with a minimum of 750 cm2 of cage area per

hen, of which 600 cm2 must be usable [30]. This created the potential for fraud, as egg

producers now require more space to house the same number of birds, and therefore may

be tempted to continue housing laying hens in the old battery cages.

Eggs have a sell-by date of three weeks post-lay, and a best before date of four weeks

post-lay [32]. The date of minimum durability, or best before date, must be clearly

labelled on the packaging [32]. However, as there is no way for the consumer to confirm

that these dates are correct, there is again potential for the eggs to be mislabelled with

false sell-by and best before dates, in order to give them a longer shelf life and sell them

before they reach their falsely labelled sell-by date.
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1.4.2 Structure and Formation

The type of egg laid by hens, and in fact all birds, is known as a cleidoic egg, meaning

that the interior environment of the egg is almost completely separate to the exterior

[33]. The egg is the largest single cell found in animals and contains all of the nutri-

ents essential for the development of an embryo outside of its mother’s body [33][34][35],

making it extremely compound-rich. Bird eggs consist of various components: the yolk

(including the germinal disc), vitelline membrane, thick inner albumen, thin outer albu-

men, chalazae, shell membranes and the shell [33], see Figure 1.2. The structure of the

egg is similar for all bird species, with the main di↵erences being the proportions of the

di↵erent parts. The proportions of the parts are a↵ected by the age of the bird, the diet

of the bird, and the bird’s environment [33].

Figure 1.2: Structure of a bird egg. Adapted from Nys and Guyot [33].
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The formation of an egg is controlled by steroid and pituitary hormones produced

and secreted by the ovary and the pituitary gland [33]. The components of the egg

yolk are produced by the liver of the bird and are then transported to the ovary via

the bloodstream, where they are incorporated into the largest ovarian follicle in order to

form the yolk, which is then released from the follicle in the oviduct during ovulation

[33]. Once the yolk precursors reach the ovary, they then have to penetrate several layers

of the follicle wall before they can be incorporated into the yolk during formation [36],

see Figure 1.3.

Figure 1.3: Diagram showing the formation of egg yolk in the ovarian follicle. Adapted from
Gri�n [36].

The outermost layer of the follicle, the thecal layer, is highly vascularised with highly

permeable capillaries, allowing the plasma to easily leak through [36]. The yolk precur-

sors then have to penetrate the basal lamina, which is made up of connective tissue and

filters out any large particles in the plasma that are trying to pass through. They then

penetrate the granulosa cell layer and the perivitelline layer before binding to receptors

on the oocyte plasma membrane [36]. When enough receptors have been activated by

the binding of these precursors, endocytic vesicles are formed, allowing incorporation
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of these components into the yolk [36]. Following ovulation, the oviduct then produces

constituents of the other egg components; the vitelline membrane, albumen, shell mem-

branes, and shell which are deposited around the yolk to form the egg [33].

An egg consists of approximately 50-60% albumen, 30-35% yolk and 10-15% shell

[33][34], with the edible portion of the egg (yolk and albumen) consisting of 74.4% water,

12.3% protein and 11.6% lipids. Eggs also contain all vitamins except vitamin C, as well

as a wide range of minerals and trace elements [33].

1.4.2.1 Yolk

The yolk is found in the centre of the egg, surrounded by the vitelline membrane.

This is a very thin membrane that provides a barrier between the yolk and albumen

in order to prevent any exchange of material between these two egg components, and

also acts as a barrier against bacterial penetration [33]. On the surface of the yolk is a

small clear disc known as the blastodisc, or the germinal disc, which contains the female

chromosomes [33]. The yolk is held in the centre of the egg by two chalazae, which are

spiral filaments joining the opposite sides of the yolk to either end of the egg, in order to

keep the germinal disc in a stable position [33][37].

The yolk is made up of approximately 48% water, 32-35% lipids and 15-16% proteins,

with a very low percentage of carbohydrates [35]. All lipids that are present in the egg are

found in the yolk, with neutral lipids making up 65% of the total lipid content, phospho-

lipids 31%, and cholesterol 4% [33][35][37]. Most of the lipid content is made up of fatty

acids, with the major fatty acids consisting of both saturated and unsaturated fatty acids:

oleic acid (43.6%), palmitic acid (25.1%), linoleic acid (13.4%), stearic acid (8.6%), palmi-

toleic acid (3.6%), docosahexaenoic acid (1.8%) and arachidonic acid (1.7%) [35]. There

are four main groups of phospholipids found in the yolk: phosphatidylcholine (PC), phos-

phatidylethanolamine (PE), sphingomyelin and lysophosphatidylcholine (LPC), making

up approximately 84%, 12%, 2% and 2% of the total phospholipid content respectively,
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in addition to other minor components [35].

Proteins that are present in the yolk are mostly bound to lipids, to form low and high-

density lipoproteins [33]. Of the small percentage of carbohydrates found in the yolk,

most are bound to proteins or lipids to form glycoproteins and glycolipids respectively

[33]. Phosphorous is present in large amounts in the yolk, mainly incorporated into

phospholipids, and most iron that is present in an egg is located in the yolk. All fat-

soluble vitamins that are found in eggs are present in the yolk (due to the high lipid

content) as well as many water-soluble vitamins [33]. The colour of an egg yolk is due

to the presence of pigments called carotenoids, particularly xanthophylls as well as small

amounts of carotenes [33][37]. Carotenoids are not endogenous to hens, and so the total

carotenoid content of an egg comes from the diet of the bird and is dependent on the

absorption of carotenoids by the hen and the subsequent transfer into eggs [37].

1.4.2.2 Albumen

The primary role of the albumen is to surround and protect the yolk within the shell,

both from physical and bacterial trauma [37]. The albumen consists of two parts; thin

albumen and thick albumen. There is a small amount of thin albumen surrounding the

yolk, which itself is surrounded by the thick albumen, which reaches to either end of the

egg [33]. Surrounding this is the remaining thin albumen. The proportions of thin to

thick albumen change over an increasing egg storage time, and with an increased weight

of the egg [33].

The egg albumen consists mainly of water (84-89%, although this varies between thin

and thick albumen) [37], in addition to protein, which makes up around 90% of the dry

matter of the albumen, as well as minerals and vitamins [33]. Proteins that are present

in the albumen exist in the free form, as well as bound to lipids and carbohydrates to

form lipoproteins and glycoproteins [34]. It is the high content of a glycoprotein called

ovomucin in the thick albumen, which gives it a higher viscosity than the thin albumen
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[37]. Carbohydrates also make up a very small percentage of albumen, with half existing

in free form, mainly glucose [33]. All minerals that are essential for embryonic growth and

development are also found in the albumen [33], but it contains no fat-soluble vitamins

[37] and only water-soluble vitamins of the B group [33]. The albumen also contains an

antibacterial enzyme, lysozyme, which helps protect the yolk from any bacteria that may

penetrate through the shell [35].

1.4.2.3 Shell

The shell is the part of the egg that is formed last during egg development, and consists

of various layers [33]. Shell membranes (an inner and an outer membrane) made up of

proteins and glycoproteins are the first layers of the shell, and they surround the albumen,

holding it in place, and determine the shape of the egg before the shell itself is formed

[33]. The actual shell consists of solely inorganic minerals, including a large amount of

calcium carbonate [33][37][38], with a very small percentage of water, and low levels of

minerals and trace elements [33]. It is made up of three layers: the mammillary layer,

the palisade layer (which is the thickest), and the vertical crystal layer [33][37]. On the

surface of the shell is the cuticle, or cuticula, which is an organic layer in contrast to the

mineral layers of the actual shell, consisting mostly of proteins (mainly glycoproteins) as

well as small amounts of polysaccharides and lipids [38]. There are thousands of pores

penetrating through the eggshell, which allow for the transfer of water and various gases

between the internal and external environments of the egg [37][38]. The cuticle controls

this exchange of substances by plugging the entry to the pores, and thus acts as a barrier

against bacterial penetration [37][38]. Once an egg has been laid, the liquid components

begin to lose water by evaporation through the pores in the eggshell, resulting in the

formation of an air cell [39].

As lipids make up such a large component of egg yolk, it is important to have an

understanding of the basic biochemistry behind this class of compounds.
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1.5 Lipids

Lipids are a class of compounds that share chemical and physical properties due to

their structural similarities [40]. There are two main groups of lipids; those that consist

of fatty acid components, with polar head groups and long non-polar tails, and a group

of lipids known as isoprenoids, such as steroids, lipid vitamins, and terpenes, which all

have structures related to the molecule isoprene [40][41]. Figure 1.4 shows the structural

relationships of the main classes of lipids.

Lipids

Fatty acids Steroids Lipid 
vitamins Terpenes

Eicosanoids TriacylglycerolsWaxes Sphingolipids

Glycerophospholipids

Isoprenoids

Ceramides

Plasmalogens Phosphatidates Sphingomyelins Cerebrosides Gangliosides

OthersPhosphatidylcholines Phosphatidylethanolamines
Others

Phospholipids Glycosphingolipids

Figure 1.4: Diagram showing lipid classes. Adapted from Figure 1, Chapter 9, in Principles
of Biochemistry [41]

The simplest lipids are fatty acids, which are amphipathic molecules, consisting of a

hydrophilic carboxyl group and a hydrophobic hydrocarbon chain [40]. Saturated fatty

acids have a long hydrocarbon chain with only single bonds, and unsaturated fatty acids

have at least one (monounsaturated) or more (polyunsaturated) double bonds throughout

the hydrocarbon chain [40][41]. The oxidation of fatty acids is the main source of energy

in lipid catabolism [42].
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Most fatty acids do not exist in the free form, and are mainly present as components

of other, more complex lipids [40][41]. Triacylglycerols, or triglycerides, consist of three

fatty acids joined to a glycerol backbone by ester bonds. The main role of triacylglycerols

is to act as a store of fatty acids [40][41]. Lipase enzymes catalyse the hydrolysis of the

acyl groups, breaking the ester bonds between the fatty acids and the glycerol, in order

to release the fatty acids ready for oxidation [40]. Monoacylglycerols have just one fatty

acid attached to the glycerol, and diacylglycerols have two fatty acids attached to the

glycerol.

Glycerophospholipids have a similar structure to triacylglycerols, but one of the three

fatty acids attached to the alcohol groups of the glycerol is replaced with a phosphate

molecule through an ester linkage [40]. When only one fatty acid is attached to the glyc-

erol backbone of a phospholipid, the resulting molecule is a lysophospholipid. The most

simple glycerophospholipids are phosphatidates, which consist of two fatty acids attached

to glycerol-3-phosphate, with no other groups forming ester linkages to the phosphate

group [40][41]. These compounds are only present in small amounts, as intermediates in

the biosynthesis or degradation of more complex glycerophospholipids [41].

However, in most glycerophospholipids, the phosphate group is also joined via an ester

bond to other compounds, such as choline or ethanolamine, in order to produce phos-

phatidylcholines or phosphatidylethanolamines respectively [40][41]. There are various

di↵erent glycerophospholipids that exist, due to the many di↵erent fatty acids that can

join to the glycerol backbone. Phospholipase enzymes catalyse the hydrolysis of the acyl

groups, breaking the ester bonds between the fatty acids and the glycerol-3-phosphate

molecule, releasing the fatty acids [40][41][43]. There are also a group of phospholipids

known as plasmalogens, which are similar to glycerophospholipids, but which have a

hydrocarbon chain attached to the first carbon of the glycerol via a vinyl ether bond [41].

Sphingolipids are a group of lipids that are built upon a sphingosine backbone [40][41].

Ceramides, which have a fatty acid linked to the amino group of the sphingosine molecule
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by an amide bond [40][41], are the precursors to all sphingolipids and can be split into

three main groups: sphingomyelins, cerebrosides, and gangliosides [41]. Sphingomyelins

have a phosphocholine molecule (phosphate esterified to choline) attached to the C-1

of a ceramide [40][41], making them the only group of sphingolipids to also be classed

as phospholipids [41]. Cerebrosides consist of a monosaccharide linked to the C-1 of

a ceramide, whilst gangliosides have a polysaccharide chain attached to the C-1 of a

ceramide. Both of these groups of compounds are classed as glycosphingolipids [41].

The two remaining main groups of lipids containing fatty acids are waxes and eicosanoids.

Waxes are non-polar esters of long-chain fatty acids and long-chain alcohols, and eicosanoids

are the oxygenated derivatives of C20 polyunsaturated fatty acids [41].

1.6 Summary

Food fraud is an issue which is becoming increasingly prevalent, necessitating the

development of analytical techniques capable of detecting even subtle cases of fraud,

in order to reduce the occurrence and impact of fraudulent practices. Metabonomics,

the profiling of small compounds/metabolites in organic samples, can be employed as a

non-targeted approach to discover subtle di↵erences between authentic and fraudulent

products. Poultry eggs are particularly susceptible to food fraud, as the potential for

gaining an increased profit is greater than the likelihood of being caught. Egg yolk

contains a range of di↵erent lipids, particularly those consisting of fatty acid components.

Therefore, metabonomic investigations into the detection of fraud within poultry eggs are

likely to uncover di↵erences in lipid profile between egg yolk from authentic and fraudulent

eggs.
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2. Techniques and Instrumentation

2.1 Aims

To introduce the components of a metabonomic workflow.

To introduce and discuss the analytical techniques that were used throughout this

research.

To introduce and discuss the statistical analysis techniques that were implemented

in this research.

2.2 Metabonomics Workflow

Experimental
Design

Sample 
Collection

Sample Preparation/ 
Metabolite Extraction

Chemical Analysis

Data Pre-processing 
and Analysis

Compound 
Identification

Targeted 
Studies

Biochemical 
Interpretation

Figure 2.1: Diagram showing the typical workflow of a non-targeted metabonomic study
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As in any kind of scientific study, the workflow that is undertaken in non-targeted

metabonomic studies consists of several stages, from experimental design and sample

collection, to compound identification and follow-up targeted studies. For the study to

be successful, each stage must be carefully planned to ensure that high quality results

can be obtained, and that all interpretations are meaningful. Figure 2.1 shows a diagram

of the workflow in a typical non-targeted metabonomic study.

2.2.1 Experimental Design

The experimental design is possibly the most vital aspect of a study to get right. If the

initial design and set-up of an experiment is flawed, then any results will be meaningless

and any interpretations can be disregarded. It is important to identify which are the

independent and dependent variables in the study, and then ensure that other potential

variables are controlled, in order to be confident that any observed results are due to

the factor that is under investigation, rather than an uncontrolled variable [1]. Another

important factor to consider is the number of biological replicates required for each sample

set [2]. A minimum of three biological replicates has been proposed, with five stated as

being preferable [3]. The experimental design should also include the addition of quality

control samples during the analysis [2], to act as a standard in order to monitor drift

throughout the analysis and ensure that results are reliable [4].

Quality control (QC) samples in metabonomic studies are made up of equal aliquots

of each individual sample extract, and are analysed at the start and end of a sequence

of analyses, as well as periodically throughout the analytical sequence [4][5]. The results

of the QC sample analyses can then be compared to observe any large changes that may

have occurred throughout the analytical sequence, in order to give an indication of the

quality and reliability of the resulting data [5]. The precision of the results of the QC

samples can then be measured and compared against reference criteria to ensure that the

data is reliable [4][5].
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2.2.2 Sample Collection

Sample collection, and the treatment of samples prior to metabolite extraction, are

also important aspects of the metabonomic workflow that can have a great impact on the

results of a study. Samples should all be handled in the same manner, and exposed to

the same materials, e.g. containers, and temperatures, in order to prevent any external

factors from influencing di↵erences in metabolite profile between the samples [1]. Samples

should all ideally be collected at the same time, so that any changes to the metabolite

profile that occur prior to extraction a↵ect all samples equally. When this is not possible,

and if metabolite extraction is not to be carried out immediately after sample collection,

storage of samples at -80 C or in liquid nitrogen, as soon as possible, would be suitable

to achieve minimal metabolite degradation [2].

2.2.3 Sample Preparation and Metabolite Extraction

Following sample collection the preparation of samples and the extraction of metabo-

lites takes place. The main purpose of metabolite extraction is to release the metabolites

that are present in the samples, whilst also removing any interferences, e.g. proteins,

and making the extract compatible with the proposed analytical technique [2][6]. During

the extraction procedure, the metabolites can be concentrated if necessary. In targeted

studies, the metabolite extraction procedure can be adapted to make it more selective to

the particular compound, or class of compounds, that is being investigated. However, in

non-targeted metabonomic studies the aim is to gain information about as many small

molecules present in the samples as possible, therefore the extraction procedure is aimed

at removing large molecules such as proteins, whilst releasing and retaining as many small

molecules as possible [6].

The type of sample preparation or metabolite extraction that is carried out depends on

the nature of the study, the sample type, and on the type of analysis that is to be carried
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out [2][7]. For example, infra-red spectroscopy may not require sample preparation or

metabolite extraction, as it could be carried out directly on the samples themselves.

One of the most common sample preparation techniques in non-targeted metabonomic

studies is protein precipitation, via the addition of an organic solvent to the sample [6][7].

Following centrifugation of the sample-solvent mix, the supernatant contains many low

molecular weight compounds, and no macromolecules such as proteins, which are found

in the resulting pellet [7][8]. The supernatant is then retained as the metabolite extract.

Deproteinisation can also be achieved through denaturing the proteins by applying heat

or with the addition of an acid to lower the pH, or through ultrafiltration to filter out

the protein molecules [9][10].

A liquid extraction is commonly carried out on both solid samples; solid-liquid ex-

traction (SLE), and liquid samples; liquid-liquid extraction (LLE) [2][6]. Prior to any

extraction, solid samples must be broken down and converted into a homogeneous sub-

stance that is suitable for a liquid extraction; e.g. by using a mortar and pestle [6].

Metabolites in liquid samples can also be extracted using solid phase extraction (SPE),

or solid phase microextraction (SPME) [2][6]. However, both SPE and SPME are used

for more selective metabolite extractions, with SPME used for targeting more volatile

metabolites, and are therefore more widely used as metabolite extraction techniques in

targeted metabonomic studies, rather than non-targeted studies [6].

In both LLE and SLE, a solvent or solvent mix is added to the samples in order to

extract the metabolites from the sample medium into the solvent [2][6]. The polarity of

the solvent used in the extraction determines the classes of compounds that are extracted.

The extraction solvent also has the secondary purpose of helping to remove proteins

through protein precipitation [6]. Following centrifugation of the sample-solvent mix the

supernatant, which is protein-free, is removed and retained as a metabolite extract [7][8].

If a relatively polar solvent or solvent mix, such as methanol or methanol/water, is used

as the initial solvent, a further extraction can then be carried out with the addition of
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a more non-polar solvent or solvent mix, such as dichloromethane/methanol, in order to

extract any remaining compounds that are not extracted into the first solvent [8]. These

sequential extractions can take place in order to obtain extracts containing metabolites

of a range of di↵erent polarities; the initial addition of a more aqueous solvent or solvent

mix to the sample targeting the more polar molecules, followed by an extraction with a

more organic solvent, or solvent mix, targeting the remaining less polar molecules [8].

2.2.4 Chemical Analysis

Once sample preparation and metabolite extraction have taken place, the sample

extracts undergo chemical analysis. There are various di↵erent analytical techniques

that have been employed in metabonomic studies, ranging from spectroscopic methods,

such as Infra-Red (IR) and Nuclear Magnetic Resonance (NMR) spectroscopy, to Mass

Spectrometry (MS) and chromatographic techniques. The ideal analytical technique in

metabonomic studies would involve very little or no sample preparation, be rapid and

high throughput, and have a high sensitivity that is equal to all compound classes. It

would produce reproducible, quantitative results with rich molecular information to en-

able metabolite identification. It would also be inexpensive, and the analysis would be

non-destructive to allow the sample to undergo further investigation [11].

Vibrational spectroscopy techniques, such as IR and Raman spectroscopy, are less

commonly used in metabonomic studies compared to other analytical techniques [1].

This is due not only to their low sensitivity [12], but also due to the lack of molecular

information provided [13], resulting in no identification of metabolites. However, these

techniques do provide rapid, high throughput spectral metabolic fingerprints of biological

samples, with very little to no sample preparation required [12]. They are also non-

destructive, meaning the samples can then undergo further analysis [12].

The two main analytical techniques that are used in metabonomic studies are NMR

and MS, with and without prior chromatographic separation [1][13][14][15]. NMR is
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a non-destructive spectroscopic technique that provides highly reproducible, quantita-

tive results, that are rich in molecular information to enable metabolite identification

[12][16][17]. It is non-selective and can detect multiple compound classes, without any

specific pre-selection of analytical conditions or parameters [11][16]. This technique re-

quires very little to no sample preparation [12][18] and the analysis itself is relatively

fast, resulting in NMR being a high throughput analytical technique [11][17]. However,

NMR has a lower sensitivity than MS, and is therefore only capable of detecting a limited

number of metabolites during the analysis, compared to the high numbers of metabolites

detected by MS [16][17].

Mass spectrometry can be employed in metabonomic studies either on its own, through

direct infusion of the sample into the mass spectrometer, or preceded by a chromato-

graphic separation technique [15][18]. Direct infusion (DI) MS is a rapid, high through-

put technique [15][18][19] with reproducible results that provide information to enable

the identification of metabolites [12]. However, this direct infusion of the sample, with no

prior separation of the compounds, can result in ion suppression or enhancement, a↵ecting

the precision and accuracy of the analysis [15][18][19]. Therefore, although the sensitiv-

ity of MS analysis is much greater than NMR, and the number of metabolites detected

during the analysis is much higher [15], this technique may not be equally sensitive to

all compounds, due to the potential of ion suppression and enhancement [12]. Although

DIMS is a high throughput technique [12][15][18], it requires more sample preparation

than NMR, resulting in a greater total analysis time [11][17]. It is also a destructive tech-

nique, therefore the samples cannot be retained for further analysis [11][15][17]. Mass

spectrometry can be used for quantification, however appropriate standards are needed,

making quantification less simple and straightforward than in NMR [17]. More prior

knowledge of the samples is required in MS compared to NMR in order to optimise the

parameters for the analysis [11], and the cost of running an experiment is higher when

using MS [11][17].
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The two most common separation techniques that precede MS analysis are Gas Chro-

matography (GC) and Liquid Chromatography (LC), or High Performance Liquid Chro-

matography (HPLC) [1][16]. The use of chromatography to separate analytes prior to

MS analysis can help to reduce ion suppression and enhancement [15], as there are fewer

analytes entering the ionisation chamber at any one time, lowering the chances of certain

molecules inhibiting, or enhancing, the ionisation of others. However, it does increase the

analysis time due to the additional time taken to separate the analytes [11][15]. Com-

bining chromatography with MS analysis also a↵ects the selectivity of the analysis for

di↵erent metabolite classes; GC is only suitable for the analysis of volatile, thermally

stable compounds of a low molecular weight [20][12], and the use of columns with dif-

ferent stationary phases a↵ects which types of compounds will be separated, eluted, and

detected with LC [12].

The identification of metabolites is easier with GC-MS compared to DIMS, as there are

extensive spectral libraries and databases that can be searched to find a match to spectra

of particular compounds [12][18][19]. However, sample preparation is more involved in

GC analysis than LC or DIMS, as the samples must be derivatised in order to ensure that

the compounds are volatile [1][12][15]. Both GC and LC analysis require a greater prior

knowledge of the compounds that may be present in samples than DIMS, as parameters

such as the column stationary phase, and the mobile phase, should be optimised in order

to analyse as many compounds from as many compound classes in the sample extracts

as possible [16]. The introduction of Ultra High Performance Liquid Chromatography

(UHPLC) has improved throughput, peak resolution, sensitivity, and reproducibility in

LC-MS, therefore its application in metabonomic studies is on the rise [15].

The use of GC and LC as independent analytical techniques is uncommon in metabo-

nomic studies as they provide no molecular information, and so no information regarding

the identification of the metabolites can be determined [11][16]. Other separation tech-

niques, Capillary Electrophoresis (CE) and Supercritical Fluid Chromatography (SFC)
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have also been used in combination with MS for the analysis of metabolite extracts in

metabonomic studies, however they are not currently as widely used as GC or LC, which

are well established, robust techniques in the metabonomic field [20].

2.2.5 Data Pre-processing and Analysis

The chemical analysis of sample extracts results in the production of a large amount

of raw data. This data must then be pre-processed, in order to convert it into a format

that is suitable for data analysis [21][22]. The required pre-processing is di↵erent for

data resulting from the di↵erent types of analysis, but typically consists of: peak align-

ment, baseline correction, normalisation, signal filtering and noise removal, and feature

detection [21][22]. Data analysis can then be carried out on the processed data.

In metabonomic studies, both univariate and multivariate statistical analyses are often

used to analyse the data [23][24]. Multivariate analysis (MVA) is often carried out on large

data sets in order to analyse all variables simultaneously and observe any patterns that

are present in the data [18][24]. In metabonomic studies, each variable is an individual

compound. There are two main categories of multivariate statistical analyses: supervised

and unsupervised, and the two most popular of these analyses are Partial Least Squares

Discriminant Analysis (PLS-DA) and Principal Component Analysis (PCA) respectively

[22][25]. The purpose of unsupervised MVA is to explore and discover patterns and trends

within the data, without the labelling of sample sets prior to analysis, whilst supervised

MVA is used to make predictions about samples from unknown sample sets, based on the

variables in samples from known sample sets [22].

Univariate analysis, where only one variable is analysed at a time, can then be carried

out. This involves comparing each individual variable, or compound, between di↵erent

sample sets, using tests such as t-tests and ANOVA, to see whether or not there is a sta-

tistically significant di↵erence between the sample sets [18][23]. This helps to determine

which compounds are of significant interest in discriminating between sample sets, and
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therefore show potential as biomarkers of the particular factor that is under investigation.

2.2.6 Compound Identification, Targeted Studies, and

Biochemical Interpretation

Following the use of multivariate and univariate analyses to explore the data and search

for variables of statistical significance, the compounds of interest must then be identified,

before targeted studies are carried out focussing on just these compounds [2][18]. The

initial identification of these compounds is based on the molecular information obtained

from the chemical analysis of the samples, therefore metabolite identification is easier

following some analytical techniques than others. This identification is confirmed through

the use of an analytical standard [2]. Targeted studies can then be carried out, in order

to confirm the statistical significance of the compounds, and obtain more quantitative

information [18]. The final stage of a metabonomic study is the interpretation of the

results, regarding the metabolic pathways involved in the biosynthesis and degradation

of the compounds of interest [2][25].

Further studies can then be carried out in order to validate the use of the compounds

as biomarkers of the particular factor that is being investigated [26].

2.3 Chromatography

Chromatography is a technique which facilitates the separation of compounds in a

sample due to their di↵erent a�nities for two phases; a stationary phase, which is typi-

cally immobilised within a column, and a mobile phase which travels through the column

[27]. The di↵erent a�nities of the compounds for the stationary and mobile phase causes

the di↵erential migration of the components through the column, resulting in the separa-

tion of the compounds within the sample [27]. Compounds with a stronger a�nity for the
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stationary phase take longer to pass through the column than those with a stronger a�n-

ity for the mobile phase, which pass through the column more quickly [28]. There are two

main types of chromatography; Gas Chromatography (GC) and Liquid Chromatography

(LC) or High Performance Liquid Chromatography (HPLC), as well as others including

Supercritical Fluid Chromatography (SFC) [27][29][30].

2.3.1 High Performance Liquid Chromatography

A HPLC instrument consists of five major components: a solvent reservoir, a pump,

an injector, a column, a detector, and a data acquisition system (usually a computer)

[27][29][30], as shown in Figure 2.2.

A

B
C D

EF

A = solvent reservoir

D = column

B = pump

E = detector

C = injector

F = data acquisition system

Figure 2.2: Diagram showing a simplified HPLC system. Adapted from Higson and Meyer
[28][30].

The solvent reservoir stores the mobile phase solvents, and the pump forces these

solvents out of the reservoir, through a mixing chamber, along the HPLC system and

through the column, which is packed with a solid stationary phase [27]. The sample is

introduced through the injector, which consists of a high pressure valve and a sample

loop. The sample is injected onto the sample loop whilst the valve is in the load position,
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and the mobile phase flows straight through the column, bypassing the sample loop. The

valve then rotates, allowing the mobile phase to flow through the sample loop, carrying

the sample out and through the column [27][29][30]. The sample components are then

separated on the column, before eluting and reaching the detector at di↵erent times.

When an analyte reaches the detector, of which there are several di↵erent types, the data

acquisition system registers this and a peak appears on the resulting chromatogram [27].

In HPLC the mobile phase consists of a liquid solvent, or combination of liquid solvents,

and the column is packed with a solid stationary phase [27][28]. If the mobile phase

remains at a fixed composition of solvent, it is known as isocratic elution, and if the

composition of solvents in the mobile phase changes throughout the analysis, it is referred

to as an elution gradient [27][29][30]. The use of an elution gradient can help to elute

compounds, or speed up the elution of compounds, that would otherwise remain on

the column or take a long time to pass through [30]. The stationary phase is typically

composed of spherical particles of silica gel, which ensure a homogeneous packing of the

column [27][29]. This results in a polar stationary phase, suitable for the separation of

more polar compounds. Chromatographic separation using this polar stationary phase

is referred to as Normal Phase (NP) HPLC [27][29]. In Reversed-Phase (RP) HPLC the

opposite is true; non-polar groups, typically C4, C8, and C18 hydrocarbon chains, are

bonded onto the silica resulting in a non-polar stationary phase, which is suitable for the

separation of more non-polar compounds [27][29][30].

As the stationary phase in RP-HPLC is non-polar, the more non-polar compounds

in a sample have a stronger a�nity for the stationary phase than the polar compounds,

resulting in a longer retention time of the non-polar compounds compared to the polar

compounds [27][30]. Therefore in Figure 2.3, for RP-HPLC, the analytes that elute first,

resulting in the earlier peaks in the chromatogram, are the more polar compounds, and the

analytes that elute later, resulting in the subsequent peaks in the chromatogram, are the

more non-polar analytes. In an elution gradient for RP-HPLC, the initial mobile phase
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Figure 2.3: Diagram showing the separation of compounds in a HPLC column. Based on a
diagram from Meyer [30].

composition is highly polar, consisting mainly of the polar solvent, most commonly water,

which elutes the polar analytes that do not have a strong a�nity for the stationary phase

[27][30]. In order to elute the more non-polar analytes, which have a stronger a�nity

for the stationary phase, the proportion of the organic, non-polar solvent (commonly

methanol or acetonitrile) increases throughout the analysis, increasing the eluotropic

strength of the mobile phase [27][30].

An alternative to NP-HPLC for the separation of polar analytes is Hydrophilic Inter-

action Liquid Chromatography (HILIC). The stationary phase can be either bare silica,

as in most NP stationary phases, or have polar groups bonded onto the silica [31][32].

The more polar analytes in a sample are retained on the column for longer than the non-

polar analytes, and so the elution order of analytes is opposite to that observed with RP

[32]. In Figure 2.3 for HILIC separations the analytes eluting first, resulting in the ear-

lier peaks in the chromatogram, are the more non-polar analytes whilst those that elute

later are the polar analytes. The mobile phases used in HILIC are similar to RP-HPLC,

except the eluotropic strength of the mobile phase increases with a higher proportion of

aqueous solvent (water). Therefore, an elution gradient in HILIC would start with a high

proportion of organic solvent in the mobile phase, and increase the proportion of aqueous

solvent throughout the analysis [31][32].

The aim of HPLC analysis is to achieve the greatest separation of the compounds
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within a sample in the minimum amount of time [30]. Once a column with an appropriate

stationary phase, and a suitable mobile phase have been chosen, the chromatographic

separation can be optimised by developing an elution gradient which results in a constant

elution of separated compounds over a short amount of time. The flow rate of the mobile

phase, and temperature of the column, may also be optimised to achieve better, more

e�cient, separation [30].

HPLC is often coupled to another technique, such as Mass Spectrometry (MS).

2.4 Mass Spectrometry

Mass Spectrometry (MS) is a technique that is used to provide information about

compounds in a sample, following their ionisation. The analytes are introduced into the

ionisation source, where they are either positively or negatively ionised before being di-

rected towards the mass analyser. The analyte ions then pass through the mass analyser,

which separates the ions based on their mass to charge ratios (m/z ), before reaching the

detector. Once the ions have made contact with the detector, a data acquisition system,

typically a computer, records the signals generated by the detector, and produces a mass

spectrum, showing a plot of the relative abundances of ions of di↵erent m/z [33][34].

2.4.1 Ionisation

There are several di↵erent ionisation methods that can be employed in MS analysis,

and the method of choice depends on the nature of the analytes and the phase state of the

sample [27]. When LC is used to separate compounds prior to MS analysis, the sample

is in the liquid phase, and therefore Atmospheric Pressure Ionisation (API) techniques,

in an ionisation chamber outside of the vacuum of the MS instrument, are required to

ionise the analytes [33][35][36]. One of the common types of API that is used in MS is

ElectroSpray Ionisation (ESI).
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2.4.1.1 ElectroSpray Ionisation

In ESI, analytes in a liquid sample are subjected to a high voltage as they pass through

a narrow steel capillary, producing a spray of charged droplets of the same polarity as

that of the applied voltage as they exit the capillary [33][37][38][39]. When the ionised

analytes in solution reach the end of the capillary, the analyte ions of the chosen polarity

accumulate at the surface of the liquid solution at the tip of the capillary, producing a

Taylor cone [33][37][40]. The surface tension of the Taylor cone is too low to keep the

cone stable, and the ionised analyte solution is dispersed from the tip of the Taylor cone

to form charged droplets of analyte solution [33][37][40][41], as seen in Figure 2.4 - A. The

liquid solvent of the charged droplets of analyte ions evaporates, aided by a heated drying

gas, decreasing the size of the droplets, and increasing their charge density [34][37][40][41]

(Figure 2.4 - B). There are then two di↵erent potential modes of action resulting in the

production of free, gaseous analyte ions: C1 and D1 or C2 and D2 in Figure 2.4. One

potential mode of action is further desolvation of the droplet solvent, resulting in the

distortion of the droplets, due to charge repulsion, to form a Taylor cone (C1), which

then releases analyte ions [37] (D1). Another potential mode of action is an increase in

the charge density of the droplets, due to the desolvation of the droplet solvent, resulting

in the droplets disintegrating into smaller droplets when the charge repulsion between

analyte ions exceeds the surface tension of the droplets [37][40] (C2). This is known as

a Coulomb explosion or fission. This then continues, and the droplets disintegrate into

smaller and smaller droplets until the free gaseous analyte ions are formed [37][40] (D2).

ESI is a soft ionisation technique that produces little fragmentation [37][41]. Ions

are typically formed by protonation or deprotonation to form [M+H]+ or [M-H]- ions

respectively, although adduct formation and multiply charged ions are common. Ions

can also be formed by the attachment of cations or anions to the analytes, to produce

other positively or negatively charged species [37]. Identification can be di�cult due to

the lack of fragmentation patterns and molecular ion (M+) in the resulting mass spectrum.
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Figure 2.4: Diagram showing ESI modes of action. Adapted from Ho, Greaves, and Awad
[34][37][38].

Following ionisation, the gaseous analyte ions are transferred into the mass analyser

by passing through several ion optics, which focus the ions into a beam with a stable

trajectory [37][40].

2.4.2 Mass Analysers

Mass analysers separate ions in the mass spectrometer based on their mass-to-charge

ratios (m/z ). They can be divided into two broad categories; scanning mass analysers

which transmit ions of di↵erent m/z successively through time, and mass analysers which

transmit all ions simultaneously [33].

2.4.2.1 Quadrupole Mass Analysers

A single quadrupole mass analyser is one of the most common scanning mass analy-

sers. It consists of four parallel conductive rods: one pair of rods have a positive direct

current (DC) potential applied to them, with a superimposed alternating radio frequency

(RF) potential, and the other pair have a negative DC potential applied, again with

a superimposed alternating RF potential [34][42]. The resulting electric field creates a

stable trajectory for ions within a certain m/z range, allowing them to pass through the
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Figure 2.5: Diagram showing a representation of a quadrupole mass analyser. Adapted from
University of Bristol [43].

quadrupole and reach the detector. Analyte ions not within this m/z range will have

an unstable trajectory and will collide with one of the rods, discharge and become neu-

tralised, failing to reach the detector [34][42]. By progressively changing the DC and RF

voltages that are applied to these four rods, all of the ions of di↵erent m/z, within the

total desired mass range, can be transmitted through the quadrupole over time, via a

stable trajectory, to reach the detector. This results in ions of di↵erent m/z reaching

the detector at di↵erent times [37][42]. Figure 2.5 shows a diagram representation of a

quadrupole mass analyser.

2.4.2.2 Time-of-Flight Mass Analysers

A Time-of-Flight (ToF) mass analyser transmits all ions simultaneously, and sepa-

rates ions of di↵erent m/z based on the time it takes for them to travel the length of a

field-free drift region of the analyser, to reach the detector [33][42]. An ion beam that

has been focussed by the ion optics enters the ion modulator region of the ToF anal-

yser, and the ions are then pushed into an ion acceleration region, where they acquire

a greater energy and are accelerated into the field-free region, known as the flight tube,

where the separation of the ions occurs [33][44]. All ions acquire the same kinetic energy

in the acceleration region, and therefore the velocity of the ions as they pass through

the flight tube is dependent upon their mass [33][37]. Ions with the same charge but
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Figure 2.6: Diagram showing a representation of a ToF mass analyser. Adapted from
Rubinson et al. and Chernushevich et al. [29][44].

di↵erent masses, and therefore di↵erent m/z, will travel at di↵erent velocities and reach

the detector at di↵erent times; ions of a lower m/z will have a greater velocity and will

therefore reach the detector first [37][42]. The m/z of the ions reaching the detector are

determined by the length of time it takes for them to travel the length of the flight tube

[33]. Figure 2.6 shows a simple diagram representation of a ToF mass analyser.

The ToF mass analyser in Figure 2.6 is a linear ToF, where ions travel linearly through

the flight tube to reach the detector. However, linear ToF mass analysers can su↵er

from poor mass resolution due to a short path length of ions, and small kinetic energy

di↵erences between ions of the same m/z [33][37]. These small di↵erences in kinetic

energy cause ions of the same m/z to travel at slightly di↵erent velocities through the

flight tube, reaching the detector at slightly di↵erent times, resulting in a loss of resolution

between ions of di↵erent m/z [33][37]. Reflectrons, or ion mirrors, are used to improve

the mass resolution of ToF mass analysers by increasing the path length, and correcting

the kinetic energy dispersion between ions. The reflectron is located at the opposite end

of the flight tube to where the ions enter, in the same position as the detector in a linear

ToF mass analyser, and has a voltage applied of the same polarity as the ions, in order
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Figure 2.7: Diagram showing a representation of a ToF mass analyser with a reflectron. The
dashed line shows the flight path of ions with a slightly higher kinetic energy
(KE). Adapted from Rubinson et al. and Chernushevich et al. [29][44].

to reflect them back down the flight tube towards the detector, which is located at the

same end of the flight tube that the ions enter from [33][37]. Figure 2.7 shows a diagram

representation of a ToF mass analyser with a reflectron.

The ions travel the length of the flight tube towards the reflectron, becoming separated

based on their di↵erent velocities due to their di↵erent m/z, as described previously

[33][44]. Ions of the same m/z that have acquired slightly di↵erent kinetic energies, and

therefore travel at di↵erent velocities, reach the reflectron at slightly di↵erent times. The

ions with a higher velocity reach the reflectron first; however, they penetrate further into

the reflectron than the ions travelling at a lower velocity, before being reflected back along

the flight tube, and therefore experience a longer path length before reaching the detector.

This results in the ions with the same m/z, but slightly di↵erent kinetic energies, reaching

the detector at the same time, correcting the kinetic energy dispersion and improving the

mass resolution of the ToF mass analyser [29][33][37].
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2.4.2.3 Hybrid Mass Analysers

Some mass spectrometers combine multiple mass analysers, such as a triple quadrupole

which consists of three quadrupoles in tandem, or multiple types of mass analyser such

as a quadrupole-time-of-flight (Q-ToF), which consists of two quadrupoles followed by a

ToF mass analyser. Those that combine multiple types of mass analyser are known as

hybrid instruments. Better performance can be achieved from hybrid instruments as they

combine the strengths of the two mass analysers, whilst avoiding their weaknesses [33].

2.4.2.3.1 Quadrupole-Time-of-Flight Mass Analysers

In a Q-ToF mass spectrometer there are two quadrupoles situated in tandem, Q1 and

q2, followed by a ToF mass analyser [33][42] as shown in Figure 2.8.

Ion 
modulator

Ion optics

Beam of ions

Accelerating 
column Detector

Flight tube

Reflectron

Q1 q2

Ion optics

Figure 2.8: Diagram showing a representation of a Q-ToF mass spectrometer. Based on
diagrams from Rubinson et al., Ho↵man and Stroobant, and Chernushevich et al.
[29][33][44].
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In MS mode, the two quadrupoles operate in RF-only mode and act simply as ion

guides, transmitting the ions to the ToF mass analyser [33]. However, in MS/MS mode

Q1 is operated in the mass filter mode and selects only ions of certain m/z to be trans-

mitted through to q2, which acts as a collision cell. The ions that enter q2 then undergo

fragmentation due to collisions with neutral gas molecules, before passing through ion

optics which focus the ions into a beam [33][44]. The ion beam then enters the ToF mass

analyser, which acts as described previously in Section 2.4.2.2.

2.4.2.4 Tandem Mass Spectrometry

Mass spectrometers with multiple mass analysers allow for a type of analysis known

as tandem mass spectrometry, which involves two stages of mass analysis [33]. There

are four main scan modes of tandem mass spectrometry: product ion scan, precursor ion

scan, neutral loss scan, and selected reaction monitoring [33][34], see Figure 2.9.

In product ion scan mode, the first mass analyser selects ions of a certain m/z, and

allows them to pass through into a collision cell where they are fragmented before reaching

the final mass analyser, which analyses the masses of all of the fragment ions [33][34].

Precursor ion scans are used to determine the precursor ions that produce a certain

product ion following fragmentation. The first mass analyser scans a range of m/z greater

than the m/z of the product fragment ion, and transmits all ions with an m/z above this

value through to a collision cell where they are fragmented. The final mass analyser

then selects ions with the m/z of the product fragment ion to be transmitted to the

detector [33]. In a neutral loss scan, both mass analysers scan a mass range, with the

final mass analyser set to scan a lower mass range at an o↵set equal to the mass of a

neutral fragment, f, in order to detect the fragmentations that lead to the loss of the

neutral fragment [33][34]. In selected reaction monitoring, both mass analysers are set to

select ions of certain m/z, however the ions selected by the first mass analyser are only

detected if they produce ions of the specific mass selected by the final mass analyser [33].
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Figure 2.9: Diagram showing the di↵erent scan modes for tandem mass spectrometers.
Adapted from Ho↵mann and Stroobant [33].
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2.5 Statistical Analysis

There are several stages involved in the statistical analysis workflow that is applied to

data generated from metabonomic studies; ranging from data pre-processing, to multi-

variate and univariate analysis [45][46].

2.5.1 Data Pre-processing

Data pre-processing is the transformation of the raw data resulting from chemical

analysis, into a format that is suitable for data analysis [46]. There are many di↵erent

software programs that can be used for the pre-processing of LC-MS data, ranging from

commercial products that are compatible only with certain data file types produced by

instruments from the vendor, to freely available programs that are compatible with data

files produced by instruments from a variety of di↵erent vendors, such as XCMS Online

[4][45].

2.5.1.1 XCMS Online

The web-based platform XCMS Online is capable of carrying out the whole metabo-

nomic statistical workflow, from data pre-processing to data analysis and metabolite iden-

tification [47]. However, following the data pre-processing stage, it produces a feature

table which contains the peak areas of all compounds in each sample, with compounds

represented by their m/z and retention time. Therefore, XCMS Online can also be used

only for data pre-processing, and the feature table can be opened in Microsoft Excel,

ready for data analysis.

The data pre-processing carried out by XCMS Online broadly involves peak detec-

tion, peak matching and retention time correction, and chromatogram alignment [48][49].

XCMS Online has default parameters that have been optimised to pre-process data re-
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sulting from analysis using various di↵erent instruments [47]. There is the option to

customise these parameters; for example the signal-to-noise threshold can be changed de-

pending on the noise level in the mass spectra, and the mass tolerance can be adjusted for

the mass identification. There are also various methods that XCMS can use for feature

detection, and retention time correction and alignment, which can be changed from the

default settings [47].

2.5.2 Multivariate Analysis

Multivariate analysis (MVA) involves the analysis of all variables in the data simul-

taneously, and can be either supervised or unsupervised [22][23]. An example of an

unsupervised MVA technique is Principal Component Analysis.

2.5.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a data reduction technique, which is used

to reduce the size of a large data set containing many correlated variables, into a much

smaller data set containing just a few, uncorrelated variables known as principal compo-

nents [22][25]. There is an eigenvalue associated with each principal component, which

gives the amount of variance within the data set that is explained by that principal com-

ponent. The first principal component accounts for the most variation within a data set,

the second component accounts for the next highest amount of variation etc. [50]. The

values of each of these new variables, or principal components, for each of the samples

within the data set are known as scores [51]. The scores of two principal components, for

all of the samples, can be plotted against each other to produce a scores plot. This plot

is then used to discover groupings between the samples and sample sets [22].

There are also values known as loadings that exist between all variables in the data

set and all principal components following PCA. Each loading value describes how much
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the variable contributes to the variation accounted for by the principal component [51].

When the variables included in the PCA have considerably di↵erent variances, the

variables with the larger variances can dominate the first principal component with very

large loading values. When this is the case the data can be standardised prior to PCA,

resulting in all variables having an equal weighting, regardless of their variances [50][52].

2.5.3 Univariate Analysis

Whilst multivariate analysis is the simultaneous analysis of all variables within a data

set, univariate analysis is the analysis of just one variable within a data set at a time.

Univariate analysis uses significance tests to compare the means of the measurements of

one particular variable at a time, between di↵erent sample sets [23]. When carrying out

univariate analysis, some tests assume certain conditions, such as normality of the data

and homogeneity of variance [50].

2.5.3.1 Normal Distribution

When the variance associated with the measurement of a variable in a set of data is

due to random processes, rather than any additional factors which may influence and bias

the data, the probability distribution of the measurements of the variable follow what

is known as the normal distribution. When plotted on a graph, the normal distribution

shows a characteristic symmetrical bell-shaped curve, where the measurements around

the mean have a high probability of occurrence, and those further away from the mean

have a lower probability of occurrence [53]. Normality of the data refers to when the

data follows this normal distribution, and can be assumed when only one independent

variable is changed between sample sets, and the remaining independent variables are

well controlled, and when it can be certain that no bias has a↵ected the samples during

chemical analysis.
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2.5.3.2 Homogeneity of Variance

Homogeneity of variance simply means that the variances of all sample sets in a data

set are equal [54]. When the sample sets are of di↵erent sizes, the variance is unequal,

therefore appropriate significance tests that account for this unequal variance must be

used. However, when the sample sets are of equal size it is sensible to investigate whether

the variance between the sample sets is equal or not, by carrying out certain tests such

as the F -test or the Levene’s test.

The F -test compares the variances between two sample sets to determine whether they

are equal or not. The F value is a ratio of the two variances: F =
s2max

s2min

, where s2max is the

highest variance and s2min is the lowest variance [54][55]. When computer software is used

to carry out an F -test a p-value is reported, which represents the probability of observing

an F value equal to or greater than the observed F value if the null hypothesis, that the

variances are equal, was true [54]. Values of P<0.05 (i.e. a 5% chance of observing an

F value equal to or greater than the observed F value if the null hypothesis was true)

are typically seen as significant, P<0.01 as highly significant, and P<0.001 as very highly

significant.

A Levene’s test is used to compare the variances between multiple sample sets to

determine whether the assumption of equal variances is true [54]. The absolute deviations

of values within each sample set, from the mean or median of the sample set, are used

as data values in a one-way ANOVA (see Section 2.5.3.4). This one-way ANOVA then

determines whether the variance between the means of the absolute deviations of all of the

sample sets is statistically significant, and hence whether there is a significant di↵erence

in variance between the sample sets [54].
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2.5.3.3 Student’s t-test

A two-sample student’s t-test can be used to compare the means of two sample sets of

normally distributed data, and determine whether the null hypothesis, that there is no

significant di↵erence between the sample sets, is true [54]. If the alternative hypothesis

is that the mean of one sample set is significantly di↵erent in a particular direction (e.g.

greater) than the mean of the other sample set, then a one-tailed t-test is carried out. If

the alternative hypothesis is that the mean of one sample set is significantly di↵erent to

that of the other sample set, irrespective of direction, then a two-tailed t-test is carried

out [54].

The t-statistic for a two-tailed t-test is: t =
|X̄1 � X̄2|

SE
where X̄1 and X̄2 are the

means of sample sets 1 and 2 respectively, and SE is the standard error, derived from the

pooled standard deviation of the two sample sets [53][54]. The two-tailed t-test can be

carried out for data with both equal and unequal variances, however the calculation of the

standard error is di↵erent when the variances are unequal. When computer software is

used to carry out a two-tailed t-test a p-value is reported, which represents the probability

of observing a t value equal to the calculated t value, or further away from zero than the

calculated t value, if the null hypothesis was true [54].

2.5.3.4 ANOVA/Welch test

When the homogeneity of variances is found to be true, ANOVA can be used to

compare the means between several sample sets to test for any significant di↵erence

between them [50][54]. However, when the variances are found to be unequal between

sample sets, the Welch test can be used instead [56].

When just a single factor is changed between the sample sets that are being compared,

a one-way ANOVA is carried out [54][57]. ANOVA tests whether the variation between

the mean values of several sample sets is likely to be caused by random chance (the null
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hypothesis), or whether the changing of the controlled factor between the sample sets is

more likely to be responsible for the variation. It does this by separating and estimating

the variation due to random chance (Mw - within group variation) and the variation

caused by the controlled factor (Mb - between group variation), where M is the mean

square value [50][54]. The F -statistic is used in ANOVA to measure the ratio of between

group variation (variation between the means of di↵erent sample sets) to within group

variation (variation between samples within a sample set): F =
Mb

Mw
[54]. Again, when

computer software is used to carry out ANOVA a p-value is reported, which represents

the probability of observing an F value equal to or greater than the observed F value, if

the null hypothesis was true.

The Welch test is used instead of the one-way ANOVA when there are unequal vari-

ances between the sample sets. It modifies the F -statistic that is used in ANOVA to

correct for this heterogeneity of variances [56].

2.5.3.5 Post-hoc tests

Tests such as ANOVA or Welch tests, that find a significant di↵erence between the

means of several sample sets within a set of data, can not provide information regarding

where the statistical significance lies, and which combinations of sample sets are signif-

icantly di↵erent to one another. Therefore, additional post-hoc tests are carried out in

order to provide a pairwise comparison of all of the sample sets included in the analysis,

to determine which particular sample sets are significantly di↵erent to each other [58][59].

It is possible to carry out a series of individual two-sample t-tests between all of the

sample sets, however the higher the number of pairwise t-tests, the greater the error rate

for a type 1 error (the rejection of the null hypothesis when it is actually true). Post-hoc

tests control the error rate of type 1 errors when carrying out pairwise comparisons, and

therefore these tests are preferable to a series of pairwise t-tests [58][59].

The Tukey test commonly follows ANOVA for the pairwise comparison of sample sets
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of equal variances, and is very similar to the two-sample t-test [58][60]. When the sample

sets have unequal variance, a Games-Howell test is used for the pairwise comparison of

sample sets, following the Welch test. This test is very similar to the two-sample t-test

for unequal variances [58].

2.6 Summary

There are many stages involved in a metabonomics study; from experimental design,

through sample and data analysis, to biochemical interpretation. Common sample prepa-

ration/metabolite extraction techniques are protein precipitation and liquid extraction,

which are often followed by LC-MS analysis of the resulting sample extract. The collected

data is then pre-processed and analysed using both multivariate and univariate analyses,

and the results interpreted to gain some biochemical understanding.

2.7 References

[1] S. Barnes, H. Benton, K. Casazza, S. Cooper, X. Cui, X. Du, J. Engler, J. Kabarowski,

S. Li, W. Pathmasiri, J. Prasain, M. Renfrow, and H. Tiwari, “Training in metabolomics

research. i. Designing the experiment, collecting and extracting samples and gen-

erating metabolomics data,” Journal of Mass Spectrometry, vol. 51, pp. 461–475,

2016.

[2] B. Zhou, J. Xiao, L. Tuli, and H. Ressom, “LC-MS-based metabolomics,” Molecular

BioSystems, vol. 8, pp. 470–481, 2012.

[3] L. Sumner, A. Amberg, D. Barrett, M. Beale, R. Beger, C. Daykin, T. Fan, O.

Fiehn, R. Goodacre, J. Gri�n, T. Hankemeier, N. Hardy, and J. Harnly, “Proposed

minimum reporting standards for chemical analysis Chemical Analysis Working

Page 48



Techniques and Instrumentation

Group (CAWG) Metabolomics Standards Initiative (MSI),” Metabolomics, vol. 3,

pp. 211–221, 2007.

[4] G. Theodoridis, H. Gika, and I. Wilson, “LC-MS-based methodology for global

metabolite profiling in metabonomics/metabolomics,” Trends in Analytical Chem-

istry, vol. 27, pp. 251–260, 2008.

[5] T. Sangster, H. Major, R. Plumb, J. A. Wilson, and I. D. Wilson, “A pragmatic

and readily implemented quality control strategy for HPLC-MS and GC-MS-based

metabonomic analysis,” The Analyst, vol. 131, pp. 1075–1078, 2006.
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3. Experimental

3.1 Aims

To display the experimental workflow that was carried out throughout this research.

To show the development of chromatographic methods for the analysis of metabolite

extracts.

To outline the statistical analysis workflow that was used throughout this research.

3.2 Experimental Design

Throughout the various studies presented in this research, every e↵ort has been made

to reduce the number of factors that could a↵ect the experiment. The age and breed of

the laying hens was considered, as was the diet fed to the birds, and the stocking density

and number of birds per cage. All eggs used in the same experiment/data set were laid on

the same day, and extractions were also carried out on the same day to ensure that there

was no di↵erence in the age of the eggs (except for the study investigating the e↵ects of

egg age on metabolite profile). All samples were randomised prior to analysis, to ensure

that any instrumental drift that may have occurred did not bias the results.

Other than the initial experimental set-up and sample collection, the design of all of

the studies presented in this research followed the same workflow, described in the fol-

lowing diagram.
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Sample Collection

Metabolite Extraction

Chemical Analysis: 
HPLC-MS

Data Pre-processing: 
XCMS

Quality Control Analysis

Data Analysis

Marker Identification 
(METLIN)

In all studies throughout this research, each sample set consisted of six extracts. The

metabolite extraction was carried out identically in all studies, followed by the chemi-

cal analysis of sample extracts using HPLC-Q-ToF-MS, using the same method in all

non-targeted studies. Quality control analysis was carried out, and the data was then

pre-processed using XCMS Online, which produced a feature table that was then trans-

ferred into Microsoft Excel for further analysis. Following data analysis, identification of

potential biomarkers took place.
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3.3 Materials

Methanol (HPLC, isocratic grade) and dichloromethane (stabilised with 0.002% 2-

methyl-2-butene) were purchased from VWR (Radnor, PA). Ultra-pure water (at 18.2

M /cm) was purified in-house using a Milli-Q system from Elga (High Wycombe, U.K.).

Formic acid (90%, laboratory-reagent grade) and ammonium acetate were purchased

from Fisher Scientific (Loughborough, U.K.). ESI-L low-concentration tuning mix and

API-ToF reference-mass solution were purchased from Sigma-Aldrich (St. Louis, MO).

Analysis was carried out using a Thermo Scientific Accucore RP-MS (100 X 2.1 mm,

2.6 m particle size) on an Agilent Technologies 1260 Infinity Binary HPLC system,

coupled to an Agilent Technologies 6530 Accurate-Mass Quadrupole-Time-of-Flight mass

spectrometer.

3.4 Extraction Method Development

Aqueous and organic solvent liquid extractions were carried out to extract metabolites

from both the albumen and yolk of eggs, based on the metabolite extraction method

described in Thompson et al. [1]. This approach has been shown to e�ciently and

reproducibly extract metabolites from biological matrices [2]. The homogenisation and

sonication steps described in this method were excluded, as egg is already homogeneous

and is a single cell which does not require lysis through sonication. The aqueous and

organic extraction stages were not carried out sequentially as there was enough sample

to carry out separate extractions, and it allowed the organic solvent mixture to extract

some more polar metabolites that may otherwise have been previously extracted by the

aqueous solvent mixture.

Egg yolk and albumen were separated using a stainless steel egg separator, which was

washed with ultra-pure water and methanol between uses. Approximately 50 mg yolk
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and 50 mg albumen were weighed out into separate 1.5 mL microcentrifuge tubes, ready

for addition of the aqueous and organic extraction solvents.

3.4.1 Aqueous Metabolite Extraction

An aqueous extraction solvent mixture (methanol:water, 1:1) was added to the yolk

and albumen samples, 1 mL of solvent per 50 mg of sample, or part thereof, which were

then briefly vortexed to ensure thorough extraction. The vortexed samples were then

centrifuged at 16,100 rcf for 20 minutes, before 0.75 mL of supernatant was removed and

transferred into fresh microcentrifuge tubes. The sample extracts were then stored at -80

, prior to analysis.

3.4.2 Organic Metabolite Extraction

An organic extraction solvent mixture (dichloromethane:methanol, 3:1) was added to

the yolk and albumen samples, 1 mL of solvent per 50 mg of sample, or part thereof,

which were then briefly vortexed to ensure thorough extraction. The samples were then

centrifuged at 16,100 rcf for 20 minutes, before 0.75 mL of supernatant was removed and

transferred into fresh microcentrifuge tubes. The supernatant was allowed to evaporate

under ambient conditions, and the dried sample extracts were then stored at -80 C. The

extracts were re-dissolved in an equal volume of methanol immediately prior to analysis

and briefly vortexed to ensure thorough dissolution.
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3.5 Chromatographic Method Development

Chromatographic methods were developed for all resulting sample extracts; albumen

organic and aqueous extracts, and yolk organic and aqueous extracts, in both positive

and negative ionisation mode. However, not all of these were successful, and so the only

methods that were used for analysis in this research were for albumen and yolk organic

extracts in positive ionisation mode.

All sample extracts were analysed using an Agilent 1260 Infinity Binary HPLC sys-

tem and a Thermo Scientific Accucore RP-MS column (100 x 2.1 mm, 2.6 m particle

size) kept at a temperature of 40 . The injection volume was 5 l and the flow rate

was 0.3 mL/min. The mobile phase consisted of solvents A, 0.1% formic acid, and B,

methanol with 0.1% formic acid. Methanol was chosen as the organic mobile phase as the

aqueous samples were extracted using a methanol and water extraction solvent mix, and

the organic samples were re-dissolved in methanol following evaporation of the extrac-

tion solvent. Formic acid was added to both mobile phase solvents to promote positive

ionisation of molecules in the MS analysis. During the method development stage, 5mM

ammonium acetate was added to both solvents A and B to prevent build up of sample

on the column. The initial chromatographic method for all extracts was a 90 minute

gradient from 95% solvent A (0.1% formic acid), 5% solvent B (methanol, 0.1% formic

acid), to 100% solvent B, which was then held isocratically for 30 minutes, resulting in a

two hour total run time. This initial method was then adapted and developed for each

sample extract, to result in a shorter analysis time, with compounds eluting throughout

the analysis. A 5 minute post-run time was added to the final methods for all extracts,

to allow the HPLC system to return to starting conditions and stabilise.
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3.5.1 Albumen Organic Extract

An albumen organic extract was initially analysed in positive ionisation mode using

the two hour chromatographic method, resulting in the chromatogram that can be seen

in Figure 3.1.
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Figure 3.1: TIC for albumen organic extract, analysed using initial 2 hour method, using

positive ionisation

This method was then adapted and developed, resulting in the final method:

Table 3.1: Table showing the solvent gradient of the final method for the analysis of albumen
organic extract

Time
(minutes)

Solvent A% Solvent B%

0 20 80
5 16 84
20 0 100
30 0 100
31 20 80

The resulting chromatogram can be seen in Figure 3.2.
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Figure 3.2: TIC for albumen organic extract, analysed using final method, using positive
ionisation

This method was then used to analyse albumen organic extracts in positive ionisation

mode throughout this research.

An albumen organic extract was then analysed in negative ionisation mode using the

two hour chromatographic method, resulting in the chromatogram that can be seen in

Figure 3.3. From this, it appears that there are not many negatively ionised compounds

detected in the albumen organic extract using this method.

However, an albumen organic extract was then analysed in negative ionisation mode

using the final method developed in positive ionisation mode, resulting in the chro-

matogram that can be seen in Figure 3.4. Again, it appears that there are very few

negatively ionised compounds detected in the albumen organic extract using this method,

and so negative ionisation was not used to analyse any of these sample extracts through-

out this research.

Page 61



Experimental

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40 50 60 70 80 90 100 110 120

Co
un

ts

Time (minutes)

Figure 3.3: TIC for albumen organic extract, analysed using initial 2 hour method, using
negative ionisation
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Figure 3.4: TIC for albumen organic extract, analysed using final method, using negative
ionisation
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3.5.2 Albumen Aqueous Extract

An albumen aqueous extract was initially analysed in positive ionisation mode using

the two hour chromatographic method, resulting in the chromatogram that can be seen

in Figure 3.5.
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Figure 3.5: TIC for albumen aqueous extract, analysed using initial 2 hour method, using
positive ionisation

This method was then adapted and developed, resulting in the final method:

Table 3.2: Table showing the solvent gradient of the final method for the analysis of albumen
aqueous extract

Time
(minutes)

Solvent A% Solvent B%

0 35 65
17 15 85
25 0 100
40 0 100
45 35 65

The resulting chromatogram can be seen in Figure 3.6. This chromatogram looks to
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Figure 3.6: TIC for albumen aqueous extract, analysed using final method, using positive
ionisation

be interesting, showing several peaks spread throughout the analysis time, indicating that

many compounds are present in albumen aqueous extracts.

However, when repeated injections of these extracts were analysed over a longer period

of time, the back pressure of the HPLC began to increase, eventually reaching the point

where the HPLC stopped the analysis to prevent the pressure from increasing too high.

Figure 3.7 shows the pressure curves for 10 injections of a pooled albumen aqueous extract

sample.

It was thought that the cause for this increase in pressure could be due to the albumen

extract precipitating out when the mobile phase reaches a certain ratio of methanol and

water. A solvent mix of the two mobile phases at di↵erent ratios was then added to

di↵erent aliquots of albumen aqueous extract to determine at which point the extract

precipitated out. It was observed that with closer to 50:50 ratios of water:methanol the

albumen extract began to precipitate out, which is likely to be the cause of this increase of

pressure within the system during analysis. Various methods were attempted, including
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Figure 3.7: Pressure curves showing increasing pressure in the HPLC system with repeated
injections of albumen aqueous sample

substituting methanol for acetonitrile, both with and without ammonium acetate in the

mobile phase, however the same response was observed each time. It was concluded

that albumen aqueous extracts are not suitable for HPLC analysis using the column and

mobile phases that were used throughout this research.

An albumen aqueous extract was also analysed in negative ionisation mode using the

two hour chromatographic method, resulting in the chromatogram that can be seen in

Figure 3.8. From this, it appears that there are not many negatively ionised compounds

detected in the albumen aqueous extract using this method.

However, an albumen aqueous extract was then analysed in negative ionisation mode,

using the final method developed in positive ionisation mode, resulting in the chro-

matogram that can be seen in Figure 3.9. Again, it appears that there are very few

negatively ionised compounds detected in the albumen aqueous extract using this method,

and so negative ionisation was not used to analyse any of these sample extracts through-

out this research.
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Figure 3.8: TIC for albumen aqueous extract, analysed using initial 2 hour method, using
negative ionisation
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Figure 3.9: TIC for albumen aqueous extract, analysed using final method, using negative
ionisation
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3.5.3 Yolk Organic Extract

A yolk organic extract was initially analysed in positive ionisation mode using the two

hour chromatographic method, resulting in the chromatogram that can be seen in Figure

3.10.
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Figure 3.10: TIC for yolk organic extract, analysed using initial 2 hour method, using
positive ionisation

This method was then adapted and developed, resulting in the final method:

Table 3.3: Table showing the solvent gradient of the final method for the analysis of yolk or-
ganic extract

Time
(minutes)

Solvent A% Solvent B%

0 25 75
20 19 81
21 10 90
31 10 90
61 0 100
81 0 100
85 25 75
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The resulting chromatogram can be seen in Figure 3.11. This method was then used

to analyse yolk organic extracts in positive ionisation mode throughout this research.
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Figure 3.11: TIC for yolk organic extract, analysed using final method, using positive
ionisation

A yolk organic extract was then analysed in negative ionisation mode using the two

hour chromatographic method, resulting in the chromatogram that can be seen in Fig-

ure 3.12. From this, it appears that there are not many negatively ionised compounds

detected in the yolk organic extract using this method.

However, a yolk organic extract was then analysed in negative ionisation mode, using

the final method developed in positive ionisation mode, resulting in the chromatogram

that can be seen in Figure 3.13. This chromatogram contains several peaks, which indi-

cates that there are several negatively ionised compounds detected in this sample extract

that elute using this chromatographic method. However, the intensities of the peaks are

not very high, and as much more information can be gained from analysing these samples

using positive ionisation, negative ionisation mode was not used to analyse any of these

sample extracts throughout this research.
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Figure 3.12: TIC for yolk organic extract, analysed using initial 2 hour method, using
negative ionisation
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Figure 3.13: TIC for yolk organic extract, analysed using final method, using negative
ionisation
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3.5.4 Yolk Aqueous Extract

A yolk aqueous extract was initially analysed in positive ionisation mode using the

two hour chromatographic method, resulting in the chromatogram that can be seen in

Figure 3.14.
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Figure 3.14: TIC for yolk aqueous extract, analysed using initial 2 hour method, using
positive ionisation

Although this chromatogram appears to show lots of peaks, when compared to the

chromatogram resulting from the analysis of a blank sample in Figure 3.15, it can be seen

that most of these peaks are due to elution of compounds that have been retained on the

column from previous analyses. Most of the peaks with higher intensities, resulting from

the analysis of the yolk aqueous sample, are during the first five minutes of the analysis,

with a few more towards the end of the analysis. This indicates that most of the more

highly abundant compounds present in the yolk aqueous extract are very polar, and so

would be more suited to HPLC analysis using a HILIC column.
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(a) TIC for a blank sample, analysed using initial 2 hour method, using positive ionisation
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(b) Overlaid TICs for a blank sample and yolk aqueous extract, analysed using initial 2 hour
method, using positive ionisation

Figure 3.15
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A yolk aqueous extract was then analysed using the same mobile phase solvents and

other chromatographic parameters as previously, but using a Thermo Accucore HILIC

column (100 mm x 2.1 mm, 2.6 m particle size). The mobile phase composition started

at 90% solvent B for the first 30 minutes, then decreased to 50% over 30 minutes, where

it was held for a further 30 minutes, before returning to 90% in 5 minutes. The resulting

chromatogram can be seen in Figure 3.16.
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Figure 3.16: TIC for yolk aqueous extract, analysed using initial HILIC method, using
positive ionisation

This method was then developed and adapted, and solvent B in the mobile phase was

changed to acetonitrile with 0.1% formic acid and no ammonium acetate, resulting in the

following method:

Table 3.4: Table showing the solvent gradient of the method for the analysis of yolk aqueous
extract using a HILIC column

Time
(minutes)

Solvent A% Solvent B%

0 3 97
2 40 60
12 40 60
15 3 97
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The resulting chromatogram can be seen in Figure 3.17.
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Figure 3.17: TIC for yolk aqueous extract, analysed using final HILIC method, using positive
ionisation

This method was the product of much method development and the resulting chro-

matogram still does not display good peak shape or resolution, and so yolk aqueous ex-

tracts were not analysed in positive ionisation mode in any of the experiments throughout

this research.

