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Abstract 

The sibling species Anopheles gambiae s.s. and Anopheles coluzzii are the most important 

vectors of human malaria in sub-Saharan Africa. They are thought to be undergoing 

speciation with gene flow with rare viable hybrids but are reproductively isolated by 

assortative mating and ecological divergence. As such important vectors, they are the 

focus of novel control strategies based on mosquito releases. One of the known drivers 

of their ecological speciation is their divergent larval ecological adaptation that is 

possibly linked to rice domestication in Africa. The potential impact of such divergence 

has never been integrated into mosquito rearing to improve alternative vector control 

methods such as Sterile Insect Technique (SIT) and Genetically Modified Mosquitoes 

(GMM), that are needed to accelerate the progress towards malaria elimination. These 

innovative vector control methods depend on mass rearing of millions of mosquitoes in 

a manner that is both efficient and economic, to produce mosquitoes that are of adequate 

quality, able to favourably compete with wild populations. In this thesis, we investigated 

the phenotypic plasticity of these sibling species to typical stressors in the rice field 

ecosystem with a focus on ammonia in their larval habitat. Experiments were conducted 

in small containers and in contrasted microcosms to test the direct effects of mineral water 

and increasing ammonia concentrations on larval development and to highlight divergent 

reaction norms between the sibling species. We also evaluated the use of zeolite to 

improve larval water quality management in An. gambiae s.l. insectary. To further 

understand the dynamics of the nitrogen cycle in larval rearing trays that led to larval 

mortality, we characterised their bacteria communities using 16S rRNA gene sequencing. 

Functional filters were applied to identify candidate bacteria species beneficial and 

detrimental to larval development and these were validated by qPCR. Our results suggest 

that genotype-by-environment interactions associated with rice domestication event in 
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Africa are indeed an important driver of the eco-speciation between the sibling species. 

An. coluzzii was more tolerant to ammonia and rice-field like conditions supporting the 

idea that this may have driven its speciation from the ancestral An. gambiae s.s. We show 

that mineral water is beneficial for improved mosquito yield and phenotypic quality of 

adult mosquitoes in the insectary and this can be used to improve rearing protocols for 

these species. For the first time, we demonstrated that zeolite can be used to improve 

rearing results for An. gambiae s.l., providing a water conserving alternative for rearing 

mosquitoes for mass release programmes, especially in arid regions. Furthermore, the 

ensuing analyses of bacterial communities larval trays is also a novel endeavour which 

led to the identification of 1031 bacteria species and of several key species with various 

opportunities for further improvement of larval rearing towards mass release purposes 

and/or for novel direct vector control. In conclusion, we have made modest contributions 

towards the control of these malaria vectors and the fight to eliminate this multifaceted 

disease. It is therefore important that policy makers in malaria endemic countries ensure 

that policy reformations in irrigational agriculture and urbanization consider the impact 

of policy on these disease vectors that are of immense public health importance. 
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CHAPTER 1 

Introduction 

1.1. The global burden of malaria. 

Malaria is a major public health concern; according to the 2019 World Malaria Report, 

there were 228 million cases and 405,000 deaths occurring worldwide in 2018 (WHO, 

2019). In the same year, sub-Saharan Africa accounted for 93% of global malaria 

incidence, South-East Asia for 3.4% and the Eastern Mediterranean region for 2.1% 

(WHO, 2019). Almost 85% of this global malaria burden was carried by 19 countries in 

sub-Saharan Africa and India. Six countries accounting for over 50% of these cases 

include Nigeria (25%), the Democratic Republic of Congo (12%), Uganda (5%), C𝑜"te 

d’Ivoire, Mozambique and Niger (4% each) (WHO, 2019).  

 

 

Figure 1.1: Countries with indigenous cases in 2000 and their status in 2018. 
Countries with zero indigenous cases over at least the past 3 consecutive years are considered to be 
malaria-free (blue). In 2018, both China and El Salvador reported zero indigenous cases (pink) for the 
second consecutive year and Iran (Islamic Republic of), Malaysia and Timor-Leste reported zero indigenous 
cases for the first time (orange). Malaria cases were still common in many countries in the Americas, Africa 
and Asia (red) (WHO, 2019). 
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The malaria scourge continues to strike hardest against the most vulnerable in the society, 

with children under 5 years old accounting for 67% (272,000) of all malaria deaths 

worldwide (WHO, 2019). Nearly 85% of malaria related deaths in 2018 occurred in 20 

countries in Africa and India (WHO, 2019). Aside from the mortality associated with 

severe malaria, it causes significant morbidity especially in pregnant women. Malaria in 

pregnancy compromises the health of the woman, resulting in maternal anaemia which 

puts her at a greater risk of death. It also negatively impacts on the health of the unborn 

child, resulting in premature births, low birth weight, and is also a major contributor of 

neonatal and infant mortality (Bardají et al., 2017). In 2018, 11 million pregnant women 

were infected with malaria resulting in 872,000 infants with low birthweight (WHO, 

2017; WHO, 2019). In addition to neonatal and perinatal risks, the disease can also impact 

on the growth and intellectual development in children (Chima, et al., 2003; Guyatt & 

Snow, 2001; Stevens et al., 2013).  

 Malaria also has a major economic impact on these developing countries that are 

endemic for this disease. Bearing the heaviest burden of the disease, they suffer direct 

economic losses such as household expenditures in the purchase of insecticides, 

treatment, transport to a health facility, government's spending on insecticides, drugs, 

treated nets and healthcare facilities. Further indirect losses are incurred through loss of 

tourism and productivity (Benelli & Beier, 2017). When there is sustained investment in 

health and malaria in particular the potential of human capital to generate growth is 

unlocked. It has been demonstrated that a 10% reduction in malaria associates with 0.3% 

rise in annual GDP (Gross Domestic Product). At the family level, reducing malaria 

protects the household income from lost earnings due to illness and costs of seeking care 

(WHO, 2019). 
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From a baseline of 2015, WHO’s Global Technical Strategy (GTS) aimed for a reduction 

in malaria morbidity, incidence and mortality rates by 40% in 2020 and elimination in at 

least 10 countries that were malaria endemic in 2015 and to prevent reintroduction in 

these countries that have achieved elimination (WHO, 2015). Remarkable progress has 

since been made, as many countries are moving towards zero indigenous malaria cases. 

In 2018, countries reporting fewer than 10,000 cases increased from 46 in 2017 to 49, 

which represent marked progress from the 40 countries reported in 2010. Likewise, 27 

countries reported fewer than 100 indigenous cases in 2018, an increase from the 25 in 

2017 and 17 in 2010. Similarly, malaria mortality has reduced drastically from 585,000 

in 2010 to 416,000 in 2017 and 405,000 in 2018, representing the impressive gains that 

have been made towards malaria control in the past decade. Global progress in malaria 

reduction is further evidenced by Paraguay and Uzbekistan receiving the award for 

elimination of malaria in 2018, Algeria and Argentina in 2019, while China, El-Salvador, 

Iran, Malaysia and Timor-Leste reported zero indigenous cases (WHO, 2019). Following 

the September 2018 “Malaria Challenge” by WHO for greater investment in research and 

development of novel transformational tools, technologies and approaches to accelerate 

progress in reducing the impact of malaria, Ghana, Kenya and Malawi recently 

introduced the world’s first malaria vaccine into selected areas (Asante et al., 2019; 

WHO, 2019). In 2018, there was an increase of 18 million USD for basic research and 

product development for malaria compared to 2017 (WHO, 2019). There was a 47% 

increase between 2010 and 2018, in the number of patients suspected of having malaria 

and tested with either rapid diagnostic tests (RDTs) or microscopy (WHO, 2019). The 

use of RDTs alongside increase in the supply and distribution of Artemisinin-based 

combination therapy (ACT) and long-lasting insecticide treated nets (LLINs) have helped 

to reduce malaria mortality and morbidity drastically from 2010 to 2018 (WHO, 2019). 
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Despite these impressive achievements, the global malaria challenge remains enormous, 

and there has been a stall in progress towards reduction of malaria morbidity, incidence 

and mortality rates, and in some cases, a standstill, since 2016. More worrisome is the 

rise in malaria cases across some high-burden countries in Africa. Although the global 

malaria incidence declined from 71 to 57 cases per 1000 population at risk from 2010 to 

2018, the lower case mark of 57 was achieved in 2014 and has remained at similar levels 

through to 2018 (WHO, 2019). The rate of malaria mortality reduction was slower 

between 2016 to 2018, than between 2010 to 2015. Further, global investments in malaria 

control and elimination in 2018 was estimated at 2.7 billion USD, representing a 

reduction from the 3.2 billion USD invested in 2017 and also falling short of the 5 billion 

USD estimated to be required to achieve the GTS target (WHO, 2019). Insecticide 

resistance amongst other factors is indicted for this change in trajectory towards malaria 

elimination (Hancock et al., 2018). In the last decade, 73 out of 81 malaria endemic 

countries have reported insecticide resistance to at least 1 of the 4 insecticide classes, an 

increase of 5 countries from 2017 to 2018. This illustrates how fragile are the gains made 

in our quest to control, and ultimately eradicate the disease. The pace of progress towards 

malaria control and elimination needs to be improved to meet the GTS deadlines, and 

also to preserve the currently available malaria interventions. The Global Malaria Report 

for 2019 recommended improved interventions in these areas: affordable and people 

oriented health services, accurate surveillance and response systems, strategies tailored 

to local malaria settings and increased financing for malaria research (WHO, 2019). To 

improve malaria surveillance, there was a recommendation for the facilitation of the 

collection and use of entomology and vector control data to inform decision-making 

processes at country level. Insecticide resistance monitoring, adult mosquito surveillance 
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and identification and mosquito larval habitat monitoring were amongst the intervention 

area highlighted for surveillance (WHO, 2019).  

 

1.2. Malaria transmission in Africa 

 Malaria is a complex disease caused by five Plasmodium species, Plasmodium 

falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae and 

Plasmodium knowlesi (Bronner, et al., 2009). Plasmodium falciparum is the most 

prevalent malaria parasite in sub-Saharan Africa, accounting for 99.7% of malaria cases 

in the region (WHO, 2019). There have been reports of partial resistance to Artemisinin-

based combined therapy (ACT) drugs mostly used for treatment of malaria in the African 

region (Agnandji, et al., 2011a; 2011b). An antimalarial vaccine RTS,S/AS01-Mosquirix, 

which only provides transient protection against Plasmodium falciparum malaria in 

infants, has been developed following 30 years of research and clinical trials by 

GlaxoSmithKline Biologicals (Agnandji et al., 2011c; Benelli & Beier, 2017). This was 

achieved through a partnership with the PATH Malaria Vaccine Initiative with support 

from Bill and Melinda Gates Foundation and African research centres (Asante, et al., 

2019; Benelli & Beier, 2017). On the World Malaria Day, April 2019, this malaria 

vaccine, was introduced into the routine health systems in Malawi, Kenya and Ghana as 

a pilot implementation study to evaluate the impact of the vaccine on mortality, cerebral 

malaria and meningitis in a larger population (Asante et al., 2019) 

  All human malaria is transmitted by female mosquitoes of the genus Anopheles 

(Coetzee, et al., 2000). Of the 450 Anopheles species, only ~100 are considered as disease 

vectors (Cohuet, et al., 2010; Wiebe et al., 2017). The malaria parasite requires two hosts, 

the mosquito vector and the human host to complete its developmental cycle (Figure 1.2). 

Most vector control measures (insecticides, biological control, larvicides, insecticide 
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treated nets, sterile insect techniques) are typically designed to interrupt the disease cycle 

by preventing the transfer of malaria-causing parasites to humans (Lees, et al., 2015). In 

the absence of effective vaccines and the evolution of resistance to artemisinin by 

Plasmodium malaria parasites, vector control continues to be the most cost-effective line 

of defence against malaria (Benelli & Beier, 2017; Lees et al., 2015). 

 

Figure 1.2. Life cycle of Plasmodium spp. The malaria parasite life cycle involves two hosts. During a blood meal, 
a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host (1). Sporozoites infect 
liver cells (2) and mature into schizonts (3), which rupture and release merozoites (4). (Of note, in P. vivax and 
P. ovale a dormant stage [hypnozoites] can persist in the liver (if untreated) and cause relapses by invading the 
bloodstream weeks, or even years later.) After this initial replication in the liver (exo-erythrocytic schizogony (A)), 
the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony (B)). Merozoites infect 
red blood cells (5). The ring stage trophozoites mature into schizonts, which rupture releasing merozoites (6). 
Some parasites differentiate into sexual erythrocytic stages (gametocytes) (7). Blood stage parasites are 
responsible for the clinical manifestations of the disease. The gametocytes, male (microgametocytes) and female 
(macrogametocytes), are ingested by an Anopheles mosquito during a blood meal (8). The parasites’ 
multiplication in the mosquito is known as the sporogonic cycle (C). While in the mosquito’s stomach, the 
microgametes penetrate the macrogametes generating zygotes (9). The zygotes in turn become motile and 
elongated (ookinetes) (10) which invade the midgut wall of the mosquito where they develop into oocysts (11). 
The oocysts grow, rupture, and release sporozoites (12), which make their way to the mosquito’s salivary glands. 
Inoculation of the sporozoites (13) into a new human host perpetuates the malaria life cycle (Schaeffer, 2011) 

 .  
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1.2.1. Anopheles gambiae s.l. complex 

Malaria control through vector control tools is particularly complicated in Africa because 

malaria transmission on the continent is sustained by several vector complexes. The most 

important in terms of vectorial importance is the An. gambiae complex comprising of 8 

morphologically indistinguishable sibling species (Lanzaro & Lee, 2013; Lindsay, et al., 

1998). The complex is made up of three brackish-water species namely Anopheles 

bwambae, Anopheles. melas, and Anopheles merus and six freshwater species that 

include Anopheles arabiensis, Anopheles amharicus (previously referred to as, 

Anopheles quadriannulatus species B), Anopheles quadriannulatus, Anopheles gambiae 

s.s. (formerly S molecular form of An. gambiae s.s.), Anopheles coluzzii (formerly M 

molecular form of An. gambiae s.s.) and the recently discovered An. fontenillei (Barrón 

et al., 2019; Huestis & Lehmann, 2014). All sibling species are successful malaria vectors 

except the two-freshwater species, An. quadriannulatus and An. amharicus whose adults 

typically feed exclusively on animals (Coetzee et al., 2013; Hunt et al., 1998). The newly 

discovered An. fontenellei are assumed zoophagic because they were found in forested 

areas of Gabon, Central Africa, lacking in human hosts. Although no blood-fed 

mosquitoes were captured, it is possible they could feed on humans as CO2 based traps 

and Human-landing catches were sucessful. (Barrón et al., 2019). Two of the brackish 

water species An. merus and An. melas have limited coastal distribution (east and west 

coasts of Africa respectively) due to larval adaptation to salt-water larval habitats 

(Coetzee et al., 2013; Hunt, et al.,1998; Lanzaro & Lee, 2013). The third brackish-water 

species, An. bwambae, occurs only in association with the hot springs in Semliki Forest 

National Park, in eastern Uganda (Lanzaro & Lee, 2013). Three freshwater species, with 

the broadest geographic distribution, An. gambiae s.s., An. coluzzii, and An. arabiensis, 

are the most important vectors of human malaria, transmitting malaria over vast ranges 
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of sub-Saharan Africa (Coetzee et al., 2000; Gillies & Coetzee, 1987; Lanzaro & Lee, 

2013) 

 

1.2.2. Morphology and life cycle of Anopheles gambiae s.l. 

Morphology 

Adult Anopheles gambiae s.l. in comparison with other anophelines are medium-sized 

mosquitoes with an average wing length of 2.8 to 4.4mm. Their body colour is variable, 

ranging from light brown to grey, with characteristic pale spots of yellow, white or cream 

scales on the wing veins arranged in blocks (Gillies & Coetzee, 1987). Males usually 

possess plumose antennae with females having non-plumose antennae (Holstein, 1954). 

Palps of adult females are about as long as the proboscis and usually lie closely alongside 

the palps and may be marked, particularly the apical half, with broad and narrow rings of 

pale scales. The palps in males are swollen at the ends and may have apical rings of pale 

scales (Service, 1969). Adult An. gambiae s.l. usually rests with the body at an angle to 

the surface, with proboscis and abdomen in a straight line (Ward, 2008). An. gambiae s.l. 

eggs are brownish, 0.47 - 0.48mm long, boat-shaped, and typically have a pair of air-

filled sacs known as floats (Ward, 2008).  

 

 
 
Figure 1.3: Eggs of Anopheles stephensi (A) unhatched, (B) hatched, showing singly laid Anopheles eggs 
with floats on both sides, and the split created by emerged larvae (Schaeffer, 2011). 
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They are laid singly on water and are unable to withstand desiccation (Ward, 2008). 

Larvae of An. gambiae s.l. typically lie parallel to the water surface, a position that 

facilitates filter feeding. They possess brown sclerotized tergal plates on the 1st to 8th 

segments of their abdomen as well as mature palmate hairs on the thorax, serving as floats 

(Holstein, 1954). On the 8th segment of their abdomen, they have pectens (teeth-like 

sclerotized structures) that are unique to species (Ward, 2008). Side view of An. gambiae 

s.l. pupae present a comma-shaped organism with dorsally placed, short and broad 

respiratory trumpets. A combined head and thorax form the cephalothorax, abdomen 

consist of 10 hairy segments (Ward, 2008). Also distinctive is the presence of short peg-

like spines located laterally close to the distal margins of the abdominal segments (Ward, 

2008). 

 

 

Figure 1.4: A- Larva and B- Pupa of Anopheles gambiae s.l. (Schaeffer, 2011) 
 . 

Life-cycle of Anopheles gambiae s.l. 

Under optimal conditions (25ºC to 26ºC, 70-80% relative humidity, and availability of 

nutrients), the development of An. gambiae s.l. comprising of four life stages: egg, larvae, 

pupae and adult, takes about 8 to 10 days (Coluzzi, 1964). Both sexes feed on nectar from 

plants but only females blood-feeds on vertebrates. There exists a gonotrophic life cycle 
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from a blood meal to oviposition, though multiple blood meals in a gonotrophic cycle 

have been reported (Takken, et al., 1998). The adult female lays between 50-200 small 

brownish/blackish boat-shaped eggs on the surface of the water after mating and blood-

feeding. Females mate only once in their lifetime while males mate several times (Diabate 

& Tripet, 2015). In the tropics, viable eggs hatch within 2-3 days, taking 4-7 days or 

longer in temperate regions. Larvae undergo four moults within 6-9 days at mean 

temperatures of 25-28°C. The larval stages are elongated by changes in temperature, 

nutrient and competition (Ward, 2008). The pupal stage is a non-feeding period that 

develops after the fourth larval instar. The adult mosquito emerges when the pupal skin 

splits dorsally, the new mosquito inflates its wings, grooms its head appendages and flies 

away. Twenty-four hours after emergence, males become ready for mating which is often 

preceded or accompanied by swarming in which the females seek out males in the swarm 

(Diabate & Tripet, 2015; Holstein, 1954). Most anopheline males die after mating 

(Diabate & Tripet, 2015). Females usually take a blood meal that is required for ovarian 

development, leading to maturation and oviposition of a batch of eggs (Gillies & Coetzee, 

1987) 

 Populations of the members of the An. gambiae s.l. complex that develop in 

freshwater strongly depend on rainfall. Their densities increase typically at the onset of 

the rainy seasons, reaching their peak in mid-season and decline as water levels stabilize 

and aquatic predators are established (Gillies & Coetzee, 1987). There is usually heavy 

mortality at the larval developmental stages due to predators, disease, drought and 

flooding. All of these environmental factors have the potential of drastically reducing the 

percentage of eggs that successfully develop into adults (Huestis & Lehmann, 2014; 

Roux et al., 2013; Simard et al., 2009). 
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Figure 1.5: The life cycle of Anopheles gambiae s.l. (modified from Gathany, 2007) 
 

1.2.3. Ecology of Anopheles gambiae s.l. 

Immature stages 

Adult females lay 50-200 brownish or blackish eggs per oviposition. Eggs are laid singly 

in water and are not resistant to desiccation. They hatch within 2-3 days to larvae though 

this may take up to 2-3 weeks in colder regions (Davidson, 1977). Larvae are typically 

thought to prefer small collections of water exposed to the sun, however, they have 

sometimes been found breeding in unlikely places like grassy swamps, backwaters of 

streams, irrigation ditches, cultivated rice fields. It is difficult to attribute a definite 

breeding place to An. gambiae s.l.. "It is likely to breed in almost any water that happens 

to be available" (Holstein, 1954) 

  Of entomological and epidemiological importance is the close association of 

some members of the An. gambiae s.l. complex breeding sites to human activity. The 

physicochemical properties of larval breeding sites typical of An. gambiae has a broad 



 12 

range, with pH ranging from 5.8 to 9.0 (optimum pH at 7.8), temperature between 20ºC 

and 30ºC, and larvae density reducing as water becomes more acidic (Davidson & 

Jackson, 1962) 

  

Adult stage 

They are nocturnal, mostly active at dusk, preferring to feed and rest indoors (Gary, 

2005), while some species are exophilic, resting in a variety of natural shelters such as 

vegetation, crevices of trees, termite mounds, and feed on livestock and wild animals 

(Ward, 2008). The degree of anthropophilism and zoophilism varies according to species 

(Knols & De Jong, 1996). The blood-feeding females usually feed when their host is less 

defensive (sleeping), a pattern indicative of adaptation to host defensive behaviour; the 

mosquito is, therefore, able to feed for long periods and sometimes expels serous fluid 

(Gary, 2005). Female An. gambiae s.s., An. coluzzii and other anthropophilic members of 

the complex are host specific, attracted to the body heat, carbon dioxide emission, and 

skin microflora of their human host (Knols & De Jong, 1996). 

 

 
 

Figure 1.6: Adult female Anopheles gambiae s.l. blood-feeding on a human host (Cornel, 2020) 
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1.2.4. Distribution of the sibling species Anopheles gambiae s.s. and An. coluzzii. 

For clarity, sibling species henceforth refer to An. gambiae s.s. and An. coluzzii. 

Anopheline mosquitoes are found everywhere except Antarctica, however, the sibling 

species co-occur over large areas of sub-Saharan Africa and do not exhibit intrinsic post-

mating barriers to reproduction (Aboagye-Antwi et al., 2015). Whilst An. gambiae s.s. is 

widespread throughout the region, extending across the continent into Madagascar (della 

Torre et al., 2005) and is presumed ancestral, An. coluzzii spans from northern Senegal 

(West Africa), East-Central Africa and Angola (Southern Africa), with an exceptional 

individual found in the Zambezi valley in Zimbabwe (della Torre, et al., 2005; 

Gimonneau et al., 2010). A species distribution modelling study and several larval habitat 

correlational studies reveal that the geographical range of An. coluzzii corresponds with 

the xeric savannahs and coastal fringes of West Africa with its sibling An. gambiae s.s. 

found mostly in inland rural areas (Diabate et al., 2005; Edillo et al., 2006; Gimonneau 

et al., 2014; Kudom, 2015; Tene Fossog et al., 2015). 

 

 1.3. Vector control 

In 1998, the Roll Back Malaria (RBM) initiative was launched as a partnership of malaria 

endemic countries, United Nations agencies, bilateral development agencies, the research 

community, the private sector, non-governmental organisations, foundations and the 

media (WHO, 2008). The objective of RBM was to halve the malaria burden in countries 

participating in the initiative. The technical strategy of RBM was based on early detection 

and prompt treatment of malaria cases, the detection and control of malaria epidemics, 

mosquito control and the prevention of malaria in pregnancy (WHO, 2008). The RBM 

partnership developed the Global Malaria Action Plan (GMAP) to support malaria 

endemic countries by providing a global framework around which actions and efforts 
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towards malaria control and eradication can be directed (WHO, 2008). The primary tools 

for malaria prevention as highlighted in the GMAP are, long-lasting insecticide-treated 

nets (LLINs), indoor residual spraying (IRS) and intermittent preventive treatment for 

pregnant women (IPTp). Other vector control measure such as larviciding and 

environmental management are implemented following integrated vector management 

(IVM) protocols to ensure interventions were used as appropriate (WHO, 2017). 

Although these methods have been very effective in the reduction of mortality and 

morbidity over the past decade, 50% of the countries with ongoing malaria transmission 

which were on track towards critical targets for reduction in mortality and morbidity, 

have recorded a stall in progress (WHO, 2017). This current trend brings to the forefront 

the research for new vector control methods to complement the existing IVM techniques.  

 

1.3.1.  Insecticide resistance 

Malaria prevalence in Africa has declined over the last two decades and these gains are, 

in a large part due to the widespread implementation of insecticide-based vector control 

measures (Bhatt et al., 2015; WHO, 2019). As efforts to control malaria were intensified, 

the selection pressure on mosquito vectors to develop resistance to insecticide also 

increased (Ranson & Lissenden, 2016). In this same period, there has been increases in 

insecticide resistance that have the potential to derail or even reverse the progress made 

in reducing malaria transmission (Hemingway et al., 2016a). Under four broad insecticide 

classes (pyrethroid, carbamates, organophosphates, and organochlorines), there are only 

12 available insecticides (all insect neurotoxins) that have the WHO Pesticide Evaluation 

Scheme (WHOPES) approval for use in malaria vector control (WHO, 2017). To manage 

these limited resources, WHO has encouraged countries to develop insecticide 

management plans based on local data, however, these data are sparse or non-existent in 
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many places (WHO, 2019). According to the World Malaria Report 2019, an increase of 

5 countries from 2017 – 2018 reporting resistance for all the main classes of insecticides 

in 26 countries, evidenced rapid development of insecticide resistance in African malaria 

vectors which threatens the continued efficacy of important vector control methods that 

rely on a limited number of insecticide classes (Hancock et al., 2018; WHO, 2019) 

 Three categories of mechanisms that confer resistance to neurotoxic insecticides 

in malaria vectors include alterations to metabolic genes or pathways (metabolic 

resistance), target site mutations (phenotypic resistance) and cuticular thickening 

(mechanical resistance) (Edi et al., 2014; Hancock et al., 2018). Metabolic resistance is 

very common and results primarily from the amplification or up-regulation of 

detoxification enzymes (especially esterases, P450 monoxygenases and glutathione S-

transferases) and can confer high levels of resistance (Edi et al., 2014; Ibrahim, et al., 

2016; Mitchell et al., 2012). Whilst some enzymes have been linked to resistance to a 

specific insecticide class, others confer resistance across several insecticide classes 

(Antonio-Nkondjio et al., 2017; David, et al., 2013; Edi et al., 2014; Ibrahim, et al., 2016; 

Mitchell et al., 2012). Changes to insecticide target sites are also prevalent and are 

frequently associated with phenotypic resistance (Kawada et al., 2011; Kwiatkowska et 

al., 2013; Reimer et al., 2008). For instance, acetylcholinesterase target site alteration 

caused by a mutation to the Ace-1 gene typically confers cross-resistance to 

organophosphate and carbamate insecticides (Edi et al., 2014; Essandoh, et al., 2013). 

Cross resistance to pyrethroids and the organochlorine (DDT) arise from knockdown 

resistance (kdr) mutations in the Vgsc gene which encodes the para voltage-gated sodium 

channel target site (Hancock et al., 2018). Currently, there is less evidence for cuticular 

thickening as a mechanism of resistance (Balabanidou et al., 2016; Wood, et al., 2010; 

Yahouédo et al., 2017). 
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Pyrethroid resistance (the only approved insecticide class for LLINs) is now ubiquitous 

on the African continent with resistant An. gambiae s.l. populations found in Kenya, 

much of Tanzania, Zambia, Zimbabwe and Democratic republic of Congo (Kanzaa et al., 

2013). Although populations of An. gambiae s.l. fully susceptible to pyrethroids were 

found in Angola, Madagascar and Mozambique in 2015, they are becoming increasingly 

outnumbered by resistant populations (Ranson & Lissenden, 2016). In 2019, the World 

Malaria Report recorded pyrethroid and organochlorine resistance in at least one malaria 

vector in more than 67% of the sites tested. Pyrethroid resistance was highest in sub-

Saharan Africa and East Mediterranean region. Resistance to carbamates and 

organophosphates was less prevalent and was detected in 31% and 26% of the tested sites 

in the 2019 report respectively (WHO, 2019). 

 To counteract the rapid emergence of resistance and sustain progress made 

towards malaria control and elimination targets, new insecticides are urgently needed. It 

is also critical that future insecticide based approaches are not dependent on a single 

active ingredient in the way we relied on pyrethroids since 2000. To achieve this, a 

product development partnership, the Innovative Vector Control Consortium (IVCC), 

was set-up to deliver three novel public health insecticides by 2022 (Hancock et al., 2018; 

Hemingway et al., 2016b; Ranson & Lissenden, 2016). These new insecticides will allow 

for combination and rotation strategies that will optimise performance and reduce the 

likelihood of resistance development (Ranson & Lissenden, 2016). Thus, manufacturers, 

donors, control programmes, the WHO and other stakeholders must work together to 

implement resistance management strategies to maximise the duration of efficacy of 

these novel chemistries (Ranson & Lissenden, 2016). There is also the hope that 

additional insecticide classes will become available via the repurposing and 



 17 

reformulating of agricultural insecticides for use in vector control especially targeted at 

IRS (Ranson & Lissenden, 2016). 

 

 

Figure 1.7: The spatial-temporal distribution of insecticide resistance from 1183 locations in 38 African 
countries located in the West and East African regions. (A) Pyrethroid bioassays. (B) Organochlorine 
bioassays. (C) Carbamate bioassays. (D) Organophosphate bioassays. (E) The number of bioassay records 
for each time period. The keys in A – D correspond to the insecticides shown in E. (F) The locations of 
sample collections used to calculate Vgsc allele frequency data. The mutations L1014F and L1014S present 
at each location are shown (Hancock et al., 2018). 
 

1.3.2. Current trends in malaria vector control 

There has been an evolution of malaria vector control methods from the rudimentary 

environmental control, single chemical control approach, to Integrated Vector 

Management. In 2017, the World Health Assembly welcomed the global vector control 

response 2016 – 2030 and adopted the resolution to promote an integrated approach to 

the control of vector borne diseases, primarily building on the concept of IVM (WHO, 

2019-Vector control guidelines). IVM is simply defined as the “rational decision-making 

process for the optimal use of resources for vector control"(WHO, 2008). It involves the 
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use of sound principles of management, allowing the full consideration of the 

determinants of disease transmission and control. In line with the IVM concept, there is 

strong advice against vector management plans that rely on any one form of control such 

as the use of chemical insecticides in isolation, to ensure the value of such methods are 

not lost by biological phenomena such as insecticide resistance. Rather, the development 

and effective combination of several locally adapted vector control approaches, is 

encouraged as the best approach to reduce the malaria burden in an environmentally 

sustainable fashion. Currently, IVM strongly suggest making use of the full range of 

control methods available as well as regular local assessments of disease transmission 

dynamics and interaction with public and private stakeholders. (WHO, 2019-Vector 

control guidelines). 

 Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal Nets (LLINs) are 

the two most widely used control tools for Anopheles gambiae s.l. control. In some areas, 

these tools are synergistically combined with larval source management (Benelli & Beier, 

2017). In the light of insecticide resistance and potentially negative effect of chemical 

insecticides on human and environmental health, sustained efforts are required to develop 

new and/or complementary control techniques for Anopheles gambiae s.l. control.	Policy 

improvements in these core malaria vector interventions and supplementary interventions 

are discussed below. 

	

Insecticide Treated Nets (ITNs) 

WHO recommends ITNs (which should be LLINs in some settings) as a core vector 

control intervention for use in protecting populations at risk of malaria, including areas 

where malaria has been eliminated or transmission has been interrupted with the risk of 

reintroduction still remaining (Keating et al., 2011; WHO, 2019-Vector control 

guidelines). The use of ITNs have played a major role in the reduction of malaria cases 
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since 2000 (Paaijmans & Huijben, 2020). Sixty-eight percent of the overall malaria 

reduction observed between 2000 and 2015 can be attributed to the use of ITNs (Bhatt et 

al., 2015). Factors contributing to its success includes, its effectiveness as a physical 

barrier, containing an insecticide that kills susceptible mosquitoes upon and after contact, 

and the excito-repellent effect of pyrethroids (Paaijmans & Huijben, 2020). ITNs are 

most effective where the principal malaria vector(s) mosquitoes bite predominantly at 

night after people have retired under their bed-nets. There are two main ITN classes 

currently recommended by WHO; pyrethroid-only nets (including LLINs) and recently 

developed LLINs that contain pyrethroid synergist-piperinyl butoxide (PBO) as well as 

other nets containing multiple active ingredients (N’Guessan et al., 2014; Tiono et al., 

2015; WHO, 2019-Vector control guidelines). Pyrethroid-only nets include both 

conventionally treated nets that rely on periodic re-treatment of nets by dipping into an 

insecticide formulation, and factory-treated LLINs made of netting materials with 

insecticide incorporated within or bound around the fibres (Pinder et al., 2015; WHO, 

2019-Vector control guidelines). LLINs are defined as retaining their effective biological 

activity for at least 20 standard washes under laboratory conditions and 3 years of 

recommended use under field conditions (WHO, 2019-Vector control guidelines). WHO 

prequalified pyrethroid-PBO nets are conditionally recommended for deployment instead 

of pyrethroid-only LLINs where the principal malaria vector(s) exhibit confirmed 

pyrethroid resistance of intermediate level, that is conferred by a monooxygenase-based 

resistance mechanism (Strode et al., 2014; WHO, 2019-Vector control guidelines). The 

use of these nets may help maintain the personal and community benefits of LLINs in 

areas of pyrethroid resistance until novel public health insecticides become available 

(Hemingway et al., 2016a; Paaijmans & Huijben, 2020; Ranson & Lissenden, 2016). 

PBO acts by inhibiting certain metabolic enzymes (e.g. mixed-function oxidases) within 
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the mosquito responsible for the detoxification or sequestration of insecticides before 

they can have a toxic effect on the mosquito (Strode, et al., 2014). Therefore, compared 

to a pyrethroid-only net, a pyrethroid-PBO net should lead to increased killing effect on 

malaria vectors that express such resistance mechanisms.  

 In the light of pyrethroid resistance, the long-wait for novel insecticides and 

environmental concerns with the testing of novel chemistries, there is a call for the 

removal of insecticides in LLINs. Proposers argue that mosquito nets without insecticides 

can provide personal and community protection when used alongside other interventions 

and technologies (Paaijmans & Huijben, 2020).  

 

Indoor Residual Spraying (IRS) 

This is the application of a residual insecticide on resting surfaces of potential malaria 

vectors, such as internal walls of houses, eaves and ceilings of houses or domestic animal 

shelters, where vectors might come in contact with the insecticide (WHO, 2019-Vector 

control guidelines). When implemented correctly, IRS has been shown to be a powerful 

vector control intervention (also regarded as a core vector intervention tool by WHO), 

reducing adult mosquito density and longevity and thus malaria transmission (WHO, 

2019-Vector control guidelines). Insecticide formulation for IRS fall under three main 

modes of actions: a) sodium channel modulators (pyrethroids and organochlorines), b) 

acetylcholine inhibitors (organophosphates and carbamates) and c) nicotinic 

acetylcholine receptor competitive modulators (neonicotinoids) (Feachem, 2018). For 

optimal effectiveness, residual efficacy needs to continue for at least 3 months after 

application of the insecticide to the substrate (WHO, 2017). For IRS to be considered an 

appropriate intervention, the majority of the vector populations have to be endophilic, 

endophagic, and susceptible to the insecticide used. Further, people at risk of malaria 
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transmission have to mainly sleep indoors at night and malaria transmission has to be 

such that the population can be protected by one or two rounds of IRS per year. To avoid 

high transportation and logistical costs, structures to be sprayed should not be scattered 

over wide areas (WHO, 2019-Vector control guidelines). 

 Recent review indicates that end-users of IRS modify their wall surfaces post-

spraying and this has the potential to reduce actual IRS coverage, effectiveness and 

impact. Clear guidelines are needed to monitor IRS acceptability and/or coverage both 

before and after spraying for the monitoring and evaluation of malaria programmes 

(Opiyo & Paaijmans, 2020). 

  

Larval source management (LSM) 

This involves the management of water bodies that are potential larval habitats for 

mosquito vector populations in order to prevent the completion of development from 

immature stages (eggs, larvae, pupae) to adult mosquitoes (WHO, 2019-Vector control 

guidelines). Four major LSM approaches implemented for malaria vector control include: 

a) Habitat modification: which involves a permanent alteration to the environment such 

as land reclamation (Raghavendra, et al., 2011). b) Habitat manipulation: involves a 

recurrent activity to discourage mosquito development such as flushing of streams 

(Raghavendra, et al., 2011; ‘WHO, 2019-Vector control guidelines). c) Larviciding: 

involves the regular application of biological or chemical insecticides to water bodies to 

kill mosquito larvae, such as Bacillus thuringiensis serovariety israelensis, Bacillus 

sphaericus; and botanical larvicides (Benelli & Beier, 2017). d) biological control: the 

introduction of natural predators into water bodies to help suppress mosquito larval 

populations. Mosquito larval populations can be controlled by a number of aquatic 

predators including cyclopoid copepods, Toxorhynchites mosquitoes, backswimmers, 
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water bugs, fishes, crabs, tadpoles, and odonate young instars (Benelli & Beier, 2017; 

Bowatte, et al., 2013; Kalimuthu, et al., 2014). 

 These LSM approaches are regarded as supplementary vector intervention tools 

to be implemented in synergy with IRS and LLINs (WHO, 2019-Vector control 

guidelines). As a general recommendation, environmental management (habitat 

modification and manipulation) should where feasible, be implemented as the primary 

strategy to reduce the availability of mosquito larval habitats. Application of chemical 

and/or biological larvicides to water bodies for malaria prevention should be 

supplementary and used in areas where high coverage with a core intervention has been 

achieved. For cost effective applications, aquatic habitats should be few, fixed and easily 

located and accessed (WHO, 2019-Vector control guidelines). To achieve the ambitious 

goal to reduce malaria burden by 90% by 2030 as outlined in the Global Technical 

Strategy for Malaria 2016-2030, innovation is required (WHO, 2015). Some novel (such 

as Gene Drive Technology) concepts for malaria vector control that are currently under 

research and development are discussed below. Also discussed below are older vector 

control concepts such as Sterile Insect Technique (SIT) that are being revisited and 

improved by researchers in the light of increasing insecticide resistance to provide 

additional alternatives to the use of chemical insecticides or reduce the human, 

environmental or non-target organism interactions with chemical insecticides, especially 

in tackling outdoor malaria transmission where LLINs or IRS are not effective. 

 

Use of ivermectin for malaria vector control 

Ivermectin has a promising potential for use in reducing malaria transmission 

complementing local vector control programmes (Chaccour, et al., 2017). It is an anti-

parasitic medicine that has been widely employed in single-dose community programmes 
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for the control of Onchocerciasis, lymphatic filariasis, strongyloidiasis and scabies 

(Merck & Co, 2009). Ivermectin has been licensed for human consumption for almost 30 

years and its safety has been accessed in over 70 trials (Chaccour, et al., 2017). Ivermectin 

acts as a feed-through insecticide; killing blood-feeding Anopheles mosquitoes that feed 

on the human host with residual traces of ivermectin left in the bloodstream following 

treatment with a standard oral dose of ivermectin (Chaccour et al., 2013; Foy, et al., 

2011). This endectocidal property of ivermectin makes Mass Drug Administration 

(MDA) with ivermectin a potential tool to reduce malaria transmission by increasing the 

mortality of malaria vectors biting treated individuals. Such interventions will be 

particularly effective on those mosquitoes only partially affected by LLINs and IRS due 

to behavioural or physiological resistance, hence, covering any spatial and temporal gaps 

left by core vector control interventions (Chaccour et al., 2013; Foy, et al., 2011). 

 The mechanism of action of ivermectin in invertebrates (including mosquitoes) 

involves the blocking of synaptic transmission by binding to glutamate-gated chlorine 

(GluCl) channels in nerve and muscle, resulting in hyperpolarisation, paralysis and death 

(Merck & Co, 2009; Meyers et al., 2015). The recently characterised GluCl in An. 

gambiae s.l. are predominantly expressed in some organs involved in motor and sensory 

systems, which explains the paralytic and other effects (reduced fertility, knockdown, 

lesser flight performance and reduced biting) of the drug on mosquitoes, even at sub-

lethal concentrations (Butters et al., 2012; Gardner, et al., 1993; Kobylinski et al., 2010; 

Meyers et al., 2015). Several studies have shown that ivermectin might inhibit 

Plasmodium sporogony and could have an effect on liver schizonts as seen in vitro and 

confirmed in a mouse model (Da Cruz et al., 2012; Kobylinski, et al., 2012). In An 

gambiae s.l. laboratory populations, the gene for the GluCl can be expressed in four 

isoforms, with only one isoform being insensitive to ivermectin. There is little knowledge 
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on the expression of these channels in wild mosquito populations. There has been no 

report of resistance to ivermectin in mosquitoes and reduced fertility reported in 

mosquitoes ingesting sub-lethal doses of the drug could help delay the possibility of 

resistance (Gardner et al., 1993). 

 Although ivermectin has been used as an oral drug for treating human diseases 

for over three decades, for applications as a vector control measure, further safety 

evaluation is needed when used at higher doses or with longer exposure and for 

vulnerable groups such as pregnant women and children under 15kg (Chaccour, et al., 

2017). Additionally, its safety when used in combination with antimalarial drugs and 

other drugs commonly used in malaria endemic areas such as antiretrovirals, tuberculosis 

drugs and other antihelminthics will need to evaluated (Chaccour, et al., 2017). 

 

Plant-based substances with insecticidal and repellent effects.  

Eco-friendly insecticides being developed to serve as an alternative to chemical 

insecticide in mosquito control include plant-based essential oils (EOs), which have 

shown high effectiveness and low toxicity on non-target organisms (Pavela & Benelli, 

2016). Further studies on encapsulation of EOs, will allow for their persistence and 

lasting efficacy, making them commercially viable as a replacement to traditional 

chemical larvicides (Pavela, et al., 2016). EOs have also been shown to be effective 

deterrents of oviposition against malaria-transmitting mosquitoes and research is ongoing 

to improve formulation for commercialization (Prajapati, et al., 2005). Due to their 

chemical instability, volatility, low water solubility and oxidation, EOs are limited in 

their use as alternative vector control tools. Incorporating EOs in nano-formulations 

could provide a solution to this problem. Nano-solutions have a high dissolution rate, 
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dispersal uniformity, increased water solubility and bioavailability on application (Pavela 

& Benelli, 2016). 

 Additionally, plant-borne compounds have been used to synthesise insecticidal 

gold nanoparticles (AuN) using different plants and fungi that are effective against 

mosquito larvae at very low dosages (Naresh Kumar et al., 2013; Soni & Prakash, 2012) 

 (One study even demonstrated that application of AuN biosynthesised using 

Cymbopogan citratus (lemon grass) against An. stephensi larvae improved predator 

efficiency in M. aspericornis in a copepod based vector control programme (Murugan et 

al., 2015). 

 For many poor African communities, the use of mosquito repellent plants is the 

only efficient vector control method available to them. The preservation of the 

ethnobotanical knowledge of these plants previously passed orally from one generation 

to the other is an area that requires more research. Three major methods applied by the 

locals for the use of these plants are: production of repellent smoke from plants, hanging 

plants inside the house or sprinkling leaves on the floor, the use of plant oils or juices. 

There is a need to further investigate and preserve this knowledge for the future 

generation (Pavela & Benelli, 2016; Pavela et al., 2016). 

 

The eave tube concept 

The house and the peri-domiciliary domain are closely linked to malaria transmission; up 

to 70% of infectious disease transmission occurs indoors (WHO, 1997). It is therefore 

unsurprising that the core malaria interventions (LLINs and IRS) are house-based. 

African housing is currently undergoing changes in design with traditional huts being 

replaced with modern materials. This presents an opportunity to integrate malaria vector 

control measures such as the ‘eave tube concept’ into the new housing designs (Knols et 
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al., 2016). The eave tube concept involves the modification of ventilation gaps under the 

eaves of houses in rural African societies for the control of mosquito populations (Benelli 

& Beier, 2017). Plastic tubes containing contact insecticide are inserted under the roofline 

of houses with the rest of the opening sealed (Figure 1.8).  

 

 

Figure 1.8: The eaves concept. a African anophelines fly up-winds in host odour plumes (blue line) and 
enter the house through the gap between the roof and the walls- the eave (red circle). b A house in southern 
Tanzania fitted with eave tubes and rendered mosquito proof through fitting of mosquito screening and 
sealing of the eaves. The house modifications comprise: 1 closing the eaves, 2 installation of eave tubes, 3 
fitting of window screening, 4 repairs of the door (where necessary), and 5 closing of cracks and holes. c 
Eave tube inserts fitted with insecticide-treated nets that fit inside PVC pipes (Knols et al., 2016). 
 

Mosquitoes are attracted to the house by the odour of the human host and come in contact 

with insecticide (Knols et al., 2016; Sternberg et al., 2016). This “attract and kill” method 

of insecticide delivery will complement IRS and LLINs because: it minimizes human 
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contact with insecticides, allows for the application of novel insecticides and even a 

combination of insecticides, reduces the amount of insecticides applied and is an 

environmentally safe manner of insecticide application, does not compromise the comfort 

of house occupants, operates passively without active engagement from house occupants, 

operates without electricity or mosquito attractants and is easy to mass-produce and 

install (Knols et al., 2016; Waite, et al., 2016). 

 

Attractive Toxic Sugar Baits (ATSB) 

Both male and female mosquitoes use plant sugar as an energy source (Manda et al., 

2007). An. gambiae s.s females exhibit a discriminatory preference for plants containing 

high glucose and fructose. Successful feeding from such plants correlates with higher 

survival and egg laying rates in this species (Manda et al., 2007). The application of 

ASTB for malaria vector control takes advantage of this behaviour to control mosquito 

populations by using the combination of a concentrated sugar-based food source, an 

olfaction stimulant and an oral insecticide to lure and kill mosquitoes at a bait station 

(Beier, et al., 2012; Müller, et al., 2010). Although ASTB has mostly been successfully 

implemented outdoors with both male and females feeding on them, several studies have 

demonstrated that indoor usage of ATSB has the potential to supplement mosquito nets 

for controlling Anopheles mosquitoes (Allan, 2011; Beier et al., 2012; Stewart et al., 

2013). The method has been described as being highly effective, target specific and 

environmentally friendly (Benelli & Beier, 2017). 

 

Insecticide-treated clothes 

Research is ongoing to improve the application of insecticides to clothing or other items 

for protection against insect vectors. Insecticide-treated clothing has long been used by 
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the military and in recreational activities for personal protection against bites from a 

variety of arthropods such as ticks, chigger mites, sandflies and mosquitoes (U.S. 

Environmental Protection Agency, 2009). Permethrin and the insect repellent DEET are 

the commonly used active ingredients (AI) to treat clothing either by home or factory 

dipping (Siler-Marinkovic, et al., 2006). New technologies for impregnating clothing 

with insecticides and repellents such as microencapsulation and polymer coating are now 

available. These new technologies may prolong the activities of insecticides on clothing, 

and help overcome the inevitable reduction in efficacy that results from washing, 

ultraviolet light exposure and the normal wear and tear of the fabric (Banks, et al., 2014; 

Faulde, et al., 2009; Faulde & Uedelhoven, 2006; Siler-Marinkovic et al., 2006).  

 Although the use of microencapsulation and polymer coating technologies to 

impregnate clothing with permethrin are more expensive than dipping, manufacturers 

claim that their efficacy lasts up to 70 and 100 washes respectively (Faulde & 

Uedelhoven, 2006; Vaughn & Meshnick, 2011). These new technologies also provide the 

added benefits of allowing for a specified rate of release, lower absorption rates into the 

skin, and an additional environmental benefit by reducing the impact of washing 

insecticidal treated clothing (Banks et al., 2014; Rossbach, et al., 2010; Siler-Marinkovic 

et al., 2006)  

 

Spatial repellents (SR) to reduce human-vector contact 

The overdependence on pyrethroids in both public health and agriculture, the resultant 

development of insecticide resistance and the poor understanding of vector ecology has 

limited the efforts to reduce malaria burden with focus on LLINs and IRS (Benelli & 

Beier, 2017). Broadening the scope of active ingredients (AI) discovery to include 

screening criteria that allow for the identification of compounds that exploit behavioural 
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modifications as a means of disease reduction is required to mitigate insecticide 

resistance and maximise the limited arsenal of AIs currently available (WHO, 2019-

Vector control guidelines). Spatial or area repellents (also known as deterrents) are 

chemicals that work in the vapour phase to prevent vector-human contact by disrupting 

the normal behavioural patterns of the mosquito vector within a designated area or safe 

zone, thus making the space unsuitable for the insect (Figure 1.9). This concept of the 

use of SRs to discourage an arthropod from entering a space occupied by a human host 

thus reducing human-vector encounters, resulting in the elimination or reduction of the 

risk of pathogen transmission to either the insect or humans has been demonstrably 

effective (Grieco et al., 2007; Hill, et al., 2007; Killeen & Smith, 2007; Lindsay, et al., 

2002; Ogoma et al., 2010; Galbadon, 1949; Roberts, et al., 2000). 

 

 

Figure 1.9: Spatial repellency concept: the fundamental choice between killing mosquitoes and repelling 
them (Achee et al., 2012). 
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Multiple rationales supporting the use of sub-lethal AIs over conventional lethal AIs 

include: 1. delay the onset of insecticide resistance for AIs used in LLINs and IRS by 

minimising the intensity of selection pressure from contact mediated toxicity mechanisms 

as well as the potential reduction of toxic effect on humans and non-target organisms; 2. 

effectiveness for outdoor protection, an attribute where ITNs and IRS have little impact; 

3. usefulness in addressing other components of vector behaviour such as pre, during, 

and post-host seeking behaviours- these are critical behavioural sequences that can be 

disrupted to prevent blood-feeding which is necessary for disease transmission and 

thereby strengthen integrated vector control strategies; 4. employability against multiple 

vectors, behaviours and species (not limited to species that rest and feed indoors); 5. 

usefulness against economically important insects especially agricultural pests, where 

market forces will drive the cost of AI discovery and development (Achee et al., 2012). 

 Other advantages of the use SRs for malaria vector control include long-term 

effects on mosquito life histories that can reduce malaria transmission by forcing 

Anopheles mosquitoes to either feed on non-human hosts or to search more broadly for 

alternative blood and oviposition sites, thereby reducing vector survival, feeding 

frequency and reproductive rates (Killeen & Smith, 2007). Vector populations that 

survive SRs show permanent or semi-permanent disruption of host seeking and blood 

feeding behaviour (Hao, et al., 2008). It is also likely that the longer a vector remains 

exposed to harsher and more demanding outdoor conditions (greater risk of predation, 

physiologically stressful conditions, excessive energy expenditure during host seeking or 

in identifying resting and oviposition sites), the more likely it will die (Griffin et al., 2010; 

Killeen & Smith, 2007). This reduction in host-contact/feeding success could ultimately 

lead to reduced overall numbers and survival of older mosquito populations that transmit 

mature infectious stage parasites, thereby suppressing transmission at community level 
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without resort to adulticidal strategies (Killen & Smith, 2007; Achee et al., 2012). SRs 

could represent a subtle method of achieving malaria vector mortality and population 

reduction without chemically induced selection pressures, potentially increasing the 

sustainability of existing and novel chemical interventions (Achee et al., 2012). 

 SRs can either be delivered as a single consumer product or integrated into a 

community-based vector control programme to enhance IRS and ITNs interventions. 

Traditional consumer product where spatial repellents have been used include, mosquito 

coils, aerosols, nets and curtains. SRs can also be integrated innovatively into consumer 

products that increase the market value of such products by combining end-user 

needs/wants with vector control, thereby ensuring compliance and sustainability. For 

instance, products that provide utility or beautification such as decorative mats and items 

used for interior decoration of homes can be imbedded with SRs (Achee et al., 2012). SR 

products could also be adapted to exterior areas of houses or within peri-domestic 

environments to cover for outdoor-biting vectors or spaces where physical structures are 

absent, to tackle residual transmission (Ferguson et al., 2010). 

 

Transgenic approaches 

Transgenic approaches involving the use of gene drive systems has the potential to 

provide revolutionary solutions to key public health issues like malaria (Champer et al., 

2016; Hamilton, 1967). Most gene drive systems are based on naturally occurring 

‘selfish’ genetic elements that function by increasing in frequency with each generation 

even without conferring a fitness advantage upon their host, thus forcing non-Mendelian 

inheritance patterns (Alphey, 2014; Alphey et al., 2013; Burt, 2014; Hurst & Werren, 

2001; Sinkins & Gould, 2006; Werren, 2011). The introduction of novel genes into the 

genome of mosquito species using the RNA guided CRISPR-Cas9 (clustered regularly 
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interspaced short palindromic repeats-CRISPR-associated 9) endonuclease system 

presents many possibilities for transgenic vector control strategies (Champer et al., 2016; 

Mali, et al., 2013). The CRISPR-Cas9 system which can be used in conjunction with 

small guide RNAs (gRNAs) to cleave specific sequence of any target genome has been 

adapted to modify the genes of mosquitoes (Basu et al., 2015; Gantz et al., 2015; 

Hammond et al., 2016; Kistler, et al., 2015). The Cas9 endonuclease has several 

important characteristics that make it attractive for engineering gene drives: first, it can 

be utilized to induce cleavage of DNA followed by homology-directed repair (HDR) 

from a co-delivered DNA cassette, thus enabling precise genomic manipulation (Gantz 

& Ethan, 2015); second, it has the capacity to cleave mRNA, thus broadening its potential 

for use in developing gene drives (O’Connell et al., 2014; Price, et al., 2015); third, it can 

be multiplexed for simultaneous Cas9-mediated targeting of multiple sequences, 

permitting increased cleavage rates and reduced evolution of resistance alleles (Gao & 

Zhao, 2014; Xie, et al., 2015); and finally, available bioinformatics tools can be used to 

minimise off-target cleavage and improve species specificity (Xie, et al., 2014). 

Transgenes can potentially be used to overcome the evolutionary disadvantages 

of certain desirable traits (e.g. refractory/resistant to Plasmodium) and thus spread such 

traits more quickly throughout wild populations or suppress mosquito populations 

altogether (Alphey, 2014; Alphey et al., 2013; Burt, 2014; Sinkins & Gould, 2006; 

Werren, 2011). However, traditional transgenes that mediate refractoriness may have a 

fitness cost on the insects that carry them placing them at a competitive disadvantage 

with wild populations which are large and dispersed over wide areas (Champer et al., 

2018, 2017). To overcome this challenge, CRISPR methods have been used to accelerate 

the development of Homing-based Gene Drives (HGDs) in An. gambiae s.l. mosquitoes 

that can spread linked genes that mediate disease refractoriness into wild populations at 
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greater than Mendelian frequencies (Figure 1.10) (Champer et al., 2018, 2017; Gantz et 

al., 2015; Hammond et al., 2016; KaramiNejadRanjbar et al., 2018; Kyrou et al., 2018; 

Li et al., 2020). Several studies have demonstrated that the release of HGDs linked with 

effector genes that inhibit mosquito pathogen transmission may lead to the replacement 

of disease-susceptible mosquitoes with disease-resistant counterparts, thereby reducing 

pathogen transmission (Buchman et al., 2019, 2020; Isaacs et al., 2011; Jupatanakul et 

al., 2017). Other studies have demonstrated that HGDs targeting genes that affect the 

fitness of female mosquitoes could also lead to gradual population declines and even 

elimination (Kyrou et al., 2018; Windbichler et al., 2011; Windbichler, et al., 2008).  

 

 
 

Figure 1.10: Expression of Homing-based Gene Drive (HDG) transgenic method. (A)-HDGs convert 
heterozygotes to homozygotes using a cut/repair process. (B) green denotes individuals with the gene drive, 
grey denotes wild type mosquitoes (modified from Akbari, 2020). 
 

Transgenesis thus has potential for mosquito vector population suppression, and 

modification, providing an environmentally friendly, sustainable and self-perpetuating 
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approach for malaria prevention and control and in the future could replace core vector 

interventions (IRS and LLINs). 

 

Wolbachia for malaria vector control 

They are a group of endo-parasitic, vertically transmitted, maternally inherited bacteria, 

present in a wide range of arthropods and nematodes (Serbus, et al., 2008). Originally 

discovered in mosquito populations in 1924, Wolbachia have the ability to selfishly 

promote their existence in subsequent generations by manipulating and interfering with 

their host’s reproductive capabilities (Hertig & Wolbach, 1924). Certain strains of 

Wolbachia cause reproductive abnormalities in various insect hosts such as cytoplasmic 

incompatibility, thelytokous parthenogenesis, the feminisation of males and male 

mortality (Burt, 2014). In some cases, Wolbachia infections have resulted in speciation, 

reduced vector competence and the shortening of the host’s lifespan (Bian et al., 2013a; 

2013b; Blagrove, et al., 2012; McMeniman et al., 2009; Kambris & Al, 2009; Moreira et 

al., 2009; Rasgon, et al., 2009; Sinkins, 2013; Werren, 2011). Experimental infection of 

Ae. aegypti with the wMel strain of Wolbachia known to significantly inhibit malaria and 

dengue transmission has been successful in invading wild Aedes aegypti populations in 

Australia, despite the mild fitness cost associated with the infection (Hoffmann et al., 

2011; Walker et al., 2011). 

 The use of Wolbachia to control mosquito vector of malaria is promising but these 

intracellular parasites are yet to be genetically engineered. However, the RNA guided 

endonucleases provide flexibility that can allow for the development of improved 

Wolbachia strains with enhanced disease refractoriness and reduce host fitness cost, 

which will allow for more rapid propagation of desirable traits into mosquito populations 

(Champer, et al., 2016) 



 35 

Sterile Insect Technique (SIT) 

 Dating back to the mid-1930s, SIT involves the mass rearing and release of large 

numbers of sterile males to control and eradicate insect populations (Bushland et al., 

1955; Klassen, 2005). Sterile males mate with wild females leading to a reduction in the 

reproductive output of females which result in depletion or elimination of the target 

population (Burt, 2014; Bourtzis, et al., 2016; Lees et al., 2015). This method of insect 

pest control was largely abandoned partly because traditional SIT methodologies relied 

on sterilization via radiation which destroys the DNA of the sterilised organism and 

substantially reduces its overall fitness and mating competitiveness (Kandul et al., 2019). 

A comeback to SIT has been necessitated by the pressure from mosquito-borne disease 

burden and the increase of insecticidal resistance. The possibilities of using modern 

biotechnology to sterilise mosquitoes or alter them have also renewed interests in SIT as 

a viable vector control tool (Lees et al., 2015). To overcome these challenges (fitness cost 

and mating competitiveness), microbe-mediated Wolbachia-based incompatible insect 

technique (IIT) was introduced to induce fertility (Panagiotis & Bourtzis, 2007; Sinkins, 

2004). Other SIT-like systems that have also been used to control insect pest populations 

include release of fertile male insects carrying a dominant lethal gene that specifically 

kill females (female-specific RIDL) and autosomal-linked X-chromosome shredders (Fu 

et al., 2010; Thomas, et al., 2000; Windbichler et al., 2008) 

 To further improve the effectiveness of SIT, a novel CRISPR-based precision-

guided sterile insect technique (pgSIT) has been developed using Drosophila as the 

model insect (Kandul et al., 2019). The pgSIT technique mechanistically relies on a 

dominant genetic technology that enables simultaneous sexing and sterilization of 

mosquitoes to facilitate the release of eggs into the environment, resulting in only male 

progeny that are 100% sterile (Kandul et al., 2019). This was achieved by mass producing 
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two strains of Drosophila, one expressing the CRISPR-associated protein 9 (Cas9) 

endonuclease and the other expressing two guide RNAs (gRNAs). One gRNA targeted a 

female viability gene and the other, a male fertility gene. Following the crossing of the 

two strains of Drosophila, the only surviving progenies were 100% sterile males which 

can be directly deployed (Figure 1.11) (Kandul et al., 2019). This development is 

particularly efficient for field applications as the release of eggs eliminates the difficulty 

of manual sexing and sterilisation of males, thus saving time and effort and increasing 

scalability (Akbari, 2020). There are ongoing efforts to transfer this technology to 

mosquito control (Kandul et al., 2019). 

  

 

Figure 1.11: Precision guided sterile insect technique (pgSIT). pgSIT relies on mass rearing two separate 
strains: the first expresses two guide RNAs (gRNAs) designed to target female viability and male fertility 
genes, the second expresses CRISPR-associated protein 9 (Cas9) endonuclease. When crossed, the only 
surviving progeny are sterile males, which can be repeatedly released as eggs into the environment, 
resulting in population suppression, as they compete with wild males for females (modified from Akbari, 
2020). 
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The Joint FAO/IAEA Programme and their collaborators have been at the forefront of 

the research for repackaging SIT for implementation, fuelled by enthusiasm from many 

countries for the development of SIT against the mosquito. Other aspects of the "SIT 

package" undergoing development include mass-rearing equipment, diet and rearing 

protocols for Anopheles and Aedes species (Lees et al., 2015). To ensure adequate 

performance and competitiveness after release, quality management of sterile male 

mosquitoes is at the front-burner of ongoing research in mosquito SIT development (Lees 

et al., 2015) 

 

1.4 Processes of divergent ecological speciation between An. gambiae s.s. and An. 

coluzzii. 

1.4.1. Genetic basis for speciation amongst the sibling species Anopheles gambiae 

s.s. and coluzzii. 

Speciation is the process by which new living things are thought to develop from existing 

ones during evolution (Feder, et al., 2012). This process promotes biodiversity, which is 

positive in the context of environmental conservation, however, for the epidemiology of 

infectious diseases, speciation creates a complex that challenges ongoing disease control 

measures (Lehmann & Diabate, 2008). Three major geographic modes of speciation exist 

in nature, they include allopatric (geographically isolated by e.g. physical barriers such 

as mountains and subsequently develop physical and genetic differences in their 

populations due to varied selective pressures, genetic drift and mutations), parapatric 

(partial separation leading to reduced fitness due to reduced heterogeneity in their gene 

pool and subsequent adaptations that may reduce interbreeding) and sympatric 

(occupying same geographical space yet diverging) modes of speciation (Butlin et al., 

2012). 
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Understanding the genomic process behind sympatric speciation, which implies the 

evolution of new species from a single ancestral species within the same geographical 

region is fundamental to our understanding of biodiversity and particularly those of 

disease vectors (Aboagye-Antwi et al., 2015; Butlin et al., 2012; Feder et al., 2012). The 

discovery of distinct genomic signatures can aid in the understanding of the genetic and 

ecological conditions that facilitate the emergence and divergence of two gene pools from 

an originally panmictic (randomly mating) population (Aboagye-Antwi et al., 2015; 

Butlin et al., 2012; Feder et al., 2012). For sympatric speciation with gene flow to occur 

between populations, it is necessary that divergent selection acting on locally adapted 

genes overcomes the homogenising effects of migration and recombination (Butlin et al., 

2012; Feder et al., 2012). Genomic features such as chromosomal inversions and peri-

centromeric regions that suppress recombination and link together genes for pre-mating 

isolation and ecological adaptation genes are predicted to promote sympatric speciation 

(Coyne & Orr, 2004; Feder et al., 2012; Reiseberg, 2001; Servedio, 2009).  

 The sibling species were formally known as the ‘M’ (now An. coluzzii) and ‘S’ 

(now An. gambiae s.s.) molecular forms of An. gambiae s.s. in reference to diagnostic 

genetic differences in their ribosomal DNA regions (Coetzee et al., 2013). They co-occur 

over large areas of West Africa and do not exhibit intrinsic post-mating barriers to 

reproduction (Diabaté, et al., 2007; Tripet, et al., 2005). The sibling species are 

morphologically similar and share the same resources including vertebrate hosts, adult 

resting sites and freshwater and larval habitats (Reidenbach et al., 2012). Across much of 

their sympatric range, they are uniquely divergent as a result of strong assortative mating 

with occasional hybrids and resultant low levels of genetic introgression (>1%) leading 

to speciation (Dabire et al., 2013; Lee et al., 2013; Tripet et al., 2001; Weetman, et al., 

2012). Adults of both species have similar feeding and resting habits and mating occurs 
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at dusk in swarms. Swarm site segregation is thought to contribute to assortative mating, 

but the occurrence of mixed swarms at various frequencies points towards additional 

conspecific recognition mechanisms such as flight tones (Dabire et al., 2013; Diabaté et 

al., 2006; Gibson, et al., 2010; Pennetier, et al., 2010). There are however large hybrid 

pockets in the westernmost extreme of the An. gambiae s.l. range, specifically in the 

coastal countries of Guinea Bissau (>20%), The Gambia (7%) and 3% in Senegal, with 

high levels of genetic introgression (Caputo et al., 2011; Lee et al., 2013; Marsden et al., 

2011; Weetman et al., 2012).  

