
This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-commercial 
use and shall not be passed to any other individual. No quotation may be 

published without proper acknowledgement. For any other use, or to quote 
extensively from the work, permission must be obtained from the copyright 

holder/s.

https://www.keele.ac.uk/library/specialcollections/


Internal mixing processes in

massive stars: uncertainties and

impact

Etienne Kaiser

Doctor of Philosophy

School of Physics and Chemical Sciences, Keele University

October 2022





Abstract

Massive stars are key contributors to the evolution of galaxies and many observed phenomena. There-

fore, understanding them is crucial to explain the evolution of the Universe and its constituents. The

evolution of massive stars is strongly influenced by internal mixing processes. In stellar evolution

theory, these processes are simplified due to the assumption of spherical symmetry. This introduces

many uncertainties. In this Thesis, I investigate two groups of internal mixing processes in massive

stars: turbulent convection and rotation-induced mixing. The study focusses on convective boundary

mixing and angular momentum transport. Concerning convective boundary mixing, I study how the

location of the convective boundary and different amounts of convective boundary mixing affects the

structure and evolution of massive stars. I find an uncertainty of up to ∼ 70% in the prediction of

core masses at core helium depletion. Furthermore, the surface evolution of massive stars depends

critically on the mixing choices. Comparison between model predictions and observations suggests

that models require a larger amount of convective boundary mixing than currently adopted in the

literature. Concerning angular momentum transport, I investigate angular momentum transport by

rotation-induced instabilities and two different magnetic dynamos and how it is affected by related

theoretical and implementation uncertainties. The three sets of models predict distinct ranges of the

core rotation rate at core collapse. However, the strength and timing of angular momentum transport

depends strongly on the transport mechanism and its uncertainty. Generally, the main transport of

angular momentum occurs before core helium ignition and nearly no angular momentum is trans-

ported after core oxygen ignition. This Thesis shows that the evolution of massive stars is strongly

influenced by the uncertainties linked to convective boundary mixing and rotation-induced mixing

and more work is needed to provide reliable predictions for stellar evolution.



Acknowledgements

Science is never done alone and same goes for this Thesis. I could never have completed this disserta-

tion without the advice, help and collaboration of many scientists and friends. I want to express my

gratitude to all those who supported me. In particular, I want to thank my supervisor, mentor and

Swiss friend Raphael Hirschi for his support, patience and the opportunities he created for me to grow

as a scientist. I am grateful to the members of the NuGrid collaboration, the team at the Geneva

Observatory, Chris Belczynski, Zsolt Keszthelyi, Dave Arnett with whom I had many interesting dis-

cussions, scientific and non-scientific. I also want to thank my family and the family Humphreys for

their support, in particular Sophie Humphreys. I could have never done it without you.



Table of Contents

I Introduction To Massive Stars 1

1 Why Study Massive Stars? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Evolution of Massive Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Nuclear Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Hydrogen Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Helium Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Advanced Burning Stages . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3.1 Carbon Burning . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3.2 Neon & Oxygen Burning . . . . . . . . . . . . . . . . . . . . 13

2.1.3.3 Silicon Burning . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Mass Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Fate of Massive Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Core-Collapse Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Collapse, Bounce and Shock Formation . . . . . . . . . . . . . . . . . 21

3.1.2 The Progenitor of Core-Collapse Supernovae . . . . . . . . . . . . . . 25

3.1.3 Explodability and Black Hole Formation . . . . . . . . . . . . . . . . 26

3.1.4 Explosive Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Pair Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Rotation in Massive Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Effects of Rotation on Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 The Evolution of Rotating Stars . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Evolution of Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Effects of Rotation on the Evolution of Massive Stars . . . . . . . . . 36

5 This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

II Internal Mixing Processes 43

iii



TABLE OF CONTENTS

1 Thermally-Driven Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.1 Local Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.2 Convection in Stellar Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.3 Convective Boundary Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4 Semiconvection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.5 Discussion on Thermally-Driven Mixing Processes . . . . . . . . . . . . . . . . 54

2 Rotation-Induced Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1 Solberg-Høiland Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Eddington-Sweet Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Horizontal Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Shear Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Dynamical Shear Instability . . . . . . . . . . . . . . . . . . . . . . . 60

2.4.2 Secular Shear Instability . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Baroclinic Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.1 Goldreich-Schubert-Fricke Instability . . . . . . . . . . . . . . . . . . 63

2.6 Discussion on Rotation-Induced Hydrodynamic Mixing . . . . . . . . . . . . . . 64

3 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Magnetic Instabilities and Dynamo Processes . . . . . . . . . . . . . . . . . . . 66

3.1.1 Tayler Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Tayler-Spruit Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.2.1 Angular Momentum Transport by the Tayler-Spruit Dynamo 70

3.1.2.2 Chemical Mixing by the Tayler-Spruit Dynamo . . . . . . . . 72

3.1.3 Fuller-modified Tayler-Spruit Dynamo . . . . . . . . . . . . . . . . . . 72

3.1.3.1 Angular Momentum Transport with the Fuller-modified Tayler-

Spruit dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.3.2 Chemical Mixing by the Fuller-modified Tayler-Spruit Dynamo 74