A yolk aqueous extract was then analysed in negative ionisation mode using the two

hour chromatographic method, and the initial HILIC method, resulting in the chro-

matograms that can be seen in Figure 3.18.
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(a) TIC for yolk aqueous extract, analysed using initial 2 hour method, using negative ionisation
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(b) TIC for yolk aqueous extract, analysed using initial HILIC method, using negative ionisation

Figure 3.18
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From these chromatograms, it appears that there are not many negatively ionised

compounds detected in the yolk aqueous extract using these methods.

A yolk aqueous extract was then analysed in negative ionisation using the final HILIC

method developed in positive ionisation, resulting in the chromatogram in Figure 3.19.

Again, this chromatogram shows few peaks, indicating that there are few negatively

ionised compounds detected in the yolk aqueous extract using this method. Therefore,

analysis in negative ionisation mode was not carried out for yolk aqueous extract samples

throughout this research.
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Figure 3.19: TIC for yolk aqueous extract, analysed using final HILIC method, using
negative ionisation

Following method development, it was concluded that yolk organic extracts result in

the best chromatogram, with many compounds separated, eluted, and detected through-

out the chromatographic analysis, indicating a range of di↵erent compound types in the

samples. Therefore, yolk organic extracts were analysed in all studies in this research.

Albumen organic extracts also resulted in interesting chromatograms, and thus these

samples were also analysed in some of the studies in this research.
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3.6 Mass Spectrometry

All samples were anaylsed using an Agilent 6530 Accurate Mass Quadrupole-Time-of-

Flight mass spectrometer in positive ionisation mode using an electrospray ion source.

The parameters used were as follows:

Table 3.5: Table showing the parameters for the mass spectrometry analysis

Drying gas
temperature

Drying gas
flow rate

Capillary
voltage

Nebuliser
pressure

Fragmentor
voltage

Skimmer
voltage

300 8 L/min 3500 V 35 psi 175 V 65 V

An ESI-L low concentration tuning mix was used to calibrate the instrument prior to

analysis in order to ensure the mass accuracy, and an API-ToF reference mass solution,

consisting of purine (m/z 121.0509) and hexakis (1H,1H,3H-tetrafluoropropoxy)phosphazine

(m/z 922.0098) was used throughout the analytical run to maintain this mass accuracy.

The mass range for all analyses was 100-1000 m/z.

3.7 Quality Control

Quality control is an extremely important aspect of metabonomic studies; if the anal-

ysis is not robust, then the results are not reliable. Quality control (QC) samples were

produced for each study by pooling equal aliquots of all sample extracts together, in

accordance with published guidelines [3]. These samples were then injected and analysed

ten times prior to the analysis of actual samples in all studies, in order to condition the

column ready for analysis. It has been shown in several studies that the first few injec-

tions of sample during an analytical run are not stable or reliable [4][5]. Therefore, there

is a need to inject several QC samples, the exact number depending on the particular

matrix and analytical conditions, before starting the actual analytical sequence, in order

to condition the column ready for analysis [4][5]. Figure 3.20 shows overlaid TICs of the

first ten QC sample injections for both albumen and yolk organic extracts.
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(a) Overlaid TICs for first ten injections of albumen organic extract QC sample
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(b) Overlaid TICs for first ten injections of yolk organic extract QC sample

Figure 3.20
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In both of the chromatograms in Figure 3.20, it can be seen that there is some retention

time drift over the first three QC samples that were injected, as well as some instability

in peak intensity. However, by the fourth injection the chromatograms for all QC sample

injections remained stable, with no retention time drift or peak intensity instability.

Although stability in retention time and peak intensity was reached at the fourth QC

sample injection, ten samples were injected before each analytical run in order to ensure

that the system was completely stable prior to sample extract analysis.

The QC sample for each study was also injected and analysed regularly throughout

the analytical sequence, to monitor any drift in retention time and peak intensity that

occurred throughout the analysis. This peak intensity drift can occur due to instrumental

factors, such as column ageing, or temperature fluctuations [6], and will therefore be

referred to throughout this research as instrumental drift. The drift in retention time can

occur due to gradual column degradation and contamination [7], and will be referred to

as retention time drift.

Quality control studies were carried out on the resulting data following chemical anal-

ysis, in order to ensure that it was reliable. Six peaks, in the Total Ion Chromatograms

(TICs) of the QC samples analysed throughout the analytical runs, were chosen based on

their intensity and retention time, ensuring that a range of intensities and retention times

were monitored. Coe�cient of variance percentages (CV%s) were calculated for both the

intensities and the retention times of the peaks, in order to measure the precision and

ensure that the analyses were reproducible throughout the analytical run. Acceptable

levels of precision were taken from Theodoridis et al. [8]; CV%<30% for peak intensities

and CV%<2% for retention times. Figure 3.21 shows the six peaks that were chosen to

be monitored in both the albumen and yolk organic extract analyses.

During data analysis, when PCA scores plots are produced, the QC samples should

be clustered more tightly together on the plots than the samples in other sample sets,

indicating that there was little instrumental drift occurring throughout the analysis [3].
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(a) Total Ion Chromatogram for albumen organic extract analysis showing the six peaks that
were chosen for quality control monitoring
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(b) Total Ion Chromatogram for yolk organic extract analysis showing the six peaks that were
chosen for quality control monitoring

Figure 3.21
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3.8 Data Pre-processing

Following chemical analysis of samples, and the quality control studies, the data was

pre-processed using XCMS Online. Although this software has integrated data pre-

processing and data analysis into one step, it was simply used throughout this research

as a pre-processing tool, to produce a feature table containing the peak areas of all com-

pounds in each sample, with compounds represented by their m/z and retention time

[9].

XCMS Online has default parameters that have been optimised to pre-process data

resulting from analysis on various di↵erent instruments [10]. As all of the analysis in this

research was carried out using HPLC-Q-ToF-MS, the HPLC/QToF default parameters

were used for pre-processing the data using this software.

3.9 Data Analysis

Following the initial QC analysis and the pre-processing of data by XCMS Online,

resulting in the production of a feature table, the feature table was transferred into

Microsoft Excel for data analysis to be carried out. All data were assumed to be normally

distributed, as only one independent variable was changed between sample sets in each

study, and the remaining independent variables were well controlled. The order sequence

for the analysis of samples was randomised to prevent any instrumental bias, and quality

control measures were implemented to monitor any changes throughout the analysis that

could create bias. Therefore, data analysis was carried out assuming normality of the

data. The following diagram on the next page describes the data analysis workflow:
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CV% calculated, 
compounds with 
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PCA, all compounds 
with CV% <30%

ANOVA, all compounds 
with CV% <30%, 

significance level at p<0.01

Compounds ranked 
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Top 100 compounds; 
duplicates, adducts & 

isotopes removed
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equality of variances

ANOVA/WHOcK¶V t-test, 
significance level at p<0.05

Post-hoc, Tukey/Games-
Howell tests, significance 

level at p<0.05

Statistical significance 
confirmed using raw data

Identification of statistically 
significant compounds

Figure 3.22: Diagram showing the statistical workflow that was implemented in this research

The first step of data analysis is more quality control; CV%s were calculated for all

compounds in the feature table based on their peak areas in the QC samples. Compounds

with a CV% >30% were removed from further analysis in accordance with published

guidelines [8]; this is because compounds with such low precision in regards to detector

response are not robust enough to act as reliable biomarkers.

Following this, Principal Component Analysis (PCA) was carried out for all remaining

compounds, using an Excel Multivariate Analysis add-in which standardised the data and

included six principal components. Scores plots were then produced in order to display

the separation between the di↵erent sample sets. An initial ANOVA, assuming equal

variances, was then carried out with the significance level at p<0.01. Any compounds
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with p>0.01 were removed. This high threshold of statistical significance was used to

narrow down the number of compounds in the data set, as there were still many that

showed this high significance. The loadings from PC1 were used to rank the remaining

compounds from the highest to the lowest, and the top 100 features were taken for

further analysis. Any duplicates, adducts, or isotopes that were found in these top

100 compounds were removed from the analysis. IBM SPSS Statistics software was

used to carry out a Levene’s test for equality of variances on the remaining compounds,

followed by either an ANOVA or Welch test, and post-hoc Tukey or Games-Howell tests,

depending on the results of the Levene’s test. The significance level was p<0.05. This

lower threshold of statistical significance was used as it was not necessary to cut down the

number of compounds any further, and some compounds with unequal variances, that

may have had a p-value<0.01 in the initial ANOVA, may not be as highly significant

when the more appropriate Welch test is used. Compounds that were still found to show

significant di↵erences between sample sets then had their statistical significance confirmed

through the raw data. Extracted Ion Chromatograms (EICs) were produced in Agilent

Technologies’ MassHunter Qualitative Analysis software, and the peak areas from the

integrated peaks in the EICs were used to carry out the same tests as before; Levene’s

test followed by ANOVA/Welch test and Tukey/Games-Howell tests. Identification of

those compounds that were still found to be statistically significant then took place.

The loadings from PC1 were used to rank the compounds in most studies, regardless

of which PCs best described the separation between sample sets. This is because PC1

describes the greatest amount of variation between all samples, and there was rarely just

a single PC that best described the variation in the data; it was a combination of di↵erent

PCs that showed the best separation between sample sets on the scores plots. At the

stage of ranking the compounds, most compounds that remained in the data set were

statistically significant due to the initial ANOVA that was carried out, so whichever PC

was chosen to rank the compounds would result in statistically significant features being

in the top 100.
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3.9.1 Feature Identification

For compounds that were still found to be statistically significant when analysing

the raw data, attempts were made to identify them. Agilent Technologies’ MassHunter

Qualitative Analysis software was used to predict potential molecular formulae for the

compounds, based on the monoisotopic mass, isotope abundances, and isotopic peak spac-

ings in the mass spectra [11]. Each predicted formula also had an associated probability

score, based on how closely the isotope abundance ratios in the mass spectrum match

those expected from the predicted formula [11]. All predicted formulae with a probability

score of 95 or over were searched on METLIN, an online metabolite database, to find

potential metabolite matches. For those compounds that did produce matches, the mass

spectrum generated by the HPLC-MS analysis was compared with the mass spectrum

provided by METLIN to see if they were comparable, and thus whether they could be

putatively identified [12]. A di�culty that arose using this approach is that most mass

spectra provided by METLIN are produced using higher collision energies, resulting in

more fragmentation, whereas the MS analysis in these studies used 0 V collision energy,

resulting in less fragmentation, thus it was not always possible to compare the mass

spectra from the analysis with those on METLIN.

3.10 Summary

Although both aqueous and organic liquid extractions were carried out on the egg yolk

and albumen, successful chromatographic methods were only developed for the analysis

of organic extracts of the yolk and albumen. Quality control studies were developed in

order to monitor any instrumental or retention time drift that may occur throughout the

analysis, and ensure that they are within acceptable limits. A data pre-processing and

analysis workflow was then developed to enable the discovery and potential identification

of compounds capable of discriminating between authentic and fraudulent eggs.
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4. The e↵ect of sample storage

temperature and condition on the

metabolite stability of egg yolk and

albumen organic extracts

4.1 Introduction

The objective of metabonomic studies is to uncover di↵erences between the metabolite

profiles of organic tissues or biofluids that have been exposed to di↵erent endogenous or

exogenous factors [1], e.g. chicken eggs that have originated from di↵erent housing sys-

tems. Non-targeted metabonomic studies aim to obtain as wide a metabolite profile as

possible for the samples, increasing the potential of discovering compounds, or compound

classes, of interest [2]. However, in order to ensure that any di↵erences in metabolite pro-

file that are observed are due to true biological di↵erences, it is important that the storage

of extracts following metabolite extraction, and prior to chemical analysis, minimises the

potential for any further change in metabolite profile.

There has been considerable research into the e↵ects of temperature and di↵erent

storage conditions on the stability of extracts. A study into the e↵ects of storage on a mix

of metabolite and amino acid standards, found that when the compound mix was stored

Page 87



Chapter 4

at -20 C, there was little distinction between samples that were stored for 3, 7, 14, 21,

28, or 42 days, indicating that the mix of standards was mostly stable at -20 C [3]. Some

metabolites and amino acids in the mix experienced a significant change in abundance

over the 42 days of storage, however they did not appear to follow any particular trend

over the storage time. Not all of the compounds were a↵ected by an increasing storage

time, indicating that di↵erent compounds are a↵ected in di↵erent ways.

Another study investigated the e↵ect of storage temperature and duration on the

retention of carotenoids, and other secondary metabolites, in marigold petal extracts [4].

Extracts were stored at an ambient temperature, 4 C, and -20 C for 20, 40, and 60 days.

It was found that all compounds under investigation, after 60 days of storage at all three

storage temperatures, had decreased in abundance, indicating that increased storage time

leads to greater metabolic change in the extracts. However, the extracts that were stored

at -20 C showed the least change, and the highest retention of compounds, over the 20,

40, and 60 days of storage, indicating that the storage of extracts at -20 C improves the

stability of the compounds, compared to at 4 C and ambient temperatures.

A study was carried out into the modifications of the 1H NMR metabolite profile

of mullet roes when stored for 7 months at room temperature, 3 C, and -20 C [5].

This study found that following storage, extracts that were stored at -20 C experienced

the least amount of change compared to those that were analysed immediately after

extraction. Extracts that were stored at 3 C began to show relevant changes in metabolite

profile after 5 months of storage, and those that were stored at room temperature showed

an increasing di↵erence in metabolite profile throughout the whole storage period. This

corroborates the previously described results [4]; that storing extracts at -20 C improves

the stability of compounds. Another study using 1H NMR to monitor the metabolite

profiles of samples over a month of storage investigated urine samples, not metabolite

extracts, however similar results were obtained [6]. Samples that were stored at 22 C

experienced a significant change in the concentrations of metabolites, whilst those that

Page 88



Chapter 4

were stored at 4 C were slightly less a↵ected, and those that were stored at -80 C best

reflected the original metabolite concentrations in the samples. Another, similar study,

produced comparable results, with urine samples that were stored at -25 C and -80 C

for 26 weeks experiencing no metabolite profile change [7]. This study also found that

storing the samples at -80 C had no benefit over sample storage at -25 C, which was

also concluded by other researchers when they investigated the stability of urine samples

at -20 C and -80 C for 6 months [8].

Another study investigated the e↵ect of storage temperature on the metabolite profiles

of human plasma samples [9]. Again, the samples were not extracted prior to storage, but

the results are comparable. Samples were stored at room temperature, 4 C, -30 C, and

-80 C for various lengths of time. It was observed that the samples that were stored at

room temperature showed the greatest change in metabolite abundance over increasing

storage time, compared to samples that were stored at -80 C, followed by those that were

stored at 4 C. Samples that were stored at -30 C showed very little change compared

to those that were stored at -80 C, indicating that lower storage temperatures improve

the stability of the metabolite profiles of the samples, and that little benefit is gained

from storing samples at temperatures lower than -30 C. Another study also investigated

the stability of human plasma samples at di↵erent storage temperatures [10]. Samples

were stored at room temperature, -20 C, and -80 C, and changes in the concentrations

of some metabolites in the samples were observed following just 2.5 hours of storage at

room temperature. Samples remained relatively unchanged up to 7 days of storage at -20

C, but for storage periods of one month or longer, it was recommended that samples be

stored at -80 C to minimise any metabolic changes in the samples.

One study investigated the e↵ects of storage temperature and condition on the steroid

metabolite extracts of baboon faeces over 50 weeks of storage [11]. However, this study

produced contrasting results to the previous studies described, as it was determined that

after 24 weeks the metabolite profiles of the liquid extracts, and extracts that were dried
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onto SPE cartridges, both stored at 30 C, showed a similar stability to the liquid extracts

that were stored at -20 C. However, following 50 weeks of storage, the liquid extracts

that were stored at 30 C did show a significant di↵erence in metabolite concentration

compared to liquid extracts that were frozen at -20 C. The authors postulate that this is

due to the extract evaporating slightly during storage, and suggest that storage at slightly

lower temperatures, or drying extracts prior to storage would prevent this. However, the

extracts that were stored dried down at 30 C showed the most instability, and the great-

est metabolic change throughout the 50 weeks of storage. The authors discussed possible

explanations for this, suggesting that as the concentrations of metabolites were lower for

the dried down extracts compared to the others, it could partly be due to insu�cient

recovery from the walls of the sample tubes during reconstitution of the extracts in sol-

vent. As the concentration of metabolites in the dried down extracts appeared to decrease

over an increasing storage time, it was postulated that perhaps the metabolites became

bound to the polypropylene wall of the tube, and that the cohesiveness of the binding

increased over time, resulting in a lower recovery of metabolites during reconstitution at

each sampling point.

Although the final study mentioned is quite contrasting to the others, most studies

appear to agree that storing samples and extracts under frozen conditions, rather than

refrigerated or at ambient temperatures, improves the stability of the metabolites. Some

studies determined that there is no benefit to storing extracts at -80 C compared to -25 C

[7][8], but another study concluded that whilst -20 C results in a high metabolite stability

over a short storage time, for periods of storage over a month, -80 C is recommended [10].

The e↵ect of storage temperature on the stability of the extracts appears to be slightly

di↵erent for the di↵erent sample types studied, therefore it is important to investigate the

impact of temperature and storage condition on the stability of the metabolite profiles

of the sample extracts that are being studied.
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4.2 Aims and Objectives

As it is crucial in metabonomic studies to ensure that any observed di↵erences in

metabolite profile between sample extracts are due to true biological di↵erences, it is im-

portant to ensure that the storage conditions of the extracts, prior to analysis, minimise

any change in metabolite profile of the extracts during storage.

This work aimed to use the same metabonomic workflow that is used throughout the rest

of this research, to determine whether storage condition; dried or re-dissolved in methanol,

and storage temperature; -25 C, -46 C, or -80 C, a↵ect the resulting metabolite profiles

of yolk and albumen organic extracts, and to conclude which storage conditions result in

the highest stability of metabolite profiles of extracts.
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4.3 Experimental

For this study, an organic metabolite extraction was carried out on the yolk and albu-

men of just one egg, from a batch of eggs that were collected from Oaklands Farm Eggs

Ltd., Shrewsbury, U.K. Laying hens were of the Hy-line brown breed, kept in enriched

cages of 20 birds per cage, and were 39 weeks old at the point of lay. Just one egg was

used, in order to minimise the amount of biological variation between extracts, to ensure

that the main di↵erences between extracts were due to their storage conditions.

The yolk and albumen were separated and each was split into six aliquots, a–f.

-25 °C

-46 °C

-80 °C

aliquots
a-f  

metabolite 
extraction x12

6x 
dried 

extracts

6x
re-dissolved 

extracts

6 weeks of 
storage

12 weeks of 
storage

6 weeks of 
storage

12 weeks of 
storage

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

Figure 4.1: Diagram showing the experimental design for the yolk organic extract storage
study

Twelve organic metabolite extractions were then carried out per aliquot of yolk, re-

sulting in a total of seventy-two yolk organic extracts. Six of the metabolite extractions

carried out per aliquot were completed with the re-dissolving of the dried extract in
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methanol, and six extracts were retained in their dried state. Two dried and re-dissolved

extracts from each aliquot were then stored in freezers kept at three di↵erent tempera-

tures; -25 C, -46 C, and -80 C. Once the experimental set-up was complete, each freezer

stored twenty-four extracts; two dried, and two re-dissolved extracts per aliquot, a–f. Fol-

lowing 6 weeks of storage, one dried and one re-dissolved organic yolk extract for each

aliquot, a–f, from each freezer were defrosted, and the dried extracts were re-dissolved

in methanol. These thirty-six extracts were then analysed using HPLC-MS. This was

then repeated following 12 weeks of yolk extract storage. Figure 4.1 on the previous page

shows the experimental design for this study.

-25 °C

-46 °C

-80 °C

aliquots
a-f  

metabolite 
extraction x6

3x 
dried 

extracts

3x
re-dissolved 

extracts

44 weeks of 
storage

44 weeks of 
storage

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

1x extract
a-f

Figure 4.2: Diagram showing the experimental design for the albumen organic extract storage
study

Six organic metabolite extractions were carried out per aliquot of albumen, resulting

in a total of thirty-six albumen organic extracts. Three of the metabolite extractions

carried out per aliquot were completed with the re-dissolving of the dried extract in

methanol, and three extracts were retained in their dried state. One of the dried and
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re-dissolved extracts from each aliquot were then stored in freezers kept at three di↵erent

temperatures; -25 C, -46 C, and -80 C. Once the experimental set-up was complete,

each freezer stored twelve extracts; one dried, and one re-dissolved extract per aliquot,

a–f. After forty-four weeks of storage, all albumen organic extracts from each freezer were

defrosted, and the dried extracts were re-dissolved in methanol. These thirty-six extracts

were then analysed using HPLC-MS. Figure 4.2 shows the experimental design for this

study.

Organic metabolite extraction of the yolk and albumen, chemical analysis of the re-

sulting extracts using HPLC-MS, quality control analysis, and data pre-processing were

carried out as described in Chapter 3. Data analysis for all three experiments (yolk ex-

tracts after 6 and 12 weeks of storage, and albumen extracts after 44 weeks of storage)

was then carried out as described in Chapter 3, Section 3.9, with the addition of a second

PCA, using only the top statistically significant compounds following ANOVA/Welch

tests. No identification of compounds took place, as the aim of the study was to under-

stand if and how the compounds that make up the metabolite profiles of the extracts

are a↵ected by storage temperature and condition, rather than which compounds are

significantly a↵ected.
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4.4 Yolk Organic Extracts: 6 weeks of Storage

Yolk organic extracts that were stored either dried or re-dissolved for 6 weeks, at three

di↵erent temperatures, were compared to see whether storage condition and temperature

a↵ect the metabolite profile of an extract.

4.4.1 Results and Discussion

4.4.1.1 Quality Control Analysis

Table 4.1 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 4.1: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts that had been stored
for six weeks

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 785042 119413170 44026133 29171841 323227222 81307383

QC2 732145 119729042 46545772 31063133 345779678 71893451

QC3 945162 126470319 48390361 30859982 351324044 66975924

QC4 733781 114969574 45951088 30502164 341964294 56560805

QC5 686170 108880211 45047815 31836032 335824304 58481910

QC6 575895 112695186 44334359 29883792 335545978 57061490

QC7 463816 109084612 42788591 28817781 321482161 51646230

SD 153198 6397898 1846263 1075406 11096353 10447392

Mean 703144 115891731 45297731 30304961 336449668 63418170

CV% 21.79 5.52 4.08 3.55 3.30 16.47
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis.

Table 4.2, shows the retention times (RTs) for the six peaks of interest in the seven

QC samples that were analysed throughout the run, as well as the SD, the mean, and

the CV% of the RTs for each of the peaks.

Table 4.2: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts that had been stored
for six weeks

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 5.088 9.122 32.410 56.529 70.971 77.129

QC2 5.072 9.256 32.345 56.381 70.623 76.533

QC3 5.085 9.169 32.425 56.593 71.002 77.177

QC4 5.135 9.235 32.474 56.610 71.068 77.193

QC5 5.069 9.236 32.558 56.627 70.869 76.861

QC6 5.052 9.185 32.407 56.510 70.894 76.944

QC7 5.082 9.232 32.487 56.623 71.048 77.206

SD 0.026 0.048 0.069 0.089 0.152 0.248

Mean 5.083 9.205 32.444 56.553 70.925 77.006

CV% 0.51 0.52 0.21 0.16 0.21 0.32

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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4.4.1.2 Metabolite Profiling

4.4.1.2.1 Comparison of storage temperature

Comparisons were made between extracts that were stored at the three di↵erent tem-

peratures, by studying the Total Ion Chromatograms (TICs) of the extracts following

HPLC-MS analysis. Figure 4.3 shows overlaid TICs for the average chromatograms of

extracts (both dried and re-dissolved) stored at the three di↵erent temperatures.
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Figure 4.3: Overlaid average TICs of yolk organic extracts that were stored for 6 weeks at
-25 C, -46 C, and -80 C

Observing these overlaid TICs, a slight di↵erence can be seen between the chro-

matograms for the extracts stored at the di↵erent temperatures. There is almost no

observable di↵erence in peak intensity between the chromatograms of extracts that were

stored at -46 C and -80 C, however there is a slightly higher peak intensity in the TIC

of extracts that were stored at -25 C, compared to the TICs of extracts that were stored

at the other two temperatures. This indicates that there is a greater stability in metabo-

lite profile between extracts that are stored at di↵erent temperatures, when the storage

temperatures are lower.
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4.4.1.2.2 Comparison of temperature in each storage condition

The chromatograms in Figure 4.4 show comparisons between the TICs of re-dissolved

(Figure 4.4 a)) and dried (Figure 4.4 b)) extracts stored at all three temperatures. The

chromatogram in Figure 4.4 a) shows that between 13-70 minutes, there is a considerably

higher peak intensity for the TIC of re-dissolved extracts that were stored at -25 C,

compared to those of the re-dissolved extracts that were stored at the other two temper-

atures, which showed very little di↵erence in peak intensity to each other throughout the

chromatogram. Before 13 minutes, and after 70 minutes, there is very little di↵erence in

peak intensity between the TICs of re-dissolved extracts stored at all three temperatures,

with the TIC of extracts that were stored at -25 C showing very slightly lower peak

intensities compared to the TICs of the extracts stored at the other two temperatures.

This changing di↵erence in peak intensity throughout the chromatogram could be

because the later eluting, more non-polar compounds are likely to be larger lipid molecules

which undergo degradation during storage, breaking down to produce more of the polar

compounds. This degradation may occur at a lower rate in extracts that have been stored

at lower temperatures, resulting in the non-polar compounds having a higher abundance

in extracts stored at the lower temperatures compared to the higher temperatures. The

higher abundance of the earlier eluting, less non-polar compounds in the TIC of extracts

stored at -25 C is likely to be due to the higher rate of degradation of the more non-

polar compounds at the higher storage temperature resulting in the increased production

of these less non-polar compounds, compared to at lower storage temperatures. This

suggests that storing extracts at lower temperatures improves the metabolite stability.

The chromatogram in Figure 4.4 b) shows that the TIC of dried extracts that were

stored at -25 C has a higher peak intensity than those of dried extracts stored at the

other two temperatures, which have a similar peak intensity to each other, throughout the

whole of the analysis. The lack of change in peak intensity di↵erence due to compound

polarity suggests that there was a reduced rate of, or no degradation of, metabolites in
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(a) Overlaid TICs for yolk organic extracts re-dissolved in methanol
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(b) Overlaid TICs for yolk organic dried extracts

Figure 4.4: Overlaid TICs for yolk organic extracts stored at all three temperatures a) re-
dissolved in methanol and b) dried, for 6 weeks
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dried extracts during storage, indicating that storing the extracts dried provides greater

metabolite stability, compared to re-dissolving extracts in methanol prior to storage.

The reason that the TIC of dried extracts that were stored at -25 C has a higher peak

intensity throughout the analysis compared to the TICs of dried extracts that were stored

at the other two temperatures, could be due to a better recovery of analytes during the

re-dissolving of the dried extracts that were stored at -25 C in methanol, than in the re-

dissolving of the extracts that were stored at the two lower temperatures. The similarities

in peak intensity between dried extracts that were stored at -46 C and -80 C indicate

that storing the extracts at these two temperatures results in a similar metabolite recovery

yield.

4.4.1.2.3 Comparison of storage condition

Comparisons were also made between extracts that were stored dried and re-dissolved

in methanol, by studying the TICs of the extracts following HPLC-MS analysis. Figure

4.5 shows overlaid TICs for the average chromatograms of extracts that were stored dried

and re-dissolved in methanol, at all three temperatures.

There is a clear di↵erence in peak intensity between the chromatograms of dried ex-

tracts, and extracts that were re-dissolved in methanol; there is a higher peak intensity

for most peaks in the TIC of re-dissolved extracts, compared to that of dried extracts.

This shows that the storage condition of extracts, i.e. dried or re-dissolved, does have

an impact on the resulting metabolite profile of the extracts after storage. This could

be due to, as postulated by Kalbitzer and Heistermann [11], an insu�cient recovery of

analytes from the wall of the sample tube during the re-dissolving of the dried extracts

in methanol following storage.

Page 100



Chapter 4

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Co
un

ts

Time (minutes)

Re-dissolved
Extracts

Dried Extracts

Figure 4.5: Overlaid average TICs of yolk organic extracts that were stored dried and
re-dissolved in methanol for 6 weeks

4.4.1.2.4 Comparison of storage condition at each temperature

Comparisons were also made between dried and re-dissolved extracts at each of the

three di↵erent storage temperatures. Figure 4.6 shows the overlaid TICs for the average

chromatograms of extracts that were stored dried and re-dissolved in methanol at -25 C,

-46 C, and -80 C.

These overlaid TICs show that there is some di↵erence between the average chro-

matograms of dried and re-dissolved extracts that have been stored at all three temper-

atures for 6 weeks. Figures 4.6 a) and c) show that, for extracts that were stored at -25

C and -80 C, there is very little di↵erence in peak intensity between the TICs of dried

and re-dissolved extracts during the first 25 minutes of analysis. This indicates that stor-

age condition does not have much of an e↵ect on the resulting metabolite profile of the

less non-polar compounds, following 6 weeks of storage at these temperatures. However,

the chromatograms of extracts stored at -80 C in Figure 4.6 c) do show a very slightly

Page 101



Chapter 4

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Co
un

ts

-25°C Re-dissolved Extracts
-25°C Dried Extracts

(a)

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Co
un

ts

-46°C Re-dissolved Extracts

-46°C Dried Extracts

(b)

0

2000000

4000000

6000000

8000000

10000000

12000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Co
un

ts

Time (minutes)

-80°C Re-dissolved Extracts

-80°C Dried Extracts

(c)

Figure 4.6: Overlaid TICs for dried and re-dissolved yolk organic extracts stored at a) -25 C
b) -46 C and c) -80 C for 6 weeks
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higher peak intensity for the TIC of re-dissolved extracts compared to that of dried ex-

tracts during the first 25 minutes of analysis. Between 25 and 70 minutes of analysis, the

chromatograms of extracts stored at both -25 C and -80 C show that some peaks are

of a considerably higher intensity in the TICs of re-dissolved extracts, compared to those

of dried extracts. This suggests that the storage condition of extracts does have some

e↵ect on the metabolite profile of the more non-polar compounds. After 70 minutes of

analysis, the opposite trend is observed, and there are several peaks which have a higher

peak intensity in the TICs of dried extracts, compared to those of re-dissolved extracts.

This di↵erence in peak intensity is greater between dried and re-dissolved extracts that

were stored at -25 C, than between the extracts that were stored at -80 C, suggesting

that lower storage temperatures provide greater stability of extracts.

This greater peak intensity for the TICs of dried extracts towards the end of the

analysis indicates that the storage condition of the extracts a↵ects the more non-polar

compounds in an opposite manner to the slightly more polar compounds, following 6

weeks of storage at these two temperatures. This could be because the more non-polar

compounds undergo degradation during storage, producing more of the polar compounds.

This degradation may occur at a higher rate in extracts that have been re-dissolved in

methanol prior to storage, resulting in the non-polar compounds having a lower abun-

dance, and the polar compounds having a higher abundance, in re-dissolved extracts

compared to dried extracts following 6 weeks of storage. This suggests that a better

metabolite stability is achieved through storing extracts dried, rather than re-dissolved

in methanol.

The chromatogram in Figure 4.6 b) shows a greater di↵erence in peak intensity be-

tween the chromatograms of dried and re-dissolved extracts during the first 25 minutes

of analysis, than was observed between the TICs of dried and re-dissolved extracts that

were stored at -80 C, with the TIC for re-dissolved extracts again having a higher peak

intensity. This trend is observed throughout the chromatograms of extracts stored at
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-46 C, in Figure 4.6 b); there is a higher peak intensity for almost all peaks in the TIC

of re-dissolved extracts compared to that of dried extracts. This indicates that at this

temperature, the polarity of the compounds does not influence how they are a↵ected by

the storage condition of the extracts. It could be that following 6 weeks of storage at this

temperature the metabolite recovery yield, resulting from the re-dissolving of extracts in

methanol, has a greater e↵ect on the resulting metabolite profile, than the di↵erence in

degradation rates between the extracts stored under di↵erent conditions.

4.4.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the extracts that were stored either dried or re-dissolved at the three di↵erent tempera-

tures. The scores plot in Figure 4.7 shows that the greatest di↵erence between extracts

was between those that were stored dried and re-dissolved, rather than between those

that were stored at di↵erent temperatures. It shows most dried extracts to be on the

right side of the plot, and most re-dissolved extracts to be on the left side of the plot,

divided by the purple dashed line. The only exceptions to this are one dried extract that

was stored at -25 C, and one re-dissolved extract that was stored at -46 C, which are

circled on the plot. It is not known why these two extracts show so much di↵erence to

the others within their sample sets, particularly the re-dissolved extract that was stored

at -46 C. Nothing di↵erent was noted during the extraction procedure that could explain

this, however it could be that an error occurred during the metabolite extraction that

was not noticed at the time. There is no obvious di↵erence in the chromatogram for

the dried extract stored at -25 C, compared to the other chromatograms for the other

extracts stored in the same conditions, however the chromatogram for the re-dissolved

extract that was stored at -46 C shows a much higher peak intensity for the penultimate

peak in the TIC, compared to the other chromatograms for the remaining extracts stored

in these conditions.
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Figure 4.7: PCA scores plot showing PC3 vs PC4 for yolk organic extracts that were stored
dried and re-dissolved at -25 C, -46 C, and -80 C for 6 weeks, including all
compounds with CV%<30%. PC3 explains 0.29% of the variance, and PC4
explains 0.10% of the variance. Dashed line separates dried and re-dissolved
extracts. Circled: samples on opposite sides of the plot to what is expected.

The separation between dried and re-dissolved extracts on the scores plot in Figure

4.7 is mostly across PC3, which only accounts for 0.29% of the total variance between

samples in the PCA, proving that the di↵erences in metabolite profile between extracts

stored under di↵erent conditions are extremely subtle. Although the QC samples are

not particularly tightly clustered, they do form a tighter grouping than the other sample

sets, which shows that the di↵erences between samples and sample sets are due to true

biological di↵erences, rather than instrumental drift.

4.4.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top

44 compounds remaining, after the removal of any duplicates, adducts or isotopes from

the top 100 compounds based on PC1 loadings, all 44 were found to be statistically
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significant.

There are 27 compounds of the top 44 that have been found to show significant dif-

ferences between dried and re-dissolved extracts at at least one storage temperature, one

compound that has been found to show a significant di↵erence between extracts stored

in the same condition but at di↵erent temperatures, and 5 compounds that have been

found to show significant di↵erences between dried and re-dissolved extracts at at least

one storage temperature, as well as between extracts stored in the same condition but at

di↵erent temperatures. The remaining 11 compounds have only been found to be signifi-

cantly di↵erent between extracts of di↵erent storage temperatures and conditions. This,

again, indicates that the storage condition of the extracts, i.e. dried or re-dissolved, has

a greater e↵ect on the resulting metabolite profiles of the extracts following 6 weeks of

storage, than the storage temperature. Of the 32 compounds that show a significant dif-

ference in abundance between dried and re-dissolved extracts; 25 are significantly di↵erent

between the two storage conditions at -25 C, 18 show a significant di↵erence between

the storage conditions at -46 C, and 19 are significantly di↵erent between the storage

conditions at -80 C. This shows that the storage condition of the extracts has a slightly

reduced e↵ect when extracts are stored at lower temperatures, indicating that it is best

to store extracts at lower temperatures to lessen any changes to metabolite profile that

may occur during storage. Of the 6 compounds that have been found to show statistical

significance when comparing extracts stored under the same conditions but at di↵erent

temperatures, only one of these shows a significant di↵erence in abundance between dried

extracts stored at di↵erent temperatures; the other compounds only show di↵erences be-

tween re-dissolved extracts stored at di↵erent temperatures. This indicates that storing

extracts dried, rather than re-dissolved in solvent, reduces the e↵ect of temperature on

the resulting metabolite profile after extract storage.

The 33 compounds that are statistically significant when comparing extracts from

the same storage condition but di↵erent temperatures, or the same temperature but
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di↵erent storage conditions, can be found in Table A.1 in Appendix A. This table shows

their CV%s, p-values resulting from ANOVA/Welch test, and figures representing the

di↵erence in the mean abundance of the compounds between the extracts. Those in bold

were also found to be statistically significant when confirmed with the raw data.

As can be seen in Table A.1, there are various trends in the di↵erent abundances

of the compounds between extracts stored under di↵erent conditions and at di↵erent

temperatures. Some compounds are clearly of a higher abundance in all re-dissolved

extracts, compared to in dried extracts, whereas others show the opposite trend and are

of a higher abundance in all dried extracts. One compound, m/z 734.5704, has a higher

abundance in the re-dissolved extracts that were stored at -25 C compared to the dried

extracts, but a higher abundance in the dried extracts that were stored at -46 C and -80

C compared to the re-dissolved extracts. However, this compound has not been found

to show any significant di↵erences between dried and re-dissolved extracts; it is only

significantly di↵erent when comparing re-dissolved extracts stored at -25 C and those

stored at -46 C and -80 C, which explains this lack of consistency regarding di↵erences

in abundance between dried and re-dissolved extracts at di↵erent temperatures.

There are 5 compounds that have been found to be significantly di↵erent between

dried and re-dissolved extracts at at least one storage temperature, as well as between

extracts stored in the same condition but at di↵erent temperatures. Of these 5 com-

pounds, m/z 744.5544, 844.7413, and 896.7739, show a correlation between abundance

and storage temperature in re-dissolved extracts. Only one of these 3 compounds, m/z

744.5544, also shows a correlation between abundance and storage temperature in dried

extracts, indicating that extract storage temperature has a greater e↵ect on the resulting

metabolite profile of extracts that were re-dissolved in methanol prior to storage, than

those that were dried. The remaining 2 compounds of the 5 that show statistical sig-

nificance due to both storage condition and temperature, m/z 610.5415 and 870.7593,

do not show a correlation between abundance and storage temperature in either dried
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or re-dissolved extracts; they both experience just one instance of a large di↵erence in

abundance between extracts stored at one temperature and condition compared to the

others. These large di↵erences in abundance for both compounds are due to re-dissolved

extracts, indicating that the metabolite profiles of dried extracts remain more stable than

those of extracts that are re-dissolved in methanol prior to storage.

4.4.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 44 statistically significant com-

pounds, and scores plots were again produced to display the variation between yolk

organic extracts that were stored either dried or re-dissolved in methanol, at the three

di↵erent temperatures.

The scores plot in Figure 4.8 shows a similar variation between extracts to the previous

scores plot in Figure 4.7. All of the dried extracts are on the right side of the plot, and

the re-dissolved extracts are on the left side of the plot, divided by the purple dashed

line. This, again, indicates that the storage condition of the extracts, i.e. dried or re-

dissolved, has a greater e↵ect on the resulting metabolite profiles of the extracts after

6 weeks of storage, than the storage temperature. The re-dissolved extracts show some

slight separation between those stored at the three di↵erent temperatures, indicating that

the top statistically significant compounds describe the variation between re-dissolved

extracts due to temperature, better than when all of the compounds with a CV%<30%

are included in the PCA. The extracts stored at -80 C are the closest to the centre of

the plot, those stored at -46 C are slightly further out, and those stored at -25 C are the

furthest to the left of the plot. As the re-dissolved extracts that were stored at -80 C are

the closest to the centre of the plot, and the QC samples, it indicates that they are the

most representative of all of the organic yolk extracts, and therefore, if extracts are to be

stored re-dissolved in methanol, they should be stored at -80 C to minimise any changes

to the metabolite profile. However, the dried extracts show no separation between those
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Figure 4.8: PCA scores plot showing PC2 vs PC3 for yolk organic extracts that were stored
dried and re-dissolved at -25 C, -46 C, and -80 C for 6 weeks, including the top
44 statistically significant compounds. PC2 explains 0.68% of the variance, and
PC3 explains 0.16% of the variance. Dashed line separates dried and re-dissolved
extracts. Circled: sample on opposite side of the plot to what is expected.

stored at di↵erent temperatures, indicating that temperature has very little e↵ect on the

metabolite profiles of dried extracts. This shows that storing extracts dried, rather than

re-dissolved in methanol, reduces the e↵ect of temperature on the metabolite profiles of

the extracts during storage, suggesting that it may be best to store extracts dried, rather

than re-dissolved in solvent.

The separation between dried and re-dissolved extracts on this scores plot is across

PC2, which describes 0.68% of the total variance between samples, compared to 0.29%

described by PC3 in the previous plot in Figure 4.13. This shows that when just the top

statistically significant compounds are included in the PCA, there is a higher percentage

of variance describing the di↵erence between dried and re-dissolved extracts. There is

again one re-dissolved extract (circled) that was stored at -46 C that appears to be an

outlier and is very separate to the rest of the extracts. This is the only sample that does
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not follow the trend of dried and re-dissolved extracts on opposite sides of the scores plot.

The QC samples are again more tightly grouped than the sample sets, indicating that

there was little instrumental drift a↵ecting the analysis, and thus that the analysis was

robust.

4.4.1.5 Summary

From the overlaid TICs in Figures 4.3-4.6, it could be seen that both storage tem-

perature and condition have an e↵ect on the resulting metabolite profiles of yolk organic

extracts, and that lower storage temperatures, and storing extracts dried rather than

re-dissolved in methanol, result in a greater stability of metabolite profile. The scores

plots in Figures 4.7 and 4.8 showed that the storage condition of extracts has a greater

impact on the resulting metabolite profile than the storage temperature, and that dried

extracts are more stable and less a↵ected by storage temperature than those re-dissolved

in methanol. The results of statistical tests in Table A.1 corroborated this. More com-

pounds were statistically significant in abundance between extracts that were stored dried

and re-dissolved, than between extracts that were stored at di↵erent temperatures, and

most of these significant di↵erences were found when extracts were stored at -25 C.

Most significant di↵erences in compound abundance between extracts stored at di↵erent

temperatures, were between extracts that were re-dissolved in methanol prior to storage,

rather than those that were dried.
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4.5 Yolk Organic Extracts: 12 weeks of Storage

Yolk organic extracts that were stored either dried or re-dissolved for 12 weeks, at

three di↵erent temperatures, were compared to see whether storage condition a↵ects the

metabolite profile of an extract.

4.5.1 Results and Discussion

4.5.1.1 Quality Control Analysis

Table 4.3 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 4.3: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts that had been stored
for 12 weeks

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 1195324 148814801 53806582 32840278 414676396 102728803

QC2 990121 147680808 47501712 23980003 321106340 60268247

QC3 1023021 96474264 35011757 22620912 279308663 43073610

QC4 729523 98113161 36854710 25312134 341966080 90328982

QC5 908633 106145274 36052987 28047237 352900642 62708273

QC6 969705 92755263 30139702 23867153 293959217 71670335

QC7 730983 84016867 58979142 31676917 470655274 67542800

SD 165478 26569881 10852033 4041002 67946189 19817018

Mean 935330 110571491 42620942 26906376 353510373 71188721

CV% 17.69 24.03 25.46 15.02 19.22 27.84

Page 111



Chapter 4

The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis.

Table 4.4 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 4.4: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts that had been stored
for 12 weeks

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 5.323 9.771 33.359 57.717 72.750 80.219

QC2 5.388 9.787 33.408 57.842 72.948 80.367

QC3 5.339 9.821 33.492 57.926 73.131 80.734

QC4 5.400 9.815 33.519 57.885 73.109 80.662

QC5 5.388 9.770 33.308 57.759 72.881 80.235

QC6 5.389 9.754 33.292 57.737 72.899 80.302

QC7 5.386 9.818 33.539 58.020 73.427 81.113

SD 0.030 0.027 0.102 0.111 0.223 0.332

Mean 5.373 9.791 33.417 57.841 73.021 80.519

CV% 0.55 0.28 0.30 0.19 0.31 0.41

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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4.5.1.2 Metabolite Profiling

4.5.1.2.1 Comparison of storage temperature

Comparisons were made between extracts that were stored at the three di↵erent tem-

peratures, by studying the TICs of the extracts following HPLC-MS analysis. Figure

4.9 shows overlaid TICs for the average chromatograms of extracts (both dried and re-

dissolved) stored at the three di↵erent temperatures.
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Figure 4.9: Overlaid average TICs of yolk organic extracts that were stored for 12 weeks at
-25 C, -46 C, and -80 C

When observing these overlaid TICs, a slight di↵erence can be seen between the

chromatograms of the extracts that were stored at di↵erent temperatures for 12 weeks.

Throughout the chromatograms, the peak intensity is greater for most peaks in the TIC

of extracts that have been stored at -46 C, than in the TICs of extracts that were stored

at the other two temperatures. The peak intensity for most of the peaks up until ap-

proximately 70 minutes is greater in the TIC of extracts that were stored at -25 C than

in the TIC of those that were stored at -80 C, at which point it becomes lower. This
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chromatogram indicates that over 12 weeks of storage, the storage temperature of the

extracts does have some e↵ect on the resulting metabolite profiles.

4.5.1.2.2 Comparison of temperature at each storage condition

The chromatograms in Figure 4.10 show comparisons between the TICs for re-

dissolved (Figure 4.10 a)) and dried (Figure 4.10 b)) extracts stored at all three tem-

peratures. The chromatogram in Figure 4.10 a) shows that until around 60 minutes of

analysis, there is a higher peak intensity for most peaks in the TIC of re-dissolved extracts

that were stored at -46 C, compared to those of the extracts that were stored at the other

two temperatures. The TIC of re-dissolved extracts that were stored at -25 C shows the

lowest peak intensity for most peaks, except for those at 5 and 27 minutes, which have

the greatest peak intensity. After 60 minutes of analysis, the TIC of re-dissolved extracts

that were stored at -80 C shows the highest peak intensity for most peaks, compared

to the TICs of extracts that were stored at the other two temperatures. The TIC of

re-dissolved extracts that were stored at -25 C again shows the lowest peak intensity for

most peaks, except for those between 65 and 68 minutes, which have the highest peak

intensity.

This greater peak intensity for the later-eluting, more non-polar compounds in the re-

dissolved extracts that were stored at -80 C, could be because these compounds may be

larger lipid molecules which degrade during storage, producing more polar compounds.

This degradation may occur at a lower rate in extracts that have been stored at lower

temperatures, resulting in the non-polar compounds having a higher abundance in ex-

tracts stored at the lower temperatures compared to the higher temperatures. The higher

abundance of the less non-polar compounds in the chromatograms of extracts that were

stored at -46 C could then be due to the higher rate of degradation of the more non-polar

compounds at the higher storage temperature, resulting in the increased production of

these less non-polar compounds compared to at -80 C. This suggests that lower storage
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(a) Overlaid TICs for yolk organic extracts re-dissolved in methanol
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(b) Overlaid TICs for yolk organic dried extracts

Figure 4.10: Overlaid TICs for yolk organic extracts stored at all three temperatures a) re-
dissolved in methanol and b) dried, for 12 weeks
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temperatures provide better metabolite stability of extracts than higher storage temper-

atures. The peak intensity for the TIC of extracts that were stored at -25 C may be

the lowest throughout most of the analysis, as over the second 6 week storage period

following the initial 6 week study the less non-polar compounds, as well as the more

non-polar compounds, in the extracts stored at this temperature may have undergone

further degradation, thereby decreasing in abundance.

The chromatogram in Figure 4.10 b) shows that the TIC of dried extracts that were

stored at -25 C has a higher peak intensity for most peaks throughout the entire chro-

matogram, compared to the TICs of the dried extracts stored at the other two tempera-

tures. This could be due to a higher recovery yield of analytes following the re-dissolving of

the dried extracts that were stored at -25 C in methanol, than following the re-dissolving

of the extracts that were stored at the other two temperatures. As there is no change in

peak intensity di↵erence due to compound polarity throughout the chromatogram, be-

tween the TICs of dried extracts stored at the three di↵erent temperatures, it indicates

that storing the extracts dried, rather than re-dissolved in methanol, prevents, or slows

down, the degradation of metabolites during storage. Therefore, storing extracts dried

provides better metabolite stability than re-dissolving them in methanol prior to storage.

During the first 35 minutes of analysis, the TICs of dried extracts that were stored

at -46 C and -80 C show a very similar peak intensity to each other, indicating that

storing extracts at these two temperatures provides similar metabolite recovery. However,

throughout the final 50 minutes of analysis, there is a more observable di↵erence in

peak intensity between the TICs of the dried extracts that were stored at these two

temperatures, with the TIC of the extracts that were stored at -80 C showing the lowest

peak intensity. This suggests that the more non-polar compounds, that elute later on in

the analysis, are more a↵ected by storage temperature than the less non-polar compounds

that elute earlier on in the analysis. However, by observing the latter 50 minutes of the

TIC of dried extracts that were stored at -80 C, it can be seen that the peak shape is
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di↵erent compared to the other TICs. This is because there was some slight retention

time drift throughout the analytical sequence, which a↵ected the average chromatogram

that was produced for dried extracts that were stored at -80 C. Therefore, this lower

peak intensity for the TIC of the dried extracts that were stored at -80 C, compared to

that of the dried extracts that were stored at -46 C, could be due to the poor peak shape

of the average chromatogram, rather than a reflection of compound abundance due to

storage temperature.

4.5.1.2.3 Comparison of storage condition

Comparisons were also made between extracts that were stored dried and re-dissolved

in methanol, by studying the TICs of the extracts following HPLC-MS analysis. Figure

4.11 shows overlaid TICs for the average chromatograms of extracts that were stored

dried and re-dissolved in methanol at all three temperatures.
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Figure 4.11: Overlaid average TICs of yolk organic extracts that were stored dried or
re-dissolved in methanol for 12 weeks
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This chromatogram shows that there is a clear di↵erence in metabolite profile between

extracts that were stored under the di↵erent conditions. The peak intensity is greater for

almost all peaks after 20 minutes, in the TIC of extracts that were stored re-dissolved

in methanol for 12 weeks, compared to that of extracts that were stored dried for 12

weeks. This could be due to incomplete recovery of the compounds in the dried extracts

during re-dissolving, following 12 weeks of storage. As it is the peaks later on in the

chromatogram that show the largest di↵erence in intensity between extracts stored under

the two di↵erent conditions, it indicates that it is the more non-polar compounds that

are more greatly a↵ected by storage condition following 12 weeks of storage.

4.5.1.2.4 Comparison of storage condition at each storage temperature

Comparisons were also made between dried and re-dissolved extracts at each of the

three di↵erent storage temperatures. Figure 4.12 shows the overlaid TICs for the average

chromatograms of extracts that were stored dried and re-dissolved in methanol at -25 C,

-46 C, and -80 C for 12 weeks.

Figure 4.12 shows that there is some di↵erence between the average chromatograms

of dried and re-dissolved extracts that have been stored at all three temperatures for 12

weeks. Figures 4.12 a) and c) show that for extracts that were stored at -25 C and -80 C,

there is very little di↵erence in peak intensity for most peaks, between the chromatograms

of dried and re-dissolved extracts during the first 45 minutes of analysis. This is similar

to what was observed for extracts stored at these temperatures for just 6 weeks, when

there was little di↵erence between the chromatograms of dried and re-dissolved extracts

during the first 25 minutes of analysis. This indicates that storage condition does not

have much of an e↵ect on the resulting metabolite profile of the less non-polar compounds,

following 12 weeks of storage at these temperatures. Between 45-72 minutes of analysis,

the chromatograms of extracts that were stored at -25 C show a higher peak intensity in

the TIC of re-dissolved extracts for most peaks, and after 72 minutes the opposite trend
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Figure 4.12: Overlaid TICs for dried and re-dissolved yolk organic extracts stored at a) -25
C b) -46 C and c) -80 C for 12 weeks
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is observed, and there is a higher peak intensity in the TIC of dried extracts.

The greater peak intensity observed towards the end of the TIC of dried extracts that

were stored at -25 C compared to that of re-dissolved extracts, indicates that the storage

condition of the extracts a↵ects the more non-polar compounds in an opposite manner

to the slightly more polar compounds, following 12 weeks of storage at this temperature,

as it did following just 6 weeks of storage. This again could be due to the lower rate of

degradation of the more non-polar compounds in dried extracts during storage, indicating

that dried extracts experience greater metabolite stability compared to extracts that are

re-dissolved in methanol prior to storage.

However, the chromatograms of extracts that were stored at -80 C show a higher peak

intensity in the TIC of re-dissolved extracts that were stored at -80 C for almost all peaks

after 45 minutes, compared to that of dried extracts. This trend was also observed in the

chromatograms of extracts that were stored at -46 C, in Figure 4.12 b), which showed a

higher peak intensity for almost all peaks in the TIC of re-dissolved extracts compared to

dried extracts. This, again, indicates that at a storage temperature of -46 C, the polarity

of the compounds does not influence how they are a↵ected by the storage condition of

the extracts. It could be that following 12 weeks of storage at this temperature, the

metabolite recovery yield has a greater e↵ect on the resulting metabolite profile than the

di↵erence in rates of degradation between dried and re-dissolved extracts.

The higher peak intensity that is observed throughout the second half of the TICs of re-

dissolved extracts, compared to dried extracts when stored at -80 C in Figure 4.12 c) was

not expected, as based on previous results it was anticipated that at lower temperatures,

the peak intensity di↵erence between the TICs of extracts that were stored dried and

re-dissolved would be less, and that the intensity of the peaks relating to more non-polar

compounds would be higher for dried extracts compared to re-dissolved extracts, as the

rate of degradation would be lower. However, it can be seen that the peaks in the TIC

of dried extracts at -80 C, as well as at -46 C, have a di↵erent peak shape compared
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to the other chromatograms. This is because retention time drift occurred throughout

the analytical sequence, a↵ecting the average chromatograms that were produced. This

could have a↵ected the observed peak intensities in the chromatograms, explaining the

surprising result regarding the lower peak intensity in the TIC of dried extracts at -80

C.

4.5.1.3 Multivariate Statistics

Following PCA, scores plots were produced to display the variation between samples,

to observe whether there was any separation between the sets of extracts that were stored

under di↵erent conditions, at di↵erent temperatures, for 12 weeks.

Figure 4.13 shows a scores plot of PC2 vs PC4. There is a clear separation between

extracts that were stored dried, and those that were re-dissolved in methanol prior to

storage, as indicated by the purple dashed line, and less variation between extracts that

were stored at di↵erent temperatures. This indicates that over 12 weeks of storage,

the storage condition of the extracts, i.e. dried or re-dissolved, has a greater impact

on the resulting metabolite profile of the extracts, than temperature. The separation

between the dried and re-dissolved extracts is across PC4, which describes 0.13% of the

variance between all samples, showing the extreme subtlety of the di↵erences between

these extracts.

This plot also shows that there is some separation between the re-dissolved extracts

that were stored at di↵erent temperatures. Although there is not a clear separation, and

there is some variation within the extracts stored under the same condition and at the

same temperature, three groups can be observed for the re-dissolved extracts stored at

the three di↵erent temperatures. This indicates that temperature has a greater e↵ect

on the metabolite profiles of extracts that are re-dissolved in methanol prior to storage,

compared to those that are stored dried, when stored for 12 weeks. The re-dissolved

extracts that were stored at -80 C are the closest to the centre of the plot, followed by
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Figure 4.13: PCA scores plot showing PC2 vs PC4 for yolk organic extracts that were stored
dried and re-dissolved at -25 C, -46 C, and -80 C for 12 weeks, including all
compounds with CV%<30%. PC2 explains 0.29% of the variance, and PC4
explains 0.13% of the variance. Dashed line separates dried and re-dissolved
extracts. Circled: samples separate to the rest of their sample sets.

those that were stored at -46 C, whilst those that were stored at -25 C are the furthest

out from the centre. As the re-dissolved extracts that were stored at -80 C are the

closest to the centre of the plot, and the QC samples, it indicates that they are the most

representative of all of the yolk organic extracts. Therefore, if extracts are re-dissolved

in methanol prior to storage, they should be stored at -80 C to minimise any changes to

the metabolite profile.

The plot in Figure 4.13 shows that there is most variation within the re-dissolved

extracts that were stored at -25 C for 12 weeks. This indicates that extracts stored

under this condition, and at this temperature, are the most susceptible to metabolite

degradation during storage. There are two extract samples that are observed on the

opposite side of the plot to what would be expected (circled); one dried extract that was
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stored at -80 C, and one re-dissolved extract that was stored at -25 C. These samples

are grouped more closely to the extracts that were stored at the same temperature but

under di↵erent conditions, than the extracts that were stored under the same conditions

at the same temperature. There is also one re-dissolved extract that was stored at -80 C

(circled) that is quite separate to the rest of the extracts stored under the same condition

at the same temperature. It is not known why these extracts show more separation from

the other extracts in the same sample set, as nothing unusual was noticed during the

extraction procedure or during the analysis.

The QC samples in this scores plot in Figure 4.13 are quite spread out, and show

more variation than some of the sample sets themselves. This indicates that the analysis

may not have been as robust as it could have been, and that there may have been some

instrumental drift occurring throughout the analysis. This spread in QC samples could

also be due to the subtlety of the di↵erences between the extract sample sets; as the

di↵erences are so small, indicated by the amount of variation described by PC2 and PC4

(0.29% and 0.13% respectively), the PCA has found variation within the QC samples as

well as between the sample sets. The two QC samples that show this spread of variation

are the QC sample that was analysed immediately prior to sample analysis, and the final

QC sample that was analysed immediately following the final extract sample. However,

the analysis was still considered robust, as the QC analysis in section 4.5.1.1 showed the

CV%s of the peak areas of all six peaks that were monitored throughout the seven QC

samples to be within acceptable limits. The samples were also completely randomised

prior to analysis, so any instrumental drift that may have been present would not have

caused any bias in the analysis of the samples.

4.5.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 49

compounds remaining, after the removal of any duplicates, adducts or isotopes from the
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top 100 compounds based on PC1 loadings, 46 were found to be statistically significant.

There are 22 compounds, of the top 46, that have been found to show significant

di↵erences between dried and re-dissolved extracts at at least one storage temperature,

11 compounds that have been found to show significant di↵erences between extracts

stored in the same condition but at di↵erent temperatures, and 10 compounds that

have been found to show significant di↵erences between dried and re-dissolved extracts

at at least one storage temperature, as well as between extracts stored in the same

condition but at di↵erent temperatures. The remaining 3 compounds have only been

found to be significantly di↵erent between extracts stored under di↵erent temperatures

and conditions. This again indicates that the storage condition of the extracts, i.e. dried

or re-dissolved, has a greater e↵ect on the resulting metabolite profile of the extracts

following storage, than the storage temperature.

Of the 32 compounds that show a significant di↵erence in abundance between dried

and re-dissolved extracts; 28 are significantly di↵erent between the two storage conditions

at -25 C, 9 show a significant di↵erence between the storage conditions at -46 C, and 13

are significantly di↵erent between the storage conditions at -80 C. This shows that the

storage condition of the extracts has a reduced e↵ect when extracts are stored at lower

temperatures, indicating that it is best to store extracts at lower temperatures, to lessen

any metabolite profile changes that may occur during storage. Of the 21 compounds

that have been found to show a significant di↵erence between extracts stored under the

same conditions but at di↵erent temperatures, only one compound has been found to be

significantly di↵erent between dried extracts stored at di↵erent temperatures; the other

20 compounds are all only statistically significant for re-dissolved extracts. This indicates

that storage temperature has less of an e↵ect on the resulting metabolite profile of an

extract when it has been stored dried for 12 weeks, rather than re-dissolved in methanol.

The 43 compounds that are statistically significant when comparing extracts of the

same storage condition but di↵erent temperatures, or the same temperature but di↵erent
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storage conditions, can be found in Table A.2 in Appendix A. This table shows their

CV%s, p-values resulting from ANOVA/Welch test, and figures representing the di↵er-

ence in the mean abundance of the compounds between the extracts. Those in bold were

also found to be statistically significant when confirmed with the raw data.

As can be seen in Table A.2, there are various trends in the di↵erent abundances of

the compounds between extracts stored under di↵erent conditions and at di↵erent tem-

peratures. Some compounds have a much higher abundance in dried extracts, whereas

others have a much higher abundance in re-dissolved extracts. This appears to be the

greatest trend that is observed throughout the compounds; a di↵erence in compound

abundance between extracts stored dried and re-dissolved in methanol, rather than be-

tween extracts stored at di↵erent temperatures. This again indicates that the storage

condition of the extract has a greater impact on the resulting metabolite profile, than the

storage temperature.

The trends in the di↵erent abundances of these compounds are quite erratic. Several

compounds show a large di↵erence in abundance between dried and re-dissolved extracts

at one storage temperature, then show an opposite di↵erence in abundance between the

two storage conditions at other temperatures. However, some of these compounds are only

statistically significant due to di↵erent storage temperatures, which is why the storage

condition appears to have no consistent impact on the di↵erences in abundance between

extracts. The rest of these compounds have been found to show significant di↵erences in

abundance between extracts due to both storage temperature and condition; clearly for

these compounds, storage temperature had a greater e↵ect on their abundance than the

storage condition, explaining why there is no consistent di↵erence in abundance between

dried and re-dissolved extracts at di↵erent storage temperatures.

Of the 11 compounds that have been found to show significant di↵erences in abundance

between extracts due only to storage temperature, 10 of these show a correlation, mostly

statistically significant, between abundance in re-dissolved extracts and storage temper-
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ature. A correlation between abundance and storage temperature can be seen for only 6

of these compounds, and only one significantly so, in dried extracts. This again indicates

that temperature has a stronger impact on the resulting metabolite profile of extracts

that are stored re-dissolved in methanol, rather than dried. The remaining compound

of these 11, m/z 905.8284, shows a large di↵erence in abundance between re-dissolved

extracts that were stored at -25 C and those that were stored at -46 C and -80 C, but

not between extracts that were stored at -46 C and -80 C. This indicates not only that

re-dissolved extracts are more susceptible to metabolite profile changes due to di↵erent

storage temperatures, but also that metabolite profiles of extracts remain more stable

between di↵erent storage temperatures, when these temperatures are lower.

For the 10 compounds that have been found to show significant di↵erences between

extracts due to both storage condition and temperature, all of the observed trends in

compound abundance due to storage temperature a↵ect the re-dissolved extracts, rather

than those that were dried prior to storage, again indicating that re-dissolved extracts are

more a↵ected by storage temperature than dried extracts. Two of these compounds; m/z

339.2891 and m/z 928.8331 show a large di↵erence in abundance between the re-dissolved

extracts stored at -25 C and those stored at -46 C and -80 C, whilst the compound

abundances in the dried extracts appear to remain similar to one another regardless of

the storage temperature. This indicates not only that dried extracts are less a↵ected by

temperature than re-dissolved extracts, but also that the lower the storage temperature,

the smaller the di↵erence in compound abundance between extracts stored at di↵erent

temperatures. Three of these compounds; m/z 860.7736, 871.7624, and 894.7560, all show

a large di↵erence in abundance between re-dissolved extracts that were stored at -25 C

and all other extracts. This indicates that for these compounds, storing the extracts

re-dissolved in methanol at -25 C results in a large di↵erence in abundance compared

to the other storage temperatures and conditions, making it the least stable method of

extract storage.
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4.5.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 46 statistically significant com-

pounds, and scores plots were again produced to display the variation between yolk

organic extracts that were stored either dried or re-dissolved in methanol, at the three

di↵erent temperatures. Figure 4.14 shows a scores plot of PC2 vs PC3.
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Figure 4.14: PCA scores plot showing PC2 vs PC3 for yolk organic extracts that were stored
dried and re-dissolved at -25 C, -46 C, and -80 C for 12 weeks, including the
top 46 statistically significant compounds. PC2 explains 0.78% of the variance,
and PC3 explains 0.24% of the variance. Dashed line separates dried and
re-dissolved extracts. Circled: sample separate to rest of sample set.

This scores plot shows a similar separation between extracts that were stored under

di↵erent conditions, at di↵erent temperatures, to the plot observed in Figure 4.13, fol-

lowing PCA including all compounds with a CV% <30%. There is a clear separation

between the dried extracts and those that were stored re-dissolved in methanol for 12

weeks, as indicated by the purple dashed line, with no overlap of extracts between the

two conditions. The separation between dried and re-dissolved extracts is across PC2,
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which describes 0.78% of the total variance between samples, compared to only 0.13%

described by PC4 in the previous plot, showing that when PCA is carried out using

only the top statistically significant compounds, there is a higher percentage of variance

describing the di↵erence between dried and re-dissolved extracts. However, in contrast

to the previous scores plot, there is only a very slight separation within the re-dissolved

extracts between extracts stored at the three di↵erent temperatures. This indicates that

for the top 46 compounds included in this PCA, the amount of variation between dried

and re-dissolved extracts is much greater than the variation between re-dissolved extracts

stored at di↵erent temperatures, so this trend is not observed as clearly.

There is only one sample extract in this scores plot that shows separation to the other

extracts stored under the same condition and at the same temperature (circled), and it is

the same re-dissolved extract that was stored at -80 C, that showed separation to other

extracts in the previous plot in Figure 4.13. This indicates that there was potentially an

anomaly in the metabolite extraction procedure that a↵ected this extract sample. The

other extracts that were observed to be on opposite sides of the plot to what was expected

in Figure 4.13, are grouped with the rest of the extracts stored under the same condition

and at the same temperature in this plot in Figure 4.14. This shows that by carrying out

PCA using only the top statistically significant compounds, the di↵erence between dried

and re-dissolved extracts that is observed on the resulting scores plot is accentuated.

The QC samples in this plot in Figure 4.14 are grouped together much more closely

than in the previous scores plot. This confirms that part of the reason why the QC

samples were so spread out in the previous plot is due to the subtlety in the di↵erences

between the extract sample sets; when only the top statistically significant compounds

are used, the di↵erence between the sample sets is accentuated, and therefore the PCA

does not find as much variation within the QC samples.

Page 128



Chapter 4

4.5.1.5 Summary

The overlaid TICs in Figures 4.9-4.12 showed that both storage temperature and stor-

age condition have an e↵ect on the resulting metabolite profiles of extracts, and that

storing extracts dried, at lower temperatures, provides the best metabolite stability. The

scores plots in Figures 4.13 and 4.14 showed a greater variation between extracts due to

storage condition, rather than storage temperature. They showed some variation between

re-dissolved extracts due to temperature, but no temperature based variation between

dried extracts. The results of statistical tests seen in Table A.2 confirmed these obser-

vations. They showed that more compounds were statistically significant in abundance

when comparing extracts stored under di↵erent conditions, rather than at di↵erent tem-

peratures, particularly when extracts were stored at -25 C. Most compounds that were

significantly di↵erent in abundance between extracts that were stored at di↵erent tem-

peratures, were found in extracts that were re-dissolved in methanol, rather than dried.

Fewer compounds were statistically significant in abundance when comparing extracts

that were stored at -46 C and -80 C, than when comparing extracts that were stored at

these temperatures with those that were stored at -25 C.
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4.6 Yolk Organic Extracts: Comparison of compounds

between 6 and 12 weeks of storage

The significant di↵erences of the top statistically significant compounds between the

yolk organic extracts stored under di↵erent conditions at the three di↵erent temperatures

were compared between 6 weeks and 12 weeks of storage, to observe how the significance

changed with increasing storage time.

4.6.1 Results and Discussion

4.6.1.1 Top statistically significant compounds following six weeks of storage

Table A.3 in Appendix A shows the ANOVA/Welch test p-values of the top 27 com-

pounds that were found to be significantly di↵erent, following confirmation using the

raw data, between the yolk organic extracts of eggs stored under di↵erent conditions and

at di↵erent temperatures following 6 weeks of storage, as well as the p-values of these

compounds after 12 weeks of storage.