On the genetic basis of sympatric speciation, several ground-breaking studies 

have shown that the sympatric speciation in these two incipient species probably involved 

the divergence of a few ‘islands of divergence’ that possibly contain clusters of speciation 

genes and are located in areas of low recombination (Turner, et al., 2005; White, et al., 

2010). These putative ‘islands of speciation’ include 3 pericentromeric islands of 

divergence located on the X, 2L and 3L chromosomes as well as smaller islands located 

in the vicinity of inversion breakpoints (Turner, et al., 2005; White, et al., 2010). In 

central West Africa, perfect linkage disequilibrium between the X, 2L and 3L islands was 

found in samples from sympatric populations of An. coluzzii and An. gambiae s.s. (White 

et al., 2010). The result suggests a pattern of speciation (between An. gambiae s.s. and 

An. coluzzii) where there is very low gene flow between the sibling species and the 

possibility that the pericentromeric islands of divergence were merely ‘incidental rather 

than instrumental’ to the speciation process (White et al., 2010). This pattern was further 

reinforced by a subsequent study that suggested divergence at many loci across the 

genome and a more advanced stage of sympatric speciation (Reidenbach et al., 2012). 

However, other recent studies have revealed a different genomic differentiation pattern 

between the sibling species, showing that the linkage disequilibrium between the 
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pericentromeric islands breaks down to various degrees in areas with higher introgression 

(Caputo et al., 2011; Lee et al., 2013). Considering both patterns together, the 

comparative genomics data would therefore support a model of genomic divergence in 

which pericentromeric divergence islands play a major role in speciation in the face of 

varying levels of gene flow (Aboagye-Antwi et al., 2015; Lee et al., 2013; Weetman et 

al., 2012). A more recent study on laboratory recombinant strains of the sibling species 

show close associations of assortative mating genes with the X-island of speciation, thus 

supporting the hypothesis that pericentromeric regions can create linkage disequilibrium 

and hence, protect associations between genes of pre-mating isolation and ecological 

adaptation and facilitate the onset of sympatric speciation (Aboagye-Antwi et al., 2015; 

Coyne & Orr, 2004; Feder et al., 2012; Servedio, 2009). This further lends support to the 

model of speciation involving pericentromeric suppression in these sympatric incipient 

species (Aboagye-Antwi et al., 2015) 

 

1.4.2. Water quality of larval breeding sites of the sibling species, larval habitat 

divergence and eco-speciation . 

Immature life stages of mosquitoes are aquatic, occurring in varying water qualities 

depending on mosquito species (Mamai, et al., 2016). In nature, larvae of both species 

are filter feeders, depending on nutrients in the water for survival. Although larval stages 

may be collected at the same habitats, the sibling species differ markedly in their choice 

of larval habitats; with An. coluzzii being associated with longer-lasting breeding sites 

resulting from human activities . In West African savannahs, these tend to be irrigated 

habitats such as rice fields, reservoirs, abandoned mines and quarries, and drainage 

ditches. In the central African rainforest areas, they tend to be urban pools, which are 

sometimes polluted with organic waste. An. gambiae, on the other hand, usually reaches 
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its population peak during the rainy season, preferring more ephemeral habitats that are 

rain-dependent (Della Torre et al., 2005; Diabaté et al., 2009; Kamdem et al., 2012; 

Lehmann & Diabate, 2008). This habitat segregation amongst the larval stages of these 

species is assumed to be a driver of speciation (ecological speciation) among both species 

(Costantini et al., 2009; Gimonneau et al., 2010). Currently, the strongest evidence that 

adaptation to rice fields may have played such a role in the speciation of An. coluzzii and 

An. gambiae s.s., stems from larval transplantation experiments conducted in Burkina 

Faso, which showed that in the absence of predation, the sibling species outcompeted 

each other in their respective natural habitat. An. gambiae s.s. behaved as surface feeders, 

mainly thrashing at the water surface and foraging through floating vegetation, while An. 

coluzzii larvae mimicked benthic feeders spending a significantly greater amount of time 

browsing at the bottom of the container and diving more frequently than the former 

(Gimonneau et al., 2012). This behaviour is probably directly linked to its success in both 

habitats under predator pressure. In the presence of predators however, developmental 

success was significantly higher in An. coluzzii (Diabaté et al., 2008). Larvae of An. 

gambiae developed faster than An. coluzzii in temporary water collections when predators 

are few, inversely, larvae of An. coluzzii outcompetes those of An. gambiae in predator 

rich environments (Gimonneau et al., 2010; Tene Fossog et al., 2015). The success of An. 

coluzzii breeding in rice fields may have originated from earlier association with rice field 

domestication in Africa (Li et al., 2011; Reidenbach et al., 2012). Environmental changes 

drive speciation by introducing evolutionary novelty and emergence of adaptive variation 

through natural selection (Schluter, 2001). 

 In the laboratory, mosquitoes are routinely reared in deionized water containing 

little or no minerals (Suchismita Das, et al., 2007; Tchigossou et al., 2018). A good 

understanding of larval divergent preference between the sibling species could form the 
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basis to improve rearing protocols for each sibling species. Water quality used in rearing 

Anopheles mosquitoes is vital for oviposition, adult emergence, and larval survival 

(Akpodiete, et al., 2019; Tchigossou et al., 2018). Physiochemical parameters such as 

ammonia, nitrates, nitrites, and biotic factors such as the decomposition of organic matter 

by microorganisms will likely impact on the development and survival of An. gambiae 

s.s. and An. coluzzii in rearing facilities (Tene Fossog et al., 2013, 2012). With the return 

of “SIT against mosquitoes” to mainstream research as well as other novel genetic 

approaches (transgenes), there is a need to develop efficient and economical methods to 

produce large numbers of sterile or GM mosquitoes of high phenotypic quality (Mamai 

et al., 2017). 

 

Ammonia tolerance in the sibling species 

Ammonia is a by-product of biological waste production in aquatic ecosystems. It is 

excreted as the end-product of protein metabolism and may be toxic if allowed to 

accumulate (Hargreaves 1998). Ammonia levels are typically higher in more permanent 

and eutrophic larval breeding sites, such as rice fields which is the preferred habitat of 

An. coluzzii (Ishii, et al., 2011) 

 Acute toxicity studies focused on plastic responses of the sibling species to high 

concentrations of ammonia have been conducted and results showed higher ammonia 

tolerance in An. coluzzii compared to An. gambiae s.s, (Tene Fossog et al., 2013, 2012). 

These studies were aimed at describing the sibling species along gradients of urbanization 

and not on eco-speciation as a result of adaptation to rice field domestication. The 

concentrations of ammonia used in these studies were however far higher than what 

would be obtained from the pre-fertilization rice field ecosystem. To understand the 

impact of ammonia as an environmental trigger for selection in the rice paddy, it is 
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therefore important to study ammonia tolerance throughout the larval, pupal stages and 

its effect on adult emergence using ammonia concentrations that are typically found in 

the rice-field. 

 

Bacterial communities in An. gambiae s.l. insectary  

Microbial communities have significant ecosystem functions which include primary 

production, decomposition and nutrient cycling (Zak, et al., 2003). Those found in 

ephemeral aquatic ecosystems play important roles in the growth and development of 

several aquatic insects including mosquitoes (Gimnig et al., 2002; Kaufman et al., 2006). 

Mosquito larvae are filter feeders, feeding mainly on microorganisms and detritus 

(Muturi, et al., 2017), and their internal microbial communities are influenced by biotic 

and abiotic factors such as temperature, diet, competition, soil substrate, and predator 

exposure (Charan, et al., 2013). The development, survival and behaviour of mosquitoes 

are influenced by their microbiome throughout their life cycle (Coon, et al., 2014; 

Dickson et al., 2017; Onchuru et al., 2016; Ponnusamy et al., 2008). Likewise, mosquito 

larvae via their feeding behaviour can alter the composition and phenotypic quality of the 

microbial communities of their habitats (Kaufman, et al., 1999; Pernthaler, 2005; Wallace 

& Merritt, 2004). Other important roles played by mosquito microbiome include 

assistance with digestion, stimulation of immune function and providing resistance to 

colonisation by foreign and potentially harmful microbes and viruses (Cirimotich, et al., 

2011). 

 For most holometabolous insects like mosquitoes, conditions of larval growth, 

biotic and abiotic, affect adult life-history traits (Dickson et al., 2017). The effect of 

bacterial communities in larval development sites on mosquito development is largely 

unknown. Understanding how this carryover effect works in a laboratory (insectary) 
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environment for Anopheles gambiae s.l. will have a major impact on rearing protocols. 

The identification of the microbial communities in mosquito larval trays characterised by 

stagnant water, a bacteria influenced nitrogen cycle (nitrification-denitrification) directly 

linked to uneaten food and metabolic by-products (ammonia) and how this affects all the 

life stages of the mosquito will be vital in improving rearing protocols. Mosquito survival 

and output for release programmes can be improved as microbial analysis of the 

laboratory larval environment might provide solutions to rearing challenges such as 

ammonia build-up, low larval survival, pupae and adult size, fecundity and male 

competitiveness. 

 

 Use of zeolites in An. gambiae s.l. insectary 

Water management in mosquito insectaries to minimise the presence of ammonia and 

encourage beneficial microorganisms is key to achieving optimal rearing results both for 

small cultures and for mass-rearing facilities (HDV, 2017; Mamai et al., 2017, 2016). 

Zeolites are microporous crystalline aluminosilicates with chemically neutral basic 

honeycomb-like structures that originate from volcanic rocks (Ghasemi, et al., 2018). The 

chemical structure of zeolite forms a network of channels and cavities allowing easy 

penetration of micron-sized molecules which are filtered according to size, polarity and 

shape, thereby serving as an efficient filter adsorbing various substances that come in 

contact with it (Abdel-rahim, 2017). Zeolite has been widely used in aquaculture to 

improve water quality and feed quality as well as reduce the negative environmental 

impacts of aquaculture and improve the quality of seafood (Skleničková et al., 2020). 

Water quality is improved when the zeolite is used because it can adsorb ammonia, heavy 

metals, pesticides, smells, radioactive cations and many other toxins (Inglezakis, 2012). 

Average ammonia adsorption capacity is 25mg NH4+ /g of zeolite (Abdel-Rahim, 2017). 
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There is scarcity of literature on the application of zeolite's tremendous ammonia 

absorption value in mosquito rearing. Medium and mass-rearing mosquito facilities may 

benefit from the tremendous value of zeolite rock to improve mosquito yield and quality. 

 

1.5. Aims and Objectives 

In the light of insecticide resistance to pyrethroids used in LLINs and unavailability of 

non-transient vaccine for the malaria parasite, it is clear that additional tools and 

approaches are required for vector control to sustain the gains of the past and achieve 

global malaria eradication. Several vector control tools (such as SIT, gene drive 

technologies, etc) involving the mass release of mosquitoes are being developed in line 

with WHO’s vector control research goals. To support the efforts in improving mass 

rearing facilities and protocols, this study investigated the larval ecological preferences 

of Anopheles gambiae s.s and Anopheles coluzzii in the insectary, by revealing the 

reaction norms of the sibling species to ammonia and minerals in their larval habitat. To 

improve water quality in rearing trays, the use of ammonia absorbing zeolite for larval 

rearing was evaluated. Further, bacteria communities in larval trays were also 

characterised to understand how the microbial dynamics in these trays affect mosquito 

development. The overall aim of this study therefore, was to elicit plastic responses in 

the sibling species in response to biotic and abiotic factors in their larval habitat and how 

this can used to improve water quality in rearing trays and thus, overall mosquito yield 

for mass release programmes.  

The specific objectives were to: 

1. investigate the effect of different water sources on the development and 

phenotypic quality of An. gambiae s.s and An. coluzzii. 
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2. assess and compare the phenotypic responses (mortality rate, larval development, 

pupation, and adult emergence) of An. gambiae s.s and An. coluzzii to different 

concentrations of ammonia under standard insectary conditions. 

3. reveal reaction norms of the sibling species in their preferred larval habitat in a 

microcosm setting.  

4. evaluate the use of zeolite for mosquito larval rearing. 

5. characterise the microbial communities associated with larval rearing trays using 

16S rRNA gene sequencing. 

6. analyse and quantify by qPCR, the candidate bacteria species that are beneficial 

and detrimental to mosquito development in the insectary. 

  



 47 

Chapter 2 

General methods 

Methods described here were mostly those common to more than one experimental 

chapters, references were made to this chapter in subsequent chapters where relevant. 

 

2.1. Mosquito strain 

The Kisumu strain of An. gambiae s.s., colonized over 40 years ago, from the area of 

Kisumu, Kenya, East Africa; 17-year-old Mopti strain of An. coluzzii, colonized in 2003 

by the Lanzaro Laboratory (UC Davis) from the village of NʼGabacoro droit near 

Bamako, Mali, West Africa, and a recently-colonised 2-year-old VK3 An. coluzzii strain 

from Vallee du Khou in Burkina Faso, West Africa (supplied by IRSS, Bobo Dioulasso), 

were used for the experiments. The strains were maintained by the Tripet group in 

dedicated insectaries of the Centre of Applied Entomology and Parasitology (CAEP), 

Keele University, UK. 

 

2.2. Mosquito rearing 

The insectary 

An insectary can be briefly defined as a room where living insects are kept and reared in 

a manner that yields insects of standard phenotypes that can be utilised for 

experimentation. At CAEP, the typical insectary was an enclosed, temperature and a 

humidity-controlled room used for rearing mosquito colonies. Mosquitoes were 

maintained at 25 ± 2 °C, relative humidity of 70 ± 5%, with a 12-h light/dark photocycle. 

High hygienic standards were maintained in the insectary. Bleach was used to sterilise 

contaminated equipment, clean the insectary weekly, and sterilise the humidifier 
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fortnightly to prevent the build-up of micro-organisms that may be pathological to the 

colonies. 

 

Adults 

Approximately 600 – 800 adults were held in 5L cages covered with netting held in place 

with masking tape. Sugar was provided via a paper towel soaked in 10% glucose solution, 

and water via a soaked cotton pad in an upturned bowl placed on the cage netting. Seven 

to eight days post-emergence, female adult mosquitoes were fed with defibrinated horse 

blood using an artificial feeding membrane (Hemotek feeding membrane system, 

Discovery workshops, Blackburn, UK). Styrofoam cups (egg cups) containing filter 

paper and water were placed in the cages four days post blood-feeding, to collect eggs. 

Following the removal of the egg cups, the cages were washed thoroughly and sterilised 

with bleach. Mouth aspirators were used to transfer adults from one container to another 

when necessary. 

 

 

Figure 2.1: Mosquito cages with emerged adults and egg cup 
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Figure 2.2: Blood feeding using a hemotek unit and parafilm membrane 
 

The egg cups were removed three days after they were placed in the cages and hatched 

larvae were transferred to clean larval rearing trays using a pipette. Unhatched eggs were 

immersed in water, covered and allowed to hatch.  

 

Larvae 

First instar larvae were transferred from egg cups into clean white trays with 500ml of 

deionized water, additional 500ml of deionised water was added on the fifth day. Larvae 

were fed an optimized diet of ground fish food (Tetramin, Tetra, Melle, Germany) at a 

rearing density of 200 larvae/litre by manual counting. 
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Figure 2.3: An. gambiae s.l. larval tray set-up in the insectary. 
 

Pupae 

Eight days following the transfer of first instar larvae to larval trays, pupae were 

transferred to 5l plastic cages (c.20.5 cm height × 20 cm diameter), covered with netting 

for adult emergence. The trays are washed thoroughly with only water following the 

completion of pupation of the population in the tray. Cages had sleeved opening for easy 

management of mosquitoes and accessories.  

  

Figure 2.4: Pupae in styrofoam cups with water for adult emergence. 
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2.3. Mosquito DNA extraction  

Adult mosquitoes to be identified were preserved for DNA extraction in 75% ethanol in 

collection tubes. DNA extraction was done using protocols standardised in Tripet's 

laboratory as follows: Laboratory bench was washed with soap and water and wiped with 

75% ethanol to avoid contamination. Individual mosquitoes were placed in 1.5ml 

centrifuge tube, 100µl of DNAzol was pipetted into the tube and mosquitoes were ground 

with a pestle until no recognizable body parts were left. The mixture was centrifuged for 

10 minutes at 10'000g to form pellets, following which the supernatant was transferred 

to a new tube. 50µl of 100% ethanol was added to the supernatant to precipitate DNA 

and mixed by gently shaking/inverting 5-8 times, after which it was left to incubate for 3 

minutes at room temperature. The supernatant was then centrifuged for 7 minutes at 

7'000g, after which the liquid was gently decanted. Further short spins may be necessary 

to remove excess ethanol using a pipette. 200µl of TE buffer was pipetted into the tube 

and set aside (in -200C if not to be used immediately) for PCR species identification. 

Latex gloves and a laboratory coat were worn throughout the procedure. DNA 

quantification was carried out using Nanodrop 1000 spectrophotometer to verify the 

amount of DNA present in the samples.  

 

2.4. Polymerase chain reaction (PCR) 

PCR is an indispensable molecular biology tool with wide applications in medicine, 

medical and biological research (Bartlett & Stirling, 2003). It was first described and 

experimentally applied by the Nobel Laurette, Kary Mullis in 1985. PCR is an 

amplification technique that generates millions of copies of a specific segment of DNA 

(amplicon) from a small quantity of starting amount (DNA template), using primers, 

DNA polymerase, nucleotides, and specific ions (Kralik & Ricchi, 2017). 
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PCR for mosquito species identification was done using SINE200 cycle (Santolamazza 

et al., 2008). Master mix for the reaction consisted of 20.38µl of deionized water, 2.5µl 

of 10x buffer, 0.5µl of DNTPs (10mM), 0.25µl of primer S200X6-1F (10pM), 0.25µl of 

S200X6-1R (10pM), 0.13µl of dreamtaq, giving a final volume of 24µl for one reaction. 

The volume prepared was proportionate to the number of samples to be identified. The 

master mix reagents, test samples were placed in an ice box throughout the process. 24µl 

of master mix and 1µl of DNA solution (sample) was placed in a 5µl PCR well (Starlab) 

and labelled accordingly using a PCR well chart, before running the PCR. The 

amplifications were carried out using a 'DNA-Engine Peltier Thermal Cycler' (BioRad). 

Other PCR conducted in this study followed similar protocol described above, with 

specific primers to amplify target regions. PCR cycles used are referenced in relevant 

chapters. 

 

2.5. Gel electrophoresis 

Following PCR amplification, the amplicons were visualised via gel electrophoresis. 

Agarose gel was prepared using 1.8g of agarose powder per 100ml of 1 x TBE buffer in 

a bottle. The solution was heated in a microwave until the powder dissolved. 1µl of gel 

red was added per 10ml agarose solution. The gel was left to cool before pouring gently 

into the plexiglass gel cast. Following gel electrophoresis at 70 volts for approximately 1 

hour, the gel was placed in a GenSys unit to read off the bands. The PCR was said to be 

successful if bands of predicted size were visible on the gel (Figure 2.5). 
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Figure 2.5: Species identification of culture samples on agarose gel (1.8%). L= 100bp DNA weight marker, 
lanes 2,3, 10-12, 15 = An. coluzzii; N= No template control; lanes 5-7, 16-19 = An. gambiae s.s.; G= positive 
control for An. gambiae s.s.; C= positive control for An. coluzzii. 
 

2.6. Real-time polymerase chain reaction (qPCR) 

Monitoring DNA amplification in real time through the tracking of fluorescence 

(quantitative PCR), is a substantial improvement on the utilization of PCR. It allows for 

the measurement of fluorescence after each PCR cycle, the magnitude of the fluorescent 

signal mirror the momentary amount of DNA amplicons in the sample at a definite time 

(Kralik & Ricchi, 2017; Kubista et al., 2006). The number of DNA ideally doubles after 

each PCR cycle resulting in 100% efficiency (Johnson et al., 2013; Kralik & Ricchi, 

2017). At the initial cycles in a qPCR reaction, fluorescence is too low to be detected 

from the background, but as fluorescence intensity increases above detectable levels, it 

reaches a point where it corresponds to the number of template DNA molecules in the 

sample (Kubista et al., 2006). This point is called the quantification cycle (Cq) and its 

value allows for the determination of the absolute quantity of target DNA in a given 

sample in relation to a standard calibration curve derived from serially diluted samples 

of known concentration or copy numbers. Ideally, an amplification reaction should 

follow this equation:	𝑁% = 𝑁' × (1 + 𝐸)%, where Nn is the number of PCR amplicons 

after n cycles, N0 is the initial number of template copies in the sample, E is the PCR 

efficiency that can assume values from 0-1 (0-100%) and n is the number of cycles 
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(Kralik & Ricchi, 2017). The equation can be further simplified to 𝑁% = 2% where one 

copy of the template is used in the reaction. The value of n is then 3.322 where PCR 

efficiency is 100%. In practice though, amplification efficiency varies between 90 and 

100%.  

 

 

Figure 2.6: Model calibration curve with regression equation (characterised by the slope and intercept) and 
regression coefficient. (Kralik & Ricchi, 2017) 
 

The 𝐿𝑜𝑔1' of the concentration or copy number of each standard is then plotted against 

its Cq value to derive this correlation equation: 𝑦 = 𝑘𝑥 + 𝐶 (where x is the 

concentration/amount of target, y is the Cq value of the target, K is the regression 

coefficient or slope and C is the intercept; which is subsequently used to quantify 

unknown samples (Figure 2.6) (Johnson et al., 2013; Kralik & Ricchi, 2017).  

 Two main methods for the visualisation of amplified DNA fragments in real-time 

PCR include, non-specific fluorescent DNA dyes and fluorescently labelled DNA probes 

(Kralik & Ricchi, 2017). The fluorescence dye used in this study is SYBR Green dye 

(KAPA biosystems, Massachusetts, United States), both for library quantification of 

bacteria 16S gene for sequencing and quantification of candidate bacteria species in 
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subsequent chapters. The KAPA SYBR FAST qPCR Master Mix (2´) kit contains a 

novel DNA polymerase which is an engineered version of Taq DNA polymerase 

designed specifically for real-time PCR using SYBR Green I chemistry. This DNA 

polymerase is not active at room temperature, preventing the formation of mis-primed 

products and primer-dimers during preparation stages before the first denaturation step, 

resulting in accurate quantification and high DNA specificity (KAPA BIOSYSTEMS, 

2016). SYBR Green I bind all double-stranded DNA molecules , emitting a fluorescence 

signal on binding. The kit also uses a reference dye (ROX) to provide a stable baseline 

against which PCR-related fluorescent signals are normalized, thus, compensating for 

non-PCR related variations in fluorescence detection, such as slight variations in volumes 

and well position. It does not interfere with the reaction and has an emission spectrum 

different from that of SYBR Green I. (Appendix J) 

 

 

Figure 2.7: SYBR Green I qPCR process (modified from KAPA BIOSYSTEMS, 2016) 

 

qPCR provides the following advantages for use in microbial quantification. Following 

the geometric rise in the availability of sequencing data, it is possible to design specific 

primers for almost every microorganism of interest. qPCR provides fast and high-



 56 

throughput detection and quantification of target DNA sequences in different samples 

(Klein, 2002; Kralik & Ricchi, 2017). The simultaneous amplification and visualisation 

of newly formed amplicons offered by qPCR lowers the time spent in the laboratory 

(Kubista et al., 2006). In terms of preventing cross-contamination, qPCR offers a safer 

option as no further manipulations of samples are required after amplification. Finally, 

qPCR has a wide range from quantification (7-8 Log10) and also allows for multiplexing, 

for the amplification of several targets into a single reaction (Yang & Rothman, 2004). 

The downside of the use of qPCR for microbial quantification is that the method cannot 

distinguish among viable and dead cells when DNA is used as the template, but the use 

of RNA can mitigate this shortfall if the need arises (Kralik & Ricchi, 2017). 

 

2.7. 16S ribosomal RNA gene sequencing for bacteria community analysis 

The traditional methods for microbial identification are arduous and time-consuming, 

requiring the recognition of differences in morphology, growth, enzymatic activity and 

metabolism (Petti, et al., 2005). Further, these phenotypic profiles generated are 

compared against algorithms and databases based on characteristics observed in known 

and reference strains with predictable biochemical and physical properties under optimal 

growth conditions. These characteristics however in sampled bacteria species are not 

static and can change with stress and evolution (Ochman, et al., 2005). Human bias, 

inexperience handlers, outdated databases and the presence of uncommon phenotypes in 

common microorganisms, can result in misidentification of bacteria species (Edgar, 

2018; Petti et al., 2005). In this thesis, where we investigated environmental samples from 

Anopheles larval trays, the traditional method will have proven to be herculean and 

ineffective as the list of possible species to be cultured would have been endless.  
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Next-generation sequencing of the prokaryotic 16S ribosomal RNA (rRNA) gene is the 

current gold standard for the study of microbial communities in environmental samples 

(Cho & Blaser, 2012; Hartmann et al., 2014; Moran, 2015; Pflughoeft & Versalovic, 

2012). Although not perfect, the emergence of genotypic identification of microbial 

communities by 16S rRNA gene sequencing has revolutionised the study of 

microorganisms in environmental samples (Bosshard, et al., 2004; Edgar, 2018). It is a 

more objective, accurate and reliable method for bacterial identification with the added 

advantage of defining taxonomical relationships among bacteria (Petti, et al., 2005). 16S 

rRNA gene sequencing allows for the exploration of unculturable biodiversity and 

ecological characteristics of whole microbial communities and individual microbial taxa 

(Caporaso et al., 2011; Klindworth et al., 2013). These 16S rRNA studies are able to 

reveal which microbial taxa are present in a sample because the 16S rRNA is an excellent 

phylogenetic marker (Winand et al., 2020). The 16S rRNA gene is present in all bacteria, 

it is approximately 1500bp long, containing nine variable regions that are interspersed 

between conserved regions (Hermans, et al., 2017; Kirchman, et al., 2010). The Illumina 

sequencing platform is the preferred sequencing technique employed for microbial 

characterisation compared to the earlier Sanger and 454 sequencing methods (Caporaso 

et al., 2011; Klindworth et al., 2013). It is a high-throughput sequencing technology with 

advanced computational tools that can exploit metadata (sample description) to relate 

hundreds of samples to one another in a way that reveal clear biological patterns 

(Caporaso et al., 2011). It provides a cost effective alternative for the identification of 

microbial phylotypes present in environmental samples without the need for laborious 

cultures (Caporaso et al., 2011). Standard protocols for illumina MiSeq sequencing of the 

16S rRNA gene include, amplicon primer design, library preparation, sequencing on 

MiSeq and secondary data analysis on BaseSpace or CLC genomics workbench (Full 
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methodology are described in Chapter 7 and protocol links are available in Appendices 

K, L, M, N, and O). 

 

2.8. Mosquito wing measurement 

One wing of all emerged adults was measured from the distal end of the allula to the 

apical margin (radius veins), excluding the fringe scale using a binocular microscope A 

stage micrometer of 1mm ruler length (Graticules Ltd, Kent, UK) was used for calibration 

on 2.5 magnification on a scale of 1 microscope unit = 0.04 mm). (Araújo & Gil, 2012). 

 

2.9. Statistical analysis 

All data collected were analysed using the software JMP 14 (SAS Institute, Inc., Cary, 

North Carolina, USA). All data were checked for deviations from normality and 

heterogeneity, and analyses were conducted using parametric and non-parametric 

methods as appropriate. Data from all replicates were used for analysis, replicate effects 

were tested but are only reported when significant. Interactions between independent 

variables were tested using step-wise models and only those significant were retained in 

the final models. 
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Chapter 3 

Effect of water source and feed regimes on development and phenotypic quality in 

Anopheles gambiae (s.l). 

3.1. Introduction 

Despite the steady inflow in malaria funding, this persistent, multifaceted disease was 

still responsible for 405,000 deaths in 2018, with 93% of these cases occurring in the 

African region (WHO, 2019). Since 2016, there has been a stall in progress towards 

reduction in malaria morbidity, incidence and mortality rates, and in some cases, a 

standstill. More worrisome is the rise in malaria cases across some high-burden countries 

in Africa (WHO, 2019). This illustrates how fragile are the gains made in our quest to 

control, and ultimately eradicate the disease. In the absence of effective vaccines and the 

evolution of resistance to available drugs by Plasmodium malaria parasites, vector control 

continues to be the most cost-effective line of defence as it interrupts the disease cycle 

by preventing the transfer of malaria-causing parasites to humans (Lees, et al., 2015). 

 

 

Figure 3.1: Global malaria deaths by world region. 
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In sub-Saharan Africa, malaria is primarily transmitted by mosquitoes of the Anopheles 

gambiae complex with Anopheles gambiae s.s. and Anopheles coluzzii being the most 

abundant and widespread (della Torre et al., 2002). These morphologically 

indistinguishable sibling species co-occur over large areas of sub-Saharan Africa and do 

not exhibit intrinsic post-mating barriers to reproduction (Aboagye-Antwi et al., 2015). 

Anopheles gambiae s.s. is widespread throughout the region, extending across the 

continent all the way from West Africa, through Central and East Africa and into 

Madagascar. Anopheles coluzzii has a westerly distribution which spans from Northern 

Senegal, West-central Africa and Angola (della Torre et al., 2005). In many of these 

regions, the two species are found in sympatry and are separated genetically by strong 

assortative mating, hence low hybridization rates (Diabaté et al., 2006; Tripet et al., 

2001). The first exception to this rule is some sympatric populations from far-West of 

Africa in Guinea-Bissau and The Gambia where hybrid frequencies as high as 22.9% 

have been recorded (Caputo et al., 2011). The second exception is populations in which 

the kdr-resistance allele of An. gambiae recently selectively introgressed into An. coluzzii 

which resulted in a temporary increase in hybrid-like genotypes (Lee et al., 2013; Norris 

et al., 2015) 

 The current toolbox for controlling these prevalent vectors includes the use of 

insecticide-treated nets (ITN), indoor residual spraying (IRS) and integrated vector 

management (IVM) (WHO, 2017). Although these methods have been very effective in 

the reduction of mortality and morbidity over the past decade, 50% of the countries with 

ongoing malaria transmission which were on track towards critical targets for reduction 

in mortality and morbidity, have recorded a stall in progress (WHO, 2017). Insecticide 

resistance amongst other factors stands out as a major driver for this change in trajectory. 

This current trend brings to the forefront the research for new vector control methods to 
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complement the existing IVM techniques. The release of sterile or genetically-modified 

mosquitoes for the replacement suppression of mosquito populations is one such 

promising tool (Burt, 2014; Diabate & Tripet, 2015; Klassen, 2009). These approaches 

bear similarities with 1950s and 1960s sterile male releases, in that they involve the 

production of large number of males which by mating with wild females will cause either 

the decline in the target population over a short period (Lees, et al., 2015), or its 

replacement with a population refractory to the malaria parasite (Burt, 2014). Successful 

implementation of these techniques is based amongst other factors, on rearing protocols 

designed specifically for An. gambiae (s.l.), a species for which no large-scale release 

programme has ever been conducted. Since the species in this complex are particularly 

demanding in terms of water cleanness compared to culicid species (Subra, 1981; Tene 

Fossog et al., 2013), the need for efficient water management whilst providing enough 

larval food for production is crucial. Equally important is the need for the resulting sterile 

or genetically-modified male mosquitoes to be of sufficient phenotypic quality to ensure 

optimal survival and mating competitiveness after releases (Lees, et al., 2015). 

 In nature, the sibling species, An. gambiae and An. coluzzii differ in their preferred 

larval breeding sites (Kamdem et al., 2012). Although larvae of both species can be found 

in the same habitat, An. coluzzii prefers more permanent breeding sites resulting from 

human activities such as irrigated rice fields, reservoirs, abandoned mines and quarries, 

deforestation, and drainage ditches (Diabaté et al., 2009). In contrast, An. gambiae s.s, 

whose populations usually peak during the rainy season, thrives in habitats that are more 

ephemeral and rain-dependent ( della Torre et al., 2005; Edillo et al., 2006; Kamdem et 

al., 2012; Lehmann & Diabate, 2008). Larval habitat divergence has repeatedly been cited 

as a possible driver of ecological speciation between these species and larval transplant 

experiments have shown that An. coluzzii avoids the aquatic predators associated with 
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more permanent habitats more effectively (Coetzee et al., 2013; Gimonneau et al., 2010). 

Whether An. gambiae s.s. develops better in the water with low mineral content such as 

rain filled pools is currently unknown. However, there is some evidence that An. coluzzii 

may tolerate water with a higher mineral content at least in some areas of Africa (Mattah 

et al., 2017) 

 There is a dearth of information on the effect of water source (in relation to 

mineral content or hardness) on the development and phenotypic quality of An. gambiae 

(s.l.) in the laboratory. Deionised water is commonly used in mosquito rearing in the 

laboratory regardless of strain. Although, it has been demonstrated that different feed 

regimes affect mosquito phenotypic quality and development time (Faeza, et al., 2012; 

Yahouédo et al., 2017), these studies focused on the effect of feed in isolation and not in 

relation to different water sources. Some of these studies have linked food quality to 

development of larger mosquitoes which have higher fecundity and longevity especially 

in females (Faeza et al., 2012; Takken et al., 1998) 

 In this study, we investigated the impact of different water sources (in relation to 

hardness and minerals) and feed regimes on the development and phenotypic quality of 

two well-established strains and one recently colonized strain of An. gambiae s.l. in the 

laboratory. First-instar larvae were reared in three water types with different levels of 

hardness and data were collected on larval survival, pupal survival and mortality, adult 

emergence, development time, wing-length and sex. Larvae were fed with food delivered 

as floating flakes, referred to as ‛powder feedʼ, or as liquid solution or ‛solution feedʼ. 

The results obtained show an improvement in mosquito phenotypic quality when mineral 

water is used, and this could be beneficial for mosquito rearing programmes small or 

large. These findings should lead to better protocols for mass-rearing of sterile or 

genetically-modified male anopheline mosquitoes towards releases for vector control. 



 63 

3.2. Materials and methods 

3.2.1. Mosquito maintenance 

All experiments were conducted in dedicated insectaries of the CAEP, Keele University, 

UK. The Kisumu strain of An. gambiae, colonized over 40 years ago, from the area of 

Kisumu, Kenya, East Africa; 17-year-old Mopti strain of An. coluzzii, colonized in 2003 

by the Lanzaro Laboratory (UC Davis) from the village of NʼGabacoro droit near 

Bamako, Mali, West Africa, and a recently-colonised 2-year-old VK3 An. coluzzii strain 

from Vallee du Khou in Burkina Faso, West Africa (supplied by IRSS, Bobo Dioulasso), 

were used for the experiments 

 

3.2.2. Experimental design 

Ten first-instar larvae were placed in styrofoam cups containing 150 ml of water at 5 cm 

depth. Mosquitoes were reared in three water types with different levels of hardness: 

deionised water, mineral water, and a 50:50 mix of both water types: (i) deionised water 

which was sourced from a reverse osmosis unit (PURELAB Prima, Wycombe, United 

Kingdom) installed in the laboratory. The water quality specifications of treated 

deionised water were: Total organic carbon < 0.1ppm, bacteria < 5 CFU/ml, 98% 

rejection of inorganics, > 99% rejection of organics, > 99% rejection of particles. (ii) 

mineral water: bottled water containing minerals which are natural compounds formed 

through geological processes, sourced from a local shop with the following typical 

nutrient values/litre: calcium (11 mg), magnesium (3.5 mg), potassium (2.5 mg), sodium 

(10 mg), bicarbonate (25 mg), sulphate (11 mg), nitrate (15 mg), chloride (14 mg), dry 

residue at 180 °C (85 mg) and pH (6.2); and (iii) mix water: a 50:50 mix of deionised and 

mineral water. 
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Although water hardness is usually defined as the total concentration of calcium and 

magnesium in water in mg/l, it is caused by a variety of dissolved polyvalent metallic 

ions, mainly calcium and magnesium and other ions such as aluminium, barium, iron, 

manganese, strontium and zinc (Rubenowitz-Lundin & Hiscock, 2013). To determine the 

water hardness/nutrient content of the water treatments used, 42 readings of conductivity 

(µS), total dissolved solids (mg/l), and salinity (ppm) per treatment were taken at 3 points 

during the experiment, using an EXTECH conductivity/TDS/salinity/Temperature hand-

held meter (FLIR Commercial Systems, Inc., Nashua, USA). Mean values for TDS (Total 

Dissolved Solids), salinity and conductivity of the three water types at 3 points during 

the study are shown in Table 3.1. Larvae were fed with two standardised feeding regimes 

(solution and powder feed). Powder feeding regime consist of daily rations of ground fish 

food, using a spatula to spread on the water surface: 0.1µl of Liquifry liquid fish food 

(Interpret Ltd, Surrey, UK) on day 1, 2mg on days 2–3, 4mg on day 4, and 10mg on day 

5 until pupation. 

 
Table 3.1 Mean (95% CI) of total dissolved solids, salinity and conductivity: measure of water 

hardness 

Water type TDS (mg/l) Salinity (ppm) Conductivity (µS) 

Deionized 27.55 (25.93 – 29.18) 18.48 (17.38 –19.58) 39.54 (37.24 – 41.84) 
Mix 70.54 (68.97–72.12) 47.47 (46.38 – 48.55) 100.85 (98.58 –103.12) 
Mineral 112.21 (110.53 – 113.89) 75.78 (74.65 – 76.91) 160.4 (157.99 – 162.80)  

Notes: Ninety-five percent confidence intervals are in parentheses. Sample size is 42 
 

Solution feeding regime consist of the same food quantity dissolved in deionized 

water (0.1µl of Liquifry on day 1, 0.1ml of 1g/50ml of TetraMin Baby on days 2–3, 0.2ml 

of 1g/50ml of TetraMin Baby on day 4, and 0.5ml of 1g/50ml of TetraMin Baby on day 

5 until pupation ) and injected into the larval tray using a pipette. The resulting balanced 

experimental design consisted of 3 strains × 3 water types × 2 feeding patterns × 10 
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replicates × 10 larvae per pot, for a total sample size of 1800 larvae (Figure 3.2). Larvae 

from each experimental group were transferred to fresh water (same water source as the 

original set-up) containers daily. 

 

 

Figure 3.2. Experimental design showing experimental factors in one replicate. 
 

3.2.3. Collection of data at life-cycle stages 

Depending on the life-cycle stage of the mosquitoes the following data were observed 

and recorded: (i) larval survival: determined as the percentage of larvae that developed 

into pupae from the total number of larvae for each treatment; (ii) pupal survival: 

determined as the percentage of mosquitoes that emerged as adults from those that 

pupated in each treatment; (iii) pupal mortality: determined as the percentage of 

mosquitoes that died at the pupal stage from the total number of mosquitoes per 

treatment; (iv) adult emergence: determined as the percentage of mosquitoes that 

emerged as adults from the total number of larvae in each treatment; (v) development 

time: determined as the number of days from placement of first instar larvae in treatment 

cups until adult emergence; and (vi) wing-length: following emergence, adult mosquitoes 

were sexed and stored in 75% ethanol and wing-length was subsequently measured as 

described in Chapter 2. 
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3.2.4. Statistical analysis 

All data collected were analysed using the software JMP 14 (SAS Institute, Inc., Cary, 

North Carolina, USA). All data were checked for deviations from normality and 

heterogeneity, and analyses were conducted using parametric and non-parametric 

methods as appropriate. Data from all replicates were used for analysis, replicate effects 

were tested but were only reported when significant. Interactions between independent 

variables were tested using step-wise models and only those significant were retained in 

the final models. For analyses of proportion of larvae, pupae and adults, likelihood odds 

ratios were used for post-hoc pairwise group comparisons following logistic regressions. 

Body size was analysed through general linear models followed by Tukeyʼs HSD post-

hoc pairwise comparisons. Finally, developmental times (day of emergence) were 

analysed by Cox Proportional-Hazard models with likelihood odds ratios for post-hoc 

pairwise comparisons. 
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3.3. Results 

3.3.1. Effect of water types and feed regimes on larval survival 

Across all experiments An. gambiae (Kisumu) larvae survived significantly (93%) better 

than An. coluzzii (Mopti: 82%; VK3: 77%) (Table 3.3, 3.4, Figure 3.3). A full logistic 

regression model showed that water source had a small but significant positive effect on 

larval survival across all strains (P = 0.0405) but that its impact differed between strains 

(P =0.0117) (Tables 3.2). The same analyses performed within strains showed that water 

source significantly impacted larval survival for Kisumu and VK3 strains but not Mopti 

(Figure 3.3,Table 3.5). Post-hoc pairwise comparisons (Odds-ratio tests) revealed that 

mineral water significantly improved larval survival compared to deionised water (P = 

0.0186), other water type comparisons were non-significant (Table 3.4).  

 

  
Figure 3.3: Effect of water source on larval survival. The percentage larval survival in deionised (light grey), 
mixed (dark grey) and mineral (blue) is shown across three strains of mosquitoes (Mopti, Kisumu, VK3). 
Whiskers represent 95% confidence intervals. Within strains, bar plots sharing a letter are not significantly 
different, those with different letters are significantly different. 
 

Within the Kisumu strain there was 98% larval survival in mineral water 

compared to 93% for both mix and deionised water. VK3 strain conversely had the 

highest larval survival in mix water (83%) followed by deionised water (76%) with 
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mineral water having the lowest larval survival of 72% (Figure 3.3). Although overall 

feed type was not significant for larval survival, there was a significant interaction 

between feed and strain (Table 3.2). For Kisumu strain, solution feed type resulted in 

significantly higher larval survival (Table 3.5).  

 

Table 3.2: Logistic regressions of the overall effect of water types and feed regime on development  

Parameter Source df Likelihood ratio P-value 

Larval survival Strain 2 86.74 <0.0001*** 
Water type 2 6.41 0.0405* 
Feed 1 1.88 0.1708ns 
Feed*Strain 2 7.32 0.0258* 
Water type*Strain 4 12.92 0.0117* 

Pupal mortality Strain 2 23.09 <0.0001*** 
Water type 2 0.02 0.9898ns 
Feed 1 1.22 0.2690ns 
Feed*Strain 2 5.62 0.0601 ns 

Adult emergence Strain 2 25.61 <0.0001*** 
Water type 2 4.11 0.1283ns 
Feed 1 2.51 0.1129ns 
Feed*Strain 2 13.36 0.0013* 
Water type*Strain 2 9.75 0.0448* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom  

 

3.3.2. Pupal mortality in relation to water types and feed regimes 

Pupal mortality was significantly different between strains (P < 0.0001), with 10% 

mortality in Kisumu strain, 4% and 3% in Mopti and VK3 respectively (Tables 3.2, 3.3). 

Post-hoc comparisons revealed significant difference in pupal mortality between An. 

gambiae and both strains of An. coluzzii (Odds ratio tests: P < 0.0014 in both cases) 

(Table 3.4). There were no significant effects of water source or feed regimes on pupal 

mortality (Table 3.2). 
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Table 3.3: Effect of water types and feed regimes on life history stages 
Strain Water type Feed 

regime 
% Larval 
survival 

% Pupal 
survival 

% Pupal 
mortality 

% Adult 
emergence 

Mopti 
(An. coluzzii) 

Total Total 82 (79–85) 
600 

 4(3–7) 
600 

78 (74–81) 
600 

Deionized Solution 77 (68–84) 
100 

96 (89–99) 
77 

3 (1–8) 
100 

74 (65–82) 
100 

Powder 79 (70–86) 
100 

97 (91–99) 
79 

2 (1–7) 
100 

77 (68–84) 
100 

Mixed Solution 82 (73–88) 
100 

93 (85–97) 
82 

6 (3–12) 
100 

76 (67–83) 
100 

Powder 85 (77–91) 
100 

94 (87–97) 
85 

5 (2–11) 
100 

80 (71–87) 
100 

Mineral Solution 84 (76–90) 
100 

90 (82–95) 
84 

8 (4–15) 
100 

76 (67–83) 
100 

Powder 87 (79–92) 
100 

95 (89–98) 
87 

4 (2–10) 
100 

83 (74–89) 
100 

 Total Total 94 (92–96) 
600 

 10 (8–12) 
600 

84 (81–87) 
600 

Kisumu 
(An. gambiae) 

Deionized Solution 96 (90–98) 
100 

89 (81–93) 
96 

11 (6–19) 
100 

85 (77–91) 
100 

Powder 89 (81–94) 
100 

85 (77–91) 
89 

13 (8–21) 
100 

76 (67–83) 
100 

Mixed Solution 96 (90–98) 
100 

97 (91–99) 
96 

3 (1–8) 
100 

93 (86–97) 
100 

Powder 90 (83–94) 
100 

83 (74–90) 
90 

15 (9–23) 
100 

75 (66–82) 
100 

Mineral Solution 98 (93–99) 
100 

93 (86–96) 
98 

7 (3–14) 
100 

91 (84–95) 
100 

Powder 97 (92–99) 
100 

90 (82–94) 
97 

10 (6–17) 
100 

87 (79–92) 
100 

 Total Total 77 (73–80) 
600 

 3 (2–5) 
600 

74 (70–77) 
600 

VK3 
(An. coluzzii) 

Deionized Solution 69 (59–77) 
100 

97 (90–99) 
69 

2 (1–7) 
100 

67 (57–75) 
100 

Powder 82 (73–88) 
100 

95 (88– 98) 
82 

4 (2–10) 
100 

78 (69–85) 
100 

Mixed Solution 87 (79–92) 
100 

98 (92–99) 
87 

2 (1–7) 
100 

85 (77–91) 
100 

Powder 79 (70–86) 
100 

95 (88–98) 
79 

4 (2–10) 
100 

74 (64–82) 
100 

Mineral Solution 72 (63–80) 
100 

96 (88–99) 
72 

3 (1–8) 
100 

69 (59–77) 
100 

Powder 72 (63–80) 
100 

94 (87–98) 
72 

4 (2–10) 
100 

68 (58–76) 
100 

Notes: Ninety-five percent confidence intervals are in parentheses and sample sizes are italicized. Larval 
survival, pupal mortality and emergence rates are calculated out of an initial number of 100 larvae (per 
treatment) and 600 larvae in total, and pupal survival is calculated out of a variable number of surviving 
larvae at pupation. 
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Table 3.4: Odds ratios for pairwise group comparisons of the effect of water types and feed on life 

cycle stages 

Parameter Source Level Odds ratio P-value 

Larval survival Strain Kisumu vs Mopti 0.23 <0.0001*** 
VK3 vs Mopti 1.40 0.0214* 
VK3 vs Kisumu 6.03 <0.0001*** 

Water type Mix vs Deionized 0.74 0.0912ns 
Mineral vs Deionized 0.61 0.0186* 
Mineral vs Mix 0.82 0.3572 ns 

Feed Powder vs Solution 1.24 0.1768 ns 
Pupal mortality Strain Kisumu vs Mopti 0.46 0.0014* 

VK3 vs Mopti 1.52 0.1829 ns 
VK3 vs Kisumu 2.69 <0.0001*** 

Water type Mix vs Deionized 1.00 1.0000 ns 
Mineral vs Deionized 0.97 0.9016 ns 
Mineral vs Mix 0.97 0.9016 ns 

Feed Powder vs Solution 0.77 0.2708 ns 
Adult emergence Strain Kisumu vs Mopti 1.69 0.0008** 

VK3 vs Mopti 0.80 0.1058 ns 
VK3 vs Kisumu 0.47 <0.0001*** 

Water type Mix vs Deionized 1.29 0.0707 ns 
Mineral vs Deionized 1.27 0.0971 ns 
Mineral vs Mix 0.98 0.9153 ns 

Feed Powder vs Solution 0.83 0.1141 ns 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  

 

3.3.3. Effect of water types and feed regimes on adult emergence 

Overall, adult emergence significantly differed among strains (P < 0.0001) and was also 

affected by the interaction of strain with feed type and water type (P < 0.05 in both cases) 

(Table 3.2). Post-hoc analysis showed that the Kisumu strain of An. gambiae had 

significantly higher adult emergence (84%) than Mopti (78%) and VK3 (74%) (Tables 

3.3, 3.5, Figures 3.3, 3.4). 
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Table 3.5: Logistic regressions of the effect of water types and feed regime on life stages within 
strains  

Parameter Strain Source DF Likelihood ratio P-value 

Larval survival Mopti Water type 2 4.08 0.1300ns 
Feed 1 0.74 0.3900 ns 

Kisumu Water type 2 6.52 0.0384* 
Feed 1 6.34 0.0118* 

VK3 Water type 2 7.61 0.0222* 
Feed 1 0.05 0.8159 ns 
Feed*Water type 2 6.66 0.0358* 

Adult emergence Mopti Water type 2 0.94 0.6248 ns 
Feed 1 1.89 0.1693 ns 

Kisumu Water type 2 5.83 0.0543 ns 
Feed 1 12.55 0.0004** 

VK3 Water type 2 7.04 0.0296* 
Feed 1 0.10 0.7560 ns 
Feed*Water type 2 6.81 0.0331* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

Within strains, water type significantly impacted adult emergence in the VK3 strain with 

mineral water having the lowest emergence (69%), followed by deionised water (73%), 

and mix (80%) (Table 3.2;Figure 3.4,) but there were no effects on Mopti and Kisumu 

(Table 3.5). In Kisumu, solution feed yielded 10% (P < 0.001) more adults compared to 

powder feed (Table 3.3,3.5 Figure 3.5). 
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Figure 3.4: Effect of water source on adult emergence. The percentage adult emergence across three water 
types, deionised (light grey), mixed (dark grey) and mineral (blue) for mosquito strains, Mopti, Kisumu and VK3). 
Whiskers represent 95% confidence intervals. Within strains, bar plots sharing a letter are not significantly 
different, those with different letters are significantly different. 
 

  
 
Figure 3.5: Effect of feed regimes on adult emergence. The percentage adult emergence for solution (light 
grey), and powder (dark grey) feed regimes across three mosquito strains (Mopti, Kisumu and VK3). 
Whiskers represent 95% confidence intervals. Within strains, bar plots sharing a letter are not significantly 
different, those with different letters are significantly different. 
 

3.3.4. Wing length of emerged adults in relation to water types and feed regimes 

Water source and feed regime significantly (P < 0.0001) impacted wing length of both 

sexes of adult mosquitoes of all strains. There were significant interactions between feed 

by strain and sex by water type (Tables 3.6; 3.8). Generally, females had longer wing-
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length than males. However, females from deionised water were significantly (P < 

0.0001) smaller than those from mineral and mix water (Table 3.6). Similarly, males from 

deionised water had significantly shorter wing length compared to those from mineral 

water (Table 3.6). Post-hoc pairwise comparisons (Tukeyʼs tests) revealed mineral water 

yielded the largest adults, followed by mix, with deionised water producing the smallest 

mosquitoes (Table 3.7, Figure 3.6).  

 

Table 3.6: General linear model of the effect of water types and feed regime on wing length 

Parameter Source df F-ratio P-value 

Wing length Strain 2 60.08 <0.0001*** 
Water type 2 26.07 <0.0001*** 
Feed 1 7.17 0.0075* 

Sex 1 146.50 <0.0001*** 
Feed * Strain 2 8.60 0.0002** 
Sex * Water type 2 4.23 0.0147* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

 
  
Figure 3.6: Effect of water source on wing-length. The mean wing-length for deionized (light grey), mixed 
(dark grey) and mineral water (blue) types for Mopti, Kisumu and VK3. Whiskers represent 95% confidence 
intervals. Within strains, bar plots sharing a letter are not significantly different, those with different letters 
are significantly different. 
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Adults that emerged from powder feed were significantly larger than those from solution 

feed (Figure 3.7, Table 5). Amongst strains, VK3 adults were significantly (P < 0.0001) 

the largest, then Kisumu, lastly Mopti (Figure 3.7, Table 3.7). Powder feed impacted 

positively on adult size for VK3 and Kisumu strain but was not significant for Mopti 

(Figure 3.7, Table 3.7). 

 

Table 3.7: Post-hoc following general linear model ,Turkey’s pairwise differences on wing length 

Source Level t-ratio P-value 

Strain Mopti vs Kisumu  -6.66 <0.0001*** 
Mopti vs VK3  -10.88 <0.0001*** 
Kisumu vs VK3 -4.51 <0.0001*** 

Water type Deionized vs Mix -6.44 <0.0001*** 
Deionized vs Mineral -6.41 <0.0001*** 
Mix vs Mineral -0.36 0.9294ns 

Sex * Water type Female-Deionized vs Female-Mix -6.21 <0.0001*** 
 Female-Deionized vs Female-Mineral -5.72 <0.0001*** 
 Male-Deionized vs Male-Mineral -3.32 0.0117* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  

 

 
Figure 3.7: Effect of feed regimes on wing-length. The mean wing-length for solution (light grey), and powder 
feed (dark grey) across three mosquito strains, Mopti, Kisumu and VK3. Whiskers represent 95% 
confidence intervals. Within strains, bar plots sharing a letter are not significantly different, those with 
different letters are significantly different. 
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3.3.5. Developmental time in different water types and feed regimes 

Overall, the duration of development from first instar larvae to adults was significantly 

impacted for all strains by water source (Cox Proportional Hazard: P < 0.0001) (Tables 

3.8; 3.9). Mosquito development was significantly longer in deionised water compared 

to mix and mineral water (P < 0.05) (Table 3.10, Figure 3.8). Developmental time was 

not significantly different between mix and mineral water (Table 3.10, Figure 3.8). 

Across all water types, development time was significantly (P < 0.0001) longer in 

Kisumu strain compared to Mopti and VK3 (Table 3.9, Figure 3.8). Feed regime did not 

significantly impact development time (Figure 3.9). 

 

 
Figure 3.8: Effect of water source on developmental time. The mean developmental time for deionized (red), 
mixed (green) and mineral (blue) water types is shown for three mosquito strains, Mopti, Kisumu and VK3. 
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Table 3.8: Effect of water types and feed on mosquito body size (wing length) and day of 
emergence 

Strain Water type Feed regime Mean wing length 
(mm) 

Days till emergence 

Mopti 
(An. coluzzii) 

Deionized Solution 3.13 (3.08–3.17) 
74 

9.70 (9.54–9.87) 
74 

Powder 3.07 (3.03–3.11) 
77 

9.91 (9.70–10.11) 
77 

Mixed Solution 3.19 (3.14–3.25) 
76 

9.72 (9.54–9.90) 
76 

Powder 3.13 (3.09–3.18) 
80 

9.68 (9.49–9.86) 
80 

Mineral Solution 3.16 (3.11–3.22) 
76 

9.50 (9.32–9.68) 
76 

Powder 3.17 (3.13–3.21) 
83 

9.48 (9.34–9.63) 
83 

Kisumu 
(An. gambiae) 

Deionized Solution 3.13 (3.08–3.17) 
85 

10.52 (10.39–10.65) 
85 

Powder 3.18 (3.14–3.23) 
76 

10.45 (10.29–10.60) 
76 

Mixed Solution 3.23 (3.19–3.28) 
93 

10.26 (10.13–10.38) 
93 

Powder 3.26 (3.21–3.29) 
75 

10.01 (9.90–10.12) 
75 

Mineral Solution 3.24 (3.18–3.27) 
91 

10.32 (10.16–10.48) 
91 

Powder 3.28 (3.23–3.32) 
87 

9.92 (9.79 – 10.05) 
87 

VK3 
(An. coluzzii) 

Deionized Solution 3.21 (3.16–3.27) 
67 

9.60 (9.42– 9.78) 
67 

Powder 3.25 (3.21–3.28) 
78 

9.69 (9.52 – 9.87) 
78 

Mixed Solution 3.27 (3.23–3.31) 
85 

9.58 (9.44– 9.74) 
85 

Powder 3.34 (3.28–3.40) 
75 

9.40 (9.22– 9.58) 
75 

Mineral Solution 3.28 (3.23–3.32) 
69 

9.59 (9.41– 9.78) 
69 

Powder 3.35 (3.30–3.40) 
68 

9.22 (9.03– 9.41) 
68 

Notes: Ninety-five percent confidence intervals are in parentheses and the samples sizes, the number of 
surviving individuals out of an initial number of 100 larvae are italicized. 
 

 

 



 77 

Table 3.9: Cox Proportional-Hazard analyses on development time  
Parameter Source df Likelihood 

ratio 
P-value 

Day of emergence Strain 2 79.61 <0.0001*** 
Water type 2 15.26 0.0005** 
Feed 1 2.25 0.1337ns 

P- value: *** < 0.0001, ** < 0.001, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom. 
 

 
Figure 3.9: Effect of feed regimes on developmental time. The mean developmental time for solution (red) 
and powder (blue) feed is shown for Mopti, Kisumu and VK3. 
 

Table 3.10: Post-hoc analysis following proportional-hazards fit for development time 

Source Level Risk ratio P-value 

Strain Kisumu vs Mopti 0.65 <0.0001*** 
VK3 vs Mopti 1.13 0.0713* 
VK3 vs Kisumu 1.73 <0.0001*** 

Water type Mix vs Deionised 1.17 0.0196* 
Mineral vs Deionised 1.29 0.0001** 
Mineral vs Mix 1.11 0.1128 ns 

Feed Powder vs Solution 1.08 0.1337 ns 

 P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
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3.4. Discussion 

The results from this study show that mineral water and mixed water produced 

significantly larger mosquitoes compared to deionised water in the laboratory. This was 

true for all three strains, from the very old Kisumu strain to the recently-colonized VK3 

colony. In mosquitoes, environmental conditions at the larval stage determine the size of 

the imagos (Aboagye-Antwi & Tripet, 2010), and larger body size is usually synonymous 

with higher phenotypic quality (Kivuyo et al., 2014). In An. gambiae (s.l.), optimal larval 

nutrition has been linked to female body size, fecundity and increased vectorial capacity 

(Takken et al., 2013). In males, body size has been directly linked to successful mating 

and longevity in the wild and in the laboratory (Diabate & Tripet, 2015). Standardization 

of mosquito adult size and phenotypic quality during rearing is essential to ensure the 

reproducibility and efficiency of vector control programmes relying on mosquito releases 

(Valerio, et al., 2016). Therefore, the results of this study suggest that the use of mineral 

water in mosquito culture laboratories can play an important part in achieving adequate 

standards of mosquito phenotypic quality. This is relevant to small-scale rearing in 

mosquito insectaries and may prove crucial for mass rearing protocols for larger mosquito 

release control programmes.  

 Quality and delivery of larval diet has been shown to impact on mosquito size and 

development (Linenberg, et al., 2016). In this study, the powder diet resulted in improved 

mosquito size, hence phenotypic quality, in two of the three strains studied, the Kisumu 

and VK3 strains. No significant effect of larval diet in adult size was observed for the 

Mopti strain. Both the Mopti and VK3 strains are of the An. coluzzii sibling species which 

is thought to be more prone to bottom feeding to avoid predators (Gimonneau et al., 2010; 

Mattah et al., 2017). Therefore, the contrasted responses to liquid feed of these two strains 

remains to be explained. Kisumu strain is a strain of An. gambiae s.s., which is thought 
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to prefer surface filter feeding (Gimonneau et al., 2010). In addition, it is a far older strain 

which may have become better adapted to powder food because it is widely used in 

insectaries.  

 The duration of the developmental cycle is another important parameter for 

mosquito rearing that is dependent on an optimal combination of feed quantity and 

quality, water type and ambient conditions (Araújo & Gil, 2012). An ideal culture 

timeline should be the shortest possible time required to produce good sized, long-lasting 

and viable mosquitoes that are able to compete with those in the wild (Araújo & Gil, 

2012). Mineral water led to faster development, longer wing length, therefore, it stands 

out as the best option for improved mosquito culture. Deionised water on the other hand, 

had the longest developmental time and resulted in smaller mosquitoes. Small size 

females have been reported to have higher mortality especially after a blood feed or do 

not produce viable eggs (Araújo & Gil, 2012; Tchigossou et al., 2018). 

 Although mineral water positively impacted larval survival for Kisumu strain and 

had no effect on the Mopti strain, it seemed to negatively impact larval survival in the 

newly colonised VK3 strain. This effect might be a due to the fact that this strain is not 

yet adapted to the confinement conditions in the insectary or other factors. Of more 

importance, wing-length and development time was positively impacted by mineral water 

even for VK3 strain. Mixed water and mineral water had similar impact on larval 

survival, adult emergence, wing length and development time despite the former having 

50% less mineral content. Given that mineral water represents a significant cost, using 

mixed water is a cost-effective and sustainable option for mosquito rearing, especially in 

areas of water scarcity and with limited financial resources. 

 Ad-hoc tests revealed strong differences between the three species in how they 

responded to water source and feed type. Overall, An. gambiae (Kisumu) larvae survived 
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significantly better than both An. coluzzii strains (Mopti and VK3). This higher larval 

survival of the An. gambiae Kisumu strain may be the result of 40 years of selection for 

insectary rearing compared to the Mopti strain of intermediate age and the young VK3 

strain. The contrasted age of insectary maintenance of the colonised strains, whilst 

relevant for understanding adaptations to the laboratory, limited our ability to distinguish 

species-specific differences such as hardness tolerance and generally prevented 

inferences with regards to processes that associated to larval ecological speciation 

between the sibling species (della Torre et al., 2005; Diabaté et al., 2009; Edillo et al., 

2006; Kamdem et al., 2012; Lehmann & Diabate, 2008; Mattah et al., 2017) 

 Based on the results of this study, the use of mineral or mixed water resulting in 

hardness (TDS 70.5–112.2 mg/l, salinity 47.5–75.8 ppm, conductivity 100.6–160.4 µS) 

is recommended for rearing An. coluzzii and An. gambiae s.s. to ensure optimal 

qualitative yield. Powder feed is also recommended. Although the cost of mineral water 

may be an economic challenge in some settings, the results obtained show that a mix of 

mineral and deionised water produces a similar result as mineral water. Further research 

is needed to investigate if these gains are directly linked to mosquito longevity and 

fecundity as well as male competitiveness. 
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Chapter 4  

Contrasted adaptive responses in Anopheles gambiae s.s. and Anopheles coluzzii  

4.1. Introduction 

The exploitation of a new environment by an organism can lead to a new set of 

environmental pressures that promote divergence of a novel sub-population and, 

eventually, sub-species from the ancestral species (Price, et al., 2003). Phenotypic 

variations shaped by genotype-by-environment (G×E) interactions which usually result 

in an improvement in growth, survival, or reproduction are collectively called phenotypic 

plasticity (Li, et al., 2018; Price et al., 2003). Plasticity could be adaptive; occurring when 

individuals showing a plastic response have higher fitness than those who do not. 

Evolution of life-history traits and their plasticity determine the population dynamics of 

interacting species (Stearns, 1992). Phenotypic plasticity has two vital roles in evolution; 

first, it modifies the relationship among given phenotypic traits and their fitness and 

therefore changes the selection pressures on traits across environments. Secondly, by 

regulating the expression of genetic variation (single traits) and genetic covariation (pairs 

of traits), it changes the genetic response to selection across environments (Stearns, 

1992). 

 

Figure 4.1: (a) Reaction norms of the genotypes present run parallel to each other and there is no genotype 
× environment interactions. (b) Reaction norms with different slopes represent genotype × environment 
interactions. (modified from Stearns, 1992). 
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These two processes highlight the fact that ecological speciation is often driven via 

contrasted selection regime acting on phenotypically plastic traits. Understanding 

reaction norms of traits associated with ecological speciation is thus key to appreciating 

their process of divergence (Stearns, 1992). 

