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ABSTRACT 

The degeneration of dopaminergic neurons (DAn) in the midbrain substantia nigra pars 

compacta (SNpc) is a definitive feature of Parkinson's disease (PD). Although age has 

been established as one of the main risk factors, the role that ageing has in the 

development of the disease is not yet fully understood. The aim of this Thesis, therefore, 

was to enhance our understanding of how ageing may increase the vulnerability of SNpc 

DAn.  

To achieve this aim, isobaric tags for relative and absolute quantitation (iTRAQ) labelling 

combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) was 

used to quantitatively compare the SNpc proteome of rats during ageing. Western blot 

and immunofluorescence analyses were subsequently conducted to verify some of the 

differentially expressed proteins from the analysis (e.g., GFAP), while 

immunohistochemistry analyses were performed to quantitatively and morphologically 

characterize the DAn of the rat SNpc themselves during ageing. From a total of 1,953 

proteins that were identified and quantified in the proteomic study, the expression levels 

of 66 proteins were altered throughout ageing. Bioinformatic analysis revealed that 

proteins related to glial cells (e.g., GFAP) and the extracellular matrix (ECM) were 

differentially expressed in the old rat SNpc. Importantly, an unusual form of the GFAP 

protein (i.e., GFAPδ) was showed for the first time to be differentially expressed during 

ageing. In addition to this, the level of tyrosine hydroxylase (TH) expression in the SNpc 

throughout ageing was maintained. This was somewhat surprising as it appears that, 

independent of the proteomic changes, there was a general decrease in the density of 

rat SNpc DAn together with an increase of their soma size with ageing, which might 

indicate that the remaining DAn are able to maintain the level of tyrosine hydroxylase 

(TH) expression in the SNpc throughout ageing.  

These results were followed by an in vitro investigation of the role astrocytes play in the 

vulnerability of DAn. To do this, primary cultures of embryonic DAn were challenged with 

the toxin 6-hydroxidopamine (6-OHDA) after reducing the number of astrocytes in the 



Abstract 

ii 
  

cultures in a unique way (i.e., by using the anti-mitotic drug paclitaxel). Though the anti-

mitotic drug was successful in reducing astrocytes in the cultures, it was difficult to test 

the effect this had on combating the effects of 6-OHDA on DAn because the toxin also 

affected the viability of the remaining astrocytes in culture.  

Lastly, multiple multi-study proteomic comparisons of published studies on the ageing 

nervous system and PD demonstrated that metabolism, oxidation-reduction 

mechanisms, mitochondrial function and immune system were biological processes and 

pathways enriched in both ageing and PD. Because some of these biological processes 

were the same as those found differentially expressed in the proteomics study of ageing 

conducted here, this support the idea that they may be key toward understanding how 

ageing is involved in the development of PD.  

In conclusion, this Thesis showed that ageing alters the metabolic support associated 

with mitochondrial and oxidation-reduction functions (as it happens in PD) and suggests 

that this might have considerable repercussions on highly reactive oxygen species 

(ROS) sensitive neurons such as SNpc DAn. Adding to this, the alteration of proteins 

related to glial cells (e.g., astrocytes) might affect their protective function in the SNpc 

during a time when they are become even more essential to the survival of DAn. 
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CHAPTER 1: GENERAL INTRODUCTION  

OVERVIEW: Parkinson’s disease (PD) is the second most common age-related 

neurodegenerative disease after Alzheimer’s disease (AD) (Shulman et al., 2011; Sulzer 

and Surmeier, 2013; Ascherio and Schwarzschild, 2016; Poewe et al., 2017). 

Understanding the mechanisms behind its occurrence and progression has proven 

difficult. Therefore, the aim of this Thesis is to understand why the incidence of PD 

increases with ageing. To achieve that, the region of the brain that degenerates with PD 

(i.e., the substantia nigra pars compacta, SNpc) will be examined at the cellular and 

protein level in rats during ageing, using a cutting-edge proteomics approach and other 

traditional techniques (e.g., immunohistochemistry, immunoblotting). In this General 

introduction, I will first review the literature related to what characterises PD, including 

its epidemiology and etiology, its symptoms, its neuropathological features (at 

anatomical, cellular and molecular level), and the available therapies (section 1.1). 

Following this, this chapter will provide a review with the main characteristics of 

dopaminergic neurons (DAn) in the SNpc and the similarities and differences to other 

DAn within the brain (section 1.2). Subsequently, the relationship between PD and 

ageing will be reviewed, focusing in the similarities between both processes (section 

1.3). Lastly, to illustrate my knowledge on the proteomics technique used in this Thesis, 

the background information of this approach will be discussed, including its advantages 

and limitations for neuroscience studies (section 1.4).  

 

1.1. What is Parkinson’s disease (PD)? 

1.1.1 The epidemiology and etiology of PD: ageing as the principal risk factor  

Ageing is considered the main risk factor in PD, affecting more 1.5% of the population 

over 85 years old, as recently documented in a systematic analysis by the Global Burden 

of Disease Study 2016, which analyzed 127 epidemiological studies related to PD 

between 1990 and 2016 (GBD 2016 Parkinson’s Disease Collaborators, 2018). They 

observed that PD was rare before 50 years old, increasing its prevalence around 1.5% 
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after 85 years of age. Similarly, a systematic review and meta-analysis using 112 studies 

of the prevalence of PD, including 47 door-to-door survey and random population sample 

from different regions (i.e., Asia, Europe, Australia, South America and North America), 

observed an increase of the prevalence from 41 per 100,000 individuals between 40 to 

49 years, to 428 per 100,000 between 60 to 69 years, and 1,087 per 100,000 between 

70 to 79 years (Pringsheim et al., 2014). Individual studies in European countries have 

revealed similar trends. For instance, an observational study between 2012 and 2018 

using the data from different French PD expert centers found 9,454 individuals with PD, 

69% of them with an age between 50 and 75 years at diagnosis (Mariani et al., 2019). 

In Spain, a 3-year study analysing 3,823 individuals between 65 to 85 without PD, 

demonstrated that 30 of them went to develop the disease (Benito-Leon et al., 2004). 

This work also indicated that the incidence of PD increased from 67.5 per 100,000 in 

individuals between the ages of 65 to 69 years, to 225.3 per 100,000 in individuals 

between 79 to 74 years, and 365.9 per 100,000 individuals in more than 85 years of age. 

Similarly, a Swedish cohort of 138 patients for four years identified an incidence of PD 

of 22.4 per 100,000 between 50−59 years, and 165.6 per 100,000 between 70−79, 

confirming once again that ageing is a key component in the development of PD (Linder 

et al., 2010). Lastly, a report generated by Parkinson’s UK, using the data from PD 

patients from the Clinical Practice Research Datalink (CPRD) database, showed that the 

prevalence of the disease was 65.4 people per 100,000 individuals at the age of 50−54. 

This increased to 482.2 per 100,000 in individuals between 65−69 years, and 1,282 per 

100,000 individuals between 74−79 years of age. (Parkinson’s UK, 2017). Altogether, 

body of research shows how ageing increases the prevalence and incidence of PD 

worldwide, being essential the understanding of its relationship with the disease.  

It is important to note that both incidence and prevalence of the disease vary worldwide 

depending on aspects like geography, ethnicity, environment, lifestyle, but also the 

methodological differences between clinical studies such as the diagnosis or inclusion 

criteria for PD (Pringsheim et al., 2014; Hirsch et al., 2016).  
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In terms of etiology, PD in most cases has no known cause (i.e., it is ‘idiopathic’ or 

‘sporadic’), though exposure to pesticide (Pouchieu et al., 2018), heavy metals 

(Weisskopf et al., 2010; Willis et al., 2010), high consumption of dairy products (Hughes 

et al., 2017), use of methamphetamines (Curtin et al., 2015) or traumatic brain injury 

(Gardner et al., 2018) are considered risk factors. Alternatively, tobacco (Hernan et al., 

2002; Li et al., 2015a), caffeine (Hernan et al., 2002; Qi and Li, 2014), anti-inflammatory 

drugs (Gagne and Power, 2010) and physical activity (Xu et al., 2010) have been proven 

to have a protective effect (Ascherio and Schwarzschild, 2016). Interestingly, such 

environmental factors might mean that ageing is not necessarily a causal mechanism 

for PD, but that it occurs in individuals exposed to particular substances for long periods 

of time.  

In addition to unknown and environmental factors, PD can also be linked to genetic 

components. ‘Heritable’ or ‘familial’ forms of the disease do occur due to alterations in 

genes coding for alpha-synuclein (Polymeropoulos et al., 1997), leucine-rich repeat 

kinase 2 (LRRK2) (Zimprich et al., 2004), PTEN-induced putative kinase 1 (PINK1) 

(Valente et al., 2004), parkin (Lucking et al., 2000) or DJ-1 (Bonifati et al., 2003). When 

such genetic components are a causative factor, the disease onset is typically much 

earlier in life, usually occurring before 40−50 years of age (Polymeropoulos et al., 1997; 

Lucking et al., 2000; Bonifati et al., 2003; Valente et al., 2004; Zimprich et al., 2004). 

Currently, it is known that many of these genes encode for proteins that are associated 

with the maintenance and turnover of mitochondria. For example, Burman et al. (2012) 

demonstrated, using Drosophila parkin mutants, that alterations of this protein lead to an 

accumulation of defective mitochondria specifically in the neurons that degenerate with 

PD. As it will be explained in more detail in subsequent sections, these neurons are 

highly dependent on energy, so alterations in their mitochondria increases their 

vulnerability (Kumar et al., 2017). 
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In summary, ageing is the main risk factor in PD, though it is also considered to be a 

multifactorial neurodegenerative disease that can be affected by environmental and 

genetic elements. Ultimately, however, the true etiology of PD is currently unknown.   

 

1.1.2 Movement abnormalities are the main symptoms in PD  

Motor symptoms such as tremor, bradykinesia or akinesia, gait, rigidity or postural 

instability are the main clinical features of PD (Moustafa et al., 2016). This is because, 

as it will describe in more detail in further lines (see subsection 1.1.3.1), the loss of SNpc 

DAn involves the denervation of the dorsolateral striatum (called caudade-putamen in 

humans), producing a depletion of dopamine that regulated the basal ganglia circuit, 

affecting the initiation of voluntary movements (DeLong and Wichmann, 2009; Rizzi and 

Tan, 2017). In addition to motor abnormalities, the disease causes additional symptoms 

like constipation, hyposmia, insomnia, anxiety, or depression (Stern et al., 2012; Liu et 

al., 2017). 

 

1.1.3 The neuropathology of PD is multifactorial and affects mainly the substantia 

nigra pars compacta (SNpc) 

Overview: The following subsections will attempt to provide a summary of the literature 

related to the diverse and complex pathophysiological characteristics associated with 

PD, including the gross neuroanatomical alterations that appear in the brain and, more 

specifically, in the SNpc. Moreover, it will be presented the molecular changes that 

appear during the disease in the SNpc DAn (e.g., oxidative stress and mitochondria 

dysfunction) that in many cases are related to ageing. In general, these features are 

used to not only provide a post-mortem diagnosis of the disease at autopsy, but to help 

to understand what is happening in the SNpc during the course of the disease and to 

provide clues about its causes. To note, the known similarities between ageing and PD 

will be discuss in more detail in the section 1.3. 
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1.1.3.1 The degeneration of dopaminergic neurons (DAn) in the ventral tier of the 

SNpc is the main pathological feature of PD  

The main pathological hallmark of PD is the loss of DAn in the SNpc (Damier et al., 1999) 

(Figure 1.1). Damier and colleagues (1999) observed this in five PD brains compared 

to five controls by using immunostaining for tyrosine hydroxylase (TH), the rate limiting 

enzyme in the synthesis of dopamine (Daubner et al., 2011). Interestingly, the lack of 

these SNpc DAn can also be readily visualized in humans because human DAn contain 

neuromelanin (NM) (Hirsch, 1988), which provides a black color to these neurons that 

can be seen with the eye without histological processing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The progressive loss of DAn in the SNpc and Lewy bodies are the main 
pathological hallmarks in PD. The image shows a ventral view of the human brain (left 

image), with a transverse cut made at the level of the ventral midbrain area, where the 

SNpc is located. DAn in healthy SNpc have natural black pigmentation due to 

neuromelanin (NM) that can be viewed without histological processing. However, cells 

can be stained with cresyl violet for a better visualization (top right image). The loss of 

DAn in the parkinsonian SNpc produces the lack of this pigmentation (bottom right 

image). The remaining DAn in the PD SNpc many times contain Lewy bodies, which is 

an accumulation of alpha-synuclein in the cytoplasm (bottom right image). Extracted 

from Blausen.com staff, 2014; Neuropathology-web, 2016. 
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The discovery of the association between the loss of DAn and PD started in 1960, when 

the first description of a reduction of dopamine in the caudate and putamen of six post-

mortem adult brains with PD was made (Ehringer and Hornykiewicz, 1960; 

Hornykiewicz, 2006). In their article, they assumed that the dopamine deficiency found 

in the caudate and putamen could be related to the reduction of SNpc neurons in PD 

described previously by Hassler (1938) (Hornykiewicz, 2006). Three years later, 

Hornykiewicz (1963) analyzed the SNpc of ten PD brains, finding a reduction of 

dopamine in the SNpc comparable to the lack of dopamine in the striatum, thus 

contributing to the discovery of the nigrostriatal dopamine pathway (Hornykiewicz, 2006). 

This discovery had invaluable clinic importance, which was quickly illustrated when 

Birkmayer and Hornykiewicz (1961) injected 50−150 mg Լ-3,4-dihydroxyphenylalanine 

(L-DOPA, levodopa), a precursor of dopamine, into 20 PD subjects and showed a 

reduction of their symptoms. 

In the nigrostriatal dopamine pathway, SNpc DAn mainly project to the GABAergic spiny 

projection neurons (SPNs) of the striatum or caudate-putamen, adjusting the activity of 

the basal ganglia circuit (Figure 1.2). It is established that the dopamine released by the 

DAn terminals in the striatum binds to D1 receptors (coupled to a G-protein with a Gs 

alpha subunit) on the direct-pathway spiny projection neurons (dSPNs), but also to D2 

receptors (coupled to a G-protein with a Gi alpha subunit) on indirect-pathway spiny 

projection neurons (iSPNs) (Gurevich et al., 2016). In the direct pathway dopamine 

activates dSPNs facilitating movement (see Figure 1.2 for a deeper explanation). On 

the other hand, in the indirect pathway dopamine inhibits iSPNs that also facilitates 

movement (see Figure 1.2 for a deeper explanation) (Yetnikoff et al., 2014; Grillner and 

Robertson, 2016). In the traditional model, the loss of these DAn reduce the amount of 

dopamine in the striatum, creating an imbalance in the activity of both pathways and the 

motor symptoms associated with PD (DeLong, 1990; Mink, 1996). Recent investigations  
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Figure 1.2. Circuit of the basal ganglia with its modulation by DAn from the SNpc. 

In the nigrostriatal DA pathway, SNpc DAn mainly project to the GABAergic spiny 

projection neurons (SPNs) of the striatum, adjusting the activity of the basal ganglia 

circuit (top diagram). In the direct pathway (bottom left diagram), DA binds D1 receptors 

that activate dSPNs that project to the substantia nigra pars reticulata (SNpr) and globus 

pallidus interna (GPi), inhibiting the release of GABA by these two nuclei. GPi and SNpr 

afferents project to the thalamus, which becomes more activated, therefore, activating 

the cortex and facilitating movement. In the indirect pathway (bottom right diagram), DA 

binds D2 receptors that inhibit iSPNs that project to the globus pallidus externa (GPe). 

Thus, the GABAergic functions of the GPe get activated. This produces a major inhibition 

of the subthalamic nucleus (STN) that reduces the activation of the SNpr and GPi. In 

turn, the GPi and SNpr reduce their inhibition activity of the thalamus, which produce an 

increase of the activation of the cortex. In summary, both pathways are mediated by 

opposite receptors, but the final effect is the same reducing the inhibition of the 

thalamocortical neurons and facilitating movement. In green, nuclei whose neurons are 

glutamatergic and produce excitatory synapses (arrowhead). In red, nuclei whose 

neurons are GABAergic and produce inhibitory synapses (flat ending). In blue, nucleus 

whose neurons are dopaminergic and produce modulatory synapses (bulb ending). 

Black arrows indicate if that pathway is more activated (up) or inhibited (down). 
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have observed the spatial activity of groups of dSPNs and iSPNs in normal mice and 

mice with a depletion of DAn (Parker et al., 2018; Wichmann, 2018). They demonstrated 

that in normal mice, there were independent clusters of dSPNs and iSPNs that were 

activated simultaneously with normal movements; while DAn depleted mice showed a 

parkinsonian phenotype and an increase of iSPNs, because the dSPNs clusters 

contained less dSPNs and because iSPNs were less clustered.  

Although the degeneration of DAn is a hallmark of PD, not all DAn in the brain have the 

same vulnerability in the course of the disease, with the DAn in the SNpc of the ventral 

midbrain appearing to be most vulnerable (Damier et al., 1999) (see section 1.2). In fact, 

there are two other dopaminergic nuclei in the ventral midbrain − the ventral tegmental 

area (VTA) and the retrorubral area (German and Manaye, 1993) − and they seem to be 

less affected in the disease (German et al., 1989; McRitchie et al., 1997; Damier et al., 

1999). This was highlighted by the work by German et al. (1989) who investigated the 

midbrain of five parkinsonian brains and three age-matched controls by staining with 

cresyl violet. The found that PD brains contained 57% to 86% less DAn than the control 

group, with the greatest loss appearing in the SNpc compared to the retrorubral area 

and VTA. Likewise, McRitchie et al. (1997) compared the DAn content of seven patients 

with PD with five controls using cresyl violet staining and TH immunohistochemistry. In 

their work, they did not observe differences in the number of DAn in the retrorubral area 

of PD versus controls specimens, and only some reduction in TH in the VTA. Similarly, 

in the five PD brains and five controls examined by Damier et al. (1999) using TH 

immunostaining, there was a significant depletion in the number of DAn only in the SNpc, 

but not in the retrorubral region or VTA.  

Furthermore, the focus of DAn degeneration in PD is not only most associated with the 

SNpc nucleus, but also appears to be focussed on a precise region within the SNpc: the 

ventral tier (German et al., 1989; Fearnley and Lees; 1992; Damier et al., 1999) (Figure 

1.3). Apart from the already mention findings, German et al. (1989) also observed that 

the ventral part of the SNpc showed the greatest loss of DAn within the SNpc in PD; 
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whilst Damier and colleagues (1999) also described a preferential degeneration of DAn 

in the ventral clusters of the SNpc. In accordance, Fearnley and Lees (1992) studied 20 

PD brains and 105 controls quantifying the number of DAn, reporting that the ventral tier 

has a 91% loss of cells, compared to the medial tier (with 71%) or the dorsal tier (with 

56%). Thus, as Fearnley and Lees (1992) reported, other regions of the human SNpc 

(e.g., dorsal, medial) appear to be more resistant in the disease.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why the neurodegeneration of DAn is so specific to the ventral tier of the SNpc (in 

contrast to the rest of the SNpc and other ventral midbrain dopaminergic regions) is 

something that remains unknown. As it will be explained below in more detail, 

researchers have been trying to understand what the specific characteristics associated 

with each DAn subgroup are, why variability exists between them, and if these 

differences are enough to explain the higher vulnerability of some neurons. This would 

Figure 1.3. DAn of the ventral tier of the SNpc degenerate in PD. On the right is a 

low-powered image of a coronal hemisection through the rhesus monkey brain stained 

with cresyl violet. The ventral midbrain area shown on the left is contained in the area 

highlighted with a square. The left image shows immunostaining for tyrosine 

hydroxylase and the different DAn regions found in the ventral midbrain: the VTA and 

the SNpc. DAn of the midbrain area are localized into the VTA and the SNpc. The two 

main regions of the SNpc are: the dorsal tier (dtSN, shown in yellow) and the ventral tier 

(vtSN, shown in red). DAn of the ventral tier show more vulnerability and deterioration 

in PD that those found in the dorsal tier SNpc or VTA. Extracted from Collier et al., 2011.  
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not only help to clarify why PD occurs, but also how these differences may combine with 

ageing to cause the disease and, perhaps, if it is possible to generate new treatments 

for the disease. 

It should be noted, however, that non-DAn areas of the brain also suffer a decline in 

number in PD. For example, Sasaki et al. (2006) found that noradrenergic neurons 

(which are also NM-positive) in the locus coeruleus from PD patients showed a reduced 

signal compared to age-matched controls when they were imaged by NM magnetic 

resonance. Moreover, Halliday et al. (1990) demonstrated a loss of serotoninergic 

neurons in the raphe nuclei in post-mortem tissue from parkinsonians by using cresyl 

violet with haematoxylin/eosin staining. Lastly, Zweig et al. (1989) published an 

immunostaining study where there was a reduction of around 40% of the cholinergic 

neurons in the pedunculopontine nucleus in PD compared to controls. The degeneration 

of these non-DAn neurons can be associated with some of the symptoms seen in the 

disease; such as alteration in gait speed in the case of cholinergic dysfunction 

(Rochester et al., 2012), or a resting tremor when the serotoninergic nucleus is affected 

(Qamhawi et al., 2015). In the future, identifying and comparing all areas of neuronal 

decline in the brain, and when they occur in the disease, will be relevant as it can help 

to provide an understanding of the mechanisms that underlie PD degeneration in the 

SNpc, and the downstream consequences of that degeneration. 

In summary, PD is characterized by focal degeneration of DAn of the ventral tier in the 

SNpc, although other non-DAn are also affected to a lesser extent. It is essential to 

uncover why this pattern of degeneration occurs and if ageing is involved in this specific 

loss of neurons.  

 

1.1.3.2 The accumulation of alpha-synuclein into Lewy bodies in the brain, but also 

in the olfactory bulb and gastric epithelium, is another characteristic of PD 

The aggregation of cytoplasmic alpha-synuclein into Lewy bodies in the soma and 

neuronal processes of DAn has been reported as another feature of PD (reviewed in 
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Stefanis, 2012; Xu and Pu, 2016) (Figure 1.1). Lewy bodies were first described in PD 

brains by Lewy (1912) as intraneuronal inclusion in the nucleus basalis of Meynert and 

dorsal motor nucleus of the vagus nerve. Later, Spillantini et al. (1997) and Baba et al. 

(1998) discovered that alpha-synuclein was involved in the chemical composition of 

Lewy bodies. To determine this, Spillantini et al. (1997) and Baba and colleagues (1998) 

explored the SNpc from parkinsonian brain and immunohistochemically stained the 

tissue with an alpha-synuclein antibody, revealing that this antibody stained Lewy 

bodies.  

Although the physiological function of alpha-synuclein remains unclear, it seems to be 

related to the storage and release of neurotransmitters. Evidence of this can be found in 

the work published by Burre et al. (2010), where it was demonstrated that alpha-

synuclein can bind SNARE complex in mouse brain and HEK293 cells. Thus, alpha-

synuclein appears to promote the assemble of proteins that form the SNARE complex 

to produce vesicle fusion with the membrane to release the neurotransmitter. They 

concluded that the lack of alpha-synuclein activity, for example by its aggregation in 

Lewy bodies, would impair SNARE complex generation leading to the neuronal 

dysfunction in PD. However, it is known that the expression of alpha-synuclein is not 

limited to the SNpc but appears in the entire Central Nervous system (CNS). Braak et 

al. (2003a), for example, compared alpha-synuclein immunoreactivity in post-mortem 

parkinsonian brains versus controls, and showed that the aggregation of alpha-synuclein 

may start at the level of the olfactory bulb and anterior olfactory nucleus, even before 

the degeneration of DAn in the SNpc. Braak proposed that this pathological process 

could self-propagate intercellularly (i.e., prion-like hypothesis), affecting the SNpc and 

other areas of the brain including the cortex (Braak and Del Tredici, 2017). In addition to 

this, they also proposed that the gut plays an important role in the initiation of PD. This 

was suggested from their finding that inclusions of alpha-synuclein occur in the gastric 

epithelium at different stages of PD (Braak et al., 2003b; Braak et al., 2006). As Braak 

and colleagues (2006) hypothesized, the disease could spread from the gastric 
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myenteric system and submucosa plexus to the CNS through the vagal nerve. Further 

investigations have begun to support this hypothesis. For example, the work carried out 

by Sampson et al. (2016) shown that transplants of PD-derived gut microbiota into germ-

free mice produced similar motor symptoms to that found in PD. Similarly, Unger et al. 

(2016) demonstrated, using real-time quantitative polymerase chain reaction (PCR) of 

fecal samples, that gut microbiota differences occur in PD patients compared to the age-

matched controls and, interestingly, this microbiota change also occurs within a control 

group with ageing. This point is important to mention for the present Thesis, as it 

highlights the importance of understanding the relationship of ageing to PD.   

In summary, the aggregation of alpha-synuclein in Lewy bodies might alter the function 

of DAn and affect their viability. In addition, pathological features of cells can be found 

outside the SNpc at various stages of PD progression, and dysregulation of the gut 

microbiota might be a contributing or causative factor in the disease. It is important to 

note that each of these features appear to occur in the normally ageing brain, supporting 

the idea that ageing may be a contributing factor in PD.   

 

1.1.3.3 An excess of oxidative stress and mitochondria dysfunction, including 

mtDNA deletions, are associated with parkinsonism 

It is normal that our cells produce reactive oxygen species (ROS) during the process of 

generating energy by oxidative phosphorylation in the mitochondria. However, in 

physiological conditions these products are buffered by antioxidant mechanisms such 

as the antioxidant glutathione reducing ROS and free radicals, or the enzyme superoxide 

dismutase that catalyzes the conversation of superoxide radicals to H2O2, which is 

subsequently degraded by catalases (Angelova and Abramov, 2018). During PD, it is 

known that the levels of glutathione are reduced, as Perry et al. (1982) observed in the 

SNpc from patients with the disease compared to controls and, interestingly, in the SNpc 

compared to other areas of the brain such as the cortex, caudate nucleus or cerebellum. 

The reduction of this antioxidant generates a high vulnerability of the SNpc to oxidative 
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injury due to the accumulation of ROS that are not neutralized by glutathione. In addition 

to this, Saggu et al. (1989) revealed that the activity of manganese-dependent 

superoxide dismutase was increased in the SNpc of 11 parkinsonians in comparisons to 

11 age-matched controls, while the cerebellum did not show any difference. The 

increase of the activity of this enzyme may have a protective role, reflecting an excess 

of oxidative stress in the SNpc, but also may indicate an accumulation of H2O2 that can 

damage the cells. When this antioxidant activity is not adequate, oxidative stress occurs, 

affecting and inhibiting Complex 1 of the mitochondrial respiratory chain. This results in 

the generation of more ROS, producing a negative cycle (Blesa et al., 2015; Guo et al., 

2018). The relationship between oxidation and mitochondria in PD was demonstrated by 

Keeney et al. (2006) who looked at the electron transport chain of mitochondria by 

immunocapture and showed that Complex 1 is damaged by oxidation in the cortex of PD 

brains compared to age-matched controls. The importance of oxidative stress to the 

degeneration of DAn in particular, was highlighted in cases where the toxic 1-methyl-1-

4-phenyl-1-1,2,3,6-tetrahydropyridine (MPTP) was accidentally ingested by drug users 

who almost immediately displayed parkinsonian symptoms (Langston et al., 1983). 

Further investigations revealed that MPTP is converted to 1-methyl-4-phenylpyridinium 

(MPP+) by astrocytes which then inhibits Complex 1 (Ramsay et al., 1987; Ransom et 

al., 1987). Currently, the inhibition of the mitochondria and generation of ROS and 

oxidative stress via this mechanism are so well established and associated with the 

vulnerability of DAn, that MPTP is extensively used to generate a model of PD in rodents 

(Meredith and Rademacher, 2011). Added to this, it is important to remember that 

genetic forms of PD are generally associated with mitochondrial dysfunction (see section 

1.1.1), highlighting the relevance of this organelle in the pathogenesis of the disease.  

In addition to cellular respiration, Sanders and Timothy Greenamyre (2013) have 

highlighted how ROS and oxidative stress can produce more general cellular damage. 

This is because ROS can generate lipid peroxidation, and protein or DNA oxidation. For 

example, Yoritaka and colleagues (1996) examined the SNpc from seven PD patients 
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and seven age-matched controls to determine which DAn were positive for 4-hydroxy-

2-nonenal. This is important to know because 4- hydroxy-2-nonenal is a product of lipid 

membrane peroxidation, which reacts with proteins to form adducts and is an indicator 

of oxidative damage. The results revealed that 58% of DAn from PD brains were positive, 

while only 9% of DAn were stained in the controls. When the oculomotor nerve from the 

same samples was evaluated, no differences were found between PD and controls, 

although there was an increase of the immunostaining in old samples. This indicates 

that the accumulation of oxidative damage is also an age-related factor. Moreover, Floor 

and Wetzel (1998) compared the levels of oxidation of proteins in healthy individuals by 

measuring the carbonyl modification of proteins with a 2,4-dinitrophenylhydrazine assay. 

They described that in the SNpc there were two times more carbonylated protein than in 

other areas of the brain such as the frontal cortex, caudate and putamen. This indicates 

that the SNpc is exposed to higher oxidative stress than other regions of the brain even 

in physiological conditions, which may contribute to DAn being more vulnerable to PD.  

In addition, it seems that mitochondrial DNA (mtDNA) deletions, that could be created 

by the repair of damaged mtDNA (Krishnan et al., 2008), are increased in both PD and 

ageing. This appears to cause a deficiency in the respiratory chain due to defective 

encoding of some of the proteins that form this chain (Keeney et al., 2006). This was 

shown in studies using laser capture microdissection (LCM) of the SNpc DAn from post-

mortem tissue to conduct real-time quantitative PCR assays (Bender et al., 2006; Dolle 

et al., 2016). Interestingly, Dolle et al. (2016) compared the vulnerability in DAn of PD 

brain samples with ageing individuals and showed that healthy ageing individuals were 

able to increase the production of wild-type mtDNA and compensate for mtDNA 

deletions, while the PD population did not. Thus, an imbalance in the mtDNA 

homeostasis may be a key point in the specific degeneration of these neurons.  

All these findings have contributed to the thought that ROS and oxidative stress might 

be involved in the degeneration of DAn in PD (Guo et al., 2018). Moreover, although the 

specific mechanisms are not fully understood, some of the characteristics of these 
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neurons, like the metabolism of dopamine and high metabolic requirements of DAn (see 

section 1.2), seem to be implicated in the high production of ROS and oxidative stress 

that can led to the development of the disease. 

Finally, due to the fact that an increase of ROS and oxidative stress can accumulate with 

time (negatively affecting mitochondria in a way that has been associated with DAn 

degeneration), and considering that the maintenance of functioning mitochondria is 

crucial to DAn viability, the effect of these processes in the development of PD should 

continue to be carefully studied.  

 

1.1.3.4 Alterations in the ubiquitin proteasome system and autophagy are also 

linked to PD 

The ubiquitin proteasome system (UPS) and autophagy are two systems involved in the 

elimination of damage proteins that, as I will explained in the next paragraph, have also 

been linked to PD (Cook et al., 2012). In the UPS, proteins are proteolyzed when they 

are tagged with ubiquitin (Kleiger and Mayor, 2014), while in chaperone-mediated 

autophagy proteins are degraded by a selective type of autophagy by the lysosome 

(Kaushik and Cuervo, 2018). Using Western blot and immunohistochemistry McNaught 

et al. (2003) found in post-mortem brain tissue a reduction of members of the UPS in the 

SNpc DAn of PD compared to healthy controls. Similarly, Alvarez-Erviti et al. (2010) 

discovered a reduction of proteins associated with chaperon-mediated autophagy in the 

SNpc DAn of parkinsonians. These modifications may produce a failure of both systems 

in removing impaired proteins like alpha-synuclein (Ebrahimi-Fakhari et al., 2011), 

whose accumulation can affect its role in the regulation of the SNARE complex (see 

subsection 1.1.3.2). This is important, as Bender et al. (2013) and Devi et al. (2008) 

found that the failure to remove alpha-synuclein from the cell in the SNpc and striatum 

of parkinsonian brains may cause an accumulation in mitochondria, affecting cellular 

respiration with an elevation of ROS, oxidative stress and mtDNA deletions (see 
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subsection 1.1.3.3).Taken together, these studies indicate that there is a strong link 

between alterations in pathways that degrade unwanted proteins in cells, and the 

mitochondria in PD. This is thought to lead to an accumulation of alpha-synuclein in DAn 

that, ultimately contributes the degeneration of these neurons.  

 

1.1.3.5 Modifications in glial cells and their functions have been found in the 

parkinsonian brain  

Glial cells (astrocytes, microglia and oligodendrocytes) have an irreplaceable role in the 

proper functioning of the CNS; giving structural, metabolic, trophic and protective support 

to neurons (Jakel and Dimou, 2017). Astrocytes, for example, can clearance toxic 

molecules such as alpha-synuclein in the synaptic cleft (Lee et al., 2010), and protect 

neurons against oxidation by the synthesis and release of glutathione (McBean, 2017). 

Moreover, astrocytes can protect neurons by releasing trophic factors such as glial cell 

line-derived neurotrophic factor (GDNF) which enhances the viability of neurons 

(Sandhu et al., 2009). Similarly, microglia, which are considered the immune cell of the 

CNS, can eliminate pathogens, release anti-inflammatory cytokines, and promote 

neurogenesis and regeneration (Perry and Teeling, 2013; Troncoso-Escudero et al., 

2018). 

In PD these glial cells can incur modifications and, although it is unclear if this is a cause 

or consequence of the degeneration of DAn, this can affect their supportive functions 

(Jakel and Dimou, 2017). In fact, it is well known that mutations associated with DAn in 

PD (e.g., DJ-1) also occur in astrocytes. Work by Kim et al. (2016), for example, has 

shown that DJ-1 mutant astrocytes have alterations in the assembly of lipid rafts, which 

impairs the reuptake of glutamate in the synaptic cleft, thereby, increasing neurotoxicity 

in the extracellular space. However, the literature seems more unclear about the reactive 

astrogliosis or activation process of astrocytes in PD. Tong and colleagues (2015), for 

example, did not find differences by quantitative immunoblotting in glial fibrillary acidic 

protein (GFAP) (a well-known intermediate filament protein that is a characteristic 
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marker for astrocytes; Eng, 1985) between the PD SNpc and controls. These results 

were comparable to those found by Mirza et al. (2000), where a lack of astrogliosis, 

including the density of astrocytes and their morphology, was reported similar in the 

SNpc of PD versus healthy individuals. Contrary to this, Song et al. (2009) described a 

mild astrogliosis by immunostaining of the SNpc of parkinsonians compared to age-

matched individuals, although the morphology of the astrocytes did not change with the 

disease. Alternatively, it is well established that activated microglia and 

neuroinflammation are linked to the disease. For example, positron emission 

tomography has shown that the intensity of a radiotracer specific for activated microglia 

was more elevated in the SNpc of humans with PD than in their healthy matches controls 

(Ouchi et al., 2005). This result agreed with the increase of activated microglia found by 

immunohistochemistry in the SNpc of parkinsonians (Mirza et al., 2000) and humans 

exposed to MPTP who developed PD (Langston et al., 1999). The chronic activation of 

microglia generates neuroinflammation, that subsequently can provoke the 

degeneration of DAn (Troncoso-Escudero et al., 2018). This has been supported by 

Koprich et al. (2008) who showed that the activation of microglia by a non-toxic dose of 

lipopolysaccharide (LPS) prompted the release of cytokines, making DAn more 

vulnerable to 6-hydroxydopamine (6-OHDA), a toxin used to generate a model of PD in 

rodents.  

Other mechanisms, like the accumulation of alpha-synuclein, can also have an impact 

on glial cells. This can alter their function and, subsequently, damage DAn in an indirect 

way. Lee et al. (2010) demonstrated this effect by co-culturing differentiated SH-SY5Y 

cells (a characteristic DAn cell line) expressing alpha-synuclein with primary rat 

astrocytes. Astrocytes in the study accumulated neuron-derived alpha-synuclein, 

prompting a release of cytokines. Building on this finding, Lindstrom et al. (2017) 

observed in an in vitro experiment using primary astrocytes, that aggregates of alpha-

synuclein inside the astrocytes impaired their mitochondria, affecting its structure and 

the production of ATP. Similarly, Liu et al. (2018) used transgenic astrocytes in culture 
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to show that the overexpression of alpha-synuclein caused a breakdown of the Golgi 

apparatus, and increased apoptosis through stress of the endoplasmic reticulum. This 

ultimately resulted in the reduction of GDNF release from the astrocytes. On the other 

hand, alpha-synuclein also plays an important role in the activation of microglia. The 

overexpression of human alpha-synuclein by a viral vector in the rat SNpc has been 

shown to activate microglia cells and promote the degeneration or death of neurons 

(Sanchez-Guajardo et al., 2010). Similarly, Xia et al. (2019) demonstrated that alpha-

synuclein in exosomes derived from PD patients can be phagocytized by a microglia cell 

line. This accumulation of alpha-synuclein induced an activated phenotype, releasing 

pro-inflammatory cytokines and nitric oxide, triggering neurotoxicity. Moreover, this 

alpha-synuclein inhibited autophagy, affecting the removal of alpha-synuclein, 

increasing its accumulation and release outside the cell. Thus, importantly, microglia 

were probed to participate in the transmission of alpha-synuclein along the CNS, helping 

in the progression of PD.  

When considered together, these studies demonstrate that glial cells and 

neuroinflammation are important elements to consider in the pathology of PD, because 

they cannot only be directly affected by the disease (e.g., accumulation of alpha-

synuclein or mutation of their genes, causing alterations in their functions) but can also 

indirectly aggravate the degeneration of DAn.  

 

1.1.4 The lack of therapies to cure the disease highlight the value of understanding 

why specific SNpc DAn degenerate in PD 

Currently, available therapies seek to decrease the symptoms of the disease by 

attempting to counteract the low amount of dopamine in the brain through the 

administration of a precursor of dopamine (i.e., levodopa), dopamine agonists, 

monoamine oxidase type B (MAO-B) inhibitors and catechol-O-methyltransferase 

(COMT) inhibitors. Other medications involve anticholinergic drugs or neuroleptics 

(Connolly and Land, 2014; Cacabelos, 2017). More invasive techniques include 
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strategies like deep brain stimulation (Connolly and Land, 2014; Cacabelos, 2017; 

Muthuraman et al., 2018) or even cell transplantation (Bjorklund et al., 1981). Despite 

this, many of these treatments are not effective for all patients and, most importantly, 

they do not stop the degeneration of DAn and the progression of the disease (Cacabelos, 

2017).  

The absence of long-term treatments that stop or slow the progression of this age-related 

neurodegenerative disease is of growing importance. As a greater percentage of the 

population reaches older and older ages, the need to understand the underlying 

mechanisms behind PD and the implications that ageing has in its course continues to 

grow.  

 

1.2 The heterogeneity of midbrain DAn as a key point of their vulnerability in PD 

Overview: Due to the fact that PD causes a selective degeneration of DAn from the 

ventral tier of the SNpc, studies have begun to explore what similarities and/or 

differences may exist between these cells in the midbrain that could explain the selective 

vulnerability (Vogt Weisenhorn et al., 2016; Surmeier et al., 2017). The following sections 

will summarize some of the known similarities and differences within the SNpc, and 

provide a review of some of the characteristics that can affect the viability of all DAn in 

the brain. It is important to note that even when similar characteristics are found in all 

DAn (e.g., they all metabolize dopamine), there are differences that may affect these 

similar characteristics within subsets of DAn in the brain. Here, to simplify the reading, 

those similar attributes have been grouped together, explaining specifically how they 

change in the different populations of DAn.  

It is also important to note that specific features within DAn subgroups may be related to 

the vulnerability and neurodegeneration of DAn (i.e., may contribute to the cause of the 

disease) but also may be a response to the disease state. Therefore, the existence of a 

identifying characteristic is not always associated with the susceptibility of the cell to 
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degeneration, but can be fundamental to protect these neurons against more damage. 

Understanding which characteristics are directly affecting or preserving these DAn, 

cause or consequence, and how these characteristics change in ageing and PD is a 

requisite in order to find a cure for this disease.  

 

1.2.1 Similarities between DAn 

1.2.1.1. The metabolism and oxidation of dopamine produces high amounts of 

oxidative stress and neurotoxicity 

The synthesis, storage and release of dopamine in the synapse involve the accumulation 

of dopamine in vesicles, avoiding an excess of the neurotransmitter in the cytoplasm 

(Guillot and Miller, 2009). When dopamine is released, it can be removed from the 

synaptic cleft and degraded thanks to the help of the enzyme monoamine oxidase B 

(MAO-B), which is found in neurons and astrocytes (Inyushin et al., 2012). Interestingly, 

however, an increase of MAO-B in astrocytes can contribute to the loss of DAn. This 

event has been investigated by Mallajosyula and colleagues (2008), who found an 

elevated degeneration of SNpc DAn accompanied by an increase in mitochondrial 

oxidative stress and microglial activation in mice genetically modified to overexpress 

astrocytic MAO-B. One explanation for this effect is that the degradation of dopamine by 

MAO-B generates H2O2 (Cohen et al., 1997), that can act as ROS (Adams and Odunze, 

1991), but also enhance the metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), 

which can be toxic for DAn (Zhang et al., 2019). This effect was demonstrated by Burke 

et al. (2003) who injected DOPAL into the ventral midbrain of rats and produced 

degeneration of DAn in the SNpc and, to a lesser extent, in the VTA. Interestingly, similar 

work by Burke et al. (2008) conducted a Western blot analysis and showed that DOPAL 

contributed to an increase in aggregates of alpha-synuclein in the SNpc compared to the 

control groups. In support of the possibility that this process might occur in PD, Goldstein 

et al. (2011) identified by mass spectroscopy that the striatum of post-mortem 
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parkinsonian brains has five times more DOPAL than dopamine when they were 

compared to healthy controls.  

Alternatively, when there is an excess of dopamine in the cytosol of DAn, dopamine is 

oxidized spontaneously to dopamine-O-quinone and then converted to aminochrome 

thanks to the cytosolic pH (Herrera et al., 2017; Zhang et al., 2019). This last metabolic 

product has cytotoxic effects within the cells, as it has been seen in an experiment 

performed by Herrera et al. (2016) where injecting aminochrome in the rat striatum 

generated a reduction in the number of DAn, a depletion in the dopamine release, and 

an increase of mitochondria dysfunction. Moreover, aminochrome is known to cause the 

same aggregation of toxic alpha-synuclein found in PD (Munoz et al., 2015; 

Huenchuguala et al., 2019). Interestingly, aminochrome is also the precursor of NM, 

which seems to increase with physiological ageing in DAn to protect them from the 

accumulation of O-quinones and ROS (see below) (Zecca et al., 2002).  

In summary, the metabolism and oxidation of dopamine in DAn is becoming an 

established possible mechanism involved in their vulnerability to degeneration. 

Understanding if physiological ageing modifies any step in the metabolism and/oxidation 

of dopamine, therefore will be useful step toward establishing a link between ageing and 

the occurrence of PD.  

 

1.2.1.2 DAn in the SNpc have the highest concentration of neuromelanin in the 

ventral midbrain area  

As cited previously, NM is a characteristic feature of human DAn, appearing not only in 

cells in the SNpc but also in the VTA and locus coeruleus (Hirsch, 1988). Other species 

like primates, horses and sheep express NM (Zecca et al., 2001), but interestingly mice 

and rats, the species more used in research, seem to lack this black pigment (Barden 

and Levine, 1983). In contrast to this, in a study using electron microscopy, DeMattei 

and colleagues (1986) described the existence of NM in SNpc DAn of rats, but only when 
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they were 21-23-month-old. Understanding why these NM differences exist between 

species and ages is something that is still pending study (Marsden, 1961), but it is 

important to note that this suggests that the generation of dopamine is not necessarily 

linked to the production of NM or may be age-dependent (Fedorow et al., 2005). In 

humans, stereological quantification of Nissl-stained SNpc sections showed that NM 

increased in the SNpc DAn with physiological ageing (Zecca et al., 2002; Rudow et al., 

2008). Conflictingly, recent work by Xing et al. (2018), using a neuromelanin-sensitive 

magnetic resonance imaging (MRI), revealed that the distribution of pigmented neurons 

increased with adolescence, but decreased from around the fifth decade of age when 

134 healthy individuals aged 5-83 were analyzed. Independent of the effect of ageing in 

the accumulation of NM, DAn of the SNpc contain more NM in comparison to other areas 

of the ventral midbrain such as the VTA (Hirsch, 1988). This is important to note as 

multiple studies have determined that SNpc DAn, which contain more NM, are more 

vulnerable to degenerate in PD (Hirsch, 1988; Zecca et al., 2002; Rudow et al., 2008). 

Supporting this line of thought, recent work by Carballo-Carbajal et al. (2019) has 

revealed that an increase in NM in rodents produced a characteristic PD phenotype in 

the animals, including alterations in their movements, Lewy bodies and DAn 

degeneration. Interestingly, to generate the rodent model of human NM accumulation, 

they developed an overexpression of tyrosinase, the enzyme implicated in the 

production of peripheral melanin, by the injection of a viral vector in the rat SNpc. They 

described that with ageing, once the accumulation of NM reached a threshold, there was 

an age-dependent loss of DAn in the SNpc as well as dopaminergic innervation in the 

striatum. Moreover, they also demonstrated that the overexpression of tyrosinase in SH-

SY5Y in vitro produced an accumulation of NM, impairing autophagy and UPS 

proteolysis, creating a negative cascade of cellular effects (including accumulating 

damaged mitochondria which altered respiration, generating ROS and reduced 

metabolic support).  
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The mechanisms by which NM can increase the vulnerability of DAn are manifold. For 

example (see subsection 1.2.1.1), NM is formed in DAn from aminochrome to avoid the 

accumulation of toxic O-quinones (Zecca et al., 2002). This creates a cytoplasmic 

substance with a double membrane, that can bind proteins, as well as lipids and metal 

ions like iron (Zucca et al., 2018). For example, it is possible that NM may reduce a less 

reactive form of iron, generating ROS and, therefore, facilitate degeneration (Swartz et 

al., 1992). Indeed, it is known that an elevated quantity of iron exists in the SNpc of 

parkinsonians (which might increase the release of ROS in this area), as this was 

confirmed by a meta-analysis study using thirty-three articles related to post-mortem and 

MRI quantifications of iron levels (Wang et al., 2016). Moreover, studies have indicated 

that the mechanisms by which NM can make DAn from the SNpc more vulnerable to 

degeneration are linked to neuroinflammation. For example, Zecca et al. (2008b) 

observed that intracerebral NM injections produced an inflammatory microglia response 

in the cortex and SNpc in rats, as well as the degeneration of DAn. In addition to the 

works by Zecca et al. (2008b) and Carballo-Carbajal (2019) mentioned above, Cebrian 

et al. (2014) revealed that human NM could induce the secretion of the cytokine IFN-γ 

by microglia, which can cause the expression of MHC-I, in primary cell cultures from the 

ventral midbrain DAn of postnatal mice. The study also reported that NM could directly 

activate MHC-I molecule in DAn. Ultimately, this MHC-I could attract cytotoxic T cells 

causing DAn death. NM can then oxidize or reduce this iron having a protective or toxic 

function in DAn (Swartz et al., 1992).  

Finally, NM may have a neuroprotective role buffering the effects of accumulated 

reactive iron, as shown by Zecca et al. (2008a) when looking at the antioxidant effect of 

human SNpc NM and how the iron-NM complex was able to prevent the production of 

ROS. 

In summary, NM has been identified as a possible causative factor in the degeneration 

of DAn, either for its connexion to iron or the capacity to increase neuroinflammation. 
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These studies also indicate that ageing has an important effect in the production of this 

NM and that it should be investigated to establish if it is a factor that links ageing to PD.  

 

1.2.1.3 DAn in the SNpc have long and ramified axons that require a high 

production of energy by the mitochondria  

As previously mentioned, DAn from the ventral midbrain (SNpc and VTA) have long 

axons that project rostrally along the medial forebrain bundle. This is exemplified in the 

work undertaken by Matsuda et al. (2009) and Aransay et al. (2015), who used a palGFP 

virus tracer to analyse projections of single-DAn axons from rat SNpc and mouse VTA. 

Both of these studies highlighted how each DAn has a spread and dense axonal 

arborization with multiple synapses once reaching their respective targets. However, 

even though the level of ramification is high in both DAn subpopulation, an in vitro study 

using mouse postnatal SNpc or VTA DAn found that DAn in the SNpc had around 70% 

more axonal arborizations than the VTA ones (Pacelli et al., 2015).  

The maintenance of long and highly ramified DAn axons demand a high production of 

energy by the mitochondria. This has been demonstrated in a study that also claims that 

there is a higher axonal arborization in SNpc DAn compared to VTA (Pacelli et al., 2015). 

Results from this work compared neurons from the SNpc and VTA and suggest that the 

more highly arborized neurons from the SNpc show an increase in the number of 

mitochondria, an elevated consumption of oxygen, and an increase in ROS and ATP 

production compared to those from the VTA. This possibility is partly supported by a 

recent study that looked at the density of mitochondria in the axons of remaining DAn in 

PD tissue compared to controls, finding an increase in the number of mitochondria in 

parkinsonians when high resolution quantitative immunofluorescence was applied 

(Reeve et al., 2018). As the authors discussed, this result may indicate a compensatory 

effect by the remaining DAn, that could in turn increase oxidative stress in these neurons. 

By contrast, Liang et al. (2007) published that DAn in the SNpc contained less 
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mitochondrial density than VTA when they were visualized by electron microscopy in 

mouse tissue, which would affect the ability to supply all the cell’s energy needs.  

Despite these conflicting findings, these studies indicate that the morphology and 

bioenergetic requirements of the SNpc DAn are different in subclasses of DAn and may 

be a key factor in their susceptibility to PD. In addition to this, the ageing process could 

also alter the demand for energy or modify the mechanisms that supply it, providing a 

contributing factor to the neuropathology of PD.  

 

1.2.2 Differences between DAn 

1.2.2.1 Subpopulations of DAn have different morphologies in SNpc and VTA 

Research has indicated that there are morphological differences between DAn in the 

ventral midbrain. For instance, two independent studies using immunostaining of mouse 

and rat ventral midbrain sections observed that DAn from SNpc were bigger in size and 

with an elongated shape in comparison to those found in the VTA, which were smaller 

and had an oval shape (Nelson et al., 1996; Thompson et al., 2005). In terms of the 

population within the SNpc, research has found that (in rats) the dorsal tier expands 

along 75% of SNpc and is densely stratified into an upper layer with stretched and 

elongated DAn, and a lower layer with spherical DAn. The ventral tier occupies 10% of 

the SNpc and contains a low density of small, rounded DAn (Khudoerkov et al., 2014).  

Although it is unknown what implications different shapes and sizes can have on the 

viability of DAn, it is generally considered that the neuronal size can influence, for 

example, the electrical properties of cells, affect the information they transmit, or the 

energy they consume (Sengupta et al., 2013). Therefore, it appears evident that the 

morphometric features of DAn and their changes with ageing must be considered to 

understand whether this links ageing with PD. As Thompson and colleagues (2005) 

mention in their work, these morphometric differences could be associated with a 

specific protein profile that may explain differences in the vulnerability of DAn 
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phenotypes within each area. However, to my understanding, no study has yet directly 

correlated the morphological characteristics of each DAn subgroup with the expression 

of any particular proteins, making a link between these characteristics and the distinct 

degeneration of subphenotypes of DAn in the SNpc.  

 

1.2.2.2 DAn in the SNpc show the highest expression of GIRK2 in the ventral 

midbrain which might explain their lower levels of excitotoxicity  

Along with the potential differences in size and shape of DAn from the SNpc and VTA, it 

is also possible to find heterogeneity in the expression pattern of some proteins. For 

instance, G-protein-activated inwardly rectifying potassium channel 2 (GIRK2), an ion 

channel that allows the entry of K+ into the cell producing a membrane hyperpolarization 

and reducing neuronal excitability (Marron et al., 2017), was found to be highly 

expressed in the SNpc (predominantly in the ventral tier) compared to the VTA. Evidence 

for this has been provided by in situ hybridization, LCM, microarray analysis and real-

time quantitative PCR in adult mice (Chung et al., 2005), as well as immunostaining in 

rats (Thompson et al., 2005) and humans (Mendez et al., 2005). However, a conflicting 

report by Reyes et al. (2012) indicated that there were no qualitative differences by 

immunostaining between VTA and SNpc, or the ventral and dorsal tier of SNpc, at least 

in humans and mice.  

GIRK2 is associated with D2-autoreceptors, which produce an inhibition of the 

pacemaking activity when the receptors are activated by an excess of extracellular 

dopamine. An increase of GIRK2 in a DAn would appear to be associated with a 

homeostatic function, where excitability of the cell is reduced to lessen instances of 

excitotoxicity and death. This would explain why SNpc DAn that remain longest in PD 

show an elevated amount of Girk2 and D2-autoreceptors mRNA by real-time quantitative 

PCR (Dragicevic et al., 2014).  
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Being the current literature is so conflicting, it is not currently possible to assign GIRK2 

as a definitive marker for differentiating the DAn subgroups in the midbrain. Also, more 

investigations will need to be conducted to determine if this protein predispose SNpc 

DAn to degeneration or, alternatively, if it is a physiological response to protect them.  

 

1.2.2.3 DAn in the VTA have an increase of calbindin compared to SNpc and this 

might protect them from degeneration 

Calbindin (CBd28k) is a calcium binding protein implicated in the control of calcium levels 

within neurons by sequestering these ions and, thereby, protecting them from 

excitotoxicity (Blesa and Vila, 2019). This protein, too, is currently considered as a 

possible marker for differentiating the subgroups of DAn in the ventral midbrain. This has 

been demonstrated in diverse studies in rodents (Thompson et al., 2005; Ferreira et al., 

2008; Fu et al., 2012), monkeys (Dopeso-Reyes et al., 2014), and humans (Mendez et 

al., 2005). Each have indicated that there is an increase of calbindin-positive 

immunostaining in DAn of the VTA compared to cells in the dorsal tier of SNpc and, 

especially, the ventral part. These findings are in line with research carried out by Chung 

et al. (2005) and Greene et al. (2005) where they used LCM and microarray analysis to 

discover that DAn in the VTA had more calbindin transcripts than DAn in the SNpc. This 

distinction would explain why DAn in the SNpc of parkinsonians that are calbindin-

positive are preserved compared to those calbindin-negative neurons (Yamada et al., 

1990). Despite this possibility, conflicting studies have demonstrated by immunostaining 

that DAn in SNpc, including the ventral tier, are also calbindin-positive in mouse 

(Vidyadhara et al., 2016) and rats (Liu et al., 2010). 

More evidence concerning the protective role of this protein, however, have been found 

in animal models of PD. For instance, in transgenic mice where calbindin is 

overexpressed, the toxin MPTP seems to produce an increase in the apoptotic caspase-

3 and degeneration in wild-type, but not in the transgenic mice (Yuan et al., 2013). In 

another recent study in monkeys, where immunohistology and imaging analyses were 
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performed, the overexpression of calbindin in the SNpc by injecting viral vectors 

encoding calbindin, protected the DAn from MPTP degeneration, especially in the ventral 

tier of the SNpc (Inoue et al., 2019). 

As in the case of GIRK2, however, because the literature shows contradictory evidence 

to link calbindin specifically to VTA DAn, it is necessary to conduct further studies to 

confirm the expression pattern and role of this protein in protecting VTA DAn.  

 

1.2.2.4 DAn from the ventral tier of SNpc express more ALDH1A1 compared to the 

dorsal tier, possibly protecting DAn from neurodegeneration 

Another protein to consider in the heterogeneity and vulnerability/protection of DAn in 

the ventral midbrain would be the aldehyde dehydrogenase 1A1 (ALDH1A1), which is 

responsible for catalyzing the oxidation of aldehydes to carboxylic acids. In DAn, 

ALDH1A1 can oxidize and detoxify DOPAL, which, as mentioned in a previous section 

(see subsection 1.2.1.1), promotes the aggregation of alpha-synuclein in the SNpc, 

linking it to the degeneration of DAn (Marchitti et al., 2007a). In humans and mice, Liu 

and colleagues (2014) revealed that ALDH1A1-positive DAn were found principally in 

the ventral tier of the SNpc and generated less aggregates of alpha-synuclein. During 

early stages of PD, however, the same study demonstrated that there is a reduction of 

30% of the ALDH1A1 phenotype in DAn from the ventral tier, preceding the degeneration 

of DAn in late stages of the disease. Thus, ALDH1A1 would be a mechanism to protect 

DAn of the ventral tier from the high dopamine metabolism and toxic DOPAL. On the 

other hand, Sgobio and colleagues (2017) have recently shown that ALDH1A1-positive 

DAn from the ventral tier project striosomes in the dorsolateral striatum in mice, and 

release less dopamine compared to the striatal matrix. Thus, ALDH1A can regulate the 

release of dopamine, reducing it in this area of the target region. This means that a 

reduction of ALDH1A1 will generate an excess of dopamine that might be cytotoxic for 

the cells, but also that it can be a compensatory mechanism when there is a loss of DAn 

in PD.  
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To date, it is unknown why this protein would be reduced in the ventral tier of 

parkinsonian brains. However, an investigation performed by Fitzmaurice et al. (2013) 

suggested that pesticides could be a possible mechanism of ALDH1A1 inhibition, 

producing the degeneration of DAn in mesencephalic cultures and in an in vivo zebrafish 

study exposed to the pesticide. These results would support the idea of an 

epidemiological association between the pesticide and PD.   

As with GIRK2 and calbindin, it is still not clear what effect the expression of ALDH1A1 

has on the vulnerability or protection of DAn, and if it is a cause or consequence of the 

disease. It would be necessary in the future to determine not only its contribution, but 

also the effects that ageing has in its expression and possible new treatments that can 

be generated linked to it. 

 

1.3 The relation between PD and physiological ageing  

Overview: Thus far, it has been described that DAn from the ventral tier in the SNpc 

present different features that may affect their vulnerability and participate in their 

degeneration. However, none of these characteristics appear to be a definitive 

explanation for the death of DAn in PD. As indicated in the first section, ageing is 

considered the main risk factor to develop parkinsonism, so it seems logical to think that 

there must be age-related changes in the SNpc linked to the disease. Remarkably, the 

role that ageing has in the disease (if any) still remains unknown. In this section, the 

literature surrounding how ageing affects the CNS and, specifically, the SNpc is 

discussed, along with the current ideas of what implications this has in PD. The 

possibility of knowing why these DAn are affected with advanced age, as well as which 

mechanisms would predispose them to degeneration, would provide a basis for 

understanding why these cells become susceptible to PD at the typical age of disease 

onset.  
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1.3.1 Ageing produces global changes in the brain 

Current research suggests that morphological and neurochemical alterations in the 

human CNS occur during physiological ageing (Peters, 2006). That assumption is 

relevant for the Thesis here because modifications during ageing of the CNS could be 

affect DAn in the SNpc in particular and, therefore, contribute to the incidence of PD. 

Moreover, it is important to study ageing in the SNpc in particular because, though the 

ageing process may affect all areas of the brain equally, these changes, in combination 

with the factors outlined above might confer a particular susceptibility of the DAn of the 

SNpc region. This section, therefore, will discuss the major findings associated with 

ageing in the brain and the SNpc. 

 

1.3.1.1 The volume of the brain is reduced, and the ventricles are expanded with 

ageing  

Both weight and volume are probably the most elementary characteristics of the brain 

that can be measured in association with ageing. Past research by Scahill et al. (2003) 

has shown an age-dependent decrease in each of these characteristics. Although it is 

unknown exactly in which region of the brain volume loss occurs, diverse in vivo imaging 

examinations have consistently shown that changes do not affect all brain regions to the 

same degree. Areas such as the prefrontal cortex (Tisserand et al., 2002; Lemaitre et 

al., 2012), amygdala, hippocampus and temporal lobes (Scahill et al., 2003; Zanchi et 

al., 2017), or caudate and putamen (Abedelahi et al., 2013), have been shown to suffer 

a reduction of their volume with ageing in healthy humans. Nevertheless, there is no 

consensus in establishing if this is caused by the deterioration of white (myelinated 

axons) and/or grey matter (cell bodies) (Peters, 2006). For example, Tang et al. (1997) 

and Piguet et al. (2009) found a reduction of 27% and 23% of the white matter with 

ageing in post-mortem analysis of human brains. Another study using combined diffusion 

tensor imaging (DTI) and MRI showed similar results, with a depletion of white matter in 

the oldest individuals (Yang et al., 2016). On the other hand, using neuroimaging, 
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Hafkemeijer et al. (2014) described an inverse relation between age and the grey matter, 

but only in specific structures. Meanwhile, Piguet et al. (2009) reported no changes in 

the total or regional volume of grey matter. These differences can be attributed to the 

different methods used (e.g., post-mortem analysis versus neuroimaging), but also to 

the possibility of including individuals in the study with a pre-clinical neuropathological 

condition (Piguet et al., 2009). Regardless of which matter of the brain is reduced, the 

shrinking of the brain has been associated with mechanical pressure exerted by the 

enlargement of the ventricles with physiological ageing (Kwon et al., 2014). 

 

1.3.1.2 The permeability of the blood-brain barrier (BBB) increases with ageing 

Changes in the blood-brain barrier (BBB) are another characteristic of the ageing brain. 

Because the BBB ensures the correct distribution of blood and nutrients and protects the 

brain from external toxins, its modification with ageing may cause an imbalance in the 

homeostasis of the brain and leave it unprotected (Erdo et al., 2017). For instance, a 

recent immunohistochemical study measuring different aspects of the BBB revealed that 

there was an increase of BBB breaks caused by a reduction of a tight junction protein in 

aged mice. The importance of this finding was highlighted by the study also showing an 

increase of serum proteins (indicating the leakage and elevated permeability of the BBB) 

within old human brains (Goodall et al., 2018). These results were similar to those 

reported by Elahy et al. (2015), where there was a decrease of the expression of another 

tight junction protein in 24-month-old mice compared to 3-month-old by flow cytometry. 

Furthermore, ultrastructure microscopy showed that the basal membrane, another 

component of the BBB, increased in thickness in 24-month-old versus 6-month-old mice 

(Ceafalan et al., 2019). In this study, the modifications in the membrane size was 

accompanied by the creation of pockets of lipid accumulation by astrocytic endfeet, 

which could act as a hydrophobic impediment in the BBB.  
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1.3.2 The SNpc suffers degenerative changes during ageing that are similar to PD 

and could affect the vulnerability of DAn 

Having mentioned how ageing produces global changes in the CNS (i.e., a decrease of 

the brain volume and modifications of the BBB), this section will focus on the effect that 

age has specifically in the SNpc and how this can be associated with PD. This aspect is 

relevant because, as authors like Collier et al. (2017) asserted, age-related modifications 

in DAn may be comparable to the changes that precede the neurodegeneration of DAn 

in PD, creating a pre-parkinsonian phenotype. In line with this, Kanaan and colleagues 

(2008) suggested that there is neuronal dysfunction associated with a slow degeneration 

during physiological ageing and that genetic predispositions or exposure of individuals 

to toxic environments would exacerbate this neuronal dysfunction during parkinsonism. 

The fact that neuronal dysfunction in ageing may appear before the neuronal loss in PD 

could explain why motor disturbances and pre-motor symptoms such as olfactory, sleep 

alterations, and mood disorders are a common component in both PD and the elderly 

(Rodriguez et al., 2015). 

 

1.3.2.1 The number of DAn in the SNpc is reduced with ageing, while the soma 

size increases 

Currently, it seems to be a consensus that DAn from the ventral tier of SNpc deteriorate 

with PD. However, there is controversy in establishing whether this pattern of damage 

is similar to that seen in the elderly population. Multiple studies have found a reduction 

of NM-positive neurons and TH-positive neurons in the SNpc from elderly people 

compared to young (Ma et al., 1999; Cabello et al., 2002; Rudow et al., 2008). Similarly, 

the work by Buchman et al. (2012), using haematoxylin/eosin quantification of SNpc DAn 

from post-mortem tissue, indicated that there was a higher neuronal loss particularly in 

the ventral part of the SNpc associated with an increase of parkinsonian signs (e.g., 

bradykinesia or motor alterations) in people above 85 that were not diagnosed with PD. 

In contrast, early work by Fearnley and Lees (1991), using the same analysis, suggested 
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that DAn loss was completely different during ageing, affecting mainly the dorsal tier of 

the SNpc. These authors also reported that the age-related neuronal degeneration would 

not be enough to provoke parkinsonian symptoms. On the other hand, Di Lorenzo and 

colleagues (2016), in a stereology study with Nissl staining, established that the number 

of cells within the SNpc was not altered by ageing, although the total volume of SNpc 

was reduced. This fact, they discussed, would indicate a higher atrophy of neuronal 

processes or reduction of neuronal size in the nuclei. 

In addition to the more obvious differences in the number of DAn within the SNpc, there 

are also many studies that have analyzed the size of their soma. This was exemplified 

in the work undertaken by Cabello et al. (2002) and Rudow et al. (2008), where it was 

found a significant increase or hypertrophy of the NM-positive and TH-positive neurons 

occurred in the SNpc of ageing human brains. They discussed that this hypertrophy 

might be associated with an accumulation of NM in the cell cytoplasm, as well as a 

mechanism to compensate the loss of DAn. However, these results would conflict with 

the already mentioned study by Di Lorenzo et al. (2016) reporting a contraction of the 

SNpc, and the research by Ma et al. (1999) where a reduction in DAn cell body with 

ageing was described.  

Other studies in rodents and non-human primates have also found age-associated 

changes in SNpc DAn number and soma size. For example, in rodents, there was a 

decrease of TH immunoreactivity between 2-month-old mice and 25-month-old mice 

(Tatton et al., 1991). The reduction in TH neuronal number and an increase in the DAn 

soma size with age, when comparing young (5-month-old), old (24-month-old) and senile 

(32-month-old) female rats, seems to be another characteristic of old SNpc (Sanchez et 

al., 2008). This was corroborated by Bardou et al. (2014) who found similar results 

between 3-, 9- and 23-month-old male rats, identifying a decrease in the number of TH-

positive neurons in the oldest animals. Also, McCormack et al. (2004) found a decrease 

of this immunoreactivity in squirrel monkeys, and Emborg et al. (1998) and Collier et al. 

(2011) described this same depletion in rhesus monkeys.  
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Despite discrepancies between studies, it seems that there is some consensus that 

ageing causes a reduction of DAn in the SNpc and an associated increase of their soma 

size. Nevertheless, it is important to highlight that differences between studies are often 

caused by the techniques used, and how the study is conducted, which suggest that we 

must be cautious reviewing the literature and drawing conclusions. Quantification of DAn 

in most cases employed immunohistochemistry for TH, or simply measured the amount 

of NM within these cells. This can produce different results. Some authors argue that the 

number of NM-positive neurons are correlated with the TH-immunoreactive cells 

(Cabello et al., 2002), while others consider that around 18% of melanized DAn lose 

their TH phenotype in physiological ageing (Kordower et al., 2013). This implies that the 

use of TH as an accurate marker DAn might be difficult in ageing research. Moreover, it 

is important to note that the brain tissue could undergo some changes during processing 

post-mortem, and that the samples used, such as the number of individuals or sections 

of each brain, differ greatly between studies (Fearnley and Lees, 1991; Ma et al., 1999; 

Cabello et al., 2002; Rudow et al., 2008; Buchman et al., 2012; Di Lorenzo et al., 2016). 

 

1.3.2.2 Alpha-synuclein is also increase in the aged SNpc in humans 

It has been mentioned that the aggregation of alpha-synuclein as Lewy bodies is an 

important hallmark in PD. In aged individuals, most of the studies described an increase 

of alpha-synuclein in the SNpc. An example of this is the work performed by Chu and 

Kordower (2007), were they tested the expression of alpha-synuclein by 

immunohistochemistry in humans and rhesus monkeys. They showed an increase in the 

optical density (O.D.) of alpha-synuclein in the soma of DAn that was associated with a 

reduction of TH-positive DAn in both species. However, the alpha-synuclein found in 

these age individuals did not form aggregates, being soluble under protein K digestion. 

In the study, they speculated that the aggregation of alpha-synuclein due to a lysosomal 

failure can be key in the degeneration of DAn during PD but not in the ageing process. 

As Burre et al. (2010) identified, alpha-synuclein was involved in the correct assembly 
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of the SNARE complex to allow fusion of the vesicle with the cell membrane and the 

release of neurotransmitter. Chu and Kordower (2007) observed an increased with 

ageing of alpha-synuclein in the soma of the cell, while young individuals presented a 

positive staining in the neuropils of DAn. Therefore, it is logical to think that the normal 

function of alpha-synuclein in the aged individuals should not affect the expression of 

TH. However, it might be possible that in aged SNpc, the only accumulation of alpha-

synuclein in the soma without aggregating could be enough to reduce the amount of TH, 

but not enough to generate the degeneration of DAn as it happens in PD. Furthermore, 

additional research by Xuan and colleagues (2011) supports the hypothesis that there 

is an accumulation of alpha-synuclein in the aged SNpc. In this study, they used 

immunostaining in human samples and found an increase of alpha-synuclein associated 

with a decrease of TH but also an overexpression of NM. They suggested that this 

increase of NM might be producing the accumulation of alpha-synuclein in DAn, making 

them more vulnerable with ageing. Contrary to these findings, a comparison of the 

expression of alpha-synuclein in the SNpc at different ages in mice (2-month-old, 10-

month-old and 20-month-old) by in situ hybridization, real-time quantitative PCR and 

immunohistochemistry revealed that, in rodents, there was a reduction in the RNA and 

protein expression of alpha-synuclein with ageing, which could implicate a dysregulation 

of the neurotransmitter release (Mak et al., 2009). This was opposite to that seen in 

humans and primates (Chu and Kordower, 2007; Xuan et al., 2011). The discrepancies 

between species might suggest different regulation and properties of this protein in 

different species, which could be important when considering that PD is mostly restricted 

to humans and primates.  

In summary, the literature shows that there is a dysregulation of the expression of alpha-

synuclein during ageing in the SNpc, which indicates that the aged brain shares similar 

mechanisms of vulnerability with PD.  
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1.3.2.3 Aged SNpc DAn contain an increase of oxidative stress and mtDNA 

deletions as in PD  

As in PD, it seems that the aged SNpc contains high amounts of oxidative stress and 

mtDNA that can affect the mitochondria and high metabolic requirements of DAn. For 

instance, Venkateshappa et al. (2012) assessed the oxidative damage in post-mortem 

samples of SNpc at different ages, finding a statistically significant increase of protein 

oxidation with ageing in the SNpc as well as a reduction of the mitochondrial Complex 1 

that they associated with an increase of oxidative stress in this area. On the other hand, 

as it was mentioned in a previous section (see subsection 1.1.3.3), Bender et al. (2006) 

demonstrated by real-time quantitative PCR that mtDNA deletions were increased in the 

aged human SNpc DAn compared to other regions of the brain like the hippocampus, 

finding almost the same deletions that in PD individuals. Supporting these results, 

Kraytsberg et al. (2006) observed by single-molecule PCR of individual DAn at different 

ages that the oldest individuals had the highest amount of mtDNA deletions in the SNpc, 

while neurons from the cortex, cerebellum or hippocampus were almost absent of these 

deletions. Unlike PD, however, a higher production of wild-type mtDNA would be 

counteracting the deletion effect in these old healthy individuals (Dolle et al., 2016).  

Undoubtedly more investigations are necessary to understand if the main differences 

between PD and ageing DAn is that in the elderly there are mechanisms to counteract 

the deficiencies in the respiratory chain produced by oxidative stress and deletions of 

mtDNA.  

 

1.3.2.4 The number of astrocytes and microglia do not change during the ageing 

process, although there are modifications in their morphology  

In a previous subsection (see subsection 1.1.3.5), it was showed that modifications in 

glial cells were a hallmark in the neuropathology of PD. During parkinsonism, although 

it is clear that there is an activation of microglia and an accumulation of alpha-synuclein 

in glial cells like astrocytes, it seems more ambiguous if exists a reactive astrogliosis.  
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A similar scenario has been described in the aged SNpc in terms of astroglia. 

Venkateshappa et al. (2012) found an increase of GFAP in the human SNpc with ageing 

by Western blot, which might indicate an increase in the protein itself, in the number of 

astrocytes or their reactivity. Likewise, Gao et al. (2013) revealed by transcriptomics, 

together with a real-time quantitative PCR assay and immunohistochemistry, that there 

was an overexpression of GFAP in the SNpc of 18-month-old mice compared to 2-

month-old. However, several studies have failed to demonstrate an increase in reactive 

astrogliosis. This is the case of Jyothi et al. (2015) who observed a reduction of the 

astroglia processes in the old SNpc in humans by immunohistochemistry, but without an 

increase in GFAP expression. Kanaan et al. (2010) found neither modifications in the 

number of astrocytes by unbiased stereology or O.D. of GFAP fluorescence in aged 

SNpc from rhesus monkeys. In fact, the expression of GFAP was reduced from the 

middle age to the oldest individuals, which might be indicating a failure in the activation 

of these cells in the elderly.  

In the case of microglia in the ageing process, contrary to PD, it is unclear whether there 

is neuroinflammation associated with a higher density of microglia. This is true not just 

in the SNpc, but in the rest of the brain as well (Spittau, 2017). According to this, Jyothi 

et al. (2015) and Kanaan et al. (2010) noticed no age-related modifications in the number 

of microglia in the SNpc of humans and rhesus monkeys, respectively, although an 

increase in the immunoreactivity of the microglia marker in primates was found more 

intensely in the ventral tier of the SNpc. Furthermore, changes in the morphology of 

microglia were also described, showing a more activated phenotype characterized by a 

hyper-ramified ameboid shape that might be associated with a higher production of pro-

inflammatory cytokines that can trigger neurodegeneration (Koprich et al., 2008). 

Altogether, these studies indicate that the neuroinflammatory state of the ageing SNpc 

is not fully characterized and, in most cases, reveals no changes in the number of glial 

cells but modifications in their morphology. This could suggest that alterations in the 
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shape of astrocytes and microglia during ageing precede the microglia activation seen 

in PD.  

 

1.4 The complex proteome and its study by proteomics 

Overview: Probably one of the reasons why classical methods (i.e., histological and 

cellular studies) have not been able to elucidate the relation between ageing and PD yet 

is because of the complexity of the brain (Hosp and Mann, 2017) and, more specifically, 

the SNpc and its DAn. Added to this, the cause of PD seems to be multifactorial, affecting 

different systems within the cell such as the mitochondria or proteolysis. Moreover, a 

picture is beginning to emerge that not only DAn are affected by ageing and PD, but 

other cells in the brain like glial cells are also affected. Therefore, it is essential to 

understand PD and the ageing process in the SNpc from a wider perspective, exploring 

the whole SNpc area in its complexity, as a region where everything is connected. Thus, 

the minimum alteration in the environment or changes in certain cells due to ageing can 

have repercussions on DAn, making them more susceptible to degenerate in PD as 

ageing progresses. Over the last two decades, ‘omics’ approaches such as genomics 

(McCarroll et al., 2014) and transcriptomics (Keil et al., 2018) have changed the way 

neuroscience is explored and have offered new insights into the physiology of the CNS, 

including possible differences between brain regions and species, and pathological 

versus normal conditions (Geschwind and Konopka, 2009). For example, a study using 

next generation sequence approaches demonstrated the power of genomics tools by 

identifying different variants in the non-coding 3 prime untranslated region (3’UTR) 

involved in a neurodevelopmental disorder related to language impairment (Devanna et 

al., 2018). Transcriptomics methods have been used to specifically establish the 

transcriptome profile of individual cells in the CNS (e.g., astrocytes, oligodendrocytes, 

DAn) by combining intact transcriptomes from diverse tissue samples and single-cell 

RNA-seq data (Menon, 2018; Kelley et al., 2018). Ultimately, however, the diverse 

biological processes that control the brain are mediated by proteins (Freeman and 
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Hemby, 2004), whose expression and modifications determine not only their own 

function, but the different cell phenotypes and their interaction with other biomolecules. 

The combination of all these proteins constitute the proteome of a biological system and, 

as a whole, regulates the correct activity of the brain (Aebersold and Mann, 2016). 

Furthermore, protein variations (i.e., isoforms) due to alternative splicing of RNA 

transcripts (Pan et al., 2008), and post-translational modifications (e.g., phosphorylation, 

ubiquitination, acetylation, glycosylation or methylation) are involved in the generation of 

a multitude of ‘proteoforms’ (Smith et al., 2013). These ‘proteoforms’ act as alternative 

proteins derived from the same gene, adding another level of complexity to the proteome 

in biological systems (Freeman and Hemby, 2004). The analysis of the expression of the 

proteins that form these proteomes, together with the study of protein interactions and 

post-translational modifications, is carried out by the proteomics process, which is 

comprised of a large variety of methods and tools to describe and quantify in detail a 

certain protein profile of cells or tissues (Freeman and Hemby, 2004; Aebersold and 

Mann, 2016; Hosp and Mann, 2017; Wilson and Nairn, 2018).  

 

1.4.1 Proteomics methods for neuroscience 

Among the different methods to identify and quantify proteome changes in neuroscience, 

traditional gel-based proteomics are and have been a good and cheap option. As an 

example, 2-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-

SDS-PAGE) allows the separation of proteins by their isoelectric point and molecular 

weight (MW). After the electrophoresis of the samples, the gel can be stained to visualize 

the proteins within the gel as spots, using different techniques such as visible silver stain, 

fluorescent Sypro Ruby stain or cyanine dyes (Chevalier, 2010). These spots can be cut 

and, subsequently, be digested with trypsin to be analyzed by mass spectrometry (Sethi 

et al., 2015). Although this classical method is still used in proteomics and neuroscience, 

some of the drawbacks of this technique involve that it is time-consuming, has low 

reproducibility, some of its staining techniques have a limited dynamic range (i.e., the 
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intensity of more abundant spots is limited) and hydrophobic proteins are difficult to get 

into the gel (Hayne and Yates, 2000). Moreover, it only allows the researcher to identify 

a few proteins from a small number of samples at the same time (Freeman and Hemby, 

2004). In comparison, gel-free proteomics (i.e., mass spectrometry-based proteomics) 

can precisely screen simultaneously a vast number of proteins, including proteins from 

different experimental groups. Making biological sense of the proteomics data is 

accomplished through the use of bioinformatic software, proteomics databases, and 

other ‘omics’ data sets (Aebersold and Mann, 2016). 

Two different strategies can be employed in mass spectrometry-based proteomics: ‘top-

down’ and ‘bottom-up’ approaches. ‘Top-down’ proteomics analyzes the intact protein or 

‘proteoform’ and can be used to identify all the different modifications that the protein 

can have at once and detect the MW of a protein (Toby et al., 2016). Although promising 

(due to the absence of protein digestion being less time-consuming), this approach 

requires a very complex experimental and computational instrumentation because the 

analysis of an intact protein is more difficult than a peptide (Aebersold and Mann, 2016). 

On the other hand, ‘bottom-up’ proteomics (also called shotgun proteomics) 

characterizes the sequences of the peptides that have been generated from proteins by 

proteolytic digestion. This identification is possible after a search against protein 

databases with the help of different algorithms (Zhang et al., 2013). 

 

1.4.2 Bottom-up mass spectrometry-based proteomics  

During the next subsections, a typical bottom-up mass spectrometry-based proteomics 

workflow is presented, including the sample preparation, the mass spectrometry analysis 

and the subsequent analyses of the results.  

 

1.4.2.1 Sample preparation: in solution digestion 

Unlike other ‘omics’ studies, it is important to consider a few points related to the quantity 

and quality of the sample when working with the identification and quantification of 
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proteins by proteomics. First, proteins cannot be amplified, unlike the nucleic acids 

(mRNA) used in transcriptomics studies, which means that  the detection of rare proteins 

that appear in low quantity in the biological samples can be difficult if they are not 

expressed above a certain threshold (Freeman and Hemby, 2004; Hosp and Mann, 

2017; Wilson and Nairn, 2018). Second, during the dissection and preparation of the 

biological sample, proteases and phosphatases within the sample can modify and 

degrade proteins, which could affect the full characterization of the proteome in that 

sample. To avoid this, it is crucial to inhibit these enzymes, work fast, and freezing the 

sample as soon as possible (Hosp and Mann, 2017).  

As mentioned, bottom-up proteomics requires the proteolysis of the proteins to acquire 

peptides. Initially the biological sample must be homogenized (e.g., mechanically, by 

ultrasound or pressure, with detergents) in a lysis buffer (i.e., in solution digestion) to 

rupture the cells and extract the proteins. Extracted proteins are mostly insoluble, 

aggregating and/or precipitating due to the interactions of disulfide or hydrogen bonds 

among others. To prevent their aggregation and protein loss from samples, it is essential 

to solubilize the sample by adding different agents. For example, chaotropes (e.g., urea, 

thiourea) break hydrogen bonds and hydrophilic interactions. This prevents protein 

folding. In addition, detergents (e.g., SDS, CHAPS, Triton X-100) disrupt hydrophobic 

interactions. On the other hand, reducing reagents (e.g., DTT/DTE, TCEP) alter disulfide 

bonds between cysteines (Bodzon-Kulakowska et al., 2007). Finally, proteins can be 

proteolytically digested to produce peptides (commonly) through the use of the enzyme 

trypsin, which cleaves specifically C-terminal to arginine and lysine residues (Olsen et 

al., 2004). 

 

1.4.2.2 Peptide fractionation  

To manage the complexity of the sample and perform a deep proteome coverage, 

additional peptide fractionation can be applied by dividing tryptic peptides in different 

fractions. The reduction of the sample complexity allows more liquid from each different 
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fraction to be injected in the mass spectrometer, which gives the mass spectrometer 

more time to analyze the sample and increases the probability of identifying peptides 

expressed in low quantities (Manadas et al., 2010). 

There are different methods that can be used for the fractionation of peptides. For 

instance, strong cation exchange (SCX) chromatography separates peptides according 

to their ionic positive net charge, which is determined by arginine and lysine residues 

produced by the tryptic proteolysis in an acidic solution (low pH). Peptides with different 

net charge will move across a solid stationary phase negatively charged using a salt 

gradient. More positively charged peptides will bind strongly to the negative stationary 

phase, while those peptides with more negative charge will move faster and elute first 

(Mohammed and Heck, 2011). On the other hand, reversed-phase liquid 

chromatography (RPLC) separates the peptides by their hydrophobic character. In this 

case, the stationary phase is hydrophobic, in general a column made by silica (e.g., 

octadecyl carbon chain (C18)), and the mobile phase will contain the peptides in an 

organic solvent. Therefore, more hydrophilic (polar) peptides from the mobile phase will 

be repulsed by the stationary column and will elute first, while more hydrophobic (non-

polar) peptides will be retained within the column (Molnar and Horvath, 1976). 

Furthermore, ion-paring reagents (i.e., trifluoroacetic acid (TFA) or formic acid (FA)) can 

be added to the solvent to retain those ions that are too polar. Ion-paring reagents have 

a nonpolar tail that bind the column, and a negative end that can bind positive samples, 

retaining them (Nshanian et al., 2018). Adding to this, a high pH in RPLC will increase 

the efficiency of separation of the sample changing the hydrophilicity of the peptides. 

Overall, the advantage of this fractionation method compared to SCX is that the absence 

of a salt gradient allows the evaporation of the solvent and will increase the concentration 

of the sample that can be injected into the mass spectrometer (Yang et al., 2012). 

Alternatively, a high resolution of the sample can be achieved using a multidimensional 

method separation (i.e., 2D liquid chromatography (LC)) where, for example, SCX is 
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combined with RPLC, separating the sample by two different resolution methods 

(Manadas et al., 2010). 

.  

1.4.2.3 Liquid chromatography-tandem mass spectrometry 

Before analyzing the sample with the mass spectrometer, the sample must be introduced 

in the mobile phase of LC attached to the mass spectrometer, which will produce the 

elution of the peptides in a time dependent manner according to the concentration of the 

organic solvent (Mitulovic and Mechtler, 2006). 

Mass spectrometry is an analytical technique that determines the mass-to-charge (m/z) 

ratio of gas-phase ions. Spectra thus generated are typically represented as a mass 

spectrum plot of ion quantity (y-axis) versus m/z (x-axis). This implies that the analyte of 

interest or compound to analyze (peptides in this Thesis), that comes in a liquid solvent 

from the LC step, must be ionized to be identified and quantified by mass spectrometry. 

This ionization is generated by an ionization source and, together with the mass analyzer 

and a detector, form the three main elements of a mass spectrometer (Glish and Vachet, 

2003).  

The most common ionization approaches to convert compounds/peptides into gas-

phase ions are the electrospray ionization (ESI) process, and the matrix-assisted laser 

desorption/ionization (MALDI) method. During ESI (i.e., the method used in this Thesis), 

the analyte is dissolved in a solvent solution with water and a volatile compound. Using 

an electrospray under high voltage, this liquid phase containing the analyte is sprayed, 

generating droplets. When the solvent evaporates from the droplets, the size of the drops 

gets reduced and the charge increases, producing a current of multiple-charged ions 

that move towards the vacuum of the mass analyzer (Fenn et al., 1989). On the other 

hand, ions in MALDI are created by irradiating the sample with a pulsed laser. In this 

case, the analyte is mixed and crystalized with a light solid matrix that absorbs the light 

from the laser, producing singly-charged ions (Karas et al., 1987). Although both 
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techniques are considered soft ionization sources, generating very little fragmentation of 

the analyte, the main difference between them is that ESI can produce multiple-charged 

ions and can be coupled directly to LC systems (Glish and Vachet, 2003). 

Mass analyzers are involved in the selection of ions according to their m/z. Two main 

groups of mass analyzers are found depending on if the ions pass the analyzing field to 

the detector as a beam (beam analyzers), or if the ions are trapped in the analyzing field 

(trapping analyzers). Examples of beam analyzers are time-of-flight (ToF) and 

quadrupole mass filter (QMF) systems; while trapping analyzers are characterized by 

quadrupole ion trap (QIT), and high-resolution Orbitrap systems (Glish and Vachet, 

2003; Savaryn et al., 2016).  

Finally, the detector of the mass spectrometer can detect the current or image current 

(in the case of Orbitrap) of the ions when these pass near the detector surface, passing 

the information on to a computer (Freeman and Hemby, 2004). 

 

1.4.2.4 Tandem mass spectrometry 

The ionization of the intact analytes/peptides that has been described so far allows the 

separation and isolation of these compounds by their m/z. However, this first mass 

spectrometry analysis (MS1) is rarely enough to characterize the sequence of a peptide 

(Glish and Vachet, 2003). To do that, a second stage is necessary where another MS 

analysis is applied (MS2), therefore creating a tandem MS (MS/MS). During MS2, 

isolated ion/peptides that have been selected by their m/z in MS1 (parent or precursor 

ions) are dissociated or fragmented by applying an external stimulus. This reaction 

generates product/reporter ions or sequence-specific fragments that can be analyzed by 

MS2, and produces a mass spectrum of all of them (McLafferty, 1981). The advantages 

of this technique is that it allows fast screening of the sample with high specificity and 

sensitivity thanks to the digestion of the protein sample in peptides and the so-called 

parent-ion scan (that have been selected by their specific m/z) and fragmentation (that 
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produces a spectrum of all m/z and intensities from all fragments allowing the reliable 

identification of the amino acids (aa) sequence) (Nesvizhskii, 2007). 

There are different methods to dissociate or fragment the parent or precursor ions 

between MS1 and MS2 by increasing their internal energy to generate product ions 

(Jones and Cooper, 2011). The most commonly used method in bottom-up proteomics 

is the collision-induced dissociation (CID) approach, where precursors ions are 

accelerated to collide with a neutral gas (e.g., helium, nitrogen or argon). When this 

happens, the kinetic energy generated is transformed to internal vibrational energy. This 

energy cleaves peptides by the amide-N-Co bond, producing b and y fragments ions 

(McLuckey, 1992). Alternatively, ions can collide with a surface in the so-called surface 

induce dissociation (SID) (Mabud et al., 1985). Electron capture dissociation (ECD) is 

another fragmentation method, where the product ions are irradiated with free electrons. 

When the electron is added to the ion, energy is liberated. This energy can cleave the 

peptide in the N-Cα bonds, producing c and z fragment ions, or disulfide bonds (Zubarev 

et al., 1998). Similar to ECD, during electron transfer dissociation (ETD) peptides are 

irradiated with radical anions, producing also c and z fragment ions (Syka et al., 2004). 

Lastly, during photodissociation, the energy is produced when ions absorb a photon that 

has been produced by visible, UV or infrared lasers (Brodbelt, 2014). 

For this Thesis, a TripleTOF 5600+ tandem mass spectrometer (AB Sciex), equipped 

with a NANOSpray II source (ESI) was used to perform MS/MS analysis. This mass 

spectrometer is a hybrid tandem quadrupole TOF system formed by a series of 

quadrupole filters from where ions are passing through until they reach the detector. The 

first quadrupole (QJet) focusses the ion beam to enter in the next quadrupole (Q0) and 

improves the sensitivity of the instrument and increases the signal-to-noise ratio. Q0 also 

focuses the ions in the next quadrupole (Q1). Q1 filters ions towards Q2 (collision cell) 

by sorting them by a specific m/z range (TOF MS scan, all ions are analysed) or choosing 

a unique ion with a specified m/z ratio (TOF MS/MS scan, one selected ion is analysed). 

Once ions are in Q2, they are fragmented by a CID strategy. The CID increases the 
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internal energy of the precursors, this vibrational energy is lost by fragmentation to give 

product ions. The m/z of the product ions will be recorded, and these product ions will 

enter in the TOF region where more MS analysis will be performed (Andrews et al., 

2011). 

 

1.4.2.5 Acquisition methods  

In general, there are three main methods to acquire the proteomics data: data-

dependent acquisition (DDA), data-independent acquisition (DIA), and targeted analysis 

(Aebersold and Mann, 2016).  

During the DDA method, in each cycle there is a first scan or survey of spectra from MS1 

to determine the intensity (abundance) of parent ions from a determine m/z. The 

algorithm for DDA (TopN) will select those top n parent ions with higher intensity to be 

fragmented and analyzed in MS2. Thus, product ions will be scan by MS2, producing 

the respective spectrum that will be compared with a pre-defined database. The pitfall 

of this method is that it is possible that peptides with low intensity (low abundance) can 

be ignored and not selected after the first scan (Bauer et al., 2014; Koopmans et al., 

2018).  

In the DIA method (e.g., sequential window acquisition of all theoretical mass spectra 

(SWATH)), multiple parent ions from a specific m/z range are fragment simultaneously, 

generating a complex pool of fragments from different precursors. Thus, all peptides in 

the sample are potentially fragmented and analyzed, generating the entire m/z spectrum 

for the whole proteome (i.e., deeper coverage), in comparison to DDA where only high 

intensity ions are identified. This means that this technique has the advantage of being 

a good method to discover new proteins (Gillet et al., 2012; Chapman et al., 2014).  

The third method, targeted analysis (e.g., selected reaction monitoring (SRM)) 

characterizes known peptides that are preselected by their m/z in MS1 to be fragmented 

and analyzed in MS2 (Picotti and Aebersold, 2012).  
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1.4.2.6 Peptide and protein identification 

The last step in shotgun proteomics is the analysis of the MS/MS spectrum using 

statistical and computational tools to identify peptide sequences and proteins. All the 

multiple peptide search engines that can be used are grouped in three main strategies: 

‘sequence database searching’, ‘spectral library searching’, and ‘de novo peptide 

sequencing’ (Nesvizhskii, 2010).  

In the case of ‘sequence database searching’, the MS/MS spectrum (experimental 

spectrum) is compared against the theoretical (in silico) fragmentation of all the proteins 

that appear in the database of a specific organism. This in silico digestion is performed 

using a specific protein sequence database (e.g., UniProt/SwissProt, NCBI-nr) based on 

an established criterion according to the real experiment (e.g., tryptic digestion or 

chemical modifications) (Nesvizhskii, 2007). The different search engines (e.g., Sequest, 

Scope, Mascot, ProteinPilot) will use different scoring algorithms to rank all possible 

peptides based on a database search score. This score will reflect how similar the 

experimental and theoretical spectrum are and, therefore, how confident the matches 

are. In general, the top scoring peptide is considered the correct match (Cottrell, 2011).  

‘Spectral library searching’ compares the experimental spectrum with a spectral library 

(e.g., SpectraSST, Bibliospec) formed by MS/MS spectra that have been identified 

previously in other experiments. The disadvantage of this technique is that only spectra 

that are available in the library will be recognized (Frewen et al., 2006).  

Lastly, ‘de novo peptide sequencing’ determines the sequence of peptides directly from 

MS/MS spectra by knowing which fragmentation methods have been used together with 

other parameters (e.g., tryptic proteolysis). This approach can compare two fragments 

ions and calculate the mass difference that corresponds to the mass of an aa residue. 

This method is very useful to identify proteomes that have not yet been sequence and, 

therefore, there is not a protein database available. Between the software that can be 

used, PEAKS is one of the most popular (Valikangas et al., 2018).  



Chapter 1. General introduction 

49 
  

To avoid errors in the identification of peptides and proteins to add confidence to the 

quality of the proteomics analyses, a false discovery rate (FDR) can be determine. 