Of these 27 compounds, 15 were found to not be significantly di↵erent between yolk

organic extracts that were stored under di↵erent conditions and at di↵erent temperatures

for 12 weeks. This could be because the metabolite degradation a↵ecting the abundances

of these compounds may have occurred at di↵erent rates in the extracts that were stored

under di↵erent conditions and at di↵erent temperatures. After just 6 weeks of storage,

this resulted in a significant di↵erence in compound abundance. However, by 12 weeks

of storage the degradation processes occurring at faster rates may have slowed down

due to a reduced number of molecules, and those occurring at slower rates may have

eventually reached the same point, resulting in these compounds being present in a similar

abundance between all extracts.

Twelve of these compounds were found to be significantly di↵erent between yolk or-
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ganic extracts that were stored under di↵erent conditions and at di↵erent temperatures

for 12 weeks, as well as for 6 weeks. This indicates that for these compounds, an in-

creased storage time from 6 to 12 weeks does not appear to have an e↵ect on their relative

abundances between extracts that were stored under di↵erent conditions and at di↵er-

ent temperatures. This could be because these compounds have a di↵erent stability to

the other compounds, when present in extracts stored under di↵erent conditions. Under

some conditions and temperatures their abundances may have been a↵ected by metabo-

lite degradation during storage, whereas under other storage conditions and temperatures

they may have remained stable and experienced little to no di↵erence in abundance due

to metabolite degradation. Therefore after 12 weeks of storage, as well as 6 weeks of

storage, the di↵erences in abundance of these compounds between the extracts stored

under di↵erent conditions and temperatures remained statistically significant.

4.6.1.2 Top statistically significant compounds following twelve weeks of

storage

Table A.4 in Appendix A shows the ANOVA/Welch test p-values of the top 12 com-

pounds that were found to be significantly di↵erent, following confirmation using the

raw data, between the yolk organic extracts of eggs stored under di↵erent conditions and

at di↵erent temperatures following 12 weeks of storage, as well as the p-values of these

compounds after just 6 weeks of storage.

Only one of these compounds was found to not be statistically significant when com-

paring yolk organic extracts that were stored under di↵erent conditions and at di↵erent

temperatures for just 6 weeks. This suggests that for this compound, the length of time

of extract storage does a↵ect the relative abundance between extracts stored under dif-

ferent conditions and at di↵erent temperatures. This could be because after only 6 weeks

of extract storage, there may have been very little metabolite degradation a↵ecting the

abundance of this compound in any of the extracts. However, following a further 6 weeks
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of storage, there may have been more metabolite degradation in some of the extracts

stored under certain conditions and temperatures, resulting in a significant di↵erence in

the abundance of this compound between these extracts and those that were stored under

other conditions and temperatures.

The rest of these compounds were statistically significant after only 6 weeks of extract

storage, as well as after the full 12 weeks. This suggests that the metabolite degradation

a↵ecting the abundances of these compounds had already begun in extracts stored under

some conditions and temperatures, after just 6 weeks of storage. This indicates that these

compounds are not stable during even short term extract storage under certain conditions

and temperatures.
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4.7 Albumen Organic Extracts: 44 weeks of storage

Albumen organic extracts that were stored either dried or re-dissolved, at three di↵er-

ent temperatures, for 44 weeks were compared to observe if and how long term storage,

under di↵erent temperatures and conditions, a↵ects the metabolite profile of an extract.

4.7.1 Results and Discussion

4.7.1.1 Quality Control Analysis

Table 4.5 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 4.5: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for albumen organic extracts that had been
stored for forty-four weeks

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 13050477 16697134 33108106 1620097 1794590 5442613

QC2 12615777 17654602 31493708 1834811 1671667 6936308

QC3 14403817 17697206 34338316 1701872 1778483 6506407

QC4 13449121 17210864 32774138 1801302 1648707 6545390

QC5 13292821 17117644 33183207 1933109 1533665 6060444

QC6 13904515 17165798 32658038 1995869 1627966 6171043

QC7 14005298 17831378 35091813 2151064 1662589 6996809

SD 613494 403683 1173401 180330 89487 541254

Mean 13531689 17339232 33235332 1862589 1673952 6379859

CV% 4.53 2.33 3.53 9.68 5.35 8.48
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis.

Table 4.6 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 4.6: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for albumen organic extracts that had been
stored for forty-four weeks

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 8.210 12.357 15.286 16.969 19.441 22.875

QC2 8.203 12.383 15.287 16.979 19.451 22.885

QC3 8.220 12.401 15.304 16.979 19.451 22.885

QC4 8.202 12.399 15.303 16.978 19.466 22.917

QC5 8.222 12.403 15.325 16.998 19.470 22.937

QC6 8.265 12.462 15.380 17.057 19.529 22.963

QC7 8.304 12.468 15.388 17.080 19.535 22.986

SD 0.038 0.041 0.043 0.044 0.038 0.043

Mean 8.232 12.410 15.325 17.006 19.478 22.921

CV% 0.46 0.33 0.28 0.26 0.20 0.19

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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4.7.1.2 Metabolite Profiling

4.7.1.2.1 Comparison of storage temperature

Comparisons were made between extracts that were stored at the three di↵erent tem-

peratures, by studying the TICs of the extracts following HPLC-MS analysis. Figure

4.15 shows overlaid TICs for the average chromatograms of extracts (both dried and

re-dissolved) stored at the three di↵erent temperatures.
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Figure 4.15: Overlaid average TICs of albumen organic extracts that were stored at -25 C,
-46 C, and -80 C for 44 weeks

By observing these overlaid TICs in Figure 4.15, a clear di↵erence in metabolite profile

can be seen between albumen organic extracts that were stored at the three di↵erent

temperatures. The peak intensity for most peaks is highest in the TIC of extracts that

were stored at -25 C, particularly for the four largest peaks, which show the greatest

di↵erence in peak intensity. There is some slight di↵erence in peak intensity between the

TICs of extracts that were stored at -46 C and -80 C; some peaks appear to have a higher

intensity in the TIC of extracts that were stored at -46 C, whilst others have a higher
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intensity in the TIC of extracts that were stored at -80 C. As the greatest di↵erence

that can be observed is between the TICs of extracts that were stored at -25 C, and

those that were stored at -46 C and -80 C, it indicates that the metabolite profiles of

extracts become more stable between extracts stored at di↵erent temperatures, as the

storage temperature decreases.

4.7.1.2.2 Comparison of temperature at each storage condition

The chromatograms in Figure 4.16 show comparisons between the TICs of re-dissolved

(Figure 4.16 a)) and dried (Figure 4.16 b)) extracts stored at all three temperatures. The

chromatogram in Figure 4.16 a) shows a higher peak intensity for most peaks in the TIC

of re-dissolved extracts that were stored at -25 C, in the first 16 minutes of analysis,

compared to the TICs of the extracts that were stored at -46 C and -80 C. The peak

intensity for some of the peaks is greater in the TIC of extracts that were stored at -46 C

compared to that of extracts that were stored at -80 C, whilst other peaks show a higher

intensity in the TIC of extracts that were stored at -80 C. Throughout the remaining

analysis time, there is a higher intensity for most of the peaks in the TIC of extracts

that were stored at -46 C, with the TIC of extracts that were stored at -25 C showing

a higher intensity for some peaks.

A similar trend was observed in the chromatogram in Figure 4.16 b), however the

higher peak intensity for most peaks in the TIC of dried extracts that were stored at -25

C was observed up until 25 minutes, rather than 16 minutes. The final few peaks all

show a very slightly higher peak intensity for the TICs of extracts that were stored at

-80 C, compared to those of the extracts stored at the other two temperatures.

The reason for the TICs of extracts that were stored at -25 C showing a lower intensity

for the peaks relating to the later eluting, more non-polar compounds compared to the

TICs of extracts that were stored at the other two temperatures, could be due to these

compounds undergoing a higher rate of degradation during storage, compared to the
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(a) Overlaid TICs for albumen organic extracts re-dissolved in methanol
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(b) Overlaid TICs for albumen organic dried extracts

Figure 4.16: Overlaid TICs for albumen organic extracts stored at all three temperatures a)
re-dissolved in methanol and b) dried, for 44 weeks

Page 137



Chapter 4

compounds in extracts that were stored at the lower temperatures. This would result in

a lower abundance of these compounds, and therefore a higher abundance of the earlier

eluting, less non-polar compounds, which was observed by the higher peak intensity for

the peaks relating to these less non-polar compounds. This suggests that the storage

of extracts at lower temperatures provides a greater metabolite stability than storage at

higher temperatures.

4.7.1.2.3 Comparison of storage condition

Comparisons were also made between extracts that were stored dried, and those that

were re-dissolved prior to storage, by studying the TICs of the extracts following HPLC-

MS analysis. Figure 4.17 shows overlaid TICs for the average chromatograms of the dried

and re-dissolved extracts.
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Figure 4.17: Overlaid average TICs of albumen organic extracts that were stored dried and
re-dissolved for 44 weeks
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It can be seen from the chromatograms in Figure 4.17, that there is a clear di↵erence

in metabolite profile between albumen organic extracts that were stored dried, and those

that were re-dissolved prior to storage. The peak intensity is greater for most peaks in the

TIC of re-dissolved extracts, compared to that of dried extracts, again particularly for the

four largest peaks in the chromatograms, which show the greatest di↵erence in intensity

between dried and re-dissolved extracts. This could be due to incomplete compound

recovery during the re-dissolving of dried extracts in methanol, following storage. There

is less di↵erence in peak intensity for the peaks in the latter half of the chromatograms,

indicating that the more non-polar compounds are less a↵ected by storage condition,

than the more polar compounds.

4.7.1.2.4 Comparison of storage condition at each storage temperature

Comparisons were also made between dried and re-dissolved extracts at each of the

three di↵erent storage temperatures. Figure 4.18 shows the overlaid TICs for the average

chromatograms of extracts that were stored dried and re-dissolved in methanol at -25 C,

-46 C, and -80 C for 44 weeks.

The chromatograms in Figures 4.18 a) and c) for extracts that were stored at -25 C

and -80 C, show very similar di↵erences in peak intensity between the TICs of dried

and re-dissolved extracts. During the first 16 minutes of analysis there is a higher peak

intensity for most peaks in the TIC of re-dissolved extracts compared to dried extracts,

however throughout the remaining analysis time there is a higher peak intensity in the

TICs of dried extracts. This suggests that the later eluting, more non-polar compounds

were degraded at a faster rate in the re-dissolved extracts than the dried extracts, resulting

in a lower abundance of these compounds, as evidenced by the lower peak intensity. This

will have resulted in the observed higher abundance of the less non-polar, earlier eluting

compounds in the re-dissolved extracts, as these will be the degradation products of

the more non-polar compounds. This suggests that storing extracts dried, rather than
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Figure 4.18: Overlaid TICs for dried and re-dissolved albumen organic extracts stored at a)
-25 C b) -46 C and c) -80 C for 44 weeks
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re-dissolved in methanol, provides a better metabolite stability.

The chromatogram in Figure 4.18 b) shows a higher peak intensity for most peaks

throughout the whole analysis in the TIC of re-dissolved extracts compared to dried

extracts. This indicates that at this temperature, the polarity of the compounds does

not influence how they are a↵ected by the storage condition of the extracts. It could be

that at this storage temperature, the di↵erence in recovery yield of compounds during

the re-dissolving of extracts in methanol has a greater e↵ect on the resulting metabolite

profile than the di↵erence in rates of degradation between dried and re-dissolved extracts.

4.7.1.3 Multivariate Statistics

Following PCA, scores plots were produced to display the variation between samples,

to observe whether there was any separation between the sets of albumen organic extracts

that were stored under di↵erent conditions and at di↵erent temperatures, for 44 weeks.

Figure 4.19 shows a scores plot of PC3 vs PC4.

As can be seen in Figure 4.19, contradictory to what was observed in the chro-

matograms in 4.15 and 4.17, there is no separation on the scores plot between extracts

that were stored under di↵erent conditions and at di↵erent temperatures. This indi-

cates that the di↵erences between random extracts are greater than any di↵erences that

were observed in the previous chromatograms, between extracts that were stored under

di↵erent conditions and at di↵erent temperatures. This shows that for albumen organic

extracts, the e↵ect that storage condition and temperature have on the resulting metabo-

lite profiles is very subtle.

The QC samples on the scores plot in Figure 4.20 are grouped together more tightly

than the samples from other sample sets, indicating that the analysis was robust and

that there was no instrumental drift a↵ecting the analysis.
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Figure 4.19: PCA scores plot showing PC3 vs PC4 for albumen organic extracts that were
stored dried and re-dissolved at -25 C, -46 C, and -80 C for 44 weeks,
including all compounds with CV%<30%. PC3 explains 0.34% of the variance,
and PC4 explains 0.23% of the variance.

4.7.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 39

compounds remaining, after the removal of any duplicates, adducts or isotopes from the

top 100 compounds based on PC1 loadings, 33 were found to be statistically significant.

There are 8 compounds, of the top 33, that have been found to show significant

di↵erences between dried and re-dissolved extracts at at least one storage temperature,

3 compounds that have been found to show significant di↵erences between extracts that

were stored in the same condition but at di↵erent temperatures, and 12 compounds

that have been found to show significant di↵erences both between dried and re-dissolved

extracts at at least one storage temperature, as well as between extracts stored in the same

condition but at di↵erent temperatures. The remaining 10 compounds have only been
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found to be significantly di↵erent between extracts from di↵erent storage temperatures

and conditions. This indicates that storage condition, i.e. dried or re-dissolved, has a

slightly greater e↵ect on the resulting metabolite profiles of extracts than temperature,

and that most compounds, if they are significantly a↵ected by storage temperature, are

likely to also be a↵ected by storage condition. As there are a high proportion of these top

statistically significant compounds that do not show any statistical significance due to

storage condition or temperature, it indicates that the di↵erences in metabolite profile,

between extracts stored under di↵erent conditions, and at di↵erent temperatures, are

very small.

Of the 20 compounds that show a significant di↵erence in abundance between dried and

re-dissolved extracts; 13 are significantly di↵erent between dried and re-dissolved extracts

when stored at -25 C, one compound shows statistical significance when extracts are

stored at -46 C, and 8 are significantly di↵erent between dried and re-dissolved extracts

when stored at -80 C. This indicates that storage condition, i.e. dried or re-dissolved,

has a greater e↵ect on the compound abundances in extracts when they have been stored

at -25 C, compared to at the two lower temperatures, indicating that it is better to store

extracts at a lower storage temperature to improve stability. Of the 15 compounds that

have been found to show a significant di↵erence between extracts stored under the same

conditions but at di↵erent temperatures, only one of these compounds is statistically

significant for dried extracts; the other 14 compounds only show significant di↵erences

between re-dissolved extracts stored at the three di↵erent temperatures. This indicates

that storing extracts dried, rather than re-dissolved in methanol, improves the stability of

the extracts across di↵erent storage temperatures, resulting in more uniform metabolite

profiles between the extracts.

The 23 compounds that are statistically significant when comparing extracts stored

under the same storage condition but di↵erent temperatures, or the same temperature

but di↵erent storage conditions, can be found in Table A.5 in Appendix A. This table

Page 143



Chapter 4

shows their CV%s, p-values resulting from ANOVA/Welch test, and figures representing

the di↵erence in the mean abundance of the compounds between the extracts. Those in

bold were also found to be statistically significant when confirmed with the raw data.

As can be seen in Table A.5, there are various trends in the di↵erent abundances of the

compounds between extracts stored under di↵erent conditions and at di↵erent tempera-

tures. Some compounds have a much higher abundance in dried extracts, whereas others

have a much higher abundance in re-dissolved extracts, and some compounds show a large

di↵erence in abundance between dried and re-dissolved extracts at one storage tempera-

ture, then show an opposite di↵erence in abundance between the two storage conditions

at the other temperatures. Of the 13 compounds that show an opposite trend in abun-

dance between dried and re-dissolved extracts at the di↵erent temperatures, 3 of these

were only statistically significant due to storage temperature, whilst the other 10 were

significantly di↵erent between extracts that were stored under di↵erent conditions, as well

as between extracts stored at di↵erent temperatures. Clearly, for these 10 compounds,

the e↵ect of storage temperature had a greater impact on compound abundance than

the storage condition, explaining the lack of consistent di↵erence in abundance between

dried and re-dissolved extracts at the di↵erent storage temperatures.

Of the 15 compounds that have been found to show significant di↵erences in abun-

dance between extracts due to storage temperature, 11 of these show a correlation be-

tween abundance and storage temperature in re-dissolved extracts. This includes one

compound, m/z 934.6395, which shows an opposite correlation between abundance and

storage temperature in dried extracts compared to re-dissolved extracts. One of the re-

maining 4 compounds, m/z 617.5126, shows a correlation between abundance and storage

temperature in dried extracts, but not in re-dissolved extracts. As most correlation is

observed between compound abundance and storage temperature in re-dissolved extracts,

this indicates that storage temperature has a stronger impact on the resulting metabolite

profile of extracts that are stored re-dissolved in methanol, rather than dried. Although
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the compound m/z 617.5126 shows no correlation between abundance and storage tem-

perature for re-dissolved extracts, it is highly significantly di↵erent in abundance between

re-dissolved extracts that were stored at -25 C and -46 C, and those that were stored at

-80 C. The remaining 3 compounds, m/z 294.1547, 328.1362, and 371.3144, also show

no correlation between abundance and storage temperature in re-dissolved extracts, or

in dried extracts, but they do show a large significant di↵erence in abundance between

re-dissolved extracts that were stored at -25 C, and all other dried and re-dissolved

extracts. This indicates that re-dissolving albumen organic extracts in methanol, then

storing them at -25 C, results in a large di↵erence in abundance for some compounds,

compared to all other methods of storage explored in this experiment, and thus is the

least reliable storage condition.

4.7.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 33 statistically significant com-

pounds, and scores plots were again produced to display the variation between albumen

organic extracts that were stored either dried or re-dissolved in methanol, at the three

di↵erent temperatures.

The scores plot in Figure 4.20 shows a very slight separation between the extracts

stored under di↵erent conditions and at di↵erent temperatures. There is no separation

between dried and re-dissolved extracts, however there is some slight separation between

the re-dissolved extracts that were stored at the three di↵erent temperatures. The re-

dissolved extracts that were stored at -80 C are the closest to the QC samples, and

are therefore the most representative of the albumen organic extracts, indicating that if

extracts are re-dissolved in methanol prior to storage, then they should be stored at -80

C. Re-dissolved extracts that were stored at -46 C are slightly further away from the

QCs, and show more variation between samples compared to those stored at -80 C, and

re-dissolved extracts that were stored at -25 C are the furthest from the QC samples,
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Figure 4.20: PCA scores plot showing PC3 vs PC4 for albumen organic extracts that were
stored dried and re-dissolved at -25 C, -46 C, and -80 C for 44 weeks,
including all compounds with CV%<30%. PC3 explains 0.01% of the variance,
and PC4 explains 0.006% of the variance.

and are the most spread out, showing the most variation between samples. This indicates

that the higher the storage temperature of extracts, the less stable the metabolite profiles

are following 44 weeks of storage, resulting in extracts that were stored under the same

conditions and temperatures, having varying metabolite profiles. The separation between

re-dissolved extracts that were stored at di↵erent temperatures is across PC3, which

describes just 0.01% of the variance between all of the samples, highlighting the extreme

subtlety of the di↵erences between extracts that were stored at di↵erent temperatures.

As the dried extracts show no separation due to storage temperature, this indicates

that storing extracts dried, rather than re-dissolved in methanol, reduces the e↵ect of

temperature on the resulting metabolite profiles. The scores plot also shows that when

albumen organic extracts are stored for 44 weeks, storage temperature has more of an

e↵ect on the metabolite profiles of the extracts, than storage condition.
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4.7.1.5 Summary

From the overlaid TICs in Figures 4.15-4.18, it could be seen that both storage tem-

perature and condition have an e↵ect on the resulting metabolite profiles of extracts, and

that lower temperatures result in a greater stability in metabolite profile, as does storing

extracts dried rather than re-dissolved in methanol. Although the scores plot in Figure

4.19 showed no variation between extracts stored under di↵erent conditions and temper-

atures, proving how subtle the e↵ects are, the plot in Figure 4.20 showed some variation

between re-dissolved extracts stored at the three di↵erent temperatures. The results of

the statistical tests in Table A.5 showed that more compounds were statistically signif-

icant in abundance between extracts that were stored under di↵erent conditions, rather

than at di↵erent temperatures. There were also more statistically significant compounds

found when comparing re-dissolved extracts that were stored at the three di↵erent tem-

peratures, rather than dried extracts.

The di↵erences observed in metabolite profile between albumen organic extracts that

were stored under di↵erent conditions and at di↵erent temperatures for 44 weeks, were

less than the di↵erences observed between yolk organic extracts that were stored under

di↵erent conditions and at di↵erent temperatures for 6 and 12 weeks. This could be

because over a longer storage period, the changes that occurred in metabolite profile

earlier on in the extracts that were stored under less stable conditions may have occurred

later on, over a longer period of time, during storage in the extracts that were stored under

more stable conditions, resulting in similar metabolite profiles. It could also suggest that

storage temperature and conditions have a lower impact on the metabolite profiles of

albumen organic extracts than yolk organic extracts.
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4.8 Conclusions

It was observed that when yolk organic extracts were stored under di↵erent conditions,

i.e. dried or re-dissolved in methanol, and at three di↵erent temperatures, -25 C, -46

C, and -80 C, there was a di↵erence between the resulting metabolite profiles of the

extracts, after 6 weeks. As the results showed that re-dissolved yolk organic extracts are

more susceptible to changes in metabolite profile due to temperature than dried extracts,

and that lower storage temperatures result in less di↵erence between the metabolite

profiles of extracts stored at di↵erent temperatures, it was concluded that yolk organic

extracts are best stored dried, at -80 C, when being stored for a 6 week period.

Similar results were observed when yolk organic extracts were stored under di↵erent

conditions and at di↵erent temperatures for 12 weeks. The results again showed that

re-dissolved yolk organic extracts are more susceptible to changes in metabolite profile

due to temperature, than dried extracts, and that the di↵erences in metabolite profile

between extracts stored at di↵erent temperatures, are smaller between extracts stored at

lower temperatures. Therefore, it was again concluded, that when storing yolk organic

extracts for a 12 week period, they should be stored dried, at -80 C, in order to achieve

the highest stability.

Very similar trends occurred over both 6 and 12 weeks of extract storage, with dried

extracts stored at lower temperatures appearing to be the most stable. Therefore, yolk

organic extracts that are being stored for up to 12 weeks, should be stored dried, and at

-80 C, to attain minimum metabolite profile change.

When albumen organic extracts were stored under di↵erent conditions and at di↵erent

temperatures, there was less di↵erence between the resulting metabolite profiles of the

extracts after 44 weeks, than was observed over 6 and 12 weeks of yolk organic extract

storage. However, the di↵erences that were observed follow the same trend as for yolk

organic extracts; the metabolite profiles of re-dissolved albumen organic extracts are more
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a↵ected by storage temperature than dried extracts, and lower storage temperatures result

in a smaller di↵erence between extracts stored at di↵erent temperatures. Therefore, it

was also concluded that when storing albumen organic extracts for an extended period

of time, it is best to store them dried, and at -80 C, to achieve the best stability.
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5. The e↵ect of hen age on the

metabolite profiles of egg yolk and

albumen

5.1 Introduction

Age is a variable that has an e↵ect on the metabolite profile of the subject [1][2], and

if not controlled or accounted for, can greatly a↵ect the results of a metabonomic study

[3][4]. Therefore, it is important to understand how the age of a laying hen a↵ects the

metabolite profiles of the yolk and albumen of the egg, so that the experimental design

of metabonomic studies can account for this, and any di↵erences that are observed in

the studies can be confidently concluded to be as a result of the factor that is under

investigation, rather than due to any di↵erence in the age of the laying hens.

All eggs must be labelled with a producer code, either at the site of production or at

the first packing centre that they are delivered to, to enable eggs to be traced back to

their production site, and in fact to the particular flock of birds from which they originate

[5][6]. However, it would be easy for producers or packing centre operatives to mislabel

the eggs with incorrect producer codes, in order to avoid detection of fraud.

Food businesses may falsely advertise their eggs as being locally sourced, in order to
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make them more desirable. Having the producer code on the egg would make it very

easy to determine the true origin of the eggs, and therefore the fraud would be detected

immediately. It would be easy for the producers to mislabel the eggs with false producer

codes that correspond with egg production facilities that are truly local to the food

business, to give the false impression that the eggs were locally sourced.

However, it is not likely that the birds from the true egg production site, or flock,

and the birds from the falsely labelled egg production site, or flock, would be the same

age, even if the fraudsters were savvy enough to ensure that they were the same breed.

Therefore, being able to discriminate between eggs laid by birds of di↵erent ages, and

being able to predict the age of the laying bird based on the egg itself, would help to

identify and prevent cases of fraud. Clearly, there would be a benefit to having a robust

scientific method capable of this.

As hens age, it is not only themselves that undergo changes, but the eggs that they

produce are also a↵ected by the increase in age. One of the most obvious changes in eggs

laid by older hens compared to younger hens is their size and weight. As the age of the

bird increases, so does the size and weight of the eggs that they produce [7]–[11]. The

shape of eggs also changes as birds age, becoming more elongated as the age of the bird

increases. Young birds are more likely to produce double yolked eggs or overly small eggs

lacking any albumen, as well as other abnormalities such as soft shelled or shell-less eggs.

Egg defects associated with older birds include deposits or pimples on the shells. Brown

eggshells become paler in colour with an increase in hen age, due to the increasing size

of the egg, without an accompanying increase in the amount of pigment produced [11].

The increase in yolk size with increasing hen age is greater than the increase of the

size of the egg as a whole, and so the proportion of yolk relative to the rest of the egg

is greater in eggs laid by older birds [8][12][13]. Alongside the increasing size of the yolk

in eggs produced by older birds, the vitelline membrane becomes weaker, probably due

to this increase in yolk size [11]. The yolk index (ratio of yolk height to diameter) has
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been observed to peak when birds reach the age at which they experience 50% hen-day

production, at which point it decreases with increasing bird age, meaning that the yolk is

less rounded and more flat in eggs from older birds [8]. This is likely to be as a result of

the weaker vitelline membrane becoming less able to hold the shape of the yolk in place.

Eggs laid by younger hens have thicker shells and longer pores compared to those

produced by older birds [14]. This means that as the hen ages the shells become thinner

with shorter pores, making them more porous, and thus the rate of di↵usion of carbon

dioxide and water through the shell increases in eggs laid by older birds [14]. The loss of

carbon dioxide and water through the eggshell results in the thinning of the albumen [14],

and so eggs produced by older birds have a thinner albumen than those from younger

birds [14][15]. This then means that the albumen height, measured by Haugh unit (based

on the relationship between the weight of the intact egg, and the albumen height once the

egg has been broken [16]), is decreased due to this thinning of the albumen [7][8][11][17].

One study found that the pH of the albumen was significantly di↵erent between eggs

from birds of di↵erent ages, but the change of pH did not follow any particular trend [7].

The physical changes of an egg in response to an increase in the age of the laying bird

seem to be agreed on between researchers; however, the chemical changes of an egg are

more in dispute, with di↵erent studies producing contrasting results.

One study found that the concentration of albumen solids decreased with increasing

bird age [11], which is in agreement with another study which found that albumen solids

had the highest concentration in eggs laid by young birds (28 weeks old) [18]. However,

this first study also found that yolk solids remained constant with increasing hen age

[11], whilst the second study found that yolk solids had the highest concentration in eggs

laid by old birds (97 weeks old) [18]. The di↵erence here could be due to the researchers

referring to di↵erent ages of hen.

Two studies found that the total lipid content of egg yolk increased with increasing bird

age [11][19]. It was posited that this could be due to the higher feed intake of the older
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birds, with no change of the rate of lay, meaning that the lipids are more concentrated

in the same number of eggs [19]. However, another study found that egg yolk lipids

experienced a small increase followed by a decrease in concentration with increasing bird

age [20], whilst two other studies found that the lipid content of the yolk remained stable

with an increasing bird age [18][21].

The age of the laying bird has been found to a↵ect the rate of transfer of fatty acids

into the egg, and thus the content of some fatty acids in eggs can di↵er with the age of the

hen [11]. Another study confirmed this when the percentages of certain fatty acids were

found to be higher in lipid profiles of the egg yolk of younger birds, compared to older

birds [21]. The results of one study showed that concentrations of palmitic and oleic acid

were not a↵ected by the age of the bird, but that stearic acid had a lower concentration in

eggs from older birds whereas linoleic acid had a higher concentration in eggs from older

birds [20]. This results in a significant di↵erence in the ratio of unsaturated to saturated

fatty acids and of monounsaturated to polyunsaturated fatty acids in the yolk between

eggs laid by birds of di↵erent ages.

The e↵ect of bird age on the cholesterol levels of an egg seems to be in dispute, with

di↵erent researchers reaching di↵erent conclusions based on their studies. One study

found that the cholesterol levels of egg yolk were not a↵ected by the age of the laying

hen [21], whereas another found that the cholesterol levels in egg yolk decreased with

an increase in bird age, which was hypothesised to be due to the inability of younger

birds to metabolise cholesterol e�ciently [19]. Another study found that although the

cholesterol concentration in the yolk decreased with an increase in hen age, the total

cholesterol content of the egg increased [10]. This was likely due to the increase in the

size of the yolk in eggs laid by older birds, meaning that the changing size of the egg yolk

has a greater e↵ect on the total egg cholesterol content than the change in concentration

of cholesterol itself in the yolk.

One group of researchers admitted that there is some discrepancy around how choles-
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terol levels are a↵ected by laying bird age, and carried out some research in order to reach

their own conclusions [22]. The results of this study revealed that there were significant

di↵erences in the cholesterol concentration between eggs laid by birds of di↵erent ages

and that the cholesterol concentration in the yolk, and the egg as a whole, exhibited al-

most identical trends. However, it was also observed that although there were significant

di↵erences in the concentration of cholesterol between eggs laid by birds of di↵erent ages,

there was no correlation between bird age and cholesterol concentration.

The e↵ect of the age of the laying bird on other, non-lipid, chemical variables of the

egg has also been examined [12]. It was found that glucose, uridine and uric acid were not

a↵ected by hen age, but that pyroglutamic acid was significantly a↵ected by an increase

in bird age. The concentration of pyroglutamic acid initially increased significantly with

increasing hen age up to around 40-50 weeks of age, before dramatically decreasing again

to levels similar to those found in the eggs laid by younger birds.

Various studies have produced contrasting results regarding the e↵ect of laying hen

age on the chemical composition of eggs. The use of a metabonomic approach would

enable the observation of how a wide range of compounds and compound classes, in egg

yolk and albumen, are a↵ected by an increase in laying hen age. This would also help to

develop an understanding of how other metabonomic studies carried out on eggs may be

a↵ected by the age of the laying birds.
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5.2 Aims and Objectives

When carrying out metabonomic studies, it is important to consider how the age of

the laying hen a↵ects the metabolite profiles of the yolk and albumen of the eggs.

The accurate prediction of the age of the laying hen, from the egg itself, could help to

detect cases of fraud where eggs have been labelled with false producer codes, corresponding

to incorrect production sites, or flocks.

This work aimed to use a non-targeted metabonomic workflow to observe how a wide

range of compounds and compound classes, in the yolk and albumen of eggs, are a↵ected

by hen age. It then aimed to determine whether any compounds are suitable to act as

markers capable of predicting hen age, in order to identify and prevent cases of fraud. The

observations of how the metabolite profiles of egg yolk and albumen change in response to

laying hen age, could then be used to optimise the experimental design, and to correctly

interpret the results of future metabonomic studies.
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5.3 Experimental

Eggs were collected on the day of lay from the National Institute of Poultry Husbandry

(Harper Adams University, Newport, U.K.). Laying hens were of the Hy-line brown breed,

fed the same diet, and kept in enriched cages with 80 birds per cage. The first set of six

eggs were collected when the laying hens were 21 weeks old, and six eggs were collected

every week for the first nine weeks of the study, every other week up to seventeen weeks,

and every third week up to twenty-three weeks of the study, when laying hens were

44 weeks old. All six eggs underwent metabolite extraction on the day of lay, and the

resulting extracts were stored at -80 C until sample collection, after twenty-three weeks,

was complete and chemical analysis could take place.

5.3.1 Yolk Organic Extracts

In order to analyse yolk organic extracts of eggs laid by hens of increasingly higher ages

in the same batch, several analytical runs took place, with yolk extracts from overlapping

hen ages in each batch; 21-26 weeks old (every week), 26-30 weeks old (every week), 30-38

weeks old (every other week), and 38-44 weeks old (every third week). The data from

these analyses were all analysed separately, to observe how metabolite profiles change

over a short period of increasing hen age. A final analytical run was carried out, with

extracts from eggs laid by hens of 21 weeks, 26 weeks, 30 weeks, 38 weeks, and 44 weeks

of age, in order to observe how the metabolite profiles change over a longer period of

increasing hen age.

Metabolite extraction, chemical analysis, quality control analysis, and data pre-process

-ing and analysis were carried out as described in Chapter 3. For hens ranging from 38

to 44 weeks old in Section 5.7, a second PCA was included using just the top statis-

tically significant compounds following ANOVA/Welch tests. In Section 5.8 for hens

ranging from 21 to 44 weeks old, following the usual data analysis workflow additional
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ANOVA/Welch tests, and post-hoc tests, were carried out for any previously putatively

identified compounds that were found to show a significant di↵erence in abundance be-

tween eggs laid by the youngest and oldest birds in the smaller age ranges that were

studied. This was done in order to confirm the significance of these compounds between

eggs laid by birds of these ages, and to determine whether they showed any statistical

significance, or correlation between abundance and hen age, over a wider hen age range.

5.3.2 Albumen Organic Extracts

For the albumen organic extracts, only those from eggs laid by hens of 21 weeks, 26

weeks, 30 weeks, 38 weeks, and 44 weeks of age were analysed in the same analytical run,

in order to observe how the metabolite profiles change over a longer period of increasing

hen age.

Metabolite extraction, chemical analysis, quality control analysis, and data pre-process

-ing and analysis were carried out as described in Chapter 3.
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5.4 Hen Age 21-26 weeks: Yolk Organic Extracts

Yolk organic extracts of eggs laid by hens ranging from 21 weeks to 26 weeks old were

compared, to see whether hen age a↵ects the metabolite profile of an egg.

5.4.1 Results and Discussion

5.4.1.1 Quality Control Analysis

Table 5.1 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 5.1: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens aged 21-26 weeks old

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 2205874 367763234 184829806 29671734 966714125 47512887

QC2 2544736 353379168 174368304 29014898 932457139 39602874

QC3 2550947 339375492 165664998 25636233 888948721 36545277

QC4 2458735 339927200 153523553 25967550 848864012 33974178

QC5 3124837 333983190 142295641 24051675 825570218 33207934

QC6 2102558 325477715 138819842 23805930 810107555 36383193

QC7 2132169 320257410 148597601 23775944 825415240 33031730

SD 3549289 16263760 17169892 2458324 59999850 5114349

Mean 2445694 340023344 158299964 25989138 871153859 37179725

CV% 14.51 4.78 10.85 9.46 6.89 13.76
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 5.2 shows the retention times (RTs) for the six peaks of interest in the seven

QC samples that were analysed throughout the run, as well as the SD, the mean, and

the CV% of the RTs for each of the peaks.

Table 5.2: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens aged 21-26 weeks old

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.674 9.737 33.407 57.476 72.300 79.487

QC2 4.759 9.855 33.476 57.562 72.402 79.540

QC3 4.692 9.705 33.326 57.396 72.219 79.257

QC4 4.719 9.682 33.270 57.289 72.096 78.968

QC5 4.722 9.768 33.339 57.458 72.298 79.369

QC6 4.707 9.637 33.291 57.410 72.183 79.105

QC7 4.675 9.754 33.342 57.494 72.267 79.338

SD 0.030 0.070 0.070 0.087 0.098 0.204

Mean 4.707 9.734 33.350 57.441 72.252 79.295

CV% 0.64 0.72 0.21 0.15 0.14 0.26

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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5.4.1.2 Metabolite Profiling

Comparisons were made between yolk organic extracts of eggs laid by hens that were

21 weeks and 26 weeks old, by studying the Total Ion Chromatograms (TICs) of the

extracts following HPLC-MS analysis. Figure 5.1 shows overlaid TICs for the average

chromatograms of extracts from eggs laid by hens of these two ages.
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Figure 5.1: Overlaid average TICs of yolk organic extracts of eggs that were laid by hens of
21 weeks and 26 weeks old

Observing these overlaid TICs, a slight di↵erence in peak intensity can be seen between

the chromatograms of the yolk extracts of eggs laid by hens of di↵erent ages. Throughout

the first part of the chromatograms, up to approximately 65 minutes, most peaks show

a higher peak intensity in the TIC of the yolks of eggs laid by hens that were 21 weeks

old, compared to the TIC of the yolks of eggs laid by hens that were 5 weeks older. This

suggests that these earlier eluting, less non-polar compounds are more abundant in eggs

laid by younger hens, compared to those laid by older hens. However after approximately

65 minutes, most peaks show a higher intensity in the TIC of the yolks of eggs laid
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by hens that were 26 weeks old. As the compounds that elute towards the end of the

chromatographic analysis are the more non-polar compounds, they could be larger lipid

molecules such as phospholipids, which are highly abundant in egg yolk. If these later

eluting compounds are phospholipids, then the overlaid TICs indicate that this class of

compound is more abundant in eggs laid by older hens, compared to those laid by younger

hens.

5.4.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the eggs laid by hens of di↵erent ages.
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Figure 5.2: PCA scores plot showing PC2 vs PC4 for yolk organic extracts of eggs laid by
hens from 21 weeks to 26 weeks old, including all compounds with CV%<30%.
PC2 explains 0.65% of the variance, and PC4 explains 0.13% of the variance.

The scores plot in Figure 5.2 shows some separation between eggs laid by di↵erent

ages of hen. There is a large amount of separation between eggs laid by hens that were

21 and 23 weeks old, and those laid by hens that were 24 and 25 weeks old, indicating
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that there is a clear di↵erence in yolk metabolite profile between eggs laid by birds of

these ages. There is also significant separation between eggs laid by hens that were 21

weeks old, and those laid by hens that were 26 weeks old, again indicating that there is

a clear di↵erence in metabolite profile between the yolks of eggs laid by birds of these

ages. Eggs laid by hens that were 24 and 25 weeks old appear to be grouped together,

suggesting that there is not much di↵erence in yolk metabolite profile between eggs laid

by birds of these two ages. However, there is one egg laid by a hen that was 25 weeks

old (circled on the scores plot), which shows some variation to the other eggs within its

sample set. It is not known why this is, as no anomalies were noted during the metabolite

extraction or chemical analysis. Eggs laid by birds that were 22 weeks old have quite a

lot of variation and are very spread out over the scores plot. This indicates that for this

set of eggs, most of the variation described by PC2 and PC4 is between random eggs

within this sample set, resulting in them being highly spread throughout the plot.

The QC samples on this plot are not particularly tightly clustered, however the analysis

was robust, as observed in the quality control analysis in Section 5.4.1.1. The reason for

the spread in QC samples could be because the di↵erences between the yolk samples are

very subtle. When this is the case, the PCA exploits di↵erences between QC samples, as

there is such a small amount of variation between sample sets. Most of the separation

between eggs laid by hens of di↵erent ages appears to be across PC2, which describes

only 0.65% of the total variation between the yolk samples, showing just how subtle the

di↵erences in metabolite profile are between eggs laid by birds of di↵erent ages.
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5.4.1.4 Univariate Statistics

There were 46 compounds remaining following the removal of any duplicates, adducts

and isotopes from the top 100 compounds, and all 46 of these were found to be statistically

significant. These compounds, and their CV%s and p-values, can be seen in Table B.1

in Appendix B; those in bold were also found to be statistically significant following

confirmation using the raw data, and attempts were made to identify them.

Of the 42 compounds that were still found to be statistically significant when con-

firmed using the raw data, six were putatively identified through comparing mass spectra

provided by METLIN with mass spectra from the analysis. The observed m/z for all

compounds was due to the [M+H]+ adduct. The compounds m/z 331.2847, 496.3412,

648.6307, 703.5761, 716.5243, and 734.5709 were putatively identified as 1-monopalmitin,

1-palmitoyl-glycero-3-phosphatidylcholine (PC(16:0/0:0)), nervonic ceramide, 1-palmitoyl-

sphingomyelin (SM(18:1/16:0)), 1-palmitoyl-2-linoleoyl-glycero-3-phosphatidylethanol-

amine (PE(16:0/18:2)), and 1,2-dipalmitoyl-glycero-3-phosphatidylcholine (PC(16:0/16:0))

respectively. The comparisons between mass spectra provided by METLIN and those re-

sulting from the analysis in this study can be seen in Appendix B, Figures B.1-B.6.

Tables 5.3-5.8, and Figures 5.3-5.8, show the putative identifications of these com-

pounds, the p-values resulting from ANOVA/Welch tests and post-hoc Tukey/Games-

Howell tests, as well as the trends in the changing abundance of the compounds in the

yolks of eggs laid by birds of increasing age from 21 to 26 weeks old.
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Table 5.3: Table showing the putative identification of compound m/z 331.2847 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2847 C19H38O4 99.35 1-monopalmitin <0.001

Post-hoc test p-values

21
Weeks

22
Weeks

23
Weeks

24
Weeks

25
Weeks

26
Weeks

21
Weeks

0.468 0.011 0.001 <0.001 0.982

22
Weeks

<0.001 <0.001 <0.001 0.153

23
Weeks

0.964 0.619 0.008

24
Weeks

0.619 0.008

25
Weeks

<0.001

26
Weeks
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Figure 5.3: Line graph showing the trend in changing abundance of compound m/z 331.2847
in yolk across eggs laid by hens from 21-26 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.4: Table showing the putative identification of compound m/z 496.3412 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

496.3412 C24H50NO7P 96.25 PC(16:0/0:0) <0.001

Post-hoc test p-values

21
Weeks

22
Weeks

23
Weeks

24
Weeks

25
Weeks

26
Weeks

21
Weeks

1 0.512 0.001 0.003 0.121

22
Weeks

0.668 0.001 0.005 0.196

23
Weeks

0.058 0.162 0.948

24
Weeks

0.996 0.316

25
Weeks

0.604

26
Weeks
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Figure 5.4: Line graph showing the trend in changing abundance of compound m/z 496.3412
in yolk across eggs laid by hens from 21-26 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.5: Table showing the putative identification of compound m/z 648.6307 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

648.6307 C42H81NO3 95.61
Nervonic

0.007
Ceramide

Post-hoc test p-values

21
Weeks

22
Weeks

23
Weeks

24
Weeks

25
Weeks

26
Weeks

21
Weeks

0.991 1 0.112 0.059 0.186

22
Weeks

0.983 0.325 0.195 0.471

23
Weeks

0.093 0.048 0.158

24
Weeks

1 1

25
Weeks

0.993

26
Weeks
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Figure 5.5: Line graph showing the trend in changing abundance of compound m/z 648.6307
in yolk across eggs laid by hens from 21-26 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.6: Table showing the putative identification of compound m/z 703.5761 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

703.5761 C39H79N2O6P 95.76 SM(18:1/16:0) <0.001

Post-hoc test p-values

21
Weeks

22
Weeks

23
Weeks

24
Weeks

25
Weeks

26
Weeks

21
Weeks

1 0.456 0.001 <0.001 0.001

22
Weeks

0.582 0.002 0.001 0.002

23
Weeks

0.110 0.047 0.095

24
Weeks

0.999 1

25
Weeks

0.999

26
Weeks
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Figure 5.6: Line graph showing the trend in changing abundance of compound m/z 703.5761
in yolk across eggs laid by hens from 21-26 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.7: Table showing the putative identification of compound m/z 716.5243 and the p-
values resulting from Welch test and Games-Howell tests. n=6. Orange indicates
significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

716.5243 C39H74NO8P 95.32 PE(16:0/18:2) <0.001

Post-hoc test p-values

21
Weeks

22
Weeks

23
Weeks

24
Weeks

25
Weeks

26
Weeks

21
Weeks

0.969 0.018 0.008 0.031 0.001

22
Weeks

0.607 0.025 0.081 0.017

23
Weeks

0.084 0.254 0.031

24
Weeks

0.998 0.998

25
Weeks

1

26
Weeks

10000000

15000000

20000000

25000000

30000000

35000000

21 22 23 24 25 26

Pe
ak

 A
re

a

Hen Age (Weeks)

Figure 5.7: Line graph showing the trend in changing abundance of compound m/z 716.5243
in yolk across eggs laid by hens from 21-26 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.8: Table showing the putative identification of compound m/z 734.5709 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

734.5709 C40H80NO8P 96.59 PC(16:0/16:0) <0.001

Post-hoc test p-values

21
Weeks

22
Weeks

23
Weeks

24
Weeks

25
Weeks

26
Weeks

21
Weeks

0.849 0.129 <0.001 <0.001 0.001

22
Weeks

0.709 <0.001 0.001 0.014

23
Weeks

0.001 0.031 0.286

24
Weeks

0.747 0.169

25
Weeks

0.880

26
Weeks
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Figure 5.8: Line graph showing the trend in changing abundance of compound m/z 734.5709
in yolk across eggs laid by hens from 21-26 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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The probability scores for the predicted molecular formulae for all of these compounds

are above 95, indicating that there is a strong likelihood that the predicted formulae

correspond to the compounds of interest. The p-values from ANOVA and Welch tests

show that the abundances of these compounds are statistically significant when comparing

them between eggs laid by birds of di↵erent ages, ranging from 21 to 26 weeks old, and

the post-hoc test p-values mostly corroborate this. However, the compound that was

putatively identified as nervonic ceramide, which is a ceramide with nervonic acid bonded

to the amino group of the sphingosine molecule, shows only one instance of very slight

statistical significance, when comparing eggs laid by birds that were 23 and 25 weeks

old, as can be seen in Table 5.5. In addition to not showing much significant di↵erence

through the post-hoc test p-values, this compound does not show any correlation between

abundance in egg yolk and laying hen age, as seen in Figure 5.5, and so is unsuitable as

a marker of hen age.

The compound that was putatively identified as 1-monopalmitin, a monoglyceride with

a palmitic acid chain attached to the first carbon of the glycerol backbone, also does not

show any correlation between abundance in egg yolk and increasing laying hen age, as

can be seen in Figure 5.3. However, this compound does show many instances of high

statistical significance in abundance between eggs laid by birds of di↵erent ages, through

the post-hoc test p-values seen in Table 5.3. Although the changing abundance of this

compound is highly significantly di↵erent between eggs laid by birds of increasing age, as

there is no trend in this changing abundance, it is not suitable as a marker of hen age.

The remaining putatively identified compounds: PC(16:0/0:0), SM(18:1/16:0), PE(16:0

/18:2), and PC(16:0/16:0) all show a similar trend in decreasing abundance between eggs

laid by birds of increasing age, as seen in Figures 5.4, 5.6, 5.7, and 5.8 respectively.

Both PC(16:0/0:0) and PC(16:0/16:0), as well as PE(16:0/18:2), experience a negative

correlation, and decrease in abundance with increasing laying hen age from 21 to 24

weeks old, before increasing in abundance with increasing hen age over the next two
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weeks. This is likely to be because these compounds are very similar; PC(16:0/16:0) is

a phosphatidylcholine, with a palmitic acid group attached to the first two carbons of

the glycerol backbone, and (PC(16:0/0:0)) is a lysophosphatidylcholine, with just one

palmitic acid group attached to the first carbon of the glycerol backbone. PE(16:0/18:2)

is a phosphatidylethanolamine with a palmitic acid group attached to the first carbon and

a linoleic acid group attached to the second carbon of the glycerol backbone. These com-

pounds all belong to the glycerophospholipid metabolic pathway, and follow very similar

pathways in their production from diacylglycerol, and their catabolism to glycerol-3-

phosphate [23]. As very similar enzymes are involved in the metabolic pathways asso-

ciated with all three compounds, the rate of metabolism will be very similar between

these compounds in birds of di↵erent ages, resulting in similar abundances in the eggs

laid by the birds, and thus similar trends in the changing abundance of these compounds

in eggs laid by birds of increasing age. The compound that was putatively identified as

SM(18:1/16:0), which is a sphingomyelin with a palmitic acid group attached, shows a

similar trend in changing abundance, but continues decreasing in abundance up to 25

weeks of hen age, before increasing slightly in eggs laid by birds that were 26 weeks old.

All four of these compounds also show high statistical significance in the p-values from

the post-hoc tests, seen in Tables 5.4, 5.6, 5.7, and 5.8, and so could have potential as

markers of hen age between 21 and 24 or 25 weeks of age.

Some of the standard deviations of these compound abundances are quite large, re-

sulting in wide error bars on the line graphs. Some error bars only appear large due to

the scaling of the y-axis, but some of them are quite wide due to the fact that there is

biological variation within the sets of eggs laid by birds of di↵erent ages, because the eggs

were likely laid by di↵erent birds. Although the variables regarding the birds were kept

as controlled and uniform as possible, there was naturally some variation between them,

and thus between the eggs that they laid. Larger sample sizes would likely reduce the

standard deviations of the abundances of the compounds within eggs laid by birds of the

same age.
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5.5 Hen Age 26-30 weeks: Yolk Organic Extracts

Yolk organic extracts of eggs laid by hens ranging from 26 weeks to 30 weeks old were

compared, to see whether hen age a↵ects the metabolite profile of an egg.

5.5.1 Results and Discussion

5.5.1.1 Quality Control Analysis

Table 5.9 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 5.9: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens aged 26-30 weeks old

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 2792029 387789304 158759218 28565846 948201985 145902974

QC2 3067092 379290823 149003792 26674067 896256874 130209929

QC3 2660938 375157980 143993416 27410483 890458521 127447915

QC4 2618668 371076672 141845443 25780768 908356257 125439761

QC5 2489738 375273600 143097360 25479742 921333649 138084240

QC6 2973919 377319310 151689036 27084169 920486340 128730403

QC7 2634185 368842436 149374674 26370111 899443609 115317173

SD 207669 6153371 5913125 1044538 19801088 9683548

Mean 2748081 376392875 148251848 26766455 912076748 130161771

CV% 7.56 1.63 3.99 3.90 2.17 7.44

Page 173



Chapter 5

The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 5.10 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 5.10: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens aged 26-30 weeks old

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.675 9.688 33.209 57.278 71.919 78.625

QC2 4.673 9.586 33.140 57.243 71.817 78.606

QC3 4.675 9.705 33.276 57.312 71.886 78.708

QC4 4.626 9.788 33.376 57.462 72.185 79.141

QC5 4.690 9.687 33.258 57.360 72.018 78.899

QC6 4.624 9.637 33.191 57.244 71.918 78.697

QC7 4.589 9.702 33.207 57.309 71.983 78.822

SD 0.037 0.062 0.076 0.077 0.118 0.188

Mean 4.650 9.685 33.237 57.315 71.961 78.785

CV% 0.80 0.65 0.23 0.13 0.16 0.24

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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5.5.1.2 Metabolite Profiling

Comparisons were made between yolk organic extracts of eggs laid by hens that were

26 weeks and 30 weeks old, by studying the TICs of the extracts following HPLC-MS

analysis. Figure 5.9 shows overlaid TICs for the average chromatograms of extracts from

eggs laid by hens of these two ages.
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Figure 5.9: Overlaid average TICs of yolk organic extracts of eggs that were laid by hens of
26 weeks and 30 weeks old

There is a slight visible di↵erence in metabolite profile seen in Figure 5.9, between the

yolks of eggs laid by hens that were 26 weeks and 30 weeks old. During the first 35 minutes

of analysis there is very little di↵erence in peak intensity between the two chromatograms,

with most peaks being of equal intensity, with a few peaks showing a higher intensity

in the TIC of the yolks of eggs laid by hens that were 26 weeks old. Between 35 and

65 minutes of analysis, there is again very little di↵erence in peak intensity between

chromatograms for eggs laid by birds of the two di↵erent ages, but most peaks have a

slightly higher intensity in the TIC of eggs laid by birds that were 30 weeks old. After 65

minutes of analysis, most peaks have a higher intensity in the TIC of the yolks of eggs
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laid by hens that were 30 weeks old. This indicates that the later eluting, more non-

polar molecules have a higher compound abundance in eggs laid by 30 week old birds,

compared to eggs laid by 26 week old birds. These non-polar compounds may be larger

lipid molecules, such as phospholipids. If this is the case then this suggests, as before,

that the yolks of eggs laid by older birds have a higher abundance of these phospholipid

compounds.

5.5.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the eggs laid by hens of di↵erent ages.
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Figure 5.10: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of eggs laid by
hens from 26 weeks to 30 weeks old, including all compounds with CV%<30%.
PC2 explains 0.35% of the variance, and PC3 explains 0.19% of the variance.

The scores plot in Figure 5.10 shows almost complete separation between eggs laid

by birds that were 27 and 29 weeks old, with eggs laid by birds that were 26 weeks old

forming a group overlapping both of these sample sets. However, one sample (circled)
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from the eggs laid by birds that were 29 weeks old does overlap into the group of eggs

laid by birds that were 27 weeks old. The eggs laid by birds that were 30 weeks old form

a group that shows some separation to the sets of eggs laid by birds that were 26 and

29 weeks old, and is almost completely separate to eggs laid by birds that were 27 weeks

old. However, again, just one egg (circled) from the set of eggs laid by birds of this age

overlaps into the set of eggs laid by birds that were 27 weeks old. As there are two eggs,

laid by birds that were 29 and 30 weeks old, that overlap into the set of eggs laid by

birds that were 27 weeks old, it suggests that the di↵erences between eggs laid by birds

of these ages are very subtle. The eggs laid by birds that were 28 weeks old show a large

amount of variation and are very spread out across the plot.

The separation between eggs laid by birds that were 26, 27, and 29 weeks old is across

PC3 which accounts for just 0.19% of the total variation between samples, indicating

that the di↵erences between the eggs laid by birds of these ages is extremely subtle. The

separation between eggs laid by birds that were 26, 27, and 29 weeks old, and eggs laid

by birds that were 30 weeks old, is across PC2 which accounts for only 0.35% of the total

variation, again showing the subtlety of the di↵erences between eggs laid by birds of these

ages.

The QC samples on the scores plot are quite widely spread across PC2. However, as

the separation between most sample sets is across PC3, any instrumental drift that may

have caused the spread across PC2 for the QC samples is not responsible, and it is due

to true biological di↵erences. Although the separation between eggs laid by birds that

were 30 weeks old, and eggs laid by birds of other ages is across PC2, as the samples were

randomised prior to analysis, any drift should not have a↵ected the results.

Although there is some spread in the QC samples, the analysis was still robust, as the

QC analysis in Section 5.5.1.1 shows. This spread in QC samples observed on the scores

plot shows just how subtle the di↵erences between eggs due to hen age are, as the PCA

has exploited variation within the QC samples due to there being such little variation
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between all of the samples.

5.5.1.4 Univariate Statistics

There were 46 compounds remaining following the removal of any duplicates, adducts

and isotopes from the top 100 compounds, and 45 of these were found to be statistically

significant. These compounds, and their CV%s and p-values, can be seen in Table B.2

in Appendix B; those in bold were also found to be statistically significant following

confirmation using the raw data, and attempts were made to identify them.

Of the 31 compounds that were still found to be statistically significant when con-

firmed using the raw data, five were putatively identified through comparing mass spec-

tra provided by METLIN with mass spectra from the analysis. The observed m/z for all

compounds was due to the [M+H]+ adduct. The compounds m/z 331.2847, 338.3420,

454.2932, 496.3405, and 703.5758 were putatively identified as 1-monopalmitin, docose-

namide (erucamide), 1-palmitoyl-glycero-3-phosphatidylethanolamine (PE(16:0/0:0)), 1-

palmitoyl-glycero-3-phosphatidylcholine (PC(16:0/0:0)), and 1-palmitoyl-sphingomyelin

(SM(18:1/16:0)), respectively. The compounds m/z 331.2847, 496.3405, and 703.5758

were previously putatively identified when found to be in the top statistically significant

compounds for eggs laid by hens aged between 21 and 26 weeks old, and their comparisons

between mass spectra provided by METLIN and mass spectra resulting from chemical

analysis can be seen in Figures B.1, B.2, and B.4 in Appendix B. The mass spectra

comparisons for the remaining compounds can be seen in Appendix B, Figures B.7 and

B.8.

Tables 5.11-5.15, and Figures 5.11-5.15, show the putative identifications of all of these

compounds, the p-values resulting from ANOVA/Welch tests and post-hoc Tukey/Games-

Howell tests, as well as the trends of changing abundance of the compounds in the yolks

of eggs laid by birds of increasing age from 26 to 30 weeks old.
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Table 5.11: Table showing the putative identification of compound m/z 331.2847 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2847 C19H38O4 99.49 1-monopalmitin <0.001

Post-hoc test p-values

26 Weeks 27 Weeks 28 Weeks 29 Weeks 30 Weeks

26 Weeks <0.001 <0.001 <0.001 <0.001

27 Weeks 1 0.064 0.007

28 Weeks 0.060 0.006

29 Weeks 0.859

30 Weeks
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Figure 5.11: Line graph showing the trend in changing abundance of compound m/z 331.2847
in yolk across eggs laid by hens from 26-30 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.12: Table showing the putative identification of compound m/z 338.3420 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

338.3420 C22H43NO 99.13 Erucamide <0.001

Post-hoc test p-values

26 Weeks 27 Weeks 28 Weeks 29 Weeks 30 Weeks

26 Weeks <0.001 <0.001 <0.001 <0.001

27 Weeks 0.998 0.962 0.654

28 Weeks 0.996 0.826

29 Weeks 0.955

30 Weeks
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Figure 5.12: Line graph showing the trend in changing abundance of compound m/z 338.3420
in yolk across eggs laid by hens from 26-30 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.13: Table showing the putative identification of compound m/z 454.2932 and the p-
values resulting from Welch test and Games-Howell tests. n=6. Orange indicates
significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

454.2932 C21H44NO7P 99.35 PE(16:0/0:0) 0.001

Post-hoc test p-values

26 Weeks 27 Weeks 28 Weeks 29 Weeks 30 Weeks

26 Weeks 1 0.718 0.023 0.206

27 Weeks 0.959 0.376 0.612

28 Weeks 0.048 0.041

29 Weeks 0.003

30 Weeks
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Figure 5.13: Line graph showing the trend in changing abundance of compound m/z 454.2932
in yolk across eggs laid by hens from 26-30 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.14: Table showing the putative identification of compound m/z 496.3405 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

496.3405 C24H50NO7P 97.97 PC(16:0/0:0) 0.001

Post-hoc test p-values

26 Weeks 27 Weeks 28 Weeks 29 Weeks 30 Weeks

26 Weeks 0.978 0.324 0.033 0.606

27 Weeks 0.653 0.111 0.288

28 Weeks 0.760 0.018

29 Weeks 0.001

30 Weeks
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Figure 5.14: Line graph showing the trend in changing abundance of compound m/z 496.3405
in yolk across eggs laid by hens from 26-30 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.15: Table showing the putative identification of compound m/z 703.5758 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

703.5758 C39H79N2O6P 96.48 SM(18:1/16:0) 0.003

Post-hoc test p-values

26 Weeks 27 Weeks 28 Weeks 29 Weeks 30 Weeks

26 Weeks 1 0.237 0.994 0.020

27 Weeks 0.276 0.987 0.025

28 Weeks 0.114 0.751

29 Weeks 0.008

30 Weeks
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Figure 5.15: Line graph showing the trend in changing abundance of compound m/z 703.5758
in yolk across eggs laid by hens from 26-30 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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The probability scores for the predicted molecular formulae for all of these compounds

are above 95, indicating that there is a strong likelihood that the predicted formulae

correspond to the compounds of interest. The p-values from ANOVA and Welch tests

show that the abundances of these compounds are statistically significant when comparing

them between eggs laid by birds of di↵erent ages, ranging from 26 to 30 weeks old, and

the post-hoc test p-values corroborate this. Although all of these compounds show a

high statistical significance in the p-values from the post-hoc tests, not all of them show

a correlation between abundance in egg yolk and laying hen age, and therefore are not

suitable as markers of hen age within this age range.

The compound that was putatively identified as SM(18:1/16:0), has some instances of

statistical significance in abundance when comparing eggs laid by birds of di↵erent ages,

as can be seen in Table 5.15. However, contrary to what was observed for this compound

previously for hens aged between 21 and 26 weeks old, there is no correlation associated

with these changes of abundance, as can be seen in Figure 5.15, and so the compound is

not suitable as a marker of hen age for birds aged between 26 and 30 weeks old.

The compound that was putatively identified as erucamide, an amide derivative of the

fatty acid, erucic acid, has also been determined to be unsuitable as a marker of hen age.

Although this compound does decrease in abundance in egg yolk with increasing laying

hen age, as seen in Figure 5.12, the only points of statistical significance are between eggs

laid by birds that were 26 weeks old, and those laid by birds of all other ages, as shown

in Table 5.12. This is due to the large decrease in abundance that can be observed in the

yolks of eggs laid by birds that were 27 weeks old, compared to those laid by birds that

were 26 weeks old. This limits the use of this compound as a marker of hen age.

The compound that was putatively identified as 1-monopalmitin, again has several

instances of highly significant di↵erences in abundance between eggs laid by birds of

di↵erent ages, as seen in Table 5.11. However, contrary to what was observed previously,

for laying hens ranging from 21 to 26 weeks old, a negative correlation was observed
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between the abundance of this compound in egg yolk, and increasing laying hen age, as

shown in Figure 5.11, making it potentially useful as a marker of hen age for birds ranging

from 26 to 30 weeks old, but not for birds younger than this.

The remaining two putatively identified compounds, PE(16:0/0:0), a lysophosphatidyl-

ethanolamine with a palmitic acid group attached to the first carbon of the glycerol back-

bone, and PC(16:0/0:0), both show some statistical significance in abundance between

the yolks of eggs laid by birds of di↵erent ages, as shown in Tables 5.13 and 5.14, and show

very similar trends in changing abundance between eggs laid by birds of di↵erent ages, as

seen in Figures 5.13 and 5.14. These compounds both show a decreasing abundance in

eggs laid by birds ranging from 26 to 29 weeks old, followed by a significant increase in

abundance in eggs laid by birds just one week older. This is likely to be because these com-

pounds are very similar to each other, and both follow very similar metabolic pathways in

their production from diacylglycerol, and their catabolism to glycerol-3-phosphate [23].

The rate of metabolism will be very similar between both compounds in birds of di↵erent

ages, as very similar enzymes are involved in the metabolic pathways associated with

these compounds. This results in eggs having similar abundances of both compounds,

and similar trends being observed in the changing abundance of these compounds in eggs

laid by birds of increasing age. Although these compounds show a trend in decreasing

abundance with increasing hen age from 26 to 29 weeks old, there is not much statistical

significance in the changing abundance within this age range, and so these compounds

are not very suitable as markers of hen age.

Some of the standard deviation error bars on these line graphs are again quite wide.

Again, some only appear large due to the scaling of the y-axis, but others are due to a

larger standard deviation, because of the biological variation within the sets of eggs laid

by birds of di↵erent ages, caused by the fact that they were likely laid by di↵erent birds.

Larger sample sizes would reduce the standard deviations of the compound abundances

in sets of eggs laid by birds of the same age.
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5.6 Hen Age 30-38 weeks: Yolk Organic Extracts

Yolk organic extracts of eggs laid by hens ranging from 30 weeks to 38 weeks old were

compared, to see whether hen age a↵ects the metabolite profile of an egg.

5.6.1 Results and Discussion

5.6.1.1 Quality Control Analysis

Table 5.16 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 5.16: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC
samples analysed throughout the analytical run for yolk organic extracts from eggs
laid by hens 30-38 weeks old

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 1924651 216736268 70604441 27715741 605217644 128342976

QC2 1676742 194846964 65985602 26017109 554332604 120110223

QC3 1911792 180024727 64674638 25083677 541555242 112168260

QC4 1870664 159060662 59448575 21921311 492549583 96945950

QC5 1714219 156121292 60551088 22214854 512929982 95769405

QC6 1636161 168617245 61317467 22627169 504651293 92039800

QC7 1746380 150062789 53888075 20229767 458924411 89814339

SD 117800 23923860 5339818 2644852 47512754 15128532

Mean 1782944 175067135 62352841 23687090 524308680 105027279

CV% 6.61 13.67 8.56 11.17 9.06 14.40
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 5.17 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 5.17: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens 30-38 weeks old

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.690 9.504 32.992 57.178 71.885 78.524

QC2 4.707 9.537 32.992 57.144 71.751 78.358

QC3 4.643 9.540 32.962 57.130 71.771 78.378

QC4 4.174 9.519 32.957 57.126 71.750 78.323

QC5 4.113 9.507 32.946 57.114 71.805 78.378

QC6 4.178 9.572 33.027 57.212 71.803 78.493

QC7 4.127 9.489 32.894 57.062 71.603 78.144

SD 0.286 0.028 0.042 0.048 0.086 0.124

Mean 4.376 9.524 32.967 57.138 71.767 78.371

CV% 0.65 0.03 0.01 0.01 0.01 0.02

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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5.6.1.2 Metabolite Profiling

Comparisons were made between yolk organic extracts of eggs laid by hens that were

30 weeks and 38 weeks old, by studying the TICs of the extracts following HPLC-MS

analysis. Figure 5.16 shows overlaid TICs for the average chromatograms of extracts from

eggs laid by hens of these two ages.
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Figure 5.16: Overlaid average TICs of yolk organic extracts of eggs that were laid by hens of
30 weeks and 38 weeks old

There is again a slight visible di↵erence in metabolite profile between eggs laid by

birds that were 30 weeks old, and those laid by birds that were 38 weeks old, as can

be seen in Figure 5.16. During the first 35 minutes of analysis, a slightly higher peak

intensity can be observed in the TIC of the yolks of eggs laid by birds that were 30 weeks

old, indicating that the earlier eluting compounds are more highly abundant in the yolks

of eggs laid by younger birds. Later on in the analysis, between 35 and 65 minutes,

approximately half of the peaks are of a higher intensity in the TIC of the yolks of eggs

laid by the younger birds, and half are of a higher intensity in the TIC of the yolks of
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eggs laid by the older birds. After 65 minutes there is a higher peak intensity for the TIC

of the yolks of eggs laid by hens that were 38 weeks old. This indicates that the later

eluting, non-polar molecules, such as potential phospholipids, are of a higher abundance

in eggs laid by older birds, which corresponds with what was observed previously, for

other hen age ranges.

5.6.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the eggs laid by hens of di↵erent ages.
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Figure 5.17: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of eggs laid by
hens from 30 weeks to 38 weeks old, including all compounds with CV%<30%.
PC2 explains 0.32% of the variance, and PC3 explains 0.22% of the variance.

The scores plot in Figure 5.17 shows quite a large variation within each set of eggs

laid by birds of di↵erent ages, with samples from each set spread across the whole plot.

The eggs laid by birds that were 38 weeks old show the least amount of variation and

only spread across two quadrants of the plot. These samples form a group that is almost
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completely separate to the group of eggs laid by birds that were 30 weeks old at the point

of lay, however one of the eggs (circled) laid by a 30 week old bird is quite separate to the

rest of the group, and sits within the group of eggs laid by birds that were 38 weeks old.

It is not known why this is, however it does show how subtle the di↵erences are between

sets of eggs laid by birds of these ages. The QC samples form a relatively tight group,

showing that the analysis was robust and that the di↵erences observed between samples

on the scores plot are due to true biological di↵erences, rather than instrumental drift.

5.6.1.4 Univariate Statistics

There were 43 compounds remaining following the removal of any duplicates, adducts

and isotopes from the top 100 compounds, and 41 of these were found to be statistically

significant. These compounds, and their CV%s and p-values, can be seen in Table B.3

in Appendix B; those in bold were also found to be statistically significant following

confirmation using the raw data, and attempts were made to identify them.