 Sub-Saharan Africa is malaria-endemic, with 93% worldwide incidence and 85% 

of malaria mortality occurring in this region in 2018 (WHO, 2019). Anopheles gambiae 

s.s and Anopheles coluzzii are the major and efficient vectors of malaria in this region 

because of their close association with human dwellings with larval habitats resulting 

from anthropogenic sources; as well as their endophilic and endophagic behaviour 

(Lehmann & Diabate, 2008). Both species are morphologically identical and share 

similar resources, they are however uniquely divergent, owing to strong assortative 

mating with occasional hybrids and resultant low levels of genetic introgression leading 

to speciation (Aboagye-Antwi et al., 2015; Niang et al., 2015; Reidenbach et al., 2012). 

Genome-wide comparisons have shown that they are genetically-differentiated only over 

3% of their genome; commonly known as ‘speciation islands’ (Santolamazza et al., 2015; 

White et al., 2010). In addition to assortative mating, larval ecological adaptations 

(drought resistance, larval predator tolerance, pollution tolerance, oviposition site 

preference, interspecific larval competition) have also been highlighted as drivers of eco-

speciation (ecological speciation) in these species. (Dao et al., 2014; Kamdem et al., 

2012; Roux, et al., 2013, 2014). The persistence of sympatric populations of An. coluzzii 

and An. gambiae s.s. occurring at the same time despite imperfect premating barriers 

suggests that other factors possibly ecological, contribute to their isolation (Roux et al., 

2014; Tene Fossog et al., 2015). 

 Prior to 2013, An. gambiae s.s and An. coluzzii were considered a single species 

having two molecular forms known as An. gambiae s.s -M and S molecular forms 



 83 

(Coetzee et al., 2013). This earlier classification into molecular forms was based on an 

effort to describe assortative mating populations of the former An. gambiae s.s 

populations which were distinguished by form-specific SNPs (single nucleotide 

polymorphism) in the rDNA intergenic spacer region (della Torre et al., 2001). The study 

highlighted the lack of association between their chromosomal constitution, suggesting 

ecotypic adaptation and speciation (della Torre et al., 2001). The M and S molecular 

forms displayed a significant lack of gene flow evidenced by the absence or rarity of 

hybrids and DNA genotypes, despite sharing similar chromosomal inversions and 

chromosome-2 karyotype (Fanello, et al., 2002; Favia et al., 2007; Tripet et al., 2001). 

Restricted gene flow between the molecular forms has been attributed to premating 

mechanisms of reproductive isolation, selection against hybrids and ecologically-driven 

divergent larval selection (Diabaté et al., 2009; Pennetier et al., 2010). Despite isolated 

cases of hybridisation in stable hybridization zones with secondary contact, further 

analysis of 400,000 SNPs across genomes of paired population samples of M and S from 

Mali, Burkina Faso and Cameroon led to the conclusion that the two taxa are evolving 

collectively on independent evolutionary trajectories (Caputo et al., 2011; Marsden et al., 

2011; Oliveira et al., 2008; Reidenbach et al., 2012; Weetman et al., 2012). Based on 

these genomic evidences, the M and S molecular forms of the former An. gambiae s.s. 

were recognised as cohesive and exclusive taxonomic groups across their shared range, 

leading to their elevation to species status (Coetzee et al., 2013). 

 In West Africa, the main ecological distinction between the presumed ancestral 

An. gambiae s.s. and the derived An. coluzzii is their larval habitat. An. coluzzii preferably 

breeds in irrigated rice fields and its process of speciation may be strongly linked with 

that of rice domestication in Africa 3000- 3,500 years ago (Bambaradeniya & 

Amarasinghe, 2003; Chang, 1976; Li Zhi-Ming et al., 2011; Reidenbach et al., 2012). An. 



 84 

gambiae s.s. on the other hand, prefers rain-fed larval habitats that are temporary (Diabate 

et al., 2005). The rice field ecosystem has facilitated changes in the bionomics of An. 

coluzzii arising from irrigation development and increased rice cultivation 

(Bambaradeniya & Amarasinghe, 2003; Reidenbach et al., 2012). In sub-Saharan Africa, 

rice fields serve as larval sites for An. gambiae s.l. throughout the rice planting season 

until harvest (Mwangangi et al., 2010). These observations have been made in Kenya 

(Mwangangi et al., 2006), Burkina Faso (Epopa et al., 2017; Sawadogo et al., 2017), The 

Gambia (Lindsay et al., 1991), Madagascar (Marrama et al., 2004), Senegal (Faye et al., 

1995), and Mali (Dolo et al., 2004). This ability to exploit more permanent, predator-rich, 

freshwater habitats gives An. coluzzii a vectorial capacity advantage over An. gambiae 

s.s., since it can to breed and transmit Plasmodium all year-round compared to its seasonal 

sibling (Roux et al., 2014). 

 Pre-irrigational agriculture, it was assumed that populations of An. coluzzii (then 

An. gambiae s.l.) reduce their reproduction during the dry season and possibly aestivate 

at low densities to survive harsh environmental conditions allowing them to persist in 

arid areas (Adamou et al., 2011). However, intensive rice cultivation facilitated the 

persistence of larval breeding sites that better suit An. coluzzii larvae and promote its 

strong dominance throughout the year (Diabaté et al., 2009). According to a WHO review 

in 1954, attention to the presence of members of the Anopheles gambiae complex in rice 

fields has been made since 1918 by Legendre and corroborated by Couvy in 1925 

(Holstein, 1954) who concluded from his work in Madagascar that rice fields were a 

major cause of illness. In 1937, Monier established that cultivated rice field was a 

principal factor in the rapid breeding of An. gambiae s.l. (Holstein, 1954). Similar reports 

were made by Granger in Kisumu, Kenya, De Meillon (Holstein, 1954) in Mozambique, 

Bruce-Chwatt in Gambia amongst several corroborating reports leading to the conclusion 



 85 

by that " wherever rice growing has been undertaken, gambiae had developed"(Holstein, 

1954). This association, however, is not typical to rice fields as An. gambiae s.l. has been 

known to occur wherever there was plant cultivation, with resultant stagnant pools. 

Construction projects such as dams, wells and borrow pits have also serve as pullulation 

sites for An. gambiae s.l. (Holstein, 1954). Larval predation is more prevalent in An. 

coluzzii typical habitat (rice paddy) compared to the temporary, predator-free, shallow 

larval habitat of An. gambiae s.s. and is another major force prompting niche 

differentiation between the sibling species An. coluzzii and An. gambiae s.s. (Gimonneau 

et al., 2012; Munga et al., 2006). 

 The presence of ammonia in the rice paddies due to biological waste from its 

inhabitants is an important aspect of rice field ecosystem-chemistry. Water supply in 

irrigated rice paddies are sourced either from rivers or through rainfall and this influences 

the floodwater chemistry and composition of aquatic biota. Natural levels of ammonia in 

rice paddies range from 0.53 ± 0.1 mg/l and this depends on water supply and fluctuate 

with the changing activities throughout the planting season (Bambaradeniya & 

Amarasinghe, 2003; Baolan et al., 2012). Ammonia is a by-product of biological waste 

production in aquatic ecosystems; it is excreted as the end-product of protein metabolism 

and may be toxic if allowed to accumulate (Hargreaves, 1998). Aquatic organisms, 

including invertebrates, excrete mostly ammonia which permeates cell membranes easily 

due to its high solubility in water (Wright, 1995). For every gram of ammonia ingested, 

aquatic animals require 400ml of water for dilution to concentrations below toxicity 

(Wright, 1995). Ammonia concentrations between 0.05-1mg/l has been reported to result 

in reduction in catfish growth in aquatic ponds; with a 50% reduction at 0.5mg/l 

(Hargreaves, 1998). In a typical rice field (paddy), ammonia is generated as part of the 

nitrogen (N) cycle, a biogeochemical process in which nitrogen is converted to multiple 
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chemical forms include; N fixation, ammonification (N mineralisation), nitrification and 

denitrification (Figure 4.2). Lower levels of oxygen limits nitrification as well as nitrogen 

immobilisation (conversion of inorganic nitrogen to organic nitrogen by bacteria) 

resulting in the accumulation of ammonium in the soil/water (Ishii, et al., 2011). 

Ammonia in its un-ionized form (NH3) is the most toxic to fish and aquatic invertebrates 

(Tene Fossog et al., 2013) with a toxicity limit of 0.2mg/l for most aquatic animals (Eddy, 

2005; U.S. Environmental Protection Agency, 2013). The toxicity of un-ionised 

ammonia is a function of pH, temperature, and total ammonia concentration and the 

added buffering effect of minerals which masks any additional toxicity over pH 8 

(Florescu, et al., 2011; Hargreaves, 1998). Toxicity increases at elevated pH and 

temperature, shifting the ionisation equilibrium to the toxic, un-ionised, gaseous form. 

 

 

Figure 4.2: Overview of nitrogen cycling in rice paddy soils. Nitrogen fixation can occur in the surface water 
of rice paddies or rice rhizospheres, by free-living or plant-associated bacteria. When a plant or animal dies 
or expels waste, bacteria/fungi converts organic nitrogen to ammonium (ammonification/mineralisation). In 
the oxidized layer, ammonium mineralized from organic matter is oxidized to nitrate via nitrite (nitrification) 
by bacteria. Nitrate and nitrite can be diffused to the reduced layer where these compounds are reduced 
stepwise to gaseous end products by denitrification (NO, N2O, and N2). Ammonia volatilization may become 
large in rice paddy soils with high pH (>8.5). (Ishii, et al., 2011). 
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This risk of pH and temperature elevation is greater in poorly buffered (low alkalinity) 

ponds at the hottest point in the day (Hargreaves, 1998). 

 The hypothesis that the larval stages of An. coluzzii and An. gambiae s.s. exhibit 

contrasted responses to ammonia had been investigated in an extensive survey of An. 

gambiae s.l populations along gradients of urbanization in Yaounde, Cameroon (Tene 

Fossog et al., 2013). This study used standardized acute toxicity bioassays to reveal that 

An. coluzzii has higher ammonia tolerance than An. gambiae s.s., a difference which may 

explain the distribution of sibling species in aquatic habitats (Tene Fossog et al., 2013).  

The concentrations of ammonia used in the study were far higher than levels (0.53 ± 0.1 

mg/l) that would be obtained from the pre-fertilization rice field ecosystem 

(Bambaradeniya & Amarasinghe, 2003; Baolan et al., 2012). Moreover, observations 

were made within a short period and life-history traits were not accounted for (Tene 

Fossog et al., 2013). Other studies investigating ammonia tolerance in An. gambiae s.l. 

focused on the relationship between tolerance and insecticide resistance (Tene Fossog et 

al., 2012). 

 The aim of this study was to investigate the effect of chronic exposure of 

immature stages of An. gambiae s.s. and An. coluzzii to ammonia on larval development 

into adulthood. The hypothesis was that there will be a significant difference in the plastic 

responses between An. coluzzii and An. gambiae s.s. to increasing levels of ammonia 

similar to those in rice paddies. First instar mosquito larvae were exposed to increasing 

ammonia concentrations until adult emergence. A second experiment was conducted to 

tease apart the potential carry-over effects of ammonia exposure at larval stage to adults 

on pupal mortality. Evidence of distinct phenotypic plastic response in long-colonised 

strains of the sibling species support the idea that ancestral contrasted norms of reaction 

to rice field like levels of ammonia may have played a role in their ecological speciation. 
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4.2. Materials and Methods 

4.2.1. Mosquito strain  

The Kisumu strain of An. gambiae s.s, colonized over 40 years ago, from the area of 

Kisumu, Kenya, East Africa and the 17-year-old Mopti strain of An. coluzzii, colonized 

in 2003 by the Lanzaro Laboratory (UC Davis) from the village of NʼGabacoro droit near 

Bamako, Mali, West Africa, were used for the experiments. The strains were maintained 

by the Tripet group in dedicated insectaries of the Centre of Applied Entomology and 

Parasitology (CAEP), Keele University, UK, as described in Chapter 2. 

 

4.2.2 Effect of ammonia on An. gambiae s.s. and An. coluzzii  development. 

Experimental factor 1: Using a 3ml plastic pipette, ten first instar larvae of An. coluzzii 

and then, An. gambiae s.s., were placed in white styrofoam cups containing 300ml of 

water with variable test concentrations comprising of three distinct factors as described 

below:  

Experimental factor 2: Mosquitoes were reared in two water types with different levels 

of hardness (i) deionised water which was sourced from a reverse osmosis unit 

(PURELAB Prima, Wycombe, United Kingdom) installed in the laboratory. The water 

quality specifications of treated deionised water were: Total organic carbon < 0.1ppm, 

bacteria < 5 CFU/ml, 98% rejection of inorganics, > 99% rejection of organics, > 99% 

rejection of particles. (ii) mineral water: bottled water containing minerals which are 

natural compounds formed through geological processes, sourced from a local shop with 

the following typical nutrient values/litre: calcium (11 mg), magnesium (3.5 mg), 

potassium (2.5 mg), sodium (10 mg), bicarbonate (25 mg), sulphate (11 mg), nitrate (15 

mg), chloride (14 mg), dry residue at 180 °C (85 mg) and pH (6.2). 
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Experimental factor 3: For each water type and feeding regimes, larval cups were reared 

in 7 ammonia (NH3) concentrations: 0mg/l (control); 0.6mg/l; 1.3mg/l; 2.5mg/l; 

12.5mg/l, 25mg/l and 62.5mg/l, informed by published reports of natural levels of 

ammonia in rice field flood water equivalent or higher than 0.5mg/l and toxicity level of 

unionised ammonia to freshwater aquatic organism at concentration above 0.2mg/l 

(Hargreaves, 1998; Eddy F B, 2005; Florescu et al., 2011; Baolan et al., 2012; U.S. 

Environmental Protection Agency, 2013). A stock solution of ammonium hydroxide 

(Sigma-Aldrich, Missouri, USA) equivalent to ~ 28-30% NH3 at 14.8M was diluted to 

1% (~2.5g/l) by adding the proportionate volume of water (using a fume hood and 

gloves). Final NH3 concentration of 1% working solution was calculated using the 

molecular weight of NH3 = 17.034 (14.01- Nitrogen, 1.008 x 3- Hydrogen): 

1𝑀	𝑜𝑓	𝑁𝐻9 = 17.034𝑔 𝑙 ∴ 14.8𝑀 = (14.8 × 17.034)⁄ 𝑔 𝑙 = 252.10𝑔 𝑙⁄⁄ ∴

1%	~	2.5𝑔/𝑙  

Further dilutions were made to achieve the 7 test concentrations of ammonia using the 

following dilution formula in mg/l: C1V1	=	C2V2, where C1	(initial concentration) = 

2.5g/l; V1	(initial volume of working solution) = 0µl(control), 250µl, 500µl, 1000µl, 5ml, 

10ml, and 25ml respectively; C2 = desired concentration of NH3 and V2	(final volume) 

= 1000ml.  

 

Experimental factor 4: Larvae were fed with two standardised feeding regimes (solution 

and powder feed). Powder feeding regime consists of daily rations of ground-fish food, 

using a spatula to spread on the water surface: 0.1 µl of Liquifry liquid fish food (Interpret 

Ltd, Surrey, UK) on day 1, 2 mg on days 2–3, 4 mg on day 4, and 10 mg on day 5 until 

pupation. Solution feeding regime consist of the same food quantity dissolved in 

deionized water (0.1 µl of Liquifry on day 1, 0.1 ml of 1 g/50 ml of TetraMin Baby on 
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days 2–3, 0.2 ml of 1 g/50 ml of TetraMin Baby on day 4, and 0.5 ml of 1 g/50 ml of 

TetraMin Baby on day 5 until pupation ) and injected into the larval pot using a pipette. 

Individual pipettes were used for the strains/treatment group and also for the controls 

(0.0mg/l) to avoid contamination. The experimental pots were completely randomized to 

ensure there was no bias towards lighting, ventilation, humidity or other factors in the 

insectary that variates with space. Observations were done “blindly” by using codes 

instead of the name of the strains for labelling. This was to minimize bias from the 

researcher tilting results in favour of known facts. A replicate consisted of the two species 

exposed to the three experimental factors (2 species x 7 NH3 concentrations x 2 water 

types x 2 feeding pattern = 56 treatment pots × 10 larvae = 560 larvae). A total of 1680 

(560 × 3) larvae were sampled in 3 replicates. Larvae from each experimental group were 

transferred to freshwater (same water source as the original set-up) containers daily until 

pupation. At pupation, pupae were transferred to a sister netted cup containing 100ml of 

"rearing water"(same water source as the original set-up). 

 

 
 

Figure 4.3: Experimental set-up for the effect of NH3 concentrations on An. coluzzii and An. gambiae s.s. 
development. 
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Collection of data at life-cycle stages 

Depending on the life-cycle stage of the mosquitoes, the following data were observed 

and recorded: (i) larval survival: determined as the percentage of larvae that developed 

into pupae from the total number of larvae for each treatment; (ii) pupal survival: 

determined as the percentage of mosquitoes that emerged as adults from those that 

pupated in each treatment. (iii) pupal mortality: determined as the percentage of 

mosquitoes that died at the pupal stage from the total number of mosquitoes per 

treatment; (iv) adult emergence: determined as the percentage of mosquitoes that 

emerged as adults from the total number of larvae in each treatment; (v) development 

time: determined as the number of days from placement of first instar larvae in treatment 

cups until adult emergence; and (vi) wing-length: following emergence, adult mosquitoes 

were sexed and stored in 75% ethanol and wing-length was subsequently measured as 

described in Chapter 2. 

 

4.2.3 Carry-over effect of ammonia on An. coluzzii adults 

Due to the deviation from the expected result in the first experiment (An. coluzzii had 

significantly higher larval mortality, consequently lower adult emergence but with higher 

pupal survival compared to An. gambiae s.s.), a second experiment to investigate any 

carryover effect of ammonia exposure at the larval stage on An. coluzzii adults was 

designed, focusing on the effect of ammonia and water types on pupation. The 

experimental set-up was similar to that described in section 4.2.2. using three NH3 

concentrations (2.5mg/l, 12.5mg/l and 25mg/l) for larval rearing. An experimental set-up 

of 1 species × 2 feeding regimes × 2 water sources × 3 NH3 concentrations = 120 larvae 

× 4 replicates = 480 larvae (Figure 4.4). However, at pupation, pupae were split into two 

groups, one set placed in “rearing water”, the other set placed in the same water type as 
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before, but without ammonia. Data were collected at all life stages and adult body size 

determined as before. 

 

 

Figure 4.4: Experimental set-up for the carry-over effect of ammonia concentrations on An. coluzzii adults. 
 

4.2.4.  Water quality analysis 

Physicochemical water parameters; nitrate, ammonia, pH, general hardness and 

carbonate hardness were measured using API aquarium test kits (Aquarium 

Pharmaceuticals, Mars Fishcare, North America, 50E Hamilton St., Chalfont, PA,18914, 

USA). Change in pH was indicated by colour change with precise readings to 7.6 after 

which increasing darkening colour changes were indicated with ordinal symbols (+) 

showing increasing pH. Readings were taken 10 days after the experiment set-up (Table 

4.1). 

 

4.2.5. Statistical analysis 

All data collected were analysed using the software JMP 14 (SAS Institute, Inc., Cary, 

North Carolina, USA). All data were checked for deviations from normality and 

heterogeneity, and analyses were conducted using parametric and non-parametric 
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methods as appropriate. Data from all replicates were used for analysis, replicate effects 

were tested but were only reported when significant. Interactions between independent 

variables were tested using step-wise models and only those significant were retained in 

the final models. For analyses of proportion of larvae, pupae and adults, likelihood odds 

ratios were used for post-hoc pairwise group comparisons following logistic regressions. 

Body size was analysed through general linear models followed by Tukey’s HSD post-

hoc pairwise comparisons. Finally, developmental times (day of emergence) were 

analysed by Cox Proportional-Hazard models with likelihood odds ratios for post-hoc 

pairwise comparisons. 

 
Table 4.1: Mean of nitrate, General hardness, Carbonate hardness, pH and Ammonia  

Water type NH3 Nitrate 
(mg/l) 

Ammonia 
(mg/l) 

General 
hardness (mg/l) 

Carbonate 
hardness (mg/l) 

pH 

Deionised 0 5 1 17.9 17.9 7.05 
 0.6 5 3 17.9 17.9 7.05 
 1.3 5 8 17.9 17.9 7.05 
 2.5 5 - 17.9 35.8 7.2 
 12.5 5 - 17.9 89.5 7.6 
 25 - - - - - 
Mineral 0 5 1.5 53.7 35.8 7.4 
 0.6 5 2 53.7 35.8 7.6 
 1.3 5 8 53.7 35.8 7.6+ 
 2.5 5 - 53.7 53.7 7.6 ++ 
 12.5 10 - 53.7 89.5 7.6+++ 
 25 10 - 35.8 125.3 7.6++++ 

Notes: Sample size=12. Beyond pH 7.6, + show increasing darkening in colour change and pH of the 
solution without precise measurement of concentration.  
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4.3. Results 

4.3.1. Plastic response of An. gambiae s.s. and An. coluzzii in response to ammonia 

exposure. 

Overall, a decline in larval survival was inversely proportional to the increase in NH3 

concentration (Figure 4.5; Table 4.2). Significant decreases in larval survival was 

observed from 1.3mg/l to 25mg/l NH3, with no larvae surviving at 62.5mg/l. There was 

a significant difference (P < 0.0001) for the percentage of larval survival between An. 

gambiae and An. coluzzii with the former having 14% higher larval survival across NH3 

concentrations and in both water types, deionised and mineral water (Figure 4.6; Table 

4.3).  

  
Figure 4.5: Effect of NH3 on larval survival. Bar plots show the percentage of larval survival across seven 
NH3 concentrations. Bar plots sharing the same letter are not significantly different. Whiskers represent 95% 
confidence intervals. 
 

Logistic regression model did not reveal an effect of feed regime on larval 

survival (Table 4.3). Larval survival in mineral water was 12% higher (P < 0.0001) than 

in deionised water for both species and across NH3 concentrations (Figure 4.5, Table 4.3). 

Interactions between water types and NH3 significantly (P < 0.0001) impacted larval 

survival at 2.5mg/l and 12.5 mg/l for An. coluzzii and at 12.5mg/l for An. gambiae. There 

was significantly higher larval survival in mineral water at these concentrations (Figure 
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4.6). An. gambiae larvae reared at 25mg/l NH3 only survived in mineral water; all larvae 

died in deionised water for this concentration (Figure 4.6).  

 

  
Figure 4.6: Effect of NH3 and water types on larval survival. The percentage larval survival for An. coluzzii 
and An. gambiae s.s. for both deionised water (light grey) and mineral water (dark grey). Bar plots sharing 
the same letter are not significantly different for each concentration of NH3. Whiskers represent 95% 
confidence intervals. 
 

Pupal mortality was significantly impacted by NH3 (P < 0.0001) concentrations (during 

larval stage) with an increase in pupal mortality with increasing NH3 concentrations 

(Table 4.2;4.3; Figure 4.7). Overall, pupal mortality was 4% higher in An. gambiae s.s. 

compared to An. coluzzii and this was significant (P = 0.0052) across NH3 concentrations 

(Tables 4.2; 4.3). Pupal mortality was 1% (P = 0.0363) higher in deionised water at higher 

NH3 concentrations (Figure 4.7; Tables 4.2 4.3). From 2.5mg/l upwards, there was a 

significant increase in pupal mortality for both species (Table 4.2, 4.3; Figure 4.7). To 

investigate these interactions further, a second experiment was designed to ascertain their 

effect on pupal mortality (section 4.3.2). 
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Figure 4.7: Effect of NH3 and water types on larval pupal mortality. The percentage pupal mortality for An. 
coluzzii and An. gambiae for both deionised water (light grey) and mineral water (dark grey). Bar plots 
sharing the same letter are not significantly different for each concentration of NH3. Whiskers represent 95% 
confidence intervals. 

 

Table 4.2: Effect of NH3, water types and feed regimes on life history stages. 

Species Water type Feed 
regime 

NH3 
(mg/l) 

%Larval 
survival 

%Pupal 
mortality 

%Adult 
emergence 

An. 
coluzzii 

Deionised Solution 0 77 (59-88)  10 (3-26)  67 (49-81)  
0.6 73 (56-86)  0 73 (56-86)  
1.3 70 (52-83)  13 (5-30)  57 (39-73)  
2.5 57 (39-73)  3 (1-17)  53 (36-70)  
12.5 33 (19-51)  23 (12-41)  10 (3-26)  
25 3 (0-17)  3 (0-17)  0 
62.5 0 0 0 

Powder 0 77 (59-88)  3 (1-17)  73 (56-86)  
0.6 83 (66-93)  27 (14-44)  57 (39-73)  
1.3 80 (63-90)  0 80 (63-90)  
2.5 50 (33-67)  3 (1-17)  47 (30-64)  
12.5 0 0 0 
25 0 0 0 
62.5 0 0 0 

Mineral Solution 0 80 (63-90)  7 (2-21)  73 (56-86)  
0.6 80 (63-90)  3 (1-17)  77 (59-88)  
1.3 73 (56-86)  10 (3-26)  63 (46-78)  
2.5 67 (49-81)  3 (1-17)  63 (46-78)  
12.5 73 (56-86)  3 (1-17)  70 (52-83)  
25 10 (3-26)  3 (1-17)  7 (2-21)  
62.5 0 0 0 

Powder 0 83 (66-93)  10 (3-26)  73 (56-86)  
0.6 80 (63-90)  3 (1-17)  77 (59-88)  
1.3 60 (42-75)  3 (1-17)  57 (39-73)  
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Species Water type Feed 
regime 

NH3 
(mg/l) 

%Larval 
survival 

%Pupal 
mortality 

%Adult 
emergence 

2.5 73 (56-86)  7 (2-21)  67 (49-81)  
12.5 70 (52-83)  17 (7-34)  53 (36-70)  
25 0 0 0 
62.5 0 0 0 

An. 
gambiae 

Deionised Solution 0 86 (70-95)  7 (2-21)  80 (63-90)  
0.6 97 (83-99)  10 (3-26)  87 (70-95)  
1.3 90 (74-97)  0 90 (74-97)  
2.5 87 (70-95)  17 (13-34)  70 (52-83)  
12.5 43 (27-61)  23 (12-41)  20 (10-37)  
25 0 0 0 
62.5 0 0 0 

Powder 0 93 (79-98)   93 (79-98)  
0.6 87 (70-95)  13 (5-30)  73 (56-86)  
1.3 93 (79-98)  27 (14-44)  67 (49-81)  
2.5 100(89-100)  47 (30-64)  53 (36-70)  
12.5 13 (5-30)  13 (5-30)  0 
25 0 0 0 
62.5 0 0 0 

Mineral Solution 0 93 (79-98)  17 (7-34)  77 (59-88)  
0.6 97 (83-99) 30 10 (3-26) 30 87 (70-95) 30 
1.3 87 (70-95)  3 (1-17)  83 (66-93)  
2.5 100(89-100)  0 100(89-100)  
12.5 93 (79-98)  10 (3-26)  83 (66-93)  
25 13 (5-30)  7 (2-21)  7 (2-21)  
62.5 0 0 0 

 Powder 0 93 (79-98)  7 (2-21)  87 (70-95)  
  0.6 90 (74-97)  3 (1-7)  87 (70-95)  
  1.3 97 (83-99)  0 97 (83-99)  
  2.5 93 (79-98)  10 (3-26)  83 (66-93)  
  12.5 90 (74-97)  13 (5-30)  77 (59-88)  
  25 20 (10-37)  20 (10-37)  0 
  62.5 0 0 0 

Notes: Ninety-five percent confidence intervals are in parentheses. Larval survival, pupal mortality and 
emergence rates were calculated out of an initial sample size of 30 larvae (per treatment). 
 

As a reflection of the effect on the overall mosquito survival, regression models on adult 

emergence revealed significant (P < 0.0001) decline in survival with increasing NH3 

concentration (Table 4.2, 4.3; Figure 4.8). At 1.3mg/l, 12.5mg/l and 25mg/l, adult 

emergence reached significant levels of reduction compared to lower concentrations of 

NH3 (Figure 4.8). The percentage of adult emergence in An. gambiae s.s. (11% higher) 
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were significantly (P < 0.0001) higher than that of An. coluzzii for both water types and 

across NH3 concentrations (Table 4.3; Figure 4.9). 

 

  
Figure 4.8: Effect of NH3 on adult emergence. Bar plots show the percentage adult emergence across six 
NH3 concentrations. Bar plots sharing the same letter are not significantly different. Whiskers represent 95% 
confidence intervals. 
 

 Significant interactions (P < 0.0001) between water type and NH3 impacted on 

adult emergence at 2.5mg/l and 12.5mg/l. Overall, adult emergence was significantly 

higher (23% and 63% higher respectively) in mineral water at these concentrations 

compared to emergence in deionised water. At 25mg/l, adults only emerged from the 

mineral water set-up but not from the deionised water (Figure 4.9, Table 4.2). At 2.5mg/l, 

solution feed yielded significantly (P = 0.0141) higher adults compared to powder feed 

for An. gambiae (Figure 4.10, Table 4.3). At 25mg/l, adults-only emerged from solution 

feed but not from powder feed.  

 There was significant (P < 0.0001) decrease in adult body size (represented by 

wing-length) with an increase in NH3 concentration (Tables 4.4, 4.5). Adults emerging 

from mineral water were significantly (P < 0.0001) bigger than those from deionised 

water (Table 4.5, Figure 4.11) for both species and across NH3 concentrations.  
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Figure 4.9: Effect of NH3 and water types on adult emergence. The percentage adult emergence for An. 
coluzzii and An. gambiae s.s. for both deionised water (light grey) and mineral water (dark grey). Bar plots 
sharing the same letter are not significantly different for each concentration of NH3. Whiskers represent 95% 
confidence intervals. 
 

  

 

Figure 4.10: Effect of NH3 and feed regimes on adult emergence. The percentage adult emergence for An. 
coluzzii and An. gambiae s.s. for both solution feed (light grey) and powder feed (dark grey). Bar plots 
sharing the same letter are not significantly different for each concentration of NH3. Whiskers represent 95% 
confidence intervals. 
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Table 4.3: Logistic regressions of the effect of NH3, water types and feed regimes on life history 
stages. 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom  
 

 

 

 
 
Figure 4.11: Effect of NH3 wing-length. The mean wing-length for An. coluzzii (light grey) and An. gambiae 
s.s. (dark grey) shown for two water types (A and B). Whiskers represent 95% confidence intervals. 

 
 

Parameter Source DF Likelihood ratio P-value 

Larval survival Species 1 20.614 <0.0001*** 
Water type 1 78.060 <0.0001*** 
Feed 1 1.565 0.2109ns 
NH3 at larval stage  1 1072.061 <0.0001*** 
NH3 * Water type 1 31.720 <0.0001*** 
NH3 * Species 1 7.325 0.0068** 

Pupal mortality Species 1 8.062 0.0045** 
Water type 1 4.328 0.0375* 
Feed 1 1.286 0.2567ns 
NH3 at larval stage 1 32.472 <0.0001*** 

Adult emergence Species 1 37.496 <0.0001*** 
Water type 1 92.267 <0.0001*** 
Feed 1 3.872 0.0491* 
NH3 at larval stage 1 941.705 <0.0001*** 
NH3 * Water type 1 43.053 <0.0001*** 
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Significant interactions (P = 0.0398) between species and water type impacted on wing-

length from 2.5mg/l upwards. In mineral water, An. coluzzii wing-length was 

significantly longer than An. gambiae s.s. and vice versa in deionised water (Figure 4.11; 

Tables 4.4; 4.6). Feed regime had no significant impact on wing-length and overall, the 

sibling species were not significantly different in adult body size (Table 4.5).  

 

 

 
 

Figure 4.12: Effect of NH3 on mosquito adult body size by gender. The mean wing-length of adult males in 
deionised water (light blue), mineral water (dark blue) and females in deionised water (light green), mineral 
water (dark green). Whiskers represent 95% confidence intervals. 

 

Overall, females were significantly bigger than males, whereas, females reared in mineral 

water were significantly bigger than other groups (Figure 4.12; Table 4.5). Interactions 

between water type and species (P = 0.0087), NH3 and species, sex and NH3, significantly 

impacted on the sex ratio of emerged adults (Table 4.5). Post-hoc tests (Tukey HSD 

pairwise comparisons) revealed significant differences in wing-length in adults emerging 

from An. coluzzii/deionised and An. gambiae/deionised, An. coluzzii/deionised and An. 

coluzzii/mineral, lastly between, An. coluzzii/deionised and An. gambiae/mineral (Table 

4.6). 
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Table 4.4. Effect of NH3, water types and feed regimes on body size (wing length) and day of 

emergence. 

Species Water 
type 

Feed 
regime 

NH3 
(mg/l) 

Mean wing length 
(mm) 

Days till emergence 

An. coluzzii Deionised Solution 0 3.00 (2.86–3.13) 20 9.85 (9.41–10.29) 20 
0.6 2.95 (2.86-3.04) 22 9.77 (9.44-10.11) 22 
1.3 2.81 (2.68-2.93) 17 10.24 (9.67-10.80) 17 
2.5 2.81 (2.66-2.95) 16 9.75 (9.25-10.25) 16 
12.5 2.9 (2.24-3.56) 3 11.33 (9.89-12.77) 3 
25 0 0 
62.5 0 0 

Powder 0 3.00 (2.87–3.11) 22 9.82 (9.52–10.11) 22 
0.6 2.85 (2.74-2.97) 17 9.76 (9.38-10.15) 17 
1.3 2.88 (2.77-2.98) 24 10.42 (10.14-10.69) 24 
2.5 2.76 (2.58-2.94) 14 10.29 (9.81-10.76) 14 
12.5 0 0 
25 0 0 
62.5 0 0 

Mineral Solution 0 3.07 (2.98–3.16) 22 9.64 (9.31–9.96) 22 
0.6 2.98 (2.89-3.07) 23 9.74 (9.44-10.04) 23 
1.3 2.92 (2.80-3.04) 19 9.37 (9.13-9.61) 19 
2.5 3.04 (2.94-3.13) 19 9.68 (9.36-10.01) 19 
12.5 2.97 (2.88-3.07) 21 9.67 (9.40-9.93) 21 
25 2.90 (2.90-2.90) 2 10.5 (-8.56-29.56) 2 
62.5 0 0 

Powder 0 3.03 (2.93–3.13) 22 9.86 (9.40–10.32) 22 
0.6 3.04 (2.95-3.14) 23 9.43 (9.14-9.72) 23 
1.3 3.01 (2.86-3.16) 17 9.06 (8.77-9.34) 17 
2.5 2.98 (2.92-3.04) 20 9.50 (9.22-9.78) 20 
12.5 2.93 (2.75-3.10) 16 9.63 (9.30-9.95) 16 
25 0 0 
62.5 0 0 

An. gambiae Deionised Solution 0 2.97 (2.86–3.08) 24 10.38 (10.10–10.65) 24 
0.6 3.02 (2.95-3.08) 26 10.15 (9.91-10.40) 26 
1.3 2.97 (2.89-3.04) 27 10.41 (10.16-10.66) 27 
2.5 2.95 (2.83-3.07) 21 10.29 (10.08-10.50) 21 
12.5 2.77 (2.55-2.98) 6 12.67 (11.23-14.10) 6 
25 0 0 
62.5 0 0 

Powder 0 3.07 (2.96–3.18) 28 10.36 (10.00–10.71) 28 
0.6 2.99 (2.91-3.08) 22 10.23 (9.96-10.50) 22 
1.3 2.92 (2.84-2.99) 20 10.35 (10.12-10.58) 20 
2.5 2.93 (2.81-3.05) 16 10.75 (10.51-10.99) 16 
12.5 0 0 
25 0 0 
62.5 0 0 

Mineral Solution 0 3.06 (2.98 –3.14) 23 9.43 (9.22–9.65) 23 
0.6 3.05 (2.98-3.13) 26 9.85 (9.60-10.09) 26 
1.3 2.98 (2.90-3.06) 25 10.08 (9.88-10.28) 25 
2.5 2.82 (2.72-2.93) 30 9.60 (9.39-9.81) 30 
12.5 2.88 (2.76-2.99) 25 10.76 (10.51-11.01) 25 
25 2.6 (-2.48-7.68) 2 11.50 (5.15-17.85) 2 
62.5 0 0 



 103 

Species Water 
type 

Feed 
regime 

NH3 
(mg/l) 

Mean wing length 
(mm) 

Days till emergence 

Powder 0 3.08 (3.00–3.17) 26 9.50 (9.29 – 9.71) 26 
0.6 3.06 (2.98-3.15) 26 9.54 (9.28-9.80) 26 
1.3 2.95 (2.84-3.05) 29 9.79 (9.61-9.98) 29 
2.5 3.02 (2.90-3.14) 25 9.48 (9.27-9.69) 25 
12.5 2.81 (2.67-2.94) 23 10.35 (10.14-10.56) 23 
25 0 0 
62.5 0 0 

Notes: Ninety-five percent confidence intervals are in parentheses and the samples sizes, the number of 
surviving individuals out of an initial number of 30 larvae are italicized. 
 

Table 4.5: General linear model of the effect of NH3, water types and feed regimes on wing length 

Parameter Source df F-ratio P-value 
Wing-length Species 1 3.1706 0.0754ns 

Feed 1 0.4523 0.5014ns 
NH3 1 30.6251 <0.0001*** 
Water type 1 15.8197 <0.0001*** 
Sex 1 11.3657 0.0008** 
Sex*NH3 1 5.2245 0.0225* 
NH3*Species 1 6.6604 0.0100* 
Water type*Species 1 6.9135 0.0087* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom  
 

Table 4.6: Tukey’s HSD pairwise comparison of the effect of NH3, water types and feed regimes on 

wing -length 

Source Standard Error P-value 

An. coluzzii/deionised vs An. 

gambiae/deionised 
0.027 0.0191* 

An. coluzzii/deionised vs An. coluzzii/mineral 0.027 <0.0001*** 
An. coluzzii/deionised vs An. 

gambiae/mineral 
0.025 0.0003** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

The development time of emerged adults was significantly impacted by water type and 

increasing NH3 concentrations (Table 4.7). The duration from first instar larvae to adult 

increased with increasing NH3 concentrations (Figure 4.13).  
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Figure 4.13: Effect of NH3 on development time. The mean development time for An. coluzzii (A,B) and An. 

gambiae (C,D) reared in deionised and mineral water across 7 concentrations of NH3.  

 

Table 4.7: Cox Proportional-Hazard analyses of development time  

Parameter Source df Wald Chi 
Square 

P-value 

Day of emergence Species 1 9.272 0.0023** 
 

Water type 1 48.369 <0.0001*** 
Feed 1 0.607 0.4361ns 
NH3 1 19.552 <0.0001*** 

NH3*Species 1 5.74302292 0.0166* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom 
 

Mosquitoes reared in deionised water took longer to complete their development cycle 

(Figure 4.11). At higher concentrations (from 12.5mg/l), development time was markedly 

longer in deionised water compared to mineral water. There was also a significant 

interaction between the effect of species and NH3 concentrations on development time. 
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In deionised water, at 12.5mg/l NH3, An. coluzzii emerged two days earlier than An. 

gambiae s.s. (Figure 4.13;Table 4.7). 

 

4.3.2. Carry-over effect of NH3 exposure on An. coluzzii. 

The second experiment on the carry-over effect of NH3, water types and feed regimes 

revealed a similar pattern as before on mosquito development. Larval survival was higher 

in mineral water, significantly so at higher NH3 concentrations (12.5mg/l) compared to 

survival in deionised water at the same NH3 concentration. There were no significant 

differences in larval survival, pupal mortality and adult emergence among the two water 

types for mosquito larval stage at 2.5mg/l NH3 concentration. At 12.5mg/l NH3 (larval 

stage) concentration, there was 100% pupal mortality for all mosquitoes reared in 

deionised water, hence no adult emergence from that water type at that concentration. 

Inversely, adult emergence was observed in mineral water at 12.5mg/l NH3 (larval stage) 

concentration (Figure 4.14; Tables 4.8; 4.9).  

 

  

Figure 4.14: Effect of NH3 on mosquito life-history stages. Percentage larval survival, pupal mortality and 
adult emergence are shown for mineral (blue) and deionised (green) water types. Whiskers represent 95% 
confidence intervals. Bar plots sharing the same letter are not significantly different for each concentration 
of NH3. 
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At 25mg/l there was 100% mortality in all experimental groups for both species (Table 

4.8). Although NH3 concentrations at the larval stage were significant for pupal mortality, 

there was no significant effect of the presence/absence of NH3 in the water in which the 

pupae emerged to adult (Table 4.8; 4.9). Pupation in NH3 or not, did not significantly 

impact adult emergence in this carry-over effect experiment, therefore the impact of NH3 

was carried over from the larval stage to adult emergence (Table 4.9). Overall, solution 

feed was significantly more favourable for larval survival compared to powder feed 

(Table 4.8;4.9, Figure 4.15) 

 

Table 4.8: Effect of NH3, water types and feed on mosquito development 

Species Water 
type 

Feed 
regime 

NH3 
(mg//) 

%Larval 
survival 

%Pupal 
mortality 

%Adult 
Emergence 

An. coluzzii Deionised Solution 2.5 40 (26-55) 8 (3-20) 32 (20-48) 
   12.5 5 (1-17) 5 (1-17) 0 
   25 0 0 0 
  Powder 2.5 20 (11-35) 13 (5-26) 7 (3-20) 
   12.5 0 0 0 
   25 0 0 0 
 Mineral Solution 2.5 43 (29-58) 10 (4-23) 33 (20-50) 
   12.5 25 (14-40) 10 (4-23) 15 (7-29) 
   25 0 0 0 
  Powder 2.5 28 (16-43) 3 (0-13) 25 (14-40) 
   12.5 18 (9-32) 10 (4-23) 8 (3-20) 
   25 0 0 0 

Notes: Ninety-five percent confidence intervals are in parentheses. Larval survival, pupal mortality and 
emergence rates were calculated out of an initial number of 40 larvae (per treatment). 
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Figure 4.15: Effect of feed regimes on larval survival. Percentage larval survival shown for solution (grey) 
and powder (blue) feed regimes. Bar plots sharing the same letter are not significantly different. Whiskers 
represent 95% confidence intervals. 
 

Table 4.9: Logistic regressions of the effect of NH3, water types and feed on mosquito development. 

Parameter Source df Likelihood ratio P-value 

Larval survival Water Type 1 0.74137177 0.3892ns 
 Feed 1 6.54913484 0.0105* 
 NH3 at larval stage 2 85.9388699 <0.0001*** 
 NH3*Water Type 2 8.02483615 0.0181* 
Pupal mortality Water Type 1 3.61184053 0.0574 ns 
 Feed 1 0.96877351 0.3250 ns 
 NH3 at larval stage 1 6.97265644 0.0083* 
 Pupation in NH3  1 0.04236003 0.8369 
Adult emergence Water Type 1 3.61184053 0.0574 ns 
 Feed 1 0.96877351 0.3250 ns 
 NH3 at larval stage 1 6.97265644 0.0083* 
 Pupation in NH3  1 0.04236003 0.8369 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom 
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4.4. Discussion 

The main findings of this study highlights for the first time, contrasted strain specific 

plastic responses to an environmental toxicant (ammonia) (Hargreaves, 1998; Ishii, et al., 

2011; Wright, 1995) that is characteristic of more eutrophic habitats in An. gambiae s.s. 

and An. coluzzii, under insectary conditions. The higher phenotypic quality (measured 

here as adult body size) of emerged adult An. coluzzii in this study supports the 

assumption that the species should cope better with levels of ammonia that are 

characteristic of its preferred putative ancestral ecological speciation niche (Dao et al., 

2014; Gimonneau et al., 2012; Kamdem et al., 2012; Roux et al., 2014). 

 Overall, mosquito survival decreased with increasing ammonia concentrations 

revealing significant genotype × environment interactions for An. coluzzii and An. 

gambiae s.l. (Xin Li et al., 2018; Price et al., 2003). What is particularly interesting, is 

that we find that a strain of An. coluzzii that is comparatively younger (by ~ 23 years), 

outperforms in phenotypic quality, the well laboratory-adapted An. gambiae s.s. strain in 

conditions that are closer to more eutrophic habitats and/or like rice fields. Adult body 

size (wing-length) of An. gambiae s.s. was found to be negatively affected with increasing 

NH3 concentrations. Despite having higher survival rates across water types, the adult 

body size of An. gambiae s.s. was more severely impacted at high NH3 concentrations 

than An. coluzzii. Adult mosquito size is an important phenotypic trait in Anopheles 

mosquitoes. Larger body size in An. gambiae s.l. has been demonstrated to be reflective 

of larval growth conditions (environment) (Takken et al., 2013; Valerio et al., 2016). 

Larger females exhibit optimal lifetime fitness with increased ability to withstand stress 

as adults (Aboagye-Antwi & Tripet, 2010; Takken et al., 2013). In males, body size 

correlates with mating attractiveness and lifespan as smaller males usually die a few days 

after emergence as virgins (Abdoulaye Diabate & Tripet, 2015). This reaction norm in 
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An. coluzzii adult phenotypic quality in response to larval environment is a classic 

example of phenotypic plasticity which commonly emerges in stressful or adverse 

habitats, revealing pre-existing genetic and developmental of organismal homeostasis 

(Badyaev, 2005; Roux, et al., 2014). In the case of An. coluzzii, this reaction norm is 

adaptive and might be as a result of pre-existing traits developed due to selection 

pressures created by rice domestication in Africa (Mwangangi et al., 2010; Reidenbach 

et al., 2012). 

 Although this study did not show clear reaction norms in mosquito survival 

among the sibling species to ammonia as we had expected, it did reveal significant effects 

of the interaction of ammonia and water mineralisation on the developmental success and 

body size of An. gambiae s.s. and An. coluzzii. Larval survival, pupal survival and adult 

emergence were significantly higher in mineral water compared to deionised water. This 

supports published evidence that the ammonia toxicity risk of elevated pH and 

temperature can be greatly reduced with alkaline buffer above pH 8 (Florescu et al., 2011; 

Hargreaves, 1998). Mineral water used in the study had a mean general hardness of 

53.7mg/l compared to the 17.9mg/l of deionised water, resulting in higher pH values 

above the minimum threshold (pH 8) at which the buffering effect which masks 

additional ammonia toxicity was activated (Florescu et al., 2011). The results of this study 

clearly show that the presence of minerals in the water constituted a buffer that resulted 

in the reduction of the impact of ammonia toxicity, especially at higher NH3 

concentrations. Additionally, adults emerging from mineral water were significantly 

bigger than those from deionised water. Although development time increased with 

increasing NH3 concentration, both species developed faster in mineral water compared 

to deionised water. The duration from first instar larvae to adult,. An. gambiae however, 

had significantly longer development time in deionised water compared to An. coluzzii. 
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These results further strengthen the argument for the buffering capacity of mineral water 

to reduce the effect of ammonia on aquatic organisms, resulting in the higher percentage 

survival and better adult quality of An. gambiae and An. coluzzii (Akpodiete et al., 2019; 

Florescu et al., 2011; Hargreaves, 1998). 

 Below NH3 concentrations that trigger toxicity, An. gambiae s.s. is expected to 

outperform An. coluzzii and this has been demonstrated elsewhere (Akpodiete et al., 

2019; Tene Fossog et al., 2013). However, the higher survival rates of An. gambiae s.s. 

at higher NH3 concentrations was unexpected as An. coluzzii, the more recently derived 

taxon, is known to prefer, permanent, nutrient-rich habitat and so should be better adapted 

to mineralisation and hence survive better in eutrophic conditions (Diabate et al., 2005; 

Tene Fossog et al., 2013). This situation may be attributed to the longer adaptation of An. 

gambiae s.s. (~ 40 years of laboratory maintenance compared to the ~ 17-year old An. 

coluzzii strain) to insectary conditions (Baeshen et al., 2014). Testing of such conditions 

(abiotic stressors) with additional strains from different locations could help improve the 

understanding of whether this disparity in adaptive response to NH3 is species-specific. 

However, current field populations of the sibling species are under heavy selection 

pressures from chemical control, agricultural chemical residue and other pollutants 

(Cassone et al., 2014; Kamdem et al., 2012; Tene Fossog et al., 2013). The sibling species 

have also recently introgressed with one another, resulting in the possible selective 

introgression of important pesticide resistance loci and possibly ammonia detoxification 

ones (Cassone et al., 2014). Therefore, in this study, we favoured older strains with as 

little evolutionary history of such recent anthropomorphic selection pressures and 

associated introgression (Caputo et al., 2011; Mancini et al., 2015). 

 The second experiment which focused on the carry-over effect of NH3 reveal that 

the effect of NH3 exposure at larval stage was carried over to adult emergence. Although 
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NH3 exposure at larval stage significantly impacted pupal mortality, there was no 

significant difference in pupal mortality and adult emergence between mosquito pupae 

transferred to NH3 water for emergence and those transferred to non-NH3 water. The 

pupal stage in mosquitoes is a short, non-feeding stage, this limits the expression of any 

phenotypic response to the larval stage that is relatively longer (~1-10 days) with active 

feeding (White, 1977). The result also supports studies that have shown that larval 

environmental conditions (temperature, nutrition, toxicants, microbial communities, 

predators), shape the outcomes for Anopheles adults, impacting on body size, vectorial 

capacity, distribution, prevalence, stress-tolerance and epidemiology (Aboagye-Antwi & 

Tripet, 2010; Chobu, et al., 2015; Christiansen-Jucht, et al., 2014; Diabate et al., 2005; 

Gimonneau et al., 2012). 

 In summation, the findings of this study are important both as supporting evidence 

of larval ecological divergence amongst the sibling species resulting in eco-speciation, 

sympatric occurrence of the sibling species without outcompeting each other, and for 

direct application for vector control. Firstly, the contrasted adaptive response to ammonia 

in rice field proposed here as a key ecological process driving speciation was found to be 

still present in these so-called laboratory-adapted strains as evidenced in the higher 

phenotypic quality of adult An. coluzzii (Li et al., 2018; Price et al., 2003; Tene Fossog 

et al., 2015). Earlier studies have demonstrated that these differences are related to their 

contrasted abilities to detoxify ammonia (Dias, et al., 2019; Tene Fossog et al., 2013). 

The An. coluzzii strain (Mopti from Bamako Mali) used for this study is comparatively 

'younger' and might have been colonized from a strain that already had some adaptations 

to pesticide exposures of recent evolutionary times, thus presenting a possible 

confounding factor for the interpretation of the results. For this study however, it was 

difficult to replicate these ammonia plastic responses with additional older colonized 
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strains because available An. coluzzii insectary populations do not pre-date the M and S 

diagnostic (della Torre et al., 2001). Although the metabolic insecticide resistance 

pathways in mosquitoes have been demonstrated to evolve from allelochemicals and 

xenobiotic detoxification pathways, the ammonia detoxification pathway in mosquitoes 

has been described as a distinct pathway with no available literature linking these 

pathways (David et al., 2013; Kirchman et al., 2010; Scaraffia, et al., 2010). Metabolic 

insecticide resistance primarily involves the increased biodegradation of insecticides 

through the overproduction of detoxification enzymes such as P450s, glutathione S-

transferases (GSTs) and carboxy/cholinesterases (CCE) (David et al., 2013; Hemingway, 

et al., 2004; Hemingway & Ranson, 2000). In contrast, ammonia is mainly removed by 

mosquitoes through the synthesis of glutamine and proline, via glutamine synthetase 

(GS), glutamate synthase (GltS), glutamate dehydrogenase (GH) and alanine transferase 

(AT) pathways and by the excretion of uric acid, allantoin, allantoic acid and urea 

(Scaraffia et al., 2010). Even in the unlikely event of an overlap between insecticide and 

ammonia detoxification pathways, it has been demonstrated that target site resistance by 

kdr mutation was not present in the An. coluzzii strains used for this study (Tripet et al., 

2007). The possibility of metabolic resistance in this An. coluzzii population is highly 

unlikely as a study that investigated insecticide resistance in Mali, sampling An. coluzzii 

populations for the 25 year period before 2005 did not detect CYP9K1 (a P45O gene 

closely related to P450 genes that have been proven to metabolise pyrethroid insecticides 

in vitro) (Main et al., 2015). These studies in Mali were based on the background of the 

dramatic increase in insecticide-treated bed-net usage in 2005 (Ng et al., 2017) which 

likely altered the fitness landscape of An. gambiae s.l. and promoted adequate 

introgression of kdr (knockdown resistance) from An. gambiae s.s into An. coluzzii 

(Norris et al., 2015). 
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The second significance of this study is that the contrasted slopes of reaction norms to 

ammonia exemplifies why and how sympatric sibling species can be found in the same 

region despite imperfect premating barriers and considerable overlap in larval habitats 

use, yet without one outcompeting another over time (Roux et al., 2014; Tene Fossog et 

al., 2015). Current demographic explosion in malaria-endemic regions of the world and 

the attending demand for food security has led to increased rice domestication, often 

implemented via irrigation (Sikirou et al., 2015). Irrigational agriculture often involves 

the use of fertilizers, to improve crop yield, thus introducing sub-lethal doses of ammonia 

in these aquatic ecosystems (Tene Fossog et al., 2015). Field based acute toxicity assays 

in Yaounde, Cameroon, found An. coluzzii (M form) to have high tolerance for organic 

pollution associated with high levels of ammonia ions, and alkaline water collections 

(Tene Fossog et al., 2013). Earlier studies had demonstrated that irrigational agriculture 

though not impacting malaria transmission in areas of stable transmission (Ijumba & 

Lindsay, 2001) can alter malaria transmission patterns from seasonal to perennial in semi-

arid zones of Africa (Dolo et al., 2004). Planned and unplanned urbanization 

characterised by environmental pollution, are also typical of these malaria endemic 

regions leading to the onset of urban malaria (Kamdem et al., 2012; Tene Fossog et al., 

2015). These human interventions such as irrigate rice fields, open quarry mines, 

unplanned urbanization, will serve to further expand the niche of An. coluzzii vectors, 

bringing these virulent vectors in closer proximity with their human host and expand 

disease transmission all year round (Kamdem et al., 2012). 

 Of direct translational impact, the third significance of this study is that the results 

can inform modifications in An. gambiae s.l. rearing protocols to include mineral water 

instead of the commonly used deionised water. Ongoing efforts towards mass release 

mosquitoes modified by gene drive technology, SIT (sterile insect techniques) 
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implementation and other vector control strategies that rely on large scale production of 

mosquitoes could benefit from the introduction of mineral water in mass rearing protocols 

to improve mosquito yield and adult phenotypic quality. As a result of this study, water 

mineralisation, ammonia, and water depth were highlighted as major factors impacting 

larval mortality and phenotypic quality in the sibling species. We believed that these 

factors needed to interact together in a microcosm to reveal divergent reaction norms in 

mosquito survival as well as adult phenotypic quality, thus, informing the experimental 

design of Chapter 5. 

 In conclusion, the overall epidemiological consequence of these reaction norms 

by An. coluzzii to ammonia resulting in larval niche expansion might be a contributing 

factor to the stall in the progress towards malaria control and possible eradication (WHO, 

2018). Larvicidal and adulticidal based vector control methods will need to be revised, 

to account for the niche expansion and distribution of these vectors resulting from 

ammonia tolerance in An. coluzzii.  
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Chapter 5 

Contrasted microcosms experiment and developmental success reaction norms in 

Anopheles gambiae s.s. and Anopheles coluzzii.  

5.1. Introduction 

The Cambridge dictionary defines microcosm as “ a small place, society or situation that 

has the same characteristics as something much larger” (Cambiridge Dictionary, 2020). 

In the context of scientific research, microcosms are simplified, ecosystems, that are used 

to simulate and predict the behaviours of natural ecosystems under controlled conditions 

(Roeselers, et al., 2006). Microcosms provide an experimental area for ecological 

research, with substantial and valuable information on the structure of ecosystems, 

natural processes, and the functioning of biotic communities within these ecosystems 

(Draggan, 1976; Roeselers et al., 2006). As models of natural ecosystems, the 

characteristics of microcosms are defined by those of the larger systems they represent 

(Draggan, 1976). They are conceptually similar in function to, but may differ in origin 

and structure from the natural system they mimic (Altermatt et al., 2015). A microcosm 

can either be a subset of a natural ecosystem (such an intact soil section) or a laboratory 

fabrication (such as a soil column), and this factor is important in the conceptualisation 

of microcosms as models of real-world situations (Draggan, 1976). Another equally 

important factor in conceptualizing of a microcosm is the hypotheses posed by the 

investigator of the expected behaviour of organisms in a given microcosm (Altermatt et 

al., 2015). 

 These miniaturised ecosystems (microcosms) can be very useful to study the 

effects of disturbance or determine the ecological role of a key species (Roeselers, et al., 

2006). They serve as a good compromise between field experiments, which are often 

challenging due to environmental variability, high cost and difficult logistics, and 
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laboratory-based experiments, which are scarcely representative of the natural systems 

(Grenni, et al., 2012). Other advantages of laboratory microcosm studies include the 

possibility of multiple replications due to the compact size of these systems and the ability 

to vary experimental conditions individually to establish a cause-effect relationship 

between variables and the test organism (Grenni, et al., 2012). Results from microcosm 

studies sometimes do not directly translate to the real world, but they are a great starting 

point for ecosystem research (Altermatt et al., 2015). 

 Phenotypic plasticity has been defined as the change in the expressed phenotype 

of a genotype in response to the environment (Forsman, 2015). It involves the ability of 

a single gene to produce more than one alternate form of morphology, physiological state 

and/or behaviour in response to environmental conditions (Forsman, 2015). Phenotypic 

plasticity commonly emerges in stressful or adverse habitats, revealing pre-existing 

genetic and development of organismal homeostasis (Badyaev, 2005; Li et al., 2018). An 

organism’s ability to tolerate stress might be a result of its complexity and accumulation 

of unexpressed variation by genetic and phenotypic developmental systems facilitating 

evolutionary changes under extreme conditions (Badyaev, 2005). An increase in variation 

in individual organismal systems and their subsequent reorganisation is thought to enable 

the formation of novel adaptations, promoting its persistence under adverse conditions 

and establishment in novel environments before genuine genetic adaptations evolve 

(Badyaev, 2005; Gulisija et al., 2016). Phenotypic plasticity may incur a fitness cost such 

as the development and maintenance of structures and systems involved in osmo- or 

thermoregulation (Gulisija, et al., 2016). Where the cost of plasticity exceeds the benefit, 

for instance, when environmental conditions improve or become favourable, plasticity is 

selected against (Gulisija, et al., 2016). These observed phenotypic variations are shaped 

by genomes, environment and their interactions (Li et al., 2018). Genotype-environment 
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(G × E) interactions are widespread in nature, such as inbreeding depression and heterosis 

in crops, and natural populations manifest average fitness differences magnified in harsh 

conditions (Kondrashov & Houle, 1997) 

 The phenotypic profile of a genotype across environments is described by the 

reaction norm, while phenotypic plasticity measures the variation among these 

phenotypic values (Li et al., 2018). The reaction norm is the pattern of phenotypes 

produced by a given genotype under different environmental conditions, thereby 

mediating the expression of genetic variation (Li et al., 2018; Stearns, 1992). Where a 

quantitative index is generated for the environments, G × E can be modelled as different 

performance curves of genotypes (i.e. reaction norms) along with this index (Li et al., 

2018). It is onerous to pinpoint critical environmental determinants to establish a 

quantitative index that is both biologically essential and prognostic for the natural field 

(Li et al., 2018). In the presence of several genotypes, environments can differ 

qualitatively in the distribution of genotypes, often leading to the crossing of reaction 

norms (Stearns, 1992) (Figure 5.1). Crossing reaction norms is a strong form of G × E 

interaction, that have two critical effects on phenotypic distribution. Firstly, they 

determine if the variation in the phenotype is heritable. In the region where the norms 

cross, the genotypic variation is unclear, phenotypes cannot be assigned unambiguously 

to genotypes near this point. Outside that crossing region, the genotype variation is clear. 

Secondly, reaction norms influence the ranking of phenotypes. In the environments to the 

right of the crossing point, the phenotypic ranks of the genotypes are the opposite of those 

in the environment to the left (Stearns, 1992).  

 Mosquitoes in the Anopheles gambiae s.l. complex consists of the major vectors 

of human malaria throughout sub-Saharan Africa (Simard et al., 2009).  
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Figure 5.1: (a) Reaction norms of the genotypes present run parallel to each other and there is no genotype 
× environment interactions. (b) Reaction norms with different slopes represent genotype × environment 
interactions. (c) Crossing reaction norms convert three similar environmental distributions. In environments 
1 and 3, the genotypes can be distinguished in the phenotypes and perceived genetic variation is 
significantly different from zero. In environment 2, near the crossing point of the norms, the genotypes are 
indistinguishable in the phenotypic mixture and perceived genetic variation is nil. Between environments 1 
and 3, the phenotypic ranking of the genotype reverses (modified from Stearns, 1992) 
 

Speciation among members of this complex is thought to be encouraged by disruptive 

selection and ecological divergence dependent on sets of adaptation genes protected from 

recombination by polymorphic chromosomal inversions (Simard et al., 2009). The 

recently speciated sibling species, Anopheles gambiae s.s. and Anopheles coluzzii, 

members of the An. gambiae s.l complex, are model species for eco-speciation studies 

(Reidenbach et al., 2012). They have a remarkable preference for human blood and are 

primarily endophilic and endophagic; together with their high longevity, allowing for the 

sustainable development of Plasmodium parasites under a variety of ecological settings, 

making them the most proficient malaria vectors in the world (Simard et al., 2009). The 
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ongoing divergence between these species despite incomplete reproductive isolation has 

been linked to differential ecological adaptations to divergent larval habitats in different 

eco-geographical settings (Aboagye-Antwi et al., 2015; della Torre et al., 2005; Diabaté 

et al., 2009; Kamdem et al., 2012; Lehmann & Diabate, 2008). 

 They are virtually present ubiquitously in sub-Saharan Africa, populating the 

varying environments typically found on the continent and transmitting malaria to 

humans in remote areas as well as urban municipalities (Simard et al., 2009). In West 

African savannahs, the main ecological distinction between the presumed ancestral An. 

gambiae s.s. and the derived An. coluzzii is their choice of larval habitat (Reidenbach et 

al., 2012). An. coluzzii is often associated with longer-lasting breeding sites that are 

associated with predators and high amounts of organic matter such as rice fields, 

reservoirs, abandoned mines and quarries, and drainage ditches (Diabate et al., 2005). Its 

ability to breed in irrigated rice fields may be strongly linked with rice domestication in 

Africa (Reidenbach et al., 2012). An. gambiae, on the other hand, usually reaches its 

population peak during the rainy season, and is well adapted to habitats that are more 

ephemeral and rain-dependent (Aboagye-Antwi et al., 2015; della Torre et al., 2005; 

Diabaté et al., 2009; Kamdem et al., 2012; Lehmann & Diabate, 2008). This larval habitat 

preference and the resultant divergent adaptations of these species has been cited as a 

possible cause of speciation (ecological speciation) among both species (Gimonneau et 

al., 2010). 

 Rice is a tropical/sub-tropical crop that is cultivated in several agro-ecological 

zones. In West Africa, African rice (Oryza glaberrima) was domesticated from the wild 

approximately 3500 years ago in the inland delta flood plains of the upper Niger River in 

Mali (Chang, 1976). There was a subsequent spread, 500 years later, along the Sahelian 

rivers to two secondary locations, one in the coastal Gambia, Casamance (Senegal), and 
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Guinea Bissau; the second location in the Guinea forest between Sierra Leone and the 

western Ivory Coast (Chang, 1976; Li et al., 2011; Reidenbach et al., 2012). 