Peptide-level FDR analyzes the peptide-spectrum matches (PSMs) with their scores that 

show how confident the matches are. The role of the peptide-level FDR is to reflect the 

number of false positive PSMs (i.e., incorrect rejection of the null hypothesis) among all 

PSMs that have been generated from the MS/MS spectra, when a spectrum is assigned 

to one peptide without being present in the sample (e.g., reversed peptide sequence). 

The most classical way of generating FDR analysis is with the ‘target-decoy’ approach, 

where target (correct sequences) and decoy (wrong sequences determined by reversed 

or shuffled sequences) databases are analyzed. This ‘target-decoy’ strategy assumes 

that when PSMs are positive in the decoy database, they must be false in the target 

database. Nevertheless, the main aim of proteomics is to identify proteins with the 

assembly of all peptides that have been determined, which needs another false positive 

control by establishing a protein-level FDR (The et al., 2016).   

In this Thesis, ProteinPilot software was used to identify peptides sequences and 

proteins. This software uses the ParagonTM database search Algorithm, which combines 

‘sequence database searching’ with a ‘sequence tag’ approach to identify peptides. The 

algorithm generates small partial sequence tags from the peptide spectrum and then 

compares these tags with the database. Hence, the sequence with a higher number of 

tags will be considered as the real answer. For that, tags are compared and mapped 

over 7-residue segment, generating a Sequence Temperature Value (STV) where the 

‘hot’ STV has the maximum number of tags in that region. Regions with ‘hot’ STV will be 

searched in the database, accounting for the possibility of different variations and 

modifications of the sequence. Then, Pro GroupTM Algorithm identifies the proteins by 

applying the simple assumption that peptides can only be part of one protein. Moreover, 

the higher the confidence is for each peptide, the more the contribution of this peptide to 

the protein. For each protein, the algorithm calculates the Total ProtScore (as a total of 

all found peptides that appear in multiple proteins) and the Unused ProtScore (as 
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peptides that only appear in one protein). For a protein to be detected, it is necessary to 

have an Unused ProtScore with the higher confidence (Shilov et al., 2007). 

 

1.4.2.7 Quantitative proteomics 

Protein quantification allows the comparison of the protein expression or proteomes 

between different experimental conditions. In order to study the differences between the 

proteomes of two or more samples, it is possible to chemically label the samples with 

stable isotopes (i.e., ‘label-based’ method), or use a ‘label-free’ approach (Anand et al., 

2017). 

 

Label-based methods − ‘Label-based’ quantifications are characterized by labelling 

each experimental sample with a tag of a different mass. This allows the recognition of 

the different sample peptides by observing specific changes in their mass. When using 

this strategy, samples must be labelled first and then pooled before MS analysis is 

performed. This strategy was developed thanks to the discover of isotope-coded affinity 

tags (ICAT) by Gygi et al. (1999). These tags contain a reactive group that binds cysteinyl 

residues, a linker segmented with or without eight deuterium isotopes (allowing two 

different experimental conditions), and a biotin label that can bind avidin to isolate the 

peptides. After mass spectrometry analysis, the difference in mass between the two 

linker segments helps to identify the sample from which the peptides came from. Another 

example of ‘label-based’ technique is SILAC (stable isotope labeling of amino acids in 

cell culture), where proteins can be labelled in vivo (in general in culture) by using two 

different media with normal or labeled aa with heavy isotopes. Thus, when cells grow, 

they will incorporate normal or heavy labeled aa in their new proteins, and generate two 

proteomes that can be identified based on their peptides having different mass (Mann, 

2006). Finally, other ‘label-based’ methods like tandem mass tag (TMT) and the isobaric 

tag for absolute and relative quantitation (iTRAQ), use isobaric tags to label the amines 

of the proteins. TMT allows the quantification of up to 10 different samples, having a total 
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mass of 305kDa. It is divided into an amine reactive group that binds the N-terminal or 

lysine of the peptides, a balance group with variable mass (184−192) and a MS/MS 

reporter group (113−121kDa) that generates a specific reporter ion after fragmentation 

(Thompson et al., 2003). On the other hand, iTRAQ is based on the use of isobaric 

reagents (from four −4plex− to eight −8plex −), allowing for the analysis of up to eight 

different samples simultaneously when the tags dissociate during MS/MS analysis. The 

isobaric labels, with a total mass of 145kDa, are formed by: (a) an amine specific peptide 

reactive group that binds the lysine and N-terminal of each peptide; (b) a reporter group 

with a variable mass (114 to 121kDa) to create the mass difference between 

experimental samples; and (c) a balance group with a variable mass (28 to 31kDa) to 

maintain the isobaric characteristics of the tag during MS1. After the fragmentation step 

for the dissociation of ions, the balance group is removed from the tag, which generates 

differences in the mass between the same peptide from each experimental group in the 

reporter ions of MS2. This different mass is caused by the distinct reporter groups from 

each isobaric tag. During MS1 scans, one peak will appear combining the same peptide 

from each different sample, however, the fragmentation of that peptide will generate the 

production of reporter ions of different m/z in MS2. The specific intensity of these reporter 

ions will indicate the amount of peptide from each sample, and is used to calculate the 

relative quantification of each protein by dividing each of the sample groups by the 

established control as the denominator (Ross et al., 2004). The advantage of iTRAQ is 

the possibility of analyzing up to eight samples in a single MS experiment; although due 

to the tryptic digestion, the complexity of the sample increases (Wiese et al., 2007). 

Previous studies using iTRAQ, however, have shown its utility in the field of 

neuroscience using both rodent and human samples. For example, recent work by Xie 

et al. (2018) demonstrated that in a rat model of depression, proteins related to synaptic 

mitochondria of hippocampal neurons were dysregulated in comparison to their 

littermates. They speculated that this might indicate an impairment in the production of 

the energy necessary for synaptic plasticity. Likewise, Adav et al. (2019) revealed that 
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mitochondrial proteins were dysregulated during AD, comparing post-mortem human 

samples (medial frontal gyrus) with AD versus healthy control individuals. 

In this Thesis, iTRAQ4plex was the method chosen to identify and quantify the samples, 

allowing the labeling of the four different age groups (see Chapter 2). The relative 

quantification of each protein was resolved as a fold-change ratio by establishing the 

oldest group (i.e., old, >21-month-old) as the denominator of each comparison. Thus, 

MS/MS analyses from the juvenile (postnatal P14), young (8-month-old) and middle age 

(16-month-old) were compared against the MS/MS analysis obtained from the old 

samples, generating a relative quantification of each protein expression in comparison 

to the old age (i.e., juvenile versus old; young versus old; middle age versus old).  

 

Label-free method − ‘Label-free’ quantifications require independent MS/MS analysis 

of the different experimental groups, but avoid the use of expensive tags, which reduces 

the time of preparation of the sample and makes this method cheaper compared to label-

based proteomics (Asara et al., 2008). One of the ways to generate ‘label-free’ 

quantifications is by ‘spectral counting’ (SpC) of each sample. This works on the principle 

that proteins with a higher expression produced more peptides (number of spectra) that 

can be identified. Thus, the quantification and identification of proteins are performed in 

MS/MS analysis by counting the number of spectra. However, during this strategy it is 

important to consider that larger proteins will generate more peptides (more spectra) that 

can be identified, which can affect the estimation of the amount of protein. Therefore, to 

estimate the amount of protein according to their size, different methods can be used, 

including ‘exponentially modified protein abundance index’ (emPAI) or ‘normalized 

spectral index’ (SIN) (Arike and Peil, 2014). Another ‘label-free’ strategy is to quantify 

the ‘area under the curve’ (AUC), which reflects the peak intensity of each peptide 

spectra in MS1. In this process, quantification of the different expression of 
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peptides/proteins from different samples is performed in MS1, while their identification 

is done in MS2 (Neilson et al., 2011). 

 

1.4.3 Bioinformatics  

The production of complex datasets from shotgun proteomics involves the use of 

bioinformatics tools to understand the biological meaning of the mass spectrometry 

analysis and observe how a certain proteome changes under different experimental 

conditions.  

Among the different bioinformatic analysis that can be applied, Gene Ontology (GO) 

annotation analysis allocates proteins in terms or functional groups. These terms are 

part of three categories − ‘biological process’, ‘molecular function’ and ‘cellular 

component’ − which indicate the biological function that a specific protein has in that 

proteome. Moreover, GO enrichment analysis calculates which terms are significantly 

enriched (overrepresented) over an established dataset (e.g., the whole proteome of the 

sample) based on the number of proteins associated with various terms (Ashburner et 

al., 2000). This enrichment analysis can be done directly on the GO project website, 

using online applications (e.g., Gorilla, AmiGo, Database for Annotation, Visualization 

and Integrated Discovery (DAVID)) or open-source programming languages such as 

Python or R (Pomaznoy et al., 2018). 

Similarly, pathway analysis highlights those biological pathways that are significantly 

overrepresented in the analyzed proteome. These biological pathways reflect the activity 

taking place inside the cells by grouping the biological effects of the proteins that have 

been identified. For that, different databases such as Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) (Kanehisa and Goto, 2000), Reactome (Matthews et al., 2009) or 

Ingenuity Pathway Analysis (IPA) (Kramer et al., 2014) can be used. 
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Finally, it is possible to observe what kind of interactions exist between proteins within a 

certain proteome. This can be illustrated as a protein network where some proteins can 

be identified as a hub with a high connectivity with a larger portion of the proteome. 

These association are not just based on experimental data, but also data extracted from 

the literature. MINT (Chatr-aryamontri et al., 2007) or Search Tool for the Retrieval of 

Interacting Genes/Protein (STRING) (von Mering et al., 2003), for example, are some of 

the software and databases that can be used to perform such an interaction analysis.  

In this Thesis, bioinformatics analysis included GO enrichment analysis with DAVID, 

KEGG and Reactome pathway analyses, and STRING network analysis. More 

information about each method can be found in Chapter 2.  

 

1.5 Aim and objectives 

This chapter has attempted to provide a brief summary of the literature relating to PD, 

an aged-related neurodegenerative disease characterized by the degeneration of DAn 

in the ventral tier of the SNpc. Furthermore, this section has tried to review the key 

aspects that make DAn from the ventral tier SNpc more vulnerable in comparison to 

more resistant DAn during the disease. Moreover, and because ageing is the main risk 

factor associated with parkinsonism, it has been described the different changes that the 

brain and SNpc undergoes with ageing. This literature reveals the attempts that 

scientists have made so far to try and establish a relationship between ageing and PD. 

Currently, however, this relationship remains a mystery. To help address this, new 

cutting-edge techniques, such as the proteomics used here, can help us understand the 

contribution that ageing make to DAn vulnerability in the SNpc, and provide new insights 

into how DAn degeneration can be combated during physiological ageing and PD. 

Therefore, to end this General introduction, an overview of proteomics methods in 

neuroscience has been described to help the reader better understand the specific 

methods used. 
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The aim of this Thesis, therefore, was to enhance our understanding of the role that 

ageing has in the increased vulnerability of SNpc DAn. The objectives of this Thesis 

were: 

− Objective 1) To analyze the proteome of the SNpc in rats during ageing using a 

quantitative proteomics approach and bioinformatic tools (Chapter 3). 

− Objective 2) To quantitatively and morphologically characterize ageing SNpc 

DAn in rats and humans (Chapter 4). 

− Objective 3) To study the effect that the lack of astrocytes has on the survival 

and vulnerability of DAn in normal conditions and against the toxin 6-OHDA in 

vitro (Chapter 5). 

− Objective 4) To elucidate (through a systematic review) modifications in the 

proteome of the ageing nervous system and PD and associate these changes 

with dysregulated proteins found in Chapter 3 (Chapter 6). 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 Studies of the SNpc during ageing in rats 

2.1.1 Animals, tissue extraction and sample preparation 

Male and female Sprague Dawley rats were used for the study of the rat SNpc during 

ageing in rats (Chapters 3 and 4). The following four experimental groups were used for 

comparisons: postnatal day 14 rats (‘juvenile’); 8-month-old rats (‘young’); 16-month-old 

rats (‘middle age’); and 21-25-month-old rats (‘old’). All animal experiments were 

performed in accordance with European Union Directive 2010/63/EU, were reviewed 

and approved by the Animal Welfare & Ethical Review Body (AWERB) at Keele 

University, and conducted under the licensed authority of the UK Home Office 

(PPL40/3556). Animals were maintained in a room with a controlled light schedule (12-

hour light/dark cycle) and temperature (22 ± 1 oC) with free access to food and water.  

Rats were humanely euthanized with an overdose of pentobarbitone anesthetic (0.5 

ml/100 g) via an intraperitoneal injection, and transcardially perfused with ice-cold sterile 

0.9% sodium chloride (saline) to remove all the blood. Brains were removed rapidly from 

the skull and cut in half along the sagittal midline. The right hemispheres were used for 

proteomics and Western blotting analyses (see Chapter 4), while the left hemispheres 

were kept for immunohistochemistry and immunofluorescence analyses (see Chapter 3 

and 4) (Figure 2.1, Table 2.1).  

The right hemispheres were placed in a petri dish with fresh sterile saline, and the SNpc 

was removed by careful dissection. Each fresh SNpc sample was placed separately in 

1.5 ml aliquots on dry ice and subsequently stored at -80 oC for proteomics and Western 

blot procedures (see below).  
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The left hemispheres were fixed in 4.0% solution of paraformaldehyde (PFA) in 1X Tris-

buffered saline (TBS) overnight. The following day, the hemispheres were submerged in 

30% sucrose in TBS until they were completely sunken in the bottom of the solution (this 

reduces the water content of the tissue to cryoprotect it during freezing). The fixed 

hemispheres were taken out from the sucrose solution and 40 µm coronal sections were 

cut through the entire midbrain. To do this, fixed samples were mounted in a microtome 

(Bright series 8000, Bright Instrument Company) with Bright Cryo-M-Bed embedding 

compound (Bright Instrument Company) and sliced coronally. Each section was 

collected consecutively in 6 wells of a plastic plate containing an antifreeze 

Figure 2.1. Procedure for tissue extraction and sample preparation for the 
different analyses. Rats were transcardially perfused with ice-cold sterile saline and 

the brains removed. The right hemispheres were used to dissect the midbrain region 

that contains the SNpc. Subsequently, a sub-dissection of this region was conducted to 

obtain the fresh SNpc (within the dotted line) for proteomics and Western blotting 

analyses. The left hemispheres were fixed in 4.0% PFA solution and cryoprotected in 

30% sucrose before cutting them in coronal sections (40 µm thickness) for 

immunohistochemistry (IHC) and immunofluorescence (IF).  
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cryoprotectant solution (30% ethylene glycol, 30% glycerol in 0.2 M phosphate buffer) to 

store them at -20 oC for future use.  

 

Table 2.1. Classification of the number of rat samples used in the study of the 
SNpc during ageing. The study included four experimental groups: postnatal day 14 

rats (‘juvenile’), 8-month-old rats (‘young’), 16-month-old rats (‘middle age’), 21-25-

month-old rats (‘old’). Each age experimental group contained eight rats (n=8), except 

in the old group where there was n=9. Both sexes were equally represented in each age 

group (females, n=4-5; males, n=4). Left hemispheres (n=8-9 in each experimental 

group) were used for immunohistochemistry (IHC) and immunofluorescence (IF) assays. 

Right hemispheres were dissected to obtain the fresh SNpc for proteomics (SNpc from 

four rats (n=4) pooled together) and Western blotting (WB) analyses (SNpc from four/five 

rats (n=4-5) used individually). 

 

2.1.2 Humans, tissue extraction and sample preparation 

Fifteen ex vivo human brains (9 males and 5 females; Table 2.2) were collected from 

Keele University School of Medicine (Anatomy Facility), regulated by the HTA (Human 

Age group Sex IHC & IF Proteomics 
(pooled samples) 

WB 
(individual samples) 

Juvenile 
(postnatal day 14) 

Female 

Male 

4 

4 

2 

2 

2 

2 

Total 8 4 4 

Young 
(8-month-old rats) 

Female 

Male 

4 

4 

2 

2 

2 

2 

Total 8 4 4 

Middle Age 
(16-month-old rats) 

Female 

Male 

4 

4 

2 

2 

2 

2 

Total 8 4 4 

Old 
(21-25-month-old rats) 

Female 

Male 

5 

4 

2 

2 

3 

2 

Total 9 4 5 
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Tissue Authority) and with the approval of the School-Student Project Ethics Committee 

(S-SPEC). All donors were given consent permission for the use of the tissue. Only 

samples with no brain diseases known were included in the study.  

 

Table 2.2. Details of human midbrain samples containing the SNpc included in the 
study, n=15. 

 

The midbrain containing the SNpc was extracted from each right hemisphere via a 

horizontal cut (1.2 cm height) from the posterior commissure to the inferior colliculus. 

The midbrains containing the SNpc were fixed in 4.0% solution of PFA in 1X TBS 

overnight. The following day, the midbrains were submerged in 30% sucrose in TBS until 

they were completely sunken in the bottom of the solution. The fixed midbrains were 

taken out from the sucrose solution and cut 40 µm in transverse sections. To do this, 

fixed samples were mounted on a microtome (Bright series 8000, Bright Instrument 

Company) with Bright Cryo-M-Bed embedding compound (Bright Instrument Company) 

and sliced. Each section was collected consecutively in 6 wells with antifreeze 

cryoprotectant solution (30% ethylene glycol, 30% glycerol in 0.2 M phosphate buffer) to 

store them at -20 oC. In this case, and due to the high amount of material collected, after 

every 30 sections one sample was kept independently for free-floating immunostaining 

procedures (i.e., immunohistochemistry).  

 

2.1.3 Protein extraction for proteomics and Western blotting 

For quantitative proteomics analysis (Chapter 3), four animals per group were used (n=4, 

2 males and 2 females) (Table 2.1). To minimise sample losses due to the small size of 

Midbrain Human age groups (years) 

Sex 50-59 60-69 70-79 80-89 90-99 100-109 

Female − 1 2 2 − 1 

Male 1 − 1 4 3 − 

Total 1 1 3 6 3 1 
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SNpc tissue, the four samples from each experimental group (juvenile, young, middle 

age or old) were pooled before the protein extraction. Pooled samples of each 

experimental group (juvenile, young, middle age or old) were homogenised as previously 

described (Fuller et al., 2014) in 4 volumes (w/v) of 6 M Urea, 2 M thiourea, 2% CHAPS 

and 0.5% Sodium Dodecyl Sulfate (SDS) using a pellet pestle (20 strokes). Samples 

were left on ice for 10 minutes, followed by brief sonication. Samples were again left on 

ice for 10 minutes and then were centrifugated at 13,000 x g for 10 minutes at 4 oC. The 

supernatants, containing the extracted proteins, were transferred to a clean tube, and 

the pellets with all insoluble material were discarded. Subsequently, 6 volumes of ice-

cold acetone were added to the supernatants to precipitate the proteins. The tube was 

inverted three times, to carefully mix the acetone with the extracts, and was incubated 

overnight at -20 oC. The following day, the samples with acetone were centrifuged at 

13,000 x g for 10 minutes at 4 oC. The supernatants were removed with care and 

discarded. Each pellet was then resuspended in 200 µl of 500 mM tetraethylammonium 

bicarbonate (TEAB) in ultrapure water (Chromasolve). In order to use the same protein 

concentration from each sample in mass spectrometry analysis, the total protein 

concentration from each sample was quantified using a Bradford protein assay (see 

below) (Bradford, 1976).  

To validate the proteomics results and test if the changes that appeared in the pooled 

samples were maintained individually during ageing, Western blotting analyses were 

conducted (Chapter 3). To do this, the remaining frozen SNpc tissues (n=4-5 per age 

group, 2 males and 2-3 females) were extracted individually (without pooling) (Table 

2.1). Each individual sample was homogenised in 200 µl of cold RIPA buffer (Sigma, 

#R0278) with Halt™ protease EDTA-free inhibitor cocktail (ThermoFisher Scientific, 

#87785) using a pellet pestle (20 strokes). Samples were left on ice for 10 minutes, 

followed by sonication. Samples were placed again on ice for 10 minutes and then were 

centrifugated at 13,000 x g for 10 minutes at 4 oC. The supernatants, containing the 

extracted proteins, were transferred to a clean tube, and the pellets with all insoluble 
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material were kept in case the protein extraction was not successful. Protein extracts 

from each individual sample were kept in aliquots at -80 oC for future Western blotting 

analyses. To ensure the same protein concentration from each sample, the protein 

concentration from each sample was quantified using a Bradford protein assay (see 

below) (Bradford, 1976).  

 

2.1.3.1 Bradford protein assay 

First, protein standards were produced via serial dilutions from a Protein Standard 

(Bovine Serum Albumin, BSA; 20 mg/ml) to establish a concentration range from 20–

0.312 mg/ml. Subsequently, 5 µl of standard dilutions, protein samples (i.e., proteomics 

and Western blot) and blanks (500 mM TEAB or RIPA) were diluted in 45 µl of 500 mM 

of TEAB or RIPA. Next, 1 ml of Bradford protein assay solution (Bio-Rad, #5000006) 

was added and mixed to the final volume of 50 µl of each sample. Finally, 100 µl of each 

diluted sample with the Bradford reagent was transfer to a 96-well-plate, measuring the 

absorbance at 595 nm in a GloMax-Multi+ Detection System plate reader (Promega).  

 

2.1.4 Sample preparation for mass spectrometry analysis 1 

Every step was done following the protocol established by the iTRAQTM labelling kit 

(Biotech, 2016; Applied Biosystems, Foster City, CA, USA). This method uses four 

isobaric (same mass, 145 Da) tags (iTRAQ Reagent 114, 115, 116, 117) that bond 

covalently to the N-terminus and side-chain amines of peptides from protein digestions. 

Each tag has a peptide reactive group, a neutral balance group and a unique reporter 

group, which produces different ions at m/z 114, 115, 116 and 117 when peptides are 

fragmented by MS/MS. This allows one to analyse different samples in a single MS 

analysis, producing a relative and absolute quantification (Fuller and Morris, 2012). 

During iTRAQ labelling preparation, 85 µg of each sample was used, and any remaining 

protein extract was kept at -80 oC in case they were needed for future use. To each 

 
1 Sample preparation for mass spectrometry analysis was carried out by Heidi R. Fuller.  
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sample, 20 µl of Dissolution Buffer was added, followed by 1 µl of 2% SDS to denature 

the protein extracts. Samples were mixed and, immediately after, 2 µl of the Reducing 

Reagent (50 mM tris-(2-carboxyethyl)-phosphine (TCEP)) was added and mixed to 

reduce disulfide bonds. Samples were incubated for 1 hour at 60 oC and the reduced 

cysteines were blocked by adding 1 µl Cysteine Blocking Reagent (Borges and Sherma, 

2014). The tubes were incubated at room temperature for 10 minutes. Proteins were 

digested with sequencing grade modified trypsin (Promega, #V5113), incubated 

overnight at 37 oC, using 5 µg of trypsin per 100 µg of protein. The next day, samples 

were dried down in a centrifugal vacuum concentrator (ThermoSavant, ThermoFisher 

Scientific) to reduce the volume of the sample digest and maximize labelling efficiency. 

Subsequently, each iTRAQ Reagent vial with a different tag was transfer to each peptide 

sample. Peptides were labelled at room temperature for 1 hour with iTRAQTM Reagents-

4plex as follows: 114−juvenile, 115−young, 116−middle age, 117−old. Then, each of the 

iTRAQ labelled samples (114−juvenile, 115−young, 116−middle age, 117−old) were 

combined into one tube (Figure 2.2).  

 

2.1.5 High pH reverse-phase liquid chromatography (RPLC) fractionation2 

To reduce the complexity of the samples prior to mass spectrometry analysis, peptides 

were first separated into fractions by high pH RPLC (Figure 2.2). The sample was 

dissolved in 100 µl of buffer A (10 mM ammonium formate (NH4HCO2), 2% acetonitrile 

(MeCN), pH 10.0). The peptides were then fractionated by RPLC using a C18 column 

(XBridge C18 5 µm, 4.6 x 100 mm, Waters).  

 
2 Samples were sent to the BSRC Mass Spectrometry and Proteomics Facility at St. 

Andrews University (Fife, UK) where the high pH reverse-phase liquid chromatography 

and mass spectrometry analysis were performed. Details of the methods were 

provided by Sally L. Shirran and Silvia Synowsky. 
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The column was rinsed with 96% buffer A at 1 ml/min for 6 minutes until the O.D. on the 

ultraviolet chromatogram returned to the baseline. The gradient ran from 4−28% of buffer 

B (10 mM NH4HCO2, 90% MeCN, pH 10.0) for 30 minutes to 28−50% buffer B for 6 

minutes. The column was rinsed in 80% buffer B for 5 minutes and then was re-

equilibrated at initial conditions with 4% buffer B for 11 minutes. Fractions of 0.5 ml were 

collected every 30 seconds. The UV chromatogram was analysed and the fractions with 

similar peptide concentration across the elution profile were combined to give 12 

fractions. The pooled fractions were concentrated in a vacuum concentrator and 

resuspended in 30 µl of 0.1% of FA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Protein extraction from the rat SNpc (within the dotted line) and LC-
ESI-TripleTOF 5600+ mass spectrometry proteomics analysis workflow.  
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2.1.6 Mass spectrometry analysis (LC-ESI-MS/MS)2 

1/3 of each fraction containing the labelled peptides was analysed by mass 

spectrometry. First, the peptides were separated by LC using a nanoLC Ultra 2D plus 

loading pump and nanoLC AS-2 autosampler chromatography system (Eksigent). 

Peptides were loaded on the column with buffer A (2% MeCN, 0.1% FA in ultrapure 

water) and bound to an Acclaim PepMap100 trap (100 µm x 2 cm) (ThermoFisher 

Scientific). The trap was then washed for 10 minutes with buffer A, after which the trap 

was turned in-line with the analytical column (Acclaim PepMap RSLC column, 75 µm x 

15 cm). The analytical solvent system consisted of buffer A and buffer B (98% MeCN, 

0.1% FA in ultrapure water) at 300 nl/min flow rate. Peptides were eluted using the 

following gradient: linear 1−20% of buffer B over 90 minutes, linear 20−40% of buffer B 

for 30 minutes, linear 40−99% of buffer B for 10 minutes, isocratic 99% of buffer B for 5 

minutes, linear 99−1% of buffer B for 2.5 minutes and isocratic 1% buffer B for 12.5 

minutes. The eluent was analysed using a TripleTOF 5600+ tandem mass spectrometer 

(AB Sciex), controlled by Analyst® TF software (AB Sciex). The system was equipped 

with a NANOSpray II source (ESI) which sprayed the samples into the mass 

spectrometer (Figure 2.2). The mass spectrometer was operated in DDA top20 positive 

ion mode with 120 mn acquisition time for MS (m/z 400−1250) and MS/MS (m/z 

95−1800), and 15 seconds of dynamic exclusion. MS/MS was conducted with a rolling 

collision energy (CE) inclusive of present iTRAQ CE adjustments. 

 

2.1.7 Database searching and criteria for identifying differentially expressed 

proteins 

Peptides were identified and quantified using ProteinPilot software, version 5.0.1.0 

(Applied Biosystems) (Figure 2.2). Once the software converted LC-ESI-MS/MS raw 

data in peak lists, the ParagonTM database search Algorithm version 5.0.1.0 identified 

peptides and their isoforms from MS/MS spectra using the UniProtKB/Swiss-Prot FASTA 

database. Subsequently, the Pro GroupTM Algorithm performed a statistical analysis on 
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the peptides found to accurately determine which proteins had been detected. Proteins 

that showed a Protein Threshold>5 were used for the Pro GroupTM Algorithm to calculate 

the relative quantification of the protein expression, generating an error factor and p-

value. The relative quantification of each protein was produced establishing a ratio 

between each of the age groups (114−juvenile, 115−young, 116−middle age) in relation 

to the old age group (117−old). The old group was established as the denominator 

because it is the focus of this Thesis and the aim was to determine which proteins were 

differentially expressed in the oldest animals (as this may help to explain or understand 

why ageing is one of the main risk factors associated with the degeneration of DAn of 

the SNpc in PD). The general ParagonTM search analysis parameters were: type 

‘iTRAQ4plex (Peptide Labeled)’, cysteine alkylation ‘MMTS’, digestion ‘trypsin’ as the 

cleavage enzyme, instrument ‘TripleTOF’, and species ‘Rattus norvergicus’ for sample 

parameters; processing parameters were specified as ‘quantitative’ to determine the 

relative levels of the protein, ‘bias correction’ to correct the median ratio to unity 

eliminating pipette or other errors (ratios of 1.4484 for the 114:117 labels, 1.1639 for 

115:117, 1.1788 for 116:117), and ‘background correction’ to remove the background 

due to many lower-intensity peptides were selected; ‘thorough ID’ and ‘Biological 

modifications’ to consider biological modifications in the peptides searching were chosen 

to specify search effort and ID focus parameters. To validate the results, the 

independence FDR analysis was executed using the Proteomics System Performance 

Evaluation Pipeline (PSPEP). The local FDR analysis showed the percentages of 

specific identifications that were incorrect, giving 2,363 proteins (5%) and 2,206 proteins 

(1%). The protein summary list generated by ProteinPilot included, among others: the 

accession number, which is a stable identifier for UniProtKB entries or proteins; the 

number of peptides found for each protein; and the proteins ratios for each different 

group of age (114−juvenile versus 117−old, 114:117; 115−young versus 117−old, 

115:117; 116−middle age versus 117−old, 116:117) with their p-values and error factor. 
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To eliminate false positives in the protein list generated by ProteinPilot, the following 

criteria were applied: a) proteins must be non-reversed, based on the reversed database 

searching to avoid false peptides sequence matches (Feng et al., 2007); b) proteins 

must be identified with at least three peptides with 95% confidence during peptide 

identification, because a single peptide (denominated ‘one-hit wonder’) can generate a 

false protein match by chance (Cottrell, 2011). Thus, reversed proteins and proteins with 

two or less peptides were eliminated from the protein list. 

Next, to produce a robust and confident list of differentially expressed proteins in the old 

group, other filters were imposed: a) protein fold-change ratios must have a significant 

p-value (p<0.05); and b) in addition to the statistically significant fold-change ratios 

(p<0.05), these ratios must pass an arbitrary 1.25-fold-change cut-off  to be sure that the 

proteins classified as up (ratio ≤0.75) or downregulated (ratio ≥1.25) in the old group 

were true differences (Jin et al., 2009). 

 

2.1.8 Analysis of differentially expressed proteins 

Once the differentially expressed protein lists from the three different ratios 

(114−juvenile:117−old, 115−young:117−old, 116−middle age:117−old) were obtained, 

the following four independent analysis (subsets) were performed (Chapter 3).  

First, a common analysis was conducted using all three differentially expressed protein 

lists of each ratio (114:117, 115:117, 116:117). This analysis provided the possibility to 

determine which proteins were differentially expressed in all three groups (juvenile, 

young and middle age) compared to the old group, in addition to understanding the 

trending of their expression and distribution along ageing.  

Second, the ratio 114:117 (juvenile versus old) was removed from the analysis. This step 

was done to avoid the inclusion of possible changes in the expression of proteins due to 

development of the brain in the juvenile group. 
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Third, two sub-groups analyses were executed. The first approach considered only 

differentially expressed proteins in the ratio 115:117 (young versus old), highlighting 

proteins that changed between the young and the old group but perhaps were not 

statistically significant and/or with an acceptable cut-off between the middle age and old 

group. This situation could appear if, for example, modifications in the expression of 

proteins were gradually changing with increasing age, so variations from the middle age 

to the old group may not show a significant or acceptable fold-change. These 

circumstances could be biologically relevant, even though they are not statistically 

significant in the ratio middle age versus old, because they reflect that some 

modifications in the expression of the proteins related with ageing appear early in the 

SNpc. The second approach examined proteins that were only differentially expressed 

in the ratio 116:117 (middle age versus old) compared to proteins from the ratio 115:117 

(young versus old), regardless of whether the protein ratios were statistically significant 

and/or with an acceptable cut-off or not. This condition could be explained if 

modifications of the protein expression due to ageing appear, at least significantly, very 

late in the adult SNpc.  

 

2.1.9 Bioinformatic analyses of proteomic data for biological interpretations 

To gain insights into the biological meaning of the data, the four independent subsets of 

identified proteins in the sub-group analysis were analysed using bioinformatics tools, 

as described in the following sections. 

 

2.1.9.1 Functional annotation analysis: DAVID  

The bioinformatic software to perform all the statistical tests necessaries to accomplish 

the functional enrichment analysis was DAVID, version 6.8, using the Functional 

Annotation Clustering Tool (https://david.ncifcrf.gov/). This bioinformatic tool classifies 

set of proteins using a functional enrichment analysis, which maps large proteins lists in 

https://david.ncifcrf.gov/
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biological annotations or gene ontology terms, and shows which terms are statistically 

overrepresented or enriched. This type of large protein list analysis brings the 

opportunity to successfully identify a biological process associated with a group of 

related proteins (Huang et al., 2007; Huang et al., 2009). DAVID uses a unified 

annotation database (DAVID Gene concept) created by integrating the most popular 

independent redundant databases (e.g., NCBI or UniProt/SwissProt) using a single-

linkage algorithm. This process improves the availability of annotation data and enhance 

the accessibility to different categories. DAVID determines the statistical significance (p-

value) of every single enriched annotation term in the user’s protein list (the four different 

subsets in this case). The statistical method to calculate the enrichment p-value 

(modified as EASE score) is the Fisher’s Exact test. The level of enrichment is generated 

comparing the sample proteins (or gene list) to an established population background 

gene. The population background can be the DAVID default one (i.e., genome-wide 

genes with at least one annotation in the analysing categories) or a customized 

population background that is submitted to DAVID. Nevertheless, it is important to note 

that depending on the selections of the population background, the results will differ 

(Huang et al., 2007; Huang et al., 2009). 

To perform the Functional Annotation analysis the following procedure was undertaken 

for each of the four subsets of identified proteins (Chapter 3). Each set was submitted 

independently into the ‘Gene List’ box within the Functional Annotation Tool as a row list 

of the corresponding protein accession numbers. The selected identifier was 

‘uniprot_accesion’, and the list type ‘gene list’. For the background, the entire list of 

identified proteins in this study removing the possible false positive matches 

(Supplementary Table 2a) was submitted, regardless of whether they were differentially 

expressed or not. From the annotation summary result, GO analysis was selected to 

establish which terms within the following categories were enriched in each dataset: the 

biological process (BP) in which the proteins are involved, the type of cellular component 

(CC) to which they belong, and the specific molecular function (MF) that they develop 
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inside the cell. Also, the KEGG (Kyoto encyclopaedia of genes and genomes) pathway 

(https://www.genome.jp/kegg/) (Kanehisa and Goto, 2000) was used to determine 

whether any of the proteins in the dataset map to known biological networks (e.g., 

metabolism, environmental information processing, human diseases). Each of these 

functional annotations (BP, CC, MF; KEGG) created a specific Functional Annotation 

Chart. The chart showed a list of enriched terms, the list of proteins that form each term 

and their p-value (EASE score). Only terms with a p<0.05 and more than two proteins 

were finally selected.  

 

2.1.9.2 Reactome pathway analysis 

The bioinformatic tool Reactome pathway knowledgebase, version 68 (June 2019) 

(https://reactome.org/) was used for the interpretation, integration, visualization (i.e., 

using an interactive graphical map) and analysis of the data. Reactome organizes 

signalling and metabolic molecules called ‘entities’ that participate together in reactions 

from biological pathways and processes (e.g., metabolism, transcriptional regulation, 

disease) (Fabregat et al., 2017; Fabregat et al., 2018). Reactome is focused on the 

single species Homo sapiens, which means that all non-humans’ identifiers or proteins 

are converted to their human equivalents and, afterwards, they are systematically 

associated with their molecular functions. To achieve that, the Reactome project recruits 

expert authors that described pathways in their area with references. Later, a Reactome 

curator works together with the authors to convert this information into the database 

structure used in Reactome. Once the module is ready, it is peer-reviewed by another 

expert in the field, allowing the release of the pathway on the public Reactome website 

and database. Different databases resources (e.g., Uniprot, NCBI, GO) are cross-

referenced by Reactome. The overrepresentation analysis tool determines if the list of 

proteins provided (i.e., identifiers) by the user are annotated to an entity from the 

Reactome pathway, using a hypergeometric distribution test that generates a probability 

score (from 0 to 0.05). In essence, the statistical test calculates if certain Reactome 

https://www.genome.jp/kegg/
https://reactome.org/
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pathways are overrepresented (enriched) in the submitted dataset, in comparison to 

what it would be expected by chance. In the case that entities have not been updated 

as part of a specific Reactome database, identifiers or proteins will not be found or 

mapped in the Reactome analysis. Reactome pathway analysis (Chapter 3) were 

performed using the ‘Analyze data’ tool, placing the list of accession number of each 

subset of proteins in the big box provided for that. ‘Project to human’ was selected and 

the data was analysed. 

 

2.1.9.3 Protein network analysis: STRING 

STRING database (https://string-db.org/), version 11.0, was used to predict possible 

protein networks and understand protein-protein interactions within each subset of 

results. STRING database collects, scores and integrate publicly available information 

from online databases (e.g., GO, KEGG, Reactome) related to protein-protein 

interactions (physical and functional) with computational predictions, and including 

accessory information such as annotated pathway knowledge or text-mining results 

(Szklarczyk et al., 2019). Proteins that contribute together to a specific biological function 

(i.e., not only physically) are linked by ‘functional association’. Among the different 

associations, proteins can be related by different ‘channels’ as follows: genomic context 

information (i.e., neighbourhood, fusion, gene co-ocurrence), co-expression, text-

mining, biochemical//genetic data (i.e., experimental data), protein-complex knowledge 

(i.e., databases). STRING will generate an interaction score for each channel, which 

represents not the strength of the interaction but the confidence (from zero to one) to 

determine if, with the available evidence, the interaction is true. Evidence for each 

channel is sub-divided into two scores, one represents the evidence from the organism 

that has been chosen for the analysis, and the other is transfered from other organisms, 

based on hierarchically arranged orthologous group relations. Scores are computed by 

combining the probabilities from the evidence that exists from the different channels, 

being corrected for the probability that a random interaction occurs. For the STRING 

https://string-db.org/
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analysis (Chapter 3), accession number of each subset of proteins was submitted into 

the ‘List of Names’ box within the ‘Multiple proteins’ tool, and the organism ‘Rattus 

norvegicus’ was selected. The minimum required interaction score was medium (0.400) 

confidence. 

 

2.1.9.4 Multiple sequence alignment  

Clustal Omega multiple sequence alignment (MSA) tool 

(https://www.ebi.ac.uk/Tools/msa/clustalo/), from the European Bioinformatic Institute 

part of the European Molecular Biology Laboratory (EMBL-EBI) search (Madeira et al., 

2019), was used for the alignment of sequences. Clustal Omega generates biologically 

meaningful MSA of different sequences by using guide trees and HMM profile-profile 

techniques (Siever et al., 2011). In the proteomics study (Chapter 3), sequences from 

the GFAPα isoform (accession number: P47819), GFAPδ isoform (accession number: 

P47819-2), and peptides identified in the iTRAQ experiment for GFAP were submitted 

in a FASTA format.  

 

2.1.9.5 Predicted Molecular Weight (MW) tool 

To calculate the MW of a known protein FASTA sequence (in this Thesis, theoretical 

breakdown products of GFAP by calpain, see Chapter 3), Protein Molecular Weight tool 

(https://www.bioinformatics.org/sms/index.html) was used. Protein Molecular Weight is 

a JavaScript application (JavaScript 1.5), part of the Sequence Manipulation Suite 

(https://sites.ualberta.ca/~stothard/javascript/), which manipulated the submitted 

sequence by executing in the web browser JavaScript (Stothard, 2000).  

 

2.1.10 Verification of the differentially expressed proteins by Western blotting 

Quantitative Western blotting was used to verify the differential expression of several 

selected proteins of interest from the proteomics study (Chapter 3), loading between 

three and five independent samples (from individual rats) per group in each gel (Table 

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.bioinformatics.org/sms/index.html
https://sites.ualberta.ca/%7Estothard/javascript/


Chapter 2. Materials and methods 

73 
  

2.1). Due to the limited amount of total protein from each sample, and the need to include 

thirteen individual samples onto the same gel, the amount of loaded protein was 7 µg 

(panGFAP and TH immunoblots) or 14 µg (GFAPδ and calpain-2 immunoblots) (see 

below).  

Samples were kept on ice during the preparation of the sample to avoid protein 

degradation. 7 µg or 14 µg of each protein extract (7 µg/5 µl or 14 µg/5 µl in extraction 

buffer) was incubated with an equal volume (5 µl) of 2x loading Laemmli buffer (0.125 M 

Tris-HCl, 20% glycerol, 4% SDS, 0.004% bromophenol blue, 5% 2-mercaptoethanol in 

ultrapure water, pH 6.8) for 5 minutes at 95 oC, which left a final concentration of 7 µg/10 

µl or 14 µg/10 µl of protein loaded in each well. Samples were centrifugated at 16,000 x 

g for 1 minute at 4 oC and loaded onto the 4−20% Mini-PROTEAN TGX™ Precast 

polyacrylamide Protein gels (15-wells, 15 µl/well, Bio-Rad, #4561096). Dual Color 

Standards (Precision Plus Protein™ Dual Color Standards 10−250 kDa, Bio-Rad, 

#1610374) were loaded for MW estimations. Proteins were separated by SDS-PAGE in 

a tank containing running buffer (25 mM Tris, 190 nM glycine, 0.1% SDS in ultrapure 

water, pH 8.3) at a constant voltage (200 V), between 1 and 3 hours depending on the 

MW of the protein of interest. The separating gel was removed and a piece of gel without 

the region containing the protein of interest was cut and stained with Coomassie Brilliant 

Blue R-250 Staining solution (Bio-Rad, #1610436) to quantify the total amount of protein 

in each lane (Eaton et al., 2013). After 4 hours, the Coomassie stain was removed and 

the gel was rinsed with destaining solution (20% methanol, 10% acetic acid in ultrapure 

water) to remove the background and visualize the lanes. The other part of the gel was 

soaked in transfer buffer (192 mM glycine, 25 mM Trizma base in ultrapure water − with 

addition of 0.5 ml 20% SDS for proteins larger than 80 kDa) for 2 minutes to rinse the 

SDS from the running buffer. Foam pads, Whatman filter papers and a nitrocellulose 

membrane (0.45 µm, 7 x 8.5 cm, Bio-Rad, #1620145) were also soaked in Transfer 

buffer for 10 minutes. The transfer sandwich was assembled as follows: the first foam 

pad was placed in the anode (black part) of the cassette, followed by one filter paper 
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and the gel, then the nitrocellulose membrane, another filter paper and foam pad. The 

cassette was placed into a Mini-PROTEAN Tetra Cell tank (Bio-Rad) and filled with 

transfer buffer. Proteins were electrophoretically transferred to the nitrocellulose 

membrane at constant milliampere (100 mA) overnight at 4 oC. Membranes were briefly 

rinsed with 0.1% Tween 20 in 1X TBS (TBST) and stained with Ponceau S solution 

(Sigma, #P7170) to check the quality of the transfer. Ponceau S stain was rinsed off with 

3 washes of TBST for 5 minutes. Membranes were blocked with antibody solution diluted 

in 5% non-fat dry milk in TBST at room temperature for 30 minutes. Membranes were 

then incubated with primary antibodies (Table 2.3) in antibody solution overnight at 4 oC 

with shaking. The next day, membranes were washed three times with TBST (5 minutes 

each wash) and incubated with HRP-conjugated secondary antibodies (Table 2.4) 

diluted in antibody solution at room temperature for 1 hour with shaking. Membranes 

were washed again three times with TBST and incubated with Clarity Western ECL 

Substrate (Bio-Rad, #1705061) or SuperSignal West Femto (ThermoFisherScientific, 

#34094) for 5 minutes. Blots and gels stained with Coomassie were imaged with a CCD 

system (FluorChem M system, ProteinSimple).  

 

Table 2.3. List of primary antibodies used for immunoblotting. 

Antigen Dilution Isotype Raised against Manufacturer 
(catalog #) 

GFAP  1:1000  Rabbit monoclonal 
IgG (D1F4Q) 

Residues surrounding 
Asp395 of human GFAP 

Cell signalling 
(12389) 

GFAP 1:500 
Mouse 

monoclonal IgG2b 
(2E1.E9) 

Bovine spinal cord 
homogenate 

Biolegend 
(644701) 

GFAPδ  1:100  Rabbit polyclonal 
IgG 

Residues surrounding 350 
of mouse GFAP delta 

Abcam 
(93251) 

GFAP+1 1:400 Rabbit polyclonal Epitope DRGDAGWRGH of 
human origin 

Bleeding 
070307 (UMC 

Utrecht) 

Calpain-2 1:200 
Mouse 

monoclonal IgG1 
(E-10) 

Epitope between 2−27 aa 
(N-terminus) of human 

origin 

SantaCruz 
(373966) 

TH  1:1000  Rabbit polyclonal 
IgG 

Denatured TH from rat 
pheochromocytoma 

Millipore/Merck 
(ab152) 
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Table 2.4. List of secondary antibodies used for immunoblotting. 

Antigen Dilution Isotype Conjugated Manufacturer  
(catalog #) 

rabbit  1:1000  Goat polyclonal IgG  HRP ThermoFisher Scientific  
(31460) 

mouse 1:1000  Goat polyclonal IgG  HRP ThermoFisher Scientific 
(31430) 

 

Analysis of the gels stained with Coomassie (total amount of protein) and immunoblotting 

(membranes with the different protein bands according to the antibody used) were 

executed in Fiji/ImageJ software (https://imagej.nih.gov/) (National Institute of Health, 

USA) (Schneider et al., 2012). Images were opened on Fiji/ImageJ and the ‘rectangle’ 

tool was selected. For the gel, a rectangle was drawn horizontally across all the bands. 

The first lane was selected (Analyze>Gels>Select First Lane) and then that lane was 

plotted (Analyze>Gels>Plot Lanes). This showed a plot with different peaks indicating 

the intensity of each band. The ‘straight’ tool was selected, and a horizontal line was 

drawn at the bottom of each peak, to join the beginning to the end. Once all peaks had 

a line across their bottom, the ‘wand’ button was selected, clicking the inside of each 

peak. The window ‘Results’ appeared, with a numeric value representing the area for 

each peak or band. The same procedure was done for the immunoblot. The area of each 

peak for the gel and immunoblot were copied in Excel. The relative quantification of each 

protein or densitometry was calculated by dividing the area of the immunoblot from each 

lane between the area of the total amount of protein in that lane.  

 

2.1.11 Immunofluorescence and immunohistochemistry of rat coronal and human 

sections 

For immunofluorescence (Chapter 3), rat coronal sections (40 µm thickness) were 

mounted onto slides before the immunofluorescence procedure. Slides were rinsed 

three times with TBS (5 minutes each) and non-specific binding sites were blocked with 

blocking solution (0.2% Triton X-100, 3% normal goat serum in TBS) for 20 minutes. 

https://imagej.nih.gov/
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Slides were incubated with the specific primary antibody (anti-GFAP for astrocytes, anti-

TH for DAn; Table 2.5) in blocking solution overnight at 4 oC. The day after, sections 

were washed three times with TBS (5 minutes each) and incubated with the fluorescence 

secondary antibody (Table 2.6) and 4’-6-diamidino-2-phenylindole (DAPI) (1:1000; 

ThermoFisher, #62247) in TBS for 2 hours at room temperature. Sections were rinsed 

three times (5 minutes each) and covered with a coverslip using Hydromount mounting 

media (National Diagnostics, #HS106). 

For immunohistochemistry (Chapter 4), rat coronal and human sections (both 40 µm 

thickness) were kept in wells for free-floating staining. Before immunohistochemistry 

procedure, slides were rinsed three times with TBS (5 minutes each) and subsequently 

the endogenous peroxidase was blocked with peroxidase blocking solution (10% 

methanol, 10% hydrogen peroxide in TBS) for 30 minutes. Sections were then rinsed 

three times with TBS (5 minutes each) and non-specific binding sites were blocked with 

blocking solution (0.2% Triton X-100, 3% normal goat serum in TBS) for 20 minutes. 

Slides were incubated with the primary antibody (anti-TH for DAn; Table 2.6) in blocking 

solution overnight at 4 oC. The day after, sections were washed three times with TBS (5 

minutes each) and incubated with the biotinylated secondary antibody (Table 2.7) in 

TBS for 2 hours at room temperature. After three washes of 5 minutes each, Vectastain 

Universal ABC Kit detection system (Vector Labs, #PK6101) was applied for 1 hour at 

room temperature. Slides were washed three times (5 minutes each) and 3,3-

diaminobenzidine tetrahydrochloride (DAB, #D8100, Sigma) was used as chromogen. 

Sections were rinsed several times with TBS and mounted onto slides. Slides were left 

to dry until the sections were completely stuck to the surface. Samples were then 

dehydrated in alcohol gradient (70% for 5 minutes, 95% for 5 minutes, 100% for 10 

minutes) and immersed in xylene for 10 minutes. Samples were covered with a coverslip 

using DPX slide mounting medium (ThermoFisher Scientific) for light microscopy 

analysis.  
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Table 2.5. List of primary antibodies used for immunofluorescence (IF) and 
immunohistochemistry (IHC) analysis of the rat SNpc during ageing. 

Antigen Dilution Isotype Raised against Manufacturer 
(catalog #) 

GFAP 1:1000 (IF) Mouse monoclonal 
IgG2b (2E1.E9) 

Bovine spinal cord 
homogenate 

Biolegend 
(644701) 

TH  1:1000 (IF, IHC) Rabbit polyclonal IgG TH from rat 
pheochromocytoma 

Millipore/Merck 
(ab152) 

 

Table 2.6. List of secondary antibodies used for immunofluorescence (IF) and 
immunohistochemistry (IHC) analysis of the rat SNpc during ageing. 

Antigen Dilution Isotype Conjugated Manufacturer  
(catalog #) 

mouse 1:500 (IF) Goat polyclonal IgG  Alexa Fluor® 488 ThermoFisher Scientific 
(A11001) 

rabbit 1:500 (IF) Goat polyclonal IgG  Alexa Fluor® 594 ThermoFisher Scientific 
(A11012) 

rabbit  1:200 (IHC) Goat IgG  Biotinylated Vector Laboratories 
(PK-6101) 

 

 

2.1.12 Acquisition and analysis of immunofluorescence and 

immunohistochemistry images 

2.1.12.1 Acquisition and data analysis of immunofluorescence images for 

proteomics validations  

Acquisition − Immunofluorescence images were observed and captured using a Nikon 

Eclipse 80i microscope and a Hamamatsu fluorescent camera connected to a computer 

with NiS Elements software, version 2.32 (Nikon Instrument Inc.). Images were taken at 

4x, 10x and 20x magnification, using the same exposure setting from each specific 

antibody between samples. The different magnifications were acquired to have a general 

view of the slides (4x magnification) and perform qualitative and quantitative analyses 

(10x, 20x magnifications). 
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Optical Density (O.D.) measurements of GFAP-positive astrocytes − GFAP O.D. 

was performed to quantify the density of astrocytes (GFAP-positive) within the SNpc 

during ageing. This method was chosen because it was not possible to count the number 

of astrocytes in the 40 µm sections. O.D. measurements allow the calculation of the 

mean gray value within a section (i.e., sum of the gray values of all pixels in the selection 

divided by the number of pixels), which correspond to the immunofluorescence intensity 

(in this case GFAP-positive intensity or staining) (Tickle et al., 2015). In essence, with 

this approach, it is possible to determine in which sections (i.e., age groups) there is 

more expression of GFAP in an area, although it will not be possible to determine if this 

is due to an increase of the expression of GFAP within the cell or an increase in the 

number of astrocytes.  

From each animal, one section was selected, ensuring that all sections belonged to the 

same rostro-caudal level of the SNpc (Figure 2.3B). The SNpc was identified thanks in 

part to the TH-positive labelling of DAn. For quantification, three fields (10x 

magnification) were selected randomly, without overlap, within the SNpc nuclei. The 

green channel, corresponding to anti-GFAP astrocytes for O.D. measurements, together 

with the red (anti-TH DAn) and the blue (DAPI, nuclei) channels, were acquired. 

Fiji/ImageJ software (https://imagej.nih.gov/) (National Institute of Health, USA) 

(Schneider et al., 2012) was used to assess the GFAP O.D. as follows. ImageJ was 

calibrated with an O.D. step table (Analyse > Calibrate > Function ‘roadbard’, unit ‘O.D.’). 

All the images were converted to 8-bit grayscale (Image > Type > 8-bit) and inverted 

(Edit > Invert). The background was subtracted (Process > Subtract background > 

Rolling ball radius ‘100 pixels’, ‘light background’) and the mean gray value was 

measured (Analyse > Measure > Mean). Final values from each animal and age group 

were copied into an Excel spreadsheet for statistical analysis. 

 

 

https://imagej.nih.gov/
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Figure 2.3. Rostro-caudal representation of dorsal and lateral tiers of the SNpc in 
rats for quantitative and morphometric analyses. Top image shows a sagittal view 

of a rat adult brain, highlighting the position of the rostral, middle and caudal sections. 

Square images (A-G) represent coronal sections (40 µm thickness) of the TH-positive 

SNpc and VTA in rats. These sections are organized in (A, B) rostral (before the 

oculomotor nerve, on), (C, D) middle (where the oculomotor nerve visible), and (E, F, G) 

caudal (after the oculomotor nerve) regions. In turn, the SNpc is also divided into the 

dorsal and lateral tier. 
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2.1.12.2 Acquisition and data analysis of immunohistochemistry images for 

quantitative and morphological characterization of the SNpc DAn in rats and 

humans during ageing  

Acquisition − Immunohistochemistry images were observed and capture using a Nikon 

Eclipse Ti with automated stage and a Nikon camera also connected to a computer with 

NiS Elements software, version 2.32 (Nikon Instrument Inc.). To get a high resolution 

and detailed image of TH-positive DAn for quantitative (i.e., density of DAn in SNpc) and 

morphometric (i.e., area of DAn soma) analyses, images were taken scanning each slide 

as a large and a composite image. To do this, smaller images taken at 40x magnification 

were merged, using the same exposure and light settings between samples. To create 

this composite image, ‘Scan large Image’ option was selected, within the ‘Acquire’ 

section on NiS Elements software. Once the limits (left, right, bottom and upper) of the 

SNpc were defined, the ‘Start’ bottom was pressed, and the composite image was 

automatically scanned and created.  

 

Quantitative and morphometric measurements of TH-positive DAn − Quantitative 

analysis (i.e., density of DAn in SNpc) were performed to understand if ageing had an 

effect on the viability of SNpc DAn in rats and humans; while morphometric analysis (i.e., 

area of DAn soma) of rat SNpc DAn were conducted to determine if ageing itself or the 

loss of DAn can modify the size of these cells. DAn were only included in the different 

analyses if they were TH-positive and if it was possible delimit the soma and proximal 

processes (McRitchie et al., 1996; Schawkat et al., 2015).  

In the rat tissue, quantitative and morphometric analyses were performed using between 

six and seven different rostro-caudal sections (each one separated in 240 µm) to 

represent the whole rat SNpc (Figure 2.3). Subsequently, the different sections were 

grouped as rostral (before the oculomotor nerve; Figure 2.3A, B), middle (where the 

oculomotor nerve was visible; Figure 2.3C, D) and caudal (after the oculomotor nerve; 
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Figure 2.3E-G), analysing the dorsal and lateral tier of each SNpc (Figure 2.3). These 

delimitations, together with the separation of the VTA from the SNpc, were based on 

previous neuroanatomic and cytoarchitectonic analyses of the SNpc in rodents (Collier 

et al., 2011; Reyes et al., 2012; Fu et al., 2012; Khudoerkov et al., 2014).  

For human sections, quantitative analysis was done also using between six and seven 

different rostro-caudal sections (each one separated in 1,200 µm) to represent the whole 

human SNpc. However, in this case, the SNpc was analysed entirely because it was 

more difficult to delimit the different tiers. The delimitation of the SNpc from the VTA was 

established following previous neuroanatomic and cytoarchitectonic analyses of the 

SNpc in humans (McRitchie et al., 1995; McRitchie et al., 1996; McRitchie et al., 1997; 

Damier et al., 1999; Reyes et al., 2012).  

For both rat and human analyses, NiS Elements software, version 2.32 (Nikon 

Instrument Inc.) was used. Quantitative analysis was done considering the density of 

TH-positive neurons (number of TH-positive neurons/µm2) within a specific region of 

interest (ROI) of certain size (µm2) around the SNpc. To do this, a ROI was drawn around 

the rat SNpc (dorsal and lateral region) (Collier et al., 2011; Fu et al., 2012; Khudoerkov 

et al., 2014) or all human SNpc (McRitchie et al., 1997) and the quantification of TH-

positive DAn was performed. In rats, to be sure that the density of neurons did not 

change because of the size of the brains in the different ages, the area (µm2) of the 

hemispheres was also calculated automatically drawing a ROI around its perimeter, 

using the ‘area’ tool from the ‘Annotation and Measurements’ section on NiS Elements 

software. Morphometric analysis (only in the rat study) was calculated drawing around 

the profile of each TH-positive cell within the rat SNpc (dorsal and lateral regions). To do 

this, the ‘area’ tool was selected from the ‘Annotation and Measurements’ section on NiS 

Elements software. Thus, the area (µm2) represents how big or small the DAn can be. 

Final values for each analysis from each section/animal and age group were copied into 

an Excel spreadsheet for statistical analysis. 
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2.1.13 Statistical analyses 

Statistical analyses for Western blot (Chapter 3), immunofluorescence (Chapter 3) and 

immunohistochemistry (Chapter 4) derived data were performed by GraphPad Prism 

version 7.01 (La Jolla, USA). In all analysis, normal or Gaussian distribution of the data 

was tested by D’Agostino-Pearson normality test or Shapiro-Wilk normality test if the n 

was too small. A one-way Analysis of Variance (ANOVA) test was performed if the data 

showed a Gaussian distribution, followed by a post hoc Tukey’s multiple comparison 

tests to understand the type of differences between groups of age (juvenile, young, 

middle age and old). If the data did not show a Gaussian distribution, a nonparametric 

Kruskal-Wallis test was used, followed by a Dunn’s multiple comparison test. Significant 

differences were established when the p-value was less than 0.05 (p<0.05), rejecting 

the null hypothesis. Bar graphs represented the mean of each group, while the error bars 

indicated the standard deviation (mean ± SD). 

 

2.1.13.1 Statistical analysis of immunoblots from rat SNpc during ageing 

For Western blotting (Chapter 3), the relative quantification of each protein (calculated 

by dividing the area of the immunoblot from each lane between the area of the total 

amount of protein in that lane) from every individual sample was grouped according to 

the different ages and the statistical tests were performed. All immunoblots (i.e., 

panGFAP, GFAPδ, calpain-2, TH) were analyzed with one-way ANOVA test followed by 

a post hoc Tukey’s multiple comparison test.  

 

2.1.13.2 Statistical analysis of the GFAP O.D. immunofluorescence in rat SNpc 

during ageing 

For GFAP immunofluorescence (Chapter 3), the average of the three frames with the 

GFAP O.D. was calculated in each animal and then grouped in their respective ages to 

compare if there were modifications in the total expression of GFAP along ageing. A 
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one-way ANOVA test was performed followed by a post hoc Tukey’s multiple 

comparison test. 

 

2.1.13.3 Statistical analysis of quantifications of SNpc DAn in rats and humans, 

and morphometric analyses of SNpc DAn in rats 

Quantitative (i.e., density of DAn) and morphometric (i.e., area of DAn soma) data 

obtained by immunohistochemistry procedures in rat tissue (Chapter 4) was analysed 

independently for the dorsal and lateral tier of the SNpc. For both analyses (i.e., density 

and area) in each tier (i.e., dorsal and lateral) of the SNpc, three types of analyses were 

conducted. First, rostral, medial or caudal sections from the same SNpc that belong to 

the same age group were compared between them (e.g., comparison of the rostral, 

middle and caudal part of dorsal tier of the SNpc in juveniles), in order to see if there 

were differences in the characteristics of DAn within the SNpc independent of the ageing 

process. Second, rostral, middle or caudal regions from one of the SNpc tiers were 

pooled together according age groups to be compared between them (e.g., comparison 

of the rostral dorsal tier of SNpc between juvenile, young, middle age and old), in order 

to investigate if there is more or less degeneration or modifications of DAn with ageing 

depending on the rostro-caudal region of the SNpc. Third, all rostro-caudal sections from 

one SNpc tier were grouped in the same age group to be compared between them (e.g., 

whole dorsal tier of the SNpc from rostro to caudal compared between juvenile, young, 

middle age and old), in order to see if the two different tiers of the SNpc degenerates or 

changes with ageing. Moreover, the hemisphere area in rats was compared between 

age groups. All these data were analysed by one-way ANOVA test followed by a post 

hoc Tukey’s multiple comparison test. 

Finally, the quantification of cell counts (i.e., density) generated from each human SNpc 

section (Chapter 4) were grouped for each individual to be compared in a linear 

regression test.  
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2.2 Study of the role of astrocytes in the vulnerability of rat embryonic DAn in 

cell culture  

2.2.1 Reagents and materials for ventromedial cell culture 

13 mm glass coverslips (Thermo Scientific, #15757602), 24-well-plates, ethanol, poly-

D-lysine (PDL; Sigma, #P6407-5MG), laminin (Sigma, #L2020-1MG), Neurobasal® 

Medium (1X) solution (Gibco,#12348-017), B-27® Supplement (50X) (Gibco, #17504-

044), GlutaMAX™ 100X supplement (Gibco,#35050-038), Fetal Bovine Serum (FBS; 

Gibco, #10270-106), Antibiotic-Antimytotic Anti-Anti (100X) (Gibco, #15240-096), non-

essential aa MEN NEAA (100X) (Gibco, #11140-050), D-(+)-Glucose (Gibco, #15023-

021), 0.2 µm pore size filter (Sartorius, #165323-K), trypsin (Sigma), deoxyribonuclease 

I from bovine pancreas (DNase I; Sigma, D4527), trypan blue stain (0.4%) (Gibco, 

#15250-061), paclitaxel (Sigma, #T402-1MG), dimethyl sulfoxide (DMSO; Fisher 

BioReagents, #BP231-100), 6-hydroxydopamine (6-OHDA; Sigma, #H4381-100MG), 

ascorbic acid (AA; Sigma, #PHR1008-2G), acetone, methanol. 

 

2.2.2 Coating coverslips and plating media 

Coverslips, stored in 70% ethanol, were left to dry under a laminar flow hood and 

subsequently placed in 24-well plates. 600 µl of PDL (0.01 mg/ml in dH2O) was added 

to each well, fully covering the coverslip, and the 24-well plate subsequently kept 

overnight at 37 oC. The following day, the PDL was removed and 600 µl of laminin (0.5 

µg/ml in dH2O) was added to each well, incubating the coverslips for 2 hours at 37 oC. 

Before plating the cells, laminin was removed, trying to dry all the drops, and coverslips 

were use immediately after this.  

Plating media (NBM) was prepared as follows: 1% B-27® Supplement, 1% GlutaMAX™ 

Supplement, 10% FBS, 1% PSF, 1% MEN NEAA, 1% D-(+)-glucose 30% in 

Neurobasal® Medium solution. NBM was sterilized using a 0.2 µm pore size filter and 

stored at 4 oC. Before using, NBM was warmed up to 37 oC. 
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2.2.3 VM cells dissociation and VM cell culture 

All animals were housed at the accredited Animal Facility of Keele University. All animal 

work was performed in agreement with the Animal Welfare & Ethical Review Body 

(AWERB) at Keele University and conducted under the licensed authority of the UK 

Home Office (PPL40/3556). Animals were maintained in a room with controlled 

photoperiod (12 hours light/dark cycle) and temperature (22 ± 1 oC) with free access to 

standard food and water. 

The ventromedial (VM) area, which is located within the midbrain, includes the SNpc. 

For primary VM cultures, E14 rat embryos were used, defining the plug date as E0. 

Sprague Dawley mothers were sacrificed by cervical dislocation and the abdomen was 

sprayed with 70% ethanol before laparotomy. Embryos were removed from the uterus 

and decapitated. The heads were rapidly collected in a 50 ml falcon tube with 

Neurobasal® Medium solution on ice. One by one, the heads were placed on a petri dish 

to perform the VM dissection (Shimoda et al., 1992) under a Leica S6D dissecting 

microscope (Leica, Germany) in a laminar flow chamber (Figure 2.4). All the dissected 

VM areas were put in a new tube with 1ml of cold Neurobasal® Medium solution. In the 

meantime, 1 ml of trypsin solution (0.25% Trypsin and 10% DNase I in Neurobasal® 

Medium solution) was pre-warmed at 37 oC. After the tissue settled to the bottom of the 

tube, the Neurobasal® Medium solution was replaced with 1 ml of pre-warmed trypsin 

solution for 20 minutes at 37 oC. Trypsin solution was removed carefully, and the tissue 

was rinsed twice with 500 µl of NBM, deactivating the trypsin with the serum contained 

in the NBM. Cells were dissociated mechanically using a P100 pipette. Cell viability and 

density were assessed with a haemocytometer, mixing 10 µl of the dissociated cells and 

40 µl of 0.4% trypan blue. The final concentration of VM cells was adjusted to ~7 x 106 

cells/ml using NBM. A 10 µl ‘drop’ (~7 x 104 cells/well) of the VM dissociated cells were 

placed in the centre of the coverslips located in the 24-well plate. After incubation for 10 

minutes to allow the cells to stick to the surface, 400 µl of the media (with different 

components; see below) was added carefully to each well. Cells were incubated at 37 
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oC in a humidified atmosphere of 5% CO2 in air. Cells were fed with the respective 

treatment media (see subsection 2.2.4 and 2.2.5) every two days, changing all medium 

due to the high amount of debris, until the end of the experiment (7 days in vitro, DIV) 

(Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Procedure to obtain primary VM cells at embryonic stage E14 in rats. 
(A) SNpc DAn are located in the VM region within the midbrain. (B, C) First, heads are 

cut from the rest of the embryo and a horizontal incision is made from side to side to 

isolate the brain from the rest of the head. (D, E) The skin of the skull is peeled to reveal 

the brain. A transverse cut is made to remove the hemispheres and leave only the 

tubular midbrain. (F, G) The midbrain is flipped over in order to have a view of the ventral 

part, which presents a butterfly shape in the middle. This butterfly shape is cut (dotted 

rectangle) to isolate the region that contains the VM part from the rest of the midbrain. 

(H) Once it is cut, the tissue is flattened, and the meninges are carefully removed from 

the butterfly shape. (I, J) The ventral midbrain (dotted rectangle) is cut from the butterfly 

shape, trimming the ‘wings’ of the butterfly. All the procedure is performed under sterile 

conditions in a petri dish with Neurobasal® Medium solution. 
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2.2.4 Paclitaxel treatments: experiment 1 

To test the effects of the anti-mitotic drug paclitaxel on astrocyte and DAn viability, 

different concentrations of paclitaxel (14, 7, 3.5, 1.75 nM) were chosen, based on 

Sengottuvel et al. (2011) who described a non-toxic effect on neurons in comparison to 

other studies (see Table 5.1 in Chapter 5). Paclitaxel was diluted in NBM from a stock 

solution consisting of 100 µM paclitaxel in DMSO (stored at 4 oC). A solution consisting 

of 0.014% DMSO in NBM (the same concentration of DMSO contained in 14 nM of 

paclitaxel, the highest concentration use) was used as a vehicle control. A treatment with 

only NBM was used to test that the vehicle control (0.014% DMSO) did not have any 

effect in the culture (Figure 2.5).  

Figure 2.5. Procedure to generate primary VM cultures at embryonic stage E14 in 
rats. (A) The previously dissected VM region (Figure 2.4) was dissociated with the help 

of trypsin. Once VM cells were dissociated, a 10 µl ‘drop’ (~7 x 104 cells/well) was placed 

in the centre of each coverslip, located in the 24-well plate. Cells were treated with the 

different concentrations of paclitaxel or 6-OHDA, and the respective controls. (B) 

Diagrams show the timescale of experiment 1 (paclitaxel) and experiment 2 (paclitaxel 

and 6-OHDA), which have a total duration of 7 DIV. Once the experiment ended, 

different quantifications were performed, including quantifications of the number of 

neurons (TuJ1-positive), DAn (TH-positive), and nuclei (DAPI-positive), as well as the 

O.D. of astrocytes (GFAP-positive).  
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The different concentrations of paclitaxel, vehicle control (DMSO) or NBM were added 

to the culture the first day in vitro (0 DIV) to stop the division of mitotic cells (i.e., glial 

cells, astrocytes) from the beginning. The total duration of the treatments with paclitaxel 

was 7 DIV (finishing the experiment at 7 DIV) because previous studies have shown that 

at this point DAn are mature, forming networks with developed connections (Gaven et 

al., 2014) (Figure 2.5). For this experiment, three ‘runs’ (three biological replicants) were 

performed, placing all the experimental groups in one 24-well-plate. For each 

experimental group, between five and six coverslips were used (total n=15−18). 

 

2.2.5 6-OHDA treatments: experiment 2 

To challenge DAn viability, cultures previously treated with DMSO or 3.5 nM paclitaxel 

were exposed to 100 or 50 µM of 6-OHDA in NBM (Ding et al., 2004), prepared from a 

stock (1,000 µM 6-OHDA in 0.1 % AA). A solution of 0.01% AA in NBM was used as a 

vehicle control. In each experimental set (i.e., DMESO or paclitaxel), a treatment without 

vehicle control (0.01% AA) or 50 µM 6-OHDA was established to test whether AA was 

toxic for the cells or not (Figure 2.5). 

After 5 DIV of treatment with DMSO or 3.5 nM paclitaxel, cultures were incubated with 

the respective 6-OHDA treatment during 1, 2 or 3 hours. AA treatment was added for 3 

hours, as compared to the maximum exposure of this compound with 3 hours of 6-OHDA 

treatment. After that time, cells were washed twice with warm NBM. Then, the respective 

DMSO or paclitaxel treatments were added until the end of the experiment (7 DIV) to 

avoid the proliferation of glial cells. To note, after 6-OHDA or AA treatments (5 DIV), 

cells were kept two days more in culture (up to 7DIV) to study more than just the acute 

effect of the drug on the cells (Figure 2.5). For this experiment, four ‘runs’ (four biological 

replicants) were performed, placing all the experimental groups for DMSO or 3.5 nM 

paclitaxel in one 24-well-plate. For each experimental group, between five and six 

coverslips were used (total n=20−24). 
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2.2.6 Fixation of cell cultures and immunofluorescence microscopy   

To analyse the different response of cells to paclitaxel and 6-OHDA compared to the 

respective controls, immunofluorescence microscopic analysis was performed. To 

prepare the cultures for this procedure and observations, after 7 DIV cultures were rinse 

once with 400 µl of warm Neurobasal® Medium solution. Then, cells were dehydrated 

with a mix of acetone and methanol (1:1) for 10 minutes. Once the fixative was removed, 

every coverslip was left to dry for 30 minutes before proceeding to the immunolabelling.  

Briefly, coverslips with the fixed VM cultures were rinsed three times with TBS (5 minutes 

each). Non-specific binding sites were blocked with a blocking solution (0.2% Triton X-

100, 3% normal goat serum in TBS) for 20 minutes. Coverslips were incubated with a 

specific primary antibody (anti-GFAP for astrocytes, anti-TuJ1 for neurons, anti-TH for 

DAn; Table 2.7) in blocking solution overnight at 4 oC. The following day, coverslips were 

washed three times with TBS (5 minutes each) and incubated with the corresponding 

fluorescence secondary antibodies (Table 2.8) and DAPI (1:1000; ThermoFisher, 

#62247) in TBS for 2 hours at room temperature. Coverslips were rinsed three times (5 

minutes each) and mounted onto slides using Hydromount mounting medium (National 

Diagnostics, #HS106). There were between five and six coverslips stained 

simultaneously with anti-TuJ1, anti-GFAP and DAPI (in the first experiment), or anti-TH 

anti-GFAP and DAPI (in the first and second experiment) per each treatment condition. 

Table 2.7. List of primary antibodies used for immunofluorescence analysis of VM 
cultures treated with paclitaxel and 6-OHDA.  

Antigen Dilution Isotype Raised against Manufacturer 
(catalog #) 

GFAP 1:1000 
 

Mouse monoclonal 
IgG2b (2E1.E9) 

Bovine spinal cord 
homogenate 

Biolegend 
(644701) 

GFAP 1:1000 Chicken polyclonal IgY  Native GFAP purified 
from bovine spinal cord 

Biolegend 
(829401) 

TuJ1 1:1000 
Mouse 

monoclonal IgG2a 
(TUBB3) 

Microtubules derived 
from rat brain 

Biolegend  
(801202) 

TH  1:1000  Rabbit polyclonal IgG Denatured TH from rat 
pheochromocytoma 

Millipore/Merck 
(ab152) 
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Table 2.8. List of secondary antibodies used for immunofluorescence analysis of 
VM cultures treated with paclitaxel and 6-OHDA.  

Antigen Dilution Isotype Conjugated Manufacturer  
(catalog #) 

mouse 1:500 
 Goat polyclonal IgG  Alexa Fluor® 488 ThermoFisher Scientific 

(A11001) 

mouse 1:500 Goat polyclonal IgG  Alexa Fluor® 594 ThermoFisher Scientific  
(A11005) 

chicken 1:200 Goat polyclonal IgY  Alexa Fluor® 488 ThermoFisher Scientific  
(A11039) 

rabbit 1:500 
 Goat polyclonal IgG  Alexa Fluor® 594 ThermoFisher Scientific 

(A11012) 
 

2.2.7 Acquisition and data analysis of immunofluorescence images of VM cultures 

treated with paclitaxel and 6-OHDA  

Acquisition − Images were observed and taken using a Nikon Eclipse 80i microscope 

and a Hamamatsu fluorescent camera connected to a computer with NiS Elements 

computer software, version 2.32 (Nikon Instrument Inc.). Images of the coverslips were 

randomly taken at 10x, 20x and 40x magnification. In the case of 10x magnification, four 

fields per coverslip were randomly chosen within the ‘drop’ area where the cells were, 

moving the coverslip from top to bottom, and from left to right, without overlapping the 

fields. Each 10x field was used to quantify the number of nuclei (DAPI), neurons (anti-

TuJ1), DAn (anti-TH), as well as the O.D. of astrocytes (anti-GFAP). Four fields at 20x 

and 40x magnification per coverslip were captured to look at the morphology of cells in 

more detail. Each image was captured with the same exposure settings from each 

specific antibody, changing the parameters with each magnification.  

 

Quantification of number of neurons, DAn and nuclei − Four 10x magnification 

images per coverslip were used for quantifications of neurons and nuclei, which were 

identified thanks to the staining with the corresponding antibody. Images were analyzed 

with Fiji/ImageJ software (https://fiji.sc/) (National Institute of Health, USA) (Schneider et 

al., 2012), stacking the images of neurons and DAn with their respective images of nuclei 

https://fiji.sc/
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(Image>Stacks>Stack to images). Thus, neurons and DAn were counted using its 

specific staining and the colocalized DAPI nuclei with the help of the ‘multi-point’ tool. 

Nuclei were counted as long as they did not present a pyknotic characteristics, 

represented by a brighter condensation of the chromatic (Wohlan et al., 2014). Final 

values from each frame (and coverslip/treatment) were copied into an Excel spreadsheet 

for statistical analysis. To determine the effect of the different treatments in the VM 

cultures and be able to compare between the different biological replicants, data from 

each experiment was normalised to the vehicle control (DMSO), taking the average of 

this group as the 100% and calculating the percentage of control for paclitaxel 

treatments. The vehicle control was normalized using the mean of all its replicates.  

 

Optical Density (O.D.) of GFAP − GFAP O.D. were performed to quantify the density 

of astrocytes (GFAP-positive). As previously mentioned, this method was chosen 

because it was difficult to count the number of astrocytes in the coverslips when they 

were confluent (e.g., under control conditions). Therefore, GFAP O.D. allows the 

measurements of GFAP immunofluorescence intensity over the whole field, determining 

in which treatments there is more expression of GFAP (Tickle et al., 2015). 

Images were analyzed with Fiji/ImageJ software (https://fiji.sc/) (National Institute of 

Health, USA) (Schneider et al., 2012). Four 10x magnification images per coverslip were 

used for GFAP O.D. analysis as explain in subsection 2.1.12.1. Final mean grey values 

from each frame (and coverslip/treatment) were copied into an Excel spreadsheet for 

statistical analysis. To determine the effect of the different treatments in the VM cultures 

and be able to compare between the different biological replicants, data of each 

experiment was normalised to the vehicle control (DMSO), taking the average of this 

group as the 100% and calculating the percentage of control for paclitaxel treatments. 

The vehicle control was normalized using the mean of all its replicates.   

 

https://fiji.sc/
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2.2.8 Statistical analysis of immunofluorescence images of VM cultures treated 

with paclitaxel and 6-OHDA  

Quantitative data was analysed using GraphPad Prism version 7.01 (La Jolla, USA). 

Normal or Gaussian distribution of the data was tested by D’Agostino-Pearson normality 

test or Shapiro-Wilk normality test where appropriate. 

When only two sample means were compared (i.e., effect of DMSO versus NBM), 

unpaired t-test were used if the data showed a normal distribution, while a Mann-Whitney 

test was applied as a nonparametric test when the populations were non-normally 

distributed.  

For one independent variable with more than two samples (i.e., paclitaxel treatment 

conditions versus DMSO), one-way ANOVA test was performed if the data showed a 

Gaussian distribution. For two independent variables (i.e., paclitaxel and 6-OHDA 

treatments versus DMSO and AA), two-way ANOVA test was run to elucidate if there 

were statistically differences. After ANOVA testing, the post hoc Tukey’s multiple 

comparison test was used to determine the type of differences between treatments. If 

the data did not show a Gaussian distribution, a nonparametric Kruskal-Wallis test was 

used, followed by a Dunn’s multiple comparisons test.  

Significant differences were established when the p-value was less than 0.05 (p<0.05), 

rejecting the null hypothesis. Graph bars represented the mean of each group, while the 

error bars indicated the standard deviation (mean ± SD). 

 

2.3 Multi-study proteomics analyses of the ageing and PD nervous system 

2.3.1 Identification and comparison of articles related to the ageing nervous 

system 

To identity articles related to the ageing nervous system for the multi-study comparison, 

a search was performed in Pubmed combining the terms ‘proteom*’ AND ‘age*’ or ‘old’ 

AND ‘brain’ or ‘susbtantia nigra’. The search included only articles in English that were 

related to the ageing process in any area of the nervous system, including the 
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cerebrospinal fluid (CSF), and were published up to the 10th August 2019. Studies 

related to diseases (e.g. AD, PD, epilepsy, dementia or Down’s syndrome), as well as 

animal models (e.g., PD, AD, stroke) or animals exposed to food restriction were not 

considered for examination. This left 75 articles for review that were read in full. 

However, only 21 articles were kept for further analysis. The reasons to exclude the 54 

articles were diverse, including the age of the animals considered ‘old’ (e.g., postnatal 

ages), not providing or inaccessibility of the complete results or dataset, and the use of 

a post-translational proteomics approach in the study. In the articles where multiple 

regions or species were investigated at the same time, the data was analysed separately 

as if they were independent studies for comparison. The quantitative proteomics study 

of the rat SNpc at different ages presented in this Thesis (see Chapter 3), called in this 

chapter ‘Thesis study’, was also included in the comparison.  

Proteomics datasets from each article were extracted and the differentially expressed 

proteins from each article copied into a Microsoft Excel spreadsheet. To compare 

between studies, even when different species were used, all protein names were unified 

to the official gene name using Uniprot Retrieve/ID mapping or manually searching the 

identifiers in the NCBI. In general, differentially expressed proteins from each study 

presented a fold-change comparing the protein expression between the different ages 

(e.g., young versus old). This fold-change was associated with a significant p-value 

(p<0.05) and, most of the time, a fold-change cut-off filter was applied. In cases where 

no cut-off filter was applied, only proteins whose fold-change was modified by at least 

25% with ageing were considered. This filter was chosen because it was the cut-off filter 

used in the proteomics study of the rat SNpc in this Thesis (see Materials and Methods 

from Chapter 3, subsection 2.1.7). Moreover, all the gene names were converted to 

lowercase letters in Microsoft Excel. Subsequently, the list with the gene names from 

each study was compared using Microsoft Excel’s ‘pivot table’ tool to observe which 

proteins appeared in numerous studies. From the 4,555 proteins found in total, there 

were 1,729 proteins that appear in at least two different studies. Therefore, in order to 
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manage the data, only proteins that appeared in three or more studies (648 proteins in 

total) and whose expression was conserved between studies (i.e., differentially 

expressed proteins in the same direction, down- or upregulated) were considered for 

bioinformatics analyses. 

 

2.3.2 Identification and comparison of articles related to samples from patients 

with PD 

Pubmed searching was done combining the words ‘‘proteom*’ AND ‘parkinson’ to find 

articles related to multiple regions of the nervous system and other parts of the body 

(e.g., serum, urine) during PD in humans and PD models (e.g., transgenic, toxins 6-

OHDA and MPTP) in other mammals compared to controls without the disease or any 

type of secondary treatment. In vitro studies were excluded from the final comparison, 

as well as studies that looked at post-translational modifications. Thus, only articles in 

English that were published up to the 10th July 2019 were considered. In total, 40 studies 

were found in PD in humans, while 29 articles were found in PD models in mammals. 

However, only 24 articles were kept in the case of humans and 13 in other mammals. 

Articles were excluded for different reasons, including lack of controls in the study, not 

providing or inaccessibility of the complete results or dataset, or the use of a post-

translational proteomics approach in the study. As in the ageing multi-study comparison, 

if there were multiple brain regions investigated at the same time in an article, the data 

was analyzed separately for comparison as if they were independent studies. 

As previously indicated, the differentially expressed proteins from each article were 

extracted and copied into a Microsoft Excel spreadsheet, unifying the protein name to 

the official gene name in lowercase letters. If the authors did not apply any filter (e.g., 

significant p-value p<0.05, or fold-change cut-off), a 25% filter was placed, considering 

only proteins whose fold-change passed that threshold. Gene names from each study 

were compared using Microsoft Excel’s ‘pivot table’ tool to examine which proteins 

appeared in numerous studies. Only proteins that appeared in more than two studies 
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and whose expression was conserved between studies (i.e., differentially expressed 

proteins in the same direction, down- or upregulated) were considered for bioinformatics 

analyses. Different comparisons were performed as follows. In the case of humans, first, 

studies related only to the SNpc were compared. Then, studies performed in other areas 

of the brain and the SNpc were compared. Moreover, an independent comparison was 

done using parkinsonian biofluids together with the tear fluid from the eyes and lens 

fractions. This last tissue was included with biofluids, because it was study with the idea 

of finding biomarkers in biofluids, and because it was not part of the nervous system 

(i.e., therefore, it could not be included in the previous comparisons where the brain was 

analysed). Lastly, a final comparison was done including all studies in humans with PD. 

In addition, PD models in other mammals (i.e., rodents and monkeys) were compared 

between them. Finally, to understand the proteomics similarities between the disease in 

humans and the PD models performed in the lab, humans with PD and PD models in 

non-human species were also compared. 

 

2.3.3 Comparison of articles related to the ageing nervous system and PD  

To gain more insight into the differences or similarities between the proteome of the 

ageing nervous system and the PD proteome, the final list of proteins that appear in 

more than two or three studies, respectively, in the PD proteomics comparison and 

ageing were compared.  

 

2.3.4 Bioinformatic analyses 

Bioinformatic analyses (i.e., functional annotation analysis (DAVID), Reactome pathway 

analysis, and protein network analysis (STRING)) were performed using the differentially 

expressed proteins that appear conserved (down- or upregulated in the same direction) 

in more than two or three studies, respectively, in the PD proteomics comparison and 

ageing. 
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For each bioinformatic analysis, the same procedure as mentioned before was followed. 

However, for functional annotation analysis (DAVID) (see subsections 2.1.9.1) and 

protein network analysis (STRING) (see subsections 2.1.9.3), the ‘Homo sapiens’ 

background was selected. Furthermore, in the case of DAVID, during the submission of 

the gene list, the selected identifier was ‘official_gene_symbol’. For all multi-study 

proteomic comparisons, an updated version of Reactome pathway knowledgebase 

(version 69 (August 2019)) (see subsections 2.1.9.2) was used. 

 

2.4 Other figures and diagrams 

Venn diagrams and heatmaps in Chapter 3 were produced using GraphPad Prism 

version 7.01 (La Jolla, USA). Chord diagrams in Chapter 3 were generated using R 

Studio software, using the ‘circlize’ package (Gu et al., 2014). Montages of all images 

and drawing of diagrams were done with Adobe Illustrator CC version 17.1.0 (Adobe 

Inc.). 
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CHAPTER 3: A QUANTITATIVE PROTEOMICS ASSESSMENT OF THE 

AGED SNpc IN RATS 

3.1 Introduction 

Overview: This chapter aimed to determine the changes of the rat SNpc proteome 

during ageing and how this might explain the vulnerability of SNpc DAn in PD. This 

Introduction will review what is known about the PD proteome in humans and animal 

models, as well as how the brain and SNpc proteomes change during ageing. 

 

3.1.1 The PD proteome 

Overview: Proteomics studies complement histological or genetic analyses and attempt 

to provide more clues about the causes of the disease by explaining changes that are 

not perceived at the cellular level. In the case of PD, these investigations have been 

used to identify differences that exist between the PD proteome compared to healthy 

controls. This not only facilitated an understanding of the neuropathological mechanisms 

behind this neurodegenerative disease, but also provides the possibility of identifying 

biomarkers to diagnose the disease and control its course (Kasap et al., 2017). As it will 

be explained in more detail below, to perform these studies, research has used human 

samples such as different areas of the brain (including the SNpc), serum, blood, plasma 

or CSF to find biomarkers for PD. However, it has been difficult so far to draw 

conclusions that explain the causes of parkinsonism with proteomics, probably due to 

the complexity of the human brain, the differences found at the protein level between 

individuals, and the limited availability of fresh post-mortem PD brain tissue as well as 

relevant controls (Li et al., 2018a). As stated in the review by Kasap et al. (2017), these 

pitfalls have pushed neuroscientists to use model organisms that mimic the disease, 

such as rodents, non-human primates, C. elegans or Drosophila melanogaster. These 

animal studies are more experimentally controlled, and the number of the samples can 

be increased easily, which generates more robust data. 
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3.1.1.1 Human samples 

Brain tissue − Among the numerous types of human samples that can be used for the 

study of PD by proteomics, the brain is commonly chosen to understand the mechanisms 

that underlie this disease. Search of the literature revealed a total of 13 proteomics 

studies using post-mortem brains from humans with PD, but only seven of them were 

performed in the SNpc.  

The first research with human SNpc comparing PD and healthy controls was done by 

Basso et al. (2003), using four samples per group for analysis by 2D-SDS-PAGE and 

peptide mass fingerprinting. However, the results were only able to show that the PD 

samples had positive spots for alpha-synuclein and anti-ubiquitin, and that there was an 

increase in superoxide dismutase and dihydropteridine compared to controls. 

Nevertheless, the same authors subsequently published a more complete study which 

revealed that from the 44 proteins found by peptide mass fingerprinting, nine proteins 

related to mitochondria, scavenging oxidative stress, and afferent terminals were 

dysregulated in PD (e.g., L and M neurofilament decreased; while peroxiredoxin I, 

mitochondrial Complex 3, ATP synthase D chain, complexin I, profilin, L-type calcium 

channel delta-subunit, and fatty-acid binding proteins increased). This profile suggests 

that oxidative stress is prevalent in PD (Basso et al., 2004). Similarly, Werner et al. 

(2008) used 2D-SDS-PAGE to compare five SNpc (each) from PD patients and healthy 

controls, followed by MALDI-MS. From the 37 proteins identified, 16 were differentially 

expressed between the two groups. The differentially expressed proteins were related 

to iron metabolism (e.g., ferritin H), glutathione-related redox metabolism (e.g., 

glutathione S-transferase M3, glutathione S-transferase Pi 1), glial cells (e.g., glial 

fibrillary acidic protein (GFAP)) or metabolism (e.g., aldehyde dehydrogenase 1 family 

member A1) among others. Adding to this, Jin et al. (2006) analysed SNpc mitochondria-

enriched fractions of five parkinsonians compared to five age-matched controls by ICAT 

and LC-MS. From the 842 proteins identified, 119 were dysregulated in PD compared to 

the control group, highlighting the depletion of mortalin (a mitochondria stress protein) in 
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PD. Another example of proteomics analysis of the SNpc of PD tissue was conducted 

by the same group employing a similar approach, using five samples per group (PD and 

control) labelled with iTRAQ and analysed by LC-MALDI-TOF/TOF (Kitsou et al., 2008). 

However, they did not provide a detailed dataset in their result section of the differentially 

expressed proteins between both proteomes, only a list of proteins known to be involved 

in neurodegeneration. Licker et al. (2012) performed a 2D-SDS-PAGE approach to study 

the SNpc of six parkinsonians and four controls, and detected 32 differentially spots, of 

which 23 were identified by MALDI-TOF/TOF. Their results showed that expression of 

proteins related to mitochondrial respiratory chain (e.g., cytochrome b-c1 subunit 2) and 

metabolism (e.g., fructose-biphosphate aldolase C) was decreased in PD, while the 

abundance of proteins that protect against free radicals (e.g., superoxide dismutase) 

were increased. This data indicated that mitochondrial functions directly associated with 

the production of energy, as well as oxidative stress mechanisms, were affected by PD. 

Recently, another study compared three samples per group (PD and control) using 

tandem mass spectrometry and cell culture derived isotope tags (CDITs), with isotope-

labelled proteins from SH-SY5Y cells as internal standards (Liu et al., 2015). They 

observed that 11 proteins associated with glial inclusions and white matter were 

dysregulated between the two experimental groups; six of which were upregulated in 

SNpc of PD (e.g., alpha-B-crystallin (alpha-crystallin B chain) and hyaluronan and 

proteoglycan link protein 2), while five were downregulated (e.g., annexin a1). 

In addition to the SNpc, other parts of the CNS have been utilized to elucidate what 

happens in the brain proteome during PD. These areas include the olfactory bulb 

(Lachen-Montes et al., 2019), locus coeruleus (van Dijk et al., 2012), anterior cingulate 

gyrus (Ping et al., 2018), and the cortex (Choi et al., 2004; Dumitriu et al., 2016; Bereczki 

et al., 2018). As described in the General introduction (see Chapter 1), the olfactory bulb 

is affected by PD, as is evident by inclusions of alpha-synuclein and Lewy Bodies. This 

is thought to impair the sense of smell of these patients. However, the mechanisms 

associated with this dysfunction are not known. Therefore, Lachen-Montes et al. (2019) 
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decided to combine label-free quantitative proteomics and MALDI imaging mass 

spectrometry, where the proteins from the tissue are directly investigated to determine 

the mass spectra of the surface layer of the sample (Caprioli et al., 1997). The study 

contained olfactory bulbs from eight controls and 21 PD patients and detected 268 

differentially expressed proteins between them. The proteins affected by the disease 

were involved in transport and RNA processing (e.g., nucleotide binding and hydrolase 

activity), and cell survival and differentiation. On the other hand, an analysis of post-

mortem locus coeruleus tissue (another area affected by PD) showed 87 differentially 

expressed proteins when six samples per group (PD and healthy controls) were 

compared after being analyzed by 1D-SDS-PAGE and LC-MS/MS (van Dijk et al., 2012). 

Bioinformatics analysis revealed that proteins associated with oxidative stress (e.g., 

aldehyde dehydrogenase X), mitochondria dysfunction (e.g., isoform 1 of acyl-coenzyme 

A thioesterase 9), cytoskeleaton structure and regulation (e.g., vimentin), inflammation 

and glial activation (e.g., galectine-3), and synaptic neurotransmission (e.g., gamma-

synuclein) were affected by the disease in the locus coeruleus. Lastly, Bereczki et al. 

(2018) compared the cortex of eight PD brains against eight elderly controls by using 

TMT labelling and LC-MS analysis to understand the mechanisms behind cognitive 

changes during PD. The results showed 485 differentially expressed proteins, where 

286 where upregulated and 199 where downregulated in PD compared to the controls. 

They demonstrated that there was a loss of proteins related to synapse function (e.g. 

glutamate ionotropic receptor AMPA type subunit 2, synaptosome associated protein 47, 

synaptotagmin 2) during the disease. 