3.2 Discussion on Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

III The Relative Importance of Convective Uncertainties 78

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2 Physical Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.1 Convective Boundary Mixing Uncertainties . . . . . . . . . . . . . . . . . . . . 81

iv



TABLE OF CONTENTS

3 Core Hydrogen Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1 Convective Fingers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 The Intermediate Convective Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Core Helium Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Convective Helium Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Nucleosynthesis during Core Helium Burning . . . . . . . . . . . . . . . . . . . 103

6 Blue versus Red Supergiant Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IV The Uncertainty in Angular Momentum Transport 127

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

2 Stellar Models - Physical Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3 Angular Momentum Transport with Different Mechanisms . . . . . . . . . . . . . 132

3.1 15 M� models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.2 25 and 30 M� models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.3 60 M� models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.4 Smoothing of the Tayler-Spruit and the Fuller-modified Tayler-Spruit dynamo 149

3.5 The Parameters fµ and fc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.6 The Taylor-Spruit Dynamo and Convective Boundary Mixing . . . . . . . . . . 160

3.7 Convergence between the Magnetic Dynamos? . . . . . . . . . . . . . . . . . . 163

4 Angular Momentum Transport at Lower Metallicities . . . . . . . . . . . . . . . . 165

5 Dependence of Angular Momentum Transport on the Initial Rotation Speed . 167

6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.1 The role of qmin in the Fuller-modified Tayler-Spruit dynamo . . . . . . . . . . 173

V Conclusion and Outlook 177

1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

1.1 Convective Boundary Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

1.2 Rotation-Induced Mixing and Magnetic Fields . . . . . . . . . . . . . . . . . . 179

2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

v



TABLE OF CONTENTS

2.1 The Structure of Rotating Massive Stars . . . . . . . . . . . . . . . . . . . . . . 183

2.2 Rotation Rate of Compact Objects . . . . . . . . . . . . . . . . . . . . . . . . . 186

A Publications 207

1 Publications in Peer-Reviewed Scientific Journals . . . . . . . . . . . . . . . . . . . 207

2 Peer-Reviewed Conference Proceedings . . . . . . . . . . . . . . . . . . . . . . . . . 208

3 Submitted Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B Software Tools 209

1 Stellar Evolution Code - MESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

1.1 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

1.2 Equations of Stellar Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

1.2.0.1 Equation of State and Opacities . . . . . . . . . . . . . . . . 216

1.2.1 Nuclear Reaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 221

1.2.2 Neutrino Energy Losses . . . . . . . . . . . . . . . . . . . . . . . . . . 221

1.3 Thermally-Driven Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

1.3.1 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

1.3.2 Convective Boundary Mixing . . . . . . . . . . . . . . . . . . . . . . . 225

1.3.3 Semiconvection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

1.3.4 MLT++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

1.4 Rotation-Induced Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

1.4.1 Solberg-Høiland Instability . . . . . . . . . . . . . . . . . . . . . . . . 232

1.4.2 Eddington-Sweet Circulation . . . . . . . . . . . . . . . . . . . . . . . 233

1.4.3 Dynamical Shear Instability . . . . . . . . . . . . . . . . . . . . . . . 233

1.4.4 Secular Shear Instability . . . . . . . . . . . . . . . . . . . . . . . . . 234

1.4.5 Goldreich-Schubert-Fricke Instability . . . . . . . . . . . . . . . . . . 234

1.5 Angular Momentum Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

1.5.1 Magnetic Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

1.5.1.1 Smoothing of the Tayler-Spruit Dynamo . . . . . . . . . . . 237

1.6 Mass Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

1.6.1 Rotation-enhanced Mass Loss . . . . . . . . . . . . . . . . . . . . . . 241

1.7 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

1.7.1 Temporal Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

vi



TABLE OF CONTENTS

1.7.2 Spatial Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

2 Code Alterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

2.1 Implementation of the Fuller-modified Tayler-Spruit Dynamo . . . . . . . . . . 243

2.2 Variant of the Mixing-Length Theory . . . . . . . . . . . . . . . . . . . . . . . 247

3 Inlists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

4 MESA Code Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

C Numerics & Derivations 249

1 Weighted Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

2 MLT++: Calculation of α̃∇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3.1 Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

3.2 Angular Momentum Transport Equation . . . . . . . . . . . . . . . . . . . . . . 252

vii



List of Figures

I.1 The Hertzsprung-Russell diagram and the Tc-ρc diagram of a 15 M� model . . . . 7

I.2 Schematic overview on the fate of single stars in relation to initial mass and metallicity 18

I.3 Schematic overview on the fate of single stars after the explosive event in relation

to initial mass and metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I.4 A schematic representation of the evolutionary phases of a core collapse supernova. 24

I.5 The equipotential deformation for different rotation rates and a representation of

the streamlines of the meridional circulation . . . . . . . . . . . . . . . . . . . . . . 32

I.6 The evolution of the surface equatorial velocity for stars of different initial masses

and the angular velocity as a function of the mass coordinate inside a 25 M� model 35

I.7 Kippenhahn diagrams of a rotating and non-rotating 20 M� model . . . . . . . . . 36

II.1 A simplified schematic representation of a convective boundary and an illustration

of the exponential decaying diffusive boundary mixing scheme . . . . . . . . . . . . 49