Environments, where rice is grown, include tidal wetlands (coastal regions), upland 

environments, deep water environments, rain-fed lowland environments and irrigated 

environments. Water is available in irrigated rice fields throughout the growing season 

with depths of 5cm to 10 cm (Bambaradeniya & Amarasinghe, 2003). Irrigated rice fields 

are characteristically lentic water bodies viewed by scientists as agronomically managed 

wetlands (Mwangangi et al., 2010). Farming activities such as tillage, agrochemical 

application, and weeding creates a disturbance in this ecosystem as well as rainfall and 

flooding (Bambaradeniya & Amarasinghe, 2003). The chemistry and biotic composition 

of irrigated rice paddies are influenced by the source of water supply, which is either 

from naturally occurring rivers or through rainfall (Baolan et al., 2012; Mwangangi et al., 

2010). Natural levels of ammonia in rice paddies ranging from 0.53 ± 0.1 mg/l, is a by-

product of protein metabolism of aquatic organisms and can be toxic if allowed to 

accumulate (Bambaradeniya & Amarasinghe, 2003; Baolan et al., 2012; Hargreaves, 

1998). Un-ionised ammonia concentrations above 0.2 ± 0.3mg/l has been reported to be 

toxic to freshwater aquatic organisms (Florescu et al., 2011). 

 The levels of ammonia in the floodwater are further increased by fertilizers used 

by farmers to increase agricultural yield (Bambaradeniya and Amarasinghe, 2003).  

Approximately 78% of the invertebrates in a typical irrigated rice field ecosystem are 

insects among which the Dipteran order are dominant, specifically in the family Culicidae 

(Bambaradeniya & Amarasinghe, 2003). Members of the An. gambiae s.l. species 

complex thrive in shallow inundated rice fields during tilling, transplanting, the first six 

weeks of the rice growing period and after harvest (Klinkenberg, et al., 2003). In West 

Africa, rice fields have proved to be particularly suited as larval sites for An. coluzzii, one 
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of the main malaria vectors in this region (Dolo et al., 2004; Epopa et al., 2017; Ijumba 

& Lindsay, 2001; Klinkenberg et al., 2003; Mwangangi et al., 2010). Although irrigated 

agriculture has little or no impact on malaria transmission in localities where transmission 

is stable, the year-round availability of mosquito breeding sites provided by rice field 

cultivation can alter malaria transmission in drier regions; changing transmission pattern 

from rainfall seasonality to perennial (Ijumba & Lindsay, 2001; Ijumba, et al., 2002). 

Observed variation in the distribution and abundance of Anopheles populations 

associated with rice fields (Dolo et al., 2004; Epopa et al., 2017; Faye et al., 1995; 

Lindsay et al., 1991; Marrama et al., 2004; Mwangangi et al., 2006; Sawadogo et al., 

2017) around West Africa reflects the oviposition preferences of gravid mosquitoes and 

the ability of immature stages to tolerate conditions that prevail within their aquatic 

habitats (Mwangangi et al., 2010). 

 Abiotic factors such as habitat stability, or the degree of spatial heterogeneity and 

biotic factors such as predations are known to influence Anopheles populations in the rice 

field aquatic ecosystem (Diabate et al., 2005; Munga et al., 2006). Intraspecific 

competition has been cited as a factor for the almost exclusive occurrence of An. coluzzii 

in rice fields in the savannah region of West Africa, a situation indicative of competitive 

segregation (Diabate et al., 2005). Intraspecific competition in Anopheles gambiae s.l. 

has been known to prolong larval development and reduce the size of adults which results 

in reduced productivity (Munga et al., 2006). Following a field transplantation 

experiment, where the sibling species were placed in An. coluzzii-typical and An. 

gambiae s.s.-typical larval habitats, the sibling species successfully outperformed one 

another in their preferred habitats thereby lending support to the hypothesis that 

competition at the larval stage played a significant role in the divergence between both 

species (Diabate et al., 2005). 
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Rice paddies (An. coluzzii typical larval habitat) are prone to mosquito larval predators 

when compared with the temporal, predator free, shallow rain puddles preferred An. 

gambiae s.s. and this has been highlighted as a major driver of the larval niche 

differentiation between the sibling species (Gimonneau et al., 2012; Munga et al., 2006). 

The sibling species have been modelled in field transplantation experiments as examples 

of how predation pressure results in disruptive selection that promote ecological 

divergence (Gimonneau et al., 2010). In the study, larvae of An. gambiae s.s a had shorter 

pre-imaginal development duration in temporary waters with low predators with An. 

coluzzii developing faster in predator rich environments (Gimonneau et al., 2010). Other 

studies have also established the fact that An. coluzzii is better adapted to live in 

ecologically more complex and stable habitats where predators are more abundant and 

diverse compared to the ephemeral predator barren larval habitats of An. gambiae s.s. 

(Munga et al., 2006; Roux et al., 2014; Tene Fossog et al., 2015). In the absence of 

predation however, the sibling species outcompetes each other in their natural habitats 

(Gimonneau et al., 2012). Whilst An. gambiae s.s. behaves as surface feeders, mainly 

thrashing at the water surface and foraging through floating vegetation, An. coluzzii 

larvae mimics benthic feeders, spending significantly greater amount of time browsing at 

the bottom of the container and diving more frequently than the former (Gimonneau et 

al., 2012).This behaviour has been directly linked to its success in both habitats under 

predator pressure (Diabaté et al., 2008). 

 The phenotypic responses mediated by the cultivated rice environment in An. 

coluzzii is not fully understood even though various studies agree that significant changes 

in its bionomics and epidemiology can be traced to rice domestication (Bambaradeniya 

& Amarasinghe, 2003; Dolo et al., 2004; Epopa et al., 2017; Faye et al., 1995; Lindsay 

et al., 1991; Marrama et al., 2004; Mwangangi et al., 2006; Sawadogo et al., 2017). In-
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depth study is therefore required to understand the G × E interactions of the rice-

agroecosytem as a larval habitat of An. coluzzii, as well as the factors that affect its 

abundance and prevalence in this ecosystem and how this has contributed to the ongoing 

eco-speciation between An. gambiae s.s. and An. coluzzii.  

 To fill this gap in knowledge, we had investigated plastic responses of An. coluzzii 

and An. gambiae s.s. to increasing concentrations of ammonia, a common toxicant in the 

rice field ecosystem in the previous chapter of this thesis (Chapter 4). The results revealed 

reactions norms for An. coluzzii that correlate with stress and ammonia tolerance. In this 

current study we investigated the phenotypic responses underlying larval ecological 

adaptations between the sibling species, An. gambiae s.s and An. coluzzii in microcosm-

based experiments that are as close to the natural habitat as possible to reveal plastic 

responses to natural ecosystems under controlled conditions. This was achieved by 

observing the larval development and adult emergence of these vectors in species-

preferred microcosms and also during transplantation to non-preferred microcosms to 

reveal G × E interactions amongst the sibling species in an arena that were ecologically 

more relevant and closer to the natural environment compared to the Chapter 4 set-up. 

Anopheles coluzzii was reared in a simulated rice field microcosm and Anopheles 

gambiae s.s. was reared in a simulated rain-fed larval microcosm and both species were 

also transplanted to non-preferred microcosms. Adult survival, mosquito wing length and 

developmental time were recorded as indices of plasticity. Results reveal divergent criss-

crossing reaction norms in the developmental success of the sibling species in the two 

contrasted larval environments. These findings lend support to the hypothesis that 

adaptations to rice-field like conditions, independent of predator presence may be an 

important driver of ecological speciation in the sibling species. 
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5.2. Materials and Methods 

5.2.1.  Mosquito strain 

The Kisumu strain of An. gambiae s.s, colonized over 40 years ago, from the area of 

Kisumu, Kenya, East Africa and the 17-year-old Mopti strain of An. coluzzii, colonized 

in 2003 by the Lanzaro Laboratory (UC Davis) from the village of NʼGabacoro droit near 

Bamako, Mali, West Africa, were used for the experiments. The strains were maintained 

by the Tripet group in dedicated insectaries of the Centre of Applied Entomology and 

Parasitology (CAEP), Keele University, UK, as described in Chapter 2. 

 

5.2.2.  Simulated An. gambiae s.s.-typical larval microcosm (Rain puddle) 

Rain puddle-like larval microcosms were simulated with transparent aquarium-like 

containers of 19.5cm length, 16.5cm height and 12.5cm width, containing deionised 

water 4cm deep and 400ml of wet inert light brown sand (UNIPAC aqua gravel, the 

PetCare division of D-PAC Limited, 4 Sketty close, Brackmills Northampton, NN4 7PL, 

United Kingdom) of 2cm depth (Figure 5.2). 

 

 

Figure 5.2: Simulated An. gambiae s.s. preferred microcosm (Rain puddle). 
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5.2.3.  Simulated An. coluzzii-typical larval microcosm (Rice paddy). 

An. coluzzii-typical larval microcosm was simulated using similar container (as described 

in section 5.2.2), containing mineral water at 8cm depth, 1.3mg/l of ammonia, 400ml of 

inert dark sand 2cm deep (UNIPAC aqua gravel, the PetCare division of D-PAC Limited, 

4 Sketty close, Brackmills Northampton, NN4 7PL, United Kingdom), and a patch of 

intermediate density plastic grass (to imitate the rice field), 11.3cm length × 6.2cm width 

(patches were 5cm apart) (Figure 5.3). 

 

 

Figure 5.3: Simulated An. coluzzii-typical larval habitat. 
 

5.2.4.  Experimental design 

Each replicate consisted of two larval densities (30 and 60 larvae) of first instar larvae of 

both species placed in the two types of microcosmic larval habitats (2 species × 2 

densities × 2 habitats = 8 microcosms), resulting to a total of 720 sampled mosquito larvae 

for two replicates. The total of 16 microcosms was randomly arranged and rearranged 

daily from day 5, to avoid confounding effects. To prevent ammonia build-up, on day 5 

and afterwards, every other day until the completion of the assay, water was pumped out 

from the microcosm using a low-pressure pump, down to a minimal level to avoid picking 
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up larvae and replaced with fresh water as per larval habitat type. Microcosms were 

covered with mosquito netting material to contain the emergence of mosquito adults and 

entry of external debris. Coloured tapes were used to differentiate the habitat type and 

species and the microcosms arrangement in the insectary was completely randomised 

(Figure 5.5). 

 

 
 

Figure 5.4: Experimental design for the contrasted microcosms experiment.  

 

5.2.5.  Larval feeding regime 

Larvae were fed daily following a standardised feeding regime. 0.1 µl of Liquifry liquid 

fish food (Interpret Ltd, Surrey, UK) on day 1. From day 2 until pupation, finely ground 

Tretramin flakes (Tetra GmbH- Herrentech D-49324, 78 Melle, Germany) was mixed 

with deionised water and injected into the microcosm in the following proportions: day 

two to three - 0.25ml of 0.2g/10ml solution of ground Tetramin flakes; day 4 - 0.5ml of 

0.16g/10ml solution of ground Tetramin flakes; day 5 until pupation - 1ml of 0.75g/50ml 

of ground Tetramin flakes. 
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Figure 5.5: An array of contrasted larval microcosms before randomization (see 5.2.4 for details) 
 

5.2.6.  Data collection 

Adult emergence was recorded as the number of adults that emerged from the total 

number of larva placed in a microcosm. Development time was recorded as the duration 

between day 1 of the experiment when first instar larvae were placed in microcosm and 

the day of adult emergence. Adults that emerged from the microcosms were collected 

using a mouth aspirator, sexed and stored in 75% ethanol for subsequent measurement of 

wing-length as described in Chapter 2.  

 

5.2.7.  Water quality analysis 

Using API aquarium test kits (Mars Fishcare North America, Inc, 50E Hamilton street, 

Chalfont, PA, 18914, USA), general hardness, carbonate hardness, pH, nitrates and 

ammonia readings were taken on day 1 and day 10 following experimental set-up (Table 

5.1). 

 

5.2.8.  Statistical analysis 

All data collected were analysed using the software JMP 14 (SAS Institute, Inc., Cary, 

North Carolina, USA). All data were checked for deviations from normality and 

heterogeneity, and analyses were conducted using parametric and non-parametric 
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methods as appropriate. Data from all replicates were used for analysis, replicate effects 

were tested but were only reported when significant. Interactions between independent 

variables were tested using step-wise models and only those significant were retained in 

the final models. For analyses of proportion of larvae, pupae and adults, likelihood odds 

ratios were used for post-hoc pairwise group comparisons following logistic regressions. 

Body size was analysed through general linear models followed by Tukeyʼs HSD post-

hoc pairwise comparisons. Finally, developmental times (day of emergence) were 

analysed by Cox Proportional-Hazard models with likelihood odds ratios for post-hoc 

pairwise comparisons. 

 

Table 5.1: Mean of general hardness, carbonate hardness, pH, nitrates and ammonia across larval 
habitats 

Treatment Species Larval 
density 

Day Nitrate 
(mg/l) 

Ammonia 
(mg/l) 

General 
hardness 
(mg/l) 

Carbonate 
hardness 
(mg/l) 

pH 

Rain 
puddle 

An.coluzzii 30 1 0.5 0.25 17.9 17.9 6.8 
 10 0 8 35.8 53.7 7.2 
60 1 0.5 0.25 17.9 17.9 6.8 
 10 40 2.5 44.75 35.8 6.9 

An.gambiae 30 1 0.5 0.25 17.9 17.9 6.8 
 10 0 4 35.8 35.8 6.8 
60 1 0.5 0.25 17.9 17.9 6.8 
 10 40 0.75 35.8 35.8 6.6 

Rice 
paddy 

An.coluzzii 30 1 20 0.5 53.7 53.7 7.2 
 10 0 4 71.6 53.7 6.7 
60 1 20 0.5 53.7 53.7 7.2 
 10 0 8 71.6 53.7 7.2 

An.gambiae 30 1 20 0.5 53.7 53.7 7.2 
 10 0 4 71.6 53.7 7 
60 1 20 0.5 53.7 53.7 7.2 
 10 0 6 62.7 53.7 7 

Notes: Sample size=2.  
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5.3. Results 

5.3.1.  Adult emergence across divergent mosquito larval microcosmic habitats 

Overall, there was a significant effect (P < 0.0001) of larval habitat type on adult 

emergence (Table 5.2). Adult emergence from rain puddle was 40% higher than that from 

the rice paddy larval microcosm (Table 5.2; Figure 5.6). Species and density did not 

significantly impact on the total adult emergence numbers across microcosms (Table 

5.2). However, the interaction between species and microcosms (G x E interaction) had 

a very strong and significant impact on adult emergence ( Table 5.2).  

 

  
 
Figure 5.6: Adult emergence of An. coluzzii (light grey bars) and An. gambiae s.s (dark grey bars) across 
two larval microcosms. Whiskers represent 95% confidence intervals (CI). Within larval microcosms, 
significant differences are represented by different letters. The two overlaid dashed lines highlight the 
crossing G × E reaction norms across two divergent larval environments. 
 

 In the rice paddy (An. coluzzii typical), adult emergence for An. coluzzii (17%) was 

almost double that of An. gambiae s.s. (9%). (Figure 5.6) Inversely, in the rain puddle 

microcosm (An. gambiae typical), An. gambiae had significantly higher adult emergence 

(67%), compared to the 38% emergence in An. coluzzii. (Figure 5.6). Further logistic 

regression fit modelling conducted within microcosms revealed significant differences 
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among the sibling species within divergent larval microcosmic habitats and for the two 

larval densities (Table 5.4). As predicted by the significant G × E interaction in the main 

model, An. coluzzii had significantly higher adult emergence in the rice paddy 

microcosms while An. gambiae s.s. had higher adult emergence in the rain puddle 

microcosms. The effect of density on adult emergence was significant (P = 0.0292) in 

rice paddy but not in rain puddle, but the interaction between density and species was 

significant in both microcosms (Table 5.4). 

 

Table 5.2: Logistic regression (Effect Likelihood Ratio Tests) of adult emergence of An. coluzzii and 
An. gambiae s.s. in divergent larval microcosms. 

Source DF Likelihood ratio P-value 

Species 1 0.338 0.1701 ns 
Microcosm 1 60.481 <0.0001*** 

Density 1 2.646 0.7013ns 
Microcosm *Species 1 28.886 <0.0001*** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  

 

Table 5.3: Adult emergence of An. gambiae s.s and An. coluzzii across two larval microcosms. 

Species Microcosm Larval density % Adult emergence 

An. coluzzii Rice paddy 30 18 (11-30) 60 
60 16 (10-23) 120 

Rain puddle 30 32 (21- 44) 60 
60 42 (33-51) 120 

An. gambiae s.s Rice paddy 30 2 (0-9) 60 
60 13 (9-21) 120 

Rain puddle 30 76 (64-86) 60 
60 63 (54-71)120 

Ninety-five percent confidence intervals are in brackets and sample sizes are italicized. Adult emergence 
was calculated as emerged adults out of the initial sample size. 
In the rice paddy at 30 larval density, adult emergence for An. coluzzii (18%), 

significantly higher than the 2% emergence of An. gambiae s.s. for the same condition 
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(Tables 5.3, 5.4; Figure 5.7). There was no significant difference in adult emergence in 

the rice paddy microcosm at the 60 larval density (Tables 5.3, 5.4; Figure 5.7) for both 

species. Inversely, in the rain puddle microcosm at 30 larval density, An. gambiae had 

significantly higher adult emergence (76%), compared to the 32% emergence in An. 

coluzzii; and at 60 larval density An. gambiae s.s. had 20% higher adult emergence 

(Tables 5.3, 5.4; Figure 5.6) at both larval densities.  

 

  

Figure 5.7: Adult mosquito emergence across divergent larval microcosms for two larval densities. Whiskers 
represent 95% confidence intervals (CI).  
 

Table 5.4: Logistic regressions (Effect Likelihood Ratio Tests) of adult emergence within habitats 

Parameter Habitat Source DF Likelihood 
ratio 

P-value 

Adult emergence Rice paddy Species 1 10.679 0.0011** 
  Density 1 4.756 0.0292* 
  Density*Species 1 6.780 0.0092** 

 Rain puddle Species 1 25.409 <0.0001*** 

  Density 1 0.253 0.6149 

  Density*Species 1 5.330 0.0210* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  



 132 

5.3.2.  Development time in divergent larval microcosms 

Time of mosquito development from the larval stage to adult emergence was significantly 

(P < 0.0001) impacted by the type of microcosm in which larvae were reared (Table 5.5). 

Development time was on the average, two days longer in the rice paddy microcosm 

compared to rain puddle microcosm (Figure 5.8; Table 5.5). There were no significant 

effects of species and density on the duration of mosquito development from first instar 

to adult emergence (Table 5.5).  

 

  

Figure 5.8: Emergence time across larval microcosms for An. coluzzii (A-larval density of 30 and B of 60 
larval density) and An. gambiae (C- 30 larval density and D- 60 larval density).  
 

Table 5.5: Cox Proportional-Hazard analyses of development time  

Parameter Source df Likelihood ratio P-value 

Day of emergence Species 1 1.467 0.2258 
Habitat 1 41.917 <0.0001*** 
Density 1 2.759 0.0967 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom 
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5.3.3.  Wing-length of emerged adults across larval microcosms. 

Across both larval microcosms and rearing densities (30 and 60), An. coluzzii adults had 

significantly (P<0.0001) longer wing-lengths in comparison to An. gambiae (Table 5.7; 

Figure 5.9). Adults emerging from the rain puddle microcosm were significantly 

(P<0.0001) bigger than those from the rice paddy larval microcosm (Table 5.7; Figure 

5.9). Larval rearing density (P = 0.0171), the interaction between density and species 

(P<0.0001) significantly impacted the wing-length of emerged adults in both divergent 

larval microcosm (Tables 5.6; 5.7). Larger adults emerged from the 30 larval rearing 

density compared to the 60 rearing density for An. coluzzii across both habitats.  

 

  
Figure 5.9: Wing-length of An. gambiae (light blue-30 larval density, dark blue- 60 larval density) and An. 
coluzzii (light green-30 larval density, dark green- 60 larval density) across microcosms. Whiskers represent 
95% confidence intervals. 
 

This effect was only observed in the rice paddy for An. gambiae, as there was no 

significant difference in adult size for this species in rain puddle habitat in relation to 

rearing density (Figure 5.9; Tables 5.6,5.7). Emerged females for both species were 

significantly bigger in size than the males, across microcosms and rearing densities 

(Figure 5.10, Tables 5.7, 5.8). An. coluzzii females significantly differed by density 
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(Table 5.7) with females reared at 30 larval density larger than those at 60 in both larval 

microcosms. 

 

Table 5.6: Mean wing-length and development time of An. gambiae s.s. and An. coluzzii in divergent 
larval microcosms. 

Species Microcosm Larval 
density 

Mean wing length 
(mm) 

Days till emergence 

An. coluzzii Rice paddy 30 3.00 (2.81–3.18) 11 12.55 (11.68-13.41) 11 
60 2.82 (2.75–2.89) 19 12.84 (12.33-13.36) 19 

Rain 
puddle 

30 3.22 (3.12–3.31) 19 10.95 (10.61-11.29) 19 
60 3.09 (3.04–3.13) 50 11.24 (11.02-11.46) 50 

An. gambiae Rice paddy 30 2.68 (0–0) 1 12 (0-0) 1 
60 2.88 (2.81–2.94) 16 12.94 (12.53-13.35) 16 

Rain 
puddle 

30 3.04 (2.99 –3.08) 46 10.76 (10.55-10.97) 46 
60 3.07 (3.04–3.09) 75 10.99 (10.77-11.20) 75 

Notes: Ninety-five percent confidence intervals are in parentheses and the samples sizes, the number of 
surviving individuals out of an initial number of 60 or 120 larvae are italicized. 
 

This effect was absent for An. gambiae in the rain puddle, as no significant difference 

was observed in females of this species by density in that microcosm. In the rice paddy 

microcosm, however, no female An. gambiae emerged from the 30 larval rearing density 

(Figure 5.10). Within microcosms, males emerging from the rain puddle were larger than 

those from the rice paddy microcosm.  

 

Table 5.7: General linear model of wing-length across larval microcosms 

Parameter Source df F-ratio P-value 

Wing length Species 1 28.707 <0.0001*** 
Microcosm 1 81.735 <0.0001*** 
Density 1 5.766 0.0171* 

Sex 1 30.593 <0.0001*** 
Density*Form 1 21.548 <0.0001*** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom  
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No significant differences were observed in males for the species within the rain puddle 

microcosm. In the rice paddy, An. coluzzii males were significantly larger than An. 

gambiae males. Males emerging from the 30 larval rearing density were significantly 

bigger for An. coluzzii compared to those from 60 rearing density (Figure 5.10, Table 

5.8).  

 

  

Figure 5.10: Wing-length by sex comparison of An. gambiae s.s. (light blue-30 larval density, dark blue- 60 
larval density) and An. coluzzii (light green-30 larval density, dark green- 60 larval density) across 
microcosms. Whiskers represent 95% confidence intervals. 
 

Table 5.8: General linear models of wing-length by sex. 

Parameter Sex Source df F-ratio P-value 

Wing length Female Species 1 26.573 <0.0001*** 
Microcosm 1 39.858 <0.0001*** 
Density 1 5.973 0.0160* 

Density*Form 1 20.869 <0.0001*** 
Male Species 1 1.772 0.1860 

Microcosm 1 34.769 <0.0001*** 
Density 1 0.208 0.6491 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom  
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5.4. Discussion 

The major finding of this study is that under microcosm-based conditions, the sibling 

species exhibited plastic responses in developmental success and adult phenotypic 

quality, that reflect their larval habitat preferences in nature (della Torre et al., 2005; 

Diabaté et al., 2009; Kamdem et al., 2012; Lehmann & Diabate, 2008). As expected, in 

the rice paddy environment An. coluzzii had higher survival and superior phenotypic 

quality of emerging adults compared to An. gambiae s.s, and vice versa in the rain puddle 

environment. It is interesting that this study has been successful in eliciting G × E 

interactions similar to those found in the natural habitats of these important malaria vector 

sibling species. These results lend support to the hypothesis of ecological speciation 

through larval adaptation to rice domestication by An. coluzzii (Reidenbach et al., 2012; 

Simard et al., 2009). Further, the reaction norms observed in this study ocurred in the 

absence of predators, indicating that they are inherited and not just an response to 

transient factors (Stearns, 1992). Crossing reaction norms are strong forms of G × E 

interaction, and they determine if the variation in the phenotype is heritable (Stearns, 

1992). 

 The highlight of this study is the highly significant and crossing reaction norms 

found in the emergence success of the sibling species which begs to ask which 

characteristic(s) of the microcosm could be most important in generating this pattern. An. 

coluzzii had significantly higher survival in the more stressful rice paddy-like larval 

microcosm with An. gambiae surviving more in the supposedly less stressful rain puddle. 

The stressors in the paddy microcosm which include, added ammonium hydroxide, 

higher water depth, less light due to darker sand base, and the restriction of movement by 

the artificial rice plants might have elicited the expression of the stress tolerance 

phenotype in An. coluzzii (Badyaev, 2005; Bambaradeniya & Amarasinghe, 2003; 
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Gulisija et al., 2016; Kondrashov et al., 2017). Moreover, phenotypic plasticity is thought 

to commonly emerge in stressful or adverse habitats, revealing pre-existing genetic and 

development of organismal homeostasis (Badyaev Alexander V, 2005; Gulisija et al., 

2016). An organism’s ability to tolerate stress has been linked to its complexity and 

accumulation of unexpressed variation by genetic and phenotypic developmental systems 

facilitating evolutionary changes under extreme conditions (Badyaev, 2005). It has been 

further suggested that these plastic responses can also promote the persistence of a 

population under adverse conditions and aid its establishment in novel environments, 

before genuine genetic adaptations evolve (Gulisija, et al., 2016). The significant 

differences between the sibling species within different larval habitats observed in this 

study resulted in perfectly symmetrical crossing reaction norms, with very strong G ×E 

interaction, providing a strong evidence for ecological speciation. The results were 

reflective of the adaptive response and higher tolerance of An. coluzzii to ammonia in its 

larval habitat, which in the context of a scenario of peripatric speciation with gene flow 

may have been the most important driver of divergence from the ancestral An. gambiae 

s.s. (Aboagye-Antwi et al., 2015; della Torre et al., 2005; Diabaté et al., 2009; Kamdem 

et al., 2012; Lehmann & Diabate, 2008). These results were also consistent with field 

obtained data on the sibling species, where An. coluzzii prefer permanent, organically 

rich, predator prone habitats in contrast to its sibling species, An. gambiae s.s., that prefers 

temporal, shallow, rain-fed pools (della Torre et al., 2005; Diabaté et al., 2009; Kamdem 

et al., 2012; Lehmann & Diabate, 2008). 

 Adult mosquitoes that emerged from the less stressful rain puddle microcosm 

were significantly bigger than those from the rice paddy microcosm. An. coluzzii adults 

were equally significantly larger than An. gambiae s.s. across both microcosms. Previous 

studies have amply demonstrated that larval growth conditions influence adult body size 
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in Anopheles gambiae s.l (Aboagye-Antwi & Tripet, 2010; Takken et al., 2013; Valerio 

et al., 2016). Wing-length is the standard indicator of adult body size in Anophelines 

(Koella & Lyimo, 1996). In female Anophelines, the larger body size is positively 

correlated with fecundity and lifetime fitness (Takken et al., 2013). Larger males are more 

likely to mate and cope better with stressful abiotic conditions (Aboagye-Antwi & Tripet, 

2010). The results from this study support field and laboratory studies on An. coluzzii and 

An. gambiae and strengthens the theory of divergent adaptations in their larval habitat 

(della Torre et al., 2005; Diabaté et al., 2009; Kamdem et al., 2012; Lehmann & Diabate, 

2008). The An. coluzzii strain reared in CAEP, Keele laboratory appears to have 

maintained the reaction norms developed presumably from adaptation to rice field 

habitats over the years in their ability to adapt to stressful rearing conditions. Higher 

phenotypic quality evidenced in their larger body size compared to An. gambiae across 

both larval habitats is indicative of phenotypic plasticity (Price, et al., 2003).  

 The larger body size could also be as a result of overall higher mortality in An. 

coluzzii in comparison to An. gambiae s.s. There is the possibility that smaller mosquitoes 

died in the stressful rice paddy environment, leaving only stronger and larger mosquitoes 

to emerge. These results corroborate similar studies in laboratory conditions, where 

smaller adults emerged from over-crowded larval rearing trays resulting in reduced 

reproductive capacity, fitness and longevity (Takken et al., 2013). This further explains 

the significant effect of density on wing-length observed in this study as emerged adults 

from the 60 rearing density were significantly smaller than those from the 30 rearing 

density. 

 Time of development from first instar larvae to adult was significantly longer in 

the more stressful rice paddy microcosm for both sibling species. This plastic response 

can be linked to the effect of stressors in the environment modifying phenotypic 
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behaviour in these mosquito species. There were no significant differences in the duration 

of development between An. coluzzii and An. gambiae. This partially contrast with results 

from field transplantation experiments where larvae of An. gambiae developed faster than 

An. coluzzii in temporary water collections when predators are few, inversely larvae of 

An. coluzzii outcompetes those of An. gambiae in predator rich environments 

(Gimonneau et al., 2010). Possibly, the lack of species difference in development time 

was due to the absence of predators in the rice paddy microcosm, in contrast to the field 

rice paddy. 

 To foster food and economic security, production of rice in Africa has more than 

doubled in percentage from 1.76% between 1999-2001 to 3.96% between 2002-2013 

(Sikirou et al., 2015). Subsequently, rice exports from the region have also increased in 

recent years with more landmass dedicated to irrigated rice farming (Nasrin et al., 2015). 

Advancement in agricultural technology, increased funding and support to the farmer has 

established rice cultivation as a year-round activity alien to its prior seasonal cycle. Other 

man-made hydrological schemes such as agricultural irrigation ditches and dams have 

further created new ecological larval niches for vector species and thus new opportunities 

for their specialisation and expansion into marginal habitats (Roux et al., 2014). These 

noble efforts to achieve self-sufficiency and food security by developing nations have 

further created more habitats for An. coluzzii, a situation that further promotes the niche 

expansion of this species that is highly adapted to living in human surroundings. Reports 

from the regions with intensive rice farming indicate the presence of vast amounts of the 

malaria vector all year round (Diabaté et al., 2008; Gimonneau et al., 2012). This has 

strong implications for existing vector control measures and the epidemiology of malaria. 

The results from this study will hopefully add to the literature that will serve to balance 

policy decisions on irrigated agriculture to mitigate the provision of additional larval 
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breeding sites for these vectors. The health impacts of such endeavours should be brought 

to the table during deliberations and policymaking. 

 The results from this study provides evidence that microcosms can be a useful 

model system for further ecological speciation studies, and other ecological and 

ecotoxicological aspects such as the testing for or the effect of larval predation on 

divergent ecological adaptation (Roeselers, et al., 2006) and bio-larvicides 

implementation in rice-fields. The model from this study also provides an experimental 

arena for mosquito ecological research with simplified miniature ecosystems that 

simulate natural environments and can be used to predict phenotypic responses under 

controlled conditions. Multiple replications due to the compact size of these systems and 

the ability to vary experimental conditions individually to establish a cause-effect 

relationship between variables and the test organism can be manipulated to provide 

substantial and valuable information on the ecology of An. gambiae s.l populations 

inhabiting rice-field ecosystems in the laboratory (Grenni, et al., 2012). This model study 

could further serve as a good compromise between actual rice-field experiments 

conducted in Africa that can be challenging due to high costs, environmental variability 

and difficult logistics; and non-microcosm laboratory experiments which are scarcely 

representative of the natural systems (like in Chapter 4). The advantages of this model 

system however are not endless as semi-field trials and then field trials will still need to 

be conducted before the implementation of projects, but the microcosm-based model 

developed here, that has revealed phenotypic differences in the sibling species, is a good 

starting point.  

 In conclusion, the major outcome of this study is the development of a laboratory 

model that successfully mimic species-preferred larval habitats of the An. coluzzii and 

An. gambiae s.s. revealing significant criss-crossing G × E interactions of biological 



 141 

importance, that can be linked to rice field domestication in West Africa. The study 

provides evidence that support theories of ecological speciation resulting from divergent 

larval habitat preference among An. coluzzii and An. gambiae s.s. A consequence of An 

coluzzii larval preference is its ability to exploit more permanent, predator-rich, 

freshwater habitats, giving it a vectorial capacity advantage over An. gambiae s.s., 

especially in drier regions enabling it to breed and transmit Plasmodium all-year-round 

compared to its seasonal sibling (Roux et al., 2014). This information will be vital for the 

successful development and implementation novel vector control methods or the revision 

of older methods to account for the niche expansion of these vector species. It would also 

provide ecological information on the distribution of the sibling species in areas where 

inundated rice fields are associated with higher vector densities and malaria transmission. 

The microcosm model developed in this study can be used to investigate other adaptive 

traits such as oviposition site preference, the inheritance of plastic responses, longevity, 

male competitiveness, female fecundity of the sibling species, among other traits. It can 

also serve a model mini-ecosytem for mapping genes of these adaptive traits to the island 

of speciation within the genomes of these species. 
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Chapter 6 

Improvement of water quality for mass Anopheline rearing: Evaluation of the 

impact of ammonia-capturing zeolite on larval development and adult phenotypic 

quality. 

6.1. Introduction 

Malaria is transmitted to humans through the bite of female Anopheles mosquitoes 

infected with Plasmodium parasites (HDV, 2017). Annual global malaria mortality is 

colossal, with 67% (272,000) of these deaths occurring in children under 5 years old in 

sub-Saharan Africa (WHO, 2019). In 2018, malaria mortality accounted for 405,000 

deaths and half of the world’s population remains at risk of becoming infected (WHO, 

2019). WHO malaria report for 2019 records no significant progress in reducing global 

malaria between 2015-2018 (WHO, 2019). Further, there was a reduction in global 

investments in malaria control from 3.2 billion USD in 2017 to 2.7 billion USD in 2018 

falling short of the 5 billion USD estimated to be required to achieve the GTS target of 

40% reduction in malaria morbidity and death in 2020 (WHO, 2019). This illustrates how 

easily we can lose the achievements made towards malaria elimination and control if 

efforts are relented. 

 The primary vectors of malaria in sub-Saharan Africa are found in the Anopheles 

gambiae s.l species complex, with members, An. gambiae s.s., An. coluzzii, and An. 

arabiensis transmitting malaria over vast ranges of sub-Saharan Africa and the 

surrounding islands (Coetzee et al., 2000; HDV, 2017). Effective control of these vectors 

is hindered or stalled by increasing insecticide resistance (WHO, 2017; Lees et al., 2015). 

There is an increasing demand for complementary or novel approaches to vector control 

that are effective, sustainable and environmentally friendly, to sustain the progress that 

has been made toward reduction and elimination of malaria transmission (WHO, 2017; 
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Lees et al., 2015). Alternative/complementary vector control methods currently being 

advocated for are the use of genetic and transgenic technologies which include, sterile 

insect technique (SIT), cytoplasmic incompatibility, vector-incompetence, gene-drive, 

and RIDL-(Release of Insects carrying a Dominant Lethal) (Alphey et al., 2013; 

Balestrino & Benedict, 2012). These approaches aim at population suppression or 

replacement through large scale releases of modified mosquito strains which rely on the 

availability of effective mass production structures (Balestrino & Benedict, 2012). 

Although research activities from the mid-1950s to mid-1980s, had established the 

feasibility of practical implementation of the SIT method for public health purposes, 

recent attention is being given to research in this area in the light of insecticide resistance 

challenges. The development and optimisation of mass-rearing technology are 

considered top priorities for the advancement vector-control-SIT to an operational 

(Alphey et al., 2013; Balestrino & Benedict, 2012; Bourtzis, et al., 2016; Burt, 2014; Lees 

et al., 2015). 

 Mosquito mass rearing is defined as “a large, continuous production of 

mosquitoes on a regular schedule resulting in adults that are comparable in specific ways 

to the wild mosquitoes” (Balestrino & Benedict, 2012). This implies the application of 

mechanisation and standardisation of rearing protocols to provide, on an industrial scale, 

extensive numbers of insects by an efficient, controlled and economical process 

(Balestrino & Benedict, 2012). Additionally, other genetically-modified mosquito 

deployment scenarios advocate the use of delocalized small mobile egg-to-adults rearing 

units, allowing for production of eggs in large production centres but rearing nearer to 

local targeted Anopheline populations (Tripet pers. comm., 2020). As confirmed in 

Chapters 3-5, and in other literature, Anopheles gambiae s.l. require comparatively much 

clean water than Culicines vector species (e.g. Aedes aegyptis, Culex quinquefasciatus) 
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(Gimonneau et al., 2012). The larvae of this species typically die in polluted water, either 

through the accumulation of toxic wastes, such as ammonia, or because of the 

development of anaerobic bacteria that are harmful to mosquitoes.  

 Ammonia is produced in aquatic ecosystems as a by-product of metabolism and 

organic waste decomposition by prokaryotes (Bernhard, 2010). In its unionised form, 

NH3, ammonia is toxic to fish and aquatic invertebrates at concentrations above 0.2mg/l 

(U.S. Environmental Protection Agency, 2013). In nature, endogenously produced 

ammonia is largely excreted by passive diffusion or urea excretion by most aquatic 

organisms and subsequently converted to nitrite and then to less harmful nitrates in a 

process of nitrification (Figure 6.1) by microorganisms such as bacteria, archaea and 

fungi (Bernhard, 2010; U.S. Environmental Protection Agency, 2013). Accumulated 

unionised ammonia can inhibit the action of nitrifying bacteria, resulting in increased 

levels of ammonia in aquatic habitats thereby intensifying the deleterious effects on 

aquatic animals and beneficial bacteria (U.S. Environmental Protection Agency, 2013). 

The exact process leading to the death of Anopheline larvae in polluted water is not fully 

understood but could involve hypoxia, ammonia toxicity, inability to transport oxygen, 

pathogenicity, nutrient enrichment, and competition for food resource (Amarasinghe & 

Weerakkodi, 2014; Tchigossou et al., 2018; U.S. Environmental Protection Agency, 

2013; Ward & Jensen, 2014). 

 It is not uncommon to find mosquito larval rearing trays in insectaries containing 

high levels of ammonia which usually result in the death of mosquito larvae (Mamai, et 

al., 2016). Water management in mosquito insectaries to minimise the presence of 

ammonia and encourage beneficial microorganisms is key to achieving optimal rearing 

results both for small cultures and for mass-rearing facilities ( HDV, 2017; Mamai et al., 

2017, 2016). 
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Figure 6.1. Major transformations in the nitrogen cycle (Bernhard, 2010). 
 

This implies that rearing facilities must rely on a water circulating system with 

continuous quality monitoring, and other measures to reduce and prevent the 

development of pathogens, and feeding systems that maintain optimal diet availability 

(Benedict et al., 2009). The quality of mosquitoes produced from mass-rearing facilities 

are routinely checked as an essential aspect of an SIT programme (HDV, 2017) and the 

same is expected for genetically modified (GM)-mosquito production. The 

recommendation is to monitor mosquitoes at different life cycle stages using the 

following parameters: hatch rate (number of eggs laid), pupation (the percentage of larvae 

that successfully pupate), adult emergence (number of emerged adults), adult survival 

(emerged adults lasting 8-12 days), sex ratio (ratio of emerging mosquitoes, ideally 

50:50), mating status (dynamic mating activity) and engorged females (females who 

blood-feed adequately) (HDV, 2017). 

 The success of an SIT or other mass-release based vector control approach relying 

on large-scale production of Anopheline mosquitoes, is dependent on a reliable supply of 
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constant water of sufficient quality (Mamai et al., 2017; Piyaratne, et al., 2005). 

Anopheline mosquito larvae are filter feeders, they receive all essential macro- and 

micronutrients and oxygen through the water in which they are reared (Gimnig et al., 

2002; Kaufman et al., 2006). If only clean water were to be used for this purpose, huge 

amounts of water will be required. For example, for large SIT production centres the 

FAO/IAEA recommended larval rearing rack (which holds up to 200,000 Anopheles 

larvae) use approximately 250l of water daily (HDV, 2017; Mamai et al., 2017). 

Approximately 100,000l of water is required to produce 10,000,000 sterile males per 

week (Mamai et al., 2017). Many countries where mass-release methods might be applied 

are located in arid regions where clean water is scarce and unreliable (Mamai et al., 2017). 

Over one billion people currently reside in regions where water is a scarce commodity, 

and this number could increase to 3.5 billion by 2025 (FAO, 2012; Mamai et al., 2017). 

Increasing world populations will further mount pressure on these scarce water resources. 

Anthropogenically induced global warming further increases the chances for conditions 

that lead to extended periods of drought (FAO, 2012; Mamai et al., 2017). This increasing 

demand for access to clean water especially in arid regions with vector-borne disease 

(VBD) endemicity, necessitated the use of alternative water treatment for the 

implementation of mass-release based VBD control approaches (Mamai et al., 2017). To 

be sustainable and environmentally friendly, mass-rearing systems need to be cost 

effective. Methods of water conservation is therefore integral in the successful 

implementation of sustainable mass-release vector control programmes (Mamai et al., 

2017).  

 Investigations on reuse and recycling of larval rearing water for successive 

generations of mosquito larvae has been initiated by the Insect Pest Control Laboratory 

(IPCL) of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture 
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(Mamai et al., 2017). The first study considered the reuse of larval rearing water (“dirty 

water” henceforth) for rearing subsequent batches of An. arabiensis larvae without 

treating the water (Mamai, et al., 2016), using FAO/IAEA recommended mass rearing 

protocols (Balestrino & Benedict, 2012; HDV, 2017). Results from this study 

demonstrated that An. arabiensis can be reared in reused larval water without any effect 

on hatch rate, larval development time and mortality (Mamai, et al., 2016). On the 

downside, there was a negative carry-over effect on the body size, fitness and longevity 

of emerged adults, which may potentially hamper the success of the SIT component 

(Mamai, et al., 2016). The authors concluded that although mosquito production was not 

adversely affected by “dirty” water reuse, the quality of subsequent adults was 

significantly affected; and they recommended water treatment before reuse (Mamai, et 

al., 2016).  

 Multiple technologies have been employed in water treatment for recycling 

purposes such as irradiation, ultrafiltration (UF) ultrasonic treatments, heat treatment, 

autoclaving and reverse osmosis (RO) (Backer et al., 2002; Bohdziewicz, et al., 2003). 

UF and RO are commonly used pressure-driven membrane-based filtration processes that 

involve forcing water molecules through a semi-permeable membrane to produce high-

quality recycled water (Mamai et al., 2017). Whilst the UF method is used to remove 

colloids, virus, suspended and macromolecular matter; RO even removes bacteria, 

viruses, dissolved species, low-molecular organic compounds and mineral substances 

(Mamai et al., 2017). As a follow-up to the earlier study on reusing untreated water, a 

subsequent study sponsored by FAO/IAEA, investigated the reuse of water treated by UF 

and RO for rearing An. arabiensis (HDV, 2017; Mamai et al., 2017). The authors reported 

success in rearing An. arabiensis in treated (recycled) water for at least one subsequent 

generation. Although the treatment of water with UF and RO resolved the issue with 
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decreased mosquito adult size and longevity observed in the previous study where dirty 

water was reused; the authors agree that this method is not a single specific technology 

for water treatment and processing high volumes of water during an overall mass-rearing 

process. They also acknowledged that the cost of treatment is significant, which will 

ultimately increase the operational costs of running the mass-rearing facility (Mamai et 

al., 2017).  

  Whilst these achievements towards water conservation in mosquito mass-rearing 

are laudable, cheaper alternative treatments, but also quick, easily applied to large 

volumes of water, are needed to ensure reduced operational costs, so scarce resources 

available for research can be extended. The use of probiotics in aquaculture is one of such 

water treatment alternatives. Probiotics, which are basically live, dead or component 

microbial cell are administered to rearing water or as a feed supplement. They confer 

health benefits to the aquatic organisms by improving disease resistance (Irianto & Austin 

2002; Newaj-Fyzul et al., 2007; Silva et al., 2012), growth performance (Boonthai, et al., 

2011; Kumar, et al., 2006), feed utilization, stress response or general vigour which is 

achieved through the enhancement of the hosts microbial balance or the microbial 

balance of the host’s ambient environment (Merrifield et al., 2010). Traditionally, 

ammonia has been removed from aquaculture water systems by biofilters containing 

nitrifying microorganisms. Ammonia (NH3) oxidising bacteria (AOB) convert ammonia 

to nitrite (NO2-), which is then converted to less harmful nitrate (NO3-) by nitrite oxidizing 

bacteria (NOB) (Costa, et al., 2006). Probiotics have also been shown to improve water 

quality by reducing the number of pathogenic bacteria (Dalmin, et al., 2001). As with any 

method, the use of probiotics to improve water quality and production in an aquatic 

ecosystem have some shortfalls. Over-dosage and prolonged administration of probiotics 

can induce immune suppression of continuous responses of the hosts (Sakai, 1999). 
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Moreover, the fate of live probiotics in aquatic environments is uncertain. There is the 

possibility of horizontal gene transfer to other animals including humans (Newaj-Fyzul 

et al., 2014), and this concern may be more serious with the use of probiotics in rearing 

vectors (An. gambiae s.l) of human diseases. Furthermore, nitrifying bacteria are slow 

growing microorganisms whose natural development in aquaculture systems could take 

up to 3 months (Keuter et al., 2017). Even when probiotics are inoculated, studies have 

shown that it may take 14 days for the full development of nitrifying bacteria; a period 

during which ammonia can reach critical levels (Skleničková et al., 2020; Son, et al., 

2000). This hysteresis in the efficiency of probiotics in ammonia reduction has 

necessitated research into alternative/complementary ammonia absorbent material to 

improve water quality in aquaculture systems (Son et al., 2000). In the light of these 

constraints in the use of probiotics in fish aquaculture, its application for mosquito rearing 

will require further extensive investigations to ascertain its safety, cost effectiveness, ease 

of application especially for mass production facilities. 

 The use of zeolite might be another water treatment alternative that is relatively 

cheaper compared to UF and RO; and can be easily applied compared to probiotics. 

Zeolite has been widely applied in fish and crustacean aquaculture to improve water 

quality and feed quality as well as reduce the negative environmental impacts of 

aquaculture and improve the quality of seafood (Abdel-rahim, 2017). Zeolites are 

microporous crystalline aluminosilicates with chemically neutral basic honeycomb-like 

structures that originate from volcanic rocks (Ghasemi, et al., 2018). They are inert, and 

structurally stable even at extreme temperatures up to 750ºC (Abdel-rahim, 2017). There 

are more than 60 types of naturally occurring zeolites with 150 synthetic types formulated 

with improved efficiency (Ghasemi, et al., 2018). Clinoptilolite is one of the purest, 

effective and cheapest type of natural zeolite (Ghasemi et al., 2018; Skleničková et al., 
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2020), it is not volatile and is insoluble in water (Ghasemi, et al., 2018). The zeolite 

structure consists of tetrahedric (SiO4)4- and (AlO4)5- groups connected by oxygen 

bridges. When silicon (Si) is replaced by aluminium (Al) in the zeolite framework, a 

negative charge is formed on the overlying oxygen atom. This negative charge is 

compensated by cations, mostly alkali metals (Li+, Na+, K+) and by alkaline earth metals 

(Ca2+, Mg2+) (Querol et al., 2002). As a result of this chemical structure, zeolites have 

excellent capability to absorb cations and they prefer cations with greater radius and 

monovalent charge, hence their affinity for cations such as ammonium ion (NH4+) 

(Kuronen, et al., 2000). This high selection for NH4+ forms the basis for most applications 

of zeolite in aquaculture systems (Figure 6.2) (Ghasemi, et al., 2018). The chemical 

structure of zeolite forms a network of channels and cavities allowing easy penetration 

of micron-sized molecules which are filtered according to size, polarity and shape, 

thereby serving as an efficient filter absorbing various substances that come in contact 

with it (Abdel-rahim, 2017). Due to its porous nature, the ion exchange occurs not only 

at the surface but also deep within the zeolite structure, further enhancing its efficiency 

(Hartman & Fogler, 2007; Inglezakis, 2012). Following saturation, zeolite can be 

recharged (when incorporated in filters) by soaking in 10% NaCl solution, thus renewing 

their capacity and can then be reused (Ghasemi et al., 2018; Hartman & Fogler, 2007; 

Inglezakis, 2012).  

 Zeolites have been extensively applied in fish and crustacean aquaculture because 

of their selective absorption of ammonia and toxic heavy metals as well as an additive in 

fish food (Ghasemi, et al., 2018). Water quality is improved when the zeolite is used 

because it can adsorb ammonia, heavy metals, pesticides, smells, radioactive cations and 

many other toxins (Abdel-rahim, 2017). Its efficiency in ammonia removal is greater than 

83% when initial ammonia content is less than or equal to 1.0ppm. 
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Figure 6.2: Competition for NH4+ cations between zeolite material and nitrifying microorganisms in an 
aquarium filter (Ghasemi, et al., 2018).  
 

The greater the concentration of initial ammonia, the lesser the ammonia removal 

efficiency (Abdel-rahim, 2017; Aly, et al., 2016; Emadi, et al., 2001). Particle size and 

application method also affect the efficiency of ammonia removal in aquaculture systems. 

Decreasing zeolite particle size improves ammonia removal. There is no standard dose 

of application as dosage will depend on fish biomass, the protein content of the feed, feed 

stability and water quality. The recommendation is to add zeolite based on the expected 

and/or measured quantity of nitrogenous by-products. Average ammonia absorption 

capacity is 25mg NH4+ /g of zeolite (Abdel-rahim, 2017; Ghasemi et al., 2018). When 

using zeolite in aquaculture other factors to be considered that might impact on its 

efficiency include; conductivity, pH, temperature, initial concentration of cations in the 

water; concentration, particle size and exposure time of zeolite (Ghasemi et al., 2018; 

Skleničková et al., 2020). 
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Another important factor to consider in the use of zeolite to improve water quality in 

closed aquaculture systems is that by absorbing ammonium ions (NH4+), zeolites can 

greatly influence the abundance and development of nitrifying microorganisms 

(Motesharezadeh, et al., 2015). Several studies have shown that the use of zeolite in 

biological filters while able to reduce coliform bacteria and other pathogens, absorb 

ammonia and nitrates more quickly than nitrifying bacteria which are then unable to use 

NH4+ for their metabolic necessities, thus negatively impacting the population of these 

beneficial microorganisms (Montalvo et al., 2014; Sirakov et al., 2015; Skleničková et 

al., 2020). 

 The use of natural zeolites and their modified forms has many advantages 

including low cost, abundance in many parts of the world and being environmentally 

friendly. However, for successful application to obtain optimal production, users must 

consider zeolite particle size, chemical composition of water, dosage and balance these 

factors to accommodate beneficial bacteria in these aquatic ecosystems (Ghasemi, et al., 

2018). 

 In this study, we experimentally evaluated the use of zeolite treatment in rearing 

the Mopti strain of An. coluzzii in comparison with a continuous flow system (simulated 

by daily water changes). Larval development, adult emergence and body size were 

recorded to score success in both approaches. Results show that treating rearing water 

(1000ml) with zeolite (1g/l) improved mosquito adult emergence and could be a cheaper 

alternative to more expensive techniques such as ultra-filtration, reverse osmosis filters 

which is often part of continuous water flow systems; and could complement the 

application of probiotics.  
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6.2. Materials and Methods 

6.2.1.  Mosquito strain 

The Mopti strain of An. coluzzii, colonized 17 years ago in 2003 by the Lanzaro 

Laboratory (UC Davis) from the village of NʼGabacoro droit near Bamako, Mali, West 

Africa, were used for the experiments. The strains were maintained by the Tripet group 

in dedicated insectaries of the Centre of Applied Entomology and Parasitology (CAEP), 

Keele University, UK, as described in Chapter 2. 

 

6.2.2.  Experimental design. 

First instar larvae of An. coluzzii were reared at two larval rearing densities (200 and 400 

larvae per tray), under four different water treatment regimes, and using two contrasted 

feed regimes. This resulted in a fully balanced 2 x 4 x 2 design and 16 larval trays per 

replicate with a total sample size of 19200 larvae for four replicates (Figure 6.3). Trays 

were identified with coloured tapes codes and fully randomized in terms of their positions 

on the insectary shelves.  

Experimental factor 1: Experiments were conducted using two larval densities- 200 and 

400 (Figure 6.3). 

Experimental factor 2: Larvae were reared in four water treatment groups:  

A. Control- first instar larvae were initially trayed in 500ml of mineral water and 

received an additional 500ml of mineral water on day 5 (Figure 6.3) 

B. Zeolite without water replacement- On day 1, first instar larvae were trayed in 500ml 

of mineral water, on day 4, 1g of finely ground zeolite powder (Minerals-Water, Unit 6, 

Orwell close, Fairview industrial park, Rainham, RM13 8UB, United Kingdom), was 

added to the rearing water and on day 5, 500ml of additional mineral water was added to 
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the rearing trays. This group will be subsequently referred to as the zeolite group (Figure 

6.3) 

 

 

Figure 6.3: Experimental design showing experimental factors combined in one replicate resulting in 2 larval 
densities, four experimental water treatments (Zeolite, Control, CWC, CWZ) and 2 feeding regimes. 
 

C. Zeolite with continuous water replacement: first instar larvae were trayed in 500ml 

of mineral water on day 1; 1g of finely ground zeolite powder was added to the rearing 

water on day 4; on day 5, 400ml of water was gently drained from the trays using a low 

pressured water pump ( same used for picking pupae as described in Chapter 2) through 

a filter net to prevent mosquito larvae escaping into the pump after which 900 ml of fresh 

mineral water was added to the tray. This process of gently draining rearing water and 

replacing with fresh water was repeated daily from day 5 until all mosquitoes in the tray 

had pupated. This group will be subsequently referred to as CWZ (continuous water 

changes with zeolite) (Figure 6.3) 

D. Continuous water replacement without zeolite: first instar larvae were trayed in 

500ml of mineral water on day 1; on day 5, 400ml of water was gently drained from the 

trays using a low pressured water pump ( described in chapter 2) through a filter net to 
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prevent mosquito larvae escaping into the pump after which 900 ml of fresh mineral water 

was added to the tray. This process of gently draining rearing water and replacing with 

fresh water was repeated from day 5 until all mosquitoes in the tray had pupated. This 

group will be subsequently referred to as CWC (continuous water change) (Figure 6.3) 

Experimental factor 3: Contrasted feeding regimes- larvae were fed with two 

standardised feeding regimes (solution and powder feed). Powder feeding regime 

consists of daily rations of ground fish food, using a spatula to spread on the water 

surface: 0.1µl of Liquifry liquid fish food (Interpret Ltd, Surrey, UK) on day 1, 20mg on 

days 2–3, 40mg on day 4, and 90 mg on day 5 until pupation. Solution feeding regime 

consist of the same food quantity dissolved in deionized water (0.1µl of Liquifry on day 

1, 1ml of 6mg/10ml of TetraMin Baby on days 2–3, 1ml of 30mg/10 ml of TetraMin 

Baby on day 4, and 1ml of 60mg/10 ml of TetraMin Baby on day 5 until pupation ) and 

injected into the larval trays using a pipette (Figure 6.3) 

 

6.2.3 Data collection 

Mosquitoes pupating from larval trays were picked using a 3ml plastic pipette and 

transferred to styrofoam cups containing mineral water (at the low density of ~ 20 pupae 

in 100ml), then placed in adult cages (as described in chapter 2) for emergence. Larval 

survival was scored by deducting total numbers of pupae from the initial numbers of first 

instar larvae placed in the tray. Pupal mortality is the number of mosquitoes that died 

following pupation. Adult emergence is the total number of adults that emerged from the 

tray from the initial number of first instar larvae placed in the tray. Development time 

was recorded as the time from day 1 of the experiment when first instar larvae were 

placed in the trays until the day mosquitoes emerged as adults. Emerged adults were 

collected using a mouth aspirator, sexed and stored in 75% ethanol for subsequent wing-
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length measurement. A total of 1280 emerged adults equivalent to 40 males and 40 

females per treatment were randomly sampled for wing-length measurements, following 

the procedure detailed in Chapter 2 for wing measurement. 

 

6.2.4. Water quality analysis 

Measurements for ammonia (NH3) were taken using a Handheld Colorimeter kit ( Hanna 

Instruments, Inc. Highland Industrial Park, 584 Park East Drive, USA), nitrate was 

measured using API aquarium test kits (Mars Fishcare North America, Inc, 50E Hamilton 

street, Chalfont, PA, 18914, USA), on days 4, 6, 8, and 10 (if larvae were still alive in 

the tray) following experimental set-up. There was a steady build-up of ammonia, rising 

above toxicity threshold on day 4 and reaching a peak on day 8 when most larvae pupate 

(Appendix B). 

 

6.2.5. Statistical analysis 

All data collected were analysed using the software JMP 14 (SAS Institute, Inc., Cary, 

North Carolina, USA). All data were checked for deviations from normality and 

heterogeneity of variance, and analyses were conducted using parametric and non-

parametric methods as appropriate. The 2 x 4 x 2 design of the experiment allowed for 

fully-balanced multivariate statistical models. Data from all replicates were used for 

analysis. In multivariate analyses, replicate effects were tested but were only reported 

when significant. Interactions between independent variables were tested using a step-

wise approach and only those significant were retained in the final models. For analyses 

of proportion of larvae, pupae, adults, and sex ratio likelihood odds ratios were used for 

post-hoc pairwise group comparisons following logistic regressions. Goodness of fit tests 

(50:50) were used to test sex ratio of emerged adults. Body size was analysed through 
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general linear models followed by Tukey’s HSD post-hoc pairwise comparisons. 

Developmental times (day of emergence) were analysed by Cox Proportional-Hazard 

models with likelihood odds ratios for post-hoc pairwise comparisons. Finally, ammonia 

and nitrate measurements were analysed through generalised linear model using standard 

least squares. 
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6.3. Results 

6.3.1.  Physicochemical properties of larval trays 

There was a significant (P < 0.0001) impact of water treatment on ammonia 

concentrations in larval trays, which increased significantly (P < 0.0001), with time from 

day 4 to day 8 (Table 6.1, Figure 6.4). In Control and Zeolite treatments, there was a 

steady build-up of ammonia, rising above toxicity threshold (0.2mg/l) on day 4 and 

reaching a peak on day 8 when most larvae pupate (Figure 6.4). Ammonia was 

significantly lower in Zeolite treatment compared to Control. Ammonia levels were 

significantly lower and relatively stable in CWC and CWZ compared to treatments 

without water change (Control and Zeolite) (Figure 6.4).  

 Inversely, nitrate levels increased with time in CWC and CWZ and were 

significantly (P <0.0001), higher compared to Zeolite and Control. However, nitrate 

levels in Zeolite were significantly higher than those in Control (Figure 6.4; Table 6.1). 

Among all treatment trays, nitrate concentrations were significantly higher in powder 

feed compared to solution feed (Table 6.1; Figure 6.5). 

 

 

Figure 6.4: Ammonia (blue bars) and nitrate (grey bars) concentration across treatment trays from day 4 to 
day 10. Whiskers represent 95% confidence intervals (CI).  
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Table 6.1: General linear model of ammonia and nitrate concentrations across treatments 

Parameter Source df F-ratio P-value 

Ammonia(mg/l) Feed 1 0.605 0.4374 ns 
Density 1 0.4077 0.5238ns 
Water treatment 3 88.361 <0.0001*** 

Day 1 171.397 <0.0001*** 

Treatment*Day 3 56.165 <0.0001*** 

Day*Day 1 82.230 <0.0001*** 

Nitrate (mg/l) Feed 1 40.497 <0.0001*** 

Density 1 3.167 0.0764 ns 

Water treatment 3 12.992 <0.0001*** 

Day 1 128.072 <0.0001*** 

Treatment*Day 3 6.202 0.0005** 

Day*Day 1 61.472 <0.0001*** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom 
 

 

Figure 6.5: Nitrate concentration by feed across treatment trays, light blue bars show powder feed, dark 
blue bars show solutionr feed. Whiskers represent 95% confidence intervals (CI). 
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6.3.2.  Effect of density, water treatment, and feed type on larval survival 

Percentage larval survival of An. coluzzii was significantly impacted by treatment type, 

feed, density and the interactions between these variables (Table 6.2). Overall, larval 

survival was significantly higher in the CWC treatment (66%) for both rearing densities 

and feed in comparison to other treatments (Control – 55%, CWZ – 52%, Zeolite – 52%). 

(Table 6.4). Larval survival was 10% higher in powder feed solution feed compared to 

solution feed and at 200 larval rearing density compared to 400 larval rearing density 

(Figure 6.6; Tables 6.2, 6.3, 6.4). 

 

  

Figure 6.6: Percentage larval survival across water treatments for two larval rearing densities(light green 
bars-200 larvae, dark green bar-400 larvae) and feed (light blue bars-solution, dark blue bars- 
powder).Whiskers represent 95% confidence intervals (CI). Within water treatment groups significant 
differences are represented by different letters. 
 

At 200 larval rearing density, larval survival significantly differed among treatments 

where survival was highest in CWC (77%) followed by CWZ (67%), then Zeolite (67%) 

and Control (63%) (Figure 6.6; Table 6.3). Larval survival was also significantly different 

at 400 larval rearing density with 61% surviving in the CWC followed by 51% in control, 

with no significant difference in survival between CWZ (44%) and Zeolite (45%) (Figure 

6.6; Table 6.3). 
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Table 6.2: Logistic regressions (Effect Likelihood Ratio Tests) of mosquito survival among 
treatments 

Parameter Source DF Likelihood 
ratio 

P-value 

Larval survival Density 1 610.267 <0.0001*** 
Feed 1 195.915 <0.0001*** 
Treatment 3 221.067 <0.0001*** 

Treatment*Feed 3 39.440 <0.0001*** 

Treatment*Density 3 31.839 <0.0001*** 

Feed*Density 1 7.118 0.0076* 

Pupal mortality Density 1 5.007 0.0252* 

Feed 1 2.049 0.1523ns 

Treatment 3 76.424 <0.0001*** 

Treatment*Feed 3 42.522 <0.0001*** 

Treatment*Density 3 8.433 0.0379* 

Feed*Density 1 7.885 0.0050* 

Adult emergence Density 1 544.058 <0.0001*** 

Feed 1 187.584 <0.0001*** 

Ttreatment 3 258.443 <0.0001*** 

Feed*Density 1 4.801 0.0285* 

Treatment*Feed 3 44.096 <0.0001*** 

Treatment*Density 3 46.674 <0.0001*** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
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Table 6.3: Odds ratios for the effect of density and feed on larval survival within treatments 

Source Parameter Odds ratio P-value 

Density (200 larvae) CWC vs Control 0.517 <0.0001*** 
CWZ vs Control 0.832 0.0141* 
CWZ vs CWC 1.608 <0.0001*** 
Zeolite vs Control 0.842 0.0210* 
Zeolite vs CWC 1.627 <0.0001*** 
Zeolite vs CWZ 1.011 0.8817ns 

Density (400 larvae) CWC vs Control 0.655 <0.0001*** 
CWZ vs Control 1.311 <0.0001*** 
CWZ vs CWC 2.001 <0.0001*** 
Zeolite vs Control 1.290 <0.0001*** 
Zeolite vs CWC 1.968 <0.0001*** 
Zeolite vs CWZ 0.984 0.7440ns 

Feed (Solution) CWC vs Control 0.601 <0.0001*** 
CWZ vs Control 1.213 0.0022** 
CWZ vs CWC 2.016 <0.0001*** 
Zeolite vs Control 0.991 0.8897ns 
Zeolite vs CWC 1.648 <0.0001*** 
Zeolite vs CWZ 0.818 0.0014** 

Feed (Powder) CWC vs Control 0.564 <0.0001*** 
 CWZ vs Control 0.900 0.1051ns 
 CWZ vs CWC 1.596 <0.0001*** 
 Zeolite vs Control 1.095 0.1628ns 
 Zeolite vs CWC 1.942 <0.0001*** 
 Zeolite vs CWZ 1.217 0.0031** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

Solution feed impacted significantly on larval survival among treatments, with highest 

larval survival in CWC (60%) , followed by Control (50%), Zeolite (49%) and CWZ 

(43%) (Figure 6.6; Table 6.3). Larval survival for powder feed also significantly differed 

among treatments with the highest in CWC (72%), then CWZ (61%), Control (60%), and 

Zeolite(55%) (Figure 6.6; Table 6.3). 
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Table 6.4: Mosquito survival at life history stages across treatments 

Feed Larval density Treatment %Larval 
survival 

%Pupal 
mortality 

%Adult 
emergence 

Solution 200 Control 61 (57-64) 16 (13-18) 45 (42-49) 
CWC 75 (71-77) 7 (5-9) 68 (65-71) 
CWZ 62 (58-65) 8 (6-10) 54 (51-58) 

Zeolite 62 (59-65) 6 (4-8) 56 (53-60) 
Powder 200 Control 66 (63-69) 8 (6-10) 58 (54-61) 

CWC 79 (76-82) 10 (8-12) 69 (66-73) 
CWZ 73 (70-76) 6 (4-8) 67 (64-70) 

Zeolite 72 (69-75) 9 (7-11) 63 (60-67) 
Solution 400 Control 44 (42-46) 10 (9-12) 34 (31-36) 

CWC 53 (51-56) 4 (3-5) 49 (47-52) 
CWZ 34 (32-36) 4 (4-6) 30 (27-32) 

Zeolite 43 (41-45) 9 (8-11) 34 (32-36) 
Powder 400 Control 58 (55-60) 10 (9-12) 48 (45-50) 

CWC 69 (66-71) 9 (8-11) 60 (57-62) 
CWZ 55 (52-57) 6 (5-7) 49 (46-51) 

Zeolite 46 (44-49) 8 (7-9) 38 (36-41) 

Ninety-five percent confidence intervals are in brackets. Larval survival, pupal mortality and adult 
emergence were calculated out of the initial sample sizes of 800 (200 larval density) and 1600 (400 larval 
density). 
 