Of the 28 compounds that were still found to be statistically significant when confirmed

using the raw data, two were putatively identified through comparing mass spectra pro-

vided by METLIN with mass spectra from the analysis. The observed m/z for both

compounds was due to the [M+H]+ adduct. The compounds m/z 331.2848 and m/z

338.3412 were putatively identified as 1-monopalmitin and erucamide respectively. Both

compounds were previously putatively identified when found to be in the top statisti-

cally significant compounds between eggs laid by birds within other ranges of hen age,

and their comparisons between mass spectra provided by METLIN and mass spectra

resulting from chemical analysis can be seen in Figures B.1 and B.7 in Appendix B.

Tables 5.18 and 5.19, and Figures 5.18 and 5.19, show the putative identifications of

these compounds, the p-values resulting from ANOVA and post-hoc Tukey tests, as well

as the trends of changing abundance of the compounds in eggs laid by birds of increasing

age from 30 to 38 weeks old.
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Table 5.18: Table showing the putative identification of compound m/z 331.2848 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2848 C19H38O4 99.45 1-monopalmitin 0.001

Post-hoc test p-values

30 Weeks 32 Weeks 34 Weeks 36 Weeks 38 Weeks

30 Weeks 0.413 0.011 0.001 0.166

32 Weeks 0.379 0.053 0.978

34 Weeks 0.814 0.718

36 Weeks 0.166

38 Weeks
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Figure 5.18: Line graph showing the trend in changing abundance of compound m/z 331.2848
in yolk across eggs laid by hens from 30-38 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.19: Table showing the putative identification of compound m/z 338.3412 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

338.3412 C22H43NO 90.09 Erucamide 0.003

Post-hoc test p-values

30 Weeks 32 Weeks 34 Weeks 36 Weeks 38 Weeks

30 Weeks 0.728 0.153 0.998 0.004

32 Weeks 0.783 0.883 0.075

34 Weeks 0.264 0.509

36 Weeks 0.009

38 Weeks
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Figure 5.19: Line graph showing the trend in changing abundance of compound m/z 338.3412
in yolk across eggs laid by hens from 30-38 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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The ANOVA p-values show that the abundances of these compounds are statistically

significant when comparing them between eggs laid by birds ranging from 30 to 38 weeks

old. However, the compound that was putatively identified as 1-monopalmitin only shows

one instance of high statistical significance, and one of moderate statistical significance,

in the p-values from the post-hoc tests shown in Table 5.18, meaning that it may not be

useful as a marker of hen age for laying hens within this age range. Although there are not

many instances of statistical significance for this compound between eggs laid by birds

ranging from 30 to 38 weeks old, there is a positive correlation between the abundance

of this compound in egg yolk and laying hen age, up to an age of 36 weeks, as can be

seen in Figure 5.18. This is opposite to the trend that was observed for the abundance of

this compound in eggs laid by hens ranging from 26 to 30 weeks old, indicating that this

compound is quite erratic in its changing abundance with increasing hen age, suggesting

that it may not be useful as a marker of hen age over a wider age range.

The compound that was putatively identified as erucamide has just two instances of

high statistical significance shown by the post-hoc test p-values in Table 5.19, and does

not show a correlation between abundance in egg yolk and laying hen age, as can be

seen in Figure 5.19, therefore it is not very useful as a marker of hen age within this

age range. Contrary to what was observed in the previous study for hens aged between

26 and 30 weeks old, it shows an overall increase in abundance with increasing hen age.

This indicates that the changing abundance is quite erratic between eggs laid by birds of

di↵erent ages, even over wider age ranges.

There is again quite a high amount of variation within the sample sets. Although the

scaling of the y-axis makes the error bars look larger, they are still quite wide which is

probably due to the fact that the eggs were likely laid by di↵erent birds. Larger sample

sizes would reduce the standard deviations of the compound abundances within sets of

eggs laid by birds of the same age.
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5.7 Hen Age 38-44 weeks: Yolk Organic Extracts

Yolk organic extracts of eggs laid by hens ranging from 38 weeks to 44 weeks old were

compared, to see whether hen age a↵ects the metabolite profile of an egg.

5.7.1 Results and Discussion

5.7.1.1 Quality Control Analysis

Table 5.20 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 5.20: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC
samples analysed throughout the analytical run for yolk organic extracts from eggs
laid by hens 38-44 weeks old

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 2030876 166427120 58481476 30957559 442511518 156220416

QC2 2002013 165578586 59459806 29891511 442026394 166301625

QC3 1864841 157068754 54624220 29826917 437674783 151674572

QC4 1924249 165769955 53862239 29488680 415085737 150185602

QC5 1893351 160187803 56816698 29553300 461377202 141156195

QC6 1924067 152026397 58145270 28438801 411032390 143113124

QC7 2144994 152542858 54522037 29161724 420826408 132059410

SD 97027 6238496 2230783 767297 18031112 11123963

Mean 1969199 159943068 56558821 29616927 432933490 148672992

CV% 4.93 3.90 3.94 2.59 4.16 7.48

Page 194



Chapter 5

The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that any instrumental drift occurring throughout the analysis was minimal.

Table 5.21 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 5.21: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens 38-44 weeks old

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.639 9.685 33.174 57.309 71.983 78.722

QC2 4.770 9.700 33.205 57.357 72.031 78.837

QC3 4.773 9.670 3.175 57.344 72.051 78.823

QC4 4.777 9.707 33.312 57.497 72.204 79.109

QC5 4.739 9.703 33.274 57.476 72.183 79.088

QC6 4.789 9.719 33.257 57.426 72.150 78.955

QC7 4.754 9.701 33.206 57.391 72.082 78.887

SD 0.051 0.016 11.363 0.070 0.083 0.142

Mean 4.749 9.698 28.943 57.400 72.098 78.917

CV% 1.07 0.16 0.16 0.12 0.12 0.18

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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5.7.1.2 Metabolite Profiling

Comparisons were made between yolk organic extracts of eggs laid by hens that were

38 weeks and 44 weeks old, by studying the TICs of the extracts following HPLC-MS

analysis. Figure 5.20 shows overlaid TICs for the average chromatograms of extracts from

eggs laid by hens of these two ages.
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Figure 5.20: Overlaid average TICs of yolk organic extracts of eggs that were laid by hens of
38 weeks and 44 weeks old

There is again a slight visible di↵erence in metabolite profile between the yolks of eggs

laid by birds that were 38 weeks old, and those laid by birds that were 44 weeks old,

as can be seen in Figure 5.20. These overlaid TICs show that there is a higher peak

intensity for most peaks, throughout the whole analysis, in the chromatogram of yolk

extracts from eggs that were laid by the older birds, compared to that of yolk extracts

from eggs laid by birds that were 38 weeks old. This indicates that within this age range,

there is a greater abundance of most compounds obtained from an organic extraction of

the yolk, in eggs laid by the older birds than the younger birds, compared to just the
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higher abundance of non-polar, potential phospholipid molecules in eggs laid by older

birds, which was observed when studying previous hen age ranges within this research.

5.7.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the eggs laid by hens of di↵erent ages.
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Figure 5.21: PCA scores plot showing PC3 vs PC4 for yolk organic extracts of eggs laid by
hens from 38 weeks to 44 weeks old, including all compounds with CV%<30%.
PC3 explains 0.23% of the variance, and PC4 explains 0.16% of the variance.

The scores plot in Figure 5.21, contrary to what was observed in the overlaid TICs in

Figure 5.20, shows no separation between the eggs laid by birds of di↵erent ages, with

all three sets of eggs spread throughout the whole plot. This could be because the more

highly abundant compounds that contribute to the observed di↵erences in the overlaid

TICs may not contribute as much to the variance explained by PC3 and PC4 as the

less abundant compounds, which may experience more variation between random egg

samples, rather than between eggs laid by birds of di↵erent ages.

Page 197



Chapter 5

The lack of separation indicates that the variance described by PC3 (0.23%) and PC4

(0.16%) is greater between random eggs than between eggs laid by birds of di↵erent ages,

showing that the di↵erences in metabolite profile between eggs laid by birds of di↵erent

ages, within this age range, are very subtle. The QC samples are clustered tightly together

towards the centre of the plot, showing that there was little instrumental drift and that

the separation between samples on the plot is due to true biological di↵erences, rather

than instrument bias.

5.7.1.4 Univariate Statistics

There were 57 compounds remaining following the removal of any duplicates, adducts

and isotopes from the top 100 compounds, and all 57 of these were found to be statistically

significant. These compounds, and their CV%s and p-values, can be seen in Table B.4

in Appendix B; those in bold were also found to be statistically significant following

confirmation using the raw data, and attempts were made to identify them.

Of the 44 compounds that were still found to be statistically significant when confirmed

using the raw data, none were successfully putatively identified through comparing mass

spectra provided by METLIN with mass spectra from the analysis.

5.7.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using just the top 44 compounds, in order to observe

whether this resulted in any separation between eggs laid by di↵erent ages of bird, as all

of these compounds were found to be statistically significant when comparing eggs laid

by birds of di↵erent ages.

The scores plot in Figure 5.22 shows complete separation between eggs laid by birds

that were 38, 41, and 44 weeks old. This indicates that the statistical significance of

the top 44 compounds is between eggs laid by birds of all three ages. The separation
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Figure 5.22: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of eggs laid by
hens from 38 weeks to 44 weeks old, including all compounds with CV%<30%.
PC2 explains 1.07% of the variance, and PC3 explains 0.38% of the variance.

between all three sets of eggs laid by birds of di↵erent ages is across both PC2 and PC3,

which describe 1.07% and 0.38% of the total variance respectively. This shows that,

although the variance described by both PCs, and the separation between sample sets, is

greater when only the top statistically significant compounds are included in the PCA,

the di↵erences between eggs laid by birds of di↵erent ages within this age range are still

very subtle.

The QC samples are grouped more closely together than the other sample sets, indi-

cating that the di↵erences observed between samples are true biological di↵erences, and

not caused by instrumental drift.
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5.8 Hen Age 21-44 weeks (21, 26, 30, 38, 44 weeks):

Yolk Organic Extracts

5.8.1 Results and Discussion

5.8.1.1 Quality Control Analysis

Table 5.22 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 5.22: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC
samples analysed throughout the analytical run for yolk organic extracts from eggs
laid by hens 21-44 weeks old

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 9533445 226629258 56638645 48459694 328725577 94625879

QC2 9211706 219789419 54750441 47350638 334120744 83765914

QC3 9256130 226239364 58539237 48420121 347502651 85363385

QC4 9510922 219068800 55035906 48134354 345170326 85398671

QC5 9626331 225806875 56471569 48377649 334998135 79800066

QC6 9329760 226224449 58883221 49024893 342997547 80287370

QC7 9903791 229295444 56607194 48545140 317764689 73038655

SD 241342 3798678 1569697 508888 10450491 6629218

Mean 9481726 224721944 56703745 48330356 335897096 83182849

CV% 2.55 1.69 2.77 1.05 3.11 7.97

The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.
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Table 5.23 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 5.23: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens 21-44 weeks old

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.526 9.141 32.280 56.333 70.592 76.501

QC2 4.524 9.172 32.344 56.480 70.838 76.864

QC3 4.525 9.156 32.262 56.331 70.623 76.549

QC4 4.567 9.232 32.371 56.473 70.782 76.791

QC5 4.570 9.218 32.391 56.460 70.818 76.827

QC6 4.562 9.226 32.416 56.554 70.893 76.985

QC7 4.545 9.193 32.349 56.485 70.810 76.786

SD 0.021 0.036 0.056 0.083 0.113 0.173

Mean 4.546 9.191 32.345 56.445 70.765 76.758

CV% 0.46 0.39 0.17 0.15 0.16 0.23

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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5.8.1.2 Metabolite Profiling

Comparisons were made between yolk organic extracts of eggs laid by hens that were

21 weeks and 44 weeks old, by studying the TICs of the extracts following HPLC-MS

analysis. Figure 5.23 shows overlaid TICs for the average chromatograms of extracts from

eggs laid by hens of these two ages.
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Figure 5.23: Overlaid average TICs of yolk organic extracts of eggs that were laid by hens of
21 weeks and 44 weeks old

The overlaid TICs in Figure 5.23 display a clear di↵erence in metabolite profile between

eggs laid by birds that were 21 weeks old, and those laid by birds that were 44 weeks

old, showing that there is a di↵erence in metabolite profile between eggs laid by birds

of di↵erent ages over a wider age range than has previously been studied in this work.

Over the first 35 minutes of analysis there is a higher peak intensity for most peaks in

the TIC of the yolks of eggs laid by birds that were 21 weeks old at the point of lay,

indicating that the smaller, and less non-polar compounds in an organic extract of egg

yolk, are of a higher abundance in eggs laid by younger birds compared to those laid
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by older birds. Between 35 and 65 minutes of analysis, there is little di↵erence in peak

intensity between the two TICs; the peak intensity is similar for most peaks throughout

both chromatograms, and approximately half of the peaks that do show a di↵erence are

of a higher intensity in the TIC of the yolks of eggs laid by the younger birds, and half are

of a higher intensity in the TIC of the yolks of eggs laid by the older birds. Throughout

the last 20 minutes of the chromatograms, most peaks have a higher peak intensity in the

TIC of the yolks of eggs laid by birds that were 44 weeks old at the point of lay. This,

again, indicates that the more non-polar molecules, such as potential phospholipids, that

elute later on in the analysis, are of a higher abundance in eggs laid by older birds.

5.8.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the eggs laid by hens of di↵erent ages.
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Figure 5.24: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of eggs laid by
hens from 21 weeks to 44 weeks old, including all compounds with CV%<30%.
PC2 explains 0.49% of the variance, and PC3 explains 0.24% of the variance.
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The scores plot in Figure 5.24 shows complete separation between eggs laid by young

birds that were 21 weeks old, and those laid by older birds that were 38 and 44 weeks old,

confirming what was observed in Figure 5.23, that there is a di↵erence in the metabolite

profiles of eggs laid by birds at the start of their laying cycle, and those that are several

months older. The eggs laid by birds that were 38 and 44 weeks old are grouped together

on the plot, indicating that the di↵erences between eggs laid by birds of these two ages

are less than the di↵erences between eggs laid by birds of these ages, and eggs laid by

birds that were 21 weeks old. The eggs laid by birds that were 26 and 30 weeks old at

the point of lay are widely spread throughout the plot, indicating that the di↵erences

between random eggs within these sample sets are greater than any di↵erence caused by

laying hen age.

The QC samples form a tight cluster towards the centre of the plot, indicating that the

analysis was robust, and that the di↵erences observed on the scores plot between random

eggs, and eggs laid by birds of di↵erent ages, are due to true biological di↵erences, not

instrumental drift.
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5.8.1.4 Univariate Statistics

There were 58 compounds remaining following the removal of any duplicates, adducts

and isotopes from the top 100 compounds, and all 58 of these were found to be statistically

significant. These compounds, and their CV%s and p-values, can be seen in Table B.5

in Appendix B; those in bold were also found to be statistically significant following

confirmation using the raw data, and attempts were made to identify them.

Of the 51 compounds that were still found to be statistically significant when con-

firmed using the raw data, four were putatively identified through comparing mass spec-

tra provided by METLIN with mass spectra from the analysis. The observed m/z for all

compounds was due to the [M+H]+ adduct. The compounds m/z 331.2851, 454.2937,

524.3717, and 703.5762 were putatively identified as 1-monopalmitin, 1-palmitoyl-glycero-

3-phosphatidylethanolamine PE(16:0/0:0), 1-palmitoyl-2-acetyl-glycero-3-phosphatidyl-

choline (Platelet Activating Factor (PAF) C-16), and 1-palmitoyl-sphingomyelin (SM(18:1

/16:0)) respectively. The compounds m/z 331.2851, 454.2937, and 703.5762 were pre-

viously putatively identified in this work, and their comparisons between mass spectra

provided by METLIN and mass spectra resulting from chemical analysis can be seen in

Figures B.1, B.8, and B.4 respectively, in Appendix B. The mass spectra comparison for

the remaining compound, m/z 524.3717, can be seen in Appendix B, Figure B.9.

Tables 5.24-5.27, and Figures 5.25-5.28, show the putative identifications of all of these

compounds, the p-values resulting from ANOVA/Welch tests and post-hoc Tukey/Games-

Howell tests, as well as the trends of changing abundance of the compounds in eggs laid

by birds of increasing age from 21 to 44 weeks old.
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Table 5.24: Table showing the putative identification of compound m/z 331.2851 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2851 C19H38O4 97.14 1-monopalmitin <0.001

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.994 <0.001 <0.001 0.005

26 Weeks <0.001 <0.001 0.002

30 Weeks 0.036 <0.001

38 Weeks 0.400

44 Weeks
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Figure 5.25: Bar chart showing the trend in changing abundance of compound m/z 331.2851
in yolk across eggs laid by hens from 21-44 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.25: Table showing the putative identification of compound m/z 454.2937 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

454.2937 C21H44NO7P 98.56 PE(16:0/0:0) 0.001

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.002 0.015 0.002 0.006

26 Weeks 0.915 1 0.992

30 Weeks 0.902 0.994

38 Weeks 0.989

44 Weeks
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Figure 5.26: Bar chart showing the trend in changing abundance of compound m/z 454.2937
in yolk across eggs laid by hens from 21-44 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.26: Table showing the putative identification of compound m/z 524.3717 and the p-
values resulting from Welch test and Games-Howell tests. n=6. Orange indicates
significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

524.3717 C26H54NO7P 99.42 PAF C-16 0.005

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.873 0.411 0.022 0.089

26 Weeks 0.582 0.027 0.063

30 Weeks 0.734 0.997

38 Weeks 0.691

44 Weeks
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Figure 5.27: Bar chart showing the trend in changing abundance of compound m/z 524.3717
in yolk across eggs laid by hens from 21-44 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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Table 5.27: Table showing the putative identification of compound m/z 703.5762 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

703.5762 C39H79N2O6P 95.38 SM(18:0/16:0) <0.001

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks <0.001 0.006 0.003 0.001

26 Weeks 0.493 0.658 0.962

30 Weeks 0.999 0.868

38 Weeks 0.956

44 Weeks
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Figure 5.28: Bar chart showing the trend in changing abundance of compound m/z 703.5762
in yolk across eggs laid by hens from 21-44 weeks old. n=6. Measured as mean
values of peak area for each hen age, with error bars ±1 standard deviation.
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The probability scores for the predicted molecular formulae are all above 95, there-

fore there is a high likelihood that the predicted formulae correspond to the compounds

of interest. The p-values from ANOVA and Welch tests show that the abundances of

these compounds are statistically significant when comparing them between eggs laid by

birds of di↵erent ages, ranging from 21 weeks old to 44 weeks old, and the post-hoc test

p-values tend to corroborate this. Three of these compounds have been previously pu-

tatively identified in this work, when studying metabolite profile di↵erences in egg yolk

between eggs laid by birds within smaller age ranges. Not only did these compounds show

significant di↵erences between eggs laid by birds of di↵erent ages on a small timescale,

but they also are statistically significant over a larger timescale of increasing bird age.

The compound that was putatively identified as 1-monopalmitin was in the top sta-

tistically significant compounds in several of the previous ranges of hen age that were

studied. There was some trend in the changing abundance of this compound over some

of these age ranges; however there is no correlation between abundance and hen age over

the total range of hen age, as can be seen in Figure 5.25. Therefore, this compound is not

a suitable marker of hen age for laying hens ranging from 21 to 44 weeks old. However,

Table 5.24 shows that there is a high statistical significance in the abundance of this

compound between eggs laid by birds that were 26 and 30 weeks old, and Figure 5.25

shows that there is a decrease in abundance in egg yolk between eggs laid by birds of

these two ages. This confirms what was observed previously in Table 5.11 and Figure 5.11

in Section 5.5, therefore this compound may be suitable as a marker of hen age within

this smaller range. The post-hoc test p-values in Table 5.24 show several points of high

statistical significance between eggs laid by birds of di↵erent ages, and Figure 5.25 shows

a gradual increase in the abundance of this compound in eggs laid by birds increasing

from 30 to 44 weeks of age, which was also observed over the smaller hen age range of

30-38 weeks in Section 5.6. This suggests that this compound may have some use as a

marker of hen age for laying hens between 30 and 44 weeks of age. However, although the

abundance of this compound was statistically significant between eggs laid by birds of 30
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and 38 weeks old when studied over the whole hen age range, as seen in Table 5.24, no

significant di↵erence was observed between eggs laid by birds of these ages in the smaller

hen age range study in Section 5.6. This suggests that the statistical significance of this

compound between eggs laid by birds of di↵erent ages is not stable and reproducible

between analytical runs, and therefore this compound may not be suitable as a marker

of hen age.

The post-hoc test p-values for the compound that was putatively identified as PE(16:0/

0:0), in Table 5.25, show several points of strong significant di↵erence in compound

abundance, but only between eggs laid by birds that were 21 weeks old, and those laid

by birds that were 26 weeks old and above, indicating that the greatest di↵erence in

compound abundance is between eggs laid by birds of these two ages. This is confirmed

by observing the graph in Figure 5.26, which shows a large di↵erence in abundance

between eggs laid by birds that were 21 and 26 weeks old, and little di↵erence and no

correlation between abundance and hen age, for eggs laid by birds of other ages. This

compound was previously determined to not be suitable as a marker of hen age for hens

in the age range of 26 to 30 weeks old, due to low statistical significance, and can now

also be determined to be unsuitable as a marker of hen age over a wider age range of

laying bird.

The compound PAF C-16 is a unique ether glycerophosphatidylcholine, with a palmi-

toyl group attached to the first carbon of the glycerol backbone by an ether linkage, and

an acetyl group attached to the second carbon by an ester bond. The Welch test p-value

for this compound, seen in Table 5.26, shows a high statistical significance in compound

abundance between eggs laid by birds of di↵erent ages; however, there are only two in-

stances of moderate statistical significance shown by the post-hoc test p-values in Table

5.26. Although the graph in Figure 5.27 shows some trend in decreasing abundance of

this compound between eggs laid by birds that were 21 weeks old and those laid by birds

that were 38 weeks old, because there is only a slight statistical significance between the
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sets of eggs, this compound is not useful as a marker of hen age.

The compound that was putatively identified as SM(18:1/16:0) was previously found

to be in the top statistically significant compounds when studying smaller hen age ranges

of 21 to 26 weeks and 26 to 30 weeks old, where it was found to be significantly di↵erent

between eggs laid by the youngest and oldest birds in the age range. It was determined

to be suitable as a marker of hen age for laying hens ranging from 21 to 26 weeks, as it

showed a statistically significant negative correlation between its abundance in yolk and

laying hen age. However, it was determined to not be suitable as a marker of hen age for

hens between 26 to 30 weeks old, as no correlation was observed between its abundance

in egg yolk and hen age within this age range. The significant di↵erence in the abundance

of this compound between eggs laid by birds that were 21 and 26 weeks old was confirmed

when studying the whole range of hen age, as can be seen in Table 5.27. However, both

the post-hoc test p-values in Table 5.27, and the graph in Figure 5.28, show that over

the whole hen age range, the greatest di↵erence in abundance is between eggs laid by

birds of these two ages, and there is little statistical significance or correlation between

compound abundance and hen age for eggs laid by birds of other ages, limiting its use as

a marker of hen age. The abundance of this compound was not found to be significantly

di↵erent between eggs laid by birds that were 26 and 30 weeks old when studying the

whole range of hen age, which also indicates that this compound may not be suitable as

a marker of hen age, as its statistical significance is not stable and reproducible between

analytical runs.

The standard deviations for these compounds, in eggs laid by birds of di↵erent ages, are

again quite large, resulting in wide error bars. This indicates that there was a relatively

high amount of variation within the sample sets due to eggs being laid by di↵erent birds.

Larger sample sizes would reduce these standard deviations.
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5.8.1.5 Statistically significant compounds from smaller hen age ranges over

a wider hen age range

In addition to the compounds that were putatively identified as 1-monopalmitin and

SM(18:1/16:0), which were found in the top 58 compounds when comparing eggs laid by

birds ranging from 21 to 44 weeks of age, there were three other previously putatively

identified compounds that were found to be significantly di↵erent between eggs laid by

the youngest and oldest birds when studied over smaller hen age ranges.

Table 5.28: Table showing the p-values resulting from ANOVA and Tukey tests for the com-
pound m/z 338.3420. n=6. Orange indicates significance (p<0.05) and green
indicates high significance (p<0.01).

ANOVA
p-value

Post-hoc test p-values

0.021 21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.525 0.722 0.984 0.473

26 Weeks 0.997 0.252 0.025

30 Weeks 0.411 0.052

38 Weeks 0.782

44 Weeks

The compound that was putatively identified as erucamide was previously found to be

highly significantly di↵erent between eggs laid by birds that were 26 and 30 weeks old, and

between those laid by birds that were 30 and 38 weeks old. The ANOVA p-value given for

this compound in Table 5.28 shows that the abundance of this compound was found to be

statistically significant when comparing eggs laid by birds ranging from 21 to 44 weeks of

age. However, the post-hoc test p-values for this compound in Table 5.28, show only one

instance of statistical significance, that is over a wider hen age range than the previously

observed significant di↵erences. The post-hoc test p-values for the comparisons between

eggs laid by birds that were 26 and 30 weeks old, and between those laid by birds that

were 30 and 38 weeks old, are both very non-significant, which suggests that the statistical

significance of this compound is not stable or replicable between analytical runs, making
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it unsuitable as a marker of hen age.

Table 5.29: Table showing the p-values resulting from ANOVA and Tukey tests for the com-
pound m/z 734.5708. n=6. Orange indicates significance (p<0.05) and green
indicates high significance (p<0.01).

ANOVA
p-value

Post-hoc test p-values

0.034 21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 1 0.914 0.989 0.039

26 Weeks 0.957 0.998 0.055

30 Weeks 0.996 0.211

38 Weeks 0.106

44 Weeks

The compound that was putatively identified as PC(16:0/16:0) was previously found to

be highly significantly di↵erent between eggs laid by birds that were 21 and 26 weeks old.

The ANOVA p-value given for this compound in Table 5.29 shows that the abundance

of this compound was found to be statistically significant when comparing eggs laid by

birds ranging from 21 to 44 weeks of age. However, the post-hoc test p-values for this

compound in Table 5.29 show only one instance of statistical significance, that is again

over a wider hen age range than the previously observed significant di↵erence. The post-

hoc test p-value for the comparison between eggs laid by birds that were 21 and 26 weeks

old shows a complete lack of di↵erence in compound abundance, which indicates that

the significant di↵erence of this compound is not reproducible between analytical runs,

making it unsuitable as a marker of hen age.

The compound that was putatively identified as PE(16:0/18:2) was previously found

to be highly statistically significant between eggs laid by birds that were 21 and 26 weeks

old. However, no statistical significance in the abundance of this compound was found

between eggs laid by birds of di↵erent ages, across the whole laying hen age range of

21-44 weeks, as can be seen in Table 5.30. Therefore, this compound is not suitable as a

marker of hen age.
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Table 5.30: Table showing the p-values resulting from ANOVA and Tukey tests for the com-
pound m/z 716.5243. n=6. Orange indicates significance (p<0.05) and green
indicates high significance (p<0.01).

ANOVA
p-value

Post-hoc test p-values

0.05 21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.050 0.816 0.998 0.987

26 Weeks 0.359 0.093 0.134

30 Weeks 0.936 0.976

38 Weeks 1

44 Weeks
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5.9 Hen Age 21-44 weeks (21, 26, 30, 38, 44 weeks):

Albumen Organic Extracts

5.9.1 Results and Discussion

5.9.1.1 Quality Control Analysis

Table 5.31 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 5.31: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC
samples analysed throughout the analytical run for albumen organic extracts from
eggs laid by hens 21-44 weeks old

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 37844340 85094524 106142272 2175472 837007 9630662

QC2 37118341 82820154 105794644 1940579 905615 9602381

QC3 38715435 86464744 104565589 2095544 780009 10026394

QC4 25602799 60493292 79365449 1420942 735923 7026979

QC5 38292672 83606497 106944407 2207249 690366 9967612

QC6 35964283 78754275 99862886 1976375 877906 9309659

QC7 39301450 83836784 107139551 2215328 782314 9874763

SD 4764175 8993775 10028210 279431.8 76832.47 1053157

Mean 36119903 80152896 101402114 2004498 801306 9348350

CV% 13.19 11.22 9.89 13.94 9.59 11.27

The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.
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Table 5.32 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 5.32: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for albumen organic extracts from eggs laid
by hens 21-44 weeks old

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 7.793 11.874 14.794 16.453 18.975 22.475

QC2 8.027 12.208 15.127 16.770 19.258 22.725

QC3 8.096 12.244 15.186 16.806 19.294 22.745

QC4 8.175 12.322 15.258 16.901 19.422 22.939

QC5 8.141 12.322 15.241 16.834 19.339 22.806

QC6 8.147 12.294 15.197 16.806 19.295 22.762

QC7 8.144 12.275 15.211 16.837 19.325 22.792

SD 0.133 0.158 0.160 0.147 0.141 0.140

Mean 8.075 12.220 15.145 16.772 19.273 22.749

CV% 1.65 1.29 1.06 0.87 0.73 0.61

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all below the 2% cut o↵, indicating that the analysis was robust and there

was minimal retention time drift throughout the analysis.
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5.9.1.2 Metabolite Profiling

Comparisons were made between albumen organic extracts of eggs laid by hens that

were 21 weeks and 44 weeks old, by studying the TICs of the extracts following HPLC-

MS analysis. Figure 5.29 shows overlaid TICs for the average chromatograms of extracts

from eggs laid by hens of these two ages.
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Figure 5.29: Overlaid average TICs of albumen organic extracts of eggs that were laid by
hens of 21 weeks and 44 weeks old

The overlaid TICs in Figure 5.29 display a clear di↵erence in metabolite profile between

eggs laid by birds that were 21 weeks old, and those laid by birds that were 44 weeks

old. There does not appear to be a particular trend regarding the di↵erence in peak

intensity between the two chromatograms; some peaks are of a higher intensity in the

chromatogram of eggs laid by younger hens, and some are of a higher intensity in the

chromatogram of eggs laid by the older birds.
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5.9.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the eggs laid by hens of di↵erent ages.
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Figure 5.30: PCA scores plot showing PC2 vs PC4 for albumen organic extracts of eggs laid
by hens from 21 weeks to 44 weeks old, including all compounds with
CV%<30%. PC2 explains 5.87% of the variance, and PC4 explains 0.43% of
the variance. Circled: sample separate to rest of sample set.

The scores plot in Figure 5.30 shows that eggs laid by birds that were 21 weeks old,

and those laid by hens that were 26 weeks old, form their own groups separate to any

other sets of eggs laid by birds of other ages. This indicates that a large change in the

metabolite profile of the egg albumen occurs between a laying hen age of 21 weeks and

26 weeks, and between a laying hen age of 26 weeks and 30 weeks. There is one egg laid

by a bird that was 21 weeks old (circled) that is grouping more closely with eggs laid

by birds that were 38 weeks old. It is not known why this is, as nothing unusual was

noted during the extraction or analysis, compared to the other eggs laid by birds of the
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same age. However, eggs laid by birds ranging from 30 weeks to 44 weeks old all group

together on the opposite side of the plot, showing very little separation. This suggests

that when the birds are later on in their laying cycle, the di↵erence in metabolite profile

between eggs laid by birds of di↵erent ages decreases.

The separation between eggs laid by birds that were 21 and 26 weeks old, and those laid

by the older birds is across PC2, which explains 5.87% of the variance. This indicates that

there is a relatively large amount of variation between these sets of eggs laid by younger

and older birds, compared to the previous variation observed in PCA scores plots when

comparing the metabolite profiles of the yolks of eggs laid by birds of di↵erent ages. The

very slight separation between eggs laid by birds that were 38 and 44 weeks old is across

PC4, which explains only 0.43% of the variance, showing just how subtle these di↵erences

are. Both PC2 and PC4 are responsible for the separation between eggs laid by birds

that were 26 weeks old, and eggs laid by birds of other ages, with most of the separation

across PC4. Although PC4 does completely separate eggs laid by birds that were 26

weeks old from the other sets of eggs laid by birds of other ages, as it only describes such

a small amount of variation, it again shows the subtlety of the di↵erences between eggs

laid by birds of di↵erent ages.
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5.9.1.4 Univariate Statistics

There were 35 compounds remaining following the removal of any duplicates, adducts

and isotopes from the top 100 compounds, and all 35 of these were found to be statistically

significant. These compounds, and their CV%s and p-values, can be seen in Table B.6

in Appendix B; those in bold were also found to be statistically significant following

confirmation using the raw data, and attempts were made to identify them.

All 35 compounds were still found to be statistically significant when confirmed us-

ing the raw data, and of these 35, three were putatively identified through comparing

mass spectra provided by METLIN with mass spectra from the analysis. The observed

m/z for all compounds was due to the [M+H]+ adduct. The compounds m/z 310.3104,

331.2840, and 338.3418 were putatively identified as oleoyl ethyl amide, 1-monopalmitin,

and docosenamide (erucamide) respectively. The compounds m/z 331.2840 and 338.3418

were previously putatively identified in this research, and their comparisons between mass

spectra provided by METLIN and mass spectra resulting from the chemical analysis in

this study can be seen in Figures B.1 and B.7 respectively, in Appendix B. The mass

spectra comparison for the remaining compound, m/z 310.3104, can be seen in Appendix

B, Figure B.10.

Tables 5.33-5.35, and Figures 5.31-5.33, show the putative identifications of all of these

compounds, the p-values resulting from ANOVA and post-hoc Tukey tests, as well as the

trends of changing abundance of the compounds in eggs laid by birds of increasing age

from 21 to 44 weeks old.
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Table 5.33: Table showing the putative identification of compound m/z 310.3104 and the p-
values resulting from Welch tests and Games-Howell tests. n=6. Orange indicates
significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

310.3104 C20H39NO 97.31
Oleoyl ethyl

<0.001
amide

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.020 0.001 <0.001 <0.001

26 Weeks 0.629 0.042 0.008

30 Weeks 0.506 0.175

38 Weeks 0.954

44 Weeks
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Figure 5.31: Bar chart showing the trend in changing abundance of compound m/z 310.3104
in albumen across eggs laid by hens from 21-44 weeks old. n=6. Measured as
mean values of peak area for each hen age, with error bars ±1 standard
deviation.
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Table 5.34: Table showing the putative identification of compound m/z 331.2840 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2840 C19H38O4 99.39 1-monopalmitin <0.001

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.036 0.001 <0.001 <0.001

26 Weeks <0.001 <0.001 <0.001

30 Weeks 0.403 0.712

38 Weeks 0.039

44 Weeks
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Figure 5.32: Bar chart showing the trend in changing abundance of compound m/z 331.2840
in albumen across eggs laid by hens from 21-44 weeks old. n=6. Measured as
mean values of peak area for each hen age, with error bars ±1 standard
deviation.
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Table 5.35: Table showing the putative identification of compound m/z 338.3418 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

338.3418 C22H43NO 99.85 Erucamide <0.001

Post-hoc test p-values

21 Weeks 26 Weeks 30 Weeks 38 Weeks 44 Weeks

21 Weeks 0.103 0.005 <0.001 <0.001

26 Weeks 0.658 0.078 0.014

30 Weeks 0.652 0.235

38 Weeks 0.937

44 Weeks
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Figure 5.33: Bar chart showing the trend in changing abundance of compound m/z 338.3418
in albumen across eggs laid by hens from 21-44 weeks old. n=6. Measured as
mean values of peak area for each hen age, with error bars ±1 standard
deviation.
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The probability scores for the predicted molecular formulae are all above 95, therefore

there is a high likelihood that the predicted formulae correspond to the compounds of

interest. The p-values from ANOVA/Welch tests show that the abundances of all of these

compounds are highly statistically significant when comparing them between eggs laid

by birds of di↵erent ages, ranging from 21 weeks old to 44 weeks old, and the post-hoc

test p-values confirm this.

The post-hoc test p-values in Table 5.33 show several points of high statistical signif-

icance for the abundance of the compound that was putatively identified as oleoyl ethyl

amide, in eggs laid by birds of di↵erent ages, ranging from 21 to 44 weeks old. This com-

pound is an amide derivative of the fatty acid oleic acid, with an ethyl group attached

to the nitrogen of the amide group. As well as being highly statistically significant, this

compound shows a steadily increasing abundance in eggs laid by birds of increasing age

from 21 to 44 weeks, as can be seen in Figure 5.31, which makes it potentially suitable as

a marker of hen age over this age range. The standard deviation error bar for eggs laid

by birds that were 21 weeks old is very wide, indicating a large amount of variance in the

abundance of this compound in eggs laid by birds of this age. This could be because the

birds were quite young and very early in their laying cycle, and therefore the metabolic

state of these hens was not homogeneous between the birds. This suggests that it may

be di�cult to predict laying hen age for younger birds, based on compound abundance

in eggs, as there may be too much variation.

The compound that was putatively identified as 1-monopalmitin was also found in the

top statistically significant compounds when comparing the yolks of eggs laid by birds of

di↵erent ages within the same age range. However, when found in the yolk previously, as

well as in the albumen presently, it has been determined to be unsuitable as a marker of

hen age for birds within this age range. Although several of the post-hoc test p-values in

Table 5.34 are highly significant, Figure 5.32 shows that there was no correlation between

the abundance of this compound in egg albumen and laying hen age, indicating that this
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compound would not be suitable for predicting hen age.

The compound that was putatively identified as erucamide can be seen in Figure

5.33 to gradually increase in abundance in egg albumen with increasing laying hen age,

which suggests that this compound may be suitable as a marker of hen age. Table 5.35

shows several points of high statistical significance when comparing eggs laid by birds

of di↵erent ages, which confirms the suitability of this compound as a hen age marker.

However, most of the statistical significance lies between eggs laid by birds that were

21 weeks old, and those laid by birds that were 30 weeks and older, suggesting that the

increase in compound abundance is mostly over the first few weeks of increasing hen age,

before becoming more gradual between eggs laid by older birds. This could limit the use

of this compound as a marker of hen age over this age range.

The pattern of the changing abundance for this compound is very similar to that of

the compound that was putatively identified as oleoyl ethyl amide. This is likely to be

because these compounds are very similar to each other; they are both amide derivatives

of fatty acids, which only di↵er by a chain length of four carbon atoms. Therefore,

these compounds are likely to experience similar metabolic processes, explaining why

their changing abundances in the albumen of eggs laid by birds of increasing age are so

similar. However, the compound that was putatively identified as erucamide does not

show as much potential as a marker of hen age as the compound that was putatively

identified as oleoyl ethyl amide, as it does not experience quite as significant a di↵erence

in abundance in the albumen of eggs laid by birds of increasing age. Similarly to what

was observed for the compound that was putatively identified as oleoyl ethyl amide, there

is quite a wide standard deviation error bar for eggs laid by birds that were 21 weeks old,

indicating that there was a large amount of variance in the abundance of this compound

in eggs laid by birds of this age. This again suggests that predicting laying hen age based

on the abundance of this compound may not be possible for younger birds, as there may

be too much variation to make an accurate prediction.
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5.10 Summary & Conclusions

5.10.1 Summary

The overlaid chromatograms in each of the yolk organic extract studies within this

work showed a slight di↵erence in the metabolite profiles of egg yolk between eggs laid

by birds of di↵erent ages. These chromatograms showed a higher peak intensity for later

eluting, non-polar compounds that may be phospholipids, in the TICs of yolk extracts

from eggs laid by older birds, indicating that compounds within this class may be present

in a higher abundance in the yolks of eggs laid by older birds, compared to in the yolks

of eggs laid by younger birds. The PCA scores plots in these studies also showed some

separation between sets of eggs laid by birds of di↵erent ages, again indicating that there

is some di↵erence in the metabolite profile of yolk between eggs laid by birds of di↵erent

ages. These observations were noted for the studies over small hen age ranges, as well as

over a wider hen age range from 21 to 44 weeks of age.

Several statistically significant compounds were putatively identified in the yolk or-

ganic extract studies, but were determined to not be suitable as markers of hen age. Some

compounds were found to have potential as markers of hen age, but only between cer-

tain ages of birds within the smaller age ranges, as there was only a correlation between

abundance and hen age up to a certain age of hen within the age range. Therefore, these

compounds were found to not be suitable as markers of hen age over wider age ranges.

However, other compounds were determined to be completely unsuitable as markers of

hen age, as they either did not show any correlation between abundance and hen age, or

their statistical significance observed through post-hoc test p-values was not very strong.

Some compounds, which were putatively identified and found in the top statistically sig-

nificant compounds for more than one laying hen age range, were determined to have

some potential as markers of hen age within one age range and not others, and therefore

were found to not be suitable as markers of hen age over a longer age range.
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One compound, which was putatively identified as 1-monopalmitin, appeared in the

top statistically significant compounds for several di↵erent hen age ranges that were

studied, including the wider hen age range from 21-44 weeks old. This compound was

determined to have potential as a marker of hen age within one of the smaller hen age

ranges, but not others. When observed over a wider hen age range, from 21 to 44 weeks

of age, this compound showed some potential as a marker of hen age, due to the positive

correlation of its abundance with increasing hen age, and statistical significance between

eggs laid by birds that were 30 to 44 weeks old. However, the results observed over this

wider hen age range did not corroborate what was observed in the smaller hen age range

studies; therefore this compound was determined to not be suitable as a marker of hen

age as its relative abundance, and therefore statistical significance, was not reproducible

between analytical runs. The remaining putatively identified compounds that appeared

in the top statistically significant compounds over the wider hen age range did not show

any potential as markers of hen age for laying hens between 21 and 44 weeks old.

Other putatively identified compounds that were found to be significantly di↵erent

between eggs laid by the youngest and oldest birds in the individual hen age ranges that

were studied, were not found to be significantly di↵erent between eggs laid by birds of

these ages when observed in the data for eggs laid by birds ranging from 21 to 44 weeks

old. This indicates that these compounds are not suitable as markers of hen age as they

are unreliable and do not show repeatability between analytical runs.

The results of the albumen organic extract study, over a laying hen age range of 21

to 44 weeks, were similar to what was observed from analysing the yolk. The overlaid

chromatograms showed a di↵erence in metabolite profile between eggs laid by younger

and older birds, but there appeared to be no trend in which types of compound were of

a higher or lower abundance in eggs laid by younger or older birds. The PCA scores plot

showed some separation between eggs laid by birds of di↵erent ages, particularly between

the eggs laid by the younger birds.
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One statistically significant compound was again putatively identified as 1-monopalmitin,

but this compound did not show any potential as a marker of hen age when found in albu-

men. Another compound was putatively identified as erucamide, which was determined

to not be suitable as a marker of hen age when found in the yolk. However, when found

in the albumen, this compound showed some limited potential as a marker of hen age

for birds ranging from 21 to 44 weeks old. The compound that was putatively identified

as oleoyl ethyl amide was only found in the top statistically significant compounds when

studying the albumen, and was found to show potential as a marker of hen age due to

its gradually increasing abundance and statistical significance over an increasing hen age

from 21-44 weeks.

5.10.2 Conclusions

It can be concluded from this research that the age of the laying hen does have an

e↵ect on the resulting metabolite profiles of the yolk and albumen of the egg. The overlaid

TICs and PCA scores plots through the various hen age ranges that were studied, have

shown that there are slight di↵erences in metabolite profile between eggs laid by birds

of di↵erent ages. Although the influence that laying hen age has on the metabolite

profiles is only subtle, the e↵ect of other variables that may be investigated in future

metabonomic studies may also be very slight; this could result in the impact of hen age

on the metabolite profile being relatively large. Therefore, it is important to not only be

aware of the e↵ects that di↵erent hen ages may have on the results of a metabonomic

study into eggs, but also to try and keep the age of the birds as similar as possible when

designing and carrying out the study.

This research has shown that a non-targeted metabonomic study is capable of observ-

ing di↵erences in both the yolk and albumen of eggs laid by birds of di↵erent ages. It has

shown that although some statistically significant compounds show a correlation between

abundance and hen age, they are not always suitable as markers of hen age; the correla-
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tion may only exist for eggs laid by birds between certain ages and may change erratically

throughout the laying cycle of a hen, and the compounds may not show repeatability in

relative abundance and statistical significance between analytical runs. Therefore these

compounds are not suitable as markers of hen age to help detect cases of fraud, as they

would not be able to accurately, and reliably, predict the age of the laying bird. However,

this research found that one statistically significant compound with a correlation between

its abundance in albumen and laying hen age, which was putatively identified as oleoyl

ethyl amide, does show potential as a marker of hen age.

Egg albumen appeared to be more greatly a↵ected than the yolk by the increasing age

of the laying hen, suggesting that analysis of the albumen may produce better results

when detecting cases of potential fraud. This also indicates that it is even more important

to be aware of the e↵ect that hen age can have on the metabolite profile of the albumen,

than the yolk, when carrying out a metabonomic study into eggs.

Further work would involve observing the abundance in albumen of the compound

that was putatively identified as oleoyl ethyl amide, over smaller ranges of hen age, to

determine whether it would be useful when predicting a more accurate hen age, and

whether the statistical significance of this compound is reproducible. Observing the

changing abundance of this compound over an even wider range of hen age would also

be useful in determining at which hen age the correlation between abundance and laying

hen age stops, and it is no longer possible to use this compound to discriminate between

eggs laid by birds of di↵erent ages. If this compound was found to be reproducibly

capable of predicting hen age, future studies could then determine whether these results

are replicable with di↵erent breeds of bird, and birds kept in di↵erent housing systems.

If this compound was found to be successful in predicting an accurate laying hen age,

and the results were replicable between di↵erent breeds of bird, and birds from di↵erent

housing systems, then it could be used to detect cases of fraud regarding false producer

codes on eggs.
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6. The e↵ect of hen diet on the

metabolite profiles of egg yolk and

albumen

6.1 Introduction

Diet is a variable that a↵ects the metabolite profile of a subject [1][2][3], and if not

controlled, can greatly a↵ect the results of a metabonomic study [4][5]. Therefore, it is

important to be aware of the e↵ects that the diet of the laying hen may have on the

metabolite profiles of the yolk and albumen of the eggs.

Laying hens that are kept for organic egg production must be provided with an organic

feed as their diet [6], whilst non-organic birds are given a diet of conventional feed.

Organic feed contains di↵erent ingredients to those that are present in conventional feed,

and there are regulations regarding which ingredients and additives may be allowed in

organic feed [7]. However, organic feed is more expensive than conventional feed [8],

which would potentially tempt organic egg producers to provide their organic poultry

with conventional, rather than organic, feed in order to cut costs. The organic protein

supply is not currently great enough to meet the nutritional requirements of poultry,

therefore the organic feed of laying hens in organic egg production in the European Union

is allowed to contain just 5% non-organic protein feed [6]. This regulation is currently
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in place until December 2020, at which point it will be reviewed. If this regulation is

changed, and it is deemed unnecessary for organic feed to contain non-organic protein

feed, then it could encourage cases of fraud, as producers may not wish to switch to a

full, 100% organic feed, and may stick to the current feed composition.

It would therefore be useful to have a scientific method that is capable of discriminating

between di↵erent laying hen diets, based on the analysis of the egg, in order to detect

cases of fraud. However, if the testing of eggs to detect the incorrect feeding of organic

poultry was implemented, egg producers may pre-empt an investigation, and correct the

diet of the laying hens. Therefore, it is also important to determine how soon after

changing the diet of a bird, an e↵ect can be observed in the egg. The quicker the egg is

a↵ected by a diet change, the sooner it fully reflects the e↵ect of the new diet on the egg,

and the less time there is to detect the fraud.

Although it is not possible to change the total lipid content of an egg yolk through

dietary modifications, the fatty acid profile of the yolk is strongly influenced by diet [9].

There has been much research into how the diet of a laying hen a↵ects the resulting

fatty acid (FA) profile in the yolks of eggs laid by the bird, as there are various human

health implications regarding the lipid content of the egg yolk. It has been determined

that the dietary supply of fatty acids is the greatest influence on the FA profile of egg

yolk, particularly for omega-3 FAs [10]. One study found that the omega-6 to omega-

3 FA ratio can be decreased with the addition of di↵erent oils to the diet [11], which

is similar to what was observed by other researchers, who found that the omega-3 FA

content of egg yolk can be increased with the addition of fish oil and flaxseed to the diet

[12]. Other researchers have also found that the addition of fish oil to diets decreases the

ratio of omega-6 to omega-3 FAs by increasing the content of omega-3 FAs [13], whilst

others have determined that the addition of linseed oil to laying hen diet results in good

omega-6 to omega-3 ratios in the yolk [14].

There has also been some research into how the laying hen diet a↵ects the cholesterol
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levels of egg yolk. However, it is di�cult to modify the level of cholesterol in the yolk, as

the cholesterol content of the egg is dependent on the hepatic synthesis of lipoproteins,

rather than the blood cholesterol level of the hen [9]. The proportion of the lipid and

protein components of very low density lipoproteins (VLDLs), which are the precursors to

egg yolk components, is highly stable. Therefore, it is di�cult to modify the cholesterol

level in VLDLs without negatively impacting the physiology of the hen, and thus it

is di�cult to modify the cholesterol level of the yolk [9]. Some studies have reported

successful modifications of cholesterol levels of egg yolk by altering the laying hen diet,

whilst others have been less successful [12]. One study found that yolk cholesterol levels

were not a↵ected by the fatty acid composition of the laying hen diet [15], and another

found that flaxseed and antioxidant supplementation of laying hen diet also had no e↵ect

on the cholesterol content of the egg yolk [16]. One group of researchers found that diets

containing higher percentages of chia seed, compared to a control diet with no chia seed,

resulted in a lower cholesterol content of egg yolks [17], whilst others found that laying

hen diets supplemented with increasing amounts of garlic resulted in decreasing levels of

cholesterol in egg yolk [18].

The e↵ects of dietary zinc, iron and copper in bird feed on the distribution of these

elements in eggs have been studied [19]. It was found that supplementing the diet with

iron increased the concentration of iron in both the yolk and albumen of eggs, and that

when the diet was supplemented with all three elements, the concentration of iron in-

creased even further in both egg components. However, little e↵ect was observed on the

enrichment of eggs with copper and zinc with the supplemented diets.

Although there is much research regarding the e↵ect of laying hen diet on egg yolk

lipid content, there does not appear to be much research regarding how laying hen diet

can a↵ect other compounds in the egg yolk, or how the diet impacts the albumen of the

eggs. The use of a metabonomic approach, using HPLC-MS, would enable the observation

of how a wide range of compounds and compound classes, in egg yolk and albumen, are
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a↵ected by di↵erent laying hen diets. This would not only help with the detection of fraud

regarding the diets of organic laying hens, but would help to develop an understanding

of how the laying hen diet can a↵ect the results of other metabonomic studies on eggs.

6.2 Aims and Objectives

When carrying out metabonomic studies, it is important to understand how the diet

of the laying hen a↵ects the resulting metabolite profiles of the yolk and albumen of the

egg. This work aimed to show how the metabolite profiles of both egg yolk and albumen

are influenced by the diet of the laying hen.

In order to detect cases of fraud where hens in organic egg production systems are fed a

conventional diet, it is important to be able to discriminate between eggs laid by birds that

are fed di↵erent diets, and to determine how soon after switching the diet of the laying

hen the e↵ects can be seen in the metabolite profile of the yolk and albumen of the eggs.

This work aimed to perform a preliminary study involving the use of a non-targeted

metabonomic workflow to uncover the di↵erences in metabolite profile between eggs laid

by four sets of birds that were fed four di↵erent diets, both two and five weeks after the

diets were changed. This work also aimed to observe the rates at which di↵erent laying

hen diets have an e↵ect on the metabolite profiles of the yolk and albumen of eggs.
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6.3 Experimental

Eggs were collected on the day of lay from the National Institute of Poultry Husbandry

(Harper Adams University, Newport, U.K.). Laying hens were of the Hy-line brown breed,

21 weeks old at the start of the study, and kept in enriched cages with 80 birds per cage.

Initially, all birds were fed the same diet, Diet A.

Diet A Diet ADiet A Diet A

Cage 1 Cage 4Cage 3Cage 2

Diet A Diet CDiet B Diet D

Cage 1 Cage 4Cage 3Cage 2

6 eggs 6 eggs 6 eggs 6 eggs

DIET CHANGE

6 eggs 6 eggs 6 eggs 6 eggs

2 weeks

6 eggs 6 eggs 6 eggs 6 eggs

5 weeks

Figure 6.1: Diagram showing the experimental design for the change in laying hen diet study

Six eggs were collected from four di↵erent cages one week prior to the diet change, in

order to act as a control. The diets of three of these cages of birds were then changed,
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resulting in four cages of birds being fed four di↵erent diets; Diets A, B, C, and D. The

compositions of all four diets were di↵erent, but unknown. The next set of eggs were

collected two weeks after this diet change, and six eggs were collected per cage/diet.

Another set of six eggs per cage/diet was collected three weeks later, five weeks following

the initial diet change. All eggs underwent metabolite extraction on the day of lay, and

the resulting extracts were stored at -80 C until chemical analysis took place. Figure 6.1

shows the experimental design for this study.

Analysis of the yolks of eggs laid by birds that were fed the four di↵erent diets took

place both two weeks, and five weeks after the diet change, in order to observe how any

resulting changes in metabolite profile develop over an increasing time post diet change.

The metabolite profiles of the yolks of eggs laid by birds which were fed diets B, C, and

D were compared to the profile of the yolks of eggs laid by birds which were fed diet A, in

order to observe which diets had the greatest and quickest e↵ects on the yolk metabolite

profile following the change from diet A.

Analysis of the albumen of eggs laid by birds that were fed the four di↵erent diets took

place five weeks after the diet change, to determine whether a di↵erence in metabolite

profile can be observed in the albumen of eggs laid by birds which were fed di↵erent diets.

Again, the metabolite profiles of the yolks of eggs laid by birds which were fed diets B,

C, and D were compared to the profile of the yolks of eggs laid by birds which were fed

diet A, in order to observe which diets had the greatest impact on albumen metabolite

profile following the change from diet A.

Organic metabolite extraction of the yolk and albumen, chemical analysis of the re-

sulting extracts using HPLC-MS, quality control analysis, and data pre-processing were

carried out as described in Chapter 3. Data analysis for all three experiments was then

carried out as described in Chapter 3, Section 3.9, with the addition of a second PCA,

using only the top statistically significant compounds following ANOVA/Welch tests.

The p-values for the top statistically significant compounds were compared to p-values
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resulting from ANOVA/Welch tests for these compounds between eggs laid by the birds

from the di↵erent cages one week prior to the diet change. This was to ensure that any

statistically significant compounds were significant due to the e↵ects of the di↵erent diets,

and not any environmental di↵erences that may exist between the sets of birds.

No identification of compounds took place, as the compounds that are significantly

a↵ected by a change of diet will be di↵erent depending on the composition of the initial

diet, and the compositions of the new diets. In terms of understanding the e↵ect of hen

diet on the metabolite profiles of yolk and albumen in metabonomic studies, it is more

important to determine if and how the metabolite profiles of the yolk and albumen are

a↵ected, than which compounds are a↵ected.
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6.4 2 weeks post diet change: Yolk Organic Extracts

Organic extracts of the yolk of eggs laid by four sets of hens which were fed four

di↵erent diets were compared, two weeks after the diets of three sets of hens were changed,

to see whether a di↵erence in metabolite profile could be observed between the yolks of

eggs laid by hens that were fed the four di↵erent diets.

6.4.1 Results and Discussion

6.4.1.1 Quality Control Analysis

Table 6.1 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 6.1: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens fed four di↵erent diets, two weeks post diet change

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 1835145 131801593 56711557 26597296 465408900 82038292

QC2 1567475 130955535 56300801 26785943 452967309 80809174

QC3 1631501 129758396 55854682 25692277 452194634 77984124

QC4 1445203 129795696 55345965 26005762 450897595 77977511

QC5 1431086 130320776 53717693 25941661 447066406 74956238

QC6 1755498 132596886 57164116 25331402 447435075 69195314

QC7 1520903 133516651 62406170 26066318 452557830 70798831

SD 152888 1446035 2718020 499790 6117582 4855229

Mean 1598116 131249362 56785855 26060094 452646821 76251355

CV% 9.57 1.10 4.79 1.92 1.35 6.37
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 6.2 shows the retention times (RTs) for the six peaks of interest in the seven

QC samples that were analysed throughout the run, as well as the SD, the mean, and

the CV% of the RTs for each of the peaks.

Table 6.2: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens fed four di↵erent diets, two weeks post diet change

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.524 9.139 32.511 56.762 71.420 77.744

QC2 4.557 9.188 32.527 56.762 71.536 77.910

QC3 4.558 9.206 32.511 56.813 71.570 77.994

QC4 4.452 9.233 32.555 56.856 71.597 78.099

QC5 4.537 9.218 32.557 56.858 71.648 78.122

QC6 4.593 9.241 32.646 57.014 71.854 78.494

QC7 4.477 9.274 32.696 57.047 71.987 78.709

SD 0.049 0.043 0.072 0.115 0.196 0.337

Mean 4.528 9.214 32.572 56.873 71.659 78.153

CV% 1.08 0.47 0.22 0.20 0.27 0.43

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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6.4.1.2 Metabolite Profiling

Comparisons were made between the yolks of eggs laid by hens that were fed the four

di↵erent diets, by studying the Total Ion Chromatograms (TICs) of the extracts following

HPLC-MS analysis. Figure 6.2 shows overlaid TICs for the average chromatograms of

organic extracts of yolk from eggs laid by hens that were fed these four diets.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Co
un

ts

Time (minutes)

Diet A
Diet B
Diet C
Diet D

Figure 6.2: Overlaid average TICs of organic extracts of yolks of eggs laid by hens that were
fed four di↵erent diets, two weeks post diet change

As can be seen from the overlaid TICs in Figure 6.2, there is a subtle di↵erence in

metabolite profile between the yolks of eggs laid by birds that were fed the four di↵erent

diets. There is a slightly higher peak intensity for most peaks in the first 25 minutes of

analysis, in the TIC of yolk from eggs laid by birds which were fed diet C, indicating

either that this diet may be rich in less non-polar compounds, or that it results in an

increased abundance of these compounds in the yolk. Between 35 and 65 minutes of

analysis there is very little di↵erence in peak intensity between the TICs of the yolks of

eggs laid by birds which were fed the four di↵erent diets. However, the peaks that do
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show some di↵erence in intensity, again have a higher intensity in the TIC of the yolks

of eggs laid by birds which were fed diet C. It is di�cult to compare the peak intensities

after 65 minutes of analysis, as there was some retention time drift throughout the last 20

minutes of each analytical run, which has a↵ected the average TICs that were produced,

resulting in a poor peak shape. However, this drift was still within accepted limits, as

seen in the QC analysis in Section 6.4.1.1.

6.4.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the yolks of eggs laid by hens which were fed the four di↵erent diets.
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Figure 6.3: PCA scores plot showing PC3 vs PC4 for yolk organic extracts of eggs laid by
birds that were fed four di↵erent diets, two weeks post diet change, including all
compounds with CV%<30%. PC3 explains 0.38% of the variance, and PC4
explains 0.15% of the variance.

The scores plot in Figure 6.3 does not display the subtle di↵erences in metabolite

profile that were observed in the overlaid TICs in Figure 6.2. The only variation that is
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present is between the yolks of random eggs, rather than between the yolks of eggs laid

by birds which were fed the di↵erent diets. This suggests that the di↵erences between

the metabolite profiles which were observed in Figure 6.2, are not great enough for the

PCA to uncover. The QC samples form a group on the scores plot that is more tightly

clustered than the other sample sets, indicating that the analysis was robust and that

there was little instrumental drift a↵ecting the analysis.

6.4.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 43

compounds remaining, after the removal of any duplicates, adducts or isotopes from the

top 100 compounds based on PC1 loadings, all 43 were found to be statistically significant.

These compounds, their CV%s, p-values resulting from ANOVA/Welch tests, and trends

in abundance between eggs laid by birds which were fed the four di↵erent diets, can

be seen in Table C.1 in Appendix C. Those in bold were also found to be statistically

significant following confirmation using the raw data.

The trends in the abundances of the compounds between the yolks of eggs laid by hens

which were fed the four di↵erent diets can be seen in Table C.1 in Appendix C. Most of

the compounds in this table have a similar abundance in the yolks of eggs laid by birds

which were fed diet B, to the abundance in the yolks of eggs laid by birds which were fed

diet A. The abundances of these compounds in the yolks of eggs laid by birds which were

fed diets C and D are di↵erent to this, but similar to each other. The yolks of eggs laid by

birds which were fed diet C appear to show the most di↵erence in compound abundance

compared to the yolks of eggs laid by birds which were fed diet A, whilst the yolks of

eggs laid by birds which were fed diet D show slightly less di↵erence.
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6.4.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 43 statistically significant com-

pounds, and scores plots were again produced to display the variation between yolks of

eggs that were laid by birds which were fed the four di↵erent diets.
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Figure 6.4: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of eggs laid by
birds that were fed four di↵erent diets, two weeks post diet change, including the
top 43 statistically significant compounds. PC2 explains 0.65% of the variance,
and PC3 explains 0.004% of the variance.

The scores plot in Figure 6.4 shows some separation between the yolks of eggs laid by

birds which were fed the di↵erent diets, indicating that the di↵erences in the metabolite

profiles of the yolks are stronger when only the top statistically significant compounds

are included in the PCA. The yolks of eggs laid by birds which were fed diet B show no

separation to those laid by birds which were fed diet A, which corroborates what was

observed from the trends in the abundance of the top statistically significant compounds

in Table C.1 in Appendix C. The yolks of eggs laid by birds which were fed diet C show

complete separation from the yolks of eggs laid by birds which were fed both diets A
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and B, but not from the yolks of eggs laid by birds which were fed diet D, which are

spread throughout the plot. This again confirms what was observed from the trends in

the abundances of the compounds in Table C.1. The variation between the yolk samples

on the scores plot is across both PC2 and PC3, which describe just 0.65% and 0.004% of

the variation respectively, showing just how subtle these di↵erences are. Again, the QC

samples are grouped more tightly together than the samples, showing that the di↵erences

between samples are due to true biological di↵erences, rather than any instrumental drift.

6.4.1.4.2 Comparison between 2 weeks post diet change and 1 week before

diet change

The significant di↵erences of the top statistically significant compounds between the

yolks of eggs laid by birds that were fed the four di↵erent diets, were compared between

two weeks after the diets were changed, and one week before the diets were changed.

Table C.2 in Appendix C shows the ANOVA/Welch test p-values of the top 23 com-

pounds that were found to be significantly di↵erent, following confirmation using the

raw data, between the yolks of eggs laid by birds that were fed the four di↵erent diets,

two weeks post diet change, as well as the p-values of these compounds one week prior

to the change of diet. Those highlighted in red were found to be significantly di↵erent

between the eggs laid by birds kept in the four di↵erent cages prior to any diet change,

and so may not have been a↵ected by the change in diet, but by di↵erent environmental

conditions between the cages. There are more statistically significant compounds that

showed a significant di↵erence in abundance before the diets were changed, than did not,

indicating that the di↵erences in metabolite profile between the yolks of eggs laid by birds

which were fed the four di↵erent diets are very subtle, and that other variables between

the di↵erent cages of birds are responsible for some of the observed di↵erences.

Page 248



Chapter 6

6.4.1.5 Summary

The overlaid TICs in Figure 6.2 showed that there was a very subtle di↵erence in

metabolite profile between the yolks of eggs laid by birds that were fed the four di↵erent

diets. Although these di↵erences were too subtle to show any significant variation on

the first scores plot in Figure 6.3, the scores plot in Figure 6.4 did confirm the subtle

di↵erences in metabolite profile between the yolks of eggs laid by birds which were fed

the four di↵erent diets. It showed no di↵erence between the yolks of eggs laid by birds

which were fed diet B and the yolks of eggs laid by birds which were fed diet A, which

confirmed what was observed from the trends in the abundances of the top statistically

significant compounds in Table C.1 in Appendix C. This could indicate either that diet

B is very similar to diet A, or has a similar e↵ect on the metabolite profile of the egg yolk

to diet A, or that the influence of diet B on the metabolite profile of the egg yolk takes

longer than two weeks to have an e↵ect.

The yolks of eggs laid by birds which were fed diet C were shown to be di↵erent to

the yolks of eggs laid by birds which were fed diets A and B on the scores plot in Figure

6.4, as well as from the trends observed in Table C.1. This indicates that either diet C is

more di↵erent to diet A than diet B is, and therefore has a greater e↵ect on the resulting

metabolite profile of the egg yolk, or that is has a faster e↵ect on the metabolite profile

than diet B does. Figure 6.4 and Table C.1 also showed that the metabolite profiles of

the yolks of eggs laid by birds which were fed diet D were equally similar to the profiles

of the yolks of eggs laid by birds that were fed all three of the other diets. This suggests

that diet D a↵ects the metabolite profile of the yolk either a greater amount, or faster,

than diet B, but not as much, or more slowly than, diet C.
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6.5 5 weeks post diet change: Yolk Organic Extracts

Organic extracts of the yolk of eggs laid by four sets of hens which were fed four

di↵erent diets were compared, five weeks after the diets of three sets of hens were changed,

to see whether a di↵erence in metabolite profile could be observed between the yolks of

eggs laid by hens that were fed the four di↵erent diets.

6.5.1 Results and Discussion

6.5.1.1 Quality Control Analysis

Table 6.3 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 6.3: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens fed four di↵erent diets, five weeks post diet change

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 1774166 135298548 59815619 23678811 476135683 110685403

QC2 1644212 128411600 57204277 25186854 464159081 192474929

QC3 1522953 129153748 56353551 24184949 468986940 103194854

QC4 1806457 128025708 58917002 25812746 454093614 100433829

QC5 1608390 132564405 57219567 26104073 483247179 102440445

QC6 1474546 118635111 53214273 25742243 429337959 115920408

QC7 1525359 114628855 56311422 25985960 421503521 127931091

SD 128290 7413776 2118023 951893 23392757 32578274

Mean 1622298 126673996 57005102 25242234 456780568 121868708

CV% 7.91 5.85 3.72 3.77 5.12 26.73
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis.

Table 6.4, shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 6.4: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for yolk organic extracts from eggs laid by
hens fed four di↵erent diets, five weeks post diet change

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.690 9.703 33.324 57.642 72.748 79.985

QC2 4.744 9.691 33.262 57.563 72.636 79.856

QC3 4.760 9.690 33.261 57.629 72.651 79.888

QC4 4.745 9.708 33.179 57.580 72.603 79.840

QC5 4.745 9.742 33.346 57.731 72.886 80.223

QC6 4.772 9.719 33.207 57.608 72.597 79.801

QC7 4.792 9.722 33.343 57.727 72.783 80.186

SD 0.032 0.019 0.066 0.066 0.108 0.171

Mean 4.750 9.711 33.275 57.640 72.701 79.968

CV% 0.67 0.19 0.20 0.12 0.15 0.21

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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6.5.1.2 Metabolite Profiling

Comparisons were made between the yolks of eggs laid by hens that were the fed four

di↵erent diets, by studying the TICs of the extracts following HPLC-MS analysis. Figure

6.5 shows overlaid TICs for the average chromatograms of organic extracts of yolk from

eggs laid by hens that were fed these four diets.
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Figure 6.5: Overlaid average TICs of organic extracts of the yolk of eggs laid by hens that
were fed four di↵erent diets, five weeks post diet change

A subtle di↵erence in metabolite profile between the yolks of eggs laid by birds that

were fed the four di↵erent diets, five weeks post diet change, can be seen by observing the

overlaid TICs in Figure 6.5. Over the first 25 minutes of analysis, there appears to be a

slightly higher peak intensity in the TICs of yolk from eggs laid by birds which were fed

diets B and C. This suggests, similarly to what was observed for diet C when comparing

the metabolite profiles just two weeks post diet change, either that these diets are rich

in the less non-polar compounds that elute earlier on in the analysis, or that they result

in an increased abundance of these compounds in the yolk. The peak intensities for the
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TICs of the yolk from eggs laid by birds which were fed diets A and D are similar to

each other during these first 25 minutes of analysis. Throughout the rest of the analysis,

there appears to be a very similar peak intensity in the TICs of yolk from eggs laid by

birds which were fed diets B, C, and D, and a lower peak intensity in the TIC of yolk

from eggs laid by birds which were fed diet A. This suggests that diet A may be less rich

in the more non-polar compounds than the other three diets, or that it results in a lower

abundance of these compounds being present in the yolk.