II.2 A schematic representation of the Ω-effect and α-effect . . . . . . . . . . . . . . . . 66

II.3 A schematic representation of the Tayler instability and the magnetohydrodynamic

instabilities near the rotation axis of a star . . . . . . . . . . . . . . . . . . . . . . . 68

III.1 The isotope reaction networks used in Chapter III . . . . . . . . . . . . . . . . . . 80

III.2 The location of the convective hydrogen core boundary for diffferent amounts of

convective boundary mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

III.3 Profiles of the temperature gradients at the boundary of the convective core in the

15 M� with f = 0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

III.4 Profiles of the temperature gradients at the boundary of the convective core in the

15 M� with f = 0.004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

III.5 Profiles of the temperature gradients at the boundary of the convective core in the

15 M� with f = 0.022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III.6 Profile of the temperature gradients at the boundary of the convective core in the

15, 20 and 25 M� models with f = 0.004 during core hydrogen burning . . . . . . . 88

III.7 The spectroscopic Hertzsprung-Russell diagram and the fraction of the convective

core mass of the star from asteroseismic observations . . . . . . . . . . . . . . . . . 89

viii



LIST OF FIGURES

III.8 Structure evolution diagrams of the 15 M� models with f = 0.0, 0.004, 0.01 showing

the intermediate convective zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

III.9 Structure evolution diagrams of the 15 M� models with f = 0.022, 0.035, 0.05

showing the intermediate convective zone . . . . . . . . . . . . . . . . . . . . . . . 94

III.10 The luminosities generated by the different thermonuclear burning in the 15 M�

models with various fCBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

III.11 Structure evolution diagrams of the 20 M� models with f = 0.004, 0.022, 0.035

showing the intermediate convective zone . . . . . . . . . . . . . . . . . . . . . . . 98

III.12 The location of the convective helium core boundary of the 15 and 25 M� models

with different fCBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

III.13 The 12C and 16O mass fractions in the centre at core helium depletion . . . . . . . 106

III.14 The 25Mg mass fraction produced at the centre by the neutron source reaction

during core helium burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

III.15 The Hertzsprung-Russell diagram with 15 and 25 M� models and different fCBM . 110

III.16 The evolution of the effective temperature as a function of the central 4He mass

fraction in the 15 and 25 M� models and different fCBM . . . . . . . . . . . . . . . 111

III.17 The mass-loss rate in the 15 and 25 M� models and different fCBM . . . . . . . . . 114

IV.1 The evolution of the angular rotation velocity in 15 M� models with the the default

angular momentum transport mechanisms . . . . . . . . . . . . . . . . . . . . . . . 134

IV.2 The rotation profile of 15 M� models for the three default angular momentum trans-

port mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

IV.3 The profile of the turbulent viscosity in 15 M� models with the three default angular

momentum transport mechanisms during core hydrogen burning . . . . . . . . . . 142

IV.4 The profile of the turbulent viscosity in 15 M� models with the three default angular

momentum transport mechanisms between core hydrogen and core helium burning 143

IV.5 The profile of the turbulent viscosity in 15 M� models with the three default angular

momentum transport mechanisms during core helium burning . . . . . . . . . . . . 144

IV.6 The rotation profile of the 30 M� models for the three default angular momentum

transport mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

IV.7 The rotation profile of the 60 M� models for the different angular momentum trans-

port mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

IV.8 The Ω- and j-profiles in the 15 M� model applying the Tayler-Spruit dynamo with

different smoothing coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

IV.9 The magnetic viscosity and the rotational shear in the 15 M� model applying the

Tayler-Spruit dynamo with different smoothing coefficients . . . . . . . . . . . . . . 151

ix



LIST OF FIGURES

IV.10 The profile of the turbulent viscosity in the 15 M� model applying the Fuller-

modified Tayler-Spruit dynamo but excluding the smoothing of the magnetic viscosity153

IV.11 The rotation profile of the 15 M� Tayler-Spruit model with different values of fµ . 156

IV.12 The turbulent viscosity in the 15 M� Tayler-Spruit model with different values of

fµ during the main-sequence evolution . . . . . . . . . . . . . . . . . . . . . . . . . 157

IV.13 The evolution of the angular rotation velocity at the surface and in the core in the

15 M� models with the Tayler-Spruit dynamo and different values for fµ . . . . . . 158

IV.14 The turbulen viscosity and the rotation profile in the 15 M� model applying the

Tayler-Spruit dynamo, including in the convective boundary mixing region . . . . . 162

IV.15 The evolution of the angular rotation velocity on the surface and in the centre in

various 15 M� models with a magnetic dynamo . . . . . . . . . . . . . . . . . . . . 164

IV.16 The j profile in the 32 M� models with the three default angular momentum trans-

port mechanisms and different initial rotation rates at different stellar stages . . . . 168

IV.17 The Ω profile in the 32 M� models for three default angular momentum transport

processes with different initial rotation rates at silicon depletion . . . . . . . . . . . 168

IV.18 The rotation profile of the 60 M� models at a metallicity of Z = 0.0004 for the three

default angular momentum transport mechanisms . . . . . . . . . . . . . . . . . . . 169