6.3.3.  Pupal mortality by density, feed regimes and water treatments 

Overall, pupal mortality was significantly impacted by larval rearing density, water 

treatment and the interactions between these variables. Although interactions between 

feed and other variables were significant, feed had no significant impact on pupal 

mortality across treatments (Table 6.2). Highest pupal mortality (11%) was observed in 

the Control with the least mortality occurring in CWZ. 

 Within treatments, at 200 larval rearing density, pupal mortality significantly 

differed among treatments. The highest mortality (12%) was found in the Control group, 

followed by CWC (8%), CWZ (7%), and Zeolite (7%) (Figure 6.7; Table 6.5). 
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Figure 6.7: Pupal mortality across water treatments for two larval rearing densities (light green bars-200 
larvae, dark green bar-400 larvae) and feed (light blue bars-solution, dark blue bars- powder). Whiskers 
represent 95% confidence intervals (CI). Within treatments and for independent variables, significant 
differences are represented by different letters. 
 

At 400 larval rearing density, there was a significant effect of density on pupal mortality 

across water treatments. Pupal mortality was highest in the Control group (10%) followed 

by 8% in Zeolite, 7% in CWC and 5% in CWZ (Figure 6.7; Table 6.5). Pupal mortality 

differed significantly among treatment as a result of significant interactions between feed 

by treatment (Table 6.2). Pupal mortality was highest (12%) in Control when solution 

feed was used, followed by Zeolite (8%), then 5% for CWC and CWZ (Table 6.5; Figure 

6.7). Pupal mortality was insignificant for powder feed among Control, CWC and Zeolite, 

with significantly lower mortality in CWZ (Table 6.5; Figure 6.7). 
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Table 6.5: Odds ratios for the effect of density and feed regimes on pupal mortality within 

treatments 

Source Parameter Odds ratio P-value 

Density (200 larvae) CWC vs Control 1.483 0.0014** 
CWZ vs Control 1.820 <0.0001*** 
CWZ vs CWC 1.227 0.1373ns 
Zeolite vs Control 1.654 <0.0001*** 
Zeolite vs CWC 1.116 0.4184ns 
Zeolite vs CWZ 0.909 0.4986ns 

Density (400 larvae) CWC vs Control 1.722 <0.0001*** 
CWZ vs Control 2.022 <0.0001*** 
CWZ vs CWC 1.174 0.1481ns 
Zeolite vs Control 1.223 0.0206* 
Zeolite vs CWC 0.710 0.0006** 
Zeolite vs CWZ 0.605 <0.0001*** 

Feed (Solution) CWC vs Control 2.644 <0.0001*** 
CWZ vs Control 2.362 <0.0001*** 
CWZ vs CWC 0.893 0.3903ns 
Zeolite vs Control 1.838 <0.0001*** 
Zeolite vs CWC 0.695 0.0048** 
Zeolite vs CWZ 0.778 0.0454* 

Feed (Powder) CWC vs Control 0.966 0.7452ns 
CWZ vs Control 1.557 0.0002** 
CWZ vs CWC 1.612 <0.0001*** 
Zeolite vs Control 1.101 0.3822ns 
Zeolite vs CWC 1.140 0.2258ns 
Zeolite vs CWZ 0.707 0.0040** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

6.3.4.  Adult emergence of An. coluzzii across water treatments 

Adult emergence across treatment trays were significantly impacted by rearing density, 

feed type and the interactions of these independent variables (Table 6.2). As before, adult 

emergence which embodies overall mosquito survival was highest in CWC. Emergence 

was also significantly higher in powder feed across treatments (Table 6.2). Within 
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treatments, adult emergence differed significantly among treatment groups by density 

and feed regime. At 200 larval rearing density, adult emergence was highest (69%) in 

CWC followed by 60% in both CWZ and Zeolite, then 51% in control (Figure 6.8; Table 

6.6). 

 

  

Figure 6.8: Adult emergence across water treatments for two larval rearing densities(light green bars-200 
larvae, dark green bar- 400 larvae) and feed (light blue bars-solution, dark blue bars- powder).Whiskers 
represent 95% confidence intervals (CI). Within treatments and for independent variables, significant 
differences are represented by different letters. 
 

Mosquito adult emergence at 400 larval rearing density was highest in CWC (54%), 

followed by Control (41%), (39%) in CWZ then (36%) Zeolite (Figure 6.8; Table 6.6). 

A similar pattern was observed for feed type with the highest adult emergence for solution 

feed in CWC (55%) followed by Zeolite (41%) then 38% for both CWZ and Control 

(Figure 6.8; Table 6.6). 
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Table 6.6: Odds ratios for the effect of density and feed regimes on adult emergence within 

treatments 

Source Level Odds ratio P-value 

Density (200 larvae) CWC vs Control 0.480 <0.0001*** 
CWZ vs Control 0.683 <0.0001*** 
CWZ vs CWC 1.422 <0.0001*** 
Zeolite vs Control 0.713 <0.0001*** 
Zeolite vs CWC 1.484 <0.0001*** 
Zeolite vs CWZ 1.043 0.5592ns 

Density (400 larvae) CWC vs Control 0.571 <0.0001*** 
CWZ vs Control 1.086 0.1142ns 
CWZ vs CWC 1.900 <0.0001*** 
Zeolite vs Control 1.210 0.0002** 
Zeolite vs CWC 2.117 <0.0001*** 
Zeolite vs CWZ 1.114 0.0386* 

Feed (Solution) CWC vs Control 0.451 <0.0001*** 
CWZ vs Control 0.921 0.1925ns 
CWZ vs CWC 2.043 <0.0001*** 
Zeolite vs Control 0.798 0.0003** 
Zeolite vs CWC 1.769 <0.0001*** 
Zeolite vs CWZ 0.866 0.0223* 

Feed (Powder) CWC vs Control 0.609 <0.0001*** 
CWZ vs Control 0.805 0.0006** 
CWZ vs CWC 1.322 <0.0001*** 
Zeolite vs Control 1.081 0.2133ns 
Zeolite vs CWC 1.776 <0.0001*** 
Zeolite vs CWZ 1.343 <0.0001*** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

6.3.5. Mosquito survival by sex across water treatments 

Overall, there were no significant differences in the sex of surviving mosquitoes across 

treatment groups, rearing densities and feed type (Table 6.7). Within treatment groups, 

the sex ratio of surviving mosquitoes, did not significantly deviate from the expected 
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50:50 ratio except at CWZ/400 larval density/powder feed and Zeolite/400 larval 

density/powder feed; where females significantly survived more than males (Table 6.8). 

 

Table 6.7:Logistic regression (Effect Likelihood Ratio Tests) of mosquito survival by sex  

Source DF Likelihood ratio P-value 

Treatment 3 0.470 0.9255ns 
Feed 1 3.001 0.0832ns 
Density 1 0.141 0.7075ns 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

Table 6.8: Likelihood ratio test of probabilities (50:50) of An. coluzzii sex ratio across treatments  

Treatment Density Feed Sex % Overall 
survival  

Sample 
size 

Chi-square df P-value 

Control 200 Solution Female 52 (47 - 57) 187 361 0.4682 1 0.4938ns 
Male 48 (43 - 53) 174 

Powder Female 54 (49 – 58) 248 462 2.5044 1 0.1135ns 
Male 46 (42 – 51) 214 

400 Solution Female 51 (47 – 55) 277 540 0.3630 1 0.5468ns 
Male 49 (45 -53) 263 

Powder Female 50 (47 – 54) 386 765 0.0641 1 0.8002ns 
Male 50 (46 -53) 379 

CWC 200 Solution Female 50 (46 – 54) 273 543 0.0166 1 0.8976ns 
Male 50 (46 – 54) 270 

Powder Female 50 (46 – 54) 281 558 0.0287 1 0.8655ns 
Male 50 (46 – 54) 277 

400 Solution Female 50 (47 – 53) 395 790 0 1 1ns 
Male 50 (47 – 53) 395 

Powder Female 52 (50 – 55) 496 951 1.7682 1 0.1836ns 
Male 48 (45 – 51) 455 

CWZ 200 Solution Female 51 (47 – 56) 222 433 0.2795 1 0.5970ns 
Male 49 (44 – 53) 211 

Powder Female 49 (45 – 54) 265 537 0.0913 1 0.7626ns 
Male 51 (46 – 55) 272 

400 Solution Female 48 (44 – 53) 228 472 0.5425 1 0.4614ns 
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Treatment Density Feed Sex % Overall 
survival  

Sample 
size 

Chi-square df P-value 

Male 52 (47 – 56) 244 
Powder Female 55 (51 – 58) 425 778 6.6728 1 0.0098* 

Male 45 (42 – 49) 353 
Zeolite 200 Solution Female 52 (47 - 56) 232 450 0.4356 1 0.5092ns 

Male 48 (44 – 53) 218 
Powder Female 51 (47 – 56) 259 506 0.2846 1 0.5937ns 

Male 49 (44 – 53) 247 
400 Solution Female 49 (45 – 53) 265 542 0.2657 1 0.6062ns 

Male 51 (47 – 55) 277 
Powder Female 55 (51 – 59) 337 614 5.8726 1 0.0154* 

Male 45 (41 – 49) 277 
P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

6.3.6.  Effect of water treatments on adult wing-length 

Across all larval trays, adult wing-length was significantly impacted by larval rearing 

density and the water treatment type in which they were reared. Adult wing-length 

significantly differed by sex; females were significantly larger than males. Although feed 

type had no significant impact on wing-length, the interaction between treatment and feed 

significantly impacted adult wing-length (Tables 6.9, 6.10, 6.12).  

 Pairwise comparison of means revealed significantly larger adult wing-length in 

the CWC treatment compared to CWZ and Zeolite but not Control. No significant 

difference in wing-length was observed between CWZ and Control, as well as between 

CWZ and Zeolite, but wing-length in the Control group significantly differed from 

Zeolite. (Figure 6.9; Table 6.10). Within water treatments, adults reared in 200 larval 

density were significantly larger than those reared in 400 larval density (Figure 6.9). 

Adult mosquitoes emerging from the CWC at 200 larval rearing density were 

significantly larger than those from CWZ and Zeolite but not Control. There were no 

significant differences between CWZ, Zeolite and Control. (Figure 6.9; Table 6.11) 
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Table 6.9: General linear model of wing-length across treatments 

Parameter Source df F-ratio P-value 

Wing length Density 1 17.106 <0.0001*** 
Feed 1 1.973 0.1603ns 
Water treatment 3 9.852 <0.0001*** 

Sex 1 232.853 <0.0001*** 

Treatment*Feed 3 2.998 0.0298* 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. Abbreviation: df, degrees of freedom 
 

Table 6.10: Tukey’s (post-hoc) pairwise comparison of wing-length means between treatments. 

Source Level t-ratio P-value 

Wing-length CWC vs Control  -1.36 0.5258ns 
CWZ vs Control 2.26 0.1077ns 
Zeolite vs Control  3.59 0.0020** 
CWZ vs CWC 3.62 0.0017** 
Zeolite vs CWC 4.94 <0.0001*** 
Zeolite vs CWZ 1.32 0.5479ns 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

At 400 larval rearing density, adult wing-length was significantly (P = 0.0470) larger in 

CWC compared to Zeolite. Wing-length in CWZ, and Control did not differ significantly 

from the Zeolite group (Table 6.11). Females reared in the CWC and Control groups were 

significantly larger than those reared in Zeolite but not with CWZ. There was no 

significant difference in wing-length of females in Zeolite and CWZ. (Table 6.11). Males 

emerging from CWC were significantly larger than those from CWZ and Zeolite but not 

from Control. There was no significant difference in wing-length of adults from CWZ, 

Zeolite and Control (Table 6.11). 
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Figure 6.9: Mean wing-length of emerged mosquitoes across water treatments for two larval rearing 
densities(light green bars-200 larvae, dark green bar-400 larvae). Whiskers represent 95% confidence 
intervals (CI). Significant differences among treatments and independent variables within treatments are 
represented by different letters. 
 

Table 6.11: Turkey’s (post-hoc) pairwise comparison of wing-size means between water treatments 

by sex and density. 

Source Level t-ratio P-value 
Density (200 larvae) CWC vs Control  -1.73 0.3100ns 

CWZ vs Control 2.00 0.1892 ns 
Zeolite vs Control  2.26 0.1085 ns 
CWZ vs CWC 3.73 0.0012** 
Zeolite vs CWC 3.99 0.0004** 
Zeolite vs CWZ 0.26 0.9938 ns 

Density (400 larvae) CWC vs Control  -0.07 0.9999 ns 
CWZ vs Control 1.01 0.7464 ns 
Zeolite vs Control  2.53 0.0569 ns 
CWZ vs CWC 1.08 0.7030 ns 
Zeolite vs CWC 2.60 0.0470* 
Zeolite vs CWZ 1.52 0.4255 ns 

Sex (Female) CWC vs Control  -0.19 0.9977ns 
CWZ vs Control 1.51 0.4317ns 
Zeolite vs Control  3.55 0.0024** 
CWZ vs CWC 1.70 0.3259ns 
Zeolite vs CWC 3.73 0.0012** 
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Source Level t-ratio P-value 
 Zeolite vs CWZ 2.04 0.1751ns 
Sex (Male) CWC vs Control  -1.85 0.2525ns 
 CWZ vs Control 1.72 0.3128ns 
 Zeolite vs Control  1.42 0.4898ns 
 CWZ vs CWC 3.57 0.0022** 
 Zeolite vs CWC 3.27 0.0062* 
 Zeolite vs CWZ  -0.31 0.9895ns 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

Table 6.12: Mean wing-length of surviving adult An. coluzzii across treatments. 

Water treatment Larval density Sex Mean wing length (mm) 

Control 200 Female 3.27 (3.23 – 3.32)  
Male 3.10 (3.07 – 3.14)  

400 Female 3.25 (3.21 – 3.29)  
Male 3.05 (3.01 – 3.08)  

CWC 200 Female 3.31 (3.26 – 3.35)  
Male 3.15 (3.11– 3.18) 

400 Female 3.23 (3.18 –3.27)  
Male 3.08 (3.03 – 3.12)  

CWZ 200 Female 3.20 (3.16 – 3.25) 
Male 3.08 (3.04 – 3.12) 

400 Female 3.25 (3.20 – 3.30) 
Male 3.00 (2.95 – 3.04) 

Zeolite 200 Female 3.20 (3.15 – 3.25) 
Male 3.07 (3.03 – 3.11) 

400 Female 3.16 (3.11 - 3.20) 
Male 3.02 (2.98 – 3.06) 

Notes: Ninety-five percent confidence intervals are in parentheses and the sample row is 80. 
 

 6.3.7. Impact of density, water treatment and feed regimes on development time 

The duration of development from first instar larvae until adult emergence differed 

significantly among treatment groups (P = 0.0004) by density (P<0.0001) and feed type 

(P<0.0001) (Table 6.13). Interactions between treatment by feed, and treatment by 
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density, significantly impacted on development time (Table 6.13). Development time was 

significantly longer in CWZ compared to CWC and Control but not with Zeolite. 

 

Table 6.13: Cox Proportional-Hazard analyses of development time  

Parameter Source df Chi-Square P-value 

Day of emergence Density 1 614.460 <0.0001*** 
Feed 1 142.292 <0.0001*** 
Water treatment 3 18.179 0.0004** 

 Water treatment*Feed 3 8.365 0.0390* 
 Water treatment*Density 3 21.040 0.0001** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
 

There were no significant differences in development time between Zeolite and CWC or 

Control (Table 6.14). Mosquito development was completed in a shorter time in 200 

larval rearing density, compared to 400 larval rearing density (Tables 6.13, 6.15 Figure 

6.10). Overall, development time was significantly longer in solution feed compared to 

powder feed (Tables 6.13, 6.15; Figure 6.10). 

 

Table 6.14: Risk ratio comparison of means of development time among treatment groups 

Level Risk-ratio P-value 
CWC vs Control 1.008 0.7863ns 
CWZ vs Control 0.900 0.0007** 
CWZ vs CWC 0.893 <0.0001*** 
Zeolite vs Control 0.954 0.1374ns 
Zeolite vs CWC 0.947 0.0611ns 
Zeolite vs CWZ 1.061 0.0563ns 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05.  
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Figure 6.10: Survival curves of mosquito larvae in water treatment types by densities and feed regimes, A) 
200 larvae/Solution feed; B) 200 larvae/Powder feed; C) 400 larvae/Solution feed; D) 400 larvae/Powder 
feed. 
 

Table 6.15: Mean development time of An. coluzzii across water treatments. 

Treatment Larval 
density 

Feed Days till emergence 

Control 200 Solution 10.64 (10.56 - 10.73) 361 
Powder 10.00 (9.93 – 10.06) 462 

400 Solution 10.92 (10.83 – 11.00) 540 
Powder 10.70 (10.63 – 10.76) 765 

CWC 200 Solution 10.27 (10.20 – 10.34) 543 
Powder 9.95 (9.89 – 10.01) 558 

400 Solution 11.11 (11.02 – 11.20) 790 
Powder 10.89 (10.83 – 10.95) 951 

CWZ 200 Solution 10.45 (10.36 – 10.53) 433 
Powder 10.17 (10.10 – 10.24) 537 

400 Solution 11.21 (11.10 – 11.31) 472 
Powder 10.97 (10.89 – 11.05) 778 

Zeolite 200 Solution 10.46 (10.38 – 10.55) 450 
Powder 10.02 (9.95 – 10.09) 506 

400 Solution 11.25 (11.15 – 11.35) 542 
Powder 10.74 (10.65 – 10.83) 614 

Notes: Ninety-five percent confidence intervals are in parentheses and the sample sizes are italicised. 
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6.4. Discussion 

As expected, mosquitoes reared in the trays where water was continuously refreshed 

provided a better environment for optimal mosquito growth and development. 

Consistently lower ammonia concentrations and higher nitrate concentrations in these 

trays indicate efficient conversion of toxic ammonia to harmless nitrate (Florescu et al., 

2011). Mosquito survival and adult body size were maximised in these treatment groups 

due to the absence or minimal presence of toxic compounds such as ammonia 

(Hargreaves, 1998). Nitrogenous wastes are known to be poisonous to aquatic organisms 

above certain concentrations. Unionised ammonia which is a by-product of protein 

metabolism by aquatic animals is toxic to fish and other freshwater animals above 

0.2mg/l, in closed aquatic systems (Florescu et al., 2011; Skleničková et al., 2020; U.S. 

Environmental Protection Agency, 2013). In larval trays without water replacement, 

ammonia concentrations increased steadily, exceeding toxicity threshold on the fourth 

day, and reaching a peak on the tenth day. Zeolite treatment significantly decreased 

ammonia concentrations compared to Control trays where zeolite was not applied. Nitrate 

concentrations were equally higher in Zeolite treatment without water change compared 

to Control. The cause of overall higher mortality in Anopheles larval trays without water 

replacement (Control and Zeolite) in comparison to those with water replacement (CWC 

and CWZ) could range from hypoxia, ammonia toxicity, inability to transport oxygen, 

pathogenicity, nutrient enrichment, and competition for food resource (Amarasinghe & 

Weerakkodi, 2014; Tchigossou et al., 2018; U.S. Environmental Protection Agency, 

2013; Ward & Jensen, 2014) 

 Although not observed for overall mosquito survival, the impact of ammonia-

absorbing zeolite in improving water quality in larval trays without water replacement 

was evident at the 200 larval rearing density. Adult emergence was significantly higher 
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in Zeolite treatment compared to Control at the 200 larval density, validating the ability 

of zeolite to improve water quality in an aquaculture system, in this case mosquito larval 

rearing trays (Abdel-rahim, 2017; Ghasemi et al., 2018). However, at higher larval 

density (400), the effect of zeolite was not evident for mosquito adult emergence, 

possibly due to two factors; first, ammonia concentration produced by in the 400-larval- 

density-trays were above the saturation compared to amount of zeolite applied in this 

study, and secondly, the effects of intra-specific competition both for food and space and 

cannibalism among larval instars, outweighed any benefits from ammonia reduction 

(Epopa et al., 2018).  

 For the latter factor (intra-specific competition), the larval stage is the only 

developmental stage in which density dependent competition occurs in anopheline 

mosquitoes (Gimonneau et al., 2014; Juliano, 2009; Kivuyo et al., 2014; Valerio et al., 

2016). Intra-instar larval predation and competition have been reported for An. coluzzii 

in nature and the laboratory and may have accounted for the reduced survival and adult 

body size in the trays with 400 larvae (Gimonneau et al., 2012; Munga et al., 2006). An 

increase in larval density, given the same amount of food, results in overcrowding, 

leading to competition for food which leads to higher mortality of larvae that are unable 

to secure adequate food required for growth (Gimonneau et al., 2014; Koenraadt & 

Takken, 2003; Paaijmans et al., 2009). While rare in nature, overcrowded larval breeding 

in insectaries is possible due to lack of space, a good balance between the density of 

larvae, the size of larval rearing trays and the amount of food provided is important for 

optimal emergence rates of adult mosquitoes with desirable phenotypic qualities (Epopa 

et al., 2018). 

 Additionally, overcrowded trays in this study must have resulted in the production 

relatively higher amounts of toxic ammonia due to the increased metabolism and waste 
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production. When zeolite has been used for improving water quality in fish and 

crustacean aquaculture, reports reveal that the greater the concentration of initial 

ammonia, the lesser the ammonia removal efficiency (Abdel-rahim, 2017; Aly, et al., 

2016; Emadi, et al., 2001). Although larval density did not have a statistically significant 

impact on ammonia content in the larval trays, it was higher at 400 larval rearing density, 

providing a possible explanation for the reduced effect of ammonia adsorption by zeolite 

in these trays since the same amount of zeolite was used at both rearing densities. 

Exposure time of zeolite might have also impacted on the effectiveness of zeolite at this 

rearing density (Farhangi, et al., 2013; Farhangi & Rostami-Charati, 2012). Although the 

scope of this study did not include extensive physio-chemical analysis and assay of the 

effect of the individual parameters on survival and adult body size, they may have 

contributed to the survival and quality of adults from the zeolite group at higher larval 

densities and increasing the amount of zeolite application can improve mosquito rearing 

outcomes (Abdel-rahim, 2017; Ghasemi et al., 2018). These results also corroborate 

findings from field studies that show that the physio-chemical properties of larval habitats 

such as pH, temperature, ammonia concentration, initial concentration of cations in the 

water, particle size, nitrate and sulphate determine the presence, development and 

survival of immature Anophelines (Briegel, 2003; Mutero, et al., 2004; Muturi et al., 

2008; Mwangangi et al., 2007).  

 A crucial factor to consider on the effect of zeolite used in this study to improve 

water quality for increased mosquito production without water replacement is that 

zeolites can greatly influence the abundance and development of nitrifying 

microorganisms (Motesharezadeh, et al., 2015). Unionised ammonia can inhibit the 

action of nitrifying bacteria, resulting in increased levels of ammonia in aquatic habitats 

thereby intensifying the deleterious effects on aquatic animals and beneficial bacteria 



 178 

(U.S. Environmental Protection Agency, 2013). In one study, zeolite was able to absorb 

ammonia more quickly than the nitrifying bacteria which were then unable to use NH4+ 

for their metabolic necessities (Montalvo et al., 2014). In another study it was reported 

that zeolite reduced ammonia and nitrite concentrations, maintaining them at safe levels 

but negatively impacted nitrifying bacteria in the biological filter (Skleničková et al., 

2020). In yet another study, microbiological testing of water in recirculation systems with 

and without zeolite showed a rapid decline in coliform bacteria as well as other pathogens 

where natural zeolite was used, although it did not significantly impact bacteria species 

of the Enterobacteriaceae family (Sirakov, et al., 2015). In this study, experimental trays 

with reduced nitrate levels generally had higher ammonia content and hence higher 

mosquito mortality and reduced body size. This dynamics of nitrification (conversion of 

ammonia to nitrate by nitrifying bacteria) is indicative of the bacteria communities that 

are likely varied between experimental trays. Natural larval environments of Anopheles 

typically contain algae, bacteria and other micro-organisms and this might have reflected 

in mosquito survival and development in this study. Microorganisms serve as food, 

immunity boosters, nitrogen-converters and could also be inimical pathogens to aquatic 

invertebrates (Mamai, et al., 2016). To better understand the function and mechanism of 

microbial population in mosquito larval rearing trays, the next chapter of this thesis 

(Chapter 7) is focused on the characterisation of the bacteria communities in the treatment 

trays in this study (Chapter 6) by sequencing and quantification of microbial communities 

present in the rearing trays. The overall adult emergence rate was equivalent to ~56% and 

was low across all treatment groups but much higher at 70% at 200 larval density. This 

can be attributed to intra-specific larval competition, zeolite dosage, and the impact of 

zeolite on the bacteria communities in the trays. For future applications/experiments this 
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effect of zeolite on nitrifying bacteria has to considered in the design for water quality 

improvements to ensure maximum mosquito yield and adult phenotypic quality.  

 In this study, the type of feed regime which An. coluzzii larvae were fed 

significantly impacted overall mosquito survival and duration of development. Powder 

feed significantly improved larval survival, adult emergence and development time was 

significantly shorter, compared to solution feed across water treatment types. This is 

likely due to the higher nitrate concentrations in trays where solution feed was used 

compared to powder feed. Higher nitrate levels indicate greater ammonia conversion in 

powder feeding thus higher mosquito survival (Bernhard, 2010).  

 Zeolite water treatment also favourably impacted on the duration of mosquito 

development time. Development time was not significantly longer in Zeolite treatment 

compared to the more effective continuous change CWC group. This allowance for 

synchronous hatching and pupation with the use of zeolite is the ideal condition both for 

smaller insectaries and mass-rearing facilities (Mazigo, et al., 2019). Any feed regime 

and or additive that can shorten pre-imaginal development time is welcome as it will 

reduce labour costs and enhance accelerated production of adults (Epopa et al., 2018). 

This is particularly desirable in the mass rearing of adult mosquitoes for vector 

control/research programmes where large releases of adult mosquitoes are required for 

mass rearing of adult mosquitoes (Epopa et al., 2018). Staggered hatching or pupation in 

mosquitoes has been linked to environmental and genetic conditions such as stress caused 

by inadequate nutrition, competition or predation (Naylor, et al., 2014) which 

subsequently creates an inefficient system when insects are needed for experiments or 

mass-release.  

 For future implementation of zeolite in mosquito mass production programmes, 

it is of important note that sex ratio of surviving mosquitoes in this study did not 
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significantly deviate from the expected 50:50 ratio (HDV, 2017). An essential component 

for mosquito rearing whether in a small insectary culture or mass-rearing facility, is 

keeping track of the input-output of resources to foresee potential problems and tackle 

them in time. Monitoring mosquito life cycle (hatch rate, pupation, adult emergence, 

adult survival), sex ratio, mating status, engorged females, amongst others, are key 

parameters for judging the quality and efficiency of a mosquito rearing facility (HDV, 

2017). Ideally, the sex ratio should be 50:50 to ensure mating efficiency for males and 

high production in females (HDV, 2017). 

 For concerns regarding water conservation and cost reduction in mass rearing, it 

is of important note that at the 200 larval rearing density, mosquito survival in the Zeolite 

group was significantly higher than that of the Control group with no water change and 

adult body size was not significantly lower compared to CWC. At an average ammonia 

adsorption capacity of 25mg NH4+/g of zeolite (Abdel-Rahim, 2017), and simple 

provision for reuse of zeolitic materials (zeolite imbedded biofilters), it might be more 

economically viable to consider using zeolite to treat water before reuse instead of the 

more expensive ultrafiltration or reverse osmosis methods (HDV, 2017; Mamai et al., 

2017). This could be especially important when planning mass release vector control 

programmes in malaria endemic countries with very low GDIs (Gross Domestic Income) 

and also in arid regions (Chima et al., 2003; FAO, 2012; Mamai et al., 2017). Following 

saturation, zeolitic materials can be recharged by soaking in 10% NaCl solution, thus 

renewing their capacity and can subsequently be reused (Hartman & Fogler, 2007; 

Helfrich & Libey, 1990; Inglezakis, 2012). Ultrafiltration systems on the other hand are 

expensive, costing between 10,000 USD for small gallon per minute of water flow to 20 

million USD for high flow demand in municipal water systems (Guo, et al., 2014). These 

costs are not inclusive of other costs associated with running these systems such as 
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operating costs, shipping costs, space requirements, regulation fees, system engineering 

and design (Guo, et al., 2014). Estimated capital costs for reverse osmosis system in 2012 

was 5,750 USD and annual running cost of 1000USD for 8.33m3/day without pre-

treatment (Englehardt, et al., 2013). Conversely, cost estimates of a private investment 

project for a zeolite-based water purification system in Hungary projects a 40% reduction 

in installation cost and 20% reduction in operational costs compared to the currently used 

RO and UF filtration systems (StradiSound Strategy, 2020). Moreover, one study has 

demonstrated that zeolite and probiotics (nitrifying bacteria) can be used together as 

complementary water additives to control ammonia and nitrite content in closed 

aquaculture systems (Motesharezadeh, et al., 2015). The use of natural zeolites and their 

modified forms therefore has many advantages which includes low cost, its abundance 

in many parts of the world and being environmentally friendly. For successful application 

leading in optimal production of mosquitoes, users must consider zeolite particle size, 

chemical composition of water and balance these factors to accommodate beneficial 

bacteria in these aquatic ecosystems. 

 In conclusion, in settings where water is very scarce and/or water replacement or 

treatment options are too onerous, the use of zeolite for the rearing of An. coluzzii can 

improve mosquito survival at a lower cost. However, zeolite dosage, larval density, feed 

type, physio-chemical properties of rearing water and impact on beneficial bacteria will 

need to be further improved/optimised to maximise the economic potential of its use.  
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Chapter 7 

Improvement of water quality for mass Anopheline rearing II: Dynamics of 

bacterial communities under different water treatments revealed by 16S ribosomal 

RNA gene ultra-sequencing.  

7.1. Introduction 

Mosquitoes of the Anopheles gambiae s.l. complex are the major vectors of human 

malaria in sub-Saharan Africa. The recently re-classified sibling species Anopheles 

gambiae s.s. and Anopheles coluzzii are the most abundant and widespread in the vector 

complex, transmitting malaria in most of the sub-Saharan African region (Coetzee et al., 

2013; Gimonneau et al., 2014). Although the sibling species are morphologically 

identical and share similar resources such as vertebrate hosts, adult resting sites and 

freshwater larval habitats; various studies have documented divergent ecological 

adaptations between these species (Costantini et al., 2009; della Torre et al., 2005; 

Gimonneau et al., 2014; Simard et al., 2009). An. coluzzii has been shown to 

preferentially develop in nutrient rich, predator-prone, permanent/ semi-permanent larval 

habitats such as rice fields and recently in water polluted with decaying organic matter 

and inorganic wastes in urban centres, while An. gambiae prefers shallow, rainfed, 

nutrient poor water clusters in the surrounding relatively pristine rural settings (della 

Torre et al., 2005; Diabaté et al., 2009; Kamdem et al., 2012; Lehmann & Diabate, 2008). 

This selective distribution in different aquatic habitats is indicative of divergent 

adaptations such as ammonia tolerance and has been documented as a factor that 

contributes to their ongoing speciation (Tene Fossog et al., 2013). 

 The immature stages of Anopheline mosquitoes comprising four larval instars and 

a pupal stage develop in aquatic environments that typically contain algae, bacteria, fungi 

and protozoa (Mamai, et al., 2016). Mosquito larvae explore these micro-organisms 



 183 

present in their habitats as a primary food source through filter-feeding thereby acquiring 

microbial communities in their mid-gut and some community members are carried over 

to the adult stage (Coon et al., 2014; Gimnig et al., 2002; Kaufman et al., 2006). These 

microbial communities are required for the growth and development of most mosquito 

species until adult emergence whether in the field or laboratory (Coon et al., 2014) since 

they contribute to digestion, nutrition, reproduction and mosquito immune responses 

from pathogens (Gimonneau et al., 2014). The microbiota acquired at the larval stage can 

modulate the immune response of Anopheles gambiae s.l, and influence its vector 

competence to human pathogens, in addition to the innate immunity of the mosquito. 

(Dennison et al., 2014; Dong et al., 2009; Kumar et al., 2018). Several studies have shown 

that microbial communities in different mosquito larval habitats vary with 

physicochemical parameters (Coon et al., 2014; Dickson et al., 2017; Onchuru et al., 

2016). A study characterizing microbial communities associated with An. coluzzii and 

An. gambiae in Yaounde, Cameroon from 5 different aquatic habitats in 3 localities in 

peri-urban areas of showed that mosquitoes emerging from different aquatic habitats 

harbour different microbial communities (Gimonneau et al., 2014). Samples obtained 

from the aquatic surface microlayers and subsurface water of mosquito larval habitats, 

larvae midgut, epithelia of freshly emerged adults, midguts, ovaries and salivary glands 

revealed correlations between the bacterial content of sample mosquito microbiota and 

the larval habitat, indicating that the breeding site is crucial in shaping the microbiome 

composition of adult mosquitoes (Gimonneau et al., 2014). Aside from bacteria being 

important components of a mosquito microbiome and of their external larval 

environment, and the two being interdependent, in the context of mosquito Anopheline 

mass-rearing, bacterial communities also play an important role because their dynamics 
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can lead to rapid death of larval stages hence they could constrain the production capacity 

of rearing facilities and their management is paramount. 

 In closed aquaculture systems such as fish ponds or mosquito larval rearing tray, 

microorganisms play major roles in productivity, nutrient cycling, nutrition of cultured 

organisms, water quality and disease control (Moriarty, 1997). Nitrogen is an essential 

element in these aquaculture systems and often limits production of reared aquatic 

animals, whether it is fish or in this case, mosquito larvae (Ward & Jensen, 2014). Owing 

to this requirement for nitrogen in biological macromolecules of aquatic organisms, the 

acquisition, and cycling of nitrogen is key in the structuring of microbial communities in 

closed aquatic ecosystems like a mosquito larval tray (Ward & Jensen, 2014). Nitrogen 

cycle primarily involves four microbiological processes, such as, nitrogen fixation, 

mineralisation (decomposition), nitrification and denitrification (Hayatsu, et al., 2008). 

A wide variety of microorganisms ranging from archaebacteria, proteobacteria, Gram-

positive eubacteria and fungi are responsible for the functioning of these microbial 

processes (Ye & Thomas, 2001). The efficient management of the activities of microbes 

in the food web and nutrient cycling in closed aquaculture system such as a fish pond and 

for this study, a mosquito larval tray, is necessary for optimising production (Moriarty, 

1997).  

 Under insectary conditions, it is not uncommon to find Anopheline larval rearing 

trays in insectaries containing high levels of ammonia which usually result in the death 

of mosquito larvae (Mamai, et al., 2016). Ammonia is produced in mosquito rearing trays 

as a by-product of insect metabolism and decomposition of food waste, and has been 

shown to be toxic to fish and other aquatic invertebrates especially in its unionised form 

(Hargreaves, 1998). Furthermore, the nutritional bioavailability of nitrogen in the 

mosquito larval trays can be reduced through the accumulation of ammonia in these trays. 
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This can happen via competition for available biologically available nitrogen or, 

dissolved oxygen in the water column, and both situations have been proven to be 

detrimental to aquatic organisms (Mamai, et al., 2016). Ideally, by the process of 

nitrification, this ammonia should be converted to nitrite and then to nitrate by bacteria 

and other microorganisms (Ye & Thomas, 2001). 

 Nitrite is also a potentially-toxic nitrogenous compound that may accumulate in 

fish culture ponds. It is released as an intermediate product of nitrification and 

denitrification. Nitrite toxicity is expressed in its ability to competitively bind with 

haemoglobin to form methemoglobin which does not have the ability to transport oxygen 

(Amarasinghe & Weerakkodi, 2014; Tchigossou et al., 2018; Ward & Jensen, 2014; Ye 

& Thomas, 2001). Oxygen is vital for the survival of all organisms including insects and 

a decrease in the availability of dissolved oxygen (DO), that is usually associated with 

eutrophic conditions, is detrimental to aquatic organisms (Moniz, 2013). Even though the 

situation in a mosquito larval tray might not be of eutrophic proportions, it has been 

shown that moderate chronic hypoxia can significantly reduce survival in fish embryos 

(Bardon-Albaret & Saillant, 2016). Anopheles larvae like fish embryos depend on 

cutaneous respiration and their surface area is limited; and although breathing tubes are 

present, they are rudimentary in the immature stages (Bardon-Albaret & Saillant, 2016). 

Many authors have demonstrated that the presence or absence, and the abundance of 

Anopheles larvae is positively associated with the concentration of DO in oviposition 

sites (Dejenie, et al., 2011; Oyewole et al., 2009). Anopheles larvae were shown to be 

adapted to oligotrophic, low nutrient waters with higher oxygen levels and when DO 

drops, larval and adult survival were significantly reduced (Oyewole et al., 2009). 

Microorganisms that play a role in decomposition (saprophytes or heterotrophs) could be 

harmless, pathogenic or beneficial (Moriarty, 1997; Zhou, et al., 2009). Whilst the 
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harmless and beneficial ones decompose organic matter to meet the growth requirements 

of cultured species, maintain the eco-equilibrium, inhibit the proliferation of harmful 

organisms and disintegrate harmful chemicals (such as unionised ammonia NH3 and 

nitrites), the pathogenic microbes cause diseases (Zhou et al., 2009). To maintain a 

healthy closed aquatic ecosystem, there has to be a balance of the microecology to ensure 

beneficial microbes are present in sufficient amounts to suppress the population and 

effect of pathogens. Beneficial microorganisms (probiotics) have been successfully 

applied to improve water quality in aquaculture systems. Probiotics have been shown to 

reduce organic matter accumulation (Rengpipat, et al., 1998; Verschuere, et al., 2000) 

mitigate nitrogen (Wang & Gu, 2010) and phosphate pollution (Wang & He, 2009), 

control ammonia and nitrite concentrations (Cha, et al., 2013) as well as the reduction of 

pathogenic bacteria (Dalmin et al., 2001; Park et al., 2000). 

 Water management in mosquito insectaries to minimise the presence of ammonia 

and nitrites as well as encouraging the proliferation of beneficial microorganisms is key 

to achieving optimal rearing results both for small cultures and for mass-rearing facilities 

(HDV, 2017; Mamai et al., 2017, 2016). To better understand the microbial contribution 

to Anopheline survival and phenotypic quality in the context of mass-rearing, microbial 

communities present in these trays would need to be characterised over the course of 

larval development into adulthood. Currently there is a paucity of literature on bacterial 

community dynamics in relation to water management in the context mass-rearing toward 

mosquito release programmes. 

 One way to address this knowledge gap would be via studies of microbial 

communities present in the mosquito rearing environment through ultra-sequencing of 

the 16S rRNA gene. Over the past decade, this approach has become standard for the 

identification and enumeration of bacteria phylotypes present in samples in a cost-
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effective manner and has the advantage of being cultivation-independent (Caporaso et 

al., 2011; Gloor et al., 2010; Klindworth et al., 2013). Bacterial profiling constitutes an 

important first step in the determination of important bacterial and protist organisms in a 

given sample and can generate important information about their interaction with their 

growth environment (Gloor et al., 2010). It involves the combination of high-throughput 

sequencing technologies, and advanced computational tools that can exploit metadata 

(sample description) to relate hundreds of samples to one another so as to reveal 

biological patterns (Caporaso et al., 2011). Bacterial profiling usually employs the 16S 

rRNA gene as the phylogenetic marker. This process usually involves the sequencing of 

PCR amplified variable region of the bacterial 16S and of the protistan small subunit of 

ribosomal RNA genes (Caporaso et al., 2011; Gloor et al., 2010). 

 Although there are alternative techniques such metagenomics which provide 

insight into all of the genes and possibly gene function present in a given community, 

16S rRNA-based studies remain the preferred choice for bacterial analysis because of its 

extraordinary capacity to document unexplored diversity and ecological characteristics 

of either whole communities or individual bacterial taxa (Caporaso et al., 2011). The 16S 

rRNA gene is approximately 1500bp long and consist of 9 (hyper) variable regions 

named V1 – V9, interspersed with more conserved regions (Winand et al., 2020). It is 

particularly suitable for bacterial analysis for the following reasons: firstly, the gene is 

universally distributed, allowing the analysis of phylogenetic relationships among 

important taxa and secondly, it is a functionally indispensable part of the bacterial core 

gene set and thus only weakly affected by horizontal gene transfer which further supports 

its use for phylogenetic studies (Acinas, et al., 2004; Daubin, et al., 2003; Větrovský & 

Baldrian, 2013). Further advantages of the 16S rRNA gene suitability for phylogenetic 

studies is based on it being subject to variation especially in certain variable regions. 
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Whilst these variable regions allow for sufficient diversification to provide a 

classification tool, the 16S rRNA gene also contains conserved regions that allow for the 

design of suitable PCR primers or hybridisation probes for various taxa at different 

taxonomic levels ranging from individual strains to whole phyla (Acinas et al., 2004; 

Větrovský & Baldrian, 2013). Despite the wide application of 16S rRNA amplicon based 

sequencing, its use for the description of bacterial diversity is however limited by the 

presence of variable copy numbers in bacterial genomes and sequence variation within 

closely related taxa or within a genome (Klappenbach, et al., 2000; Větrovský & 

Baldrian, 2013). While it allows for reliable identification of bacteria genera (>99%) it 

can potentially misguide identification of bacteria species (86% reliability) (Winand et 

al., 2020). This limitation can often be mitigated with the choice of variable region to be 

amplified for sequencing. For several bacteria species that have sequence variations 

between multiple 16S rRNA gene copies, these copies are identical in certain regions. 

For instance, Escherichia coli (ATCC 70096), has 7 copies of 16S rRNA, of which 6 are 

different over the full gene length, but all 7 are identical when considering the V4 region 

(Edgar, 2018). 

 The Illumina sequencing platform is the preferred sequencing technique 

employed for microbial characterisation compared to the earlier Sanger and 454 

sequencing methods. This preference is due to Illumina’s reduced per base costs, 

comparatively high sequencing depths and its ability to detect rare phylotypes (Caporaso 

et al., 2011; Klindworth et al., 2013). The Illumina platform is however limited in that it 

produces relatively shorter reads (75-100bp in a single read- although paired reads can 

provide 150 – 200bp from a single molecule), initially believed to be too short to 

transverse any of the 16S rRNA variable regions (Caporaso et al., 2011; Gloor et al., 

2010). A recent study has however demonstrated that this limitation can be circumvented 
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by identifying maximally informative sites for specific groups of organism, and that 

fragments of the 16S rRNA as small as 100bp were sufficient to resolve microbial 

community differences (Liu et al., 2007; Tremblay et al., 2015; Winand et al., 2020) 

 Datasets generated from 16S rRNA sequencing of environmental samples and 

microbiome analyses using high-throughput sequencing (HTS) are compositional and not 

absolute because they have an arbitrary total imposed by the instrument being used 

(Gloor, et al., 2017). The total read count observed in a HTS run is of a fixed size and 

only a random sample of the relative abundance of the molecules in the underlying 

ecosystem (Gloor et al., 2017; Jian, et al., 2020). The read counts cannot be related to the 

absolute number of molecules in the input sample as implicitly acknowledged when 

microbiome datasets are converted to relative abundance values, or normalised or rarefied 

(Weiss et al., 2017). Therefore, an assumption of independence cannot be made for HTS 

experiments because the sequence instruments can only deliver reads up to the capacity 

of the instruments, generating compositional data that are proportions or probabilities but 

contain absolute information about relationships between compositional parts (Gloor, et 

al., 2017). These limitations restrain the use of relative abundance data from next 

generation sequence (NGS) for absolute quantification of microbial diversity. The 

challenges encountered with NGS data analysis include; changes of components that are 

mutually dependent which lead to misinterpretations of microbial community structures 

because the increase of one taxon leads to a concurrent decrease of others in 

compositional data; high false discovery rates which occur when compositional data are 

analysed using traditional methods; and correlation analysis of relative abundance being 

strongly subject to negative correlation bias and spurious associations, particularly 

hampering the interpretation of microbial changes in longitudinal studies, such as 

interventions (Jian et al., 2020). Without NGS-independent experiments to validate 
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sequence data, it is difficult to determine which taxon was impacted by a treatment or to 

identify the actual target organism for a specific treatment. Absolute quantification of 

microbial abundances can be achieved either by adding a cell (flow cytometry, spike-in-

bacteria) or DNA-based approach (synthetic DNA and qPCR) into standard NGS 

workflow (Jian et al., 2020) or having it as an additional validation step. In biosciences 

and medical research, the real time PCR (quantitative PCR, qPCR) is an established 

method for the detection and quantification of different microbial organisms which is 

used for such validation (Kralik & Ricchi, 2017). qPCR is used to measure the number 

of copies of a gene of interest in a community or an environmental sample (Brankatschk 

et al., 2012). The method (as described in detail in chapter 2) is based on the real-time 

monitoring of the exponential amplicon formation associated with PCR using a reporter 

molecule (such as SYBR Green dye) (Brankatschk et al., 2012). 

 In the previous chapter (Chapter 6) of this thesis, we have shown that water 

treatment (zeolite and water change) aimed at ammonia reduction improved water quality 

in larval trays, hence the survival rates of mosquito larvae and adult quality (wing-

length). It was however unclear the role, if any, that microbial communities present in 

the larval trays played in mosquito development and survival. Based on the evidence 

presented in the 1st sections of the introduction and the findings of Chapter 6, we 

hypothesised that bacterial communities were likely to vary between rearing trays and 

treatment types (Control, Zeolite, CWC, CWZ) in a way that impacted mosquito 

developmental success and phenotypic quality. Bacterial communities from larval 

rearing trays were therefore characterized using environmental tray DNA extraction 

followed by sequencing of the 16S rRNA gene. Faced with a very large and diverse 

assemblage of bacteria identified, we applied three filters designed to link bacteria 

species to health indicators in the larval trays (ammonia, nitrate and percentage survival). 
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Candidate bacteria species established by the filtering systems were subsequently 

quantified by qPCR. Results obtained reveal that the abundance and diversity of bacteria 

species in larval trays with no-water-replacement (NWR-Control and Zeolite) were 

significantly higher than those with water-replacement (WR-CWC, CWZ) and this likely 

impacted on mosquito developmental success and adult phenotypic quality. Filtering of 

the 1031 species detected via bacterial profiling using information on functional 

ecological criteria as well as correlations with ammonia levels and mosquito emergence 

rates led to the identification of several bacteria taxa that are either directly responsible 

for larval death or indicator species associated with a change to anaerobic toxic 

conditions in polluted rearing trays. This is the 1st comprehensive study focusing on the 

dynamics of bacterial community in the mosquito larval rearing habitat. These findings 

can inform rearing water management strategies and pave the way towards functional 

characterisation of specific bacterial taxa via experimental inoculation of pure cultures 

into larval trays to confirm their impact on larval development. 
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7.2. Materials and Methods 

7.2.1.  Sampling for bacterial DNA extraction 

To determine the bacterial content in mosquito rearing trays, 100ml of water was 

collected in a completely randomized pattern from all the treatment groups from Chapter 

6 (Control, Zeolite, CWC, CWZ), from 32 experimental conditions in four replicates (a 

total of 128 samples) as described in chapter 6. The collections were made in two batches 

of 50ml from each tray using sterile falcon tubes (Thiery, et al., 1991) on days 8 and 10 

from the first day of the experiment to reflect the peak period of ammonia build-up in the 

trays as described in chapter 6. Also important in the choice of collection date is that most 

pupation in Anopheles larval tray occur on day 8, and by day 10, pupation is almost 

complete in these trays. Falcon tubes were centrifuged at 3000 × g for 15 minutes at room 

temperature (Maynard et al., 2005), and supernatant carefully discarded. Pellets were 

resuspended in 500µL of phosphate-buffered saline (PBS), transferred into sterile 1.5ml 

Eppendorf tubes and stored in -20ºC until DNA extraction (Caldwell & Lattemann, 

2004). 

 

7.2.2.  Bacterial DNA extraction 

Total genomic DNA was extracted from the water samples using Qiagen DNeasy® blood 

and tissue extraction kit. Samples were defrosted and excess PBS discarded. To ensure 

that DNA extraction was efficient for both gram-positive bacteria (have thick 

peptidoglycan cell wall with teichoic acids) and gram-negative bacteria, samples were 

pre-treated with an enzymatic lysis buffer (lysozyme). The enzymatic lysis buffer 

contained 20mM Tris Cl, pH 8.0, 2mM Sodium EDTA, 1.2% Triton® X-100 and 

immediately before extraction, 20mg/ml of lysozyme is added to improve cell lysis. The 

pellets were re-suspended in 180µl of enzymatic lysis buffer and incubated for 30 minutes 



 193 

in a 37ºC pre-heated heating block. Subsequently 25 µl of proteinase K and buffer AL 

(Qiagen blood and tissue kit) was added to the sample, samples were vortexed and then 

incubated at 56 ºC for 30 minutes. To achieve a homogenous solution, 200 µl of 100% 

ethanol was added to the sample, then samples were thoroughly mixed by vortexing, and 

then transferred into the DNeasy mini spin columns placed in 2ml collection tubes. 

Samples were centrifuged at 6000 × g for 1 minute at room temperature and the flow-

through discarded with the collection tubes. DNeasy mini spin columns were placed in a 

new 2 ml collection tube, 500 µl Buffer AW1 was added, then centrifuged for 1 min at 

6000 × g. Flow-through and collection tubes were discarded. The DNeasy Mini spin 

columns were placed in a new 2 ml collection tube, 500 µl Buffer AW2 added, and then 

centrifuged for 3 min at 20,000 × g to dry the DNeasy membrane. Flow-through and 

collection tubes were discarded. The DNeasy mini spin columns were placed in a clean 

1.5 ml or 2 ml microcentrifuge tubes, 100 µl Buffer AE was pipetted directly into the 

DNeasy membrane. Tubes were incubated at room temperature for 1 min, and then 

centrifuged for 1 min at 6000 × g to elute. To ensure maximum DNA yield, the last step 

was repeated using new 1.5ml microcentrifuge tubes. Tubes containing extracted bacteria 

DNA were stored in -80ºC. Following nanodrop spectrophotometric quantification, 

samples with DNA concentration below 300ng/µl were concentrated using speed-vac and 

re-eluted in 50 µl of AE (Appendix N). 

 

7.2.3. 16S rRNA gene amplicon sequencing library preparation for Illumina MiSeq 

system. 

The sequencing was carried out by the investigator at the Vector Functional Genomics 

and Microbiology Laboratory in the Institute of Biotechnology of the São Paulo State 

University “Júlio de Mesquita Filho” (UNESP), Botucatu Campus, São Paulo, Brazil. 
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Samples were stored on ice and transported by air to the host laboratory in Brazil. To 

characterize the bacterial communities in the larval rearing trays, 16S rRNA gene was 

sequenced from bacteria DNA extracted as described in the previous section. In this 

study, the variable V4 region of the 16S rRNA gene were targeted for sequencing using 

a combination of benchtop sample preparations, onboard primary analysis, secondary 

analysis using BaseSpace and CLC genomics workbench (Appendix K). The workflow 

for library preparation and sequencing include: 

 

 

Figure 7.1: Workflow for 16S rRNA library preparation and sequence on MiSeq system. 
 

Amplicon and Index PCR 

Bacterial 16S rRNA gene V4 variable regions were amplified by PCR using universal 

forward and reverse primers developed (Caporaso et al., 2011) to yield optimal 

community clustering. Primer sequences were divided into 5 regions; the first region is 

the Illumina adapter (in orange), the second is a barcode region with unique sequence (in 

black), the third (green) and fourth regions are stabilizing and linker sequences that are 



 195 

not homologous to any 16S rRNA sequence (red), and the fifth region (purple) is targeted 

to the conserved region of the 16S rRNA gene. The primer design and subsequent PCR 

product are illustrated in Figure 7.2. 

 

 

Figure 7.2: Primer construct for amplification and indexing of bacterial DNA for 16S rRNA gene sequencing. 
  

The forward primer sequence used for PCR amplification is (F515 5' -

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTGTGCCAGCMG

CCGCGGTAA –3 ’) (Caporaso et al., 2011). Unique identifier universal reverse primers 

for each sample are listed in Appendix C. Amplicons were generated in three replicates 

of 25µl per reaction. Each PCR master mix contained 2.5 µl of DNA buffer, 1.5 µl MgCl, 

0.5 µl dNTP, 0.5 µl forward primer, 0.5 µl unique reverse primer (per sample), 0.2 µl 

Taq polymerase and 17.8 µl of DNA-free water. To prevent contamination of PCR 

reaction, PCR mix was performed under a biological safety hood following ultraviolet 

(UV) disinfection. Gloves, pipette tips and pipettes were also disinfected with UV prior 

to PCR reagents mixing. Template DNA (2 µl) was added in a separate laboratory space 
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from where PCR master mix was done. The PCR cycle for amplification included a 

denaturation step at 94ºC for 3 minutes, followed by 40 cycles of 94 ºC for 45 minutes, 

60 ºC for 1 minute, and 72 ºC for 1 minute, then a final extension of 42 ºC for 10 minutes. 

Following amplification, 5 µl of PCR product was passed through a gel electrophoresis 

step to confirm the presence of the amplified product which was approximately 460bp. 

 

Purification of PCR products 

PCR products were purified by a magnetic bead DNA purification system following the 

Agencourt® Ampure® PCR purification protocol (Agencourt Biosciences Cooperation, 

A Beckman Coulter Company, 500 Cummings Center, Suite 2450, Beverly 

Massachusetts, USA) (Appendix O). The three replicates of amplified PCR reaction per 

sample were pooled (60 µl) into a well on a 96 well PCR plate. Following purification 

(as described in the Agencourt protocol- Appendix P), 40 µl of DNA suspended solution 

was carefully transferred to sterile wells on a 96 well PCR plate. 

 

Quantification of DNA by qPCR 

Prior to qPCR quantification, samples were serially diluted in ten-fold dilutions (1:10, 

1:100, 1:1000, 1:10,000) using 10mm Tris HCL (containing Tween 0.05%), on a 96 well 

PCR plate. Diluted samples were thoroughly homogenised using vortex and micro-

pipette at each dilution stage. DNA in diluted samples (1:1000, 1:10,000) were then 

quantified in triplicates using KAPA Biosystems Library Quantification Kit and protocol 

for Illumina platforms (Appendix L).  
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Normalization and re-quantification of DNA 

Following quantification, purified undiluted samples were normalized to 4nM with 

DNA-free water using the formula below: 

 

𝐶1𝑉1 	= 	𝐶K	𝑉K 

𝑉1	 = (	4	 × 	100) ÷ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝐷𝑁𝐴	 

To create a pooled sample that will be sequenced, 4 µl of each normalized sample was 

pipetted into a sterile Eppendorf tube. This pool was homogenised and diluted as before, 

then quantified using KAPA Biosystems Library Quantification Kit for Illumina 

platforms for 1:1,000, 1:10,000, and 1:100,000 dilutions to confirm normalization 

(Appendix L). 

 

Sequencing on Illumina MiSeq System 

The pooled normalised sample was corrected to 2nM with DNA free water using the 

𝐶1𝑉1 = 𝐶K𝑉K  formula. To denature the samples, 5µl of pooled sample and 5 µl of NaOH 

@ 0.2N were pipetted into a sterile 1.5ml Eppendorf tube and left to incubate at room 

temperature for 5 minutes. Subsequently, 990µl of defrosted Hyb (buffer -part of the 

illumine sequence kit) was added into the denatured pooled sample. The final library was 

then prepared in a new sterile 1.5ml Eppendorf tube consisting of 400µl of (denatured 

pool + hyb) and 120µl of phiX (10pM) (a known control library that will not interfere 

with index). The mixture was then transferred into the sequencing cartridge. Other 

reagents (3.4µl of forward primer at 100pM, 3.4µl of index, and 3.4µl of reverse primer) 

were then pipetted into specified wells in the cartridge (Appendix K). Sample metadata 

(sample description) and index sequence were programmed into the MiSeq sequencer 

system and then sample was allowed to run for approximately 65 hours. Paired-end 
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sequenced reads were downloaded from the BaseSpace account of the host laboratory 

and then downstream analysis of fastq sequence reads were performed on the CLC 

genomics workbench. 

 

7.2.4. Sequence data analysis using CLC genomics workbench 

Paired-end sequence reads in the fastq file format were downloaded from the BaseSpace 

account of the host laboratory. To optimize the read lengths, sequenced reads were 

trimmed and subsequently filtered, with a minimum of 100bp length. Following read 

optimization steps, the reads were clustered into Operational Taxonomic Units (OTUs) 

using the global alignment method which groups reads into clusters based on taxonomic 

distribution of indexed tags against a 16S reference database (SILVA v119). OTUs 

represent taxa-specific associations with greater than or equal to 97% similarity, all reads 

that do not meet this minimum identity threshold were discarded from further analysis. 

OTUs with low abundance were also removed from further analysis. To visualize the 

OTU abundance table, a metadata table (a description of samples – replication, 

conditions, treatment) is linked to the OTU table. Using the MUSCLE tool, OTUs were 

aligned against the reference sequence on the SILVA v119 database to create a phylogeny 

tree. Secondary analyses were performed using the filtered OTU tables and phylogeny 

tree to determine the number of species in given sample (Alpha diversity), and the 

differences in species diversity between samples (Beta diversity). Further similarities 

between samples were visualized by heat map construction. Statistical differences 

between OTUs were determined by Permanova analysis (Qiagen 2018- Appendix M).  
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Figure 7.3: A flowchart summary of analysis of sequence reads on CLC genomic workbench. 
 

7.2.5. Filters for the identification of beneficial and detrimental candidate bacteria 

species in An. gambiae s.l. insectary. 

Following 16S rRNA sequencing of water samples from the An. gambiae s.l. larval 

rearing trays in the mosquito insectary-based experiment at CAEP, Keele University, as 

described in chapter 6, a total of 1031 bacteria species were identified. Four filtering 

systems were designed to correlate bacteria species to experimental trays to aid in 

narrowing the species list to candidate bacteria species that might be beneficial or 

detrimental to mosquito larvae. 

 

Filter 1: Based on biology and abundance of bacteria species 

Two criteria were used for this filter, firstly, bacteria species were ranked by OTU 

abundance of bacteria species in treatment groups with lowest mosquito adult emergence 

(Control and Zeolite). Subsequently, the most abundant species in the “cleaner trays”, 

CWZ and CWC were also considered. Further filtering was conducted based on literature 

search conducted involving the following keywords -pathogenicity, ammonia, nitrate 
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conversion, denitrification, nitrogen fixing. A total of 17 bacteria families were listed in 

filter 1 as possible suspect species impacting on mosquito development in larval trays 

(Table 7.9). 

 

Filter 2: Based on Spearman’s correlation analysis of OTU abundance and 

mosquito survival parameters. 

This group of filters consisted of 3 sub-filters where the OTU abundance of samples were 

correlated with adult emergence (2A), ammonia content (2B) and nitrate content (2C) in 

larval trays. Sequencing data obtained from Day 8 (sampling of water samples for 

bacteria DNA extraction) were excluded as they were basically a replication of Day 10. 

The first sub-group (Filter 2A) contains two sub-filters based on positive and negative 

correlations between OTU abundance of bacteria species and percentage adult emergence 

from mosquito larval rearing trays. Species that negatively correlated with adult 

emergence above 30% (correlation coefficient of -30 and above) were categorized as 

detrimental to mosquito larvae as their population were higher with decreasing adult 

emergence. Those that positively correlated with adult emergence above 30% 

(correlation coefficient of +30 and above) were classed as beneficial to mosquito larvae 

as their population increased with increasing adult emergence (Rumsey, 2016). The 

species list was ranked from the highest correlation to the least correlation. Spearman’s 

non-parametric statistical test provided an R-value and a P-value.  

 Filter 2B also consisted of two sub-filters based on positive and negative 

correlations between OTU abundance of bacteria species and ammonia content in the 

larval rearing trays. Species that negatively correlated with ammonia above 30% 

(correlation coefficient of -30 and above) were categorized as being beneficial to 

mosquito larvae as their population where higher with decreasing ammonia content in the 
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larval trays. Those that positively correlated with ammonia above 30% (correlation 

coefficient of +30 and above) were classed as detrimental to mosquito larvae as their 

population increased with increasing ammonia (Rumsey, 2016). The species list was 

ranked from the highest correlation to the least correlation. Spearman’s non-parametric 

statistical test provided an R-value and a P-value.  

 The third sub-group in this filter (Filter 2C) was based on the positive correlation 

(above 30%) between OTU abundance of bacteria species and nitrate content in mosquito 

larval trays. These species were classed as beneficial to mosquito larvae as they increase 

with increasing nitrate concentrations. There were no negative correlations above 30% 

for this group.  

 

Filter 3: Based on a comparison of the Log10 ratio of OTU abundance in clean trays 

vs dirty trays 

This filter was designed to isolate species that thrive in control conditions (dirty water) 

compared to those in better larval rearing conditions (CWC and Zeolite). The ratio of 

OTU abundance was 𝐿𝑜𝑔1' transformed such that all Log ratios above 0 indicate a 

change towards “bad” bacteria, and those above Log = 1 indicate a 10-fold change or 

more in the same direction. Taxa in the category for Control vs CWC comparison were 

highlighted and those for Control vs Zeolite are also highlighted. Finally, data were 

combined with the assumption that the taxa involved in both categories were the 

candidate detrimental bacteria. A graph was then plotted with a reference line at 𝐿𝑜𝑔1' = 

1 showing the subset of bacteria that were overgrowing for both comparisons. The taxa 

in the right area of the graph were listed as candidate bacteria possibly detrimental to 

mosquito larvae. This was repeated for the two larval densities (200-filter 3A and 400-

filter 3B) investigated in the zeolite experiment as described in chapter 6.  
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The three sets of filters described above were fitted into Venn diagrams (Figures 7.5a, 

7.5b) to isolate candidate bacteria species that were detrimental to mosquito larvae and 

those were beneficial. Bacteria species found in the intersect of two or three Venn 

diagrams were listed as candidate bacteria for subsequent quantification by qPCR. 

 

7.2.6. Primer design and optimization for quantification of candidate bacteria 

species by qPCR.  

Following the earlier described filters, 10 bacteria species were selected for quantification 

by qPCR. The selection was based on the following parameters; species occurring in two 

or three filters with the highest correlation either as detrimental or beneficial, species that 

have been cultured and have their full genome available on the National Center for 

Biotechnology Information (NCBI) database, and for whom species-specific primers 

could be designed using Primer-BLAST tool. Accession numbers (unique identification 

numbers) of bacteria species were used on the NCBI (National Center for Biotechnology 

Information) database to find the genome of the species and then the primer-BLAST tool 

was employed for primer design. Primers were designed with the following criteria- 

length of PCR product between 50-150bp, primer sequence length between 18-30 

nucleotides, GC content of primer sequence between 40-60%, melting point of primers 

between 58 − 60℃Y𝑇[ = 2℃× (𝐴 + 𝑇) + 4℃× (𝐶 + 𝐺)] and finally the five 

nucleotides at the 3’ end had no more than two G and/or C bases (Johnson et al., 2013). 