6.5.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the yolks of eggs laid by hens which were fed the four di↵erent diets.
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Figure 6.6: PCA scores plot showing PC2 vs PC4 for yolk organic extracts of eggs laid by
birds that were fed four di↵erent diets, five weeks post diet change, including all
compounds with CV%<30%. PC2 explains 0.85% of the variance, and PC4
explains 0.15% of the variance.
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The scores plot in Figure 6.6 confirms what was observed in the overlaid TICs in Figure

6.5, and shows that the yolks of eggs laid by birds which were fed diets B and C have

greater similarities to each other, than to the yolks of eggs laid by birds which were fed diet

A. However, the yolks of eggs laid by birds which were fed diet D show a wide variation

and are spread throughout the plot, overlapping into the otherwise independent group

of yolks of eggs laid by birds which were fed diet A. The separation between the yolks

of eggs laid by birds which were fed diet A, and those laid by birds which were fed diets

B and C, is across PC2 which accounts for only 0.85% of the variance between samples,

indicating that the di↵erence in metabolite profile between these yolks is very subtle. The

QC samples on the scores plot in Figure 6.6 are grouped tightly together, confirming that

the analysis was robust and that there was little instrumental drift a↵ecting the analysis.

6.5.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 31

compounds remaining, after the removal of any duplicates, adducts or isotopes from the

top 100 compounds based on PC1 loadings, 30 were found to be statistically significant.

These compounds, their CV%s, p-values resulting from ANOVA/Welch tests, and trends

between eggs laid by birds which were fed the four di↵erent diets, can be seen in Table

C.3 in Appendix C. Those in bold were also found to be statistically significant following

confirmation using the raw data.

The trends in the abundances of the compounds in the yolks of eggs laid by hens that

were fed the four di↵erent diets, five weeks post diet change, can be seen in Table C.3 in

Appendix C. These trends show that the yolks of eggs laid by birds which were fed diets

B, C, and D show the most similarities in compound abundance to each other, but have

quite di↵erent compound abundances to the yolks of eggs laid by birds which were fed

diet A. This confirms what was observed in the overlaid TICs in Figure 6.5 and in the

scores plot in Figure 6.6.
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6.5.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 30 statistically significant com-

pounds, and scores plots were again produced to display the variation between the yolks

of eggs that were laid by birds which were fed the four di↵erent diets.
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Figure 6.7: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of eggs laid by
birds that were fed four di↵erent diets, five weeks post diet change, including the
top 30 statistically significant compounds. PC2 explains 8.1% of the variance,
and PC3 explains 0.36% of the variance.

The scores plot in Figure 6.7 shows a similar separation between the yolks of eggs laid

by birds that were fed the four di↵erent diets, to what was observed in Figure 6.6. This

shows that in this case, using only the top statistically significant compounds in the PCA

does not a↵ect the outcome, indicating that all compounds with a CV%<30% show a

similar pattern of variation to the top statistically significant compounds.

The yolks of eggs laid by birds which were fed diets B, C, and D all show some

similarities to each other, as they overlap on the plot, but a di↵erence to the yolks of

eggs laid by birds which were fed diet A. The yolks of eggs laid by birds which were fed
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diets B and C show a particularly strong di↵erence, as they do not overlap at all with

the yolks of eggs laid by birds which were fed diet A. However, the yolks of eggs laid by

birds which were fed diet D, again also show some similarities to the yolks of eggs laid

by birds which were fed diet A. This confirms what was observed from the overlaid TICs

in Figure 6.5, the previous scores plot in Figure 6.6, and from the trends in compound

abundance in Table C.4.

Again, the separation between the yolks of eggs laid by hens which were fed the

di↵erent diets is across PC2, which now describes 8.1% of the variance. This increase

in variance that is described by PC2 shows that including only the top statistically

significant compounds in the PCA strengthens the variance described between the sample

sets. The QC samples again form a tight grouping on the plot, indicating that the analysis

was robust and that there was little instrumental drift a↵ecting the analysis.

6.5.1.4.2 Comparison between 5 weeks post diet change and 1 week before

diet change

The significant di↵erences of the top statistically significant compounds between the

yolks of eggs laid by birds that were fed the four di↵erent diets, were compared between

five weeks after the diets were changed, and one week before the diets were changed.

Table C.4 in Appendix C shows the ANOVA/Welch test p-values of the top 20 com-

pounds that were found to be significantly di↵erent following confirmation using the raw

data, between the yolks of eggs laid by birds that were fed the four di↵erent diets, five

weeks post diet change, as well as the p-values of these compounds one week prior to the

change of diet. Those highlighted in red were found to be significantly di↵erent between

the eggs laid by birds kept in the four di↵erent cages prior to any diet change and so

again, may not be statistically significant as a result of the change in diet, but due to

di↵erent environmental conditions between the sets of birds. There are fewer statistically

significant compounds that showed a significant di↵erence in abundance before the diets
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were changed, than did not. This indicates that after a further three weeks following the

change in diet of the laying hens, the di↵erences in metabolite profile between the yolks

of eggs laid by birds which were fed the four di↵erent diets are less subtle than after only

two weeks.

6.5.1.5 Summary

The overlaid TICs in Figure 6.5 showed that there was a subtle di↵erence in metabolite

profile, between the yolks of eggs laid by birds that were fed the four di↵erent diets. The

yolks of eggs laid by birds which were fed diets B and C showed a di↵erence in metabolite

profile to the yolks of eggs laid by birds which were fed diets A and D during the first 25

minutes of analysis. After 60 minutes of analysis, the yolks of eggs laid by birds which

were fed diets B, C, and D appeared to show a significant di↵erence in metabolite profile,

compared to the yolks of eggs laid by birds which were fed diet A. These observations

were confirmed by the scores plots in Figures 6.6 and 6.7, which showed that the yolks

of eggs laid by birds which were fed diets B and C were di↵erent to the yolks of eggs laid

by birds that were fed diet A, whilst the yolks of eggs laid by birds which were fed diet

D showed some di↵erence to the yolks of eggs laid by birds that were fed diets B and C,

as well as diet A. The trends in Table C.3 also showed that the compound abundances

were the most di↵erent between the yolks of eggs laid by birds which were fed diet A and

the yolks of eggs laid by birds which were fed the other three diets, confirming what was

observed in the overlaid TICs and the scores plots.

These results indicate that diets B and C are similar to each other, or have a similar

e↵ect on the resulting metabolite profile of the egg yolk, and are di↵erent to diet A,

resulting in a di↵erent influence on the metabolite profile of the yolk. The results also

suggest that diet D is either less di↵erent to diet A than diets B and C are, or has a lesser

e↵ect on the metabolite profile of the yolk, or that diet D takes longer than diets B and

C to have a significant e↵ect on the metabolite profile of the yolk.
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6.6 5 weeks post diet change: Albumen Organic

Extracts

Organic extracts of the albumen of eggs laid by four sets of hens which were fed four

di↵erent diets were compared, five weeks after the diets of three sets of hens were changed,

to see whether a di↵erence in metabolite profile could be observed between the albumen

of eggs laid by hens that were fed the four di↵erent diets.

6.6.1 Results and Discussion

6.6.1.1 Quality Control Analysis

Table 6.5 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 6.5: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of albumen from eggs
laid by hens fed four di↵erent diets, five weeks post diet change

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 15153978 47849665 99245880 935674 660245 9966617

QC2 14342228 44900807 94638795 945605 597374 9552835

QC3 14726559 46622820 97290620 955634 669317 10411850

QC4 15063884 46661897 97225414 1007782 659155 10330385

QC5 18049156 54489247 109740643 1195558 696536 12650132

QC6 21068259 61810095 120583762 1324846 852854 14194073

QC7 19806364 59300344 116700552 1336019 798086 13552932

SD 2733335 6830855 10508311 180545 89030 1892377

Mean 16887204 51662125 105060809 1100160 704795 11522689

CV% 16.19 13.22 10.00 16.41 12.63 16.42
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 6.6, shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 6.6: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of albumen from eggs
laid by hens fed four di↵erent diets, five weeks post diet change

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 7.698 11.779 14.732 16.491 18.979 22.480

QC2 7.696 11.777 14.713 16.472 18.927 22.461

QC3 7.732 11.796 14.750 16.507 18.996 22.513

QC4 7.779 11.838 14.791 16.533 19.021 22.538

QC5 7.807 11.891 14.841 16.583 19.071 22.588

QC6 7.806 11.904 14.857 16.598 19.087 22.604

QC7 7.818 11.898 14.852 16.594 19.082 22.616

SD 0.053 0.057 0.060 0.052 0.060 0.061

Mean 7.762 11.840 14.791 16.540 19.023 22.543

CV% 0.68 0.48 0.41 0.32 0.32 0.27

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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6.6.1.2 Metabolite Profiling

Comparisons were made between the albumen of eggs laid by hens that were fed the

four di↵erent diets, by studying the TICs of the extracts following HPLC-MS analysis.

Figure 6.8 shows overlaid TICs for the average chromatograms of organic extracts of

albumen from eggs laid by hens that were fed these four diets.
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Figure 6.8: Overlaid average TICs of organic extracts of albumen of eggs laid by hens that
were fed four di↵erent diets, five weeks post diet change

A slight di↵erence in metabolite profile between the albumen of eggs laid by birds that

were fed the four di↵erent diets, five weeks post diet change, can be seen by observing

the overlaid TICs in Figure 6.8. The TIC of the albumen of eggs laid by birds which were

fed diet A shows a lower peak intensity throughout the analysis, compared to the TICs

of the albumen of eggs laid by birds which were fed the other three diets.
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6.6.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the albumen of eggs laid by hens which were fed the four di↵erent diets.
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Figure 6.9: PCA scores plot showing PC3 vs PC4 for albumen organic extracts of eggs laid
by birds that were fed four di↵erent diets, five weeks post diet change, including
all compounds with CV%<30%. PC3 explains 0.06% of the variance, and PC4
explains 0.03% of the variance.

The scores plot in Figure 6.9 confirms that there are some di↵erences in metabolite

profile between the albumen of eggs laid by the birds which were fed the four di↵erent

diets. The albumen of eggs laid by birds which were fed diet C show a complete separation

to the albumen of eggs laid by birds which were fed diet A, and the albumen of eggs laid

by birds which were fed diet D also show some separation. However, the plot shows no

di↵erence between the albumen of eggs laid by birds which were fed diet B and those

which were fed diet A, which is di↵erent to what was observed from the TICs in Figure

6.8. This could be because the more highly abundant compounds that result in the
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observable di↵erence between the albumen of eggs laid by birds which were fed the four

di↵erent diets in the overlaid TICs, may not be responsible for as much variation between

the samples and sample sets, as some of the lower abundance compounds.

The variation between samples described by PC3 is just 0.06%, and that described

by PC4 is 0.03%, showing just how subtle the di↵erences between the albumen of eggs

laid by birds which were fed the four di↵erent diets are. The QC samples form a tighter

group than the other sample sets, showing that the analysis was robust and that there

was little instrumental drift a↵ecting the analysis.

6.6.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 37

compounds remaining, after the removal of any duplicates, adducts or isotopes from the

top 100 compounds based on PC1 loadings, all 37 were found to be statistically significant.

These compounds, their CV%s, p-values resulting from ANOVA/Welch tests, and trends

between eggs laid by birds which were fed the four di↵erent diets, can be seen in Table

C.5 in Appendix C. Those in bold were also found to be statistically significant following

confirmation using the raw data.

The trends in the abundances of the top compounds in the albumen of eggs laid by

hens that were fed the four di↵erent diets, five weeks post diet change, can be seen in

Table C.5 in Appendix C. These trends show that the albumen of eggs laid by birds

which were fed diet B experience the least di↵erence in terms of compound abundance

to the albumen of eggs laid by birds which were fed diet A, whilst the albumen of eggs

laid by birds which were fed diet C experience the greatest di↵erence. The albumen of

eggs laid by birds which were fed diet D show similarities in compound abundance to the

albumen of eggs laid by birds which were fed diets A and B, as well as those which were

fed diet C. This confirms what was observed from the scores plots in Figure 6.9.
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6.6.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 37 statistically significant com-

pounds, and scores plots were again produced to display the variation between the albu-

men of eggs that were laid by birds which were fed the four di↵erent diets.
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Figure 6.10: PCA scores plot showing PC3 vs PC4 for albumen organic extracts of eggs laid
by birds that were fed four di↵erent diets, five weeks post diet change, including
the top 37 statistically significant compounds. PC3 explains 0.74% of the
variance, and PC4 explains 0.36% of the variance.

The plot in Figure 6.10 shows a similar separation between sample sets to what was

observed previously in the scores plot in Figure 6.9. This shows that in this example,

using only the top statistically significant compounds in the PCA does not a↵ect the

outcome of the analysis, indicating that including all compounds with a CV%<30%

provides comparable results.

The albumen of eggs laid by birds which were fed diet B show no separation to the

albumen of eggs laid by birds which were fed diet A, confirming what was observed in

the previous scores plot in Figure 6.9 and from the trends in compound abundance in
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Table C.5. The albumen of eggs laid by birds which were fed diet C show a complete

separation to the albumen of eggs laid by birds that were fed diets A and B, whilst the

albumen of eggs laid by birds which were fed diet D are spread across the plot, between

the albumen of eggs laid by birds which were fed all three of the other diets. This again

confirms what was observed in Figure 6.9 and Table C.6.

The variation between samples described by PC3 is 0.74%, and that described by PC4

is 0.36%, showing the subtlety of the di↵erences between the albumen of eggs laid by birds

which were fed the four di↵erent diets. Although the QC samples are spread across PC3,

there was no instrumental drift occurring throughout the analysis. These QC samples

again form a smaller group on the plot than the other sample sets, indicating that the

analysis was robust and that there was little instrumental drift a↵ecting the analysis.

6.6.1.4.2 Comparison between 5 weeks post diet change and 1 week before

diet change

The significant di↵erences of the top statistically significant compounds between the

albumen of eggs laid by birds that were fed the four di↵erent diets, were compared between

five weeks after the diets were changed, and one week before the diets were changed.

Table C.6 in Appendix C shows the ANOVA/Welch test p-values of the top 26 com-

pounds that were found to be significantly di↵erent following confirmation using the raw

data, between the albumen of eggs laid by birds that were fed the four di↵erent diets,

five weeks post diet change, as well as the p-values of these compounds one week prior

to the change of diet. Those highlighted in red were found to be significantly di↵erent

between the eggs laid by birds kept in the four di↵erent cages prior to any diet change,

and so may not have been significantly di↵erent as a result of the change in diet, but

due to di↵erent environmental conditions between the cages of birds. As only a few com-

pounds showed significant di↵erences in abundance between the albumen of eggs laid by

birds kept in the four di↵erent cages before the diets were changed, it indicates that the
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greatest di↵erence in metabolite profile between the albumen of eggs laid by birds which

were fed the di↵erent diets, five weeks post diet change, is due to the di↵erence in laying

hen diet rather than any environmental di↵erences between the cages of birds.

6.6.1.5 Summary

The overlaid TICs in Figure 6.8 showed a slight di↵erence in metabolite profile between

the albumen of eggs laid by birds that were fed the four di↵erent diets, particularly

between the albumen of eggs laid by birds which were fed diet A, and those laid by birds

which were fed the other three diets. The scores plots in Figures 6.9 and 6.10, and the

trends in compound abundance in Table C.5 mostly corroborated this, and showed the

metabolite profiles of the albumen of eggs laid by birds which were fed diet C to be very

di↵erent to the profiles of the albumen of eggs laid by birds which were fed diet A, whilst

the albumen of eggs laid by birds which were fed diet D showed a lesser di↵erence in

metabolite profile. This suggests either that diet C has a greater di↵erence to diet A,

than diet D does, or has a greater e↵ect on the resulting metabolite profile of the albumen

than diet D, or that diet C a↵ects the metabolite profile of the albumen at a faster rate

than diet D.

However, the scores plots and trends in compound abundance also showed that the

metabolite profile of the albumen of eggs laid by birds which were fed diet B was very

similar to that of the albumen of eggs laid by birds which were fed diet A. These results

indicate either that diet B is very similar to the original diet, diet A, or has a similar

influence on the resulting metabolite profile, or that the e↵ect of diet B on the metabolite

profile of the albumen takes longer than five weeks to become apparent.
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6.7 Summary & Conclusions

6.7.1 Summary

Comparing the yolks of eggs laid by four sets of birds which were fed the four di↵erent

diets, two weeks after the diets of three sets of birds were changed, it is possible to observe

di↵erences between the metabolite profiles of the yolks of these eggs. Diet C was shown

to have had the greatest e↵ect on the metabolite profile of the yolk, which suggests that

this diet is either the most di↵erent to the original diet, diet A, or that it has the greatest

or quickest impact on the metabolite profile. Diet B appeared to have very little e↵ect on

the metabolite profile of the yolk, indicating that either this diet is very similar to diet A,

or has a similar e↵ect on the metabolite profile of the yolk, or that this diet takes longer

than two weeks to have an observable impact on the metabolite profile. The metabolite

profile of the yolks of eggs laid by birds which were fed diet D was a↵ected by the change

in diet, but not as much as diet C. This suggests that either diet D is less di↵erent to

diet A than diet C is, or has a lesser e↵ect on the metabolite profile of the yolk, or that

diet D a↵ects the metabolite profile of the yolk at a slower rate than diet C.

Similar results were observed when comparing metabolite profiles of the yolks of eggs

laid by birds which were fed the four di↵erent diets, five weeks after the diets were

changed. Diet C still appeared to have had the greatest impact on the metabolite profile

of the yolk, and the profiles of the yolks of eggs laid by birds which were fed diet D

were again less a↵ected by the change in diet. However, diet B was shown to have had a

greater e↵ect on the metabolite profile of the yolk, which showed a greater similarity to

the profile of the yolks of eggs laid by birds which were fed diet C, rather than diet A.

This suggests that diet B has a similar impact on the metabolite profile of the yolk to

diet C, but that it takes longer to result in any observable e↵ect.

It was expected that the comparison of the albumen of eggs laid by birds which were

fed the four di↵erent diets, five weeks after the diets were changed, would produce similar
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results to the comparison of the yolk five weeks post diet change. However, the results

were more comparable to the comparison of the yolks just two weeks after the diets were

changed. Diet C was again shown to have had the greatest e↵ect on the metabolite profile

of the albumen, whilst diet D appeared to have a slightly lesser e↵ect. However, diet B

was shown to have had very little e↵ect on the metabolite profile of the albumen, with

the profile showing no obvious di↵erence to the profile of the albumen of eggs laid by

birds which were fed diet A. This suggests that either diet B takes longer to influence

the metabolite profile of the albumen than the yolk, or that diet B has less of an e↵ect

on the compounds found in the albumen than the yolk.

6.7.2 Conclusions

This study has shown that the diet of the laying hen does have a small e↵ect on the

resulting metabolite profiles of the yolk and albumen of the egg. Although the influence

that diet has on the metabolite profiles is only subtle, the e↵ects of many variables that

could be investigated in metabonomic studies may also be very slight; therefore the diet

of the laying hen may have a relatively large impact on the results of a metabonomic

study. It is therefore important to be aware of the e↵ect that di↵erent diets may have on

any results, and where possible keep diets the same during metabonomic studies, in order

to ensure that any significant results are due to the factor that is under investigation,

and not caused by diet acting as an uncontrolled variable.

This work has revealed that a di↵erence in the metabolite profiles of the yolks of

eggs laid by four sets of birds which were fed four di↵erent diets, can be observed two

weeks after the diets of three of the sets of birds were changed. This suggests that it

may be di�cult to detect cases of fraud using a metabonomic approach, if the fraudulent

diet of the laying hens is switched to the correct diet two weeks before an investigation

takes place. However, this study has also shown that di↵erent diets a↵ect the metabolite

profile of the yolk at di↵erent rates; therefore the successful detection of fraud depends
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on how quickly the metabolite profiles of the yolk and albumen of eggs are a↵ected,

after switching the diet of the laying hens to a 100% organic feed. The influence of

di↵erent diets on metabolite profile may vary between the yolk and albumen; the profile

of one component may be a↵ected more quickly, or more greatly, than the other. If one

component is a↵ected more quickly than the other by the switching of the diet of the

laying hen to 100% organic feed, then it will be more di�cult to detect fraud by studying

the metabolite profile of this component than the other, which is a↵ected at a slower rate.

Likewise, if the metabolite profile of one component is a↵ected to a lesser extent than

the other by the switching of the diet of the laying hen to a 100% organic feed, then it

would again be di�cult to detect fraud; the metabolite profile would be similar regardless

of which diet had been fed to the birds, and more success may be had by analysing the

metabolite profile of the other component, which is a↵ected to a greater extent.

In order to explore this further, similar studies using 100% organic feed, 95% organic

feed with 5% non-organic protein feed, and 100% conventional feed as the original diets,

switching to 100% organic feed for all diets, would have to be carried out. A range of

varieties of each of the three di↵erent feeds would have to be included, as the di↵erences

between two varieties of 100% organic feed, or two varieties of 100% conventional feed,

may result in di↵erent impacts on the eggs. Both the yolk and albumen of the eggs would

need to be tested at regular intervals of every one or two days, to identify the time point

at which the eggs laid by birds which were originally fed non-100% organic feeds, could

be distinguished from eggs laid by birds that were still being fed these diets, and could no

longer be successfully discriminated from eggs laid by birds which were always fed 100%

organic feed.
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7. Di↵erences in metabolite profile

between shell egg yolk and liquid

yolk stored for di↵erent lengths of

time

7.1 Introduction

Poultry shell eggs must reach the consumer within a maximum time limit of 21 days

from lay, and have a best before date of 28 days post-lay, according to European Union

(EU) legislation [1]. Not only is the age of eggs being sold to consumers a legal issue,

but the sell-by date of eggs was found, by a survey conducted by Fearne and Lavelle into

consumer attitudes towards purchasing eggs, to be the most important factor considered

by the highest number of respondents, when purchasing eggs [2]. However, there is no

way for the consumer to confirm whether the age of the eggs that they have purchased

corresponds to what the label states. One method that many people use in their home

kitchens to assess the freshness of an egg, is to submerge it in water; if the egg sinks

then it is still fresh, but if it floats to the top then it is not. There is, in fact, some

science behind this; as an egg ages, water evaporates out through the shell and the egg

experiences an increase in volume of the air cell [3]. This means that the density of the
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egg decreases with age, and thus older eggs will be less dense and more likely to float

when submerged in water. However, this cannot aid in predicting the actual age of the

egg, it simply provides an indication of egg freshness. As there is no simple and reliable

way for consumers to determine the age of eggs that they purchase, it would be easy

for workers, at any point during the process between laying and selling, to be tempted

to mislabel the eggs with incorrect lay dates, or mislabel the dates on the packaging, in

order to falsely give the eggs a longer period of time before reaching their sell-by date.

This could result in increased sales, as consumers are more likely to purchase produce

with a later best before date, and would also result in less waste, and therefore less lost

revenue, as eggs would not be taken o↵ the shelves and disposed of at their true sell-by

date.

Eggs are labelled with their lay date by packing centre operatives on the day that

they are laid, when received not in a container from units on the same site as the packing

centre. However, when the packing centre receives the eggs in a container from an external

unit, eggs are labelled within two working days of being received. This happens either

during, or immediately after, grading of the eggs [4]. If eggs are packed in a di↵erent

centre to the one that graded them, then the packing and marking of eggs may be carried

out within an additional three days [4].

Part of the legislation outlined in the APHA Guidance on Legislation Covering the

Marketing of Eggs, that EMIs from APHA in England and Wales enforce, is the correct

labelling of egg packaging with the egg lay date [5]. In January 2016, an egg packer from

London was fined a total of 2,515 under the Eggs and Chicks (England) Regulations

2009 [6], for selling eggs incorrectly labelled with false sell-by dates [7]. However, no

scientific testing methods were used to reveal this fraud; the eggs themselves had been

labelled with an earlier sell-by date than the date on the packaging [7]. In fact, very little

scientific analysis of samples takes place following an inspection by the EMIs; the only

testing that is carried out on egg samples is to detect any medicine residues [8].
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In order to reduce the temptation of fraud by misrepresenting food products, and to

deter those who may be tempted, the risk of being uncovered needs to increase; one way

of increasing this risk is to implement random testing of food products. With regard to

fraudulent egg sell-by and best before date mislabelling, there are various testing methods

that could be implemented.

From the moment that an egg is laid, the chemical and physical characteristics of the

egg begin to change as the ageing processes take place within the egg [3]. As carbon

dioxide and water evaporate out through the shell, the pH of the albumen and the vol-

ume of the air cell within the egg increase. This increase of pH causes some structural

changes to take place in the albumen, which begins to thin, and the vitelline membrane

surrounding the yolk becomes weakened [3]. Water migrates from the albumen through

the weakened vitelline membrane, which causes the yolk to become flattened [9]. These

physical changes allow for a range of relatively simple testing methods to take place, such

as testing of the albumen pH, measuring the air cell height, and calculating the Haugh

Unit of the egg [3].

Albumen pH ranges from 8.08-8.30 in freshly laid eggs, but as the carbon dioxide

evaporates out, it has been observed to increase to 9.12-9.17 over a period of 8 days [10].

Most of this increase occurs during the first 4 days of storage, after which there is a much

slower rate of increase throughout the remaining storage time [10]. This method of age

determination would only be useful when measuring the pH over a short storage time,

not over a longer time period such as 21 days; however it may be helpful for detecting

when eggs have been falsely labelled as fresh, when they are in fact several days post-lay.

The EU regulations state that the air cell height must not exceed 6 mm at the point

of packing [4]; measurement of air cell height is carried out in packing centres using a

candling technique. This is a method that is used to assess the freshness of an egg [11],

not specifically the age, so it is not a robust method of predicting egg age. However, it

may be used as a simple, non-destructive indicator of egg age; if the cell height is above
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6 mm it may require further testing to assess whether it is within the sell-by date or not.

Haugh Unit (HU) is based on the relationship between the weight of the intact egg,

and the albumen height once the egg has been broken [11]. The HU decreases over time

as the egg weight decreases due to the evaporation of water, and the albumen height also

decreases with time [9][12][13]. However, an issue with using HU as a measure of egg age

is the fact that both the age and the breed of the laying hen also a↵ect the HU [14].

The Yolk Index (YI), which is the height of the intact yolk of a broken egg divided

by the width of the intact yolk [9], is another parameter that changes over time. As the

yolk becomes flattened when water migrates through the vitelline membrane to the yolk

from the albumen, the YI decreases with increased storage time [9][13]. However, storage

temperature a↵ects this migration of water [15]; refrigeration of an egg at 7 C has been

observed to lower the rate of decrease of YI [9]. Although most studies agree that the YI

decreases over egg storage time [9][13][16], one study found that the opposite was true,

and that YI increased over an increasing storage time of eggs [15].

As well as methods based on the physical changes that occur in an egg over time, there

are ways to test the age of an egg based on chemical changes within the egg. Spectroscopic

methods such as Infra-Red (IR) and Visible Transmission spectroscopy have been shown

to successfully provide information about the freshness or age of an egg. One study was

able to successfully discriminate eggs by age, as well as classify the age of the eggs based on

IR spectroscopy of the intact eggs [17]. Another study found that the light transmission

spectrum of eggs provides quantitative information about egg freshness [11].

Studies have been carried out to determine whether the change in the furosine con-

centration of eggs is useful in predicting egg age. It has been observed that in albumen,

furosine content increases over time, with higher storage temperatures causing a higher

rate of increase, and refrigerated temperatures reducing the rate significantly [3]. It was

determined that the furosine content of albumen would be a good indicator of egg fresh-

ness in countries where egg refrigeration is not common practice, as there is a steady
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increase of furosine content over time and there is low variability between eggs of the

same age [3]. The furosine content of yolk is lower than in albumen, but follows a similar

trend of increasing over time. However, the use of furosine content in yolk, as well as

albumen, to predict egg age in countries that refrigerate eggs is limited, as there is very

little change in furosine levels over time at low temperatures [18].

Another compound that may be useful for egg age determination, based on increasing

content over time, is uridine. In albumen it has been observed that uridine content

increases exponentially; at 5 C it is constant up to 150 days of storage, at which point

it increases rapidly. This makes it useful only over long storage periods at 5 C, but it

may also be useful over shorter storage times at higher temperatures [3]. Uridine has

also shown an exponential increase in abundance over time in egg yolk, but is not useful

for predicting egg age as it shows a high natural variability [18]. This is also true for

pyroglutamic acid, another compound present in egg yolk, which has been found to show

a linear increase over storage time [18]. Pyroglutamic acid has also been observed to

increase linearly over time in albumen, however the increase is very small and it again

shows a high natural variability, so is not suitable for egg age prediction [3].

Ovalbumin is the most abundant protein found in the albumen of eggs, making up

approximately 55% of egg protein content. Over time, ovalbumin is converted into its

isomer, S-ovalbumin, in an irreversible reaction [12]. It has been found that at 25 C there

is a high correlation between S-ovalbumin content and storage time, with S-ovalbumin

increasing from 14.42% (of total ovalbumin and S-ovalbumin) in fresh eggs to 91.86%

after 27 days, allowing a prediction model to be created which is able to estimate the age

of an egg based on S-ovalbumin content [12].

In addition to legislation regarding the sell-by and best before dates of shell eggs,

there is also EU legislation regarding the maximum storage time of liquid egg, which is

the liquid contents of the shell egg, i.e. the yolk and the albumen. During the manufacture

of egg products, liquid egg must either be frozen, or stored at a temperature of 4 C or
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lower prior to use; if the liquid egg is stored at the refrigerated temperature, it must be

stored for no longer than 48 hours [19]. The storage container of the liquid egg must be

labelled with the date and hour of shell breaking [19].

In the U.K., egg processors must be approved by the local authority as food business

operators for egg products; this approval is subject to them satisfying the conditions laid

out in EC Regulation 853/2004 [5]. Inspections of these egg processing facilities may be

carried out at any time by EMIs from APHA, who have the power to enforce action in

the case of infringements [5]. However, these EMIs do not carry out any testing of the

egg; they detect any infringements based on observations and paperwork.

If the paperwork does not show evidence of any legislation breaches, then they are

unlikely to be uncovered without any scientific testing. As there is no way to determine

how long the liquid egg was stored for once the egg has been incorporated into a product,

it is important to uncover breaches of legislation prior to product manufacture. This

necessitates the development of a robust technique that can predict the length of storage

time of liquid egg that has been refrigerated. If EMIs were able to take random samples

of refrigerated liquid egg to be tested, in order to confirm that it had been stored for

under 48 hours, it would deter egg processing sta↵ from storing liquid egg for longer than

this time period, as the risk of being uncovered would increase.

There appears to be very little existing research into the observation of physicochem-

ical changes within liquid egg during storage. Although some of the changes observed in

the yolk and albumen of whole shell eggs during storage may also be observed in liquid

egg during storage, some of these changes are due to interactions between the various

components of the shell egg, which may not occur when the components are stored sepa-

rately. This emphasises the need for the development of a method capable of determining

the storage time of liquid egg.

Various existing methods have been successful in predicting egg age, which could

be used to help detect cases of fraud. However, a metabonomic approach would allow
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information to be obtained about how a wide range of compounds and compound classes

found in eggs, are a↵ected by an increase in egg age. This could lead to the development

of further methods capable of detecting mislabelled dates on eggs, and detecting liquid

egg that has been stored for longer than is legally allowed.
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7.2 Aims and Objectives

The accurate prediction of egg age, using a robust scientific method, could help to

detect cases of fraud caused by mislabelling eggs with false sell-by and best before dates.

The ability to predict the age of liquid egg could also help to detect legislation breaches,

caused by the liquid egg being stored for longer than is allowed.

This work aimed to use a non-targeted metabonomic workflow to uncover di↵erences

between the yolks of eggs of di↵erent ages, up to five weeks post-lay, when eggs are stored

at 23 C . It then aimed, using the same workflow, to observe di↵erences in yolk between

eggs of di↵erent ages, again up to five weeks post-lay, when eggs are stored at 5 C.

Next, it aimed to determine whether storing eggs at a lower temperature can prevent

the metabolic changes that are characteristic of egg ageing, in egg yolk, from occurring,

and therefore hinder the prediction of egg age based on these observed changes .

Finally, this work aimed to use the same non-targeted metabonomic workflow to ob-

serve di↵erences between liquid egg yolks that have been stored at 5 C for di↵erent lengths

of time, ranging from fresh yolk, to yolk that has been stored for 96 hours.

This research has been published in Analytical Chemistry

This research has been published in Food Control

A. E. Johnson, K. L. Sidwick, V. R. Pirgozliev, A. Edge, and D. F. Thompson, Metabonomic

profiling of chicken eggs during storage using High-Performance Liquid Chromatography-Quadrupole

Time-of-Flight Mass Spectrometry , Analytical Chemistry, vol. 90, pp. 7489-7494, 2018.
A. E. Johnson, K. L. Sidwick, V. R. Pirgozliev, A. Edge, and D. F. Thompson, The e↵ect of storage

temperature on the metabolic profiles derived from chicken eggs , Food Control, vol. 109, 2020.
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7.3 Experimental

A non-targeted metabonomic study was carried out to observe how the metabolite

profile of egg yolk changes with increasing egg age, for eggs kept at two di↵erent storage

temperatures: 23 , and 5 . A follow up targeted study, focussing on just one identified

compound, was then carried out for eggs stored at both temperatures, in order to gain

more quantitative information, and to see if the results were reproducible over a longer

period of time. A non-targeted study was carried out in order to compare the metabolite

profiles of the yolks of eggs that had been stored at 23 C and 5 C for five weeks, to

observe the e↵ects of storage temperature on the metabolite profiles of eggs. It also

enabled the determination of whether storing eggs at a lower temperature can prevent

the changes to the metabolite profile, that are characteristic of egg ageing, from occurring.

A separate study was then carried out to observe how the metabolite profile of liquid egg

yolk changes over a 96 hour period, when kept refrigerated at 5 .

7.3.1 Non-targeted Egg Ageing Study

For the initial non-targeted study, eggs were collected on the day of lay from the

National Institute of Poultry Husbandry (Harper Adams University, Newport, U.K.).

Laying hens were of the Hy-line brown breed, 21 weeks old at the point of lay, fed the

same diet, and kept in enriched cages with 8 birds per cage. An organic liquid extraction

was carried out on the yolks of six of the eggs on the day of collection (fresh eggs),

and half of the remaining eggs were stored at 23 , whilst the other half were kept in

refrigerated conditions at 5 . An extraction was carried out on the yolks of six eggs from

each storage temperature every seven days, up to a total of five weeks. At the conclusion

of the experiment, organic extracts had been obtained from the yolks of six eggs at two

di↵erent storage temperatures, across six time points.
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7.3.1.1 Non-targeted Egg Ageing Study: 23 C

Organic metabolite extraction of the yolk, chemical analysis of the resulting extracts

using HPLC-MS, quality control analysis, and data pre-processing were carried out as

described in Chapter 3. For the MS/MS analysis in this study, the mass range was lowered

to m/z 25-200 and spectra were collected at three di↵erent collision energies: 10, 20, 40

V. The data analysis workflow for this study was slightly di↵erent to that described in

Chapter 3, Section 3.9, as a second PCA was carried out following the initial ANOVA,

using only compounds with a CV%<30% and p<0.01. It was the PC1 loadings from this

second PCA that were used to rank the compounds highest to lowest, before choosing

the top 100 for further analysis. The diagram in Figure 7.1 describes the workflow that

was used for the data analysis in this study.

7.3.1.1.1 Compound Identification

In order to confirm the identification of a compound, a chemical standard of choline

chloride (�99%, purchased from Sigma-Aldrich) was used to make a 53 g/mL standard

solution in methanol, which was then analysed alongside an injection of QC sample, in

order to compare the retention times and mass spectra of choline and the compound of

interest at three di↵erent collision energies.

7.3.1.2 Non-targeted Egg Ageing Study: 5 C

Organic metabolite extraction of the yolk, chemical analysis of the resulting extracts

using HPLC-MS, quality control analysis, data pre-processing and data analysis were all

carried out as described in Chapter 3.
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CV% calculated, 
compounds with 

CV% >30% removed

PCA, all compounds 
with CV% <30%

ANOVA, all compounds 
with CV% <30%, 

significance level at p<0.01

Compounds ranked 
highest to lowest based on 

PC1 loadings (2nd PCA)

Top 100 compounds; 
duplicates, adducts & 

isotopes removed

LHYHQH¶V test for 
equality of variances

ANOVA/WHOcK¶V t-test, 
significance level at p<0.05

Post-hoc, Tukey/Games-
Howell tests, significance 

level at p<0.05

Statistical significance 
confirmed using raw data

Identification of statistically 
significant compounds

PCA, all compounds with 
CV<30% and p<0.01

Figure 7.1: Diagram showing the statistical workflow that was implemented in the non-targeted
egg ageing study: 23 C

7.3.1.3 Non-targeted Egg Ageing Study: Comparison of eggs stored at 5 C

and 23 C for five weeks

Organic metabolite extraction of the yolk, chemical analysis of the resulting extracts

using HPLC-MS, quality control analysis, and data pre-processing were carried out as

described in Chapter 3. The data analysis workflow for this study was slightly di↵erent

to that described in Chapter 3, Section 3.9; two tailed t-tests were carried out rather than
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ANOVA as there were only two sample sets, which also negated the need for post-hoc

tests. F-tests for equality of variances were carried out prior to any t-tests, so only one set

of t-tests was required. A second PCA was carried out following the t-tests, using only

compounds with a CV%<30% and p<0.01. It was the PC1 loadings from this second

PCA that were used to rank the compounds highest to lowest, before choosing the top

100 for further analysis. The diagram in Figure 7.2 describes the workflow that was used

for the data analysis in this study.

CV% calculated, 
compounds with 

CV% >30% removed

PCA, all compounds 
with CV% <30%

Compounds ranked highest to 
lowest based on PC1 loadings 

(2nd PCA)

Top 100 compounds; 
duplicates, adducts & isotopes 

removed

F-test for equality of 
variances

PCA, all compounds with 
CV<30% and p≤0.01

Two-tailed t-test, all 
compounds with CV% 

<30%, significance level at 
p≤0.01

Statistical significance 
confirmed using raw data

Identification of statistically 
significant compounds

Figure 7.2: Diagram showing the statistical workflow that was implemented in the non-targeted
egg ageing study: comparison of eggs stored at 23 C and 5 C for five weeks
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7.3.2 Targeted Egg Ageing Study

The experimental design for the follow up targeted study was very similar. Eggs were

collected from Oaklands Farm Eggs Ltd. (Shrewsbury, U.K.); laying hens were of the

Hy-line brown breed, 46 weeks old at the point of lay, fed the same diet, and kept in

enriched cages of 80 birds per cage. Again, an extraction was carried out on the yolks of

six eggs on the day of collection (fresh eggs) and half of the remaining eggs were stored

at 23 , whilst the other half were stored at 5 . This study was carried out over a 12

week period, with an extraction carried out on six eggs from each storage temperature

every seven days, resulting in sample extracts from thirteen time points ranging from

fresh eggs to eggs that were 12 weeks old.

Organic metabolite extraction of the yolk was carried out as described in Chapter 3.

External standard solutions of choline chloride in methanol were produced, ranging from

0.2-2.6 g/mL for eggs stored at 23 C, and 0.2-0.8 g/mL for eggs stored at 5 C. Each

of these standards was analysed three times, both before and after the analysis of the

sample extracts.

7.3.2.1 Chemical Analysis

As this study was targeted, the chemical analysis was di↵erent in order to target

the specific compound of interest. The chromatographic parameters were largely the

same as described in Chapter 3, however the chromatographic method was much shorter

as the targeted compound is polar and therefore eluted very early on in the analysis.

The method was as outlined in Table 7.1, with a post-time of two minutes to allow the

instrument to return to starting conditions.

The MS parameters again remained largely the same as described in Chapter 3, how-

ever the mass range was lowered to m/z 50-150.
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Table 7.1: Table showing the chromatographic method for the targeted analyses in the egg age-
ing study

Injection volume: 1.5 L
Flow rate: 0.2 mL/min

Time
(minutes)

Solvent A% Solvent B%

0 95 5
1 95 5
1.1 90 10
2.5 95 5
3 95 5

The choline chloride standards of 1.4 g/mL and 0.5 g/mL were used as the QC

samples in the targeted analyses for eggs stored at 23 C and 5 C respectively, and were

injected between every six or seven samples throughout the analytical sequences. As

this was a targeted study, there was no need for large QC analyses. The CV%s of the

choline chloride standards that were injected several times throughout the analyses were

calculated, and Relative Error percentages (RE%s) and CV%s were calculated to monitor

the accuracy and precision of the standards.

There was no pre-processing of data in this study; analysis took place using the raw

data. The peak areas from the EICs of m/z 104.1 were used to carry out statistical

analysis, and standard and drift calibration curves were produced based on the mean

peak areas of the EIC peaks of the standards. Concentrations of choline in each of the

yolk organic extracts were calculated, and a Levene’s test was carried out to determine

the variance of the data, followed by two ANOVA tests; one for eggs up to five weeks of

age, and one for eggs up to the full twelve weeks of age, to test for statistical significance.

Post-hoc Tukey tests were then carried out pairwise between eggs of di↵erent ages to see

the significant di↵erence between specific ages of eggs.
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7.3.3 Non-targeted Liquid Egg Yolk Ageing Study

The experiment studying the ageing of liquid egg yolks had a di↵erent experimental

set up. Eggs were collected from Oaklands Farm Eggs Ltd. (Shrewsbury, U.K.); laying

hens were of the Hy-line brown breed, 39 weeks old at the point of lay, fed the same

diet, and kept in enriched cages of 20 birds per cage. The yolks of several eggs were

mixed together, in order to create one pooled sample, which was then separated into six

di↵erent sample storage tubes, and stored in refrigerated conditions at 5 . Although

the legislation states that liquid egg must be stored at a temperature no greater than 4

C [19], this was not possible with the resources available, so it was stored at just 1 C

greater, at 5 C. Prior to refrigeration, an organic liquid extraction was carried out on

aliquots of all six samples in order to obtain fresh sample extracts. Extractions were then

carried out at 24, 48, 60, 72, 84, and 96 hours after initial refrigeration, resulting in six

sample extracts from each of the seven di↵erent time points.

Organic metabolite extraction of the yolk, chemical analysis of the resulting extracts

using HPLC-MS, quality control analysis, and data pre-processing were carried out as

described in Chapter 3. The data analysis workflow for this study was as described in

Chapter 3, Section 3.9, with an additional PCA using only the top statistically significant

compounds following ANOVA/Welch tests.
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7.4 Eggs Stored at 23 C for 5 weeks: Yolk Organic

Extracts

Yolk extracts from eggs that were stored at 23 C for di↵erent lengths of time were

compared to see whether there were any di↵erences in their metabolite profiles.

7.4.1 Results and Discussion

7.4.1.1 Quality Control Analysis

Table 7.2 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 7.2: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
that were analysed throughout the analytical run for yolk organic extracts of eggs
stored at 23

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 17660138 676558073 338452895 52414292 1709932400 1745631673

QC2 16977071 674815768 325103750 53416426 1735152487 1766907532

QC3 18286237 705286169 352518112 56070672 1807245238 1814532294

QC4 18224577 703380473 357815202 61281466 1759746130 1799166375

QC5 18552238 726328050 368542129 67119901 1775757372 1847255347

QC6 18621771 727037767 368372573 67221322 1742267941 1794506277

QC7 19072402 745908453 352160984 71550969 1855436871 1840364341

SD 690180 26621821 15719381 7555002 49013000 36845272

Mean 18199205 708473536 351852235 61296435 1769362634 1801194834

CV% 3.79 3.76 4.47 12.33 2.77 2.05

Page 288



Chapter 7

The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 7.3 shows the retention times (RTs) for the six peaks of interest in the seven

QC samples that were analysed throughout the run, as well as the SD, the mean, and

the CV% of the RTs for each of the peaks.

Table 7.3: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples that
were analysed throughout the analytical run for yolk organic extracts of eggs stored
at 23

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 5.398 10.956 33.033 56.284 74.568 71.432

QC2 5.363 10.937 33.037 56.116 74.116 71.098

QC3 5.424 10.948 33.048 56.127 74.062 71.041

QC4 5.380 10.921 33.104 56.232 74.062 71.041

QC5 5.343 10.820 33.036 56.197 74.315 71.258

QC6 5.362 10.821 32.987 56.140 74.133 71.097

QC7 5.287 10.671 32.887 56.048 74.017 71.030

SD 0.044 0.104 0.070 0.079 0.210 0.160

Mean 5.365 10.868 33.024 56.163 74.237 71.186

CV% 0.81 0.96 0.21 0.14 0.28 0.22

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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7.4.1.2 Metabolite Profiling

The initial comparison between yolk extracts of eggs that were stored for di↵erent

lengths of time was carried out by studying the Total Ion Chromatograms (TICs) of the

extracts following HPLC-MS analysis. Figure 7.3 shows overlaid TICs for the average

chromatograms of yolk extracts from fresh eggs and eggs that were five weeks old.
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Figure 7.3: Overlaid average TICs of yolk organic extracts from fresh eggs and eggs that were
five weeks old, stored at 23

As can be seen from these overlaid chromatograms, there is a visible di↵erence in

the metabolite profile of yolk between fresh eggs and eggs that were stored at 23 C for

five weeks. The peak intensity is higher for most peaks in the average TIC for fresh

eggs compared to the older eggs. It may be that the more highly abundant compounds

that contribute to the peaks observed in the TICs have all experienced a higher rate of

catabolism or degradation during storage than the rate of production of new molecules,

resulting in a lower abundance of these compounds in the yolks of eggs that were five

weeks old, compared to the yolks of fresh eggs.

Page 290



Chapter 7

7.4.1.3 Multivariate Statistics

Following the first PCA, scores plots were produced to display the variation between

the yolk extracts of eggs of di↵erent ages.
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Figure 7.4: PCA scores plot showing PC3 vs PC4 for eggs up to five weeks old that were
stored at 23 , including all compounds with CV%<30%. PC3 explains 0.41%
of the variance, and PC4 explains 0.19% of the variance.

Although the overlaid TICs in Figure 7.3 show a clear di↵erence between fresh eggs

and eggs that were five weeks post-lay, the scores plot in Figure 7.4 shows no obvious

di↵erences between the eggs of di↵erent ages; the most variation between sample extracts

appears to be between random eggs, rather than specific sets of eggs, indicating that the

di↵erences between eggs of di↵erent ages are very subtle. This could be because the more

highly abundant compounds that contribute to the visible di↵erence between the TICs in

Figure 7.3 may contribute less to the variance between samples that is explained by PC3

and PC4, compared to the less abundant compounds which may experience a greater

di↵erence between random samples, than between the yolks of eggs of di↵erent ages. The
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QC samples are grouped more tightly together than the samples for the other sample

sets, which shows that the analysis was robust and that there was little instrumental

drift a↵ecting the analysis.

After the initial ANOVA was carried out and compounds with p>0.01 were removed,

a second PCA was carried out using the remaining compounds, and scores plots were

again produced to display the variation between the yolk extracts from eggs of di↵erent

ages.
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Figure 7.5: PCA scores plot showing PC3 vs PC4 for eggs up to five weeks old that were
stored at 23 , including only compounds with CV%<30% and p<0.01. PC3
explains 0.22% of the variance, and PC4 explains 0.18% of the variance.

Figure 7.5 shows that when only the statistically significant compounds (p<0.01) are

included in the PCA, there is some visible separation between the sets of eggs that were

stored for di↵erent lengths of time. Fresh eggs form their own group on the plot, showing

that lots of metabolic change occurs in the yolk within the first week following the eggs

being laid. There is also a large amount of separation between eggs that were one week

old and eggs that were two weeks old, again showing that lots of changes occur during
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this time period. Eggs that were two, three and four weeks old are grouped relatively

closely together, indicating that not many metabolic changes occur within this period.

However, eggs that were five weeks old are separate from these slightly younger eggs,

grouping more closely to eggs that were just one week old. This is interesting, because

it would be expected that the oldest eggs would be the most di↵erent, and thus show

the most separation on a scores plot, from the younger eggs. This could be due to the

possibility of several di↵erent metabolic pathways being involved in the production and

breakdown of the compounds that contribute the most to the variation described by PC3

and PC4, resulting in an erratic change of abundance over an increasing storage time. In

the yolks of eggs that were five weeks post-lay, these compounds that contribute to the

variation described by PC3 and PC4 may have been present in a similar abundance to

that in the yolks of eggs that were just one week old, resulting in them grouping together

on the scores plot.

Although the separation between eggs of di↵erent ages is quite subtle on the scores

plot in Figure 7.5, it is important to note that the di↵erences between the sets of eggs

themselves were also very subtle; the eggs were all laid by the same batch of birds, of the

same age and breed, kept in the same conditions and fed the same diet, with the same

number of birds per cage. The only di↵erence was the length of time that the eggs were

stored for prior to metabolite extraction. The subtlety of these di↵erences is highlighted

by the very small percentage variances explained by PCs 3 and 4, which are 0.22% and

0.18% respectively. The QC samples are tightly clustered together indicating that there

was little instrumental drift occurring throughout the analysis.

7.4.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 44

compounds remaining, after the removal of any duplicates, adducts, or isotopes from the

top 100 compounds based on PC1 loadings, 41 compounds were found to be statistically
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significant between eggs of di↵erent ages. These compounds, and their CV%s and p-

values, can be seen in Table D.1 in Appendix D; those in bold were also found to be

statistically significant following confirmation using the raw data, and attempts were

made to identify them.

Of these 38 compounds that were still found to be statistically significant when con-

firmed using the raw data, two were putatively identified through comparing mass spectra

provided by METLIN with mass spectra from the analysis. The observed m/z for both

compounds was due to the [M+H]+ adduct. The compound m/z 104.1070 was puta-

tively identified as choline, and the compound m/z 331.2860 was putatively identified

as 1-monopalmitin. The comparisons between mass spectra provided by METLIN and

those resulting from the analysis in this study can be seen in Appendix D, Figures D.1

and D.2. Table 7.4, shows the putative identification of the compound m/z 104.1070, as

well as the p-value resulting from ANOVA, and the p-values resulting from the Tukey

tests.

Table 7.4: Table showing the putative identification of compound m/z 104.1070 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

104.1070 C5H13NO 98.85 Choline <0.001

Post-hoc test p-values

Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 0.877 0.583 0.139 0.001 <0.001

1 Week 0.994 0.692 0.023 <0.001

2 Weeks 0.937 0.078 <0.001

3 Weeks 0.412 0.001

4 Weeks 0.152

5 Weeks

The probability score for the predicted formula C5H13NO was 98.85 which is quite a

high score, meaning that it is very likely that this formula corresponds to the compound
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of interest. The p-value from ANOVA shows that the abundance of this compound is

highly significantly di↵erent between the eggs of di↵erent ages, and the post-hoc tests

corroborate this. These post-hoc test p-values show that there is a high statistical signif-

icance, particularly between the fresh/younger eggs and the older eggs, indicating that

there may be a steady increase or decrease in the abundance of this compound with

increasing egg age. This trend is confirmed by the graph in Figure 7.6, which shows a

positive correlation between the abundance of this compound and increasing egg age.
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Figure 7.6: Line graph showing the trend in changing abundance of compound m/z 104.1070
across eggs of six di↵erent ages. n=6. Measured as mean values of peak area at
each egg age, with error bars ±1 standard deviation.

As this compound shows a correlation between abundance in egg yolk and increasing

egg age, it has potential to act as a biomarker of egg age. If there was no correlation,

even though there are significant di↵erences in the abundance of this compound between

eggs of di↵erent ages, it would not be suitable as an age related biomarker.
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Table 7.5, shows the putative identification of the compound m/z 331.2860, as well as

the p-value resulting from ANOVA, and the p-values resulting from the Tukey tests.

Table 7.5: Table showing the putative identification of compound m/z 331.2860 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2860 C19H38O4 95.48 1-monopalmitin <0.001

Post-hoc test p-values

Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 1 0.027 <0.001 0.731 0.613

1 Week 0.025 <0.001 0.694 0.827

2 Weeks 0.406 0.839 0.007

3 Weeks 0.231 <0.001

4 Weeks 0.370

5 Weeks

This compound has been putatively identified as 1-monopalmitin; a monoglyceride

with a palmitic acid chain attached to the first carbon of the glycerol backbone. This

table shows that the probability score of the predicted formula, C19H38O4, is 95.48 which,

although it is only just within the 95 cut o↵, is still a high score, indicating a high like-

lihood that this formula corresponds to the compound of interest. The ANOVA p-value

shows that the di↵erence in abundance of this compound between eggs of di↵erent ages is

highly significant, and this is confirmed by the p-values resulting from the post-hoc tests.

However, these post-hoc test p-values seem to indicate that there is a more erratic change

in abundance between di↵erent ages of eggs, rather than any correlation. The graph in

Figure 7.7 confirms this; there is clearly no correlation between compound abundance

and egg age, with the mean peak areas for this compound changing erratically over the

six di↵erent time points. As there is such an erratic change in compound abundance

between eggs of di↵erent ages, this compound is clearly not suited to being a biomarker

of egg age, even though it is statistically significant.
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Figure 7.7: Line graph showing the trend in changing abundance of compound m/z 331.2860
across eggs of six di↵erent ages. n=6. Measured as mean values of peak area at
each egg age, with error bars ±1 standard deviation.

Although the scaling of the y-axis makes the standard deviation error bars in Figures

7.6 and 7.7 appear larger, they are quite wide due to the large standard deviations

resulting from the biological variation within the sets of di↵erent aged eggs, because the

eggs all came from di↵erent birds. Although the variables regarding the birds were kept

as controlled and uniform as possible, there was naturally some variation between them,

and thus between the eggs that they laid. Larger sample sizes would likely reduce the

standard deviations of the compounds within eggs of di↵erent ages.
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7.4.1.5 Choline Identification

The compound m/z 104.1070 was putatively identified as choline, by comparing the

mass spectrum provided by METLIN with the mass spectrum from the analysis. It has

been shown to have potential as a biomarker of egg age, as its abundance in egg yolk

is positively correlated with egg age, as can be seen in Figure 7.6, and so a confirmed

identification was required.

Figure 7.8 shows overlaid EICs of the compoundm/z 104.1000 (them/z of the [M+H]+

adduct of choline) for both the choline chloride standard and the QC sample. From this,

it can be seen that the retention times of these compounds, in both samples, match (0.861

minutes in the choline chloride standard and 0.869 minutes in the QC sample) indicating

that it is possible that the compound of interest is choline.
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Figure 7.8: Overlaid EICs of compounds with m/z 104.1000 for choline chloride standard
and QC sample

Figure 7.9 shows the mass spectra for the compounds in the QC sample and the choline

chloride sample at three di↵erent collision energies.
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Figure 7.9: Comparison of mass spectra at 10 V, 20 V, 40 V collision energy, between a QC
sample and a choline chloride standard, for compound m/z 104.1000

As can be seen in Figure 7.9, the mass spectra for the compound m/z 104.1000 in

both samples are a very good match, with all fragment peaks matching at all three

collision energies used. From this, it can be confidently confirmed that the compound

m/z 104.1070 has been identified as choline.

7.4.1.6 Choline

Choline is a precursor to acetylcholine, a neurotransmitter [20][21], and is a compo-

nent of various di↵erent phospholipids [21][22]. It exists in its free form mainly due to the

catabolism of these phospholipids, particularly phosphatidylcholines [20][23], which are

found in cell membranes [24] and are highly abundant in egg yolk [24][25]. Phosphatidyl-

cholines (PCs) are catabolised by phospholipases (PLs), which catalyse the hydrolysis of

certain bonds within the PC molecules. PLA1 and PLA2 catalyse the hydrolysis of either
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the 1-acyl or 2-acyl groups respectively, breaking the ester bonds between the fatty acids

and the glycerol backbone, then either PLB, or lysoPLA1 or lysoPLA2, catalyses the

hydrolysis of the remaining acyl group, breaking the ester bond between the fatty acid

and glycerol backbone of the resulting lysophosphatidylcholine molecule. PLC and PLD

catalyse the hydrolysis of the phosphodiester bond; PLC acting on the glycerophosphate

bond between the phosphate group and the glycerol backbone, and PLD acting on the

choline phosphate ester bond between the phosphate group and choline, releasing a free

choline molecule [20][26][27]. Figure 7.10 shows an example of this catabolic pathway.

It has been observed by Wang et al. that the PC content of egg yolk decreases over an

increasing storage time of eggs as the PLs, which are endogenous to egg yolk, hydrolyse

the PCs, breaking down the molecules [28]. This catabolism of the PC molecules results

in the release of choline molecules, so as the PC content of an egg yolk decreases with

increasing egg age, the choline content increases, which is what was observed in this study.

Some of this increase in choline concentration could also be due to the degradation of

PCs following egg lay. Similar results regarding the decreasing PC content of egg yolk

were also observed in this study. Several compounds of the top 38 in bold in Table

D.1 in Appendix D were recognised, through the use of Lipid Maps and METLIN, as

lipids belonging to the phosphatidylcholine-choline metabolic pathway. Some of these 38

compounds were classified as potential PCs and they show a general trend of decreasing

abundance with increasing egg age, as can be seen in Appendix D Figure D.3a, supporting

the previous results. Some other of these 38 compounds were classified as potential

lysophosphatidylcholines, which are intermediates in the catabolism of PCs to choline,

and result from the hydrolysis of one of the fatty acyl groups in PC molecules by PLA1

or PLA2 enzymes. These were found to follow a general trend of increasing in abundance

with increasing egg age, as can be seen in Appendix D Figure D.3b, which is what would

be expected as the PC molecules are catabolised by PLs over time.
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7.4.2 Choline Targeted Study

As the compound identified as choline showed potential as a biomarker of egg age,

due to the correlation between its abundance in egg yolk and egg age, a targeted study

was carried out in order to obtain more quantitative information about the abundance

of choline over a wider range of egg age.
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Figure 7.11: Standard and drift calibration curves for choline chloride standards ranging
from 0.2-2.6 g/mL

Figure 7.11 shows the standard and drift calibration curves that were produced based

on the mean peak areas of the standards. The coe�cient of determination value, R2,

for both calibration curves is greater than 0.99 (0.993 for the standard curve, and 0.995

for the drift curve), indicating that there is good linearity in the calibration, and that it

is a good model for predicting choline concentration based on peak area. The Relative

Error percentages (RE%s) for the standards were all found to be lower than 8% for the

standard curve and lower than 14% for the drift curve, and the CV%s of the standards

were all found to be lower than 6% for the standard curve and lower than 8% for the drift

curve. These values are all within the acceptable limit of 15% according to the published
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Food and Drug Administration (FDA) guidelines [29]. The CV% of the QC samples was

also calculated to ensure that there was minimal instrumental drift a↵ecting the analysis,

and this was found to be 1.6%, which again is within accepted limits.

The concentrations of choline in the yolk organic extracts, and in the yolks themselves,

can be seen in Appendix D, Table D.2. The concentration of choline in egg yolk ranges

from an average of 6.8 g/g in fresh egg yolk, up to an average of 28.7 g/g in the

yolks of eggs that were stored for twelve weeks. The p-values resulting from ANOVA

were p=0.001 over the first five weeks of egg age, and p<0.001 for the full twelve weeks

of age, confirming the results of the non-targeted study, that choline concentration is

significantly di↵erent between eggs of di↵erent ages over five, as well as twelve weeks of

age. Table D.3 in Appendix D shows the results of the post-hoc Tukey tests for pairwise

comparisons of eggs of di↵erent ages.

There are significant di↵erences in choline concentration between eggs that had been

stored for di↵erent lengths of time, up to twelve weeks of storage, so if eggs are mislabelled

regarding their sell-by and best before dates, it is likely that by observing their yolk choline

concentrations it would be possible to uncover this fraudulence. The first point at which

there is a significant di↵erence between eggs of di↵erent ages is between fresh eggs and

eggs that were three weeks old, with a p-value of 0.002, showing a strong significance.

This could be useful because when eggs reach their sell-by dates at three weeks post-lay,

supermarkets and other food businesses may be tempted to change the dates on the eggs

or the packaging, making them appear to be fresh, in order to give them a longer shelf

life and encourage consumers to purchase them. However, if it is possible to observe

a significant di↵erence in choline concentration between eggs of these two ages, then it

could help to discourage and prevent this mislabelling fraud.

There was again a positive correlation between yolk choline concentration and increas-

ing egg age, as can be seen in Figures 7.12 and 7.13.
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Figure 7.12: Average EICs of choline [M+H]+ at m/z 104.1 in yolk extracts for eggs stored
for 0, 5, 9, and 12 weeks
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Figure 7.13: Line graph showing the trend in changing abundance of choline in eggs ranging

from fresh to twelve weeks old. n=6. Measured as mean values of concentration
at each egg age, with error bars ±1 standard deviation.
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Figure 7.12 shows average EICs of the choline adduct [M+H]+ at m/z 104.1 in yolk

extracts from eggs of four di↵erent ages. The peak intensity steadily increases with egg

age, indicating an increasing choline concentration, and therefore a positive correlation

between yolk choline concentration and egg age. However, Figure 7.13 gives a more

complete picture of the changing concentration of choline. It shows an increasing concen-

tration in yolk choline content over a range of twelve weeks of egg age, however it also

shows a high increase in concentration, and in concentration variance, at eight weeks of

egg age before it decreases again at nine weeks and then continues its gradual increase

up to twelve weeks. As can be seen in Table D.2 in Appendix D, two of the six eggs that

underwent extraction at eight weeks post-lay show a much higher concentration of choline

in the yolk than the other four, which has caused this anomaly in the trend. If larger

sample sizes were used, then it would be interesting to determine whether or not these

two eggs were outliers. Larger sample sizes would also reduce the standard deviations

of choline concentrations at each egg age, and thus the error bars in Figure 7.13, which

represent one standard deviation either side of the mean, would be reduced.

Page 305



Chapter 7

7.5 Eggs Stored at 5 C for 5 weeks: Yolk Organic

Extracts

Yolk extracts of eggs that were stored at 5 C for di↵erent lengths of time were com-

pared to see whether there were di↵erences in their metabolite profiles.

7.5.1 Results and Discussion

7.5.1.1 Quality Control Analysis

Table 7.6 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 7.6: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
that were analysed throughout the analytical run for yolk organic samples of eggs
stored at 5

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 9638442 616287074 340689505 37992095 1687641898 480764040

QC2 9879820 628814511 352591958 42475407 1715105714 502104802

QC3 9459914 612521438 332773895 42095952 1711439108 478354196

QC4 11482568 621028757 334581359 47740219 1695721497 499163567

QC5 10666069 621413929 332171860 48679965 1633021165 502140203

QC6 12019996 630533320 335246585 48339357 1638561447 498680541

QC7 10409730 623398566 317973847 40543072 1510147168 454216582

SD 959147 6389817 10366421 4256638 72170108 17908390

Mean 10508077 621999656 335147001 43980866 1655948285 487917704

CV% 9.13 1.03 3.09 9.68 4.36 3.67
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 7.7 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 7.7: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples that
were analysed throughout the analytical run for yolk organic extracts of eggs stored
at 5

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.683 10.258 32.457 56.946 70.899 77.609

QC2 4.482 10.073 32.339 56.794 70.599 77.136

QC3 4.414 10.022 32.266 56.743 70.447 76.802

QC4 4.452 10.034 32.254 56.714 70.469 76.840

QC5 4.501 9.976 32.225 56.697 70.402 76.723

QC6 4.476 9.972 32.169 56.641 70.282 76.553

QC7 4.445 10.020 32.269 56.774 70.645 77.232

SD 0.088 0.098 0.092 0.097 0.201 0.361

Mean 4.493 10.051 32.283 56.758 70.535 76.985

CV% 1.97 0.97 0.29 0.17 0.29 0.47

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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7.5.1.2 Metabolite Profiling

The yolk extracts of eggs that were stored for di↵erent lengths of time were compared

initially by observing the TICs of the extracts following HPLC-MS analysis. Figure 7.14

shows overlaid TICs for the average chromatograms of yolk extracts from fresh eggs and

eggs that were five weeks old.
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Figure 7.14: Overlaid average TICs of yolk organic extracts from fresh eggs and eggs that
were five weeks old, stored at 5

There is a visible di↵erence in the average TICs of yolk extracts from fresh eggs and

eggs that were five weeks old; the peak intensities for most peaks are greater in the TIC

for fresh eggs. This is comparable to what was observed when comparing average TICs

for fresh and five week old egg yolk extracts, when eggs were stored at 23 .

The peak shape towards the end of the TIC of the yolks of eggs that had been refrig-

erated for five weeks is di↵erent compared to other TICs throughout this research. This

is because there was some retention time drift that occurred throughout the analytical

sequence, that a↵ected the later peaks in the chromatogram. This resulted in a poor
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peak shape for these peaks in the average TIC that was produced. Although there was

some retention time drift, the analysis was still robust as reported in Section 7.5.1.1.

7.5.1.3 Multivariate Statistics

Following PCA, scores plots were produced to display any variation between the yolk

extracts of eggs of di↵erent ages.
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Figure 7.15: PCA scores plot showing PC2 vs PC3 for eggs up to five weeks old that were
stored at 5 , including all compounds with CV%<30%. PC2 explains 0.37%
of the variance, and PC3 explains 0.15% of the variance. Circled: sample
separate to the rest of sample set.

Although the TICs in Figure 7.14 show a clear di↵erence between fresh eggs and

eggs that were five weeks old, the scores plot in Figure 7.15 does not show the same

observation; there appears to be little di↵erence between the di↵erent ages of eggs. This

could be because the more highly abundant compounds that contribute to the di↵erences

between the TICs of fresh egg yolk and the yolk of eggs that had been refrigerated for

five weeks, may not contribute to as much of the variance explained by PC2 and PC3 as
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the less abundant compounds, which may experience more variance between the yolks of

random egg samples, than between those of eggs of di↵erent ages.

Although there is little variation between eggs of di↵erent ages on the scores plot

in Figure 7.14, there is some variation between fresh eggs and older eggs. Fresh eggs

form a group that is almost separate to any other samples on the plot; there is complete

separation between fresh eggs and eggs that were one and two weeks old (indicated by

the orange dashed line on the plot), and only one sample from eggs that were three,

four and five weeks old that overlap into this group. This indicates that most of the

metabolic change occurs during the first week post-lay. The QC samples are clustered

tightly together in the centre of the plot, indicating that there was little instrumental

drift occurring throughout the analysis, and thus that the analysis was robust.

There is one sample from the group of eggs that were five weeks old that is very

separate to all other samples and is circled on the plot. It was observed prior to metabolite

extraction that this egg was very small compared to the other eggs, had a white speckled

shell, and had very little liquid egg inside the shell. This explains why this egg shows so

much variation compared to the other eggs.