IV.19 The rotation profile of the 15 M� model with the Fuller-modified Tayler-Spruit dy-

namo that includes the qmin condition and excludes numerical smoothing . . . . . . 174

IV.20 The turbulent viscosity in the 15 M� model with the Fuller-modified Tayler-Spruit

dynamo that includes the qmin condition and excludes numerical smoothing . . . . 176

V.1 Observed and estimated neutron star spin period as a function of the gravitational

mass for (a) the 15 M� models presented in Chapter IV and (b) the 12 M� and

60 M� models presented in Table V.1 and the 15 M� models shown in (a) but with

a slower initial rotation rate. The coloured markers present estimates based on

the models and the black crosses show observed neutron star spins by Muslimov &

Page (1996) and Faucher-Giguère & Kaspi (2006). The grey rectangle depicts an

observed range of neutron star spins (Marshall et al., 1998; Kaspi & Helfand, 2002;

Faucher-Giguère & Kaspi, 2006; Popov et al., 2010; Popov & Turolla, 2012; Gotthelf

et al., 2013) with an assumed neutron star mass of 1.4 M�. . . . . . . . . . . . . . 187

B.1 The log ρ - log T plane showing the regions covered by the MESA equation of state

tables and opacity tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

B.2 The opacity κ at the zero-age main sequence for different initial masses and the

dominant neutrino production processes in the log ρ - log T plane . . . . . . . . . . 220

x



LIST OF FIGURES

B.3 The luminosity-pressure profile, showing the regions of density and pressure inversions229

xi



List of Tables

I.1 Table with the central density and the central temperature at the ignition of the burning

stage and the thermonuclear lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III.1 Properties of the stellar models at core helium depletion . . . . . . . . . . . . . . . . . 104

III.2 The variation of the core masses due to convective boundary mixing uncertainties . . . 122

III.3 The variation of the lifetimes due to convective boundary mixing uncertainties . . . . 122

V.1 Properties of the rotating models at core helium depletion . . . . . . . . . . . . . . . . 184

B.1 The fi parameters for the various mixing-length theory versions implemented in MESA 224

B.2 Table listing the user-specified parameters of the MLT++ routine . . . . . . . . . . . . . 231

xii



Chapter I
Introduction To Massive Stars

The understanding of massive stars is key to many aspects of astronomy, such as the evolu-

tion of galaxies, nucleosynthesis, supernovae, neutron stars, black holes, gravitational waves

and other exotic objects. In this Chapter, an overview of the evolution and death of mas-

sive stars is given, setting the stage for this thesis. First, the life of non-rotating stars is

discussed with a focus on the internal evolution and nucleosynthesis, followed by a brief

summary of stellar winds and mass loss from massive stars. Then, the diversity of the final

fates of massive stars is presented and two scenarios, the core-collapse and pair-instability

supernova, are explored in more detail. Finally, the evolution of rotating massive stars is

reviewed. In the last Section, the motivation and organisation of this work are outlined.

1 Why Study Massive Stars?

Since ancient times humans have been intrigued about their surroundings and wondered about the

origin of life. This curiosity led them to eventually look into the sky and study the different stellar

objects. While the path to life is complicated, it is currently thought that some of the building blocks

used to form life are made in stars. In addition to the origin of life, human kind also depends on our

neighbouring star, the Sun, because it enables life on the Earth and we depend on its radiated energy,

hence, it is important to know what will happen to the Sun in the future.

A star is a gaseous cloud bound by its own gravity, which induces enough pressure in the central

region to heat it up to temperatures where thermonuclear reactions can occur. Stars are nuclear reac-

tors that synthesise new elements from old ones via fusion and other processes, thus slowly changing

the matter they are made of. If the stars are able to return the newly synthesised material into the
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CHAPTER I. INTRODUCTION TO MASSIVE STARS

galaxy, they actively contribute to the chemical evolution of the galaxy. This, for example, facilitates

the formation of planets such as the Earth on which new life can form.

Stars are nuclear laboratories with extremely high temperatures and pressures. This enables scien-

tists to test many different areas of physics under extreme conditions, such as nuclear physics, particle

physics, thermodynamics, hydrodynamics and classical mechanics. Some stars even form very com-

pact objects that become a test-bed for relativistic and quantum mechanics.

Massive stars are defined as stars with masses of at least eight times the mass of the Sun, M &8 M�
1

(Smartt et al., 2009). Following the Harvard spectral classification, massive stars are classified as O

and early B-type stars. Contrary to the Sun and other lower mass stars, which have a very long and

calm life, massive stars have relatively short lifetimes. For example, on the main sequence2, where

stars spend most of their lives, massive stars have surface temperatures higher than 10, 000 K whereas

the Sun has a surface temperature of ∼ 5, 800 K.

Massive stars play a key role in the evolution of galaxies: They are fundamental for the production of

heavy elements up to an atomic mass number of ∼ 90 (Woosley et al., 2002) and they dominate the

luminosity of stellar systems. The feedback from massive stars into the interstellar medium occurs

via intense stellar winds, radiation and through their explosive deaths. Most massive stars end their

lives as a supernova, one of the most powerful explosions in the universe. After their death they might

leave behind a compact remnant, either a neutron star or a black hole, hence, they are the progenitor

of compact objects and gravitational waves. Also, other energetic phenomena such as long gamma-ray

bursts3 are thought to originate from supernovae of stars in this mass range (Woosley & Bloom, 2006).