Designed primers were re-checked for specificity using the microbial-BLAST tool to 

ascertain if other species with the same product would be amplified. The primer-BLAST 

tool was also used as a final check by imputing primer sequences instead of the required 

parameters to ascertain the possibility of amplifying other non-specific products.  
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Three sets of primers were designed for a particular species and primers were obtained 

from Eurofins genomics. Primers obtained were optimised by PCR, to determine the 

primer set that best amplify the desired product. One PCR reaction contained 2.5µl of 

PCR buffer (MgCl inclusive), 0.5 µl of dNTP, 0.5 µl of forward and reverse primers, 0.2 

µl of Taq polymerase, 18.8 µl of DNA-free water and 2 µl of genomic DNA. The PCR 

reaction was done in a PCR MAX Alpha thermal cycler, at 94℃ for 3 minutes to denature 

the DNA, 40 cycles of 94℃ for 45 seconds, 50℃ for 30 seconds and 72℃ for 10 seconds, 

then a final extension at 72℃ for 3 minutes. Amplified products were viewed by gel 

electrophoresis on 1% agarose gel. Primers with clear bands at the desired product length 

were carried over for qPCR quantification (Table 7.1). 

 

Table 7.1: Primer sequences for qPCR quantification of candidate bacteria species. 

S/N Accession number Species Primer pair sequence (5'->3') Product 
length (bp) 

1 ARCM01000002.993920. 
995384 

Ancylobacter sp. 
FA202 

Forward- ACTCACTGAACGAGTGGCTG 
Reverse- CGCAGACATATCCGTCGTCA 

77 

2 JF706531.1.1366 Xylophilus sp. PDD-
37_7j_hv_b-3 

Forward- CCGTCTTGTAGATGTGCAGC 
Reverse- GGTGATGAACGTCATCGTGG 

137 

3 AF144383.1.1437 Ramlibacter 
tataouinensis 

Forward- GGTCATCCCTTCAAGGTGGA 
Reverse- CCGGATAGTCGACGAGTTCA 

101 

4 FJ390462.1.1455 Bacillus 
weihenstephanensis 

Forward- CCGCTGTAGCTGGATGAAAC 
Reverse- AAGAACCTTAGCCTACGGGG 

63 

5 EF465533.1.1436 Pseudoxanthobacter 
soli-DSM 19599 

Forward- AACACATGCCCGGATGAAAC 
Reverse- AGGACCTATAAGCCCCCTCA 

124 

6 JX879739.1.1388 Nubsella sp. EsD18 Forward- GCCTGTAAAGCCGGATCTTG 
Reverse- GTTCTTGGCCGAAGCCTATG 

51 

7 DQ166946.1.1431 Aeromonas 
hydrophila 

Forward- AAAAGGAGGGGATTGGCAGA 
Reverse- AAACTGGCCTGTCACTCTCA 

112 

8 EU434572.1.1389 Brevundimonas 
diminuta 

Forward- GATGACGTCGTTCGTCAAGG 
Reverse- GATCTTGGCGGGTTTCATCC 

141 

9 EU730907.1.1387 Sphingomonas 
wittichii 

Forward- CAAGAGGTCGAATGTGCCG 
Reverse- GAAGAAGTCTTCGATCTCGGTG 

117 

10 CP002959.3819378. 
3820883 

Turneriella parva 
DSM 21527 

Forward- ATGTTGCACCTCCTTCGC 
Reverse- GGCGGTGCAAGAACTCAT 

53 
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7.2.7. Quantification of candidate bacteria species by qPCR 

Amplification and detection of genomic DNA extracted from water samples in the zeolite 

experiment (Chapter 6) by qPCR were performed with an Applied Biosystems 

StepOnePlusTM qPCR instrument, using optical grade 96 well plates and the KAPA 

SYBR® qPCR master kit (Appendix J). Quantification was done for the 10-candidate 

bacteria species in all experimental conditions sampled on day 10 of the zeolite treatment 

assay (Chapter 6-methodology) and for the four biological replicates, resulting in a total 

of 64 qPCR reactions per species, totaling 1920 (640 × 3 technical replicates) reactions. 

To create a standard curve, 4µl of extracted DNA per sample was pipetted into a 1.5 µl 

Eppendorf tube creating a pool of genomic DNA for a replicate. The pooled samples were 

serially diluted in four 10-fold (101 – 104) dilutions with PCR-grade water. Three 

technical replicates of each pooled sample dilution were quantified, with each qPCR 

reaction consisting of 3.6µl of PCR-grade water, 5 µl of KAPA master mix, 0.2 µl of 

forward primer, 0.2 µl of reverse primer, 0.2 µl of Rox high (KAPA mix) and 1 µl of 

diluted genomic DNA. Three no-template controls were included for each qPCR plate 

run. The thermal cycle used for the qPCR run was a 3-minute denaturing step at 94℃, 40 

cycles of 94℃ for 45 seconds, 50℃ for 30 seconds, 72℃ for 10 seconds, and a final 

extension at 72℃ for 3 minutes. To ensure the specificity of the amplified product, a 

melting curve stage was added to the run for melting curve dissociation analysis to 

determine the amplification of primer-dimers or non-target products. Wells without a 

definitive melt curve peak were excluded from further analysis. A total of 40 standard 

curves were plotted using the average quantification cycle Cq values and genome size of 

the target species. Following DNA amplification, average Cq values (eliminating values 

from technical replicates that differed significantly), were plotted against the Log10 of the 

copy numbers of the bacteria genome of the given species. The resulting regression 
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equation was used to determine the copy number in any given sample using this standard 

curve. The copy numbers of a particular species were calculated using the formula below: 

 

𝑇𝑎𝑟𝑔𝑒𝑡	(𝑐𝑜𝑝𝑖𝑒𝑠 µ𝑙⁄ )

=
𝐷𝑁𝐴	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛 𝑛𝑔 𝑙 × 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜c𝑠	𝑛𝑢𝑚𝑏𝑒𝑟(6.022 × 10K9)⁄

𝐿𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑔𝑒𝑛𝑜𝑚𝑖𝑐	𝐷𝑁𝐴(𝑏𝑝) × 𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	𝑜𝑓	𝑑𝑠𝐷𝑁𝐴(660𝑔 𝑚𝑜𝑙⁄ ) 

 

Regression equation:𝑦 = 𝑘𝑥 + 𝐶 .Where y = Cq values, k = regression coefficient or 

slope, x = concentration/amount of target and C = intercept (the Cq value when one copy 

number should be detected) (Brankatschk et al., 2012; Kralik & Ricchi, 2017). The 

linearity of the standard curves was determined by R2 values, standard curves with R2 

values lower than 0.9 were discarded. 

 Individual samples were quantified in technical triplicates and for the four 

biological replicates using the regression equation of a given standard curve for that 

biological replicate and species (Figure 7.4). Thus, the number of copies of DNA of a 

particular species in a sample (experimental tray) is in relation to the total number of 

bacteria speciesDNA numbers in a given pooled biological replicate. The qPCR reaction 

mix for individual samples is the same as for the standards, the 1:10 dilution of genomic 

DNA was used for sample amplification. 

 

7.2.8. Statistical analysis 

Following OTU clustering and Alpha diversity analysis, permutational multivariate 

analysis of variance (non-parametric MANOVA) were conducted on beta diversity to 

measure the size effect and significance of grouped variables using the CLC genomics 

workbench. All qPCR related data were analysed using the software JMP 14 (SAS 

Institute, Inc., Cary, North Carolina, USA). 
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Figure 7.4: A sample excel page used for conversion of Cq values to copy numbers. A- Copy numbers of 
10-fold serial dilutions, the Log10 of those values and the Cq values at which they were amplified. B- A 
sample standard curve used to quantify Nubsella sp. for one replicate. C- Individual Cq values of samples 
converted to copy numbers using the regression equation of the standard curve. 
 

Mean Log10 of copy numbers of samples were pooled from four treatment groups earlier 

described in chapter 6 (Zeolite, CWC, CWZ and Control) to two pairs of treatment 

classes: Treatment class 1: water-replacement (WR), consisting of CWC & CWZ, and 

no-water-replacement (NWR) consisting of Zeolite & Control. Treatment class 2: zeolite 

treatment (ZT) consisting of CWZ & Zeolite and none-zeolite treatment (NZT), 

consisting of CWC & Control). Data from all replicates were used for analysis, replicate 

effects were tested but were only reported when significant. All data were checked for 

deviations from normality and heterogeneity (using normal distribution tool and Levene’s 

test), and analyses of variance of mean values were conducted using parametric (Pooled 

t-Test) and non-parametric (non-parametric t-test) methods where appropriate. Mean 

comparison between species and within treatment groups were conducted using Turkey-

Kramer HSD pairwise comparisons. 
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7.3. Results 

7.3.1.  Microbiome analysis of An. coluzzii larval rearing trays in the insectary 

Overall, Proteobacteria was the most abundant bacteria phylum (60%), followed by 

Bacteriodetes (25%), Firmicutes (6%), Actinobactera (4%), Deinococcus Thermus (3%), 

Verrucomicrobia (2%), other bacteria phylum- Armatimonadetes, Cyanobacteria, 

Planctomycetes and Gemmatimonadetes, were less than 1% relative to total bacteria 

abundance (Figure 7.5, Table 7.2). 

 

Figure 7.5: Relative OTU abundance of bacteria species in all treatment groups. 
 

 Within groups, relative abundance of bacteria phylum followed a similar trend 

with Proteobacteria having the highest abundance in all groups but subsequent phylum 

varied in percentage abundance within groups (Table 13, Figure 7.6). 
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Figure 7.6: Relative abundance of bacteria phylum by treatment groups. Vertical axis of the bar chart is 
showing the relative abundance of OTUs at the phylum level, horizontal axis showing the treatment groups 
in which the bacteria phyla occurred. 
 

Table 7.2: Relative abundance of bacteria phyla within treatment groups 

Bacteria Phylum Relative abundance within treatment groups 
Control CWC CWZ Zeolite 

Proteobacteria 55% (519,113) 60% (624,606) 76% (605,828) 56% (609,860) 
Bacteriodetes 34% (315,937) 30% (279,818) 14% (111,940) 25% (269,675) 
Firmicutes 5% (42,944) 7% (68,973) 7% (55,204) 6% (69,494) 
Actinobacteria 2% (23,321) 2% (18,274) 1% (11,246) 8% (84,555) 
Deinococcus Thermus 1% (13,370) 3% (35,846) 1% (8,180) 5% (58,815) 
Verrucomicrobia 2% (19,598) 0.6% (6,625) 0.9% (7,409) 3% (33,935) 
Armatimonadetes 0.2% (2,160) 0 0 0 
Cyanobacteria 0.3% (2,507) 0.5% (5,295) 0 0 
Planctomycetes 0 0 0 0 
Gemmatimonadetes 0 0 0 0 
Total 938,950 1,039,437 799,807 1,092,399 

Notes: OTU numbers are in parenthesis. 
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Figure 7.7: Relative abundance of bacteria class by treatment groups. Vertical axis of the bar chart is 
showing the relative abundance of OTUs at the class level, horizontal axis showing the treatment groups in 
which the bacteria classes occurred.  
 

Within treatment groups the relative abundance of major bacteria taxonomic groups 

(class, order, family, and genus) varied in decreasing measures from the bottom of the 

graph, upwards (Figure 7.7, 7.8, 7.9). Filters were then created (as described in section 

7.2.5) to isolate candidate bacteria species that are linked to treatment groups. 
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Figure 7.8: Relative abundance of bacteria A) order, and B) family by treatment groups. Vertical axis of the 
bar chart is showing the relative abundance of OTUs at the family level, horizontal axis showing the 
treatment groups in which the bacteria families occurred.  

A) 

B) 
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Figure 7.9: Relative abundance of bacteria A) genus, and B) species by treatment groups. Vertical axis of 
the bar chart is showing the relative abundance of OTUs at the species level, horizontal axis showing the 
treatment groups in which the bacteria species occurred.  

A) 

B) 
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The number of species (species richness) within each sample is represented by individual 

lines on the Alpha diversity rarefaction chart (Figure 7.10). The separate, heterogenous 

peaks of the samples indicated that the sampling depth was adequate to reveal bacteria 

diversity as heterogeneity did not decrease with increasing number of reads. Furthermore, 

each sample presented a plateau stage, which indicated that the sequencing efficiently 

resolved the microbial diversity of the sampled larval habitats (Qiagen, CLC genomic 

workbench version 11). The alpha diversity results were estimates and not absolute 

number of species since abundance table generated by the taxonomic profiling tool was 

used for the rarefaction analysis (Qiagen, CLC genomic workbench version 11). The 

Simpson’s index was used for this rarefaction analysis and it measures the 

presence/absence of taxa and additionally accounts for the number of times that each 

taxon was observed (Lozupone & Knight, 2008). 

 

 

Figure 7.10: Alpha diversity chart showing the Simpson’s diversity index on the vertical axis and the number 
of reads generated by Illumina MiSeq sequencing of mosquito larval rearing water samples on the horizontal 
axis. The chart was generated from the OTU abundance table and the phylogenetic tree. 
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Beta diversity analyses were conducted to reveal the changes in species diversity among 

samples. Firstly, the distance between samples performed with quantitative (weighted 

UniFrac) and qualitative (unweighted Unifrac) beta analysis measures revealed that the 

microbial composition of samples differed by treatments. Subsequently, principal 

coordinates from a principal coordinate analysis were plotted against each other to 

summarize the microbial community compositional differences between samples and the 

distance between the points represent how compositionally different the samples were 

from each other (Goodrich, et al., 2016). Qualitative (presence or absence of species) beta 

analysis based on phylogeny revealed differences in species composition between 

samples, with major clusters around the PCo3 (Figure 7.11). 

 

 

Figure 7.11: Beta-diversity of OTU sequences from An. coluzzii larval trays (Control-blue, CWC-
yellow, CWZ-pink, Zeolite-green) summarising the microbial community composition between 
samples. Each point represents a single sample, and the distance between points represent how 
compositionally different they are from other samples. Unweighted UniFrac (qualitative and 
phylogenetically based) metrics were used to perform Principal coordinate analysis. 
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Quantitative beta analysis (using sequence abundance) not based on phylogeny, 

show an even spread of species composition within samples, with the exception 

of some outliers around the PCo 1. (Figure 7.12). 

 

 

Figure 7.12: Beta-diversity of OTU sequences from An. coluzzii larval trays (Control-blue, CWC-
yellow, CWZ-pink, Zeolite-green), summarising the microbial community composition between 
samples. Each point represents a single sample, and the distance between points represent how 
compositionally different they are from other samples. Weighted UniFrac (quantitative and not 
phylogenetically based) metrics were used to perform Principal coordinate analysis. 
 

 Non-parametric MANOVA revealed significant differences (P < 0.0001) 

in the species composition (beta diversity) among larval rearing trays (treatment 

groups). Ad-hoc comparisons between groups show significant differences 

between treatment groups with water replacement (CWC and CWZ) and those 

without water replacement (Control and Zeolite) (Tables 7.3a, 7.3b). No 

significant differences were observed between treatment groups without water 

replacement and equally between those with water replacement. 
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Table 7.3a: Bray-Curtis PERMANOVA analysis of beta diversity 

Variable Treatment groups Pseudo-f statistic P-value 

Treatment groups Control, CWC, CWZ, 
Zeolite 

2.17707  P < 0.0001*** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. 
 

Table 7.3b: Bray-Curtis PERMANOVA analysis of beta diversity comparison between 

treatments. 

Treatment Pseudo-f statistic P-value P-value( Bonferroni) 

Control vs CWC 2.79379  0.00103 ** 0.00618 * 
Control vs CWZ 2.81086  0.00043 ** 0.00258 ** 
CWC vs CWZ 1.52650  0.10884 ns 0.65304 ns 
Control vs Zeolite 1.25121  0.22065 ns 1.00000 nd 
CWC vs Zeolite 2.55531  0.00277 ** 0.01662 * 
CWZ vs Zeolite 2.13558  0.00838 * 0.05028 * 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. 
 

7.3.2. Filters for identification of candidate bacteria species in An. gambiae s.l. 

insectary. 

Filter 1 contains 17 bacteria families based on the biology of bacteria species ranked by 

OTU abundance as described in the methods section 7.2.5. (Table 7.4). Filter 2 consists 

of 3 sub-filters based on positive and negative correlations to biotic (adult emergence) 

and abiotic (ammonia and nitrate) within larval trays. A total of 587 bacteria species were 

isolated in this filter with 130 species negatively correlating with adult emergence (Filter 

2Ai-Table 7.5a), 112 species positively correlating with adult emergence (Filter 2Aii- 

Table 7.5b), 155 species positively correlating with ammonia (Filter 2Bi- Table 7.6a), 96 

species negatively correlating with ammonia (Filter 2Bii- Table 7.6b) and 94 species 

positively correlating with nitrate concentrations (Filter 2C- Table 7.7) in the larval trays. 
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Table 7.4.: Filter 1-Biological characteristics of bacteria families by OTU abundance (Full table in 

Appendix D) 

S/
N 

Bacteria family Criteria OTU abundance in Treatment groups 
Control Zeolite CWC CWZ 

1 Cytophagaceae 
(Cytophagales) 
 

Found in organically rich material, also adapt to 
low nutrient, gram negative, may be aerobic, 
microaerophilic, capnophilic (CO2 requiring) or 
facultatively anaerobic are organotrophs, able to 
degrade biomacromolecules like proteins, chitin, 
pectin, agar, starch. (McBride, et al., 2014) 

198,501 136,604 97,857 65,058 

2 Comamonadaceae 
(Burkholderiales) 
 

Include plant and human pathogen. Order is 
phenotypically, metabolically & ecologically 
diverse. Includes strictly aerobic & facultatively 
anaerobic chemoorganotrophs. Include obligate 
& facultative chemolithotrophs, nitrogen fixing 
organisms (Garrity, et al., 2005) 

165,623 287,350 186,086 198,021 

3 Oxalobacteriaceae 
(Burkholderiales) 
 

Mostly aerobic, microaerobic to facultatively 
anaerobic. Found in diverse environmental 
habitats like water, soil, plant associated. Some 
species are mild plant pathogens, some are 
opportunistic human pathogens. Gram-negative. 
Mesophilic, with some psychrophilic (Baldani et 
al., 2014) 

85,999 61,010 114,740 163,769 

4 Burkholderiaceae 
Pseudomonas sp.  

Several species are pathogenic for humans, other 
warm blooded animals, fish, eels as well as other 
vertebrates & invertebrates such as leeches 
(Garrity, et al., 2005) 

56,863 18,120 14,349 3,110 

Notes: Table continued in Appendix D 
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Table 7.5a: Filter 2Ai-OTU abundance vs emergence @ Spearman’s correlation -30. (Full table in 

Appendix E) 

S/
N 

Species number Name OTU 
Abundance 

Spearman’s 
R  

P-value 

1 FR667304.1.1357 Roseomonas (UB-Acetobacteraceae) 207 -0.6636 <0.0001*** 
2 EU773989.1.1373 Clostridiaceae1 (UB)* 15 -0.5918 0.0007** 
3 KC432217.1.1330 Clostridium sensu stricto 3 (UB-

Clostridiaceae1)* 
7,024 -0.5909 0.0007** 

4 HM778794.1.1387 Gammaproteobacteria-aaa34a10-UB 448 -0.5905 0.0007** 
5 HM778860.1.1375 Aeromonas (uncultured Aeromonadaceae)* 80 -0.5813 0.0009** 
6 DQ166946.1.1431 Aeromonas hydrophila* (Aeromonadaceae)* 112 -0.5786 0.0010** 
7 AB487832.1.1332 Clostridium sensu stricto 

10*(Clostridiaceae1) 
19 -0.5762 0.0011** 

8 HM779015.1.1417 Shewanella (UB- Shewanellaceae) 228 -0.5507 0.0020** 
9 JF808900.1.1502 Tolumonas sp. (UB- Aeromonadaceae)* 7,676 -0.5408 0.0025** 
10 FJ205850.1.1269 Clostridium sensu stricto 1* (Clostridiaceae1) 27 -0.5089 0.0048** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring 
species/family/groups. Table continued in Appendix E 
 

Table 7.5b: Filter 2Aii- OTU abundance vs adult emergence @ Spearman’s positive correlation +30 
(Full table in Appendix E) 

S/
N 

Species number Name OTU 
Abundance 

Spearman’s 
R  

P-value 

1 AB255079.1.1492 Variovorax (UB- Comamonadaceae)* 63 0.6933 <0.0001*** 
2 KF037634.1.1519 Phaselicystis (UB-Phaselicystidaceae) 2,586 0.6345 0.0002** 
3 EU730907.1.1387 Sphingomonas wittichii (Sphingomonadaceae)* 56 0.5981 0.0006** 
4 FJ374243.1.1485 Comamonas (UB- Comamonadaceae)* 73 0.5844 0.0009** 
5 KF010745.1.1485 Comamonadaceae-UB* 85,589 0.5736 0.0011** 
6 AY695728.1.1430 Nitratireductor (UB-Phyllobacteriaceae)* 47 0.5831 0.0009*** 
7 EU704796.1.1279 Aquabacterium sp. (UB-Comamonadaceae)* 4,706 0.5727 0.0012** 
8 HM277954.1.1356 Chitinophagaceae -UB* 10,053 0.5714 0.0012** 
9 HQ166654.1.1466 Leptothrix (UB-Comamonadaceae)* 1,162 0.5591 0.0016** 
10 AB539840.1.1439 Spirosoma sp. APU1a (Cytophagaceae) 241 0.5555 0.0018** 

 P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring 
species/family/groups. Table continued in Appendix E. 
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Table 7.6a: Filter 2Bi- OTU abundance vs NH3 @ Spearman’s correlation +30 (positive correlation) 
(Full table in Appendix F) 

S/N Species number Name OTU 
Abundance 

Spearman’
s R 

P-value 

1 ARCM01000002.993920.995384 Ancylobacter sp. FA202 
(Xanthobacteriaceae) 

14,777 0.7764 <0.0001*** 

2 KC254734.1.1308 Kaistia hirudinis (Rhizobiaceae) 961 0.7210 <0.0001*** 
3 HG529104.1.1303 Prosthecobacter (UB-

Verrucomicrobiaceae)* 
16,796 0.6787 <0.0001*** 

4 GQ263646.1.1467 Pedobacter (UB-
Sphingobacteriaceae)* 

234 0.6616 <0.0001*** 

5 HM274274.1.1354 Chitinophagaceae-UB* 1,421 0.6606 <0.0001*** 
6 AF144383.1.1437* Ramlibacter tataouinensis 

(Comamonadaceae)* 
489 0.6468 0.0001** 

7 HM341157.1.1356 Variovorax (uncultured 
Comamonadaceae)* 

41 0.6303 0.0002** 

8 GQ158268.1.1407* Lampropedia (UB-
Comamonadaceae)* 

154 0.6272 0.0003** 

9 JN868977.1.1523* Comamonadaceae - UB 48 0.6190 0.0003** 
10 KF150693.1.1413 Pedobacter sp. THG-G12 

(Sphingobacteriaceae) 
245 0.6157 0.0004** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring 
species/family/groups. Table continued in Appendix F 
 

Table 7.6b: Filter 2Bii- OTU abundance vs NH3 @ Spearman’s correlation -30 (negative correlation) 

(Full table in appendix F) 

S/
N 

Species number Name OTU 
Abundance 

Spearman’s 
R 

P-value 

1 FN563004.1.1426 Noviherbaspirillum (photoautotrophic 
bacterium GMMC _photoauto_1) 
Oxalobacteraceae 

49 -0.6787 <0.0001*** 

2 FJ802311.1.1212 Comamonadaceae (iron reducing 
enrichment culture clone FEA_2_E4) 

74 -0.6528 0.0001** 

3 JF429369.1.1488 Acidovorax (Comamonadaceae-UB)* 6,575 -0.6194 0.0003** 
4 JF222253.1.1350 Leptothrix (UB-Comamonadaceae)* 86 -0.6089 0.0005** 
5 EF018753.1.1401 Acidovorax (Comamonadaceae-UB)* 119 -0.5944 0.0007** 
6 AB599879.1.1412 Comamonadaceae-USH1-UB* 100 -0.5835 0.0009** 
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S/
N 

Species number Name OTU 
Abundance 

Spearman’s 
R 

P-value 

7 DQ664240.1.1431 Aquabacterium-IMCC1721 
(Comamonadaceae)* 

42 -0.5759 0.0011** 

8 JN217068.1.1494 Acidovorax sp. (Tepidicella-
Comoamonadaceae)* 

218 -0.5744 0.0011** 

9 CP002959.381937
8.3820883 

Turneriella parva DSM 21527 
(Leptospiraceae) 

17 -0.5715 0.0012** 

10 AY792258.1.1537 Variovorax (UB- Comamonadaceae)* 19 -0.5693 0.0013** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring 
species/family/groups. Table continued in Appendix F 
 

Table 7.7: Filter 2C- OTU abundance vs Nitrate @ Spearman’s positive correlation +30. (Full table in 

Appendix G) 

S/N Species number Name OTU 
Abundance 

Spearman’s 
R 

P-value 

1 KC747739.1.1382 Vibrio cholerae (Vibrionaceae)* 2,122 0.6312 0.0002** 
2 EU537205.1.1383 Comamonas (UB-Comamonadaceae)* 57 0.6162 0.0004** 
3 HM779429.1.1454 MB19-Aeromonadales-UB 20 0.5952 0.0007** 
4 FJ823923.1.1498 Acidovorax (UB- Comamonadaceae)* 936 0.5807 0.0010** 
5 FJ347719.1.1277 Comamonadaceae-UB* 85 0.5704 0.0012** 
6 FJ562171.1.1242 Nitrobacter (UB- Bradyrhizobiaceae)* 177 0.5672 0.0013** 
7 JX521628.1.1499 Acidovorax (UB- Comamonadaceae)* 123 0.5635 0.0015** 
8 EF555457.1.1469 Achromobacter xylosoxidans (Alcaligenaceae) 172 0.5606 0.0016** 
9 FJ193907.1.1439 Comamonadaceae-UB* 20 0.5463 0.0022** 
10 EF019908.1.1335 Bradyrhizobium (UB-Bradyrhizobiaceae)* 10 0.5425 0.0024** 

P- value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring species. 
Table continued in Appendix G 
 

Filter 3 consists of two sub-filters with a total of 26 species (19 species at 200 larval 

density and 7 species at 400 larval density) based on the filter description in method 

section 7.2.5 as possible candidate bacteria that were detrimental to mosquito larvae in 

the experimental trays (Tables 7.8a and 7.8b). 
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Table 7.8a: Filter 3A: Highest bacteria abundance Log ratio between Control vs CWC & Control vs 

Zeolite at 200 larval density. (Full table in Appendix H) 

S/N Species number Name OTU 
abundance 

1 FN436071.1.1449 Ochrobactrum- UB (Brucellaceae) 288 
2 FJ375362.1.1346 Azospirillum- UB (Rhodospirillaceae) 21,218 
3 FJ393109.1.1505 Variovorax- UB (Comamonadaceae) 437 
4 KC633571.1.1346 Bergeyella- UB (Flavobacteriaceae) 171 
5 FJ375487.1.1458 Cloacibacterium- UB (Flavobacteriaceae) 6,048 
6 FJ418700.1.1325 Sinorhizobium sp. CCBAU 51063 (Rhizobiaceae) 52 
7 APMI01000355.1.1237 Wastewater metagenome -UB 

(Chitinophagaceae) 
1,966 

8 HE583162.1.1377 Delftia-UB (Comamonadaceae) 6,019 
9 AM403225.1.1369 Myroides (Flavobacteriaceae bacterium D11-

24b1) 
2,699 

10 ARCM01000002.993920.995384 Ancylobacter sp. FA202 (Xanthobacteraceae) 14,777 

Notes: Table continued in Appendix H 
 

Table 7.8b: Filter 3B: Highest bacteria abundance Log ratio between Control vs CWC & Control vs 

Zeolite at 400 larval density 

S/N Species number Name OTU abundance 

1 FJ375362.1.1346 Azospirillum- UB (Rhodospirillaceae) 21,218 
2 AY856847.1.1449 Sphingobacterium sp. 62 (Sphingobacteriaceae) 56,741 
3 AB240273.1.1475 Haloferula-UB (Verrucomicrobiaceae) 4,002 
4 JN391803.1.1495 Variovorax-UB (Comamonadaceae) 445 
5 FN668067.1.1483 Sphingobacterium sp. -UB NS11-12 Marine group 7,031 
6 JF217076.1.1347 Perludicibaca-UB (Moraxellaceae) 6,700 
7 JX489898.1.1487 Uncultured soil bacterium NS11-12 Marine group-

Sphingobacteriales 
251 

 

Venn-diagrams fitting all filters to reveal possible detrimental (Figure 7.13) and 

beneficial (Figure 7.14). Bacteria at the intersect of two or three Venn diagrams were 

prioritised in the final selection of candidate bacteria species to be validated by qPCR. 
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Figure 7.13: Venn diagrams showing detrimental candidate bacteria species associated with Filter 2Ai 
(negative correlation between adult emergence and OTU abundance- orange circle), Filter 2Bi (positive 
correlation between OTU abundance and ammonia) and Filter 3 (species associated with dirty water 
groups). Species in red and purple, occurring between two filters are prioritized as prime candidates. 
 

 
 
Figure 7.14: Venn diagrams showing candidate beneficial bacteria species associated with Filter 2Aii 
(positive correlation between adult emergence and OTU abundance- orange circle), Filter 2Bii (negative 
correlation between OTU abundance and ammonia) and Filter 2C (positive correlation between nitrate and 
OTU abundance). Species in orange, green and blue, occurring between two filters are prioritized as prime 
candidates. 
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A total of 10 bacteria species were selected based on the above described filters, Venn 

diagram streamlining, availability of full genome sequence on NCBI database and the 

limited financial resources and time allowed for this study (Table 7.9). The first 8 bacteria 

species were deemed detrimental species while the last 2 (in blue ink) are selected as 

beneficial bacteria species. 

 
Table 7.9: Candidate bacteria species for quantification by qPCR. 

S/N Accession number Species OTU 
abundance 

Spearman’s 
R  

P-value 

1 ARCM01000002.993920.995384 Ancylobacter sp. FA202 
(Xanthobacteraceae) 

14,777 0.7764 <0.0001*** 

2 JF706531.1.1366 Xylophilus sp. PDD-37_7j_hv_b-3 
(Comamonadaceae) 

55,011 0.5971 0.0006** 

3 AF144383.1.1437 Ramlibacter 
tataouinensis(Comamonadaceae) 

489 0.6468 0.0001** 

4 FJ390462.1.1455 Bacillus weihenstephanensis 
(Bacillaceae) 

13 0.5977 0.0006** 

5 EF465533.1.1436 Pseudoxanthobacter soli-DSM 
19599 (Xanthobacteraceae)  

296 0.5613 0.0015** 

6 JX879739.1.1388 Nubsella sp. EsD18 
(Sphingobacteriaceae) 

4,977 0.4889 0.0071** 

7 DQ166946.1.1431 Aeromonas 
hydrophila(Aeromonadaceae) 

112 -0.5786 0.0010** 

8 EU434572.1.1389 Brevundimonas diminuta 
(Caulobacteraceae) 

60 -0.4739 0.0094** 

9 EU730907.1.1387 Sphingomonas wittichii 
(Sphingomonadaceae) 

56 0.5981 0.0006** 

10 CP002959.3819378.3820883 Turneriella parva DSM 21527 
(Leptospiraceae) 

17 -0.5715 0.0012** 

Notes: 1-8- correlate with larval mortality; 9-10 correlate with larval survival. P- value and Spearman’s R are 
derived from non-parametric correlation analysis with OTU abundance. P- value: *** < 0.0001 (most 
significant), ** < 0.005, * < 0.05, ns > 0.05 (not significant). Spearman’s R and P values- Spearman’s rank 
positive correlation to: percentage ammonia (filter 2Bi)/ 2- negative correlation to adult emergence (filter 
2Ai)/ 3- positive correlation to adult emergence (filter 2A)/4- negative correlation to ammonia. Species in blue 
are candidate beneficial bacteria. 
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7.3.3.  Quantification of candidate bacteria species in An. coluzzii larval rearing 

trays by qPCR. 

Overall, candidate bacteria species differed in DNA abundance across treatment groups 

(Table 7.11a Figure 7.15) within An. coluzzii larval trays. The three most abundant 

bacteria species were Xylophilus sp. PDD-37_7j_hv_b-3 (Comamonadaceae) followed 

by Sphingomonas wittichii (Sphingomonadaceae), Turneriella parva DSM 21527 

(Leptospiraceae) whilst the least abundant species were Brevundimonas diminuta 

(Caulobacteraceae), then Bacillus weihenstephanensis (Bacillaceae) and Ramlibacter 

tataouinensis (Comamonadaceae) (Tables 7.10, 7.11a, Figure 7.16).  

 

 

Figure 7.15: Log10 of bacteria DNA (copies/µl) of candidate bacteria species isolated from An. coluzzii larval 
trays. Light blue bars represent mean Log10 DNA abundance of individual bacteria species. Whiskers 
represent 95% confidence intervals. Bars with different letters are significantly different. Bars sharing any 
letter are not significantly different. 
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Table 7.10: Classification of the candidate bacteria species ranked by copy number abundance in 

larval trays. 

Rank Phylum Class Family Genus/Species Log10 DNA  
(Copies/µl) 

1 Proteobacteria Betaproteobacteria Comamonadaceae Xylophilus sp. PDD-
37_7j_hv_b-3 

10.92  
(9.28 - 12.57) 

2 Proteobacteria Alphaproteobacteria Sphingomonadaceae Sphingomonas 

wittichii 

10.31  
(9.57 – 11.06) 

3 Spirochaetae Spirochaetes Leptospiraceae Turneriella parva 
DSM 21527 

9.91  
(9.39 – 10.43) 

4 Bacteriodetes Sphingobacteriia Sphingobacteriaceae Nubsella sp. EsD18 8.61 
 (8.25 – 8.96) 

4 Proteobacteria Gammaproteobacteria Aeromonadaceae Aeromonas 

hydrophila 

8.61  
(8.18 – 9.04) 

5 Proteobacteria Alphaproteobacteria Xanthobacteraceae Ancylobater sp. 
FA202 

8.58  
(8.30 – 8.86) 

6 Proteobacteria Alphaproteobacteria Xanthobacteraceae Pseudoxanthobacter 

soli- DSM 19599 

8.52  
(7.80 – 9.25) 

7 Proteobacteria Betaproteobacteria Comamonadaceae Ramlibacter 

tataouinensis 

8.28  
(7.17 – 9.38) 

8 Firmicutes Bacilli Bacillaceae Bacillus 

weihenstephanensis 

8.27  
(6.77 – 9.78) 

9 Proteobacteria Alphaproteobacteria Caulobacteraceae Brevundimonas 

diminuta 

6.25  
(5.05 -7.45) 

Notes: P- value: *** < 0.0001 (most significant), ** < 0.005, * < 0.05, ns > 0.05 (not significant). Species in 
blue are candidate beneficial bacteria. Sample size = 64. 
 

There was an overall impact of water replacement on total abundance among bacteria 

species in An. coluzzii larval trays ( Table 7.12a). Larval trays with no water replacement 

(Control and Zeolite) contained significantly higher (P = 0.0002) numbers of candidate 

bacteria species compared to trays with water replacement (CWC, CWZ) (Table 7.12a). 

Similarly, larval trays treated with zeolite had significantly (P = 0.0044) more bacteria 

species compared to those without zeolite (Table 7.12a). 
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Table 7.11a: Test of effect (T-test) of the means of Log10 bacteria DNA (copies/µl) by species and 

between treatment groups. 

Parameter df Mean Square P-value 

Species 9 108.589 <0.0001*** 
Treatment class 1 (NWR vs WR) 1 220.887 0.0002** 
Treatment class 2 (NZT vs ZT) 1 131.897 0.0044* 

Notes: P- value: *** < 0.0001 (most significant), ** < 0.005, * < 0.05, ns > 0.05 (not significant) 
 

Candidate bacteria species significantly differed (P = 0.0002) in DNA abundance 

(copies/µl) between the subgroups in treatment class 1 (NWR vs WR). (Table 7.11a). 

One-tailed t-test revealed significant differences in abundance for Ancylobacter sp. 

FA202 (Xanthobacteraceae) at P = 0.0254, Bacillus weihenstephanensis (Bacillaceae) at 

P = 0.0215 and Pseudoxanthobacter soli-DSM 19599 (Xanthobacteraceae), P = 0.0056 

and Sphingomonas wittichii (Sphingomonadaceae) at P = 0.0289 as significantly higher 

in NWR compared to WR. There were no significant differences in bacteria abundance 

observed among treatment class 1 for other candidate bacteria species (Table 7.11b). 

 

  
Figure 7.16: Log10 of bacteria DNA (copies/µl) of candidate bacteria species isolated from An. coluzzii 
larval trays. Dark grey bars represent the NWR (no-water-replacement) treatment level and light grey bars 
show WR (water-replacement) level within species. Whiskers represent 95% confidence intervals. Within 
species, bars with different letters are significantly different. 
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Table 7.11b: Test of effect (T-test) of the means of Log10 bacteria DNA (copies/µl) by species 

between treatment levels. 

Parameter Source (species) df Spearman’s 
R 

Spearman’s 
P 

P-value 
(2-way) 

P-value 
(1-way) 

Treatment class 1 
(NWR vs WR) 

Aeromonas hydrophila ^ 1 -0.57862 0.0010** 0.2374ns 0.1187 ns 
Ancylobacter sp.^ 1 0.77641 <0.0001*** 0.0507ns 0.0254* 
Bacillus weihenstephanensis ^ 1 0.59771 0.0006*** 0.0430* 0.0215* 
Brevundimonas diminuta ^ 1 -0.47392 0.0094** 0.2666ns 0.1333ns 
Nubsella sp.^ 1 0.48891 0.0071** 0.2374ns 0.1187ns 
Pseudoxanthobacter soli ^ 1 0.56131 0.0015** 0.0111* 0.0056* 
Ramlibacter tataouinensis  1 0.64681 0.0001*** 0.8636ns 0.4318ns 
Xylophilus sp. PDD-37_7j_hv_b-3 ^ 1 0.59711 0.0006** 0.2058ns 0.1029ns 
Sphingomonas wittichii ^ 1 0.59813 0.0006*** 0.0578ns 0.0289* 
Turneriella parva DSM 21527^ 1 -0.57154 0.0012** 0.1668ns 0.0838ns 

Treatment class 2 
(NZT vs ZT) 

Aeromonas hydrophila 1 -0.57862 0.0010** 0.1217ns 0.0608ns 
Ancylobacter sp. 1 0.77641 <0.0001*** 0.1850ns 0.0925ns 
Bacillus weihenstephanensis 1 0.59771 0.0006*** 0.2719ns 0.1358ns 
Brevundimonas diminuta 1 -0.47392 0.0094** 0.1732ns 0.0866ns 
Nubsella sp. 1 0.48891 0.0071** 0.3412ns 0.1706ns 
Pseudoxanthobacter soli 1 0.56131 0.0015** 0.5555ns 0.2777ns 
Ramlibacter tataouinensis 1 0.64681 0.0001*** 0.3949ns 0.1975ns 
Xylophilus sp. PDD-37_7j_hv_b-3 1 0.59711 0.0006** 0.2565ns 0.1282ns 
Sphingomonas wittichii 1 0.59813 0.0006*** 0.5252ns 0.2626ns 
Turneriella parva DSM 21527 1 -0.57154 0.0012** 0.2272ns 0.1136ns 

Notes: P- value: *** < 0.0001 (most significant), ** < 0.005, * < 0.05, ns > 0.05 (not significant). ^ Species 
followed the expected trend from the filters established by ultra-sequencing. Species in bold font were 
significantly different between treatment groups at one way T-test. Species in black ink were categorised 
from the filter tables as detrimental microbes (associated with higher ammonia content, lower nitrate content 
increased mortality) and with experimental trays labelled as NWR (Zeolite and Control). Species in blue ink 
were categorised as beneficial bacteria from the filtering system earlier described (lower ammonia content, 
higher nitrate conversion, reduced larval mortality, WR-CWC and CWZ). 
 

Although there was an overall significant difference in the abundance of bacteria species 

between NZT and ZT, individual bacteria species did not significantly differ among the 

sub-treatment groups (Tables 7.11a, 7.11b). 
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Within treatment class 1 subgroups, there were significant differences (NWR-P = 0.0053, 

and WR- P <0.0001) in DNA abundance of bacteria species (Table 7.12). Post-hoc 

analysis revealed significant differences the two most abundant species (Xylophilus sp. 

PDD-37_7j_hv_b-3 and Sphingomonas wittichii) and the least abundant species 

(Brevundimonas diminuta) within the NWR sub-group (Figure 7.17, Appendix- I). 

 

Table 7.12: Analysis of variance of the means of Log10 bacteria DNA (copies/µl) by species within 

treatment groups. 

Parameter Source df Mean Square P-value 

Species NWR 9 66.4064 0.0053* 
WR 9 56.9570 <0.0001*** 
NZT 9 59.9773 <0.0001*** 
ZT 9 54.3614 0.0178** 

Notes: P- value: *** < 0.0001 (most significant), ** < 0.005, * < 0.05, ns > 0.05 (not significant) 
 

The other 7 species in the median range of abundance did not differ significantly with the 

high abundance group or with the least abundant species in the subgroup (Figure 7.12, 

Appendix I). Likewise, in the WR sub-group, the three most abundant species (Xylophilus 

sp. PDD-37_7j_hv_b-3, Sphingomonas wittichii and Turneriella parva DSM 21527) 

differed significantly from the least abundant species (Brevundimonas diminuta) but not 

with the other six in the median range (Figure 7.17, Appendix I).  

 Within treatment class 2 subgroups, there were significant differences (NZT P < 

0.0001, and ZT = 0.0178) in the DNA abundance of candidate bacteria species in An. 

coluzzii larval trays (Table 7.12, Figure 7.18). Post-hoc analysis revealed four levels of 

significance in bacteria abundance within the NZT treatment sub-group, with 

Sphingomonas wittichii and Xylophilus sp. PDD-37_7j_hv_b-3 being the most abundant 

and Brevundimonas diminuta as the least abundant bacteria species (Figure 7.18). 

Similarly, within the ZT treatment sub-group, 3 levels of significance were revealed 
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following post-hoc analysis. Xylophilus sp. PDD-37_7j_hv_b-3 was the most abundant 

and Brevundimonas diminuta was the least abundant species (Figure 7.18). 

 

  
Figure 7.17: Log10 of bacteria DNA (copies/µl) of candidate bacteria species isolated from An. coluzzii within 
treatment class 1 subgroups (NWR and WR). Dark grey bars represent the NWR (no-water-replacement) 
treatment level and light grey bars show WR (water-replacement) level within species. Whiskers represent 
95% confidence intervals. Within treatment sub-groups (NWR and WR), bars with different letters are 
significantly different. Bars sharing any letter are not significantly different. 
 

 
Figure 7.18: Log10 of bacteria DNA (copies/µl) of candidate bacteria species isolated from An. coluzzii within 
treatment class 2 subgroups (NZT and ZT). Dark grey bars represent the NZT (none-zeolite-treatment) and 
light grey bars show ZT (zeolite-treatment) level within species. Whiskers represent 95% confidence 
intervals. Within treatment sub-groups (NZT and ZT), bars with different letters are significantly different. 
Bars sharing any letter are not significantly different. 
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7.4.  Discussion 

7.4.1.  16S rRNA gene amplicon sequencing of bacteria communities in An. coluzzii 

larval rearing trays by Illumina MiSeq system. 

The most abundant bacteria phyla in the water samples from the An. coluzzii experimental 

trays were Proteobacteria (~60%), followed by Bacteriodetes (~25%), Firmicutes (~6%), 

Actinobactera (~4%), Deinococcus Thermus (~3%), Verrucomicrobia (~2%). These six 

phyla comprised of almost 100% of the bacteria phyla identified with - Armatimonadetes, 

Cyanobacteria, Planctomycetes and Gemmatimonadetes, occurring in less than 1% of the 

total relative bacteria abundance. Of the ten candidate species streamlined for further 

analysis and quantification by qPCR, seven fall under the Proteobacteria phylum and 

three of these are alphaproteobacteria. In a decreasing order of magnitude, families with 

highest OTU abundance among larval trays include Comamonadaceae, Cytophagaceae, 

Oxalobacteraceae, Aeromonadaceae, Sphingobacteriaceae, Clostridiaceae, 

Rhodocyclaceae, Micrococcaceae, Deinococcaceae, Chitinophagaceae. At species level, 

Emticia sp., Pseudomonas sp., Pseudomonas putida, and Rathayibacter festuceae were 

among the most abundant bacteria (OTU abundance) species within the larval trays. 

Several uncultured bacteria species were also represented. The range of bacteria species 

and phyla found in the experimental trays are similar to dominant bacteria species usually 

found in freshwater habitats (Zhou et al., 2009). The Micrococcacea family that is usually 

dominant in seawater was also isolated from the larval trays. A similar study that 

conducted microbiome analysis of An. coluzzii larval habitat reported similar phyla 

composition (Gimonneau et al., 2014). 

 The Simpson’s index alpha diversity rarefaction results suggest that the number 

of species present in the samples were sufficient to resolve the microbial diversity within 

the experimental trays. The rarefaction curves showed maximum variability in bacterial 
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communities among samples from 25 -240 OTUs and this is consistent with the abiotic 

variation (nutrient content, ammonia, pH) among larval trays (Chapter 6). The full 

resolution of the curves is indicative of the robust depth of sampling and that the results 

obtained are reproducible and were sufficient to encapsulate all possible diversity (Gloor 

et al., 2010). 

 Species richness among treatment trays, evaluated by beta analysis showed that 

the microbiome composition of trays differed significantly. Qualitative (presence or 

absence of species) beta analysis based on phylogeny revealed differences in species 

composition between samples while quantitative beta analysis (using sequence 

abundance) not based on phylogeny, show an even spread of species composition within 

samples. The differences in species richness were significant between the subgroups in 

treatment class 1, those with water-replacement (WR - CWC & CWZ) had lower species 

richness compared to those without water-replacement (NWR- Control & Zeolite). 

Within these broad groups species richness did not differ significantly, thus indicating no 

significant difference between the subgroups in treatment class 2 (NZT- no zeolite 

treatment-CWC & Control and ZT – zeolite treatment- Zeolite & CWZ). The summary 

of the results from the experiment on the impact of zeolite treatment and water change 

(Chapter 6 of this thesis) showed that mosquitoes reared in the trays where water was 

continuously refreshed had significantly higher survival and adult quality compared to 

those reared in stagnant water. The results also reveal that zeolite treatment positively 

impacted mosquito survival and adult phenotypic quality at the lower rearing density. 

 The higher bacteria species richness and OTU abundance in NWR was expected, 

as nutrient-rich, stagnant aquatic pools support various bacteria species and abundance 

levels are higher in eutrophic/near eutrophic habitats compared to nutrient poor aquatic 

habitats (Gimonneau et al., 2014). In addition, the microbial content of the groups with 
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water change will have been diluted by the continuous water replacement, hence the 

reduced diversity and relative abundance. Mosquito survival and adult body size were 

maximised in this group (WR) partly due to the absence or minimal presence of toxic 

compounds such as ammonia (Hargreaves, 1998). Furthermore, the continuous water 

replacement replenished dissolved oxygen content in the WR group, and reduced the 

level of other pollutants such as ammonia, hence the higher mosquito productivity in 

these trays (Moniz, 2013). Organic and inorganic compounds (ammonia) similar to those 

described in the experiment in Chapter 6 of this thesis have been shown to favour the 

growth of the identified bacteria phyla (Liu et al., 2014). Furthermore, there is the 

possibility that the increased bacteria content in the NWR groups led to competition for 

available nutrients and dissolved oxygen in the larval trays and hence the death of 

mosquito larvae. Alternatively, it might have led to nutrient enrichment (bacteria serve 

as food for Anopheles larvae) which also results in the death of aquatic invertebrates 

(Mamai, et al., 2016). 

 Amongst the most abundant family identified, there were a range of beneficial 

bacteria including denitrifiers (Cytophagaceae), nitrate reducing and ammonium salt 

absorbing (Aeromonadaceae) (Appendix D). Other families have the potential to become 

pathogens when present in sufficient amounts, a few families are harmless (neutral) 

(Appendix D) (Zhou et al., 2009) 

 

7.4.2. Quantification of candidate bacteria species by qPCR. 

The overall direction of bacteria DNA abundance in the larval trays was higher in NWR 

compared to WR as predicted by the filter tables and Venn diagrams. Comparisons of 

DNA abundance of individual bacteria species between NWR and WR groups revealed 

that the qPCR validation step supported the OTU abundance data from 16S rRNA gene 
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sequencing. Further validating the 16S rRNA sequencing step, the qPCR quantification 

of candidate bacteria species revealed that larval trays with no-water-replacement 

(Control and Zeolite-NWR) contained significantly higher numbers of candidate bacteria 

species compared to trays with water-replacement (CWC, CWZ - WR). These results 

offer explanation for the lower mosquito survival and reduced adult quality reported from 

the NWR treatment class groups in the earlier chapter of this thesis (Chapter 6). Other 

laboratory-based study that focused on the reuse and recycling of water in a mosquito 

insectary for the purpose of mass rearing, show similar results with the dirty water groups 

having lower survival and adult quality (Mamai et al., 2017, 2016). Authors had 

speculated that their results could be a function of the reduction in the diversity of 

mosquito gut bacteria during development and hence, death as a result of reduced 

immunity. They also speculated that the lower mosquito survival and reduced adult 

quality, observed in the “dirty” trays could be as a result of the depletion of beneficial 

and nutritional microbes overtime through larval grazing, resulting in the dominance of 

less-nutritious or deleterious species (Mamai et al., 2017, 2016). They also argued that 

microbes might compete with mosquito larvae for nutritionally available nitrogen in a 

mosquito rearing tray and that any imbalance in the symbiotic relationship between 

microbiome and mosquito larvae might be toxic to mosquito larvae and subsequently 

negatively impact adult phenotype. The result from this study support these theories as it 

shows that microbial communities found in An. coluzzii rearing trays vary within larval 

treatment trays and impact on larval survival, development, adult emergence and the size 

of emerged adults.  

 Among the subgroups in treatment class 1 (NWR vs WR), significant differences 

in bacteria DNA abundance (copies/µl) were observed for Bacillus weihenstephanensis 

(Bacillaceae), Pseudoxanthobacter soli-DSM 19599 (Xanthobacteraceae), 



 233 

Sphingomonas wittichii (Sphingomonadaceae) and Ancylobacter sp. FA202 

(Xanthobacteraceae). Other bacteria species did not significantly differ in DNA 

abundance among this treatment subgroups. 

 Bacillus weihenstephanensis is a member of the Bacillus cereus group comprising 

of 6 species (B. anthracis, B. cereus, C. mycoides, B. pseudomycoides, B. thuringiensis 

and B. weihenstephanensis). Although, classical microbial taxonomy recognises them as 

distinct species, newer molecular phylogenies and comparative genome sequencing 

suggest they are a single species (Schmidt, et al., 2011). They are endospore forming 

organisms, with high resistance to heat, radiation, chemicals and drought, allowing them 

to survive adverse conditions for prolonged periods. Members of the B. cereus group are 

widely distributed in nature with habitats ranging from soil, sediment, air, freshwater, 

marine ecosystems and sludge. Some members of the group play key roles in nitrogen 

cycling such as denitrification, nitrogen fixation and mineralization (Mandic-Mulec, et 

al., 2015). The significantly higher abundance of B. weihenstephanensis in larval trays 

with no-water-replacement (NWR) is symptomatic of B. weihenstephanensis’ natural 

ecology. Denitrification and mineralisation are majorly anaerobic processes, the presence 

of B. weihenstephanensis would indicate low levels of dissolved oxygen which resulted 

in increased larval mortality in NWR groups (Mandic-Mulec, et al., 2015).  

 Further, the relatively higher abundance of this denitrifying bacteria could have 

led to high nitrite concentrations in larval trays, a situation that has been demonstrated in 

various studies as a major cause of mortality in fish ponds (Amarasinghe & Weerakkodi, 

2014; Tchigossou et al., 2018; Ward & Jensen, 2014). Nitrite (NO2) toxicity in aquatic 

animals involves the conversion of the oxygen bearing pigment 

(haemoglobin/haemocyanin) into the inhibited form (methaemoglobin) which is 

incapable of oxygen transport (Amarasinghe & Weerakkodi, 2014; Tchigossou et al., 
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2018). In fish, the nitrite turns the blood to brown colour (Brown blood disease) which 

results in gasping behaviour and subsequent suffocation despite adequate oxygen in the 

water (Amarasinghe & Weerakkodi, 2014). Anopheles larvae like fish embryos depend 

on cutaneous respiration and their surface area is limited; and although breathing tubes 

are present, they are rudimentary in the immature stages (Bardon-Albaret & Saillant, 

2016). Many authors have demonstrated that the presence or absence, and the abundance 

of Anopheles larvae is positively associated with the concentration of DO in oviposition 

sites (Dejenie, et al., 2011; Oyewole et al., 2009). 

 There is also the possibility that B. weihenstephanesis might have served a 

beneficial role in reducing the ammonia and nitrite content in these lentic, nutrient rich 

habitats (larval trays). Likewise, of the three most abundant bacteria species in all larval 

trays (Xylophilus sp. PDD-37_7j_hv_b-3 (Comamonadaceae), Sphingomonas wittichii 

(Sphingomonadaceae), Turneriella parva DSM 21527), the last two were the suspect 

beneficial species identified by the filters and Venn diagrams implemented in this study. 

The relatively higher presence of these beneficial bacteria in the NWR subgroup may 

have resulted in improved mosquito survival compared to their absence (Chapter 6). 

Beneficial bacteria species have been used as probiotics in aquaculture systems to 

decompose organic matter to meet the growth requirements of cultured species, maintain 

the eco-equilibrium, inhibit the proliferation of harmful organisms and disintegrate 

harmful chemicals (such as unionised ammonia NH3 and nitrites); whilst the pathogenic 

microbes cause diseases (Zhou et al., 2009). For example, photosynthetic bacteria and 

Bacillus spp. have been shown to improve the growth of white leg prawns with an 

increase in lipase and cellulase activity (Wang, 2007). Likewise, Aeromonas hydrophila, 

even though a proven fish pathogen (Hai, 2015), reduced the infection of Aeromonas 

salmonicida in rainbow trout when used as a probiotic (Irianto & Austin, 2002). To 
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maintain a healthy closed aquatic ecosystem, there has to be a balance of the 

microecology to ensure beneficial microbes are present in sufficient amounts to suppress 

the population and effect of pathogens. In the future, mosquito larval rearing trays could 

benefit from an inoculation of these denitrifying bacteria (as probiotics) to combat 

ammonia build-up in facilities where continuous water change is not feasible. 

 Pseudoxanthobacter soli-DSM 19599 (Xanthobacteraceae), is a gram-negative, 

aerobic nitrogen fixing bacteria, typically found in the soil. The higher abundance of this 

species in the NWR larval trays may have contributed to nutrient enrichment that usually 

result in larval death (Arun et al., 2008). 

 Sphingomonas wittichii is a known potential degrader of toxic dioxin pollutants 

that completely mineralizes the organic back-bone of the dibenzo-p-dioxin structure (Guo 

et al., 2010; Hong et al., 2002). These pollutants formed as a by-product of agricultural 

pesticides are of considerable environmental concern due to their persistence and toxicity, 

and they are ubiquitous in distribution (Nam et al., 2005). There is the possibility that 

they were introduced into the larval trays from the fish feed formulation used in the 

insectary or from other unknown sources. It is also possible that these compounds were 

not in the trays as they were not tested for. Whatever the case, Sphingomonas wittichii’s 

ability to degrade toxic compounds may have played a role in the degradation of other 

polluting chemical compounds in larval trays, resulting in improved mosquito 

development. 

 Interestingly, the results in this study show zeolite treatment increased the 

bacterial load in An. coluzzii larval trays. In the case where most where pathogenic, it 

may have impacted on the development of beneficial bacteria, hence circumventing the 

process of ammonia detoxification and reducing the beneficial impact of these species. 

Several studies have shown that biological nitrification process was greatly influenced 
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when zeolite was used to remove ammonia (Montalvo et al., 2014; Motesharezadeh et 

al., 2015; Yang, 1997). Zeolite was able to absorb ammonia more quickly than the 

nitrifying bacteria which was then unable to use NH4+ for their metabolic necessities 

(Montalvo et al., 2014). In a subsequent study, authors showed that zeolite effectively 

reduced ammonia and nitrite but negatively impacted the development of nitrifying 

bacteria in the biological filter of aquaculture systems (Skleničková et al., 2020). In the 

previous chapter of this thesis (Chapter 6), we demonstrated that zeolite was effective in 

reducing ammonia and improving mosquito yield where water change is not possible but 

not adult quality. This sub-optimal result may be because mosquitoes reared under these 

conditions were severely impacted by proliferation of pathogenic bacteria which thrive 

where the populations of beneficial species are reduced. Other ecosystem services 

rendered by beneficial bacteria (probiotics) such as the reduction in organic matter 

accumulation that usually results in hypoxia when allowed to accumulate, may have also 

reduced the overall impact of zeolite in improving water quality and thus mosquito yield 

and quality. There has to be a balance between zeolite application and the maintenance 

of healthy bacteria that are necessary for the growth and development of reared species, 

in this case Anopheles mosquitoes. 

 This study has been successful, firstly, in the characterisation of the bacterial 

communities present in An. coluzzii larval trays under standard insectary conditions. It 

has further provided information on the likely beneficial and detrimental species found 

under various rearing conditions. A more robust review of the 1031 species identified is 

needed to determine beneficial species that might serve as probiotics in the future or 

deployed to outcompete the detrimental bacteria species in facilities where water 

replacement is not feasible or unavailable. The information on Anopheles larval tray 

microbial communities can serve to improve mass rearing protocols as well as protocols 
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for small/medium insect cultures. This information on the bacterial communities present 

in An. coluzzii larval trays can also be applied in the vector control of this species as 

previous studies have suggested that mosquito immunity against malaria parasites is 

partly dependent on their microbiota which they utilise as antibacterial mechanism to 

limit Plasmodium infections (Dong et al., 2009). This knowledge can be manipulated for 

control and/or reduction of malaria transmission.  

 Secondly, the findings of this study corroborate other studies that have 

demonstrated that the bacteria community acquired at larval stage of Anopheles 

mosquitoes can impact adult survival and phenotypic quality (Coon et al., 2014; 

Gimonneau et al., 2014). Although microbiome analysis was not conducted for An. 

coluzzii in this study the impact of the presence and abundance of bacterial load in the 

larval trays impacted mosquito survival and adult phenotypic quality (Chapter 6). 

Microbial communities in Anopheles larval habitat are required for the growth and 

development of the mosquito until adult emergence whether in the field or laboratory 

(Coon et al., 2014). These microorganisms contribute to digestion, nutrition, reproduction 

and help maintain mosquito host immunity (Gimonneau et al., 2014). In that earlier study, 

the removal of the majority of An. gambiae s.l. midgut bacteria through antibiotic 

treatment resulted in increased susceptibility to Plasmodium falciparum (Dong et al., 

2009). As a next step, future sampling should include larvae , pupae and adult midgut, 

for the microbiome analysis of An. coluzzii to validate the effect of the bacteria 

community in the larval trays on An. coluzzii development and adult phenotypic quality. 

 Further research is recommended to improve the understanding of the 

function/role of the characterised bacteria species within larval trays. The aim should be 

to maintain a balance of the bacterial communities in larval trays to ensure beneficial 

microbes are present in sufficient amounts to suppress the population and effect of 
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pathogens. These studies can involve the inoculation of pure cultures of bacteria species 

with known DNA concentration/copies into larval rearing trays before and after ammonia 

accumulation, to establish a direct link between bacteria species and mosquito survival 

and quality. Pure culture inoculation will further serve to mitigate the limitations 

associated with of the use of 16S rRNA gene sequencing for characterising bacterial 

communities in environmental samples. The 16S rRNA gene has poor discriminatory 

power at species level and even at the genus level for certain bacteria clades (Mignard & 

Flandrois, 2006; Větrovský & Baldrian, 2013; Winand et al., 2020). Systematic 

investigations have indicated that the use of 16S rRNA gene can reliably identify up to 

90% (genus level) and 86% (species level) (Tremblay et al., 2015; Yang, et al., 2016). 

Further, especially in mixed or environmental samples, the copy number variation of the 

16SrRNA gene presents complications for bacteria identification and quantification. 

There is the possibility that bacteria species with low copy numbers remain undetected 

and those with high copy numbers are overestimated (Bercovier et al., 1986; Rainey et 

al., 1996; Winand et al., 2020). Since the filters and Venn diagrams used to select the 

bacteria species for qPCR quantification were based on sequences generated by 16S 

rRNA sequences, we recommend the use of pure cultures to confirm the effect of these 

candidate bacteria on mosquito larvae development. The use of pure culture strains for 

the calibration of standard curves is also recommended as that will improve quantification 

by qPCR. The use of RNA for qPCR for microbial quantification is also recommended 

for future studies as the DNA template used for this study only indicates the presence or 

absence of the bacteria species and does not distinguish among viable and dead cells. 

Possible pathogens can then be isolated if found as viable within larval trays. (Kralik & 

Ricchi, 2017). Further, measurements of dissolved oxygen in larval trays as ammonia 
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content increases will improve the understanding of the impact of bacteria on mosquito 

development. 

 Finally, efficient water management in mosquito insectaries to minimise the 

presence of ammonia and nitrites as well as encourage the proliferation of beneficial 

microorganisms is recommended for achieving optimal rearing results both for small An. 

coluzzii cultures and for mass-rearing facilities. 
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Chapter 8 

General discussion 

As the malaria scourge continues to strike hardest against the most vulnerable people in 

our society, we must do more to protect children and pregnant women, against the world’s 

deadliest mosquito borne disease that claims more that 400,000 lives every year (WHO, 

2015; WHO, 2019). Innovative research is required to protect the gains of malaria control 

and elimination achieved in the last two decades via the use of long lasting insecticide 

treated nets (LLINs) and indoor residual spraying (IRS) (WHO, 2015; WHO, 2019). In 

order to accomplish the bold vision of a malaria free world predicated on the ambition to 

reduce malaria burden by 90% in 2030 from the 2016 baseline, the WHO’s Global 

Technical Strategy for Malaria 2016-2030 identifies innovative, basic and 

implementation vector control research as vital components (WHO, 2015). The 

emergence and continued spread of insecticide resistance are further complicated by 

additional biological challenges such as speciation in the Anopheles gambiae s.l. complex 

whose members are the major vectors of malaria in Africa (Benelli & Beier, 2017; 

Lanzaro & Lee, 2013). In many parts of Africa, current vector control tools cannot 

effectively protect against the disease, because of the diversity and distribution of these 

malaria vectors especially that of the sibling species An. gambiae s.s. and An. coluzzii 

(Hemingway et al., 2016a). Basic research is essential for a better understanding of the 

speciation process in the sibling species which impacts on their distribution, 

epidemiology and transmission potential (WHO, 2015). This understanding can both be 

beneficial for improving current vector control tools (LLINs, IRS, LSM) and for driving 

novel control tools (gene drive, SIT, Eave tube concept) (WHO, 2019-Vector control 

guidelines). In Chapters 4 and 5, we reveal interesting genotype × environment 

interactions of the sibling species to ammonia both as a single environmental stressor 
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(Chapter 4) and in a microcosm-setting (Chapter 5). An. coluzzii showed more tolerance 

for ammonia and thrived better in its preferred larval habitat, and the opposite was true 

for An. gambiae s.s. These results provide an explanation for the adaptive behaviour 

underlying the divergent larval preferences of the sibling species which has in part driven 

eco- speciation between these species (Dao et al., 2014; Diabaté et al., 2008; Gimonneau 

et al., 2012; Kamdem et al., 2012; Roux et al., 2014). Furthermore, the result aids the 

understanding of their distribution in West Africa around rice field domestication hot 

spots (Dolo et al., 2004; Epopa et al., 2017; Faye et al., 1995; Marrama et al., 2004; 

Mwangangi et al., 2010; Sawadogo et al., 2017). Understanding speciation both improves 

our knowledge of the biodiversity in our environment which is positive when considering 

environmental conservation but in the light of malaria epidemiology, speciation 

confounds an already complex, evolving disease and makes its control more challenging 

(Aboagye-Antwi et al., 2015; WHO, 2015). This study therefore provides valuable 

information on these malaria vectors that can be further manipulated for their control 

such as in the identification of larval habitats for larval source management (LSM), 

entomological surveillance, and for entomological mapping for mass release 

programmes.  