 

Biofluids: plasma, CSF, urine and tears − A recent systematic review and meta-

analysis selected 27 publications to demonstrate that clinical diagnosis of PD is 

sometimes inefficient and inaccurate (Rizzo et al., 2016). In this study, they concluded 

that only eight out of ten patients with PD obtained a good diagnosis, especially at early 

stages of the disease. Due to such findings, researchers have focused on identifying 
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specific biomarkers in plasma, CSF, urine, or even tears, by using proteomics to 

diagnose (in a fast and economical way) the neurodegenerative disease. For instance, 

Kitamura et al. (2018) isolated exosomes (small vesicles that contain proteins secreted 

by cells and, therefore, neurons) from the plasma of 16 patients with PD (eight in early-

stage and eight in a more advanced stage) and eight controls, to elucidate if there is any 

biomarker that could be linked to the severity of the disease. After 2D-SDS-PAGE and 

MALDI-TOF/TOF analysis, 35 protein spots were observed as differentially expressed 

between PD and controls. From these, clusterin, complement C1r subcomponent, and 

apolipoprotein A1 were reduced in PD, and an inverse correlation between 

apolipoprotein A1 and the severity of the disease was observed. CSF has also been 

used to attempt to find biomarkers for diagnosing PD. For example, recent research has 

revealed that 16 metabolites are significantly modified in the CSF of PD patients, when 

44 early-stages PD patients were compared to 43 age-matched controls using gas 

chromatography mass spectrometry analysis (Trezzi et al., 2017). The presence of 

mannose, fructose and threonic acid were significantly increased with PD, while 

dehydroascorbic acid was reduced, suggesting a depletion in antioxidant activity and an 

elevation of glycolysis under oxidative stress. In the case of urine, Wang et al. (2019) 

isolated the extracellular vesicles or exosomes in this biofluid from 28 PD and 22 control 

individuals and analysed them by ion trap mass spectrometry. Both synaptosome 

associated protein 23 and calbindin were shown to be elevated with PD and useful for 

predicting the presence of the disease. Finally, tears have also been used as a biofluid 

to find biomarkers associated with PD. Boerger et al. (2019) compared 36 PD individuals 

and 18 controls by 1D-SDS-PAGE and LC-ESI-MS/MS. They found 21 proteins 

significantly increased and 19 decreased in PD. This proteome suggested to a 

dysregulation in immune responses, lipid metabolism and oxidative stress.  
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3.1.1.2 Animal models 

Limited availability of appropriate post-mortem material and the lack of experimental 

controls have led to the use of animal models that mimic the disease in proteomics 

studies of PD. In these models, a large range of animals, including rodents (Triplett et 

al., 2015; Kim et al., 2017a; Maasz et al., 2017), primates (Scholz et al., 2008), fishes 

(Visscher et al., 2016; Cowie et al., 2017; Froyset et al., 2018) or Drosophila 

melanogaster (Islam et al., 2016) are either exposed to toxins (e.g., MPTP or 6-OHDA) 

or are genetically modified (e.g., parkin) (Kasap et al., 2017). Although the literature 

shows almost 40 studies combining PD animal models and different approaches in 

proteomics, here are reviewed the most relevant examples. First, in a previous study 

performed by our lab few years ago, adult rats were unilaterally lesioned with 6-OHDA 

in the medial forebrain bundle, producing a denervation of the striatum from SNpc DAn 

(Fuller et al., 2014). After analysis of the striatum at different time points (between 3- and 

14-days post-lesion) by iTRAQ labeling and MALDI-TOF/TOF, an elevation of proteins 

associated with axonal reorganization (e.g., neurofilament polypeptides) were found 

during the first three days compared to unlesioned rats. These proteins decreased again 

after denervation of the striatum was complete at 14 days post-lesion. More specifically, 

the protein guanine deaminase, that regulates dendritic branching, was significantly 

increased with time after lesion, which may indicate an attempt by the DAn or striatal 

neurons to re-innervate the area. Likewise, Kuter et al. (2016) performed an experiment 

in which rats were bilaterally injected with 6-OHDA in the medial forebrain bundle, and 

the mitochondria from both striatum and SNpc were isolated. On this occasion, 2D-SDS-

PAGE together with MALDI-TOF/TOF mass spectrometry was used to analyze the 

samples. Their results were similar to those found by Fuller et al. (2014), showing 

alterations in proteins related to cytoskeleton remodeling, axon outgrowth and 

regeneration when 6-OHDA was applied. Lastly, in another experiment using the PD 

animal model of MPTP, 300 zebrafish in total were treated intraperitoneally with MPTP 

or saline (control) (Sarath Babu et al., 2016). After dissecting the entire brain, proteins 
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were extracted, and peptides were labeled by the iTRAQ method for analysis by tandem 

mass spectrometry. These results show that, apart from producing a PD-like behavior in 

the fish, MPTP generated the dysregulation of 78 proteins compared to the control 

group, with a notable upregulation of the proteins trafficking protein particle complex 

subunit 8‐like, BAH and coiled‐coil domain‐containing protein 1‐like, and hypothetical 

protein CRE_13172. Pathway analysis suggested that cytoskeleton remodelling of 

neurofilaments and neurophysiological synaptic vesicle were some of the biological 

functions altered in this PD model. Altogether, this reflects that proteomics is a useful 

and valid tool to study the molecular changes that appear in the proteome of animals 

with induced PD. 

 

3.1.2 The ageing brain and SNpc proteome 

Research using a variety of proteomic approaches have been conducted to understand 

the physiological ageing process in different areas of the brain. In humans, for example, 

Chen et al. (2003) studied how age affected the temporal, frontal and parietal lobes by 

comparing proteomes from young (23-year-old) and old (73-84-year-old) individuals by 

2DE-SDS-PAGE and MALDI-TOF/TOF. This analysis revealed five downregulated 

proteins (e.g., peroxiredoxin 2, stathmin, apolipoprotein a-I precursor) in old samples, 

which could have implications on the antioxidant functions of cells and the degeneration 

of axons. Furthermore, Dominguez et al. (2016) looked at the parietal and frontal cortex 

together with the cingulated gyrus to study the lipoxidation state of the proteins with 

ageing by comparing five middle age (around 43 years) versus old (around 74 years). 

To do this, they investigated the grade of neuroketals adduction (which causes 

lipoxidation and aggregation of proteins) by 2D-SDS-PAGE, neuroketal immunolabeling 

and MS/MS analysis. They found 25 neuroketal-adducted proteins in total in both ages, 

although the majority of proteins showed a higher lipoxidation in the oldest individuals 

(e.g., alpha-B-crystallin). The functional analysis of these proteins demonstrated that 

there were biological functions affected by ageing in these regions, such as energy 
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metabolism, cytoskeleton structure and proteostasis. Adding to this, Pabba et al. (2017) 

analyzed the orbitofrontal cortex from 15 young (15-43-year-old) and 18 old (62-88-year-

old) individuals using LCM to extract the tissue. The mass spectrometry analysis showed 

127 differentially expressed proteins, including 65 upregulated (e.g., alpha-B-crystallin, 

GFAP) and 62 downregulated (e.g., HOMER1), indicating a dysregulation in cell 

communication, nutrient sensing and proteostasis.  

In rodents, Mao and colleagues (2006) used proteomics analysis (2D-SDS-PAGE and 

MALDI-TOF) to study the mitochondria of the whole mouse brain at six different ages 

(from newborn to 24-month-old). They described that proteins related to the respiratory 

chain where either decreased (e.g., complex I and complex IV subunits) or increased 

(e.g., complex III and complex V) with ageing, which might be indicating a compensatory 

mechanism for dysfunctional cellular respiration. Alternatively, Gokulrangan et al. (2007) 

used the rat cerebellum at different ages to investigate the nitration state of proteins, 

which is known to be a marker of oxidative stress. To do this, they dissected the 

cerebellum from three different groups (5-, 22- and 34-month-old) and performed 2DE-

SDS-PAGE followed by immunolabelling of nitrated proteins and an analysis by MS/MS. 

Although they did not explain the functional consequences of a higher nitration in 

proteins, they revealed an increase of nitrated proteins with ageing, including ryanodine 

receptor 3, low density lipoprotein receptor related protein 2, and nebulin-related 

anchoring protein.  

Despite all the proteomic investigations to understand how PD affects proteins from the 

SNpc and other areas of the CNS, as well as how ageing modifies the proteome of 

different regions of the brain, to my best knowledge, only a single article exists in the 

literature (Raghunathan et al., 2018) that analyses the ageing process in the rat SNpc. 

In this publication, the SNpc and striatum proteomes of 3-month-old rats was compared 

to 20-month-old by LC-MS analysis. However, their main aim was to understand how 

ageing affects the glycan receptors in the striatum and SNpc. As they explained, the 

study of these glycan receptors (e.g., heparan sulphate proteoglycans and N-glycans 
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with terminal galactose) was motivated by the lack of efficacy of adeno-associated 

viruses (AAV) as vectors for gene therapy during clinical trials in humans. This gene 

delivery approach seems to work in animal models, therefore, they hypothesized that 

modifications of these receptors with ageing might be altering the binding of AAV in the 

striatum and SNpc, which will disrupt the gene delivery. Importantly, although details of 

the differences found in other proteins in their ageing study was provided as 

supplementary info in PRIDE public repository, there was not any clear discussion 

provided for the biological meaning of the proteomic results in ageing. This was, 

perhaps, a missed opportunity to provide more insight into how ageing affects the 

proteome of the SNpc and why ageing might be associated with the vulnerability of DAn 

during PD. 

Surprisingly, although most of the proteomics studies in PD used age-matched 

individuals as controls, it was not possible to find any proteomics research focusing only 

on healthy SNpc in humans. This is essential because it is necessary to understand the 

protein profile of the ageing SNpc to comprehend the relationship between ageing and 

PD. Only recently, it was published a thesis (Steinbach et al., 2018) where the proteome 

of the SNpc in humans was studied in relation to the ageing process. In this pioneering 

and comprehensive investigation, Steinbach and colleagues not only defined for the first 

time the proteome of the healthy human SNpc with increasing age, but also the 

differences that exist between the DAn from dorsal and ventral tier SNpc. First, to 

analyse the whole human SNpc with ageing, they used the entire SNpc tissue from 36 

healthy individuals between 18 to 96 years old and analysed them using an Orbitrap 

mass spectrometer with a DDA method. Thus, they generated the first spectral library of 

the healthy human SNpc, containing 5,391 proteins, from which 1,908 were always 

expressed regardless of the age of this region. Importantly, this data updated the 

spectral library of the human SNpc presented by Licker et al. (2014) that, although it 

identified 1,795 proteins, was based on SNpc with PD. Furthermore, from the 1,908 

proteins, they studied ones which had a correlation with the ageing process, finding that 
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254 proteins showed a significant correlation when they were analysed at protein and 

peptide level (135 had a positive correlation, while 119 had a negative correlation). Their 

GO analysis indicated that these proteins were involved in ‘catalytic activity’, ‘binding’ 

and ‘structural molecular activity’. Adding to this, their analysis also revealed that 210 

proteins were related to mitochondria and 24 of them had a correlation with ageing (e.g., 

adenylate kinase 2, cytochrome c oxidase subunit NDUFA4). In the same way, from the 

20 proteins related to PD, only four of them had a significant correlation with ageing (e.g., 

protein/nucleic acid deglycase DJ-1, peptidyl-prolyl cis trans isomerase F, ADP/ATP 

translocase 1, voltage-dependent anion-selective channel protein 1). Secondly, they 

examined the selective vulnerability of DAn from the dorsal and ventral tier of SNpc, due 

to their different degeneration during PD. To do this, they isolated by LCM the DAn cell 

bodies from 15 human SNpc and, after performing an Orbitrap mass spectrometry using 

a DIA method, they considered only five samples due to the high variability found in the 

ventral tier. MS/MS analysis reported 2,453 proteins in the dorsal region, and 1,629 

proteins in the ventral part. When the proteins of these two areas were compared, they 

discovered that only five proteins were specific for the dorsal tier (e.g., immunoglobulin 

heavy constant gamma1, tubulin gamma 1-chain, ADP-ribosylation factor 3, Ras-related 

protein Rab-11A, aldo-keto reductase family 1 member C1), while four proteins were 

limited to the ventral tier (e.g., immunoglobulin gamma-1 heavy chain, calmodulin-like 

protein 3, actin alpha-cardiac muscle 1, ADP-ribosylation factor 1). Moreover, when they 

checked which proteins were differentially expressed between the two areas, it was 

found that seven out of a total of nine differentially expressed proteins were upregulated 

in the dorsal SNpc (e.g., myelin basic protein), and only two had a positive correlation 

with ageing (e.g., hyaluronan and proteoglycan link protein 2, myelin P2 protein). They 

concluded that most of the proteins altered with ageing in the SNpc were related with 

the cytoskeleton of DAn, which might indicate a dysregulation of the maintenance of the 

cytoskeleton and disruption of the DAn network. In addition, they found alteration in 
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proteins related to calcium homeostasis, which might affect the respiratory chain of the 

mitochondria.  

In summary, the impact of the ageing process in the SNpc is still unclear and remains a 

mystery. A proteomics study in the rat SNpc was performed at four different age times 

to understand how ageing affects the proteome of the SNpc region. This analysis 

allowed for the first time ever the identification of global proteomic changes in the rat 

SNpc during the ageing process. The examination of the entire SNpc allows the 

investigation of possible alterations in proteins related DAn, but also other non-DAn, 

such as glial cells (e.g., astrocytes, microglia). Ultimately, this is important because 

ageing can be a direct process that increases the vulnerability of DAn, or an indirect 

process that first affects other cells (e.g., glial cells) that surround, protect and maintain 

these DAn. Alteration of these non-neuronal cells could then have indirect effects that 

contribute to DAn degeneration.  

 

3.1.3 Aim and objectives 

The aim of this study was to conduct a quantitative proteomic comparison of the rat SNpc 

at postnatal day 14, 8-month-old, 16-month-old and >21-month-old to determine whether 

protein expression levels change during normal physiological ageing. It is hoped that this 

may provide insights into why SNpc DAn become more vulnerable with increasing 

ageing and make the occurrence of PD more likely. To do this, a quantitative proteomics 

assessment of the SNpc, together with bioinformatic, immunoblotting and 

immunofluorescence analyses were performed. 

 

Based on this, the objectives of this study were: 

− Objective 1) To identify and quantify changes in protein expression of the rat 

SNpc during physiological ageing.  
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− Objective 2) To identify, through the use of bioinformatic tools, which biological 

processes and pathways are affected in the most aged SNpc, and if there is any 

relation or interaction between proteins that change. 

− Objective 3) To validate the proteomics results by immunoblotting and 

immunofluorescence.  

 

3.2 Materials and methods 

Details about materials and methods of this experimental chapter can be found in 

Chapter 2, section 2.1.  

 

3.3 Results 

3.3.1 The expression levels of 66 proteins are altered throughout ageing in the 

adult rat SNpc proteome  

A total of 2,986 proteins with a threshold of 5% local FDR were identified in the rat SNpc 

with the use of ProteinPilot software and UniProtKB/Swiss-Prot FASTA database, 

considering all three protein comparisons (i.e., juvenile versus old; young versus old; 

middle age versus old) (Figure 3.1; Supplementary Table 1). After removing false 

positive hits and proteins with two or less peptides to perform reliable quantifications of 

the data, 1,953 proteins were left (Figure 3.1; Supplementary Table 2a, 2b). 

Subsequently, proteins were included for further analysis only if their fold-change ratios, 

derived from their comparisons, passed a significant p-value (p<0.05) and an arbitrary 

1.25-fold-change cut-off (Figure 3.1; Supplementary Table 2c-e). This filter was 

necessary to manage the data, although it is important to indicate that changes in the 

expression of certain proteins below the 1.25-fold-change cut-off could be relevant 

biologically. After filtering the data, a total of 631 differentially expressed proteins across 

all comparisons remained, being distributed as follows: 608 proteins in the juvenile 

versus old comparison (Figure 3.1, 3.2A; Supplementary Table 2c), 43 proteins in the 

young versus old comparison (Figure 3.1, 3.2B; Table 3.1), and 28 proteins in the  
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Figure 3.1. The proteome of the aged SNpc in rats. A total of 2,986 proteins were 

identified in the SNpc with ProteinPilot software and UniProtKB/Swiss-Prot FASTA 

database. After removing proteins with two or less peptides, 1,953 proteins were left. 

Protein fold-change ratios with a significant p-value (p<0.05) and an arbitrary 1.25-fold-

change cut-off was applied to distinguish differentially expressed proteins, leaving 631 

proteins in the three different comparisons versus old as follows: 608 proteins in juvenile 

versus old, 43 proteins in young versus old, and 28 proteins in middle age versus old 

(left Venn diagram). To study only modifications related to the ageing process in adults, 

the 608 proteins that changed from juvenile to old, that might be implicated in 

neurodevelopment, were excluded of the final analysis, leaving a final list of 66 

differentially proteins in adult stages (young and middle age) compared to the old group 

(right Venn diagram). In this last diagram, the number of differentially expressed proteins 

that also appeared in the juvenile versus old comparison are presented in grey colour. 
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middle age versus old comparison (Figure 3.1, 3.2C; Table 3.2). The distribution of 

these proteins in a Venn diagram showed that there were four proteins in common 

between the three comparisons, corresponding to haemoglobin subunit alpha 1 (HBA1), 

haemoglobin subunit beta (HBB), 3-ketoacyl-CoA thiolase, mitochondrial (ACAA2), and 

myelin protein P0 (MPZ) (Figure 3.1; Supplementary Table 2f).  

As mentioned in the Materials and methods section (see Chapter 2), this Thesis focuses 

on the study of the SNpc proteome related to the adult ageing process. However, at 

postnatal stages, the brain undergoes protein changes associated with 

neurodevelopment that might have an impact in the proteome of the juvenile group (see 

Discussion). Thus, differentially expressed proteins in the comparison juvenile versus 

old might reveal changes in the SNpc proteome linked to neurodevelopment instead of 

normal physiological ageing. Supporting this consideration, functional annotation 

analysis by DAVID of the 608 proteins that were differentially expressed in the 

comparison juvenile versus old (Supplementary Table 2c) showed that many of the 

enriched biological processes associated with these proteins were related to 

neurodevelopment, including terms such as ‘substantia nigra development’, ‘neuron 

projection development’ or ‘central neuron system development’ (see Annex 1, 

Supplementary Table 3a). To avoid the misinterpretation of the data, the 608 proteins 

from the comparison juvenile versus old were excluded from further examination, leaving 

a total of 66 differentially expressed proteins in adults ages (young and middle age) 

compared to old (Figure 3.1; Supplementary Table 2f). When these 66 differentially 

expressed proteins were plotted in a Venn diagram, only five proteins appeared to be in 

common between these two adult comparisons, corresponding to haemoglobin subunit 

alpha 1 (HBA1), haemoglobin subunit beta (HBB), 3-ketoacyl-CoA thiolase, 

mitochondrial (ACAA2), glutathione S-transferase alpha-4 (GST4) and myelin protein P0 

(MPZ) (Figure 3.1; Supplementary Table 2f). Moreover, these proteins presented the 

same direction in both comparisons, either increasing or decreasing their expression 

with the ageing process. Specifically, the expression of two of them (haemoglobin 
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subunit alpha 1 (HBA1), haemoglobin subunit beta (HBB)) were increased in old 

animals, while the expression of three proteins (3-ketoacyl-CoA thiolase, mitochondrial 

(ACAA2), glutathione S-transferase alpha-4 (GST4) and myelin protein P0 (MPZ)) 

decreased in the old group in comparison to the other two adult ages (i.e., young versus 

old, middle age versus old). The rest of the proteins (61 proteins) were differentially 

expressed only in one of the comparisons − i.e., either in young versus old (38 proteins) 

(Figure 3.1; Figure 3.2B; Table 3.1) or middle age versus old (23 proteins) (Figure 3.1; 

Figure 3.2C; Table 3.2). From these, considering the 38 proteins from the young versus 

old comparison, 26 proteins were significantly upregulated in the old SNpc, while 12 

proteins were downregulated compared to the young age (Figure 3.2B; Table 3.1). On 

the other hand, examining the 23 proteins from the middle age versus old comparison, 

only two proteins were significantly upregulated in the old animals, while 21 were 

downregulated compared to the middle age group (Figure 3.2C; Table 3.2). In addition, 

some of these differentially expressed proteins in adult ages were also dysregulated in 

the juvenile group (Figure 3.1; Supplementary Table 2c-e). As an example, proteins 

such as alpha-crystallin B chain (CRYAB), myelin-oligodendrocyte glycoprotein (MOG) 

or neuromodulin (GAP43) were differentially expressed in both juvenile and young 

versus old; while vimentin (VIM), agrin (AGRN), or glial fibrillary acidic protein (GFAP) 

were differentially expressed in both juvenile and middle age versus old.  

Lastly, to check the magnitude of change in the protein expression, the maximum 

downregulation and upregulation was observed in both comparisons (young versus old, 

middle age versus old). The observation of the fold-changes revealed that the 

expression of the differentially expressed proteins in the SNpc with ageing had a 

maximum of 0.44 and 2.78-fold-change in the young versus old comparison, which 

corresponded to hyaluronan and proteoglycan link protein 2 (HAPLN2) and myelin 

protein P0 (MPZ), respectively; while in the middle age group versus old comparison the 

maximum was 0.68 and 2.98-fold-change, which corresponded to sphingosine 1- 
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Figure 3.2. Proteins identified in each of the protein comparisons: (A) juvenile 
versus old, (B) young versus old, (C) middle age versus old. Only proteins with a 

significant p-value (p<0.05) and more than an arbitrary 1.25-fold-change cut-off (green 

and blue dots) were considered for further analysis. This left (A) 608 proteins in juvenile, 

(B) 43 in young, (C) and 28 in middle age SNpc compared to old animals. Blue dots 

indicate proteins in common in the ratios young and middle age versus old. In the 

image, upregulated and downregulated proteins correspond to proteins in the old age 

compared to the respective age groups. Thresholds (p<0.05 and 1.25-fold-change) are 

presented as dashed lines. Red dots below these thresholds represent proteins with 

non-significant p-value and non-accepted fold-change, therefore, not included in the 

analysis. 
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phosphate receptor 5 (S1PR5) and myelin protein P0 (MPZ), respectively (Table 3.1; 

Table 3.2). 

Table 3.1. Differentially expressed protein ratios in the comparison of young 
versus old rat SNpc, showing if their expression is increased (up) or decreased 
(down) in old age.  
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Table 3.2. Differentially expressed protein ratios in the comparison of middle age 
versus old rat SNpc, showing if their expression is increased (up) or decreased 
(down) in old age. 

 

 

In order to gain insights into whether protein expression changes follow a trend with 

increasing age, the fold-changes of the 66 proteins that were differentially expressed in 

at least one of the comparisons (i.e., young versus old or/and middle age versus old) 

were examined (Figure 3.3). To achieve this, the old group was considered as having a 

ratio of one, and the trends were calculated using the protein fold-changes from the 

young and middle age group, independent of whether their fold-change ratios were 

statistically significant or not, or did not pass the arbitrary cut-off. This analysis allowed  
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Figure 3.3. Expression of the 66 differentially expressed proteins that change in 
the adult SNpc with ageing. Heat map of the differentially expressed proteins in the 

comparison of young versus old and middle age versus old. Green cells show an 

increase of the protein expression in the old group, while red cells show a decrease of 

the protein expression in the old SNpc, in comparison with the young or middle age 

group. Black cells represent proteins that are not statistically significant or do not pass 

the established cut-off in both comparisons. 
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the generation of four different trend groups as follows: a) 27 proteins whose expression 

increased progressively from young to old (Figure 3.4A); b) 11 proteins whose 

expression decreased progressively from young to old (Figure 3.4B); c) four proteins 

whose expression decreased from young to middle age and increased again from middle 

age to old (Figure 3.4C); and d) 24 proteins whose expression increased from young to 

middle age group to decrease again in the old (Figure 3.4D). Interestingly, most of the 

differentially expressed proteins whose expression levels changed gradually with 

increasing age, either increasing (i.e., trend ‘a’) or decreasing (i.e., trend ‘b’), presented 

fold-change ratios that had an accepted cut-off and were statistically significant only in 

the comparison young versus old, but not in middle age versus old. This was true for all 

proteins in these two trend groups except for haemoglobin subunit alpha 1 (HBA1), 

haemoglobin subunit beta (HBB), 3-ketoacyl-CoA thiolase, mitochondrial (ACAA2), and 

glutathione S-transferase alpha-4 (GST4), which were differentially expressed in both 

comparisons (Figure 3.4A, B). Conversely, the trend group ‘d’ was formed mainly by 

proteins whose fold-change ratios met the criteria for differential expression based on 

their fold-change only in the comparison between middle age versus old, but not young 

versus old (Figure 3.4D). 

Altogether, this section revealed that the expression of 66 proteins changed significantly 

in the rat SNpc proteome with ageing: 38 proteins from young to old, 23 proteins from 

middle age to old, and five in both comparisons. The examination of the expression 

trends of these 66 differentially expressed proteins with age demonstrated that, in some 

cases, the expression increased or decreased progressively from early stages of adult 

life (i.e., young) until old age. In this scenario, most of the proteins were only differentially 

expressed and passed the cut-off filter in the young versus old comparison, but not 

middle age versus old comparison. On the other hand, most of the proteins that were 

differentially expressed only in the middle age versus old comparison showed a level of 

expression in the old group similar to the one found in the young age.   
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Figure 3.4. Expression of the 66 differentially expressed proteins that change in 
the adult SNpc with ageing. Trends of expression of proteins whose ratios are 

statistically significant in at least one of the comparisons (young versus old, blue 

asterisks; middle age versus old, orange asterisks; both comparisons, red asterisks). 

Red line indicates the threshold for old animals (ratio=1). (A) Proteins whose expression 

increases progressively with ageing. (B) Proteins whose expression decreases 

progressively with ageing. (C) Proteins whose expression decreases from young to 

middle age but increases again in the old group. (D) Proteins whose expression 

increases from young to middle age but decreases again in the old group.  
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3.3.2 Proteins related to cell adhesion, extracellular matrix and detoxification of 

the environment are dysregulated in the aged SNpc in rats as revealed by Gene 

Ontology analyses 

To obtain a better understanding of the biological meaning of the 66 proteins that were 

differentially expressed in the old SNpc compared to the young and middle age groups, 

GO analyses were performed using DAVID software (Huang et al., 2007; Huang et al., 

2009). GO terms were accepted if they had a p<0.05 and were assigned to at least two 

proteins. GO revealed that the three most enriched biological processes in the rat SNpc 

with ageing were the terms ‘cell adhesion’, ‘central nervous system development’ and 

‘metabolic process’ (Figure 3.5A). ‘Cell adhesion’ and ‘central nervous system 

development’ were associated almost completely with proteins whose expression 

increased in the old SNpc, including, for example, versican core protein (VCAN). 

‘Metabolic process’ was related to those proteins whose expression decreased in the 

old SNpc, for example, glutathione S-transferase alpha-4 (GSTA4). On the other hand, 

‘myelin sheath’, ‘extracellular space’ and ‘extracellular matrix’ were the most enriched 

terms from the cellular component category in the rat aged SNpc (Figure 3.5B). The 

expression of most of the proteins associated with the terms ‘myelin sheath’ and 

‘extracellular matrix’ increased in the old SNpc, such as alpha-crystallin B chain 

(CRYAB) and versican core protein (VCAN). Conversely, the term ‘extracellular space’ 

was linked to proteins whose expression decreased in the old individuals, including, for 

example, neurosecretory protein VGF (VGF). Finally, ‘hyaluronic acid binding’, 

‘extracellular matrix’ and ‘structural molecule activity’ were the three molecular functions 

most enriched in the rat SNpc with ageing (Figure 3.5C). ‘Hyaluronic acid binding’ and 

‘extracellular matrix’ were terms associated with proteins whose expression was 

increased in the old samples, like versican core protein (VCAN); while ‘structural 

molecule activity’ was a term linked to proteins whose expression increased in the old 

SNpc, such as claudin-11 (CLDN11), or decreased, such as glial fibrillary acidic protein 

(GFAP). Only the ‘glutathione metabolism’ pathway was determined as an enriched 
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annotation during the ageing process of the rat SNpc by KEGG pathway analysis (graph 

not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Chord diagrams of Functional Annotation analyses (Gene Ontology) 
of the 66 differentially expressed proteins in the adult SNpc during ageing. DAVID 

software revealed the enriched terms associated to the 66 proteins dysregulated with 

ageing, related with (A) biological processes, (B) cellular components, (C) and 

molecular functions. The right part of each chord diagram represents the terms linked 

to the differentially expressed proteins (presented with their gene name, see Table 3.1 

and 3.2) on the left. Red cells near the protein labels represent proteins whose 

expression decreases in the old SNpc; while green cells indicate proteins whose 

expression increases in old animals. 
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The differentially expressed proteins of each comparison (43 proteins in young versus 

old; 28 proteins in middle age versus old) were analysed independently with DAVID 

software, to gain insights into their biological meaning independently in each 

comparison. Thus, for the 43 dysregulated proteins in young versus old, the most 

enriched biological processes were ‘cell adhesion’ and ‘central nervous system 

development’, and were both related to upregulated proteins in the old SNpc, including 

versican core protein (VCAN) or aggrecan core protein (ACAN) (Figure 3.6A). ‘Myelin 

sheath’ was the most enriched cellular component, associated with dysregulated 

proteins such as myelin-oligodendrocyte glycoprotein (MOG) or alpha-crystallin B chain 

(CRYAB), with an increase of their expression in old animals (Figure 3.6B). Lastly, 

‘hyaluronic acid binding’ and ‘extracellular matrix’ were the most enriched molecular 

functions associated with upregulated proteins in the old SNpc, including versican core 

protein (VCAN), aggrecan core protein (ACAN) and hyaluronan and proteoglycan link 

protein 2 (HAPLN2) (Figure 3.6C). In the case of the 28 differentially expressed proteins 

in middle age compared to old, ‘metabolic process’ and ‘glutathione metabolic process’ 

were the more enriched biological processes with almost all their proteins downregulated 

in the old SNpc, including, for example, glutathione S-transferase alpha-4 (GSTA4) and 

3-ketoacyl-CoA thiolase, mitochondrial (ACAA2) (Figure 3.7A). ‘Intermediate filament 

organization’ and ‘cytoplasmic vesicle membrane’ were the only terms that appeared 

enriched in the category of cellular components, and were linked to proteins whose 

expression was decreased in the old group, such as glial fibrillary acidic protein (GFAP) 

and huntingtin (HTT) (Figure 3.7B). In terms of the molecular function category, the most 

enriched term was ‘protein homodimerization activity’, which was associated with 

proteins whose expression was reduced in the old SNpc, including, for example, 

glutathione S-transferase alpha-4 (GSTA4) (Figure 3.7C). Finally, pathways related to 

‘glutathione metabolism’ and ‘metabolism of xenobiotics by cytochrome P45’ were 

enriched with ageing in the rat SNpc, with a reduction of the expression of their related 

proteins, such as glutathione S-transferase alpha-4 (GSTA4) (Figure 3.7D). 
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In summary, processes related to cell adhesion, extracellular matrix, extracellular space, 

myelin sheath or glutathione metabolic process are altered in the rat SNpc with ageing. 

More specifically, the terms that are enriched when the young group is compared to the 

old age group are associated with proteins whose expression is increased in the old 

SNpc. On the other hand, the terms that are enriched when the middle age is compared 

to the old group are linked to proteins whose expression is reduced in the old SNpc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Chord diagrams of Functional Annotation analyses (Gene Ontology, 
GO) of the 43 differentially expressed proteins in the young SNpc compared to 
old. DAVID software revealed the enriched terms associated to the 43 proteins 

dysregulated with ageing between young and old animals, related with (A) biological 

processes, (B) cellular components, (C) and molecular functions. The right part of each 

chord diagram represents the terms linked to the differentially expressed proteins 

(presented with their gene name, see Table 3.1 and 3.2) on the left. Red cells near the 

protein labels represent proteins whose expression decreases in the old SNpc; while 

green cells indicate proteins whose expression increases in old animals. 
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Figure 3.7. Chord diagrams of Functional Annotation analyses (Gene Ontology 
and KEGG of the 28 differentially expressed proteins in the middle age SNpc 
versus old. DAVID software revealed the enriched terms associated to the 28 proteins 

dysregulated with ageing, related with (A) biological processes, (B) cellular components, 
(C) molecular functions, (D) and KEGG. The right part of each chord diagram represents 

the terms linked to the differentially expressed proteins (presented with their gene name, 

see Table 3.1 and 3.2) on the left. Red cells near the protein labels represent proteins 

whose expression decreases in the old SNpc; while green cells indicate proteins whose 

expression increases in old animals. 
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3.3.3 Reactome pathway analysis showed dysregulation in metabolism, 

metabolism of proteins and extracellular matrix organization in the aged rat SNpc  

Reactome pathway analysis (Fabregat et al., 2017; Fabregat et al., 2018) of the 66 

dysregulated proteins in the old SNpc was conducted to determine which molecular 

pathways they may be related to. Reactome found 47 out 66 proteins related to 170 

pathways that were overrepresented (enriched). In addition, 19 identifiers were either 

not found or were not mapped to any entity (biological molecule) in Reactome, including 

proteins that were identified by GO analysis by DAVID. This happened because these 

entities are not updated as part of a pathway in the Reactome database yet. Some of 

these 19 missed proteins were glutathione S-transferase alpha-4 (GSTA4), glutathione 

S-transferase alpha-3 (GSTA3), and glutathione S-transferase mu-1 (GSTM1) 

associated with the GO term ‘glutathione metabolic process’; or glial fibrillary acidic 

protein (GFAP) and huntingtin (HTT) associated with the GO term ‘intermediate filament 

organization’. The most relevant pathway based on the most statistically significant p-

value (in terms of its overrepresentation among the 47 proteins) was ‘ECM 

proteoglycans’ (R-RNO-3000178) (Table 3.3). This pathway was associated with the 

following five entities or proteins: versican core protein (VCAN), aggrecan core protein 

(ACAN), neurocan core protein (NCAN), agrin (AGRN), and hyaluronan and 

proteoglycan link protein 1 (HAPLN1). Moreover, this ‘ECM proteoglycans’ (R-RNO-

3000178) pathway belongs to the top-level pathway ‘extracellular matrix organization’ 

(R-RNO-1474244), which is also enriched in the old SNpc.  

These results complement the findings provided by GO analysis by DAVID, where the 

term ‘extracellular matrix’ was also enriched. On the other hand, the genome-wide view 

offered an overview of the overrepresented pathways (Sidiropoulos et al., 2017), 

including other pathways or terms that did not appear in DAVID analysis; such as ‘post-

translational protein phosphorylation’ (R-RNO-8957275), ‘chondroitin sulfate/dermatan 

sulfate metabolism’ (R-RNO-1793185), or ‘glycosaminoglycan metabolism’ (R-RNO- 
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Table 3.3. 25 most enriched pathways sorted by the most statistically significant 
p-values, using the 66 differentially expressed proteins in the old SNpc. ‘Entities’ 

refers to Uniprot accession numbers, showing the number of entities found in the 

analysis from the total in that pathway. 

Pathway name Entities 
found/total p-value 

ECM proteoglycans 5/47 0.00001 
Erythrocytes take up carbon dioxide and release oxygen 3/23 0.0004 
O2/CO2 exchange in erythrocytes 3/23 0.0004 
A tetrasaccharide linker sequence is required for GAG synthesis 3/29 0.0008 
Erythrocytes take up oxygen and release carbon dioxide 2/10 0.0018 
Dermatan sulfate biosynthesis 2/13 0.0031 
Post-translational protein phosphorylation 4/11 0.0054 
Chondroitin sulfate/dermatan sulfate metabolism 3/68 0.0093 
Regulation of Insulin-like Growth Factor (IGF) transport and uptake 
by Insulin-like Growth Factor Binding Proteins (IGFBPs) 4/13 0.0102 

Chondroitin sulfate biosynthesis 2/25 0.0111 
CS/DS degradation 2/26 0.0120 
Heparan sulfate/heparin (HS-GAG) metabolism 3/78 0.0135 
Glycosaminoglycan metabolism 4/16 0.0200 
Extracellular matrix organization 5/30 0.0430 
Activation of AMPA receptors 1/7 0.0433 
Binding and Uptake of Ligands by Scavenger Receptors 3/12 0.0469 
Chylomicron clearance 1/9 0.0554 
Calcineurin activates NFAT 1/10 0.0613 
Lysosphingolipid and LPA receptors 1/10 0.0613 
Caspase-mediated cleavage of cytoskeletal proteins 1/11 0.0673 
CLEC7A (Dectin-1) induces NFAT activation 1/12 0.0732 
Retinoid metabolism and transport 2/71 0.0747 
Glycerophospholipid catabolism 1/13 0.0790 
Arachidonate production from DAG 1/13 0.0790 
Activation of BAD and translocation to mitochondria 1/14 0.0848 
    

 

 

1630316) (Figure 3.8; Table 3.3). These pathways complement DAVID results  because 

they are related to the metabolism of the proteins that form the extracellular matrix; such 

as versican core protein (VCAN) and other proteins such as agrin (AGRN), neurocan 

core protein (NCAN), apolipoprotein E (APOE) or neurosecretory protein VGF (VGF). 

Interestingly, the Reactome analysis revealed two new pathways that did not appear 

with DAVID. These pathways were ‘activation of AMPA receptors’ (R-RNO-399710), 

associated with glutamate receptor 2 (GRIA2); and ‘binding and Uptake of Ligands by 

Scavenger Receptors’ (R-RNO-2173782), linked to apolipoprotein E (APOE), 
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haemoglobin subunit alpha 1 (HBA1) and haemoglobin subunit beta (HBB) (Figure 3.8; 

Table 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 GFAP, a protein characteristic of astrocytes, appears as the main connector 

of many of the dysregulated proteins in the aged SNpc in protein-protein 

interaction analysis 

STRING database (Szklarczyk et al., 2019) was performed to identify any known protein-

protein interactions among the 66 proteins that were differentially expressed with ageing 

in the rat. This protein networks analysis identified GFAP, an intermediate filament 

protein that is a marker for astrocytes (Eng, 1985), as the central or core protein of the 

network, with the largest number of direct associations (13 in total) with other 

differentially expressed proteins. GFAP was linked directly or indirectly to other proteins 

Figure 3.8. Genome-wide overview of the Reactome pathway analysis 
(Sidiropoulos et al., 2017) of the 66 differentially expressed proteins in the old 
SNpc. Each top-level pathway has a centre from which other pathways of lower 

hierarchy start. Top-level overexpressed pathways are emphasized with a red rectangle 

(e.g., ‘extracellular matrix organization’), while secondary overexpressed pathways 

(e.g.,’ECM proteoglycans’) linked to them are highlighted using a colour-scale that 

indicates p-value (right-hand side). Proteins associated to each pathway appear in blue. 

Light grey pathways are not significantly overrepresented.  
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that were significantly changed in the middle age versus old comparison (e.g., agrin 

(AGRN), vimentin (VIM)), as well as in the young versus old comparison (e.g., alpha-

crystallin B chain (CRYAB), glutamate receptor 2 (GRIA2), and hyaluronan and 

proteoglycan link protein 2 (HAPLN2)) (Figure 3.9; Figure 3.4A-D). As described above, 

these proteins are involved in functions that comprise the extracellular matrix, but also 

cellular adhesion. Therefore, this protein network analysis highlights the possibility that 

GFAP might be related with these pathways as well. In addition, both comparisons 

(young versus old, middle age versus old) were analysed independently by STRING 

(Figure 3.10A, B). This step was taken to understand if differentially expressed proteins 

whose expression was changed in the same comparison were related or not. As 

expected, most of the connected proteins appeared to have biological functions or 

pathways in common. For example, as previously seen, versican core protein (VCAN) 

was connected to other proteins related to the ‘extracellular matrix’ term, such as 

apolipoprotein E (APOE) and aggrecan core protein (ACAN). 

 

3.3.5 GFAP immunostaining increases in the rat SNpc with ageing, and 

immunoblotting shows extra bands that are different from the canonical isoform  

Astrocytes are glial cells in the CNS, taking part, for example, in metabolic and structural 

functions and, therefore, are essential for the viability of neurons (Yang and Wang, 

2015). With this in mind, and as GFAP was a core protein in the network protein analysis 

above, it was studied further by immunofluorescence and Western blot (see Chapter 2). 

First, the immunofluorescence expression of GFAP in the rat SNpc at different ages was 

measured by O.D., using the TH-positive expression (a marker for DAn) to define the 

area of the SNpc (Figure 3.11A). The results revealed that between the young (0.02781 

± 0.0022), middle age (0.02949 ± 0.0014) and old (0.03267 ± 0.0056) groups, there was      
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Figure 3.9. Protein network analysis with STRING database of the dysregulated 
proteins in the rat SNpc with ageing. Protein-protein interactions of the total 66 

proteins dysregulated in the SNpc with ageing. In orange boxes with black border, 

proteins show the larger number of associations; while orange boxes indicate their 

protein associated. The network displays only proteins with interactions, hiding those 

proteins that are disconnected. The coloured lines indicate the type of interaction 

between proteins (light blue, associated in curated database; pink, experimental or 

biochemical determined; green, gene neighbourhood; black, co-expression; grey, 

protein homology; lime, co-mentioned in Pubmed abstracts).  
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a statistically significant (p=0.0357) increase of 17% of the O.D. for GFAP between the 

young and the old group. However, no significant differences were observed between 

young SNpc and middle age (p=0.6304); or middle age and old (p=0.2086) (Figure 

3.11B).   

The results obtained from the analysis of GFAP by immunofluorescence (increase of 

GFAP O.D. in the rat SNpc with ageing), surprisingly, did not match the proteomics 

findings, where the trend of GFAP expression showed an increase from the young to the 

middle age that decreased again in the old group (Figure 3.4D). Consequently, it was 

not possible to validate the proteomics results by immunofluorescence. Western blotting 

was performed next to understand more about the protein expression trend of 

 

A B 

Figure 3.10. Protein network analysis with STRING database of the dysregulated 
proteins in the rat SNpc with ageing. (A) Protein-protein interactions of the 43 

differentially expressed proteins in the young SNpc versus old. (B) Protein-protein 

interactions of the 28 differentially expressed proteins in the middle age SNpc versus 

old. The network displays only proteins with interactions, hiding those proteins that are 

disconnected. The coloured lines indicate the type of interaction between proteins (light 

blue, associated in curated database; pink, experimental or biochemical determined; 

green, gene neighbourhood; black, co-expression; grey, protein homology; lime, co-

mentioned in Pubmed abstracts).  
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Figure 3.11. The O.D. for GFAP increases in the rat SNpc from the young to the 
old age. Measurements of the O.D. of GFAP in the SNpc region at different ages in rats. 
(A) Immunofluorescence images for GFAP, TH and DAPI (including merge images) in 

the young, middle age and old SNpc. TH-positive images were selected in order to 

indicate the level of the SNpc where measurements of GFAP O.D. were done. (B) 
Quantification of GFAP O.D. showed a statistically significant increase of 17% from 

young to old samples (p=0.0357). Error bars represent standard deviation. *p<0.05.  

B 

A 
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GFAP. This was done to determine whether the proteomics results could be verified, but 

also to comprehend if there was any alteration in the protein (e.g., proteolytic cleavage) 

not visible in the different methods (i.e., proteomics, immunofluorescence) that could 

justify the lack of consensus between techniques.  

Western blot analysis of the individual samples using a rabbit monoclonal GFAP 

antibody from Cell Signalling Technology (#12389) showed a main band in all samples 

at 50kDa, which is the predicted MW for GFAP (Figure 3.12). Added to this, some extra 

bands of lower MW between 48kDa and 37kDa also appeared, being more intense in 

the old SNpc (Figure 3.12A). The measurement of the integrated density of GFAP at 

50kDa normalised to the total amount of protein (Coomassie stained gel) revealed that 

its expression followed a similar trend that the results found by proteomics for GFAP, but 

they were not statistically significant. Thus, the increase of GFAP between the young 

(1.226 ± 0.2672) and the middle age (1.719 ± 0.3412) group was not statistically 

significant (p=0.0571); and the decreased of GFAP between the middle age and old 

(1.342 ± 0.1277) group was not statistically significant either (p=0.0571). Moreover, there 

were no statistically significant differences when GFAP at 50kDA from the young age 

was compared with the old animals (p=0.8791) (Figure 3.12B). When all GFAP bands 

were analysed, from the young (0.634 ± 0.1325) to the old (1.138 ± 0.2615) group there 

was a statistically significant (p=0.0221) increase of 79% of GFAP in the old SNpc, 

similar to the results found by GFAP immunofluorescence. However, the comparison of 

GFAP in young (0.634 ± 0.1325) versus middle age  (0.8972 ± 0.2437), or middle age 

(0.8972 ± 0.2437) versus old (1.138 ± 0.2615), showed that there were no statistically 

significant differences between them (p=0.3382; p=0.3659, respectively) (Figure 

3.12C). Similarly, when the band for GFAP at 48kDa was measured and normalized with 

the total amount of protein, the integrated density for GFAP in young (0.1662 ± 0.07953) 

compared to the old (1.184 ± 0.3263) showed a statistically significant (p=0.0452) 

increase of 612% with ageing. On the other hand, when GFAP at 48kDa was compared  
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Figure 3.12. Western blot analysis of GFAP expression in the SNpc during ageing 
in rats. (A) Immunoblots showing the expression levels of GFAP in the SNpc of young 

(n=4), middle age (n=4) and old (n=5) rats, using a rabbit monoclonal GFAP antibody 

from Cell Signalling Technology (#12389). A main band at 50kDa was detected in all 

ages, together with some extra bands of lower MW between 48kDa and 37kDa that were 

more intense in the old SNpc samples. Coomassie stained gel shows the total amount 

of protein in each sample used to normalise the integrated density of measured GFAP. 

(B) Measurements of GFAP at 50kDa (small red rectangle in (A)) showed the same trend 

than in the proteomics results for GFAP but without being statistically significant in the 

increase from young to middle age (p=0.0571), or a decrease from middle age to old 

(p=0.1398). (C) Measurements of all GFAP bands (big red rectangle in (A)) revealed a 

statistically significant increase of 79% between the young and old samples (p=0.0221). 

(D) Measurements of GFAP at 48kDa (red arrow and * in (A)) revealed a statistically 

significant increase of 672% between the young and old samples (p=0.0452). (E) 
Measurements of GFAP at 46kDa (red arrow and # in (A)) revealed a statistically 

significant increase of 595% and 1512%, respectively, between young and old samples 

(p<0.0001), as well as   the middle age and old (p<0.0002) group. Error bars represent 

standard deviation. *p<0.05; ***p<0.0001. 
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between the young (0.1662 ± 0.07953) and the middle age (0.416 ± 0.5322) group, as 

well as the middle age versus the old (1.184 ± 0.3263) SNpc, there were no statistically 

significant differences in any of these comparisons (p>0.9999; p=0.1217, respectively) 

(Figure 3.12D). Lastly, the integrated density for GFAP at 46kDa in the young (0.083 ± 

0.05088) and middle age (0.1924 ± 0.2061) compared to the old (1.338 ± 0.3764) group 

increased significantly with ageing (p<0.0001; p<0.0002, respectively) by 595% and 

1,512%, respectively, despite the lack of statistically significant differences (p=0.9217) 

between the young (0.083 ± 0.05088) and the middle age (0.1924 ± 0.2061) SNpc 

(Figure 3.12E). 

To ensure that the extra bands were not detected because of a cross-reaction of the Cell 

Signalling Technology GFAP antibody, another GFAP antibody was tested. Thus, 

Western blot analysis with the same individual samples were performed using a mouse 

monoclonal GFAP antibody from Biolegend (#644701) (Figure 3.13). The results 

revealed also a main band in all ages at 50kDa, and the additional bands of lower MW 

between 48kDa and 37kDa with a higher intensity in the old SNpc (Figure 3.13A). 

Similar to the first GFAP antibody results, the analysis of the integrated density of GFAP 

50kDa normalised with the total amount of protein (Coomassie stained gel) showed a 

similar expression of GFAP than the proteomics results for GFAP, but without being 

statistically significant. Hence, no statistically significant differences were found in the 

increase of GFAP from young (2.185 ± 0.4607) to middle age (3.092 ± 0.4711) 

(p=0.1562), and in the decrease of GFAP from middle age to old (2.23 ± 0.6276) 

(p=0.2218), or when the young and the old samples were compared (p=0.9993) (Figure 

3.13B). Measurements of all GFAP bands between the young (1.482 ± 0.2892), middle 

age (1.963 ± 0.2613) and old (2.027 ± 0.2881) samples showed the same trend as the 

previous antibody with an increase of GFAP with ageing. However, these results were 

not statistically significant in any of the comparisons (i.e., young versus old (p=0.1119), 

middle age versus old (p=0.9908); or young versus middle age (p=0.1691)) (Figure 

3.13C).  
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The detection of extra bands of lower MW generated two questions: a) what is happening 

to GFAP in the SNpc of old animals to produce these extra bands by Western blot (i.e., 

are these extra bands different isoforms produced by alternative splicing or breakdown 

 

  

Figure 3.13. Western blot analysis of GFAP expression in the SNpc during ageing 
in rats with a different GFAP antibody. (A) Immunoblot showing the expression levels 

of GFAP in the SNpc of young (n=4), middle age (n=3) and old rats (n=3), using a mouse 

monoclonal GFAP antibody from Biolegend (#644701). Similar to Figure 3.12A, a main 

band at 50kDa was detected in all samples, together with some extra bands of lower 

MW between 48kDa and 37kDa that were more intense in the old SNpc samples. 

Coomassie stained gel shows the total amount of protein in each sample used to 

normalise the integrated density of measured GFAP. (B) Measurements of GFAP at 

50kDa (small red rectangle in (A)) showed the same trend that was seen in the 

proteomics results for GFAP but without being statistically significant in the either the 

increase from young to middle age (p=0.1562), or decrease from middle age to 

(p=0.2218). (C) Measurements of all GFAP bands (big red rectangle in (A)) revealed a 

similar trend than Figure 3.12C, but in this case the increase between the young and the 

middle age or old SNpc was not statistically significant (p=0.1691; p=0.1119, 

respectively). Coomassie stained gel shows the total amount of protein in each sample. 

Error bars represent standard deviation.  
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products from degradation or cleavage by proteolysis?)?, and b) did ProteinPilot 

software identify and quantify only the sequence from GFAP at 50kDa (top band) or 

identify and quantify the sequences from the extra bands within the proteomics analysis? 

As mentioned before, GFAP is an intermediate filament of astrocytes (Eng, 1985). In 

general, most of the articles that have cited GFAP were focused on the main isoform 

called GFAPα (i.e., isoform 1), which is the most abundant isoform in the brain and 

whose mRNA was the first identified (Middeldorp and Hol, 2011). Lewis et al. (1984) 

were the first authors to generate the sequence of a cDNA clone for mouse GFAP, by 

screening a cDNA expression library created from 15-21-day-old mouse brain mRNA 

with a GFAP-polyclonal antiserum. After this, cDNA clones were produced from cerebral 

hemispheres of rats (Feinstein et al., 1992), glioblastoma-derived cell line HTB17 and 

adult brain white matter of humans (Reeves et al., 1989). These studies characterized 

the nucleotide sequence for the three species of animals used, and predicted that the 

protein length of GFAP is 432 aa in humans and 430 aa in rats and mouse, with a MW 

of approximately ~50kDa. Thus, the top band at ~50kDa found for GFAP in the rat SNpc 

in this Thesis would correspond to the main or canonical isoform GFAPα (i.e., isoform 

1). As described in detail below and in the Discussion, the existence of other extra bands 

between 48kDa and 37kDa has been already described in other GFAP sequencing and 

immunoblotting analysis, as an indication of GFAP isoforms or breakdown products from 

the proteolysis of GFAP. In this Result section, firstly, the possibility of defining these 

extra bands as GFAP isoforms is addressed, followed by the feasibility of finding these 

extra bands as breakdown products from degradation or cleavage by proteolysis. 

 

3.3.6 The expression of the GFAPδ isoform in the rat SNpc increases significantly 

in middle age compare to young and old ages 

To determine if the extra bands from the GFAP immunoblot in Thesis belonged to other 

GFAP isoforms (Figure 3.12A), the first step was to review the literature to understand 

which isoforms might match their MW (between 48kDa and 37kDa) (see Figure 3.14).  
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Figure 3.14. The modification of the sequence of the canonical isoform for GFAP 
produces different isoforms. GFAP is an intermediate filament protein considered a 

marker for astrocytes, a type of glia cell (Eng, 1985). As the diagram shows, the 

canonical isoform for GFAP, called GFAPα (isoform1), has a MW of approximately 

50kDa and its structure is formed by 3 domains (head, α-helical rod and tail). The head 

domain contains the exon 1. The rod domain is divided in 4 subregions [1A (exon 2), 1B 

(exon 3), 2A (exon 4), 2B (exons 5 and 6)], separated by linker regions (black lines). The 

tail domain contains exons 7 to 9. Apart from GFAPα, nine more isoforms have been 

described, presented in the diagram below GFAPα with their respective modifications. 

GFAPβ includes a longer 5’ region before exon 1. GFAPβ protein length is unknown (red 

dash line), existing only evidence of the partial mRNA sequence in rat (Condorelli et al., 

1999a; Condorelli et al., 1999b). GFAPζ includes the last 284 bp of intron 8-9. GFAPζ 

protein length is also unknown (red dash line), existing only partial evidence at transcript 

level in mouse (Zelenika et al., 1995; Kamphuis et al., 2012). GFAPκ has an alternative 

exon 7b that replaces exon 8 and 9 (Blechingberg et al., 2007; Kamphuis et al., 2012; 

Kamphuis et al., 2014; Hol and Pekny 2015). GFAPδ/ε (isoform 2) has an alternative 

exon 7a that replaces exon 8 and 9 (Condorelli et al., 1999a; Condorelli et al., 1999b; 

Roelofs et al., 2005). Differences between GFAPδ and GFAPε are controversial in the 

literature due to their similar open reading frames (ORF), although Blechingberg and 

colleagues (2007) establish that, unlike GFAPδ, GFAPε is polyadenylated in exon 7a. 

GFAPγ excludes exon 1 but adds the last 126 bp of intron 1. GFAPγ protein length is 

also unknown (red dash line), existing only partial evidence at transcript level in mouse 

(Zelenika et al., 1995). GFAP+1 (GFAPΔEx7, GFAPΔ135, GFAPΔ164, GFAPΔEx6) 

undergoes different frameshift mutations in exon 6 and 7 (Kamphuis et al., 2012;        

(cont. next page)  
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According to the literature (Figure 3.14), there are two different isoforms (i.e., GFAPβ, 

GFAPζ) whose MW is unknown but whose protein length (aa) is bigger than the 

canonical isoforms GFAPα, suggesting that their MW, although unknown, had to be 

higher than 50kDa. There is also evidence of GFAPκ which has an alternative exon 7b 

that replaces exon 8 and 9, with a final MW of 50.2kDA in humans. Hence, these three 

isoforms (i.e., GFAPβ, GFAPζ, GFAPκ) were excluded as possible candidates for the 

detected extra bands, as they were all lower than 50kDa. Nevertheless, there were other 

isoforms (i.e., GFAPδ/ε, GFAPγ, GFAP+1 − GFAPΔEx7, GFAPΔ135, GFAPΔ164, 

GFAPΔEx6 −) with smaller protein length (aa) than GFAPα and, therefore, with MW 

below 50kDa. Thus, GFAPδ/ε (isoform 2) has a final MW of 48.7kDa in rats, and,  

although the final protein length for GFAPγ is unknown (existing only as partial evidence 

at the transcript level in mouse), because it has less aa than the canonical isoforms 

GFAPα, it is assumed that its MW is lower than 50kDa. Lastly, GFAP+1, which includes 

GFAPΔEx7, GFAPΔ135, GFAPΔ164, and GFAPΔEx6, has a MW between 39kDa and 

44kDa in humans. Thus, the isoforms GFAPδ/ε, GFAPγ, GFAP+1 − GFAPΔEx7, 

GFAPΔ135, GFAPΔ164, GFAPΔEx6 − were considered as possible candidates for the 

extra bands detected between 48kDa and 37kDa (Figure 3.12).  

The review of the literature related to GFAP isoforms led to the question of if the 

ProteinPilot software identified exclusively GFAPα (isoform 1), the main isoform with a 

MW of ~50kDa, or if it was possible that it also recognized the other isoform GFAPδ 

(isoform 2). This GFAPδ isoform was chosen between the possible candidates because 

it was the only one with a completed published sequence in rats, which made it possible 

(cont. Figure 3.14) Kamphuis et al., 2014; Hol and Pekny 2015). Only the known (e.g., 

published or database) protein length (aa) and MW (kDa) for each isoform in rat (black), 

mouse (light grey) and/or human (dark grey) are shown. Notice again that the exact 

protein length and MW in some of the proteins remain unknown. 
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to use it to perform a multiple sequence alignment (Figure 3.15). Therefore, the multiple 

sequence alignment of the FAST sequence of rat GFAPα and GFAPδ from UniProtKB 

(accession numbers P47819-1 and P47819-2, respectively) was performed and this 

alignment was compared to the protein sequence coverage detected for GFAP by the 

iTRAQ experiment (Figure 3.15). This comparison demonstrated that the peptides 

identified in the iTRAQ experiment matched almost entirely to the isoform alpha and also 

the homologous regions in GFAPδ. Moreover, the alignment revealed that the head and 

the tail of GFAPα, modified in other isoforms like GFAPδ (Figure 3.14), were detected 

by the proteomics analysis (Figure 3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Multiple sequence alignment of rat GFAPα (isoform 1) and GFAPδ 

(isoform 2). The alignment of rat GFAPα and GFAPδ sequences, using Clustal Omega 

multiple sequence alignment (MSA) tool, shows that the peptides identified in the iTRAQ 

experiment for GFAP (highlighted in grey) correspond to the isoform alpha. Notice that 

GFAPδ differs from the canonical sequence of GFAPα between the last 389 and 430 

aa. 
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Altogether, this indicated that ProteinPilot identified the canonical isoform of GFAPα, 

based on the peptides that were specific only for that isoform (i.e., head and tail). 

However, the alignment results revealed that was not possible to exclude the presence 

of GFAPδ, even though specific peptides were not found, because of the identified 

homologous regions. Due to this uncertainty, the expression pattern of GFAPδ was 

examined in the aged rat SNpc samples by immunoblotting, to determine whether it was 

possible or not to observe the expression of this isoform that may help to explain the 

extra bands that were previously detected.  

The analysis of GFAPδ of the individual samples by Western blot using a rabbit 

polyclonal antibody specific for GFAPδ from Abcam (#93251). showed a band at 

approximately 50kDa in all ages that was more intense in the middle age group, but no 

extra bands between 48kDa and 37kDa (Figure 3.16A). Measurements of the integrated 

density of GFAPδ, normalised with the total amount of protein (Coomassie stained gel), 

revealed that comparing the middle age (2.141 ± 0.3445) versus the young (0.7601 ± 

0.1823), and old (1.091 ± 0.2393) age there were changes in the expression of GFAPδ, 

with a statistically significant (p=0.0002) increase of 182% from young to middle age, 

and a statistically significant (p=0.0008) decrease of 49% from middle age to old (Figure 

3.16B).  

Importantly, these Western blot results demonstrated that, even though the proteomics 

study did not identify any peptide specifically for the isoform GFAPδ, the rat SNpc 

contains this alternative isoform. Notably, to my understanding, this is the first time that 

a specific GFAP isoform (GFAPδ) has been detected and expression levels measured 

within the SNpc, showing that its expression changes along ageing. This finding could 

have important implications in the phenotype and functions of astrocytes and, therefore, 

in the vulnerability of DAn (see Discussion). Moreover, the immunoblotting band at 

50kDa of this GFAPδ isoform did not explain the rest of the bands between 48kDa and 

37kDa, which makes the investigation of other isoforms essential to determine whether 
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the extra bands belong to them. Finally, the trend of expression for GFAPδ revealed that 

there was an increase in the rat SNpc during middle age compared to the young and the 

old age, while the expression in the young and old age was similar. This trend was 

comparable to the trend found previously for GFAPα at 50kDa (Figure 3.12B), which 

might indicate that GFAPδ has a contribution to the band at 50kDa in the GFAPα 

immunoblotting. Why this increase in the GFAPδ expression appeared in the SNpc from 

the middle group is something that will be discussed in the Discussion section.  

A 

B 

Figure 3.16. Western blot analysis of GFAPδ expression in the SNpc during ageing 

in rats. (A) Immunoblot showing the expression levels of GFAPδ in the SNpc of young 

(n=4), middle age (n=3) and old rats (n=5), using a rabbit polyclonal GFAPδ antibody 

from Abcam (#93251). (B) Measurements of the integrated density of GFAPδ at 50kDa, 

normalised to total protein (Coomassie stained gel), showed a statistically significant 

increase of 182% in the middle age samples compared to young (p=0.0002) and a 

statistically significant decrease of 49% from middle age to old samples (p=0.0008). 

Error bars represent standard deviation. ***p<0.001. 
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To gain a better idea about where GFAPδ was expressed within the SNpc, assuming to 

find it in astrocyte-like cells, immunofluorescence for GFAPδ in the rat SNpc at different 

ages (similar to Figure 3.11) was also performed. However, the staining was very faint 

and difficult to observe (images not shown), therefore, it was not possible to establish 

any conclusion from these results.  

Due to the identification of an isoform by Western blot (i.e., GFAPδ) that was not 

recognized by the proteomics study, as well as the lack of verification of the extra bands 

as part of GFAPδ, immunoblotting was organised to identify other possible candidates 

for which suitable antibodies were available. The aim of such an analysis was to 

understand if other isoforms, apart from GFAPα and GFAPδ, were also expressed in the 

rat SNpc during the ageing process. However, it was not possible to find any antibody 

available for rat GFAPγ, and the immunoblot for GFAP+1, using a human antibody 

generated and kindly provided by the group from the Netherlands led by Dr. EM Hol, did 

not show any bands when the SNpc samples at different ages were analysed 

(immunoblot not shown). 

 

3.3.7 The low MW extra bands found in the immunoblotting for GFAP might be 

related to the production of GFAP breakdown products after its proteolysis by the 

enzyme calpain 

The first requirement to understand if the alternative hypothesis, related to the enzymatic 

degradation of GFAP with the generation of breakdown products, could explain the extra 

bands between 48kDa and 37kDa in the GFAP immunoblots, was to gain a deeper 

understanding of the literature around this topic. As Figure 3.17 details, the proteolysis 

of GFAP (assumed, in this case, as GFAPα) by calpain or caspase produces breakdown 

products that could be detected in immunoblots. Calpain cuts GFAPα around its head 

(69−70 aa) and tail (386−384 aa), generating breakdown products with MW between 

44kDa and 38kDa (Fujita et al., 1998; Lee et al., 2000; Zhang et al., 2014) (Figure 3.17).  
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Thus, the MW of these breakdown products would have the same size that the extra 

lower MW bands found in the immunoblot for GFAP in this Thesis. To fully understand 

the implications that the effect of calpain has in GFAPα and the possible MW of 

breakdown products, the unknown MW was calculated using a ‘Protein Molecular 

Weight’ tool and the GFAPα sequences (rat or human) that were left before the cleavage 

site, without considering post-translational modifications (e.g., phosphorylation), which 

Figure 3.17. GFAPα undergoes proteolytic digestion with calpain and caspase at 
different cleavage sites, producing various breakdown products of diverse MW. 
Diagram of the GFAPα fragmentation generating breakdown products of different MW  

(kDa). MW in black show the specific experimental fragments of GFAPα from rat (*), 

mouse (⁺), or human (†) origin found in the literature using calpain 1 (Lee et al., 2000), 

calpain 2 (Fujita et al., 1998; Zhang et al., 2014), caspase 3 (Mouser et al., 2006) or 

caspase 6 (Chen et al., 2013a). The MW of other breakdown products that were not 

mentioned in the literature (MW in grey) were calculated with the use of the ‘Protein 

Molecular Weight’ tool, using the part of the GFAPα sequence (rat or human) that was 

left before the cleavage site, without considering post-translational modifications (e.g., 

phosphorylation), which could increase the final MW of the fragment.   
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could increase the final MW of the fragment. With this method, potential breakdown 

products of approximately 42kDa, 11kDa, 6kDa and 4kDa were calculated (Figure 3.17). 

At least one of these new breakdown products (42kDa) would have the same size that 

the extra bands found in the immunoblot for GFAP in this Thesis. On the other hand, 

caspase cuts GFAPα around the core of the protein, around 78−79 aa and 266−267 aa, 

producing smaller breakdown products with MW between 30kDa and 20kDa (Mouser et 

al., 2006; Chen et al., 2013a) (Figure 3.17). In this case, the MW of these breakdown 

products would be too small to explain any of the extra bands found in the immunoblot 

for GFAP in this Thesis, although that does not invalidate the presence of caspase in 

the SNpc samples and the production of GFAP breakdown products of low MW that, 

perhaps, have not been detected by immunoblot. 

The literature showed that calpain is an enzyme that was able to produce GFAP 

breakdown products with a MW between 44kDa and 38kDa, similar to the MW of the 

extra bands found in the GFAP immunoblot. On the other hand, caspase can also 

cleavage GFAP generating breakdown products of low MW that might not have been 

detected in the GFAP immunoblot. Therefore, the possibility of characterizing the extra 

bands as GFAP breakdown products was explored. To do this, the first step was to 

corroborate the existence of the proteolytic enzymes (i.e., caspase and calpain) in the 

SNpc samples. To achieve that, proteomics results were analyzed to detect the 

presence or absence of calpain and caspase. The evaluation of the data showed that 

calpain-2 (CAPN2), calpain-1 (CAPN1), calpain small subunit 1 (CAPNS1) and caspase-

3 (CASP3) were presented in the samples (Supplementary Table 2b). Because 

calpain-2 seems to be the most abundant calpain in brain (Singh et al., 2014) and it is 

expressed in astrocytes (Li et al., 1995; Li et al., 1996), this enzyme was quantified by 

Western blot, although the proteomics data did not show any significant difference in its 

expression between ages (Supplementary Table 2b; Figure 3.18).  
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The decision of exploring calpain-2 despite the lack of significant differences in its 

expression was taken because the activity of calpain-2 may not necessarily be 

accompanied by increased expression. Whilst it is not possible to directly measure 

activity by Western blot, it might, however, be possible to detected activated calpain 2 

that would be evidenced by a proteolytically cleaved protein product with a shorter length 

and smaller MW (Brown and Crawford, 1993; Azuma et al., 1997; Chou et al., 2011). 

Consequently, this reduction of its sequences may be detected by Western blot but not 

by iTRAQ quantifications (see Discussion). Hence, Western blot analysis of the 

individual samples using a mouse monoclonal calpain-2 antibody from Santa Cruz 

(#373966) revealed a strong band at 78kDa, but also a faint band at approximately 

43kDa in all samples (Figure 3.19A). The quantification of the calpain-2 band at 78kDa, 

normalised to total protein (Coomassie stained gel), showed that comparing young 

(3.273 ± 0.39), middle age (2.97 ± 0.274) and old (3.274 ± 0.5439) samples there were 

no statistically significant differences between any of the comparisons, including young 

versus middle age (p=0.6240) or old (p>0.9999) (Figure 3.19B). Similarly, the 

quantification of the calpain-2 band at 43kDa, normalised to total protein (Coomassie 

stained gel), revealed that its expression in young (1.185 ± 0.225), middle age (1.122 ± 

0.075) and old (1.633 ± 0.316) did not change significantly between young and middle 

age (p=0.9318) or old (p=0.0828) (Figure 3.19C). Nevertheless, all this indicated that 

there is not enough evidence to assume that the extra band belongs to the calpain-2 

Figure 3.18. Protein Sequence Coverage for calpain-2 by ProteinPilot software. 

The areas in grey represent portions of the sequence with no spectral evidence. Low 

confidence peptides are red, moderate confidence peptides are yellow and high 

confidence peptides are green. 
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breakdown products due to its proteolysis during activation, therefore, it is difficult to 

establish if calpain-2 is activated or not in the SNpc samples.  
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B 

Figure 3.19. Western blot analysis of calpain-2 expression in the SNpc during 
ageing in rats. (A) Immunoblot showing the expression levels of calpain-2 in the SNpc 

of young (n=4), middle age (n=3) and old rats (n=3), using a mouse monoclonal calpain-

2 antibody from Santa Cruz (#373966). (B) Measurements of the integrated density of 

calpain-2 at 78kDa, normalised to total protein (Coomassie stained gel), did not show 

statistically differences between young and middle age (p=0.6240) or old (p>0.9999) 

SNpc. (C) Measurements of the integrated density of calpain-2 at 43kDa, normalised to 

total protein (Coomassie stained gel), showed no statistically differences between young 

and middle age (p=0.9318) or old (p=0.0828) SNpc. Error bars represent standard 

deviation. 

C 
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Adding to this, the other enzyme found in the SNpc samples by proteomics (i.e., 

caspase-3) was also tested by Western blot. To do this, a mouse monoclonal caspase-

3 antibody from Santa Cruz (#56053) was used. However, in this case, no bands were 

detected (immunoblot not shown). 

 

3.3.8 The expression of TH, a marker for DAn, showed no statistically significant 

differences in the rat SNpc with increasing age  

Tyrosine hydroxylase (i.e., tyrosine 3-monooxygenase, TH) is the enzyme of the 

dopamine synthesis in SNpc DAn, therefore, the observation of its expression indicates 

the presence of DAn in the sample. The existence of the TH protein was confirmed in 

the iTRAQ study, which suggested that there were no statistical differences in its 

expression in the rat SNpc during the ageing process (Supplementary Table 2b). 

Subsequently, these results were validated by Western blot using a rabbit polyclonal TH 

antibody from Millipore (#ab152) in independent SNpc samples (Figure 3.20). The 

immunoblot detected a strong band at 62kDa in all ages (Figure 3.20A). Measurements 

of the integrated density of TH at 62kDa, normalised to total protein (Coomassie stained 

gel), demonstrated that the expression of TH in the young (0.5606 ± 0.083), middle age 

(0.676 ± 0.1575) and old (0.6654 ± 0.2035) was not statistically different with ageing in 

any comparison (young versus middle age (p=0.5867) or young versus old (p=0.6121) 

(Figure 3.20B). 

In summary, the results in this chapter show that during the ageing process the proteome 

of rat SNpc undergoes changes in the expression of 66 proteins from a total of 1,953 

proteins identified. Some of these changes appeared at early stages of the adult life (i.e., 

young), while others emerged later (i.e., middle age). GO functional annotation analysis 

and protein pathways revealed that these proteins were involved in biological functions 

such as the extracellular matrix, cell adhesion, intermediate filament organization, 

detoxification of the environment or metabolism, suggesting that these functions were  
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dysregulated in the aged SNpc of rats. Moreover, protein network analysis situated 

GFAP, a protein that characterizes astrocytes (a type of glial cells), as a core protein in 

the network, being associated with other dysregulated proteins. Due to the importance 

of GFAP in astrocytes, GFAP was chosen for further investigations. The expression of 

GFAP by immunofluorescence increased with ageing, while the immunoblot reported 

extra bands apart from the canonical form. The study of these extra bands led to the 

discovery of the presence of GFAPδ in the samples, with a higher expression in the 

middle age, and the existence of calpain-2, a proteolytic enzyme that might be involved 

in the cleavage of GFAP producing breakdown products. Lastly, the expression of TH 

by immunoblot did not change significantly in the rat SNpc during the ageing process.  

A 

B 

Figure 3.20. Western blot analysis of TH expression in the SNpc during ageing in 
rats. (A) Immunoblot showing the expression levels of TH in the SNpc of young (n=4), 

middle age (n=4) and old rats (n=5), using a rabbit polyclonal TH antibody from Millipore 

(#ab152). (B) Measurements of the integrated density of TH at 62kDa, normalised to 

total protein (Coomassie stained gel), showed non-statistically changes between young 

and middle age (p=0.5867) or old (p=0.6121) SNpc. Error bars represent standard 

deviation. 
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3.4 Discussion 

In this chapter, a quantitative proteomics approach was used to examine the proteome 

of the rat SNpc at four different stages of life (postnatal P14, 8-month-old, 16-month-old 

and >21-month-old) to determine whether protein expression levels change during 

normal physiological ageing, which may give insights into why SNpc DAn become more 

vulnerable to PD with increasing age. From a total of 1,953 proteins that were identified 

and quantified, 608 proteins in juvenile, 43 in young, and 28 in middle aged were 

differentially expressed compared to the old SNpc.  

 

3.4.1 Proteomics changes in the postnatal SNpc in rats are related to 

neurodevelopment  

The results from the functional annotation analysis of the 608 differentially expressed 

protein in the rat SNpc from the comparison juvenile versus old showed multitude of 

dysregulated biological processes related to neurodevelopment of the brain and SNpc. 

During the postnatal period, the brain is very dynamic, and is affected by a multitude of 

modifications. For example, the postnatal rat brain grows due to changes in the cellular 

composition (Bandeira et al., 2009), and also undergoes a peak of myelination at P10 

(Downes and Mullins, 2014). Moreover, proteomics studies have reported significant 

changes in the expression of certain proteins related to the synaptosome and 

mitochondria (McClatchy et al., 2012), as well as cytoskeletal organization, microtubule 

dynamics and neurite outgrowth (Fuller et al., 2015). Therefore, a variation in the CNS 

proteome between juvenile and old ages, although potentially affecting similar proteins 

in both neurodevelopment and the ageing processes, must be interpreted with caution 

because it might be associated with two different scenarios with different implications 

within the cell. To avoid the misinterpretation of the data, these 608 differentially 

expressed proteins were excluded from future analysis. Nevertheless, it is important to 

note that the identification and quantification of the rat SNpc at postnatal stages in 

comparison to adult individuals has generated an extensive set of data. This dataset 
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provides an excellent and free resource for future investigations for the understanding 

of the neurodevelopment process in the rat SNpc (see Annex 1), which could help to 

clarify the characteristics of DAn and why they are more vulnerable than other neurons 

of the brain.  

 

3.4.2 Changes in the expression of certain proteins as ageing progresses in the 

rat SNpc might be associated with translational modifications or proteolysis  

The exclusion of the 608 proteins from the juvenile versus old comparison left a total of 

66 differentially expressed proteins in the rat SNpc along the three adult ages (young, 

middle age and old). The observation of their fold-changes revealed that their expression 

changed a maximum of 0.44 and 2.78-fold-change in the young versus old comparison, 

while in the middle age group versus old comparison the maximum was 0.68 and 2.98-

fold-change. These changes in the expression, although appear small, can be enough 

to alter the function of a protein or affect an entire proteome. Thus, small changes in 

individual proteins that are part of the complex SNpc proteome might have a major 

biological impact in the homeostasis of the cells and brain, leading to disease (Karve 

and Cheema, 2011). 

Most of the 38 differentially expressed proteins in the young versus old comparison 

showed an expression trend that was increasing or decreasing progressively with age. 

Interestingly, in this case, when the same proteins were observed in the middle age 

versus old comparison, their expression did not show any statistically significant change, 

with the exception of haemoglobin subunit alpha 1 (HBA1), haemoglobin subunit beta 

(HBB), 3-ketoacyl-CoA thiolase, mitochondrial (ACAA2) and, glutathione S-transferase 

alpha-4 (GST4). The lack of statistical differences in the expression of these proteins 

between middle age and old animals might be simply explained because of the 

progressive increase or decrease of their expression with ageing, starting at young 

stages. Consequently, the expression of these proteins in middle age would be more 

similar to the old group, not presenting statistical differences between them.  
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Furthermore, it might happen that the progressive decrease of the expression of certain 

proteins as ageing increases is the consequence of their post-translational modifications 

or truncations. These alterations change the mass of the protein, affecting its 

identification and quantification by proteomics, and could contribute to a false sense of 

depletion in its expression. It is essential to consider this possibility, because post-

translational modifications can affect the structure of the protein and its function, which 

could have a negative effect (including degeneration) on the cell (Santos and Lindner, 

2017). For example, it has been described by immunohistochemistry that the 

phosphorylation and nitration of alpha-synuclein increases in SNpc DAn of aged 

monkeys, and that this could exacerbate the neuroinflammatory response and 

degeneration of these neurons (McCormack et al., 2012).  

On the other hand, there were 23 proteins whose expression only changed significantly 

in the middle age versus old comparison but not in young versus old. Interestingly, most 

of the expression of these proteins increased from young to middle age, but afterwards 

decreased in the old SNpc. This situation might also be explained by post-translational 

modifications or proteolysis of some of these proteins in the old SNpc after an increase 

of the expression in the middle age. It is probable that a decrease in the expression 

detected by this proteomics study did not always indicate a biological reduction of the 

protein, but changes in its structure and function by adding temporary post-translational 

modifications. In the future, it would be interesting to explore this possibility by creating 

a proteomics analysis of specific post-translational modifications. There is an extensive 

variety of post-translational modifications that can be studied, including phosphorylation, 

sumoylation, glycosylation, ubiquitylation or acetylation (Santos and Lindner, 2017). 

However, the SNpc is characterized by an increase of oxidative stress with ageing, which 

produces a rise in the number of oxidized proteins as Venkateshappa et al. (2012) 

demonstrated in the human SNpc by Oxiblot. To study possible oxidation of the 

differentially expressed proteins in the rat SNpc with ageing, a similar approach can be 

used. To do this, carbonyl (i.e., oxidized) groups from the proteins can be tagged with 
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dinitrophenylhydrazine (DNP) and, after immunoprecipitation by anti-DNP antibody, LC-

MS/MS analysis can be performed, searching the data for the possible modifications 

associated with oxidation of the protein (Kristensen et al., 2004). Another possible 

explanation for the drop in expression of certain proteins in the old group after an 

increase in middle age, is that the rat SNpc has a higher proteolytic activity during 

ageing, or that the aged SNpc is more prone to proteolysis during the dissection process. 

This option will be discussed more in the context of GFAP in a subsequent section of 

this Thesis.  

 

3.4.3. The dysregulation of GFAP in the rat SNpc with ageing may be related to 

alterations of astrocytes that, in turn, modify the ECM or vice versa 

Bioinformatic analysis of the 66 differentially expressed proteins identified enriched 

processes and pathways related to cell adhesion, extracellular matrix, and intermediate 

filament organization, among others. Interestingly, protein network analysis 

demonstrated that from the 66 proteins, glial fibrillary acidic protein (GFAP) was the main 

connector associated with the highest number of differentially expressed proteins. The 

GFAP protein is a class-III intermediate filament that characterises and forms part of the 

cytoskeleton of mature astrocytes (Eng, 1985). In the adult CNS, GFAP has been also 

found in Bergmann glia (specialized astroglia with radial processes in cerebellum) (Kril 

et al., 1997) and neural stem cells (Filippov et al., 2003); while in the adult peripheral 

nervous system GFAP has been described in non-myelin-forming and dedifferentiated 

Schwann cells after axonal injury and regeneration (Jessen et al., 1990;  Mancardi et al., 

1991). The exact function of GFAP in astrocytes is not fully understood (Hol and 

Capetanaki, 2017), but as with other class-III intermediate filament, this protein gives 

structural support to the astrocyte, regulating the cell membrane that interacts with other 

cells and the extracellular matrix (ECM) (Middeldorp and Hol, 2011). Other functions 

associated with GFAP are cell motility, morphology and proliferation (Elobeid et al., 

2000), exocytosis of vesicles to release different substances (e.g., gliotransmitters) 
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(Potokar, 2007), and regulation of the integrity of the BBB and myelination (Liedtke et 

al., 1996). Furthermore, an increase of the expression of GFAP, together with the 

increase of other proteins like vimentin, is characteristic of reactive astrocytes and is 

accompanied by a hypertrophy of their morphology (Bignami and Dahl, 1976; Pekny et 

al., 2014; Liddelow and Barres, 2017). However, the whole implications that these 

changes produce in astrocytic function and, therefore, in the CNS remain unknown 

(Kamphuis et al., 2015). Astrocytes play an irreplaceable role in the CNS in maintaining 

and regulating the BBB when wrapping with their endfeet on endothelial cells that form 

the blood capillaries in the brain (Janzer and Raff, 1987). They also modulate 

myelination (Sorensen et al., 2008), and providing metabolic support and energy to 

neurons (Camandola, 2018). Therefore, it seems likely that the differential expression of 

GFAP found in the ageing SNpc is associated with astrocytes. Considering all the 

functions in which GFAP is involved, such as the interaction with the ECM (Middeldorp 

and Hol, 2011), the dysregulation of GFAP in the rat SNpc with ageing might indicate an 

impairment not only of these astrocytes, but in all the processes astrocytes are related 

to. This would change the expression of the proteins related to these processes, which 

would justify the high number of connections that GFAP has with other dysregulated 

proteins in the protein network. Altogether, this could create a hostile environment for 

DAn, promoting their degeneration. In addition, it could be possible that changes in 

GFAP occur to counteract degeneration, in an attempt to protect neurons against an 

insult in the brain, or as the consequence of alterations in other proteins. 

Among the proteins that were dysregulated and associated with GFAP, some of them 

(e.g., aggrecan (AGRN), versican (VCAN), neurocan (NCAN), hyaluronan and 

proteoglycan link protein 1 and 2 (HPLN1, HPLN2)) were increasing their expression 

with ageing and were part of the ECM. The ECM is an accumulation of proteins in the 

extracellular space and can be found around some cell bodies and dendrites in the form 

of so-called perineuronal nets (Carulli et al., 2006). These perineuronal nets can inhibit 

plasticity by stabilizing the connection between neurons (Pizzorusso et al., 2002; de Vivo 
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et al., 2013). Likewise, perineuronal nets can also protect neurons against oxidative 

stress due to the capacity of its charge structure to bind redox ions (Morawski et 

al.,2004). Thereby, two possible implications associated with the increased expression 

of these proteins related to the ECM with ageing might be stabilizing the connection 

between DAn or other cells in the SNpc (e.g., astrocytes), or have a protective effect 

against oxidative stress in the SNpc, which is known to generate a high amount of ROS 

and be harmful for DAn (see General introduction in Chapter 1). This last option might 

also be related to the reduction of glutathione-S-transferases in the SNpc with ageing 

shown in this Thesis. Glutathione-S-transferases detoxify xenobiotics (e.g., drugs, 

pesticides, carcinogens) and products of oxidative stress (e.g., hydroperoxides, 

quinones), catalysing the conjugation of glutathione to these substrates (Mannervik and 

Danielson, 1988). Therefore, the depletion of this system reduces the detoxification 

function and increase of oxidative stress in the SNpc. Hence, it might happen that the 

decline of glutathione-S-transferases forced other mechanisms around the cells (i.e., 

ECM) to increase in order to counteract and reduce the oxidative damage.  

It is known that the ECM components such as aggrecan, versican, neurocan, hyaluronan 

and proteoglycan link protein 1, which were upregulated with ageing in this Thesis, can 

be expressed or generated by all cells in the brain. For example, neurocan is expressed 

in neurons (Engel et al., 1996), while versican is highly expressed in oligodendrocyte 

lineage cells of an injured area of the CNS, inhibiting the axon growth of neurons in that 

region (Asher et al., 2002). Astrocytes can also produce or express some of these 

components, including aggrecan (Asher et al., 1995; Afshari et al., 2010), versican 

(Beggah et al., 2005), neurocan (Asher et al., 2000; Carulli et al., 2007; Meng et al., 

2012), and link proteins as hyaluronan and proteoglycan link protein 1 (Cahoy et al., 

2008). When an injury or a lesion appears in the CNS, the production of these ECM 

components by reactive astrocytes increases inhibiting axon regeneration. This has 

been proved by Jones et al. (2003) and Moon et al. (2002) who demonstrated an 

increase of neurocan and versican after spinal cord injury or axotomy of the nigrostriatal 
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pathway. Thus, it is possible that the increase of ECM proteins in the aged SNpc might 

be suggesting a certain level of damage occurs in SNpc, generated as a result of an 

increase of GFAP in the middle age in astrocytes. Conversely, ECM proteins can affect 

different aspects of astrocytes themselves, including the expression of GFAP during 

development (Domowicz et al., 2008). In this Thesis, an increase of ECM proteins such 

as aggrecan appeared in the middle age, which coincided with an increase of GFAP 

during that age. Although the regulation of astrocytes by proteoglycans seems to happen 

in embryonic and postnatal stages, associated with an overexpression of GFAP 

(Domowicz et al., 2008), it seems plausible that during a traumatic event the adult ECM 

and the increase of proteoglycans would have the capability to also affect the expression 

of GFAP. This would alter some of the functions which GFAP is involved with (see above) 

and impact their viability and the support role they play in the brain.  

Regardless of the cause-effect relationship between ECM proteins and 

astrocytes/GFAP, the alteration of the ECM with ageing appears to be an event not 

restricted to the SNpc. An example of this is the proteomics study carried out by Smidak 

et al. (2017) who observed that during the ageing process the rat dentate gyrus had an 

increase of aggrecan, neurocan, versican, and hyaluronan and proteoglycan link protein 

1 and 2. However, contrary to the results in this Thesis, they did not observe any change 

in the expression of GFAP. This could suggest that changes in the ECM precede 

modifications in the astrocytes, but also that astrocytes in the SNpc are more susceptible 

to alterations of the ECM compared to other areas of the brain. In relation to PD in 

particular, proteins associated with the ECM have been shown to be dysregulated in the 

SNpc in both human PD and models of PD. This is the case of the hyaluronan and 

proteoglycan link protein 2, which is highly expressed in SNpc DAn of PD patients and 

rats lesioned intrastriatally with the toxin 6-OHDA (Liu et al., 2015; Wang et al., 2016). 

The results of these studies agree with the increase of expression of hyaluronan and 

proteoglycan link protein 2 during ageing in the rat SNpc shown here. Interestingly, 

Wang et al. (2016) demonstrated that the overexpression of this protein can sequestrate 
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and aggregate alpha-synuclein, which suggest that hyaluronan and proteoglycan link 

protein 2 and other proteoglycans during ageing might contribute to the accumulation of 

alpha-synuclein in DAn and a higher susceptibility to PD.  

Lastly, it is important to mention another possibility that could justify the changes in the 

expression of proteins related to ECM and GFAP between the different age groups. This 

simply be related to the fact that the third oculomotor cranial nerve crosses the SNpc. 

This nerve is considered part of the peripheral nervous system, having axons myelinated 

by Schwann cells (Hagan et al., 2012). As it was mentioned before, Schwann cells can 

express GFAP after axonal degeneration and the consequent regeneration, reorganizing 

the cytoskeleton of the Schwann cells and the surrounded ECM (Triolo et al., 2006). 

Therefore, the increase of the expression of GFAP in the middle age could be produced 

by changes in Schwann cells after axonal disruption of the oculomotor nerve with ageing. 

In fact, Sharma et al. (2009) identified a reduction of the total amount of myelinated fibres 

together with an increase of myelin thickness and modification of the ECM in human 

oculomotor cranial nerve with ageing, which might affect the morphology of Schwann 

cells. Interestingly, the alteration of these Schwann cells would explain as well why the 

expression of proteins related to the ECM were increased with the ageing process. In 

line with this, it is important to highlight the fact that the dissection of the SNpc contained 

more or less oculomotor nerve in certain samples. This could explain why myelin protein 

P0 (MPZ), a protein also expressed in Schwann cells (Bai et al., 2011), appeared 

enhanced in young and middle age compared to old individuals. Although the extraction 

of the SNpc tissue in all ages was performed with the same care, the SNpc is a small 

structure within the midbrain and its dissection was a challenge. Consequently, the 

possibility cannot be excluded that the dissection of the SNpc from the old group 

included less oculomotor nerve and, therefore, less myelin protein P0. On the other 

hand, it may happen that, independently of technical difficulties, the oculomotor nerve in 

old individuals contain less myelin protein P0 because of the effect of ageing, which 

could also have an impact in the ECM composition and GFAP expression. Nevertheless, 
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it seems improbable that the differences in the composition of the sample (with less or 

more oculomotor nerve) has a direct effect in the expression of ECM proteins and GFAP, 

because there is a lack of correlation between the changes of myelin protein P0 with 

ageing and the rest of proteins already mentioned. In the future, it would be useful to 

generate a new experiment with a higher number of SNpc samples for each 

experimental group. This would reduce the chance of differences because of technical 

issues.  

 

3.4.4 The increase of expression of GFAP in the ageing SNpc of rats may indicate 

an expansion in the number of astrocytes or an increase of GFAP expression in 

each cell  

Using immunofluorescence, a significant increase of the O.D. for GFAP was found with 

ageing in the SNpc region. Surprisingly, the immunofluorescence results for GFAP did 

not match the proteomics findings, where the expression of GFAP decreased in the 

oldest group after an increase in middle age individuals. As it was mentioned before, 

GFAP is an intermediate filament protein closely related to astrocytes, and it is involved 

in multitude of functions within these cells. The alteration of GFAP might affect the 

function of the astrocytes in the CNS, and, ultimately, have implications in the 

maintenance and viability of DAn (see above). Thus, understanding how the astrocytic 

activity changes with ageing is fundamental to gaining new insight into relationship 

between ageing and neurodegenerative disease, and might help in the generation of 

new treatments (Bernal and Peterson, 2011). However, as cited in the General 

introduction of this Thesis (see Chapter 1), increases in the expression of GFAP with 

ageing in the SNpc have so far been controversial (Kanaan et al., 2010; Gao et al., 2013; 

Jyothi et al., 2015). Nevertheless, interestingly, Kanaan et al. (2010) has reported (in a 

study where no differences were found in the number of astrocyte or GFAP intensity) 

that when the morphology of astrocytes was observed, only a few animals of the middle 

age group showed an activated hypertrophic phenotype, returning to a resting state 
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similar to young individuals in the old group. These data were consistent with the 

proteomics results for GFAP found in this Thesis, where an increase of the expression 

of GFAP appeared in the middle age compared to the young and old groups. In their 

discussion, they proposed that this U-shape response of GFAP with ageing may be 

indicating the failure of the activation of astrocytes in the old age, which might have 

implications in the vulnerability of DAn. This possibility has been also exemplified by 

Rodriguez et al. (2014) who found a broad heterogeneity of the GFAP expression 

between different areas of the brain (hippocampus and entorhinal cortex) with ageing 

(from 3- to 24-month-old).  

Altogether, this shows a lack of consensus across the literature concerning changes in 

GFAP expression in the SNpc during ageing. In all of them, immunohistochemistry was 

the technique applied, however, the methods they used to measure and quantify the 

expression of GFAP varied between publications (e.g., densitometry or unbiased 

stereology), which might justify the differences between results. It is necessary to be 

critical with the measurements of the O.D. for GFAP in this Thesis, where it was difficult 

to distinguish individual astrocytic cells and where an increase of GFAP O.D. can mean 

either an increase of the number of astrocytes or an increase of the expression of GFAP 

in each astrocyte. Consequently, this highlights the urgent need for more investigations 

where the study of the expression of GFAP is analysed in different species in a similar 

way by a combination of techniques (i.e., PCR, immunofluorescence, immunoblotting 

and proteomics). This requires a pause to reconsider whether reactive astrogliosis is 

truly a normal and well-established process during ageing in the whole brain and, more 

specifically, in the SNpc. This may open up the possibility of discovering more specific, 

subtle changes in astrocytes that can be detrimental for them and to certain 

neuropathologies. 
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3.4.5 Ageing generates alternative variations of the canonical isoform GFAPα in 

the rat SNpc  

The disagreement between results using immunofluorescence and proteomics here led 

to an additional analysis of the expression of GFAP by Western blot. Intriguingly, 

Western blots for GFAP with two different antibodies revealed that, apart from the main 

band at 50kDa, there were extra bands of a lower MW between 48kDa and 37kDa that 

were strongly expressed in the old SNpc. To date, it is believed that the main band of 

50kDa is associated with the canonical isoform of GFAP, GFAPα, which is often what 

the literature is referring to when it mentions ‘GFAP’ (Reeves et al., 1989; Middeldorp 

and Hol, 2011). Although the two different antibodies showed the low MW bands, 

corroborating that these bands belonged to GFAP, differences between immunoblots 

were also described. This can be explained due to the different epitopes that these two 

antibodies recognize (see Chapter 2), and that in many cases are not fully detected or 

described by the manufacturers. For example, in the case of the Biolegend GFAP 

antibody, the only information supplied by the manufacturer is that the antibody has been 

‘raised by immunization of whole spinal cord homogenates’; while the Cell Signalling 

GFAP antibody has been produce by ‘immunizing animals with a synthetic peptide 

corresponding to residues surrounding Asp395 of human GFAP protein’. As will be 

discussed later, GFAP is a protein that can undergo changes in its sequence, which 

alters its MW. Thus, the lack of information around what part of the protein these 

antibodies recognize makes it extremely difficult to determine alternative patterns of 

staining.  

Nevertheless, when all bands (from 50kDa to 37kDa) were measured together by 

Western blot, the results were similar to the immunofluorescence findings; while 

measurements of the band at 50kDa alone reflected the proteomics results but without 

showing significant differences. The absence of statistical differences by Western blot 

might be explained by a variety of reasons, including low sample numbers, the high 

background of the gels to quantify the total amount of protein, some variability between 
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individual samples, or the small fold-change for the expression of GFAP. Western blot 

is a semiquantitative technique that, although showing good results for the presence and 

absence of proteins, it has some limitations in accurately measuring small changes in 

the expression of proteins (Gassmann et al., 2009). Altogether, these results 

demonstrated that by combining multiple approaches (i.e., immunofluorescence, 

immunoblotting and proteomics), different observations of the expression of one protein 

(in this case GFAP) can be done to understand the full story, revealing diverse 

characteristics of one protein, which might have implications in its structure and function.   

The detection of these extra bands generated two possible explanations linked to 

modifications of GFAPα, which include the production of new isoforms of the protein 

and/or breakdown products due to its proteolysis.  

 

3.4.5.1 GFAPδ is a unique GFAP isoform in the rat SNpc whose expression 

changes with ageing  

As mentioned previously, GFAPα (isoform 1) is the canonical GFAP isoform and the 

most abundant in the CNS. The length of the protein is 432 aa in humans and 430 aa in 

rats and has a MW of approximately 50kDa (Reeves et al., 1989; Middeldorp and Hol, 

2011). As in others intermediate filaments, the structure of GFAPα is formed by three 

main domains, including a N-terminal head, a helical rod, and C-terminal tail (Reeves et 

al., 1989), knowing that the head must be preserved in order to assemble GFAP in 

filaments (Chen and Liem, 1994). Due to this, post-translational modifications, including 

phosphorylation in the head and tail domain, seems to have an effect on the assembly 

of the protein (Sihag et al., 2007).  