As the scores plot shows little variation between eggs of di↵erent ages, which is high-

lighted by the fact that PC2 describes just 0.37% of the variation and PC3 describes

0.15%, it proves that the di↵erences between eggs that have been refrigerated for di↵er-

ent lengths of time are extremely subtle. Although the age, breed and housing condition

of the laying birds were kept the same for all eggs, there will have been a natural varia-

tion between the birds themselves, resulting in a variation between their eggs that could

not be controlled. As the di↵erences due to egg age are so small, most of the variation

between samples on the scores plot is likely to be due to this natural variation.
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7.5.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games Howell tests on the top

50 compounds remaining, following the removal of any duplicates, adducts and isotopes

from the top 100 based on PC1 loadings, 48 compounds were found to show significant

di↵erences between eggs of di↵erent ages. These compounds can be seen in Table D.4,

Appendix D; those in bold were also found to be statistically significant when confirmed

using the raw data. Attempts were then made to identify these compounds.

Of these 41 compounds that were still found to be statistically significant follow-

ing confirmation using the raw data, four were putatively identified through comparing

mass spectra provided by METLIN, with spectra obtained from HPLC-MS analysis in

this study. The observed m/z values for all four compounds were due to the [M+H]+

adduct. The compounds m/z 331.2857, 338.3435, 454.2945, and 496.3420 were puta-

tively identified as 1-monopalmitin, docosenamide (erucamide), 1-palmitoyl-glycero-3-

phosphatidylethanolamine (PE(16:0/0:0)), and 1-palmitoyl-glycero-3-phosphatidylcholine

(PC(16:0/0:0)), respectively. The comparisons between the mass spectra provided by

METLIN and the mass spectra resulting from the analysis for these compounds can be

seen in Appendix D, Figure D.2 for the compound m/z 331.2857 which was previously

putatively identified in Section 7.4, and Appendix D, Figures D.4, D.5, and D.6 for the

compounds m/z 338.3435, 454.2945, and 496.3420 respectively.

The 48 statistically significant compounds in Table D.4 were compared with the 44

compounds in Table D.1 in Appendix D, for eggs that were stored at 23 C, and sev-

eral compounds were found to be statistically significant in both studies. One of these

compounds was that which was putatively identified in this study as erucamide. This

was not identified in the previous study, as the likelihood score for the molecular formula

corresponding to erucamide was below the 95 cut o↵.

Tables 7.8-7.11, and Figures 7.16-7.19, show the putative identifications of the four
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compounds, the p-values resulting from ANOVA/Welch tests and post-hoc Tukey/Games-

Howell tests, as well as the trends in the changing abundance of the compounds in the

yolks of eggs ranging from fresh to five weeks old.

Table 7.8: Table showing the putative identification of compound m/z 331.2857 and the p-
values resulting from the Welch test and Games-Howell tests. n=6. Orange indi-
cates significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

331.2857 C19H38O4 95.77 1-monopalmitin <0.001

Post-hoc test p-values

Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 0.037 0.13 <0.001 0.818 0.004

1 Week 0.037 <0.001 0.002 0.001

2 Weeks 0.988 0.198 1

3 Weeks <0.001 0.840

4 Weeks 0.009

5 Weeks
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Figure 7.16: Line graph showing the trend in changing abundance of compound m/z

331.2857 across eggs of six di↵erent ages. n=6. Measured as mean values of
peak area at each egg age, with error bars ±1 standard deviation.
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Table 7.9: Table showing the putative identification of compound m/z 338.3435 and the p-
values resulting from the Welch test and Games-Howell tests. n=6. Orange indi-
cates significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

338.3435 C22H43NO 99.41 Erucamide <0.001

Post-hoc test p-values

Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 0.017 <0.001 <0.001 <0.001 <0.001

1 Week 0.016 0.077 0.103 0.067

2 Weeks 0.02 0.005 0.061

3 Weeks 0.991 1

4 Weeks 0.969

5 Weeks
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Figure 7.17: Line graph showing the trend in changing abundance of compound m/z

338.3435 across eggs of six di↵erent ages. n=6. Measured as mean values of
peak area at each egg age, with error bars ±1 standard deviation.
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Table 7.10: Table showing the putative identification of compound m/z 454.2945 and the p-
values resulting from the ANOVA and Tukey tests. n=6. Orange indicates signif-
icance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

454.2945 C21H44NO7P 95.09 PE(16:0/0:0) 0.003

Post-hoc test p-values

Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 0.002 0.022 0.037 0.251 0.022

1 Week 0.914 0.827 0.292 0.916

2 Weeks 1 0.858 1

3 Weeks 0.935 1

4 Weeks 0.855

5 Weeks
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Figure 7.18: Line graph showing the trend in changing abundance of compound m/z

454.2945 across eggs of six di↵erent ages. n=6. Measured as mean values of
peak area at each egg age, with error bars ±1 standard deviation.
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Table 7.11: Table showing the putative identification of compound m/z 496.3420 and the p-
values resulting from the ANOVA and Tukey tests. n=6. Orange indicates signif-
icance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

496.3420 C24H50NO7P 95.40 PC(16:0/0:0) 0.006

Post-hoc test p-values

Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 0.004 0.019 0.043 0.133 0.372

1 Week 0.987 0.918 0.656 0.308

2 Weeks 0.999 0.949 0.685

3 Weeks 0.994 0.867

4 Weeks 0.991

5 Weeks
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Figure 7.19: Line graph showing the trend in changing abundance of compound m/z

496.3420 across eggs of six di↵erent ages. n=6. Measured as mean values of
peak area at each egg age, with error bars ±1 standard deviation.
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The probability scores for the predicted molecular formulae for all of these compounds

are above 95, indicating that there is a strong likelihood that the predicted formulae

correspond to the compounds of interest. The p-values from ANOVA and Welch tests

show that the abundances of these compounds are statistically significant when comparing

them between eggs of di↵erent ages, ranging from fresh to five weeks old, and the post-hoc

test p-values mostly corroborate this.

The compound that was putatively identified as 1-monopalmitin shows several points

of high statistical significance between eggs of di↵erent ages, as shown by the Games-

Howell test p-values in Table 7.8. However, it is not suitable as a marker of egg age, as

there is no correlation between its abundance in egg yolk and egg age, which would make

it di�cult to accurately predict the age of an egg. The reason for this erratic change of

compound abundance is likely to be due to several di↵erent metabolic pathways resulting

in the production and breakdown of this compound; di↵erent reactions involved in the

various pathways may occur at varying rates, meaning that the abundance can change

significantly from week to week, without following a continuous trend.

The compound that was putatively identified as docosenamide, or erucamide, an amide

derivative of the fatty acid erucic acid, also shows several points of high statistical sig-

nificance as shown by the post-hoc test p-values in Table 7.9. However, most of these

points of significant di↵erence are between fresh eggs and eggs that have been stored

at 5 C for any length of time, indicating that there may have been a large change in

compound abundance during the first week of egg storage. This is corroborated by the

line graph in Figure 7.17, which shows a large decrease in compound abundance over the

first two weeks of egg storage, followed by little change thereafter. Although the changing

abundance of this compound is statistically significant, it is not suitable as a biomarker

of egg age, as there is little significant di↵erence in abundance after the first two weeks

post-lay. It may be possible to use this compound as a marker to discriminate between

fresh eggs and eggs that are one week old or more, but nothing more than this.
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The two compounds that were putatively identified as PE(16:0/0:0) and PC(16:0/0:0)

both show similar points and values of statistical significance as shown by the post-hoc

test p-values in Tables 7.10 and 7.11. This suggests that they may also show similar

trends in changing abundance, which is confirmed by the line graphs in Figures 7.18 and

7.19. Both of these compounds experience a significant decrease in abundance over the

first week post-lay, followed by very little change in abundance afterwards. This is likely

to be due to the fact that these compounds are very similar to each other. PE(16:0/0:0) is

a lysophosphatidylethanolamine with a palmitic acid group attached to the first carbon of

the glycerol backbone, whilst PC(16:0/0:0) is a lysophosphatidylcholine with a palmitic

acid group again attached to the first carbon of the glycerol backbone. These compounds

both follow very similar metabolic pathways in their catabolism to glycerol-3-phosphate

[30], and so the rate of catabolism of these compounds in egg yolk may be very similar,

resulting in the changes in compound abundance with increasing egg age following very

similar trends.

However, neither of these compounds are suitable as markers of egg age, as the one

point of high statistical significance is between fresh eggs and eggs that were one week

old, with little change and no correlation of abundance over a further increase of egg age.

A slight increase in abundance of these compounds, following the initial decrease, can be

observed in the graphs in Figures 7.18 and 7.19. This trend could be due to the initial

catabolism and/or degradation of the PE(16:0/0:0) and PC(16:0/0:0) molecules reducing

their abundance, followed by the catabolism and/or degradation of other compounds,

e.g. phosphatidylethanolamines (PEs) and PCs, resulting in the production of more

PE(16:0/0:0) and PC(16:0/0:0) molecules, thereby increasing their abundance over the

following weeks. Although PE(16:0/0:0) experienced a decrease in abundance in egg yolk

at five weeks post-lay, it would be interesting to observe the trend of these compounds over

a wider range of egg age to see at which point they both stop increasing in abundance and

begin to significantly decrease. This would be the point at which the rate of catabolism

and/or degradation of the PE(16:0/0:0) and PC(16:0/0:0) molecules is greater than the
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rate of catabolism and/or degradation of PEs and PCs, and therefore the production of

the PE(16:0/0:0) and PC(16:0/0:0) molecules.

Some of the standard deviation error bars on these line graphs are quite wide. Whilst

some only appear large due to the scaling of the y-axis, others are wide due to a large

standard deviation, representing a high amount of variation in compound abundance

at those time points. This is due to the natural variation between the eggs; although

conditions were kept as uniform as possible, there will have been biological variation

between the laying birds, and therefore also between their eggs.

7.5.1.5 Choline in refrigerated eggs: non-targeted

As choline was found to have potential as a biomarker of egg age when eggs are stored

at 23 C, the abundance of choline in the yolks of eggs stored for varying lengths of time

at 5 C was then studied, as choline did not appear in the statistically significant top

100 compounds based on PC1 loadings. Table 7.12, shows the p-value from ANOVA and

the p-values from the post hoc Tukey tests, when comparing choline between the yolks

of eggs that were stored at 5 C for five weeks.

As can be seen from Table 7.12, choline showed no significant di↵erence in abundance

between eggs of di↵erent ages when stored at 5 C, and thus is not suitable as a biomarker

of egg age, over a five week age range, when eggs are refrigerated.

The graph in Figure 7.20 also shows that there is very little change in the abundance

of choline in egg yolks when eggs are stored at 5 C for five weeks. There is no correlation

between abundance and egg age, which is very di↵erent to the increasing abundance of

choline that was observed in the yolks of eggs that were stored at 23 C for increasing

lengths of time up to five weeks.
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Table 7.12: Table showing the p-values resulting from the ANOVA and Tukey tests for choline
in the yolks of eggs stored at 5 C for five weeks.

ANOVA
Post-hoc test p-values

p-value

0.151 Fresh 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks

Fresh 1 0.999 0.936 0.756 0.775

1 Week 1 0.980 0.621 0.643

2 Weeks 0.994 0.514 0.536

3 Weeks 0.235 0.25

4 Weeks 1

5 Weeks
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Figure 7.20: Line graph showing the trend in changing abundance of choline across eggs of

six di↵erent ages for eggs stored at 5 C for five weeks. n=6. Measured as mean
values of peak areas at each egg age, with error bars ±1 standard deviation.

The lack of statistically significant increase in the abundance of choline in yolk between

eggs of di↵erent ages indicates that storing eggs at lower temperatures slows down the

metabolic processes, e.g. the catabolism of PCs, and any metabolite degradation, so that

the production of choline is much slower and a trend in increasing choline abundance

cannot be seen. This prevents the accurate prediction of egg age through yolk choline

concentration.
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7.5.2 Choline Targeted Study

A choline targeted study was carried out in order to gain more quantitative information

about how the abundance of choline changes in the yolks of eggs over a longer period of

time. It was previously observed in Section 7.4.2 that the change in choline abundance

for eggs stored at 23 C was statistically significant over twelve weeks of egg age, with the

abundance increasing gradually over the whole twelve weeks. As there was no significant

change in choline abundance in the yolks of eggs that were stored at 5 C for five weeks,

and no obvious trend in the minimally changing abundance, it was not expected that

there would be much significance in the changing abundance of choline over twelve weeks.

However, it was possible that a statistically significant trend may have developed when

the abundance was measured over a longer period of time.

Figure 7.21 shows the standard and drift calibration curves that were produced based

on the mean peak areas of the standards. The coe�cient of determination value, R2,

for both calibration curves is greater than 0.99 (0.997 for the standard curve, and 0.999

for the drift curve), indicating that the calibration has good linearity and thus is a good

model for calculating choline concentration based on the peak areas of the standard EICs.

The Relative Error percentages (RE%s) for the standards were all found to be lower than

7% for the standard curve and lower than 15% for the drift curve, and the CV%s of the

standards were all found to be lower than 13% for the standard curve and lower than 14%

for the drift curve. These values are all within the acceptable limit of 15% according to

the published Food and Drug Administration (FDA) guidelines [29]. The CV% of the QC

samples was also calculated to ensure that there was minimal instrumental drift a↵ecting

the analysis, and this was found to be 3.6%, which again is within accepted limits.

The concentrations of choline in the yolk organic extracts, and in the yolks themselves,

can be seen in Table D.5 in Appendix D. Over the first five weeks of egg storage, there is

a statistical significance of p=0.017 for the changing concentration of choline. However,

the Tukey tests show that the only point of significant di↵erence in choline concentration
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Figure 7.21: Standard and drift calibration curves for choline chloride standards ranging
from 0.2-0.8 g/mL

is between eggs of one and five weeks of age, with p=0.01.

The graph in Figure 7.22 shows the changing concentration of choline in the yolks

of eggs up to five weeks old, which is quite di↵erent to the trend that was observed for

choline abundance in the non-targeted study, which can be seen in Figure 7.20. This

highlights the fact that there is no correlation between yolk choline concentration and

egg age, when eggs have been stored at 5 C. The choline concentration decreases over

the first week post-lay, resulting in the lowest concentration of choline at this time point,

before increasing over the following two weeks, decreasing slightly at four weeks, then

increasing again at five weeks, resulting in the highest concentration of choline over the

first five weeks post-lay. This explains why the only significant di↵erence in choline

concentration is between one week old eggs and eggs that were five weeks old. The

standard deviations are again quite large, resulting in wide error bars, indicating a wide

variance in the concentrations of choline at each time point.

Over the full twelve weeks of egg age that were studied, the ANOVA shows a high
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Figure 7.22: Line graph showing the trend in changing yolk choline concentration across eggs
of di↵erent ages, which were stored at 5 C for up to five weeks. n=6. Measured
as mean values of peak area at each egg age, with error bars ±1 standard
deviation.

significance of p=0.001 for the changing concentration of choline in egg yolk. However,

the post-hoc Tukey tests show that the only points of significant di↵erence in choline

concentration are between eggs that were one week old, and eggs that were six, eight, ten

and twelve weeks old. This seems to indicate that even over a longer period of egg age,

choline is not useful as a biomarker of age when eggs are stored at 5 C.

The graph in Figure 7.23 shows the lack of correlation between yolk choline concentra-

tion and egg age, over twelve weeks of egg storage. The change in concentration is mainly

insignificant, and is highly erratic, with the concentration changing randomly over the

weeks. The concentration decreases during the first week post-lay, resulting in the lowest

concentration observed in this study, then increases the following week. This explains

why only one week old eggs show any significant di↵erences in choline concentration com-

pared to eggs of other ages. The error bars are again quite wide due to large standard
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Figure 7.23: Line graph showing the trend in changing yolk choline concentration across eggs
of di↵erent ages, which were stored at 5 C for up to twelve weeks. n=6.
Measured as mean values of peak area at each egg age, with error bars ±1
standard deviation.

deviations, indicating a wide variation of yolk choline concentration in eggs of each age.

This targeted study has confirmed what was concluded from the non-targeted study

for eggs that were stored at 5 C for five weeks. Storing eggs at lower temperatures

decreases the rate of the catabolism and potential degradation of PCs, and therefore the

production of choline, resulting in no significant increase in choline abundance, preventing

the accurate prediction of egg age from yolk choline concentration.
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7.6 Comparison of Eggs Stored at 23 C and 5 C for

5 weeks: Yolk Organic Extracts

Yolk extracts from eggs that were stored at 23 C and 5 C were compared to see

whether there were any di↵erences in their metabolite profiles.

7.6.1 Results and Discussion

7.6.1.1 Quality Control Analysis

As there were only twelve samples to be analysed, the QC sample was injected between

every three samples, resulting in just five QC analyses in total. Table 7.13 shows the peak

areas for the six peaks of interest in the five QC samples that were analysed throughout

the run, as well as the SD, the mean, and the CV% of the peak areas for each of the

peaks.

Table 7.13: Table showing peak areas, SDs, means, and CV%s for six peaks in five QC samples
that were analysed throughout the analytical run for yolk organic samples of eggs
stored at 5 C and 23 C for five weeks

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 14357668 561083847 238380106 41069769 1499532718 332415797

QC2 13746587 561480400 236612674 42211361 1457514100 338975053

QC3 15418169 551799453 225621898 44087771 1377970674 330990129

QC4 14383656 552734170 224197958 39658888 1387151410 313774448

QC5 14941709 569139146 234766715 39174967 1448479259 323989085

SD 635487 7143171 6541290 1990389 50968350 9583078

Mean 14569557 559257403 231915870 41240551 1434129632 328028902

CV% 4.36 1.28 2.82 4.83 3.55 2.92
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The table shows that the CV%s for the peak areas of all six peaks across the five QC

samples are all well below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis.

Table 7.14 shows the RTs for the six peaks of interest in the five QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 7.14: Table showing RTs, SDs, means, and CV%s for six peaks in five QC samples that
were analysed throughout the analytical run for yolk organic extracts of eggs stored
at 5 C and 23 C for five weeks

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.947 10.057 32.19 55.467 70.563 78.563

QC2 4.93 9.907 32.045 55.235 70.184 77.774

QC3 4.914 9.892 31.969 55.139 70.019 77.518

QC4 4.932 10.026 32.201 55.436 70.468 78.366

QC5 4.932 10.091 32.232 55.485 70.567 78.514

SD 0.012 0.090 0.114 0.156 0.246 0.472

Mean 4.931 9.995 32.127 55.352 70.360 78.147

CV% 0.24 0.90 0.36 0.28 0.35 0.60

The table shows that the CV%s for the RTs of all six peaks throughout the five QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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7.6.1.2 Metabolite Profiling

The yolk extracts of eggs that were stored for five weeks at both 5 C and 23 C were

compared by observing the TICs of the extracts following HPLC-MS analysis. Figure

7.24 shows overlaid TICs for the average chromatograms of yolk extracts from eggs that

were stored at 5 C and 23 C for five weeks.
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Figure 7.24: Overlaid average TICs of yolk organic extracts from eggs that were stored at 5

C and 23 C for five weeks

There is a visible di↵erence in metabolite profile between eggs that were stored at

the two di↵erent temperatures, as can be seen in Figure 7.24. Most chromatographic

peaks appear to be of a higher intensity in the profiles of eggs that were stored at 23

C, however there are also some peaks of a higher intensity in the profiles of eggs that

were stored at 5 C. This is likely to be due to some peaks corresponding to compounds

that are products of catabolism and/or degradation, whilst others will correspond to

compounds that undergo catabolism and/or degradation to produce these compounds.

The compounds that are products of catabolism and/or degradation will be of a higher
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intensity in the yolks of eggs that were stored at 23 C, as the rate of catabolism due to

enzyme-catalysed reactions, and degradation, is higher at higher temperatures, whereas

the compounds that undergo catabolism and/or degradation will be of a higher intensity

in the yolks of eggs stored at 5 C, as the rate of catabolism and degradation is slower at

lower temperatures.

It would be expected that the later peaks in the chromatogram would correspond to

larger lipid or phospholipid compounds that undergo catabolism or break-down during

storage. However, some of these peaks have a higher intensity in the TIC of yolks from

eggs that were stored at 23 C for five weeks, compared to that of yolks from eggs that

were stored at 5 C. It is not known why this might be the case, however it could be that

just one yolk extract from one of the sets of eggs that were stored at either temperature

had an anomalous metabolite profile, in terms of compound abundance, to the other yolk

extracts from eggs that were stored at the same temperature, which a↵ected the overall

average TIC that was produced.

7.6.1.3 Multivariate Statistics

Following the first PCA, scores plots were produced to display any variation between

the yolks of eggs that were stored at 23 C and 5 C for five weeks. Although there are

some clear di↵erences in metabolite profile between the eggs that were kept at 5 C and

23 C, that can be seen in Figure 7.24, the scores plot in Figure 7.25 does not appear to

show any di↵erence between the two sets of eggs. This indicates that the di↵erences in

yolk metabolite profile between the eggs that were stored at di↵erent temperatures are

extremely subtle, and that the largest amount of variation is due to random di↵erences

between individual eggs, rather than any trend between eggs that were kept at di↵erent

storage temperatures. The more highly abundant compounds that contribute to the

observed di↵erences between the TICs of the yolks of eggs that were stored at 23 C

and 5 C for five weeks may not contribute as much to the variation that is explained
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Figure 7.25: PCA scores plot showing PC2 vs PC3 for eggs stored at 5 C and 23 C for five
weeks, including all compounds with CV%<30%. PC2 explains 0.50% of the
variance, and PC3 explains 0.15% of the variance.

by PC2 and PC3 as the less abundant compounds, which may experience more variance

between random eggs, rather than between eggs that were stored at the two di↵erent

temperatures. This would explain why the scores plot in Figure 7.25 does not show the

di↵erences between the two sets of eggs that were observed from the overlaid TICs in

Figure 7.24. There is a tight clustering of QC samples, which gives a good indication

that the analysis was robust and that there was little instrumental drift throughout the

analysis.

After the t-tests were carried out, and following the removal of any compounds with

p>0.01, a second PCA was carried out using the remaining compounds. Scores plots

were again produced to display the variation between the yolk extracts from eggs that

were stored at the two di↵erent temperatures.

As can be seen in Figure 7.26, when only statistically significant compounds are in-
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Figure 7.26: PCA scores plot showing PC2 vs PC4 for eggs stored at 5 C and 23 C for five
weeks, including all compounds with CV%<30% and p<0.01. PC2 explains
0.14% of the variance, and PC4 explains 0.0031% of the variance.

cluded in the PCA, full separation can be observed between the two sets of eggs on the

resulting scores plot. This separation between the eggs that were stored at the two dif-

ferent temperatures is across both PC2 and PC4, which explain only 0.14% and 0.0031%

of the variance respectively. Although there is a complete separation between the two

sets of eggs when plotting PC2 and PC4, the di↵erences remain extremely subtle as

evidenced by the very small percentage of variance explained by PC2 and PC4. PC1

explains 99.82% of the variance, which is between random eggs rather than between eggs

that were stored at the two di↵erent storage temperatures, again showing how subtle

the di↵erences are between the yolks of eggs stored at two di↵erent temperatures for

five weeks. The QC samples are grouped more closely together than the samples in the

two sample sets, indicating that there was little instrumental drift a↵ecting the analysis,

making it robust.
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7.6.1.4 Univariate Statistics

The CV%s and t-test p-values of the top 50 statistically significant compounds re-

maining, following the removal of any duplicates, adducts, or isotopes from the top 100

compounds based on PC1 loadings of the second PCA, including only compounds with

p<0.01, can be seen in Table D.6 in Appendix D. Those in bold remained statistically

significant when the same analyses were carried out using the raw data. The table also

shows whether the compounds were of a higher or lower abundance in egg yolk when the

eggs were stored at the two di↵erent temperatures. As can be seen in the table, most of

the lower molecular weight compounds were of a lower abundance in the yolks of eggs

that were stored at 5 C, compared to those stored at 23 C, whilst the reverse trend

was seen with the higher molecular weight compounds. This is likely to be due to the

lower storage temperature reducing the rate of enzyme-catalysed catabolic reactions and

metabolite degradation in the egg yolks, resulting in the production of fewer molecules

that are products of catabolism or degradation, which are of a lower molecular weight. As

the higher molecular weight compounds undergo a lower rate of catabolism and degrada-

tion at 5 C, these are of a higher abundance in the yolks of eggs kept at this temperature

as they are not being broken down as quickly as they would be in the eggs stored at 23

C.

Of the 29 compounds that still showed statistical significance when studying the raw

data, two were putatively identified. These two putatively identified compounds werem/z

104.1072 and 331.2856 and were identified as choline and 1-monopalmitin respectively,

which were previously identified in Section 7.4.

The abundance of the putatively identified 1-monopalmitin was significantly lower,

with p<0.001, in the yolks of eggs that were stored at 5 C for five weeks than in the

yolks of eggs that were stored at 23 C for the same length of time, as can be seen

in Figure 7.27. This is what would be expected, as monoglycerides are catabolic and

degradation products of other compounds, such as larger lipids and phospholipids, which
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Figure 7.27: Bar chart showing the di↵erence in abundance of the compound putatively
identified as 1-monopalmitin between eggs stored at 23 C and 5 C for five
weeks. n=6. Measured as mean values of peak area at each storage temperature,
with error bars ±1 standard deviation.

will have been breaking down throughout the five weeks post-lay. Metabolic processes

and metabolite degradation occur at slower rates in lower temperatures, which explains

why the abundance of 1-monopalmitin is lower in the yolks of eggs that were stored at 5

C; the enzyme-catalysed reactions and degradation causing the breakdown of the lipids

and phospholipids that produce monoglycerides are slower at this temperature, resulting

in fewer monoglyceride molecules being produced.

The statistical significance of choline was quite high, with p=0.004, and the abundance

of choline was lower in the yolks of eggs that were stored at 5 C, compared to those that

were stored at 23 C, as can be seen in Figure 7.28. Again, this is expected and is due

to the lower storage temperature reducing the rate of phospholipase-catalysed reactions

and metabolite degradation in the egg yolks, resulting in a reduced rate of PC catabolism

and degradation. Therefore, fewer choline molecules were produced, compared to when
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Figure 7.28: Bar chart showing the di↵erence in abundance of choline between eggs stored at
23 C and 5 C for five weeks. n=6. Measured as mean values of peak area at
each storage temperature, with error bars ±1 standard deviation.

eggs were stored at the higher temperature.

This clear di↵erence of choline abundance in egg yolk between eggs that were stored

at the two di↵erent temperatures confirms what was concluded previously; that storing

eggs in a refrigerated environment can su�ciently reduce the rate of phosphatidylcholine

catabolism and degradation, and therefore choline production, thereby inhibiting the

increase of choline concentration with increasing storage time, preventing the accurate

prediction of egg age based on yolk choline concentration.
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7.7 Liquid Eggs Stored at 5 C for 96 hours: Yolk

Organic Extracts

Extracts of liquid egg yolk samples that had spent varying lengths of time in the

refrigerator were compared to see whether any di↵erences in their metabolite profiles

could be observed.

7.7.1 Results and Discussion

7.7.1.1 Quality Control Analysis

Table 7.15 shows the peak areas for the six peaks of interest in the five QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 7.15: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC
samples that were analysed throughout the analytical run for organic extracts of
liquid egg yolk stored at 5

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 1605529 135851252 58016201 37514692 360943898 76295402

QC2 1482151 128098765 53849362 35417721 366632117 63091223

QC3 1459456 115277006 51075412 33926202 387771662 98715569

QC4 1605619 134660417 57289172 32151508 358167911 53980078

QC5 1465560 133838151 57688026 35086345 368768983 57742355

QC6 1539140 129582278 57332150 35265501 380836210 51265887

QC7 1566615 135187340 57015620 35842661 396332858 55346117

SD 63557 7271667 2590022 1660680 14362063 16948991

Mean 1532010 130356458 56037991 35029232 374207662 65205233

CV% 4.14 5.58 4.62 4.74 3.84 25.99
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The table shows that the CV%s for the peak areas of all six peaks across the seven QC

samples are all below the 30% cut o↵, indicating that the analysis was robust and that

there was little instrumental drift a↵ecting the detector response occurring throughout

the analysis.

Table 7.16 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 7.16: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
that were analysed throughout the analytical run for organic extracts of liquid egg
yolk stored at 5

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.430 8.911 32.233 56.318 71.590 78.147

QC2 4.421 8.953 32.308 56.493 71.814 78.487

QC3 4.412 8.977 32.382 56.633 72.220 79.043

QC4 4.458 9.056 32.477 56.729 72.548 79.619

QC5 4.479 9.010 32.515 56.883 72.685 79.889

QC6 4.435 9.067 32.571 57.055 72.941 80.311

QC7 4.469 9.083 32.621 57.122 73.024 80.460

SD 0.025 0.064 0.142 0.293 0.550 0.891

Mean 4.443 9.008 32.444 56.748 72.403 79.422

CV% 0.57 0.71 0.44 0.52 0.76 1.12

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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7.7.1.2 Metabolite Profiling

The extracts of liquid egg yolk samples that were stored at 5 C for di↵erent lengths of

time were compared initially by observing the TICs of the extracts following HPLC-MS

analysis. Figure 7.29 shows overlaid TICs for the average chromatograms of extracts from

fresh egg yolk and liquid egg yolk that was stored for 96 hours.
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Figure 7.29: Overlaid average TICs of organic extracts from fresh egg yolk and liquid egg
yolk that was stored at 5 C for 96 hours

The overlaid TICs in Figure 7.29 show a clear di↵erence in metabolite profile between

fresh egg yolk and liquid egg yolk that was refrigerated for 96 hours. There is a higher

peak intensity for most of the peaks in the TIC of fresh egg yolk extracts compared to

the TIC of extracts of yolk that was stored for 96 hours, which is comparable to what

was observed when comparing the TICs of the yolks of fresh eggs and eggs that had been

stored for five weeks at both 23 C and 5 C. This is particularly noticeable in the latter

half of the analysis, after 45 minutes.

After 45 minutes of analysis, the TIC of the extracts of liquid yolk that was stored at
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5 C for 96 hours starts to look di↵erent compared to other TICs produced throughout

this research. This is due to retention time drift occurring throughout the analytical

sequence, which a↵ected the later eluting compounds. Because of this, the average TICs

that were produced resulted in a poor peak shape for the later peaks in the chromatogram.

Therefore, the observed lower peak intensity for the peaks after 45 minutes in the TIC of

extracts of yolk that was refrigerated for 96 hours may be due to the poor peak shape,

in addition to or rather than, true di↵erences in metabolite profile.

Although retention time drift occurred throughout the analytical sequence, the anal-

ysis was still robust as can be seen in Section 7.7.1.1.

7.7.1.3 Multivariate Statistics

Following PCA, scores plots were produced to display the variation between the egg

yolk samples that were stored for di↵erent lengths of time at 5 C. Although the TICs in

Figure 7.29 show a clear di↵erence between fresh egg yolk and yolk that was refrigerated

for 96 hours, the scores plot in Figure 7.30 does not reflect this. There is very little

separation between the sets of egg yolk that were stored for di↵erent lengths of time, and

in fact most of the variation appears to be between random samples. It may be that

most of the di↵erences between the TICs of fresh yolk and yolk that was refrigerated

for 96 hours, that can be seen in Figure 7.29, are due to the poor peak shape of the

later peaks in the average TIC of yolk that was refrigerated for 96 hours, rather than

true di↵erences in metabolite profile. It could also be that the more highly abundant

compounds that contribute to the di↵erences in peak intensity between the TICs of fresh

yolk and refrigerated yolk contribute less to the variance that is explained by PC3 and

PC4 than the less abundant compounds, which may experience more variation between

random yolk samples, rather than between yolk samples that have been refrigerated for

di↵erent lengths of time.

However, fresh egg yolk samples do show some very slight separation to the other yolk
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Figure 7.30: PCA scores plot showing PC3 vs PC4 for egg yolk stored at 5 C up to 96
hours, including all compounds with CV%<30%. PC3 explains 0.20% of the
variance, and PC4 explains 0.16% of the variance. Circled: sample separate to
the rest of sample set.

samples, across PC3. This indicates that some of the di↵erences between fresh yolk and

yolk that was refrigerated for 96 hours, that were observed in the overlaid TICs in Figure

7.29, are represented by the variance that is explained by PC3. The variation between

samples within the fresh egg yolk sample set is quite high, with the samples spreading

out over most of the scores plot, across PC3. This is not what would be expected, as

these extracts should all be very similar, as they were all produced from the same pooled

sample of fresh egg yolk. The QC samples also appear to be spread out across PC3,

however there is no run order e↵ect in the spread and they are still the most clustered

group of samples, indicating that the analysis was robust and that instrumental drift did

not a↵ect the results. This spread of QC samples, and fresh yolk samples, suggests that

the di↵erences between the egg yolk samples that were stored for di↵erent lengths of time

were extremely subtle, as the PCA began exploiting di↵erences between the QC samples,
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which were all identical, and showed a high variance between the fresh yolk samples which

should all have been very similar.

There is one sample which corresponds to an extract of yolk that was refrigerated for

48 hours (circled), that is very separate to the other yolk extracts that were stored for

48 hours. It is not known why this may be, as all yolk samples were created from one

large pooled sample of egg yolk, and nothing unusual was noticed during the extraction

procedure, or in the resulting chromatogram. It may be that the location of this sample

was at a slightly di↵erent temperature to the rest of the refrigerator, or that the lid was

not applied to the sample tube correctly, or that an error occurred during the extraction

or analysis that was not observed at the time.

7.7.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top

50 compounds remaining, after the removal of any duplicates, adducts or isotopes from

the top 100 compounds based on PC1 loadings, all 50 compounds were found to be

significantly di↵erent between yolk samples that were stored at 5 C for di↵erent lengths

of time. These compounds, and their CV%s and p-values, can be seen in Table D.7 in

Appendix D; those in bold were also found to be significantly di↵erent when the raw data

was used to carry out the same tests.

Some of these top 50 compounds were also found to be statistically significant in the

study observing the yolks of whole shell eggs that were stored at 5 C for five weeks. Some

compounds appear to follow similar trends between these two studies; they experience a

significant increase in abundance over 96 hours of liquid yolk storage at 5 C as well as

over the first week of whole shell egg storage at the same temperature. However, others

do not appear to follow similar trends. Some compounds show significant di↵erences in

abundance over 96 hours of liquid yolk storage, but not over one week of whole shell

egg storage, and others do show significant di↵erences across the similar time periods in
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both studies, but with the abundance changing in opposite directions. These di↵erences

could be due to slightly di↵erent temperature conditions between the two studies; there

may have been temperature fluctuations in the refrigerator, or the eggs may have been

stored in di↵erent positions with slightly di↵erent temperatures. The di↵erences could

also be due to the eggs in the previous study being stored as whole shell eggs, and in the

current study as liquid yolk. It would be interesting to repeat this study over several more

days, to see whether the changes in compound abundance that appear to be opposite to

those observed in the previous study, start to change direction due to further metabolic

changes, emulating what was observed previously.

Of the 36 compounds that were found to remain statistically significant when analysing

the raw data, four were putatively identified through comparing mass spectra provided

by METLIN with mass spectra resulting from the chemical analysis in this study. The

observed m/z values for all of these compounds are due to the [M+H]+ adduct. The

compounds m/z 310.3103, 331.2840, 338.3416, and 525.3743 were putatively identified as

oleoyl ethyl amide, 1-monopalmitin, docosenamide (erucamide), and 1-palmitoyl-2-acetyl-

glycero-3-phosphatidylcholine (Platelet Activating Factor (PAF) C-16), respectively. The

compounds m/z 331.2840 and 338.3416 have been previously putatively identified, and

the comparison of mass spectra provided by METLIN with mass spectra obtained from

chemical analysis for these compounds can be seen in Appendix D, Figures D.2 and D.4

for m/z 331.2840 and 338.3416 respectively. The comparison of mass spectra provided

by METLIN with mass spectra obtained from analysis in this study for compounds m/z

310.3103, and 525.3743 can be found in Appendix D, Figures D.7 and D.8 respectively.

Tables 7.17-7.20, and Figures 7.31-7.34, show the putative identifications of the four

compounds, the p-values resulting from ANOVA/Welch tests and post-hoc Tukey/Games-

Howell tests, as well as the trends in the changing abundance of the compounds in the

liquid yolk ranging from fresh to 96 hours of storage at 5 C.
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Table 7.17: Table showing the putative identification of compound m/z 310.3103 and the p-
values resulting from Welch test and Games-Howell tests. n=6. Orange indicates
significance (p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

310.3103 C20H39NO 97.31
Oleoyl ethyl

<0.001amide

Post-hoc test p-values

24 hours 48 hours 60 hours 72 hours 84 hours 96 hours

Fresh 0.045 0.026 0.014 0.004 0.004 0.004

24 hours 0.349 0.073 <0.001 0.004 <0.001

48 hours 0.665 0.001 0.016 0.001

60 hours 0.019 0.141 0.021

72 hours 0.989 1

84 hours 0.993

96 hours
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Figure 7.31: Bar chart showing the trend in changing abundance of compound m/z 310.3103
across liquid egg yolk stored for up to 96 hours. n=6. Measured as mean values
of peak area at each egg age, with error bars ±1 standard deviation.
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Table 7.18: Table showing the putative identification of compound m/z 331.2840 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

331.2840 C19H38O4 99.57 1-monopalmitin <0.001

Post-hoc test p-values

24 hours 48 hours 60 hours 72 hours 84 hours 96 hours

Fresh <0.001 0.033 <0.001 0.005 <0.001 0.002

24 hours <0.001 0.47 0.002 0.978 0.005

48 hours 0.045 0.99 0.002 0.917

60 hours 0.21 0.925 0.402

72 hours 0.018 1

84 hours 0.048

96 hours
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Figure 7.32: Bar chart showing the trend in changing abundance of compound m/z 331.2840
across liquid egg yolk stored for up to 96 hours. n=6. Measured as mean values
of peak area at each egg age, with error bars ±1 standard deviation.
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Table 7.19: Table showing the putative identification of compound m/z 338.3416 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

338.3416 C22H43NO4 99.92 Erucamide <0.001

Post-hoc test p-values

24 hours 48 hours 60 hours 72 hours 84 hours 96 hours

Fresh <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

24 hours 0.999 0.908 0.002 0.005 0.004

48 hours 0.992 0.005 0.016 0.013

60 hours 0.033 0.087 0.072

72 hours 1 1

84 hours 1

96 hours
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Figure 7.33: Bar chart showing the trend in changing abundance of compound m/z 338.3416
across liquid egg yolk stored for up to 96 hours. n=6. Measured as mean values
of peak area at each egg age, with error bars ±1 standard deviation.

Page 342



Chapter 7

Table 7.20: Table showing the putative identification of compound m/z 525.3743 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

525.3743 C26H54NO7P 99.71 PAF C-16 0.009

Post-hoc test p-values

24 hours 48 hours 60 hours 72 hours 84 hours 96 hours

Fresh 0.996 0.626 0.864 0.012 0.092 0.151

24 hours 0.932 0.995 0.057 0.301 0.432

48 hours 0.999 0.435 0.902 0.965

60 hours 0.219 0.686 0.82

72 hours 0.98 0.933

84 hours 1

96 hours
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Figure 7.34: Bar chart showing the trend in changing abundance of compound m/z 525.3743
across liquid egg yolk stored for up to 96 hours. n=6. Measured as mean values
of peak area at each egg age, with error bars ±1 standard deviation.
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The probability scores for the predicted molecular formulae for all of these compounds

are above 95, indicating that there is a strong likelihood that the predicted formulae

correspond to the compounds of interest. The p-values from ANOVA and Welch tests

show that the abundances of these compounds are statistically significant when comparing

them between yolk that was stored for di↵erent lengths of time, ranging from fresh to 96

hours of storage, and the post-hoc test p-values mostly corroborate this.

The compound that was putatively identified as oleoyl ethyl amide, an amide derivative

of the fatty acid oleic acid, with an ethyl group attached to the nitrogen of the amide

group, has several points of high statistical significance between liquid yolk samples that

were stored for di↵erent lengths of time. The post-hoc test p-values in Table 7.17 show a

significant di↵erence between fresh yolk and yolk that has been refrigerated for 24 hours,

with an increasing significant di↵erence between fresh yolk and yolk that has been stored

for increasing lengths of time, up to 72 hours of storage, at which point the significance

is high and remains the same over the remaining storage time. This suggests that there

was a gradual change in compound abundance with increasing storage time of the yolk,

up to 72 hours, at which point the metabolic changes a↵ecting the abundance of this

compound slowed down, resulting in no further increase in significant di↵erence between

fresh egg yolk and yolk that was stored for 84 and 96 hours. The bar chart in Figure

7.31 confirms this trend in compound abundance. It shows that there is an increase in

compound abundance with increasing storage time of the yolk over the first 72 hours of

storage, and then very little change, with no correlation, afterwards.

Both the post-hoc test p-values in Table 7.17 and the bar chart in Figure 7.31 show

that there is a significant di↵erence in compound abundance between yolks that were

stored at 5 C for 48 hours, and those that were stored for 72 hours. As EU legislation

states that liquid egg can only be stored at refrigerated temperatures for 48 hours before

it must be disposed of [19], this compound has potential as a biomarker for this type of

fraud, as it can distinguish between liquid egg yolk which has been stored for 48 hours
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and that which has been stored for 72 hours and over. As there is a significant di↵erence

in compound abundance over the first 24 hours of yolk storage, this compound could also

be used to discriminate between fresh yolk, and yolk that has been refrigerated for at

least 24 hours.

The compound that was putatively identified as 1-monopalmitin has several points of

high statistical significance between yolks that were stored for various lengths of time.

However, the bar chart in Figure 7.32 shows that the changing abundance of this com-

pound with increasing storage time of the yolk is very erratic and does not experience

any correlation. Therefore, this compound is not useful in predicting the age of liquid

egg yolk that has been stored at 5 C. However, both the post-hoc test p-values in Table

7.18, and the bar chart in Figure 7.32, show that there is a significant di↵erence in the

abundance of this compound between fresh egg yolk and liquid egg yolk that has been

stored for any length of time up to 96 hours. So although this compound does not show

much potential as a marker of the age of liquid egg yolk, it could be useful when determin-

ing whether egg yolk is fresh or not. This compound was also in the top 48 statistically

significant compounds when whole shell eggs were stored at 5 C for five weeks, where it

was found to significantly increase in abundance in yolk over the first week of storage. In

this study, although the changing abundance of this compound is quite erratic, it does

experience an overall increase after the four days (96 hours) of liquid egg yolk storage,

which corresponds to the trend seen in the previous study.

The compound that was putatively identified as erucamide has several points of high

statistical significance, particularly between fresh yolk and yolk that was refrigerated for

any length of time, as shown by the post-hoc test p-values in Table 7.19. This indicates

that there was a large change in compound abundance that occurred during the first 24

hours of storage. There are also significant di↵erences in compound abundance between

eggs that were stored for 60 hours and those that were stored for 72 hours, and between

eggs that were stored for 24 and 48 hours and those that were stored for 72 hours and
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longer. This suggests that there may have been a further greater change in compound

abundance between eggs that were stored for 60 hours and those that were stored for 72

hours. The bar chart in Figure 7.33 confirms this; there is a large increase in compound

abundance over the first 24 hours of yolk storage, followed by another jump in compound

abundance between 60 and 72 hours of storage, after which point there is very little change

in abundance. This could be due to the metabolic processes that result in the production

of this compound reaching the point at which most substrate has been catabolised or

degraded, and thus most product has been produced, at 72 hours of refrigerated storage.

Although there was not a steady increase in compound abundance observed over the

96 hours of yolk storage, this compound does show some potential as a marker of yolk

storage time, particularly between fresh yolk, and yolk that has been refrigerated for at

least 24 hours. The post-hoc test p-values in Table 7.19, and the bar chart in Figure

7.33, both show that there is a significant di↵erence in compound abundance between

yolk that was stored for 48 hours, and yolk that was stored for 72 hours and over. As

legislation states that liquid egg can only be stored for up to 48 hours before being used

[19], this compound has potential use in uncovering fraud where liquid egg yolk may have

been kept for 72 hours or longer.

The trend in changing abundance of the compound that was putatively identified

as erucamide appears to be very similar to that of the compound that was putatively

identified as oleoyl ethyl amide. Oleoyl ethyl amide is an amide derivative of oleic acid,

and erucamide is an amide derivative of erucic acid, which has a hydrocarbon chain

consisting of four more carbon atoms than oleic acid. These compounds are clearly very

similar, and experience similar metabolic processes, therefore it is not surprising that

they undergo such a similar trend in changing abundance in liquid egg yolk.

This compound was also in the top 48 statistically significant compounds when whole

shell eggs were stored at 5 C for five weeks, where it was found to significantly decrease

in abundance in yolk over the first week of storage. This is contradictory to what has
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been observed in this study, as the compound was found to experience an overall large,

significant increase in abundance in yolk that was stored at 5 C for four days. This

di↵erence in the changing abundance of this compound may be due to the eggs being

stored as whole shell eggs in one study, and just as liquid yolk in the other. It could also

be that if this current study was continued over a longer period of time, the abundance

of this compound might be observed to decrease and follow the trend that was observed

in the previous study.

The compound that was putatively identified as PAF C-16 is a glycerophosphatidyl-

choline with a palmitoyl group attached to the first carbon of the glycerol backbone by an

ether linkage and an acetyl group attached to the second carbon by an ester bond. The

m/z 525.3743 is actually the [M+H]+ adduct of the C-13 isotope of the compound, as can

be seen in the mass spectra comparison in Appendix D, Figure D.8. It is not known why

the isotope was in the top 50 compounds in the statistical workflow and not the actual

compound itself. Although the ANOVA p-value in Table 7.20 shows that this compound

is highly statistically significant when comparing egg yolk that has been stored at 5 C

for various lengths of time, the post-hoc test p-values do not corroborate this. The only

point of significant di↵erence is between fresh yolk, and yolk that was stored for 72 hours.

The bar chart in Figure 7.34 shows that the abundance of this compound decreases at

72 hours, explaining this point of statistical significance. As this compound shows little

statistical significance, and there is no correlation between abundance and storage time

of the yolk, this compound is not suitable as a marker of liquid yolk storage time.

Some of the standard deviation error bars on these bar charts, particularly for fresh

egg yolk, are quite wide, indicating a wide amount of variation in compound abundance in

yolk samples that were stored for di↵erent lengths of time. The large standard deviations

observed for fresh yolk corroborate what was observed in the scores plot in Figure 7.30,

which showed wide variation amongst the fresh egg yolk samples.
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7.7.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 50 statistically significant com-

pounds, and scores plots were again produced to display the variation between egg yolk

samples that were stored for di↵erent lengths of time.
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Figure 7.35: PCA scores plot showing PC2 vs PC3 for egg yolk stored at 5 C up to 96
hours, including the top 50 compounds. PC2 explains 0.23% of the variance,
and PC3 explains 0.10% of the variance.

The scores plot in Figure 7.35 still only shows very slight separation between fresh

egg yolk and yolk that was refrigerated, and no separation between the sets of yolk that

were refrigerated for di↵erent lengths of time, even though only statistically significant

compounds have been included in the PCA. This highlights the subtlety of the di↵erences

between fresh egg yolk, and egg yolk samples that have been stored for di↵erent lengths

of time at 5 C. There is again a lot of variation within samples of fresh yolk, as well

as yolk that was stored for 24, 48, and 60 hours, but from 72 hours of storage onwards,

the variance appears to decrease and the samples all group more closely together. This
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is likely to be due to the metabolic processes occurring at slightly di↵erent rates in the

di↵erent yolk samples over the first few days of storage, possibly due to their di↵erent

positions in the refrigerator resulting in slightly di↵erent storage temperatures, causing a

wide variance of compound abundance between yolk samples that were stored for the same

length of time. By 72 hours of storage, the initial metabolic processes will have slowed

down and the metabolite profiles will have all reached a similar state in the di↵erent yolk

samples, resulting in a smaller variance of compound abundance.

7.8 Summary & Conclusions

7.8.1 Summary

The various studies throughout this work have shown, through overlaid TICs and PCA

scores plots, that there are di↵erences, although sometimes very subtle, in the metabolite

profiles of the yolks of eggs that have been stored for di↵erent lengths of time, both at

23 C, and 5 C, as well as between liquid yolk samples that have been refrigerated for

di↵erent lengths of time at 5 C.

A compound that shows statistical significance when comparing eggs that have been

stored at 23 C for di↵erent lengths of time up to five weeks, and that was found to

increase gradually in abundance with increasing egg age, was identified as choline. This

compound was also found to increase significantly in abundance with increasing egg age

over a longer storage time of twelve weeks, when a follow-up targeted study was carried

out. This targeted study also quantified the concentration of choline in egg yolk, and

found it to increase from an average of 6.8 g/g to 28.7 g/g over the twelve week period.

Although several compounds were found to be statistically significant when comparing

eggs that were stored for di↵erent lengths of time up to five weeks at 5 C, none of these

were determined to be suitable as markers of egg age during refrigerated storage. Choline

was found to not be statistically significant when eggs were stored at 5 C, in both the
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non-targeted and follow-up targeted studies, and did not show a correlation between

abundance and egg age. This indicates that storing eggs at a lower temperature can

prevent the accurate prediction of egg age based on choline concentration in the egg yolk.

When comparing the metabolite profiles of the yolks of eggs that had been stored for

five weeks at 23 C and 5 C, several compounds were found to be statistically signif-

icant. Only two of these were putatively identified, and one of these compounds was

choline, which was found to be lower in abundance in the yolks of eggs that were stored

for five weeks at 5 C. This is due to the lower storage temperature reducing the rate

of phospholipase-catalysed reactions and metabolite degradation, thereby slowing down

the catabolism and break-down of phosphatidylcholines, and therefore the production

of choline. This confirms that a lower storage temperature can prevent the accurate

prediction of the age of an egg based on the choline concentration of the egg yolk.

The comparison of the metabolite profiles of liquid yolk that had been stored at 5 C

for various lengths of time resulted in the discovery of several compounds that showed a

statistical significance between the yolk samples. Four of these were putatively identified,

and two were determined to have potential as markers of the age of liquid yolk that has

been stored at 5 C. Oleoyl ethyl amide and erucamide were both found to increase in

abundance with increasing storage time of the yolk, and both showed a high statistical

significance between yolk that was stored for 48 hours, and yolk that was stored for 72

hours. This makes these compounds potentially useful as markers to detect fraud when

liquid yolk is refrigerated for longer than the 48 hours that is legally allowed. These two

compounds, as well as the compound that was putatively identified as 1-monopalmitin,

also showed potential as markers to discriminate between fresh yolk, and yolk that has

been refrigerated for at least 24 hours.
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7.8.2 Conclusions

This work has resulted in the identification of choline, a compound that could be used

to predict the age of an egg based on its concentration in the yolk. This could help to

identify cases of fraud due to date mislabelling, and prevent further instances of fraud by

deterring potential fraudsters due to the increased risk of being caught. However, this

research has also shown that refrigerating the eggs can prevent the accurate prediction

of egg age based on yolk choline concentration. Two compounds were found to show

potential as markers capable of discriminating between samples of liquid yolk that have

been refrigerated for di↵erent lengths of time. This could be useful in detecting fraud,

when liquid yolk is refrigerated for longer than the 48 hours that is allowed, prior to use.

Future work would involve repeating these studies with larger sample sizes in order

to obtain more robust results. It would be interesting to repeat the choline targeted

study using birds of di↵erent breeds, to determine whether similar results are obtained.

Although it is probable that the positive correlation between yolk choline concentration

and egg age would be comparable between breeds, the starting concentration may di↵er,

which would need to be accounted for. Further work would also involve the confirmation

that choline abundance increases with increasing egg age due to the catabolism and/or

degradation of phosphatidylcholines (PCs). This would be done by observing the di↵er-

ences in PC abundance between the yolks of eggs of di↵erent ages, by carrying out MS

analysis in precursor ion scan mode for the m/z 184 fragment (phosphocholine), in order

to detect the PC ions that fragment to produce this fragment ion [31].

It would also be interesting to repeat the liquid egg storage study using birds of

di↵erent ages and breeds, and shell eggs of di↵erent ages prior to breaking, again to

determine whether similar results are obtained. Carrying out similar studies with liquid

albumen, and liquid yolk and albumen combined, both refrigerated and stored at room

temperature, as well as with liquid yolk stored at room temperature, would also be

another aspect of further work regarding this research.
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8. Di↵erences in metabolite profile

between the yolks of eggs from hens

kept in cages of di↵erent stocking

densities

8.1 Introduction

From January 2003, until January 2012, EU legislation stated that un-enriched, or

battery cage, systems for laying hens must provide no less than 550 cm2 of cage area per

hen [1]. However, due to welfare considerations, as of January 2012 the use of these un-

enriched cages has been prohibited, and all cages must now comply with the requirements

of enriched cages, which allow a minimum of 750 cm2 of cage area per hen, of which 600

cm2 must be usable [1]. This change created the potential for fraud, as poultry farmers

may have chosen not to abide by this new regulation, as it required rearranging of the

cages and housing systems of the birds, as well as more space to house the same number

of hens. Therefore, it is important to have a method of detecting when this regulation

regarding the housing of laying birds in enriched cages is not being followed. There

would clearly be a benefit to having a robust and reliable scientific method capable of

predicting the stocking density of laying hens, based on the analysis of the egg, to check
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for non-compliance.

There has been some research into how the stocking density of the cage of the laying

bird a↵ects both egg production, and some physical characteristics of the resulting eggs.

Several studies have found that an increase in the stocking density of birds in cages results

in lower egg production [2][3][4], which may be attributable to an observed decrease in

the feed intake of the birds with the increase in stocking density [2][3]. A decrease in the

mass of eggs produced by the birds was also observed in several studies [2][3][4], which

could also be attributed to a decreased feed intake of the birds. Yolk colour has been

found in one study to be a↵ected by stocking density [2], however another study found

that the stocking density of birds did not a↵ect the yolk colour of the resulting eggs [3].

There has been some research into whether the Haugh Unit (HU) of an egg (based on

the relationship between the weight of the intact egg, and the albumen height once the

egg has been broken) is a↵ected by the stocking density of the cage of the laying hen.

However, no relationship has been observed between the stocking density of the cage of

the laying hen, and the HU of the eggs [2][3].

Di↵erent stocking densities can either be due to di↵erent numbers of birds in cages

of the same size, or an equal number of birds in cages of di↵erent sizes. Di↵erences

observed between eggs laid by birds kept in cages of di↵erent stocking densities, with

di↵erent numbers of birds in cages of the same size, could be due to di↵erences in the

population size of the cage, rather than just the stocking density. When studying the

e↵ect of the cage stocking density of laying hens on eggs, it is important to ensure that

any statistically significant potential markers are related to the di↵erences in stocking

density, rather than population size.

There has been little published research into the e↵ect of the cage population size of

the laying hen on the characteristics of the egg. This could be due to the fact that there

is no legislation regarding the population size of a cage, or because there are very few

e↵ects on the egg. In fact, one study found that cage population size had no e↵ect on
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the rate of egg production, or the mass of the eggs [5].

Although there has been some research into the e↵ects of the stocking density of

the cage of the laying hen on the physical characteristics of eggs, there has been no

research into how the stocking density a↵ects the chemical composition of the eggs. A

metabonomic approach would allow information to be obtained about how a wide range

of compounds, and compound classes, are a↵ected by the stocking density of the laying

hen. This could result in the development of a method capable of predicting the stocking

density of the laying hen, from the egg itself, helping to detect cases of fraud regarding

battery cages.

8.2 Aims and Objectives

Having a robust scientific method that is capable of predicting the stocking density of

the cage of a laying hen, based on the egg itself, would help to detect breaches of legislation,

where birds are kept in un-enriched cages with greater stocking densities than enriched

cages with lower stocking densities.

This work aimed to use HPLC-MS analysis as part of a non-targeted metabonomic

workflow to determine whether a di↵erence in metabolite profile can be observed between

the yolks of eggs laid by birds from cages of di↵erent stocking densities. It aimed to

identify any compounds that showed potential use as markers, capable of predicting the

stocking density of the laying hen cage, which could help to identify cases of fraud. It also

used a similar metabonomic workflow to compare the yolks of eggs from cages of di↵erent

population size, in order to determine whether any observed di↵erences in metabolite

profile, between the yolks of eggs laid by birds from cages of di↵erent stocking densities,

were separate to any di↵erences observed due to cage population size.
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8.3 Experimental

8.3.1 Cage Population Size

Eggs were collected on the day of lay from Oaklands Farm Eggs Ltd. (Shrewsbury,

U.K.). Laying hens were of the Hy-line brown breed, 21 weeks old at the start of the

study, fed the same diet, and kept in enriched cages of the same stocking density. Four

sets of six eggs were collected from four di↵erent cages, each housing a di↵erent number of

birds: 20, 40, 60, and 80 birds per cage, just three weeks after the birds were moved into

these conditions. These eggs were treated as the control group. Following a further six

weeks of the birds living in these cages, another four sets of six eggs were collected from

the same cages, in order to observe whether the population size of the cage of the laying

hen a↵ects the metabolite profiles of the yolks of eggs. All eggs underwent metabolite

extraction on the day of lay, and the resulting extracts were stored at -80 C until chemical

analysis took place. Figure 8.1 shows the experimental design for this study.

20 
birds/cage

Cage 1 Cage 4Cage 3Cage 2

6 eggs 6 eggs 6 eggs 6 eggs
3 weeks

40 
birds/cage

60 
birds/cage

80 
birds/cage

6 weeks
6 eggs 6 eggs 6 eggs 6 eggs

Figure 8.1: Diagram showing the experimental design for the cage population size study
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Organic metabolite extraction of the yolk, chemical analysis of the resulting extracts

using HPLC-MS, quality control analysis, and data pre-processing were carried out as

described in Chapter 3. Data analysis for the yolk samples from eggs that were laid

nine weeks after the birds were moved into the cages was then carried out as described

in Chapter 3, Section 3.9, with no attempt at compound identification. The p-values

for the top significantly di↵erent compounds were then compared with the p-values from

ANOVA/Welch tests for these compounds when comparing eggs laid by birds from cages

of di↵erent population size after just three weeks of the birds living in the cages.

Unfortunately it was not possible to collect eggs any earlier than three weeks after the

birds were moved into these cages. Therefore, any influence that the cage population size

may have on the birds and their eggs may have started to a↵ect the control sample set.

8.3.2 Stocking Density

Eggs were collected on the day of lay from the National Institute of Poultry Husbandry

(Harper Adams University, Newport, U.K.). Laying hens were of the Hy-line brown breed,

52 weeks old at the start of the study, fed the same diet, and kept in enriched cages, with

di↵erent stocking densities. The cages were all the same size, with di↵erent numbers

of birds kept in each cage: 2, 4, 6, and 8 birds per cage. Four sets of six eggs were

collected from the four di↵erent cages, just four days after the birds were moved into

these conditions. These eggs were treated as the control group. Following a further ten

days of the birds living in these conditions, another four sets of six eggs were collected

from the same cages, in order to observe whether the stocking density of the cage of laying

hens a↵ects the metabolite profiles of the yolks of eggs. All eggs underwent metabolite

extraction on the day of lay, and the resulting extracts were stored at -80 C until chemical

analysis took place. Figure 8.2 shows the experimental design for this study.
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2 birds/cage

Cage 1 Cage 4Cage 3Cage 2

6 eggs 6 eggs 6 eggs 6 eggs
4 days

4 birds/cage 6 birds/cage 8 birds/cage

10 days
6 eggs 6 eggs 6 eggs 6 eggs

Figure 8.2: Diagram showing the experimental design for the stocking density study

Organic metabolite extraction of the yolk, chemical analysis of the resulting extracts

using HPLC-MS, quality control analysis, and data pre-processing were carried out as

described in Chapter 3. Data analysis for the yolk samples from eggs laid two weeks

after the birds were moved into the cages was then carried out as described in Chapter 3,

Section 3.9, with the addition of a second PCA, using only the top statistically significant

compounds following ANOVA/Welch tests. The p-values for the top significantly di↵erent

compounds were then compared with the p-values from ANOVA/Welch tests for these

compounds when comparing eggs laid by birds from cages of di↵erent stocking densities,

after just four days of the birds living in the cages. These compounds were also compared

to the top statistically significant compounds when comparing eggs laid by birds kept in

cages with di↵erent population sizes. This was done in order to determine whether the

statistical significance of these compounds was genuinely due to di↵erences in stocking

density, or whether it might be due to the di↵erence in population size of the cages, or

some other variable that may exist between the birds in the di↵erent cages, rather than

the stocking density itself.
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Unfortunately it was not possible to collect eggs any earlier than four days after the

birds were moved into these cages, therefore the control sample set may have started to

be a↵ected by the stocking density of the laying birds. It was also not possible to continue

this study for longer than two weeks, therefore the e↵ect of the stocking density of the

laying hens on the metabolite profile of egg yolk may not be fully represented by the eggs

used in this study.
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8.4 Cage Population Size (9 Weeks): Yolk Organic

Extracts

Organic extracts of the yolks of eggs laid by hens that were kept in cages of di↵erent

population size for nine weeks were compared to see whether the number of birds living

together in a cage a↵ects the metabolite profiles of the egg yolks.

8.4.1 Results and Discussion

8.4.1.1 Quality Control Analysis

Table 8.1 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 8.1: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens kept in cages of di↵erent population size

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 1382062 129763553 50992569 37490454 345503620 103486405

QC2 1352582 124934116 54167801 35286834 336437753 145882880

QC3 1425724 124802495 50778089 34209741 323566408 76506007

QC4 1358155 124796201 52120718 34606960 327177489 72500495

QC5 1414995 125410743 52848218 33843394 320578161 74670385

QC6 1442398 126247115 49929978 33844492 319334818 71394737

QC7 1429934 116317274 46335284 33123420 330134859 110017280

SD 36278 4058459 2505209 1431568 9364436 27956772

Mean 1400836 124610214 51024665 34629328 328961873 93494027

CV% 2.59 3.26 4.91 4.13 2.85 29.90
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis. The CV% for

the peak area of Peak F is only just within the 30% cut o↵, indicating that there was

some instrumental drift throughout the analysis, but as it is still under 30%, the analysis

can still be considered to be robust.

Table 8.2 shows the retention times (RTs) for the six peaks of interest in the seven

QC samples that were analysed throughout the run, as well as the SD, the mean, and

the CV% of the RTs for each of the peaks.

Table 8.2: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens kept in cages of di↵erent population size

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.222 8.770 31.893 55.746 70.586 76.539

QC2 4.324 8.822 31.962 55.815 70.638 76.614

QC3 4.378 8.860 31.999 55.836 70.709 76.784

QC4 4.256 8.871 32.027 55.897 70.737 76.779

QC5 4.345 8.810 31.999 56.085 70.908 77.033

QC6 4.407 8.905 32.045 55.998 70.854 76.963

QC7 4.389 8.904 32.126 56.074 70.869 77.010

SD 0.070 0.050 0.072 0.133 0.123 0.194

Mean 4.332 8.849 32.007 55.922 70.757 76.817

CV% 1.61 0.57 0.23 0.24 0.17 0.25

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all below the 2% cut o↵, indicating that the analysis was robust and there

was minimal retention time drift throughout the analysis.
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8.4.1.2 Metabolite Profiling

Comparisons were made between the yolks of eggs laid by hens kept in cages of di↵erent

population size, by studying the Total Ion Chromatograms (TICs) of the extracts follow-

ing HPLC-MS analysis. Figure 8.3 shows overlaid TICs for the average chromatograms

of organic extracts of yolk from eggs laid by hens that were kept in cages with 20, 40, 60,

and 80 birds per cage.
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Figure 8.3: Overlaid average TICs of organic extracts of yolks of eggs laid by hens that were
kept in cages of di↵erent population size

The overlaid TICs in Figure 8.3 show that there are some slight di↵erences in metabo-

lite profile between the yolks of eggs laid by birds kept in cages of di↵erent population

size. However, there does not appear to be a specific trend between peak intensity and

population size. There is a higher peak intensity for most peaks in the TICs of organic

extracts of yolk from eggs laid by birds kept in cages of 40 and 80 birds per cage, whilst

there is a lower peak intensity for most peaks in the TICs of organic extracts of yolk from

eggs laid by birds kept in cages of 20 and 60 birds per cage.
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8.4.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the yolks of eggs laid by hens that were kept in cages of four di↵erent population sizes.
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Figure 8.4: PCA scores plot showing PC3 vs PC4 for yolk organic extracts of eggs laid by
birds that were kept in cages of four di↵erent population sizes, including all
compounds with CV%<30%. PC3 explains 0.23% of the variance, and PC4
explains 0.22% of the variance.

The scores plot in Figure 8.4 shows no separation between the yolks of eggs laid by

birds that were kept in cages of di↵erent population size. This suggests that the cage

population size of the laying hen has very little e↵ect on the metabolite profile of the egg

yolk. The more highly abundant compounds that contribute to the observed higher peak

intensity in the TICs of yolk from eggs laid by birds that were kept in cages of 40 and

80 birds may contribute less to the variation that is explained by PC3 and PC4 than the

less abundant compounds which may experience more variation between random eggs,

rather than eggs laid by birds that were kept in cages with di↵erent population sizes.
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The QC samples, whilst not particularly tightly clustered, are grouped closer together

than the other sample sets, showing that there was little instrumental drift a↵ecting the

analysis, and that the analysis was robust. The QC samples are likely to be more spread

out than expected due to the very small amount of variation between samples. As there

is such little variation between samples, the PCA has exploited any di↵erences between

the QC samples.

8.4.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 50

compounds remaining, after the removal of any duplicates, adducts or isotopes from the

top 100 compounds based on PC1 loadings, 47 were found to be statistically significant.

These compounds, their CV%s, and p-values resulting from ANOVA/Welch tests, can

be seen in Table E.1 in Appendix E. Those in bold were also found to be statistically

significant following confirmation using the raw data.

8.4.1.4.1 Comparison of top compounds between eggs collected after 9 weeks

and control eggs collected after 3 weeks of birds living in cages of di↵erent

population size

Table E.2 in Appendix E shows the ANOVA/Welch test p-values of the top 34 com-

pounds that were found to be significantly di↵erent, following confirmation using the

raw data, between the yolks of eggs laid by birds that were kept in cages of di↵erent

population size for nine weeks. It also shows the p-values for the abundances of these

compounds when comparing the yolks of eggs laid by birds that were kept in cages of

di↵erent population size after just three weeks of the birds living in these cages.

Of these 34 compounds, 7 were found to be significantly di↵erent between the yolks of

eggs laid by birds that were kept in cages of di↵erent population size for just three weeks.

This suggests that either the abundances of these compounds were starting to be a↵ected
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by the influence of cage population size, or that these compounds were not statistically

significant due to the di↵erent population sizes of the cages, and were a↵ected by some

other variable that may have existed between the birds in the di↵erent cages.
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8.5 Stocking Density (2 weeks): Yolk Organic

Extracts

Organic extracts of the yolks of eggs laid by hens kept in cages of di↵erent stocking

densities for two weeks were compared to see whether the stocking density of the cage of

the laying hen a↵ects the metabolite profiles of the eggs.

8.5.1 Results and Discussion

8.5.1.1 Quality Control Analysis

Table 8.3 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 8.3: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens kept in cages of di↵erent stocking density

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 2170115 162312313 39338711 48651457 410707348 82819839

QC2 2705074 169213082 42536688 48733441 445343289 82562610

QC3 2869388 174598801 38187109 43697911 472921967 83377337

QC4 2812153 164155777 41888271 42804274 422475903 75739428

QC5 2983482 173606052 38561378 48774188 446895936 75339025

QC6 3178658 166308520 41092277 49767646 438909541 66218091

QC7 2948875 158726851 39486607 44423547 392218132 66785769

SD 318665 5849012.8 1687229 2916245 26597889 7359738

Mean 2809678 166988771 40155863 46693209 432781731 76120300

CV% 11.34 3.50 4.20 6.25 6.15 9.67
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all well below the 30% cut o↵, indicating that the analysis was robust

and that there was little instrumental drift occurring throughout the analysis.