Massive stars can trigger star formation activity via their strong radiation (Getman et al., 2009) and

through their winds and supernova events (Preibisch & Zinnecker, 2007). The first generation of

massive stars are thought to be the main driver of the reionisation of the Universe (Bromm & Larson,

2004; Sobral et al., 2015).

The evolution of massive stars, and all stars in general, is strongly affected by internal mixing pro-

cesses. Thermally-driven turbulent convective mixing is often correlated with a nuclear burning region.

Convection can provide more fuel into the burning region, prolonging the lifetime of a star. Also, it

is one of the dominant energy transport processes, it mixes the interior and rearranges the structure

of the star, for example by increasing the core masses. This will change the outcome of the star’s

later evolution, influence the way the star meets its end and the remnant, if any, that will be left after

the catastrophic death. On the other hand, rotation-induced mixing can happen in any region of the

star. Similar to thermally-driven mixing processes, it mixes the matter and changes the structure in

1One solar mass M� is 1.99× 1030 kg. Solar values are generally indicated with the index �.
2The main sequence is a prominent band in the colour versus absolute magnitude diagram, or surface temperature

versus luminosity diagram, of observed stars.
3Gamma-ray bursts are extremely energetic explosions that are thought to be generated during the collapse of rapidly

rotating massive stars, see Section I.4. Their duration is of the order of seconds to minutes but they produce as much
energy as the Sun during its entire existence.
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stars, which prolongs the lifetime of each evolutionary stage and influences the way the star evolves.

Both types of mixing consist of an ensemble of different processes. While a vast development has been

made in the understanding of these processes, there are still a lot of open questions, inconsistencies

and uncertainties.

In this work, some uncertainties from thermally-driven and rotation-induced mixing processes are

investigated, specified and their implications for stellar evolution are explored. Furthermore, the as-

pects of the mixing processes leading to the largest uncertainties in the stellar model predictions are

highlighted. Assessing the impact of the mixing uncertainties on the evolution of stars is an important

step in several ways. Currently, there are many different published stellar evolution model grids that

predict various outcomes. Knowing the uncertainties from the mixing processes and the different

implementations allows for a better comparison of the grids and their reliability. Also, the knowledge

of the uncertainties guides the path to improve the theory of mixing processes as it highlights which

treatments need most improving and which are negligible. This also indicates the phases where multi-

dimensional simulations are needed in order to better understand the operating processes. Last, but

not least, specifying the uncertainties provides studies that use stellar evolution grids, for example

galactic chemical evolution simulations, with necessary uncertainty for stellar model predictions.

2 The Evolution of Massive Stars

Stellar evolution is the process by which a star changes its structure and chemical composition over

time through physical processes, including the interplay between nuclear reactions, gravity and energy

transport mechanisms. The lifetime of a star is far too long for a human to observe and most changes

occur on timescales too long to be detected. Therefore, in attempting to understand the physics of

stars and their changes over time, scientists observe numerous stars at various points of their evolution.

In parallel, they simulate the stellar structure using computed models, adding together the diverse

features into one full model and compare the outcome with observations.

The evolution of massive stars can be crudely associated with three parameters - mass M , metallicity

Z4 and rotation rate Ω (e.g. Woosley et al., 2002; Maeder & Meynet, 2012). Binarity also plays an

important role in the evolution of massive stars, see Section I.5, but in this thesis the focus will be on

single stars.

Massive stars originate from cold dense clumps, with typical masses of 100−1000 M� and temperatures

of 10 − 20 K inside giant molecular clouds (Zinnecker & Yorke, 2007). Gravitational instabilities or

shock waves, for example by a nearby supernova, can trigger the collapse of such interstellar clouds

into proto-stars. During proto-star evolution, the gas is opaque and the released gravitational energy is

4In an astrophysical context, the notion of metal applies to all elements heavier than helium.
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kept inside, heating up the gas. This phase is accompanied by an accretion disc and bipolar outflows of

matter. Thus, the star does not keep all the accreted mass but some is lost via the outflows. Once the

star reaches the pre-main sequence, the contraction proceeds on the slower Kelvin-Helmholtz timescale

and the gravitational energy released is roughly of the same order of magnitude as the energy radiated

from the surface.

The evolution of a massive star begins when the energy generation due to thermonuclear burning

processes opposes the gravitational contraction; the star is then said to be in hydrostatic equilibrium.

The energy generation is a consequence of the increasing temperature and pressure in the central region

of the star, allowing nuclear fusion and fission. Consequently, the composition slowly changes and

the star evolves. Massive stars go through several burning phases, generally in a hydrostatic fashion,

namely hydrogen-, helium-, carbon-, neon-, oxygen- and silicon burning. After silicon burning, the

nuclear burning cannot provide the energy to keep a massive star in a hydrostatic balance. Therefore,

the iron core formed during silicon burning gravitationally collapses, forming a compact object. If the

iron core was not too massive, the additional infalling matter bounces when the core reaches nuclear

densities, producing a spectacular supernova. This hydrodynamic phase might leave a neutron star

or even a black hole at the end of the star’s life.