Apart from GFAPα, nine isoforms have been described so far, including GFAPβ, GFAPζ, 

GFAPκ, GFAPδ/ε, GFAPγ and GFAP+1 (GFAPΔEx7, GFAPΔ135, GFAPΔ164, 

GFAPΔEx6) (reviewed in Hol and Capetanaki, 2017). These isoforms are generated by 

alternative splicing, generally changing the C-terminal of the protein (see Result section 
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for more detail of each isoform, Figure 3.14). Moreover, it seems that these isoforms 

are related to a specific subpopulation of astrocytes that, in some cases, are associated 

with neurodegenerative diseases. For example, a study using a mouse model of AD 

showed an increase of GFAP isoforms (GFAPα, GFAPβ, GFAPζ, GFAPκ, GFAPδ and 

GFAPγ) at the transcript level in the cortex compared to controls (Kamphuis et al., 2012). 

However, from all these proteins, only GFAPδ was identified at the protein level by 

Western blot and immunofluorescence, overlapping with one of the bands and the 

staining produced using a panGFAP antibody. In addition, post-mortem hippocampal 

tissue from humans with AD revealed that the same isoforms were upregulated at the 

transcript level, with a correlation of expression accorded to the progression of the 

disease (Kamphuis et al., 2014). In the same article, the authors observed a positive 

immunostaining for GFAPδ and GFAP+1. The expression of GFAPδ was higher in 

reactive astrocytes of AD brains, while GFAP+1 was characteristic of a specific subgroup 

of non-reactive astrocytes in AD and control groups. Moreover, by immunoblotting, they 

demonstrated that a panGFAP antibody was able to recognize all GFAP isoforms, 

producing a blot with multiple bands between 39kDa and 50kDa. When they tested 

specific antibodies for GFAPδ, GFAPκ and GFAP+1, the bands for these antibodies 

appeared at approximately at 49kDa, 50kDa and 44−39kDa, respectively, which could 

match some of the bands found in this Thesis.  

The examination of GFAPδ by Western blot in the rat SNpc revealed a band of 

approximately 50kDa that was significantly increased in middle age compared to the 

other two ages. GFAPδ differs from the canonical sequence GFAPα in the last 42 aa, 

from 389 to 430 aa (Roelofs et al., 2005), therefore, the GFAPδ antibody (which 

recognizes residues surrounding 350 aa of mouse GFAPδ) identifies only this variant 

and no other isoforms (e.g., GFAPα). However, because the band appeared at 50kDa, 

it was not possible to justify the origin of the other bands below 50kDa. Importantly, this 

reveals that panGFAP antibodies, which produces a main band for GFAPα at 50kDa, 

might be recognizing other isoforms, such as GFAPδ, very near the same MW. Thus, 
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the use of panGFAP antibodies might be hiding the expression of other splice forms, as 

it does with GFAPδ. Altogether, this indicates that we must be critical with the 

conclusions from previous investigations that handle GFAP as a stable and unique 

protein, and without considering other isoforms that might have been included and 

treated as GFAPα.  

Notably, to the best of my knowledge, this is the first time that someone mentions the 

expression of GFAPδ in the SNpc region and in connection with the ageing process in 

this area. However, other authors have reported the existence of this isoforms in the 

CNS. For example, Roelofs et al. (2005) found GFAPδ-positive astrocytes or ependymal 

cells in subpial and subependimal regions. When they investigated the implications that 

the expression of GFAPδ had in the astrocyte, they discovered that the low expression 

of GFAPδ together with a high expression of GFAPα allowed the astrocyte to form a 

normal and stable cytoskeleton with a star morphology. However, high concentrations 

of GFAPδ produced perinuclear failure that interrupted the formation of the cytoskeleton 

due to the modification of the C-terminal in the isoform, necessary for the correct 

assemble of intermediate filaments. They speculated that, because GFAPδ surrounds 

the nucleus and is associated with a smaller cytoskeleton, this isoform might have a role 

controlling the volume or cellular location of the cytoskeleton within the astrocyte, which 

can have implications in the motility of these cells. Another example of the implications 

that GFAPδ has in the correct assembly of intermediate filaments in astrocytes has been 

reported by Perng et al. (2008), who studied the in vitro assembly of GFAPδ and GFAPα 

by electron microscopy. They demonstrated that GFAPδ expression was always 

associated with a major expression of GFAPα, therefore, presenting a normal 

intermediate filaments assembly and being involved in the normal function of astrocytes. 

However, when GFAPδ represented more than 10% of the total GFAP expression, the 

filaments tended to aggregate. Hence, GFAPδ exists as a permissible relative in an 

appropriate ratio with GFAPα before the GFAP network is compromised. In relation to 
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this Thesis, it would be very useful to know what the ratio of GFAPδ over GFAPα was in 

the SNpc samples, in order to understand if the expression of GFAPδ can have an impact 

in the cytoskeleton of astrocytes in the SNpc. Sadly, it was not possible to test this by 

Western blot due to the same MW of both isoforms (approximately 50kDa). Moreover, 

immunofluorescence approaches did not show any staining for this GFAPδ protein, 

which could be due to a lower affinity of the antibody for the epitope in tissue samples, 

being impossible to characterize the type of cells that contain this protein. Furthermore, 

the proteomics assay did not provide any clues about GFAPδ and, therefore, the ratio of 

both isoforms. Multiple sequence alignment of the sequences of both GFAPα and 

GFAPδ, together with the protein sequence coverage detected for GFAP by ProteinPilot 

software, demonstrated that the proteomics study did not identified any specific peptide 

for the isoform GFAPδ. Therefore, it should be noted that this proteomics approach can 

miss relevant results for certain proteins. For instance, it can happen that if the number 

of peptides from one isoform is very low, these can be difficult to detect and distinguish 

among the peptides from the main and more abundant isoform. Likewise, it is possible 

that ProteinPilot algorithm associates the common peptides (e.g., peptides from the 

protein core) with the main isoform by probability, instead of to the other isoforms. In the 

future, it would be useful to create a proteomics experiment to identify and quantify the 

possible different isoforms, measuring the specific peptides associated with each 

isoform by the Multiple Reaction Monitoring (MRM) method for peptide absolute 

quantitation.  

On the other hand, Perng and colleagues (2008) demonstrated that the high expression 

of GFAPδ increased the interaction and association with the cytoplasmic protein alpha-

crystallin B chain a protein that, interestingly, increases its expression with ageing in the 

rat SNpc. Alpha-crystallin B chain is a heat-shock chaperone that appears upregulated 

in conditions of stress within the cell (e.g., pH extreme changes, hypoxia, oxidative 

stress), avoiding the aggregation of other proteins by binding exposed hydrophobic sites 

and promoting their refolded (Derham and Harding, 1999). Alpha-crystallin B chain can 
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regulate GFAP filament and have a protective role within the astrocyte when a high 

expression of GFAP appears, avoiding its aggregation and reactive gliosis, reducing its 

stress and having an anti-apoptotic function thanks to an increase of alpha-crystallin B 

chain (Ousman et al., 2007; Hagemann et al., 2009; Klopstein et al., 2012). Surprisingly, 

an upregulation of alpha-crystallin B chain has been seen in reactive astrocytes and 

degenerated astrocytes in the SNpc of a mouse MPTP model of PD and parkinsonians 

compared to age-matched controls by quantitative proteomics analysis (Liu et al., 2015). 

All this together might indicate that, in the ageing SNpc, the increase of alpha-crystallin 

B chain is trying to avoid the aggregation of GFAP and the degeneration of astrocytes. 

Why GFAPδ increases in the middle age in the first place is something that must be 

assessed in the future to determine if changes in its expression has a physiological 

purpose or appears as a pathological hallmark. To do this, a knock-in transgenic mice 

could be created, overexpressing GFAPδ in order to study in vivo the implications of its 

increased expression in astrocytes on the SNpc and their DAn. Moreover, to see the 

effect of this GFAPδ overexpression with ageing, astrocytes at different age points can 

be compared. Either way, the high expression of GFAPδ might increase the association 

of proteins like alpha-crystallin B chain that, simultaneously, would be working to avoid 

the aggregation of GFAP, protecting the astrocyte from degeneration. Moreover, it is 

fundamental to understand why there is a reduction of GFAPα in old individuals and if 

this reduction is associated with the production of other isoforms or, as it will discuss 

below, breakdown products.  

So far, this work has demonstrated the existence of GFAPδ in the rat SNpc, but it was 

not possible to probe the presence of other isoforms because of the lack of available 

GFAPγ antibodies for rat tissue or because the immunoblot for GFAP+1 did not show 

any band for that antibody used. This last finding could indicate that there was not 

enough protein expression in the samples to be detected by Western blot, that the affinity 

of the antibody did not bind the epitope,or that GFAP+1 was not expressed in the SNpc 

samples. These options, however, would not justify why the bands appear with the 
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panGFAP antibody. Another possibility is that the GFAP+1 antibody (raised against the 

human isoform) was not able to detect the rat sequence, although this seems improbable 

because the antibody recognizes the C-terminal of the protein that in humans and rats 

is conserved.  

 

3.4.5.2 GFAP might be truncated in the ageing SNpc samples  

Countering the information mentioned above, the proteolysis of GFAP was also explored 

in the literature as a mechanism to generate some of the extra bands that were found. 

Seminal work by Dahl and others demonstrated that GFAP from bovine, rodent and 

human brains could be affected by post-mortem proteolysis if they were not rapidly 

frozen, producing breakdown products that were more soluble in an aqueous solution, 

and with lower MW between 46 and 39kDa (Dahl and Bignami, 1975; Dahl 1976). This 

suggests that the SNpc samples used here may not have frozen rapidly enough after 

the dissection, producing the breakdown products that can be observed as extra bands. 

However, because all samples were extracted in the same conditions, it seems unlikely 

that only the oldest samples suffered the process of proteolysis, unless that the 

characteristics of the tissue from the old individuals are implicated in an increase in 

proteolysis. In fact, Smith et al. (1984) visualized that the production of breakdown 

products in rat spinal cord homogenates depended on the age of the tissue. Hence, 

samples from older individuals (18-month-old) showed higher degradation of GFAP 

compared to younger ones (15 and 50 days), indicating that in old tissue either the 

substrate is more susceptible to proteolysis or there is a higher activity of the enzyme.  

In the past, authors noticed an increase in the cleavage of GFAP after an increase of 

calcium in the media (Schlaepfer and Zimmerman, 1981; DeArmond et al., 1983; 

Ciesielski-Treska et al., 1984), corroborating that behind the breakdown of GFAP must 

be a calcium-dependent cysteine protease. Currently, it is well established that calpain 

is the protease implicated in the disruption of GFAP in astrocytes (Li et al.,1995; Li et al., 



Chapter 3. A quantitative proteomics assessment of the aged SNpc in rats 

165 
  

1996). Adding to this, Lee et al. (2000) suggested that reactive astrogliosis might be 

mediated by the proteolysis of GFAP by calpain. Thus, the activation of calpain would 

be cleaving GFAP in Asp94, producing an increase of a band at 48kDa. This might 

expose more GFAP antigens compared to the full-length protein, showing a stronger 

signal by immunolabelling with a panGFAP antibody. If that interpretation is correct, it 

could offer one explanation for why an increase of GFAP was found with ageing in the 

SNpc samples by immunofluorescence, and at the same time a decrease of GFAP 

50kDa (GFAPα) in the oldest group by proteomics and Western blot. The proteolysis of 

GFAP might be generating breakdown products, represented as extra bands that were 

not identified by proteomics but that were visualized by immunoblot.  

Interestingly, the proteolysis of GFAP by calpain with the production of bands of lower 

MW than 50kDa has been observed previously in several diseases. For instance, calpain 

has been seen to produce GFAP breakdown products bands between 35kDa and 48kDa 

associated with a reduction of GFAP 50kDa in spinal cord from patients with 

Amyotrophic Lateral Sclerosis (ALS) compared to matched controls (Fujita et al., 1998). 

Similar to the results in this Thesis, when all GFAP bands were quantified, an increase 

of GFAP appeared in ALS subjects. Moreover, multiple studies related to Traumatic 

Brain Injury (TBI) have revealed an increase of the proteolysis of GFAP due to calpain. 

This is exemplified by the work produced by Zoltewicz et al. (2012) and Papa et al. (2012) 

where post-mortem brains and plasma from TBI individuals showed an increase of 

GFAP breakdown products between 38kDa and 42kDa. Similarly, Zoltewicz and 

colleagues (2013) demonstrated in a TBI rat model an increase of the cleaved GFAP at 

45kDa after 7 days post lesion in brain, CSF and plasma. Work published by Guingab-

Cagmat et al. (2012) identified an increase of GFAP breakdown products with calpain, 

specifically at 38kDa, in a TBI model using rat cortical cultures.  

To know if the extra bands belonged to breakdown products produced by calpain, 

information on calpain expression in the proteomics samples was sought. The data 

showed that different calpain isoforms were detected and identified by ProteinPilot 
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software. Calpain-2 was the isoform chosen for Western blot validations because this 

calpain is the most abundant in the rat brain (Singh et al., 2014), but also because it 

apparently plays an important role in astrocytic differentiation (Santos et al., 2012). 

Furthermore, the activity of calpain-2 seems to increase with ageing in the rat brain, 

breaking neurofilament proteins faster (Benuck et al., 1996). Added to this, it has been 

published that the immunoreactivity of calpain-2 is overexpressed in SNpc DAn of 

parkinsonians compared to controls (Mouatt-Prigent et al., 1996), and that the 

administration of an inhibitor for calpain reduced the death of SNpc DAn in a PD model 

of MPTP in mice (Crocker et al., 2003), thus, corroborating that calpain has an important 

detrimental role in the midbrain. However, they did not demonstrate if calpain belonged 

to neurons or to other cells in the midbrain such as astrocytes. Therefore, it is difficult to 

determine if the inhibitor of calpain was affecting, for example, glial cells by reducing 

their reactive astrogliosis or maintaining their protective function. Neither the proteomics 

data nor Western blot in this Thesis revealed an increase of calpain-2 expression with 

ageing to explain the increase of GFAP breakdown products in the old SNpc.  

Nevertheless, as will be explained in further detail later, the activity of calpain-2 might 

not be associated with its expression, but by the lysis of the structure (Brown and 

Crawford, 1993; and Azuma et al., 1997; Chou et al., 2011).Therefore, an elevation of 

active calpain-2 might exist in the old individuals without seeing an increase of its 

expression by proteomics or immunoblotting, but finding extra bands of lower MW than 

the expected band at 80kDa. There are two main theories in the literature that try to 

explain how calpain changes to its active form. First, the autolytic theory is defended by 

authors such as Brown and Crawford (1993) and Azuma et al. (1997) who argued that 

calpain-2 (form by a catalytic and a regulatory subunit) self-digest itself when calcium 

binds the C-terminal of the protein in vitro. This auto-lysis process removes the first 9 aa 

from the N-terminal (anchor helix) in the catalytic subunit (80kDa), activating the proteins 

and reducing its MW up to 76−78kDa. This fact would make extremely difficult to observe 

changes in the immunoblot between the inactive form (80kDa) and the active form 
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(78kDa), because the band at 80−78kDa can be a representation of both forms or only 

one of them. Both authors demonstrated by immunoblot that, after a while, the active 

form of calpain-2 was degraded, producing fragments of 43kDa, 24kDa and 23kDa. 

During this degradation, sequences from the C-terminal with different sizes are 

eliminated, which might cause the loss of the proteolytic activity due to the fact that this 

region is the calcium binding site. On the other hand, Chou et al. (2011) defended that 

calpain-2 is activated without autolysis, when the anchor helix is released in presence of 

calcium, forming the active catalytic cleft site. The authors justified this theory because, 

apparently, the 9 aa that are removed from the anchor helix in the N-terminal are not 

long enough to be self-digest by the catalytic cleft site. Once calpain-2 was active and 

the catalytic cleft site was form, the autolysis generated 40kDa and 20kDa fragments, 

reducing the expression of the protein at 80kDa in vitro.  

The lack of consensus about the activation of calpain-2, with most of the experiments 

performed in vitro, suggests that it is necessary to be cautious how the results for 

calpain-2 are interpreted both with proteomics and Western blot. The protein sequence 

coverage for calpain-2 showed that the last 9 aa from the N-terminal were not identified, 

therefore, with the proteomics analysis it was not possible to distinguish if there was any 

type of activation of the enzyme through auto-lysis and/or if the software identified the 

inactive or active form. On the other hand, in the hypothetical case that calpain-2 was 

active because of a change in its anchor helix, the proteomics study does not help either 

to understand those type of modifications in the protein. Despite the proteomics results 

being validated by Western blot, not seeing statistical differences in calpain-2 with 

ageing means the question remains whether the immunoblot illustrates whether or not 

any type of activation of the enzyme is occurring. The calpain-2 antibody used in this 

experiment recognizes an epitope between 2−27 aa at the N-terminal of human origin, 

therefore, if the auto-lysis hypothesis of the cleavage of 9 aa is correct, the immunoblot 

should recognize the active and inactive form at 80kDa and 78kDa, which would not be 

possible to distinguish. By contrast, if the autolysis generated a product of 43kDa, that 
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would explain why a faint band with that MW was found in the SNpc samples. However, 

because the band was very faint, it was difficult to gauge if those results were a reliable 

representation of each age group or not. The absence of available antibodies for active 

calpain-2, together with the lack of unanimity along the literature, reflect the urgent need 

to produce new antibodies for the active form, to comprehend the mechanism of 

activation of capain-2 in the brain, and, ultimately, to understand how its proteolysis 

function affects itself and other proteins like GFAP.  

 

3.4.6 The expression of TH does not change in rat SNpc as ageing progresses 

Lastly, and due to the importance of the DAn system in this Thesis, the levels of TH 

found in proteomics were validated by Western blot, finding no differences among ages. 

As mentioned in the General introduction (see Chapter 1), there is a great controversy 

in establishing whether DAn from the SNpc degenerates with ageing and if the pattern 

of degeneration is similar or not to PD (Fearnley and Lees, 1991; Tatton et al., 1991; 

Emborg et al., 1998; Ma et al., 1999; Cabello et al., 2002;  McCormack et al., 2004; 

Rudow et al., 2008; Sanchez et al., 2008; Collier et al., 2011; Buchman et al., 2012; 

Bardou et al., 2014; Di Lorenzo et al., 2016). In terms of soma size, the discrepancies 

are maintained, with some authors describing an increase or hypertrophy of SNpc DAn 

that might be indicating a mechanism to compensate the loss of DAn (Cabello et al., 

2002; Rudow et al., 2008; Sanchez et al., 2008), while others support a reduction of the 

soma size (Ma et al., 1999; Di Lorenzo et al.,2016). 

Nevertheless, it seems that at least in rodents ageing causes the reduction of DAn in the 

SNpc associated with an increase of their soma size. As it will be explained in the next 

chapter (see Chapter 4), the lack of differences in the expression of TH with ageing could 

be generated by compensatory mechanisms after a reduction in the number of DAn. 

Therefore, it is necessary that cellular characterizations of SNpc DAn is conducted in 

order to understand if there is a reduction or not in the number of these cells, and if exist 
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any morphological change (e.g., size of the soma) that can justify the lack of differences 

of the TH expression by proteomics and Western blot.  

 

3.5 Conclusions 

In summary, the results from this study demonstrate that proteins related to ECM and 

GFAP undergo changes in their expression in the SNpc during the ageing process. 

However, it remains unknown if these changes are related, or are a cause or 

consequence of each other. It might be the case that these modifications appear as 

normal adaptation to counteract the effects that physiological ageing has in GFAP-

positive cells (e.g., astrocytes or Schwann cells) or DAn, or that alterations in the ECM 

due to ageing is changing the expression of GFAP. It is possible that ageing is negatively 

affecting astrocytes and their functions, and may fail in the maintenance of DAn, making 

these neurons more vulnerable. Moreover, more investigations are necessary to 

understand specifically if the changes found for GFAP correspond to astrocytes or other 

type of cells; as well as the implications, if any, that alterations in the ECM has in 

astrocytes and vice versa. Very importantly, this Thesis has characterized the 

expression of the isoform GFAPδ in the SNpc for the first time, finding differences of its 

expression across different ages. Thus, it is essential to perform future experiments to 

elucidate the repercussions that an increase of this isoform has in astrocytes and in the 

SNpc. The production of breakdown products was an alternative that could justify the 

results found in Western blot for GFAP, although it was not possible to find an increase 

of activity of one of the enzymes that might be involved in the proteolysis of GFAP. 

Knowing how different isoforms and the proteolysis of GFAP take part in the function of 

astrocytes, or even how the proteolysis can affect diverse isoforms, are questions that 

neuroscientist will have to tackle if they want to fully understand the complete picture of 

astrocytes, our brain and neurodegenerative diseases. Future experiments, for instance, 

can include the excision of the bands from the immunoblot to perform a LC/MS and 

identify their sequences. In addition, this work has highlighted the urgent need of 
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producing well defined and characterized antibodies, especially for GFAPα, the 

canonical isoform. As it was noted before, this Thesis has also demonstrated the power 

that the combination of different techniques has, producing complementary results that, 

otherwise, would be hidden. Finally, these gaps open a multitude of new possibilities in 

this field, starting from the assumption that, perhaps, talking about GFAP is not enough 

to characterize and show the complexity of astrocytes and their function. 
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 CHAPTER 4: QUANTITATIVE AND MORPHOLOGICAL 

CHARACTERIZATION OF THE SNpc DAn IN RATS AND HUMANS DURING 

AGEING 

4.1 Introduction 

To understand the impact that ageing has on the incidence of PD, researchers have tried 

to identify which degenerative changes are common in both processes (see General 

introduction). The most evident modification in PD, the loss of DAn in the ventral tier of 

SNpc (Damier et al., 1999; Ma et al., 1999) has led to an investigation of whether the 

same pattern of neuronal degeneration appears in the ageing population. Although it is 

not well established in humans if the same areas of the SNpc are affected with ageing, 

there is some evidence that age can significantly alter DAn populations in the SNpc 

similar to the changes observed in PD. For example, physiological ageing can produce 

a reduction in the number of DAn and increase their soma size (Fearnley and Lees, 

1991; Ma et al., 1999; Cabello et al., 2002; Rudow et al., 2008; Buchman et al., 2012; Di 

Lorenzo et al., 2016). Additionally, experiments in rodents and primates have also shown 

a decrease in DAn density along with an increase in the size of their cell bodies (Tatton 

et al., 1991; Emborg et al., 1998; McCormack et al., 2004; Sanchez et al., 2008; Collier 

et al., 2011; Bardou et al., 2014). Moreover, modifications in the morphology of 

astrocytes in humans (Jyothi et al., 2015) and microglia in monkeys (Kanaan et al., 2010) 

have been identified, although the neuroinflammation and activation of these glial cells 

in the aged SNpc is rather controversial. Changes in the morphology, however, might 

indicate a higher production of pro-inflammatory cytokines that can be destructive for 

DAn (Koprich et al., 2008). 

Other alterations described during physiological ageing and PD include the 

accumulation of alpha-synuclein in DAn, the increase in the level of oxidative stress and 

mtDNA deletions. In relation to alpha-synuclein, an increase of this protein has been 

seen in the aged SNpc from humans and rhesus monkeys (Chu and Kordower, 2007; 

Xuan et al., 2011). Because alpha-synuclein promotes SNARE complex assembly 
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(which mediates vesicle fusion and neurotransmitter release in the extracellular space) 

(Burre et al., 2010), its dysregulation might affect the release of dopamine, keeping it 

inside the cells. In turn, this might trigger the degeneration of DAn due to the increase of 

oxidative stress during the metabolism and oxidation of dopamine (see General 

introduction). In addition, high amounts of protein oxidation associated with oxidative 

stress (Venkateshappa et al., 2012), together with mtDNA deletions (Bender et al., 2006; 

Kraytsberg et al., 2006) have been observed in the aged SNpc. These affect the 

mitochondrial respiratory chain complex and the generation of ATP in cells. Because 

DAn require a lot of energy to maintain their axons, an imbalance of energy could affect 

their susceptibility to death (Pissadaki and Bolam, 2013). Nevertheless, the role that 

ageing has in the development of the disease, is not yet fully understood. Thus, it is 

fundamental to keep investigating the implications that ageing has on SNpc DAn. 

A basic approach to characterize patterns of neurodegeneration in various conditions is 

to quantify the presence of DAn in the SNpc (Nelson et al., 1996; McRitchie et al., 1997; 

Damier et al., 1999; Chu et al., 2002; McCormack et al., 2004; Collier et al., 2007; 

Kanaan et al., 2007; Nair-Roberts et al., 2008), and analyse possible differences in the 

number of these neurons in physiological conditions versus PD (McRitchie et al., 1995; 

Damier et al., 1999; Ma et al., 1999; Kordower et al., 2013) and the aged brain (Fearnley 

and Lees, 1991; Ma et al., 1999; Cabello et al., 2002; Rudow et al., 2008; Buchman et 

al., 2012; Di Lorenzo et al., 2016) (see General introduction). However, other methods, 

such as the study of the morphology of cells (Ma et al., 1999; Cabello et al., 2002; Rudow 

et al., 2008; Sanchez et al., 2008; Werner et al., 2008; Di Lorenzo et al., 2016) and 

modifications in the expression of proteins in the SNpc (Basso et al., 2004; Kasap et al., 

2017) have been essential to providing new insights into the similarities between ageing 

and PD.  

The analysis of the rat SNpc proteome using a quantitative proteomics assessment 

presented in this Thesis (see Chapter 3) allowed the study of the proteome of this area 

with ageing, identifying changes related to glial cells and the ECM. However, the protein 
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expression of TH, the enzyme implicated in the synthesis of dopamine and, therefore, a 

marker for DAn, was unchanged during ageing in rats in the SNpc. This result, however, 

did not fully probe alterations of SNpc DAn in the aged brain. For instance, it could be 

possible that a reduction in the number of SNpc DAn is compensated for by an increased 

expression of TH in the neurons that have not degenerated. This scenario would produce 

the same amount of TH in the SNpc and might be interpreted as no differences in the 

DAn population with proteomics results alone. Due to this, a fundamental approach was 

adopted to discover whether there were any gross morphological or numerical changes 

in DAn during ageing and if those changes (if any) could be involved in the increased 

vulnerability if these neurons. 

 

4.1.1 Aim and objectives 

The aim of this study was to understand if there were fundamental alterations in DAn 

(e.g., number of cells, soma size and shape) during ageing, that would not be possible 

to detect using proteomics and Western blotting analyses alone.  

To this end, the number (density) and morphology (area of the soma) of DAn in the rat 

SNpc were analyzed at different ages to determine whether changes in these variables 

occur as ageing progressed. This analysis was performed either in the dorsal tier or 

lateral tier of the SNpc (see Figure 2.3 in Chapter 2). Moreover, because the shape of 

the SNpc changes along its rostro-caudal axis (see Discussion), analysis on the nuclei 

was conducted using three rostro-caudal locations (rostral, middle and caudal). In this 

chapter, I will first present two main sets of results for the analysis of the rat SNpc, with 

information on whether there is a change in the density and soma size of DAn from the 

dorsal tier or the lateral tier of the SNpc. For each tier (dorsal and lateral), I will show the 

modifications that exist between the rostral, middle and caudal part, without considering 

an effect of ageing (i.e., whether there are differences within an age group). Afterwards, 

I will describe how these three areas change with ageing (e.g., how the rostral part 
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changes between the juvenile, young, middle age and old group). Lastly, I will pool the 

three rostro-caudal areas together to see if there are modifications of each tier (i.e., the 

dorsal and lateral as a whole) as ageing progresses (e.g., comparing the entire dorsal 

SNpc between the juvenile, young, middle age and old group).  

Moreover, I will also conduct similar quantifications in human DAn in post-mortem tissue 

taken at different ages to determine if there are similar effects of ageing across species. 

However, it should be noted that the data generated with the human tissue was very 

limited due to the lack of access to samples with a substantially different age range.  

On this basis, the objective of this study was: 
 

- Objective 1) To determine if there are changes in the number of DAn in both rat 

and human SNpc at different ages by immunohistochemistry analysis. 

- Objective 2) To determine if there were changes in the morphology of DAn in rats 

by immunohistochemistry analysis. 

 

4.2 Materials and methods 

Details about materials and methods of this experimental chapter can be found in 

Chapter 2, section 2.1. 

 

4.3 Results 

4.3.1 The rat midbrain increases significantly in size with ageing  

Because possible modifications in the SNpc (density and soma size of DAn) can be 

produced by modifications in the whole brain, the size or area of the left midbrain (in 

mm2), where the SNpc is located, was measured. As might be expected, the midbrain 

(n=8-9 per group) from juvenile rats (12.54 ± 1.47) were statistically different from all the 

the adult ages (young, 17.42 ± 1.61; middle age, 17.56 ± 1.28; old, 18.20 ± 1.44; 

p<0.0001) (Figure 4.1). Specifically, the midbrain increased in size up to 39%, 40% and 
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45% when comparing the juvenile age to the young, middle age and old age, 

respectively. When the midbrain from adult individuals were compared, only the young 

(17.42 ± 1.61) and old hemispheres (18.20 ± 1.44) showed significant differences 

(p=0.0444), with an increase of 4% as ageing progressed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. The size of the midbrain increases with ageing. The midbrain region, 

where DAn (TH-positive in image) are located within the SNpc and VTA, showed a 

statistically significant increase in area (mm2) from juvenile to adult (young, middle age 

and old) (39%, 40% and 45%, respectively; p<0.0001), but also an increase of 4% 

between young and old samples (p=0.0444). Error bars represent standard deviation. 

*p<0.05; ****p<0.0001. 
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4.3.2 Analyses of the dorsal SNpc of rats 

4.3.2.1 The density of DAn, but not area of the soma, changes rostro-caudally in 

the dorsal tier of the SNpc in rats when the effect of ageing is not considered 

The density (number of DAn / area of the SNpc in mm2) and the area of the soma (in 

µm2) of DAn may differ along the rostro-caudal axis of the SNpc. Thus, before 

establishing if ageing has an impact in the degeneration of the dorsal tier of the SNpc 

DAn, the density and area of the soma of DAn was quantified in the rostral, middle and 

caudal part of dorsal tier of the SNpc independently in each group age. This allowed for 

a study of, for example, whether these cellular features changed in the rostral, middle 

part and caudal parts of the SNpc in the juvenile age, and whether this was the same 

with the other ageing groups.  

Measurement of the density (number of DAn / area of the SNpc in mm2) of DAn in the 

dorsal tier of the SNpc from the juvenile group revealed that the rostral (662 ± 36) 

compared to middle (928 ± 228) or caudal (507 ± 134) parts showed no statistical 

differences in any of the comparisons (p=0.2888; p=0.9372, respectively). However, 

quantification of the density of DAn in the middle (928 ± 228) versus the caudal (507 ± 

134) region showed significant differences (p<0.0001) between them, with a decrease 

of 45% from the middle to the caudal region (Figure 4.2A). A similar situation appeared 

in the young group, where the density of DAn in rostral (490 ± 172) versus middle (490 

± 157) or caudal (324 ± 116) areas were not statistically significant (p>0.9999; p=0.0556, 

respectively); although the density of DAn from the middle (490 ± 157) to the caudal (324 

± 116) region were significantly different (p=0.0353), decreasing 33% in the most caudal 

part of the dorsal tier of the SNpc (Figure 4.2B). Quantifications of DAn in the middle 

age group indicated that the density in rostral (333 ± 99) compared to the middle (317 ± 

100) or caudal (171 ± 70) parts were not statistically different (p>0.999; p=0.1301, 

respectively). Even when the density from the middle (317 ± 99) was compared to the 

caudal (171 ± 70) region no statistical differences (p=0.0911) appeared (Figure 4.2C). 

Lastly, the density of DAn in the old group from the rostral (403 ± 130) versus the middle 
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(372 ± 151) or caudal (229 ± 90) parts showed no statistically differences (p>0.9999; 

p=0.1040, respectively); although the density from middle (372 ± 151) to caudal (229 ± 

90) regions was significantly different (p=0.0115), decreasing up to 38% in the caudal 

region (Figure 4.2D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, measurements of the area (in µm2) of DAn cell body in the juvenile 

group demonstrated that DAn somas from the rostral (277.86 ± 11.69) versus the middle 

A B 

C D 

Figure 4.2. The density of DAn changes rostro-caudally in all ages, except in the 
middle age group. Rostro-caudal quantifications of the density (number of DAn / area 

of the SNpc in mm2) of DAn in dorsal tier of the SNpc in rats independently in each group 

of age showed a significant reduction between the middle and caudal part in juvenile 

(A), young (B) and old (D) of 45%, 33% and 38%, respectively, except in the middle age 

group (C). Notice the difference scale in the juvenile group. Error bars represent 

standard deviation. *p<0.05; ****p<0.0001.  
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(232.60 ± 39.11) or caudal (262.41 ± 30.87) parts did not show a significant change 

(p=0.9455; p>0.9999, respectively); nor when the middle (232.60 ± 39.11) versus the 

caudal (262.41 ± 30.87) region was compared (p=0.6188) (Figure 4.3A). When the area 

of DAn was analyzed in the young age group, a similar trend appeared. From the rostral 

(195.52 ± 31.93) to the middle (185.78 ± 26.77) or caudal (170.77 ± 24.46) parts, the 

area of DAn did not change significantly (p>0.9999; p=0.8958, respectively); as was the 

case when the area of DAn from middle (185.78 ± 26.77) to caudal (170.77 ± 24.46) 

regions were compared (p=0.9967) (Figure 4.3B). The soma of DAn from the middle 
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Figure 4.3. The area of the soma of DAn does not change rostro-caudally in any 
of the age groups. Rostro-caudal quantifications of the area of the cell body (in µm2) of 

DAn in the dorsal tier of the SNpc in rats independently in each group of age showed no 

significant changes between the rostral, middle and caudal region in the juvenile (A), 
young (B), middle age (C) and old (D). Error bars represent standard deviation.  
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age had a similar size from the rostral (260.24 ± 47.94) to the middle (205.87 ± 41.26) 

or caudal (220.79 ± 49.88) areas, with no statistical differences between them 

(p=0.0500; p=0.4092, respectively); or from the middle (205.87 ± 41.26) to the caudal 

(220.79 ± 49.88) region (220.79 ± 49.88) (p=0.9960) (Figure 4.3C).  

Finally, the rostro-caudal study of the area of DAn cell bodies in old animals revealed 

that the size of neurons in the rostral (227 ± 52.46) compared to medial (223.24 ± 46.66) 

or caudal (213.71 ± 46.43) regions was not significantly different (p>0.9999;  p=0.9954, 

respectively). No differences were found either from the medial to caudal (p=0.9998) 

region in the old SNpc (Figure 4.3D). 

 

4.3.2.2 Ageing in rats decreases the density of DAn in some rostro-caudal regions 

of the dorsal tier of the SNpc, and increases the soma size in the caudal region 

In the previous section, it was demonstrated that the density of DAn changed rostro-

caudally when the middle part of the dorsal tier of the SNpc was compared to the caudal 

part in all ages except the middle age group (Figure 4.2). On the other hand, the area 

of the soma of DAn did not show significant changes rostro-caudally (Figure 4.3). This 

new section will explore the effect that ageing has in the density and area of the soma 

of DAn in the different rostro-caudal regions (i.e., rostral, middle or caudal) from the 

dorsal tier of the SNpc. For instance, the rostral region from the dorsal tier of the SNpc 

will be compared between the four age groups, and the same will be done for the middle 

and caudal part.  

The density (number of DAn / area of the SNpc in mm2) of DAn in the rostral part in 

juvenile (662 ± 36) and middle age (333 ± 99), showed significant differences 

(p=0.0243), with a reduction of 49% in the number of DAn within the dorsal tier of the 

SNpc as age increased (Figure 4.4A). In the case of the middle region, the density of 

DAn in juveniles (928 ± 228) compared to young (490 ± 157), middle age (317 ± 99) and 

old (372 ± 151) rats showed significant differences (p<0.0001), with a 47%, 66%, and  
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60% depletion of DAn from the juvenile to the oldest ages, respectively. In addition, the 

density of DAn in the middle part in young (490 ± 157) versus the middle age (317 ± 99) 

was significantly different (p=0.0350), having a 35% reduction in the density of DAn from 

young to middle age (Figure 4.4B). Lastly, when the density of DAn from the caudal part 

was compared between ages, juvenile (507 ± 134) compared to the young (324 ± 116), 

A B 

C 

Figure 4.4 The density of DAn changes in each rostro-caudal region with ageing. 
Quantifications of the density (number of DAn / area of the SNpc in mm2) of DAn in the 

dorsal tier of the SNpc in rats independently in each rostro-caudal region showed a 

significant reduction in the rostral region (A) only from the juvenile to middle age group 

by 49%. The density of DAn in the middle region (B) decreases from juvenile to adult 

ages by 47% (young), 66% (middle age) and 60% (old); and between young and middle 

ages by 35%. Lastly, the density in the caudal region (C) was reduced by 36% in the case 

of young, 66% for middle age, and 54% in old compared to juvenile; while the middle age 

and old group have a depletion in the density of 47% and 29%, respectively, from the 

young age. Error bars represent standard deviation. *p<0.05; ***p<0.001; ****p<0.0001. 
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middle age (171 ± 70) and old (229 ± 90) groups were statistically different (p<0.0001), 

with the density of DAn being reduced by 36%, 66% and 54%, respectively. In line with 

this, the young (324 ± 116) group versus the middle age (171 ± 70) and old (229 ± 90) 

showed significant differences (p=0.0004; p=0.0357, respectively), indicating a reduction 

of the density of DAn from young individuals by 47% in middle age and 29% in old 

(Figure 4.4C). 

Measurements of the cell size (in µm2) of DAn in the rostral region with ageing in juvenile 

(277.86 ± 11.69) versus young (195.52 ± 31.93), middle age (260.24 ± 47.94) or old (227 

± 52.46) groups showed no statistical differences (p=0.9144; ; p=0.4162; p=0.5398, 

respectively) between them. Similarly, when adult ages were compared, the rostral 

region from young (195.52 ± 31.93) versus middle age (260.24 ± 47.94), young versus 

old (227 ± 52.46), or middle age versus old, revealed no significant changes (p=0.0621, 

p=0.0875, p=0.9870 respectively) in the size of DAn (Figure 4.5A). Furthermore, 

analysis of the area of the soma of DAn in the middle part of the dorsal tier of the SNpc 

showed that the soma in juvenile (232.60 ± 39.11) and young (185.78 ± 26.77) were 

significantly different in size (p=0.0112), with a decrease of 20% of the soma size as 

ageing progressed from juvenile to young (Figure 4.5B). Finally, the size of DAn in the 

caudal part of the dorsal tier of the SNpc in the juvenile (262.41 ± 30.87) age versus 

young (170.77 ± 24.46) and middle age (220.79 ± 49.88) decreased significantly 

(p<0.0001) by 34% and 21%, respectively. The size of DAn in the caudal part of juvenile 

(262.41 ± 30.87) and old (213.71 ± 46.43) also changed significantly (p=0.0002), 

showing a decrease of 18% in the density of DAn in the oldest animals. When the area 

of the cell bodies of DAn in the caudal part where compared within the adult individuals, 

the young (170.77 ± 24.46) and the old (213.71 ± 46.43) ages revealed significant 

changes (p=0.0081), with an increase of 19% as ageing progressed (Figure 4.5C). 
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4.3.2.3 The density of DAn in the whole dorsal tier of the SNpc decreases with 

ageing in rats, while the soma size of DAn increases 

To understand if the entire dorsal tier of the SNpc was losing DAn and if there were 

modifications in the soma of these neurons with ageing, the different rostro-caudal 

regions (i.e., rostral, middle and caudal) were grouped together and the effect of ageing 
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C 

Figure 4.5 The area of the soma of DAn changes in the middle and caudal region 
during ageing. Quantifications of the area of the soma (in µm2) of DAn in the dorsal 

tier of the SNpc in rats independent of age showed no significant differences in the 

rostral region (A). However, ageing had an effect in the middle (B) and caudal part (C). 
Thus, there was a 20% decrease in the size of the soma between juvenile versus young 

ages in the middle part of the dorsal SNpc. The caudal area showed a significant 

decrease from juvenile to young (34%), middle age (21%) and old (18%), but also an 

increase of the size within the adult groups between the young and middle age (19%). 

Error bars represent standard deviation. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.  
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analyzed. When the entire dorsal tier of the SNpc was grouped together (i.e., pooling the 

rostral, middle and caudal regions) to see the effect that ageing had, the density (number 

of DAn / area of the SNpc in mm2) of DAn in the juvenile group (711 ± 281) compared to 

the young (413 ± 169), middle age (264 ± 117), and old (325 ± 148) was statistically 

different (p<0.0001). Thus, there was a decrease of density of DAn in the dorsal tier of 

the SNpc from the juvenile age by 42%, 63% and 54% in the young, middle age and old 

individuals, respectively. Moreover, measurements of the density of DAn in the dorsal 

tier of the SNpc in young (413 ± 169) versus middle age (264 ± 117) showed changes 

that were statistically significant (p=0.0009), with a reduction of the density with 

advanced ageing from young to middle age (Figure 4.6).   

When the area of the soma (in µm2) of DAn from the entire dorsal tier of the SNpc was 

analysed, the juvenile group (223 ± 42.94) compared to young (164 ± 35.89), middle age 

(198.3 ± 51.85), and old (201. ± 50.53) showed significant changes (p<0.0001; 

p=0.0083; p=0.0160, respectively) in relation to ageing. This represents a reduction of 

the cell size by 26%, 11% and 10% from the juvenile group compared to young, middle 

age and old individuals. When comparing adult samples alone, the area of the soma of 

DAn in young (164 ± 35.89) versus middle age rats (198.3 ± 51.85) and old (201. ± 

50.53) was significantly different (p<0.0001), with an increase in the size of 21% and 

23% from young to middle and old animals, respectively. However, from middle age 

(198.3 ± 51.85) to old (201. ± 50.53) there was no statistical differences (p=0.9824) in 

the size of the soma (Figure 4.7).  

 

4.3.3 Analyses of the lateral SNpc of rats  

4.3.3.1 Density of DAn increases from middle to caudal in the lateral tier of the 

SNpc in rats, while the soma size remains the same without considering the effect 

of ageing 

Similar to the histological study of the dorsal tier of the SNpc (above), quantification and 

statistical analyses of DAn within the lateral tier of the SNpc were conducted to 
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understand if the density (number of DAn / area of the SNpc in mm2) and size of the 

soma (in µm2) of DAn changed in the rostro-caudal axis from the medial to the caudal 

part without the effect of ageing, but within each age group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. The density of the whole dorsal tier of the SNpc is reduced with ageing 
in rats. The number of DAn decreased from the juvenile age to the adult ages by 42% 

(young), 63% (middle age) and 54% (old). Within adults, there is only a significant 

decrease of the density from young to middle age by 36%. Error bars represent standard 

deviation. *p<0.05; ***p<0.001; ****p<0.0001. TH-positive staining of DAn in the SNpc 

nuclei of rat transversal sections in each age group (top images). High magnification 

photomicrographs (bottom images) show more detail of the DAn. 
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Quantifications of the density (number of DAn / area of the SNpc in mm2) of DAn in the 

lateral tier of the SNpc in the juvenile group showed that the middle (7 ± 1) versus caudal 

Figure 4.7. The area of the soma of DAn is reduced from juvenile to adult 
individuals, but increases in the adult groups with ageing. Measurements of the 

area of the soma of DAn in the dorsal tier of the SNpc at different ages in rats showed a 

reduction of their soma from juvenile to the young, middle age and old age groups by 

26%, 11% and 23%, respectively. On the other hand, within the adult populations, the 

area of the soma increases from young to middle age and old by 21% and 23%, 

respectively. Error bars represent standard deviation. *p<0.05; **p<0.01; ****p<0.0001. 

TH-positive staining of DAn in the SNpc nuclei of rat transversal sections in each age 

group (top images). High magnification photomicrographs (bottom images) show more 

detail of the DAn. 
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(12 ± 4) regions did not have statistical differences (p=0.9410) (Figure 4.8A). However, 

measurements of the density of DAn in the lateral tier of the SNpc in the young group 

revealed that from the middle (5 ± 1) to the caudal (8 ± 2) area the density varied 

significantly (p=0.0485), increasing by 60% in the most caudal part (Figure 4.8B). In the 

case of the middle age group, the number of DAn within the lateral tier of the SNpc 

changed from middle (4 ± 1) to caudal (6 ± 2), although this change in density was not 

significant (p=0.5010) (Figure 4.8C). Lastly, the density of DAn in the lateral tier of the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.8. The density of DAn in young and old animals increases significantly 
between the middle and caudal regions of the lateral tier of the SNpc. Rostro-caudal 

quantifications of the density (number of DAn / area of the SNpc in mm2) of DAn in the 

lateral tier of the SNpc in rats in each age group independently showed a significant 

increase between the middle and caudal part in young (B) and old (D) by 60% and 75%, 

respectively, but not in the juvenile (A) and middle age group (C). Notice the difference 

scale in the juvenile group. Error bars represent standard deviation. *p<0.05. 
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SNpc in old animals changed significantly (p=0.0253) from middle (4 ± 2) to caudal (7 ± 

3), with an increase of 75% in the caudal region (Figure 4.8D). 

To determine if the size of the cell body (in µm2) of DAn was modified within the different 

regions of the lateral tier of the SNpc, measurements of the area of the soma were 

performed. The results showed no statistically significant differences between the middle 

and caudal part in any of the four age groups (juvenile: middle 256.99 ± 53.17 versus 

caudal 269.57 ± 38.43, p=0.9697; young: middle 194.94 ± 48.68 versus caudal 188.26 

± 44.15, p>0.9991; middle age: middle 238.18 ± 46.46 versus caudal 213.05 ± 42.79, 

p=0.3976; old: middle 227.30 ± 51.52 versus caudal 226.00 ± 52.48, p>0.9999) (Figure 

4.9A, B, C, D). 
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Figure 4.9. There are no statistical differences in the soma size in the lateral tier 
of the SNpc between the middle and caudal regions. Rostro-caudal quantifications 

of the area of the cell body (in µm2) of DAn in SNpc lateral in rats in each age group 

independently showed no significant differences between the middle and caudal regions 

in the juvenile (A), young (B), middle age (C) and old (D). Error bars represent standard 

deviation.  
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4.3.3.2 DAn change in density in the caudal part of the lateral tier of the SNpc in 

rats with ageing, while the soma size increases in both middle and caudal regions  

To identify if the effect of ageing produces any modification in the middle or caudal part 

of the lateral tier of the SNpc, the density and soma size of DAn in each region was 

studied and compared between age groups.  

Measurements of the density (number of DAn / area of the SNpc in mm2) of DAn within 

the lateral tier of the SNpc showed that in the middle region the density of DAn in the 

juvenile (7 ± 1) age versus the other adult groups (young, 5 ± 1; middle age, 4 ± 1; old, 

4 ± 2) was not significantly different (p=0.8340; p=0.3772; p =0.1791, respectively). 

When only adult ages were compared, the density of DAn from the lateral tier of the 

SNpc in the middle region from young ( 5 ± 1) to middle age (4 ± 1) or old (4 ± 2) did not 

show any significant modification (p>0.9999); and a similar scenario was found when 

the middle age was compared to the old group (p>0.9999) (Figure 4.10A). However, 

when the caudal part in the lateral tier of the SNpc was studied along ageing, the density 

of DAn in juvenile (12 ± 4) versus the young (8 ± 2), middle age (6 ± 2) and old (7 ± 3) 

revealed significant changes between them (p=0.0113; p<0.0001; p<0.0001, 

respectively); with a decrease in 35%, 58% and 51% of the number of neurons, 

respectively. In addition, the caudal region between adult ages (young versus middle 

age, young versus old, middle age versus old) did not show significant modifications in 

any of the comparisons (p=0.2434; p=0.9430; p=0.9356, respectively) (Figure 4.10B). 

Analysis of the area (in µm2) of DAn in the middle region of the lateral tier of the SNpc 

demonstrated that the juvenile (256.99 ± 53.17) versus the young (194.94 ± 48.68) age 

changed significantly (p=0.0001), finding a decrease of the area of the soma of DAn by 

24% with ageing from juvenile to young. Alternatively, when the area of the soma was 

compared between the juvenile (256.99 ± 53.17) and the middle age (238.18 ± 46.46) 

or old (227.30 ± 51.52) group, no statistical differences (p=0.5309; p=0.0827, 

respectively) were found. Furthermore, soma size of DAn from the middle region in 

young (194.94 ± 48.68) compared to middle age (238.18 ± 46.46) or old (227.30 ± 51.52) 
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was significantly modified (p=0.0122; p=0.0488, respectively). Thus, there was an 

increase of 22% and 16% in the soma size during ageing from young to middle age and 

old, respectively. However, no significant changes were observed between middle age 

and old age (p=0.8158) (Figure 4.11A). Similarly, the area of DAn from the lateral tier of 

the SNpc in the caudal part, changed from juvenile (269.57 ± 38.43) to young (188.26 ± 

44.15), middle age (213.05 ± 42.79) and old (226.00 ± 52.48) significantly (p<0.0001, 

p<0.0001, p=0.0026, respectively), decreasing by 30%, 21% and 16% as ageing occurs. 

In addition, the size of DAn from the caudal part in young (188.26 ± 44.15) versus the 

old (226.00 ± 52.48) age increased significantly (p=0.0070), with an expansion of 20% 

in their area when they became old; while from young to middle age (213.05 ± 42.79) 

and middle age to old (226.00 ± 52.48) the differences were not statistically significant 

(p=0.0606; p=0.6885, respectively) (Figure 4.11B).  

 

A B 

Figure 4.10. The density of DAn in the lateral tier of the SNpc is reduces in the caudal 
region with ageing. Rostro-caudal quantifications of the density (number of DAn / area of 

the SNpc in mm2) of DAn in the lateral tier of the SNpc in rats in the middle (A) region 

showed no statistical changes. However, when the caudal (B) region was analysed, there 

was a significant decrease by 35%, 58% and 51% in the number of DAn from juvenile to 

young, middle age and old, respectively. Error bars represent standard deviation. *p<0.05; 

****p<0.0001. 
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4.3.3.3 The density of DAn in the lateral tier of the SNpc in rats decreases only 

between juvenile to adults ages, but the soma size of DAn collectively changes 

during ageing  

Similar to the analysis of the dorsal tier of the SNpc (above), the entire lateral tier was 

analyzed, grouping the rostro-caudal regions together, to understand the effect of ageing 

in the density and soma size of DAn. Also, the juvenile group was subsequently excluded 

to identified changes only in adult stages.  

Thus, the density of DAn from the whole lateral tier of the SNpc changed significantly 

from the juvenile (12 ± 4) age to young (7 ± 3), middle age (6 ± 2) and old (6 ± 3) groups 

(p=0.0020; p<0.0001; p<0.0001, respectively), with a decrease in the density of DAn by 

36%, 54%, 53% from the juvenile to the rest of adult stages, respectively. When adult 

A B 

Figure 4.11. The size of the soma of DAn from the lateral tier of the SNpc changes 
in the middle and caudal region. Quantifications of the area of the soma (in µm2) of 

DAn in the lateral tier of the SNpc in rats in the middle region (A) showed a decrease in 

their size by 24% at juvenile ages, but this was recovered afterwards with an increase 

of their area by 22% and 16% in middle and old ages, respectively. In addition, DAn 

soma size from the caudal (B) region in the lateral SNpc decreases from juvenile to 

young by 30%, to middle age by 21% and to old by 16%. Between adults, the soma in 

old aged animals were increased by 20% versus the young ages. Error bars represent 

standard deviation. *p<0.05; **p<0.01; ****p<0.0001. 
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ages were compared in isolation, the density of DAn in the entire lateral tier of the SNpc 

did not change significantly in any of the comparisons (young versus middle age, 

p=0.2935; young versus old, p=0.3673; middle age versus old, p>0.9999) (Figure 4.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, measurements of the soma of DAn of the entire lateral tier of the SNpc were 

compared across age groups. The size of the area of DAn in the lateral tier of the SNpc 

Figure 4.12. The density of the whole lateral tier of the SNpc is reduced with ageing 
in rats. The number of DAn decrease from the juvenile age to the young age by 36%, 

and to the middle age and old by 54% and 53%, respectively. Error bars represent 

standard deviation. **p<0.01; ****p<0.0001. TH-positive staining of DAn in the SNpc 

nuclei of rat transversal sections in each age group (top images). High magnification 

photomicrographs (bottom images) show more detail of the DAn. 
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in the juvenile (252.1 ± 52) group compared to young (196.9 ± 52.42), middle age (225.3 

± 51.68) and old (227.5 ± 52.83) animals was significantly different (p<0.0001; p<0.0001; 

p=0.0018, respectively), with a reduction in soma size by 22%, 11% and 10% during 

ageing from the juvenile age to the other adult ages. The area of DAn in the lateral tier 

of the SNpc from the young age (196.9 ± 52.42) to the middle age (225.3 ± 51.68) and 

old (227.5 ± 52.83) revealed significant modifications (p<0.0001; p=0.0001, 

respectively), expanding with ageing by 14% from young to middle age and by 16% from 

young to old. However, the area of the cell between the middle age and the old group 

were not statistically different (p=0.9792) (Figure 4.13).   

 

4.3.4. A comparison of both tiers of SNpc shows the dorsal tier contains a higher 

density of DAn but with small somas compared to the lateral part 

Comparisons of both density and soma size of DAn in the dorsal and lateral tier of SNpc 

revealed clear differences between these two areas along all ages. 

First, the number of DAn in the dorsal tier (711 ± 281) versus the lateral tier (12 ± 4) 

changed significantly (p<0.0001) in the juvenile group, having a reduction by 98% of the 

density of cells in the lateral part. Similarly, the dorsal tier (413 ± 169) compared to the 

lateral tier (7 ± 3) was significantly different (p<0.0001), also showing a reduction by 98% 

of the density of DAn in the lateral part. In the middle age group, the dorsal tier (264 ± 

117) presented a significantly higher density of DAn in comparison to the lateral tier (6 ± 

2) part (p<0.0001) with a decrease of the density by 97% in the lateral area. Lastly, the 

dorsal tier (325 ± 148) in the old age versus the lateral tier (6 ± 3) was significant 

(p<0.0001) modified, with a 98% reduction in the density of DAn in the lateral part 

(Figure 4.14A).   

Secondly, the soma size of DAn in the juvenile group changed between the dorsal (223 

± 42.94) and the lateral tier (252.1 ± 52) significantly (p=0.0046), with an increase of the 

area of 13% in the lateral tier. In line with this, the young group revealed the same  
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Figure 4.13. The area of the soma of DAn in the lateral tier of the SNpc is reduced 
from juvenile to adult individuals but increases in the adult groups with ageing. 
Measurements of the area of DAn in the lateral tier of the SNpc at different ages in rats 

revealed a reduction from juveniles to young (22%), middle age (11%) and old (11%). 

However, within the adult populations, the area of the soma increases from young to 

middle age and old by 14% and 16%, respectively. Error bars represent standard 

deviation. **p<0.001; ****p<0.0001. TH-positive staining of DAn in the SNpc nuclei of rat 

transversal sections in each age group (top images). High magnification 

photomicrographs (bottom images) show more detail of the DAn. 
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characteristics between the dorsal (164 ± 35.89) and lateral (196.9 ± 52.42) SNpc, 

showing a significant (p=0.0002) increase in the area of lateral DAn of 19 %. In the 

middle age, the soma of DAn in the dorsal tier (198.3 ± 51.85) of the nigra were different 

to the lateral tier (225.3 ± 51.68), being significantly bigger (p=0.0015) by 14% in the 

lateral tier of the SNpc. Finally, DAn from the dorsal (201. ± 50.53) SNpc in old animals 

compared to the lateral (227.5 ± 52.83) revealed significant (p=0.0038) differences in 

the soma size, being 13% bigger in the lateral tier (Figure 4.14B).   
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Figure 4.14. The density of DAn and their soma size are different between the 
dorsal and lateral tiers of the SNpc. (A) The density of DAn in the lateral part is 

significantly reduced compared to the dorsal tier in all age groups (juvenile, 98%; young, 

98%; middle age, 97%; old, 98%). (B) In contrast, the area of the soma significantly 

increases in the lateral tier versus dorsal tier along all ages (juvenile, 13%; young, 19%; 

middle age, 14%; old, 13%). Error bars represent standard deviation. **p<0.01; 

***p<0.001; ****p<0.0001. 
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4.3.5 There is no correlation between the density of DAn in the human SNpc and 

ageing using a limited sample of age range 

In an attempt to determine if the density of DAn in the SNpc changed with ageing in 

humans, the number of DAn was quantified in fifteen brains from subjects aged between 

50 and 109 years old. Afterwards, a linear regression analysis was performed, plotting 

each SNpc DAn density against the age of the individual where the SNpc comes from. 

The analysis showed that there was no significant correlation (r=0.2415, p=0.3859) 

between the density of DAn in the human SNpc and ageing (Figure 4.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. There is not a significant correlation between ageing and the density 
of DAn in the SNpc in humans. Linear regression between the density of DAn in the 

human SNpc versus the age of the correlated individuals revealed no significant changes 

with ageing in the human SNpc.  TH-positive staining of DAn in the SNpc nuclei of human 

transversal sections (left image). High magnification photomicrographs (a-d, right 

images) show more detail of the DAn.  
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4.4 Discussion 

This chapter has attempted to provide information about whether there are histological 

changes in rat and human DAn from the SNpc in response to ageing. Because ageing 

adds a substantial risk factor for the occurrence of PD (Tysnes and Storstein, 2017; 

Poewe et al., 2017), it is important to analyse if during the physiological ageing process 

DAn from the SNpc undergo any type of natural degeneration or modification that could 

explain their vulnerability to the disease as we get older. In a previous chapter (see 

Chapter 3), the proteomics analyses revealed that the expression of TH in the rat SNpc 

did not change significantly between the different age groups. This raised the question 

of whether other fundamental characteristics of DAn within the SNpc was also 

maintained during ageing or, on the other hand, if the normal level of TH expression 

masked alterations in other characteristics. Here, analyses of the number and 

morphology of DAn were performed to assess the basic integrity of the SNpc. It was 

found that the midbrain increases in size during ageing in rats. While the DAn of the 

dorsal tier of the SNpc in rats changed in terms of density rostro-caudally but not in cell 

size within age groups; there was a reduction in the number of neurons in some rostro-

caudal regions together with an increase of the soma size across ageing. Similar 

analysis of the lateral tier of the SNpc in rats revealed an increase in the density of DAn 

from the middle to the caudal area without modifications in the size of the cells. In 

addition, the caudal region of the lateral tier had a reduction of the density of DAn with 

ageing without an alteration of the soma size. Overall, this demonstrated that the dorsal 

tier contained more DAn with small somas compared to the lateral tier when ageing was 

not considered as a factor. In humans, no correlations were established between density 

of DAn and age, due to the limitation in the number of samples across ages (i.e., there 

was no comparable ‘juvenile’, ‘young’ and ‘middle age’ tissues available).  
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4.4.1 Ageing increases the size of the rat midbrain  

The area of the midbrain in the different age groups of rats was measured in order to 

know if the midbrain, and eventually the entire rat brain, experienced any modification 

with ageing. This analysis was done because alterations in the SNpc with ageing could 

be derived from general transformations in the CNS. The results showed that the 

midbrain increased significantly during ageing, especially from the juvenile to the young 

group. These findings corroborated a previous study using MRI and histology 

techniques, where there was an increase in the volume of the whole rat brain between 

the early postnatal period and 6-month-old due in part to a higher myelination during 

development (Mengler et al., 2014). Likewise, Bandeira et al. (2009), using the isotropic 

fractionator method, highlighted an increase in brain mass during the first three postnatal 

months in rat brains likely due to an increase in the number of glial cells and expansion 

of neuronal soma. However, results here only show a significant growth of the midbrain 

between the young (6-month-old) and the old (>21-month-old) animals in adult ages, but 

not between middle age (16-month-old) and old. This would be in line with the data 

presented by Mortera and Herculano-Houzel (2012), who showed, using the isotropic 

fractionator method, an increase in the rat brain mass between 1- to 22-month-old. 

Interestingly, they also determined that after the first 4-month-old of life up to 22-month-

old, there was a 20−30% reduction in the number of neuronal cells, while the number of 

glial cells remained stable. However, because this article used a Spearman correlation 

between ages and brain mass to see if there were statistical differences in the brain 

weight, it was difficult to conclude if any significant changes occurred between middle 

age and the oldest brains. Nevertheless, other investigations also show that between 

middle age and old rats there are no age-related changes in the volume of the brain.  

Work of Hamezah et al. (2017), for example, compared 14- and 27-month-old rat brains 

by MRI and showed that, even finding an increase in the volume of lateral ventricles, 

prefrontal cortex and hippocampus with ageing, other areas such as the striatum, 

cerebellum or the whole brain remained stable. Discrepancies in these results may be a 
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product of the different techniques used (e.g., isotropic fractionator, MRI, histology) to 

estimate the size of the brain along ageing. In the study presented here, for example, 

digital measures using histological sections were used to analyse the area of the 

midbrain specifically, while the articles cited from the literature looked at volume or mass 

of the whole brain. What is notable about these results is that ageing in the rat has the 

opposite effect on brain volume of the human brain, which shows a reduction of its size 

(Scahill et al., 2003). These contrasting effects might be explained by the different 

proportion of cells found in the brains of rats and humans, and the more specialised 

regions of the human brain (that the rat does not have) that might suffer degeneration. 

Hence, rodents need to increase the size of their brains if there is an expansion in cell 

numbers, while humans (and primates in general) can increase the number of cells 

without their brains expanding (Herculano-Houzel, 2007; Herculano-Houzel et al., 2007; 

Azevedo et al., 2009; Herculano-Houzel, 2009). It is possible that physiological ageing 

produces an increase in the number of certain cells like oligodendrocytes in the brain of 

rodents but not in humans, therefore increasing the size of the rat brain (Lasiene et al., 

2009). Adding to this, it is plausible that because human brains contain relatively more 

cells in a smaller space, any degeneration may affect more cells in humans than in 

rodents, leading to a more evident shrinkage of the brain. Another possibility not related 

with the cell number is that ageing rat brains contain more ECM (making them bigger), 

as the proteomics study of this Thesis has provided evidence for (see Chapter 3). 

 

4.4.2 When conducting within age group comparisons, the dorsal tier of the SNpc 

shows heterogeneity in the density of DAn rostro-caudally, but the soma size is 

unchanged 

The dorsal tier of the SNpc was analysed, quantifying the density of DAn within this 

region and measuring the size of their soma along the rostro-caudal axis within each 

age independently. The difference in the density of DAn in the SNpc along the rostro-

caudal axis has been previously mentioned by other authors (Panneton et al., 2010; Gao 
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et al., 2011; Tapia-Gonzalez et al., 2011; Fu et al., 2012), although only Gao et al. (2011) 

in rats and Tapia-Gonzalez et al. (2011) in mice described clearly how the number of 

DAn had a significant increase in the middle part compared to the caudal region (similar 

to the results here). Different densities of DAn might be associated with different degrees 

of vulnerability within the SNpc, independent of the effect of ageing. Although I have not 

found any research that proves this in vivo, it might happen that regions with a greater 

density of DAn could be more resistant or susceptible to degeneration than other areas 

with less density. For example, different densities of neurons can change their 

morphological properties, affecting the distribution of their dendrites and with that their 

synaptic connectivity with other cells in that region. That could change the 

electrophysiological properties of the network, as Ivenshitz and Segal (2010) 

demonstrated in a hippocampal culture experiment where the spontaneous network 

activity was assessed. In their work, they revealed that sparse cultures had fewer 

synapses, and that the amplitude and duration of the signal was higher compared to the 

denser cultures. This can result in longer and larger calcium bursts that can cause 

neurotoxicity within cells. Interestingly, to my knowledge, it is still unexplored if this 

rostro-caudal diversity in DAn density is linked to any functional distinction and the 

possible implications of this heterogeneity in degeneration. With that said, Damier et al. 

(1999) found a major loss of DAn in the caudal part of SNpc in human PD, followed by 

the middle and rostral regions. This might indicate specific characteristics associated 

with each area that either prevent or accelerate the degeneration of DAn. Moreover, 

when the density of DAn across the rostro-caudal axis was compared within the different 

age groups, the density of DAn was reduced from the middle to caudal in all age animals 

except in the middle age. This might suggest that the middle age group has less DAn in 

the middle region of the dorsal tier of the SNpc than it should have. Physiological ageing 

is a multifactorial complex process that can affect individuals differently (Tosato et al., 

2007). Therefore, one explanation for these results is that some of the animals from the 

middle age group experienced the ageing process in the SNpc at earlier stages 
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compared to the other ages. Another option is that these animals had less DAn per se 

from young ages, and because the comparisons cannot be done in the same animals at 

different ages, it is impossible to draw either conclusion. The possibility that animals 

started life with differences in neuronal number is supported by a study performed by 

Herculano-Houzel et al. (2015) in mice. In their work, they demonstrated that different 

individuals can have the same brain mass, but a different number of neurons and 

density. In fact, this appeared to be associated with a change in their soma size (i.e., 

more density generates a reduction of the soma size and vice versa).  

In terms of the size of the DAn soma, the data reported here showed a similar area of 

the cell bodies within the same age group in the rostral, middle and caudal part. This 

was in contrast to previous findings in mice where the area of the soma of DAn appeared 

bigger in the caudal part (Fu et al., 2012). This discrepancy could be attributed to the 

different species of rodents used in each study.  

 

4.4.3 Ageing affects mainly the density and soma size of DAn in the caudal region 

of the dorsal tier of the SNpc 

When the effect of ageing was assessed in the dorsal tier of the SNpc, the middle and 

caudal areas were the regions with a higher depletion of DAn density between juvenile 

and adult animals. A possible and simple explanation for these results may be the fact 

that the juvenile brains are smaller than adults (see Results). Therefore, DAn were more 

packed and denser within the SNpc in early postnatal stages compared to young, middle 

age and old groups. Because the same thickness (40 µm) was applied in the coronal 

sections of both juvenile and adult brains, a section from a juvenile individual will contain 

more DAn in a smaller SNpc area, showing a higher density. Another possibility to justify 

the drop in density of DAn from juvenile to adults can be the programmed cell death by 

apoptosis associated with neurodevelopment. This is thought to occur so that a balance 

is maintained between the number of neurons, their functions, and the minimum size of 
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the CNS (Dekkers et al., 2013; Pfisterer and Khodosevich, 2017). In fact, the cell death 

of immature DAn in the SNpc appears in two different stages of early life; between 

postnatal day 0 and 6 (P0−6), and at postnatal day 14 (P14) (Oo and Burke, 1997), which 

coincides with the age of the juvenile group in this study. In adult rats, the caudal region 

showed more DAn degeneration when comparing the young versus middle age and old 

age groups. This matches closely to the area of the SNpc that suffers major degeneration 

in PD (Damier et al., 1999). Contrary to these findings, however, Gao et al. (2011) 

described in rats a significant depletion in the number of DAn with ageing in the rostral 

part of the SNpc (instead of the caudal). In their experiment, they used ten rats per age 

group (including 5-month-old and 24-month-old), and they collected 6 µm sections every 

five slides for immunohistochemistry analysis. This discrepancy between studies may 

be due to differences in the thickness of the sections used (40 µm versus 6 µm) and the 

number of slices collected (every six versus every five) that obviously can change the 

distribution of number of neurons rostro-caudally. Moreover, the fact that this study 

analysed the density rather than the total number of DAn makes a comparison more 

difficult. Taken together, this suggests that we must be cautious about making too many 

conclusions about which rostro-caudal region degenerates more in the dorsal tier of the 

SNpc during physiological ageing, reinforcing the idea that more studies are necessary 

to clarify those discrepancies. A possible study to clarify this point could be a full 

characterization through digital reconstruction of the SNpc, taking for example sections 

of 10 µm thickness, and analysing every single slide with the use of stereology to avoid 

the quantification of the same neuron. Clearly, this study would be time consuming, but 

as computational approaches improve, manual quantifications are giving way to more 

accurate automatic analysis that can help us to fully understand the anatomical and 

physiological features of the brain. A good example of this becoming a reality is the 

reconstruction of the neocortex of rats performed by Markram et al. (2015) under the 

Blue Brain Project, where they not only estimated the number of neurons and its 
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composition but revealed the connectivity and electrophysiological activity of the whole 

region.  

Though the study here indicates that DAn from the caudal part of the dorsal tier of the 

SNpc showed a significant decrease in their soma size between the juvenile age and in 

adulthood, authors like Tepper and colleagues (1994) or Park et al. (2000) have 

indicated that the size of the cell bodies in these regions do not change from postnatal 

to adults in rats. The observed lack of change in the soma size in these studies might be 

attributed to the age at which they used as adult, which corresponds to P75 or over P75 

(without specifying the exact age). The first adult age (young) in this Thesis was 8-month-

old (P240), therefore, it is possible that the observed differences here illustrate effects 

of more advanced ageing. In fact, as Sengupta (2013) indicated, P75 in rats would 

correspond to 5 years of age in humans, while P240 would be around 18 years old. 

Nevertheless, the same article showed that rats are considered young adults around 

P70 during the peak of sexual maturity. However, they claimed that this sexual maturity 

indicates the beginning of adolescence, but not adulthood, a period where like in humans 

the increase of social activity can regulate changes in the brain (Spear, 2000). Moreover, 

Tepper et al. (1994) choose sections at the level of the oculomotor nerve (which 

corresponds to the middle part in this study) and only showed a slight significant change 

in the soma size from juvenile to young. In terms of the significant increase in the soma 

size of DAn from young to middle age or old, Sanchez et al. (2008) also revealed that 

DAn expanded their cell bodies with ageing. However it is important to note that they 

measured the area of the soma of DAn within the rostral part, which in this Thesis 

seemed not to change significantly between adult individuals.  
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4.4.4 The density of DAn in the whole dorsal tier of the SNpc is reduced during 

ageing, which may be generating the increase of the soma size of DAn  

As in the previous section, when the dorsal tier of the SNpc was analyzed as a whole, 

the density of DAn was reduced during ageing from juvenile to old, while the soma size 

decreased from juvenile to adults, but increased again between the young and old age. 

As it was mentioned before, these differences are produced by alterations of the caudal 

part, which correspond to the SNpc after the oculomotor nerve. In my opinion, this shows 

how relevant it is to study the entire SNpc before drawing conclusions, and the 

implications that this heterogeneity can have, for example, in models of PD. According 

to the data presented here, a PD model will be more severe if it is applied in the caudal 

part of rat SNpc, depending on the age of the rat, because there is an added effect of 

the ageing process that produces neurodegeneration without any toxin being used. This 

could, in essence, aggravate the effect of any lesion in the caudal part of the SNpc. On 

the other hand, if the toxin is applied in the middle region, where the differences are not 

as evident, the age of the individuals will not matter because in this area the 

degeneration would be produced only by the toxin. Overall, this means that when studies 

are compared it is necessary to really understand the age of the animals and the region 

of the SNpc that has been chosen to not introduce confounding variables to the 

experiment. It is also essential to understand why DAn increase their soma size during 

physiological ageing and the impact this has in the vulnerability of these neurons. It 

seems logical to consider that a reduction in the number or density of neurons will give 

more space to these neurons to expand, as the opposite happens when there is a high 

density (Herculano-Houzel et al., 2015). However, to my knowledge, the mechanisms 

that regulate this process have not been explored in ageing and is lacking in the 

literature. Nevertheless, investigations with drugs of abuse (nicotine and cocaine) have 

found that DAn in the VTA increase their soma size when the level of dopamine is 

increased in the extracellular space (Collo et al., 2012; Collo et al., 2013). It might 

happen that an increase in the size of the cell affects the structural composition of DAn 
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in the SNpc. If a reduction of the number of neurons is compensated for by a high 

expression of TH by each neuron, an increase in the production of dopamine in the 

extracellular space can appear, generating an increase of the cell soma. Though it is 

speculative, any increase in dopamine in the extracellular space could increase oxidative 

stress in the region and leads to neurotoxicity among DAn (see Chapter 1; Adams and 

Odunze, 1991; Cohen et al., 1997; Zhang et al., 2019).  

 

4.4.5 The lateral tier of the SNpc has a higher density of DAn in the caudal part, 

but the soma size is the same rostro-caudally 

The same analysis was done in the lateral tier of the SNpc, which could be considered 

separately from the rest of SNpc because it has a higher expression ratio of calbindin/TH 

(Fu et al., 2012). Unlike the dorsal region, the lateral part contains a greater density of 

DAn in the caudal part. Although Khudoerkov et al. (2014) did not described the regions 

rostro-caudally in their article (they referenced the sections according to distance from 

bregma), it appears they too demonstrated that the higher density of DAn in the lateral 

tier appeared more caudally than in the case of the dorsal tier. Why DAn in the lateral 

part, as in the middle region in the case of dorsal tier of the SNpc, are denser caudally 

is something that, to my knowledge, has not been studied. Moreover, Khudoerkov and 

colleagues (2014) also showed that the dorsal tier of the SNpc contained a greater 

number of DAn than the lateral part, as it has been described in this chapter. In support 

of this, Damier et al. (1999) also found a major density of DAn in the dorsal part of the 

SNpc compared to the lateral tier.  

In terms of cell morphology, the soma size does not change from rostral to caudal in the 

lateral region. This is important to note because it demonstrates that without the effect 

of ageing, the soma size of DAn remains the same, no matter if the density of DAn 

changes or not, along the rostro-caudal axis. Nevertheless, when the soma size from 

DAn in the lateral tier was compared to the dorsal tier, the lateral DAn had bigger cell 
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bodies, which could be attributed to the fact that in this area the density of DAn is lower. 

Therefore, within the same SNpc region (dorsal or lateral), even though the density of 

DAn can change rostro-caudally, DAn have a similar soma size. But if the regions (dorsal 

versus lateral) are compared, the differences in the density of DAn seem to be 

associated inversely to the size of the neurons.  

 

4.4.6 During ageing, only the density of DAn in the caudal region of the SNpc is 

affected, as is seen by their changing the size of their soma 

As it happens in the dorsal tier of the SNpc, the caudal region in the lateral tier was more 

affected by the ageing process. In this area there was a reduction from juveniles to adult 

stages that could be explained by the same reasons that was provided for the dorsal 

part (i.e., small brains and programmed cell death). Comparisons between adult animals 

in this region are difficult to find in the literature, probably because studies have focused 

on the dorsal tier of the SNpc. In addition, as it occurs in the dorsal tier, changes in the 

density seems to be linked to a modification of the cell body, increasing while less 

neurons appear in the lateral SNpc. The reasons why the remaining DAn expand is 

unknown. Interestingly, however, in the lateral tier, the DAn from the middle part also 

increased their size during the ageing process in adults, without having a significant 

change in the density of DAn. Thus, there is an increase in the soma size without having 

a decrease in the number of cells. One of the possibilities to explain this result is that in 

the middle region of the lateral tier the density of DAn is so low that it is difficult to 

visualize a depletion of the number of cells. Moreover, it is possible that the increase of 

cell size is not directly related to the reduction of the number of neurons, therefore, all 

DAn increase size with ageing no matter the tier where they are located. Lastly, 

alternatively, the increase of the size of DAn in this region could be compensating the 

reduction of neurons in the dorsal tier.  
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The analysis of the lateral tier of the SNpc as a whole diluted the differences found in 

the caudal part related to the density of DAn, although the differences between ages in 

the soma size remained. This, again, highlights the necessity of more studies to 

elucidate if the pattern of degeneration in the caudal part is maintained or not, why and 

how DAn change the size of their somas, and what are the implications of this in ageing. 

As in the dorsal tier, a more in-depth characterization and reconstruction of this region 

using new computational tools allowing for automated analysis, using all slides from the 

entire SNpc, and including a high number of rats with a  range of age (more than 24-

month-old), would help us to understand if the differences in the caudal part are a real 

effect of the ageing process or not.  

 

4.4.7 The SNpc in rats is a heterogeneous structure in the midbrain that changes 

with ageing  

This chapter has attempted to understand if the lack of change in the expression of TH 

in the SNpc during ageing is reflected in the density or soma size of DAn in this region 

of the brain. In most of the regions where there are changes in the density of DAn, it was 

found that there was an increase of the area of the DAn cell bodies. This could indicate 

a compensatory mechanism to express a higher quantity of TH to produce more 

dopamine in those neurons that remain. Other studies analyzing divisions of the SNpc 

in dorsal and lateral tiers or along the rostro-caudal axis (Damier et al., 1999; Gao et al., 

2011; Fu et al., 2012) have showed differences both in density and soma size between 

the different areas of the SNpc without considering the effect of ageing. However, these 

authors only mentioned the differences in the morphology of DAn, but without explaining 

possible causes for the increase of their size. Therefore, the interpretation that an 

increase of the production of TH is pushing neurons to expand their size is only 

speculative and must be interpreted with caution because of the lack of literature to 

support it. Moreover, it is true that other markers, apart from TH, are necessary to really 

delimit the different areas in the SNpc and conclude if DAn in each region are part of 
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different subgroups with a specific morphology and, perhaps, diverse functions and 

grades of degeneration. Saying this, another simple possibility is that the diverse 

distribution and morphology of the SNpc is arbitrary, due to the neuroanatomical 

organization of the brain, and does not have any implication or effect in the function, 

characteristics or vulnerability of DAn. 

On the other hand, the modification of the SNpc during physiological ageing is something 

that remains, surprisingly, unclear. While some authors suggest that the ventral tier of 

the SNpc has a reduction of DAn with ageing (Ma et al., 1999; Cabello et al., 2002; 

Rudow et al., 2008; Buchman et al. ,2012); others, including Fearnley and Lees (1991), 

suggest that the dorsal tier is the part that is most affected. However, it is fair to say that 

because DAn in the ventral tier in rats appeared very disperse and in a very low number, 

it was difficult to quantify them consistently in the different samples, so these analyses 

were not considered. In terms of size, it has been already indicated that the literature 

does not agree on this point either (see Chapter 1). Di Lorenzo and colleagues (2016), 

for example, speculated that the soma size of DAn should be reduced with ageing due 

to a reduction of the SNpc. That would disagree with the increase of cell body found in 

this study. Similar to the findings of this Thesis, other authors have described a 

hypertrophy of the soma in DAn (Cabello et al., 2002; Rudow et al., 2008; Sanchez et 

al., 2008). It could be possible that the increase of the size of the brain with ageing 

described at the beginning of this section would be producing the increase in the soma 

size, however, the lack of a significant change in the cell bodies with ageing in all the 

rostro-caudal regions suggests this is less likely. The different techniques used and the 

way of counting cells (e.g., observationally, manually, computationally or stereologically) 

in each of the different studies, along with the difficulty in maintaining consistency in the 

samples and the statistical methods applied, contribute to the variability of the data, 

getting heterogeneous results and making very difficult to draw final conclusions (Brichta 

and Greengard, 2014; Giguere et al., 2018). 
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4.4.8 The reduce number of human samples made it impossible to draw 

conclusions about how ageing affects the SNpc 

Because changes in the rat SNpc were found with ageing, it was logical to think that 

these changes would appear in humans as well. However, the corroboration of this 

hypothesis faced the problem of a reduced number of samples in humans, with only one 

sample below 60 years old (the time where PD onset usually starts) together with a high 

diversity in the density of DAn. These differences in the density could be caused by 

tissue processing, which often was damaged because of the difficult maintenance of the 

frozen sample while cutting. This is important because it could give false results if it was 

considered, for example, that a section of a certain age had fewer neurons, but only 

because tissue was missing. Due to these factors, a significant correlation between 

ageing and the density of DAn in the SNpc was not possible to determine and, therefore, 

it was not possible to compare these results with previous publications. Moreover, it was 

also difficult to identify and separate the VTA from the SNpc in the human samples 

because of the lack of good markers to delimit each area, which clearly can affect the 

final outcome.  

In the future, more investigations are necessary in the human SNpc to comprehend the 

ageing process, increasing the number and quality of samples and characterising the 

different subgroups of DAn with better markers. Because DAn in the SNpc in humans 

contain NM, these neurons can be detected by MRI (Sulzer et al., 2018). As Adler et al. 

(2018) demonstrated characterizing the human hippocampus in ageing, high resolution 

ex vivo MRI scans can be used to generate a well-defined 3D reconstruction of an area 

of the brain. Together with the MRI analysis of the post-mortem tissue, they histologically 

processed in slides some of the samples to be imaged by MRI afterwards, generating a 

more accurate 3D reconstruction. A similar approach could be applied to characterize 

NM-positive DAn from the whole SNpc in humans and compare them between a high 

number of individuals at different ages. This type of study, however, should be combined 

with other methods to characterize possible differences between subgroups of DAn, 
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establishing the real regions (if any) of each area. To do that, a cell-type-specific 

proteomics method like LCM (Steinbach et al., 2018; Wilson and Nairn, 2018) would be 

a good alternative to isolate specifically human DAn and study the proteome of these 

neurons, understanding if different subgroups can be found and, after that, validate those 

results by immunohistochemistry procedures.  

 

4.5 Conclusions 

In summary, the data reported here appear to support the assumption that a decrease 

in the density of DAn is associated with an increase of the soma size with ageing, 

probably to maintain the same amount of TH, which would corroborate the proteomics 

findings (see Chapter 3).  
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CHAPTER 5: THE ROLE OF ASTROCYTES IN THE VULNERABILITY OF 

DAn: A CELL CULTURE STUDY 

5.1 Introduction 

As discussed in Chapter 3, the alteration of ECM proteins and GFAP might be related to 

a dysregulation of astrocytes due to the direct effect of the ageing process in these cells 

or as a response to reduce the damage that ageing causes to DAn. It was speculated 

that the proteolysis of GFAP might be involved in the dysregulation of these astrocytes 

with ageing. On the other hand, a reduction of the density of SNpc DAn, as well as an 

increase of their soma size as ageing progresses, were found in the rat SNpc. Thus, a 

dysfunction of astrocytes and alteration of the ECM might be implicated in the reduced 

density and bigger soma size of DAn or vice versa.   

As it will detailed later in this chapter, although there are studies that have tried to 

understand what implications altered astrocytic characteristics and functions have on the 

vulnerability of DAn, it is not well understood how crucial fully functioning astrocytes are 

to the ongoing viability of DAn. The chapter presented here arose from the need to gain 

a better understanding of the supportive function that astrocytes have in the viability of 

DAn, not only in physiological conditions but also when DAn are challenged by a toxic 

event (i.e., exposure to 6-OHDA). 

 

5.1.1 Astrocytes in health and disease: implications for the SNpc in ageing and PD  

5.1.1.1 Functions of astrocytes in the healthy brain  

Astrocytes have indispensable roles maintaining the correct function of the CNS. For 

instance, astrocytes regulate and integrate the BBB (Janzer and Raff, 1987). They also 

modulate myelination by cell-cell contact and the secretion of glia factors (Sorensen et 

al., 2008), and produce some of the components of the ECM such as versican, aggrecan 

or neurocan (Asher et al., 1995; Asher et al., 2000; Beggah et al., 2005; Carulli et al., 

2007; Cahoy et al., 2008; Afshari et al., 2010; Meng et al., 2012). In addition, astrocytes 

reduce and neutralize ROS from the environment by using antioxidants (McBean, 2017), 
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remove molecules that can be toxic for neurons such as alpha-synuclein by 

phagocytosis (Lee et al., 2010), and release trophic factors like GDNF (Sandhu et al., 

2009). Moreover, glial cells control the extracellular concentration of ions like K+ 

produced by neurons (Halnes et al., 2013), neurotransmitters like glutamate (Tanaka et 

al., 1997), and water homeostasis in the synaptic gap by using the water channel protein 

aquaporin-4 (Haj-Yasein et al., 2011). Furthermore, glial cells provide metabolic support 

and energy to neurons (Voutsinos-Porche et al., 2003), produce calcium waves between 

astrocytes (Navarrete et al., 2013), and modulate and support synaptic activity and 

plasticity of neurons with the release of glutamate, ATP or D-serine in the tripartite 

synapse (Henneberger et al., 2010; Chen et al., 2013b; De Pitta and Brunel, 2016). 

 

5.1.1.2 Loss of astrocytic functions during disease  

Pathological conditions can change the characteristics of astrocytes, which might result 

in the loss of some of their supportive functions (Vasile et al., 2017). This is evident in 

the case of transgenic arctic β-amyloid (arcAβ) mice, a model of AD characterized by a 

strong angiopathy associated with Aβ plaques (Merlini et al., 2011). In this AD model, 

there was a retraction of the astrocytic endfeet that destabilized the neurovascular 

interface and caused leakage of the BBB and the impairment of the cerebral metabolism. 

Similarly, Gu et al. (2010) revealed that transgenic expression of alpha-synuclein in 

astrocytes in a mouse model of PD produced aggregation of alpha-synuclein in 

astrocytes, affecting the BBB, and producing degeneration of SNpc DAn. Likewise, 

transgenic expression of alpha-synuclein in astrocytes in culture revealed that the 

overexpression of this protein produced a breakdown of the Golgi apparatus, along with 

an increase of apoptosis mediated by stress of the endoplasmic reticulum, and a 

concomitant reduction of GDNF release (Liu et al., 2018). Another example of what 

happens when glia become dysfunctional can be seen in the work presented by Peng et 

al. (2019) where a lentivirus was used to knockdown the protein DJ1 in astrocytes. The 

knockdown of DJ1 (which provides an antioxidant function) increased neuronal 
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degeneration in an ischemia/reperfusion model in vivo and in vitro. They speculated that 

this result was likely due to the reduction of the expression of glutathione, which 

neutralizes ROS. Finally, Piacentini et al. (2017) have recently published that astrocytes 

can accumulate tau protein from AD patients in vitro. The misfolding and accumulation 

of tau is a characteristic of neurons in AD and thought to facilitate their degeneration. In 

this work, they observed that tau can rapidly accumulate in astrocytes, producing a 

disruption of intracellular calcium and, therefore, affecting the release of gliotransmitters 

such as ATP.  

It is important to note that the loss of functions in astrocytes might be particularly relevant 

in a neurodegenerative diseases like PD, where DAn can be characterised, for example, 

by a high amount of ROS, oxidative stress and neurotoxicity due to the metabolism and 

oxidation of dopamine (Cohen et al., 1997) (see Chapter 1). In essence, the alteration 

of astrocytic functions, such as the scavenger of ROS, might aggravate the vulnerability 

of these neurons in ageing and PD. 

 

5.1.1.3 Reactive astrogliosis during disease  

Pathological conditions such as neurodegenerative diseases or brain injury might 

activate the state of the astrocyte, producing reactive astrogliosis that can be beneficial 

or detrimental for the brain area (e.g., by releasing anti-inflammatory or pro-inflammatory 

cytokines, respectively; Sofroniew, 2009). As Sofroniew (2009) stated, this reactive 

astrogliosis would be characterized by an astrocytic response similar to a CNS insult, 

which would generate changes in the protein expression of the astrocyte (e.g., increase 

of the expression of GFAP and/or vimentin), and cause cellular hypertrophy and altered 

function. Consequently, astrogliosis can affect other cells around them, including 

neurons and microglia. If the CNS insult is severe, it will show a proliferation of astrocytes 

together with the formation of a glial scar that can serve to protect the tissue and 

preserve its function. This consequence of the glial scar was demonstrated by Faulkner 

et al. (2004) using a SCI model, where the ablation of reactive astrogliosis by the antiviral 
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agent ganciclovir produced a disruption of BBB repair, the infiltration of leukocytes, and 

demyelination and cell death. This was in opposition to a group of animals where the 

tissue and BBB were repaired, and inflammation was reduced and cell death was not 

produced.  

Reactive astrogliosis can be triggered by multiple factors, causing in turn the release of 

molecules that mediate the response of reactive astrocytes. For example, activated 

microglia have been showed to induce reactive astrogliosis in vitro by releasing the 

cytokines tumour necrosis factor (TNF) and interleukin 1α (IL-1α) (Liddelow et al., 2017). 

These reactive astrocytes called A1 showed a reduced maintenance of synapses and 

phagocytic function, causing a reduction and weakening of synapses between retinal 

ganglion cells and an accumulation of myelin debris. Liddelow and colleagues (2017) 

also demonstrated that these A1 reactive astrocytes were toxic for cortical neurons, 

motoneurons, DAn and oligodendrocytes. Moreover, it was found that there was an 

increase of these reactive astrocytes in post-mortem tissue from brains with 

neurodegenerative disease (e.g., AD, PD), which might be related to the progression of 

the diseases. On the other hand, Nahirnyj et al. (2013) showed that molecules related 

to oxidative stress (like ROS; which was generated by adding paraquat or H2O2 in the 

culture) can induce reactive astrogliosis in primary retinal astrocytes. In turn, astrocytes 

will release pro-inflammatory cytokines that can be toxic for cells.  

Nevertheless, the literature surrounding the potential for a reactive astrogliosis in the 

SNpc during ageing and PD (as was mentioned in Chapter 1) is more ambiguous. Some 

authors report a lack of astrogliosis in human PD brains (Mirza et al., 2000; Tong et al., 

2015), while others observed a mild astrogliosis (Song et al., 2009). Similarly, 

astrogliosis during ageing of the SNpc remains controversial. Recent research, for 

example, has shown that a reactive astrogliosis is not apparent in humans (Jyothi et al., 

2015) and a reduction of astrocyte reactivity may occur in monkeys (Kanaan et al., 2010), 

while others found an increase of reactive astroglia in humans and mice (Venkateshappa 

et al., 2012; Gao et al., 2013). These differences between studies are probably 



Chapter 5. The role of astrocytes in the vulnerability of DAn: a cell culture study  

216 
  

generated because the different ways of characterizing astrogliosis (either measuring 

the increase of GFAP immunostaining or quantifying the number of astrocytes) as well 

as possible ageing differences between species.  

 

5.1.1.4 Senescence of astrocytes during the ageing process  

Astrocyte can undergo cellular senescence with the ageing process, which might have 

implications for the course of neurodegenerative diseases (Cohen and Torres, 2019). 

Senescent astrocytes are associated with an arrest of the cell cycle, increased beta-

galactosidase activity, expression of cell cycle inhibitor p21, secretion of pro-

inflammatory cytokines and ROS, and dysfunction of the mitochondria. A good 

illustration of the potential to combat neurodegeneration by addressing astrocyte activity 

is seen in HIV-1 patients where cognitive impairments associated with the disease can 

be successfully treated with antiretroviral therapy that causes a senescence of 

astrocytes (Cohen et al., 2017). Interestingly, however, senescent astrocytes seem to 

share a lot of the characteristics seen in reactive astroglia. Recent research by Clarke 

et al. (2018) compared astrocytes from hippocampus, cortex and striatum at different 

ages (ten weeks versus two years). They found that aged astrocytes presented a 

reactive transcriptomic phenotype similar to A1 reactive astrocytes, which could enhance 

neurodegeneration during ageing similar to that seen in PD. 

In the SNpc itself, recent studies looking at post-mortem SNpc from PD patients showed 

that they contained astrocytes positive for cell cycle inhibitor p16, protease MMP-3, pro-

inflammatory cytokines IL-6, IL-1α and IL-8, and a reduce expression of lamin B1, all of 

which are characteristics of senescent astrocytes (Chinta et al., 2018). Moreover, the 

same study found that cultured human astrocytes exposed to paraquat, a herbicide 

strongly linked to the development of PD, stop proliferating and showed a senescence 

phenotype, with an increase of senescence-associated beta-galactosidase activity, p16 

and cytokine IL-6. The conditioned media produced by these senescent astrocytes 
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caused the death of DAn and suppressed the proliferation and migration of neural 

progenitor cells.  

 

5.1.2 The supportive role of astrocytes in the maintenance and viability of 

dopaminergic neurons in culture  

5.1.2.1 In vitro dopaminergic cultures  

Recently, organotypic cultures have gained in popularity in order to mimic in vivo 

circumstances in a petri dish and maintain the synaptic connections and 

microenvironment between cells (Daviaud et al., 2014). Thus, organotypic cultures at 

postnatal stage P0−P3 can contain in the same slice DAn from the SNpc connected to 

other areas of the brain (e.g., striatum and globus pallidus) (Cavaliere et al., 2010; Ullrich 

et al., 2011). However, these organotypic cultures are difficult to generate and keep 

viable, particularly at adult stages where there is a higher amount of cell death as the 

age of the animals increases (Humpel, 2015). 

To understand the characteristics and functions of DAn in isolated conditions, different 

cell culture methods can be used to challenge these neurons against stress conditions 

and study neuroprotective effects of multiple molecules (di Porzio et al., 1980; Gaven et 

al., 2014; Weinert et al., 2015; Lautenschlager et al., 2018; Marton and Ioannidis, 2019; 

Taylor-Whiteley et al., 2019). However, although cell culture is a very useful and easy 

method to gain new insights into DAn viability and function that is relevant for in vivo 

conditions, the drawback of this approach is that cell to cell and synaptic connections 

are disrupted, altering the microenvironment of the tissue. Nevertheless, these cell 

culture studies allow an easy replication of experiments, using a reduced number of 

animals compared to in vivo or organotypic studies (Humpel, 2015).  