Table 8.4 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 8.4: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens kept in cages of di↵erent stocking density

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC1 4.836 9.998 33.752 57.804 72.677 79.848

QC2 4.874 10.070 33.840 57.859 72.649 79.754

QC3 4.905 10.100 33.871 57.973 72.746 80.067

QC4 4.887 10.082 33.786 57.922 72.695 79.966

QC5 4.902 10.114 33.851 57.943 72.744 80.014

QC6 4.905 10.134 33.888 58.040 72.946 80.250

QC7 4.855 10.117 33.920 58.022 72.962 80.315

SD 0.027 0.045 0.058 0.085 0.128 0.202

Mean 4.881 10.088 33.844 57.938 72.774 80.031

CV% 0.55 0.45 0.17 0.15 0.18 0.25

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well below the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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8.5.1.2 Metabolite Profiling

Comparisons were made between the yolks of eggs laid by hens kept in cages of di↵erent

stocking densities, by studying the TICs of the extracts following HPLC-MS analysis.

Figure 8.5 shows overlaid TICs for the average chromatograms of organic extracts of yolk

from eggs laid by hens that were kept in cages with 2, 4, 6, and 8 birds per cage.
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Figure 8.5: Overlaid average TICs of organic extracts of yolks of eggs laid by hens that were
kept in cages of di↵erent stocking densities

The overlaid TICs in Figure 8.5 show very little di↵erence in the metabolite profiles

of the yolks of eggs laid by birds that were kept in cages of di↵erent stocking densities for

two weeks. Most di↵erence is seen after 65 minutes of analysis, when there is a greater

peak intensity for most peaks in the TIC of the yolks of eggs laid by birds that were kept

in a cage of 4 birds. However, the di↵erences in peak intensity are still quite subtle. This

suggests that the stocking density of laying birds does not have much of an impact on

the metabolite profiles of the yolks of eggs laid by the birds, at least not after only two

weeks of living in these conditions.
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8.5.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the yolks of eggs laid by hens which were kept in cages of four di↵erent stocking densities.
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Figure 8.6: PCA scores plot showing PC2 vs PC4 for yolk organic extracts of eggs laid by
birds that were kept in cages of four di↵erent stocking densities, including all
compounds with CV%<30%. PC2 explains 0.19% of the variance, and PC4
explains 0.10% of the variance.

The scores plot in Figure 8.6 shows some slight di↵erence between the yolks of eggs

laid by birds that were kept in cages with stocking densities of 2 and 4 birds per cage, but

no separation between these and the yolks of eggs laid by birds that were kept in cages

with 6 and 8 birds per cage, which are spread throughout the plot. This confirms what

was observed from the overlaid TICs in Figure 8.5, which showed very little di↵erence in

metabolite profile between the yolks of eggs laid by birds that were kept in cages with

the four di↵erent stocking densities, with some di↵erence in the TIC of the yolks of eggs

laid by birds that were kept in a cage of 4 birds per cage, which showed a higher peak

intensity towards the end of the chromatogram.
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The QC samples are more tightly grouped together than the other samples, confirming

that the di↵erences between samples are due to true biological di↵erences rather than

instrumental drift.

8.5.1.4 Univariate Statistics

Following ANOVA/Welch tests and post-hoc Tukey/Games-Howell tests on the top 62

compounds remaining, after the removal of any duplicates, adducts or isotopes from the

top 100 compounds based on PC1 loadings, 59 were found to be statistically significant.

These compounds, their CV%s, and p-values resulting from ANOVA/Welch tests, can

be seen in Table E.3 in Appendix E. Those in bold were also found to be statistically

significant following confirmation using the raw data.

Of the 40 compounds that were still found to be statistically significant when con-

firmed using the raw data, one was putatively identified through comparing mass spectra

provided by METLIN with mass spectra from the analysis. The compound m/z 565.4040

was putatively identified as canthaxanthin, which is a type of carotenoid known as a xan-

thophyll. The comparison between the mass spectrum provided by METLIN and that

resulting from the analysis in this study can be seen in Appendix E, Figure E.1. The

observed m/z for this compound was due to the [M+H]+ adduct.

Table 8.5 shows the putative identification of this compound, and the p-values resulting

from ANOVA and post-hoc Tukey tests. As the probability score for the predicted formula

is over 99, it indicates that there is a high probability that this formula corresponds to

this compound.

The post-hoc test p-values in Table 8.5 show that there is only a significant di↵erence

in the abundance of this compound between the yolks of eggs laid by birds that were kept

in a cage of 8 birds, and the yolks of eggs laid by birds that were kept in cages with lower

stocking densities. This suggests that the abundance of this compound is more similar

between the yolks of eggs laid by birds that were kept in cages with stocking densities of
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Table 8.5: Table showing the putative identification of compound m/z 565.4040 and the p-
values resulting from ANOVA and Tukey tests. n=6. Orange indicates significance
(p<0.05) and green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

565.4040 C40H52O2 99.55 Canthaxanthin 0.001

Post-hoc test p-values

2 birds/cage 4 birds/cage 6 birds/cage 8 birds/cage

2 birds/cage 0.779 0.861 0.005

4 birds/cage 0.334 0.001

6 birds/cage 0.026

8 birds/cage

2, 4, and 6 birds per cage, and that there is a greater di↵erence in compound abundance

in the yolks of eggs laid by birds that were kept in a cage of 8 birds. This is confirmed by

the bar chart in Figure 8.7, which shows that the abundance of this compound is similar

between the yolks of eggs laid by birds that were kept in cages with 2 and 4 birds per

cage. It also shows that the abundance of this compound in egg yolk decreases slightly

when the laying hens are kept in cages with 6 birds per cage, and then decreases further

when the laying hens are kept in cages with 8 birds per cage.

This bar chart shows a slight negative correlation between compound abundance and

stocking density of the laying hen; the compound abundance decreases with an increasing

stocking density. However, as there are only significant di↵erences between the yolks of

eggs laid by birds kept in cages of lower stocking densities and those laid by birds kept

in a cage of 8 birds, this compound is not useful as a marker of stocking density.

As this study took place only two weeks after the birds were moved into these cages,

repeating this study after a longer time frame may show more significant di↵erences. It

would be interesting to observe di↵erences in the abundance of this compound between the

yolks of eggs laid by birds kept in cages with larger population sizes and greater di↵erences

in stocking density, to see whether the observed trend is replicated or enhanced. This
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Figure 8.7: Bar chart showing the trend in abundance of compound m/z 565.4040 between
the yolks of eggs laid by hens kept in cages with di↵erent stocking densities of 2,
4, 6, and 8 birds per cage. n=6. Measured as mean values of peak area for each
cage population size, with error bars ±1 standard deviation.

could reveal the compound to be useful as a marker of stocking density, when cages with

more realistic, larger population sizes and greater di↵erences in stocking density between

them, are studied.

Some of the error bars on the bar chart are quite wide, showing the large standard

deviations of the compound abundances due to the natural biological variation between

di↵erent birds and therefore between their eggs. The standard deviation for eggs laid

by hens kept in a cage with just 2 birds is quite small, indicating that the amount of

variation in the abundance of this compound is lower in eggs laid by birds kept in the

cage with the lowest stocking density. This is probably because there are fewer birds for

the eggs to originate from, and therefore less variation between eggs resulting from the
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variation between laying birds.

Canthaxanthin is a carotenoid pigment that is commonly used as an additive in poul-

try feed, in order to produce a more intensely coloured egg yolk [6]. Carotenoids, and

therefore canthaxanthin, are not endogenous to poultry, therefore all canthaxanthin found

in the egg is due to canthaxanthin absorbed from the hen’s feed [7]. There is a direct

relationship between dietary levels of canthaxanthin and its deposition in egg yolk [8].

As the birds were all fed the same feed, the di↵erence in the abundance of this com-

pound, between the yolks of eggs laid by birds that were kept in cages of di↵erent stocking

densities, could be due to di↵erent rates or di↵erent amounts of absorption of this com-

pound from the feed, or di↵erent rates of metabolism of this compound once it has been

absorbed, which may be a↵ected by the stocking density of the birds. It could also be due

to birds kept in cages with higher stocking densities perhaps eating less food, possibly

due to more competition, or a higher stress level, therefore receiving less canthaxanthin

from the feed, resulting in a lower abundance of this exogenous compound in their eggs.

8.5.1.4.1 Top compounds: Multivariate Statistics

A second PCA was carried out using only the top 59 statistically significant com-

pounds, and scores plots were again produced to display the variation between the yolks

of eggs that were laid by birds which were kept in cages with di↵erent stocking densities.

This scores plot in Figure 8.8 shows some more separation between the yolks of eggs

laid by birds that were kept in cages of di↵erent stocking densities, than was observed in

the previous scores plot in Figure 8.6. Although there are no distinct groups on the plot,

the spread of the samples can be seen to be developing into some groupings based on the

stocking densities of the laying hens. The plot shows a complete separation between the

yolks of eggs laid by birds that were kept in cages of 2 and 6 birds per cage. The yolks

of eggs laid by birds that were kept in cages with 6 and 8 birds per cage show a wider

spread across the plot than the yolks of eggs laid by birds that were kept in cages with
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Figure 8.8: PCA scores plot showing PC3 vs PC4 for yolk organic extracts of eggs laid by
birds that were kept in cages of four di↵erent stocking densities, including the top
59 statistically significant compounds. PC3 explains 0.01% of the variance, and
PC4 explains 0.005% of the variance.

2 and 4 birds per cage. This suggests that there may be more variation in metabolite

profile between the yolks of eggs laid by birds kept in cages of higher stocking densities.

This is probably due to the fact that there is an increased likelihood that the eggs were

laid by di↵erent birds, therefore the eggs show the variation due to the natural biological

di↵erences between the birds themselves.

The variation described by PC3 and PC4 is just 0.01% and 0.005% respectively, show-

ing just how subtle the di↵erences in the metabolite profile of egg yolk are, between

di↵erent stocking densities of the laying hens. The QC samples are grouped more tightly

than the other samples, confirming that the analysis was robust and that there was little

instrumental drift a↵ecting the analysis.
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8.5.1.4.2 Comparison of top compounds in eggs collected after 2 weeks of

birds living in cages of di↵erent stocking densities, with control eggs collected

after 4 days, and eggs laid by birds from cages with di↵erent population size

Table E.4 in Appendix E shows the ANOVA/Welch test p-values of the top 40 com-

pounds that were found to be significantly di↵erent, following confirmation using the

raw data, between the yolks of eggs laid by birds that were kept in cages of di↵erent

stocking densities for two weeks. It also shows the p-values for the abundances of these

compounds when comparing the yolks of eggs laid by birds that were kept in cages of

di↵erent stocking densities after just four days of the birds living in these cages.

Of these 40 compounds, 21 were found to be significantly di↵erent between the yolks

of eggs laid by birds that were kept in cages of di↵erent stocking densities for just four

days. This suggests that either the abundances of these compounds were a↵ected very

soon after the birds were moved into these cages of di↵erent stocking densities, or that

these compounds were not statistically significant due to the di↵erent stocking densities

of the cages, and were a↵ected by some other variable that may have existed between the

birds in the di↵erent cages.

Very few of the top 40 compounds, and only one of the 19 compounds that were not

found to be statistically significant after just four days of the birds living in these cages,

were found to also show significant di↵erences in abundance between eggs laid by birds

in cages of di↵erent population size. This suggests that most of the observed di↵erences

in metabolite profile between the yolks of eggs laid by birds in cages of di↵erent stocking

densities were not due to di↵erences in population size, and that the statistical significance

of the remaining 18 compounds is likely to be due to di↵erences in the stocking density

of the cages, rather than population size or some other variable between the birds in the

di↵erent cages.

The compound that was putatively identified as canthaxanthin was not statistically
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significant after just four days of the birds living in cages with di↵erent stocking densities,

nor between eggs laid by birds from cages of di↵erent population sizes, and so it is likely

that the stocking density of the cage of the laying hen does a↵ect the abundance of this

compound in the egg yolk.

The bar chart in Figure 8.9 shows the di↵erences in the abundance of the compound

putatively identified as canthaxanthin, between the yolks of eggs laid by birds from cages

of di↵erent stocking densities, after just four days of them living in these cages.
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Figure 8.9: Bar chart showing the trend in abundance of compound m/z 565.4040 between
the yolks of eggs laid by hens kept in cages with di↵erent stocking densities of 2,
4, 6, and 8 birds per cage, after just four days of living in these cages. n=6.
Measured as mean values of peak area for each cage population size, with error
bars ±1 standard deviation.

Although the error bars in Figure 8.9 are quite wide, showing the variation in the

abundance of this compound within the yolks of eggs laid by birds from the same cage,
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there is a slight trend which is similar to the trend shown in the bar chart in Figure 8.7,

after two weeks of the birds living in these cages. This trend shows a negative correlation

between compound abundance in egg yolk and stocking density of the laying birds; as

the stocking density increases, the compound abundance decreases.

However, the average abundance of this compound in the yolks of eggs laid by birds

from a cage containing 8 birds, after four days of the hens living in these cages, is higher

than in the yolks of eggs laid by birds from a cage containing 2 birds, which breaks the

trend. It could be that after only four days of the birds living in these cages there was

no real trend between cage stocking density and compound abundance, as there had not

been enough time for stocking density to have an e↵ect on the birds and their eggs, and

it is coincidence that the trend appears to be similar. However, it could also be that

the stocking density was starting to have an e↵ect on the abundance of this compound

in the egg yolk, but not enough for there to be significant di↵erences in the abundance,

and not enough for the trend to follow through all of the stocking densities. Following a

further ten days of the birds living in these cages, the influence of the stocking density

on the abundance of this compound was strong enough to have a↵ected the yolks of eggs

laid by birds from cages of all di↵erent stocking densities, and therefore the negative

correlation between compound abundance and stocking density was observed, as well as

some significant di↵erence in compound abundance.

8.6 Summary & Conclusions

8.6.1 Summary

The overlaid TICs in Section 8.4 showed a very small di↵erence in the metabolite

profiles of the yolks of eggs laid by birds that were kept in cages with di↵erent population

sizes for nine weeks, and several compounds were found to show significant di↵erences

in abundance between these eggs. However, the scores plot did not show any di↵erence

Page 379



Chapter 8

in metabolite profile between the eggs laid by birds from cages of di↵erent population

size. Although the overlaid TICs showed a small di↵erence in metabolite profile, and

several compounds showed some statistical significance, it can be concluded that the

cage population size of the laying hen has very little e↵ect on the metabolite profile of

the egg yolk.

In Section 8.5, the overlaid TICs and PCA scores plots showed only a small amount

of di↵erence in the metabolite profiles of the yolks of eggs laid by birds that were kept in

cages with di↵erent stocking densities. However there was an observable di↵erence, even

after only two weeks of the birds living in these cages. Very few statistically significant

compounds were also found to show statistical significance due to cage population size,

which indicates that the observed di↵erences in metabolite profile between the yolks of

eggs laid by birds kept in cages of di↵erent stocking densities are not due to di↵erences

in population size between the cages.

One compound that was statistically significant when comparing the yolks of eggs laid

by birds that were kept in cages of di↵erent stocking densities was putatively identified

as canthaxanthin. This compound was not found to be statistically significant after just

four days of the birds living in these cages, or between eggs laid by birds living in cages

of di↵erent population size, indicating that the di↵erences in abundance are likely to be

due to di↵erences in the stocking density of the laying birds. There was a slight negative

correlation between the abundance of this compound in egg yolk and the stocking density

of the cage of the laying hen, however the only significant di↵erences in abundance were

between the yolks of eggs laid by birds that were kept in a cage with 8 birds, and those

laid by birds that were kept in cages with lower stocking densities. Therefore, although

there is a slight trend between compound abundance and stocking density, as there are

so few points of statistical significance between eggs laid by birds from cages of di↵erent

stocking densities, this compound is not suitable as a marker of stocking density when

such small cage population sizes and small di↵erences in stocking density are studied.
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8.6.2 Conclusions

This study has shown that the population size of the cage of the laying hen has very

little e↵ect on the metabolite profile of the yolk of eggs, and the e↵ects that it does have,

and the compounds that are a↵ected, are mostly di↵erent to those a↵ected by stocking

density. Although the stocking density of the cage of the laying hen also has only a

small e↵ect on the metabolite profile of the yolk, there are several compounds that have

significantly di↵erent abundances in the yolks of eggs laid by birds from cages of di↵erent

stocking densities. One of these compounds was putatively identified as canthaxanthin.

Further research, studying larger cage population sizes, and greater di↵erences in stock-

ing density between these cages, may show bigger di↵erences in the abundance of this

compound between the yolks of eggs laid by birds from cages with di↵erent stocking den-

sities. This would reveal this compound to be useful as a marker of stocking density, in

more realistic scenarios with greater cage population sizes of the laying birds.

Further studies, with larger samples sizes and eggs collected after a longer time frame,

could then be carried out in order to confirm the statistical significance of the compound

putatively identified as canthaxanthin, as well as the correlation between its abundance in

egg yolk and the cage stocking density of the laying hen. If these results were confirmed,

and shown to be repeatable with di↵erent ages and breeds of birds, and the identification

of this compound was confirmed, and quantification carried out, then the concentration

of canthaxanthin in egg yolk could be used to distinguish between eggs laid by birds from

cages of di↵erent stocking densities. This could be used to determine whether a cage egg

was laid by a bird in an enriched cage or an illegal battery cage, therefore helping to

detect cases of fraud regarding poultry egg production.
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9. Di↵erences in metabolite profile

between the yolk and albumen of

eggs laid by hens from di↵erent

housing systems

9.1 Introduction

According to European Union (EU) legislation, shell eggs fall into four di↵erent cate-

gories regarding the farming method used in their production [1]. There are eggs produced

from conventional farming methods: eggs from hens kept in enriched cages (cage eggs),

eggs from barn hens (barn eggs), and eggs from free range hens (free range eggs), as

well as eggs produced from organic farming systems (organic eggs) [1]. The minimum

requirements for the production of eggs by conventional farming methods are specified

in the Council Directive 1999/74/EC [2], and the requirements of organic production are

set out in Council Regulation (EC) No 834/2007 [3], including the use of organic, non-

genetically modified feed. The main di↵erences between the four housing systems can be

seen in Table 9.1.

All eggs must have the farming method clearly labelled on the packaging, which is

usually in the form of a code: 0 refers to organic eggs, 1 to free range eggs, 2 to barn eggs,
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Table 9.1: Table showing the main requirements for the four di↵erent housing systems

Cage Barn Free range Organic

600cm2 per
bird

9 birds/m2 9 birds/m2 6 birds/m2

no access to
open runs

no access to
open runs

access to
open runs

access to
open runs

and 3 to eggs from enriched cages [1]. According to the U.K. Egg Statistics released from

the Department for Environment, Food, and Rural A↵airs (DEFRA), the average U.K.

farm-gate egg price is approximately 30p greater for free range eggs than for cage eggs [4].

The farm-gate prices of barn and organic eggs are kept confidential. By comparing the

supermarket prices of eggs from di↵erent housing systems, it can be easily observed that

cage eggs are the cheapest, whilst organic eggs fetch the highest price. This creates the

temptation to mislabel eggs with false farming methods, in order to sell them at a higher

price and gain a greater profit. As there is no way for the consumer to confirm whether

the eggs that they purchase actually originate from the farming method of production

that is stated on the label, it would be easy for eggs to be mislabelled with regards to

their housing system, with a low likelihood of the fraud being uncovered. In 2018, an

individual from the U.K. was fined a total of 505,381 for selling barn eggs as free range

eggs in order to make a profit [5]. In the same year, another individual from the U.K.

was given a suspended jail sentence for selling eggs that they falsely claimed to be free

range [6].

There is currently no scientific testing of eggs, in order to determine whether they have

been correctly labelled with regard to their method of production. Cases of fraud are

only discovered through whistleblowing, or by inspectors noticing inconsistencies in the

paperwork. Implementing a random testing of eggs at any point during the production

process, from laying to selling, would deter farmers, or food business operators, from

falsely labelling the eggs, as the risk of being caught would increase. Clearly, there would

be a benefit to having a robust scientific method capable of predicting the housing system
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of the laying birds, from the eggs themselves, which could help to identify cases of fraud.

There has been much research into what e↵ect the housing system of the laying bird

has on the resulting eggs, including studying both physical and chemical characteristics

of the eggs. However, the results of studies investigating the e↵ects of housing system on

the physical characteristics of the egg are quite varied, and sometimes contradictory.

Some studies have found that the Haugh Unit (HU) of the egg (which is based on the

relationship between the weight of the intact egg, and the albumen height once the egg

has been broken [7]) is significantly di↵erent between eggs from di↵erent housing systems

[8][9][10]. However, these studies produced contrasting results regarding whether the HU

is higher or lower between eggs from certain housing systems. Another study found that

the HU of eggs varies with the breed of the laying hen, and reported that one breed of

bird did not show any statistical significance in HU between eggs from di↵erent housing

systems [11]. This suggests that the HU of eggs laid by birds of di↵erent breeds may be

a↵ected to di↵erent extents by the housing system of the birds. Another study did not

observe any significant di↵erence in HU between eggs from di↵erent housing systems [12],

which could be due to the breed of bird being used in the study.

The albumen height itself has also been compared between eggs from di↵erent housing

systems. One study found that the albumen height was significantly greater in cage eggs

than barn eggs [8], however other studies found no significant di↵erence in albumen height

between eggs from di↵erent housing systems [10][11][13]. The shape index (ratio between

width and length) of the eggs has also been compared between eggs from di↵erent housing

systems, with contrasting results reported. Some studies found the shape index to be

greater for free range eggs than for cage eggs [9][13], whereas another found it to be greater

for cage eggs than for free range and barn eggs [12]. Other studies observed no significant

di↵erence in shape index between eggs from di↵erent housing systems [8][10][11].

The colour of the yolk is another physical characteristic of the egg that has been

compared between eggs from di↵erent housing systems. The yolk has been found to be
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darker in free range eggs compared to cage and barn eggs, which may be due to the

potential for the free range birds to forage for other foodstu↵s, potentially consuming

food that is more rich in xanthophylls, which influence yolk colour [13]. Organic eggs

have been found to have a darker yolk than free range eggs, which again could be due to

di↵erences in diet [11]. One study reported no significant di↵erence in yolk colour between

cage and barn eggs [8], which is likely to be due to the fact that neither cage or barn

systems allow outdoor access, so there is little potential for foraging. However, another

study found that cage eggs had the darkest yolks, followed by free range, then barn, then

organic egg yolks, which contradicts these other results [10]. Yet another study found no

significant di↵erence in yolk colour observed between barn, free range and organic eggs

[12].

As well as the physical characteristics of eggs laid by hens from di↵erent housing sys-

tems, there have also been some mixed and contradictory results from studies comparing

the chemical characteristics of eggs. Cholesterol content has been found to be signifi-

cantly di↵erent between eggs from di↵erent housing systems. One study reported that

cholesterol content was higher in organic eggs than cage eggs [14], whilst another found

that it was higher in cage eggs than free range eggs [15]. Other studies have found that

the housing system of the laying bird has no significant e↵ect on the cholesterol content

of the egg [16][17][18]. The lipid content of eggs was found to be greater in free range

eggs than in cage eggs [16], however other studies reported no statistical significance in

lipid content between eggs from di↵erent housing systems [10][15].

The fatty acid profile of egg yolks has been able to successfully predict the production

method of eggs, between cage and organic farming systems [19]. However, other studies

have found only a slight significant di↵erence [10] or very little di↵erence [18][20] in the

fatty acid compositions of eggs from di↵erent housing systems.

The vitamin content of eggs has also been studied to see how it di↵ers in eggs from

di↵erent housing systems. Retinol (vitamin A), various tocopherols (vitamin E), and
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cholecalciferol (vitamin D3) have been found to be significantly di↵erent between the

yolks of eggs from cage and organic farming systems, with most vitamins showing a

higher abundance in cage eggs [14]. However, another study found that neither vitamin

A or vitamin E showed a significant di↵erence between eggs from di↵erent housing systems

[17].

Significant di↵erences in the presence of some carotenoids in egg yolk have been ob-

served when comparing eggs laid by birds from di↵erent housing systems [16][17]. A

method based on the carotenoid profiling of egg yolks has been shown to successfully

classify barn, free range, and organic eggs, due to di↵erent compositions of carotenoids

in the egg yolk [21].

The trace mineral content of eggs from di↵erent housing systems has been found to

be significantly di↵erent [22], and the nitrogen isotope composition of eggs has been

successfully used to discriminate free range eggs, from cage and barn eggs [23].

There has been much research into how the housing system of the laying hen a↵ects

the resulting eggs, and how the characteristics of an egg can be used to determine the

farming method of production. However, a metabonomic approach would allow a wide

range of compounds and compound classes to be studied, in order to gain as much

information about the di↵erences between these eggs as possible, creating the potential

for the development of a new method to discriminate between eggs from di↵erent housing

systems.
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9.2 Aims and Objectives

Having a robust scientific method capable of predicting the housing system of the laying

hen, from the egg itself, would clearly be of use in detecting cases of fraud regarding the

mislabelling of eggs with false farming methods.

This work aimed to use a metabonomic workflow to uncover the di↵erences in metabo-

lite profile between eggs from di↵erent housing systems. It initially explored the di↵erences

between the yolks of eggs from cage and barn housing systems, and attempted to identify

any compounds that showed potential as markers of these two housing systems . The

same process was then carried out for the albumen of eggs from cage and barn housing

systems. A similar workflow was then tentatively carried out to uncover potential di↵er-

ences in metabolite profile between eggs from cage, barn, free range, and organic housing

systems, for both egg yolk and albumen.

This research has been published in Food Control .

A. E. Johnson, K. L. Sidwick, V. R. Pirgozliev, A. Edge, and D. F. Thompson, The use of metabo-

nomics to uncover di↵erences between the small molecule profiles of eggs from cage and barn housing

systems , Food Control, vol. 100, pp. 165-170, 2019.

Page 388



Chapter 9

9.3 Experimental

Eggs were collected on the day of lay from Oaklands Farm Eggs Ltd. (Shrewsbury,

U.K.). It was not possible to collect eggs laid by birds of the same age and breed from

all four housing systems, therefore eggs from some housing systems were laid by birds of

di↵erent ages and breeds. The diets were kept the same for laying hens in the cage and

barn housing systems, but may have been di↵erent for the free range birds. The hens

kept in the organic housing system were fed a diet consisting of 95% organic feed, with

5% non-organic protein feed.

Table 9.2: Table showing the age and breed of birds from the four di↵erent housing systems

Cage Barn Free range Organic

Breed Novogen Novogen
Lohmann
Classic

Hy-line
brown

Age 50 weeks 50 weeks 73 weeks 71 weeks

Four sets of six eggs were collected from each of the four di↵erent housing systems.

All eggs underwent metabolite extraction on the day of lay, and the resulting extracts

were stored at -80 C until chemical analysis took place.

Initially, a metabonomic workflow was only applied to the comparison of the yolk and

albumen of eggs laid by birds kept in cage and barn housing systems, as these birds

were the only ones of the same age and breed, therefore only these eggs were directly

comparable. Organic metabolite extraction of the yolk and albumen of cage and barn

eggs, chemical analysis of the resulting extracts using HPLC-MS, quality control analysis,

and data pre-processing were carried out as described in Chapter 3. However, the data

analysis workflow was slightly di↵erent and was carried out as described in Figure 9.1.

The removal of any compounds with a CV% >30%, followed by PCA and the pro-

duction of scores plots, was as described in Chapter 3, Section 3.9. Following PCA, the

compounds were ranked from the highest to lowest based on either the loadings from the
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CV% calculated, 
compounds with 

CV% >30% removed

PCA, all compounds 
with CV% <30%

Compounds ranked 
highest to lowest based on 

PC loadings

Two-tailed t-test, 
significance level at 

p<0.05

F-test for equality of 
variances

Statistical significance of 
compounds confirmed

using raw data

Identification of statistically 
significant compounds

Top 100 compounds; 
duplicates, adducts & 

isotopes removed

Figure 9.1: Diagram showing the data analysis workflow that was implemented in the study
comparing barn and cage eggs

PC which showed the greatest separation between cage and barn eggs on the PCA scores

plots, or if this was not obvious, PC1. The top 100 of these compounds were taken and

any duplicates, adducts, and isotopes were removed. F-tests were carried out on the re-

maining compounds to test the equality of variances, and corresponding two tailed t-tests

were then carried out. Compounds that were found to be statistically significant when

comparing eggs laid by cage and barn hens then had their significance confirmed using

the raw data. Identification of the compounds that were still found to be statistically

significant then took place.

A second, tentative study was carried out, applying a metabonomic workflow to the

observation of di↵erences between both the yolk and albumen of eggs from all four housing

systems, in order to determine whether di↵erences in the metabolite profiles of the yolk

and albumen can be detected between cage, barn, free range and organic eggs. Birds from
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free range and organic production systems were of di↵erent breeds and ages to each other,

and to the birds from cage and barn housing systems, and birds from free range systems

may also have been fed a di↵erent diet. Therefore, any di↵erences that were observed

between eggs laid by these birds may not be due to the di↵erent housing systems, but

due to the uncontrolled variables.

Organic metabolite extraction of the yolk and albumen of eggs from all four hous-

ing systems, chemical analysis of the resulting extracts using HPLC-MS, quality control

analysis, and data pre-processing and analysis were carried out as described in Chapter

3.
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9.4 Cage and Barn eggs: Yolk Organic Extracts

Organic extracts of the yolks of eggs laid by hens from cage and barn housing systems

were compared in order to observe the di↵erences in metabolite profile between eggs from

these two housing systems.

9.4.1 Results and Discussion

9.4.1.1 Quality Control Analysis

Table 9.3 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the standard deviation (SD), the mean,

and the CV% of the peak areas for each of the peaks.

Table 9.3: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens from cage and barn housing systems

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC 1 2464400 134201096 58993546 42417371 418368179 92921477

QC 2 2396322 137373301 55329453 42728536 412572398 96043702

QC 3 2349150 138831953 56034065 44263881 411815527 116765777

QC 4 2655438 141451706 58988882 46407224 439647546 157504670

QC 5 3127109 136429229 56822472 42746257 440913920 149375041

QC 6 3075148 132939364 57515538 43553547 424756538 97694791

QC 7 2767749 129184017 50562190 42814004 433675022 90268187

SD 316217 4051986 2891594 1403435 12307641 28126336

Mean 2690759 135772952 56320878 43561546 425964161 114367664

CV% 11.75 2.98 5.13 3.22 2.89 24.59
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that there was little instrumental drift occurring throughout the analysis. The CV% for

the peak area of Peak F is quite high, indicating some instrumental drift, but as it is still

within the 30% cut-o↵, the analysis can still be considered robust.

Table 9.4 shows the retention times (RTs) for the six peaks of interest in the seven

QC samples that were analysed throughout the run, as well as the SD, the mean, and

the CV% of the RTs for each of the peaks.

Table 9.4: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of yolk from eggs laid by
hens from cage and barn housing systems

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC 1 4.545 9.292 32.555 56.708 72.984 80.454

QC 2 4.540 9.288 32.560 56.695 73.179 80.731

QC 3 4.566 9.247 32.486 56.619 72.574 79.712

QC 4 4.665 9.413 32.768 56.920 73.021 80.375

QC 5 4.547 9.712 32.663 56.682 72.883 80.419

QC 6 4.583 9.248 32.503 56.668 73.056 80.658

QC 7 4.596 9.310 32.616 56.784 73.168 80.820

SD 0.044 0.165 0.098 0.099 0.207 0.367

Mean 4.577 9.359 32.593 56.725 72.981 80.453

CV% 0.96 1.77 0.30 0.17 0.28 0.46

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all within the 2% cut o↵, indicating that the analysis was robust and there

was minimal retention time drift throughout the analysis. The CV% for the retention

time of Peak B is quite high, but as it is still under 2%, the retention time drift is still

within acceptable limits.
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9.4.1.2 Metabolite Profiling

Comparisons were made between the yolks of eggs laid by hens from cage and barn

housing systems, by studying the Total Ion Chromatograms (TICs) of the extracts follow-

ing HPLC-MS analysis. Figure 9.2 shows overlaid TICs for the average chromatograms

of organic extracts of yolk from eggs laid by hens from these two housing systems.
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Figure 9.2: Overlaid average TICs of organic extracts of yolks of eggs laid by hens from cage
and barn housing systems

The overlaid TICs in Figure 9.2 show some slight di↵erences in the metabolite profiles

of the yolks of eggs laid by birds from cage and barn housing systems. Up until approxi-

mately 35 minutes of analysis, there is a lower peak intensity for all peaks in the TIC of

the yolks of cage eggs, compared to the TIC of the yolks of barn eggs, suggesting that cage

egg yolks have a lower abundance of the less non-polar compounds than the yolks of barn

eggs. Throughout the rest of the chromatogram, most peaks still have a higher intensity

in the TIC of barn egg yolk, however some peaks do show a higher intensity in the TIC

of cage egg yolk. This suggests that there may be less of a trend in the abundances of
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the more non-polar compounds, between the yolks of cage and barn eggs. These slight

di↵erences in the TICs of cage and barn egg yolks suggest that there are di↵erences in

the metabolite profiles of the yolks of eggs from cage and barn housing systems.

9.4.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the yolks of eggs laid by hens from cage and barn housing systems.
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Figure 9.3: PCA scores plot showing PC2 vs PC3 for yolk organic extracts of cage and barn
eggs, including all compounds with CV%<30%. PC2 explains 1.08% of the
variance, and PC3 explains 0.76% of the variance.

The scores plot in Figure 9.3 shows complete separation between eggs laid by birds

from cage and barn housing systems. This confirms what was deduced from the overlaid

TICs in Figure 9.2; that there is a di↵erence in metabolite profile between the yolks of

cage and barn eggs. This could be due to the fact that the birds kept in cages have

more limited space to move around compared to birds in barns, which would a↵ect the
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metabolite profiles of the birds, and of their eggs. PC2 only describes 1.08% of the total

variance between samples, and PC3, which shows the most separation between the cage

and barn eggs, only describes 0.76% of the variance. This shows just how subtle the

di↵erences in metabolite profile are between the yolks of eggs laid by birds from cage and

barn housing systems. The QC samples form a small, tight group on the plot, confirming

that there was little instrumental drift a↵ecting the analysis.

9.4.1.4 Univariate Statistics

Following t-tests on the top 59 compounds remaining, after the removal of any du-

plicates, adducts or isotopes from the top 100 compounds based on PC3 loadings, 29

were found to be statistically significant. These compounds, their CV%s, and p-values

resulting from t-tests, can be seen in Table F.1 in Appendix F. Those in bold were also

found to be statistically significant following confirmation using the raw data.

All 29 compounds in Table F.1 were present in a significantly higher abundance in the

yolks of barn eggs compared to cage eggs, which supports what was observed in Figure

9.2, with most peaks showing a higher intensity in the TIC of barn egg yolk.

Of the 23 compounds that were still found to be statistically significant when confirmed

using the raw data, 12 produced potential metabolite matches through METLIN, as

seen in Table F.2 in Appendix F. The probability scores for the predicted molecular

formulae for these compounds are above 95, indicating that there is a strong likelihood

that the predicted formulae correspond to the compounds of interest. All 12 of these

compounds were matched with various lipids: three potential diglycerides, four potential

triglycerides, and five potential phospholipids. As all of these compounds were present

in a higher abundance in barn eggs compared to cage eggs, this indicates that there is a

higher lipid content in eggs from barn production systems compared to eggs from cage

systems. These results are similar to those discovered by Pignoli et al., who found that

there was a higher lipid content in free range eggs compared to cage eggs [16]. This could
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be due to the fact that birds kept in cages experience a higher level of stress compared to

birds in other housing systems, which leads to a greater lipid catabolism and, therefore,

to a lower lipid content of egg yolk [16].

Of these 12 compounds in Table F.2, just one was putatively identified through com-

paring mass spectra provided by METLIN with the mass spectrum from the analy-

sis. The compound m/z 734.5699 was putatively identified as 1,2-dipalmitoyl-glycero-

3-phosphatidylcholine (PC(16:0/16:0)), a phosphatidylcholine with a palmitic acid group

attached to the first two carbons of the glycerol backbone. The mass spectra comparison

can be seen in Appendix F, Figure F.1. The observed m/z for this compound was due to

the [M+H]+ adduct. Figure 9.4 shows the di↵erence in abundance of this compound in

the yolks of cage and barn eggs, and Table 9.5 shows the putative identification of this

compound and the t-test p-value.
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Figure 9.4: Bar chart showing the di↵erence in abundance of compound m/z 734.5699
between the yolks of cage and barn eggs. n=6. Measured as mean values of peak
area for each housing system, with error bars ±1 standard deviation.

Page 397



Chapter 9

Table 9.5: Table showing the putative ID of compound m/z 734.5699 and the t-test p-value

Marker Predicted Probability Putative t-test
m/z Formula Score Identification p-value

734.5699 C40H80NO8P 99.36 PC(16:0/16:0) 0.004

The t-test p-value in Table 9.5, and the bar chart in Figure 9.4, show that the abun-

dance of this compound is significantly greater in the yolks of eggs laid by birds from

barn housing systems, compared to the yolks of eggs laid by birds from cage systems.

Therefore, this compound has potential as a marker capable of discriminating between

cage and barn eggs.

As all of the 12 statistically significant compounds that produced potential matches

through METLIN were matched with various lipids and phospholipids, and they were all

of a significantly higher abundance in barn eggs compared to cage eggs, a lipid profile

could also be used as a method of distinguishing between eggs from cage and barn housing

systems. This would make the distinction between cage and barn eggs even stronger and

more absolute than using just one compound, e.g. PC(16:0/16:0), as a marker, as several

compounds would be involved in the discrimination between the two housing systems.
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9.5 Cage and Barn eggs: Albumen Organic Extracts

Organic extracts of the albumen of eggs laid by hens from cage and barn housing

systems were compared in order to observe the di↵erences in metabolite profile between

eggs from these two housing systems.

9.5.1 Results and Discussion

9.5.1.1 Quality Control Analysis

Table 9.6 shows the peak areas for the six peaks of interest in the seven QC samples

that were analysed throughout the run, as well as the SD, the mean, and the CV% of the

peak areas for each of the peaks.

Table 9.6: Table showing peak areas, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of albumen from eggs
laid by hens from cage and barn housing systems

Peak Area

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC 1 14606949 48867111 95513889 1214770 1021874 11325776

QC 2 16530783 54242083 104034266 1395287 1068341 10353206

QC 3 15861207 52949716 102609987 1496926 970506 10142054

QC 4 11970273 40929579 87748859 1445819 824491 8090161

QC 5 11652672 41847098 86346936 1410197 659606 7736775

QC 6 11294999 41265024 83630770 1426971 710891 7422017

QC 7 11826816 43174120 88113021 1522392 829388 7631578

SD 2210536 5738467 8191882 99862 155887 1597817

Mean 13391957 46182104 92571104 1416052 869300 8957367

CV% 16.51 12.43 8.85 7.05 17.93 17.84
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The table shows that the CV%s for the peak areas of all six peaks across the seven

QC samples are all below the 30% cut o↵, indicating that the analysis was robust and

that any instrumental drift occurring throughout the analysis was minimal.

Table 9.7 shows the RTs for the six peaks of interest in the seven QC samples that

were analysed throughout the run, as well as the SD, the mean, and the CV% of the RTs

for each of the peaks.

Table 9.7: Table showing RTs, SDs, means, and CV%s for six peaks in seven QC samples
analysed throughout the analytical run for organic extracts of albumen from eggs
laid by hens from cage and barn housing systems

Retention Time (minutes)

Sample Peak A Peak B Peak C Peak D Peak E Peak F

QC 1 7.606 11.677 14.601 16.343 18.848 22.381

QC 2 7.611 11.668 14.616 16.337 18.825 22.342

QC 3 7.611 11.667 14.622 16.354 18.843 22.359

QC 4 7.631 11.707 14.669 16.390 18.928 22.429

QC 5 7.671 11.754 14.705 16.430 18.919 22.436

QC 6 7.639 11.703 14.656 16.381 18.886 22.420

QC 7 7.697 11.794 14.745 16.473 18.978 22.511

SD 0.034 0.048 0.052 0.050 0.055 0.057

Mean 7.638 11.710 14.659 16.387 18.890 22.411

CV% 0.45 0.41 0.35 0.30 0.29 0.25

The table shows that the CV%s for the RTs of all six peaks throughout the seven QC

samples are all well within the 2% cut o↵, indicating that the analysis was robust and

there was minimal retention time drift throughout the analysis.
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9.5.1.2 Metabolite Profiling

Comparisons were made between the albumen of eggs laid by hens from cage and barn

housing systems, by studying the TICs of the extracts following HPLC-MS analysis.

Figure 9.5 shows overlaid TICs for the average chromatograms of organic extracts of

albumen from eggs laid by hens from these two housing systems.
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Figure 9.5: Overlaid average TICs of organic extracts of albumen of eggs laid by hens from
cage and barn housing systems

The overlaid TICs in Figure 9.5 show only a very slight di↵erence in the metabolite

profiles of the albumen of eggs laid by birds from cage and barn housing systems. Up

until 14 minutes of analysis, there is a very slightly higher peak intensity for all peaks in

the TIC of the albumen of cage eggs, compared to the TIC of the albumen of barn eggs;

however, the peak just before 15 minutes shows a higher intensity in the TIC of barn egg

albumen compared to the TIC of cage egg albumen. After this point in the analysis there

is no real di↵erence in the peak intensity of the TICs of the albumen of eggs from the two

di↵erent housing systems. This suggests that there is minimal di↵erence in metabolite

profile between the albumen of cage and barn eggs.
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9.5.1.3 Multivariate Statistics

Following PCA, scores plots were produced in order to display the variation between

the albumen of eggs laid by hens from cage and barn housing systems.
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Figure 9.6: PCA scores plot showing PC3 vs PC4 for albumen organic extracts of cage and
barn eggs, including all compounds with CV%<30%. PC3 explains 0.14% of the
variance, and PC4 explains 0.04% of the variance.

The scores plot in Figure 9.6 shows no separation at all between eggs laid by birds

from cage and barn housing systems. This confirms what was deduced from the overlaid

TICs in Figure 9.5; that there is very little di↵erence in metabolite profile between the

albumen of eggs laid by birds from these two housing systems.

The QC samples are quite spread out, rather than forming a tight group on the plot.

This, again, shows how little di↵erence there is between the metabolite profiles of the

albumen of eggs laid by birds from cage and barn housing systems; as there is such a small

di↵erence between the samples, the PCA is exploiting very small di↵erences between the

QC samples, resulting in the wider spread of QC samples that is observed on the plot.
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Although the QC samples appear to be widely spread due to the lack of di↵erence in

metabolite profile between the albumen of eggs from cage and barn housing systems, the

analysis was robust and there was minimal instrumental drift occurring throughout the

analysis, as shown in the QC analysis in Section 9.5.1.1.

9.5.1.4 Univariate Statistics

Following t-tests on the top 37 compounds remaining, after the removal of any dupli-

cates, adducts or isotopes from the top 100 compounds based on PC1 loadings, only six

were found to be statistically significant. This confirms that there is very little di↵erence

in the metabolite profile of the albumen between cage and barn eggs. These six com-

pounds, their CV%s, and t-test p-values, can be seen in Table F.3 in Appendix F. Those

in bold were also found to be significant following confirmation using the raw data.

All six compounds in Table F.3 were again present in a significantly higher abundance

in the albumen of barn eggs compared to cage eggs, similarly to what was observed

when comparing the metabolite profiles of the yolks of eggs from cage and barn housing

systems.

Of the two compounds that were still found to be statistically significant when con-

firmed using the raw data, only one of these produced potential metabolite matches

through METLIN. Compoundm/z 316.3209 was predicted the molecular formula C19H38O2

with a likelihood score of 99.55, indicating a high probability that this predicted formula

is correct for this compound. Several potential matches of fatty acids, and fatty acid

esters, were found for this formula through METLIN; however, this compound was not

successfully putatively identified as any of these fatty acids or fatty acid esters.
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9.6 Cage, Barn, Free Range and Organic Eggs

A metabonomic workflow was also carried out to tentatively compare the yolk and

albumen of eggs from four di↵erent housing systems: cage, barn, free range, and organic.

9.6.1 Yolk Organic Extracts

The overlaid TICs and PCA scores plot show some di↵erence between eggs laid by

birds from di↵erent housing systems, as seen in Figures 9.7 and 9.8. This suggests that

there is some di↵erence in yolk metabolite profile between these sets of eggs laid by the

di↵erent groups of birds. However, as the age and breed, and potentially diet, of the birds

was not the same between birds kept in all four housing systems, the observed di↵erences

could be due to these variables rather than housing system.
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Figure 9.7: Overlaid average TICs of organic extracts of yolks of eggs laid by hens from four
di↵erent housing systems
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Figure 9.8: PCA scores plot showing PC3 vs PC4 for yolk organic extracts of eggs laid by
birds from four di↵erent housing systems, including all compounds with
CV%<30%. PC3 explains 0.76% of the variance, and PC4 explains 0.27% of the
variance.

The greatest di↵erence, shown in both Figure 9.7 and Figure 9.8, is between eggs laid

by birds from cage and barn housing systems, which confirms what was observed previ-

ously; that cage and barn eggs can be distinguished from each other by the metabolite

profile of the yolk.

Of the 48 compounds that were found to be statistically significant, following the re-

moval of any duplicates, adducts, and isotopes from the top 100, 41 had their significance

confirmed from the raw data analysis. Three of these compounds were putatively identi-

fied. Compounds m/z 716.5227, 725.5556, and 734.5699, were putatively identified as 1-

palmitoyl-2-linoleoyl-glycero-3-phosphatidylethanolamine (PE(16:0/18:2)), 1-palmitoyl-

sphingomyelin (SM(18:1/16:0)), and 1,2-dipalmitoyl-glycero-3-phosphatidylcholine (PC

(16:0/16:0)). The observed m/z values for compounds m/z 716.5227 and 734.5699 were

due to the [M+H]+ adduct, and the observed m/z value for the compound m/z 725.5556
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was due to the [M+Na]+ adduct. The comparisons between mass spectra from METLIN,

and those resulting from the chemical analysis, can be seen in Appendix F, Figures F.2

and F.3 for compounds m/z 716.5227 and 725.5556, and Figure F.1 for the compound

m/z 734.5699, which was previously putatively identified and found to be significantly

di↵erent in abundance between the yolks of cage and barn eggs.

This compound was again found to have a significantly di↵erent abundance between

cage and barn egg yolks, as seen in Table 9.8.

Table 9.8: Table showing the putative ID of compound m/z 734.5699 and ANOVA and Tukey
test p-values. n=6. Orange indicates significance (p<0.05).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

734.5699 C40H80NO8P 99.36 PC(16:0/16:0) 0.001

Post-hoc test p-values

Cage Barn Free range Organic

Cage 0.010 0.100 0.022

Barn 0.011 0.985

Free range 0.024

Organic

This compound was also found to have statistical significance when comparing the

yolks of eggs from the other housing systems. However, it was previously found to be

statistically significant in the research in Chapter 5, when the e↵ect of laying hen age

on the metabolite profile of the egg yolk was studied. Therefore, the observed statistical

significance could be due to the di↵erences in the age of the laying birds, or possibly the

breed, and potentially the diet of the laying birds, rather than the housing system. This

compound could be used as a marker to discriminate between cage and barn eggs, but

further work would need to be carried out, with more controlled variables, to determine

whether it is useful as a marker between eggs from all four housing systems.

Compound m/z 716.5227, which was putatively identified as PE(16:0/18:2), a phos-

phatidylethanolamine with a palmitic acid group on the first carbon and a linoleic acid
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Table 9.9: Table showing the putative ID of compound m/z 716.5227 and the p-values resulting
from ANOVA and Tukey tests. n=6. Orange indicates significance (p<0.05).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

ANOVA
p-value

716.5227 C39H74NO8P 98.5 PE(16:0/18:2) 0.009

Post-hoc test p-values

Cage Barn Free range Organic

Cage 0.031 0.056 0.991

Barn 0.991 0.057

Free range 0.100

Organic

group on the second carbon of the glycerol backbone, was also found to be significantly

di↵erent in abundance between cage and barn eggs, as seen in Table 9.9. This compound

was not found to be statistically significant when comparing the yolks of eggs laid by

birds from the other housing systems, therefore the variables of hen age, breed, and diet

are not of a concern. This compound could be useful as a marker of housing system,

between cage and barn eggs.

Table 9.10: Table showing the putative ID of compound m/z 725.5556 and the Welch test and
Games-Howell test p-values. n=6. Orange indicates significance (p<0.05) and
green indicates high significance (p<0.01).

Marker
m/z

Predicted
Formula

Probability
Score

Putative
Identification

Welch
p-value

725.5556 C39H79N2O6P 97.19 SM(18:1/16:0) 0.001

Post-hoc test p-values

Cage Barn Free range Organic

Cage 0.219 0.016 0.001

Barn 0.921 0.180

Free range 0.040

Organic

The compound m/z 725.5556, which was putatively identified as SM(18:1/16:0), a sph-

ingomyelin with palmitic acid forming an ester bond to the amino group of the molecule,
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was only found to show statistical significance when comparing the yolks of eggs laid by

birds from cage, free range and organic systems, as seen in Table 9.10. However, this

compound was previously found to be statistically significant in the research in Chapter

5, when the e↵ect of laying hen age on the metabolite profile of the egg yolk was studied.

As the age, breed, and potentially diet of the birds in these housing systems were all

di↵erent, these observed di↵erences in compound abundance could be due to the di↵er-

ence in age of the laying birds, or the breed or possibly diet, rather than housing system.

Further studies, with more controlled variables, would be required in order to determine

whether this compound is statistically significant due to the di↵erent housing systems,

and therefore whether it is suitable as a marker of egg housing system.

9.6.2 Albumen Organic Extracts

The overlaid TICs in Figure 9.9 show only a very small di↵erence in metabolite profile

between the albumen of eggs from the four di↵erent housing systems.
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Figure 9.9: Overlaid average TICs of organic extracts of albumen of eggs laid by hens from
four di↵erent housing systems
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The PCA scores plot in Figure 9.10 shows even less di↵erence between the albumen

of eggs from the four di↵erent housing systems than the overlaid TICs in Figure 9.9, as

there is no separation at all between the eggs from the di↵erent housing systems. This

suggests that the housing system of the laying hen may not have much e↵ect on the

resulting metabolite profile of the albumen.
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Figure 9.10: PCA scores plot showing PC3 vs PC4 for albumen organic extracts of eggs laid
by birds from four di↵erent housing systems, including all compounds with
CV%<30%. PC3 explains 0.15% of the variance, and PC4 explains 0.06% of
the variance.

Although 26 of the 40 statistically significant compounds that remained, following the

removal of any duplicates, adducts, or isotopes from the top 100, had their significance

confirmed through the raw data analysis, none were successfully putatively identified.

The di↵erences in abundance of these statistically significant compounds may have

been influenced by the di↵erences in breed, age, and potentially diet between the laying

birds from the di↵erent housing systems, rather than the housing systems themselves,

and therefore they may not be suitable as markers of egg production system. Further
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work, including studies with more controlled variables, would be required in order to de-

termine whether the statistical significance of these compounds is due to housing system,

rather than the other variables, and therefore whether these compounds have potential

as markers of egg housing system if they were to be identified.

9.7 Summary & Conclusions

9.7.1 Summary

The overlaid TICs and the PCA scores plot for the comparison of the yolks of eggs

laid by birds from cage and barn housing systems showed that there was a di↵erence in

metabolite profile between the yolks of cage and barn eggs. All of the top 29 statistically

significant compounds were found to be of a higher abundance in the yolk of barn eggs

compared to cage eggs, and 12 of these produced potential metabolite matches to a variety

of di↵erent lipids, including diglycerides, triglycerides, and phospholipids. One of these

compounds was putatively identified as PC(16:0/16:0) and was determined to be suitable

for discriminating between eggs from cage and barn housing systems.

The overlaid TICs and PCA scores plot for the comparison of the albumen of eggs laid

by birds from cage and barn housing systems showed that there was very little di↵erence

in metabolite profile between the albumen of cage and barn eggs. Much fewer compounds

in the albumen were found to be statistically significant compared to in the yolk, and none

were successfully putatively identified, although the compound m/z 316.3209 produced

potential matches with fatty acids and fatty acid esters.

When comparing the yolks of eggs laid by birds from all four housing systems, the

overlaid TICs and PCA scores plot did show some di↵erence in metabolite profile between

the yolks of eggs laid by these birds. However, as the breed, age, and potentially diet of

the birds kept in these systems were di↵erent, the observed di↵erences in metabolite pro-

file may have been due to these variables, rather than the di↵erences in housing system.
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Two putatively identified compounds, PC(16:0/16:0) and PE(16:0/18:2), were found to

be significantly di↵erent in abundance between cage and barn egg yolk, making them po-

tentially useful as markers to discriminate between eggs from these two housing systems.

The compound PC(16:0/16:0) was previously discovered to be statistically significant

when comparing just cage and barn egg yolk, therefore this confirmation of its significant

di↵erence increases its potential as a marker between cage and barn housing systems, as

it is reproducibly statistically significant. This compound also showed statistical signifi-

cance between eggs from free range and organic housing systems, as well as cage and barn

systems, as did the compound that was putatively identified as SM(18:1/16:0). However,

both of these compounds were previously found to be statistically significant between the

yolks of eggs laid by birds of di↵erent ages. As the birds from the di↵erent housing sys-

tems, other than cage and barn systems, di↵ered in age as well as breed, and potentially

diet, the observed significant di↵erences in compound abundance between eggs from these

housing systems may be due to these factors, particularly the di↵erence in laying hen age,

rather than the di↵erences in housing system. Therefore, these compounds may not be

suitable as markers of egg production system for all four housing systems.

When comparing the albumen of eggs laid by birds from all four housing systems, the

overlaid TICs and PCA scores plot again showed very little di↵erence between the eggs

laid by birds from the di↵erent systems. No statistically significant compounds found in

the albumen were putatively identified.

9.7.2 Conclusions

This research has shown that there is a significant di↵erence in metabolite profile be-

tween the yolk of cage and barn eggs. All compounds which were found to be statistically

significant were significantly higher in the yolk of barn eggs compared to cage eggs, and

12 of these compounds were found to have potential matches to various lipids. Therefore,

a lipid profile consisting of various lipids could be used as a method of discriminating
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between cage and barn eggs. One of these 12 compounds was putatively identified as

PC(16:0/16:0), and its statistical significance between cage and barn eggs was confirmed

when eggs from all four housing systems were compared. Therefore, this compound shows

potential as a marker to discriminate between cage and barn eggs.

The housing system of the laying hen appears to have very little e↵ect on the resulting

metabolite profile of egg albumen. Therefore, analysis of the albumen may not be as

successful as the yolk, in discriminating between eggs from di↵erent housing systems.

Any compounds that were found to be statistically significant when comparing the eggs

laid by birds from all four housing systems may have been a↵ected by the di↵erence in

breed, age, or potentially diet between the birds in the di↵erent systems, rather than the

housing systems themselves. Therefore further studies, with more controlled variables,

would have to be carried out to confirm whether the statistical significance of these

compounds is due to the di↵erence in housing system of the laying bird, and therefore

whether these compounds are suitable as markers of egg housing system.

Further work would involve the development of a yolk lipid profile capable of discrimi-

nating between cage and barn eggs. Following further studies comparing the yolks of free

range and organic eggs, as well as cage and barn eggs, with more controlled variables, this

profile could then be developed into a lipid profile capable of discriminating between eggs

from all four housing systems. Further work would also involve comparing the abundance

of the compound that was putatively identified as PC(16:0/16:0) between the yolks of

eggs from all four housing systems, with birds of the same age, breed, and diet, to de-

termine whether it is statistically significant, and therefore whether it has potential as a

marker of egg housing system for all four systems. The identification of this compound

would then need to be confirmed through the use of a chemical standard. Studies com-

paring the developed yolk lipid profile and the abundance of PC(16:0/16:0) between eggs

from di↵erent housing systems would then be repeated for di↵erent ages and breeds of

birds, to ensure that the results are replicable.
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I. Vacaru-Opriş, “Chemical features, cholesterol and energy content of table hen

eggs from conventional and alternative farming systems,” South African Journal of

Animal Science, vol. 44, pp. 33–42, 2014.

[16] G. Pignoli, M. T. Rodriguez-Estrada, M. Mandrioli, L. Barbanti, L. Rizzi, and G.

Lercker, “E↵ects of rearing and feeding systems on lipid oxidation and antioxidant

capacity of freeze-dried egg yolks,” Journal of Agricultural and Food Chemistry,

vol. 57, pp. 11 517–11 527, 2009.

Page 414



Chapter 9

[17] G. B. Anderson, W. Bolton, R. M. Jones, and M. H. Draper, “E↵ect of age of the

laying hen on the composition of the egg,” British Food Journal, vol. 19, pp. 741–

745, 1978.
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10. Conclusions and Future work

10.1 Conclusions

This research has resulted in the development of a non-targeted metabonomic workflow

that is capable of discovering di↵erences in the metabolite profiles of the yolk and albumen

of eggs belonging to di↵erent experimental groups. It has shown how this workflow can be

successfully applied to studies investigating the development of methods for the potential

detection of fraud in the production and marketing of poultry eggs.

The first three studies that were carried out during this research were preliminary

studies, the results of which influenced the experimental design and interpretation of the

results of the remaining three studies. The work described in Chapter 4 investigated which

condition and storage temperature were the best at maintaining metabolite stability of

yolk and albumen organic metabolite extracts during storage. It was concluded that

for yolk organic extracts, over both 6 and 12 weeks of storage, and for albumen organic

extracts over a longer storage period, that storing the extracts dried at -80 C provides

the best metabolite stability. Therefore, throughout this research the organic metabolite

extracts were stored dried at -80 C prior to chemical analysis.

The work described in Chapters 5 and 6 investigated whether the age and diet of the

laying bird respectively, a↵ect the metabolite profiles of the yolk and albumen of the

egg. These studies concluded that both the age and the diet of the laying bird have

an e↵ect on the metabolite profiles of the egg yolk and albumen, with hen age having
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a greater e↵ect on the metabolite profile of the albumen than on that of the yolk. The

e↵ects of both hen age and diet on the metabolite profiles of both the yolk and albumen

were found to only be very subtle. However, as metabonomic studies are often used to

detect subtle di↵erences in metabolite profile between experimental groups, these very

slight di↵erences due to hen age and diet may have a relatively large impact on the

metabolite profile compared to the e↵ect of the variable that is under investigation, and

thus a large influence on the results of the study. Therefore it was determined that,

throughout this research, the age and diet of the birds should be kept the same between

di↵erent experimental groups in the same study. Any compounds that were found to be

statistically significant between eggs laid by birds of di↵erent ages should be treated with

caution when found to be significant in studies when birds are not of the same age.

The research in Chapter 5 also investigated, from a fraud detection perspective,

whether a metabonomic approach was capable of identifying potential markers of lay-

ing hen age in the yolk and albumen of eggs. However the top, putatively identified,

statistically significant compounds in egg yolk showed no significant correlation between

their abundance in yolk and the age of the laying hen, over the total age range that

was studied, and thus were determined to not be useful as markers of hen age. One

statistically significant compound found in the albumen, which was putatively identified

as oleoyl ethyl amide, showed some potential as a marker as its abundance was positively

correlated with hen age.

The work in Chapter 6 was a useful preliminary study investigating whether a di↵er-

ence in the diet of the laying hen can be observed from the metabolite profiles of the egg

yolk and albumen, and if so, how quickly the metabolite profile of the yolk is a↵ected by

a change in diet of the laying hen. This research revealed that two weeks after a change

in diet of laying hens, a di↵erence can be seen in the metabolite profiles of the yolks,

and five weeks after a diet change a di↵erence can be seen in the metabolite profiles of

the albumen. However, it also showed that di↵erent diets take di↵erent lengths of time
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to have an e↵ect on the metabolite profile of the yolk, and may take di↵erent lengths of

time to a↵ect the yolk compared to the albumen.

The latter three studies that were carried out as part of this research were all related

to the application of metabonomic workflows to the development of methods for the

detection of fraud during egg production and marketing.

The work in Chapter 7 showed how a metabonomic approach uncovered di↵erences in

the metabolite profiles of the yolks of shell eggs of di↵erent ages, when stored at both 23

C and 5 C for up to five weeks, as well as between samples of liquid yolk that had been

refrigerated at 5 C for di↵erent lengths of time, up to 96 hours. One of the compounds

that was found to be statistically significant when comparing the yolks of eggs of di↵erent

ages following storage at 23 C, was identified as choline. Choline abundance was found

to be positively correlated with egg age when eggs were stored at 23 C, and increased

with an increasing egg age up to twelve weeks, making it potentially useful as a marker

of egg age. However, choline abundance was not found to be correlated with egg age

when eggs were stored at 5 C for up to either five weeks or twelve weeks, and when

the abundance of choline in egg yolk was compared between eggs that were stored at 23

C and those that were stored at 5 C for five weeks, the abundance of choline in the

yolks of the refrigerated eggs was significantly lower. Therefore, it was determined that

refrigerating eggs can prevent the increase of choline abundance over time, and therefore

prevent use of choline as a marker of egg age. Although several other compounds were

found to be statistically significant when comparing eggs that were stored at 5 C for

di↵erent lengths of time, none of these were determined to be suitable as markers of

egg age. Two statistically significant compounds that were putatively identified as oleoyl

ethyl amide and erucamide, were found to have potential as markers of liquid yolk storage

time when stored at 5 C, particularly as markers capable of discriminating between 48

and 72 hours of storage, and therefore capable of detecting fraud, as they both showed

a positive correlation with storage time. These two compounds, as well as that which
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was putatively identified as 1-monopalmitin, were also determined to have potential as

markers capable of discriminating between fresh yolk and yolk that has been refrigerated

for 24 hours.

The research that was described in Chapter 8 showed that the population size of laying

hen cages does not have a great e↵ect on the metabolite profile of egg yolk, and the e↵ects

that it does have, and the compounds that are a↵ected, are mostly di↵erent to those

a↵ected by the stocking density. Some di↵erences in metabolite profile were observed

between the yolks of eggs laid by birds from cages of di↵erent stocking densities. One

compound that was found to show statistical significance when comparing the yolks of

eggs laid by birds from cages of di↵erent stocking densities was putatively identified as

canthaxanthin. This compound showed some slight potential as a marker capable of

discriminating between eggs laid by birds from cages of di↵erent stocking densities.

The work in Chapter 9 showed that there is a clear di↵erence in metabolite profile

between the yolks of eggs laid by birds that have been kept in cage and barn housing

systems. All of the statistically significant compounds with potential metabolite matches

were potential lipids and phospholipids, and were all of a higher abundance in the yolk

of barn eggs compared to cage eggs. Therefore, a lipid profile may be capable of dis-

criminating between eggs from cage and barn housing systems. One of these compounds

was putatively identified as PC(16:0/16:0) and has potential as a marker of egg housing

system for cage and barn eggs. Although no real conclusions could be drawn from the

comparison of the metabolite profiles of the yolk and albumen of eggs from free range

and organic housing systems, with those of the yolk and albumen of eggs from cage and

barn systems, there were some observable di↵erences in the metabolite profiles of the yolk

of eggs from the four di↵erent housing systems. However, the metabolite profile of the

albumen was not very strongly a↵ected by the housing system of the laying hen.

Table 10.1 summarises the putatively identified, potentially useful markers that were

discovered in each study throughout this work.
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Table 10.1: Summary table showing putatively identified potential markers in each chapter

Chapter Potential Markers

Chapter 4:
N/A

Extract Storage

Chapter 5: Albumen: oleoyl
Hen Age ethyl amide

Chapter 6:
N/A

Hen Diet

Chapter 7:
Yolk at 23 C: choline

Liquid yolk at 5 C: oleoyl
Egg Age ethyl amide & erucamide

Chapter 8:
Hen Stocking Yolk: canthaxanthin

Density

Chapter 9:
Hen Housing Yolk: PC(16:0/16:0) Yolk: Lipid profile

System
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10.2 Future work

Although throughout this research there were several putatively identified compounds

that showed potential as markers of various factors, which could help to detect cases

of fraud in egg production and marketing, only one of these putative identifications

was confirmed through the use of a chemical standard. Further work would involve the

confirmation of all putative identifications of potentially useful compounds, followed by

targeted, quantitative studies focussing on these compounds, using greater sample sizes

to increase the power of the studies. Validation of the developed analytical methods for

the quantitative evaluation of these potential markers would then be carried out.

Throughout this research the age and breed of the laying birds were kept the same, both

within and between experimental groups, to ensure that any observed di↵erences were

due to the factor that was under investigation, rather than another variable. However,

the factors that have been investigated may have di↵erent e↵ects on birds of di↵erent ages

and breeds, and therefore their eggs, or the age and breed of the birds may a↵ect the

concentrations of potential markers in the eggs. Therefore these studies, including any

follow-up targeted studies, should be repeated across di↵erent breeds and ages of laying

birds, to determine whether the metabolite profiles of the yolk and albumen of eggs are

a↵ected similarly, and whether the potential use of any identified compounds as markers

is replicable, across the di↵erent ages and breeds of laying bird.

Only organic extracts of the yolk and albumen were analysed throughout this research,

and only using positive ionisation in the MS analysis. Future work could involve further

chromatographic development for the aqueous metabolite extracts of yolk and albumen,

including investigating the use of columns with di↵erent stationary phases and a variety

of di↵erent mobile phases and modifiers. Di↵erent mobile phase modifiers may also

improve the detection of compounds during negative ionisation MS analysis, allowing

further investigation of how the negatively ionised compounds in the metabolite profiles
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of egg yolk and albumen are a↵ected by various factors, potentially discovering further

compounds that may have potential as markers to help detect cases of fraud. It may also

be possible to combine the aqueous and organic extracts and carry out a more complex

separation using 2D-LC, where two columns of di↵erent stationary phases are connected

in sequence and used to separate a wider range of compounds within a sample. This

would result in a greater number of compounds being separated and detected in just one

analysis, increasing the likelihood of discovering compounds of interest, without carrying

out extra analyses.

Only unsupervised multivariate analysis, in the form of PCA, was carried out as part

of the data analysis workflow throughout this research. It would be interesting to use

supervised MVA methods such as Partial Least Squares (PLS) on the data sets generated

during this work, to build training set models capable of predicting the categories of

unknown samples [1]. It would also be interesting to introduce the data sets to Artificial

Neural Networks (ANNs), in order to detect patterns in the data and make predictions

about unknown samples [2][3].

In addition to what has previously been described, further work following on from

the research in Chapter 5 would involve carrying out similar metabonomic studies, both

non-targeted and targeted, over a wider hen age range up to a higher age of bird, to

observe how the metabolite profiles of the yolk and albumen of eggs change over the full

laying period of a bird. The targeted studies would then be able to determine the age of

laying hen at which a correlation between the abundance of potential markers, such as

oleoyl ethyl amide in the albumen, and hen age, is no longer observed and the compounds

are no longer useful as markers of hen age.

The research described in Chapter 6 determined that di↵erent diets a↵ect the metabo-

lite profiles of the yolk and albumen di↵erently, and at di↵erent rates, to each other.

Therefore further, more diet specific, studies would have to be carried out investigating

how, to what extent, and how quickly, switching from certain laying hen diets, e.g. di↵er-
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ent varieties of organic feed, 95% organic feed with 5% non-organic feed, and conventional

feed, to di↵erent varieties of 100% organic feed, a↵ects the metabolite profiles of the yolk

and albumen.

In addition to repeating the targeted egg age study described in Chapter 7 with larger

sample sizes, and validating the analytical method for the quantitative evaluation of

choline in egg yolk, further work would also involve the confirmation that the choline

concentration in egg yolk increases due to the catabolism and/or degradation of phos-

phatidylcholine over time. This would be done by carrying out MS analysis in precursor

ion scan mode for the m/z 184 fragment, in order to detect the phosphatidylcholine ions

that fragment to produce this ion, allowing the abundance of phosphatidylcholines to be

monitored over an increasing egg age. If it is found that the abundance of phosphatidyl-

choline decreases with increasing egg age, then it can be concluded that the increase

in choline concentration is due to the catabolism and/or degradation of phosphatidyl-

cholines, releasing free choline molecules.