Massive stars are generally more luminous than their lower mass counterparts. Consequently, they

have to replenish the energy through nuclear burning faster, resulting in relatively shorter lifetimes.

Ultimately the lifetime τ is roughly correlated with the initial mass of the star (Maeder, 2009)

τ ∝ M

L
∝M1−α with





α ≈ 1.7 for 0.6 M� < M < 2 M�

α = 3 for 2 M� < M < 60 M�

α ≈ 4 for 60 M� < M < 120 M�.

(I.1)

For even higher masses, α → 1 (Yusof et al., 2013). Therefore, a 20 M� star lives about 107 years

which is around 100 times shorter than the lifetime of a 2 M� star. The much shorter lifetime leads to

the more immediate influence of massive stars on their surroundings and also why the early Universe

was dominated by massive stars.

During main-sequence evolution where hydrogen is burnt in the core, massive stars are observed as

O- and early B-type stars. Once the star exhausts its central hydrogen fuel it evolves past the main

sequence into more rapid stages. There, massive stars are observed as Red or Blue Supergiants or

more peculiar objects such as Wolf-Rayet stars and luminous blue variables. These advanced stages

of stellar evolution are accompanied by strong and varying mass loss and luminosities. The final

death of the star after silicon burning is accompanied by spectacular explosions. Also, other exotic

appearances like pulsars, gamma-ray bursts or magnetars are thought to originate from massive stars
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(e.g. Woosley, 1993; Lyutikov & Blackman, 2001; Woosley & Bloom, 2006; Turolla et al., 2015).

Scientists are mostly limited by observations of the stellar surface, with the exception of asteroseis-

mology that allows us to probe the interior of stars. However, stellar evolution is mainly driven by

changes in the centre of the star, often depending on nuclear properties, and changes at the surface

are a consequence of the interior evolution. Nevertheless, the conditions in the centre are affected by

the physics of the surrounding layers. For that reason, a star has to be considered as a whole and the

interaction of the various physical processes and layers have to be taken into account.

2.1 Nuclear Burning

One of the key ingredients of stellar models is the energy generation which keeps the star in a hydro-

static equilibrium during most of its evolution. This energy is generated by thermonuclear reactions,

which are activated when the gravitational contraction pushes the temperature and pressure in the

centre of a star above a certain threshold. The nuclear energy is radiated away and enables a balance

between gravitational contraction and radiation pressure. The lost energy is resupplied by further

thermonuclear reactions. Hence, these reactions slowly modify the composition in a burning region

and shape the internal structure of stars. Ergo, they determine how stars evolve and their fate.

The interior of a star can be represented in the following, very simplified, way (Kippenhahn & Weigert,

1994). A star burns through its fuel5 during a certain phase, depending on the physical properties,

normally starting in or near the centre. Once the fuel is exhausted, the star lacks an energy source

needed to maintain hydrostatic equilibrium. Consequently, the core contracts on the Kelvin-Helmholtz

timescale τKH, defined as the ratio of the gravitational energy to the luminosity (e.g. Kippenhahn &

Weigert, 1994). This increases the central temperature and pressure. Once the temperature and

pressure are high enough to further fuse the ashes6 of the previous burning phase, the next burning

stage is ignited and the cycle restarts. The contraction also heats up the layers above the core, setting

the conditions for thermonuclear burning in a shell. This leads to an “onion-like” structure. However,

even though the burning zones are separated, they may influence each other through mixing processes

- see Chapter II - or by local expansion and contraction7. For example, strong burning zone can lead

to an expansion of the layers above it location. The expanding layers will reduce their temperature

and pressure. Consequently, the new temperature might be lower than the ignition temperature of a

previously active burning shell, which then ceases.

The order of the burning stages and the reactions taking place depend on the nuclear properties of

the isotopes taking part in the reactions, such as the Coulomb-barriers, the nuclear cross-sections and

5The nuclei that are used as ingredients for the thermonuclear reactions.
6The end product(s) of a burning stage.
7Also, in reality stars are not completely spherically symmetric and asymmetries lead to a deviation from the “onion-

structure”.
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Table I.1: The central densities, ρc, and the central temperature, Tc, both at the ignition of the
burning stage, i.e. when 0.3% of the fuel is burnt, for a 15 M� (left) and a 25 M� (right) model.
The respective third row shows the duration τ of the burning phase. The number in the bracket is
the exponent while the number before is the multiplier. The stellar models presented here are the
non-rotating models from Chapter IV.