Among the many cell culture approaches that can be performed, immortalized cell lines 

(e.g., human-derived neuroblastoma SH-SY5Y) can be a good option for the better 

understanding of DAn without any other type of cell (e.g., glial cells) in the culture (Taylor-

Whiteley et al., 2019). SH-SY5Y cells can be differentiated into a DAn-like phenotype, 
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expressing TH and dopamine transporter (DAT), when retinoic acid and BDNF is added 

to the media. Moreover, stem cells (SCs), including mesenchymal (MSCs), embryonic 

(ESCs) or induce pluripotent stem cells (iPSCs), can be used for the study of DAn when 

they are differentiated into a DAn-like phenotype (Marton and Ioannidis, 2019). Although 

iPSCs, in particular, can be expensive and adds certain ethical issues, one of the 

advantages is that experiments can be conducted using the same genetic background 

as the patient. In general, the main disadvantage of these two cell culture options is that 

cells must be differentiated into DAn, which is arduous, expensive and time consuming 

(Yang et al., 2019). 

Primary cell cultures from postnatal or embryonic brains are alternatives to investigate 

the properties of DAn and their relationship with other cells (e.g., astrocytes) within the 

CNS. In the case of postnatal cultures, primary cells can be obtained from the 

mesencephalic region around P0−P2, including post-mitotic DAn (Lautenschlager et al., 

2018). Although postnatal neurons are more difficult to produce and keep than 

embryonic cultures, it makes the distinction between VTA and SNpc possible, which is 

useful to understand the degenerative differences associated with these two 

dopaminergic groups. In embryonic stages, primary cells can be dissected easily from 

the VM region between E12.5−E14.5 in rodents to generate post-mitotic DAn (see 

below) (di Porzio et al., 1980; Gaven et al., 2014; Weinert et al., 2015). At this phase of 

development, DAn have not developed axons yet, which enhances their survival 

because there is no stress from axotomy. However, it is not possible to distinguish 

between DAn from the SNpc and VTA in embryonic tissues. Though the VM region from 

rat brains are easier to dissect and more DAn can be obtained compared to mice, the 

use of mice allows for the integration of transgenic models into the culture which can be 

useful to mimic some characteristics of PD.  

Embryonic primary cell cultures, however, can easily generate differentiated DAn, and 

other glial cells such as astrocytes or microglia (Weinert et al., 2015). On the one hand, 

this characteristic creates a great opportunity to study the relationship between 
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astrocytes and DAn, for example, investigating what happens to DAn in physiological 

and stress conditions when there is less support by astrocytes, or their functions are 

affected. An example of this is the work presented by Datta et al. (2018), where it was 

demonstrated that a high density of VM astrocytes from postnatal rats (P0−P3), co-

cultured in transwells with primary VM cells, protected more DAn against the toxic effect 

of 75µM of 6-OHDA compared with a low density of astrocytes or the control group 

without co-cultured astrocytes. On the other hand, the inclusion of other non-neuronal 

cells (e.g., astrocytes) within the embryonic primary culture can cause difficulties if the 

aim of the work is to comprehend the relation between neurons and their functions 

without introducing the influence of glial cells, or if other mechanisms like the effect of 

aged astrocytes in DAn is a subject to be investigated. In such a situation, it would be 

necessary to reduce or eliminate the embryonic astrocytes first, to generate a DAn-

enriched culture to, for example, add afterwards adult astrocytes from different ages.  

 

5.1.2.2 Generating neuron-enriched cell cultures  

Neuroscientists have attempted multiple methods to generate embryonic primary cell 

cultures with a large number of neurons and synapses, reducing or eliminating 

astrocytes either to study the consequences of this reduction in neurons or to generate 

neuron-enriched (i.e., purified) cultures. These methods include reducing the plating 

density of the culture (Lucius and Mentlein, 1995; Yang et al., 2010), creating co-cultures 

using the sandwich technique or coating the coverslips with astrocyte conditioned 

medium (Lucius and Mentlein, 1995; Wang and Cynader, 1999; Kaneko and Sankai, 

2014), and using serum-free media (Wang and Cynader, 1999; Kaneko and Sankai, 

2014; Zuchero, 2014; Hui et al., 2016). In addition, different antimitotic drugs, such as 5-

Fluoro-2’-deoxyuridine (FdU) or arabinosylcytosine C (AraC), can be added to the 

culture with the intention of directly attacking the process of division of non-neuronal 

cells (Gonzalez-Burguera et al., 2016; Hui et al., 2016; Schwieger et al., 2016), also in 

primary VM cultures (Gaven et al., 2014; Lautenschlager et al., 2018). In the case of 
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AraC, it is a structural analog and competitive inhibitor of 2’-deoxycytidine, a component 

of deoxyribonucleic acid, interfering with the synthesis of DNA during the S phase 

(Wallace and Johnson, 1989); FdU, on the other hand, inhibits thymidylate synthase, an 

essential enzyme to produce 2’-deoxythymidine-5’monophosphate for DNA biosynthesis 

(Uchikubo et al., 2002). One final possibility to control neuron and astrocyte numbers in 

cultures is through the use of flow cytometry (i.e., fluorescence-activated cell sorting, 

FACS) where DAn can be isolated by injecting a fluorescent dye in the embryonic rat 

striatum that is retrogradely transported to the SNpc DAn (Kerr et al., 1994), or using 

transgenic mice where the TH gene is tag with a GFP reporter, genetically tagging 

midbrain DAn (Donaldson et al., 2005).  

However, some of these modifications make it very difficult to maintain the healthy 

cultures (Kaneko and Sankai, 2014). For example, plating cells at low density showed a 

reduction in the viability of rat embryonic neurons from different regions such as the 

SNpc, striatum or hippocampus after 4 DIV (Brewer, 1995). Additionally, it has been 

published that serum deprivation affects the viability of DAn, with less than 1.0% 

surviving after 7 DIV, probably because of the suppression of astrocyte proliferation 

(Takeshima et al., 1994). Moreover, antimitotic drugs are often applied together with a 

serum-free medium (Hui et al., 2016) which can also be harmful for certain neurons like 

DAn. This effect was first observed in vivo in patients with leukemia treated with AraC, 

who had developed ataxia because of the degeneration of cerebellar Purkinje neurons 

(Winkelman and Hines, 1983). Later, it was demonstrated that AraC at 200 µM during 4 

DIV was able to kill 50% of post-mitotic dorsal root ganglion (DRG) neurons or 

postmitotic ciliary parasympathetic ganglion neurons (Wallace and Johnson, 1989); 

while 50 µM AraC during 4 DIV reduced the number of sympathetic neurons from the 

cervical ganglia by half (Martin et al., 1990) by a mechanism that might involve the 

blockage of the response to trophic factors. Embryonic cortical neurons, cerebellar 

granule cells, and postnatal hippocampal neurons have also been described to be 

affected by AraC (Geller et al., 2001; Ahlemeyer et al., 2003; Leeds et al., 2005). In the 
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case of cortical neurons, 3 µM of AraC for 24 hours affected 50% of these post-mitotic 

cells by increasing the production of ROS, which caused the break of DNA strands and 

provoked their death by apoptosis (Geller et al., 2001). Hippocampal neurons die due to 

excitatory damage caused by the release of glutamate by reactive astrocytes when 1 

µM of AraC was added to the culture for 2 DIV (Ahlemeyer et al., 2003); while cerebellar 

granule cells from newborn rats die by apoptosis when 300 µM of AraC was added to 

the media (Leeds et al., 2005). Lastly, although FdU seems to be less toxic for post-

mitotic cells than AraC (Wallace and Johnson, 1989; Martin et el., 1990), it has also been 

reported that FdU can produce damage in embryonic cortical neurons when they are 

treated with 5 µM of this drug for 14 DIV, but not with 1 or 2 µM for 2 hours (Hui et al., 

2016). In fact, during my Thesis I tested the effect of FdU as an option to reduce the 

number of astrocytes, following the article published by Hui et al. (2016). However, 

although it was found to decrease the density of astrocytes, the number of DAn was very 

low (data not shown), which might be related to the lack of basic compounds in the FdU 

media and that might be essential for the viability of DAn.  

Altogether, these studies show that it is necessary to seek new strategies to generate 

neuron-enriched cultures with a reduction of glial cells. In the process, the maintenance 

of healthy DAn must be ensured while controlling the astrocyte numbers and replicating 

the special characteristics of primary DAn in different states (e.g., elevate degeneration 

associated with an increase of oxidative stress production). 

 

5.1.3 Paclitaxel as a drug to generate neuron-enriched cultures 

5.1.3.1 Mechanism of action of paclitaxel 

Paclitaxel or Taxol is an anti-mitotic agent that comes from the bark of the Pacific Yew 

tree Taxus brevifolia and it is used to treat diverse types of cancers such as lung, ovarian 

or breast (Weaver, 2014). Therefore, its characteristics as anti-mitotic drug make it a 

good candidate to reduce the number of astrocytes and produce neuron-enriched 

cultures, as will be explained here. In 1980, Schiff and Horwitz demonstrated, by using 

electron microscope and immunofluorescence, that 10 µM of paclitaxel for 22 hours 
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inhibited the replication of human HeLa cells and mouse fibroblasts, due to the arrest of 

G2 and M phases of the cell cycle by stabilizing their microtubules. These microtubules 

are tubular structures within the cytoplasm of the cell that can be self-assembled by 

αβtubulin subunits (Nogales and Wang, 2006). Microtubules are very dynamic thanks to 

their polymerization or depolymerization, adding or removing, respectively, tubulin 

subunits. To polymerize, it is necessary that they are stabilised by adding a cap of GTP-

bound tubulin dimers; while to depolymerize, GTP must be hydrolysed to GDP, making 

GDP-tubulin subunits very instable, losing the cap and disassembling the microtubule. 

When paclitaxel is added, it binds βtubulin, which blocks the depolymerization and 

stabilizes the microtubule, but also enhances its polymerization without the participation 

of GTP (Nogales et al., 1995). Microtubules have a significant role in the replication of 

the genome during mitosis ensuring the correct distribution of the chromosomes 

(Mitchison and Kirschner, 1984). Therefore, the final consequence of adding the 

microtubule-targeting agent paclitaxel is the alteration (e.g., slippage or arrest) of the 

mitosis (Magidson et al., 2016). After mitotic slippage or arrest, in most of the cases, the 

cell will die (Bolgioni et al., 2018). 

 

5.1.3.2 Paclitaxel in primary VM cultures from the mesencephalic region  

Embryonic mammalian brains contain multipotent neural precursor cells (NPCs) that can 

divide and differentiate into specific neurons, astrocytes or oligodendrocytes. However, 

during embryonic development, only the differentiation of neurons is promoted, 

generating neuronal precursors and young neurons, and inhibiting the creation of 

astrocytes until the end of gestation (Namihira et al., 2009). As Namihira et al. (2009) 

explained, to switch from neurogenesis to gliogenesis, differentiated neuronal 

precursors and young neurons express Notch ligands, which activates the Notch signal 

in surrounded NPCs. The activation of Notch signal will generate the expression of the 

transcription of the nuclear factor I that can bind the promoter of astrocytic genes to 
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demethylate them. This demethylation will unblock astrocytic-specific genes, allowing 

the production of astrocytes.  

More specifically, in the case of VM cells from the mesencephalic region, cutting-edge 

single cell RNAseq analyses have recently corroborated the timeframe for the formation 

of DAn in the mouse brain, finding that DAn progenitors appear at E10.5 and post-mitotic 

DAn around E12.5, expressing the enzyme TH involved in dopamine synthesis (La 

Manno et al., 2016; Kee et al., 2017). From that embryonic stage, these post-mitotic DAn 

will not divide anymore, generating the perfect circumstances to, theoretically, use 

paclitaxel in VM mesencephalic cultures without killing these neurons. In addition, the 

peak of proliferation of radial glial cells, the cell precursors for astrocytes that express 

the protein GFAP, is produced between E13.5 and P3, as Tien et al. (2012) and Seki et 

al. (2014) observed in the mouse spinal cord and hippocampus, respectively. 

Consequently, astrocytes will divide occupying the brain during the two first postnatal 

weeks, limiting their ability to proliferate in adult stages to certain areas of the brain such 

as the cortex or corpus callosum (Ge and Jia, 2016; Zhang et al., 2016). Thus, these 

glial cells would keep their division capacity during the production of VM mesencephalic 

cultures, allowing the anti-mitotic drug paclitaxel to eliminate them.  

In sum, the advantages of combining embryonic VM mesencephalic cultures and 

paclitaxel to generate DAn-enriched cultures seemed evident: paclitaxel will affect the 

mitosis and viability of glial cells because they can still divide, but not DAn because they 

are post-mitotic and they have lost their division ability.  

 

5.1.3.3 The effect of paclitaxel in astrocytes 

Paclitaxel has been extensively studied in vitro for its potential to treat glioblastomas. 

For example, Silbergeld and colleagues (1995) demonstrated that 0−250 nM of 

paclitaxel reduced the survival of human and rat glioblastoma cells, but increased the 

mobility of these cells, suggesting that paclitaxel might enhance the progression or 
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metastasis of the glioblastoma in vivo. Similarly, Tseng et al. (1999) showed that 

paclitaxel had better effects against three different human glioblastoma cell lines when 

the drug was applied for more than 24 hours in a concentration between 4 to 18 nM. 

Moreover, additional research established that the treatment of paclitaxel at different 

concentrations (0.05 µg/ml, 0.1 µg/ml, 0.2 µg/ml, 0.5 µg/ml) for 24 hours inhibited human 

glioma cells migration into pig brain slices in a dose-dependent manner, although in this 

case the concentration applied did not have a direct cytotoxic effect and the viability of 

the glioma cells was not affected (Schichor et al., 2005). Lastly, paclitaxel has been 

conjugated with nanoparticles in order to improve the crossing of the BBB, finding that 

different concentrations of paclitaxel (0.5 µg/ml, 1 µg/ml) reduced the volume of the 

tumour in the U87 MG glioma cell line when was applied for 7 DIV, with an improvements 

of the effect when paclitaxel was loaded in angio-pep-conjugated nanoparticles (Xin et 

al., 2012).  

Moreover, the effect that paclitaxel has in cultured astrocytes has been also studied in 

relation to its ability to change the morphology of astrocytes. Goetschy and colleagues 

(1986), for instance, analysed the effect of 500 nM of paclitaxel in cortical astrocytes for 

4 hours, finding that astrocytes changed their morphology to a flattened and non-

symmetric shape, with large and thick prolongations. Likewise, Abe and Saito (1999) 

reported that adding 500 nM of paclitaxel for 1 hour had the potential to rearrange the 

cytoskeleton of cortical astrocytes, changing the stellated shape to a flat structure. 

Interestingly, to my understanding, it has not been published yet any article of paclitaxel 

in relation to its possible function to reduce the number of astrocytes in embryonic 

primary cultures or to generate neuronal-enriched cultures. Therefore, the work 

presented here is the first of its type, offering a new tool to control the astrocytic 

expansion or the division of glial cells in culture.  
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5.1.3.4 The effect of paclitaxel in neurons 

Though the mechanism of action of paclitaxel should not affect cells that are non-dividing 

(such as post-mitotic neurons), cancer patients treated with this drug develop sensory 

axonal neuropathy, whose symptoms are dose and time dependent and include sensory 

loss, and decreased of proprioception or burning pain (Tofthagen et al., 2013). This 

effect is thought to be produced because paclitaxel does not cross the BBB and affects 

mainly the Peripheral Nervous System when a neurotoxic dose is reached in distal 

sensory axons (Park et al., 2011). To understand the mechanisms that underlie this 

paclitaxel-induced degeneration in the Peripheral Nervous System, researchers have 

studied the effects of paclitaxel in vitro (see Table 5.1), as well as in vivo by injecting 

paclitaxel into rodents (Cavaletti et al., 1995; Cliffer et al., 1998; Authier et al., 2000; 

Peters et al., 2007; Xiao et al., 2011; Li et al., 2015b; Li et al., 2018b). The results, 

summarized in Table 5.1, have revealed that its toxicity mainly affects the sensory DRG 

neurons, and it is time and dose dependant. Moreover, apart from the sensory neurons, 

the effect of paclitaxel in vitro has been also investigated in other neurons from the CNS 

(Table 5.1). In vivo, Mercado-Gomez et al. (2004) observed paclitaxel-induced 

neurotoxicity in the hippocampus when paclitaxel was injected there at different 

concentrations (25 nM, 50 nM, 100 nM) after 3 hours, 12 hours, 24 hours or 7 days. 

Thus, they reported that the extension of the lesion was dose-dependent, finding that 25 

nM of paclitaxel did not show damage, while the highest doses produced pyknotic 

neurons with fragmented nuclei and cell death after 12 and 24 hours, respectively. 

Moreover, a notable reduction of microtubule-associated proteins after 100 nM injection 

was found, while an increase of reactive astrogliosis with hypertrophic astrocytes was 

evident after 7 days. Investigations of how paclitaxel affects neurons are relevant 

because, although this drug cannot pass the BBB and affect the CNS, its use is being 

explored with new therapies that combine paclitaxel with nanoparticles to increase its 

permeability through the BBB and reach the brain. Therefore, it is essential to 

understand the effect that this microtubule-targeting agent has in non-dividing post-
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mitotic neurons. Neurons have long stable microtubules, giving structural support and 

providing axonal transport (Gornstein et al., 2014). However, as Gornstein and 

colleagues (2014) suggested, the dynamic characteristics of microtubules in neurons 

are still necessary, so an overstabilization of these microtubules by paclitaxel might be 

detrimental for them. On the other hand, microtubule stabilization could also be good for 

neurons depending on the extent of stabilization associated with lower doses of 

paclitaxel and the situation of the neurons (e.g., promoting axon outgrowth for 

regeneration of CNS after injury) (Table 5.2). 

The literature review (summarized in Table 5.1 and 5.2) demonstrates that the effect 

that paclitaxel has in DAn in vitro (or in vivo) has not been established. Therefore, it will 

be essential to elucidate first the best concentration and exposure time of paclitaxel to 

avoid neurotoxicity, especially considering the sensitivity of these DAn and the variability 

that seems to exist in terms of cytotoxicity between different type of neurons previously 

studied (e.g., hippocampal neurons versus DRG neurons).  

The results of this study will show if it is possible to generate DAn-enriched cultures with 

the drug paclitaxel, without reaching cytotoxicity and/or affecting the viability of DAn. This 

would be very beneficial in the future to perform isolated investigations of this neuronal 

group that degenerates in PD. Furthermore, this research will allow the understanding 

of the effect of a reduction of astrocytes in DAn cultures in both physiological conditions 

and against the toxin 6-OHDA. Finally, the reduction of astrocytes in DAn might generate 

an opportunity to co-culture embryonic DAn with astrocytes at different ages, which may 

help us to comprehend the role that astrocytes play in the SNpc and whether ageing per 

se affects their functions.  
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Table 5.1. Summary of the detrimental effect of paclitaxel at different concentrations and exposure times in culture, using various 
cell types from multiple species and age. DRG: Dorsal Root Ganglion. h: hours. min: minutes. sec: seconds Primary cell cultures from 

the CNS in bold. 

Reference Cell culture  Concentration  Exposure time Results  

Letourneau and 
Ressler, 1984 

DRG neurons from 
chick embryos 

3.5 µM, 70 µM, 
23 µM, 70 nM, 7 

nM 
4 h 

Concentrations above 7 nM of paclitaxel produced shorter 
and broader neurites that did not elongate, with 

neurofilaments aggregated in bundles 

Figueroa-Masot 
et al., 2001 

Cortical neurons from 
new-born rats 

10, 50, 100, 250 
nM 

 
24-48 h 

Paclitaxel reduced cell viability producing nuclear 
fragmentation and condensation, a characteristic of 

apoptosis 

Wang et al., 2002 DRG neurons from 
new-born mice 

0.7 µM, 2.3 µM, 
12 µM 4, 8, 10 days Paclitaxel caused a dose-dependent loss of axonal length 

Nicolini et al., 
2003 

SH-SY5Y human 
neuroblastoma cells 

10 µM, 1 µM, 100 
nM, 10 nM 24 h−48 h 1 µM of paclitaxel induced cell death with DNA 

fragmentation by apoptosis 

Mironov et al., 
2005 

Pre-Botzinger complex 
neurons from P3-7 

mice 
10 µM 10 min 

Paclitaxel stabilized and disrupted microtubules, which 
opened the pores of the mitochondria by the interaction 

with proteins of the membrane, depolarizing mitochondria 
and releasing calcium 

Boehmerle et al., 
2006 

SH-SY5Y human 
neuroblastoma cells 937 nM 40 sec 

Paclitaxel induced an increase of intracellular calcium with 
an oscillatory pattern, while binding to a calcium binding 

protein NCS-1 that opens the calcium inositol receptor in the 
endoplasmic reticulum 

Scuteri et al., 
2006 

DRG neurons from E15 
Sprague-Dawley rats 

10 µM, 1 µM, 100 
nM, 10 nM 24−48 h 

Paclitaxel reduced neurite length in a dose-dependent 
manner, and it was cytotoxic inducing cell death by necrosis 

and not by apoptosis 

Boehmerle et al., 
2007 

SH-SY5Y human 
neuroblastoma cells; 
DRG neurons from Pi-

P3 rats 

937 nM 6 h 

Paclitaxel activated µ-calpain, which degraded the calcium 
binding protein NCS-1, attenuating the calcium inositol 

receptor. Contrary to acute exposure to the drug, there was 
no spontaneous activity or calcium oscillations 

Jang et al., 2008 Cortical cells from 
E14-E15 mice 30-1000 nM 24 h 

Paclitaxel provoked chromatin condensation, nuclear 
fragmentation characteristics of apoptosis, and neuronal 

cell death by enhancing the activity of NADPH oxidase and 
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production of ROS. Astrocytes were not affected (data not 
showed in the article) 

Yang et al., 2009 DRG neurons from E15 
rats 30 nM 24 h 

Paclitaxel produced a decrease in the length of axons and 
degeneration when it was applied directly to the axon, but 
did not affect them if the drug was applied in the cell body 

Shemesh and 
Spira, 2010 

Neurons B1, B2 and 
bifurcated neurons 

from Aplysia 
californica 

100 or 10 nM 27−72 h 
Paclitaxel caused polar reconfiguration of microtubules and 

impaired organelle transport 

Ustinova et al., 
2013 

DRG neurons from 6-
to-8-week-old mice 

0.1, 0.5, 1, 10, 
100 nM 48 h 

Low concentrations of paclitaxel (0.1−0.5 nM) did not 
affected neuronal growth in culture. Paclitaxel at 

concentrations of more than 1 nM reduced the number of 
neurons, and the number and length of axons. The 

disruption of neurites growth is mediated by toll-like 
receptor 4 (TLR4) 

Tanimukai et al., 
2013 SK-N-SH cells 1, 10, 50, 100 µM 24 h Paclitaxel induced endoplasmic reticulum stress and 

apoptosis in a dose-dependent manner 

Gornstein and 
Schwarz, 2017 

DRG neurons from 8-
to 10-week-old mice; 
hippocampal neurons 

from E18 rats 

10−50 nM 72 h 

Paclitaxel produced dose-dependent increase of axon 
swellings and retraction bulbs with local microtubule 

hyperstabilization on the distal axon. However, these doses 
did not produce cell death. Hippocampal neurons are more 
sensitive than DRG neurons against 50 nM paclitaxel, with 

fragmented microtubules 

Huehnchen et al., 
2017 

NSCs from 2- to 4-
week-old mice; 

hippocampal neurons 
from E14 mice 

3 pm–3 µM 2 h 

Paclitaxel generates cytotoxicity in NSCs. Hippocampal 
neurons were less susceptible to paclitaxel. 30 nM reduced 

the viability of NSCs in 50% compared to vehicle controls 
due to apoptosis by activation of caspases 

Imai et al., 2017 Schwann cells from 
P1-P4 rats 0.01, 0.1 µM 24−48 h 

Paclitaxel reduced the viability of Schwann cells in a time 
and dose-dependent manner, finding a high toxicity with 
0.01 µM after 48 h. Paclitaxel also induced morphological 

changes, with a decrease of myelin protein MBP 

Li et al., 2017 Hippocampal neurons 
from neonatal rats 

10 nM, 100 nM, 1 
µM, 10 µM 24 h 1−10 µM paclitaxel generated apoptosis of 50% of the 

neurons, with shrunk bodies and short axons 
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Table 5.2. Summary of the positive effect of paclitaxel at different concentrations and exposure times, using various cell types 
from multiple species and age. h: hours.  

 

 

 

 

 

 

Reference Cell or tissue culture  Concentration Exposure time Results 
Erturk et al., 

2007 
Cerebellar Granule neurons 

from P9 rats 10 nM 18 h Paclitaxel enhanced axonal growth when they were 
platted on an inhibitory surface 

Witte et al., 2008 Hippocampal neurons from 
E18 rats 3-10 nM 48 h 

Paclitaxel increased neurite outgrowth and the 
formation of multiple axons and dendrites due to the 

stabilization of microtubules that formed neuronal 
networks 

Sengottuvel et 
al., 2011 

Retinal ganglion cells; 
PC12 cells; 

primary astrocytes from P4 
mice 

 
Crushed optic nerve from 

adult rats  

0.5, 1, 3, 10, 
50, 100 nM  

 
1, 10, 100, 
1000 µM 

24-72 h  

Paclitaxel enhanced neurite extension below 10 nM 
and compromised the inhibition of the neurite length 

by neurocan or myelin in retinal ganglion cells and 
PC12 cells. In the crushed optic nerve, paclitaxel 

increased axonal sprouting and delayed macrophages 
and gliosis activation. Paclitaxel delayed the expansion 

of astrocytes in scratch injury 
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5.1.4 Aim and objectives 

The aim of this chapter was to perform an in vitro study using embryonic VM 

mesencephalic cultures, exposed to different concentration of the anti-mitotic drug 

paclitaxel (1.75, 3.5, 7, 14 nM) for 7 DIV, to elucidate whether it is possible to generate 

DAn-enriched cultures and the consequence that a reduction of astrocytes has in the 

viability of DAn in physiological conditions and in presence of the toxin 6-OHDA.  

The objectives of this chapter were: 

− Objective 1) To determine what is the best concentration of paclitaxel to reduce 

or eliminate the number of astrocytes without affecting the viability of neurons or 

DAn or produce neurotoxicity in embryonic VM mesencephalic cultures. 

− Objective 2) To study the response of DAn to the toxin 6-OHDA when cultures of 

these cells have been treated previously with paclitaxel and there is a reduction 

of the number of astrocytes.  

− Objective 3) To analyze the viability of DAn once the population of astrocytes 

has been reestablished with astrocytes of different ages, including when 6-

OHDA is added to the culture.3 

 

5.2 Materials and methods 

Details about materials and methods of this experimental chapter can be found in 

Chapter 2, section 2.2.  

 

5.3 Results 

5.3.1 DMSO does not affect the viability of astrocytes or DAn in vitro 

Because DMSO was used as a vehicle for paclitaxel, it was necessary to assess its 

toxicity alone on astrocytes and DAn from VM cultures. The concentration of DMSO (i.e., 

0.014%) present in the highest concentration of paclitaxel used (i.e., 14nM) was set as 

 
3 Notice that this objective was not achieved as explained in the Conclusions section.  



Chapter 5. The role of astrocytes in the vulnerability of DAn: a cell culture study  

231 
  

a vehicle control for experiments. This was added to the culture media to compare its 

effect with the culture media solution (NBM) alone (Figure 5.1). Both cells exposed to 

DMSO and NBM were treated at the same time as part of the same culture run. After 7 

DIV, the number of DAn treated either with NBM (45.5 ± 28; normalized 100 ± 61.03) or 

DMSO (52.5 ± 24.5; normalized 114.8 ± 58.68) did not show any statistically significant 

difference (p=0.1865) (Figure 5.1A, C). Likewise, when the O.D. of astrocytes treated 

with NBM (546.35 ± 145.75; normalized 100 ± 26.94) or DMSO (569.91 ± 129.26; 

normalized 104.8 ±23.89) were compared, no significant differences (p=0.3898) were 

found (Figure 5.1B, C). 

These results demonstrated that DMSO was a good vehicle control for paclitaxel, as it 

did not affect the number of DAn or the O.D. of GFAP. 

 

5.3.2 Paclitaxel has a different effect in embryonic VM cultures depending on the 

type of cell studied: neurons, DAn or astrocytes  

To determine the optimal concentration of paclitaxel to reduce the density of astrocytes 

(GFAP-positive) without affecting the viability of neurons (TuJ1-positive) and particularly 

DAn (TH-positive), different concentrations (1.75, 3.5, 7, 14 nM) of the anti-mitotic drug 

were added to the media during the first 7 DIV.  

Initial observations of cells growing in culture at 4 DIV (i.e., approximately halfway 

through the experiment) using Phase contrast microscopy suggested that the total 

number of cells appeared reduced in a dose-dependent (Figure 5.2). 
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Figure 5.1. DMSO does not affect the viability of astrocytes or DAn from rat E14 
VM cultures. (A) Quantifications of the number of DAn in ventromedial cultures treated 

with NBM or DMSO showed no statistically significant differences between treatments. 

(B) The optical density (O.D.) of astrocytes treated with DMSO showed no statistically 

significant differences compared to astrocytes treated with NBM. (C) 
Immunofluorescence images at low magnification (top panel) and high magnification 

(bottom panel), including images of DAn (TH-positive), astrocytes (GFAP-positive), 

nuclei (DAPI-positive) from both NBM and DMSO treatment groups. Error bars 

represent standard deviation.  

A B 

C 
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5.3.2.1 Paclitaxel reduces the density of astrocytes and changes their morphology 

in a dose-dependent manner 

When the O.D. of GFAP of cultures treated with DMSO (0.072 ± 0.010; normalized 100 

± 10.72) was compared to the cultures treated with different concentrations of paclitaxel 

after 7 DIV, the analysis showed that in comparison to 3.5 nM paclitaxel (0.035 ± 0.007; 

normalized 53.58 ± 11.89), 7 nM paclitaxel (0.012 ± 0.002; normalized 18.88 ± 4.35), 

and 14 nM paclitaxel (0.007 ± 0.003; normalized 11.56 ± 6.08) there was a statistically 

significant reduction in GFAP O.D. of 47% (p=0.0006), 81% (p<0.0001) and 88% 

(p<0.0001), respectively (Figure 5.3, 5.4). However, the lowest dose of paclitaxel of 1.75 

nM (0.061 ± 0.012; normalized 92.97 ± 21.12) did not produce any significant difference 

in the O.D. of GFAP compared to DMSO control group (p=09357) (Figure 5.3, 5.4). 

Figure 5.2. The total number of cells appeared reduced in a dose-dependent 
manner with paclitaxel in living VM cultures at 4 DIV. Rat E14 VM living cultures 

treated with different doses of paclitaxel (1.75, 3.5, 7, 14 nM) observed by Phase 

contrast microscopy at 4 DIV revealed that the number of cells seemed to be reduced 

in a dose-dependent manner, which was representative of these cultures at this stage.  

 

A 
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Among the groups treated with paclitaxel, when 1.75 nM cultures (0.061 ± 0.012; 

normalized 92.97 ± 21.12) were compared to 3.5 nM (0.035 ± 0.007; normalized 53.58 

± 11.89), 7 nM (0.012 ± 0.002; normalized 18.88 ± 4.35), and 14 nM (0.007 ± 0.003; 

normalized 11.56 ± 6.08) groups, there was a statistically significant reduction of 43% 

(p=0.0008), 80% (p<0.0001) and 87% (p<0.0001), respectively (Figure 5.3, 5.4). 

Likewise, the GFAP O.D. was significantly reduced between VM cultures treated with 

3.5 nM (0.035 ± 0.007; normalized 53.58 ± 11.89) or 7 nM (0.012 ± 0.002; normalized 

18.88 ± 4.35) in 65% (p=0.0028) and 14 nM (0.007 ± 0.003; normalized 11.56 ± 6.08) in 

78% (p=0.0004). No differences were found when 7 nM and 14 nM were compared 

(p=0.8825) (Figure 5.3, 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Paclitaxel reduces the O.D. of GFAP in a dose-dependent manner. The 

comparison of the O.D. of GFAP between VM cultures treated with DMSO or different 

concentrations of paclitaxel (1.75, 3.5, 7, 14 nM) demonstrated that GFAP O.D. was 

reduced by 47%, 81% and 88% when the DMSO group control was compared to 3.5 

nM, 7 nM and 14 nM paclitaxel, respectively. There were differences between the doses 

of paclitaxel, finding that 7 nM and 14 nM reduced GFAP O.D. in 65% and 78% 

compared to 3.5 nM paclitaxel. Error bars represent standard deviation. **p<0.01; 

***p<0.001; ****p<0.0001. 
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In VM cultures that were not treated with paclitaxel or with low doses of the drug (Figure 

5.4), the high confluency of astrocytes made it difficult to differentiate individual cells, 

which was a pitfall to performing quantitative analysis of these cells and to compare their 

morphology between different treatments. However, qualitative observations of the 

cultures suggested that the morphology of astrocytes also changes in a dose-dependent 

manner. Astrocytes presented fibrillar characteristics, with long and thin processes when 

cultures were treated with DMSO and/or the low dose of paclitaxel of 1.75 nM (Figure 

5.4). In contrast, with the increase of paclitaxel concentrations, many astrocytes 

displayed a flat and egg-like morphology, which was more evident when astrocytes were 

isolated (Figure 5.4).  

Together these experiments indicate that paclitaxel reduces the density of dividing 

astrocytes in a dose-dependent manner in rat embryonic VM cultures compared to 

DMSO, and that there is a potential alteration of the morphology of these cells in these 

culture conditions. 

 

5.3.2.2 The highest dose of paclitaxel compromises the viability of neurons 

Pan-neuronal staining with TuJ1 revealed that the highest dose of paclitaxel (i.e., 14 nM) 

(188 ± 46; normalized 53.7 ± 14.09) produced a significant (p<0.0001) reduction in the 

total number of neurons compared to DMSO by 46% (351 ± 37; normalized 100 ± 11.39) 

(Figure 5.5, 5.6). When comparing the number of neurons from the control DMSO (351 

◄ Figure 5.4. Paclitaxel reduces the O.D. of GFAP in a dose-dependent manner. 
(A) Low magnification immunofluorescence images of VM cultures treated with DMSO 

or different doses of paclitaxel show a reduction in the density of astrocytes as the dose 

of the drug is increased. (B) High magnification immunofluorescence images of VM 

cultures treated with DMSO or different doses of paclitaxel show more detail of the 

different morphology of astrocytes as the concentration of the drug increases. Without 

paclitaxel or with a low concentration of the drug, astrocytes are fibrous with long 

processes; while they become flatter and egg-shaped with high doses of paclitaxel.  
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± 37; normalized 100 ± 11.39) with those grown in 7 nM paclitaxel (288 ± 72; normalized 

82.2 ± 21.9), there was a reduction of 18% but this was not statistically significant 

(p=0.2187) (Figure 5.5, 5.6). Interestingly, although the low doses of paclitaxel of 1.75 

nM (388 ± 65; normalized 110.5 ± 19.9) and 3.5 nM (417 ± 39; normalized 118.9 ± 12) 

did not have a significant effect on the number of neurons compared to DMSO (351 ± 

37; normalized 100 ± 11.39), there was a trend of increasing their survival by 10% 

(p=0.7093) and 19% (p=0.1682), respectively (Figure 5.5, 5.6). When the number of  

 

 

 

 

 

 

Figure 5.5. Paclitaxel reduces the number of neurons but only with the highest 
dose of 14 nM. The comparison of the number of TuJ1-positive neurons between VM 

cultures treated with DMSO or different concentrations of paclitaxel (1.75, 3.5, 7, 14 nM) 

demonstrated that the number of neurons was significantly reduced in 46% between the 

control group DMSO and 14 nM of the drug. Differences were also observed when 1.75 

nM paclitaxel was compared to 7 nM and 14 nM, finding a significant reduction of the 

number of neurons of 25% and 52%, respectively; while the number of neurons 

decrease 30% and 55% when 3.5 nM paclitaxel was compared to 7 nM and 14 nM, 

respectively. Error bars represent standard deviation. *p<0.05; ***p<0.001; 

****p<0.0001. 
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neurons was compared among the different concentrations of paclitaxel, significant 

differences in the number of neurons between treatments were found. Thus, there were 

significant differences between 1.75 nM (388 ± 65; normalized 110.5 ± 19.9) versus 7 

nM (288 ± 72; normalized 82.2 ± 21.9) and 14 nM (188 ± 46; normalized 53.7 ± 14.09), 

showing a reduction of the total number of neurons by 25% (p=0.0126) and 52% 

(p<0.0001), respectively (Figure 5.5, 5.6). Between 1.75 nM (388 ± 65; normalized 110.5 

± 19.9) and 3.5 nM (417 ± 39; normalized 118.9 ± 12), no statistically significant 

differences were reported (p=0.8397), although the trend indicated an increase in the 

number of neurons of 7% with the highest concentration (Figure 5.5, 5.6). In the case of 

3.5 nM paclitaxel (417 ± 39; normalized 118.9 ± 12) compared to 7 nM (288 ± 72; 

normalized 82.2 ± 21.9) and 14 nM (188 ± 46; normalized 53.7 ± 14.09), a statistically 

significant reduction of 30% (p=0.0007) and 55% (p<0.0001) in the number of neurons 

was observed as the concentration of the drug increased (Figure 5.5, 5.6). Lastly, there 

was a significant (p=0.0115) reduction of 35% in the number of neurons from 7 nM (288 

± 72; normalized 82.2 ± 21.9) to 14 nM (188 ± 46; normalized 53.7 ± 14.09) (Figure 5.5, 

5.6). 

Qualitative observations of the culture showed that with the highest doses of paclitaxel 

(i.e., 7 and 14 nM), most neurons that remained in the culture were distributed in clusters 

of cells, but not alone. In this situation, it was possible to visualize an integrated network 

◄ Figure 5.6. Paclitaxel reduces the number of neurons but only with the highest 
dose of 14 nM. (A) Low magnification immunofluorescence images of VM cultures 

treated with DMSO or different doses of paclitaxel, where it can be observed the clusters 

of neurons connected between them by long axons that appear when high doses 

paclitaxel (7 and 14 nM) are added to the cultures. (B) High magnification 

immunofluorescence images of VM cultures treated with DMSO or different doses of 

paclitaxel, where it can be observed that the morphology of neurons appear similar 

along the different treatments. TuJ1 is a marker for neurons, while DAPI shows their 

nuclei.  
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between the neuronal clusters, connected by long axons (Figure 5.6A). Nevertheless, 

the size and morphology of neuronal somas appeared similar between the vehicle 

control DMSO and the different treatments of paclitaxel (Figure 5.6B).  

These results show that doses of paclitaxel equal to or below 3.5 nM do not affect the 

viability of neurons and, in fact, it might enhance their survival. 

 

5.3.2.3 Low doses of paclitaxel allows the survival of DAn 

There was a statistically significant reduction in the number of DAn of 31% (p=0.0133) 

and 56% (p=0.0085) when primary cultures were exposed to 7 nM (45.5 ± 31.5; 

normalized 74.68 ± 57.24) and 14 nM (28 ± 14; normalized 47.28 ± 27.18) paclitaxel, 

respectively, but only when these treatments were compared to 3.5 nM (63 ± 28; 

normalized 108.3 ± 49.26) paclitaxel (Figure 5.7, 5.8A). However, when the vehicle 

control DMSO (59.5 ± 28; normalized 100 ± 49.66) or the lowest dose of paclitaxel 1.75 

nM (56 ± 24; normalized 95.78 ± 42.05) were analyzed, no statistically significant 

differences were found in any of the other comparisons (Figure 5.7, 5.8A). Nevertheless, 

although not statistically significant (p>0.9999), there was a trend of increasing by 5% 

the number of DAn in the 3.5 nM (63 ± 28; normalized 108.3 ± 49.26) group compared 

to DMSO (59.5 ± 28; normalized 100 ± 49.66), a trend similar to what was observed 

when the total number of neurons was quantified (Figure 5.7, 5.8A).  

In addition, while TH-positive neurons in culture treated with DMSO and doses of 

paclitaxel between 1.75 nM and 7 nM presented a normal soma, those grown in 14 nM 

of paclitaxel appeared disrupted, generating some debris (Figure 5.8B).  

Altogether, this indicates that, as with total neurons, sub-maximal doses of paclitaxel did 

not have an effect on the viability of DAn above vehicle controls.  
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5.3.3 Previous treatment with paclitaxel increases the toxic effect of 6-OHDA in 

astrocytes but not in DAn from VM cultures 

5.3.3.1 6-OHDA at a concentration of 50 µM reduces by almost half the number of 

DAn  

In order to evaluate the effect that the toxin 6-OHDA had in VM cultures, and more 

specifically in DAn, the first step was to establish the best sub-toxic concentration of 6-

OHDA to add into the media, in order to challenge DAn without killing all of them. Hence, 

two different concentrations (50 µM and 100 µM) of 6-OHDA were added to the culture 

for 1 hour to be compared with 0.01% AA as vehicle control (Figure 5.9). These two 

concentrations were chosen based on previous research found in the literature (see

Figure 5.7. The lowest dose of paclitaxel does not affect the viability of DAn. The 

comparison of the number of TH-positive DAn between VM cultures treated with DMSO 

or different concentrations of paclitaxel (1.75, 3.5, 7, 14 nM) demonstrated that the 

number of DAn was significantly reduced by 31% and 56% when 3.5 nM paclitaxel was 

compared to 7 nM and 14 nM, respectively. Error bars represent standard deviation. 

*p<0.05; **p<0.01. 
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Chapter 2). Quantification of TH-positive neurons showed that the number of DAn 

surviving in cultures treated with AA (59.5± 7; normalized 100 ± 9.32) was reduced by 

43% and 98% in cultures with 50 µM 6-OHDA (35 ± 10.5; normalized 57.62 ± 14.76) and 

100 µM 6-OHDA (4 ± 1; normalized 2.20 ± 0.67), respectively. This reduction in the 6-

OHDA treated cultures was statistically significant (p=0.0001; p<0.0001, respectively) 

(Figure 5.9A). Furthermore, there were also significant differences (p<0.0001) between  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

◄ Figure 5.8. The lowest dose of paclitaxel does not affect the viability of DAn. 
(A) Low magnification immunofluorescence images of VM cultures treated with DMSO 

or different doses of paclitaxel, where it can be observed the reduction in the number of 

DAn (B) High magnification immunofluorescence images of VM cultures treated with 

DMSO or different doses of paclitaxel, where it can be observed that 14 nM paclitaxel 

induced the disruption to the soma, generating debris (arrow). TH indicated DAn, while 

DAPI shows their nuclei.  

 

 

Figure 5.9. Treatment VM cultures with 6-OHDA reduces the number of DAn and 
O.D. of GFAP in a dose-dependent manner.  (A) The administration of 50 µM 6-OHDA 

for 1 hour reduced the number of DAn by 43% compared to the control group treated 

with 0.01% AA, while 100 µM 6-OHDA almost killed all DAn. (B) Similarly, 50 µM 6-

OHDA for 1 reduced the O.D. for GFAP by 32% compared to the control group, and 100 

µM 6-OHDA has a depletion of 98%. Error bars represent standard deviation. **p<0.01, 

***p<0.001; ****p<0.0001. 
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the two different 6-OHDA treatments, with a decrease in the number of DAn of 96% 

when 100 µM 6-OHDA (4 ± 1; normalized 2.20 ± 0.67) was added in comparison to 50 

µM 6-OHDA (35 ± 10.5; normalized 57.62 ± 14.76) (Figure 5.9A). This suggested that 

50 µM 6-OHDA was better low-toxic concentration for future experiments.  

On the other hand, due to the aim of this chapter being the reduction of astrocytes by 

paclitaxel, the effect of 6-OHDA on astrocytic cells in the VM cultures was also evaluated 

to elucidate if 6-OHDA itself might reduce the density of astrocytes. Interestingly, similar 

results to the effects on the number of DAn were found. Thus, when the O.D. for GFAP 

in cultures treated with AA (0.0579 ± 0.0181; normalized 100 ± 31.28) alone was 

compared with 50 µM 6-OHDA (0.0395 ± 0.0198; normalized 68.26 ± 34.27) or 100 µM 

6-OHDA (0.0007 ± 0.0005; normalized 1.33 ± 0.96) treated cultures. This showed a 

reduction of 32% (p=0.0019) and 98% (p<0.0001), respectively (Figure 5.9B). Likewise, 

there was a statistically significant (p<0.0001) depletion of GFAP O.D. between 50 µM 

6-OHDA (0.0395 ± 0.0198; normalized 68.26 ± 34.27) and 100 µM 6-OHDA (0.0007 ± 

0.0005; normalized 1.33 ± 0.96) of 98% (Figure 5.9B). 

These results demonstrate that while 100 µM of 6-OHDA for 1 hour killed all the 

examined cells (DAn and astrocytes) from embryonic VM cultures, 50 µM of 6-OHDA for 

1 hour only reduced the number of DAn and the O.D. of GFAP compared to AA. 

 

5.3.3.2 6-OHDA reduces the number of DAn in VM cultures, an effect that is not 

exacerbated with paclitaxel 

To evaluate the effect that 50 µM 6-OHDA had in DAn when there was a previous 

reduction of the density of astrocytes with paclitaxel, this drug was added to VM cultures 

for three different lengths of time (1, 2 and 3 hours) after 5 DIV of treatment with 3.5 nM 

paclitaxel or DMSO (Figure 5.10, 5.11). This concentration of paclitaxel was chosen 

because, as it was seen in previous experiments, it was able to significantly reduce the 

density of astrocytes without affecting the total number of neurons and/or DAn (see 

above). As a control, 0.01% AA (vehicle for 6-OHDA) was added for a maximum of 3  
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Figure 5.10. The treatment of 50 µM 6-OHDA reduces the number of DAn in cultures 
treated previously with DMSO or paclitaxel. (A) VM cultures treated with DMSO for 5 

DIV showed a reduction in the number of DAn by 42%, 48% and 57% when the cultures 

were exposed to 1 hour, 2 hours or 3 hours of 6-OHDA, respectively. Similarly, a 

decrease of 40%, 46%, 55% was found in the number of DAn when AA treatments were 

compared to 1 hour, 2 hours and 3 hours of 6-OHDA, respectively. (B) VM cultures 

previously treated with 3.5 nM paclitaxel for 5 DIV showed a decrease in the number of 

DAn when they were compared to cells treated with 6-OHDA 1 hour (40%), 2 hours 

(35%), and 3 hours (42%), but also with AA (34%). (C) When cultures treated previously 

with DMSO and paclitaxel were compared, only the group AA showed statistically 

significant differences, with a reduction of 26% when the anti-mitotic drug was added 

earlier to the culture. Error bars represent standard deviation. *p<0.05; **p<0.01; 

****p<0.0001. 
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hours to determine if the vehicle had any effects on DAn viability in paclitaxel and control 

cultures.  

In cultures treated previously only with DMSO (Figure 5.10A, 5.11A), the results showed 

that when the number of DAn from the control group treated only with DMSO (76 ± 30; 

normalized 100 ± 30.32) was compared to the different exposure times of 6-OHDA, 

including 1 hour (46 ± 35; normalized 58.76 ± 44.39), 2 hours (43 ± 41; normalized 52.47 

± 47.97), or 3 hours (35 ± 39; normalized 43.76 ± 47.59), there was a statistically 

significant reduction of 42% (p<0.0001), 48% (p<0.0001) and 57% (p<0.0001), 

respectively (Figure 5.10A, 5.11A). Similarly, when cultures treated with AA (72 ± 41; 

normalized 97.79 ± 49.60) were compared with 1 hour 6-OHDA (46 ± 35; normalized 

58.76 ± 44.39), 2 hours (43 ± 41; normalized 52.47 ± 47.97), or 3 hours (35 ± 39; 

normalized 43.76 ± 47.59) statistically significant differences were found, with the 

number of DAn decreasing by 40% (p<0.0001), 46% (p<0.0001), and 55% (p<0.0001). 

No statistically significant differences (p=0.9989) were found between the group treated 

only with DMSO (76 ± 30; normalized 100 ± 30.32) and AA (72 ± 41; normalized 97.79 

± 49.60) (Figure 5.10A, 5.11A). The different exposure times of 6-OHDA did not 

produced changes in the number of DAn between treatments either. Thus, the 

comparison of the number of DAn with 1 hour 6-OHDA (46 ± 35; normalized 58.76 ± 

44.39) versus 2 hours (43 ± 41; normalized 52.47 ± 47.97) or 3 hours (35 ± 39; 

normalized 43.76 ± 47.59) did not show statistically significant differences (p=0.9179; 

p=0.2650, respectively); and the same appeared when 2 hours 6-OHDA (43 ± 41; 

◄ Figure 5.11. The treatment of 50 µM 6-OHDA reduces the number of DAn in 
cultures treated previously with DMSO or paclitaxel. (A) VM cultures earlier 

treated with DMSO or AA for 5 DIV showed a reduction in the number of DAn (TH-

positive) when they were expose to 1 hour, 2 hours or 3 hours of 6-OHDA. (B) VM 

cultures previously treated with 3.5 nM paclitaxel for 5 DIV showed a decrease in the 

number of DAn when they were compared with cells challenged with 6-OHDA (1 hour, 

2 hours, and 3 hours) and AA.TH indicated DAn, while DAPI shows their nuclei. 
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normalized 52.47 ± 47.97) was compared to 3 hours (35 ± 39; normalized 43.76 ± 47.59) 

(p=0.7299) (Figure 5.10A, 5.11A). 

On the other hand, when cultures treated previously with 3.5 nM paclitaxel were treated 

and compared with different exposure times of 6-OHDA or AA (Figure 5.10B, 5.11B), 

the data showed that there was a reduction in the number of DAn from the group only 

treated with paclitaxel (83 ± 45; normalized 107.45 ± 62.62) in comparison to 1 hour 6-

0HDA (42 ± 48; normalized 49.19 ± 52.76), 2 hours 6-OHDA (44 ± 50; normalized 54.93 

± 60.54), or 3 hours 6-OHDA (42 ± 52; normalized 47.95 ± 53.35). Thus, the number of 

DAn significantly decreased by 40%, 35%, and 42% comparing the paclitaxel group with 

1 hour (p<0.0001), 2 hours (p<0.0001), or 3 hours (p<0.0001) of 6-OHDA, respectively 

(Figure 5.10B, 5.11B). In the case of the group treated with AA (55 ± 46; normalized 

71.17 ± 52.91), comparing cultures where 6-OHDA was added, no statistically significant 

differences were found in the number of DAn in 1 hour (42 ± 48; normalized 49.19 ± 

52.76) (p=0.0913), 2 hours 6-OHDA (44 ± 50; normalized 54.93 ± 60.54) (p=0.3387), or 

3 hours 6-OHDA (42 ± 52; normalized 47.95 ± 53.35) (p=0.0313) (Figure 5.10B, 5.11B). 

However, the number of DAn was different between the group treated only with paclitaxel 

(83 ± 45; normalized 107.45 ± 62.62) and AA (55 ± 46; normalized 71.17 ± 52.91), 

showing a statistically significant (p=0.0026) reduction of 34% (Figure 5.10B, 5.11B). 

Lastly, no changes in the number of DAn were found between treatments of 6-OHDA at 

different exposure times, comparing 1 hour (42 ± 48; normalized 49.19 ± 52.76) with 2 

hours 6-OHDA (44 ± 50; normalized 54.93 ± 60.54) (p=0.9658) or 3 hours 6-OHDA (42 

± 52; normalized 47.95 ± 53.35) (p>0.9999) (Figure 5.10B, 5.11B). 

Finally, both VM cultures treated previously with DMSO and paclitaxel, including the 

treatments with AA or 6-OHDA, were compared between them (Figure 5.10C, 5.11A, 

B), in order to understand if there were differences when paclitaxel was added previously 

to the media and cultures were challenged with AA and 6-OHDA. Interestingly, only VM 

cultures treated with paclitaxel and AA (55 ± 46; normalized 71.17 ± 52.91) seemed to 

differ to those cultures treated only with DMSO and AA (72 ± 41; normalized 97.79 ± 
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49.60). Thus, there was a statistically significant (p=0.0284) reduction in the number of 

DAn of 26% in cultures treated with paclitaxel and AA versus DMSO and AA (Figure 

5.10C, 5.11A, B).   

Together, these results show that in cultures previously treated with DMSO or 3.5 nM 

paclitaxel for 5 DIV, the subsequent exposure to 50 µM 6-OHDA for different times (1 

hour, 2 hours, 3 hours) showed a reduction in the number of DAn compared to those 

cells only treated with DMSO or paclitaxel, respectively. Moreover, in the group treated 

with DMSO for 5 DIV, differences were also observed between cells treated with AA and 

6-OHDA, while these differences were eliminated in the paclitaxel group. Nevertheless, 

in the paclitaxel group, there was a reduction in the number of DAn compared cultures 

treated only with paclitaxel or paclitaxel and AA. This fact generated differences between 

the two groups (DMSO and paclitaxel) treated with AA, finding a reduction of the number 

of DAn when paclitaxel and AA were added to the culture.  

 

5.3.3.3 The density of astrocytes is reduced with 6-OHDA and paclitaxel 

exacerbates this effect 

As it was mentioned before, 6-OHDA reduced the O.D. of GFAP compared to those VM 

cultures treated with AA (Figure 5.9B). Therefore, the next step was to elucidate if 

different exposure times were able to produce a different effect in cultures previously 

treated with DMSO or 3.5 nM paclitaxel (Figure 5.12, 5.13). 

When the DMSO control group (0.1115 ± 0.0347; normalized 100 ± 39.45) was 

compared with 6-OHDA, only the treatment for 1 hour (0.0598 ± 0.0284; normalized 

67.47 ± 35.23) and 3 hours (0.0612 ± 0.0347; normalized 69.76 ± 39.83) showed 

differences in the O.D. of GFAP (Figure 5.12A, 5.13A). Thus, there was a statistically 

significant decrease of the O.D. by 33% (p=0.0003) in those cultures treated for 1 hour 

with 6-OHDA, and 31% (p=0.0005) in those cultures treated for 2 hours with 6-OHDA. 

However, although the O.D. for GFAP was reduced by 20% with 2 hours 6-OHDA 

(0.0712 ± 0.0436; normalized 80.63 ± 49.15) compared with DMSO (0.1115 ± 0.0347;  
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Figure 5.12. The treatment of 50 µM 6-OHDA reduces the O.D. of GFAP in cultures 
treated previously with DMSO or paclitaxel. (A) VM cultures treated with DMSO for 

5 DIV showed a reduction in the GFAP O.D. by 33% and 31% when the cultures were 

exposed to 1 hour and 3 hours of 6-OHDA, respectively. Similarly, a decrease of 25% 

and 23% was found in the GFAP O.D. when AA treatments were compared to 1 hour 

and 3 hours of 6-OHDA, respectively. (B) VM cultures previously treated with 3.5 nM 

paclitaxel for 5 DIV showed a decrease in the O.D. of GFAP but only when they were 

compared to cells treated with 6-OHDA 1 hour (36%) and 3 hours (37%). (C) When 

cultures treated previously with DMSO and paclitaxel were compared between them, all 

experimental groups showed statistically significant differences, with a reduction of the 

O.D. GFAP when the anti-mitotic drug was added earlier to the culture as follows: control 

(30%), AA (40%), 1 hour 6-OHDA (33%), 2 hours 6-OHDA (30%) and 3 hours 6-OHDA 

(35%). Error bars represent standard deviation. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001. 
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normalized 100 ± 39.45), this difference was not statistically significant (p=0.0663) 

(Figure 5.12A, 5.13A). No statistically significant differences (p=0.6543) were found in 

O.D. GFAP either comparing the group control DMSO (0.1115 ± 0.0347; normalized 100 

± 39.45) with AA (0.0801 ± 0. 0.0311; normalized 90.01 ± 35.51) (Figure 5.12A, 5.13A). 

In the case of the O.D GFAP of cultures treated with AA (0.0801 ± 0. 0.0311; normalized 

90.01 ± 35.51), there was a significant depletion of this O.D. in 25% (p=0.0061) and 23% 

(p=0.0105) when it was compared against 1 hour (0.0598 ± 0.0284; normalized 67.47 ± 

35.23) and 3 hours (0.0612 ± 0.0347; normalized 69.76 ± 39.83), respectively; but not 

against 2 hours 6-OHDA (0.0712 ± 0.0436; normalized 80.63 ± 49.15) (p=0.5557) 

(Figure 5.12A, 5.13A). Ultimately, no differences where reported between the multiple 

exposure times of 6-OHDA, comparing 1 hour (0.0598 ± 0.0284; normalized 67.47 ± 

35.23) with 2 hours 6-OHDA (0.0712 ± 0.0436; normalized 80.63 ± 49.15) (p=0.2680) or 

3 hours (0.0612 ± 0.0347; normalized 69.76 ± 39.83) (p=0.9968) (Figure 5.12A, 5.13A). 

On the other hand, the O.D. of GFAP was examined in cultures treated previously with 

3.5 nM paclitaxel and exposed to AA or 6-OHDA (Figure 5.12B, 5.13B). The results 

showed that there was a significant decrease of GFAP O.D. in 36% and 37% only when 

cultures were compared between 3.5 nM paclitaxel (0.0623 ± 0.0311; normalized 70.49 

± 35.05) and 1 hour 6-OHDA (0.0400 ± 0.0285; normalized 45.01 ± 32.19) (p=0.0008) 

and 3 hours 6-OHDA (0.0391 ± 0.0267; normalized 44.62 ± 30.97) (p=0.0006), 

respectively, but not against 2 hours of 6-OHDA (0.0507 ± 0.0392; normalized 57.88 ± 

44.07) (p=0.2788) (Figure 5.12B, 5.13B). On this occasion, there were not statistically 

◄ Figure 5.13. The treatment of 50 µM 6-OHDA reduces the O.D. of GFAP in 
cultures treated previously with DMSO or paclitaxel. (A) VM cultures previously 

treated with DMSO or AA for 5 DIV showed a reduction in the O.D. GFAP (astrocytes) 

when they were exposed to 1 hour and 3 hours of 6-OHDA. (B) VM cultures previously 

treated with 3.5 nM paclitaxel for 5 DIV showed a decrease in O.D. GFAP when they 

were compared with cells challenged with 6-OHDA (1 hour, or 3 hours). GFAP is a 

marker for astrocytes, while DAPI shows their nuclei. 
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significant differences in the O.D. GFAP from AA (0.0481 ± 0.0320; normalized 54.43 ± 

36.66) cultures and other cells treated with 6-OHDA (1 hour, p=0.4494; 2 hours, 

p=0.9719; 3 hours, p=0.3948) (Figure 5.12B, 5.13B). The O.D. GFAP of cultures treated 

only with 3.5 nM paclitaxel (0.0623 ± 0.0311; normalized 70.49 ± 35.05) or AA (0.0481 

± 0.0320; normalized 54.43 ± 36.66), were not statistically significant (p=0.0888) either 

(Figure 5.12B, 5.13B). Lastly, no statistically significant differences were found 

comparing the three exposure times of 6-OHDA, including 1 hour (0.0400 ± 0.0285; 

normalized 45.01 ± 32.19) versus 6-OHDA 2h (0.0507 ± 0.0392; normalized 57.88 ± 

44.07) (p=0.1505) or 6-OHDA 3h (0.0391 ± 0.0267; normalized 44.62 ± 30.97) 

(p=0.1213) (Figure 5.12B, 5.13B). 

Finally, when these two sets of data (DMSO and 3.5 nM paclitaxel) were compared with 

each other to see how an earlier treatment with paclitaxel affected the O.D. of GFAP 

when astrocytes are challenged with 6-OHDA or AA (Figure 5.12B, 5.13A, B), the 

statistical analysis showed that there were significant differences between the VM 

cultures treated with DMSO or paclitaxel in all the experimental groups. Hence, when 

the O.D. of GFAP was compared from cultures treated only with DMSO (0.1115 ± 

0.0347; normalized 100 ± 39.45) against the O.D. of GFAP of cultures treated only with 

paclitaxel (0.0623 ± 0.0311; normalized 70.49 ± 35.05), as it was expected, there was a 

significant (p=0.0055) reduction in 30% (Figure 5.12C, 5.13A, B). Likewise, in 

astrocytes challenged with AA, there was a significant decrease (p<0.0001) in 40% of 

the O.D. GFAP when cultures were treated previously with paclitaxel (0.0481 ± 0.0320; 

normalized 54.43 ± 36.66) in comparison to DMSO (0.0801 ± 0. 0.0311; normalized 

90.01 ± 35.51) (Figure 5.12C, 5.13A, B). In line with this, in all cultures treated with 6-

OHDA, the reduction in the O.D. of GFAP was higher in those cultures treated with 

paclitaxel. Thus, in 1 hour 6-OHDA, there was a statistically significant (p=0.0142) 

decrease of 33%, at 2 hours (p=0.0046) the reduction was 30%, and at 3 hours 

(p=0.0009) there was a depletion of 35% (Figure 5.12C, 5.13A, B). 
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In summary, these results show that 50 µM 6-OHDA was able to reduce the O.D. of 

GFAP when cultures were treated with DMSO or 3.5 nM paclitaxel the previous 5 DIV 

compared with those cultures only treated with DMSO or paclitaxel, respectively. 

Furthermore, in the DMSO group, there were also differences between cultures treated 

with AA and 6-OHDA. As a whole, the reduction of O.D. GFAP was always exacerbated 

when cultures were previously exposed to paclitaxel, regardless of whether they were 

treated afterwards with AA or 6-OHDA.  

 

5.4 Discussion 

5.4.1 Paclitaxel treatment can enrich the number of DAn in primary cultures from 

the VM region  

5.4.1.1 Paclitaxel reduces the density of astrocyte and changes in their 

morphology 

In this chapter, the effect that a reduction of astrocytes, measured by the O.D. of GFAP, 

has on the viability of DAn was evaluated. To asses this, different concentrations (1.75, 

3.5, 7, 14 nM) of the anti-mitotic drug paclitaxel was added to the culture for 7 DIV, in 

order to kill the cells that were able to divide. The results of these experiments showed 

that paclitaxel, using the vehicle control of DMSO, seemed to reduce the total number 

of cells while growing in cultures at 4 DIV. When quantitative statistical analyses were 

performed using immunofluorescence at 7 DIV, it was observed that paclitaxel was able 

to decrease GFAP O.D. in a dose-dependent manner. In addition to this, qualitative 

observations suggested a change in morphology of the GFAP-positive cells from a star 

like shape to a flatter and egg-shape. The expression of the GFAP intermediate filament 

is usually very high in cultures of primary astrocytes (Tawfik et al., 2006), because these 

astrocytes are considered reactive due to the stresses suffered during their dissection 

(Lange et al., 2012). Therefore, a reduction of this protein by O.D. with paclitaxel would 

indicate a reduction in the density of these cells. 
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As described in the Introduction, paclitaxel has been extensively investigated in vitro to 

treat glioblastomas at doses below 250 nM and even 18 nM, producing a cytotoxic effect 

that destroys glioma cells (Silbergeld et al., 1995; Tseng et al., 1999). These results 

would be in agreement with the data presented in this chapter, supporting the idea that 

paclitaxel can reduce the density of astrocytes when used below a concentration of 14 

nM. The destructive effect of the anti-mitotic drug likely involves stabilizing the 

microtubule of astrocytes and affecting their reorganization during mitosis, which causes 

mitosis arrest and the death of the cell (Nogales et al., 1995; Magidson et al., 2016).  

The changing morphology of astrocytes surviving paclitaxel treatment would match 

previous research using the compound. This response has been described previously 

by Goetschy and colleagues (1986) and Abe and Saito (1999), who both used 500 nM 

of paclitaxel and reported a flatter morphology in cortical astrocytes. Hence, this chapter 

shown, for the first time using VM astrocytes, that even lower doses of the anti-mitotic 

compound can produce this effect. The morphology of astrocytes in vivo presents heavily 

branched processes that interact with blood vessels, other glial cells and neuronal 

synapses; remodelling these branches through plasticity of their cytoskeleton in 

response to neuronal activation (Schweinhuber et al., 2015). This has been shown in 

experiments applying in vivo whisker stimulation to mice. This produces an increase in 

the coverage of bouton-spine interface with an expansion of the perimeter of the 

astrocytic membrane in the cortex (Genoud et al., 2006). However, studies in cultures 

have demonstrated that astrocytes in vitro typically develop a stellate morphology 

characterized by thin and long processes (Schweinhuber et al., 2015). Astrocytes can 

become flatter and more polygonal in the presence of certain compounds, as Safavi-

Abbasi et al. (2001) showed using cortical cultures from P2 rats. In their study, they 

observed that the addition of lysophosphatic acid, a stimulator of RhoA pathway, 

generated flat astrocytes without processes without affecting the amount of βtubulin. In 

contrast, Ren et al. (2017) have determined that 1 µM paclitaxel in renal cell carcinomas 

increased the levels of GTP-RhoA protein expression, which caused the reorganization 
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of tubulin and microtubules; changing from being widely distributed in the cytoplasm to 

compactly surrounding the nucleus. This suggests that the stabilization of microtubules 

by paclitaxel might be mediated by RhoA activation, which may explain why this drug 

causes flatter shape astrocytes.  

 

5.4.1.2 Paclitaxel at low doses does not affect the viability of neurons and DAn 

Although paclitaxel should not have caused DAn death in primary cultures from E14 rats 

due to the fact that they are post-mitotic, the results from the experiments here showed 

that 7 nM and 14 nM paclitaxel reduced both the total number of neurons and DAn. A 

possible explanation for this is the demonstrated ability of paclitaxel to induce 

neurotoxicity, producing short axons and a “dying back” reaction (see Introduction, Table 

5.1). However, the concentrations of paclitaxel used in those experiments (e.g., 1−10 

µM in hippocampal neurons) were much greater that the doses used in this study (7 nM 

and 14 nM). The ability to generate neurodegeneration at such a low dose could be due 

to differences in neurotoxicity according to the neural types used. Thus, neurons from 

the VM area, including DAn, might be more sensitive to the exposure to paclitaxel than 

DRG neurons (Scuteri et al., 2006; Gornstein and Schwarz, 2017) or cortical neurons 

(Jang et al., 2008; Figueroa-Masot et al., 2001). Indeed, as Gornstein and Schwarz 

(2017) have demonstrated that hippocampal neurons were more sensitive than DRG 

neurons, with hippocampal neurons displaying fragmentation of their axons, something 

that did not occur in DRG neurons. It is also important to bear in mind that in almost all 

primary cultures from the CNS where the neurotoxicity of paclitaxel was investigation, 

they did not observe the effect that the drug had on astrocytes within the culture (see 

Table 5.1). Only one article (Jang et al., 2008) reported no changes in astrocytes with 

30−1000 nM paclitaxel, although the data was not shown. This implies that the 

degeneration seen in neurons cultured at high dosages of paclitaxel might be mediated 

or reinforced by a reduction of astrocytes and their functions.  
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In the experiments here, a high depletion of the density of astrocytes was found with 7 

nM and 14 nM of paclitaxel. Consequently, another reason that could be involved in the 

decline of neurons is the high dependence that these cells have on astrocytes, 

generating neuronal death once these astrocytes have died. As it was cited in the 

Introduction, astrocytes are involved in the maintenance and support of neurons, 

regulating the BBB (Janzer and Raff, 1987), modulating myelination (Sorensen et al., 

2008), reducing and neutralizing ROS (McBean, 2017), and providing metabolic support 

and energy (Voutsinos-Porche et al., 2003). Therefore, less astrocytes and a decrease 

of their functions would be detrimental for the survival of neurons, proving the main 

hypothesis of this chapter. Furthermore, another simple possibility is that, unlike in vivo 

where astrocytes form a complex 3D network along with other cells and neurons, 2D 

cultured astrocytes form a flat monolayer (Lange et al., 2012), having thus the ability to 

attach neurons by providing a good substrate for the extension of their processes (Powell 

et al., 1997). Moreover, as Aebersold et al. (2018) demonstrated, providing a cellulose 

fibre matrix of astrocytes for neurons to grow increased their viability and neurite 

outgrowth even when neurons were plated at a low-density. In this way, it is possible 

that if astrocytes degenerate, neurons will lose their physical ability to be attached to the 

culture surface, forcing those neurons to detach from the coverslip and die. This situation 

would explain why the neurons that were kept alive at high doses of paclitaxel are those 

neurons that form islands of cells, without a lot of astrocytes nearby that can trigger 

neuronal detachment. These group of neurons might have the capacity to support each 

other, preventing the lack of astrocytic support.  

On the other hand, the results of this chapter showed that doses below 3.5 nM paclitaxel 

did not affect the viability or morphology of total neurons or DAn, and in fact, there was 

a trend of increasing their number with 3.5 nM paclitaxel compared to the control group. 

It was noticed in the Introduction (see Table 5.2) that a concentration below 10 nM of 

paclitaxel can promote axon outgrowth with the formation of active neuronal networks 

(Witte et al., 2008). Actually, the formation of more or longer axons has been seen to 
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promote neuronal survival in embryonic cortical neurons that were compared with 

individual cells with a low number of connections (Aebersold et al., 2018). Although the 

number and length of axons in these VM cultures were not analysed, it would be 

reasonable in the future to explore this possibility. Furthermore, the hypothetical increase 

of the number of neurons by longer axons and the establishment of a more stable 

neuronal network might be justified by the reduction of astrocytes found at 3.5 nM 

paclitaxel. The depletion of astrocytes as a deleterious mechanism for neurons has been 

discussed so far in this section. However, it is important to remember that a harmful 

scenario for neurons might also be created if the opposite situation (i.e., an excess of 

astrocytes) appears in cultures. Hence, it is known that the glial scar that is formed after 

injury of the CNS and contains high number of reactive astrocytes (Moeendarbary et al., 

2017), stops neuronal regeneration and inhibits neurite growth, as Wanner et al. (2008) 

reported generating a glial scar model with cortical astrocytes and DRG neurons. This 

has been shown in organotypic VM cultures from E12 and E14 rats by af Bjerken et al. 

(2008), using different concentrations of AraC (0.5−5 µM) to reduce the density of 

astrocytes and their mobility. This promoted the growth of long axons from primary 

neurons. Therefore, paclitaxel, reducing the density of astrocytes, might be eliminating 

the ‘glial scar’ situation in these primary cultures, allowing the extension of neurites and 

the formation of more networks. Supporting this assumption, is the work by Sengottuvel 

et al. (2011), where the administration of 1 µM paclitaxel in vivo in an injured rat optic 

nerve improved axon regeneration by the interrupting glial scar formation, and treatment 

with different doses of paclitaxel (3, 10, 50, 100 nM) reduced the expansion of astrocytes 

in a primary astrocyte culture with a scratch injury.  

In summary, it might be possible that with low doses of paclitaxel (i.e., 3.5 nM), there is 

a perfect balance between the density of astrocytes and neurite outgrowth, which would 

generate an increment in the survival of neurons. To be true, 3.5 nM paclitaxel would be 

a very good tool to control the population of astrocytes in vitro and generate healthier 

and more enriched neuronal cultures.  



Chapter 5. The role of astrocytes in the vulnerability of DAn: a cell culture study  

259 
  

5.4.2 Initial treatment with paclitaxel increases the toxic effect of 6-OHDA in 

astrocytes but not in DAn  

The second objective of this chapter was based on the hypothesis that after a reduction 

of the density of astrocytes, DAn challenged with a toxin would be more vulnerable to 

the cytotoxic effect due to the lack of support of astrocytes. For that, 3.5 nM paclitaxel 

was the selected dose chosen, because at this concentration the density of astrocytes 

was reduced without affecting the viability of DAn. To challenge DAn, 50 µM 6-OHDA, a 

specific toxin widely used to damage DAn in vitro (Ding et al., 2004) and generate PD 

models in vivo (Ungerstedt, 1968; Fuller et al., 2014) was added to the culture after 5 

DIV. That concentration of 6-OHDA was determined after observing that, at that dose, 

6-OHDA was able to kill approximately half of DAn compared to the control AA; and after 

seeing that that 100 µM 6-OHDA was killing all cells.  

 

5.4.2.1 6-OHDA reduces the number of DAn in VM cultures, but paclitaxel does not 

exacerbate this effect 

6-OHDA is a hydroxylated analog of dopamine which allows its recapture by the 

dopamine transporter DAT (Hernandez-Baltazar et al., 2017). Although its mechanism 

of action is not fully understood, it is known that it is related to its high oxidation, a process 

that can happen inside or outside the cell. This is thought to increase the production of 

H2O2 and ROS, elevating the oxidative stress with the consequence being cell death 

(Blum et al., 2001). The data presented in this Thesis showed that independent of the 

exposure time (1 hour, 2 hours or 3 hours), there was a reduction of DAn of 

approximately 50% when cells were challenged with 6-OHDA in both cultures treated 

previously either with DMSO or paclitaxel. The lack of differences in the number of DAn 

between the multiple exposure times of 6-OHDA can be due to an ‘all or nothing’ effect 

of this toxin within the cell, where once the toxin is recaptured in the DAn during the first 

hour, this time is enough to generate ROS. Similar to these findings, Barkats et al. (2002) 
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reported, in an identical investigation treating E14 VM cultures with 50 µM 6-OHDA for 

2 hours, a reduction of the number of DAn by 65%.  

However, the effect of paclitaxel did not exacerbate the degeneration of DAn by 6-

OHDA, which indicated that the depletion of astrocytes when paclitaxel was applied did 

not increase the vulnerability of these neurons against the toxin. It is possible that 

regardless of the density of astrocytes in the DMSO treatment, this toxin affects the DAn 

without astrocytes having enough of defensive role in the process. It seems possible that 

6-OHDA could generate an increase of oxidative stress inside the DAn, not allowing the 

astrocytes to have access to the ROS molecules to buffer them with the antioxidants 

release by these cells (McBean, 2017). Moreover, as discussed below, astrocytes were 

affected by 6-OHDA, as there was a reduction of their density not only with paclitaxel but 

also in controls. This means that if astrocytes were also damaged by 6-OHDA, they 

might not maintain their support properties, and might directly impair their antioxidant 

capabilities.   

Interestingly, the effect of paclitaxel did not exacerbate the degeneration of DAn when it 

was added in combination with 6-OHDA but produced an increase of death of DAn when 

these neurons were treated with AA. AA is an antioxidant that has been commonly used 

as a vehicle of 6-OHDA to avoid its oxidation (Holtz and O’Malley, 2003; Ding et al., 

2004). However, a recent publication has demonstrated that 0.15% AA enhanced the 

toxicity of 25−100 µM 6-OHDA when they were added in combination in SH-SY5Y cells 

for 15 minutes, an effect that was mediated by an increase of calcium influx within the 

cells (Wang et al., 2017). Although this effect will not explain the reduction of the number 

of DAn only with AA, it is essential to have this in mind for future experiments, because 

the effect found with 6-OHDA might be mediated and intensified with AA. Nevertheless, 

the lack of degeneration within the group that was only treated with AA and DMSO 

corroborated that AA, at least on its own, was not toxic for DAn. Regardless of this effect, 

AA has been seen to stabilize the microtubules in endothelial cell cultures, promoting 

their assembly and polymerization (Parker et al., 2016). As earlier mentioned in the 
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Introduction, although neurons have long and stable microtubules, their dynamic 

features are necessary for axonal transport and survival (Gornstein et al., 2014). 

Therefore, it might be possible that an overstabilization of the microtubules in DAn when 

paclitaxel and AA are added together could alter some of the vital neuronal functions 

that also need depolymerization of the microtubules, which would cause the 

degeneration of these neurons.  

 

5.4.2.2 The reduction of the density of astrocytes found with 6-OHDA was 

aggravated with paclitaxel  

Apart of the degeneration of DAn with 6-OHDA, astrocytes were also affected by 6-

OHDA in the DMSO and paclitaxel group, observing that this effect was aggravated 

when cultures were previously treated with paclitaxel.  

Theoretically, the effect of 6-OHDA should be selective to DAn, however studies have 

shown that 6-OHDA can also produce the degeneration of non-DAn. For example, 

Michel and Hefti (1990) reported that 10−100 µM of 6-OHDA for 24 hours caused the 

death of GABAergic neurons in embryonic VM cultures. Likewise, Kramer et al. (1999) 

observed by phase contrast microscopy that 10−50 µM 6-OHDA for 30 minutes 

produced a remarkable decrease in overall cell viability. In the case of astrocytes, 

different concentrations of 6-OHDA (30, 60, 120 µM) have been proven to cause cell 

death in primary astrocyte cultures and in rat and human astrocytoma cell lines (Raicevic 

et al., 2005). This study reported DNA fragmentation and apoptosis linked to an increase 

of oxidative stress, due to the auto-oxidation of 6-OHDA outside the cell, generating 

H2O2. Hence, a similar mechanism might be happening in the VM cultures here, where 

an increase of ROS in the media by auto-oxidation of 6-OHDA induces the degeneration 

of astrocytes. This effect, added to the fact that the density of astrocytes is reduced with 

paclitaxel, would help to explain why the effect of paclitaxel exacerbates the effect of 6-

OHDA on astrocytes. 
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5.5 Conclusions 

In summary, although this chapter proved that paclitaxel was a drug that can be used to 

reduce or control the density of astrocytes in VM cultures, generating more enriched 

DAn cultures, it was not possible to eliminate almost completely the density of astrocytes 

without affecting the number of DAn. In the objective 3, this chapter wanted to assess 

what happened when DAn-enriched cultures (from VM cultures where an elimination of 

embryonic astrocytes was performed) were co-culture with adult SNpc astrocytes from 

young and old individuals. However, the lack of elimination of embryonic astrocytes in 

this study means that these adult astrocytes had to be co-culture together with 

embryonic astrocytes, which would make very difficult the interpretation of the data 

without knowing which astrocytes (e.g., embryonic or adult) are giving the support to 

DAn. Moreover, it was demonstrated that 6-OHDA reduced the number of DAn but also 

the density of astrocytes. Along with this, the low density of astrocytes with paclitaxel did 

not have an effect in the viability of DAn when these were exposed to 6-OHDA. This 

suggests that in the hypothetical case of testing the susceptibility of DAn against 6-

OHDA with adult astrocytes, it might not have any effect between young and old 

astrocytes because 6-OHDA can also affect glial cells. These two situations 

compromised the objective 3 of this chapter, which was not examined at the end.  
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CHAPTER 6: MULTI-STUDY PROTEOMICS ANALYSES OF THE AGEING 

AND PD NERVOUS SYSTEM 

6.1 Introduction 

Overview: It has been demonstrated in Chapter 3 that proteomics is a powerful 

technique to identify which molecular pathways are dysregulated during the ageing 

process in the nervous system. As explained in detail in the Introduction of the Chapter 

3, research has focused on the study of the PD proteome by using diverse human 

samples, including different areas of the brain such as the SNpc (Basso et al., 2003; 

Basso et al., 2004; Choi et al., 2004; Jin et al., 2006; Kitsou et al., 2008; Werner et al., 

2008; Licker et al.; 2012; van Dijk et al., 2012; Dumitriu et al., 2016; Liu et al., 2015; 

Bereczki et al., 2018; Ping et al., 2018; Lachen-Montes et al., 2019), and biofluids such 

as serum, CSF or urine (Trezzi et al., 2017; Kitamura et al., 2018; Boerger et al., 2019; 

Wang et al., 2019). In addition, neurotoxic (e.g., 6-OHDA, MPTP) and genetically 

modified animal models, that replicate the disease under controlling conditions in the 

lab, have also been used in proteomic studies to gain more insight into the disease 

process (Scholz et al., 2008; Triplett et al., 2015; Islam et al., 2016; Visscher et al., 2016; 

Cowie et al., 2017; Kasap et al., 2017;Kim et al., 2017a; Maasz et al., 2017; Froyset et 

al., 2018). In general, the biological functions that were dysregulated during PD were 

related to metabolism, oxidative stress, as well as axonal and cytoskeleton remodeling, 

among others. To help understand why PD is generally associated with the elderly, a 

wide range of proteomic studies have also been performed in the nervous system during 

the physiological ageing process, with the idea of gaining a deeper understanding of the 

consequences that ageing has in neurodegenerative diseases. These proteomic 

investigations, using samples from both humans (Chen et al., 2003; Dominguez et al., 

2016; Pabba et al., 2017) and rodents (Mao et al., 2006; Gokulrangan et al., 2007; 

Raghunathan et al., 2018), have revealed that ageing affects biological processes 

related to energy metabolism, cytoskeleton structure or proteostasis. Thus, based on the 

description of the narrative literature, it seems that proteomics studies in both PD and 
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ageing are showing dysregulation in similar biological processes (e.g., metabolism, 

cytoskeleton). Importantly, this could indicate that proteomic changes during ageing 

precede or have a direct implication in the development or course of the disease, 

although more systematic analysis, as the one presented in this Thesis chapter, are 

necessary to corroborate these findings.  

 

6.1.1 Multi-study proteomic comparisons to understand common dysregulated 

molecular pathways in the ageing nervous system and PD 

During proteomic analyses, independent studies produce large sets of proteomics data 

that, many times, are deposited in public-domain repositories (Vizcaino et al., 2010). In 

general, from these big datasets, only a few proteins are interrogated and validated in 

each single study. Nevertheless, despite the undeniable value of this type of proteomic 

approach, the exclusion of most of the proteins for further examination can lead to an 

underestimation of the implications that certain proteins, and their associated molecular 

pathways, have on the proteome in question. To avoid this, precise systemic reviews (or 

multi-study proteomic comparisons) from similar proteomes can be executed by 

extracting and collecting the secondary data of each single study in order to find common 

dysregulated targets or proteins (Uman, 2011). The results of these comparisons, which 

can be further examined by different bioinformatics analyses, help to draw more powerful 

and robust conclusions associated with the research questions, and provide an effective 

tool to unravel the complex molecular mechanisms that define them. In fact, the 

advantages of using this approach have been demonstrated previously, as Soltic and 

colleagues (2018) proved using a comparative analysis of proteomic studies related to 

spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). As a result, they 

found common differentially expressed proteins between both diseases that might be 

useful for creating new therapies in the future.  

Given that the interest of this Thesis is the ageing process and its relation to PD, finding 

common dysregulated proteins between independent proteomic studies related to the 
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ageing nervous system or PD can help to generate a reference proteome for both PD 

and ageing. This could help establishing pathological mechanisms that might explain the 

causes of this disease. Moreover, these ageing and PD proteomes can be compared 

with each other to elucidate the molecular and protein implications that ageing has in 

PD. In addition, the ageing reference proteome is a useful database to understand if the 

proteomic changes found in the rat SNpc during ageing (see Chapter 3) are exclusive of 

this area of the brain (which would explain the higher vulnerability to degeneration of the 

SNpc) or, on the other hand, if they are conserved in the entire nervous system during 

ageing. This last possibility might indicate that other processes, apart from ageing, are 

necessary to explain the degeneration of SNpc DAn, but also it could mean that the 

SNpc has more demanding requirements and dependency for certain proteins 

expressed in the whole brain compared to other regions of the CNS. Lastly, the PD 

reference proteome will shed on which proteins and molecular pathways (if any) are 

conserved between PD and the ageing SNpc in rats.  

 

6.1.2 Aim and objectives 

The aim of this study was to compare the data of published proteomic studies related to 

the ageing nervous system, as well as PD, observing which differentially expressed 

proteins were common in both and in order to generate a well-defined reference 

proteome related to ageing and PD. It is expected that this multi-study proteomic 

comparison, together with bioinformatics analyses, might help to understand the 

mechanism(s) that underlie the disease and the implications that ageing has on its 

development.  

 

Based on this, the objectives of this chapter were: 

− Objective 1) To identify the common differentially expressed proteins in 

proteomic studies related to the ageing nervous system (including the 
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dysregulated proteins from the rat SNpc found in the Chapter 3 of this Thesis) 

and the biological meaning of these changes in the proteome. 

− Objective 2) To determine the common differentially expressed proteins in PD 

proteomic studies and the biological implications of this dysregulation. 

− Objective 3) To establish the common differentially expressed proteins (and their 

biological meaning) between the reference PD proteome and the reference 

ageing nervous system proteome, focusing in the ageing rat SNpc.  

 

6.2 Materials and methods 

Details about materials and methods of this experimental chapter can be found in 

Chapter 2, section 2.3.  

 

6.3 Results 

6.3.1 Examination of ageing nervous system proteomic studies 

Over the 75 articles reviewed, a total of 21 studies related to the ageing process in the 

nervous system were suitable for comparison (Table 6.1). From these, articles that used 

label-free or quantitative proteomics (based on labelling methods such as super-SILAC 

or TMT) showed the highest number of differentially expressed proteins compared with 

2DE gel electrophoresis procedures (Table 6.1). As described in Table 6.1, five articles 

used human and non-human primate samples; 16 articles, including the proteomic study 

performed in this Thesis (see Chapter 3), examined rodents; and one was done in sheep. 

The areas that were analyzed combined different regions of the brain such as the cortex, 

hippocampus, striatum, or cerebellum, but also included mitochondria and nuclear 

fractions from the entire CNS, and CSF. 
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Table 6.1. Proteomic studies of the ageing nervous system (brain and cerebrospinal fluid, CSF) included in the comparison. Each 

article has associated a reference that has been used to identify each article in the result sections. In the case that an article showed results 

for more than one region of the brain or species, more than one reference was added to that article. In the case than an article analysed 

the protein expression at different time points in the same region, the same reference is allocated but with ‘a’ or ‘b’. The table shows the 

species, type of sample, and age in each study. Moreover, the number of differentially expressed proteins identified in each study is 

presented, together with the number of proteins that have been used for the comparison. In the case some proteins were removed, the 

reasons were: ‡ Proteins not identified or repeated. † After applying a 25% filter because a fold-change cut-off was not applied previously. 

* It was only possible to obtain the ten most differentially expressed proteins. Analysis platform and protein database used in each study 

appear in the last column.  

Article  Ref. Sample (age compared) 
Differentially expressed 

proteins (included in 
comparison) 

Analysis platform and protein database 

Arguelles et al., 2011 [1] Rat hypothalamus (3 months vs. 24 
months) 8 (8) 2DE GE, MALDI-TOF/TOF 

NCBInr database 

Chadwick et al., 2012 [2] Rat hypothalamus (2-3 months vs. 24 
months) 147 (147) Cy3/Cy5 dye labelling, Panorama Cell 

signalling Array chip (Sigma) 

Chen et al., 2003 [3] Human temporal, frontal and parietal 
lobes (23 years vs. 73 years) 5 (3)‡ 

2DE GE, Micromass MALDI-TOF (Micromass) 
or Bruker autoflex MALDI-TOF (Bruker 

Daltonics) 
Swiss-prot or NCBInr database 

Chen et al., 2018 [4] Sheep CSF (1-2 years vs. 3-6 years vs. 
7-10 years) 70 (70) 

iTRAQ4plex labelling, 4800 MALDI-TOF/TOF 
(Applied Biosystems) 

Mammal NCBInr database 

Cutler et al., 2017 [5] Mouse whole brain, nuclear isolation 
(3 months vs. 24 months) 32 (32) 

Label-free, Orbitrap Fusion (ThermoFisher 
Scientific) 

Mouse Uniprot database 

Duda et al., 2018 
[6] Mouse cerebellum (1 months vs. 12 

months) 219 (219) Label-free, Q-Exactive HF Orbitrap 
(ThermoFisher Scientific) [7] Mouse cortex (1 months vs. 12 

months) 97 (97) 
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[8] Mouse hippocampus (1 months vs. 12 
months) 256 (256) 

Flowers et al. 2017 [9] Mouse whole brain, primary microglia 
culture (3-4 months vs. 20-24 months) 271 (158)† 

Super-SILAC labelling, Q-Exactive Orbitrap 
plus (ThermoFisher Scientific) 

Mus musculus Uniprot database 

Graham et al., 2019 

[10] Human occipital cortex (18-25 years vs. 
40-45 years vs. +70 years) 1145 (1145) 

Label-free, LTQ-Orbitrap (ThermoFisher 
Scientific) 

IPI-Macaca mullata and IPI-Homo sapiens 
databases 

[11] Human hippocampus (18-25 years vs. 
40-45 years vs. +70 years) 1044 (1044) 

[12] Rhesus monkey occipital cortex (9.5 
years vs. 15.6 years vs. 23 years) 1423 (1423) 

[13] Rhesus monkey hippocampus (9.5 
years vs. 15.6 years vs. 23 years) 1269 (1269) 

Hamezah et al., 2018 
[14] Rat hippocampus (14 months vs. 18 

months vs. 23 months vs. 27 months) 97 (5)† 2DE-GE, Q-Exactive HF Orbitrap 
(ThermoFisher Scientific) 

Rattus norvegicus Uniprot database [15] Rat striatum (14 months vs. 18 months 
vs. 23 months vs. 27 months) 5 (1)† 

Mao et al., 2006 [16] Mouse whole brain, mitochondria 
fraction (2 weeks vs. 24 months) 6 (6) 

2DE-GE, Bruker Reflex IV MALDI-TOF (Bruker 
Daltonics) 

NCBInr database 

McGinn et al., 2012 [17] Rat subventricular zone (1 month vs. 
+24 months) 7 (7) 2DE-GE, LCQ Deca XP Plus (ThermoFinnigan) 

MASCOT database 

Pabba et al., 2017 [18] Human orbitofrontal cortex (15-43 
years vs. 62-68 years) 127 (127) Label-free, Orbitrap Elite (ThermoFisher 

Scientific) 

Pollard et al., 2016 [19] Mouse whole brain, mitochondria 
fraction (4-11 weeks vs. 20 months) 4 (4) 2-DE-GE, Q-TOFII (Waters) 

Swissprot and NCBInr databases 

Poon et al., 2004 [20] SAMP8 mouse whole brain (4 months 
vs. 12 months) 5 (5) 

2-DE-GE, Finnigan LCQ ‘classic’ quadrupole 
ion trap (Finnigan) 
NCBInr database 

Poon et al., 2006 [21] Mouse whole brain (6 weeks vs. 20 
months) 4 (4) 2DE-GE, TofSpec 2E MALDI-TOF (Micromass) 

NCBI database 

Smidak et al., 2017 [22] Rat dentate gyrus (17 weeks vs. 22 
months) 153 (153) 

TMT10plex labelling, Q-Exactive Plus 
Orbitrap (ThermoFisher Scientific) 

Rattus norvegicus Uniprot database 
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Wille et al., 2015 [23] Rat cerebellum (3 months vs. 21 
months) 21 (21) 

2DE-GE, 4700 MALDI-TOF/TOF (Applied 
Biosystems) 

Rattus norvegicus Uniprot database 

Stauch et al., 2015 
[24a] Mouse whole brain, mitochondria 

fraction (12 months vs. 24 months) 519 (519) Super-SILAC labelling, AB Sciex TripleTOF 
(TTOF) 5600 (Applied Biosystems) [24b] Mouse whole brain, mitochondria 

fraction (5 months vs.  24 months) 553 (553) 

Zeccaa [25] Human hippocampus (22-49 years vs. 
+70 years) 60 (60) 

TMT4plex labelling, Thermo Q-Exactive 
Orbitrap Benchtop (ThermoFisher Scientific) 

Human FASTA Uniprot database 

Xu et al., 2016b 

[26a] Human temporal lobe (34 years vs. 62 
year) 64 (10)* 

TMT4plex labelling, Thermo Q-Exactive 
Orbitrap Benchtop (ThermoFisher Scientific) 

Human FASTA Uniprot database 
[26b] Human temporal lobe (34 years vs. 84 

years) 91 (10)* 

[26c] Human temporal lobe (34 years vs. 95 
years) 70 (10)* 

Yang et al., 2008 [27] Mouse whole brain (3 months vs. 6 
months vs. 12 months vs. 15 months) 39 (39) 

2DE-GE, Bruker autoflex MALDI-TOF (Bruker 
Daltonics) 

Rodent NCBI database 

‘Thesis study’ 
[28a] Rat substantia nigra (16 months vs. 