 In recent history, malaria endemic countries in sub-Saharan Africa are increasing 

efforts towards food security and economic independence through increased investment 

in irrigated agriculture particularly rice field (Sikirou et al., 2015). From an annual 

average growth rate of 1.76% between 1991 to 2001, rice production in Africa has 

doubled to 3.96%, between 2002 – 2013 (Sikirou et al., 2015). Although these efforts are 

commendable, these policies must be balanced with the knowledge of the impact of such 

developments on the disease cycle of malaria especially in sub-Saharan Africa which 

bears 93% of the global malaria burden (WHO, 2019). The availability of permanent 



 242 

larval habitat for these disease vectors changes their epidemiology from seasonal rainfall 

peaks to all-year-disease-transmission (Tene Fossog et al., 2015). To further escalate the 

situation, there are several reports of increasing urban malaria as a result of An. coluzzii’s 

preference for nutrient rich permanent water bodies (Tene Fossog et al., 2013, 2015). The 

unplanned nature of many sub-Saharan African urban centres makes for the provision of 

multiple larval habitats for these disease vectors, such as stagnant water bodies, that are 

used as municipal waste dumping sites, inefficient drainage systems. These newly created 

habitats further expands the niche of this malaria vector and it is leading to a rise in urban 

malaria transmission (Ijumba & Lindsay, 2001; Ijumba et al., 2002; Tene Fossog et al., 

2013).  

 The microcosm-model developed in this study (Chapter 5) provides an excellent 

study tool for further ecological studies on the sibling species such as oviposition site 

preference, the inheritance of plastic responses, longevity, male competitiveness, female 

fecundity of the sibling species, among other traits. It can also serve as a model mini-

ecosystem for gene mapping and silencing studies to investigate if there is a link between 

ammonia tolerance and the ‘island of speciation’ within the genomes of these sibling 

species. 

 Sterile insect technique (SIT) and other innovative GMM-based (genetically 

modified mosquitoes) programmes rely on the economic and efficient mass production 

of mosquitoes for release in the field to suppress or replace wild populations (Bourtzis, 

et al., 2016; Burt, 2014; Lees, et al., 2015). Effective water quality management in the 

insectary is essential for the production of adult mosquitoes of desirable standard and 

quality that are able to compete favourably with wild populations (HDV, 2017; Mamai 

et al., 2017, 2016). In Chapter 3 of this thesis, we show that the use of mineral water in 

Anopheles larval trays improved overall mosquito yield and phenotypic quality of adult 
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mosquitoes (larger body size) in comparison to the commonly used deionised water. 

Body size in both male and female Anopheles mosquitoes is important for 

competitiveness, fecundity, successful mating, longevity and increased vectorial capacity 

(Aboagye-Antwi & Tripet, 2010; Diabate & Tripet, 2015; Takken et al., 2013). For the 

effective delivery of mass release vector control programmes, mosquito adults of 

standard size and phenotypic quality is essential (HDV, 2017; Mamai et al., 2017). In 

Chapter 4, the importance of mineral water in improving mosquito rearing outcomes was 

further validated, as its use served to buffer ammonia toxicity in larval habitats. These 

results obtained in Chapters 3 and 4 can be used to improve rearing protocols for mass 

release programmes. 

 Although widely applied in fish and crustacean aquaculture this is the first time 

ammonia absorbing zeolite has been evaluated for application in mosquito rearing for 

malaria control. In Chapter 6 of this thesis we demonstrated that use of zeolite can 

improve water quality in Anopheles gambiae s.l. larval rearing trays subsequently 

resulting in optimal mosquito yield of adult mosquitoes with desirable phenotypic quality 

(large adult size). This result makes for improved mosquito rearing protocols and 

provides a cheaper, eco-friendly approach to rearing millions of mosquitoes for mass 

release programmes. Considering that large amounts of water is required for mass rearing 

(approximately 100,000L for 10,000,000 sterile males per week), and the water 

conservation issues associated with arid regions were some of these mass release 

programmes will be conducted, the use of zeolite to treat mosquito rearing water for reuse 

becomes an excellent tool for water management in SIT and GMM facilities (Mamai et 

al., 2017). A Hungarian based private investment project had demonstrated that the use 

of zeolite in a water-purification system is 40% cheaper to install and saves 20% in 
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operational costs in comparison with the current system that employs reverse osmosis 

and ultra-filtration systems (StradiSound Strategy, 2020). 

 We also elucidated in this thesis how the nitrogen conversion dynamics in a 

mosquito larval tray impacts on mosquito development and phenotypic quality. We 

demonstrated in Chapter 6, how the efficient management of ammonia build-up in 

mosquito larval trays using zeolite and the optimal feed type results in improved rearing 

results. To further understand the factors inhibiting larval growth and development in 

Anopheles larval trays, we characterised the bacterial communities in the trays to identify 

bacteria species that are present in the trays. This is the first study on the identification of 

bacteria communities in Anopheles larval trays in a mosquito insectary using 16S rRNA 

gene sequencing. Further analyses employing a system of filters and Venn diagrams 

resulted in the identification of 10 candidate bacteria species that could be important 

either as beneficial microorganisms in larval trays or as pathogens. We moved a step 

further to quantify the bacteria DNA of these candidate bacteria species using qPCR, and 

the results both validates the 16S step and opens up possibilities of answering other 

questions surrounding the microbial dynamics in the Anopheles gambiae s.l. larval tray. 

The characteristics of candidate bacteria species that were significantly higher in all 

experimental trays indicates that they could serve as probiotics to improve water quality 

in the trays by decomposing organic matter, converting toxic ammonia to nitrate, 

boosting the immunity of mosquitoes, outcompeting pathogens and also serve as larval 

food (Gimonneau et al., 2014).  

 Interestingly, we identified a gap in the use of zeolite for ammonia absorption in 

these larval trays. Zeolite could absorb ammonia faster than the bacteria can convert it to 

nitrate, making it unavailable for the bacteria species to utilise, subsequently leading to a 

decline in beneficial bacteria (Montalvo et al., 2014; Motesharezadeh et al., 2015; Yang, 
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1997). This finding will serve to inform the efficient balancing of both resources (zeolites 

and denitrifying bacteria) for overall improvement of mosquito yield. We were limited 

in the interpretation of our results as the study was mainly correlational. We did not 

manipulate the bacteria content of the trays to determine direct impact. For further study 

on these bacteria species, we recommend the inoculation of pure culture to ascertain the 

direct effects of individual bacteria species on mosquito development. The use of DNA 

for qPCR quantification also limited our ability to infer on the pathogenicity of the 

bacteria species as the use of DNA only shows presence or absence and not viability. The 

use of RNA for future qPCR quantification is recommended. 

 

Future direction 

This study has provided insight into the divergent larval preferences of An. coluzzii and 

An. gambiae s.l. under insectary conditions. The phenotypic plastic responses elucidated 

in this study reveal a set of reaction norms developed by An. coluzzii in response to 

anthropogenic modifications (ammonia and minerals in this case) of their ecosystem via 

rice domestication. It has thus opened up discussions and research on other factors that 

surround this evolutionary event that is driving the speciation of the sibling species. We 

only investigated tolerance to mineral water and ammonia, other aspects/factors 

characterising the new niche created by rice cultivation can be investigated to improve 

our understanding of this evolutionary process. The microcosm-model simulating 

divergent larval habitat preferences of the sibling species can be used for different types 

of ecological and translational research surrounding the speciation or control of these 

malaria vectors.  

 Although, we show that zeolite is effective for improving water quality in An. 

gambiae s.l. insectary, further research on its application, delivery and dosage is required 
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to maximise the biological and economic potential of its use. Studies involving direct 

bacteria inoculation to determine the direct impact of the candidate bacteria species 

characterised in this study is required to further benefit from the findings in chapter 7 of 

this study. The use of RNA for bacteria quantification is recommended to enable the 

identification of viable species that may be pathogenic or beneficial. Further, the 

physicochemical chemical parameters essential for mosquito development such as 

dissolved oxygen content, pH, temperature, ammonia, nitrate will need to assessed 

extensively in conjunction with pure culture inoculation to provide a wholistic 

understanding of the impact of the microbial communities present in mosquito larval 

trays. 

 In conclusion, malaria is a treatable and preventable disease and should not be 

allowed to continue claiming the lives of vulnerable people in impoverished societies. 

Innovation in vector control research and development is key to protect the gains of the 

past two decades and continue the progress towards elimination. The challenge is 

enormous, but the vision of a malaria free world is achievable through the concerted 

efforts of all stakeholders. 
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Effect of water source and feed regime 
on development and phenotypic quality 
in Anopheles gambiae (s.l.): prospects 
for improved mass-rearing techniques 
towards release programmes
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Abstract 
Background: In many malaria-endemic sub-Saharan countries, insecticide resistance poses a threat to exist-
ing mosquito control measures, underscoring the need for complementary control methods such as sterile and/
or genetically-modified mosquito release programmes. The sibling species Anopheles gambiae and An. coluzzii are 
responsible for malaria transmission in most of this region. In their natural habitat, these species generally breed in 
clean, soft water and it is believed that divergent preference in their larval breeding sites have played a role in their 
speciation process. Mosquito release programmes rely on the rearing of mosquitoes at high larval densities. Current 
rearing protocols often make use of deionised water regardless of the strain reared. They also depend on a delicate 
balance between the need for adequate feeding and the negative effect of toxic ammonia and food waste build-up 
on mosquito development, making managing and improving water quality in the insectary imperative.

Methods: Here, we investigated the impact of water source and feed regimes on emergence rate and phenotypic 
quality of mosquitoes in the insectary. First-instar larvae of An. gambiae (Kisumu strain) and An. coluzzii (Mopti and VK3 
strains) were reared in three water sources with varying degrees of hardness (deionised, mineral and a mix of the two), 
with a daily water change. Larvae were fed daily using two standardised feeding regimes, solution and powder feed.

Results: Water source had a significant impact on mosquito size and development time for all strains. Earlier emer-
gence of significantly larger mosquitoes was observed in mineral water with the smallest mosquitoes developing 
later from deionised water. Wing-length was significantly longer in mineral, mixed water and in powder feed, irrespec-
tive of sex, strains or water types. Deionised water was the least favourable for mosquito quality across all strains.

Conclusions: Mineral water and powder feed should be used in rearing protocols to improve mosquito quality 
where the optimal quality of mosquitoes is desired. Although results obtained were not significant for improved 
mosquito numbers, the phenotypic quality of mosquitoes reared was significantly improved in mineral water and mix 
water. Further studies are recommended on the impact mineral water has on other fitness traits such as longevity, 
fecundity and mating competitiveness.
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Appendix B: (Chapter 6) - Mean nitrates and ammonia values in larval trays 

Treatment Larval 
density 

Feed Day Nitrate (𝑁𝑂9j) 
(mg/L) 

Ammonia (𝑁𝐻9) 
(mg/L) 

Control 200 Solution 4 18.75 (-5.88 – 43.38) 1.98 (-0.57 – 4.52) 
   6 2.50 (-2.09 – 7.09) 4.25 (2.65 – 5.85) 
   8 0 13.85 (10.92 – 16.78) 
   10 0 12.57 (2.46 – 22.67) 3 
  Powder 4 13.75 (-14.84 – 42.34) 1.13 (-0.68 – 2.93) 
   6 27.5 (3.63 – 51.37) 4.25 (1.84 – 6.66) 
   8 7.50 (-6.28 – 21.28) 12.43 (6.26 – 18.59) 
   10 0 12.27 (7.79 – 16.75) 
 400 Solution 4 26.25 (-0.83 – 53.34) 0.73 (-0.13 – 1.58) 
   6 7.50 (-0.46 – 15.46) 5.23 (0.27 – 10.18) 
   8 1.25 (-2.73 – 5.23) 12.70 (12.01 – 13.39) 
   10 0 15.38 (4.82 – 25.93) 
  Powder 4 16.25 (-9.22 – 41.72) 1.08 (0.28 – 1.87) 
   6 36.25 (-15.46 – 87.96) 6.20 (0.64 – 11.76) 
   8 35.00 (-19.35 – 89.35) 13.91 (11.37 – 16.44) 
   10 0 15.43 (4.66 – 26.19) 
CWC 200 Solution 4 10.00 (-1.25 – 21.25) 1.38 (-0.69 – 3.44) 
   6 8.75 (4.77 – 12.73) 2.13 (0.87 – 3.38) 
   8 10.00 (-2.99 – 22.99) 4.4 (3.49 – 5.30) 
   10 0 - 
  Powder 4 10.00 (-1.25 – 21.25) 1.45 (-0.08 – 2.98) 
   6 26.25 (-0.83 – 53.33) 2.45 (-0.65 – 5.55) 
   8 40.00 (-5.01 – 85.01) 3.65 (0.36 – 6.94) 
   10 0 0.30 (-3.51 – 4.11) 2 
 400 Solution 4 10.00 (-1.25 – 21.25) 1.45 (0.11 – 2.79) 
   6 8.75 (4.77 – 12.73) 2.65 (1.60 – 3.70) 
   8 32.50 (-18.44 – 83.44) 3.13 (1.00 – 5.25) 
   10 2.50 (-2.09 – 7.09) 1.10 (0.12 – 2.08) 
  Powder 4 10.00 (-1.25 – 21.25) 1.43 (0.08 – 2.77) 
   6 45.00 (4.96 – 85.04) 2.58 (1.20 – 3.95) 
   8 42.50 (-3.20 – 88.20) 3.35 (0.54 – 6.16) 
   10 3.75 (-3.87 – 11.37) 1.45 (0.73 – 2.17) 
CWZ 200 Solution 4 18.75 (-5.88 – 43.38) 1.23 (-0.54 – 2.99) 
   6 8.75 (4.77 – 12.73) 1.1 (-0.88 – 3.08) 
   8 12.50 (4.54 – 20.46) 3.25 (2.08 – 4.42) 
   10 0 0.1 (-0.33 – 0.53) 3 
  Powder 4 16.25 (-9.22 – 41.72) 1.03 (-0.30 – 2.35) 
   6 35.00 (19.09 – 50.91) 1.38 (-0.22 – 2.97) 
   8 60.00 (23.25 – 96.75) 3.40 (0.94 – 5.86) 
   10 5.00 (-7.42 – 17.42) 0.23 (-0.77 – 1.24) 3 
 400 Solution 4 17.50 (-8.89 – 43.89) 0.45 (-0.58 – 1.48) 
   6 20.00 (-2.50 – 42.50) 0.75 (-0.16 – 1.66) 
   8 16.25 (-9.22 – 41.72) 3.68 (2.55 – 4.80) 
   10 1.25 (-2.73 – 5.23) 0.40 (-0.37 – 1.17) 
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Treatment Larval 
density 

Feed Day Nitrate (𝑁𝑂9j) 
(mg/L) 

Ammonia (𝑁𝐻9) 
(mg/L) 

  Powder 4 26.25 (-0.83 – 53.33) 1.05 (0.31 – 1.79) 
   6 45.00 (4.96 – 85.04) 1.28 (0.48 – 2.07) 
   8 60.00 (23.25 – 96.75) 3.45 (1.27 – 5.63) 
   10 25.00 (-35.25 – 85.24) 0.57 (-1.26 – 2.40) 3 
Zeolite 200 Solution 4 18.75 (-5.88 – 43.38) 1.6 (-0.31 – 3.51) 
   6 18.75 (-5.88 – 43.38) 2.25 (0.47 – 4.03) 
   8 2.50 (-5.46 – 10.46) 8.53 (5.73 – 11.32) 
   10 0 6.73 (0.42 – 13.05) 3 
  Powder 4 11.25 (1.24 – 21.26) 1.03 (-0.24 – 2.29) 
   6 35.00 (19.09 – 50.91) 2.28 (0.05 – 4.50) 
   8 15.00 (-11.78 – 41.78) 7.80 (5.94 – 9.66) 
   10 0 8.03 (6.34 – 9.72) 3 
 400 Solution 4 26.25 (-0.83 – 53.33) 1.28 (-0.47 – 3.02) 
   6 6.25 (-1.37 – 13.87) 2.28 (-1.66 – 6.21) 
   8 0 8.13 (5.46 – 10.79) 
   10 0 8.55 (-2.54 – 19.64) 
  Powder 4 23.75 (-6.28 – 53.78) 1.13 (-0.05 – 2.30) 
   6 51.25 (-6.26 – 108.76) 2.60 (-0.34 – 5.54) 
   8 25.00 (-35.24 – 85.24) 8.05 (6.16 – 9.94) 
   10 0 10.45 (0.94 – 19.96) 

Notes: Sample size is 4 except in cases where pupation is completed in trays, then italicised. Ninety-five 
percent confidence intervals are in brackets. 
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Appendix C: (Chapter 7)- PCR reverse primer list for sequence library preparation 

S/N Sample description Reverse primers 
1 200/Control/D8/Powder/R3 (5’- 

CAAGCAGAAGACGGCATACGAGATTACGAGCCCTAA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

2 200/Control/D8/Solution/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATAGTCGTGCACAT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’) 

3 200/Control/D10/Powder/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATCAGCTCATCAGC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’) 

4 200/Control/D10/Solution/
R3 

5’- 
CAAGCAGAAGACGGCATACGAGATACCGGTATGTAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’) 

5 400/Control/D8/Powder/R3 5’- 
CAAGCAGAAGACGGCATACGAGATAATTGTGTCGGA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’) 

6 400/Control/D8/Solution/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATATCCTTTGGTTC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

7 400/Control/D10/Powder/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATTAGGAACTGGCC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

8 400/Control/D10/Solution/
R3 

(5’- 
CAAGCAGAAGACGGCATACGAGATAATCAGTCTCGT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

9 200/Zeolite/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATACGCGCAGATAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

10 200/Zeolite/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATCAGCGGTGACAT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

11 200/Zeolite/D10/Powder/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATCAGGCGTATTGG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

12 200/Zeolite/D10/Solution/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATGTATGCGCTGTA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

13 400/Zeolite/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATAGGCTACACGAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

14 400/Zeolite/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATACGCCACGAATG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

15 400/Zeolite/D10/Powder/R
3 

(5’- 
CAAGCAGAAGACGGCATACGAGATCACGCCATAATG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  
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S/N Sample description Reverse primers 
16 400/Zeolite/D10/Solution/R

3 
(5’- 
CAAGCAGAAGACGGCATACGAGATCTATTTGCGACA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

17 200/CWZ/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATAAGAGATGTCGA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

18 200/CWZ/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGACTTTCCCTCG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

19 200/CWZ/D10/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATCCTGAACTAGTT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

20 200/CWZ/D10/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATCGGAGCTATGGT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

21* 400/CWZ/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATTACTACGTGGCC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

22* 400/CWZ/D8/Solution/R3 (5’- CAAGCAGAAGACGGCATACGAGAT 
CTCACAACCGTG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

23* 400/CWZ/D10/Powder/R3 (5’- CAAGCAGAAGACGGCATACGAGAT 
CAACTCCCGTGA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

24 400/CWZ/D10/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGCACGACAACAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

25 200/CWC/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGGATCGCAGATC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

26 200/CWC/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGTCAATTGACCG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

27 200/CWC/D10/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGTTGGTCAATCT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

28 200/CWC/D10/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATTCGAGGACTGCA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

29 400/CWC/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATATCCCGAATTTG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

30 400/CWC/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGAGGCTCATCAT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

31 400/CWC/D10/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATATCGGCGTTACA 
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AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

32 400/CWC/D10/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATAATGCCTCAACT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

33 200/Control/D8/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATAGCTGTTGTTTG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

34 200/Control/D8/Solution/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATAGCTGGAAGTCC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

35 200/Control/D10/Powder/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATCGATCCGTATTA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

36 200/Control/D10/Solution/
R4 

(5’- 
CAAGCAGAAGACGGCATACGAGATGAATAGAGCCAA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

37 400/Control/D8/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATCTAGCGAACATC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

38 400/Control/D8/Solution/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATGGAAACCACCAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

39 400/Control/D10/Powder/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATGCACACACGTTA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

40 400/Control/D10/Solution/
R4 

(5’- 
CAAGCAGAAGACGGCATACGAGATCAAGCATGCCTA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

41 200/Zeolite/D8/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATGTCTAATTCCGA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

42 200/Zeolite/D8/Solution/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATTAGGATTGCTCG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

43 200/Zeolite/D10/Powder/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATCAGTGCATATGC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

44 200/Zeolite/D10/Solution/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATACGGGACATGCT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

45 400/Zeolite/D8/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATTCTAGCGTAGTG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

46 400/Zeolite/D8/Solution/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATTAGCTCGTAACT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  
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47 400/Zeolite/D10/Powder/R

4 
(5’- 
CAAGCAGAAGACGGCATACGAGATTCCTCTGTCGAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

48 400/Zeolite/D10/Solution/R
4 

(5’- 
CAAGCAGAAGACGGCATACGAGATCTGCTAACGCAA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

49 200/CWZ/D8/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATGAAGAAGCGGTA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

50 200/CWZ/D8/Solution/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATTTACTGTGCGAT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

51 200/CWZ/D10/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATTACAGATGGCTC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

52 200/CWZ/D10/Solution/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATGAGTGGTAGAGA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

53 400/CWZ/D8/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATTGAGTCACTGGT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

54 400/CWZ/D8/Solution/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATACACCTGGTGAT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

55 400/CWZ/D10/Powder/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATAGGCATCTTACG 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

56 400/CWZ/D10/Solution/R4 (5’- 
CAAGCAGAAGACGGCATACGAGATCCAGTGTATGCA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

57 200/CWC/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATCGAGAAGAGAAC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

58 200/CWC/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGAATCTTCGAGC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

59 200/CWC/D10/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATTCCAAAGTGTTC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

60 200/CWC/D10/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGAACTAGTCACC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

61 400/CWC/D8/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATAAGGAGCGCCTT 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

62 400/CWC/D8/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATTCCGAATTCACA 
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AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

63 400/CWC/D10/Powder/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATACATTCAGCGCA 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

64* 400/CWC/D10/Solution/R3 (5’- 
CAAGCAGAAGACGGCATACGAGATGCGATATATCGC 
AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-3’)  

Notes: * Samples with low DNA concentration and did not progress to subsequent analysis. 
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Appendix D: (Chapter 7) Filter 1-Biological characteristics of bacteria families by 

OTU abundance  

S/N Bacteria family Criteria OTU abundance in Treatment groups 
Control Zeolite CWC CWZ 

1 Cytophagaceae 
(Cytophagales) 
 

Found in organically rich material, also adapt to low 
nutrient, gram negative, may be aerobic, 
microaerophilic, capnophilic (CO2 requiring) or 
facultatively anaerobic are organotrophs, able to 
degrade biomacromolecules like proteins, chitin, 
pectin, agar, starch (McBride, et al., 2014). 
 

198,501 136,604 97,857 65,058 

2 Comamonadaceae 
(Burkholderiales) 
 

Include plant and human pathogen. Order is 
phenotypically, metabolically & ecologically diverse. 
Includes strictly aerobic & facultatively anaerobic 
chemoorganotrophs. Include obligate & facultative 
chemolithotrophs, nitrogen fixing organisms (Garrity, 
et al., 2005). 
  

165,623 287,350 186,086 198,021 

3 Oxalobacteriaceae 
(Burkholderiales) 
 

Mostly aerobic, microaerobic to facultatively 
anaerobic. Found in diverse environmental habitats 
like water, soil, plant associated. Some species are 
mild plant pathogens, some are opportunistic human 
pathogens. Gram-negative. Mesophilic, with some 
psychrophilic (Baldani et al., 2014) 
  

85,999 61,010 114,740 163,769 

4 Burkholderiaceae 
Pseudomonas sp.  

Several species are pathogenic for humans, other 
warm blooded animals, fish, eels as well as other 
vertebrates & invertebrates such as leeches (Garrity, 
et al., 2005) 
 

56,863 18,120 14,349 3,110 

5 Sphingobacteriaceae 
 

Most species occur in freshwater, soil & compost, but 
some occur in clinical specimens. Gram-negative. No 
flagella but may exhibit sliding mobility. 
Chemoorganotrophs without specialized growth 
factor requirements (Yabuuchi et al., 1983). 
  

49,641 27,098 23,997 4,881 

6 Aeromonadaceae 
(Aeromonadales) 
Pseudomonas putida 

Gram-negative, straight, rigid, facultatively anaerobic 
& chemoorganotrophic fermentative or respiratory 
with oxygen as a universal electron acceptor reduce 
nitrates but do not denitrify. Ammonium salts utilized 
by most isolates as a sole source of nitrogen primarily 
aquatic, mostly isolated from fresh & estuarine waters 
& in association with aquatic animals also found in 
sewage, surface waters, sediments & biofilms 
(Garrity, et al., 2005) 
 

42,369 33455 42,540 69,753 

7 Clostridiaceae 
(Clostridiales) 

Gram-positive. Pathogenic produces toxins in water 
(in eutrophic conditions) that are deadly to birds and 
mammals includes several human pathogens 
(causative agent of botulism & an important cause of 

37,412 64,290 18,651 16,142 
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S/N Bacteria family Criteria OTU abundance in Treatment groups 
Control Zeolite CWC CWZ 

diarrhoea) obligate anaerobes has an associated foul 
smell due to butyric acid & in some cases hydrogen 
sulphide (Atarashi et al., 2011) 
  

8 Chitinophagaceae 
 

Isolated from water samples, gram-negative, strictly 
aerobic, non-sporulating, grows optimally at 30°C & 
pH 7. Family of 7 genera -Balneola, Filimonas, 
Flavisolibacter, Gracilimonas, Lacibacter, Niastella, 
Terrimonas & Chitinophaga (Lim et al., 2009) 
 

31,423 41,635 20,907 21,080 

9 Rhodospirallaceae Phototrophic. Fixes molecular nitrogen. Hydrogen 
metabolism (Shoreit et al., 1992) 
 

26,496 3,729 2,159 2,802 

10 Rhizobiaceae Includes bacteria capable of fixing nitrogen when in 
symbiosis with leguminous plants. Obligate & 
facultative intracellular bacteria, include animal & 
plant pathogens (Breedveld & Miller, 1994) 
  

24,394 16,990 21,160 21,525 

11 Rhodocyclaceae 
(Rhodocyclales) 
 

Members display different modes of living: 
anoxygenic photoheterotrophs, plant associated 
nitrogen fixing, aerobes, species that degrade a wide 
range of carbon sources, anaerobes that perform 
propionic acid fermentation. Isolated from diverse 
environments: soil, sewage treatment plants, polluted 
and unpolluted pond water, rivers, aquifers and plant 
roots (Garrity, et al., 2005) 
  

22,482 25,710 47,885 27,188 

12 Micrococcaceea 
(Micrococcales) 
 
 

Gram-positive. Soil-borne bacterium 
Plant-pathogenic, causes gumming disease 
characterised by yellow bacterial slime on seed-
heads, stems & leaves of the plant host (Schumann 
et al., 2009) 
  

21,950 78,335 13,521 6,901 

13 Verrucomicrobiaceae Isolated from freshwater & marine water ecosystems 
& from animal feaces. Gram-negative. 
Chemoorganotrophic. Includes obligate aerobes, 
facultative anaerobes & strict anaerobes (Rivas-
Marín et al., 2016; Wertz et al., 2012) 
  

18,115 29,924 4,163 4,978 

14 Hydrogenophilaceae 
(Hydrogenophilales) 

Gram negative. Non-sporulating. Chemolithotrophic. 
Either mesophilic or thermophilic. No report of any 
pathogens. Isolated from various environments – 
freshwater, sludge treatments and hot springs 
(Garrity et al., 2015) 
 

15,575 21,837 0 35,275 

15 Flavobacteriales Gram- negative. Flavobacteriaceae & 
Cryomorphaceae consist of strictly aerobic & 
facultatively anaerobic chemo-organotrophs with 
respiratory metabolism. Non-motile or motile by 
gliding, with yellow or orange colonies due to 

15,351 18,818 26,589 4,491 
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S/N Bacteria family Criteria OTU abundance in Treatment groups 
Control Zeolite CWC CWZ 

production of carotenoid &/or flexirubin type 
pigments. Some members of Flavobacteriaceae are 
pathogenic for humans, fish or amphibians. Include 
chemo-organotrophs (Bernardet & Bowman, 2006) 
 

16 Deinococcaceae 
(Deinococcales) 

Gram-positive, most radiation resistant vegetative 
cell, chemo-organotrophic. Aerobic, highly resistant 
to environmental hazards. Non-pathogenic 
(Rosenberg, 2014) 
  

13,370 58,811 35,842 8,177 

17 Sphingobacteriaceae cells are rod-shaped & non-motile, aerobic or 
facultatively anaerobic, limited fermentative abilities 
are observed in some members, free living & 
saprophytic, some species are opportunistic 
pathogens. Gram-negative (Kampfer, 2011). 
  
 

10,312 11,910 109,086 14,092 
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Appendix E : (Chapter 7) Filter 2Ai-OTU abundance vs emergence @ Spearman’s 

correlation -30. 

S/N Species number Name OTU 
Abundance 

Spearman’s R  P-value 

1 FR667304.1.1357 Roseomonas (UB-Acetobacteraceae) 207 -0.6636 <.0001**** 
2 EU773989.1.1373 Clostridiaceae1 (UB)* 15 -0.5918 0.0007*** 
3 KC432217.1.1330 Clostridium sensu stricto 3 (UB-Clostridiaceae1)* 7,024 -0.5909 0.0007*** 
4 HM778794.1.1387 Gammaproteobacteria-aaa34a10-UB 448 -0.5905 0.0007*** 
5 HM778860.1.1375 Aeromonas (uncultured Aeromonadaceae)* 80 -0.5813 0.0009*** 
6 DQ166946.1.1431 Aeromonas hydrophila* (Aeromonadaceae)* 112 -0.5786 0.0010** 
7 AB487832.1.1332 Clostridium sensu stricto 10*(Clostridiaceae1) 19 -0.5762 0.0011** 
8 HM779015.1.1417 Shewanella (UB- Shewanellaceae) 228 -0.5507 0.0020** 
9 JF808900.1.1502 Tolumonas sp. (UB- Aeromonadaceae)* 7,676 -0.5408 0.0025** 
10 FJ205850.1.1269 Clostridium sensu stricto 1* (Clostridiaceae1) 27 -0.5089 0.0048** 
11 JF775632.1.1472* Clostridium sensu stricto 9* (UB-Clostridiaceae1) 308 -0.5069 0.0050** 
12 EU801494.1.1452* Polynucleobacter (UB-Burkholderiaceae)* 126 -0.5040 0.0053** 
13 KF835793.1.1402 Aeromonas hydrophila* 152 -0.5037 0.0053** 
14 FM213077.1.1512* Tahibacter (UB- Xanthomonadaceae)* 51 -0.5022 0.0055** 
15 GU356337.1.1344 Aeromonas sp. (UB-JI49D030) 76 -0.4951 0.0063** 
16 AB845279.1.1381 Enterobacter sp. Bdr5 (Enterobacteriaceae)* 544 -0.4917 0.0067** 
17 EF111197.1.1232* Aeromonas (uncultured Aeromonadaceae)* 1,513 -0.4796 0.0085** 
18 EU434572.1.1389 Brevundimonas diminuta (Caulobacteraceae) 60 -0.4739 0.0094** 
19 JN379402.1.1475 Clostridium sensu stricto 12 (UB-Clostridiaceae1)* 23 -0.4688 0.0103* 
20 AB486966.1.1314 Clostridium sensu stricto 8* (Clostridiaceae1) 218 -0.4681 0.0104* 
21 KF381405.1.1505 Enterobacter (Enterobacteriaceae)* 172 -0.4613 0.0118* 
22 CU922145.1.1372 Hydrogenophaga (UB)* (Comamonadaceae)* 32 -0.4594 0.0122* 
23 CU923555.1.1349 Hydrogenophaga (UB)*(Comamonadaceae)* 39 -0.4585 0.0124* 
24 HM069053.1.1447 Rhizobiales- MNG7-UB 5,036 -0.4518 0.0139* 
25 DQ814980.1.1413 Aeromonas (UB)* (Aeromonadaceae)* 148 -0.4501 0.0143* 
26 FJ494907.1.1294 Aeromonas sp. 08006 (Aeromonadaceae)* 92 -0.4494 0.0145* 
27 AB114256.1.1414 Clostridium sp. Uslt101-1* (Clostridiaceae1) 26,792 -0.4443 0.0158* 
28 FJ896014.1.1453 Aeromonas sp. kumar (Aeromonadaceae)* 33 -0.4414 0.0165* 
29 EF205513.1.1470 Aeromonas (uncultured Aeromonadaceae)* 110 -0.4402 0.0169* 
30 FR853451.1.1447 Phenylobacterium (UB-Caulobacteraceae)* 28 -0.4368 0.0178* 
31 EU800506.1.1501 Comamonadaceae (UB)* 103 -0.4352 0.0183* 
32 HQ178724.1.1455 Simplicispira (uncultured Comamonadaceae)* 34 -0.4342 0.0186* 
33 JF703410.1.1375 Sphingomonas (UB-Sphingomonadaceae)* 11 -0.4332 0.0189* 
34 EF205504.1.1436 Clostridium sensu stricto 8* (UB-Clostridiaceae) 203 -0.4318 0.0193* 
35 FM213035.1.1498 Thiobacillus (Hydrogenophilaceae) 131 -0.4289 0.0203* 
36 JN863503.1.1293 Leucobacter sp. LC390 (Microbacteriaceae)* 10 -0.4230 0.0222* 
37 JX223620.1.1368 Clostridium sensu stricto 12 (UB-Clostridiaceae1)* 816 -0.4166 0.0246* 
38 EF010981.1.1437 Pseudomonas putida (Aeromonadaceae)* 157,079 -0.4135 0.0258* 
39 HM277678.1.1359 Lampropedia (UB-Comamonadaceae)* 34 -0.4131 0.0259* 
40 JN391577.1.1483 Clostridium sensu stricto 1 (UB-Clostridiaceae1)* 29 -0.4061 0.0288* 
41 HM779400.1.1470 Aeromonas (uncultured Aeromonadaceae)* 493 -0.4015 0.0309* 
42 JX120471.1.1504 Acidovorax (UB- Comamonadaceae)* 13 -0.4014 0.0309* 
43 FQ658643.1.1351 Comamonadaceae- UB-Soil* 17 -0.3975 0.0327* 
44 JX222293.1.1480 Clostridium sensu stricto 1 (UB-Clostridiaceae1)* 877 -0.3945 0.0342* 
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45 EF446897.1.1305 Aeromonas (uncultured Aeromonadaceae)* 63 -0.3937 0.0346* 
46 EU771671.1.1398 Enterobacter (Enterobacteriaceae)* 26 -0.3915 0.0357* 
47 DQ835530.1.1454 Klebsiella oxytoca (Enterobacteriaceae)* 644 -0.3917 0.0356* 
48 AB486626.1.1336 Clostridium sensu stricto 10* (Clostridiaceae1) 52 -0.3903 0.0363* 
49 AB355053.1.1493 Aeromonas (UB-Aeromonadaceae)* 176 -0.3889 0.0371* 
50 JQ599074.1.1333 Aeromonas sp. 416 (Aeromonadaceae)* 328 -0.3885 0.0373* 
51 EU801655.1.1498 Variovorax (uncultured Comamonadaceae)* 12 -0.3884 0.0374* 
52 EF679188.1.1481 Arcobacter (Campylobacteraceae) 97 -0.3852 0.0391* 
53 FJ825549.1.1400 Variovorax (uncultured Comamonadaceae)* 50 -0.3838 0.0399* 
54 AB487891.1.1338 Clostridium sensu stricto 10* (Clostridiaceae1) 550 -0.3832 0.0402* 
55 JX222454.1.1499 Moraxellaceae-UB 73 -0.3806 0.0417* 
56 JF222314.1.1357 Haloferula (UB-Verrucomicrobiaceae) 12,885 -0.3794 0.0423* 
57 FM213027.1.1507 UB- Xanthomonadaceae* 458 -0.3774 0.0436* 
58 DQ294627.1.1336 Ensifer adhaerens (Rhizobiaceae)* 185 -0.3747 0.0452* 
59 CU922621.1.1367 Azospira (UB- Rhodocyclaceae) 12 -0.3742 0.0455* 
60 JQ624342.1.1501 Comamonadaceae – UB* 37 -0.3739 0.0457* 
61 EU801259.1.1424 Comamonadaceae (UB)* 1,284 -0.3724 0.0466* 
62 EU790196.1.1206 Cupriavidus (Burkholderiaceae)* 96 -0.3713 0.0474* 
63 JX223231.1.1393 Acidovorax (UB- Comamonadaceae)* 40 -0.3711 0.0475* 
64 FM213017.1.1496 Dokdonella (UB- Xanthomonadaceae)* 54 -0.3710 0.0476* 
65 EU850462.1.1456 Enterobacter (UB-Enterobacteriaceae)* 13 -0.3707 0.0477* 
66 HM780351.1.1517 Aeromonas (uncultured Aeromonadaceae)* 229 -0.3694 0.0486* 
67 JN120259.1.1367 Aeromonas sobria (Aeromonadaceae)* 107 -0.3652 0.0514 ns 
68 FQ659536.2.1358 Tahibacter (UB- Xanthomonadaceae)* 19 -0.3631 0.0529 ns 
69 KF039904.1.1408 Budvicia sp. S1-5 (Enterobacteriaceae)* 27 -0.3621 0.0535 ns 
70 JN868977.1.1523 Comamonadaceae - UB 48 -0.3574 0.0570 ns 
71 FM213031.1.1507 Rhodanobacter (UB- Xanthomonadaceae)* 62 -0.3573 0.0570 ns 
71 JQ291601.1.1466 Siphonobacter aquaeclarae (Cytophagaceae) 153 -0.3555 0.0584 ns 
72 JX094902.1.1456 Staphylococcus sp. UAs Du23(Staphylococcaceae)* 82 -0.3539 0.0597 ns 
73 JX233484.1.1404 Enterobacter sp. ATA2 (Enterobacteriaceae)* 20 -0.3518 0.0612 ns 
74 AY370187.1.1454 Uncultured Bartonella sp. (Bartonellaceae) 12 -0.3512 0.0617 ns 
75 JF830188.1.1510 Aeromonas (uncultured Aeromonadaceae)* 124 -0.3502 0.0626 ns 
76 KC749105.1.1485 Rhizobiales-MNG7-UB* 12 -0.3472 0.0650 ns 
77 HE681227.1.1529 Leucobacter (UB- Microbacteriaceae)* 52 -0.3454 0.0665 ns 
78 AF144383.1.1437 Ramlibacter tataouinensis (Comamonadaceae)* 489 -0.3437 0.0680 ns 
79 JF183865.1.1324 Clostridium sensu stricto 10* (UB-Clostridiaceae1) 34,300 -0.3409 0.0703 ns 
80 GQ158268.1.1407 Lampropedia (UB-Comamonadaceae)* 154 -0.3312 0.0792 ns 
81 DQ816568.1.1407 Aeromonas (UB)* (Aeromonadaceae)* 81 -0.3232 0.0872 ns 
82 JF830173.1.1510 Aeromonas (uncultured Aeromonadaceae)* 671 -0.3231 0.0873 ns 
83 FJ660541.1.1496 Variovorax (uncultured Comamonadaceae)* 16 -0.3192 0.0914 ns 
84 JQ599381.1.1405 Aeromonas hydrophila (Aeromonadaceae)* 287 -0.3170 0.0938 ns 
85 DQ303126.1.1253 Aeromonas sp. HM-6* (Aeromonadaceae)* 143 -0.3169 0.0939 ns 
86 JX489918.1.1504 Gammaproteobacteria-NKB5-UB-Soil 737 -0.3163 0.0945 ns 
87 FJ626628.1.1404 Brachybacterium sp. MH133 (Dermabacteraceae) 30 -0.3163 0.0945 ns 
88 KC001353.1.1278 Clostridium sensu stricto 10 (UB-Clostridiaceae1)* 47 -0.3146 0.0964 ns 
89 EF515224.1.1409 Aeromonas (uncultured Aeromonadaceae)* 606 -0.3117 0.0998 ns 
90 JQ793488.1.1491 Pseudorhodoferax sp. (UB- Comamonadaceae)* 16 -0.3115 0.1000 ns 
91 FM178827.1.1375 Ramlibacter (UB- Comamonadaceae)* 13 -0.3107 0.1009 ns 
92 HQ592576.1.1490 Massilia (UB-Oxalobacteraceae) 14 -0.3104 0.1013 ns 
93 AF004845.1.1337 Methylorhabdus multivorans (Hyphomicrobiaceae) 12 -0.3091 0.1027 ns 
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94 GQ379542.1.1200 Curvibacter (UB- Comamonadaceae)* 524 -0.3091 0.1027 ns 
95 AB240488.1.1494 Comamonadaceae (UB)* 18 -0.3073 0.1048ns 
96 JQ769899.1.1508 Dokdonella (UB- Xanthomonadaceae)* 34 -0.3031 0.1099 ns 
97 CU921876.1.1304 Beijerinckiaceae (UB) 10 -0.3031 0.1099 ns 
98 KF465099.1.1216 Acidovorax (UB- Comamonadaceae)* 1,828 -0.2999 0.1140 ns 
99 FN658985.1.1339 Aureimonas altamirensis (Aurantimonadaceaea) 39 -0.2967 0.1181 ns 
100 JN392782.1.1395 Staphylococcus (Staphylococcaceae)* 12 -0.2937 0.1219 ns 
101 EF205512.1.1462 Aeromonas (uncultured Aeromonadaceae)* 301 -0.2913 0.1253 ns 
102 ARCM01000002.993920.99

5384 
Ancylobacter sp. FA202(Xanthobacteriaceae) 14,777 -0.2835 0.1362 ns 

103 KF037462.1.1463 Sphingomonas (UB- Sphingomonadaceae)* 35 -0.2807 0.1403 ns 

104 U87772.1.1455 Afipia genosp. 6 (Beijerinckiaceae)* 25 -0.2736 0.1509 ns 
105 GQ249371.1.1503 Zoogloea sp. (UB-Rhodocyclaceae) 3,302 -0.2730 0.1519 ns 
106 KF803323.1.1432 Bosea sp. FZ88 (Bradyrhizobiaceae) 34 -0.2717 0.1539 ns 
107 EF173349.1.1511 Variovorax (uncultured Comamonadaceae)* 49 -0.2701 0.1565 ns 
108 JX515499.1.1498 Variovorax (UB- Comamonadaceae)* 75 -0.2686 0.1588 ns 
109 EA273524.82.1536 Luteimonas (unidentified-Xanthomonadaceae)* 55,395 -0.2669 0.1616 ns 
110 JF504704.1.1498 Clostridium sp. SN-1 (Clostridiaceae1)* 88 -0.2655 0.1639 ns 
111 JN650265.1.1438 Clostridium sensu stricto 1 (UB-Clostridiaceae1)* 496 -0.2606 0.1722 ns 
112 JX105681.1.1378 Mycobacterium (UB-Mycobacteriaceae) 4,552 -0.2525 0.1864 ns 
113 GQ205102.1.1311 Delftia sp. RF-83 (Comamonadaceae)* 2,033 -0.2185 0.2547 ns 
114 KF037812.1.1478 Optitutus (UB-Opitutaceae) 368 -0.1737 0.3674 ns 
115 AB594686.1.1432 Clostridium sensu stricto 1 (UB-Clostridiaceae1)* 64 -0.1592 0.4095 ns 
116 AJ295350.1.1354 Rape rhizosphere bacterium cse003 

(Comamonadaceae)* 
51 -0.1515 0.4326 ns 

117 FR853515.1.1500 Aeromonas (uncultured Aeromonadaceae)* 160 -0.1473 0.4457 ns 
118 AF423291.1.1411 Sphingobium (UB- soil) (Sphingomonadaceae)* 1,655 -0.1469 0.4470 ns 
119 CU920570.1.1311 Arthrobacter (UB- Micrococcaceae) 303 -0.1443 0.4550 ns 
120 KF464379.1.1285 Comamonas (UB-Comamonadaceae)* 68 -0.1429 0.4595 ns 
121 CU918968.1.1340 Shinella (UB) (Rhizobiaceae)* 3,557 -0.1417 0.4635 ns 
122 HQ121144.1.1504 Variovorax (uncultured Comamonadaceae)* 398 -0.1278 0.5090 ns 
123 CU919367.1.1325 SHA-109 (UB) (Unidentified family) 597 -0.1141 0.5555 ns 
124 JF421145.1.1509 Ramlibacter (UB- Comamonadaceae)* 404 -0.0816 0.6737 ns 
125 JF508892.1.1421 Sphingomonas sp. SJ-1 (Sphingomonadaceae)* 62 0.0747 0.7003 ns 
126 FJ375453.1.1424 Phenylobacterium (UB-Caulobacteraceae)* 1,408 -0.0608 0.7541ns 
127 AJ318158.1.1485 Leucobacter (UB-Microbacteriaceae)* 1,539 -0.0409 0.8331 ns 
128 CU926479.1.1339 Actinobacteria PeM15 (UB- Unidentified family) 250 -0.0336 0.8625 ns 
129 JX515472.1.1471 Acidovorax (UB- Comamonadaceae)* 250 0.0194 0.9202 ns 
130 JF706531.1.1366 Xylophilus sp. PDD-37_7j_hv_b-3 

(Comamonadaceae)* 
55,011 -0.0005 0.9980 ns 

UB-Uncultured bacteria; *Name: recurring species/family/groups 
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Appendix E2: (Chapter 7) Filter 2Aii- OTU abundance vs adult emergence @ 

Spearman’s positive correlation +30  

S/N Species number Name OTU 
Abundance 

Spearman’s R  P-value 

1 AB255079.1.1492 Variovorax (UB- Comamonadaceae)* 63 0.6933 <.0001**** 
2 KF037634.1.1519 Phaselicystis (UB-Phaselicystidaceae) 2,586 0.6345 0.0002*** 
3 EU730907.1.1387 Sphingomonas wittichii (Sphingomonadaceae)* 56 0.5981 0.0006*** 
4 FJ374243.1.1485 Comamonas (UB- Comamonadaceae)* 73 0.5844 0.0009*** 
5 KF010745.1.1485 Comamonadaceae-UB* 85,589 0.5736 0.0011** 
6 AY695728.1.1430 Nitratireductor (UB-Phyllobacteriaceae)* 47 0.5831 0.0009*** 
7 EU704796.1.1279 Aquabacterium sp. (UB-Comamonadaceae)* 4,706 0.5727 0.0012** 
8 HM277954.1.1356 Chitinophagaceae -UB* 10,053 0.5714 0.0012** 
9 HQ166654.1.1466 Leptothrix (UB-Comamonadaceae)* 1,162 0.5591 0.0016** 
10 AB539840.1.1439 Spirosoma sp. APU1a (Cytophagaceae) 241 0.5555 0.0018** 
11 JN113079.1.1443 Altererythrobacter (UB-Erythrobacteraceae) 462 0.5346 0.0028** 
12 ARBA01000003.218623.22

0140 
Methylotenera mobilis 13 (Methylophilaceae)* 386 0.5195 0.0039** 

13 DQ232437.1.1280 (Comamonadaceae- UB)* 276 0.5191 0.0039** 
14 EU704736.1.1232 Sphingomonas sp. (UB-Sphingomonadaceae)* 331 0.5163 0.0041** 
15 KF381493.1.1596 Acinetobacter indicus (Moraxellaceae)* 58 0.5108 0.0046** 
16 FJ562145.1.1221 Rhizobium (UB-Rhizobiaceae)* 1,019 0.5098 0.0047** 
17 KF385053.1.1517 Pseudomonas sp. (UB-Comamonadaceae)* 206,335 0.5049 0.0052** 
18 JF225921.1.1338 Blastocatella (UB-Acidobacteria)* 49 0.4996 0.0058** 
19 AB559013.1.1413 Sideroxydans (UB-Gallionellaceae) 20 0.4979 0.0060** 
20 AY922120.1.1402 Verrucomicrobiaceae-UB* 27 0.4900 0.0070** 
21 HF544322.1.1424 Hymenobacter sp. KBP- 30 (Cytophagaceae)* 5,240 0.4819 0.0081** 
22 AY792290.1.1396 Novosphingobium (UB-Sphingomonadaceae) 31,696 0.4780 0.0087** 
23 GU208407.1.1430 Comamonadaceae-UB* 1,491 0.4766 0.0089** 
24 FJ960270.1.1374 Candidatus captivus (UB-Rickettsiales Incertae Sedis)* 211 0.4763 0.0090** 
25 AB614560.1.1419 Azohydromonas (UB-Comamonadaceae)* 141 0.4754 0.0092** 
26 AF468333.1.1426 Comamonadaceae-UB 24 0.4696 0.0102* 
27 AB722229.1.1347 Paucibacter (UB-Comamonadaceae)* 105 0.4679 0.0105* 
28 EU536498.1.1387 Aquabacterium (UB-Comamonadaceae)* 28,506 0.4647 0.0111* 
29 JF167662.1.1343 Gemmatimonas (UB-Gemmatimonadaceae) 44 0.4545 0.0133* 
30 AB608673.1.1453 Comamonadaceae-UB 239,153 0.4536 0.0135* 
31 CP002959.3819378.382088

3 
Turneriella parva DSM 21527 (Leptospiraceae) 17 0.4515 0.0140* 

32 AB220090.1.1368 Methylobacterium sp.PB145 (Methylobactericeae) 39 0.4496 0.0144* 
33 AB255118.1.1496 Rhodocyclaceae-UB 12 0.4476 0.0149* 
34 HM251127.1.1306 Sphingomonas (UB- Sphingomonadaceae)* 52 0.4464 0.0152* 
35 EU705018.1.1281 Novosphingobium sp. (UB-Sphingomonadaceae)* 187 0.4464 0.0152* 
36 FJ546409.1.1222 Prosthecobacter (UB-Verrumicrobiaceae)* 144 0.4444 0.0157* 
37 HM099645.1.1450 Sphingomonas sp. oral taxon F71 

(Sphingomonadaceae)* 
27 0.4400 0.0169* 

38 EU705344.1.1299 Acinetobacter sp. (Moraxellaceae) 23 0.4398 0.0170* 
39 FJ529982.1.1445 Phenylobacterium (UB-Caulobacteraceae)* 1,722 0.4360 0.0181* 
40 AZND01000010.5793.7314 Methylibium sp. T29 (UB- Comamonadaceae)* 427 0.4331 0.0189* 
41 DQ125688.1.1407 Rhizobium (UB-Rhizobiaceae)* 50 0.4291 0.0202* 
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S/N Species number Name OTU 
Abundance 

Spearman’s R  P-value 

42 FJ375464.1.1465 Aquabacterium (UB- Comamonadaceae)* 9,540 0.4284 0.0204* 
43 JQ684312.1.1480 Sediminibacterium (UB-Chitinophagaceae)* 3,480 0.4282 0.0205* 
44 L79964.1.1326 Sphaerotilus- Eikelbloom type 1701 

(Comamonadaceae)* 
22 0.4242 0.0218* 

45 KC464858.1.1441 Roseateles-T30 (Comamonadaceae)* 41 0.4178 0.0241* 
46 AB476287.1.1464 Methylotenera (UB-Methylophilaceae) 14 0.4149 0.0252* 
47 HQ860616.1.1449 Limnohabitans (UB-Comamonadaceae)* 219 0.4082 0.0279* 
48 Y18838.1.1485 Hymenobacter ocellatus (Cytophagaceae) 416 0.4070 0.0284* 
49 FJ152778.1.1486 Comamonadaceae-UB 580 0.4046 0.0295* 
50 JF808978.1.1497 Dechloromonas sp. (UB- Pseudomonadaceae)* 6,179 0.4034 0.0300* 
51 JQ769534.1.1454 7B-8-Sphingomonadales-UB 12 0.4019 0.0307* 
52 JX431978.1.1436 Variovorax (UB-Comamonadaceae)* 162 0.3901 0.0365* 
53 EU790404.1.1211 Pelomonas (UB-Comamonadaceae)* 13 0.3867 0.0382* 
54 JF167832.1.1330 Armatimonadetes-UB* 1,380 0.3855 0.0389* 
55 EU133861.1.1359 Azoarcus (UB-Rhodocyclaceae)* 43 0.3771 0.0437* 
56 KC994861.1.1473 Armatimonadetes-UB* 5,674 0.3750 0.0450* 
57 CU926220.1.1354 Simplicispira (UB- Comamonadaceae)* 19 0.3704 0.0480* 
58 FJ382809.1.1403 Methylophilus (UB-Methylophilaceae)* 89 0.3687 0.0490* 
59 FJ946583.1.1290 Mesorhizobium sp. (Phyllobacteriaceae) 265 0.3639 0.0523 ns 
60 EU133425.1.1263 Ensifer (UB- Rhizobiaceae)* 68 0.3562 0.0579 ns 
61 JF176913.1.1349 Env.OPS 17 -Sphingobacteriales* 5,461 0.3553 0.0586 ns 
62 JN679119.1.1503 Variovorax sp. (UB-Comamonadaceae)* 80 0.3549 0.0589 ns 
63 JX105554.1.1489 Undibacterium (UB-Oxalobacteraceae) 167,323 0.3530 0.0603 ns 
64 JF176780.1.1348 Env.OPS 17 -Sphingobacteriales* 14 0.3518 0.0613 ns 
65 AY792258.1.1537 Variovorax (UB- Comamonadaceae)* 19 0.3501 0.0626 ns 
66 FM164634.1.1279 Novosphingobium mathurense (Sphingomonadaceae)* 368 0.3501 0.0627 ns 
67 JF222253.1.1350 Leptothrix (UB-Comamonadaceae)* 86 0.3418 0.0695 ns 
68 KC620963.1.1509 Prosthecobacter (UB-Verrucomicrobiaceae)* 9,086 0.3368 0.0740 ns 
69 EU881220.1.1494 Comamonadaceae-UB* 26 0.3314 0.0791 ns 
70 AM936716.1.1318 Mesorhizobium sp. (UB-Phyllobacteriaceae) 73 0.3310 0.0795 ns 
71 JX458449.1.1232 Moraxellaceae bacterium W2.09-231 (Moraxellaceae) 56 0.3309 0.0795 ns 
72 AB167232.1.1352 Aminobacter aminovorans (Phyllobacteriaceae) 361 0.3306 0.0799ns 
73 HM845855.1.1338 Siphonobacter (UB- Cytophagaceae)* 25 0.3297 0.0807 ns 
74 GU179688.1.1345 Novosphingobium (UB- Sphingomonadaceae)* 252 0.3234 0.0870 ns 
75 EF654712.1.1493 Comamonadaceae- UB* 64 0.3233 0.0871 ns 
76 JF925036.1.1500 Uncultured marine bacterium (Methylophilaceae)* 370 0.3164 0.0945 ns 
78 DQ836748.1.1400 Rhododcyclaceae-UB 24 0.3130 0.0983 ns 
79 JX224080.1.1489 Polaromonas (UB-Comamonadaceae) 31 0.3101 0.1016 ns 
80 EU803334.1.1400 Sediminibacterium (UB-Chitinophagaceae)* 64 0.3004 0.1133 ns 
81 FM872911.1.1473 Pseudoclavibacter (UB-Microbacteriaceae) 86 0.3002 0.1136 ns 
82 KC358498.1.1263 Rhodocyclaceae-UB 99 0.2882 0.1294 ns 
83 FJ612260.1.1479 Comamonadaceae-UB* 18 0.2866 0.1318 ns 
84 EU703461.1.1354 Rhodobacter sp. (UB-Rhodobacteraceae) 10 0.2814 0.1391 ns 
85 EF018596.1.1401 Acidovorax (Comamonadaceae-UB)* 334 0.2813 0.1393 ns 
86 EF020225.1.1333 Caulobacteraceae-UB 357 0.2804 0.1407 ns 
87 JX644252.1.1459 Xylophilus (UB-Comamonadaceae)* 281 0.2692 0.1579 ns 
88 DQ664244.1.1470 Piscinibacter aquaticus (Comamonadaceae) 352 0.2692 0.1580 ns 

89 EF018778.1.1384 Variovorax (UB- Comamonadaceae)* 38 0.2688 0.1585 ns 
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S/N Species number Name OTU 
Abundance 

Spearman’s R  P-value 

90 EU801622.1.1502 LD28 freshwater group (UB- Methylophilaceae)* 2969 0.2560 0.1801 ns 
91 KC994702.1.1531 Uncultured Verrucomicrobia bacteria* 9,829 0.2551 0.1817 ns 
92 HE798200.1.1359 Methyloversatilis sp. (UB-Rhodocyclaceae)* 38,277 0.2551 0.1817 ns 
93 AB487141.1.1377 Paucimonas (UB- Oxalobacteriaceae) 188 0.2530 0.1855 ns 
94 GU295961.1.1444 Oxalicibacterium sp. JC-21 (Oxalobacteraceae)* 24 0.2528 0.1858 ns 
95 EU000442.1.1295 Novosphingobium (UB-Sphingomonadaceae)* 28 0.2502 0.1905 ns 
96 EF516172.1.1475 Opitutus (UB-Opitutaceae) 119 0.2364 0.2170 ns 
97 FN984864.1.1396 Hydrotaleae (UB-Chitinophagaceae)* 33 0.2355 0.2188 ns 
98 HQ752265.1.1428 Sediminibacterium (UB-Chitinophagaceae)* 245 0.2303 0.2293 ns 
99 JQ684468.1.1422 Chitinophaga sp. (UB-Chitinophagaceae)* 51,840 0.2229 0.2452 ns 
100 FJ562149.1.1286 Isosphaera (UB-Planctomycetaceae) 17 0.2192 0.2533 ns 
101 EU801174.1.1476 OM43 clade (UB-Methylophilaceae)* 217 0.2181 0.2558 ns 
102 JF135969.1.1355 Cellvibrio (UB-Pseudomonadaceae)* 5,263 0.2037 0.2893 ns 
103 FJ936734.1.1481 Cytophagaceae-UB* 160 0.1976 0.3041 ns 
104 JF049431.1.1349 Cytophagaceae -UB* 28 0.1957 0.3090 ns 
105 JX224874.1.1304 OM43 clade- Methylophilaceae-UB 103 0.1912 0.3205 ns 
106 FJ535545.1.1510 Opitutus (UB-Opitutaceae) 71 0.1578 0.4135 ns 
107 EU132256.1.1324 Candidatus solibacter (UB-Acidobacteria) 368 0.1375 0.4769 ns 
108 FJ439850.1.1462 Candidatus captivus (UB-Rickettsiales Incertae Sedis)* 737 0.1066 0.3059 ns 
109 CU920376.2.1285 Rhodobacter (UB-Rhodobacteraceae) 3,056 0.0960 0.6203 ns 
110 FJ432478.1.1245 Rhodospirillaceae-UB* 479 0.0910 0.6388 ns 

111 FJ946599.1.1290 Rhodobacter (UB-Rhodobacteraceae)* 254 0.0804 0.6783 ns 
112 EF516040.1.1394 Bryobacter (UB- Acidobacteria) 11 0.0701 0.7179 ns 

P-value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria. *Name: recurring 

species/family/groups 
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Appendix F: (Chapter 7) Filter 2Bi- OTU abundance vs NH3 @ Spearman’s correlation 

+30 (positive correlation) 

S/N Species number Name Abundance Spearman’s 
R 

P-value 

1 ARCM01000002.
993920.995384 

Ancylobacter sp. FA202 (Xanthobacteriaceae) 14,777 0.7764 <.0001**** 

2 KC254734.1.1308 Kaistia hirudinis (Rhizobiaceae) 961 0.7210 <.0001**** 
3 HG529104.1.1303 Prosthecobacter (UB-Verrucomicrobiaceae)* 16,796 0.6787 <.0001**** 
4 GQ263646.1.146

7 
Pedobacter (UB-Sphingobacteriaceae)* 234 0.6616 <.0001**** 

5 HM274274.1.135
4 

Chitinophagaceae-UB* 1,421 0.6606 <.0001**** 

6 AF144383.1.1437
* 

Ramlibacter tataouinensis 
(Comamonadaceae)* 

489 0.6468 0.0001*** 

7 HM341157.1.135
6 

Variovorax (uncultured Comamonadaceae)* 41 0.6303 0.0002*** 

8 GQ158268.1.140
7* 

Lampropedia (UB-Comamonadaceae)* 154 0.6272 0.0003*** 

9 JN868977.1.1523
* 

Comamonadaceae - UB 48 0.6190 0.0003*** 

10 KF150693.1.1413 Pedobacter sp. THG-G12 
(Sphingobacteriaceae) 

245 0.6157 0.0004*** 

11 AJ867899.1.1483 Polynucleobacter (UB-Burkholderiaceae)* 56 0.6120 0.0004*** 
12 JX223230.1.1329 Caulobacteraceae-UB 42 0.6102 0.0004*** 
13 EU104166.1.1477 Prosthecobacter (UB-Verrucomicrobiaceae)* 623 0.6041 0.0005*** 
14 FJ390462.1.1455 Bacillus weihenstephanensis (Bacillaceae) 13 0.5977 0.0006*** 
15 JF706531.1.1366 Xylophilus sp. PDD-37_7j_hv_b-3 

(Comamonadaceae)* 
55,011 0.5971 0.0006*** 

16 EU801259.1.1424
* 

Comamonadaceae (UB)* 1,284 0.5842 0.0009*** 

17 HM438647.1.148
9 

Variovorax sp. (uncultured Comamonadaceae)* 142 0.5761 0.0011** 

18 HQ178724.1.1455 Simplicispira (uncultured Comamonadaceae)* 34 0.5710 0.0012** 
19 JF715447.1.1366 Acidovorax sp. IMCC12689 

(Comamonadaceae)* 
160 0.5707 0.0012** 

20 GQ487901.1.149
1 

Comamonadaceae- UB* 693 0.5706 0.0012** 

21 GQ379542.1.120
0 

Curvibacter (UB- Comamonadaceae)* 524 0.5627 0.0015** 

22 EF465533.1.1436 Pseudoxanthobacter soli-DSM 19599 
(Xanthobacteraceae) 

296 0.5613 0.0015** 

23 JF421145.1.1509 Ramlibacter (UB- Comamonadaceae)* 404 0.5506 0.0020** 
24 EU801494.1.1452 Polynucleobacter (UB-Burkholderiaceae)* 126 0.5492 0.0020** 
25 JX971539.1.1361 Pedobacter boryungensis 

(Sphingobacteriaceae)* 
175 0.5360 0.0027** 

26 CU923555.1.1349 Hydrogenophaga (UB)* (Comamonadaceae)* 39 0.5348 0.0028* 
27 EU801655.1.1498 Variovorax (uncultured Comamonadaceae)* 12 0.5295 0.0031** 
28 JF222314.1.1357 Haloferula (UB-Verrucomicrobiaceae) 12,885 0.5275 0.0033** 
29 FQ658643.1.1351 Comamonadaceae- UB-Soil* 17 0.5274 0.0033** 
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S/N Species number Name Abundance Spearman’s 
R 

P-value 

30 CU922145.1.1372 Hydrogenophaga (UB)* (Comamonadaceae)* 32 0.5273 0.0033** 
31 JX646636.1.1421 Sphingobacterium thalpophilum 

(Sphingobacteriaceae) 
685 0.5247 0.0035** 

32 FJ230903.1.1506 Polynucleobacter (UB-Burkholderiaceae)* 2,535 0.5202 0.0038** 
33 EU800506.1.1501 Comamonadaceae (UB)* 103 0.5190 0.0039** 
34 HE589817.1.1428 Dyadobacter (UB-Cytophagaceae)* 831 0.5089 0.0048** 
35 DQ248235.1.1498 Variovorax (UB- Comamonadaceae)* 15 0.5030 0.0054** 
36 GU980236.1.1327 Sphingomonas sp. CCGE4131 