Further work relating to the liquid egg ageing study in Chapter 7 would involve car-

rying out similar studies observing the di↵erences in metabolite profile between samples

of liquid albumen, and liquid yolk and albumen combined, that are both refrigerated and

stored at room temperature for di↵erent lengths of time, as well as between samples of

liquid yolk that are stored for di↵erent lengths of time at room temperature. It would

also be interesting to repeat this study using shell eggs of di↵erent ages prior to breaking,

to see if similar results are obtained.

Following the research that was described in Chapter 8, further work would involve

conducting similar studies on a larger scale, over a longer period of time, with laying hens

kept in cages of greater population sizes, and more highly di↵erent stocking densities, to

emulate a more realistic scenario. Greater di↵erences in metabolite profile, and more

potential markers, may be discovered when carrying out these studies on a larger scale.

It may also be possible to observe larger di↵erences in the abundance of canthaxanthin
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in the yolks of eggs laid by birds from cages of di↵erent stocking densities, increasing its

potential as a marker of cage stocking density. This could lead to a greater possibility of

developing a method capable of detecting cases of fraud regarding battery cages.

In addition to the putative identification of PC(16:0/16:0), in the research described in

Chapter 9, several compounds that were found to be of a significantly higher abundance

in the yolk of barn eggs, compared to cage eggs, were tentatively classified as di↵erent

types of lipids. Therefore it may be possible, with further work, to develop a lipid

profile capable of discriminating between cage and barn eggs. Further research would

also involve carrying out a similar study, comparing eggs from free range and organic

housing systems, with eggs from cage and barn systems, where laying hens are all of the

same age and breed, in order to observe di↵erences in the metabolite profiles of yolk and

albumen between eggs from all four housing systems, and to potentially discover and

identify compounds that show potential as markers of egg housing system. The lipid

profile could then be further developed in order to successfully discriminate between eggs

from all four housing systems. It would also be interesting to observe the di↵erence in

abundance of the compound putatively identified as PC(16:0/16:0), when comparing the

yolks of eggs from free range and organic housing systems with those from cage and barn

systems, to see if this compound has potential as a marker capable of discriminating

between all four housing systems, as well as between just cage and barn systems.

This research has shown that a metabonomic approach can be successful in observing

di↵erences between poultry eggs from di↵erent experimental groups, as well as in the

detection and identification of compounds that show potential as markers capable of

detecting instances of fraud in the production and marketing of poultry eggs. However,

there is clearly the potential for much more work regarding further method development,

marker identification, conducting larger and more powerful targeted studies, and the

validation of analytical methods for the detection and quantification of potential markers,

as well as the development of multivariate statistical and computational models for the
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prediction of sample information, and therefore the potential detection of fraud.
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Table A.1: Table showing the significantly di↵erent features between yolk organic extracts that
were stored either dried or re-dissolved at -25 C, -46 C, and -80 C for six weeks.
CV% calculated from peak areas of QC samples, p-value calculated from either
ANOVA or Welch test depending on variance. 25, 46, and 80 refer to the storage
of re-dissolved extracts at -25 C, -46 C, and -80 C respectively. 25*, 46* and
80* refer to the storage of dried extracts at the same temperatures.

Feature m/z
RT median

CV% p-value
Trend

(minutes) 25|25*|46|46*|80|80*

369.3527 32.222 2.51 0.001

496.3402 9.098 4.01 <0.001

524.3717 16.058 3.54 <0.001

603.5350 50.716 1.46 <0.001

610.5415 46.577 15.80 <0.001

612.5568 49.585 1.77 <0.001

638.5725 50.615 1.72 <0.001

640.5883 53.436 1.81 <0.001

734.5704 42.568 3.47 0.001

744.5544 45.369 1.70 <0.001

758.5698 40.289 1.58 <0.001

762.5922 43.344 1.33 <0.001

768.5545 45.154 2.15 0.005

782.5704 40.107 1.87 <0.001

784.5855 43.127 2.86 <0.001

784.5860 41.751 1.49 <0.001
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Table A.1 continued

Feature m/z
RT median

CV% p-value
Trend

(minutes) 25|25*|46|46*|80|80*

786.6017 45.543 3.69 <0.001

806.5707 39.784 1.05 <0.001

808.5863 42.591 3.25 <0.001

810.6020 44.789 2.51 <0.001

818.7253 65.562 1.34 <0.001

836.6182 47.103 9.19 <0.001

844.7413 66.163 2.02 <0.001

848.7723 70.012 1.14 0.007

850.7884 72.673 5.55 0.001

860.7727 69.275 1.83 0.003

862.7876 71.674 3.54 0.007

870.7593 66.771 2.08 <0.001

876.8048 73.438 2.95 0.004

890.8184 75.496 5.01 <0.001

896.7739 67.311 1.13 <0.001

902.8187 74.266 2.57 0.002

904.8346 77.771 3.31 <0.001
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Table A.2: Table showing the significantly di↵erent features between yolk organic extracts that
were stored either dried or re-dissolved at -25 C, -46 C, and -80 C for twelve
weeks. CV% calculated from peak areas of QC samples, p-value calculated from
either ANOVA or Welch test depending on variance. 25, 46, and 80 refer to the
storage of re-dissolved extracts at -25 C, -46 C, and -80 C respectively. 25*, 46*
and 80* refer to the storage of dried extracts at the same temperatures.

Feature m/z
RT median

CV% p-value
Trend

(minutes) 25|25*|46|46*|80|80*

339.2891 52.415 5.57 <0.001

524.3718 17.357 14.58 0.003

603.5349 52.531 6.19 <0.001

608.5248 44.978 4.41 <0.001

611.5439 48.233 4.80 <0.001

617.5115 51.502 5.30 0.003

638.5727 52.432 4.57 <0.001

659.5010 52.332 22.68 <0.001

703.5752 39.600 3.15 0.009

718.5390 45.867 4.77 0.001

728.5584 49.480 8.39 0.008

734.5699 44.613 5.40 0.003

744.5534 40.447 4.52 0.007

744.5547 47.381 5.95 0.009

746.5693 43.500 3.66 0.002

762.6003 49.394 9.54 <0.001

766.5392 44.730 4.14 0.004

794.5710 49.096 4.64 0.010

800.6168 49.761 3.70 0.010

808.5869 43.480 3.78 0.004

811.6040 45.109 3.56 0.010

818.7253 67.074 2.53 <0.001

820.7445 69.215 2.56 0.004

822.7585 71.774 3.74 0.002

836.6080 46.439 3.92 0.001
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Table A.2 continued

Feature m/z
RT median

CV% p-value
Trend

(minutes) 25|25*|46|46*|80|80*

844.7411 67.751 7.23 <0.001

849.7760 72.482 3.71 0.044

850.7888 75.885 10.49 <0.001

860.7736 71.534 4.08 <0.001

862.7930 74.575 10.82 0.047

867.6846 69.835 19.73 0.009

870.7590 69.348 4.32 <0.001

871.7624 68.470 17.12 <0.001

872.7721 71.835 6.78 0.002

886.7871 72.255 4.94 <0.001

894.7560 67.140 2.41 <0.001

896.7717 70.064 5.67 <0.001

898.7872 72.020 11.56 <0.001

898.7908 71.332 4.80 <0.001

905.8284 77.921 19.14 0.004

922.7884 71.732 5.38 0.002

926.8183 75.606 10.57 <0.001

928.8331 78.984 21.26 0.003
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Table A.3: Table showing the significantly di↵erent features between yolk organic extracts that
were stored under di↵erent conditions and at di↵erent temperatures for six weeks,
as well as twelve weeks of storage. The p-value was calculated from either ANOVA
or Welch test depending on variance.

Feature m/z
RT median
(minutes)

6 weeks of
storage p-value

12 weeks of
storage p-value

369.3527 32.222 0.001 0.317

603.5350 50.716 <0.001 <0.001

610.5415 46.577 <0.001 0.268

612.5568 49.585 <0.001 0.075

636.5567 47.660 0.001 0.050

636.6297 54.646 0.006 0.123

638.5725 50.615 <0.001 <0.001

640.5883 53.436 <0.001 0.040

760.5855 44.266 0.001 0.079

764.5233 39.967 0.005 0.117

782.5704 40.107 <0.001 0.260

786.6017 45.543 <0.001 0.483

788.6173 48.324 0.001 0.497

792.5557 44.538 0.003 0.050

818.7253 65.562 <0.001 <0.001

844.7413 66.163 <0.001 <0.001

848.7723 70.012 0.007 0.050

850.7884 72.673 0.001 <0.001

860.7727 69.275 0.003 <0.001

862.7876 71.674 0.007 0.008

870.7593 66.771 <0.001 <0.001

876.8048 73.438 0.004 0.195

890.8184 75.496 <0.001 0.050

896.7739 67.311 <0.001 <0.001

898.7877 69.118 0.025 <0.001

902.8187 74.266 0.002 0.004

904.8346 77.771 <0.001 0.173
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Table A.4: Table showing the significantly di↵erent features between yolk organic extracts that
were stored under di↵erent conditions and at di↵erent temperatures for twelve
weeks, as well as six weeks of storage. The p-value was calculated from either
ANOVA or Welch test depending on variance.

Feature m/z
RT median
(minutes)

12 weeks of
storage p-value

6 weeks of
storage p-value

608.5248 44.978 <0.001 <0.001

818.7253 67.074 <0.001 <0.001

844.7411 67.751 <0.001 <0.001

850.7888 75.885 <0.001 0.001

870.7590 69.348 <0.001 <0.001

871.7624 68.470 <0.001 <0.001

886.7871 72.255 <0.001 <0.001

894.7560 67.140 <0.001 <0.001

896.7717 70.064 <0.001 <0.001

898.7908 71.332 <0.001 0.025

905.8284 77.921 0.004 0.002

926.8183 75.606 <0.001 0.406
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Table A.5: Table showing the significantly di↵erent features between albumen organic extracts
that were stored either dried or re-dissolved at -25 C, -46 C, and -80 C for forty-
four weeks. CV% calculated from peak areas of QC samples, p-value calculated from
either ANOVA or Welch test depending on variance. 25, 46, and 80 refer to the
storage of re-dissolved extracts at -25 C, -46 C, and -80 C respectively. 25*, 46*
and 80* refer to the storage of dried extracts at the same temperatures.

Feature m/z
RT median

CV% p-value
Trend

(minutes) 25|25*|46|46*|80|80*

169.1102 0.843 10.68 0.006

250.1778 10.199 6.38 0.004

266.1558 11.213 5.50 0.010

271.2627 15.062 9.24 <0.001

288.2895 15.047 10.69 <0.001

294.1547 0.875 8.20 <0.001

299.1209 0.843 11.58 <0.001

299.2941 18.502 7.77 0.004

310.2376 2.219 11.67 0.001

316.3208 18.509 6.86 0.002

328.1362 0.910 11.77 <0.001

331.2842 8.241 4.89 0.011

371.3144 12.505 6.84 0.008

409.3110 11.215 5.23 0.002

419.3151 22.903 22.41 0.007

581.5404 27.584 6.31 0.008

617.5126 25.801 8.17 0.001

623.3403 2.865 7.98 0.002

647.4600 26.418 7.23 <0.001

674.4642 6.548 6.32 <0.001

685.4206 26.410 10.82 0.006

743.6370 12.423 2.27 0.001

934.6395 16.654 4.01 0.001
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Table B.1: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens of di↵erent ages (21-26 weeks old). CV% calculated
from peak areas of QC samples, p-value calculated from either ANOVA or Welch
test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

331.2847 14.512 10.24 <0.001
359.3165 23.642 8.19 0.001
369.3520 33.319 10.53 <0.001
387.1752 1.211 2.46 <0.001
409.3443 33.319 5.68 <0.001
482.3252 17.433 4.49 <0.001
496.3412 8.548 3.61 <0.001
520.3413 7.975 2.22 <0.001
522.3564 10.246 6.24 0.001
610.5425 47.541 6.88 <0.001
612.5573 50.806 5.71 0.007
634.5425 45.863 2.72 0.009
638.5730 51.778 4.08 0.005
640.5887 54.517 6.88 0.004
642.5161 49.004 2.52 <0.001
648.6307 54.607 6.83 0.007
683.5448 14.512 3.29 <0.001
703.5761 38.996 3.40 <0.001
716.5243 42.043 3.89 <0.001
718.5398 45.190 3.63 <0.001
731.6074 43.777 4.47 <0.001
732.5551 40.457 13.30 <0.001
734.5709 43.913 4.30 <0.001
739.6071 23.642 3.89 <0.001
740.5239 41.831 2.95 <0.001
744.5551 39.705 4.55 0.007
746.5714 42.797 3.04 <0.001
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Table B.1 continued

Feature m/z
RT median
(minutes)

CV% p-value

756.5555 40.185 3.34 <0.001
760.5932 45.474 8.65 <0.001
762.6029 48.549 4.11 <0.001
764.5392 42.863 24.48 <0.001
773.5895 44.290 6.24 0.008
774.6031 47.479 4.99 <0.001
780.5549 38.189 4.92 <0.001
782.5708 41.419 1.90 0.005
784.5864 43.665 2.99 0.007
795.7003 33.318 14.45 0.001
809.5900 42.777 3.09 0.005
810.6023 46.092 2.17 0.003
813.6853 53.126 8.07 <0.001
851.7120 68.925 1.92 <0.001
872.7720 69.604 6.59 0.004
896.7732 69.097 9.15 0.010
900.7946 70.244 8.11 <0.001
900.8045 72.860 9.52 0.001
922.7913 70.591 10.03 0.008

Page 437



Appendix B

0

200000

400000

600000

800000

1000000

1200000

100 150 200 250 300 350

Co
un

ts

m/z

331.2837

313.2729

257.2466
239.2352

331.2847

313.2733

257.2519
239.2363

Figure B.1: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
1-monopalmitin and m/z 331.2847 respectively
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Figure B.2: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds PC(16:0/0:0)
and m/z 496.3412 respectively
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Figure B.3: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds nervonic
ceramide and m/z 648.6307 respectively
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Figure B.4: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
SM(18:1/16:0) and m/z 703.5761 respectively
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Figure B.5: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
PE(16:0/18:2) and m/z 716.5243 respectively
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Figure B.6: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
PC(16:0/16:0) and m/z 734.5709 respectively
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Table B.2: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens of di↵erent ages (26-30 weeks old). CV% calculated
from peak areas of QC samples, p-value calculated from either ANOVA or Welch
test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

282.2792 14.402 1.86 0.002
313.2733 14.435 3.81 <0.001
331.2847 14.435 2.48 <0.001
338.3420 26.985 0.71 <0.001
359.3162 23.513 1.04 <0.001
369.3520 33.209 1.19 0.001
387.1735 1.206 5.38 <0.001
409.3443 33.209 2.44 0.004
454.2932 9.871 1.05 0.001
482.3251 17.339 3.52 0.002
496.3405 9.705 2.30 0.001
520.3400 6.958 2.90 0.003
522.3557 10.204 3.29 0.010
548.5040 47.402 0.76 0.001
577.5181 71.894 3.11 0.007
613.4807 44.297 3.16 0.001
627.5347 39.700 4.52 0.005
630.6182 54.539 3.18 0.009
683.5443 14.436 1.63 <0.001
703.5758 38.969 1.64 0.003
732.5903 51.933 5.06 0.009
739.6069 23.515 2.54 <0.001
740.5238 41.774 2.61 0.002
744.5673 47.153 11.20 <0.001
767.5419 42.837 21.57 <0.001
768.5900 44.480 3.25 0.009
778.5756 48.547 2.14 0.001
782.5708 41.359 2.18 <0.001
782.6057 52.019 22.16 <0.001
786.6022 46.240 24.81 0.003
794.5750 47.119 14.23 0.006
816.6480 53.792 7.28 0.010
824.6508 52.654 8.29 0.004
846.7560 68.732 0.87 0.002
848.7718 71.122 1.81 0.005
874.7880 71.902 1.10 0.007
876.7148 67.379 26.22 0.002
877.7281 69.217 4.11 0.010
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Table B.2 continued

Feature m/z
RT median
(minutes)

CV% p-value

878.8031 71.885 1.46 0.010
878.8096 74.873 1.74 0.006
880.7453 71.580 3.62 0.009
880.8184 74.871 1.89 0.010
904.5917 39.700 4.13 0.003
909.7889 79.720 4.00 0.001
917.8290 74.874 1.72 0.007
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Figure B.7: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds docosenamide
and m/z 338.3420 respectively
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Figure B.8: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds PE(16:0/0:0)
and m/z 454.2932 respectively
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Table B.3: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens of di↵erent ages (30-38 weeks old). CV% calculated
from peak areas of QC samples, p-value calculated from either ANOVA or Welch
test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

331.2848 14.004 7.99 0.001
338.3412 43.652 5.46 0.003
338.3415 68.740 8.23 0.006
341.3044 22.865 6.99 <0.001
387.1751 1.206 3.69 <0.001
548.5038 46.762 3.07 0.004
575.5035 34.690 3.80 0.002
599.5035 34.560 3.61 <0.001
627.5349 39.400 4.98 0.001
650.4388 16.189 11.17 <0.001
654.3322 14.312 3.51 <0.001
675.5437 33.542 3.87 0.006
675.6763 27.135 6.25 0.008
706.5449 38.630 6.08 0.001
734.5610 39.709 1.17 0.009
740.5233 41.078 4.68 0.01
752.5228 34.524 22.00 0.005
754.5378 36.312 1.75 0.008
762.6020 47.804 1.17 0.004
764.5249 40.526 1.09 0.002
778.5383 35.942 2.92 0.004
780.5539 39.029 0.84 0.005
787.6061 46.129 4.33 0.004
790.6243 48.901 2.46 0.005
792.5566 45.117 1.47 0.007
806.5548 35.483 20.34 <0.001
808.5695 37.208 1.85 <0.001
824.7704 72.795 3.39 0.003
859.5331 34.561 1.18 <0.001
880.7454 71.719 3.22 0.008
884.7772 77.945 18.65 0.034
887.5644 39.397 5.27 0.002
888.8042 73.225 6.95 0.001
890.8184 76.537 9.42 0.008
898.7876 69.706 1.55 0.008
900.8040 72.180 2.80 0.006
901.7286 67.697 2.17 0.005
906.8299 75.223 4.17 0.005
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Table B.3 continued

Feature m/z
RT median
(minutes)

CV% p-value

906.8482 83.802 11.17 0.001
926.8178 73.274 3.35 0.009
928.8326 76.582 8.41 <0.001
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Table B.4: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens of di↵erent ages (38-44 weeks old). CV% calculated
from peak areas of QC samples, p-value calculated from either ANOVA or Welch
test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

105.0663 1.208 3.36 <0.001
147.1075 0.793 21.36 0.003
150.0547 0.826 5.60 0.008
237.1120 1.888 7.07 <0.001
247.2261 4.050 5.05 0.003
267.1187 1.224 6.34 0.033
267.2674 23.493 3.17 0.001
286.2286 12.530 7.37 0.006
310.2377 3.829 7.06 <0.001
352.3055 4.162 4.90 <0.001
359.3153 21.807 6.35 0.003
360.3189 23.484 3.16 0.002
381.2978 23.484 1.71 0.001
387.1770 1.208 5.44 0.003
396.3317 4.196 4.57 <0.001
409.1588 1.175 5.46 0.001
419.3154 27.019 10.34 0.004
429.3720 36.842 9.50 0.004
429.3723 32.962 4.09 <0.001
429.3724 30.803 5.36 <0.001
440.3578 4.229 4.78 <0.001
445.3673 29.175 4.09 <0.001
464.2820 1.490 3.24 0.001
489.2269 5.290 3.20 <0.001
580.3603 10.221 7.26 0.007
604.3844 4.710 4.35 0.009
612.5475 47.754 10.77 0.006
637.3052 14.653 2.64 <0.001
642.4364 28.729 3.73 0.008
650.4385 16.746 8.08 <0.001
666.4336 16.030 4.14 <0.001
688.5872 51.903 10.61 0.004
694.4652 24.574 5.30 0.007
734.5332 38.936 4.72 0.007
739.6059 23.492 4.29 0.009
764.5247 41.179 1.38 0.003
774.5630 32.962 1.72 <0.001
790.3784 1.208 8.57 0.003
792.5653 29.991 6.31 <0.001
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Table B.4 continued

Feature m/z
RT median
(minutes)

CV% p-value

792.5741 32.116 2.04 <0.001
806.5543 27.120 6.93 <0.001
806.5544 36.238 23.91 <0.001
808.5693 38.722 2.79 <0.001
808.7383 69.164 20.58 0.004
809.5724 37.958 2.45 <0.001
811.3086 1.175 4.61 0.002
814.5576 28.862 23.67 0.009
820.5958 33.458 9.71 0.007
822.6336 50.198 27.57 0.006
834.5838 40.255 2.91 <0.001
836.5986 42.462 0.93 0.006
868.7317 65.042 3.25 0.006
878.7442 59.190 16.23 0.001
904.7455 70.117 27.44 0.003
904.7595 59.906 22.39 0.001
906.7760 61.558 13.96 0.003
931.7764 73.444 25.28 <0.001
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Table B.5: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens of di↵erent ages (21-44 weeks old). CV% calculated
from peak areas of QC samples, p-value calculated from either ANOVA or Welch
test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

331.2851 13.676 5.56 <0.001
359.3166 22.350 3.49 <0.001
369.3526 32.344 5.53 <0.001
387.1780 1.203 4.16 <0.001
454.2937 9.353 2.34 0.001
494.3245 5.984 3.51 <0.001
524.3717 14.599 2.76 0.005
575.5037 46.834 18.38 0.026
577.5204 49.805 3.08 <0.001
603.5365 50.884 5.46 <0.001
605.5514 53.658 2.63 <0.001
610.5418 46.778 11.21 0.028
612.5573 49.723 1.80 <0.001
614.5729 52.674 2.10 <0.001
615.4965 46.796 1.51 0.007
617.5122 49.788 1.19 <0.001
636.5574 47.881 2.47 0.002
638.5730 50.752 1.58 <0.001
640.5887 53.591 1.07 <0.001
641.5125 47.881 4.15 0.001
703.5762 37.838 1.20 <0.001
718.5396 44.155 2.71 0.001
730.5752 50.520 5.07 0.001
732.5553 39.483 21.44 <0.001
748.5288 42.529 1.67 0.006
760.5856 46.051 9.50 0.01
761.5798 40.494 2.64 0.005
762.5925 44.437 6.38 0.005
762.6016 47.672 2.18 <0.001
764.5238 40.178 2.48 0.001
766.5387 41.732 1.63 0.002
772.5864 43.314 0.97 0.001
778.5754 47.632 2.49 <0.001
780.5550 37.257 1.91 <0.001
782.5703 39.695 6.29 0.004
782.6064 51.367 4.29 0.002
783.5753 38.999 0.39 0.002
784.5768 39.007 1.36 0.003
786.6021 47.136 3.07 <0.001
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Table B.5 continued

Feature m/z
RT median
(minutes)

CV% p-value

788.6178 48.146 2.65 0.002
788.6541 51.883 12.68 0.001
806.5708 39.946 0.94 0.009
810.6011 43.348 3.11 <0.001
812.6177 47.666 6.75 <0.001
813.6855 52.605 14.08 <0.001
818.7256 65.684 6.72 0.004
820.7434 67.561 2.98 0.001
824.6458 52.240 2.55 0.003
846.7468 66.306 12.59 <0.001
868.7415 65.244 3.75 0.002
870.7576 66.919 2.88 0.006
886.7870 69.950 5.38 <0.001
888.8036 72.497 4.20 0.003
894.7568 65.807 3.89 <0.001
896.7727 67.447 10.22 <0.001
898.7875 69.251 2.91 <0.001
903.8131 71.549 3.90 0.008
926.8185 73.826 4.98 0.003
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Figure B.9: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds PAF C-16
and m/z 524.3717 respectively
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Table B.6: Table showing the significantly di↵erent features in albumen organic extracts be-
tween eggs that were laid by hens of di↵erent ages (21-44 weeks old). CV% cal-
culated from peak areas of QC samples, p-value calculated from either ANOVA or
Welch test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

203.0525 0.775 6.64 <0.001
267.2680 12.314 10.38 0.005
288.2894 14.908 14.38 <0.001
310.2373 2.185 13.89 <0.001
310.3104 11.649 12.27 <0.001
312.3256 15.043 13.01 <0.001
316.3208 18.410 14.27 <0.001
331.2840 8.158 13.19 <0.001
336.3253 12.863 12.47 <0.001
338.3418 15.241 9.40 <0.001
350.3408 14.828 11.74 <0.001
359.3153 12.305 10.67 0.007
366.3724 18.211 12.03 <0.001
387.1789 1.008 12.20 <0.001
390.3335 14.827 12.49 <0.001
396.3937 15.324 12.05 0.001
409.1605 0.975 15.48 <0.001
425.1338 0.958 12.59 <0.001
537.5342 23.619 10.33 <0.001
548.5027 24.697 11.06 0.001
551.5024 25.604 13.85 <0.001
565.5660 25.230 12.01 <0.001
579.5343 27.484 27.71 <0.001
586.5402 25.626 10.91 <0.001
593.5973 27.103 15.31 <0.001
604.3836 2.210 12.17 <0.001
614.5718 27.518 19.39 <0.001
619.5269 27.502 14.02 <0.001
647.5583 29.940 21.91 0.002
654.3314 6.217 11.97 <0.001
663.4535 22.491 11.70 <0.001
686.3575 7.228 11.97 <0.001
690.5997 11.610 12.83 0.001
739.6054 11.558 16.25 0.003
777.3290 22.797 10.81 0.009
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Figure B.10: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
oleoylethylamide and m/z 310.3104 respectively
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Table C.1: Table showing the significantly di↵erent features in yolk organic extracts between
eggs laid by birds that were fed four di↵erent diets, two weeks post diet change.
CV% calculated from peak areas of QC samples, p-value calculated from either
ANOVA or Welch test depending on variance.

Feature m/z
RT median

CV% p-value
Trend

(minutes) A B C D

185.1170 2.917 5.47 0.004

191.0852 2.567 5.25 <0.001

250.1773 18.904 2.10 0.002

301.1417 2.734 4.40 0.005

302.3054 25.817 7.40 <0.001

303.2528 7.475 4.72 0.001

308.2799 4.007 6.79 <0.001

352.3057 4.046 4.46 <0.001

359.3157 22.649 3.55 0.003

381.2973 21.025 3.83 <0.001

387.1735 1.190 4.87 0.001

396.3314 4.088 5.25 <0.001

425.1394 1.787 3.14 <0.001

445.3672 28.936 5.75 0.008

489.2267 5.142 3.70 0.001

522.5965 38.157 10.77 0.010

577.5186 70.547 3.02 0.003

637.3050 14.368 3.50 0.001
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Table C.1 continued

Feature m/z
RT median

CV% p-value
Trend

(minutes) A B C D

642.4361 28.543 1.35 0.002

670.4673 30.175 1.49 0.004

684.5554 47.360 8.23 0.001

684.6258 55.980 1.51 0.009

716.5653 36.094 2.65 0.006

739.6053 22.650 4.26 0.010

743.5341 38.572 8.79 0.002

759.5735 41.162 1.47 0.029

771.5808 44.135 8.30 0.005

780.7070 66.672 7.93 0.003

822.6680 64.765 16.97 0.007

839.5539 35.237 9.06 0.001

843.5807 40.282 4.62 0.005

846.7571 68.795 2.15 0.007

868.7327 65.085 5.22 0.009

905.5947 39.448 1.77 0.008

933.6248 43.246 2.68 0.010

933.8629 74.654 4.68 0.004

933.8662 79.855 8.71 0.005

944.7740 67.958 3.47 <0.001

946.7404 72.292 4.70 0.004

967.6956 74.699 5.93 0.009

970.7905 68.503 17.99 0.001

977.8578 68.812 3.87 0.008

992.8751 72.206 3.22 0.008
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Table C.2: Table showing the significantly di↵erent features in yolk organic extracts between
eggs laid by birds that were fed the four di↵erent diets two weeks post diet change,
as well as one week prior to diet change. p-value calculated from either ANOVA
or Welch test depending on variance.

Feature
m/z

RT median
(minutes)

2 weeks post diet
change p-value

1 week pre diet
change p-value

185.1170 2.917 0.004 0.348

191.0852 2.567 <0.001 0.002

250.1773 18.904 0.002 0.565

301.1417 2.734 0.005 0.008

302.3054 25.817 <0.001 0.007

303.2528 7.475 0.001 0.004

308.2799 4.007 <0.001 0.010

352.3057 4.046 <0.001 0.001

359.3157 22.649 0.003 0.002

381.2973 21.025 <0.001 0.003

387.1735 1.190 0.001 0.090

396.3314 4.088 <0.001 0.002

445.3672 28.936 0.008 0.101

489.2267 5.142 0.001 0.001

637.3050 14.368 0.001 0.005

642.4361 28.543 0.002 0.008

670.4673 30.175 0.004 0.020

684.6258 55.980 0.009 0.243

716.5653 36.094 0.006 0.787

739.6053 22.650 0.010 0.005

905.5947 39.448 0.008 0.532

933.6248 43.246 0.010 0.275

944.7740 67.958 <0.001 0.288
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Table C.3: Table showing the significantly di↵erent features in yolk organic extracts between
eggs laid by birds that were fed four di↵erent diets, five weeks post diet change.
CV% calculated from peak areas of QC samples, p-value calculated from either
ANOVA or Welch test depending on variance.

Feature m/z
RT median

CV% p-value
Trend

(minutes) A B C D

310.3106 23.254 2.31 <0.001

331.2843 14.441 3.51 0.001

338.3423 27.022 1.18 <0.001

359.3155 23.553 5.91 0.002

366.3731 30.308 1.61 0.003

387.1711 1.210 5.15 <0.001

520.3398 7.025 3.21 0.002

575.5033 35.886 7.55 <0.001

603.5346 40.467 5.36 0.001

604.3842 4.729 1.27 0.005

604.6028 54.311 6.33 0.003

618.6183 56.071 5.22 <0.001

632.6344 57.731 7.20 0.007

642.5154 49.417 23.51 0.019

760.5857 45.730 2.03 0.006

776.5632 48.274 1.92 0.01

782.5709 41.746 5.10 0.008

782.6058 52.469 2.55 0.005

786.6021 46.653 2.96 <0.001

799.6049 50.029 14.32 0.007

808.5827 47.272 2.83 0.001

837.6202 49.498 9.79 0.002

850.6994 67.491 0.54 0.007

877.7299 70.438 2.34 0.004

880.7473 73.119 3.22 0.009

893.7025 70.467 4.07 0.003
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Table C.3 continued

Feature m/z
RT median

CV% p-value
Trend

(minutes) A B C D

895.7160 72.532 4.05 0.008

897.7325 75.716 3.23 0.005

900.7529 80.225 3.72 0.002

991.6720 9.758 2.18 0.007
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Table C.4: Table showing the significantly di↵erent features in yolk organic extracts between
eggs laid by birds that were fed the four di↵erent diets five weeks post diet change,
as well as one week prior to diet change. The p-value was calculated from either
ANOVA or Welch test depending on variance.

Feature
m/z

RT median
(minutes)

5 weeks post diet
change p-value

1 week pre diet
change p-value

310.3106 23.25 <0.001 0.336

331.2843 14.44 0.001 0.021

338.3423 27.02 <0.001 0.362

359.3155 23.55 0.002 0.002

387.1711 1.21 <0.001 0.090

520.3398 7.03 0.002 0.197

575.5033 35.89 <0.001 0.744

603.5346 40.47 0.001 0.541

604.3842 4.73 0.005 0.247

604.6028 54.31 0.003 0.017

618.6183 56.07 <0.001 0.211

632.6344 57.73 0.007 0.007

642.5154 49.42 0.019 0.126

760.5857 45.73 0.006 0.195

776.5632 48.27 0.010 0.738

782.5709 41.75 0.008 0.167

782.6058 52.47 0.005 0.154

808.5827 47.27 0.001 0.191

837.6202 49.50 0.002 0.616

991.6720 9.76 0.007 0.019
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Table C.5: Table showing the significantly di↵erent features in albumen organic extracts be-
tween eggs laid by birds that were fed four di↵erent diets, five weeks post diet
change. CV% calculated from peak areas of QC samples, p-value calculated from
either ANOVA or Welch test depending on variance.

Feature m/z
RT median

CV% p-value
Trend

(minutes) A B C D

105.0695 0.988 20.37 <0.001

202.1799 0.756 7.50 <0.001

209.1577 9.697 1.49 0.003

226.1800 10.704 3.12 0.001

267.1228 0.988 19.89 <0.001

267.2679 11.922 2.11 0.008

274.2736 10.246 2.91 <0.001

288.2890 14.499 11.99 0.002

302.3048 14.226 3.22 <0.001

316.2108 0.772 9.88 <0.001

316.3208 18.058 15.85 0.002

321.3152 14.857 3.08 0.016

338.3410 15.404 7.05 0.002

341.3087 11.190 13.93 0.006

362.3385 17.793 2.77 0.004

368.3879 20.317 4.25 0.007

383.3984 11.285 2.57 0.005

387.1794 0.988 4.92 <0.001

397.4105 14.939 21.01 0.008

397.4131 11.287 4.15 0.003

408.3081 9.693 4.58 <0.001

409.3285 15.487 3.46 0.001

418.2191 1.038 4.18 0.002

425.1338 0.938 4.22 0.002

489.2264 2.746 3.80 <0.001

519.4356 9.687 3.08 <0.001
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Table C.5 continued

Feature m/z
RT median

CV% p-value
Trend

(minutes) A B C D

543.1256 0.839 6.20 0.003

557.1529 0.822 10.94 0.003

642.4358 16.605 1.78 <0.001

649.6596 14.741 7.32 0.005

654.3311 6.013 1.72 <0.001

659.2870 6.003 2.03 <0.001

686.3568 6.973 2.66 <0.001

691.3127 6.960 4.09 <0.001

795.3347 1.021 4.58 <0.001

811.3092 0.955 4.82 <0.001

955.5692 16.324 5.10 <0.001

Page 467





Appendix C

Table C.6: Table showing the significantly di↵erent features in albumen organic extracts be-
tween eggs laid by birds that were fed the four di↵erent diets five weeks post diet
change, as well as one week prior to diet change. The p-value was calculated from
either ANOVA or Welch test depending on variance.

Feature
m/z

RT median
(minutes)

5 weeks post diet
change p-value

1 week pre diet
change p-value

105.0695 0.99 <0.001 0.540

202.1799 0.76 <0.001 0.004

209.1577 9.70 0.003 0.253

267.1228 0.99 <0.001 0.848

267.2679 11.92 0.008 0.145

274.2736 10.25 <0.001 0.112

288.2890 14.50 0.002 0.990

302.3048 14.23 <0.001 0.012

316.2108 0.77 <0.001 0.331

316.3208 18.06 0.002 0.702

341.3087 11.19 0.006 0.186

383.3984 11.28 0.005 0.670

387.1794 0.99 <0.001 0.436

409.3285 15.49 0.001 0.599

418.2191 1.04 0.002 0.663

425.1338 0.94 0.002 0.294

489.2264 2.75 <0.001 0.028

519.4356 9.69 <0.001 0.371

642.4358 16.61 <0.001 0.016

654.3311 6.01 <0.001 0.112

659.2870 6.00 <0.001 0.102

686.3568 6.97 <0.001 <0.001

691.3127 6.96 <0.001 <0.001

795.3347 1.02 <0.001 0.900

811.3092 0.95 <0.001 0.244

955.5692 16.32 <0.001 0.511
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Table D.1: Table showing the significantly di↵erent features in yolk organic extracts between
eggs of di↵erent ages stored at 23 . CV% calculated from peak areas of QC sam-
ples, p-value calculated from either ANOVA or Welch test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

104.1070 0.800 2.58 <0.001
331.2860 15.833 3.40 <0.001
338.3443 27.150 2.41 <0.001
341.3063 24.630 3.55 <0.001
360.3204 24.630 2.69 <0.001
369.3519 32.852 4.26 <0.001
387.1805 1.286 1.18 <0.001
518.3239 10.637 18.15 0.001
520.3424 8.761 2.95 0.001
522.3582 12.728 2.56 0.003
524.3737 16.547 4.40 0.010
615.4991 46.645 3.08 0.002
622.6168 52.657 8.10 <0.001
636.6320 54.401 9.67 <0.001
641.5152 47.604 12.03 0.002
648.6329 53.311 4.22 0.005
650.4412 17.988 15.38 <0.001
650.6489 56.081 10.46 <0.001
703.5791 37.935 0.66 0.001
731.6091 42.515 3.31 0.001
732.7675 39.280 25.56 0.008
734.5727 42.626 2.60 0.001
740.5284 40.785 3.45 <0.001
746.6093 46.617 2.40 <0.001
756.5583 31.317 1.70 <0.001
762.6026 46.961 1.77 <0.001
764.5277 40.241 12.29 0.003
772.5891 43.007 0.85 0.006
774.6034 45.977 3.91 <0.001
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Table D.1 continued

Feature m/z
RT median
(minutes)

CV% p-value

776.5631 46.593 1.26 0.003
780.5578 37.103 5.04 <0.001
784.5877 42.413 0.78 0.001
787.6721 50.876 4.77 <0.001
794.5735 47.036 2.73 0.005
802.6347 50.022 3.74 0.020
806.5702 42.012 25.86 0.015
808.5880 41.629 1.97 0.009
811.6696 48.765 5.39 <0.001
813.6884 51.540 4.74 <0.001
814.6355 48.973 14.95 <0.001
838.6235 46.945 2.58 0.006
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Figure D.1: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds choline and
m/z 104.1070 respectively

Page 472



Appendix D

0

10000

20000

30000

40000

50000

60000

70000

100 150 200 250 300 350

Co
un

ts

m/z

313.2746

257.2483
239.2373

331.2860

331.2837

313.2729

257.2466
239.2352

Figure D.2: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
1-monopalmitin and m/z 331.2860 respectively
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(a) Line graphs showing trend in changing abundance of compounds classified as potential phos-
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Figure D.3
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Table D.2: Table showing concentration of choline in yolk organic extracts, the yolks them-
selves, and the mean choline concentration in egg yolks from eggs of di↵erent ages,
stored at 23 C

Sample
Choline

concentration in
extract ( g/mL)

Choline
concentration
in yolk ( g/g)

Mean choline
concentration
in yolk ( g/g)

Fresh 1 0.4630 9.2605

6.7758

Fresh 2 0.4034 8.0680
Fresh 3 0.3087 6.1747
Fresh 4 0.2155 4.3100
Fresh 5 0.3354 6.7085
Fresh 6 0.3067 6.1331

1 Week 1 0.3516 7.0319

7.0414

1 Week 2 0.4055 8.1092
1 Week 3 0.3821 7.6429
1 Week 4 0.2680 5.3601
1 Week 5 0.3250 6.5004
1 Week 6 0.3802 7.6036

2 Weeks 1 0.4113 8.2256

7.9906

2 Weeks 2 0.3939 7.8772
2 Weeks 3 0.1838 3.6757
2 Weeks 4 0.7453 14.9057
2 Weeks 5 0.4010 8.0201
2 Weeks 6 0.2620 5.2396

3 Weeks 1 0.6208 12.4155

10.5512

3 Weeks 2 0.5441 10.8828
3 Weeks 3 0.4634 9.2689
3 Weeks 4 0.5872 11.7448
3 Weeks 5 0.5032 10.0637
3 Weeks 6 0.4466 8.9318

4 Weeks 1 0.8512 17.0243

11.7145

4 Weeks 2 0.5449 10.8989
4 Weeks 3 0.3763 7.5257
4 Weeks 4 0.5910 11.8190
4 Weeks 5 0.6326 12.6527
4 Weeks 6 0.5183 10.3663

5 Weeks 1 0.5383 10.7658

13.2322

5 Weeks 2 0.8325 16.6508
5 Weeks 3 0.9443 18.8865
5 Weeks 4 0.4336 8.6715
5 Weeks 5 0.7061 14.1225
5 Weeks 6 0.5148 10.2959
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Table D.2 continued

Sample
Choline

concentration in
extract ( g/mL)

Choline
concentration
in yolk ( g/g)

Mean choline
concentration
in yolk ( g/g)

6 Weeks 1 1.1872 23.7446

13.4123

6 Weeks 2 0.4583 9.1654
6 Weeks 3 0.5068 10.1368
6 Weeks 4 0.4661 9.3216
6 Weeks 5 0.6066 12.1329
6 Weeks 6 0.7986 15.9727

7 Weeks 1 1.1465 22.9302

16.1104

7 Weeks 2 0.8526 17.0513
7 Weeks 3 0.8369 16.7390
7 Weeks 4 0.8358 16.7166
7 Weeks 5 0.5968 11.9368
7 Weeks 6 0.5644 11.2884

8 Weeks 1 0.8822 17.6435

21.5221

8 Weeks 2 0.9522 19.0445
8 Weeks 3 1.4868 29.7366
8 Weeks 4 1.4602 29.2040
8 Weeks 5 0.7297 14.5942
8 Weeks 6 0.9455 18.9100

9 Weeks 1 1.0859 21.7185

18.2840

9 Weeks 2 0.9048 18.0967
9 Weeks 3 0.7665 15.3309
9 Weeks 4 0.7409 14.8187
9 Weeks 5 0.9144 18.2874
9 Weeks 6 1.0726 21.4516

10 Weeks 1 1.4027 28.0535

20.3955

10 Weeks 2 0.6425 12.8503
10 Weeks 3 0.8935 17.8706
10 Weeks 4 1.0995 21.9892
10 Weeks 5 1.0910 21.8207
10 Weeks 6 0.9895 19.7890

11 Weeks 1 0.8926 17.8526

21.0965

11 Weeks 2 0.9839 19.6771
11 Weeks 3 1.4022 28.0438
11 Weeks 4 0.7607 15.2140
11 Weeks 5 1.1215 22.4306
11 Weeks 6 1.1680 23.3607
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Table D.2 continued

Sample
Choline

concentration in
extract ( g/mL)

Choline
concentration
in yolk ( g/g)

Mean choline
concentration
in yolk ( g/g)

12 Weeks 1 1.6912 33.8238

28.7473

12 Weeks 2 1.7233 34.4655
12 Weeks 3 1.4349 28.6971
12 Weeks 4 1.0779 21.5584
12 Weeks 5 1.4845 29.6903
12 Weeks 6 1.2124 24.2487
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Table D.4: Table showing the significantly di↵erent features in yolk organic extracts between
eggs of di↵erent ages stored at 5 . CV% calculated from peak areas of QC samples,
p-value calculated from either ANOVA or Welch test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

331.2857 14.942 1.76 <0.001
338.3435 26.791 1.67 <0.001
359.3174 23.839 1.96 <0.001
369.3530 32.168 3.38 0.004
387.1822 1.258 3.28 <0.001
454.2945 10.234 3.15 0.003
482.3266 17.733 2.76 <0.001
494.3256 6.353 3.38 0.003
496.3420 9.987 2.11 0.006
497.3449 8.731 6.31 <0.001
518.3237 9.955 8.14 <0.001
520.3423 8.181 3.31 0.010
522.3573 10.500 6.38 <0.001
548.5041 48.361 10.35 <0.001
612.5589 48.844 0.97 0.006
622.6164 52.041 1.48 <0.001
639.7720 49.855 17.51 0.038
643.5305 50.053 19.66 0.019
648.6325 52.710 0.94 0.009
650.6481 55.512 1.86 0.003
730.5414 35.321 1.80 0.003
732.5577 38.469 1.38 0.001
734.5729 41.907 1.95 0.001
740.5290 40.080 3.20 0.009
746.6088 45.921 1.15 0.001
756.5580 37.717 1.25 <0.001
761.5912 43.919 2.77 0.009
764.5284 39.507 5.69 <0.001
772.5888 42.306 1.19 0.006
774.6029 45.264 2.65 <0.001
780.5575 36.268 6.61 <0.001
785.5916 41.692 2.43 0.010
791.6336 47.150 1.13 0.001
792.5579 43.955 3.21 0.001
804.5563 35.819 2.04 0.001
810.5947 40.912 1.63 0.008
820.7426 66.738 1.08 <0.001
822.7548 68.962 1.38 0.001
848.7763 69.597 1.25 <0.001
850.7920 72.379 1.62 0.001
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Table D.4 continued

Feature m/z
RT median
(minutes)

CV% p-value

850.7920 72.379 1.62 0.001
851.7863 69.589 1.29 <0.001
876.8115 73.182 1.69 0.004
877.7281 67.874 2.65 <0.001
879.7482 70.672 3.35 <0.001
881.7652 73.514 3.04 <0.001
903.7424 68.653 3.09 0.002
905.7651 71.041 28.87 0.002
908.7800 74.192 27.29 0.007

Page 481



Appendix D

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

100 150 200 250 300 350

Co
un

ts

m/z

338.3424

321.3170

338.3435

321.3174

Figure D.4: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
docosenamide and m/z 338.3435 respectively
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Figure D.5: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds PE(16:0/0:0)
and m/z 454.2945 respectively
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Figure D.6: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds PC(16:0/0:0)
and m/z 496.3420 respectively
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Table D.5: Table showing concentration of choline in yolk organic extracts, the yolks them-
selves, and the mean choline concentration in egg yolks from eggs of di↵erent ages,
stored at 5 C

Sample
Choline

concentration in
extract ( g/mL)

Choline
concentration
in yolk ( g/g)

Mean choline
concentration
in yolk ( g/g)

Fresh 1 0.3045 6.0898

8.1827

Fresh 2 0.5187 10.3741
Fresh 3 0.4209 8.4178
Fresh 4 0.4691 9.3820
Fresh 5 0.3879 7.7572
Fresh 6 0.3538 7.0754

1 Week 1 0.2758 5.5160

5.6184

1 Week 2 0.2664 5.3288
1 Week 3 0.2451 4.9014
1 Week 4 0.2284 4.5680
1 Week 5 0.2632 5.2644
1 Week 6 0.4066 8.1320

2 Weeks 1 0.4664 9.3288

7.6251

2 Weeks 2 0.3833 7.6667
2 Weeks 3 0.3574 7.1474
2 Weeks 4 0.3078 6.1558
2 Weeks 5 0.4173 8.3452
2 Weeks 6 0.3553 7.1066

3 Weeks 1 0.4036 8.0720

8.1143

3 Weeks 2 0.2715 5.4292
3 Weeks 3 0.4066 8.1318
3 Weeks 4 0.6108 12.2170
3 Weeks 5 0.3134 6.2678
3 Weeks 6 0.4284 8.5678

4 Weeks 1 0.3212 6.4244

7.0958

4 Weeks 2 0.3123 6.2465
4 Weeks 3 0.3266 6.5316
4 Weeks 4 0.4290 8.5801
4 Weeks 5 0.3851 7.7014
4 Weeks 6 0.3545 7.0908

5 Weeks 1 0.4232 8.4640

8.9193

5 Weeks 2 0.4131 8.2616
5 Weeks 3 0.5336 10.6730
5 Weeks 4 0.5533 11.0659
5 Weeks 5 0.4093 8.1851
5 Weeks 6 0.3433 6.8664
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Table D.5 continued

Sample
Choline

concentration in
extract ( g/mL)

Choline
concentration
in yolk ( g/g)

Mean choline
concentration
in yolk ( g/g)

6 Weeks 1 0.4538 9.0754

10.1038

6 Weeks 2 0.5359 10.7179
6 Weeks 3 0.4520 9.0404
6 Weeks 4 0.4377 8.7543
6 Weeks 5 0.7006 14.0112
6 Weeks 6 0.4512 9.0236

7 Weeks 1 0.3567 7.1333

7.0734

7 Weeks 2 0.2804 5.6081
7 Weeks 3 0.2676 5.3522
7 Weeks 4 0.5120 10.2406
7 Weeks 5 0.2701 5.4022
7 Weeks 6 0.4352 8.7040

8 Weeks 1 0.5548 11.0958

10.3745

8 Weeks 2 0.6136 12.2719
8 Weeks 3 0.2884 5.7677
8 Weeks 4 0.4893 9.7855
8 Weeks 5 0.6090 12.1802
8 Weeks 6 0.5573 11.1456

9 Weeks 1 0.2973 5.9457

9.4120

9 Weeks 2 0.4637 9.2742
9 Weeks 3 0.4487 8.9738
9 Weeks 4 0.3240 6.4802
9 Weeks 5 0.6399 12.7973
9 Weeks 6 0.6500 13.0009

10 Weeks 1 0.7169 14.3384

10.0272

10 Weeks 2 0.5961 11.9220
10 Weeks 3 0.2916 5.8320
10 Weeks 4 0.3669 7.3374
10 Weeks 5 0.4821 9.6420
10 Weeks 6 0.5546 11.0911

11 Weeks 1 0.3805 7.6095

7.4946

11 Weeks 2 0.3126 6.2522
11 Weeks 3 0.4074 8.1479
11 Weeks 4 0.5010 10.0193
11 Weeks 5 0.2893 5.7857
11 Weeks 6 0.3576 7.1527
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Table D.5 continued

Sample
Choline

concentration in
extract ( g/mL)

Choline
concentration
in yolk ( g/g)

Mean choline
concentration
in yolk ( g/g)

12 Weeks 1 0.4679 9.3584

10.2271

12 Weeks 2 0.4790 9.5793
12 Weeks 3 0.5924 11.8484
12 Weeks 4 0.3526 7.0520
12 Weeks 5 0.6837 13.6740
12 Weeks 6 0.4925 9.8501
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Table D.6: Table showing the significantly di↵erent features in yolk organic extracts between
eggs stored at 5 C and 23 C for five weeks. CV% calculated from peak areas of
QC samples, p-value calculated from two-sample t-tests. The final two columns
show whether the compound is of higher abundance ( ) or lower abundance ( ) in
the yolks of eggs stored at that temperature, compared to the other temperature.

Feature
m/z

RT median
(minutes)

CV% p-value 25 C 5 C

104.1072 0.790 1.85 0.004
165.0544 0.856 2.83 0.005
257.2471 14.893 5.47 <0.001
279.2275 19.740 5.69 0.003
297.2747 13.165 14.90 0.002
283.2980 26.382 14.29 0.003
303.2524 8.173 3.02 0.004
317.2408 24.813 23.93 0.008
331.2856 14.878 2.67 <0.001
348.2877 21.151 9.74 0.001
353.2543 21.143 4.05 0.003
359.3172 23.673 2.03 0.005
367.2789 19.098 6.18 0.009
377.2643 12.419 8.70 0.010
387.3465 26.842 9.16 0.002
404.2076 1.263 3.19 0.002
405.3092 29.677 7.32 0.008
427.3098 13.650 13.12 <0.001
438.3448 32.571 20.21 0.004
464.2827 1.637 14.19 0.001
485.3340 17.632 3.47 0.003
504.3074 17.682 2.57 0.003
517.3000 1.630 25.97 0.002
526.2922 8.373 21.70 0.003
549.5044 70.216 3.97 0.008
578.5236 69.717 2.44 0.009
626.5725 48.992 19.11 0.007
642.4310 28.270 12.75 <0.001
658.5427 45.229 0.59 0.004
670.4635 31.281 4.68 0.001
686.5865 52.916 11.43 0.003
721.5882 45.805 4.97 0.008
774.5572 29.219 10.37 0.005
841.6701 67.063 6.06 0.004
848.7762 69.808 1.84 0.009
851.7169 67.677 27.31 0.009
853.7331 69.592 6.89 0.005
859.6359 30.145 15.33 0.009
877.8112 73.508 2.08 0.005
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Table D.6 continued

Feature
m/z

RT median
(minutes)

CV% p-value 25 C 5 C

878.7347 68.499 3.26 0.003
880.8255 73.492 1.83 0.003
897.7243 70.332 3.38 0.007
924.2692 75.864 29.87 0.010
928.8320 68.014 1.28 0.005
932.8582 73.176 5.51 0.006
935.8432 72.662 21.57 0.009
950.8387 66.876 5.63 0.007
972.6113 10.199 2.02 0.009
985.6246 17.659 2.62 0.002
992.8881 73.673 2.35 0.005
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Table D.7: Table showing the significantly di↵erent features in organic extracts between egg
yolks stored at 5 C for di↵erent lengths of time. CV% calculated from peak areas
of QC samples, p-value calculated from either ANOVA or Welch test depending on
variance.

Feature m/z
RT median
(minutes)

CV% p-value

310.3103 21.919 2.03 <0.001
331.2840 13.489 4.95 <0.001
338.3416 26.614 1.57 <0.001
359.3152 22.198 2.01 <0.001
387.1770 1.200 6.31 <0.001
525.3743 16.040 4.10 0.009
603.5350 51.347 3.35 0.004
605.5500 54.103 3.93 0.002
608.5247 43.676 1.96 <0.001
614.5717 53.123 1.76 <0.001
615.4956 47.230 3.18 <0.001
617.5114 50.277 2.04 0.007
622.6141 53.486 2.13 <0.001
632.6338 56.991 3.07 <0.001
636.6296 55.282 1.71 <0.001
640.5882 54.069 1.65 0.003
641.5118 48.328 3.94 0.002
666.6215 69.330 11.20 0.001
720.5889 46.301 1.39 0.002
730.5743 48.370 3.00 0.001
744.5869 46.955 5.12 0.002
746.6053 47.721 5.37 <0.001
758.5701 41.928 5.28 0.003
761.5895 44.950 5.78 0.007
764.5244 40.574 2.82 0.005
769.5596 45.786 1.31 0.001
773.5889 43.701 2.31 0.010
774.6311 52.517 14.62 0.001
775.6047 46.968 8.58 0.003
778.5742 49.770 1.52 0.001
780.5909 50.435 1.69 <0.001
782.5714 40.708 2.39 0.004
782.6063 51.629 1.61 <0.001
784.5863 42.450 0.99 0.001
787.6685 52.238 1.96 0.003
788.6175 49.025 2.03 0.001
792.5556 45.193 2.23 0.001
794.5775 46.534 9.45 0.002
806.5710 40.408 1.56 0.003
808.5866 43.241 1.02 0.008
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Table D.7 continued

Feature m/z
RT median
(minutes)

CV% p-value

812.6171 47.166 26.98 <0.001
813.6848 52.844 2.13 0.007
824.6467 52.372 1.86 <0.001
832.5855 41.836 1.50 0.005
834.6020 45.134 1.40 <0.001
836.6168 46.821 1.49 <0.001
838.6312 49.358 2.28 <0.001
874.7875 73.017 2.58 <0.001
901.8093 73.856 4.46 0.010
902.8189 77.328 4.58 0.001
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Figure D.7: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds oleoyl ethyl
amide and m/z 310.3103 respectively
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Figure D.8: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds PAF C-16
and m/z 525.3743 respectively

Page 493



Appendix E

Table E.1: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens kept in cages with di↵erent numbers of birds (20, 40,
60, 80). CV% calculated from peak areas of QC samples, p-value calculated from
either ANOVA or Welch test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

341.3046 52.891 1.62 0.002
387.1733 1.184 3.09 0.005
522.3555 9.227 2.48 <0.001
549.5066 45.919 1.50 0.010
577.5196 49.179 2.60 0.001
579.5346 52.044 3.44 0.003
595.5295 49.138 1.75 0.008
604.5381 50.252 7.68 0.004
604.6027 52.359 2.54 <0.001
618.6183 54.086 2.57 <0.001
621.5452 50.203 1.79 0.005
632.6343 55.746 2.24 <0.001
636.5571 47.279 6.90 0.003
640.5885 52.891 1.26 0.001
641.5118 47.231 3.17 0.005
644.5950 52.360 1.34 0.003
650.4387 15.263 9.02 0.004
654.3316 13.547 1.15 <0.001
658.6106 54.086 0.73 0.001
666.6032 53.723 1.89 0.001
672.6264 55.762 1.02 0.005
700.5270 42.583 2.62 0.004
728.5582 47.065 4.80 0.001
732.5435 35.712 3.22 0.006
742.5554 42.565 23.90 0.005
744.5861 45.789 3.02 0.009
758.5699 39.861 1.06 0.003
759.5719 42.533 16.99 0.008
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Table E.1 continued

Feature m/z
RT median
(minutes)

CV% p-value

760.5860 51.293 8.46 0.005
806.5545 34.697 20.24 <0.001
808.5695 36.989 2.69 <0.001
816.6999 54.908 7.06 0.007
836.7707 70.846 28.35 0.003
842.7237 65.176 1.51 0.002
847.7599 67.714 1.97 0.009
868.7395 65.723 2.39 0.001
870.7607 67.382 0.83 <0.001
872.7681 69.442 4.64 <0.001
877.8078 73.242 10.10 0.001
882.7618 72.910 2.87 0.009
898.7868 69.516 3.40 0.007
916.8339 76.265 5.43 <0.001
922.7806 69.319 3.29 0.001
926.8182 72.300 11.56 <0.001
928.8330 75.811 9.09 0.003
930.8489 78.505 6.92 <0.001
941.8296 71.265 7.44 0.003
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Table E.2: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens kept in cages of di↵erent population size for nine weeks,
as well as three weeks. The p-value was calculated from either ANOVA or Welch
test depending on variance.

Feature m/z
RT median
(minutes)

9 weeks
p-value

3 weeks
p-value

341.3046 52.891 0.002 0.241

387.1733 1.184 0.005 <0.001

522.3555 9.227 <0.001 0.449

549.5066 45.919 0.010 0.378

577.5196 49.179 0.001 0.289

579.5346 52.044 0.003 0.246

595.5295 49.138 0.008 0.706

604.5381 50.252 0.004 0.048

604.6027 52.359 <0.001 0.150

618.6183 54.086 <0.001 0.017

621.5452 50.203 0.005 0.622

632.6343 55.746 <0.001 0.387

636.5571 47.279 0.003 0.005

640.5885 52.891 0.001 0.546

641.5118 47.231 0.005 0.039

644.5950 52.360 0.003 0.337

650.4387 15.263 0.004 0.269

654.3316 13.547 <0.001 0.037

658.6106 54.086 0.001 0.102

666.6032 53.723 0.001 0.686

672.6264 55.762 0.005 0.377

700.5270 42.583 0.004 0.873

728.5582 47.065 0.001 0.740

808.5695 36.989 <0.001 <0.001

836.7707 70.846 0.003 0.092

842.7237 65.176 0.002 0.200

847.7599 67.714 0.009 0.481

868.7395 65.723 0.001 0.254

870.7607 67.382 <0.001 0.092

916.8339 76.265 <0.001 0.556

922.7806 69.319 0.001 0.713
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Table E.2 continued

Feature m/z
RT median
(minutes)

9 weeks
p-value

3 weeks
p-value

926.8182 72.300 <0.001 0.650

928.8330 75.811 0.003 0.906

930.8489 78.505 <0.001 0.699
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Table E.3: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens kept in cages with di↵erent stocking densities. CV%
calculated from peak areas of QC samples, p-value calculated from either ANOVA
or Welch test depending on variance.

Feature m/z
RT median
(minutes)

CV% p-value

162.1106 0.748 11.08 0.001
291.2525 4.251 3.26 0.007
310.2377 3.923 8.23 0.005
369.1660 1.234 4.53 0.006
387.1880 1.881 6.42 0.002
448.3574 31.178 24.16 0.002
489.2270 5.451 2.69 0.001
498.3457 8.920 5.80 0.008
548.5037 47.996 6.93 <0.001
565.4040 30.764 3.88 0.001
599.5033 35.893 5.74 0.004
601.5184 38.135 8.82 0.009
624.6273 55.856 3.82 0.003
627.5340 41.489 7.21 0.009
630.6188 55.232 2.88 0.015
637.3050 15.078 2.88 0.006
638.6438 57.508 5.00 <0.001
640.8873 52.327 18.48 0.001
641.5122 49.672 5.69 0.003
650.6425 56.459 4.88 0.010
652.6597 59.050 6.10 0.001
658.5402 46.134 4.10 0.020
659.5010 52.401 29.15 0.010
662.6441 56.875 3.92 0.009
667.6324 53.406 11.16 0.005
708.5446 40.285 11.51 0.008
720.5897 47.731 5.06 0.005
734.4781 35.303 8.62 0.009
745.5474 43.894 14.89 0.014
754.5322 36.340 4.13 0.004
758.5694 45.106 3.67 0.009
758.5817 55.811 9.97 0.009
760.5863 46.143 4.30 0.004
762.5973 51.252 24.62 0.001
764.5186 41.211 9.66 0.009
771.5713 46.135 10.20 0.025
775.6074 49.803 6.06 0.006
786.5074 41.919 7.57 0.041
786.6013 54.209 25.31 0.001
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Table E.3 continued

Feature m/z
RT median
(minutes)

CV% p-value

787.6080 52.891 5.59 0.002
788.6072 48.385 5.45 0.010
796.3372 1.250 6.62 0.008
796.7383 70.633 8.43 0.009
802.6805 56.295 4.44 0.007
807.5718 41.122 24.96 0.009
815.5437 43.762 8.03 0.002
842.5891 35.678 3.12 0.006
842.6917 56.227 17.23 0.003
860.5361 35.893 6.33 <0.001
878.5743 38.119 6.04 0.010
892.6918 68.113 4.42 0.004
896.7716 69.656 3.45 0.002
906.6050 45.189 5.81 <0.001
908.7751 69.093 14.63 <0.001
923.7255 66.468 11.66 <0.001
946.7851 69.721 4.10 0.003
952.8326 75.584 5.82 0.001
980.8631 80.775 13.97 0.006
989.5638 15.086 3.96 0.010
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Figure E.1: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
canthaxanthin and m/z 565.4040 respectively
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Table E.4: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens kept in cages of di↵erent stocking densities for two
weeks, as well as four days. The p-value was calculated from either ANOVA or
Welch test depending on variance.

Feature m/z
RT median
(minutes)

2 weeks
p-value

4 days p-value

291.2525 4.251 0.007 <0.001

310.2377 3.923 0.005 0.025

369.1660 1.234 0.006 <0.001

387.1880 1.881 0.002 <0.001

489.2270 5.451 0.001 0.001

548.5037 47.996 <0.001 <0.001

565.4040 30.764 0.001 0.172

599.5033 35.893 0.004 0.001

601.5184 38.135 0.009 0.004

624.6273 55.856 0.003 0.019

630.6188 55.232 0.015 0.079

637.3050 15.078 0.006 <0.001

638.6438 57.508 <0.001 0.007

641.5122 49.672 0.003 0.651

650.6425 56.459 0.010 0.028

652.6597 59.050 0.001 0.010

658.5402 46.134 0.020 0.308

667.6324 53.406 0.005 0.032

708.5446 40.285 0.008 0.270

720.5897 47.731 0.005 0.384

734.4781 35.303 0.009 0.163

754.5322 36.340 0.004 0.375

758.5694 45.106 0.009 0.001

760.5863 46.143 0.004 0.277

771.5713 46.135 0.025 0.423

786.5074 41.919 0.041 0.022

788.6072 48.385 0.010 0.052

796.3372 1.250 0.008 <0.001

796.7383 70.633 0.009 0.045

842.5891 35.678 0.006 0.118

842.6917 56.227 0.003 0.764
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Table E.4 continued

Feature m/z
RT median
(minutes)

2 weeks
p-value

4 days p-value

860.5361 35.893 <0.001 0.005

878.5743 38.119 0.010 0.005

896.7716 69.656 0.002 0.252

906.6050 45.189 <0.001 0.020

923.7255 66.468 <0.001 0.119

946.7851 69.721 0.003 0.490

952.8326 75.584 0.001 0.139

980.8631 80.775 0.006 0.129

989.5638 15.086 0.010 0.007
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Table F.1: Table showing the significantly di↵erent features in yolk organic extracts between
eggs that were laid by hens from cage and barn housing systems. CV% calculated
from peak areas of QC samples, p-value calculated from t-test.

Feature m/z
RT median
(minutes)

CV% p-value

520.3398 8.158 3.21 0.004
601.5182 48.420 5.03 0.001
608.5243 43.851 5.74 0.047
634.5395 45.408 7.66 0.001
636.5566 48.386 4.54 <0.000
700.5266 43.843 3.37 <0.001
728.5580 48.135 10.36 0.001
734.5699 43.389 3.11 0.004
744.5543 46.159 1.82 0.013
752.5215 34.904 3.05 0.001
754.5371 37.355 6.71 0.011
756.5546 37.946 18.63 0.043
762.6007 48.003 1.25 0.035
772.5851 43.834 3.40 0.007
780.5529 39.391 2.44 0.023
783.5737 39.557 2.26 0.011
787.6679 52.084 1.38 0.030
812.6620 49.804 3.31 0.002
870.7605 68.124 8.92 0.003
872.7705 70.111 1.63 0.015
886.7880 71.777 5.73 0.008
888.8098 74.217 4.39 0.033
896.7722 69.705 1.74 0.049
896.7766 68.779 1.97 0.000
898.7852 70.960 2.41 0.000
898.7907 72.334 3.94 0.008
901.8043 73.763 5.92 0.010
926.8194 76.619 12.83 0.006
928.8331 78.336 6.39 0.036
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Table F.2: Table showing the 12 compounds that produced potential metabolite matches
through METLIN. PC=phosphatidylcholine, PE=phosphatidylethanolamine,
PA=phosphatidate

Feature
m/z

RT
median

(minutes)

Potential
Formulae

Species Score Potential ID

520.3398 8.158 C26H50NO7P (M+H)+ 99.22 PE, PC, LysoPC
608.5243 43.851 C37H66O5 (M+NH4)+ 99.39 Diglycerides
634.5395 45.408 C39H68O5 (M+NH4)+ 99.54 Diglycerides
636.5566 48.386 C39H70O5 (M+NH4)+ 97.79 Diglycerides
700.5266 43.843 C39H74NO7P (M+H)+ 97.37 PE

C39H71O7P (M+NH4)+ 97.37 PA
734.5699 43.389 C40H80NO8P (M+H)+ 99.36 PE, PC

C40H77O8P (M+NH4)+ 99.36 PA
744.5543 46.159 C41H78NO8P (M+H)+ 98.16 PE, PC
772.5851 43.834 C43H82NO8P (M+H)+ 95.00 PE, PC

C43H79O8P (M+NH4)+ 95.00 PA
872.7705 70.111 C55H98O6 (M+NH4)+ 99.53 Triglycerides
886.7880 71.777 C56H100O6 (M+NH4)+ 96.56 Triglycerides
898.7852 70.960 C57H100O6 (M+NH4)+ 98.76 Triglycerides
928.8331 78.336 C59H106O6 (M+NH4)+ 98.03 Triglycerides
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Figure F.1: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
PC(16:0/16:0) and m/z 734.5699 respectively
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Table F.3: Table showing the significantly di↵erent features in albumen organic extracts be-
tween eggs that were laid by birds from cage and barn housing systems. CV%
calculated from peak areas of QC samples, p-value calculated from t-test.

Feature m/z
RT median
(minutes)

CV% p-value

310.2369 2.102 6.30 0.031
316.3209 17.813 3.24 0.034
425.1295 0.942 3.11 0.004
506.2529 2.667 1.80 0.019
586.5397 25.068 3.34 0.041
811.3078 0.958 2.30 0.002

0

100000

200000

300000

400000

500000

600000

550 600 650 700

Co
un

ts

m/z

716.5221

716.5227

575.5028

575.5020

Figure F.2: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
PE(16:0/18:2) and m/z 716.5227 respectively
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Figure F.3: Comparison between the mass spectrum provided by METLIN (top), and the
mass spectrum resulting from analysis (bottom) for the compounds
SM(18:1/16:0) and m/z 725.5556 respectively
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