+21 months) 28 (28) iTRAQ4plex labelling, TripleTOF 5600 (AB 
Sciex) 

UniProtKB/Swiss-Prot FASTA database [28b] Rat substantia nigra (8 months vs. +21 
months) 43 (43) 
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6.3.2 The ageing process generates conserved protein changes in the nervous 

system 

The comparison of the differentially expressed proteins that change with ageing in the 

21 articles reviewed left a total of 648 proteins that were independently observed in at 

least three different studies as being altered in ageing. From these, 147 proteins changed 

in the same direction (44 proteins were always upregulated with ageing, while 103 

proteins were always downregulated with ageing), and 501 proteins showed contrary 

directions depending on the study. Among the downregulated proteins, 

dihydropyrimidinase like 3 (dpysl3) was the protein that appeared repeated in the highest 

number of articles, being presented in six different studies (Table 6.2; Table S1 Annex 

2; Supplementary Table 4). In the case of the upregulated proteins, alpha-crystallin B 

chain (cryab) appeared in eight independent studies, followed by hyaluronan and 

proteoglycan link protein 2 (hapln2) and palmitoyl-protein thioesterase 1 (ppt1) both in 

seven studies, and sulphated glycoprotein 1 (psap) in six studies (Table 6.3; Table S2 

Annex 2; Supplementary Table 4). Lastly, glial fibrillary acidic protein (gfap, GFAP), 

versican core protein (vcan) and aggrecan core protein (acan) were the non-conserved 

(different direction of expression) proteins presented in more studies (seven in total), 

including the rat SNpc proteomic study; while MARCKS-related protein (marcksl1) and 

calreticulin (calr) were also two proteins that were presented in seven studies without 

including the rat SNpc proteomic study (Table 6.4; Table S3 Annex 2; Supplementary 

Table 4). In most cases, versican core protein (vcan), aggrecan core protein (acan) and 

GFAP were upregulated with ageing, without existing a pattern in the direction of the 

expression of these proteins according to the species or region of the brain study (see 

Table 6.1). For example, in the case of GFAP, it was upregulated in rhesus monkey 

hippocampus, subventricular zone in rats, orbitofrontral cortex and hippocampus in 

humans, and when the whole mouse brain was examined; while it was downregulated 

in the occipital cortex of rhesus monkeys (Graham et al., 2019) and in the rat SNpc 

proteome (see Table 6.1).  When the proteins from the proteomic study of the rat SNpc 
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presented in this Thesis (Chapter 3) were compared with the rest of the articles analyzed, 

only one protein, monoglyceride lipase (mgII) was also downregulated in two different 

areas (i.e., hippocampus and occipital cortex) in rhesus monkeys (Graham et al., 2019) 

(Table S1 Annex 2; Supplementary Table 4), while six proteins were also upregulated 

in other studies, including alpha-crystallin B chain (cryab), hyaluronan and proteoglycan 

link protein 2 (hapln2), sulphated glycoprotein 1 (psap), myelin-associated 

oligodendrocyte basic protein (mobp), apolipoprotein E (apoe) and haemoglobin subunit 

alpha 1 (hba1) (Table 6.3; Table S2 Annex 2; Supplementary Table 4). Thus, alpha-

crystallin B chain (cryab) was also upregulated in mouse cortex and hippocampus, 

human hippocampus and orbitofrontal cortex, rhesus monkey occipital cortex and 

hippocampus, and rat dentate gyrus (Table 6.1). Hyaluronan and proteoglycan link 

protein 2 (hapln2) was upregulated in mouse cerebellum, cortex and hippocampus, but 

also the hippocampus of humans and rhesus monkeys, and rat dentate gyrus (Table 

6.1). There was an increase of sulphated glycoprotein 1 (psap) in sheep CSF, rhesus 

monkey occipital cortex and hippocampus, human orbitofrontal cortex, and rat dentate 

gyrus (Table 6.1). Interestingly, myelin-associated oligodendrocyte basic protein (mobp) 

was only upregulated in mice, in the areas of the cerebellum, cortex, hippocampus and 

when the whole brain was studied (Table 6.1). Apolipoprotein E (apoe) increased in the 

whole brain of mice, and the hippocampus of humans and rhesus monkeys; while 

haemoglobin subunit alpha 1 (hba1) was upregulated in human hippocampus and 

occipital cortex of monkeys (Table 6.1). Nevertheless, as Table 6.1 shows, it is important 

to note that the articles where these proteins were found represent the studies where 

more proteins were identified in total, based on the used proteomic approaches (e.g., 

label-free and quantitative proteomics). Lastly, in the case of proteins expressed in 

opposite directions, 29 proteins from the rat SNpc proteome in ageing, including GFAP, 

versican core protein (vcan), and aggrecan core protein (acan) (already mentioned in 

this subsection) were also dysregulated in other independent studies (Table 6.4; Table 

S3 Annex 2; Supplementary Table 4). 
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Table 6.2. Differentially expressed proteins that change in the same direction (downregulated) in at least three different proteomic 
studies related to the ageing nervous system. Only proteins that are expressed in four or more studies are presented. The rest of the 

list can be found in Table S1 (Annex 2) The first column shows the gene name of the 44 proteins downregulated (red cells) with ageing. 

Numbers indicate the reference numbers of each article, which can be checked in Table 6.1.  

 

 

 

 

 

 

 

 

Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
dpysl3 DOWN DOWN DOWN DOWN DOWN DOWN

cxadr DOWN DOWN DOWN DOWN

glb1 DOWN DOWN DOWN DOWN

gnb4 DOWN DOWN DOWN DOWN

mvd DOWN DOWN DOWN DOWN

ppp2cb DOWN DOWN DOWN DOWN

pvrl1 DOWN DOWN DOWN DOWN

rps12 DOWN DOWN DOWN DOWN

tnc DOWN DOWN DOWN DOWN

ugt8 DOWN DOWN DOWN DOWN

atp5c1 DOWN DOWN DOWN DOWN

pclo DOWN DOWN DOWN DOWN

tfrc DOWN DOWN DOWN DOWN DOWN
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Table 6.3. Differentially expressed proteins that change in the same direction (upregulated) in at least three different proteomic 
studies related to the ageing nervous system. Only proteins that are expressed in four or more studies are presented. The rest of the 

list can be found in Table S2 (Annex 2) The first column shows the gene name of the 103 proteins upregulated (green cells) with ageing. 

Numbers indicate the reference number that can be checked in Table 6.1.  

 

 

 

 

 

 

Gen name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
cryab UP UP UP UP UP UP UP UP

hapln2 UP UP UP UP UP UP UP

ppt1 UP UP UP UP UP UP UP

psap UP UP UP UP UP UP

mobp UP UP UP UP UP

asah1 UP UP UP UP UP

ca1 UP UP UP UP UP

tpi1 UP UP UP UP UP

hepacam UP UP UP UP UP

tpm1 UP UP UP UP

map1b UP UP UP UP

apoe UP UP UP UP

aqp4 UP UP UP UP

nckipsd UP UP UP UP

padi2 UP UP UP UP

anxa1 UP UP UP UP

anxa2 UP UP UP UP

flna UP UP UP UP

aldh3b1 UP UP UP UP

eef1g UP UP UP UP

usp5 UP UP UP UP
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Table 6.4. Differentially expressed proteins that change in different direction (down- and upregulated) in at least three different 
proteomic studies related to the ageing nervous system. Only proteins that are expressed in six or more studies are presented. The 

rest of the list can be found in Table S3 (Annex 2) The first column shows the gene name of the 501 proteins downregulated (red cells) or 

upregulated (green cells) with ageing. Numbers indicate the reference number that can be checked in Table 6.1. 

 

 

 

 

Gen name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
vcan UP UP DOWN UP UP UP UP

acan UP UP DOWN UP UP UP UP

gfap DOWN UP UP UP UP UP UP DOWN

marcksl1 DOWN DOWN DOWN UP UP UP DOWN

calr UP DOWN DOWN DOWN DOWN DOWN DOWN

ivd UP UP UP UP UP DOWN UP

fth1 UP UP DOWN UP UP UP

tagln UP UP UP UP UP DOWN

ca2 UP UP DOWN UP DOWN UP UP

gap43 UP DOWN UP UP UP DOWN

s100b DOWN DOWN UP UP DOWN UP

fabp7 DOWN DOWN DOWN UP UP DOWN

ndufs8 DOWN DOWN DOWN DOWN DOWN UP

pdia3 UP DOWN DOWN DOWN UP DOWN

dpysl5 DOWN DOWN DOWN UP DOWN DOWN

bdh1 DOWN DOWN DOWN DOWN DOWN DOWN DOWN
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6.3.3 Proteins related to mitochondrial energy metabolism, oxidation-reduction 

process and cell adhesion are dysregulated in a conserved manner in the nervous 

system during ageing as revealed by Gene Ontology analysis 

GO analysis using DAVID software (Huang et al., 2007; Huang et al., 2009) were 

performed to obtain a better understanding of the biological meaning of the 147 proteins 

that were differentially expressed in the same direction in the ageing nervous system. 

For that, the 44 downregulated and 103 upregulated conserved proteins were analysed 

independently, accepting GO terms if they had a p<0.05 and were assigned to at least 

two proteins. GO showed that the most enriched biological processes using the 44 

downregulated proteins (Table 6.2; Table S1 Annex 2; Supplementary Table 4) were 

the terms ‘mitochondrial ATP synthesis coupled proton transport, ‘ATP synthesis 

coupled proton transport’ and ‘ATP biosynthesis process’ (Figure 6.1A, Table S4 Annex 

2). The top four most enriched terms from the cellular component category linked to 

downregulated proteins in the ageing nervous system were ‘extracellular exosome’, 

‘membrane’, ‘mitochondrial inner membrane’ and ‘mitochondrion’ (Figure 6.1B, Table 

S4 Annex 2). ‘Poly(A) RNA binding’ and ‘proton-transporting ATP synthase activity, 

rotational mechanism’ were the top two molecular functions most enriched, related to 

conserved downregulated proteins in the ageing nervous system (Figure 6.1C, Table 

S4 Annex 2). Lastly, three pathways (‘metabolic pathway’, ‘oxidative phosphorylation’, 

and ‘Parkinson’s disease’) were determined as enriched with the downregulated proteins 

in the ageing nervous system by the KEGG pathway analysis (Figure 6.1D, Table S4 

Annex 2).  

On the other hand, when the 103 upregulated proteins that were conserved in the ageing 

nervous system (Table 6.3; Table S2 Annex 2; Supplementary Table 4) were 

examined, GO analysis revealed that the terms ‘oxidation-reduction process’, ‘cell-cell 

adhesion’ and ‘negative regulation of apoptotic process’ were the top three enriched 

biological processes (Figure 6.2A, Table S5 Annex 2).
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Figure 6.1. Summary of Functional Annotation analyses (Gene Ontology and KEGG) of the 44 downregulated proteins conserved 
in the ageing nervous system proteome. DAVID software revealed the enriched terms related to (A) biological processes, (B) cellular 

components, (C) molecular functions, (D) and KEGG pathways. In the graphs, the number of annotated proteins is indicated by a white 

number. The name of annotated proteins for each term and the entire list of terms can be checked in Table S4 (Annex 2).  
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As cellular components, ‘extracellular exosome’, ‘cytoplasm’, and ‘cytosol’ were by far 

the terms with the highest number of upregulated proteins associated with them (Figure 

6.2B, Table S5 Annex 2). In the case of molecular functions, ‘cadherin binding involved 

in cell-cell adhesion’, ‘identical protein binding’ and oxidoreductase activity’ were the 

overrepresented terms when the upregulated proteins were used (Figure 6.2C, Table 

S6 Annex 2). Finally, KEGG analysis showed that ‘metabolic pathway’, ‘lysosome’ and 

‘glycolysis/gluconeogenesis’ were the enriched terms associated with upregulated 

proteins (Figure 6.2D, Table S5 Annex 2).  

 

6.3.4 Reactome pathway analysis showed a conserved dysregulation of 

metabolism, metabolism of proteins and immune system pathways in the ageing 

nervous system  

To extract more information about the biological meaning associated with the 147 

dysregulated proteins that were conserved in the ageing nervous system, Reactome 

pathway analyses (Fabregat et al., 2017; Fabregat et al., 2018) were performed, 

examining downregulated and upregulated proteins independently.  

In the case of the downregulated proteins (Table 6.2; Table S1 Annex 2; 

Supplementary Table 4), Reactome found 32 out of 44 proteins, generating 297 

pathways that were hit by at least one of these proteins. This left 12 downregulated 

proteins that were not found or mapped to any Reactome entity. Nevertheless, some of 

these unmappable proteins were identified by DAVID during the GO analysis, including 

cell adhesion molecule 4 precursor (CADM4), chloride intracellular channel protein 6 

(CLIC6) and 2’,3’-cyclic-nucleotide 3’-phosphodiesterase precursor (CNP) which were 

linked to the GO term ‘extracellular exosome’; and mitochondrial carrier homolog 1 

(MTCH1) and protein piccolo (PCLO) which were associated with the term ‘membrane’.
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Figure 6.2. Summary of Functional Annotation analyses (Gene Ontology and KEGG) of the 103 upregulated proteins conserved 
in the ageing nervous system proteome. DAVID software revealed the enriched terms associated with (A) biological processes, (B) 
cellular components, (C) molecular functions, (D) and KEGG pathways. In the graphs, only the top ten terms are shown as bars, with the 

number of annotated proteins indicated with a white number. The name of annotated proteins to each term and the entire list of terms can 

be checked in Table S5 (Annex 2).  
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Table 6.5. The 25 most enriched pathways sorted by the most statistically 
significant p-values, using the 44 conserved downregulated proteins in the ageing 
nervous system. ‘Entities’ refers to Uniprot accession numbers, showing the number 

of entities found in the analysis from the total in that pathway. 

 

 
The Reactome pathway with the most statistically significant p-value was ‘respiratory 

electron transport, ATP synthesis by chemiosmotic coupling, and heat production by 

uncoupling proteins’ (R-HAS-163200) (Table 6.5). This pathway was associated with 

eight proteins: ATP synthase subunit gamma, mitochondrial (ATP5C1), ATP synthase 

subunit O, mitochondrial (ATP5O), succinate dehydrogenase [ubiquinone] iron-sulfur 

subunit, mitochondrial (SDHB), ATP synthase subunit d, mitochondrial (ATP5H), NADH 

dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12), cytochrome 

b-c1 complex subunit 1, mitochondrial (UQCRC1), ATP synthase subunit g, 

mitochondrial (ATP5L), and protein arginine methyltransferase NDUFAF7, mitochondrial 

(NDUFAF7). In addition, the genome-wide view offered an overview of the 

Pathway name Entities 
found/total p-value 

Respiratory electron transport, ATP synthesis by chemiosmotic 
coupling, and heat production by uncoupling proteins 8 / 146 3.93e-08 

The citric acid (TCA) cycle and respiratory electron transport 8 / 229 1.16e-06 
Formation of ATP by chemiosmotic coupling 4 / 23 1.39e-06 
Cristae formation  4 / 31 4.48e-06 
Respiratory electron transport  4 / 115 6.87e-04 
Mitochondrial biogenesis  4 / 127 9.91e-04 
Keratan sulfate degradation  2 / 22 0.003 
Iron uptake and transport  3 / 83 0.003 
Glycosphingolipid metabolism  3 / 86 0.003 
Metabolism  21 / 3,639 0.007 
Transferrin endocytosis and recycling 2 / 39 0.008 
Phase 2 - plateau phase   2 / 42 0.009 
Triglyceride catabolism  2 / 42 0.009 
HS-GAG degradation  2 / 44 0.01 
MPS IV - Morquio syndrome B  1 / 4 0.014 
Keratan sulfate/keratin metabolism  2 / 52 0.014 
Complex I biogenesis  2 / 57 0.017 
Sphingolipid metabolism  3 / 157 0.017 
Translation initiation complex formation 2 / 62 0.02 
Activation of the mRNA upon binding of the cap-binding complex 
and eIFs, and subsequent binding to 43S 2 / 66 0.022 

Triglyceride metabolism  2 / 66 0.022 
Phase 0 - rapid depolarisation  2 / 68 0.023 
Nectin/Necl trans heterodimerization 1 / 7 0.024 
Activation of gene expression by SREBF (SREBP) 2 / 70 0.025 
Defective NEU1 causes sialidosis  1 / 8 0.027 
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overrepresented pathways (Sidiropoulos et al., 2017), revealing that the ‘respiratory 

electron transport, ATP synthesis by chemiosmotic coupling, and heat production by 

uncoupling proteins’ pathway was part of the top-level pathway ‘metabolism’ (R-SHA-

1430728) (Figure 6.3A). This ‘metabolism’ pathway, included in the top 25 most 

enriched pathways associated with the downregulated proteins in the ageing nervous 

system, was a top-level pathway of another 12 relevant pathways (Table 6.5, Figure 

6.3A). Altogether, these results corroborate and complement the findings generated by 

GO analysis, where biological processes associated with ATP metabolism such as 

‘mitochondrial ATP synthesis coupled proton transport, ‘ATP synthesis coupled proton 

transport’ and ‘ATP biosynthesis process’ were also enriched with the conserved 

downregulated proteins of the ageing nervous system.   

On the other hand, using the 103 upregulated proteins (Table 6.3; Table S2 Annex 2; 

Supplementary Table 4), Reactome analysis found 85 out of 103 upregulated proteins  

in the ageing nervous system, producing 572 pathways where at least one identified 

protein was present, and leaving 18 upregulated proteins that were not found or mapped 

to any Reactome entity. Similar to the downregulated proteins, some of these 

unmappable upregulated proteins in the Reactome analysis were identified during the 

GO analysis. This was the case of hepatocyte cell adhesion molecule (HEPACAM) and 

microtubule-associated protein 1B (MAP1B) linked to the term ‘cytoplasm’; as well as 

sorting nextin-1 (SNX1) and STE20/SPS1-related proline-alanine-rich protein kinase 

(STK39) associated with the term ‘extrinsic component of membrane’. The Reactome 

pathway with the most statistically significant p-value was ‘antigen presentation: folding, 

assembly and peptide loading of class I MHC’ (R-SHA-983170) associated with 21 

entities linked to the HLA class I histocompatibility antigen (HLA-A). This ‘antigen 

presentation: folding, assembly and peptide loading of class I MHC’ pathway belonged 

to the top-level pathway ‘immune system’ as the genome-wide view (Sidiropoulos et al., 

2017) showed (Table 6.6, Figure 6.3B). This top-level pathway was also included in the 

top 25 most relevant pathways and comprised another 15 enriched Reactome pathways 
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(Table 6.6, Figure 6.3B). Importantly, this Reactome result revealed new pathways that 

were not discovered by GO analysis, highlighting a dysregulation in the immune system 

associated with proteins that were upregulated in the ageing nervous system. 

 
Table 6.6. 25 most enriched pathways sorted by the most statistically significant 
p-values, using the 103 conserved upregulated proteins in the ageing nervous 
system. ‘Entities’ refers to Uniprot accession numbers, showing the number of entities 

found in the analysis from the total in that pathway.  

Pathway name Entities 
found/total p-value 

Antigen Presentation: Folding, assembly and peptide loading of 
class I MHC 21 / 102 1.11e-16 

Endosomal/Vacuolar pathway  21 / 82 1.11e-16 
ER-Phagosome pathway  22 / 165 1.11e-16 
Antigen processing-Cross presentation 23 / 187 1.11e-16 
Interferon alpha/beta signaling  22 / 184 1.11e-16 
Interferon gamma signaling  22 / 250 6.05e-14 
Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell  21 / 316 4.27e-11 

Class I MHC mediated antigen processing & presentation 25 / 465 4.48e-11 
Interferon Signaling  23 / 392 5.38e-11 
Immune System  60 / 2,803 2.46e-08 
Cytokine Signaling in Immune system 34 / 1,245 3.90e-07 
Adaptive Immune System  29 / 998 9.75e-07 
Neutrophil degranulation  19 / 480 1.24e-06 
Interleukin-12 family signaling  7 / 96 9.37e-05 
Gene and protein expression by JAKSTAT signaling after Interleukin-
12 stimulation 6 / 73 1.58e-04 

Interleukin-12 signaling  6 / 84 3.33e-04 
XBP1(S) activates chaperone genes  6 / 95 6.33e-04 
IRE1alpha activates chaperones  6 / 101 8.67e-04 
Transcriptional regulation by the AP-2 (TFAP2) family of 
transcription factors 4 / 52 0.003 

Surfactant metabolism  4 / 53 0.003 
Defective CSF2RB causes pulmonary surfactant metabolism 
dysfunction 5 (SMDP5) 2 / 8 0.004 

Defective CSF2RA causes pulmonary surfactant metabolism 
dysfunction 4 (SMDP4) 2 / 8 0.004 

Platelet degranulation  6 / 137 0.004 
Innate Immune System  25 / 1,324 0.004 
Neurofascin interactions  2 / 9 0.004 
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Figure 6.3. Genome-wide overview of the Reactome pathway analysis 
(Sidiropoulos et al., 2017) of the 147 conserved differentially expressed proteins 
in the ageing nervous system. (A) Genome-wide overview of the Reactome pathway 

analysis of the 44 conserved downregulated proteins. (B) Genome-wide overview of the 

Reactome pathway analysis of the 103 conserved upregulated proteins. Each top-level 

pathway has a centre from which other pathways of a lower hierarchy start. Top-level 

overexpressed pathways are emphasized with a red rectangle (e.g., ‘metabolism’, 

‘immune system’), while secondary overexpressed pathways (e.g., ’complex I 

biogenesis’) linked to them are highlighted using a colour-scale that indicates p-value 

(right-hand side). Light grey pathways are not significantly overrepresented.  
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6.3.5 Proteins related to mitochondrial ATP metabolism and immune system are 

the main hubs in the protein network of the conserved downregulated and 

upregulated proteins in the ageing nervous system  

To identify protein-protein interactions between the conserved dysregulated proteins, 

STRING database (Szklarczyk et al., 2019) was performed, executing independent 

analyses of the 44 downregulated and the 103 upregulated proteins found of the multi-

study comparison of the ageing nervous system.  

For the 44 downregulated proteins (Table 6.2; Table S1 Annex 2; Supplementary 

Table 4), three proteins (ATP synthase subunit g, mitochondrial (ATP5L), ATP synthase 

subunit O, mitochondrial (ATP5O), and succinate dehydrogenase [ubiquinone] iron-

sulfur subunit, mitochondrial (SDHB)) showed the larger number of associations (eight 

in total each) with other downregulated proteins (Figure 6.4). These three proteins were 

part of the enriched biological process ‘mitochondrial ATP synthesis coupled proton 

transport, ‘ATP synthesis coupled proton transport’ and ‘ATP biosynthesis process’ 

(Figure 6.1A, Table S4 Annex 2), as well as the enriched Reactome pathways related 

to the top-level ‘metabolism’ pathway and the second pathways overexpressed 

associated with it (Figure 6.3A). These three proteins were associated between them 

and also to four proteins downregulated (ATP synthase subunit gamma, mitochondrial 

(ATP5C1), ATP synthase subunit d, mitochondrial (ATP5H), NADH dehydrogenase 

[ubiquinone] 1 alpha subcomplex subunit 12 (NDUFA12), and cytochrome b-c1 complex 

subunit 1, mitochondrial (UQCRC1)). In addition, ATP synthase subunit g, mitochondrial 

(ATP5L) was associated with V-type proton ATPase subunit S1 (ATP6AP1) and 

ferrochelatase, mitochondrial (FECH); ATP synthase subunit O, mitochondrial (ATP5O) 

was associated with V-type proton ATPase subunit S1 (ATP6AP1) and mitochondrial 

carrier homolog 1 (MTCH1); while succinate dehydrogenase [ubiquinone] iron-sulfur 

subunit, mitochondrial (SDHB) was linked to ferrochelatase, mitochondrial (FECH) and 

glycerol-3-phosphate dehydrogenase, mitochondrial (GPD2) (Figure 6.4).  
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Among the protein network of the 103 upregulated proteins (Table 6.3; Table S2 Annex 

2; Supplementary Table 4), the receptor protein-tyrosine kinase (EGFR) was the 

proteins with a larger number of association (18 in total) (Figure 6.5). This protein was 

involved in GO biological processes such as ‘negative regulation of apoptosis process’, 

‘receptor mediated endocytosis’, and ‘positive regulation of phosphorylation’ (Figure 

6.2A, Table S6 Annex 2). This receptor protein-tyrosine kinase (EGFR) was also linked 

to the top-level ‘immune system’ enriched pathway in Reactome and other secondary 

pathways associated with it such as ‘cytokine signalling in immune system’ (Figure 

6.3B). The 18 proteins networking with receptor protein-tyrosine kinase (EGFR) were:  

 

 

 

Figure 6.4. Protein network analysis with the STRING database of the 44 
conserved downregulated proteins in the ageing nervous system. In orange boxes 

with black border, proteins show the larger number of associations; while orange boxes 

alone indicate their protein associations. The network displays only proteins with 

interactions, hiding those proteins that are disconnected. The coloured lines indicate the 

type of interaction between proteins (light blue, associated in curated database; pink, 

experimental or biochemical determined; green, gene neighbourhood; black, co-

expression; grey, protein homology; lime, co-mentioned in Pubmed abstracts).  
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Abl interactor 1 (ABI1), annexin A1 (ANXA1), annexin A2 (ANXA2), annexin A5 

(ANXA5), cathepsin B (CTSB), gamma-enolase (ENO2), fatty acid synthase (FASN), 

heterogeneous nuclear ribonucleoprotein H (HNRNPH1), heat shock protein beta-1 

(HSPB1), intersectin-1 (ITSN1), kinesin-1 heavy chain (KIF5B), prolow-density 

lipoprotein receptor-related protein 1 (LRP1), NCK-interacting protein with SH3 domain 

Figure 6.5. Protein network analysis with the STRING database of the 103 
conserved upregulated proteins in the ageing nervous system. In orange boxes 

with black border, proteins that show the larger number of associations; while orange 

boxes alone indicate their protein associations. The network displays only proteins with 

interactions, hiding those proteins that are disconnected. The coloured lines indicate the 

type of interaction between proteins (light blue, associated in curated database; pink, 

experimental or biochemical determined; green, gene neighbourhood; black, co-

expression; grey, protein homology; lime, co-mentioned in Pubmed abstracts).  
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(NCKIPSD), protein kinase C and casein kinase substrate in neurons protein 2 

(PACSIN2), syntenin-2 (SDCBP), sorting nexin-1 (SNX1), signal transducer and 

activator of transcription 3 (STAT3), and neural Wiskott-Aldrich syndrome protein 

(WASL) (Figure 6.5). 

In summary, bioinformatic analysis of the differentially expressed proteins, obtained 

when proteomic studies of the ageing nervous system were compared, has revealed 

that mitochondrial ATP metabolism, oxidation-reduction process, cell adhesion and 

immune system are biological processes that are altered in this proteome.  

 

6.3.6 Examination of PD proteomic studies 

In total, 40 studies were found in PD in humans, while 29 articles were found in PD 

models in mammals. However, only 24 were used in the multi-study comparison in 

humans (Table 6.7) and 13 in PD models (Table 6.8). The proteomes that were 

examined by label-free and TMT labelling proteomics showed the highest number of 

differentially expressed proteins compared to those proteomes analyzed by 2DE gel 

electrophoresis (Table 6.7, Table 6.8). As referenced in Table 6.7, considering only the 

human studies with PD, six of them examined the SNpc; while another six investigated 

other areas of the brain, including the prefrontal cortex, locus coeruleus, olfactory bulbs, 

and subventricular zone. The remaining 11 articles observed different biofluids from 

parkinsonians such as tears, blood/serum/ plasma, CSF, and urine; and one looked at 

the rinsing fluids and lenses fractions of parkinsonians in order to find new biomarkers 

(therefore, this last study was also included in the biofluid comparison). In the case of 

PD models, as Table 6.8 shows, four looked at the SNpc of rodents under different toxins 

such as 6-OHDA, MPTP, or adenoviral injection of PARIS (a substrate of parkin that 

produce the degeneration of DAn). Nine studies examined the striatum, under conditions 

of lesioning with 6-OHDA, MPTP, methamphetamine, maneb/paraquat, and adenoviral 

injection of PARIS. From these, only one study was performed using monkeys and the 
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Table 6.7 Proteomic studies of PD in humans included in the comparison. Each article has an associated reference that has been 

used to identify each article in the result section. The table shows the species, type of sample and age in each study. Moreover, the number 

of differentially expressed proteins identified in each study is presented, together with the number of proteins that have been used for the 

comparison. In the case some proteins were removed, the reasons were: † It was possible only to obtain the list of the synaptic proteins 

differentially expressed. ‡ After applying a 25% filter because a fold-change cut-off was not applied previously. * Proteins not identified or 

repeated. Analysis platform and protein database use in each study appear in the last column. IPI: International Protein Index. VTA: ventral 

tegmental area. 

Article  Ref. Human sample (age-matched 
controls) 

Differentially expressed 
proteins (included in 

comparison) 
Analysis platform and protein database 

Bereczki et al., 2018 [1] PD with dementia prefrontal cortex 
(72-89 years) vs. controls (65-96 years)  485 (5)† 

TMT10plex labelling, Q-Exactive 
(ThermoFisher Scientific) 

Huma Swiss-Prot database 

Van Dijk et al., 2012 [2] PD locus coeruleus (77 years) vs. 
controls (77 years)  87 (78)‡ 

1DE GE, LTQ-FT hybrid (ThermoFisher 
Scientific) 

Human IPI database 

Licker et al., 2014 [3] PD susbtantia nigra (72 years) vs. 
controls (79 years) 204 (38)‡ 

TMT6plex labelling, LTQ Orbitrap XL (Thermo 
Electron) 

Homo sapiens UniProt Swiss-Prot database  

Boerger et al., 2019  [4] PD tear fluids (66 years) vs. control (63 
years) 40 (40) 

1DE GE, LTQ Orbitrap XL (ThermoFisher 
Scientific) 

Homo sapiens UniProt Swiss-Prot database 

Lachen-Montes et al., 
2019 [5] PD olfactory bulbs (77 years) vs. 

controls (79 years) 268 (268) 
Label-free, AB Sciex TripleTOF (TTOF) 5600 

(Applied Biosystems) 
Homo sapiens UniProt Swiss-Prot database 

Kitamura et al., 2018 [6] PD exosomes from plasma (65 years) 
vs. controls (62 years) 3 (3) 2DE GE, 4800 Plus MALDI-TOF/TOF (Sciex) 

Uniprot database 

Magdalinou et al., 
2017 [7] Atypical parkinsonism cerebrospinal 

fluid (66 years) vs. controls (59 years) 26 (26) 
TMT6plex labelling, Q-Exactive 

(ThermoFisher Scientific) 
UniProtKB Swiss-Prot database 
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Klettner et al., 2017 [8] PD rinsing fluid and lens fractions (72 
years) vs. controls (71 years) 1 (1) 

2DE GE, Thermo Q-Exactive plus 
(ThermoFisher Scientific) 

FAST human database 

Chiu et al., 2016 [9] PD serum (62 years) vs. controls (61 
years) 20 (20) 2DE GE, MS/MS (Bruker Daltonics) 

SwissProt or NCBInr databases 

Xing et al., 2015 [10] 
PD monocluclear cells from 

cerebrospinal fluid (57 years) vs. 
controls (56 years) 

9 (9) 2DE GE, 4307 MALDI-TOF (Voyager) 
 

Dumitriu et al., 2016 [11] PD prefrontal cortex (76 years) vs. 
controls (79 years) 283 (5)‡ 

TMT6plex labelling, LTQ Orbitrap Velos 
(ThermoFisher Scientific) 

Human IPI database 

Liu et al., 2015 [12] PD substantia nigra (78 years) vs. 
control (74 years) 11 (11) CDIT labelling, Tandem (ThermoFisher 

Scientific) 

Wang et al., 2019 [13] PD urinary extracellular vesicles (63 
years) vs. controls (66 years) 15 (15) 

NuPAGE GE, Thermo Orbitrap Velos Pro 
(ThermoFisher Scientific) 

UniRef100 database 

Donega et al., 2019 [14] PD subventricular zone (78 years) vs. 
controls (80 years) 90 (90) 2DE GE, TripleTof 5600 (Sciex) 

Human UniProt database 

Alberio et al., 2012 [15] PD blood T-lymphocytes (54 years) vs. 
controls (60 years) 20 (14)* 2DE GE, Esquire 6000 (Burker Daltonics) 

NCBInr database 

Licker et al., 2012 [16] PD substantia nigra (81 years) vs. 
controls (83 years) 23 (23) 

2DE GE, LTQ Orbitrap XL (ThermoFisher 
Scientific) or MALDI-TOF/TOF (Applied 

Biosystems) 
Homo sapiens UniProt Swiss-Prot database 

Zhang et al., 2012 [17] PD serum vs. controls 26 (24)‡* 
iTRAQ3plex labelling, Qstar XL (Applied 

Biosystems) 
Human IPI database 

Zhao et al., 2010 [18] PD serum (71 years) vs. controls (64 
years) 13 (13) 

2DE GE, Micromass-ESI-Q-TOD Ultima 
(Waters) 

NCBI database 

Sinha et al., 2009  [19] PD cerebrospinal fluid (59 years) vs. 
controls (46 years) 6 (4)* 

2DE GE, Bruker Ultraflex MALDI-TOF and 2D 
Nano LC-ESI-Trap (Agilent) 

NCBI and Swiss-Prot databases 
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Werner et al., 2008 [20] PD substantia nigra (84 years) vs. 
controls (77 years)  16 (3)‡ 

2DE GE, Voyager DE Pro (Perseptive 
Biosystems) 

NCBI and SwissProt databases 

Abdi et al., 2006 [21] PD cerebrospinal fluid (63 years) vs. 
controls (67 years) 72 (53)* 

iTRAQ4plex labelling, 4700 Proteomcis 
analyser (Applied Biosystems) 

IPI and Celera Discovery System databases 

Basso et al., 2004  [22] PD substantia nigra (75 years) vs. 
controls (70 years) 9 (9) 

2DE GE, Reflex III MALDI-TOF (Bruker 
Daltonics) 

Swiss-Prot database 

Choi et al., 2004 [23] PD frontal cortex (72 years) vs. controls 
(76 years) 1(1) 

2DE GE, Voyager DE Pro (Perseptive 
Biosystems) 

and Finnigan LTQ ion trap (ThermoFisher 
Scientific) 

Protein Prospector databases 

Jin et al., 2006 [24] PD substantia nigra mitocondrias vs. 
controls  119 (105)* ICAT labelling, LTQ (ThermoFisher Scientific) 

Human IPI database 
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Table 6.8. Proteomic studies of PD models in mammals included in the comparison. Each article has an associated reference that 

has been used to identify each article in the result section. In the case of an article showing results for more than one region of the brain, 

more than one reference was added to that article. The table shows the species, type of sample and how much time passed after the 

dissection (if applicable) in each study. Moreover, the number of differentially expressed proteins identified in each study is presented, 

together with the number of proteins that have been used for the comparison. In the case some proteins were removed, the reasons were 

as follow: ‡ After applying a 25% filter because a fold-change cut-off was not applied previously, or p-value (<0.05) filter. * Proteins not 

identified or repeated. Analysis platform and protein database used in each study appear in the last column. IPI: International Protein Index. 

KO: Knock-out. WT: wild-type. AAV: adeno-associated viral vectors. VTA: ventral tegmental area. 6-OHDA: 6-hydroxydopamine. MPTP: 1-

methyl04-phenyl-1,2,3,4-tetrahydropyrdine. METH: methamphetamine. MB+PQ: maneb and paraquat. 

Article  Ref. Mammal sample (dissection time after 
lesion or treatment, if applicable) 

Differentially 
expressed proteins 

(included in 
comparison) 

Analysis platform and protein database 

Triplett et al., 2015 [1] PINK1 KO mouse whole brains vs. WT 
controls  23 (23) 

2DE GE, LTQ Orbitrap XL (ThermoFisher 
Scientific) 

Swiss-Prot database 

Kim et al., 2017a 

[2] Mouse cortex injected with AAV-PARIS 
(after 4 weeks) vs. AAV-GFP control  48 (48) 

2DE GE, LTQ ion-trap (ThermoFisher 
Scientific) 

Uniprot database 
[3] Mouse striatum injected with AAV-PARIS 

(after 4 weeks) vs.  AAV-GFP control  61 (61) 

[4] Mouse substantia nigra injected with AAV-
PARIS (after 4 weeks) vs.  AAV-GFP control  15 (15) 

Maasz et al., 2017  [5] 

Substantia nigra from rats treated with 
unilateral 6-OHDA injection in substantia 

nigra (after 14 days) vs. contralateral 
controls 

1 (1) 
2DE GE, Bruker Amazon SL ion trap (Bruker 

Daltonics) 
Rat NCBI and Swiss-Prot databases 

Stauch et al., 2016 [6] PINK1 KO rat striatum, synaptic 
mitochondria fraction vs. WT controls  69 (69) SWATH-5600 TripleTOf (Sciex) 

Rattus norvegicus Uniprot database 
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Kuter et al., 2016 

 
[7] 

Substantia nigra from rats treated bilateral 
6-OHDA injection in the medial forebrain 

bundle (after 4 weeks), mitochondria 
fraction vs. sham operated controls 

47 (15)‡ 
 

2DE GE, MALDI-TOF/TOF Ultraflex I (Bruker 
Daltonics) and Voyager DE-Pro 

BioSpectrometry and Voyager Data 
Explorer (Applied Biosystems) 

Rattus norvegicus Uniprot and NCBI 
databases 

Xiong et al., 2014 [8] 
Striatum from rats treated with unilateral 6-

OHDA in striatum (1-month) vs. sham 
operated controls  

76 (69)* 2DE GE, 6538 series ESI-Q-TOF (Agilent) 
Rat Swiss-Prot database 

Fuller et al., 2014 [9] 
Striatum from rats treated with unilateral 6-
OHDA injection in medial forebrain bundle 

(after 14 days) vs. unlesioned controls  
34 (31)* 

iTRAQ labelling4plex, 4800 MALDI-TOF/TOF 
(applied Biosystems) 

NCBI database 

Lessner et al., 2010 [10] 
Striatum from rats treated with unilateral 6-
OHDA injection in medial forebrain bundle 

(after 3-months) vs. controls  
100 (100) 

2DE GE, Reflex III MALDI-TOF (Bruker 
Daltonics) 

Swiss-Prot and TrEMBL databases 

Jeon et al., 2008 [11] 
Substantia nigra from mice treated with 
intraperitoneal MPTP injection (after 7 

days) vs. saline controls 
22 (22) 

2DE GE, Ettan MALDI-TOF (Amersham 
Biosciences) 

Swiss-Prot and NCBI databases 

Scholz et al., 2008 [12] 
Striatum from monkeys treated with 

intravenous MPTP injection vs. vehicle 
controls 

8 (6)* 2DE GE, ESI-LTQ (Thermo Electron) 
Homo sapiens Uniprot database 

Chin et al., 2008 

[13] 
Striatum from mice treated with 

intraperitoneal MPTP injection (after 7 
days) vs. saline control  

86 (70)‡ 
16O/18O labelling, FTICR 

Accurate and time tag database  
[14] 

Striatum from mice treated with 
intraperitoneal METH injection (after 7 

days) vs. saline control 
86 (51)‡* 

Patel et al., 2007 [15] 

Striatum from mice treated with 
intraperitoneal MB+PQ injection (after 6 

and 9 weeks of treatment) vs. saline 
controls 

3 (3) 
2DE PAGE, Bruker Ultraflex MALDI-TOF/TOF 

(Bruker Daltonics)  
 

Pierson et al., 2004  [16] 
Striatum from rats treated with unilateral 6-

OHDA injection in medial forebrain (after 
21 days) vs. controls 

4 (1)* 
Voyager DE-STR MALDI TOF (Applied 

Biosystems) 
Mascot database search tool 
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rest used rodents (i.e., rats and mice). The cortex was also investigated with an 

adenoviral injection of PARIS. Lastly, two proteomics investigations were the samples 

were transgenic mice (PINK KO) were included in the comparison 

 

6.3.7 The proteome changes found in humans with PD are not observed in animal 

PD models 

The examination of the PD proteome in humans revealed that, when the six studies from 

the SNpc were compared, from the final list of 179 dysregulated proteins only eight 

proteins appeared in at least two different studies (Table 6.9, Supplementary Table 5). 

Half of them changed in the same direction with PD, finding two proteins (neurocan core 

protein (ncan), pyruvate kinase PKM (pkm)) downregulated in two studies, while the two 

other proteins (integrin beta-1 precursor (itgb1), ferritin light chain (ftl)) were always 

upregulated. Conversely, the other half (four of them) had opposing dysregulation 

patterns. Only one protein, ferritin light chain (ftl) was differentially expressed in three 

studies, while the other seven proteins appeared dysregulated only in two different 

studies.  

 

Table 6.9. Differentially expressed proteins in the human SNpc with PD in at least 
two different proteomic studies. The first column shows the gene name of the 

dysregulated proteins in the human SNpc. Numbers indicate the reference number that 

can be found in Table 6.7. Red cells represent proteins that change in the same direction 

(downregulated) with PD, while green cells show upregulated proteins with PD. Blue 

cells are proteins that change in different directions (down- and upregulated) depending 

on the study. 

 

 

 

 

Gene name [3] [12] [16] [20] [22] [24]
ncan DOWN DOWN

pkm DOWN DOWN

itgb1 UP UP

ftl UP UP UP

anxa1 UP DOWN

atp5pd DOWN UP

ina UP DOWN

tuba8 DOWN UP
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A similar approach was performed, observing six new studies in other areas of the brain 

together with the six studies from the SNpc. This generated a list of 596 differentially 

expressed proteins, although only 35 appeared simultaneously in two or more studies 

(Table 6.10, Supplementary Table 5). Seventeen of these 35 proteins changed in the 

same direction (six were always downregulated with PD, while 11 were always 

upregulated during the disease). All these 17 proteins were dysregulated with PD in only 

two articles simultaneously, except in the case of the upregulated protein ferritin light 

chain (ftl) that was differentially expressed in the three studies related to the SNpc. The 

rest of the 18 proteins were dysregulated with PD in contrary directions. As in previous 

cases, proteins appeared only in two different articles, except mitochondrial ornithine 

aminotransferase (oat) that was downregulated in two studies and upregulated in one.  

The investigation of biofluids and rinsing fluids and lenses fractions from patients with 

PD revealed 157 proteins that were differentially expressed in 12 articles. When these 

proteins were compared, only 19 were dysregulated in two or more studies (Table 6.11, 

Supplementary Table 5). From these 19 proteins, five were changed in a conserved 

way with PD, with four of them downregulated and one (transthyretin precursor (ttr)) 

upregulated. Similar to above, all these proteins appeared only dysregulated in two 

different studies. Among the 14 proteins whose expression was not conserved between 

studies, haptoglobin (hp) was the protein that was repeated in the highest number of 

articles (five).  

Finally, the comparison of the total 766 dysregulated proteins found in the 24 articles 

related to PD in humans revealed 68 proteins repeated in at least two different studies. 

Twenty-eight were conserved between articles (15 downregulated and 13 upregulated 

with PD), whilst 40 showed opposing directions of differential expression (Table 6.12, 

6.13, 6.14; Supplementary Table 5). Interestingly, even in this comparison, most of the 

conserved proteins (except ferritin light chain (ftl)) were only differentially expressed in 

two different studies. Haptoglobin (hp) was the protein that was identified in the highest 

number of articles, all of them associated with the five articles related to biofluids. 
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Table 6.10. Differentially expressed proteins in the human brain with PD in at least 
two different proteomic studies. The first column shows the gene name of the 

dysregulated proteins in the human brain with PD. Numbers indicate the reference 

number that can be found in Table 6.7. Red cells represent proteins that change in the 

same direction (downregulated) with PD, while green cells show upregulated proteins 

with PD. Blue cells are proteins that change in different direction (down- and 

upregulated) depending on the study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name [2] [3] [5] [12] [14] [16] [20] [22] [24]
ncan DOWN DOWN

pkm DOWN DOWN

ptges3 DOWN DOWN

bscl2 DOWN DOWN

erp29 DOWN DOWN

stxbp1 DOWN DOWN

ftl UP UP UP

ak1 UP UP

itgb1 UP UP

pea15 UP UP

bbox1 UP UP

cacna2d1 UP UP

ctnna1 UP UP

eef1a2 UP UP

erap1 UP UP

ezr UP UP

lap3 UP UP

tuba8 DOWN UP UP

aldh1a1 UP DOWN

eef2 UP DOWN

eif5a UP DOWN

gad1 UP DOWN

gnao1 UP DOWN

ina UP DOWN

mpp2 UP DOWN

nutf2 DOWN UP

sec23a UP DOWN

slc32a1 UP DOWN

anxa1 UP DOWN

atp5pd DOWN UP

dlg2 UP DOWN

hla-drb1 UP DOWN

pgrmc1 DOWN UP

uggt1 DOWN UP

oat UP DOWN DOWN
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Table 6.11. Differentially expressed proteins in human biofluids with PD in at least 
two different proteomic studies. The first column shows the gene name of the 

dysregulated proteins in human biofluids with PD. Numbers indicate the reference 

number that can be found in Table 6.7. Red cells represent proteins that change in the 

same direction (downregulated) with PD, while green cells show upregulated proteins 

with PD. Blue cells are proteins that change in different direction (down- and 

upregulated) depending on the study. 

 

 

 

 

 

 

 

 

 

Gene name [4] [6] [7] [9] [10] [17] [18] [19] [21]
saa1 DOWN DOWN

apoc3 DOWN DOWN

apom DOWN DOWN
rbp4 DOWN DOWN

ttr UP UP

a2m DOWN DOWN

apoa1 DOWN DOWN DOWN

prnp DOWN UP UP

azgp1 UP DOWN UP

apoh UP DOWN

chgb DOWN UP

gc UP DOWN

orm1 UP DOWN

clu DOWN UP

alb DOWN UP

tf UP DOWN

apoa2 UP DOWN DOWN

cp DOWN UP DOWN

hp DOWN DOWN DOWN UP



Chapter 6. Multi-study proteomics analysis of the ageing and PD nervous system  

297 
  

Table 6.12. Differentially expressed proteins that change in the same direction (downregulated) in at least two different proteomic 
studies related to humans with PD. The first column shows the gene name of the 15 proteins downregulated (red cells) with PD in 

humans. Numbers indicate the reference number that can be found in Table 6.7.  

 

 

 

 

 

 

 

Table 6.13. Differentially expressed proteins that change in the same direction (upregulated) in at least two different proteomic 
studies related to humans with PD. The first column shows the gene name of the 13 proteins upregulated (green cells) with PD in humans. 

Numbers indicate the reference number that can be found in Table 6.7. 

 

 

 

 

Gene name [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [24]
ncan DOWN DOWN

pkm DOWN DOWN

ptges3 DOWN DOWN

apoc3 DOWN DOWN

apom DOWN DOWN

bscl2 DOWN DOWN

c3 DOWN DOWN

epdr1 DOWN DOWN

erp29 DOWN DOWN

gapdh DOWN DOWN

lgals3 DOWN DOWN

rbp4 DOWN DOWN

rtn4 DOWN DOWN

saa1 DOWN DOWN

stxbp1 DOWN DOWN

Gene name [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [24]
ftl UP UP UP

ak1 UP UP

itgb1 UP UP

pea15 UP UP

pfn1 UP UP

arhgdib UP UP

bbox1 UP UP

cacna2d1 UP UP

erap1 UP UP

ezr UP UP

lap3 UP UP

ttr UP UP

vim UP UP
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Table 6.14. Differentially expressed proteins that change in different directions (down- and upregulated) in at least two different 
proteomic studies related to humans with PD. The first column shows the gene name of the 40 proteins downregulated (red cells) and 

upregulated (green cells) with PD in humans. Numbers indicate the reference number that can be found in Table 6.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [24]
chgb DOWN UP UP

gsn UP DOWN UP

tuba8 DOWN UP UP

azgp1 UP DOWN UP

hebp2 UP UP DOWN

prnp DOWN UP UP

tf UP UP DOWN

clu DOWN DOWN UP UP

hp UP DOWN DOWN DOWN UP

aldh1a1 UP DOWN

eef2 UP DOWN

eif5a UP DOWN

gad1 UP DOWN

gnao1 UP DOWN

gsto1 UP DOWN

ina UP DOWN

mpp2 UP DOWN

nutf2 DOWN UP

rpl3 DOWN UP

sec23a UP DOWN

slc32a1 UP DOWN

alb DOWN UP

anxa1 UP DOWN

apoh UP DOWN

atp5pd DOWN UP

c4b UP DOWN

calb1 DOWN UP

dlg2 UP DOWN

eef1a2 DOWN UP

gc UP DOWN

hla-drb1 UP DOWN

pgrmc1 DOWN UP

tln1 UP DOWN

uggt1 DOWN UP

a2m UP DOWN DOWN

apoa2 UP DOWN DOWN

cp DOWN UP DOWN

oat UP DOWN DOWN

orm1 UP DOWN DOWN

apoa1 UP DOWN DOWN DOWN
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On the other hand, the search of studies related to PD modes in mammals, including 

rodents and monkeys, led to the finding of 13 different articles where the SNpc, striatum, 

cortex and whole brain were examined under different toxic (e.g., 6-OHDA, MPTP) or 

genetic conditions that mimic the disease. In total, 443 proteins were differentially 

expressed, and from these 113 were repeated in two or more studies). There were 76 

proteins whose expression was conserved in the same direction (43 were downregulated 

and 33 were upregulated), while the 37 proteins left were expressed in opposite the 

different studies (Table 6.15, 6.16, 6.17; Supplementary Table 5). There were three 

downregulated proteins (enoyl-CoA hydratase, mitochondrial precursor (echs1), 

neuronal membrane glycoprotein M6-b (gpm6b), phosphodiesterase (pde10a)), and one 

upregulated protein (vimentin (vim)) that were expressed in the highest number of 

articles. As Table 6.8 indicates, conserved changes were not associated with any 

particular model of PD, finding for example that phosphodiesterase (pde10a) was 

downregulated in striatum of rats treated with 6-OHDA, but also mice treated with MPTP 

and methamphetamine. Similarly, different PD models, including  mouse treated with 

and injection of PARIS and 6-OHDA, generated an increase of vimentin (vim),  Adding 

to this, glial fibrillary acidic protein (gfap, GFAP) was differentially expressed in five 

articles, related to mice treated with an injection of PARIS, injections of 6-OHDA in rats, 

and mice exposed to MPTP and methamphetamine. However, the direction of change 

was not conserved in these five studies.  
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Table 6.15. Differentially expressed proteins that change in the same direction 
(downregulated) in at least two different proteomic studies related to PD models. 
The first column shows the gene name of the 43 proteins downregulated (red cells) in 

PD models. Numbers indicate the reference number that can be found in Table 6.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name [1] [2] [3] [4] [6] [7] [8] [9] [10] [11] [12] [13] [14]
aldh4a1 DOWN DOWN

sirt2 DOWN DOWN

ywhae DOWN DOWN

ywhaz DOWN DOWN

akap5 DOWN DOWN

aldh1a1 DOWN DOWN

anxa6 DOWN DOWN

atp5j2 DOWN DOWN

cap1 DOWN DOWN

cltc DOWN DOWN

col4a2 DOWN DOWN

cst3 DOWN DOWN

gnai3 DOWN DOWN

hist2h3c2 DOWN DOWN

hnrpab DOWN DOWN

igsf8 DOWN DOWN

inpp1 DOWN DOWN

mt-atp8 DOWN DOWN

ndufs2 DOWN DOWN

ndufs7 DOWN DOWN

nsf DOWN DOWN

omg DOWN DOWN

pcp4 DOWN DOWN

pdhb DOWN DOWN

pgm2 DOWN DOWN

phb DOWN DOWN

ppp1r9a DOWN DOWN

ppp2r1a DOWN DOWN

prei3 DOWN DOWN

prosc DOWN DOWN

rab21 DOWN DOWN

rab3a DOWN DOWN

slc25a5 DOWN DOWN

slc2a3 DOWN DOWN

snap25 DOWN DOWN

stx1a DOWN DOWN

syt2 DOWN DOWN

tpm3 DOWN DOWN

vapb DOWN DOWN

ncdn DOWN DOWN DOWN

echs1 DOWN DOWN DOWN DOWN

gpm6b DOWN DOWN DOWN DOWN

pde10a DOWN DOWN DOWN DOWN
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Table 6.16. Differentially expressed proteins that change in the same direction 
(upregulated) in at least two different proteomic studies related to PD models. The 

first column shows the gene name of the 33 proteins upregulated (green cells) in PD 

models. Numbers indicate the reference number that can be found in Table 6.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name [1] [2] [3] [4] [6] [7] [8] [9] [10] [11] [12] [13] [14]
vim UP UP UP

aldoc UP UP

anxa7 UP UP

cct2 UP UP

ckb UP UP

clta UP UP

dld UP UP

gda UP UP

pdia3 UP UP

syn2 UP UP

vdac1 UP UP

adh5 UP UP

aldh1l1 UP UP

anxa5 UP UP

cct4 UP UP

cops4 UP UP

ctsd UP UP

dhrs1 UP UP

dst UP UP

eef2 UP UP

ehd3 UP UP

gm237 UP UP

h2afv UP UP

hk1 UP UP

ivd UP UP

kif2a UP UP

marck2 UP UP

nit2 UP UP

prkcc UP UP

sfrs7 UP UP

srm UP UP

tollip UP UP

usp14 UP UP
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Table 6.17. Differentially expressed proteins that change in different directions 
(down- and upregulated) in at least two different proteomic studies related to PD 
models. The first column shows the gene name of the 37 proteins downregulated (red 

cells) and upregulated (green cells) in PD models. Numbers indicate the reference 

number that can be found in Table 6.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name [1] [2] [3] [4] [6] [7] [8] [9] [10] [11] [12] [13] [14]
gfap UP UP DOWN UP UP UP

mbp UP UP DOWN UP

aldh2 UP DOWN UP

uchl1 UP UP DOWN

hspa5 UP UP DOWN

aco2 DOWN UP

aldh5a1 DOWN UP

atp5b DOWN UP

eno2 UP DOWN

fscn1 DOWN UP

got1 DOWN UP

p4hb UP DOWN

uqcrc1 DOWN UP

acadl UP DOWN

aldoa UP DOWN

atp6v1b2 DOWN UP

camk2d DOWN UP

canx UP DOWN

capza2 DOWN UP

cnp UP DOWN

cyc1 DOWN UP

gapdh DOWN UP

ndufs3 DOWN UP

pde1b DOWN UP

prdx6 UP DOWN

rtn1 DOWN UP

syn1 DOWN UP

tuba4a UP DOWN

ndufa10 DOWN UP UP DOWN

vcp UP DOWN UP DOWN

calm1 DOWN UP DOWN

glud1 DOWN UP DOWN

gstm1 DOWN UP DOWN

nefl UP DOWN DOWN

gstm5 UP DOWN DOWN

plp1 DOWN UP DOWN

hspa8 UP DOWN DOWN DOWN
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Lastly, a final comparison was done to observe which differentially expressed proteins 

were in common between PD in humans and PD models. Interestingly, when the 68 

proteins that appeared in more than two studies in humans with PD and the 113 proteins 

from PD models were compared only four proteins appeared to be expressed 

simultaneously in both proteomes (Figure 6.6A, Table S1 Annex 3, Supplementary 

Table 5). These proteins were retinal dehydrogenase 1 A1 (ALDH1A1), elongation factor 

2 (EEF2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and vimentin (VIM). 

In the case of retinal dehydrogenase 1 A1 (ALDH1A1), it was found in olfactory bulb and 

mitochondrial fraction from SNpc of parkinsonians, as well as striatum of mice treated 

with MPTP and methamphetamine (Table 6.14, Table 6.15). Elongation factor 2 (EEF2) 

was dysregulated in the olfactory bulb mitochondrial fraction from SNpc of 

parkinsonians, as well as the striatum and SNpc of mice treated with a viral injection of 

PARIS (Table 6.14, Table 6.16). Moreover, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was differentially expressed in the rinsing fluids and lenses of 

parkinsonians, the subventricular zone of PD patients, the cortex of mice treated with 

PARIS, and the striatum of MPTP models (Table 6.12, Table 6.17). Lastly, vimentin 

(VIM) was upregulated in the locus coeruleus and blood of parkinsonians, but also in in 

the cortex and striatum of mice treated with PARIS and the striatum of rats under a 6-

OHDA model (Table 6.13, 6.16).  

 

6.3.8 PD and ageing express common differentially expressed proteins  

To gain a deeper understanding of the association of PD and ageing at the protein level, 

the 648 differentially expressed proteins found in the ageing nervous system proteome 

were compared to the 177 dysregulated in the entire PD proteome, combining humans 

and PD models. The results showed that 70 proteins were commonly expressed in both 

proteomes (Figure 6.6B, Table S2 Annex 3, Supplementary Table 5). However, this 

further analysis found that there were not any patterns in terms of the sample where  
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these proteins were dysregulated in both ageing and PD. Thus, for example, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was differentially expressed in 

rat hypothalamus, human hippocampus and monkey occipital cortex during the ageing 

process; while, as mentioned before, this protein was dysregulated in the rinsing fluids, 

lenses and the subventricular zone of parkinsonians, the cortex of mice treated with 

PARIS, and the striatum of MPTP models. Thus, it seems that the only pattern these 

dysregulation follows is related to the number of proteins identified in each study due to 

the proteomic approach used (Table 6.1, 6.7, 6.8, Supplementary Table 4, 5). 

Additionally, the 177 dysregulated proteins with PD were compared with the 66 

differentially expressed proteins found in the proteomic study of the rat SNpc with ageing 

performed in this Thesis. This showed that six proteins (vimentin (VIM), glial fibrillary 

Figure 6.6. Venn diagrams showing the differentially expressed proteins in 
common between (A) PD in humans and PD models, and (B) between PD and 
ageing. (A) Proteins that were differentially expressed in two or more proteomic studies 

related to PD in humans were compared with differentially expressed proteins in PD 

models, showing that four proteins appeared in both proteomes simultaneously. (B) All 

the proteins in PD proteomic studies that were differentially expressed in at least two 

articles were compared with proteins that were differentially expressed in three or more 

studies in the ageing nervous system. This revealed that 70 proteins were differentially 

expressed in both proteomes.  

A B 
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acidic protein (GFAP), glutathione S-transferase Mu1 (GSTM1), cytosol aminopeptidase 

(LAP3), neurocan core protein (NCAN), peroxiredoxin-6 (PRDX6)) were commonly 

expressed in both proteomes. From these, glutathione S-transferase Mu1 (GSTM1) 

appeared always differentially expressed in the striatum of PD models treated with 6-

OHDA and the aged rat SNpc. Interestingly, neurocan core protein (NCAN) was the only 

protein that appeared dysregulated in the SNpc of both parkinsonians and ageing rats. 

However, when the expression of this protein was observed in the rest of studies related 

to the ageing nervous system, other regions such as the human hippocampus, rat 

dentate gyrus and sheep CSF showed a dysregulation of neurocan core protein (NCAN) 

(Supplementary Table 4, 5) 

 

6.3.9 Gene Ontology analysis shows that differentially expressed proteins 

associated with the extracellular space, neurotransmitter secretion, binding 

process, and metabolic functions are conserved in the PD proteome 

In order to better understand the biological meaning of the conserved dysregulated 

proteins with PD in humans, GO analyses of the 15 downregulated and 13 upregulated 

proteins were executed using DAVID software (Huang et al., 2007; Huang et al., 2009). 

There was only one enriched biological process (‘retinoid metabolic process’) assigned 

to three proteins; and four enriched cellular components (‘extracellular exosome’, 

‘extracellular region’, ‘extracellular space’, ‘extracellular matrix’) when the 

downregulated proteins were investigated (Figure 6.7, Table S3 Annex 3).  

On the contrary, when the upregulated proteins were analyzed, there were six terms 

linked to cellular components that were enriched (‘extracellular exosome’, ‘cytosol’, 

cytoplasm’, ‘membrane’, ‘focal adhesion’, ‘cytoskeleton’), while there were three 

molecular functions (‘identical protein binding’, ‘actin binding’ and ‘cadherin binding 

involved in cell-cell adhesion’) overrepresented (Figure 6.8, Table S4 Annex 3). 

Additionally, it is important to notice that GO analyses were also performed 

independently for the conserved dysregulated proteins found in the human PD SNpc, 
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PD brains and PD biofluids, but these analyses did not show any satisfactory result due 

to the low number of proteins in the input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, GO analyses of the 43 downregulated and 33 upregulated proteins 

in PD models showed a multitude of enriched terms associated with all the GO 

categories and KEGG pathways. Thus, downregulated proteins were assigned to six 

biological processes, where the most enriched term was ‘neurotransmitter secretion’. In 

the case of cellular components, ‘extracellular exosome’ and ‘cytosol’ were the most 

enriched terms, while ‘protein binding’ was by far the most enriched molecular function 

being associated with 29 proteins. The most overrepresented KEGG pathway was 

‘metabolic pathways’, although ‘synaptic vesicle cycle’ and ‘Parkinson’s disease’ were 

also enriched (Figure 6.9, Table S5 Annex 3). Likewise, upregulated proteins in PD 

models were assigned to different biological processes, including ‘epithelial cell 

differentiation’ or ‘antigen processing and present’. The most enriched cellular 

components were ‘extracellular exosome’ and ‘cytosol’; while the most enriched 

A 

B 

Figure 6.7. Summary of Functional Annotation analyses (Gene Ontology) of the 
15 downregulated proteins conserved in the human PD proteome (SNpc, brain, 
biofluids). DAVID software revealed the enriched terms associated with (A) biological 

processes, and (B) cellular components. In the graphs, the number of annotated 

proteins is indicated with a white number. The name of annotated proteins for each term 

and the entire list of terms can be found in Table S3 (Annex 3).  
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molecular function was ‘protein binding’. KEGG pathway analysis revealed that, as in 

the case of downregulated proteins, ‘metabolic pathways’ was the most enriched KEGG 

term in PD models (Figure 6.10, Table S6 Annex 3). Ultimately, GO analysis were also 

performed for the four commonly expressed proteins in humans with PD and PD models, 

revealing that only the category of cellular component had enriched terms such as 

‘extracellular exosome’, ‘cytosol’, ‘cytoplasm’ and ‘extracellular matrix’ (Figure 6.11, 

Table S7 Annex 3).  

A 

B 

Figure 6.8. Summary of Functional Annotation analyses (Gene Ontology) of the 13 
upregulated proteins conserved in the human PD proteome (SNpc, brain, 
biofluids). DAVID software revealed the enriched terms associated with (A) cellular 

components, and (B) molecular functions. In the graphs, the number of annotated 

proteins is indicated with a white number. The name of annotated proteins for each term 

and the entire list of terms can be found in Table S4 (Annex 3).  
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D 

Figure 6.9. Summary of Functional Annotation analyses (Gene Ontology and KEGG) of the 43 downregulated proteins conserved 
in PD models. DAVID software revealed the enriched terms associated with (A) biological processes, (B) cellular components, (C) molecular 

functions, (D) and KEGG pathways. In the graphs, only the top ten terms are shown as bars, with the number of annotated proteins indicated 

with a white number. The name of annotated proteins for each term and the entire list of terms can be found in Table S5 (Annex 3).  
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Figure 6.10. Summary of Functional Annotation analyses (Gene Ontology and KEGG) of the 33 upregulated proteins conserved 
in PD models. DAVID software revealed the enriched terms associated with (A) biological processes, (B) cellular components, (C) 
molecular functions, (D) and KEGG pathways. In the graphs, only the top ten terms are shown as bars, with the number of annotated 

proteins indicated with a white number. The name of annotated proteins for each term and the entire list of terms can be found in Table 
S6 (Annex 3).  
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6.3.10 Gene Ontology analysis indicates that dysregulated proteins that are 

common between the PD proteome and the ageing nervous system proteome are 

linked to the development of the substantia nigra, oxidation-reduction and 

metabolic processes, and protein binding 

An additional GO analysis was performed with the 70 common proteins that were 

differentially expressed in the PD proteome and in the ageing nervous system proteome. 

The two most enriched biological processes were ‘substantia nigra development’ and 

‘oxidation-reduction process’; while the ‘extracellular exosome‘ term was the cellular 

component more overrepresented. In terms of molecular function, ‘protein binding’ was 

the term with the highest number of proteins associated with it. Furthermore, ‘metabolic 

pathways’ was the most enriched KEGG pathway (Figure 6.12, Table S8 Annex 3). 

 

 

Figure 6.11. Summary of Functional Annotation analyses (Gene Ontology) of the 
four common proteins between human PD proteomic studies and PD model 
proteomic studies (Figure 6.6A). DAVID software revealed the enriched terms 

associated with cellular components. In the graphs, the four terms are shown as bars, 

with the number of annotated proteins indicated with a white number. The name of 

annotated proteins to each term and the entire list of terms can be found in Table S7 

(Annex 3).  
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6.3.11 Reactome pathway analysis shows that the conserved dysregulated 

proteins in PD are linked to immune system, metabolism and neurotransmitter 

release pathways 

Reactome pathway analysis (Fabregat et al., 2017; Fabregat et al., 2018) were 

performed to observe if other overrepresented biological pathways exist that are 

associated with the dysregulated proteins in PD. As in previous analyses, the 15 

downregulated and 13 upregulated proteins from the PD human proteome were 

examined first; and afterwards the same procedure was taken for the 43 downregulated 

and 33 upregulated proteins in PD models.  

In the case of the 15 downregulated human proteins in PD, 12 out of 15 identifiers were 

found in the Reactome, where 145 pathways were associated with at least one of these 

proteins. The three proteins that were not found or mapped were seipin (BSCL2), 

mammalian ependymin-related protein 1 (EPDR1) and endoplasmic reticulum resident 

protein 29 (ERP29), which were identified by DAVID in GO analysis except in the case 

of seipin (BSCL2). ‘RUNX2 regulates genes involved in differentiation of myeloid cells’ 

(R-HSA-8941333) was the pathway with the most statistically significant p-value (Table 

6.18) associated with the protein galectin-3 (LGALS3). The overview of the 

overrepresented pathways by the genome-wide view (Sidiropoulos et al., 2017) showed 

that most of the overrepresented secondary pathways belonged to the top pathway 

‘metabolism’ (Figure 6.13A). Thus, the Reactome analysis corroborated the disruption 

that appears in metabolic processes during PD found by the GO analysis, but also 

revealed that the downregulated proteins in the disease in humans were linked to 

pathways associated with the production of myeloid cells.
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Figure 6.12. Summary of Functional Annotation analyses (Gene Ontology and KEGG) of the 70 common proteins between PD 
proteomic studies and ageing of the nervous system (Figure 6.6B). DAVID software revealed the enriched terms associated with (A) 
biological processes, (B) cellular components, (C) molecular functions, (D) and KEGG pathways. In the graphs, only the top ten terms are 

shown as bars, with the number of annotated proteins indicated with a white number. The name of annotated proteins for each term and the 

entire list of terms can be found in Table S8 (Annex 3).  
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The Reactome pathway analysis of the 13 upregulated proteins in humans with PD 

revealed that 12 out of 13 identifiers were found in the Reactome (only cytosol 

aminopeptidase (LAP3) was not found or mapped), with a link to 99 different pathways. 

‘Interleukin-4 and interleukin-13 signaling’ (R-HSA-6785807) was the pathway more 

overrepresented, and was associated with the proteins vimentin (VIM) and integrin beta-

1 (ITGB1) (Table 6.19), both of them identified by GO analysis.  

 
 
Table 6.18. The 25 most enriched pathways sorted by the most statistically 
significant p-values, using the 15 conserved downregulated proteins in the 
proteome of humans with PD. ‘Entities’ refers to Uniprot accession numbers, showing 

the number of entities found in the analysis from the total in that pathway.  

 

 

 

 

Pathway name Entities 
found/total p-value 

RUNX2 regulates genes involved in differentiation of myeloid cells 2 / 6 4.51e-05 
RUNX1 regulates transcription of genes involved in differentiation of 
myeloid cells 2 / 11 1.51e-04 

Retinoid metabolism and transport  3 / 79 2.82e-04 
Advanced glycosylation end product receptor signaling 2 / 16 3.17e-04 
Metabolism of fat-soluble vitamins  3 / 94 4.68e-04 
Glycolysis  3 / 110 7.37e-04 
Glucose metabolism  3 / 141 0.002 
G alpha (i) signalling events  5 / 567 0.002 
Visual phototransduction  3 / 168 0.002 
Metabolism of vitamins and cofactors 4 / 385 0.003 
Retinoid metabolism disease events  1 / 2 0.003 
Metabolism of carbohydrates 4 / 457 0.006 
Neutrophil degranulation  4 / 480 0.007 
Alternative complement activation  1 / 6 0.01 
Protein-protein interactions at synapses 2 / 93 0.01 
Activation of C3 and C5  1 / 7 0.011 
Aryl hydrocarbon receptor signalling 1 / 8 0.013 
Defective CHST14 causes EDS, musculocontractural type 1 / 9 0.015 
Defective CHST3 causes SEDCJD  1 / 9 0.015 
Defective CHSY1 causes TPBS  1 / 10 0.016 
Axonal growth inhibition (RHOAactivation) 1 / 11 0.018 
Formyl peptide receptors bind formyl peptides and many other ligands 1 / 11 0.018 
p75NTR regulates axonogenesis  1 / 12 0.019 
Dermatan sulfate biosynthesis  1 / 13 0.021 0 
Chylomicron assembly  1 / 14 0.022 
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Table 6.19. The 25 most overrepresented (enriched) pathways sorted by the most 
statistically significant p-values, using the 13 conserved upregulated proteins in 
the proteome of humans with PD. ‘Entities’ refers to Uniprot accession numbers, 

showing the number of entities found in the analysis from the total in that pathway.  

Pathway name Entities 
found/total p-value 

Interleukin-4 and Interleukin-13 signaling 4 / 211 1.00e-04 
RHO GTPases Activate Formins  3 / 149 7.08e-04 
Phase 2 - plateau phase  2 / 42 0.001 
Signaling by Rho GTPases  4 / 457 0.002 
Non-integrin membrane-ECM interactions 2 / 61 0.002 
Signaling by Interleukins  5 / 836 0.002 
Phase 0 - rapid depolarisation  2 / 68 0.003 
Muscle contraction  3 / 256 0.003 
Iron uptake and transport  2 / 83 0.004 
Localization of the PINCH-ILKPARVIN complex to focal adhesions 1 / 4 0.005 
MET interacts with TNS proteins  1 / 5 0.006 
RHO GTPase Effectors  3 / 326 0.007 
Fibronectin matrix formation  1 / 7 0.008 
Immune System  8 / 2,803 0.01 
L1CAM interactions  2 / 130 0.01 
CHL1 interactions  1 / 10 0.012 
Cytokine Signaling in Immune system 5 / 1,245 0.013 
Caspase-mediated cleavage of cytoskeletal proteins 1 / 12 0.014 
Presynaptic depolarization and calcium channel opening 1 / 15 0.018 
Cardiac conduction  2 / 175 0.018 
Platelet Adhesion to exposed collagen 1 / 16 0.019 
Other semaphorin interactions  1 / 19 0.023 
Cell-extracellular matrix interactions 1 / 19 0.023 
Carnitine synthesis  1 / 22 0.026 
Signal transduction by L1  1 / 25 0.03 

 

 

In turn, the genome-wide view (Sidiropoulos et al., 2017) showed that ‘immune system’ 

top pathway, included also in the 25 top most enriched pathways, was comprised of 

three secondary pathways that were the most overrepresented (Figure 6.13B). These 

results would complement the data found by GO analysis, where no biological processes 

were found. 
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Figure 6.13. Genome-wide overview of the Reactome pathway analysis 
(Sidiropoulos et al., 2017) of the 28 conserved differentially expressed proteins in 
humans with PD. (A) Genome-wide overview of the Reactome pathway analysis of the 

15 conserved downregulated proteins. (B) Genome-wide overview of the Reactome 

pathway analysis of the 13 conserved upregulated proteins. Each top-level pathway has 

a centre from which other pathways of a lower hierarchy start. Top-level overexpressed 

pathways are emphasized with a red rectangle (e.g., ‘metabolism’, ‘immune system’), 

while secondary overexpressed pathways (e.g., ‘glycolysis’) linked to them are 

highlighted using a colour-scale that indicates p-value (right-hand side). Light grey 

pathways are not significantly overrepresented.  
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Additionally, the Reactome analysis of the 43 downregulated proteins in PD models 

mapped and found 34 of these proteins, producing 383 pathways where at least one of 

these proteins appeared. The nine remaining identifiers that were not found nor mapped 

by the Reactome were neuronal membrane glycoprotein M6-b (GPM6B), heterogeneous 

nuclear ribonucleoprotein A/B (HNRPAB), immunoglobulin superfamily member 8 

(IGSF8), neurochondrin (NCDN), calmodulin regulator protein PCP4 (PCP4), neurabin-

1 (PPP1R9A), MOB-like protein phocein (PREI3), pyridoxal phosphate homeostasis 

protein (PROSC) and NAD-dependent protein deacetylase sirtuin-2 (SIRT2). All these 

downregulated proteins were identified by GO analysis, with the exception of 

heterogeneous nuclear ribonucleoprotein A/B (HNRPAB) and MOB-like protein phocein 

(PREI3).The most enriched pathway associated with these downregulated proteins in 

PD models was ‘serotonin neurotransmitter release cycle’ (R-HSA-181429), which had 

three proteins assigned (Ras-related protein Rab-3A (RAB3A), synaptosomal-

associated protein 25 (SNAP25), and syntaxin-1A (STX1A)) (Table 6.20). Additionally, 

genome-wide view (Sidiropoulos et al., 2017) corroborated the findings by GO analysis, 

where secondary pathways related to neurotransmitter release (associated with the top 

pathway ‘neuronal system’) as well as the top pathway ‘metabolism’ were 

overrepresented (Figure 6.14A, Table 6.20). 

On the other hand, the analysis of the 33 upregulated proteins in PD models by 

Reactome analysis revealed that 28 of these proteins were mapped or found, and 242 

pathways contained at least one of the upregulated proteins. Three of the five proteins 

that were not mapped by Reactome (annexin A7 (ANXA7), dehydrogenase/reductase 

SDR family member 1 (DHRS1), protein kinase C gamma type (PRKCC)) were found in 

GO analysis, while two of them (aminoethanethiol dioxygenase (GM237), hypothetical 

protein (MARCK2)) were not associated with any biological function or pathway in both 

analyses. In terms of which pathways were more enriched, ‘MHC class II antigen 

presentation’ (R-HSA-2132295), contained the proteins clathrin light chain A (CLTA), 

cathepsin D (CTSD), and kinesin-like protein KIF2A (KIF2A), and showed the highest p-
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value (Table 6.21). However, the overview of genome-wide view (Sidiropoulos et al., 

2017) showed that the top term ‘metabolism of proteins’ included most of the 25 top 

enriched terms (Figure 6.114B, Table 6.21). Therefore, Reactome pathways analysis 

complement the GO analysis, where terms associated with protein binding were 

overrepresented.  

 
Table 6.20. The 25 most enriched pathways sorted by the most statistically 
significant p-values, using the 43 conserved downregulated proteins in the 
proteome of PD models. ‘Entities’ refers to Uniprot accession numbers, showing the 

number of entities found in the analysis from the total in that pathway.  

Pathway name Entities 
found/total p-value 

Serotonin Neurotransmitter Release Cycle 3 / 23 9.43e-05 
Vpr-mediated induction of apoptosis by mitochondrial outer  
membrane permeabilization 2 / 4 1.09e-04 

Acetylcholine Neurotransmitter Release Cycle 3 / 26 1.35e-04 
Dopamine Neurotransmitter Release Cycle 3 / 28 1.68e-04 
Neurotoxicity of clostridium toxins  3 / 28 1.68e-04 
Norepinephrine Neurotransmitter Release Cycle 3 / 30 2.05e-04 
Glutamate Neurotransmitter Release Cycle 3 / 32 2.48e-04 
GABA synthesis, release, reuptake and degradation 3 / 35 3.22e-04 
Toxicity of botulinum toxin type C(BoNT/C) 2 / 7 3.31e-04 
Smooth Muscle Contraction  3 / 55 0.001 
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B: Cdk1 complex 2 / 15 0.001 
Uptake and actions of bacterial toxins 3 / 60 0.002 
The citric acid (TCA) cycle and respiratory electron transport 5 / 229 0.002 
Transmission across Chemical Synapses 6 / 352 0.002 
Neutrophil degranulation  7 / 480 0.002 
Integration of energy metabolism  4 / 144 0.002 
RAB geranylgeranylation  3 / 68 0.002 
Respiratory electron transport, ATP synthesis by chemiosmotic  
coupling, and heat production by uncoupling proteins. 4 / 146 0.002 

Activation of BAD and translocation to mitochondria 2 / 19 0.002 
Neuronal System  7 / 498 0.002 
Membrane Trafficking  8 / 665 0.003 
Vesicle-mediated transport  9 / 824 0.003 
Formation of ATP by chemiosmotic coupling 2 / 23 0.003 
Glycogen synthesis  2 / 26 0.004 
Cellular hexose transport  2 / 28 0.005 
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Table 6.21. 25 most enriched pathways sorted by the most statistically significant 
p-values, using the 33 conserved upregulated proteins in the proteome of PD 
models. ‘Entities’ refers to Uniprot accession numbers, showing the number of entities 

found in the analysis from the total in that pathway.  

Pathway name Entities 
found/total p-value 

MHC class II antigen presentation  6 / 148 5.68e-06 
Factors involved in megakaryocyte development and platelet 
production 5 / 194 3.00e-04 

Folding of actin by CCT/TriC  2 / 13 7.41e-04 
Kinesins  3 / 68 0.001 
BBSome-mediated cargo-targeting to cilium 2 / 24 0.002 
Signaling by Nuclear Receptors  5 / 317 0.003 
Amplification of signal from unattached kinetochores via a MAD2 
inhibitory signal 3 / 94 0.003 

Amplification of signal from the kinetochores 3 / 94 0.003 
Mitochondrial calcium ion transport  2 / 27 0.003 
Neutrophil degranulation  6 / 480 0.003 
Ethanol oxidation 2 / 28 0.003 
Prefoldin mediated transfer of substrate to CCT/TriC 2 / 29 0.004 
Formation of tubulin folding intermediates by CCT/TriC 2 / 30 0.004 
COPI-dependent Golgi-to-ER retrograde traffic 3 / 107 0.004 
Mitotic Spindle Checkpoint 3 / 110 0.005 
Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 2 / 37 0.006 
Association of TriC/CCT with target proteins during biosynthesis 2 / 40 0.007 
Lysosome Vesicle Biogenesis  2 / 43 0.008 
Resolution of Sister Chromatid Cohesion 3 / 134 0.008 
Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 2 / 45 0.008 
Defective HK1 causes hexokinase deficiency (HK deficiency) 1 / 3 0.009 
Golgi-to-ER retrograde transport  3 / 148 0.01 
RHO GTPases Activate Formins  3 / 149 0.01 
Estrogen-dependent gene expression  3 / 154 0.011 
Cargo trafficking to the periciliary membrane 2 / 55 0.012 

 

 

Lastly, a similar approach was conducted to understand the biological meaning of the 

four dysregulated proteins in common between the proteomes of humans with PD and 

PD models. These four proteins were found by Reactome in at least one of the 39 

pathways describe by the software. ‘Interleukin-4 and interleukin-13 signaling’ (R-HSA-

6785807) was the most-enriched pathway, associated with vimentin (VIM) (Table 6.22). 

The overview of genome-wide view (Sidiropoulos et al., 2017) showed that this 

overrepresented pathway was part of the ‘immune system’ top pathway (also part of the 

25 most enriched pathways) (Figure 6.15A, Table 6.22). Moreover, ‘metabolism’  
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Figure 6.14. Genome-wide overview of the Reactome pathway analysis 
(Sidiropoulos et al., 2017) of the 76 conserved differentially expressed proteins in 
PD models. (A) Genome-wide overview of the Reactome pathway analysis of the 43 

conserved downregulated proteins. (B) Genome-wide overview of the Reactome 

pathway analysis of the 33 conserved upregulated proteins. Each top-level pathway has 

a centre from which other pathways of a lower hierarchy start. Top-level overexpressed 

pathways are emphasized with a red rectangle (e.g., ‘metabolism’, ‘immune system’), 

while secondary overexpressed pathways (e.g., ‘ethanol oxidation’) linked to them are 

highlighted using a colour-scale that indicates p-value (right-hand side). Light grey 

pathways are not significantly overrepresented.  
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included multiple overrepresented pathways, which would complement the results 

generated by GO analysis where no biological functions (only cell components) were 

found.  

 

Table 6.22. The 25 most enriched pathways, sorted by the most statistically 
significant p-values, using the four common proteins between the proteomes of 
parkinsonians and PD models. ‘Entities’ refers to Uniprot accession numbers, showing 

the number of entities found in the analysis from the total in that pathway.  

 

 

 

 

 

 

- 

Pathway name Entities 
found/total p-value 

Interleukin-4 and Interleukin-13 signaling 2 / 211 0.002 
Uptake and function of diphtheria toxin 1 / 10 0.004 
Caspase-mediated cleavage of cytoskeletal proteins 1 / 12 0.004 
Synthesis of diphthamide-EEF2  1 / 15 0.005 
Protein methylation  1 / 19 0.007 
Fructose catabolism  1 / 20 0.007 
Fructose metabolism  1 / 27 0.009 
Metabolism of carbohydrates  2 / 457 0.01 
Ethanol oxidation  1 / 28 0.01 
Apoptotic cleavage of cellular proteins 1 / 38 0.013 
RA biosynthesis pathway  1 / 39 0.014 
Striated Muscle Contraction  1 / 40 0.014 
Apoptotic execution phase  1 / 54 0.019 
Uptake and actions of bacterial toxins 1 / 60 0.021 
Gluconeogenesis  1 / 67 0.023 
Gamma carboxylation, hypusine formation and arylsulfatase activation 1 / 69 0.024 
Signaling by Retinoic Acid  1 / 72 0.025 
Signaling by Interleukins  2 / 836 0.031 
Peptide chain elongation  1 / 97 0.034 
Eukaryotic Translation Elongation  1 / 102 0.035 
Glycolysis  1 / 110 0.038 
Glucose metabolism  1 / 141 0.049 
Immune System  3 / 2,803 0.056 
Apoptosis 1 / 187 0.064 
Cytokine Signaling in Immune system 2 / 1,245 0.064 
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Figure 6.15. (A) Genome-wide overview of the Reactome pathway analysis 
(Sidiropoulos et al., 2017) of the four common proteins between the proteomes of 
parkinsonians and PD models. (B) Genome-wide overview of the Reactome 
pathway analysis of the 70 common proteins between the PD proteome and the 
proteome of the ageing nervous system. Each top-level pathway has a centre from 

which other pathways of a lower hierarchy start. Top-level overexpressed pathways are 

emphasized with a red rectangle (e.g., ‘metabolism’, ‘immune system’), while secondary 

overexpressed pathways (e.g., ‘complex I biogenesis’) linked to them are highlighted 

using a colour-scale that indicates p-value (right-hand side). Light grey pathways are not 

significantly overrepresented.  

A 

B 
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6.3.12 Reactome pathway analyses demonstrated that neuronal system and 

metabolism pathways are common dysregulated in both PD and ageing 

As mentioned previously, the 70 common dysregulated proteins between the PD 

proteome and the ageing nervous system were investigated by Reactome pathway 

analysis, finding that 59 of these proteins were mapped to 346 pathways. The 11 

proteins that were missing were 2',3'-cyclic-nucleotide 3'- phosphodiesterase (CNP), 

endoplasmic reticulum resident protein 29 (ERP29), neuronal membrane glycoprotein 

M6-b (GPM6B), immunoglobulin superfamily member 8 (IGSF8), alpha-internexin (INA), 

cytosol aminopeptidase (LAP3), neurochondrin (NCDN), nuclear transport factor 2 

(NUTF2), myelin proteolipid protein (PLP1), reticulon-1 (RTN1) and NAD-dependent 

protein deacetylase sirtuin-2 (SIRT2), all of them were found associated with at least 

one term in the GO analysis. As Table 6.23 shows, ‘the citric acid (TCA) cycle and 

respiratory electron transport’ (R-HSA-1428517) was the most overrepresented 

pathway, finding ten identifiers linked to it: ATP synthase subunit beta, mitochondrial 

(ATP5B), ATP synthase subunit f, mitochondrial (ATP5J2), cytochrome c1, heme 

protein, mitochondrial (CYC1), dihydrolipoyl dehydrogenase, mitochondrial (DLD), 

NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial 

(NDUFA10), NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial 

(NDUFS2), NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitocondrial 

(NDUFS7), pyruvate dehydrogenase E1 component subunit beta, mitochondrial 

(PHDB), cytochrome b-c1 complex subunit 1, mitochondrial (UQCRC1), and voltage-

dependent anion-selective channel protein 1 (VDAC1). The genome-wide view 

(Sidiropoulos et al., 2017) revealed that this pathway was part of the top ‘metabolism’ 

pathway, which included, together with the top pathway ‘neuronal system’, most of the 

top 25 overrepresented pathways (Figure 6.15B, Table 6.23). Altogether, this Reactome 

analysis corroborated the finding by GO analysis where ‘metabolism pathways’, 

‘substantia nigra development ‘and ‘oxidation-reduction processes’ were enriched.  
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Table 6.23. The 25 most enriched pathways sorted by the most statistically 
significant p-values, using the common 70 proteins between the PD proteome and 
the ageing nervous system proteome. ‘Entities’ refers to Uniprot accession numbers, 

showing the number of entities found in the analysis from the total in that pathway.  

 

 

 

6.3.13 Proteins related to the extracellular exosome, binding process, 

neurotransmitter secretion or metabolism form protein networks in the PD 

proteome 

STRING database analyses (Szklarczyk et al., 2019) were conducted to visualize the 

protein-protein interactions between the different conserved dysregulated proteins in 

humans with PD and PD models, as well as the common proteins between them. In the 

case of the 15 downregulated proteins in humans with PD, four of these proteins 

(apolipoprotein C-III (APOC3), apolipoprotein M (APOM), serum amyloid A-1 protein 

(SAA1), and complement C3 (C3)) showed the highest number of associations (Figure 

Pathway name Entities 
found/total p-value 

The citric acid (TCA) cycle and respiratory electron transport 10 / 229 2.14e-06 
GABA synthesis, release, reuptake and degradation 5 / 35 3.39e-06 
Respiratory electron transport, ATP synthesis by chemiosmotic 
coupling, and heat production by uncoupling proteins 7 / 146 4.36e-05 

Neutrophil degranulation 12 / 480 5.35e-05 
Platelet degranulation 6 / 137 2.54e-04 
Protein methylation 3 / 19 2.59e-04 
Glucose metabolism 6 / 141 2.96e-04 
Neuronal System 11 / 498 3.25e-04 
Response to elevated platelet cytosolic Ca2+ 6 / 144 3.31e-04 
Transmission across Chemical Synapses 9 / 352 4.15e-04 
Neurotransmitter release cycle 5 / 99 4.47e-04 
Serotonin Neurotransmitter Release Cycle 3 / 23 4.52e-04 
Acetylcholine Neurotransmitter Release Cycle 3 / 26 6.44e-04 
Glycolysis 5 / 110 7.17e-04 
Mitochondrial calcium ion transport 3 / 27 7.18e-04 
Dopamine Neurotransmitter Release Cycle 3 / 28 7.97e-04 
Respiratory electron transport 5 / 115 8.73e-04 
Gluconeogenesis 4 / 67 9.24e-04 
Toxicity of botulinum toxin type C (BoNT/C) 2 / 7 9.49e-04 
Norepinephrine Neurotransmitter Release Cycle 3 / 30 9.71e-04 
Glutamate Neurotransmitter Release Cycle 3 / 32 0.001 
Amyloid fiber formation 4 / 88 0.002 
Caspase-mediated cleavage of cytoskeletal proteins 2 / 12 0.003 
Regulation of insulin secretion 4 / 106 0.005 
Complex I biogenesis 3 / 57 0.006 
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6.16A). There was not only an associatiation between them (as the network shows in 

Figure 6.16A), but two of them were also linked to retinol-binding protein 4 (RBP4). 

These proteins were associated with the biological term ‘retinoid metabolic process’, as 

well as cellular components related to the ‘extracellular exosome’ (Table S3 Annex 3). 

In addition, these proteins were found associated with Reactome pathways such as 

‘retinoid metabolism and transport (R-HSA-975634) or ‘G alpha (i) signalling events’ (R-

HSA-418594). On the other hand, the protein network analysis of the 13 upregulated 

proteins in parkinsonians showed that ezrin (EZR) and integrin beta-1 (ITGB1) were the 

proteins with the highest number of connections (two each) (Figure 6.16B). These 

proteins were part of enriched molecular functions such as ‘actin binding’ and ‘cadherin 

binging involved in cell-cell adhesion’ (Table S4 Annex 3), as well as one of the top 25 

Reactome pathways (‘L1CAM interactions’ (R-HSA-373760)). 

When the 43 downregulated proteins in PD models were analyzed by STRING, clathrin 

heavy chain 1 (CLTC) was the protein with the maximum number of connexions (seven 

in total), including vesicle-fusing ATPase (NSF), prohibitin (PHB), serine/threonine-

protein phosphatase 2A 65kDa regulatory subunit A alpha isoform (PPP2R1A), 

synaptotagmin-2(SYT2), tropomyosin alpha-3 chain (TPM3), 14-3-3 protein epsilon 

(YWHAE), and 14-3-3 protein zeta/delta (YWHAZ) (Figure 6.17A). GO analysis found 

these proteins involved in ‘vesicle-mediated transport’, ‘myelin sheath’ or ‘focal adhesion’ 

(Table S5 Annex 3), while Reactome pathway analysis revealed that these proteins 

were a part of pathways such as ‘membrane trafficking’ (R-HSA-199991) or ‘vesicle-

mediated transport’ (R-HSA-5653656).  

On the other hand, only one upregulated protein (protein disulfide-isomerase A3 

(PDIA3)) appeared to be a connection hub, associated with the seven dysregulated 

proteins annexin A5 (ANXA5), T-complex protein 1 subunit beta (CCT2), creatine kinase 

B-type (CKB), dihydrolipoyl dehydrogenase, mitochondrial (DLD), elongation factor 2 

(EEF2), voltage-dependent anion-selective channel protein 1 (VDAC1), and vimentin 

(VIM) (Figure 6.17B). In terms of which enriched terms these proteins were associated, 
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‘extracellular exosome’, ‘mitochondrion’ or ‘metabolic pathways’ were some of the 

cellular components and pathways that GO analysis identified (Table S6 Annex 3). 

However, although many of these proteins were identified by Reactome pathway 

analysis, most of them did not belong to the top 25 most enriched pathways. 

Nevertheless, pathways such as ‘neutrophil degranulation’ (R-HSA-6798695) or 

‘signaling by nuclear receptors’ (R-HSA-9006931) were pathways associated with some 

of these proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16. Protein network analysis with the STRING database of the conserved 
dysregulated proteins in the human PD proteome. Protein-protein interactions of the 

total 28 dysregulated proteins that are conserved in the human PD proteome. (A) 
Protein network of the 15 conserved downregulated proteins. (B) Protein network of the 

13 conserved upregulated proteins. In orange boxes with black border, proteins show 

the larger number of associations; while orange boxes alone indicate their protein 

associations. The network displays only proteins with interactions, while those proteins 

without connections were hidden. The coloured lines indicate the type of interaction 

between proteins (light blue, associated in curated database; pink, experimental or 

biochemical determined; green, gene neighbourhood; black, co-expression; grey, 

protein homology; lime, co-mentioned in Pubmed abstracts).  
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Figure 6.17. Protein network analysis with STRING database of the conserved 
dysregulated proteins in the proteome of PD models. Protein-protein interactions of 

the total 76 dysregulated proteins that are conserved in the proteome of PD models. (A) 
Protein network of the 43 conserved downregulated proteins. (B) Protein network of the 

33 conserved upregulated proteins. In orange boxes with black border, proteins show 

the larger number of associations; while orange boxes alone indicate their protein 

associations. The network displays only proteins with interactions, those proteins that 

are not connected to the network are hidden from view. The coloured lines indicate the 

type of interaction between proteins (light blue, associated in curated database; pink, 

experimental or biochemical determined; green, gene neighbourhood; black, co-

expression; grey, protein homology; lime, co-mentioned in Pubmed abstracts).  
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Finally, the protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the 

dysregulated protein with more interaction than is commonly expressed in the proteome 

of humans with PD and PD models (Figure 6.18A), as well as the ageing nervous 

system (Figure 6.18B). In the first case, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) connects with three different proteins (retinal dehydrogenase 1 (ALDH1A1), 

elongation factor 2 (EEF2), and vimentin (VIM)) (Figure 6.18A), while in the second 

comparison glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is linked to 34 

different proteins (Figure 6.18B). Adding to this, GO analysis showed that this hub 

protein was implicated in multiple biological processes such as ‘canonical glycolisis’, or 

‘metabolic pathways’ (Table S8 in Annex 3), while ‘metabolism of carbohydrates’ (R-

HSA-71387)’, ‘gluconeogenesis’ (R-HSA-70263) or ‘glycolysis’ (R-HSA-70171) were the 

Reactome pathways more enriched. 

Altogether, bioinformatic analyses demonstrated that biological functions such as 

metabolism, neurotransmitter secretion, extracellular matrix, protein binding or immune 

system are commonly dysregulated across samples from PD patients and models of PD. 

 

6.4 Discussion 

In this chapter, a multi-study proteomic comparison was performed with the purpose of 

determining which biological and molecular mechanisms are commonly affected during 

the ageing process in the nervous system, as well as during PD, and between these two 

processes. To achieve this, differentially expressed proteins from published proteomic 

articles related to the ageing nervous system or PD were compared independently, 

identifying proteins commonly expressed in at least three or two articles, respectively. 
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Figure 6.18. Protein network analysis with STRING database of the 4 common 
proteins between the proteomes of parkinsonians and PD models (A) and 70 
common proteins between the PD proteome and the proteome of the ageing 
nervous system (B). In orange boxes with black border, proteins show the larger 

number of associations; while orange boxes alone indicate their protein associations. 

The network displays only proteins with interactions and those proteins that are not 

connected are hidden. The coloured lines indicate the type of interaction between 

proteins (light blue, associated in curated database; pink, experimental or biochemical 

determined; green, gene neighbourhood; black, co-expression; grey, protein homology; 

lime, co-mentioned in Pubmed abstracts).  
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6.4.1 The ageing brain is characterized by a reduction of metabolism-associated 

proteins together with mitochondrial dysfunction, and an increase of the immune 

system response 

The comparison of the differentially expressed proteins from published proteomic articles 

related to the ageing nervous system revealed 648 proteins simultaneously expressed 

across three or more independent studies, finding 147 dysregulated in the same 

direction. Alpha-crystallin B chain (cryab), hyaluronan and proteoglycan link protein 2 

(hapln2), palmitoyl-protein thioesterase 1 (ppt1) and glial fibrillary acidic protein (gfap, 

GFAP) were the proteins that appeared in the highest number of studies. Notably, most 

of the proteins that showed dysregulation of proteins were related to proteomics 

approaches based on label-free and quantitative proteomics. Therefore, it is possible 

that the common dysregulation found between studies are not associated with areas of 

the nervous system but with more sensitive techniques. Thus, only a few proteins were 

identified in samples that have been examined with 2DE gel electrophoresis, which 

would indicate a bias in the comparison results in favour of those areas where more 

proteins in total have been found. In essence, this highlights the necessity in the future 

of performing new analysis of different samples using the same technique in order to 

compare them and avoid technical limitations or bias. 