15 M� 25 M�

Fuel ρc (g cm−3) Tc (K) τ ρc (g cm−3) Tc (K) τ

Hydrogen 6.99(0) 3.55(7) 1.40(7) yrs 4.52(0) 3.85(7) 7.54(6) yrs

Helium 8.49(2) 1.65(8) 0.91(6) yrs 4.64(2) 1.75(8) 0.57(6) yrs

Carbon 9.01(4) 6.60(8) 1.43(3) yrs 5.24(4) 7.14(8) 1.75(2) yrs

Neon 6.77(6) 1.26(9) 1.68(0) yrs 2.68(6) 1.37(9) 41 days

Oxygen 7.59(6) 1.95(9) 211 days 2.18(6) 1.80(9) 76 days

Silicon 4.84(7) 3.55(9) 37 hrs 7.61(7) 3.77(9) 18 hrs

reaction rates (Gamow-peak) and Gamow penetration-factors (see e.g. Povh et al., 2009). This leads

to the well separated phases of nuclear burning.

For a polytrope of constant index it is possible to obtain a relation between the initial mass M ,

the central temperature Tc and the central density ρc (Kippenhahn & Weigert, 1994),

M2 ∼ T 3
c

ρ2
c

. (I.2)

This relation implies that for a given burning stage, which is activated above a certain threshold

in Tc given by thermonuclear properties, more massive stars burn at lower densities (see Table I.1).

Furthermore, more massive stars have shorter burning times as the mass dependence pushes Tc higher

for each burning stage (see Table I.1) and thermonuclear reaction rates depend exponentially on Tc

(Kippenhahn & Weigert, 1994; Maeder, 2009). This is correlated to the shorter lifetimes of massive

stars due to higher luminosities (see Eq. I.1). It should be noted that this approximative relation is

applicable for the early evolution of a star. During the advanced stages, the complex structure of a

star leads to a deviation of the oversimplified polytropic picture (see also Fig.(I.1b)).

2.1.1 Hydrogen Burning

The simplest nucleus initially available is hydrogen, consisting of a proton. So the first burning

stage taking place is hydrogen burning, synthesising mainly 4He. This burning stage proceeds via

the pp-chain and the CNO-cycle. The CNO-cycle operates more effectively at higher temperatures,

hence, it dominates in massive stars. The simplest pp-chain is activated at Tc ∼ 5 × 106 K by

1He(p,e+ν)2H(p,γ)3He and is completed by 3He(3He,2p)4He (Burbidge et al., 1957). There are alter-

natives for the second part over 7Be and 7Li or 7Be and 8B, respectively, but they require the exis-

tence of a significant amount of 3He. The CNO-cycle, dominating at slightly higher temperatures of
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Figure I.1: The Herzsprung-Russel diagram and the Tc-ρc diagram of a 15 M� model showing its
surface and central evolution, respectively. The colours indicate the burning phase in the centre.

Tc ∼ 16× 106 K, synthesises helium via 12C(p,γ)13N(e+νe)13C(p,γ)14N(p,γ)15O(e+νe)15N(p,4He)12C

(Burbidge et al., 1957). This catalytic cycle is controlled by the slowest reaction 14N(p,γ)15O. The

CNO-cycle depends on the availability of metals. Therefore, it cannot be activated in stars with a

metallicity close to zero8, unless the catalysts are mixed into the burning shell during the later burning

phases - see Section I.4.

Contrary to low-mass stars, massive stars have a convective core and a radiative envelope, meaning

that the energy in the centre is mainly transported outwards via turbulent flows of matter - see Section

II.1 - whereas in the envelope the energy is transported to the surface by the diffusion of photons.

During core hydrogen burning the star is found on the main sequence in the Hertzsprung-Russell

diagram, indicated with red colour in Fig.(I.1a). This diagram shows the relation between the surface

temperature and the luminosity of the star. Stars with a larger initial mass have a higher luminos-

ity and surface temperature. During the main-sequence evolution, the star moves slowly upwards to

higher luminosities and lower surface temperature. The higher luminosity results from the fact that

hydrogen is turned into helium, which increases the mean molecular weight µ, and that the luminosity

scales with µ as L ∝ µ4 (e.g. Kippenhahn & Weigert, 1994). On the other hand, the surface temper-

ature decreases slightly because the higher luminosity pushes the star to a larger radius which makes

the surface cooler.

Table I.1 shows that hydrogen burning is the longest burning stage and lasts about 90% of the star’s

life. This is a consequence of the binding energy per atomic number which decreases for heavier nuclei.

Therefore, thermonuclear burning has to consume more nuclei in order to generate the same amount

of energy per atomic number as heavier elements are synthesised, leading to shorter burning lifetimes

8In primordial stars the initial contraction is only stopped during core helium burning by the 3α process (e.g. Ekström
et al., 2008), see Section I.2.1.2.
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for the later stellar phases. For example, the binding energy per atomic number during core helium

burning is roughly ten times lower than during core hydrogen burning. This leads to an approximately

ten times shorter burning lifetime. This example can be generalised, because the binding energy per

atomic number mostly decreases as the nuclei become heavier. Therefore, the burning lifetimes be-

come shorter as the evolution proceeds, see Table I.1.