(Sphingomonadaceae) 
19 0.5006 0.0057** 

37 EU850462.1.1456 Enterobacter (UB-Enterobacteriaceae)* 13 0.4987 0.0059** 
38 JX879739.1.1388 Nubsella sp. EsD18 (Sphingobacteriaceae)* 4,977 0.4889 0.0071** 
39 EU802044.1.1501 Polynucleobacter (UB-Burkholderiaceae)* 8,310 0.4884 0.0072** 
40 GU731291.1.1336 Devosia (bacteria enrichment culture clone 

heteroB30_4W) 
24 0.4879 0.0072** 

41 EU801830.1.1499 Variovorax (uncultured Comamonadaceae)* 1,614 0.4868 0.0074** 
42 JX949945.1.1399 Cryobacterium sp. TMS1-11-A 

(Microbacteriaceae) 
50 0.4855 0.0076** 

43 EU801186.1.1501 Polynucleobacter (UB-Burkholderiaceae)* 362 0.4829 0.0080** 
44 FM178827.1.1375 Ramlibacter (UB- Comamonadaceae)* 13 0.4813 0.0082** 
45 FJ825549.1.1400 Variovorax (uncultured Comamonadaceae)* 50 0.4811 0.0082** 
46 JQ793488.1.1491 Pseudorhodoferax sp. (UB- 

Comamonadaceae)* 
16 0.4778 0.0088** 

47 HE589840.1.1456 Acidovorax (UB-Comamonadaceae)* 1,280 0.4768 0.0089** 
48 AF177943.1.1493 Tepidimonas ignava (Comamonadaceae)* 132 0.4759 0.0091** 
49 AB240488.1.1494 Comamonadaceae (UB)* 18 0.4720 0.0097* 
51 FN658985.1.1339 Aureimonas altamirensis 

(Aurantimonadaceaea) 
39 0.4696 0.0102* 

52 DQ450743.1.1359 Chitinophagaceae-UB* 32 0.4611 0.0118* 
53 HM069053.1.144

7 
Rhizobiales- MNG7-UB 5,036 0.4610 0.0118* 

54 JN113079.1.1443 Altererythrobacter (UB-Erythrobacteraceae)* 462 0.4534 0.0135* 
55 JQ977543.1.1446 Polaromonas sp. Ala11 (Comamonadaceae)* 61 0.4431 0.0161* 
56 HM274183.1.135

0 
Pedobacter (UB-Sphingobacteriaceae)* 17 0.4412 0.0166* 

57 DQ675026.1.1502 Sphingobacterium (UB-Sphingobacteriaceae)* 49 0.4395 0.0171* 
58 JQ769899.1.1508 Dokdonella (UB- Xanthomonadaceae)* 34 0.4390 0.0172* 
59 CU921876.1.1304 Beijerinckiaceae (UB) 10 0.4390 0.0172* 
60 KC749105.1.1485 Rhizobiales-MNG7-UB* 12 0.4263 0.0211* 
61 AR381566.2.1448 Lysinimonas (unidentified Microbacteriaceae)* 35 0.4241 0.0219* 
62 HQ860602.1.1449 Comamonadaceae-UB* 67 0.4223 0.0225* 
63 FM213035.1.1498 Thiobacillus (Hydrogenophilaceae-UB) 131 0.4223 0.0225* 
64 JF775632.1.1472 Clostridium sensu stricto 9* (UB-

Clostridiaceae1) 
308 0.4201 0.0233** 

65 DQ988309.1.1323 Bacteriovorax (UB-Bacteriovoracaceae) 992 0.4177 0.0242* 
66 JQ769816.1.1484 Env.OPS17-Sphingobacteriales 16 0.4148 0.0253* 
67 EU305572.1.1463 Nocardia sp. (UB-Micrococcaceae)* 21 0.4115 0.0266* 
68 JX647712.1.1500 Comamonadaceae-UB* 10 0.4099 0.0272* 
69 CU923553.1.1353 Acidovorax (UB- Comamonadaceae)* 19 0.4081 0.0280* 
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S/N Species number Name Abundance Spearman’s 
R 

P-value 

70 HE681227.1.1529 Leucobacter (UB- Microbacteriaceae)* 52 0.4077 0.0282* 
71 KF464379.1.1285 Comamonas (UB-Comamonadaceae)* 68 0.4012 0.0310* 
72 AB511012.1.1469 0319-6G20 (UB-Myxococcales) 622 0.4010 0.0311* 
73 FR853451.1.1447 Phenylobacterium (UB-Caulobacteraceae)* 28 0.3963 0.0333* 
74 EF204468.1.1373 Pedobacter sp. H37 (Sphingobacteriaceae)* 26,294 0.3946 0.0342* 
75 CU926479.1.1339 Actinobacteria PeM15 (UB- Unidentified family) 250 0.3940 0.0345* 
76 AY921814.1.1392 Comamonadaceae-UB* 19 0.3889 0.0371* 
77 EU861941.1.1499 Microbacteriaceae-UB* 42 0.3880 0.0375* 
78 GQ113033.1.132

3 
Bdellovibrio (UB-Bdellovibrionaceae) 2,465 0.3873 0.0379* 

79 EA273524.82.153
6 

Luteimonas (unidentified-Xanthomonadaceae)* 55,395 0.3865 0.0383* 

80 AY792238.1.1529 Polynucleobacter (UB-Burkholderiaceae)* 18 0.3853 0.0390* 
81 DQ294627.1.1336 Ensifer adhaerens (Rhizobiaceae)* 185 0.3844 0.0395* 
82 AF423291.1.1411 Sphingobium (UB- soil) (Sphingomonadaceae)* 1,655 0.3805 0.0417* 
83 AB486966.1.1314 Clostridium sensu stricto 8*(Clostridiaceae1) 218 0.3792 0.0425* 
84 AB637065.1.1480 Pedobacter (UB-Sphingobacteriaceae)* 227 0.3784 0.0430* 
85 JF217076.1.1347 Perlucidibaca (UB-Moraxellaceae)* 6,700 0.3772 0.0437* 
86 FJ167458.1.1488 Hot Creek 32 -UB 30 0.3768 0.0439* 
87 JN713172.1.1520 Ottowia sp. canine oral taxon 014 

(Comamonadaceae)* 
46 0.3763 0.0442* 

88 CU918968.1.1340 Shinella (UB) (Rhizobiaceae)* 3,557 0.3740 0.0457* 
89 AJ296565.1.1297 Aeromonas-GR-WP33-14 (UB-

Aeromonadaceae)* 
10 0.3666 0.0505 ns 

90 CU919622.1.1305 Devosia (UB-Hyphomicrobiaceae) 11,883 0.3640 0.0522 ns 
91 HM277678.1.135

9 
Lampropedia (UB-Comamonadaceae)* 34 0.3614 0.0541 ns 

92 FN436173.1.1478 Noviherbaspirillum (UB-Oxalobacteraceae)* 932 0.3551 0.0587 ns 
93 FJ812377.1.1410 Pedobacter sp. AR-138 (Sphingobacteriaceae)*  18 0.3469 0.0653 ns 
94 KF411733.1.1307 Novosphingobium (UB-Sphingomonadaceae)* 121 0.3450 0.0668 ns 
95 AB637048.1.1477 Taibaiella (UB-Chitinophagaceae)* 34 0.3449 0.0669 ns 
96 EU083480.1.1470 Azoarcus (UB-Rhodocyclaceae)* 15 0.3393 0.0718 ns 
97 JX105681.1.1378 Mycobacterium (UB-Mycobacteriaceae) 4,552 0.3380 0.0729 ns 
98 HM558928.1.132

7 
Devosia (UB-Hyphomicrobiaceae)* 35 0.3313 0.0791 ns 

99 KF804094.1.1319 Pseudoxanthobacter sp. S50 (Rhizobiales) 112 0.3300 0.0805 ns 
100 KC967412.1.1394 Clostridium sp. LAM1030 (Clostridiaceae) 63,906 0.3209 0.0896 ns 

101 JF703441.1.1378 Ochrobactrum (UB-Brucellaceae) 19 0.3197 0.0909 ns 
102 GU731323.1.1328 Caulobacteraceae (bacteria enrichment culture 

clone auto83_4W) 
86 0.3185 0.0922 ns 

103 GQ389171.1.149
7 

Comamonadaceae- UB* 10 0.3177 0.0931 ns 

104 FJ375445.1.1562 Diaphorobacter (UB- Comamonadaceae)* 56 0.3168 0.0940 ns 
105 AF255632.1.1380 Gemmatimonas (UB-Gemmatomonadaceae)* 550 0.3163 0.0946 ns 
106 KF881976.1.1419 Microbacteriaceae sp. b180 

(Microbacteriaceae)* 
22 0.3142 0.0969 ns 

107 FM213077.1.1512 Tahibacter (UB- Xanthomonadaceae)* 51 0.3065 0.1058 ns 
108 FN668067.1.1483 Sphingobacterium sp. (NS11-12 marine group)-

UB 
7031 0.2991 0.1150 ns 
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S/N Species number Name Abundance Spearman’s 
R 

P-value 

109 AB666454.1.1503 Pedobacter sp. MaI11-5 
(Sphingobacteriaceae)* 

30 0.2972 0.1175 ns 

110 HM266914.1.133
5 

Armatimonadetes-UB* 36 0.2950 0.1203 ns 

111 JX233484.1.1404 Enterobacter sp. ATA2 (Enterobacteriaceae)* 20 0.2900 0.1271 ns 
112 JN379402.1.1475 Clostridium sensu stricto 12 (UB-

Clostridiaceae1)* 
23 0.2837 0.1358 ns 

113 KF037462.1.1463 Sphingomonas (UB-Sphingomonadaceae)* 35 0.2790 0.1427 ns 
114 JX489898.1.1487 NS11-12 marine group-Sphingobacteriales 251 0.2776 0.1448 ns 
115 JF095776.1.1306 Sphingomonas (UB-Sphingomodaceae)* 84 0.2747 0.1492 ns 
116 JX489918.1.1504 Gammaproteobacteria-NKB5-UB-Soil 737 0.2723 0.1530 ns 
117 FJ626628.1.1404 Brachybacterium sp. MH133 

(Dermabacteraceae) 
30 0.2723 0.1530 ns 

118 FJ382209.1.1356 Mycobacterium (UB-Mycobacteriaceae)* 13 0.2673 0.1609 ns 
119 JQ977359.1.1399 Devosia sp. Bzb6 (Hyphomicrobiaceae)* 19 0.2624 0.1691 ns 
120 FM213027.1.1507 UB- Xanthomonadaceae* 458 0.2622 0.1694 ns 
121 EF103202.1.1400 Rhodococcus sp. MSCB-5 

(Microbacteriaceae)* 
107 0.2616 0.1705 ns 

122 EU440723.1.1414 Kaistobacter sp. (UB-Sphingomonadaceae) 339 0.2544 0.1829 ns 
123 AJ318158.1.1485 Leucobacter (UB-Microbacteriaceae)* 1,539 0.2536 0.1844 ns 
124 FM213017.1.1496 Dokdonella (UB- Xanthomonadaceae)* 54 0.2530 0.1854 ns 
125 JQ977465.1.1431 Pedobacter sp. Zs28 (Sphingobacteriaceae)* 18 0.2451 0.2000 ns 
126 EU434572.1.1389 Brevundimonas diminuta (Caulobacteraceae) 60 0.2390 0.2118 ns 

127 HM838886.1.130
3 

Devosia (UB-Hyphomicrobiaceae)* 18 0.2378 0.2141 ns 

128 EU289427.1.1447 Devosia (UB-Hyphomicrobiaceae) 12 0.2340 0.2218 ns 
129 EF679188.1.1481 Arcobacter (Campylobacteraceae) 97 0.2255 0.2395 ns 
130 KF381405.1.1505 Enterobacter (Enterobacteriaceae)* 172 0.2253 0.2399 ns 
131 FM213031.1.1507 Rhodanobacter (UB- Xanthomonadaceae)* 62 0.2243 0.2421 ns 
132 KC749203.1.1504 Acidovorax (UB- Comamonadaceae)* 58 0.2206 0.2502 ns 
133 JX223620.1.1368 Clostridium sensu stricto 12 (UB-

Clostridiaceae1)* 
816 0.2148 0.2631 ns 

134 JX647782.1.1507 Methylibium sp. (UB-Comamonadaceae)* 10 0.2137 0.2657 ns 
135 JF830173.1.1510 Aeromonas (uncultured Aeromonadaceae)* 671 0.2096 0.2752 ns 
136 KF560339.1.1348 Martelella sp. BM5-7 (Aurantimonadaceae) 15 0.2082 0.2784 ns 
137 AB682425.1.1453 Niabella soli (Chitinophagaceae)* 2,340 0.2035 0.2897 ns 
138 EF111197.1.1232 Aeromonas (uncultured Aeromonadaceae)* 1,513 0.2008 0.2962 ns 
139 AY370187.1.1454 Uncultured Bartonella sp. (Bartonellaceae) 12 0.1990 0.3008 ns 
140 EU488023.1.1501 Comamonadaceae (UB)* 30 0.1915 0.3196 ns 
141 JF703410.1.1375 Sphingomonas (UB-Sphingomonadaceae)* 11 0.1835 0.3406 ns 
142 EU771671.1.1398 Enterobacter (Enterobacteriaceae)* 26 0.1789 0.3530 ns 
143 CU920570.1.1311 Arthrobacter (UB- Micrococcaceae) 303 0.1778 0.3562 ns 

144 FJ375453.1.1424 Phenylobacterium (UB-Caulobacteraceae)* 1,408 0.1743 0.3658 ns 
145 AAAA02020732.6

6.1490 
Oryza sativa Indica group 30 0.1430 0.4592 ns 

146 JX134453.1.1497 Photobacterium sp. B2-19-1 (Vibronaceae) 39 0.1355 0.4833 ns 
147 HM587924.1.141

8 
Agromyces sp. m7-5 (Microbacteriaceae)* 199 0.1296 0.5030 ns 
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S/N Species number Name Abundance Spearman’s 
R 

P-value 

148 DQ248285.1.1502 Escherichia-Shigella (UB- Enterobacteriaceae)* 11 0.1273 0.5106 ns 
149 JF497830.1.1490 Dechloromonas (UB-Rhodocyclaceae)* 322 0.0985 0.6113 ns 
150 JF508892.1.1421 Sphingomonas sp. SJ-1(Sphingomonadaceae)* 62 0.0965 0.6186 ns 
151 KC551718.1.1496 Rhodocyclaceae-UB* 103 0.0892 0.6455 ns 
152 DQ450189.1.1495 BAL58 marine group (Comamonadaceae)* 68 0.0655 0.7356 ns 
153 KC211823.1.1410 Sphingopyxis (UB-Sphingomonadaceae) 38 0.0552 0.7762 ns 
154 JN023744.1.1442 Sphingomonas (UB-Sphingomonadaceae) 147 0.0535 0.7828 ns 
155 JN391735.1.1497 Chitinophagaceae-UB 29,677 0.0247 0.8986 ns 

P-value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring 

species/family/groups 

 

Appendix F2: (Chapter 7) Filter 2Bii- OTU abundance vs NH3 @ Spearman’s 

correlation -30 (negative correlation) 

S/N Species number Name Abundance Spearman’s R P-value 
1 FN563004.1.1426 Noviherbaspirillum (photoautotrophic 

bacterium GMMC _photoauto_1) 
Oxalobacteraceae 

49 -0.6787 <.0001**** 

2 FJ802311.1.1212 Comamonadaceae (iron reducing enrichment 
culture clone FEA_2_E4) 

74 -0.6528 0.0001*** 

3 JF429369.1.1488 Acidovorax (Comamonadaceae-UB)* 6,575 -0.6194 0.0003*** 
4 JF222253.1.1350 Leptothrix (UB-Comamonadaceae)* 86 -0.6089 0.0005*** 
5 EF018753.1.1401 Acidovorax (Comamonadaceae-UB)* 119 -0.5944 0.0007*** 
6 AB599879.1.1412 Comamonadaceae-USH1-UB* 100 -0.5835 0.0009*** 
7 DQ664240.1.1431 Aquabacterium-IMCC1721 

(Comamonadaceae)* 
42 -0.5759 0.0011** 

8 JN217068.1.1494 Acidovorax sp. (Tepidicella-
Comoamonadaceae)* 

218 -0.5744 0.0011** 

9 CP002959.3819378.3
820883 

Turneriella parva DSM 21527 
(Leptospiraceae) 

17 -0.5715 0.0012** 

10 AY792258.1.1537 Variovorax (UB- Comamonadaceae)* 19 -0.5693 0.0013** 
11 JQ684472.1.1537 Janthinobacterium sp. (UB-

Oxalobacteraceae)* 
150 -0.5690 0.0013** 

12 AB378588.1.1486 Massilia (UB-Oxalobacteraceae)* 130 -0.5642 0.0014** 
13 AB487141.1.1377 Paucimonas (UB- Oxalobacteriaceae)* 188 -0.5640 0.0014** 
14 AB074612.1.1302 Cytophagaceae-UB* 31,202 -0.5608 0.0016** 
15 GU940705.1.1318 Massilia (UB-Oxalobacteraceae)* 89,727 -0.5523 0.0019** 
16 GU295961.1.1444 Oxalicibacterium sp. JC-21 

(Oxalobacteraceae)* 
24 -0.5389 0.0026** 

17 FJ960270.1.1374 Candidatus captivus (UB-Rickettsiales 
Incertae Sedis)* 

211 -0.5357 0.0027** 

18 AY838519.1.1507 Massilia (UB-Oxalobacteraceae)* 1561 -0.5275 0.0033** 
19 GU208407.1.1430 Comamonadaceae-UB* 1,491 -0.5250 0.0035** 
20 JQ278772.1.1501 Candidatus nitrotoga (UB-Gallionellaceae) 21 -0.5191 0.0039** 
21 JX223693.1.1490 Acidovorax (UB-Comamonadaceae)* 149 -0.5189 0.0039** 
22 JN869122.1.1525 Massilia (UB-Oxalobacteraceae)* 6,371 -0.5186 0.0039** 
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S/N Species number Name Abundance Spearman’s R P-value 
23 X85209.1.1487 Runella (unidentified Cytophagaceae)* 272 -0.5184 0.0040** 
24 DQ824754.1.1391 Acidovorax (UB- Comamonadaceae)* 329 -0.5158 0.0042** 
25 FJ230930.1.1500 Variovorax (UB- Comamonadaceae)* 372 -0.5140 0.0043** 
26 HQ592584.1.1491 Variovorax (UB- Comamonadaceae)* 72 -0.5106 0.0047** 
27 EF516660.1.1284 Oxalobacteraceae-UB* 29 -0.5076 0.0049** 
28 CU922352.1.1348 Comamonadaceae-UB* 39 -0.5075 0.0050** 
29 EU801159.1.1495 Limnohabitans (UB- Comamonadaceae)* 27 -0.5043 0.0053** 
30 JX105683.1.1389 Undibacterium (Oxalobacteraceae)* 44 -0.5023 0.0055** 
31 EU800167.1.1396 Variovorax (UB- Comamonadaceae)* 38 -0.5004 0.0057** 
32 AB220090.1.1368 Methylobacterium sp.PB145 

(Methylobactericeae)* 
39 -0.4954 0.0063** 

33 KC505151.1.1394 Aquabacterium sp. JJ2211 
(Comamonadaceae)* 

9,925 -0.4929 0.0066** 

34 EF018847.1.1380 Rhodocyclaceae-UB* 150 -0.4904 0.0069** 
35 DQ675026.1.1502 Sphingobacterium (UB-

Sphingobacteriaceae)* 
49 -0.4866 0.0074** 

36 JN596640.1.1414 Undibacterium (UB-Oxalobacteraceae)* 55 -0.4788 0.0086** 
37 DQ316803.1.1405 Coxiellaceae-UB* 29 -0.4756 0.0091** 
38 EU037350.1.1446 Azospira (UB- Rhodocyclaceae)* 8325 -0.4679 0.0105* 
39 AB614560.1.1419 Azohydromonas (UB-Comamonadaceae)* 141 -0.4660 0.0108* 
40 EU801055.1.1492 Limnohabitans (UB- Comamonadaceae)* 7,397 -0.4610 0.0118* 
41 JF917188.1.1444 Comamonadaceae-UB* 386 -0.4606 0.0119* 
42 JQ029110.1.1422 Undibacterium sp. CMJ-9 

(Oxalobacteraceae)* 
231 -0.4598 0.0121* 

43 EU133861.1.1359 Azoarcus (UB-Rhodocyclaceae)* 43 -0.4564 0.0128* 
44 KF010745.1.1485 Comamonadaceae-UB* 85,589 -0.4486 0.0147* 
45 JN391900.1.1499 Comamonadaceae-UB* 178 -0.4470 0.0151* 
46 KF385135.1.1392 Undibacterium sp. (UB-Oxalobacteraceae)* 246 -0.4413 0.0165* 
47 GQ379585.1.1216 Massilia (UB-Oxalobacteraceae)* 103 -0.4407 0.0167* 
48 GQ079259.1.1354 Ramlibacter (UB- Comamonadaceae)* 86 -0.4392 0.0171* 
49 JN679119.1.1503 Variovorax sp. (UB-Comamonadaceae)* 80 -0.4355 0.0182* 
50 AY662049.1.1519 Undibacterium (UB-Oxalobacteracea)* 69 -0.4330 0.0190* 
51 JN020169.1.1341 Comamonadaceae-UB* 222 -0.4320 0.0193* 
52 EU801679.1.1492 Variovorax (UB- Comamonadaceae)* 66 -0.4314 0.0195* 
53 FJ152778.1.1486 Comamonadaceae-UB* 580 -0.4312 0.0195* 
54 FJ793166.1.1501 Polaromonas (UB- Comamonadaceae)* 103 -0.4289 0.0203* 
55 L79964.1.1326 Sphaerotilus- Eikelbloom type 1701 

(Comamonadaceae)* 
22 -0.4228 0.0233* 

56 KC747739.1.1382 Vibrio cholera (Vibrionaceae)* 2,122 -0.4155 0.0250* 
57 EF018476.1.1391 Variovorax (UB- Comamonadaceae)* 49 -0.4142 0.0255* 
58 GQ472940.1.1224 Comamonas (UB- Comamonadaceae)* 41 -0.4084 0.0279* 
59 EU133888.1.1352 UCT N117-UB 95 -0.4061 0.0288* 
60 HM159974.1.1513 Klebsiella sp. (UB-Enterobacteriaceae)* 433 -0.4041 0.0297* 
61 AY082472.1.1432 Candidatus accumulibacter (UB- 

Rhodocyclaceae)* 
122 -0.4005 0.0313* 

62 JN868886.1.1527 Undibacterium (UB-Oxalobacteraceae)* 1,716 -0.3978 0.0326* 
63 GQ141052.1.1319 Fibrella aestuarina (Cytophagaceae)* 1,997 -0.3972 0.0329* 
64 HQ860586.1.1449 Brachymonas (UB- Comamonadaceae)* 239 -0.3950 0.0339* 
65 HQ121144.1.1504 Variovorax (UB- Comamonadaceae)* 398 -0.3887 0.0372* 
66 JX223166.1.1492 Undibacterium (Oxalobacteraceae)* 51 -0.3871 0.0380* 
67 JX105682.1.1391 Undibacterium (Oxalobacteraceae)* 147,248 -0.3804 0.0418* 
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68 HE576067.1.1475 MOB164-Lactobacillales-UB 99,422 -0.3734 0.0460* 
69 JF925020.1.1487 Methyloversatilis (UB-Rhodocyclaceae) 754 -0.3730 0.0463* 
70 HQ755856.1.1434 Pseudorhodoferax (UB- Comamonadaceae)* 74 -0.3725 0.0466* 
71 JQ191135.1.1356 Comamonadaceae-UB* 3,210 -0.3689 0.0489* 
72 EU809285.1.1289 Bdellovibrio (UB-Bdellovibrionaceae)* 103 -0.3660 0.0509 ns 
73 JX431991.1.1428 Leptothrix (UB- Comamonadaceae)* 71 -0.3639 0.0523 ns 
74 AB672298.1.1460 Zoogloea (UB-Rhodocyclaceae)* 1,036 -0.3576 0.0568 ns 
75 HQ856420.1.1500 Methyloversatilis (UB-Rhodocyclaceae) 2694 -0.3574 0.0570 ns 
76 GQ001587.1.1339 Runella (UB-Cytophagaceae)* 122,959 -0.3541 0.0595 ns 
77 FJ517705.1.1480 Env.OPS17-Sphingobacteriales-UB 85 -0.3515 0.0615 ns 
78 CU926220.1.1354 Simplicispira (UB- Comamonadaceae)* 19 -0.3510 0.0619 ns 
79 HQ178855.1.1461 Variovorax (UB- Comamonadaceae)* 18 -0.3457 0.0662 ns 
80 FQ659997.1.1362 Candidatus accumilibacter (Rhodocyclaceae) 130 -0.3412 0.0701 ns 
81 HE798191.1.1300 Caldimonas hydrothermale 

(Comamonadaceae)* 
276 -0.3336 0.0770ns 

82 JQ818823.1.1265 Comamonas testoteroni 
(Comamonadaceae)* 

150 -0.3305 0.0799 ns 

83 EF018596.1.1401 Acidovorax (Comamonadaceae-UB)* 334 -0.3159 0.0951 ns 
84 FJ193907.1.1439 Comamonadaceae-UB* 20 -0.2986 0.1156 ns 
85 JN391862.1.1500 Zoogloea (UB-Rhodocyclaceae)* 61,734 -0.2932 0.1227 ns 
86 FN667146.1.1464 Xenophilus (UB-compost-

Comamonadaceae)* 
20 -0.2930 0.1230 ns 

87 AB608673.1.1453 Comamonadaceae-UB 239,153 -0.2838 0.1357ns 
88 CU925315.1.1355 Variovorax (UB- Comamonadaceae)* 19 -0.2591 0.1747 ns 
89 HQ132422.1.1460 Endosymbiont of Acanthamoeba sp. 

(Rickettsiales) 
168 -0.2463 0.1977 ns 

90 DQ232437.1.1280 (Comamonadaceae- UB)* 276 -0.2444 0.2014 ns 
91 HM445088.1.1309 Sphingomonas (UB-Sphingomonadaceae)* 788 -0.2024 0.2924 ns 
92 JQ608102.1.1436 Aeromonas NLAE-zl-C396 

(Aeromonadaceae) 
24 -0.1457 0.4507 ns 

93 AF245350.1.1489 Dechloromonas-SA35 (UB-Rhodocyclaceae) 32 -0.0154 0.9369 ns 
94 DQ248264.1.1506 Enterobacter (Enterobacteriaceae)* 57 -0.0131 0.9462 ns 
95 FJ439844.1.1439 UCT N117-UB 259 -0.0129 0.9471 ns 
96 JF697561.1.1506 Hot Creek 32-UB 4,770 -0.0039 0.9839 ns 
P-value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring 

species/family/groups 
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Appendix G: (Chapter 7) Filter 2C- OTU abundance vs Nitrate @ Spearman’s positive 

correlation +30.  

S/N Species number Name Abundance Spearman’s R P-value 
1 KC747739.1.1382 Vibrio cholerae (Vibrionaceae)* 2,122 0.6312 0.0002*** 
2 EU537205.1.1383 Comamonas (UB-

Comamonadaceae)* 
57 0.6162 0.0004*** 

3 HM779429.1.1454 MB19-Aeromonadales-UB 20 0.5952 0.0007*** 
4 FJ823923.1.1498 Acidovorax (UB- 

Comamonadaceae)* 
936 0.5807 0.0010** 

5 FJ347719.1.1277 Comamonadaceae-UB* 85 0.5704 0.0012** 
6 FJ562171.1.1242 Nitrobacter (UB- 

Bradyrhizobiaceae)* 
177 0.5672 0.0013** 

7 JX521628.1.1499 Acidovorax (UB- 
Comamonadaceae)* 

123 0.5635 0.0015** 

8 EF555457.1.1469 Achromobacter xylosoxidans 
(Alcaligenaceae) 

172 0.5606 0.0016** 

9 FJ193907.1.1439 Comamonadaceae-UB* 20 0.5463 0.0022** 
10 EF019908.1.1335 Bradyrhizobium (UB-

Bradyrhizobiaceae)* 
10 0.5425 0.0024** 

11 GQ141052.1.1319 Fibrella aestuarina 
(Cytophagaceae)* 

1,997 0.5301 0.0031** 

12 FN667146.1.1464 Xenophilus (UB-compost-
Comamonadaceae)* 

20 0.5302 0.0031** 

13 EU790196.1.1206 Cupriavidus (Burkholderiaceae)* 96 0.5275 0.0033** 
14 GQ472940.1.1224 Comamonas (UB- 

Comamonadaceae)* 
41 0.5208 0.0038** 

15 DQ824754.1.1391 Acidovorax (UB- 
Comamonadaceae)* 

329 0.5206 0.0038** 

16 FM200992.1.1338 Variovorax (UB- 
Comamonadaceae)* 

355 0.5181 0.0040** 

17 JF071610.1.1354 Comamonas (UB- 
Comamonadaceae)* 

33 0.5180 0.0040** 

18 FJ823942.1.1499 Cupriavidus (UB-
Burkholderiaceae)* 

215 0.5045 0.0053** 

19 HJ352584.1.1451 Blastocatella (UB-Acidobacteria) 40 0.5015 0.0056** 
20 JF204571.1.1353 Neisseriaceae -UB 3,558 0.4996 0.0058** 
21 AY945883.1.1500 Variovorax (UB-

Comamonadaceae)* 
91 0.4851 0.0077** 

22 GU356337.1.1344 Aeromonas sp. (UB-JI49D030) 76 0.4841 0.0078** 
23 AMQL01000001.12248.1

3793 
 (Enterobacteriaceae)* 99,658 0.4828 0.0080** 

24 DQ017708.1.1459 Deinococcus aqauticus 
(Deinococcaceae) 

50 0.4796 0.0085** 

25 EU345000.1.1528 Lactobacillus uvarum 
(Lactobacillaceae)* 

11 0.4777 0.0088** 

26 EF428991.1.1402 Serratia sp. GIST-WP3w2 
(Enterobacteriaceae)* 

91 0.4777 0.0088** 

27 JQ8181823.1.1265 Comamonas testoteroni 
(Comamonadaceae)* 

150 0.4674 0.0106* 
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28 FQ659997.1.1362 Candidatus accumilibacter 

(Rhodocyclaceae) 
130 0.4596 0.0121* 

29 KF465820.1.1231 Rahnella sp. BSP16 
(Enterobacteriaceae)* 

31 0.4584 0.0124* 

30 KC357993.1.1269 Dechloromonas (UB-
Rhodocyclaceae)* 

158 0.4495 0.0144* 

31 HM445088.1.1309 Sphingomonas (UB-
Sphingomonadaceae)* 

788 0.4485 0.0147* 

32 HM779297.1.1455 Plesiomonas (UB- 
Enterobacteriaceae)* 

45 0.4432 0.0160* 

33 KF835793.1.1402 Aeromonas hydrophila 
(Aeromonadaceae)* 

152 0.4378 0.0175* 

34 HQ132422.1.1460 Endosymbiont of Acanthamoeba 
sp. (Rickettsiales) 

168 0.4281 0.0205* 

35 GU454953.1.1495 Simplicispira (UB- 
Comamonadaceae)* 

30 0.4248 0.0216* 

36 HM780351.1.1517 Aeromonas (uncultured 
Aeromonadaceae)* 

229 0.4223 0.0225* 

37 AY599666.1.1420 Env. OPS-Sphingobacteriales 15 0.4222 0.0225* 
38 HM817497.1.1355 Variovorax (UB- 

Comamonadaceae)* 
11 0.4179 0.0241* 

39 AF143840.1.1341 Extensismonas (UB-
Comamonadaceae)* 

596 0.4148 0.0253* 

40 HE576067.1.1475 MOB164-Lactobacillales-UB 99,422 0.4133 0.0258* 
41 FJ849086.1.1446 Env. OPS-Sphingobacteriales-UB 52 0.4130 0.0260* 
42 HQ219947.1.1457 Erwinia persicina 

(Enterobacteriaceae)* 
15 0.4117 0.0265* 

43 EU464873.1.1360 Comamonas (UB-
Comamonadaceae)* 

132 0.4094 0.0274* 

44 EF438210.1.1467  (UB- Enterobacteriaceae)* 33 0.4091 0.0276* 
45 AY770428.1.1413 Chryseobacterium SV70AB1-7 

(Flavobacteriaceae)* 
6,306 0.3937 0.0346* 

46 AF307869.1.1218 Pseudomonas putida 
(Shewanellaceae) 

327 0.3897 0.0366* 

47 HM779467.1.1455 Aeromonas (UB-
Aeromonadaceae)* 

65 0.3870 0.0381* 

48 AB066235.1.1271 Comamonas sp. PJ111 
(Comamonadaceae)* 

10 0.3860 0.0386* 

49 KC775436.1.1234 Rhizobium (UB-Rhizobiaceae)* 33 0.3858 0.0387* 
50 EU037350.1.1446 Azospira (UB- Rhodocyclaceae)* 8,325 0.3816 0.0411* 
51 U20275.1.1508 Serratia (UB- 

Enterobacteriaceae)* 
10 0.3682 0.0494* 

52 CU921399.1.1357 Uruburuella (UB-Neiserriaceae) 21 0.3662 0.0508 ns 
53 JN207176.1.1264 Reyranella (UB-Rhodospirillales 

Incertae Sedis) 
50 0.3574 0.0570 ns 

54 JT845935.1.1202 Cenchrus americanus 
(Moraxellaceae)* 

21 0.3518 0.0612 ns 

55 GU454983.1.1494 Comamonas (UB- 
Comamonadaceae)* 

764 0.3462 0.0658 ns 

56 GQ264256.1.1252 AKIW852-Sphingomonadales-UB 32 0.3461 0.0659 ns 
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S/N Species number Name Abundance Spearman’s R P-value 
57 KC734322.1.1350 Chryseobacterium W19(2013) 

(Flavobacteriaceae)* 
13,446 0.3361 0.0747 ns 

58 FJ975867.1.1366 Citrobacter (UB- 
Enterobacteriaceae)* 

712 0.3357 0.0750 ns 

59 HM779400.1.1470 Aeromonas (uncultured 
Aeromonadaceae)* 

493 0.3323 0.0782 ns 

60 JF830187.1.1508 Acinetobacter (UB-
Moraxellaceae)* 

47 0.3280 0.0824 ns 

61 KF039904.1.1408 Budvicia sp. S1-5 
(Enterobacteriaceae)* 

27 0.3216 0.0889 ns 

62 JQ599074.1.1333 Aeromonas sp. 416 
(Aeromonadaceae)* 

328 0.3186 0.0921 ns 

63 AY379977.1.1431 Acidovorax sp. AHL 5 
(Comamonadaceae)* 

357 0.3116 0.0999 ns 

64 EF205512.1.1462 Aeromonas (UB-
Aeromonadaceae)* 

301 0.3089 0.1030 ns 

65 EF018476.1.1391 Variovorax (UB- 
Comamonadaceae)* 

49 0.3086 0.1034 ns 

66 HM778860.1.1375 Aeromonas (uncultured 
Aeromonadaceae)* 

80 0.2968 0.1180 ns 

67 FN689611.1.1298 Devosia sp. (UB- 
Hyphomicrobiaceae) 

84 0.2798 0.1416 ns 

68 DD216085.5.1553 Lactobacillus (unidentified 
Lactobacillaceae)* 

56 0.2795 0.1420 ns 

69 KF698724.1.1398 Cupriavidus basilensis 
(Burkholderiaceae) 

42 0.2770 0.1457 ns 

70 EU704957.1.1244 Rhodopseudomonas sp. (UB- 
Bradyrhizobiaceae)* 

120 0.2724 0.1529 ns 

71 JQ924018.1.1444 Sphingomonas (UB-
Sphingomonadaceae)* 

18 0.2721 0.1534 ns 

72 JF915349.1.1403 Buttiauxella sp. NW51 
(Enterobacteriaceae)* 

84 0.2708 0.1554 ns 

73 HM756489.1.1293 Serratia liquefaciens 
(Enterobacteriaceae)* 

108 0.2637 0.1669 ns 

74 EU706241.1.1234 Delftia sp. (UB-
Comamonadaceae)* 

236 0.2572 0.1781 ns 

75 AB546235.1.1369 Rhodobacter sp. INCT285 
(Rhodobacteraceae)* 

18,723 0.2479 0.1948ns 

76 FJ901027.1.1324 Azospira (UB- Rhodocyclaceae)* 39 0.2397 0.2104 ns 
77 EF010981.1.1437 Pseudomonas putida 

(Aeromonadaceae)* 
157,079 0.2111 0.2717 ns 

78 JF808900.1.1502 Tolumonas sp. (UB- 
Aeromonadaceae)* 

7,676 0.2065 0.2825 ns 

79 HM778671.1.1451 Aeromonas (UB-
Aeromonadaceae)* 

134 0.2064 0.2828 ns 

80 EU283364.1.1448 Env. OPS-Sphingobacteriales-UB 119,871 0.1881 0.3285 ns 
81 JN869165.1.1459 Rhodobacter 

(Rhodobacteraceae)* 
44 0.1870 0.3313 ns 

82 CU922480.1.1353 Simplicispira (UB- 
Comamonadaceae)* 

17 0.1772 0.3577 ns 
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S/N Species number Name Abundance Spearman’s R P-value 
83 JN120259.1.1367 Aeromonas sobria 

(Aeromonadaceae)* 
107 0.1547 0.4230 ns 

84 HM778865.1.1456 Aaa34a10-gammaproteobacteria-
UB 

18 0.1506 0.4355 ns 

85 DQ813307.1.1471 Pseudomonas sp. IBUN MAR1 
(Pseudomonadaceae) 

1,042 0.1483 0.4426 ns 

86 AB845279.1.1381 Enterobacter sp. Bdr5 
(Enterobacteriaceae)* 

544 0.1306 0.4994 ns 

87 JX222143.1.1320 Rhizobium (UB-Rhizobiaceae)* 29 0.1259 0.5152 ns 
88 DQ835530.1.1454 Klebsiella 

oxytoca(Enterobacteriaceae)* 
644 0.0992 0.6087 ns 

89 DI206702.1.1362 Rhodobacter sp. 
(Rhodobacteraceae)* 

39 0.0960 0.6204 ns 

90 EF153298.1.1421 Acinetobacter (UB-
Moraxellaceae)* 

340 0.0860 0.6574 ns 

91 DQ069193.1.1519 B38-UB-Gammaproteobacteria 32 0.0708 0.7150 ns 
92 AM179916.1.1363 Plesiomonas (UB-

Enterobacteriaceae)* 
92 0.0661 0.7333 ns 

93 GU826686.1.1256 Salmonella enterica subsp. 
enterica serovar Typhi 
(Enterobacteriaceae)* 

113 0.0057 0.9767 ns 

94 GU356216.1.1374 Aeromonas sp. (UB-
Aeromonadaceae)* 

30 -0.0065 0.9733 ns 

P-value: *** < 0.0001, ** < 0.005, * < 0.05, ns > 0.05. UB-Uncultured bacteria; *Name: recurring species. 
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Appendix H: (Chapter 7) Filter 3A: Highest bacteria abundance Log10 ratio between 

Control vs CWC & Control vs Zeolite at 200 larval density 

S/N Species number Name OTU 
abundance 

1 FN436071.1.1449 Ochrobactrum- UB (Brucellaceae) 288 
2 FJ375362.1.1346 Azospirillum- UB (Rhodospirillaceae) 21,218 
3 FJ393109.1.1505 Variovorax- UB (Comamonadaceae) 437 
4 KC633571.1.1346 Bergeyella- UB (Flavobacteriaceae) 171 
5 FJ375487.1.1458 Cloacibacterium- UB (Flavobacteriaceae) 6,048 
6 FJ418700.1.1325 Sinorhizobium sp. CCBAU 51063 (Rhizobiaceae) 52 
7 APMI01000355.1.1237 Wastewater metagenome -UB (Chitinophagaceae) 1,966 
8 HE583162.1.1377 Delftia-UB (Comamonadaceae) 6,019 
9 AM403225.1.1369 Myroides (Flavobacteriaceae bacterium D11-24b1) 2,699 
10 ARCM01000002.993920.995384 Ancylobacter sp. FA202 (Xanthobacteraceae) 14,777 
11 AF050533.1.1409 Rhodovarius -Uncultured Eubacterium WCHB1-87 

(Acetobacteraceae) 
559 

12 FN436173.1.1478 Noviherbaspirillum-UB (Oxalobacteraceae) 932 
13 HE589822.1.1405 Rhizobium-UB (Rhizobiaceae) 3,289 
14 JF706531.1.1366 Xylophilus sp. PDD-37_7j_hv_b-3 

(Comamonadaceae) 
55,011 

15 HE589840.1.1456 Acidovorax-UB (Comamonadaceae) 1,280 
16 AY316683.1.1416 Reichenowia parasiticae (Rhizobiaceae) 78 
17 JQ359107.1.1375 Rhizobium sp. DoB64 (Rhizobiaceae) 303 
18 KC424772.1.1493 Comamonas-UB (Comamonadaceae) 340 
19 AB487891.1.1338 Clostridium sensu stricto 10-UB (Clostridiaceae) 550 
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Appendix I (Chapter 7) Log10 DNA (copies/µl) of candidate bacteria species across An. 

coluzzii larval treatment trays. 

S/N Species Treatment Larval 
density 

Feed Log10 DNA 
(copies/µl) 

1. Aeromonas hydrophila 
(Aeromonadaceae) 

Control 200 Powder 8.88 (4.74 – 13.02) 
  Solution 8.15 (6.13 – 10.17) 
 400 Powder 8.68 (5.93 – 11.43) 
  Solution 8.75 (6.59 – 10.91) 
CWC 200 Powder 8.55 (7.44 – 9.65) 
  Solution 8.05 (7.13 – 8.96) 
 400 Powder 7.73 (5.19 – 10.28) 
  Solution 7.44 (5.62 – 9.25) 
CWZ 200 Powder 7.65 (6.23 – 9.08) 
  Solution 8.01 (7.25 – 8.76) 
 400 Powder 9.86 (8.81 – 10.91) 
  Solution 9.56 (7.41 – 11.71) 
Zeolite 200 Powder 7.80 (5.47 – 10.14) 
  Solution 9.41 (5.19 – 13.63) 
 400 Powder 9.97 (5.20 – 14.73) 
  Solution 9.30 (4.45 – 14.14) 

2 Ancylobacter sp. FA202 
(Xanthobacteraceae) 

Control 200 Powder 8.40 (6.43 – 10.36) 
  Solution 8.58 (6.71 – 10.46) 
 400 Powder 9.33 (7.10 – 11.55) 
  Solution 8.43 (6.60 – 10.26) 
CWC 200 Powder 8.01 (7.67 – 8.35) 
  Solution 8.43 (7.57 – 9.28) 
 400 Powder 8.21 (6.39 – 10.03) 
  Solution 7.76 (6.79 – 8.73) 
CWZ 200 Powder 8.08 (6.28 – 9.88) 
  Solution 8.31 (7.98 – 8.64) 
 400 Powder 9.01 (7.69 – 10.33) 
  Solution 8.63 (7.78 – 9.49) 
Zeolite 200 Powder 8.85 (7.31 – 10.40) 
  Solution 9.09 (5.87 – 12.32) 
 400 Powder 8.88 (5.70 – 12.06) 
  Solution 9.27 (6.70 – 11.84) 

3 Bacillus weihenstephanensis 
(Bacillaceae) 

Control 200 Powder 7.17 (0.98 – 13.37) 
  Solution 9.08 (6.74 – 11.41) 
 400 Powder 9.15 (7.65 – 10.65) 
  Solution 7.28 (3.98 – 10.58) 
CWC 200 Powder 6.67 (3.08 – 10.26) 
  Solution 7.63 (4.26 – 10.99) 
 400 Powder 6.73 (3.98 – 9.48) 
  Solution 5.77 (1.70 – 9.84) 
CWZ 200 Powder 5.93 (1.60 – 10.27) 
  Solution 6.94 (2.10 – 11.78) 
 400 Powder 7.29 (2.58 – 12.00) 
  Solution 7.09 (3.36 – 10.82) 
Zeolite 200 Powder 7.51 (2.05 – 12.96) 
  Solution 15.31 (-9.23 – 39.86) 
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S/N Species Treatment Larval 
density 

Feed Log10 DNA 
(copies/µl) 

 400 Powder 14.47 (-12.34 – 
41.29) 

  Solution 8.34 (5.14 – 11.54) 
4 Brevundimonas diminuta 

(Caulobacteraceae) 
Control 200 Powder 4.14 (-2.34 – 10.62) 
  Solution 7.05 (1.12 – 12.97) 
 400 Powder 5.64 (1.94 – 9.34) 
  Solution 4.63 (0.55 – 8.71) 
CWC 200 Powder 5.71 (1.89 – 9.52) 
  Solution 6.94 (4.42 – 9.47) 
 400 Powder 5.03 (2.01 – 8.05) 
  Solution 4.30 (0.49 – 8.10) 
CWZ 200 Powder 4.76 (-0.26 – 9.79) 
  Solution 6.16 (1.62 – 10.70) 
 400 Powder 6.54 (1.55 – 11.54) 
  Solution 5.19 (1.45 – 8.93) 
Zeolite 200 Powder 5.05 (0.40 – 9.70) 
  Solution 6.41 (-0.06 – 12.88) 
 400 Powder 7.20 (-2.23 – 16.64) 
  Solution 15.26 (-7.03 – 37.56) 

5 Nubsella sp. EsD18 
(Sphingobacteriaceae) 

Control 200 Powder 8.38 (7.16 – 9.61) 
  Solution 9.35 (7.12 – 11.59) 
 400 Powder 8.55 (6.97 – 10.12) 
  Solution 8.14 (6.54 – 9.74) 
CWC 200 Powder 8.58 (7.03 – 10.14) 
  Solution 8.65 (7.20 – 10.10) 
 400 Powder 8.09 (7.28 – 8.91) 
  Solution 7.75 (6.18 – 9.32) 
CWZ 200 Powder 8.21 (6.63 – 9.78) 
  Solution 8.69 (6.99 – 10.38) 
 400 Powder 8.61 (7.15 – 10.07) 
  Solution 8.58 (7.61 – 9.56) 
Zeolite 200 Powder 8.22 (6.63 – 9.80) 
  Solution 8.62 (5.28 – 11.96) 
 400 Powder 9.11 (5.22 – 13.01) 
  Solution 10.19 (4.31 – 16.07) 

6 Pseudoxanthobacter soli-DSM 19599 
(Xanthobacteraceae) 

Control 200 Powder 7.62 (5.35 – 9.90) 
  Solution 8.19 (5.28 – 11.11) 
 400 Powder 12.06 (2.82 – 21.30) 
  Solution 8.68 (5.24 – 12.12) 
CWC 200 Powder 8.47 (7.83 – 9.11) 
  Solution 7.98 (6.38 – 9.58) 
 400 Powder 6.60 (5.51 – 7.69) 
  Solution 6.84 (5.75 - 7.94) 
CWZ 200 Powder 7.00 (5.05 – 8.96) 
  Solution 7.83 (6.20 – 9.46) 
 400 Powder 8.64 (6.06 – 11.22) 
  Solution 7.40 (6.16 – 8.64) 
Zeolite 200 Powder 7.54 (6.15 – 8.92) 
  Solution 10.31 (1.41 – 19.22) 
 400 Powder 9.85 (3.82 – 15.87) 
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S/N Species Treatment Larval 
density 

Feed Log10 DNA 
(copies/µl) 

  Solution 11.35 (2.85 – 19.85) 
7 Ramlibacter tataouinensis 

(Comamonadaceae) 
Control 200 Powder 7.33 (2.94 – 11.72) 
  Solution 7.36 (-0.25 – 14.98) 
 400 Powder 8.80 (1.52 – 16.07) 
  Solution 6.57 (-2.12 – 15.25) 
CWC 200 Powder 9.63 (5.83 – 13.43) 
  Solution 8.30 (0.40 – 16.21) 
 400 Powder 7.76 (-0.49 – 16.01) 
  Solution 6.64 (-3.17 – 16.46) 
CWZ 200 Powder 7.70 (1.95 – 13.46) 
  Solution 8.84 (1.88 – 15.80) 
 400 Powder 9.40 (6.20 – 12.59) 
  Solution 8.70 (3.53 – 13.87) 
Zeolite 200 Powder 7.23 (1.65 – 12.80) 
  Solution 10.44 (-4.39 – 25.28) 
 400 Powder 7.92 (-4.56 – 20.39) 
  Solution 9.79 (7.27 – 12.30) 

8 Sphingomonas wittichii 
(Sphingomonadaceae) 

Control 200 Powder 9.66 (8.59 – 10.74) 
  Solution 10.98 (2.63 – 19.34) 
 400 Powder 12.37 (7.22 – 17.51) 
  Solution 9.87 (6.52 – 13.23) 
CWC 200 Powder 8.96 (5.67 – 12.25) 
  Solution 10.21 (3.04 – 17.38) 
 400 Powder 9.65 (4.88 – 14.42) 
  Solution 8.90 (6.12 – 11.69) 
CWZ 200 Powder 8.94 (6.54 – 11.33) 
  Solution 9.07 (5.64 – 12.51) 
 400 Powder 11.04 (9.01 – 13.07) 
  Solution 10.13 (7.73 – 12.52) 
Zeolite 200 Powder 9.23 (6.91 – 11.55) 
  Solution 10.86 (2.69 – 19.04) 
 400 Powder 12.07 (6.57 – 17.57) 
  Solution 13.09 (5.96 - 20.21) 

9 Turneriella parva DSM 21527 
(Leptospiraceae) 

Control 200 Powder 9.65 (8.85 – 10.44) 
  Solution 9.54 (7.77 – 11.32) 
 400 Powder 10.17 (8.11 – 12.23) 
  Solution 9.67 (6.98 – 12.37) 
CWC 200 Powder 9.73 (7.05 – 12.42) 
  Solution 9.75 (6.85 – 12.66) 
 400 Powder 9.16 (6.43 – 11.90) 
  Solution 9.04 (6.60 – 11.49) 
CWZ 200 Powder 9.09 (7.37 – 10.81) 
  Solution 9.64 (6.87 – 12.40) 
 400 Powder 9.97 (7.68 – 12.26) 
  Solution 9.97 (7.98 – 11.96) 
Zeolite 200 Powder 9.17 (6.72 – 11.61) 
  Solution 11.03 (4.22 – 17.84) 
 400 Powder 10.61 (5.87 – 15.35) 
  Solution 12.32 (4.82 – 19.82) 

10 Control 200 Powder 10.74 (7.06 – 14.43) 
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S/N Species Treatment Larval 
density 

Feed Log10 DNA 
(copies/µl) 

Xylophilus sp. PDD-37_7j_hv_b-3 
(Comamonadaceae) 

  Solution 9.59 (6.59 – 12.60) 
 400 Powder 10.62 (8.16 – 13.09) 
  Solution 9.38 (5.95 – 12.82) 
CWC 200 Powder 9.62 (5.17 – 14.07) 
  Solution 10.21 (3.73 – 16.69) 
 400 Powder 10.71 (1.75 – 19.67) 
  Solution 8.98 (4.33 – 13.64) 
CWZ 200 Powder 9.25 (6.98 – 11.52) 
  Solution 9.47 (5.16 – 13.79) 
 400 Powder 10.78 (6.83 – 14.72) 
  Solution 9.99 (5.80 – 14.18) 
Zeolite 200 Powder 9.20 (6.39 – 12.00) 
  Solution 10.27 (2.91 – 17.64) 
 400 Powder 15.24 (-0.39 – 30.87) 
  Solution 20.72 (-15.15 – 

56.60) 
Notes: 95% Confidence intervals are in parenthesis and sample size = 4. 
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Appendix J: KAPABIOSYSTEMS SYBR FAST qPCR protocol link 

 

Technical Data Sheet

Effective date: October 2016 For Research Use Only. Not for use in diagnostic procedures.

KAPA SYBR® FAST qPCR  
Master Mix (2X) Kit
KR0389 – v10.16

Product Description
KAPA SYBR FAST qPCR Master Mix (2X) is designed for 
high-performance real-time PCR. The kit contains a novel 
DNA polymerase—engineered via a process of molecular 
evolution—resulting in a unique enzyme specifically 
designed for real-time quantitative PCR (qPCR) using 
SYBR Green I dye chemistry.

KAPA SYBR FAST DNA Polymerase has been engineered 
to perform optimally in stringent qPCR reaction conditions, 
exhibiting dramatic improvements in signal-to-noise ratio 
(fluorescence), quantification cycle (Cq), linearity, and 
sensitivity. The KAPA SYBR FAST DNA Polymerase and 
proprietary buffer system improves the amplification 
efficiency of difficult targets, including both GC- and AT-
rich templates.

KAPA SYBR FAST qPCR Master Mix (2X) Kits are a ready-
to-use cocktail containing all components (except primers 
and template) for the amplification and detection of DNA 
in qPCR. The KAPA SYBR FAST qPCR Kit is supplied as 
a 2X master mix with integrated antibody-mediated hot 
start, SYBR Green I fluorescent dye, MgCl

2
, dNTPs, and 

stabilizers. 

Ensure that the correct KAPA SYBR FAST qPCR Master 
Mix (2X) is used in accordance with the reference dye 
requirements (if any) of the qPCR instrument (Table 1).

Product Applications
KAPA SYBR FAST qPCR Kits are ideally suited for:

• gene expression analysis;

• gene knockdown validation;

• microarray validation;

• low copy gene detection; and

• absolute quantification of NGS libraries (when sold as 
part of the KAPA Library Quantification Kit).

Kapa/Roche Kit Codes and Components

KAPA SYBR FAST qPCR 
Master Mix (2X) Universal

qPCR Master Mix (2X)
ROX High Reference Dye (50X)
ROX Low Reference Dye (50X)

KK4600 – 07959362001
(1 mL; 100 x 20 µL rxn)

KK4601 – 07959389001
(5 mL; 500 x 20 µL rxn) 

KK4602 – 07959397001
(10 mL; 1000 x 20 µL rxn)

KK4618 – 07959567001
(50 mL; 5000 x 20 µL rxn)

KAPA SYBR FAST qPCR 
Master Mix (2X) ABI Prism™

qPCR Master Mix (2X) with  
ROX High incorporated 

KK4603 – 07959419001
(1 mL; 100 x 20 µL rxn)

KK4604 – 07959427001
(5 mL; 500 x 20 µL rxn)

KK4605 – 07959435001
(10 mL; 1000 x 20 µL rxn)

KK4617 – 07959559001
(50 mL; 5000 x 20 µL rxn)

KAPA SYBR FAST qPCR 
Master Mix (2X) optimized  
for LightCycler® 480

qPCR Master Mix (2X) with  
no passive reference dye 

KK4609 – 07959478001
(1 mL; 100 x 20 µL rxn)

KK4610 – 07959486001
(5 mL; 500 x 20 µL rxn)

KK4611 – 07959494001
(10 mL; 1000 x 20 µL rxn)

KAPA SYBR FAST qPCR 
Master Mix (2X) ROX Low

qPCR Master Mix (2X) with  
ROX Low incorporated 

KK4619 – 07959575001
(1 mL; 100 x 20 µL rxn)

KK4620 – 07959583001
(5 mL; 500 x 20 µL rxn)

KK4621 – 07959591001
(10 mL; 1000 x 20 µL rxn)

KK4622 – 07959605001
(50 mL; 5000 x 20 µL rxn)

KAPA SYBR FAST qPCR 
Master Mix (2X) Bio-Rad 
iCycler

qPCR Master Mix (2X) with 
fluorescein incorporated

KK4606 – 07959443001
(1 mL; 100 x 20 µL rxn)

KK4607 – 07959451001
(5 mL; 500 x 20 µL rxn)

KK4608 – 07959460001
(10 mL; 1000 x 20 µL rxn)

Quick Notes

• This kit contains an engineered enzyme optimized 
for qPCR using SYBR Green I dye chemistry.

• The 2X master mix contains a proprietary buffer. 
Together with the novel enzyme, this improves 
amplification efficiency of both GC- and AT-rich targets.

• 20 sec initial denaturation at 95°C is sufficient for 
enzyme activation. When working with complex 
templates, an initial denaturation of 3 min is 
recommended.

• For 3-step cycling, use 20 sec for primer annealing 
and 1 sec for extension/data acquisition at 72°C.

• Do not exceed 25 μL reaction volumes.
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Appendix K: 16S rRNA metagenomic sequencing library preparation workflow  

   protocol link 

 

IMPORTANT
NOTICE

This document provides information for an application for Illumina technology that has
been demonstrated internally and may be of interest to customers. This information is
provided as‐is and is not an Illumina product and is not accompanied by any rights or
warranties. Customers using or adapting this information should obtain any licenses
required and materials from authorized vendors. Illumina products mentioned herein are
for research use only unless marked otherwise. While customer feedback is welcomed, this
application is not supported by Illumina Technical Support and Field Application Scientists.

Part # 15044223 Rev. B Page 1

16S Metagenomic Sequencing Library
Preparation
Preparing 16S Ribosomal RNA Gene Amplicons for the
Illumina MiSeq System

Introduction 2
16S Library Preparation Workflow 5
Amplicon PCR 6
PCR Clean‐Up 8
Index PCR 10
PCR Clean‐Up 2 13
[Optional] Validate Library 15
Library Quantification, Normalization, and Pooling 16
Library Denaturing and MiSeq Sample Loading 17
MiSeq Reporter Metagenomics Workflow 20
Supporting Information 21
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Appendix L: KAPABIOSYSTEMS sequence library quantification kit protocol link 

 

 

Technical Data Sheet

Effective date: January 2017 For Research Use Only. Not for use in diagnostic procedures.

KAPA Library Quantification Kit
Illumina® Platforms
KR0405 – v8.17

This Technical Data Sheet provides product information 
and a detailed protocol for the KAPA Library Quantification 
Kits for Illumina platforms.

This document applies to KAPA Library Quantification 
Kits for Illumina platforms (07960166001, 07960140001, 
07960204001, 07960255001, 07960336001 and 
07960298001), KAPA Library Quantification Primer 
and PCR mix Kits for Illumina platforms (07960441001, 
07960484001, 07960522001, 07960727001 and 
07960573001), KAPA Library Quantification Standards 
and Primer Kit for Illumina platforms (07960085001),  
KAPA Library Quantification Standards Kits for Illumina 
platforms (07960409001, and 07960409001), KAPA Library 
Quantification Dilution Control Kit for Illumina platforms 
(07960417001), and KAPA Library Quantification Primer 
Kit for Illumina platforms (07960093001).

Contents

Product Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Product Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Product Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Product Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Shipping and Storage  . . . . . . . . . . . . . . . . . . . . . . . . 2
Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Important Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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Kapa/Roche Kit Codes and Components

Complete Kit with:
DNA Standards 
1 – 6 (80 µL each)
Primer Mix (0.2 mL)
KAPA SYBR® FAST 
qPCR Master Mix 
(1 mL)

KK4828 – 07960166001
Universal qPCR Master Mix
200 µL ROX High (50X) and ROX 
Low (50X) supplied separately

Complete Kits with:
DNA Standards 
1 – 6 (80 µL each)
Primer Mix (1 mL)
KAPA SYBR® FAST 
qPCR Master Mix 
(5 mL)

KK4824 – 07960140001
Universal qPCR Master Mix
200 µL ROX High (50X) and ROX 
Low (50X) supplied separately

KK4835 – 07960204001
ABI Prism™ qPCR Master Mix

KK4844 – 07960255001
Bio-Rad iCycler™ qPCR Master Mix

KK4873 – 07960336001
ROX Low qPCR Master Mix

KK4854 – 07960298001
qPCR Master Mix optimized for 
LightCycler® 480

Kits with: 
Primer Mix (1 mL)
KAPA SYBR FAST 
qPCR Master Mix 
(5 mL)

KK4923 – 07960441001
Universal qPCR Master Mix
200 µL ROX High (50X) and ROX 
Low (50X) supplied separately

KK4933 – 07960484001
ABI Prism qPCR Master Mix

KK4943 – 07960522001
Bio-Rad iCycler qPCR Master Mix

KK4973 – 07960727001
ROX Low qPCR Master Mix

KK4953 – 07960573001
qPCR Master Mix optimized for 
LightCycler 480

Kit with:
Primer Mix (1 mL)
DNA Standards (80 µL)

KK4808 – 07960085001
DNA Standards 1 – 6

Kits with:
DNA Standards (80 µL)

KK4903 – 07960387001
DNA Standards 1 – 6

KK4905 – 07960409001
DNA Standards 0 – 6

Kit with:
Dilution Control (80 µL)

KK4906 – 07960417001
DNA Standard 0

Kit with:
Primer Mix (1 mL) KK4809 – 07960093001

Quick Notes

• The DNA Standards provided in the kit represent a 
10-fold dilution series (20 pM to 0.0002 pM).

• Ensure that the libraries to be quantified are 
compatible with the qPCR quantification primer 
sequences given on the next page.

• Select the correct version of KAPA SYBR FAST qPCR 
Master Mix for the qPCR instrument to be used.

• Refer to the KAPA Library Quantification Technical 
Guide for a more in-depth discussion of the various 
factors affecting accurate library quantification.
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Appendix M: Sequence data clustering and secondary analyses (CLC) protocol link 

 

 

Sample to Insight

Tutorial

OTU Clustering Step by Step

March 2, 2017

QIAGEN Aarhus Silkeborgvej 2 Prismet 8000 Aarhus C Denmark

Telephone: +45 70 22 32 44 www.qiagenbioinformatics.com

AdvancedGenomicsSupport@qiagen.com
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Appendix N: Qiagen Blood and tissue DNA extraction protocol link. 

 

 

DNeasy® Blood & Tissue Handbook

DNeasy Blood & Tissue Kit
DNeasy 96 Blood & Tissue Kit

For purification of total DNA from 
animal blood
animal tissue
rodent tails
ear punches
cultured cells
fixed tissue
bacteria
insects

July 2006

W W W . Q I A G E N . C O M
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Appendix O: Agencourt Ampure PCR purification protocol link 

 

 

 

Protocol 000601v024 
Page 1 of 9 

AGENCOURT® AMPURE®  
PCR PURIFICATION 
  

 

Please refer to http://www.agencourt.com/technical/ for updated protocols and refer to MSDS 
instructions when handling or shipping any chemical hazards. 
AGENCOURT AMPURE is a registered trademark of Agencourt Bioscience and is for laboratory use only. 

Agencourt AMPure PCR Purification Table of Contents 

Introduction.......................................................................................................................................1 
Process Overview .............................................................................................................................2 
Kit Specifications..............................................................................................................................2 
Materials Supplied in the Kit:...........................................................................................................2 
Materials Supplied by the User:........................................................................................................3 
Calculation of Percent Recovery: .....................................................................................................3 
Procedure: .........................................................................................................................................4 

96 Well Format: ...........................................................................................................................4 
384 Well Format: .........................................................................................................................6 

Introduction 

The Agencourt AMPure PCR1 Purification system utilizes Agencourt’s solid-phase paramagnetic 
bead technology for high-throughput purification of PCR amplicons.  Agencourt AMPure utilizes 
an optimized buffer to selectively bind PCR amplicons 100bp and larger to paramagnetic beads.  
Excess oligos, nucleotides, salts, and enzymes can be removed using a simple washing procedure. 
The resulting purified PCR product is essentially free of contaminants and can be used in the 
following applications: 

• Fluorescent DNA sequencing, including capillary electrophoresis 
• Microarray spotting2 
• Cloning2 
• Primer extension genotyping 

 
The purification procedure is highly amenable to a variety of automation platforms because it 
utilizes magnetic separation and requires no centrifugation or vacuum filtration.  More 

                                                 
1 The PCR process is covered by patents owned by Roche Molecular Systems, Inc., and F. Hoffman-La Roche, Ltd. 

2 Please e-mail or call Agencourt support for beta protocols (support@agencourt.com; 1-800-773-9186) 
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