Moreover, 36 of the 66 dysregulated proteins in the ageing SNpc in rats presented in 

this Thesis (see Chapter 3) were also found dysregulated in other areas of the ageing 

nervous system. Bioinformatic analyses of these proteins showed that biological 

pathways such as ‘mitochondrial ATP synthesis coupled proton transport’, ‘metabolic 

pathways’, ‘oxidative phosphorylation’, ‘respiratory electron transport, ATP synthesis by 

chemiosmotic coupling, and heat production by uncoupling proteins’, and ‘Parkinson’s 

disease’ were associated with the commonly downregulated proteins in ageing; while 

the terms and pathways that were overrepresented for the upregulated proteins included 

‘oxidation-reduction process’, ‘cell-cell adhesion’, and ‘immune system’. 
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Importantly, the fact that the same proteins were dysregulated in the ageing SNpc in 

rats, but also in other regions of the nervous system, indicates that the changes and the 

molecular mechanisms associated with the ageing SNpc are not exclusive of this region 

but are part of the general ageing process in the nervous system. This means that, at 

least in rats, the ageing process by itself will not be enough to explain the specific 

vulnerability to degeneration of SNpc DAn. However, it is also possible that protein 

changes across the nervous system affect different regions differently, with the SNpc 

possibly being more sensitive to these changes and therefore, needing less time to show 

neurodegeneration. For example, during the General introduction of this Thesis, it was 

explained that SNpc DAn are high energy demanding and produce high amount of ROS 

and oxidative stress. Thus, alteration in proteins that affect the metabolism or try to 

counteract the oxidative stress can be an issue for DAn but not for other neurons. 

Nevertheless, the proteins that are simultaneously dysregulated in more studies 

(including the rat SNpc) are proteins related to glial cells (e.g., astrocytes), such as GFAP 

and alpha-crystallin B chain (CRYAB) (Eng, 1985; Ousman et al., 2007; Hagemann et 

al., 2009; Klopstein et al., 2012), which highlights the role that astrocytes have during 

ageing. Previously (see Chapter 3), it was noted the important function that alpha-B-

crystallin has in stopping the aggregation of GFAP filaments to avoid the degeneration 

of astrocytes by apoptosis (Derham and Harding, 1999; Ousman et al., 2007; Hagemann 

et al., 2009; Klopstein et al., 2012). This increase in the expression of alpha-crystallin B 

chain (CRYAB) might be conserved in the entire nervous system during ageing, 

including the SNpc, as a mechanism to counteract the decline of astrocytes. However, 

the lack of consensus in the expression of GFAP in different brain regions, being 

downregulated in the SNpc, might indicate that this mechanism is not enough to 

preserve the expression of GFAP in certain regions, which may generate astrocytic 

dysfunction. As it was mentioned before (see Chapter 3), an impairment of astrocytes in 

the SNpc (but not in most of the other areas of the CNS) might affect their functions, 

which could cause a hostile environment for DAn, promoting their degeneration. 
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The alteration of the mitochondria and reduction of metabolism with ageing has been 

described previously. Indeed, previous findings suggest that dysfunction of the 

mitochondria, which produces ATP by oxidative phosphorylation (Spinelli and Haigis, 

2018), is the cause of ageing. For example, the mtDNA mutator mouse characterized by 

multiple mtDNA mutations, develops a natural ageing phenotype due to the alteration of 

the mitochondrial respiratory chain caused by substitution of aa (Kujoth et al., 2005; 

Edgar et al., 2009). Moreover, defects in the mitochondria lead to oxidative 

phosphorylation deficiency, as shown by Pickrell et al. (2011) in a transgenic mouse with 

mtDNA depletion. The deficiency of the oxidative phosphorylation function produced 

neurodegeneration in the striatum and a phenotype associated with abnormal motor 

behaviours, which highlights the importance of the mitochondria in neurodegenerative 

diseases, and the relation between ageing and neurodegeneration. In fact, it seems that 

the brain is very vulnerable during the ageing process. This has been demonstrated 

recently by Kim and colleagues (2018), studying the mitochondrial characteristics from 

fibroblast-to-induced neuron (iNS) from people of different ages. In their results, they 

saw a 70% reduction of mitochondrial genes in old iNS, including those related to the 

respiratory chain; but also mitochondria fragmentation, lower accumulation of 

mitochondria in axons, a reduction in the production of ATP, and a high rate of oxidized 

protein damage. Interestingly, old fibroblasts from which iNS were derived did not 

possess these characteristics, indicating that brain cells are more susceptible to the 

ageing process in comparison to other cells in the body.  

On the other hand, the increase of different aldehyde dehydrogenases with ageing, 

related to the oxidation-reduction process, might indicate a mechanism against oxidative 

stress (Singh et al., 2013). Aldehyde dehydrogenases oxidize and detoxify aldehydes, 

which can be generated by oxidative stress and be cytotoxic for the cell (Kim et al., 

2017b). Supporting this, Marchitti et al. (2007b) published that HEK293 cells transfected 

with ALDH3B1 (an aldehyde dehydrogenase that was upregulated in the ageing nervous 

system comparison) were protected against a lipid peroxidation product, reducing the 
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cytotoxicity and increasing the survival of the cells. Interestingly, the cytochrome b-245 

light chain (CYBA) protein (another proteins that it is upregulated in the ageing nervous 

system) it is involved in the production of ROS by NADPH oxidase (Djordjevic et al., 

2005), forming part of the phagosome pathway in microglia (Bodea et al., 2014). These 

microglia are immune cells in the brain that can phagocyte and degraded cellular 

components (e.g., dying cells, unfolded proteins) due to the production of ROS (Martinez 

et al., 2015; Arcuri et al., 2017). Therefore, it is possible that the increase of ROS and 

oxidative stress, generated firstly by microglia to protect the brain, might trigger the 

upregulation of aldehyde dehydrogenases during ageing in order to reduce cytotoxicity. 

Moreover, this increase of ROS might be deleterious for the mitochondria, due to its role 

in the damage and degradation of mtDNA (Shokolenko et al., 2009). 

 

6.4.2 The human brain during PD is characterized by a reduction in the expression 

of metabolism-related proteins, and an increase in the expression of proteins 

related to interleukin signaling 

The different comparisons of the differentially expressed proteins in humans with PD 

revealed that, in the SNpc, only eight proteins appeared dysregulated in at least two 

different studies. Nevertheless, these eight proteins might represent ‘core’ proteins 

related to molecular features that are systematically altered during PD, which would be 

good to explore with more detail in the future. Likewise, when the whole brain was 

considered, 35 proteins appeared simultaneously in two or more studies, and from these, 

17 were dysregulated in the same direction. In the case of PD biofluids, from the 19 

dysregulated proteins across two articles or more, only five were dysregulated in a 

conserved way during the disease. Lastly, during the comparison of the whole human 

PD proteome, 68 proteins were dysregulated in more than two studies, finding 28 of 

them conserved. Bioinformatic analyses of the conserved downregulated proteins in the 

proteome of parkinsonians showed that terms such as ‘metabolism’, including ‘glucose 
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metabolism’ and ‘glycolysis’ were overrepresented. Oppositely, conserved upregulated 

proteins were linked to the pathway ‘interleukin-4 and interleukin-13 signalling’. 

It is important to mention the low number of common differentially expressed proteins 

within the six studies related to the PD SNpc in humans (one of them focused on 

mitochondrial fraction), where only eight proteins were dysregulated simultaneously in 

two studies. In essence, this technical characteristic will affect the final results found in 

the comparison. A reason to explain this lack of consistency can be the low number of 

proteins identified in four of the articles, based on the proteomic approach used (e.g., 

2DE gel electrophoresis), but also it might indicate other technicalities such as the way 

of preparing the sample, the instrument used to identified the proteins, or the different 

strategies to process the data.  

Moreover, with the data that it was possible to examine from the different studies, TH 

was only identified (being downregulated) in one study of the PD SNpc in humans (Licker 

et al., 2014). Although it would be expected to find a reduction of its expression in all the 

studies, due to the characteristic degeneration of DAn associated with PD (Damier et 

al., 1999), this event might be produced by the limitations of the number of proteins found 

in each sample, as well as the use of mitochondrial fractions which would not contain 

the enzyme. Furthermore, the fact that most of the proteins were only expressed in 

SNpc, brain or biofluids, without finding proteins in common, suggest that during PD the 

alterations in the proteome found in different parts of the body differ. Nevertheless, as 

previously noted, these differences can be produced by the proteomic techniques used 

in each case as well as other technicalities and highlights the necessity to reproduce 

these studies with more powerful and similar approaches to be able to compare them.  

A reduction in glucose metabolism has been observed in two independent studies using 

positron emission tomography in PD patients with cognitive decline (Meles et al., 2015; 

Firbank et al., 2017). Meles and colleagues (2015) found a metabolic decrease during 

PD in caudate-putamen, thalamus, supplementary motor area, cingulate cortex and 

parietal regions of the brain; while Firbank et al. (2017) described a reduction of the 
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metabolic rate in the parietal lobes of early diagnosed PD patients compared to controls. 

Interestingly, although previous research has showed that glycolysis increases in PD 

blood mononuclear cells, associated with a high levels of mitochondria dysfunction and 

ROS production (Smith et al., 2018), the multi-study comparison showed the opposite 

effect with the disease. However, this effect can be due to other roles that 

glyceraldehyde-3-phospahye dehydrogenase (GAPDH), the protein linked to this 

pathway, is related to. Thus, it has been described that glyceraldehyde-3-phospahye 

dehydrogenase (GAPDH), as a part of its metabolic function, when it is in the form of 

protofibrils can also interact with alpha-synuclein oligomers, scavenging their toxicity 

(Avila et al., 2014). Therefore, it is possible to speculate that a reduction of 

glyceraldehyde-3-phospahye dehydrogenase (GAPDH) with PD is triggering the 

accumulation of toxic alpha-synuclein oligomers within the cells. 

On the other hand, interleukin 4, produced by microglia after a treatment with the 

inflammatory toxin lipopolysaccharide, is involved in the degeneration of DAn in vivo 

(Bok et al., 2018). Moreover, another study has shown that the increase of interleukin 

13 (in microglia and SNpc DAn of a mouse model of chronic stress) participated in the 

degeneration of DAn (Mori et al., 2017). Altogether, this might indicate that the release 

of cytokines (e.g., interleukin 4 and 13) by microglia during PD might have an impact in 

the vulnerability of DAn.  

 

6.4.3 The proteome of PD models showed dysregulation of processes related to 

neurotransmitter secretion, synaptic vesicle cycling and metabolism of proteins  

The multi-comparison analysis in PD models revealed 113 dysregulated proteins in two 

or more studies, 76 of them were conserved in the direction of expression. Once again, 

GFAP was one the proteins that appeared in the highest number of studies, while TH 

did not appear as one of the dysregulated proteins in more than two studies 

simultaneously. Bioinformatics analyses indicated that the most enriched term 

associated with downregulated proteins were ’neurotransmitter secretion’, ‘synaptic 
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vesicle cycle’ and ‘Parkinson’s disease’, whilst upregulated proteins were linked to 

‘metabolism of proteins’, including ‘folding of actin by CCT/TriC’.  

Alterations in the proteins that regulate neurotransmitter SNARE-mediated exocytosis 

have been proven to be reduced in immortalized embryonic mesencephalic cells treated 

with the PD neurotoxin 6-OHDA (Stepkowski et al., 2015). Moreover, Choi et al. (2013) 

discovered that alpha-synuclein oligomers, found extensively in PD (see General 

introduction), have a detrimental effect on the assemble of the SNARE complex avoiding 

the vesicle lipid mixing. This generates a reduction of exocytosis, as demonstrated by 

the same authors in PC12 cells exposed to alpha-synuclein oligomers. Conversely, other 

authors have described that a dysfunction in SNARE assembly shows a reduction in 

neurotransmitter release and triggers the aggregation of alpha-synuclein in presynaptic 

terminals in the striatum (Nakata et al., 2012). Although I did not find any article 

suggesting a mechanism of action by which PD toxins (e.g., 6-OHDA) affect the SNARE 

complex, it seems quite clear that PD models might mimic the disease through the 

dysfunction of the SNARE-mediated exocytosis process. Therefore, it is not surprising 

to find the ‘Parkinson’s disease’ pathway overrepresented in this proteome.  

Chaperonins, such as those upregulated in PD models (e.g., chaperonin Containing 

TCP1 Subunit 2 and 4 (CCT2, CCT4)) as part of the ‘folding of actin by CCT/Tric’ 

pathway, ensure the proper folding of essential proteins, such as actin and tubulin 

(Llorca et al., 2000; Balchin et al., 2018). PD models such as 6-OHDA have been shown 

to produce microtubule disruption by fragmentation of tubulin in DAn cultures (Lu et al., 

2014). As they proved, this fragmentation affects axonal transport, including 

mitochondrial synaptic vesicle motility, which causes retrograde degeneration. Hence, it 

could happen that an increase in the metabolism of proteins such as chaperonins appear 

as a mechanism by the cell to neutralize this harmful effect.  
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6.4.4 The proteomic changes found in human PD and PD models reveal that both 

proteomes differ  

To understand how well PD models reflected the human disease at the proteomic level, 

a comparison of both proteomes was performed. Very surprisingly, only four proteins 

(related between them in a protein network) were differentially expressed simultaneously 

in both proteomes.  

Aldehyde dehydrogenase 1A1 (ALDH1A1) is involved in the oxidation of reactive DOPAL 

in a less toxic DOPAC, which it is essential for the cell to avoid the aggregation of 

cytotoxic alpha-synuclein promoted by DOPAL (Marchitti et al., 2007a). Previous 

research by Liu et al. (2014), using alpha-synuclein transgenic mice and PD human 

samples, has shown that a reduction of aldehyde dehydrogenase 1A1 (ALDH1A1) in 

SNpc, as it was found in this PD multi-study comparison, is linked to a higher 

accumulation of alpha-synuclein aggregates and neurodegeneration. Thus, a 

dysregulation of this protein, together with glyceraldehyde-3-phospahye dehydrogenase 

(GAPDH) might be affecting the scavenging of cytotoxic alpha-synuclein oligomers 

(Avila et al., 2014). Nevertheless, it is difficult to corroborate this hypothesis because in 

the present multi-study analyses alpha-synuclein was only found in one article, being 

downregulated in the striatum of mice treated with MPTP (Chin et al., 2008). This could 

indicate that alpha-synuclein is not dysregulated in PD, although it is more likely that the 

proteomics approaches used (most of them using 2DE gel electrophoresis) did not 

identify it.  

This emphasizes the necessity of performing new analyses of both proteomes using 

more robust and similar proteomic approaches to comprehend if the lack of common 

proteins is due to real proteomic differences or limitations in the technique. In the 

hypothetical case that real proteomic differences are found, that would mean that 

research needs to reconsider these PD models as a successful way to mimic the 

disease. Moreover, GAPDH is used for many researchers as a loading control for 
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Western blot (Pan et al., 2019), therefore, if it is true that it is dysregulated during PD, its 

use for this application should be avoided.  

 

6.4.5 Oxidation-reduction pathways and metabolism are common pathways in 

ageing and PD  

Seventy differentially expressed proteins were simultaneously dysregulated in PD and 

ageing. Adding to this, six of the proteins dysregulated in the rat SNpc proteome during 

ageing (some of them already described as part of glial cells and ECM, see Chapter 3) 

were part of those 70 common proteins in ageing and PD. Although the ageing process 

cannot alone explain the degeneration of SNpc, the conserving changes in proteins 

related to glial cells and ECM suggests that its impact in the disease is important. 

Bioinformatic analyses revealed conserved enriched pathways associated with 

‘substantia nigra development’, ‘oxidation-reduction process’ and ‘metabolism 

pathways’. 

Throughout this Thesis, it has been mentioned that during neurodevelopment the CNS 

undergoes important proteomic changes related to cytoskeletal organization, 

microtubule dynamic and mitochondria (McClatchy et al., 2012; Fuller et al., 2015). 

However, the expression of these proteins in a specific time window is important to avoid 

pathological consequences. For example, one dysregulated protein found in this multi-

study comparison, alpha-internexin (ina), is an intermediate filament protein highly 

expressed in postmitotic neurons in the developing CNS and has a low expression in 

adult brains (Fliegner et al., 1994). However, if this protein aggregates in adults, it 

produces the abnormal accumulation of other intermediate filaments, axonal swelling, 

neurodegeneration and astrogliosis (Ching et al., 1999; Cairns et al., 2004). Another 

common dysregulated protein, sirtuin-2 (SIRT2), has been seen to accumulate in the 

ageing brain and has a role deacetylating microtubules (Maxwell et al., 2011). Recently, 

it has been described that this protein can also deacetylate alpha-synuclein, generating 

its aggregation (de Oliveira et al., 2017). Thus, the overexpression of sirtuin-2 (SIRT2) 
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increases the toxicity produced by alpha-synuclein and, in fact, its deletion protects SNpc 

DAn from MPTP toxicity in vivo. 

Finally, ‘oxidation-reduction process’ and ‘metabolism pathways’ are two other 

processes that are commonly altered in PD and ageing. As it was reviewed in detail in 

the General introduction of this Thesis (see Chapter 1), DAn need high amounts of 

energy for survival, which produces high amounts of ROS (Pacelli et al., 2015). 

Furthermore, the metabolism and oxidation of dopamine produces ROS and other 

metabolites (e.g., DOPAL) that can be toxic for the cells (Adams and Odunze, 1991; 

Zhang et al., 2019). In addition, the dysregulation and production of excessive ROS can 

affect the mitochondria (e.g., deficiencies in respiratory chain and mtDNA deletions) 

(Bender et al., 2006; Venkateshappa et al., 2012). This event would affect the production 

of energy and have consequences on the high metabolic demand of neurons such as 

SNpc DAn, but not in other areas of the brain.   

 

 

6.5 Conclusions 

In summary, the results of this multi-study proteomic comparisons demonstrate that 

during the ageing process, the nervous system has a dysregulation of metabolism 

probably due to an alteration of mitochondrial function, as well as an increase of the 

immune system response.  

On the other hand, there are differences between the PD proteome in humans and PD 

models, although it is difficult to conclude if these differences are due to the multiple 

proteomic approaches used where low number of proteins were identified or associated 

with real proteomic differences. Nevertheless, metabolism and interleukin signaling are 

the pathways enriched in human PD proteome, while defects in the neurotransmitter 

secretion pathways related to metabolism and oxidation-reduction and metabolism of 

proteins are found in PD models.  
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Finally, the multi-study proteomic comparison between ageing and PD produced here 

corroborates previous findings where metabolism and oxidation-reduction processes are 

dysregulated in the ageing brain and affected during PD. 
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CHAPTER 7: FINAL DISCUSSION AND FUTURE PERSPECTIVES 

 
It is well established that ageing is the principal risk factor in PD, a neurodegenerative 

disease characterized by the loss of DAn from the SNpc (Damier et al., 1999; GBD 2016 

Parkinson’s Disease Collaborators, 2018). However, the role that the physiological 

ageing process plays in the development of this disease remains elusive. Thus, with the 

aim of gaining more insight into how becoming older might increase the vulnerability of 

DAn to PD, one of the objective of this Thesis was to use a cutting-edge proteomic 

approach, together with bioinformatic analysis, and molecular and cellular techniques to 

investigate the rat SNpc as it ages.  

Proteomics results showed that GFAP, the main intermediate filament of astrocytes 

(Eng, 1985), as well as proteins from the ECM, were dysregulated in the rat SNpc during 

ageing. This Thesis also showed that, although changes in the proteomic expression of 

TH were not found, the density of SNpc DAn was reduced whilst the size of their somas 

increased. Such changes in the number and morphology of these neurons may affect 

the proteomic composition of the ECM, in an attempt to stabilize these DAn in the SNpc 

or to reduce possible oxidative stress caused by the death of these neurons (Pizzorusso 

et al., 2002; Morawski et al.,2004; de Vivo et al., 2013). Interestingly, astrocytes can 

produce some of these ECM proteins, such as the dysregulated proteins in the SNpc 

aggrecan or versican (Asher et al., 1995; Beggah et al., 2005; Afshari et al., 2010). 

Therefore, one possibility is that during this process astrocytes might also undergo 

cytoskeleton changes in order, for example, to adapt to the modifications found in the 

ECM. Though still speculative, it appears that the main canonical isoform of GFAP (i.e., 

GFAPα) within astrocytes is reduced during ageing, which might implicate a concomitant 

increase of other isoforms already described in the literature or new ones that have not 

been discovered yet. This Thesis demonstrated for the first time the existence of the 

isoform GFAPδ in the rat SNpc, thus, it is not unthinkable to believe that other isoforms 

might exist in this region of the brain during ageing that are not yet possible to identify 

by proteomics or Western blot analysis. The high expression of GFAPδ is associated 
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with the aggregation of intermediate filaments, which in turn affects the function of the 

astrocyte (Roelofs et al., 2005; Perng et al., 2008). Therefore, other isoforms or changes 

in GFAP might have the same effect, further aggregating these intermediate filaments, 

which would explain why there is an increase of the chaperone alpha-crystallin B chain 

in the oldest samples (i.e., to combat the accumulation of intermediate filaments and 

protect these glial cells; Derham and Harding, 1999; Ousman et al., 2007; Perng et al., 

2008; Hagemann et al., 2009; Klopstein et al., 2012). The multi-study comparison of the 

ageing nervous system also showed that the increase of proteins related to the ECM 

(e.g., hyaluronan and proteoglycan link proteins 2) and alpha-crystallin B chain were 

upregulated in the elderly, which suggests that something similar to this speculative 

process must be conserved across the whole nervous system but that the SNpc is more 

vulnerable to these changes.  

The increased sensitivity of SNpc DAn are likely due to their characteristically high 

amount of ROS production and oxidative stress due to the metabolism and oxidation of 

dopamine (Cohen et al., 1997). In addition, the multi-study proteomic comparisons of the 

ageing nervous system and PD revealed that metabolic and mitochondrial functions are 

altered in both ageing and PD, which suggests that the disruption of these processes 

plays a major role in the vulnerability of DAn. Adding to this, astrocytic dysfunction 

through modifications of their cytoskeleton might exacerbate this vulnerability, because 

astrocytes provide metabolic support and energy to neurons, and reduce and neutralize 

ROS from the environment by using antioxidants (Voutsinos-Porche et al., 2003; 

McBean, 2017).  

Lastly, in the attempt to understand the important role that astrocytes have in protecting 

DAn, the neurons were challenged by exposure to low concentration of the drug 6-OHDA 

in vitro. However, it was not possible to show how important glial cells were in supporting 

DAn during such a challenge because the toxin also affected astrocytes. Nevertheless, 

it is still possible that the damaging effects of 6-OHDA to DAn was due to the fact that 

astrocytes were also impaired. 6-OHDA inhibits the mitochondrial respiratory chain and 
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forms free radicals (Glinka et al., 1997), effects that astrocytes combat through their 

support of metabolic activity and the neutralization of ROS (Voutsinos-Porche et al., 

2003; McBean, 2017). Thus, the degeneration of astrocytes might aggravate the direct 

toxic effect of 6-OHDA on DAn. Bearing this in mind, it will be very important to consider 

this effect in the future when the impact of this widely used drug is assessed in DAn, 

because part of the effect might be associated by the lack of viable astrocytes and their 

functions. 

This Thesis has demonstrated the strength of cutting-edge proteomic analysis combined 

with traditional techniques and bioinformatic examinations to gain insight into the 

complex proteome of the SNpc and obtain a better understanding of physiological 

processes that emerge during ageing. This Thesis has highlighted the necessity of 

producing better antibodies for more specific characterizations of astrocytes, beyond the 

general idea of ‘GFAP’, and understanding the effect that different isoforms have in 

astrocytes and their functions. In the future, this might be addressed with label-free 

proteomic approaches to define the proteome of astrocytes, and to reveal the changes 

that appear in this proteome in processes such as ageing. Moreover, after understanding 

the proteomic changes that are conserved with ageing in the brain and the SNpc, it would 

be important to investigate further the proteome of the extracellular space in these areas 

with ageing to elucidate the implications that a dysregulation of this proteome has in the 

protection or vulnerability of neurons. In addition, more effort is needed to comprehend 

the relationship between neurons and astrocytes in culture, and to generate enriched 

neuronal cultures that allow for the study of the ageing process in neurons in vitro on 

their own. Finally, this Thesis has shown the value of comparing published proteomic 

studies and how important it is to examine again certain samples with more sensible 

proteomic techniques in order to identified more proteins and obtain more robust results.   
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AAnnex 1 

Table 1: Gene Ontology analysis of the 608 dysregulated proteins in the juvenile 
SN compared to old in rats, showing the 50 most enriched terms according to 
their p-value. BP: biological process. CC: Cellular component. MF: molecular function. 

KEGG pathway. Proteins are presented with the uniprot accession number. The entire 

list of terms and proteins associated to each term can be consulted in Supplementary 

Table 3b.  

 

BP Count % PValue Genes
translation 54 8.881578947 8.84E-19 P20280, P35427, P62859, P62755, P62278, P24050, P61354, P62752, P27952, P09895, Q63507, P62850, P16036, P24049, P62268, P04644, P62425, P50878, P23358, P68101, P61928, P62282, P2153                                
tricarboxylic acid cycle 15 2.467105263 1.12E-13 P41565, P41562, O88989, Q8VHF5, P49432, P26284, Q63270, P14408, Q9ER34, Q06437, P08461, Q68FX0, P04636, P13086, Q99NA5
cell-cell adhesion 33 5.427631579 1.09E-12 Q68FR6, P30427, Q6AXS5, Q6JE36, P06761, P61980, Q68FR9, Q5PPJ9, O88767, Q9QZR6, P34058, Q66HR2, Q2HWF0, P61314, O35244, Q9QY17, P12785, P41562, Q9QWN8, Q99MZ8, Q6NYB7, Q81            
substantia nigra development 16 2.631578947 2.96E-11 P02688, Q05175, P62161, Q8VBU2, P07335, P60203, P13233, P19643, P06761, P23565, P19511, Q5RJQ4, P20717, P68255, P07722, P68511
glutathione metabolic process 15 2.467105263 1.24E-09 Q9Z0W7, Q68FR6, P41562, P04906, P07632, P04904, P04041, P51650, Q9Z1B2, O35952, P57113, P02091, P07895, P08009, Q91XR8
cell adhesion 32 5.263157895 1.36E-09 Q5I6B8, P55068, P97603, P40241, Q05546, Q05695, P97686, Q63374, P07897, Q63372, P32736, P22063, P07340, Q68FQ2, Q64605, P08592, Q99P82, Q9ESM2, P15800, Q9WU82, P03994, P13596, P          
response to drug 47 7.730263158 4.89E-09 Q9JJ54, P04904, B2GV06, O35274, P19643, P63159, P31652, P68403, P18266, P04762, P11232, O88767, Q9WVK7, P09034, P34058, P07897, P70645, P06687, P07895, P06685, P16970, P05369, P18                         
brain development 33 5.427631579 1.36E-08 Q9JJ54, P11030, P07335, B2GV06, P21588, P10687, P17764, B5DF41, P31652, P40241, Q9QXU9, P13668, O08875, P30009, Q9ESI7, P84076, P50878, Q5XI22, Q4V8C3, P45479, O35263, P63090, P16           
ribosomal small subunit biogenesis 9 1.480263158 3.11E-08 P62850, P13084, P17074, P04644, P62859, P62755, P62083, P62250, P62845
neurotransmitter secretion 11 1.809210526 1.60E-07 P45479, P09951, P61765, Q91Z79, Q9QUL6, Q63374, Q05140, Q63372, P60881, P29101, Q63537
learning 14 2.302631579 2.72E-07 P22063, Q9Z2L0, P63090, O35274, Q62889, P10687, O54701, P61751, P12369, Q63228, P04177, P31424, Q63372, Q9R1Z0
NADH metabolic process 7 1.151315789 1.16E-06 P41565, Q68FX0, P04636, Q99NA5, O88989, O35077, P46462
aging 30 4.934210526 1.19E-06 P04094, P02688, Q99376, P04904, O35274, P04041, P61980, P62630, P18266, Q6P6R2, P04762, P09034, P07895, Q91XR8, P22062, P68101, P07632, P02650, O35458, Q3T1J1, P13233, P11915, P310        
response to estradiol 23 3.782894737 1.39E-06 Q9JJ54, P04094, P14925, P04906, P63090, O35274, P07323, P04041, P31652, Q9WU82, P11915, P29147, P18266, P18418, P04762, P31000, P04177, P09034, Q6P6V0, P23928, P05197, Q91XR8, Q62
response to ethanol 22 3.618421053 2.64E-06 P04094, P22062, Q07439, P16975, P07632, P02650, P04906, P49242, B2GV06, P19643, P68403, P11598, P00507, P27952, P29147, P04762, P04177, P05197, P62703, P61314, P50554, P62907
response to toxic substance 17 2.796052632 2.67E-06 P04094, P02688, P04906, P21708, P13233, P04041, P19527, P19643, P14173, P31652, P29147, P04762, P09034, P70645, O35331, Q80XF7, P63086
cellular oxidant detoxification 13 2.138157895 3.14E-06 O88767, P04762, P11232, Q9R063, Q6AXX6, P04906, P02650, Q9Z0V6, P04041, P57113, O35244, P08009, Q91XR8
locomotory behavior 16 2.631578947 3.22E-06 Q01066, P04094, Q04400, P07632, P08592, O35430, P31652, P60881, P07171, P43425, Q63228, P04177, P31424, P59215, P07895, P50554
rRNA processing 13 2.138157895 3.67E-06 P62850, Q63507, P12749, P62914, P17074, P04644, P62859, P62755, P62083, P05426, P62250, P62845, P09895
glycolytic process 10 1.644736842 4.78E-06 P05708, Q9JJH5, P47858, Q6P6V0, P04797, P07323, P48500, P16617, P11980, P25113
liver development 18 2.960526316 8.69E-06 Q9JJ54, Q9JLJ3, Q63413, P63090, P17764, Q09167, Q63270, P61980, Q9ER34, Q9WU82, P29147, P17425, P09034, P97532, P07895, P11348, Q5XI22, P11980
neuron projection development 18 2.960526316 9.53E-06 P0C5H9, P22063, Q9Z270, P08592, O35274, P15800, P63159, Q9ER24, P16884, Q05695, Q8K4Y5, P13596, P13668, P59215, P97846, Q641Z6, Q63198, Q91Y81
negative regulation of neuron projection development 12 1.973684211 1.06E-05 P18266, Q05546, Q00657, P31000, Q04400, P49911, Q62952, P07722, P61265, Q62950, P47819, Q62718
ribosomal small subunit assembly 10 1.644736842 1.13E-05 P17074, P04644, P62859, P62755, P24050, P63326, P62853, P38983, P27952, P62845
response to hydrogen peroxide 13 2.138157895 1.17E-05 O88767, P04762, P07632, P10686, Q9Z0V6, P59215, P01946, P04041, P07895, P23928, P02091, P05197, Q01728
2-oxoglutarate metabolic process 7 1.151315789 1.34E-05 P41565, Q6P6R2, P13221, P41562, Q68FX0, Q99NA5, P00507
liver regeneration 11 1.809210526 1.38E-05 P13383, P62850, P13084, P41123, Q09167, P84100, P05426, P62250, P62845, Q6PDV7, P12001
nervous system development 21 3.453947368 1.50E-05 P45479, Q8R511, P08592, Q8VBU2, P47875, P63159, Q9ER24, P23565, Q05546, P19234, O08875, Q07266, Q62952, Q62696, P07722, P31596, Q80ZA5, P07936, Q62936, Q2HWF0, Q63327
Bergmann glial cell differentiation 6 0.986842105 1.72E-05 P31000, P21708, P47819, P41499, Q01986, P63086
isocitrate metabolic process 5 0.822368421 1.86E-05 P41565, P41562, Q68FX0, Q99NA5, Q9ER34
hydrogen peroxide catabolic process 7 1.151315789 1.95E-05 P04762, Q9R063, Q9Z0V6, P01946, P04041, P02091, O35244
response to reactive oxygen species 7 1.151315789 5.22E-05 P04762, P07632, P04906, Q63259, P04041, P07895, O35244
actin filament organization 12 1.973684211 6.19E-05 Q91ZN1, Q9Z1P2, P45592, Q9Z0W5, Q07266, P30009, Q5RJL0, Q5U301, Q62696, O35274, P97710, O35413
oxaloacetate metabolic process 6 0.986842105 6.86E-05 P13221, P04636, P52873, O88989, Q8VHF5, P00507
ribosomal large subunit assembly 8 1.315789474 8.03E-05 P21531, P21533, P62914, P83732, P23358, P62752, Q6PDV7, P09895
hippocampus development 13 2.138157895 8.73E-05 P18266, Q62656, D3ZPX4, Q64605, O35458, P55068, Q9ESI7, O35274, Q7TQ16, P16884, P19527, P12839, P61980
gluconeogenesis 8 1.315789474 9.90E-05 Q6P6V0, P04797, P07323, P52873, O35077, P48500, P16617, P25113
cellular response to drug 13 2.138157895 1.07E-04 Q01062, Q99376, O35274, P13852, P06761, P14173, P20651, P62630, P63329, P11232, P04177, P34058, P11348
protein homooligomerization 19 3.125 1.20E-04 P14925, P14668, P17764, P35559, P13852, P47863, P84586, P31652, P62630, Q9Z1E1, P09606, Q8K4Y5, Q03344, P13084, Q62952, P07895, P23928, Q641Z6, P46462
response to oxidative stress 16 2.631578947 1.34E-04 Q812D1, P41562, P02650, P07632, P08592, Q9Z0V6, P13852, P04041, Q01986, P04762, O88767, Q9R063, P07895, P62909, P28075, Q91XR8
response to amphetamine 9 1.480263158 1.40E-04 Q01066, P07632, P04177, Q6J4I0, P62161, O35274, P47942, P20651, P63329
relaxation of cardiac muscle 5 0.822368421 1.44E-04 P07340, P11507, P15791, P06686, P06685
central nervous system development 13 2.138157895 1.58E-04 P22063, P02688, P14925, P55068, Q9ESM2, P51650, P61980, P03994, O08719, P97686, Q5RJQ4, P07897, Q9ERB4
response to gravity 6 0.986842105 1.95E-04 P16975, P10686, P07897, P32851, P33124, P11980
acetyl-CoA biosynthetic process from pyruvate 5 0.822368421 2.34E-04 Q6P6R2, P49432, P26284, Q06437, P08461
neurofilament cytoskeleton organization 5 0.822368421 2.34E-04 P07632, P16884, P19527, P12839, P23565
cellular response to interleukin-4 7 1.151315789 2.40E-04 P21531, Q91ZN1, P12785, P19945, P34058, P06761, P27952
response to activity 12 1.973684211 2.79E-04 Q8CGU9, P18266, Q9WVK7, P04762, P11232, P04177, Q07266, P63090, B2GV06, P07895, P61980, Q9WU82
cell redox homeostasis 10 1.644736842 2.92E-04 P04785, Q5XIK2, P11232, Q6P6R2, Q9R063, Q9Z0V6, P04041, P11598, O35244, Q63081
positive regulation of translation 10 1.644736842 2.92E-04 Q9JJ54, P13084, Q63413, P49242, P21708, Q7TP47, P02401, P05197, P62703, P63086

CC Count % PValue Genes
extracellular exosome 309 50.82236842 2.96E-105 Q7TPB1, D3ZAF6, Q6P502, B5DEH2, P50408, P62859, P24050, Q6IRE4, P62752, P27952, P40241, Q5BK81, P09895, P43425, Q63507, Q4FZT9, F1LMZ8, P13086, Q9JI66, P61765, Q9QX69, P06685, P6                                                                                                           
myelin sheath 88 14.47368421 4.28E-78 P02688, Q9Z2L0, P42123, Q6P502, P63322, P37805, Q6JE36, P54313, P23565, P26284, P08461, P12075, P16036, Q6P6R2, P09034, P61765, Q99NA5, Q6P6V0, P97685, P19804, P06686, Q63357, P06                                                                  
membrane 210 34.53947368 4.08E-50 P50408, P62755, P24050, P27952, P40241, P09895, Q63507, P62850, Q4FZT9, F1LMZ8, P13084, P62268, Q6JP77, P06686, P06685, Q9QYJ6, Q641Y0, P12785, P68101, Q9Z270, P13852, P13596, P411                                                                                                           
cytoplasm 334 54.93421053 4.03E-45 Q7TPB1, Q6P502, B5DEH2, P62859, P62755, Q6IRE4, P62752, P27952, Q9QXY2, P09895, Q63507, P62850, P13084, Q9JHU0, P13086, P61765, P62268, Q6JP77, P06686, Q9QX69, P06687, Q4KMA2,                                                                                                           
focal adhesion 84 13.81578947 1.74E-43 Q5I6B8, Q9EPH8, P35427, P63322, P19945, P62278, P63326, P54313, P24050, P61354, P27952, P40241, P09895, Q9QXY2, Q05695, Q9Z1P2, P13084, P04644, P19804, P62425, P97685, P50878, P233                                                              
mitochondrion 146 24.01315789 5.57E-31 D3ZAF6, Q9Z2L0, P42123, P26284, Q5BK81, P12075, P09034, P13086, P61765, P19804, Q8CG45, Q6AYE2, P41565, P12785, P29266, P41562, P16975, P07632, Q5I0P2, Q9Z0V6, P16884, Q9QYU2, Q6                                                                                                           
cytosol 144 23.68421053 3.14E-30 P47858, P49911, Q6JE36, F1LMZ8, P13084, P13086, P61765, Q6P6V0, Q6JP77, Q9QY17, P12785, P45479, Q925N3, P41562, P07632, P63041, Q9Z0V6, Q5U211, P34926, Q63270, Q6NYB7, P27139, P                                                                                                           
neuronal cell body 66 10.85526316 4.52E-20 P04094, P02688, Q7TP47, B5DF41, P97839, Q9ER24, P14173, P97603, P35053, A7VJC2, Q9QXY2, Q05695, P11232, Q9JHU0, Q6J4I0, P09034, Q63357, Q80ZA5, Q63259, Q9QYJ6, Q62936, P55051, P                                            
neuron projection 53 8.717105263 5.11E-18 B5DF41, P63159, A7VJC2, Q9QXY2, O88767, P09034, Q6P6V0, Q9ESI7, P06686, Q63357, P12839, Q9WVC0, Q9Z2I6, P45479, P07632, O88871, P07323, P32851, P07171, P60881, P31000, O88778, P                               
axon 49 8.059210526 8.31E-17 P04094, P14173, Q9QXY2, Q05695, O88767, P11232, P97686, P97685, P06687, Q63357, P84076, P12839, P18088, Q91ZN1, P45479, P16884, P07171, P27139, Q01986, P60881, P29101, P11275, P31                           
cell-cell adherens junction 41 6.743421053 1.90E-16 Q68FR6, P30427, Q6AXS5, Q6JE36, P04218, P06761, P61980, Q68FR9, Q5PPJ9, O88767, Q9QZR6, P34058, Q66HR2, Q2HWF0, P61314, O35244, Q9QY17, Q1WIM3, P12785, P41562, Q9QWN8, Q99                    
proteasome complex 21 3.453947368 1.23E-15 Q9JJP9, Q63570, B0BN93, P60901, P40307, P18421, P62198, P18420, Q9JHW0, Q63569, P17220, P48004, P40112, Q4FZT9, F1LMZ8, Q63347, Q4KMA2, O88761, P28075, P62193, P46462
perinuclear region of cytoplasm 65 10.69078947 1.51E-15 P0C5H9, Q5RKI1, P49911, P62755, Q6JE36, P54313, Q9ER24, O88767, P11507, P19804, Q925N3, Q9Z270, Q63560, P63090, O35430, Q5XIT1, P60881, P05964, Q01986, P68182, Q63569, P18418, P3                                           
cytosolic large ribosomal subunit 32 5.263157895 7.40E-15 P20280, P35427, P62902, P19945, P02401, P61354, P62752, P84100, P05426, P63174, P09895, Q63507, P24049, P62425, P62832, P50878, P23358, P61314, P12001, P62907, P83732, P61928, P2153          
intracellular ribonucleoprotein complex 27 4.440789474 1.18E-14 Q9JJ54, Q9EPH8, P35427, P49242, P19945, P04797, P62755, Q7TP47, P24050, P61354, P27952, P05426, A7VJC2, P09895, P18266, P13084, P62425, P50878, P62909, P62703, Q5SGE0, P62243, P620     
synapse 41 6.743421053 1.87E-14 Q9Z0W5, P84060, P55068, P62483, P97839, Q9QXY2, P97686, P30009, P06686, P06687, Q63259, Q62936, P18088, P22063, Q9WVC0, P45479, P25304, O35458, P08592, P63041, Q62889, P15800, P                   
ribosome 28 4.605263158 3.64E-13 P20280, P35427, P68101, P62755, P61354, P62752, P62083, P05426, P27952, P62282, P21531, P62850, Q63507, P21533, P62914, P17074, P62268, P04644, P62425, P17077, P62832, P23358, P62853      
cytosolic small ribosomal subunit 24 3.947368421 4.85E-13 P49242, P62859, P62755, P62278, P24050, P63326, P62083, P27952, P62282, P62850, P62246, P17074, P04644, P62268, P01946, P62853, P29314, P38983, P62250, P62909, P62703, P62845, P60868  
nucleus 238 39.14473684 7.21E-13 D3ZAF6, P37805, Q641X8, Q8K3E7, P62755, Q6IRE4, P62752, P27952, P26284, P09895, P62850, P24049, Q4FZT9, F1LMZ8, P13084, Q6JP77, P06687, P62853, O08629, P16975, P68101, P07632, P84                                                                                                           
membrane raft 36 5.921052632 2.24E-12 Q04400, Q9Z2L0, P42123, Q01062, B5DEH2, P31652, P35053, P16617, P18266, Q05546, P85125, Q05695, O88767, P11167, P08050, P61227, P06685, Q9JJ19, P29457, P10824, P45479, P26431, P085              
small ribosomal subunit 14 2.302631579 5.10E-12 P62850, P13084, P62268, P62859, P62755, P24050, P63245, P29314, P62853, P38983, P62250, P62703, P62845, P60868
microtubule 33 5.427631579 8.89E-12 Q7TPB1, Q5PPN5, Q6P502, Q6JE36, P62483, Q9QXU8, P18266, P13668, P30009, Q9ESI7, Q9QZR6, Q66HR2, P69897, Q63525, Q99JD4, Q5SGE0, Q4V8C3, Q01728, P02650, Q63560, P37285, Q5XIM            
melanosome 20 3.289473684 7.32E-11 P04785, Q7TPB1, P12785, P60905, O35783, Q63584, Q99376, P13233, P06761, P11598, Q9QZA2, Q6NYB7, Q9Z1E1, Q63081, P24368, P11167, Q66X93, P34058, Q66HD0, P07153
synaptic vesicle 23 3.782894737 1.92E-10 Q9Z2I6, P60905, P11030, P45479, Q9Z2L0, O35458, P08592, Q9QWN8, O35430, P14668, P32851, Q05140, P14173, P60881, P29101, P81155, P09951, O08839, P04177, P61265, Q63259, Q9R1Z0, Q6
extracellular matrix 32 5.263157895 2.82E-10 P30427, P62278, P24050, P06761, P61980, P48679, P45592, P69897, P07897, P62832, P62703, P62804, P04785, P25304, P07632, P02650, P15800, Q5XIM9, P62282, P61751, P03994, P18418, P3100          
cell body 20 3.289473684 2.87E-10 Q9WVC0, Q7TPB1, P55051, Q07439, P02696, Q6P502, P62755, Q5XIM9, P54313, P07171, P18266, O88767, P09606, P31000, Q62952, P69897, Q9R066, P59215, P63245, P47819
terminal bouton 22 3.618421053 3.03E-10 P60905, Q9Z0W5, P63041, P08592, Q05140, P09527, P07171, P60881, P29101, P02625, Q05695, P12749, P09951, P04177, Q9QUL6, P61765, P84087, Q9Z2P6, P47942, P47728, P54921, Q63537
cortical actin cytoskeleton 14 2.302631579 8.69E-10 Q91ZN1, Q99MZ8, O35274, Q08163, Q7M0E3, P62630, Q9Z1E1, Q9Z1P2, P45592, P11167, Q9Z2S9, Q9Z1Y3, P52481, Q63327
mitochondrial inner membrane 35 5.756578947 8.92E-10 P13437, D3ZAF6, Q9Z2L0, P52873, P17764, P19643, P00507, Q68FX9, P12075, P16036, Q9WVK7, P13086, P97521, P16970, P07895, P62909, Q91XR8, P38718, Q3KR86, P13233, P29147, P81155, P1             
protein complex 51 8.388157895 2.43E-09 Q9Z2L0, P04906, B5DEH2, P54313, P11507, Q9JHU0, P61765, P13086, Q6JP77, P69897, P06685, Q641Y0, Q6AYE2, Q91ZN1, Q9WVC0, P09456, P07632, P63041, O35430, P32851, P20651, P18418, P                             
mitochondrial matrix 23 3.782894737 1.11E-08 P13437, Q01062, B2GV06, P52873, P17764, Q8VHF5, P49432, Q9QYU2, P00507, Q06437, Q68FX9, P08461, P29147, Q9WVK7, Q6P6R2, O88767, P04636, P15650, P14604, O35952, P05369, P62909, 
postsynaptic density 28 4.605263158 1.96E-08 O35274, P62483, P61980, Q9QXY2, P18266, O08875, P31424, P31422, P12839, P06685, Q62936, P16884, Q05140, P34926, P11275, Q05764, P09951, O88778, Q07266, D4A208, Q9QUL6, Q62696, Q      
dendrite 42 6.907894737 2.25E-08 P04094, Q9EPH8, Q01062, P55068, P19945, P07335, P62755, P97839, Q9ER24, Q9QXY2, P18266, Q05695, P11232, Q9JHU0, Q9ESI7, Q62950, Q99PF5, P62909, Q5U2Z3, P45479, Q925N3, P02650, O                    
proteasome accessory complex 9 1.480263158 2.32E-08 Q4FZT9, F1LMZ8, Q63570, B0BN93, Q63347, P62198, O88761, P62193, Q63569
intercalated disc 13 2.138157895 6.56E-08 Q7M730, P07340, P26431, P14668, Q9WU82, P11507, P15791, P08050, Q9R066, P06686, P06685, Q9Z1Y3, Q01728
growth cone 21 3.453947368 7.72E-08 Q05175, P37285, P62161, P08592, Q8VBU2, O35274, P19527, P60881, P18266, P13596, Q62656, Q07266, Q5RJQ4, P30009, Q62952, Q9R066, A0MZ67, Q62950, P07936, P47942, Q62936
perikaryon 21 3.453947368 8.65E-08 P04094, P22062, P14925, P07323, P14668, P16884, P00507, Q01986, A7VJC2, P09606, P04177, Q5RJQ4, P09034, A0MZ67, Q63259, P84076, P63245, P12839, P23928, Q9QYJ6, P63086
proteasome core complex 9 1.480263158 1.73E-07 P17220, P48004, P40112, P60901, P40307, P18421, P18420, Q9JHW0, P28075
smooth endoplasmic reticulum 10 1.644736842 2.23E-07 P18418, P24368, P04177, P08592, Q63357, P06761, P11598, Q66HD0, Q63617, Q63081
proteasome regulatory particle, base subcomplex 7 1.151315789 9.26E-07 Q4FZT9, Q63570, Q63347, P62198, O88761, P62193, Q63569
cell junction 34 5.592105263 1.93E-06 Q05175, Q9Z0W5, P62483, B5DF41, P61980, Q9QXY2, Q9Z1P2, P08050, Q63372, Q63259, Q9Z2I6, P25304, D3ZPX4, O88871, Q9QWN8, Q62889, P32851, P62024, P60881, P29101, P11275, Q9WU8             
cell projection 15 2.467105263 2.75E-06 P02688, P55051, P10686, P14668, P13233, Q00657, Q9Z1P2, P09606, P31000, Q66HR2, O35964, O88831, P47819, Q01728, Q91Y81
lamellipodium 19 3.125 3.24E-06 Q91ZN1, P10686, O35274, Q9Z1E1, P60881, Q9WU82, Q9QXY2, P45592, Q9Z1P2, Q62656, O08719, Q07266, D4A208, Q62952, P19804, A0MZ67, Q9Z2S9, O35413, Q9Z1Y3
cell-cell junction 21 3.453947368 3.99E-06 Q9QY17, Q91ZN1, Q9Z0W7, Q1WIM3, P55051, Q68FQ2, P10686, P08592, P47863, Q7TT49, Q9WU82, Q9Z1P2, P13596, P45592, P11167, Q07266, P08050, Q9R066, Q62696, Q62936, Q9Z1Y3
extracellular vesicle 11 1.809210526 4.06E-06 P22062, P07340, P02650, Q99376, P06686, P06687, P06685, Q9QZA2, P40241, P47727, P11980
basolateral plasma membrane 22 3.618421053 4.51E-06 P22062, P07340, Q07439, P26431, Q99376, P06907, P47863, P27139, Q9Z1E1, Q9WU82, P11167, Q9JI66, Q9R066, Q62696, P34058, Q63357, Q80ZA5, P06685, Q9Z2S9, Q62936, Q9Z1Y3, Q01728
presynaptic membrane 13 2.138157895 4.57E-06 Q05695, Q01062, Q05683, Q62696, P31596, B5DF41, P31422, P61265, P32851, Q05140, Q63372, P60881, P11275
nuclear matrix 14 2.302631579 6.94E-06 Q9Z0W7, P70615, P16975, Q63413, P60901, P49911, Q9QWN8, P48679, P31000, P45592, P13084, Q62826, P43244, Q5FVM4
dendritic spine 18 2.960526316 7.02E-06 P08592, O35274, O35430, P61980, P18266, P61751, Q9Z1P2, Q62656, P12369, Q07266, P30009, P31424, Q6GMN2, P31596, P06686, P31422, P23928, Q01728
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MF Count % PValue Genes
protein binding 189 31.08552632 3.67E-54 Q9Z2L0, P42123, Q8R511, Q8K3E7, P62859, P24050, O35550, P35053, P40241, A7VJC2, P09895, Q9QXY2, O88453, Q9JHU0, P13084, P61765, P62268, Q6JP77, P06686, P06687, P50878, P06685, Q6                                                                                                           
poly(A) RNA binding 138 22.69736842 3.30E-39 Q7TPB1, Q6P502, P49911, P62859, P62755, P24050, P62752, P27952, D3ZBN0, A7VJC2, P09895, O88453, P62850, Q63507, P24049, P13084, P09034, P13086, P61765, P62268, P50878, P62853, O08                                                                                                           
structural constituent of ribosome 58 9.539473684 1.28E-18 P20280, P35427, P19945, P62859, P62755, P62278, P63326, P24050, P61354, P62752, P27952, P09895, Q63507, P62850, P16036, P24049, P62268, P04644, P50878, P23358, P62853, P61314, P61928                                    
cadherin binding involved in cell-cell adhesion 35 5.756578947 3.63E-13 Q68FR6, P30427, Q6AXS5, Q6JE36, P06761, P61980, Q68FR9, Q5PPJ9, O88767, Q9QZR6, P34058, Q66HR2, Q2HWF0, P61314, O35244, Q9QY17, P12785, P41562, Q9QWN8, Q99MZ8, Q6NYB7, Q9W              
protein domain specific binding 35 5.756578947 4.43E-09 Q05175, Q9JJP9, P97839, P06761, P14173, P61980, Q9QXY2, Q9Z1P2, P63100, P61765, P08050, P97685, Q6JP77, P69897, Q63357, P61265, P61227, P06685, Q62936, P62804, Q9JJ19, Q9Z270, P621             
enzyme binding 39 6.414473684 1.49E-08 P04797, P10687, P17764, Q9ER24, P06761, P14173, P00507, P27952, P63329, Q9Z1B2, P33124, P04762, P11232, O88767, P11507, P13084, P19804, P07895, Q8VHV7, P62909, P08009, P04785, Q6A                 
identical protein binding 53 8.717105263 2.74E-08 P42123, Q8R511, P47858, Q8K3E7, Q9ER24, Q9Z1B2, Q05695, O88767, P11167, P61765, P09034, Q66HR2, Q6AYE2, Q91ZN1, Q9QY17, Q9WVC0, P12785, P02650, P07632, Q9Z0V6, P13852, Q5XIT1                                
protein homodimerization activity 61 10.03289474 3.60E-08 P47858, Q8K3E7, P17764, Q6IRE4, P04218, O35077, O35550, Q9Z1B2, O88767, Q9Z1P2, Q03344, P13084, Q6AYE2, Q91ZN1, P12785, Q68FQ2, Q66H12, P41562, P02650, P07323, Q9QZA2, P05964,                                       
mRNA binding 22 3.618421053 6.39E-08 Q9JJ54, Q9EPH8, P35427, Q6URK4, P49242, P62755, P62278, P24050, P84586, P27952, Q68A21, Q63270, P62630, P05426, P09895, P18418, O88767, P21533, P04256, Q99PF5, P17078, P62909
drug binding 19 3.125 8.37E-08 P85973, P12785, P07340, Q01062, P04906, P04904, P09812, P20651, P62630, P63329, P17425, Q62658, P34058, P19804, P06686, P53534, O35331, Q9QYJ6, P02770
kinase binding 17 2.796052632 1.07E-07 Q9JJP9, P42123, P47858, Q9Z0V6, O35274, P32851, Q9WU82, O88767, P31000, P11167, Q9JJH5, P34058, P84076, P47819, Q62936, Q07647, P62909
RNA binding 41 6.743421053 2.02E-07 Q9JJ54, Q9EPH8, Q32PX7, P62859, P24050, Q09167, P61980, P27952, A7VJC2, P63174, O88453, P13084, P62425, Q99PF5, Q8VHV7, P62909, P12001, Q5SGE0, P62907, P60901, Q3T1J1, P84586, P1                   
calmodulin binding 21 3.453947368 6.95E-07 Q01066, Q05175, Q63560, P26431, P10687, P20651, Q63092, P63329, P11275, Q05764, Q03344, P97756, P30009, Q9ESI7, P15791, P31424, Q63357, P07936, O88831, Q9EPH2, Q01728
threonine-type endopeptidase activity 9 1.480263158 1.03E-06 P17220, P48004, P40112, P60901, P40307, P18421, P18420, Q9JHW0, P28075
calcium-dependent protein binding 14 2.302631579 1.22E-06 P62161, P26431, Q6IRE4, P32851, Q9QZA2, P05964, P60881, P09951, P04631, P84087, Q63357, Q63372, Q62826, Q63537
actin filament binding 19 3.125 1.96E-06 Q91ZN1, Q99MZ8, O35274, Q63598, Q7M0E3, Q99PD4, P31652, Q05764, Q9Z1P2, P45592, O08839, Q07266, Q5RJL0, Q9Z0G8, A0MZ67, Q63357, Q99JD4, P05197, Q5SGE0
ion channel binding 18 2.960526316 2.37E-06 Q7M730, Q9Z2L0, P25304, P62161, O35274, P62483, P32851, P13852, P60881, Q9WU82, Q9Z1P2, Q62658, P68255, P15791, P68511, Q62696, P34058, Q01728
NAD binding 12 1.973684211 3.41E-06 P41565, Q6P6R2, P29266, Q9JLJ3, P41562, Q68FX0, P42123, Q99NA5, P04797, O88989, O35077, P51650
5S rRNA binding 6 0.986842105 6.05E-06 P21531, P50878, P63159, P05197, P05426, P09895
protein kinase binding 36 5.921052632 6.18E-06 Q9Z2L0, P04906, P10686, P62755, P62630, Q9QXY2, P18266, Q00657, P13084, Q9JJH5, P61765, Q9ESI7, P34058, Q6JP77, P61265, P06685, P62909, P14925, P62161, Q9Z0V6, P16884, Q05140, Q01              
large ribosomal subunit rRNA binding 7 1.151315789 1.12E-05 P24049, P19945, P62832, P02401, P23358, P62752, P84100
unfolded protein binding 13 2.138157895 1.32E-05 P18418, Q7TPB1, P29457, Q07439, P13084, Q6P502, P34058, Q5XIM9, Q63525, P27682, P06761, P23928, Q66HD0
proteasome-activating ATPase activity 5 0.822368421 2.18E-05 Q63570, Q63347, P62198, P62193, Q63569
nucleotide binding 28 4.605263158 3.08E-05 Q9JJ54, Q9EPH8, Q04400, Q9Z2L0, Q6URK4, Q794E4, P21588, Q7TP47, Q09167, P62752, P62630, Q6PDU1, A7VJC2, P08461, Q8K3P7, O88453, P62850, P06685, Q8VHV7, Q5FVM4, P84586, P81155       
5.8S rRNA binding 5 0.822368421 9.62E-05 P62919, P21533, P62278, P84100, P29314
pyruvate dehydrogenase (NAD+) activity 5 0.822368421 9.62E-05 Q6P6R2, P49432, P26284, Q06437, P08461
syntaxin-1 binding 7 1.151315789 1.14E-04 P61765, Q9QUL6, P63041, P84087, B5DF41, P31652, P60881
potassium ion binding 6 0.986842105 1.21E-04 O54701, P07340, P06686, O35331, P06685, P11980
pyridoxal phosphate binding 10 1.644736842 1.82E-04 P13221, Q05683, P53534, P09812, O35331, P14173, P00507, P02770, P18088, P50554
integrin binding 13 2.138157895 2.08E-04 P04785, Q68FQ2, P49911, Q9QZA6, P15800, P40241, P18266, Q05546, Q05695, P18418, Q9Z1P2, Q9R066, P47819
ATP-dependent protein binding 5 0.822368421 2.73E-04 P60905, Q63413, Q9QUL6, P13852, P32851
protein complex binding 28 4.605263158 3.01E-04 Q9Z0W7, Q9Z2L0, P49242, O35274, P54313, P27952, P62850, P16036, P69897, P62870, Q9JJ19, Q63584, Q63413, O35430, Q9WU82, P05708, Q91V33, P24368, P83941, O08839, P17074, Q9QUL6, P      
glycoprotein binding 11 1.809210526 3.64E-04 P18418, P22063, P31000, P60905, Q99376, P34058, P35559, P32851, P06761, P47819, Q63198
ionotropic glutamate receptor binding 7 1.151315789 3.67E-04 P18266, Q9QUL6, Q62696, Q9Z2S9, Q62936, Q9Z1E1, Q9WU82
ATPase activity 17 2.796052632 5.85E-04 P07340, Q07439, D3ZAF6, Q5RKI1, Q63570, Q63413, P35559, P62198, P06761, P19511, P05708, Q9QUL6, P06686, Q63347, P16970, P62193, P46462
glutathione peroxidase activity 6 0.986842105 6.87E-04 P04906, P04041, P57113, O35244, P08009, Q91XR8
ubiquitin protein ligase binding 23 3.782894737 7.53E-04 P09456, Q07439, Q4FZX7, P63322, P07335, B5DEH2, Q5XIM9, Q6IRE4, P06761, P68182, P18266, P18418, P12369, Q09073, Q6P6V0, P69897, P48500, Q62936, O08629, O35244, P62870, Q5SGE0, P
amino acid binding 7 1.151315789 7.82E-04 Q8CGU9, Q6MG60, P04177, P09034, O08557, P14173, P00507
peroxiredoxin activity 4 0.657894737 8.09E-04 O88767, Q9R063, Q9Z0V6, O35244
cell adhesion molecule binding 10 1.644736842 8.50E-04 Q1WIM3, P49911, Q9R066, Q62889, Q63374, A0MZ67, P04218, Q63372, P41499, Q1WIM1
TBP-class protein binding 6 0.986842105 8.63E-04 Q63570, Q794E4, Q63347, P62198, P62193, Q63569
receptor binding 26 4.276315789 0.001100275 P62198, P04218, O88767, P04762, P08050, P61265, P12839, Q63372, Q5XIG8, P08009, Q9JJ19, Q1WIM3, Q07439, P41562, P02650, P08592, P35559, P11915, Q1WIM1, P13383, Q8K4Y5, Q9R063, P    
structural molecule activity 17 2.796052632 0.001115749 P70615, B0BN93, Q99P82, P60203, Q4AEF8, P16884, P23565, P48679, P03994, Q05764, P31000, F1LMZ8, P12839, P47819, P23514, P38983, O35142
cytoskeletal protein binding 9 1.480263158 0.001169667 Q9QY17, Q91ZN1, P13596, Q9Z0W5, Q07266, P30427, P23928, Q01728, Q63537
rRNA binding 8 1.315789474 0.001217803 P13084, P62914, P17077, P24050, P29314, P62282, P62703, P61928
SNARE binding 9 1.480263158 0.001305396 P61765, Q9QUL6, P63041, P84087, P61265, P32851, Q5EGY4, P60881, P54921
translation elongation factor activity 6 0.986842105 0.001313838 Q68FR6, Q3T1J1, P05197, P62630, Q9QYU2, Q68FR9
actin binding 20 3.289473684 0.001395285 Q91ZN1, Q9QWN8, P30427, O35274, Q08163, Q63598, P34926, P62024, Q05764, P45592, Q63228, O08719, P09951, Q07266, P30009, P68511, P84076, Q9EPH2, Q63327, P52481
protein C-terminus binding 18 2.960526316 0.001417252 Q91ZN1, Q9EPH8, P07340, P47858, Q9Z0V6, P49911, O35274, P19527, Q01986, Q9WU82, P31000, P13383, P11507, Q9QUL6, P68255, Q6JP77, Q62696, Q62936
sodium ion binding 5 0.822368421 0.001996424 O54701, P07340, P06686, O35331, P06685

KEGG Count % PValue Genes
Ribosome 55 9.046052632 1.98E-29 P20280, P35427, P19945, P62859, P62755, P62278, P24050, P63326, P61354, P62752, P27952, P09895, Q63507, P62850, P24049, P62268, P04644, P62425, P50878, P23358, P62853, P61314, P61928                                 
Carbon metabolism 33 5.427631579 2.53E-15 P47858, P04797, P52873, O88989, P17764, Q8VHF5, P26284, P00507, P08461, P16617, Q6P6R2, P04762, Q68FX0, P13086, Q6P6V0, Q99NA5, P14604, P48500, Q5XI22, P41565, P41562, P07323, P4           
Biosynthesis of antibiotics 43 7.072368421 2.26E-14 P13437, P42123, P47858, P04797, O88989, P17764, Q8VHF5, P00507, P26284, P08461, P16617, P04762, Q6P6R2, Q9WVK7, Q68FX0, P13086, P09034, Q6P6V0, Q99NA5, P19804, P14604, P48500,                     
Citrate cycle (TCA cycle) 17 2.796052632 3.59E-13 P41565, P41562, O88989, P52873, Q8VHF5, P49432, P14408, P26284, Q63270, Q9ER34, Q06437, P08461, Q6P6R2, Q68FX0, P04636, P13086, Q99NA5
Proteasome 18 2.960526316 4.13E-11 Q63570, B0BN93, P60901, P40307, P18421, P62198, P18420, Q9JHW0, Q63569, P17220, P40112, P48004, Q4FZT9, F1LMZ8, Q63347, O88761, P28075, P62193
Pyruvate metabolism 15 2.467105263 3.72E-09 Q9JLJ3, P42123, O88989, P52873, P17764, P49432, P14408, P26284, Q06437, P08461, Q6P6R2, P04636, O35952, Q5XI22, P11980
Biosynthesis of amino acids 20 3.289473684 1.19E-08 P41565, P41562, P47858, P04797, P52873, P07323, Q8VHF5, Q63270, P00507, Q9ER34, P16617, P09606, P13221, Q68FX0, P09034, Q99NA5, P48500, Q6AYS7, P11980, P25113
2-Oxocarboxylic acid metabolism 10 1.644736842 1.11E-07 P41565, P13221, P41562, Q68FX0, Q99NA5, Q8VHF5, Q6AYS7, Q63270, P00507, Q9ER34
Glyoxylate and dicarboxylate metabolism 11 1.809210526 3.63E-07 P09606, P04762, Q6P6R2, P04636, Q5I0P2, O88989, P17764, Q8VHF5, Q63270, Q9ER34, Q5XI22
Butanoate metabolism 11 1.809210526 5.40E-07 Q9WVK7, P17425, Q05683, B2GV06, P14604, P17764, P51650, P18088, P50554, Q5XI22, P29147
Glycolysis / Gluconeogenesis 16 2.631578947 1.46E-06 Q9JLJ3, P42123, P47858, P04797, P07323, P49432, P26284, Q06437, P08461, P16617, P05708, Q6P6R2, Q6P6V0, P48500, P25113, P11980
HIF-1 signaling pathway 18 2.960526316 1.12E-05 P10686, Q99376, P04797, P21708, P07323, P62755, P49432, P68403, P26284, Q01986, Q06437, P11275, P05708, P11167, P83941, P15791, P62870, P63086
Amphetamine addiction 14 2.302631579 1.37E-05 Q04400, P62161, P32851, P19643, P14173, P68403, P20651, P63329, P11275, P68182, P63100, P04177, Q6J4I0, P15791
Glucagon signaling pathway 17 2.796052632 3.43E-05 P42123, P62161, P10687, P09812, P49432, P20651, P26284, Q06437, P63329, P68182, P11275, P63100, P11167, P15791, P53534, P25113, P11980
Alanine, aspartate and glutamate metabolism 10 1.644736842 4.15E-05 Q9R1T5, P70627, P09606, P13221, P09034, Q05683, P51650, P00507, P18088, P50554
Gastric acid secretion 14 2.302631579 5.96E-05 P10824, Q04400, P07340, P26431, P62161, P15791, P10687, P06686, P06687, P06685, P68403, P27139, P68182, P11275
Long-term potentiation 13 2.138157895 7.94E-05 P62161, P21708, P10687, P68403, P20651, Q01986, P63329, P68182, P11275, P63100, P15791, P31424, P63086
GABAergic synapse 15 2.467105263 9.90E-05 P10824, Q04400, O88871, O35458, P54313, P68403, P68182, P43425, P09606, Q9QUL6, Q05683, P59215, Q62688, P50554, P18088
Metabolic pathways 93 15.29605263 1.61E-04 P70627, Q5I6B8, D3ZAF6, P42123, P47858, P50408, P17764, P14173, P26284, P08461, P12075, Q6P6R2, Q9WVK7, P09034, P13086, P25093, Q6P6V0, Q99NA5, P19804, P14604, P18088, O35244, Q                                                                       
cGMP-PKG signaling pathway 21 3.453947368 1.70E-04 P10824, Q04400, P07340, Q9Z2L0, Q01062, P62161, P21708, P10687, P20651, Q01986, P63329, P81155, P63100, P11507, Q09073, P06686, P06687, P06685, Q9R1Z0, Q01728, P63086
Glutamatergic synapse 17 2.796052632 1.91E-04 P10824, Q04400, P21708, P10687, P54313, P68403, P20651, P63329, P68182, P43425, P09606, P63100, P31424, P31596, P31422, P59215, P63086
Dopaminergic synapse 18 2.960526316 2.37E-04 P10824, Q04400, P62161, P10687, P54313, P19643, P14173, P68403, P20651, P63329, P68182, P11275, P18266, P43425, P04177, Q6J4I0, P15791, P59215
Valine, leucine and isoleucine degradation 11 1.809210526 3.55E-04 P13437, Q9WVK7, Q6P6R2, P29266, Q9JLJ3, P17425, B2GV06, P14604, P17764, P50554, Q5XI22
Proximal tubule bicarbonate reclamation 7 1.151315789 5.86E-04 P07340, Q9JI66, O88989, P06686, P06687, P06685, P27139
Thyroid hormone signaling pathway 16 2.631578947 6.68E-04 P07340, P10686, P26431, P21708, P10687, P68403, Q01986, Q9WU82, P68182, P18266, P11167, Q9JJH5, P06686, P06687, P06685, P63086
Protein processing in endoplasmic reticulum 20 3.289473684 7.49E-04 P04785, P60905, Q07439, Q9JJP9, P68101, P54319, P06761, P11598, Q63081, P18418, P0C0A9, P34058, Q5HZY2, Q4KMA2, P23928, Q66HD0, Q63617, P07153, Q641Y0, P46462
Prion diseases 8 1.315789474 0.001060558 P13596, P07632, P21708, P13852, P06761, Q01986, P63086, P68182
Insulin secretion 13 2.138157895 0.001159698 Q04400, P07340, P11167, P15791, P10687, P06686, P32851, P06687, P06685, P68403, P60881, P68182, P11275
Central carbon metabolism in cancer 11 1.809210526 0.001227459 P05708, P11167, P47858, P21708, P49432, P26284, Q01986, Q06437, P63086, P11980, P25113
Melanogenesis 14 2.302631579 0.001302974 P10824, Q04400, P62161, P21708, P10687, P68403, Q01986, Q9WU82, P11275, P68182, P18266, P15791, P59215, P63086
Serotonergic synapse 16 2.631578947 0.001341878 P10824, Q8CGU9, Q04400, P08592, P21708, P10687, P54313, P19643, P14173, P68403, P31652, Q01986, P68182, P43425, P59215, P63086
Synthesis and degradation of ketone bodies 5 0.822368421 0.001571655 P17425, B2GV06, P17764, Q5XI22, P29147
Oxytocin signaling pathway 18 2.960526316 0.001586081 P10824, Q04400, P62161, P10687, P21708, P68403, P20651, Q01986, P63329, P68182, P11275, P63100, P97756, P15791, P59215, O88831, P05197, P63086
Tryptophan metabolism 9 1.480263158 0.001854525 Q8CGU9, Q9WVK7, P04762, Q9JLJ3, P14604, P17764, P19643, P14173, Q5XI22
Alzheimer's disease 20 3.289473684 0.001951984 P02650, P62161, P08592, P04797, P21708, P10687, P35559, P20651, P63329, P12075, P18266, P19511, P19234, P63100, P11507, Q5XIF3, Q5M9I5, Q7TQ16, P20788, P63086
Thyroid hormone synthesis 11 1.809210526 0.001970059 Q04400, P07340, P10687, P06686, P06687, P04041, P06761, Q66HD0, P06685, P68403, P68182
Propanoate metabolism 7 1.151315789 0.002290079 Q6AYG5, P42123, P13086, P14604, P17764, P50554, Q5XI22
Bile secretion 11 1.809210526 0.002736307 Q04400, P07340, P11167, Q9JI66, P26431, P06686, P06687, P47863, P06685, P27139, P68182
Estrogen signaling pathway 13 2.138157895 0.00301396 P10824, Q04400, Q07439, O88871, P62161, P34058, P10687, P21708, P59215, Q66HD0, Q01986, P68182, P63086
Circadian entrainment 13 2.138157895 0.003287656 P10824, Q04400, P62161, P21708, P10687, P54313, P68403, P68182, P11275, P43425, P15791, P59215, P63086
Synaptic vesicle cycle 10 1.644736842 0.003579093 O35458, P61765, Q9QUL6, P63041, P50408, P84087, P61265, P32851, P60881, P54921
Parkinson's disease 17 2.796052632 0.003982884 P10824, Q04400, Q9Z2L0, P68182, P12075, P19511, P81155, O88767, P19234, P04177, Q09073, Q5U300, Q5XIF3, Q7TQ16, Q5M9I5, P20788, Q9R1Z0
Gap junction 12 1.973684211 0.004433256 P10824, Q5XIF6, Q04400, P08050, P31424, P69897, P10687, P21708, P68403, Q01986, P63086, P68182
Fatty acid metabolism 9 1.480263158 0.005209446 P13437, Q9WVK7, P12785, P45479, P15650, P14604, P17764, Q5XI22, P33124
Cell adhesion molecules (CAMs) 18 2.960526316 0.005787532 P22063, Q1WIM3, Q68FQ2, Q62889, Q99P82, P06907, P97603, Q05695, P13596, P97686, P97685, P07722, Q63374, Q63372, P97846, Q9Z1Y3, Q9ERB4, Q63198
Amyotrophic lateral sclerosis (ALS) 9 1.480263158 0.0058358 P04762, P63100, P07632, P31596, P16884, P19527, P12839, P20651, P63329
Morphine addiction 12 1.973684211 0.006224525 P10824, Q01066, P43425, Q04400, Q01062, O35458, O88871, P54313, P59215, P68403, Q9QYJ6, P68182
Cocaine addiction 8 1.315789474 0.007575064 P10824, Q04400, P04177, Q6J4I0, P31422, P19643, P14173, P68182
Endocrine and other factor-regulated calcium reabsorption 8 1.315789474 0.008526383 P07340, P10687, P06686, P06687, P06685, P68403, P07171, P68182
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Table 2: Gene Ontology analysis of the 598 dysregulated proteins in the juvenile 
SN compared to young in rats, showing the 50 most enriched terms according to 
their p-value. BP: biological process. CC: Cellular component. MF: molecular function. 

KEGG pathway. Proteins are presented with the uniprot accession number. The entire 

list of proteins associated to each term can be consulted in Supplementary Table 3d.  

 

 

 

 

 

 

 

BP Count % PValue Genes
translation 52 8.710218 9.78E-18 P20280, P35427, P62755, P62278, P24050, P61354, P62752, P27952, P09895, Q63507, P62850, P160                                         
tricarboxylic acid cycle 15 2.512563 8.67E-14 P41565, P41562, O88989, Q8VHF5, P49432, P26284, Q63270, P14408, Q9ER34, Q06437, P08461, Q    
cell-cell adhesion 31 5.19263 1.87E-11 Q9WTT7, Q68FR6, P30427, Q6AXS5, Q6JE36, P06761, P61980, Q68FR9, O88767, P34058, Q66HR2,                    
substantia nigra development 15 2.512563 3.01E-10 P02688, Q05175, Q8VBU2, P07335, P60203, P13233, P19643, P06761, P23565, Q5RJQ4, P60711, P2    
glutathione metabolic process 14 2.345059 1.05E-08 Q9Z0W7, Q68FR6, P41562, P04906, P07632, P04904, P04041, P51650, O35952, P57113, P02091, P0   
cell adhesion 30 5.025126 1.40E-08 Q5I6B8, P55068, P55067, P97603, P40241, Q05546, Q05695, P97686, Q63374, Q63372, P32736, P22                   
brain development 32 5.360134 3.12E-08 Q9JJ54, P11030, P07335, B2GV06, P21588, P10687, P17764, B5DF41, P31652, P40241, Q9QXU9, P1                     
response to ethanol 24 4.020101 1.25E-07 P04094, P22062, P16975, P07632, P04906, P49242, P20272, B2GV06, Q9Z0U4, P19643, P68403, P11             
neurotransmitter secretion 11 1.842546 1.35E-07 P45479, Q63475, P09951, P61765, Q91Z79, Q9QUL6, Q63374, Q63372, Q62768, P29101, Q63537
response to drug 43 7.20268 1.77E-07 Q9JJ54, P04904, B2GV06, P19643, P31652, P68403, P37377, P04762, O88767, P11232, P23593, P09                                
NADH metabolic process 7 1.172529 1.04E-06 P41565, Q68FX0, P04636, Q99NA5, O88989, O35077, P46462
liver development 19 3.18258 1.60E-06 Q9JJ54, Q9JLJ3, Q63413, P63090, P17764, Q09167, Q63270, P61980, Q9ER34, Q9WU82, P29147, P1        
response to oxidative stress 19 3.18258 1.77E-06 P41562, P07632, P08592, Q9Z0V6, P04041, P14141, Q6DGG0, Q01986, Q921A4, P04762, O88767, Q        
aging 29 4.857621 2.50E-06 P04094, P02688, Q99376, P04904, P04041, P61980, P62630, P37377, Q6P6R2, P04762, P05982, P23                  
cellular oxidant detoxification 13 2.177554 2.59E-06 Q921A4, O88767, P04762, P11232, Q9R063, Q6AXX6, P04906, Q9Z0V6, P04041, P57113, O35244, P  
response to reactive oxygen species 8 1.340034 3.39E-06 P04762, P23593, P07632, P04906, Q63259, P04041, P07895, O35244
glycolytic process 10 1.675042 4.11E-06 P05708, P47858, Q6P6V0, P04797, P07323, P48500, P05065, P16617, P11980, P25113
response to toxic substance 16 2.680067 9.73E-06 P04094, P02688, P04906, P13233, P04041, P19527, P19643, P14173, P31652, P29147, P04762, P090     
liver regeneration 11 1.842546 1.18E-05 P13383, P62850, P13084, P41123, Q09167, P84100, P05426, P62250, Q6PDV7, P12001, Q63009
2-oxoglutarate metabolic process 7 1.172529 1.20E-05 P41565, Q6P6R2, P13221, P41562, Q68FX0, Q99NA5, P00507
response to estradiol 21 3.517588 1.33E-05 Q9JJ54, P04094, P14925, P04906, P63090, P07323, P04041, P31652, Q9WU82, P11915, P29147, P18          
isocitrate metabolic process 5 0.837521 1.73E-05 P41565, P41562, Q68FX0, Q99NA5, Q9ER34
hydrogen peroxide catabolic process 7 1.172529 1.75E-05 P04762, Q9R063, Q9Z0V6, P01946, P04041, P02091, O35244
positive regulation of translation 11 1.842546 4.66E-05 Q9JJ54, P13084, Q63413, Q3B8Q2, P49242, Q7TP47, P02401, P42346, P05197, P62703, P63086
response to hydrogen peroxide 12 2.01005 5.23E-05 O88767, P04762, P10686, P07632, Q9Z0V6, P01946, P04041, P05197, P07895, P23928, P02091, Q01
RNA splicing 13 2.177554 5.32E-05 Q9EPH8, Q794E4, Q63413, Q3B8Q2, Q6URK4, P04256, Q7TP47, Q99PF5, Q09167, P61980, Q8VHV7   
negative regulation of neuron projection devel 11 1.842546 5.34E-05 Q05546, P31000, Q04400, Q9JMC1, P49911, Q62952, P07722, P61265, Q62950, P47819, Q5QJC9
learning 11 1.842546 6.11E-05 P22063, O35116, P61751, P12369, Q63228, Q9Z2L0, P04177, P63090, P10687, Q63372, Q9R1Z0
oxaloacetate metabolic process 6 1.005025 6.28E-05 P13221, P04636, P52873, O88989, Q8VHF5, P00507
ribosomal large subunit assembly 8 1.340034 7.14E-05 P21531, P21533, P62914, P83732, P23358, P62752, Q6PDV7, P09895
ribosomal small subunit assembly 9 1.507538 7.47E-05 P17074, P04644, P13471, P62755, P24050, P63326, P62853, P38983, P27952
gluconeogenesis 8 1.340034 8.81E-05 Q6P6V0, P04797, P07323, P52873, O35077, P48500, P16617, P25113
rRNA processing 11 1.842546 1.02E-04 P62850, Q63507, P12749, Q3B8Q2, P62914, P17074, P04644, P62755, P05426, P62250, P09895
response to hypoxia 23 3.852596 1.08E-04 P04094, P07340, P14925, Q99376, P09812, P68403, P11598, P31652, P05065, P33124, Q921A4, P04            
central nervous system development 13 2.177554 1.33E-04 P22063, P02688, P14925, P55068, P55067, Q9ESM2, P51650, P61980, P03994, O08719, P97686, Q5  
relaxation of cardiac muscle 5 0.837521 1.34E-04 P07340, P11507, P15791, P06686, P06685
ribosomal small subunit biogenesis 6 1.005025 1.79E-04 P62850, P13084, P17074, P04644, P62755, P62250
response to nutrient 15 2.512563 1.94E-04 P20272, Q99376, B2GV06, P30427, P31652, P33124, P29147, P10888, P05982, P10760, P09034, Q63    
cellular response to interleukin-4 7 1.172529 2.17E-04 P21531, Q91ZN1, P12785, P19945, P34058, P06761, P27952
neurofilament cytoskeleton organization 5 0.837521 2.18E-04 P07632, P16884, P19527, P12839, P23565
acetyl-CoA biosynthetic process from pyruvate 5 0.837521 2.18E-04 Q6P6R2, P49432, P26284, Q06437, P08461
cellular response to cAMP 11 1.842546 2.29E-04 P04094, P35427, P09034, P08592, P19945, Q6JP77, P29994, P02401, O35077, P06761, Q01728
locomotory behavior 13 2.177554 2.31E-04 Q01066, P04094, P43425, Q04400, Q63228, P07632, P04177, P08592, O35430, P07895, P31652, P07  
cell redox homeostasis 10 1.675042 2.55E-04 P04785, Q5XIK2, P11232, Q6P6R2, Q9R063, Q9Z0V6, P04041, P11598, O35244, Q63081
negative regulation of translation 10 1.675042 2.55E-04 P18418, P35427, Q3B8Q2, Q5M9G3, P52759, P04797, Q7TP47, P63245, Q68A21, P62909
cellular response to oxidative stress 11 1.842546 2.55E-04 O88767, P11232, P04094, Q4V8C7, P11507, Q5RJQ4, P07632, Q9Z0V6, P16884, P12839, P37377
actin filament organization 11 1.842546 2.55E-04 Q91ZN1, Q9Z1P2, P45592, Q9Z0W5, Q07266, Q5RJL0, Q5U301, Q62696, P97710, P63312, P85845
negative regulation of neuron apoptotic proces 16 2.680067 2.63E-04 Q91ZN1, P60905, P45479, P63055, P07632, Q9Z0V6, Q63945, P19527, P37377, O88767, P13084, P6     
regulation of neuronal synaptic plasticity 7 1.172529 2.68E-04 P22063, Q62639, P55068, P04631, P14200, P11275, P37377
response to selenium ion 6 1.005025 3.18E-04 P31000, P11232, P19945, P04041, P19643, P07895
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CC Count % PValue Genes
extracellular exosome 301 50.41876 2.80E-101 Q7TPB1, D3ZAF6, B5DEH2, P24050, Q6PEC4, P26772, P62752, P27952, P40241, P09895, P43425, Q                                                                                                                      
myelin sheath 84 14.07035 5.06E-73 P02688, Q9Z2L0, Q5RKI0, P42123, P63322, Q6JE36, P23565, P26284, P08461, P12075, P16036, Q6P                                                                         
membrane 213 35.67839 1.58E-53 Q9Z0U4, P62755, P24050, P26772, P27952, P40241, P09895, Q9Z2G8, Q63507, P62850, Q4FZT9, F1                                                                                                                      
cytoplasm 332 55.61139 2.07E-46 Q7TPB1, B5DEH2, Q9Z0U4, P62755, Q6PEC4, P26772, P62752, P27952, Q9Z2G8, Q9QXY2, P09895,                                                                                                                      
focal adhesion 77 12.89782 1.46E-37 Q5I6B8, Q9EPH8, P35427, P63322, P19945, P62278, P63326, P24050, P61354, P27952, P40241, P09                                                                  
cytosol 151 25.29313 3.84E-35 P63055, P47858, P49911, Q6JE36, Q6PEC4, F1LMZ8, P13084, P13086, P61765, Q6P6V0, Q6JP77, Q9                                                                                                                      
mitochondrion 142 23.78559 1.12E-29 D3ZAF6, Q9Z2L0, P42123, Q5EB81, P26772, P26284, P12075, P11951, Q5XIE6, P09034, P13086, P61                                                                                                                      
neuronal cell body 68 11.39028 8.03E-22 P04094, P02688, Q9Z0U4, Q7TP47, B5DF41, P97839, P14173, P97603, P35053, A7VJC2, Q9QXY2, Q                                                         
axon 54 9.045226 9.57E-21 P04094, P04775, P63055, P63012, P14173, Q9QXY2, Q05695, O88767, P11232, P97686, P97685, Q6                                           
neuron projection 54 9.045226 4.61E-19 O35116, P04775, P63055, Q9Z0U4, B5DF41, A7VJC2, Q9Z2G8, Q9QXY2, O88767, P10760, P09034, Q                                           
intracellular ribonucleoprotein complex 28 4.690117 8.66E-16 P38656, Q9JJ54, Q9EPH8, P35427, P49242, P19945, P04797, P62755, Q7TP47, P24050, P61354, P27                 
cytosolic large ribosomal subunit 32 5.360134 4.56E-15 P20280, P35427, P62902, P19945, P02401, P61354, P62752, P84100, P05426, P63174, P09895, Q63                     
ribosome 29 4.857621 3.25E-14 P20280, P35427, P62755, P61354, P62752, P27952, P05426, P37377, Q63507, P62850, P04644, P62                  
synapse 40 6.700168 5.12E-14 Q9Z0W5, P55068, P62483, P97839, Q9QXY2, P37377, P97686, P06686, P06687, Q63259, Q62936, P                             
cytosolic small ribosomal subunit 24 4.020101 3.31E-13 P49242, P13471, P62755, P62278, P24050, P63326, P27952, P62282, P62850, P62246, P17074, P046             
cell-cell adherens junction 36 6.030151 5.99E-13 Q9WTT7, Q68FR6, P30427, Q6AXS5, Q6JE36, P04218, P06761, P61980, Q68FR9, O88767, P34058, Q                         
melanosome 22 3.685092 6.46E-13 P04785, Q7TPB1, P12785, P60905, O35783, Q63584, Q99376, P13233, P06761, P11598, Q9QZA2, Q           
terminal bouton 24 4.020101 4.22E-12 P60905, Q63475, Q9Z0W5, P63041, P08592, P63012, P09527, P07171, Q8K3M6, P29101, P37377, P             
perinuclear region of cytoplasm 57 9.547739 1.07E-11 P49911, P62755, Q6JE36, O88767, P11507, P29994, Q925N3, Q9Z270, Q63560, P63090, O35430, Q5                                              
dendrite 48 8.040201 1.12E-11 O35116, P04094, Q9EPH8, Q01062, P55068, P07335, P19945, P62755, P97839, Q9QXY2, Q05695, P                                     
synaptic vesicle 24 4.020101 2.01E-11 Q9Z2I6, P60905, P11030, P45479, Q9Z2L0, O35458, P08592, Q9QWN8, Q9Z0U4, O35430, P14668, P             
mitochondrial inner membrane 37 6.197655 3.36E-11 D3ZAF6, Q9Z2L0, P52873, P17764, P19643, Q5XHZ0, P00507, P12075, P11951, P16036, P10888, P3                          
membrane raft 33 5.527638 1.33E-10 Q04400, Q9Z2L0, P42123, Q01062, B5DEH2, Q9Z0U4, P31652, P35053, P16617, Q05546, P85125, Q                      
postsynaptic density 31 5.19263 1.60E-10 O35116, P62483, P61980, Q9QXY2, O08875, P31422, P29994, P12839, P06685, Q9QW07, Q62936, Q                    
proteasome complex 16 2.680067 3.55E-10 Q9JJP9, Q63570, B0BN93, P60901, P40307, P62198, P17220, P40112, P48004, Q4FZT9, F1LMZ8, Q4     
protein complex 52 8.710218 4.47E-10 Q9Z2L0, P04906, B5DEH2, P63012, P11507, Q9JHU0, P61765, P13086, Q6JP77, P69897, P29994, P0                                         
nucleus 223 37.35343 6.45E-10 D3ZAF6, Q641X8, Q8K3E7, P62755, Q6PEC4, P62752, P26284, P27952, P09895, Q9Z2G8, P62850, P                                                                                                                      
cell junction 40 6.700168 1.47E-09 Q63475, Q05175, Q9Z0W5, Q5RKI0, Q9Z0U4, P62483, B5DF41, P61980, Q9QXY2, P37377, Q9Z1P2,                             
small ribosomal subunit 12 2.01005 1.59E-09 P62850, P13084, P62268, P62755, P24050, P63245, P62853, P29314, P38983, P62250, P62703, P608
intercalated disc 14 2.345059 5.19E-09 Q7M730, P07340, P04775, P26431, P14668, Q9WU82, P11507, P15791, P08050, Q9R066, P06686, P   
mitochondrial matrix 23 3.852596 8.01E-09 Q01062, B2GV06, P52873, P17764, Q8VHF5, P49432, P26772, Q5XHZ0, P00507, Q06437, P08461, P            
microtubule 28 4.690117 1.12E-08 Q5PPN5, Q7TPB1, Q6JE36, P62483, Q68FR8, P13668, Q6P6T4, Q9ESI7, Q66HR2, P69897, Q63525, Q                 
smooth endoplasmic reticulum 11 1.842546 1.23E-08 P18418, P24368, P04177, P08592, Q63357, P06761, P11598, Q66HD0, Q63617, Q9QW07, Q63081
perikaryon 22 3.685092 1.25E-08 O35116, P04094, P22062, P14925, P07323, P14668, P16884, P00507, Q01986, A7VJC2, P09606, P04           
extracellular matrix 28 4.690117 5.32E-08 P30427, P62278, P24050, P06761, P61980, P45592, P69897, P62832, P62703, P62804, P04785, P076                 
growth cone 21 3.517588 5.72E-08 Q05175, Q9JMC1, P37285, P08592, P20272, Q8VBU2, P19527, Q8K3M6, P37377, P13596, Q62656,          
cortical actin cytoskeleton 12 2.01005 9.87E-08 Q91ZN1, Q9Z1P2, P45592, Q5RKI0, P11167, Q99MZ8, Q08163, Q7M0E3, P62630, Q9Z1Y3, P52481, 
cell-cell junction 23 3.852596 1.88E-07 Q9QY17, Q91ZN1, Q9Z0W7, Q1WIM3, P55051, Q68FQ2, Q5RKI0, P10686, P08592, P47863, Q9WU8             
cell projection 16 2.680067 3.89E-07 P02688, P55051, Q5RKI0, P10686, P14668, P13233, P24942, Q9Z1P2, P09606, P31000, Q66HR2, O3     
presynaptic membrane 14 2.345059 5.80E-07 Q01062, Q9Z0U4, P32851, B5DF41, Q8K3M6, P11275, Q05695, Q05683, Q62696, P31596, P61265, P   
cytoplasmic ribonucleoprotein granule 9 1.507538 7.13E-07 P13383, Q9EPH8, P21533, P60711, P19945, P69897, P62755, P23565, P62703
axon terminus 15 2.512563 1.00E-06 Q9WVC0, P04094, Q9Z0W5, O54800, P14668, P62483, P61980, P37377, P06300, P09606, P13221, O    
Golgi apparatus 54 9.045226 1.36E-06 P11030, Q8K3E7, P97603, Q9QXU9, Q66HR2, P06687, Q63259, P06685, P43278, P12785, P45479, O                                           
T-tubule 12 2.01005 1.63E-06 P04775, O08839, P26431, P15791, Q62696, Q6JP77, P06686, P47863, P06685, P20651, Q9Z1Y3, Q0
cell body 15 2.512563 2.52E-06 Q9WVC0, Q7TPB1, P55051, P02696, P62755, Q5XIM9, P07171, O88767, P09606, P31000, Q62952,    
paranode region of axon 7 1.172529 4.15E-06 P04775, Q5RJQ4, Q5RJL0, P97685, Q62696, P07722, P97846
endoplasmic reticulum 52 8.710218 5.06E-06 Q9Z0W7, P11030, Q9JJP9, Q68FR6, Q01062, P49911, B5DEH2, Q7TP47, Q7TPJ0, P06761, Q6AY41, Q                                         
nuclear matrix 14 2.345059 5.69E-06 Q9Z0W7, P70615, P16975, Q63413, P60901, P49911, Q9QWN8, P97690, P31000, P45592, P13084, Q   
proteasome accessory complex 7 1.172529 9.71E-06 Q4FZT9, F1LMZ8, Q63570, B0BN93, P62198, O88761, P62193
endoplasmic reticulum chaperone complex 6 1.005025 2.19E-05 P04785, P24368, P06761, Q66HD0, Q63617, Q63081
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MF Count % PValue Genes
protein binding 191 31.9933 9.79E-57 O35116, Q9Z2L0, P42123, Q8K3E7, Q9Z0U4, P24050, P35053, P40241, A7VJC2, P09895, Q9QXY2, O                                                                                                                      
poly(A) RNA binding 133 22.27806 1.06E-36 Q7TPB1, P49911, P62755, P24050, P26772, P62752, D3ZBN0, P27952, A7VJC2, P09895, O88453, Q9                                                                                                                      
structural constituent of ribosome 57 9.547739 2.94E-18 P20280, P35427, P19945, P62755, P62278, P63326, P24050, P61354, P62752, P27952, P09895, Q63                                              
cadherin binding involved in cell-cell adhesion 33 5.527638 6.43E-12 Q9WTT7, Q68FR6, P30427, Q6AXS5, Q6JE36, P06761, P61980, Q68FR9, O88767, P34058, Q66HR2,                      
mRNA binding 25 4.187605 3.41E-10 Q9JJ54, Q9EPH8, P35427, Q6URK4, P49242, P62278, P62755, P24050, P27952, P62630, P05426, P0              
protein domain specific binding 35 5.862647 3.00E-09 Q05175, Q9JJP9, P97839, P06761, P14173, P61980, P37377, Q9QXY2, Q9Z1P2, P63100, P61765, P0                        
enzyme binding 39 6.532663 9.85E-09 P04797, P10687, P27615, P17764, P06761, P14173, P00507, P27952, Q6DGG0, P63329, Q63009, P3                            
drug binding 20 3.350084 1.15E-08 P85973, P12785, P07340, Q01062, P04906, P20272, P04904, P09812, P20651, P62630, P63329, P17         
identical protein binding 53 8.877722 1.64E-08 P42123, P47858, Q8K3E7, Q05695, O88767, P05982, P10760, P11167, P54690, P09034, P61765, Q6                                          
actin filament binding 21 3.517588 7.21E-08 Q91ZN1, Q5RKI0, P31232, Q99MZ8, Q63598, Q7M0E3, Q99PD4, P31652, Q05764, Q9Z1P2, P45592           
protein kinase binding 40 6.700168 7.80E-08 Q9Z2L0, P04906, P10686, P62755, Q5XHZ0, P62630, Q9QXY2, Q4V8C7, P13084, P61765, Q9ESI7, P                             
kinase binding 17 2.847571 8.64E-08 Q9JJP9, P42123, P47858, Q9Z0V6, P32851, Q9WU82, Q9Z2G8, O88767, P31000, P11167, P34058, P      
NAD binding 13 2.177554 3.85E-07 P41565, Q6P6R2, P29266, Q9JLJ3, P10760, P41562, Q68FX0, P42123, Q99NA5, P04797, O88989, O3  
calmodulin binding 21 3.517588 5.46E-07 Q01066, Q05175, P63055, Q63560, P26431, P10687, P20651, Q63092, Q63862, P63329, P11275, Q0          
protein homodimerization activity 57 9.547739 5.93E-07 P47858, Q8K3E7, P17764, P04218, O35077, O88767, Q9Z1P2, P13084, Q62768, Q6AYE2, Q91ZN1, P                                              
RNA binding 39 6.532663 9.98E-07 Q9JJ54, P38656, Q9EPH8, P63055, P13471, P24050, Q09167, P61980, P27952, A7VJC2, P63174, O8                            
nucleotide binding 29 4.857621 8.54E-06 Q9JJ54, P38656, Q9EPH8, Q04400, Q4G061, Q9Z2L0, Q6URK4, Q794E4, P21588, Q7TP47, Q09167,                  
large ribosomal subunit rRNA binding 7 1.172529 1.02E-05 P24049, P19945, P62832, P02401, P23358, P62752, P84100
unfolded protein binding 13 2.177554 1.13E-05 Q7TPB1, Q5XIM9, P26772, Q5XHZ0, P06761, P18418, P13084, P34058, Q63525, P27682, Q66HD0, P  
protein C-terminus binding 22 3.685092 1.66E-05 Q91ZN1, Q9EPH8, P07340, P47858, Q9Z0V6, P49911, P63012, P19527, O55164, Q01986, Q9WU82,           
pyridoxal phosphate binding 11 1.842546 2.77E-05 P13221, P54690, Q05683, P53534, P09812, O35331, P14173, P00507, P02770, P18088, P50554
5.8S rRNA binding 5 0.837521 9.06E-05 P62919, P21533, P62278, P84100, P29314
pyruvate dehydrogenase (NAD+) activity 5 0.837521 9.06E-05 Q6P6R2, P49432, P26284, Q06437, P08461
syntaxin-1 binding 7 1.172529 1.05E-04 P61765, Q9QUL6, P63041, P84087, B5DF41, P31652, Q62768
5S rRNA binding 5 0.837521 1.59E-04 P21531, P50878, P05197, P05426, P09895
calcium-dependent protein binding 11 1.842546 1.84E-04 P09951, P26431, P04631, P84087, P32851, Q63357, Q63372, Q62826, Q9QZA2, P05964, Q63537
cytoskeletal protein binding 10 1.675042 2.12E-04 Q9QY17, Q91ZN1, P13596, Q9Z0W5, Q07266, P30427, P23928, P05065, Q01728, Q63537
glycoprotein binding 11 1.842546 3.23E-04 P18418, P22063, P31000, P60905, Q99376, P34058, P35559, P32851, P06761, P47819, Q63198
ion channel binding 14 2.345059 4.81E-04 Q7M730, Q9Z2L0, P62483, P32851, Q9WU82, Q9Z1P2, Q62658, P15791, P68255, Q62696, P34058,   
peroxidase activity 6 1.005025 5.02E-04 Q921A4, Q9R063, Q9Z0V6, P01946, P02091, O35244
glutathione peroxidase activity 6 1.005025 6.40E-04 P04906, P04041, P57113, O35244, P08009, Q91XR8
peroxiredoxin activity 4 0.670017 7.73E-04 O88767, Q9R063, Q9Z0V6, O35244
structural constituent of cytoskeleton 10 1.675042 8.45E-04 Q5XIF6, Q05764, P31000, Q9QWN8, P69897, P30427, P16884, P19527, P47819, Q68FR8
hyaluronic acid binding 6 1.005025 9.99E-04 P03994, P55068, P55067, Q9ESM2, O35796, Q9ERB4
actin binding 20 3.350084 0.001167 Q91ZN1, Q9QWN8, P30427, Q08163, Q63598, P34926, P62024, Q63862, Q05764, P45592, Q63228,         
protein complex binding 26 4.355109 0.001197 Q9Z0W7, Q9Z2L0, P49242, P27952, P62850, P16036, Q9ES53, P69897, P29994, P62870, Q9JJ19, Q6               
threonine-type endopeptidase activity 6 1.005025 0.001227 P17220, P48004, P40112, P60901, P40307, P28075
potassium ion binding 5 0.837521 0.001455 P07340, P06686, O35331, P06685, P11980
sodium ion binding 5 0.837521 0.001887 P07340, P04775, P06686, O35331, P06685
receptor binding 25 4.187605 0.001937 Q1WIM3, P41562, P08592, P35559, P04218, P62198, P11915, P04762, Q8K4Y5, O88767, P13383, Q              
SH3 domain binding 11 1.842546 0.001993 Q91V33, Q9JMC1, O08719, P08050, Q9Z0G8, Q62952, P97710, Q9QX69, P04041, P97846, Q9QZA2
fatty acid binding 6 1.005025 0.002138 P55051, P55053, P02770, P22057, Q6AYE2, P37377
integrin binding 11 1.842546 0.002501 P18418, P04785, Q05695, Q05546, Q9Z1P2, Q68FQ2, P49911, Q9R066, P15800, P47819, P40241
PDZ domain binding 12 2.01005 0.002541 Q05695, Q811U3, Q9QUL6, P08050, Q62696, O35430, Q9R066, Q6GMN2, Q62936, Q8K3M6, Q6362  
structural molecule activity 16 2.680067 0.002552 P70615, B0BN93, Q99P82, P60203, Q4AEF8, P16884, P23565, P03994, Q05764, P31000, F1LMZ8, P     
oxygen binding 6 1.005025 0.003464 Q921A4, P04177, P01946, P07895, P02091, P02770
protein self-association 8 1.340034 0.003474 P22063, Q05695, P10760, P04636, P11167, P0C0A9, P16970, Q9JJ19
glutamate decarboxylase activity 3 0.502513 0.003538 P09606, Q05683, P18088
ATPase activity 15 2.512563 0.003792 P07340, D3ZAF6, P35435, Q63570, Q63413, P35559, P62198, P06761, P05708, P31399, Q9QUL6, P0    
ATP-dependent protein binding 4 0.670017 0.004181 P60905, Q63413, Q9QUL6, P32851
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KEGG Count % PValue Genes
Ribosome 55 9.21273 5.14E-30 P20280, P35427, P19945, P62755, P62278, P24050, P63326, P61354, P62752, P27952, P09895, Q63                                            
Carbon metabolism 35 5.862647 1.66E-17 P47858, P04797, P52873, O88989, P17764, Q8VHF5, P26284, P00507, P08461, P16617, Q6P6R2, Q5                        
Biosynthesis of antibiotics 43 7.20268 9.10E-15 P42123, P47858, P04797, O88989, P17764, Q8VHF5, P00507, P26284, P08461, P16617, P04762, Q6                                
Citrate cycle (TCA cycle) 17 2.847571 2.40E-13 P41565, P41562, O88989, P52873, Q8VHF5, P49432, P14408, P26284, Q63270, Q9ER34, Q06437, P0      
Biosynthesis of amino acids 22 3.685092 1.66E-10 P41565, P41562, P47858, P04797, P52873, P07323, Q8VHF5, P00507, Q63270, Q9ER34, P05065, P1           
Pyruvate metabolism 15 2.512563 2.65E-09 Q9JLJ3, P42123, O88989, P52873, P17764, P49432, P14408, P26284, Q06437, P08461, Q6P6R2, P04    
2-Oxocarboxylic acid metabolism 11 1.842546 4.45E-09 P41565, P13221, P41562, Q68FX0, P54690, Q99NA5, Q8VHF5, Q6AYS7, Q63270, P00507, Q9ER34
Glycolysis / Gluconeogenesis 17 2.847571 1.78E-07 Q9JLJ3, P42123, P47858, P04797, P07323, P49432, P26284, P05065, Q06437, P08461, P16617, P057      
Glyoxylate and dicarboxylate metabolism 11 1.842546 2.85E-07 P09606, P04762, Q6P6R2, P04636, Q5I0P2, O88989, P17764, Q8VHF5, Q63270, Q9ER34, Q5XI22
Glucagon signaling pathway 19 3.18258 1.36E-06 P42123, P10687, P09812, P49432, P20651, P26284, Q06437, Q63009, P63329, P68182, P11275, P63        
Proteasome 13 2.177554 1.79E-06 Q63570, B0BN93, P60901, P40307, P62198, P40112, P48004, P17220, Q4FZT9, F1LMZ8, O88761, P2  
Butanoate metabolism 10 1.675042 4.49E-06 P17425, Q05683, B2GV06, P14604, P17764, P51650, P18088, P50554, Q5XI22, P29147
Gastric acid secretion 15 2.512563 9.59E-06 P10824, Q04400, P07340, P26431, P15791, P10687, P06686, P29994, P06687, P06685, P68403, Q9Q    
Amphetamine addiction 14 2.345059 1.04E-05 Q04400, P32851, P19643, P14173, P68403, P20651, P63329, P68182, P06300, P11275, P63100, P04   
Metabolic pathways 96 16.0804 1.14E-05 P70627, Q5I6B8, D3ZAF6, P42123, P47858, P17764, P14173, P26284, P08461, P12075, P11951, Q6P                                                                                     
HIF-1 signaling pathway 17 2.847571 3.21E-05 P10686, Q99376, P04797, P07323, P62755, P49432, P68403, P26284, Q01986, Q06437, P11275, P05      
Alanine, aspartate and glutamate metabolism 10 1.675042 3.38E-05 Q9R1T5, P70627, P09606, P13221, P09034, Q05683, P51650, P00507, P18088, P50554
cGMP-PKG signaling pathway 22 3.685092 3.92E-05 P10824, Q04400, P07340, Q9Z2L0, Q01062, P10687, P20651, Q01986, P63329, P81155, P63100, P11           
Parkinson's disease 21 3.517588 4.82E-05 P10824, Q04400, P35435, Q9Z2L0, P68182, P37377, P12075, P81155, P11951, O88767, P10888, P19          
Thyroid hormone synthesis 13 2.177554 9.77E-05 Q04400, P07340, P10687, P06686, P29994, P06687, P04041, P06761, Q66HD0, P06685, P68403, Q9  
Thyroid hormone signaling pathway 17 2.847571 1.57E-04 P07340, P10686, P26431, P10687, P68403, Q01986, Q9WU82, P68182, P11167, Q62639, P60711, P0      
Protein processing in endoplasmic reticulum 21 3.517588 1.97E-04 P04785, P60905, Q9JJP9, P54319, Q6PEC4, Q7TPJ0, P06761, P11598, Q63081, P18418, Q9ES53, P0C          
Insulin secretion 14 2.345059 2.57E-04 Q04400, P07340, P11167, P15791, P10687, P06686, P32851, P06687, P63012, P06685, P68403, Q9Q   
Long-term potentiation 12 2.01005 2.79E-04 P63100, P15791, P10687, P29994, P68403, Q9QW07, P20651, Q01986, P63329, P63086, P11275, P6
Valine, leucine and isoleucine degradation 11 1.842546 2.88E-04 Q6P6R2, Q5XIE6, P29266, Q9JLJ3, P17425, P54690, B2GV06, P14604, P17764, P50554, Q5XI22
GABAergic synapse 14 2.345059 2.90E-04 P10824, Q04400, O35458, O88871, Q9Z0U4, P68403, P68182, P09606, P43425, Q05683, Q9QUL6, Q   
Propanoate metabolism 8 1.340034 3.12E-04 Q5XIE6, Q6AYG5, P42123, P13086, P14604, P17764, P50554, Q5XI22
Glutamatergic synapse 16 2.680067 4.64E-04 P10824, Q04400, P10687, P24942, P68403, P20651, P63329, P68182, P43425, P09606, P63100, P31     
Proximal tubule bicarbonate reclamation 7 1.172529 5.10E-04 P07340, Q9JI66, O88989, P06686, P06687, P06685, P27139
Alzheimer's disease 21 3.517588 5.71E-04 P35435, P08592, P04797, P10687, P35559, P20651, P63329, P37377, P12075, P11951, P10888, P192          
Central carbon metabolism in cancer 11 1.842546 0.001007 P05708, P11167, P47858, P49432, P42346, P26284, Q01986, Q06437, P63086, P11980, P25113
Gap junction 13 2.177554 0.001138 P10824, Q5XIF6, Q04400, P08050, P69897, P10687, P29994, P68403, Q9QW07, Q01986, Q68FR8, P  
Oxytocin signaling pathway 18 3.015075 0.001196 P10824, Q04400, P10687, P68403, P20651, Q01986, P63329, P68182, P11275, P63100, P97756, P60       
Synthesis and degradation of ketone bodies 5 0.837521 0.001427 P17425, B2GV06, P17764, Q5XI22, P29147
Dopaminergic synapse 16 2.680067 0.00155 P10824, Q04400, P10687, P19643, P14173, P68403, P20651, P63329, P68182, P11275, P43425, P04     
Cocaine addiction 9 1.507538 0.001572 P10824, Q04400, P04177, Q6J4I0, P31422, P19643, P14173, P68182, P06300
Endocrine and other factor-regulated calcium re 9 1.507538 0.001815 P07340, P10687, P06686, P06687, P06685, P68403, Q9QW07, P07171, P68182
Bile secretion 11 1.842546 0.002263 Q04400, P07340, P11167, Q9JI66, P26431, P06686, P06687, P47863, P06685, P27139, P68182
Pancreatic secretion 13 2.177554 0.002433 Q04400, P07340, P11507, P26431, Q9JI66, P10687, P06686, P29994, P06687, P06685, P68403, Q9Q  
Oocyte meiosis 14 2.345059 0.002934 Q04400, Q6PEC4, P97690, P20651, Q01986, P63329, P68182, P11275, P63100, P15791, P68255, P68   
Salivary secretion 11 1.842546 0.003766 Q04400, P07340, P26431, P10687, P06686, P29994, P06687, P06685, P68403, Q9QW07, P68182
Calcium signaling pathway 19 3.18258 0.004126 Q01066, Q9Z2L0, P10686, P10687, P68403, P20651, P63329, P68182, P11275, P81155, P63100, P11        
Amyotrophic lateral sclerosis (ALS) 9 1.507538 0.004998 P04762, P63100, P07632, P31596, P16884, P19527, P12839, P20651, P63329
Renin secretion 10 1.675042 0.005115 P10824, Q01066, Q04400, P63100, P10687, P29994, Q9QW07, P20651, P63329, P68182
Estrogen signaling pathway 12 2.01005 0.00708 P10824, Q04400, O88871, P10687, Q9Z0U4, P34058, P29994, Q66HD0, Q9QW07, Q01986, P63086, 
Serotonergic synapse 14 2.345059 0.007561 P10824, P43425, Q04400, P08592, P10687, P29994, P19643, P31652, P68403, P14173, Q9QW07, Q0   
Synaptic vesicle cycle 9 1.507538 0.010315 O35458, P61765, Q9QUL6, P63041, P84087, P61265, P32851, P63012, Q62768
Huntington's disease 19 3.18258 0.010617 P35435, Q9Z2L0, P07632, P10687, P12075, P81155, P11951, P10888, P19234, P31399, Q09073, Q5X        
Tyrosine metabolism 7 1.172529 0.011042 P13221, P04177, P25093, P19643, P57113, P14173, P00507
Cysteine and methionine metabolism 7 1.172529 0.012469 P10760, P13221, P04636, P42123, P97532, O88989, P00507
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ANNEX 2 

Table S1. Differentially expressed proteins that change in the same direction (downregulated) in at least three different proteomic studies 
related to the ageing nervous system. The first column shows the gene name of the 44 proteins downregulated (red cells) with ageing. Numbers 

indicate the reference number that can be checked in Table 6.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
cadm4 DOWN DOWN DOWN

acadsb DOWN DOWN DOWN

atp5h DOWN DOWN DOWN

atp5l DOWN DOWN DOWN

atp6ap1 DOWN DOWN DOWN

cacna2d1 DOWN DOWN DOWN

calb1 DOWN DOWN DOWN

clic6 DOWN DOWN DOWN

dlgap3 DOWN DOWN DOWN

far1 DOWN DOWN DOWN

fech DOWN DOWN DOWN

gpd2 DOWN DOWN DOWN

grm3 DOWN DOWN DOWN

hnrnpu DOWN DOWN DOWN

hpca DOWN DOWN DOWN

igsf21 DOWN DOWN DOWN

kiaa1217 DOWN DOWN DOWN

lphn1 DOWN DOWN DOWN

mgll DOWN DOWN DOWN

mtch1 DOWN DOWN DOWN

ndufa12 DOWN DOWN DOWN

ndufaf7 DOWN DOWN DOWN

pabpc1 DOWN DOWN DOWN

phyhip DOWN DOWN DOWN

prom1 DOWN DOWN DOWN

sdhb DOWN DOWN DOWN

serbp1 DOWN DOWN DOWN

serpinh1 DOWN DOWN DOWN

uqcrc1 DOWN DOWN DOWN

atp5o DOWN DOWN DOWN

cnp DOWN DOWN DOWN

cxadr DOWN DOWN DOWN DOWN

glb1 DOWN DOWN DOWN DOWN

gnb4 DOWN DOWN DOWN DOWN

mvd DOWN DOWN DOWN DOWN

ppp2cb DOWN DOWN DOWN DOWN

pvrl1 DOWN DOWN DOWN DOWN

rps12 DOWN DOWN DOWN DOWN

tnc DOWN DOWN DOWN DOWN

ugt8 DOWN DOWN DOWN DOWN

atp5c1 DOWN DOWN DOWN DOWN

pclo DOWN DOWN DOWN DOWN

dpysl3 DOWN DOWN DOWN DOWN DOWN DOWN

tfrc DOWN DOWN DOWN DOWN DOWN
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Table S2. Differentially expressed proteins that change in the same direction (upregulated) in at least three different proteomic studies about 
the ageing nervous system. The first column shows the gene name of the 103 proteins upregulated (green cells) with ageing. Numbers indicate the 

reference number that can be checked in Table 6.1.  

 

 

 

Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
cryab UP UP UP UP UP UP UP UP

hapln2 UP UP UP UP UP UP UP

ppt1 UP UP UP UP UP UP UP

psap UP UP UP UP UP UP

tpi1 UP UP UP UP UP

hepacam UP UP UP UP UP

tpm1 UP UP UP UP

map1b UP UP UP UP

mobp UP UP UP UP UP

asah1 UP UP UP UP UP

ca1 UP UP UP UP UP

hsd17b12 UP UP UP UP

atp1b1 UP UP UP UP

atp6v0d1 UP UP UP UP

cntn1 UP UP UP UP

stx1b UP UP UP UP

stxbp1 UP UP UP UP

uba1 UP UP UP UP

prrt2 UP UP UP UP

hnrnph1 UP UP UP

egfr UP UP UP

apoe UP UP UP UP

aqp4 UP UP UP UP

nckipsd UP UP UP UP

padi2 UP UP UP UP

anxa1 UP UP UP UP

anxa2 UP UP UP UP

flna UP UP UP UP

hba1 UP UP UP UP

aldh3b1 UP UP UP UP

eef1g UP UP UP UP

usp5 UP UP UP UP

rps16 UP UP UP

snta1 UP UP UP UP

tpp1 UP UP UP

pacsin2 UP UP UP

slc14a1 UP UP UP

anxa4 UP UP UP

plekhb1 UP UP UP

itih3 UP UP UP

ncoa7 UP UP UP

sirt5 UP UP UP

aldh7a1 UP UP UP

aldh1l1 UP UP UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
ranbp1 UP UP UP

cryl1 UP UP UP

gsto1 UP UP UP

nrgn UP UP UP

abi1 UP UP UP

aldh3a2 UP UP UP

chdh UP UP UP

cstb UP UP UP

ctbp1 UP UP UP

dars UP UP UP

dctn1 UP UP UP

ddx6 UP UP UP

dynlt3 UP UP UP

epb41l2 UP UP UP

fasn UP UP UP

fdps UP UP UP

fhl1 UP UP UP

fn3krp UP UP UP

gpx4 UP UP UP

itsn1 UP UP UP

kbtbd11 UP UP UP

kctd12 UP UP UP

kiaa0513 UP UP UP

kif5b UP UP UP

lamp2 UP UP UP

lrp1 UP UP UP

lztfl1 UP UP UP

mat2a UP UP UP

mettl7a UP UP UP

nap1l4 UP UP UP

pgm1 UP UP UP

plin3 UP UP UP

plxnb2 UP UP UP

psmb1 UP UP UP

rnh1 UP UP UP

rps9 UP UP UP

sdcbp UP UP UP

snx1 UP UP UP

stat3 UP UP UP

stk39 UP UP UP

tbcb UP UP UP

tceb2 UP UP UP

tmem30a UP UP UP

vamp1 UP UP UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
wasl UP UP UP

ctsb UP UP UP

hp UP UP UP

lgals3bp UP UP UP

coq6 UP UP UP

tinagl1 UP UP UP

cyba UP UP UP

vars UP UP UP

npc2 UP UP UP

bdh2 UP UP UP

hspb1 UP UP UP

hla-a UP UP UP

eef1a2 UP UP UP

anxa5 UP UP UP

eno2 UP UP UP
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Table S3. Differentially expressed proteins that change in different direction (down- and upregulated) in at least three different proteomic 
studies about the ageing nervous system. The first column shows the gene name of the 501 proteins downregulated (red cells) or upregulated 

(green cells) with ageing. Numbers indicate the reference number that can be checked in Table 6.1.  

 

 

 

 

 

 

Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
ina DOWN UP UP UP

ivd UP UP UP UP UP DOWN UP

vcan UP UP DOWN UP UP UP UP

acan UP UP DOWN UP UP UP UP

tkt UP UP UP UP UP UP

phgdh UP UP UP UP UP UP

hadha UP UP UP UP DOWN UP

myh9 UP UP UP UP

fth1 UP UP DOWN UP UP UP

lap3 UP UP DOWN UP UP

tagln UP UP UP UP UP DOWN

dnm1 UP UP UP UP DOWN

gng2 DOWN UP UP UP UP

ldhb UP UP DOWN UP UP

bsg UP DOWN UP UP UP

cd47 UP DOWN UP UP UP

park7 UP UP DOWN UP UP

scarb2 UP UP UP UP UP

rps3 UP UP UP UP UP

slc6a11 DOWN UP UP UP UP

ptk2b UP DOWN UP UP

sncb DOWN UP UP

ctnna1 UP UP UP

gja1 UP UP UP DOWN

hapln1 UP UP DOWN UP UP

apod UP UP DOWN UP UP

dync1i2 UP UP UP UP DOWN

ighm UP UP UP DOWN UP

gpi DOWN UP UP UP

dhrs7 DOWN UP UP UP

lgi1 DOWN UP UP UP

napb DOWN UP UP UP

gng3 DOWN UP UP UP

rab5a UP DOWN UP UP

syngr3 DOWN UP UP UP

tmem65 DOWN UP UP UP

arl6ip5 UP UP UP UP

atp1b2 UP UP DOWN UP

erlin2 UP UP DOWN UP

grpel1 UP UP DOWN UP

ndufaf3 UP UP DOWN UP

syngr1 UP UP .UP DOWN UP

slc6a1 UP UP UP DOWN

arl8b UP DOWN UP UP UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
enpp6 UP UP UP DOWN

ppa1 UP UP UP DOWN

qdpr DOWN UP UP UP

ncan DOWN UP UP UP

ppp1r14a UP UP DOWN UP

aspa UP UP DOWN UP

slc7a14 UP DOWN UP UP

sh3gl3 UP DOWN UP UP

agl DOWN UP UP UP

lancl1 UP DOWN UP UP

tppp3 UP DOWN UP UP

cdc42ep4 DOWN UP UP UP

mt3 UP UP UP DOWN

pnp DOWN UP UP UP

cct7 UP DOWN UP UP

tln1 UP DOWN UP UP

cat UP UP DOWN UP

abhd10 UP UP DOWN UP

caps UP UP DOWN UP

ftl UP DOWN UP UP

c1qc UP UP UP DOWN

coq3 UP UP UP DOWN

cox7a2l UP UP UP DOWN

hbb UP DOWN UP UP

ak1 UP UP DOWN UP

hmox2 UP UP DOWN UP

marcks UP UP UP DOWN

fis1 DOWN UP UP

cox6c UP DOWN UP

capza2 UP UP DOWN

lmnb2 UP UP DOWN

sod1 UP UP UP

rpn1 UP UP UP

app up DOWN UP UP

gapdh UP UP DOWN

pdxk UP UP DOWN

nadk2 UP UP DOWN

cntnap1 DOWN UP UP

slc44a1 DOWN UP UP

strap UP DOWN UP

bin1 DOWN UP UP

bcan UP DOWN UP

grhpr UP DOWN UP

mbp UP DOWN UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
nt5e UP DOWN UP

cd82 UP DOWN UP

tuba8 UP DOWN UP

mlc1 DOWN UP UP

vat1 DOWN UP UP

cpe DOWN UP UP

opalin DOWN UP UP

ahnak UP DOWN UP

scg2 DOWN UP UP

mif UP DOWN UP

arpc2 DOWN UP UP

cdk5 DOWN UP UP

ddb1 DOWN UP UP

dlg3 DOWN UP UP

dync1i1 DOWN UP UP

eef2 DOWN UP UP

eif4h DOWN UP UP

ero1l DOWN UP UP

fam98b DOWN UP UP

gabarapl2 DOWN UP UP

gabra1 DOWN UP UP

gcdh DOWN UP UP

git1 DOWN UP UP

hnrnpa3 DOWN UP UP

ipo7 DOWN UP UP

map1s DOWN UP UP

map7d1 DOWN UP UP

pcmt1 DOWN UP UP

ptges3 DOWN UP UP

ptplad1 DOWN UP UP

rpl7a DOWN UP UP

rpl8 DOWN UP UP

rps25 DOWN UP UP

svop DOWN UP UP

tomm70a DOWN UP UP

trpv2 DOWN UP UP

vps26b DOWN UP UP

add3 UP DOWN UP

cd59 UP DOWN UP

dctn2 UP DOWN UP

epha4 UP DOWN UP

ermn UP DOWN UP

fbxo2 UP DOWN UP

mut UP DOWN UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
pc UP DOWN UP

psma3 UP UP DOWN

psma6 UP UP DOWN

slc44a2 UP DOWN UP

mlf2 UP DOWN UP

cd9 UP DOWN UP

gng7 UP DOWN UP

ddx1 UP DOWN UP

scg5 UP DOWN UP

arhgdia UP UP DOWN

asph UP UP DOWN

cand1 UP UP DOWN

caprin1 UP UP DOWN

cdc37 UP UP DOWN

cdh2 UP UP DOWN

cttn UP UP DOWN

dgkb UP UP DOWN

enoph1 UP UP DOWN

gpd1 UP UP DOWN

gstm3 UP UP DOWN

hsdl2 DOWN UP UP

kiaa1549l UP UP DOWN

lrrc47 UP UP DOWN

mapre2 UP UP DOWN

npm1 UP UP DOWN

phpt1 UP UP DOWN

ppif UP UP DOWN

rab7a UP UP DOWN

rps17l UP UP DOWN

setsip UP UP DOWN

sorbs1 UP UP DOWN

xpnpep1 UP UP DOWN

hint1 UP UP DOWN

sh3bp1 UP UP DOWN

plec UP UP DOWN

c3 UP UP DOWN

clu UP UP DOWN

pmp2 UP DOWN UP

rap1b DOWN UP UP

abcb6 UP DOWN UP

ehd3 UP DOWN UP

ctnnb1 UP DOWN UP

gnaz UP DOWN UP

csrp1 UP UP DOWN
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
ywhaq UP UP DOWN

ctnnd1 UP DOWN UP

aldoa DOWN DOWN UP UP

pkm DOWN UP UP UP

gfap DOWN UP UP UP UP UP UP DOWN

ca2 UP UP DOWN UP DOWN UP UP

vcp UP UP DOWN UP UP DOWN

igsf8 UP UP DOWN UP UP UP

snca UP DOWN DOWN UP UP UP

syt1 UP DOWN UP DOWN UP UP

dnajc5 DOWN DOWN UP UP UP

pgk1 UP DOWN DOWN UP UP

basp1 DOWN UP UP UP UP

rps18 UP DOWN UP UP UP

rtn4 UP DOWN UP UP UP

aldh6a1 DOWN UP UP DOWN UP

aak1 UP DOWN UP DOWN UP

phb2 UP DOWN UP DOWN UP

etfb UP UP UP DOWN DOWN

map1a UP DOWN DOWN UP

nefh UP UP DOWN DOWN

alb UP UP DOWN UP DOWN

anln UP UP DOWN DOWN UP

vim UP DOWN UP UP DOWN

aldh1l2 DOWN DOWN UP UP

gdpd1 DOWN DOWN UP UP

por DOWN DOWN UP UP

pcyox1 DOWN UP UP UP

gnai2 UP DOWN UP UP

sv2a UP DOWN UP UP

ktn1 UP DOWN UP UP

got1 UP DOWN UP UP

me3 DOWN UP DOWN UP

ndufa2 DOWN UP DOWN UP

abat DOWN UP DOWN UP

comt UP DOWN DOWN UP

comtd1 UP DOWN DOWN UP

nceh1 DOWN UP DOWN UP

ptrh2 UP DOWN DOWN UP

hist1h1e UP DOWN DOWN UP

ndufa7 UP DOWN DOWN UP

h2afy DOWN DOWN UP UP

flot1 DOWN DOWN UP UP UP

sgip1 DOWN UP UP DOWN UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
slc7a5 UP UP UP DOWN

stom UP UP UP DOWN

hibch UP UP DOWN DOWN

timm9 UP UP DOWN DOWN

mtch2 UP UP DOWN DOWN

l2hgdh UP UP DOWN DOWN

cplx1 UP UP UP DOWN DOWN

mapt UP UP UP DOWN DOWN

myo5a UP DOWN DOWN

prkcg UP DOWN DOWN

cldn11 DOWN DOWN UP UP

cndp2 UP DOWN DOWN UP

prkra DOWN DOWN UP UP

cd38 DOWN UP DOWN UP

hnrnpl DOWN UP DOWN UP

tpt1 UP DOWN UP DOWN

idh1 DOWN UP UP DOWN

hapln4 UP DOWN UP DOWN

dnajc6 DOWN DOWN UP UP

pcsk1n DOWN DOWN UP UP

rplp1 UP DOWN DOWN UP

sirt2 DOWN DOWN UP

necap1 DOWN UP UP DOWN

rpl13 DOWN UP UP

rpl22 DOWN UP UP

slc1a3 DOWN UP UP DOWN

sptbn2 UP UP DOWN DOWN

slc17a7 UP DOWN UP DOWN

vcl DOWN UP UP

rps5 UP UP DOWN DOWN

atp5f1 UP DOWN UP DOWN

h1f0 UP DOWN UP DOWN

yars DOWN DOWN UP

abcd3 DOWN DOWN UP

cadm3 DOWN DOWN UP

chchd6 DOWN DOWN UP

crat DOWN DOWN UP

crip2 DOWN DOWN UP

ewsr1 DOWN UP DOWN

gphn DOWN UP DOWN

gpm6b DOWN DOWN UP

hdlbp DOWN UP DOWN

hnrpa2b1 DOWN UP DOWN

ly6h DOWN DOWN UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
maoa DOWN DOWN UP

mfsd4 DOWN DOWN UP

nrxn1 DOWN DOWN UP

pafah1b2 DOWN DOWN UP

pdk3 DOWN DOWN UP

ppfia3 DOWN DOWN UP

rab3gap2 DOWN DOWN UP

sbf1 DOWN DOWN UP

sept DOWN DOWN UP

sfpq DOWN UP DOWN

slc32a1 DOWN DOWN UP

sucla2 DOWN DOWN UP

wasf1 DOWN DOWN UP

akap5 DOWN DOWN UP

camkk2 DOWN UP DOWN

cmas UP DOWN DOWN

dclk1 DOWN UP DOWN

ddah2 DOWN DOWN UP

epn1 DOWN UP DOWN

ept1 DOWN UP DOWN

g3bp2 UP DOWN DOWN

glo1 DOWN DOWN UP

kiaa1045 DOWN UP DOWN

l1cam DOWN UP DOWN

npepps DOWN UP DOWN

ppp1r1b DOWN UP DOWN

rcn2 DOWN UP DOWN

slc4a4 DOWN UP DOWN

stxbp5l DOWN UP DOWN

ube2n UP DOWN DOWN

uqcrh DOWN UP DOWN

vat1l DOWN UP DOWN

adh5 UP DOWN DOWN

cacybp UP DOWN DOWN

crk UP DOWN DOWN

dip2b UP DOWN DOWN

fabp5 DOWN UP DOWN

gmfb UP DOWN DOWN

gsn DOWN UP DOWN

itpka UP DOWN DOWN

map6d1 UP DOWN DOWN

mturn UP DOWN DOWN

ncald UP DOWN DOWN

nsfl1c UP DOWN DOWN
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
plcb1 UP DOWN DOWN

pspc1 UP DOWN DOWN

sec13 DOWN UP DOWN

serpinb6 UP DOWN DOWN

shank3 UP DOWN DOWN

slc39a12 DOWN UP DOWN

sort1 UP DOWN DOWN

tf UP DOWN DOWN

arrb1 UP DOWN DOWN

capzb UP DOWN DOWN

coro1c UP DOWN DOWN

ndufs5 UP DOWN DOWN

fahd1 UP DOWN DOWN

adck3 UP DOWN DOWN

acad8 UP DOWN DOWN

ccbl2 UP DOWN DOWN

macrod1 UP DOWN DOWN

calb2 DOWN DOWN UP

tagln3 DOWN DOWN UP

ap2m1 DOWN DOWN UP

gag UP DOWN

ncdn DOWN UP DOWN

ndufv1 DOWN UP DOWN

camk4 UP DOWN DOWN

celf1 UP DOWN DOWN

clta UP DOWN DOWN

cfl1 DOWN UP DOWN UP UP UP

ppia DOWN DOWN DOWN UP

mog DOWN DOWN UP UP UP UP

gap43 UP DOWN UP UP UP DOWN

ndrg2 DOWN UP UP UP UP DOWN

snap25 UP DOWN DOWN UP UP

glul UP UP UP DOWN DOWN DOWN

atp5a1 DOWN UP UP DOWN DOWN

scamp1 DOWN DOWN DOWN UP UP

atp1a1 DOWN DOWN UP UP UP

mdh1 DOWN UP DOWN UP UP

pgam1 UP DOWN DOWN UP UP

ndufv2 DOWN DOWN UP DOWN UP

aldh5a1 DOWN DOWN UP DOWN UP

samm50 DOWN UP DOWN DOWN UP

cpt1a DOWN UP DOWN DOWN UP

hadhb UP DOWN DOWN DOWN UP

sv2b UP UP UP DOWN DOWN
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
glipr2 UP DOWN UP UP DOWN

tmx3 UP DOWN UP UP DOWN

aldh1b1 DOWN UP UP DOWN DOWN

atad1 DOWN UP UP DOWN DOWN

hadh DOWN UP UP DOWN DOWN

timm50 DOWN UP UP DOWN DOWN

ndufs2 UP DOWN UP DOWN DOWN

tnr UP DOWN UP DOWN DOWN

mcu UP DOWN UP DOWN DOWN

s100b DOWN DOWN UP UP DOWN UP

slc9a3r1 UP UP UP DOWN DOWN

ckb UP DOWN UP DOWN

fxyd7 UP UP DOWN DOWN DOWN

mrpl15 DOWN DOWN UP UP

dcakd DOWN DOWN DOWN UP

exog DOWN DOWN DOWN UP

hist1h1a DOWN DOWN DOWN UP

idh2 DOWN DOWN DOWN UP

lmnb1 DOWN DOWN DOWN UP

crym DOWN DOWN UP UP DOWN

fkbp1a UP DOWN DOWN UP DOWN

apmap DOWN UP UP DOWN

ganab DOWN UP UP DOWN

pbxip1 DOWN UP UP DOWN

srcin1 UP DOWN UP DOWN

mtdh UP DOWN UP DOWN

rab11b UP DOWN UP DOWN

acot13 DOWN UP DOWN DOWN

atp5d DOWN UP DOWN DOWN

echs1 DOWN UP DOWN DOWN

erp29 DOWN UP DOWN DOWN

ogdhl DOWN UP DOWN DOWN

slc12a5 DOWN UP DOWN DOWN

suclg1 DOWN UP DOWN DOWN

bcl2l13 UP DOWN DOWN DOWN
c1qbp UP DOWN DOWN DOWN

gls UP DOWN DOWN DOWN

idh3b DOWN UP DOWN DOWN

lonp1 UP DOWN DOWN DOWN

negr1 UP DOWN DOWN DOWN

ptges2 DOWN UP DOWN DOWN

sdha DOWN UP DOWN DOWN

tomm22 UP DOWN DOWN DOWN

ndufs7 UP DOWN DOWN DOWN
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
acads UP UP DOWN DOWN

ppib UP UP DOWN DOWN

nutf2 UP DOWN UP DOWN

vgf DOWN DOWN UP DOWN

nrxn3 DOWN DOWN UP DOWN

arhgef2 DOWN DOWN UP DOWN

dbi UP DOWN DOWN DOWN

abracl UP DOWN DOWN DOWN

ttr UP DOWN DOWN DOWN

ncam2 DOWN DOWN DOWN UP

thy1 DOWN DOWN DOWN UP

pdia6 DOWN DOWN DOWN UP

ddost UP DOWN DOWN

nefl DOWN UP DOWN DOWN

hsp90aa1 DOWN UP DOWN

nomo1 UP DOWN DOWN DOWN

rplp2 UP DOWN DOWN

bckdha UP DOWN DOWN DOWN

stmn1 UP DOWN DOWN DOWN

ppp3r1 UP DOWN DOWN

s100a1 DOWN UP DOWN

gstp1 DOWN UP UP DOWN UP UP DOWN

marcksl1 DOWN DOWN DOWN UP UP UP DOWN

fabp7 DOWN DOWN DOWN UP UP DOWN

dlat DOWN DOWN UP DOWN DOWN

tubb2b DOWN DOWN DOWN UP UP

auh DOWN DOWN DOWN DOWN UP

homer1 DOWN DOWN DOWN DOWN UP

ggt7 DOWN DOWN UP UP DOWN

rpl18 DOWN UP DOWN UP DOWN

uggt1 DOWN UP DOWN UP DOWN

atp5j DOWN DOWN UP DOWN DOWN

cox5a DOWN DOWN UP DOWN DOWN

dlst DOWN DOWN UP DOWN DOWN

letm1 DOWN DOWN UP DOWN DOWN

pdhb DOWN DOWN UP DOWN DOWN

ogdh UP DOWN DOWN DOWN DOWN

oxct1 UP DOWN DOWN DOWN DOWN

phb UP DOWN DOWN DOWN DOWN

slc25a11 UP DOWN DOWN DOWN DOWN

akap12 DOWN UP UP DOWN DOWN

maob DOWN UP UP DOWN DOWN

slc25a18 DOWN UP DOWN DOWN DOWN

map2 DOWN DOWN UP DOWN UP
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
ybx1 DOWN DOWN DOWN UP DOWN

fabp3 UP DOWN DOWN DOWN DOWN

pmpcb DOWN DOWN DOWN UP

vsnl1 DOWN DOWN UP DOWN

atp5b DOWN DOWN DOWN DOWN

atp5j2 DOWN DOWN DOWN DOWN

bsn DOWN DOWN DOWN DOWN

cend1 DOWN DOWN DOWN DOWN

cox4i1 DOWN DOWN DOWN DOWN

cs DOWN DOWN DOWN DOWN

cyc1 DOWN DOWN DOWN DOWN

dld DOWN DOWN DOWN DOWN

ech1 DOWN DOWN DOWN DOWN

etfa DOWN DOWN DOWN DOWN

fam162a DOWN DOWN DOWN DOWN

hibadh DOWN DOWN DOWN DOWN

hspa9 DOWN DOWN DOWN DOWN

hspd1 DOWN DOWN DOWN DOWN

hspe1 DOWN DOWN DOWN DOWN

iars2 DOWN DOWN DOWN DOWN

lrpprc DOWN DOWN DOWN DOWN

mff DOWN DOWN DOWN DOWN

mrpl12 DOWN DOWN DOWN DOWN

ndufa10 DOWN DOWN DOWN DOWN

ndufa13 DOWN DOWN DOWN DOWN

ndufa6 DOWN DOWN DOWN DOWN

ndufa9 DOWN DOWN DOWN DOWN

ndufb4 DOWN DOWN DOWN DOWN

ndufs6 DOWN DOWN DOWN DOWN

pam16 DOWN DOWN DOWN DOWN

rhot1 DOWN DOWN DOWN DOWN

tsfm DOWN DOWN DOWN DOWN

uqcrc2 DOWN DOWN DOWN DOWN

zadh2 DOWN DOWN DOWN DOWN

nefm DOWN UP DOWN DOWN

rtn1 UP DOWN DOWN DOWN

acot9 UP DOWN DOWN DOWN

stx1a DOWN DOWN UP DOWN

ndufs8 DOWN DOWN DOWN DOWN DOWN UP

mdh2 DOWN DOWN UP DOWN DOWN DOWN

pdia3 UP DOWN DOWN DOWN UP DOWN

sod2 DOWN DOWN DOWN UP DOWN DOWN

glud1 UP DOWN DOWN DOWN DOWN DOWN

cox6b1 UP DOWN DOWN DOWN DOWN DOWN
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Gene name [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24a] [24b] [25] [26a] [26b] [26c] [27] [28a] [28b]
dpysl5 DOWN DOWN DOWN UP DOWN DOWN

camkv DOWN DOWN DOWN UP DOWN

prkar2b DOWN DOWN DOWN UP DOWN

rras2 DOWN DOWN DOWN UP DOWN

glrx5 DOWN DOWN DOWN DOWN DOWN

immt DOWN DOWN DOWN DOWN DOWN

ndufa8 DOWN DOWN DOWN DOWN DOWN

slc25a22 DOWN DOWN DOWN DOWN DOWN

uqcrfs1 DOWN DOWN DOWN DOWN DOWN

plp1 DOWN DOWN UP DOWN DOWN

armc10 DOWN UP DOWN DOWN DOWN

ckap4 DOWN UP DOWN DOWN DOWN

me2 UP DOWN DOWN DOWN DOWN

prdx3 UP DOWN DOWN DOWN DOWN DOWN

vdac1 DOWN DOWN DOWN DOWN DOWN DOWN

calr UP DOWN DOWN DOWN DOWN DOWN DOWN

bdh1 DOWN DOWN DOWN DOWN DOWN DOWN DOWN
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Table S4. Gene Ontology (GO) and KEGG pathway analyses of the 
differentially expressed proteins that change in the same direction 
(downregulated, Table S1) in the ageing nervous system proteomic studies. 

GO enriched term Count Proteins 
Biological process 
Mitochondrial ATP synthesis coupled 

proton transport 4 ATP5C1, ATP5H, ATP5L, ATP5O 

ATP synthesis coupled proton 
transport 4 ATP5C1, ATP5H, ATP5L, ATP5O 

ATP biosynthetic process 4 ATP5C1, ATP5H, ATP5L, ATP5O 
Cellular component 

Extracellular exosome 21 

CACNA2D1, CADM4, ATP5C1, GLB1, 
CLIC6, TFRC, SERBP1, ACADSB, GNB4, 

CALB1, PROM1, PCLO, PPP2CB, ATP5H, 
ATP5L, SDHB, ATP5O, ATP6AP1, 

SERPINH1, CNP, PABPC1 

Membrane 12 
NDUFA12, ATP5C1, TFRC, SERBP1, TNC, 
HNRNPU, RPS12, CNP, MTCH1, PABPC1, 

MGLL, PCLO 

Mitochondrial inner membrane 11 
NDUFA12, FECH, ATP5C1, ATP5H, SDHB,  
ATP5L, ATP5O, CNP, MTCH1, UQCRC1, 

GPD2 

Mitochondrion 10 
FECH, ATP5C1, ATP5H, SDHB, ATP5L, 
ATP5O, ACADSB, NDUFAF7, MTCH1, 

UQCRC1 

Extracellular space 9 CXADR, GLB1, TFRC, TNC, SERPINH1
 NDUFAF7, CNP, DPYSL3, PROM1 

Mitochondrial proton-transporting 
ATP synthase complex 4 ATP5C1, ATP5H, ATP5L, ATP5O 

Mitochondrial matrix 4 FECH, ATP5C1, ACADSB, NDUFAF7 
Myelin sheath 3 ATP5C1, GNB4, UQCRC1 

Molecular function 

Poly(A) RNA binding 7 ATP5C1, TFRC, SERBP1, HNRNPU, RPS12, 
SERPINH1, PABPC1 

Proton-transporting ATP synthase 
activity, rotational mechanism 5 ATP5C1, ATP5H, ATP5L, ATP5O,

 ATP6AP1 
Transmembrane transporter activity 4 ATP5C1, ATP5H, ATP5L, ATP5O 

ATPase activity 4 ATP5C1, ATP5H, ATP5L, ATP5O 
Electron carrier activity 3 NDUFA12, SDHB, ACADSB 

 

 

 

KEGG enriched pathway Count Proteins 

Metabolic pathways 14 

ATP5C1, GLB1, ACADSB, FECH, 
NDUFA12, MVD, ATP5H, ATP5L, 
SDHB, ATP5O, ATP6AP1, UGT8,  MGLL, 

UQCRC1 

Oxidative phosphorylation 8 NDUFA12, ATP5C1, ATP5H, SDHB, ATP5L, 
ATP5O, ATP6AP1, UQCRC1 

Parkinson's disease 6 NDUFA12, ATP5C1, ATP5H, SDHB, 
ATP5O, UQCRC1 



Appendices 

434 
 

Table S5. Gene Ontology (GO) and KEGG pathway analyses of the differentially 
expressed proteins that change in the same direction (upregulated, Table S2) in 
the ageing nervous system proteomic studies. 

GO enriched term Count Proteins 
Biological process 

Oxidation-reduction process 13 
ALDH3B1, CTBP1, ALDH3A2, GSTO1, COQ6, 

ALDH7A1, ALDH1L1, CHDH, CRYL1, FASN, GPX4, 
HSD17B12, CYBA 

Cell-cell adhesion 11 FASN, ANXA2, DDX6, ABI1, SDCBP, EEF1G, 
SNX1, PLIN3, PACSIN2, RANBP1, KIF5B 

Negative regulation of apoptotic 
process 9 CRYAB, STAT3, ANXA1, EGFR, FLNA, ANXA5, 

ANXA4, PPT1, HSPB1 

Receptor-mediated endocytosis 8 HBA1, HP, EGFR, LRP1, TINAGL1, PPT1, 
LGALS3BP, APOE 

Nervous system development 8 TBCB, NRGN, DCTN1, STAT3, TPP1, PPT1, 
MAP1B, MOBP 

Platelet degranulation 6 STXBP1, ITIH3, FLNA, LAMP2, PSAP, LGALS3BP 
Viral process 6 FDPS, PSMB1, STAT3, ABI1, HLA-A, RANBP1 

Cellular oxidant detoxification 5 HBA1, HP, GSTO1, GPX4, APOE 
Movement of cell or subcellular 

component 5 TPM1, WASL, STAT3, ABI1, HSPB1 

Positive regulation of neuron 
projection development 5 CNTN1, PLXNB2, TMEM30A, NCKIPSD, RANBP1 

Negative regulation of neuron 
apoptotic process 5 STXBP1, ITSN1, LRP1, PPT1, APOE 

Epithelial cell differentiation 4 BDH2, TPP1, ANXA4, CTSB 
Negative regulation of catalytic 

activity 4 ANXA2, RNH1, ANXA5, ANXA4 

Protein stabilization 4 STXBP1, ATP1B1, FLNA, LAMP2 
Positive regulation of vesicle 

fusion 3 ANXA2, ANXA1, KIF5B 

Positive regulation of potassium 
ion transport 3 FHL1, STK39, KIF5B 

Cellular aldehyde metabolic 
process 3 ALDH3B1, ALDH3A2, ALDH7A1 

Positive regulation of 
phosphorylation 3 ITSN1, SDCBP, EGFR 

One-carbon metabolic process 3 MAT2A, CA1, ALDH1L1 
Glycolytic process 3 TPI1, PGM1, ENO2 

Platelet aggregation 3 STXBP1, FLNA, HSPB1 
Long-chain fatty-acyl-CoA 

biosynthetic process 3 FASN, HSD17B12, PPT1 

Gluconeogenesis 3 TPI1, PGM1, ENO2 
Proteolysis involved in cellular 

protein catabolic process 3 PSMB1, TINAGL1, CTSB 

Response to hydrogen peroxide 3 CRYAB, HBA1, HP 
IRE1-mediated unfolded protein 

response 3 DCTN1, ATP6V0D1, TPP1 

Cellular component 

Extracellular exosome 57 CRYAB, HP, CSTB, EEF1G, PLXNB2, PPT1,  
CRYL1, FASN, TPI1, ATP1B1, LAMP2, PACSIN2,
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 TCEB2, HLA-A, HBA1, ITSN1, ANXA2, 
WASL, ANXA1, GSTO1, RPS16, TINAGL1, ANXA5, 
ANXA4, ALDH7A1, APOE, PSMB1, DARS, NPC2, 

BDH2, ATP6V0D1, ABI1, PADI2, RNH1, 
LGALS3BP, CNTN1, FLNA, PSAP, HSPB1, 

METTL7A, ITIH3, GPX4, ENO2, CTSB, STXBP1,
 ALDH3B1, ALDH3A2, UBA1, CA1, 

ALDH1L1, RPS9, ASAH1, KCTD12 TPP1, SDCBP, 
PGM1, EPB41L2 

Cytoplasm 57 

CRYAB, CSTB, STAT3, EEF1G, CRYL1, FASN, 
PACSIN2, CTBP1, ANXA1, GSTO1, LRP1, 

TINAGL1, ANXA5, ANXA4, ALDH7A1, APOE, 
HNRNPH1, PSMB1, DARS, BDH2, DDX6, ABI1, 

PADI2, RNH1, EGFR, EEF1A2, FLNA, PLIN3, 
AQP4, PSAP, HSPB1, FDPS, METTL7A, FHL1, 

DYNLT3, SNX1, NAP1L4, SNTA1, MAP1B, KIF5B, 
STXBP1,TBCB, ALDH3B1, UBA1, HEPACAM, CA1, 

ALDH1L1, RANBP1, RPS9, DCTN1, KIAA0513, 
SDCBP, PGM1, STK39, EPB41L2, PLEKHB1, 

STX1B 

Cytosol 50 

CRYAB, STAT3, EEF1G, PPT1, CRYL1, FASN, 
TPM1, SIRT5, TPI1, PACSIN2, TCEB2, HBA1, 
ANXA2, ITSN1, WASL, GSTO1, RPS16, VARS, 
ALDH7A1, BDH2, DARS, PSMB1, DDX6, ABI1, 
PADI2, FLNA, PLIN3, VAMP1, HSPB1, FDPS, 

FHL1, GPX4, SNX1, ENO2, NCKIPSD, MAP1B, 
STXBP1, ALDH3B1, LZTFL1, UBA1, CA1, 

ALDH1L1, RPS9, DCTN1, SDCBP, PGM1, STK39, 
MAT2A, STX1B, FN3KRP 

Membrane 31 

CNTN1, EGFR, EEF1G, FLNA, PLIN3, PPT1, AQP4, 
METTL7A, FASN, ATP1B1, SNX1, LAMP2, HLA-A, 

KIF5B, HBA1, ANXA2, RPS16, TMEM30A,  
ANXA5, APOE, RPS9, HNRNPH1, DARS, DDX6, 

DCTN1, ATP6V0D1, SDCBP, STX1B, CYBA, 
PRRT2, LGALS3BP 

Mitochondrion 18 
STXBP1, CRYAB, UBA1, VARS, COQ6, ALDH7A1,

 PSAP, ALDH1L1, FDPS, BDH2, FASN, 
SIRT5, DDX6, TPP1, GPX4, CYBA, CTSB, MOBP 

Extracellular space 17 
HP, CSTB, ANXA2, ANXA1, EGFR, TINAGL1, 

PPT1, PSAP, HSPB1, APOE, ASAH1, TPI1, SDCBP, 
LAMP2, ENO2, CTSB, LGALS3BP 

Cell-cell adherens junction 14 
ANXA2, ANXA1, EGFR, EEF1G, FLNA, PLIN3, 
RANBP1, FASN, DDX6, ABI1, SDCBP, SNX1, 

PACSIN2, KIF5B 

Focal adhesion 13 RPS9, FHL1, ANXA1, EGFR, SDCBP, LRP1, RPS16, 
FLNA, EPB41L2, ANXA5, PACSIN2, CYBA, HSPB1 

Golgi apparatus 11 CRYL1, CRYAB, FASN, SNX1, TMEM30A, PLIN3, 
COQ6, PPT1, CYBA, HLA-A, APOE 

Lysosome 9 ASAH1, USP5, NPC2, TPP1, TINAGL1, LAMP2, 
PPT1, PSAP, CTSB 

Cytoskeleton 8 TPM1, ABI1, SDCBP, STK39, EPB41L2, PACSIN2, 
SNTA1, HSPB1 
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Cell surface 8 CRYAB, ANXA2, ANXA1, EGFR, PLXNB2, VAMP1, 
ANXA4, HLA-A 

Myelin sheath 7 STXBP1, CRYAB, CNTN1, ATP1B1, EEF1A2, 
ENO2, MOBP 

Basolateral plasma membrane 7 ANXA2, ANXA1, EGFR, ATP1B1, STK39, SLC14A1, 
AQP4 

Apical plasma membrane 7 ATP6V0D1, ANXA1, EGFR, ATP1B1, STK39, 
TMEM30A, CYBA 

Extracellular matrix 7 ANXA2, FLNA, RPS16, TINAGL1, HSPB1, 
LGALS3BP, APOE 

Neuronal cell body 7 NRGN, LRP1, FLNA, EEF1A2, PPT1, CYBA, APOE 

Cell junction 7 KCTD12, ITSN1, EPB41L2, VAMP1, SNTA1, 
MAP1B,  PRRT2 

Endosome 6 ANXA2, ANXA1, EGFR, LRP1, PLIN3, CYBA 
Lysosomal membrane 6 ANXA2, ATP6V0D1, LRP1, UBA1,  LAMP2, PSAP 

Extrinsic component of 
membrane 5 ANXA1, STK39, SNX1, EPB41L2, PACSIN2 

Lysosomal lumen 5 ASAH1, TPP1, LAMP2, PPT1, PSAP 
Melanosome 5 FASN, ANXA2, TPP1, SDCBP, CTSB 

Vesicle 5 ALDH3B1, ANXA2, ANXA1, SNX1, KIF5B 
Blood microparticle 5 HBA1, HP, SDCBP, LGALS3BP, APOE 

Endosome membrane 5 ATP6V0D1, EGFR, SNX1, UBA1, PLIN3 
Membrane raft 5 CNTN1, ANXA2, SDCBP, EGFR, PPT1 

Phagocytic vesicle membrane 4 ATP6V0D1, LAMP2, CYBA, HLA-A 
Sarcolemma 4 ANXA2, ANXA1, ATP1B1 , SNTA1 

Early endosome membrane 4 ANXA1, EGFR, SNX1, HLA-A 
Endocytic vesicle lumen 3 HBA1, HP, APOE 

Cytosolic small ribosomal 
subunit 3 RPS9, HBA1, RPS16 

Extracellular vesicle 3 SDCBP, ATP1B1 , APOE 
Endocytic vesicle 3 ITSN1, EGFR, KIF5B 

Molecular function 

Cadherin binding involved in cell-
cell adhesion 14 

ANXA2, ANXA1, EGFR, EEF1G, FLNA, PLIN3, 
RANBP1, FASN, DDX6, ABI1, SDCBP, SNX1, 

PACSIN2, KIF5B 

Identical protein binding 13 
STXBP1, CRYAB, STAT3, LZTFL1, EGFR, ANXA4, 
HSPB1, APOE, DYNLT3, SDCBP, SNX1, MAT2A,

 PACSIN2 

Oxidoreductase activity 9 ALDH3B1, BDH2, FASN, ALDH3A2, GSTO1, 
HSD17B12, COQ6, ALDH7A1, ALDH1L1 

Cytoskeletal protein binding 5 TPM1, ANXA2, ABI1, PACSIN2, NCKIPSD 
Aldehyde dehydrogenase (NAD) 

activity 4 ALDH3B1, ALDH3A2, ALDH7A1, ALDH1L1 

Glycoprotein binding 4 CNTN1, SDCBP, EGFR, FLNA 
SNARE binding 3 STXBP1, VAMP1 , STX1B 

Calcium-dependent protein 
binding 3 ANXA2, ANXA1, ANXA4 

Cysteine-type endopeptidase 
activity 3 USP5, TINAGL1, CTSB 
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ANNEX 3 

Table S1. Comparison of the differentially expressed proteins in humans with PD and PD models, using proteins that appeared in at least 
two different studies. 

 

 

 

 

 

Differentially expressed proteins in humans with PD and PD models 
Four proteins commonly expressed in humans with PD and PD models 

ALDH1A1, EEF2, GAPDH, VIM 
64 proteins expressed only in humans with PD 
A2M, AK1, ALB, ANXA1, APOA1, APOA2, APOC3, APOH, APOM, ARHGDIB, ATP5PD, AZGP1, BBOX1, BSCL2, C3, C4B, CACNA2D1, CALB1, CHGB, CLU, CP, DLG2, 
EEF1A2, EIF5A, EPDR1, ERAP1, ERP29, EZR, FTL, GAD1, GC, GNAO1, GSN, GSTO1, HEBP2, HLA-DRB1, HP, INA, ITGB1, LAP3, LGALS3, MPP2, NCAN, NUTF2, OAT, 

ORM1, PEA15, PFN1, PGRMC1, PKM, PRNP, PTGES3, RBP4, RPL3, RTN4, SAA1, SEC23A, SLC32A1, STXBP1, TF, TLN1, TTR, TUBA8, UGGT1 
109 proteins expressed only in PD models 

UGGT1, ACADL, ACO2, ADH5, AKAP5, ALDH1L1, ALDH2, ALDH4A1, ALDH5A1, ALDOA, ALDOC, ANXA5, ANXA6, ANXA7, ATP5B, ATP5J2, ATP6V1B2, CALM1, 
CAMK2D, CANX, CAP1, CAPZA2, CCT2, CCT4, CKB, CLTA, CLTC, CNP, COL4A2, COPS4, CST3, CTSD, CYC1, DHRS1, DLD, DST, ECHS1,  EHD3, ENO2, FSCN1, GDA, 
GFAP, GLUD1, GM237, GNAI3, GOT1, GPM6B, GSTM1, GSTM5, H2AFV, HIST2H3C2, HK1, HNRPAB, HSPA5, HSPA8, IGSF8, INPP1, IVD, KIF2A, MARCK2, MBP, 

MT-ATP8, NCDN, NDUFA10, NDUFS2, NDUFS3, NDUFS7, NEFL, NIT2, NSF, OMG, P4HB, PCP4, PDE10A, PDE1B, PDHB, PDIA3, PGM2, PHB, PLP1, PPP1R9A, 
PPP2R1A, PRDX6, PREI3, PRKCC, PROSC, RAB21, RAB3A, RTN1, SFRS7, SIRT2, SLC25A5, SLC2A3, SNAP25, SRM, STX1A, SYN1, SYN2, SYT2, TOLLIP, TPM3, 

TUBA4A, UCHL1, UQCRC1, USP14, VAPB, VCP, VDAC1, YWHAE, YWHAZ 
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Table S2. Comparison of the differentially expressed proteins in PD (humans and PD models) and ageing of the nervous system, using 
proteins that appeared in at least two different studies in the case of PD and three studies in the case of the ageing nervous system. 

Differentially expressed proteins in PD and ageing nervous system 
70 proteins commonly expressed in PD and ageing nervous system 

ADH5, AK1, AKAP5, ALB, ALDH1L1, ALDH5A1, ALDOA, ANXA1, ANXA5, ATP5B, ATP5J2, C3, CACNA2D1, CALB1, CAPZA2, CKB, CLTA, CLU, CNP, CYC1, DLD, 
ECHS1, EEF1A2, EEF2, EHD3, ENO2, ERP29, FTL, GAPDH, GFAP, GLUD1, GOT1, GPM6B, GSN, GSTO1, HP, IGSF8,INA, IVD, LAP3, MBP, NCAN, NCDN, NDUFA10, 

NDUFS2, NDUFS7, NEFL, NUTF2, PDHB, PDIA3, PHB, PKM, PLP1, PTGES3, RTN1, RTN4, SIRT2, SLC32A1, SNAP25, STX1A, STXBP1, TF, TLN1, TTR, TUBA8, 
UGGT1, UQCRC1, VCP, VDAC1, VIM 

578 proteins expressed only in ageing nervous system 
AAK1, ABAT, ABCB6, ABCD3, ABHD10, ABI1, ABRACL, ACAD8, ACADS, ACADSB, ACAN, ACOT13, ACOT9, ADCK3, ADD3, AGL, AHNAK, AKAP12, ALDH1B1, 

ALDH1L2, ALDH3A2, ALDH3B1, ALDH6A1, ALDH7A1, ANLN, ANXA2, ANXA4, AP2M1, APMAP, APOD, APOE, APP, AQP4, ARHGDIA, ARHGEF2, ARL6IP5 ARL8B, 
ARMC10, ARPC2, ARRB1, ASAH1, ASPA, ASPH, ATAD1, ATP1A1, ATP1B1, ATP1B2, ATP5A1, ATP5C1, ATP5D, ATP5F1, ATP5H, ATP5J, ATP5L, ATP5O, ATP6AP1, 
ATP6V0D1, AUH, BASP1, BCAN, BCKDHA, BCL2L13, BDH1, BDH2, BIN1, BSG, BSN, C1QBP, C1QC, CA1, CA2,CACYBP, CADM3, CADM4, CALB2, CALR, CAMK4, 
CAMKK2, CAMKV,CAND1, CAPRIN1, CAPS, CAPZB, CAT, CCBL2, CCT7, CD38, CD47, CD59, CD82, CD9, CDC37, CDC42EP4, CDH2, CDK5, CELF1, CEND1, CFL1, 

CHCHD6, CHDH, CKAP4, CLDN11, CLIC6, CMAS, CNDP2, CNTN1, CNTNAP1, COMT, COMTD1, COQ3, COQ6, CORO1C, COX4I1, COX5A, COX6B1, COX6C, 
COX7A2L, CPE, CPLX1, CPT1A, CRAT, CRIP2, CRK, CRYAB, CRYL1, CRYM, CS, CSRP1, CSTB, CTBP1, CTNNA1, CTNNB1, CTNND1, CTSB, CTTN, CXADR, CYBA, DARS, 

DBI, DCAKD, DCLK1, DCTN1, DCTN2, DDAH2, DDB1, DDOST, DDX1, DDX6, DGKB, DHRS7, DIP2B, DLAT, DLG3, DLGAP3, DLST, DNAJC5, DNAJC6, DNM1, 
DPYSL3,DPYSL5, DYNC1I1, DYNC1I2, DYNLT3, ECH1, EEF1G, EGFR, EIF4H, ENOPH1, ENPP6, EPB41L2, EPHA4, EPN1, EPT1, ERLIN2, ERMN, ERO1L, ETFA, ETFB, 

EWSR1, EXOG, FABP3, FABP5, FABP7, FAHD1, FAM162A, FAM98B, FAR1, FASN, FBXO2, FDPS, FECH, FHL1, FIS1, FKBP1A, FLNA, FLOT1, FN3KRP, FTH1, FXYD7, 
G3BP2, GABARAPL2, GABRA1, GAG, GANAB, GAP43, GCDH, GDPD1, GGT7, GIT1, GJA1, GLB1, GLIPR2, GLO1, GLRX5, GLS, GLUL, GMFB, GNAI2, GNAZ, GNB4, 

GNG2, GNG3, GNG7, GPD1, GPD2, GPHN, GPI, GPX4, GRHPR, GRM3, GRPEL1, GSTM3, GSTP1, H1F0, H2AFY, HADH, HADHA, HADHB, HAPLN1, HAPLN2, 
HAPLN4, HBA1, HBB, HDLBP, HEPACAM, HIBADH, HIBCH, HINT1, HIST1H1A, HIST1H1E, HLA-A, HMOX2, HNRNPA3, HNRNPH1, HNRNPL, HNRNPU, HNRPA2B1, 

HOMER1, HPCA, HSD17B12, HSDL2, HSP90AA1,HSPA9, HSPB1, HSPD1, HSPE1, IARS2, IDH1, IDH2, IDH3B, IGHM, IGSF21, IMMT, IPO7, ITIH3, ITPKA, ITSN1, 
KBTBD11, KCTD12, KIAA0513, KIAA1045, KIAA1217, KIAA1549L, KIF5B, KTN1, L1CAM, L2HGDH, LAMP2, LANCL1, LDHB, LETM1, LGALS3BP, LGI1, LMNB1, 
LMNB2, LONP1, LPHN1, LRP1, LRPPRC, LRRC47, LY6H, LZTFL1, MACROD1, MAOA, MAOB, MAP1A, MAP1B, MAP1S, MAP2, MAP6D1, MAP7D1, MAPRE2, 
MAPT, MARCKS, MARCKSL1, MAT2A, MCU, MDH1, MDH2, ME2, ME3, METTL7A, MFF, MFSD4, MGLL, MIF, MLC1, MLF2, MOBP, MOG, MRPL12, MRPL15, 

MT3, MTCH1, MTCH2, MTDH, MTURN, MUT, MVD, MYH9, MYO5A, NADK2, NAP1L4, NAPB, NCALD, NCAM2, NCEH1, NCKIPSD, NCOA7, NDRG2, NDUFA12, 
NDUFA13, NDUFA2, NDUFA6, NDUFA7, NDUFA8, NDUFA9, NDUFAF3, NDUFAF7, NDUFB4, NDUFS5, NDUFS6, NDUFS8, NDUFV1, NDUFV2, NECAP1, NEFH, 

NEFM, NEGR1, NOMO1, NPC2, NPEPPS, NPM1, NRGN, NRXN1, NRXN3, NSFL1C, NT5E, OGDH, OGDHL, OPALIN, OXCT1, PABPC1, PACSIN2, PADI2, PAFAH1B2, 
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PAM16, PARK7, PBXIP1, PC, PCLO, PCMT1, PCSK1N, PCYOX1, PDIA6, PDK3, PDXK, PGAM1, PGK1, PGM1, PHB2, PHGDH, PHPT1, PHYHIP, PLCB1, PLEC, 
PLEKHB1, PLIN3, PLXNB2, PMP2, PMPCB, PNP, POR, PPA1, PPFIA3, PPIA, PPIB, PPIF, PPP1R14A, PPP1R1B, PPP2CB, PPP3R1, PPT1, PRDX3, PRKAR2B, PRKCG, 

PRKRA, PROM1, PRRT2, PSAP, PSMA3, PSMA6, PSMB1, PSPC1, PTGES2, PTK2B, PTPLAD1, PTRH2, PVRL1, QDPR, RAB11B, RAB3GAP2, RAB5A, RAB7A, 
RANBP1, RAP1B, RCN2, RHOT1, RNH1, RPL13, RPL18, RPL22, RPL7A, RPL8, RPLP1, RPLP2, RPN1, RPS12, RPS16, RPS17L, RPS18, RPS25, RPS3, RPS5, RPS9, 

RRAS2, S100A1, S100B, SAMM50, SBF1, SCAMP1, SCARB2, SCG2, SCG5, SDCBP, SDHA, SDHB, SEC13, SEPT, SERBP1, SERPINB6, SERPINH1, SETSIP, SFPQ, SGIP1, 
SH3BP1, SH3GL3, SHANK3, SIRT5, SLC12A5, SLC14A1, SLC17A7, SLC1A3, SLC25A11, SLC25A18, SLC25A22, SLC39A12, SLC44A1, SLC44A2, SLC4A4, SLC6A1, 
SLC6A11, SLC7A14, SLC7A5, SLC9A3R1, SNCA, SNCB, SNTA1, SNX1, SOD1, SOD2, SORBS1, SORT1, SPTBN2, SRCIN1, STAT3, STK39, STMN1, STOM, STRAP, 

STX1B, STXBP5L, SUCLA2, SUCLG1, SV2A, SV2B, SVOP, SYNGR1, SYNGR3, SYT1, TAGLN, TAGLN3, TBCB, TCEB2, TFRC, THY1, TIMM50, TIMM9, TINAGL1, TKT, 
TMEM30A, TMEM65, TMX3, TNC, TNR, TOMM22, TOMM70A, TPI1, TPM1, TPP1, TPPP3, TPT1, TRPV2, TSFM, TUBB2B, UBA1, UBE2N, UGT8, UQCRC2, 

UQCRFS1, UQCRH, USP5, VAMP1, VARS, VAT1, VAT1L, VCAN, VCL, VGF, VPS26B, VSNL1, WASF1, WASL, XPNPEP1, YARS, YBX1, YWHAQ, ZADH2 
107 proteins expressed only in PD and PD models 

A2M, ACADL, ACO2, ALDH1A1, ALDH2, ALDH4A1, ALDOC, ANXA6, ANXA7, APOA1, APOA2, APOC3, APOH, APOM, ARHGDIB, ATP5PD, ATP6V1B2, AZGP1, 
BBOX1, BSCL2, C4B, CALM1, CAMK2D, CANX, CAP1, CCT2, CCT4, CHGB, CLTC, COL4A2, COPS4, CP, CST3, CTSD, DHRS1, DLG2, DST, EIF5A, EPDR1, ERAP1, EZR, 
FSCN1, GAD1, GC, GDA, GM237, GNAI3, GNAO1, GSTM1, GSTM5, H2AFV, HEBP2, HIST2H3C2, HK1, HLA-DRB1, HNRPAB, HSPA5, HSPA8, INPP1, ITGB1, KIF2A, 
LGALS3, MARCK2, MPP2, MT-ATP8, NDUFS3, NIT2, NSF, OAT, OMG, ORM1, P4HB, PCP4, PDE10A, PDE1B, PEA15, PFN1, PGM2, PGRMC1, PPP1R9A, PPP2R1A, 
PRDX6, PREI3, PRKCC, PRNP, PROSC, RAB21, RAB3A, RBP4, RPL3, SAA1, SEC23A, SFRS7, SLC25A5, SLC2A3, SRM, SYN1, SYN2, SYT2, TOLLIP, TPM3, TUBA4A, 

UCHL1, USP14, VAPB,  YWHAE, YWHAZ 
 

 



Appendices  

442 
 

Table S3. Gene Ontology (GO) analysis of the differentially expressed proteins 
that change in the same direction (downregulated, Table 6.12) in human PD 
proteomic studies. 

GO enriched term Count Proteins 
Biological process 

Retinoid metabolic process 3 RBP4, APOC3, APOM 
Cellular component 

Extracellular exosome 13 
RTN4, PTGES3, RBP4, LGALS3, EPDR1, 

C3, ERP29, STXBP1, PKM, SAA1, APOC3, 
APOM, GAPDH 

Extracellular region 7 RBP4, EPDR1, SAA1, C3, APOC3, NCAN, 
APOM 

Extracellular space 5 RBP4, LGALS3, SAA1, C3, APOC3 
Extracellular matrix 3 PKM, LGALS3, GAPDH 

 

 

Table S4. Gene Ontology (GO) analysis of the differentially expressed proteins 
that change in the same direction (upregulated, Table 6.13) in human PD 
proteomic studies. 

GO enriched term Count Proteins 
Cellular component 

Extracellular exosome 12 
LAP3, PFN1, TTR, CACNA2D1, EZR, AK1, 

VIM, ERAP1, ITGB1, BBOX1, FTL, 
ARHGDIB 

Cytosol 9 PFN1, PEA15, EZR, AK1, VIM, ERAP1, 
BBOX1, FTL, ARHGDIB 

Cytoplasm 9 LAP3, PFN1, TTR, EZR, AK1, VIM, ITGB1, 
FTL, ARHGDIB 

Membrane 6 PFN1, EZR, ERAP1, ITGB1, FTL, ARHGDIB 
Focal adhesion 5 LAP3, PFN1, EZR, VIM, ITGB1 
Cytoskeleton 4 PFN1, EZR, VIM, ARHGDIB 

Molecular function 
Identical protein binding 4 TTR, VIM, BBOX1, FTL 

Actin binding 3 PFN1, EZR, ITGB1 
Cadherin binding involved in cell-cell 

adhesion 3 PFN1, EZR, ITGB1 
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Table S5. Gene Ontology (GO) and KEGG pathway analyses of the differentially 
expressed proteins that change in the same direction (downregulated, Table 6.15) 
in PD models proteomic studies. 

GO enriched term Count Proteins 
Biological process 

Neurotransmitter secretion 4 RAB3A, STX1A, SYT2, SNAP25 
Regulation of exocytosis 3 STX1A, NSF, RAB21 

Glutamate secretion 3 RAB3A, STX1A, SNAP25 
Protein targeting 3 YWHAZ, AKAP5, YWHAE 

Regulation of insulin secretion 3 STX1A, SLC25A5, SNAP25 
Vesicle-mediated transport 3 STX1A, CLTC, NSF 

Cellular component 

Extracellular exosome 
 22 

PPP2R1A, COL4A2, YWHAZ, ATP5J2, 
GNAI3, SLC25A5, PHB, CST3, ECHS1, 
PROSC, CLTC, YWHAE, PDHB, TPM3, 

ALDH1A1, ANXA6, PGM2, IGSF8, SLC2A3, 
CAP1, NSF, RAB21 

Cytosol 
 18 

INPP1, PPP2R1A, RAB3A, YWHAZ, STX1A, 
NCDN, PDE10A, CLTC, YWHAE, SIRT2, 

TPM3, PGM2, ALDH1A1, PPP1R9A, PCP4, 
AKAP5, SNAP25, NSF 

Plasma membrane 
 15 

RAB3A, STX1A, GNAI3, PHB, SYT2, 
GPM6B, CLTC, SIRT2, IGSF8, SLC2A3, 

AKAP5, CAP1, OMG, SNAP25, NSF 

Membrane 
 13 

ANXA6, PPP2R1A, RAB3A, IGSF8, GNAI3, 
NCDN, SLC25A5, SYT2, PHB, PDE10A, 

CLTC, SNAP25, YWHAE 

Mitochondrion 
 12 

ANXA6, PPP2R1A, YWHAZ, SLC25A5, 
PHB, ALDH4A1, ECHS1, PROSC, CLTC, 

YWHAE, NDUFS2, PDHB 
Myelin sheath 6 SLC25A5, PHB, CLTC, SNAP25, NSF, SIRT2 

Focal adhesion 6 ANXA6, YWHAZ, CAP1, CLTC, YWHAE, 
RAB21 

Mitochondrial matrix 5 NDUFS7, ALDH4A1, ECHS1, NDUFS2, 
PDHB 

Synaptic vesicle 4 RAB3A, STX1A, SYT2, SNAP25 
Melanosome 4 ANXA6, YWHAZ, CLTC, YWHAE 

Axon 4 RAB3A, NCDN, CST3, YWHAE 
Neuronal cell body 4 NDUFS7, PPP1R9A, NCDN, CST3 

Cytoplasmic vesicle membrane 3 YWHAZ, YWHAE, RAB21 
Molecular function 

Protein binding 
 29 

RAB3A, YWHAZ, GNAI3, VAPB, SYT2, 
ECHS1, CLTC, PDHB, TPM3, NDUFS7, 
ANXA6, PCP4, NDUFS2, SNAP25, NSF, 

RAB21, PPP2R1A, STX1A, COL4A2, 
NCDN, SLC25A5, PHB, CST3, YWHAE, 

SIRT2, PGM2, PPP1R9A, IGSF8, AKAP5 

Protein domain specific binding 5 PPP1R9A, STX1A, YWHAZ, GNAI3, 
YWHAE 

Ubiquitin protein ligase binding 4 YWHAZ, SLC25A5, YWHAE, NDUFS2 
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Protein kinase binding 4 PPP1R9A, YWHAZ, CLTC, NSF 
GTP binding 4 ANXA6, RAB3A, GNAI3, RAB21 

Calcium-dependent protein binding 3 ANXA6, STX1A, SNAP25 
Histone deacetylase binding 3 PHB, YWHAE, SIRT2 

Ion channel binding 3 PPP1R9A, STX1A, YWHAE 
 

 

Table S6. Gene Ontology (GO) and KEGG pathway analyses of the differentially 
expressed proteins that change in the same direction (upregulated, Table 6.16) in 
PD models proteomic studies. 

GO enriched term Count Proteins 
Biological process 

Epithelial cell differentiation 4 ANXA7, TOLLIP, ALDOC, VDAC1 
Antigen processing and presentation 

of exogenous peptide antigen via MHC 
class II 

3 CLTA, CTSD, KIF2A 

Autophagy 3 ANXA7, TOLLIP, CTSD 
Protein folding 3 CCT4, PDIA3, CCT2 

Cellular component 

Extracellular exosome 20 

GDA, ALDH1L1, PDIA3, NIT2, TOLLIP, 
ALDOC, COPS4, VIM, ADH5, CCT2, EEF2, 

ANXA5, VDAC1, CKB, ANXA7, CCT4, 
H2AFV, CTSD, DST, USP14 

Cytosol 18 

GDA, CLTA, ALDH1L1, SRM, TOLLIP, 
ALDOC, COPS4, VIM, ADH5, HK1, CCT2, 

EEF2, CKB, ANXA7, CCT4, DST, EHD3, 
KIF2A 

Mitochondrion 9 ALDH1L1, NIT2, IVD, ALDOC, DLD, ADH5, 
HK1, VDAC1, CKB 

Myelin sheath 7 PDIA3, SYN2, DLD, CCT2, EHD3, VDAC1, 
CKB 

Focal adhesion 5 PDIA3, VIM, ANXA5, DST, EHD3 
Membrane raft 4 HK1, CTSD, EEF2, VDAC1 

Extracellular matrix 4 VIM, CTSD, CCT2, EEF2 
Synaptic vesicle 3 SYN2, COPS4, VDAC1 

Melanosome 3 CCT4, PDIA3, CTSD 
Cytoplasmic, membrane-bounded 

vesicle 3 CLTA, DST, USP14 

Molecular function 

KEGG enriched pathway Count Proteins 

Metabolic pathways 9 
ALDH1A1, INPP1, PGM2, NDUFS7, 

ATP5J2, ALDH4A1, ECHS1, NDUFS2, 
PDHB 

Synaptic vesicle cycle 5 RAB3A, STX1A, CLTC, SNAP25, NSF 
Parkinson's disease 4 NDUFS7, GNAI3, SLC25A5, NDUFS2 

Huntington's disease 4 NDUFS7, SLC25A5, CLTC, NDUFS2 
Insulin secretion 3 RAB3A, STX1A, SNAP25 
Oocyte meiosis 3 PPP2R1A, YWHAZ, YWHAE 
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Protein binding 21 

CLTA, SRM, PDIA3, TOLLIP, ALDOC, 
COPS4, VIM, HK1, CCT2, EEF2, ANXA5, 

VDAC1, CKB, DHRS1, ANXA7, CCT4, 
CTSD, DST, USP14, EHD3, KIF2A 

ATP binding 7 CCT4, SYN2, HK1, CCT2, EHD3, KIF2A, 
CKB 

Cysteine-type endopeptidase activity 3 PDIA3, CTSD, USP14 
Oxidoreductase activity 3 DHRS1, ALDH1L1, ADH5 

 

 

 

Table S7. Gene Ontology (GO) analysis of the commonly differentially expressed 
proteins in human PD and PD models proteomic studies (Table S1 of this Annex)  

 

 

Table S8. Gene Ontology (GO) and KEGG enriched pathway analyses of the 
commonly differentially expressed proteins in PD and the ageing nervous system 
proteomic studies (Table S2 of this Annex). 

GO enriched term Count Proteins 
Biological process 

Substantia nigra development 7 INA, PLP1, GLUD1, CNP, SIRT2, MBP, CKB 

Oxidation-reduction process 7 NDUFS7, UQCRC1, ALDH1L1, PDIA3, 
GLUD1, GSTO1, NDUFA10 

Platelet degranulation 6 ALDOA, TF, TLN1, ALB, CLU, STXBP1 
Chemical synaptic transmission 2 PLP1, AKAP5, CNP, SNAP25, MBP 

Positive regulation of gene expression 2 PLP1, GSN, PHB, VIM, ERP29 
Canonical glycolysis 4 ALDOA, PKM, ENO2, GAPDH 

Gluconeogenesis 4 ALDOA, GOT1, ENO2, GAPDH 
ATP biosynthetic process 4 ALDOA, PKM, ATP5J2, ATP5B 

Mitochondrial electron transport, 
NADH to ubiquinone 4 NDUFS7, DLD, NDUFA10, NDUFS2 

Neurotransmitter secretion 4 SLC32A1, STX1A, STXBP1, SNAP25 

KEGG enriched pathway Count Proteins 

Metabolic pathways 8 GDA, SRM, IVD, ALDOC, DLD, ADH5, HK1, 
CKB 

Glycolysis / Gluconeogenesis 4 ALDOC, DLD, ADH5, HK1 
Carbon metabolism 4 ALDOC, DLD, ADH5, HK1 

Biosynthesis of antibiotics 4 ALDOC, DLD, ADH5, HK1 

GO enriched term Count Proteins 
Cellular component 

Extracellular exosome 4 ALDH1A1, VIM, EEF2, GAPDH 
Cytosol 4 ALDH1A1, VIM, EEF2, GAPDH 

Cytoplasm 4 ALDH1A1, VIM, EEF2, GAPDH 
Extracellular matrix 3 VIM, EEF2, GAPDH 
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Movement of cell or subcellular 
component 4 IGSF8, TLN1, CAPZA2, VIM 

Protein stabilization 4 PHB, CLU, STXBP1, GAPDH 
Aging 4 SLC32A1, DLD, CNP, EEF2 

Intermediate filament organization 3 GFAP, VIM, NEFL 
Astrocyte development 3 GFAP, PLP1, VIM 

Mitochondrial ATP synthesis coupled 
proton transport 3 ATP5J2, ATP5B, CYC1 

Glutamate secretion 3 STX1A, STXBP1, SNAP25 
ATP metabolic process 3 VCP, AK1, ATP5B 

Glycolytic process 3 ALDOA, ENO2, GAPDH 
Mitochondrial respiratory chain 

complex I assembly 3 NDUFS7, NDUFA10, NDUFS2 

Positive regulation of proteasomal 
ubiquitin-dependent protein catabolic 

process 
3 VCP, CLU, SIRT2 

Glucose metabolic process 3 ALDH5A1, GAPDH, PDHB 
Cellular oxidant detoxification 3 ALB, HP, GSTO1 

Microtubule cytoskeleton organization 3 CNP, NEFL, GAPDH 
Response to toxic substance 3 CNP, NEFL, MBP 

Cellular component 

Extracellular exosome 
 43 

RTN4, ALDOA, PTGES3, TF, TLN1, 
ALDH1L1, PDIA3, C3, ATP5B, CAPZA2, 

VIM, CLU, ADH5, ECHS1, HP, CNP, 
CALB1, PDHB, CKB, PKM, TTR, GOT1, 

GSN, ALB, ENO2, GSTO1, GAPDH, FTL, 
CACNA2D1, ATP5J2, AK1, PHB, ERP29, 
ANXA1, STXBP1, EEF2, ANXA5, VDAC1, 

LAP3, IGSF8, VCP, NUTF2, UGGT1 

Cytosol 
 31 

ALDOA, PTGES3, TLN1, CLTA, GFAP, 
ALDH1L1, CAPZA2, VIM, CLU, ADH5, 
CALB1, CKB, PKM, GOT1, GSN, ENO2, 
GSTO1, SNAP25, GAPDH, NEFL, EHD3, 
FTL, STX1A, NCDN, AK1, STXBP1, EEF2, 

SIRT2, VCP, AKAP5, NUTF2 

Cytoplasm 30 

PTGES3, TLN1, GFAP, ALDH1L1, GLUD1, 
VIM, CLU, CNP, CKB, PKM, TTR, GOT1, 
GSN, GSTO1, SNAP25, GAPDH, NEFL, 

EHD3, FTL, AK1, EEF1A2, PHB, ANXA1, 
STXBP1, EEF2, ANXA5, SIRT2, LAP3, 

TUBA8, VCP 

Plasma membrane 
 27 

RTN4, TLN1, CLTA, C3, ATP5B, VIM, 
GPM6B, CNP, MBP, PKM, SLC32A1, GSN, 

ENO2, GAPDH, SNAP25, CACNA2D1, 
PLP1, STX1A, PHB, AK1, ANXA1, STXBP1, 

EEF2, SIRT2, VDAC1, IGSF8, AKAP5 

Myelin sheath 21 

INA, GFAP, PLP1, UQCRC1, PDIA3, PHB, 
EEF1A2, ATP5B, STXBP1, NDUFA10, 

SIRT2, VDAC1, CKB, PKM, VCP, ALB, DLD, 
ENO2, SNAP25, NEFL, EHD3 
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Mitochondrion 
 20 

ALDH1L1, UQCRC1, ALDH5A1, PHB, 
GLUD1, ATP5B, CYC1, CLU, STXBP1, 

ADH5, ECHS1, PDHB, VDAC1, CKB, LAP3, 
PKM, GOT1, IVD, DLD, NDUFS2 

Membrane 
 16 

ALDOA, CLTA, NCDN, ATP5B, CAPZA2, 
PHB, ERP29, CYC1, CNP, EEF2, ANXA5, 
VDAC1, IGSF8, SNAP25, GAPDH, FTL 

Extracellular space 13 ALDOA, INA, TF, C3, CLU, ANXA1, CNP, 
HP, CKB, TTR, GSN, ALB, ENO2 

Extracellular region 13 ALDOA, TF, TTR, TLN1, STX1A, ALB, C3, 
GSN, CAPZA2, CLU, ANXA1, HP, NCAN 

Mitochondrial matrix 10 NDUFS7, ALDH5A1, IVD, ATP5B, GLUD1, 
DLD, ECHS1, NDUFA10, NDUFS2, PDHB 

Mitochondrial inner membrane 9 NDUFS7, ATP5J2, UQCRC1, ATP5B, PHB, 
CYC1, CNP, NDUFA10, VDAC1 

Focal adhesion 8 LAP3, TLN1, PDIA3, GSN, VIM, ANXA1, 
ANXA5, EHD3 

Cell surface 8 TF, TLN1, PDIA3, ATP5B, PHB, ERP29, 
CLU, ANXA1 

Perinuclear region of cytoplasm 8 TF, VCP, CLU, CNP, SNAP25, GAPDH, 
EHD3, SIRT2 

Blood microparticle 6 TF, ALB, C3, GSN, CLU, HP 
Extracellular matrix 6 PKM, ATP5B, VIM, CLU, EEF2, GAPDH 

Cell-cell adherens junction 6 ALDOA, PKM, RTN4, TLN1, ANXA1, EEF2 
Vesicle 5 PKM, TF, ANXA1, SNAP25, GAPDH 

Neuron projection 5 SLC32A1, NDUFS7, STX1A, VIM, SNAP25 
Neuronal cell body 5 NDUFS7, NCDN, EEF1A2, CALB1, MBP 

Protein complex 5 TTR, ALB, CLU, ANXA1, STXBP1 
Mitochondrial membrane 4 IVD, ATP5B, CLU, ANXA1 

Mitochondrial respiratory chain 
complex I 3 NDUFS7, NDUFA10, NDUFS2 

Intermediate filament cytoskeleton 3 INA, GFAP, VIM 
Platelet alpha granule lumen 3 ALDOA, ALB, CLU 

Synaptic vesicle 3 STX1A, SNAP25, VDAC1 
Melanosome 3 PDIA3, ERP29, CNP 
Growth cone 3 NEFL, SNAP25, SIRT2 

Molecular function 

Protein binding 
 49 

PTGES3, RTN4, GFAP, CLTA, TLN1, PDIA3, 
ATP5B, HP, RTN1, CALB1, PDHB, MBP, 

CKB, NDUFS7, PKM, TTR, GSN, NDUFS2, 
FTL, STX1A, STXBP1, EEF2, IGSF8, AKAP5, 

UGGT1, ALDOA, TF, C3, GLUD1, CLU, 
VIM, ECHS1, ALB, ENO2, GSTO1, GAPDH, 
NEFL, SNAP25, EHD3, PLP1, NCDN, PHB, 
EEF1A2, ANXA1, ANXA5, SIRT2, VDAC1, 

VCP, NUTF2 

Identical protein binding 12 ALDOA, TTR, GFAP, GOT1, VCP, ALB, 
GLUD1, VIM, STXBP1, NEFL, GAPDH, FTL 

Structural constituent of cytoskeleton 6 INA, GFAP, TLN1, TUBA8, VIM, NEFL 
Structural molecule activity 6 GFAP, PLP1, CLTA, VIM, ANXA1, NEFL 

Cadherin binding involved in cell-cell 
adhesion 6 ALDOA, PKM, RTN4, TLN1, ANXA1, EEF2 
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Protein domain specific binding 5 STX1A, VCP, GSN, STXBP1, NEFL 
Ubiquitin protein ligase binding 5 UQCRC1, VCP, CLU, NDUFS2, CKB 

ATPase activity 4 ATP5J2, VCP, ATP5B, CLU 
Oxidoreductase activity, acting on the 
aldehyde or oxo group of donors, NAD 

or NADP as acceptor 
3 ALDH1L1, ALDH5A1, GAPDH 

ADP binding 3 PKM, VCP, GLUD1 
NAD binding 3 DLD, GAPDH, NDUFS2 

NADH dehydrogenase (ubiquinone) 
activity 3 NDUFS7, NDUFA10, NDUFS2 

Calcium-dependent protein binding 3 STX1A, ANXA1, SNAP25 
Glycoprotein binding 3 GFAP, STX1A, VIM 

Protein binding, bridging 3 STX1A, ANXA1, NEFL 
Chaperone binding 3 ALB, ERP29, CLU 

 

 

 

 

KEGG enriched pathway Count Proteins 

Metabolic pathways 23 

ALDOA, PTGES3, ATP5J2, UQCRC1, 
ALDH5A1, GLUD1, AK1, ATP5B, CYC1, 
ADH5, ECHS1, NDUFA10, PDHB, CKB, 
NDUFS7, LAP3, PKM, GOT1, IVD, DLD, 

ENO2, GAPDH, NDUFS2 

Carbon metabolism 10 ALDOA, PKM, GOT1, GLUD1, DLD, ENO2, 
ADH5, ECHS1, GAPDH, PDHB 

Biosynthesis of antibiotics 10 ALDOA, PKM, GOT1, AK1, DLD, ENO2, 
ADH5, ECHS1, GAPDH, PDHB 

Huntington's disease 
 8 NDUFS7, CLTA, UQCRC1, ATP5B, CYC1, 

NDUFA10, NDUFS2, VDAC1 

Glycolysis / Gluconeogenesis 7 ALDOA, PKM, DLD, ENO2, ADH5, GAPDH, 
PDHB 

Oxidative phosphorylation 7 NDUFS7, ATP5J2, UQCRC1, ATP5B, CYC1, 
NDUFA10, NDUFS2 

Parkinson's disease 7 NDUFS7, UQCRC1, ATP5B, CYC1, 
NDUFA10, NDUFS2, VDAC1 

Alzheimer's disease 7 NDUFS7, UQCRC1, ATP5B, CYC1, 
NDUFA10, GAPDH, NDUFS2 

Synaptic vesicle cycle 5 SLC32A1, CLTA, STX1A, STXBP1, SNAP25 
Biosynthesis of amino acids 5 ALDOA, PKM, GOT1, ENO2, GAPDH 

Non-alcoholic fatty liver disease 
(NAFLD) 5 NDUFS7, UQCRC1, CYC1, NDUFA10, 

NDUFS2 
HIF-1 signaling pathway 4 TF, ENO2, GAPDH, PDHB 

Alanine, aspartate and glutamate 
metabolism 3 GOT1, ALDH5A1, GLUD1 

Pyruvate metabolism 3 PKM, DLD, PDHB 
Valine, leucine and isoleucine 

degradation 3 IVD, DLD, ECHS1 

Arginine and proline metabolism 3 LAP3, GOT1, CKB 
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