After hydrogen is exhausted in the core, the energy generation by thermonuclear burning together

with the convective core ceases rather abruptly. The missing energy production in the centre leads

to a phase where the core gravitationally contracts on the Kelvin-Helmholtz timescale. As a result,

the increasing temperature leads to hydrogen burning ignition in a shell surrounding the core. This

newly established energy source opposes the further contraction of the hydrogen envelope but the core

continues to shrink. According to the Virial theorem9 for a mono-atomic gas, half of the liberated

gravitational energy turns into internal energy. Therefore, the core is heated up (see Fig.(I.1b)) while

losing gravitational energy, hence, stars have a negative specific heat. The other half of the energy is

radiated from the core into the envelope. On the other hand, the luminosity at the surface of the star

remains roughly constant on this short evolutionary timescale (see Fig.(I.1a)). Therefore, following

energy conservation, this leads to an expansion of the envelope. Ergo, during the short phase after

main-sequence evolution the star has a contracting core accompanied by a expanding envelope above

the hydrogen burning shell. The expansion of the envelope stops when it becomes convective, i.e. the

energy excess is transported more efficiently to the surface - see Section II.1. This is the so-called

“mirror-principle” (Kippenhahn & Weigert, 1994) and it can also be found in other evolutionary

phases. The consequence of this scenario is that the surface temperature first increases, due to the

whole contraction of the star, before it decreases to lower temperatures, a consequence of the quite

extreme expansion of the envelope. In Fig.(I.1a), this corresponds to a short leftwards hook before the

stellar track moves to the cooler part of the Hertzsprung-Russell diagram on the right side. During

this evolutionary sequence the star becomes a red supergiant. The timescale of this evolutionary phase

and how long the star stays on the hotter side of the Hertzsprung-Russell diagram as a blue supergiant

is very uncertain and depends on input physics such as convection, nuclear physics, opacity and so

forth (e.g. Langer & Maeder, 1995; Schootemeijer et al., 2019; Kaiser et al., 2020, and Chapter III).

2.1.2 Helium Burning

After hydrogen is depleted in the core, mainly 4He is left (roughly XHe ∼ 1 − Zini ∼ 98.6%). When

the core is heated up due to contraction to about 108 K (see Table I.1 and Fig.(I.1b)) helium burning

ignites. This burning process has to overcome the bottleneck around the atomic mass number 8.

9The Virial theorem relates the potential and the kinetic energy in equilibrium (see e.g. Collins, 1978). For a
gravitational bound system, such as a star, it gives the connection between its gravitational and internal energy.
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Fusing two 4He produces 8Be, which has a lifetime of ∼ 10−18 s (Magill et al., 2006) and therefore

immediately decays back to two 4He nuclei. However, this short lifetime is still sufficient to build up

a small concentration of 8Be, with a 8Be to 4He ratio of ∼ 10−9 (Salpeter, 1953). The high number

densities of helium then allow for another 4He nucleus to be captured, forming the 12C nucleus (Bur-

bidge et al., 1957). This reaction is called the 3α process.

Once there is enough 12C synthesised, another reaction activates, the 12C(α, γ)16O reaction where

the newly produced carbon captures another helium nucleus (Burbidge et al., 1957). The 3α process

and the 12C+α reaction compete for the remaining 4He. The first has a second-order dependence

on the density, whereas the latter has a first order dependence (see Eq.(B.9)). Therefore, with an

increasing abundance of carbon towards the end of the core helium burning stage, the α-capture on

carbon dominates. Furthermore, the density dependence favours the latter reaction at higher entropy,

i.e. in more massive stars.

Stars with an operating CNO-cycle during main sequence - see Section I.2.1.1 - will contain a non-

negligible amount of 14N in their cores10 left over from the CNO-cycle (Arnould & Mowlavi, 1993). At

the start of core helium burning, before the energy generation by the 3α process becomes noteworthy,

the 14N burns convectively via 14N(α, γ)18F(β+ν)18O(α, γ)22Ne (Cameron, 1960). The newly synthe-

sised 22Ne will capture another helium nucleus once the central temperature exceeds ∼ 2.5×108 K late

during core helium burning via 22Ne(α,n)25Mg11. This neutron source creates the condition for the

weak slow12 neutron capture process (weak s-process) where the neutron is captured by seed nuclei

synthesising isotopes up to A≈ 90 (Burbidge et al., 1957; Couch et al., 1974; Arnett & Thielemann,

1985; Prantzos et al., 1990; Raiteri et al., 1991a; Kaeppeler et al., 1994; The et al., 2007; Frischknecht

et al., 2016). Yet, only a part of the central 22Ne manages to capture a helium nucleus during core

helium burning. The leftover neon will capture an α during a subsequent carbon shell burning phase,

where the αs are provided from the α-emission channel of the 12C+12C reaction, 12C(12C,α)20Ne. This

creates the condition for the weak s-process at higher temperatures and slightly different conditions

(Couch et al., 1974; Prantzos et al., 1990; Raiteri et al., 1991b; Pignatari et al., 2010). This secondary

neutron-source reaction competes during the late core helium burning stage with the 12C(α, γ)16O

reaction for the remaining helium nuclei.

The outcome of core helium burning affects the further evolution of massive stars in several ways. The

size of the convective helium core defines the region in which the subsequent advanced evolutionary

stages will occur. Next, the ratio of 12C and 16O not only sets the amount of fuel for the subsequent

carbon and oxygen burning phases but it also influences the pre-supernova abundance (e.g. Thiele-

mann & Arnett, 1985; Weaver & Woosley, 1993). Furthermore, the amount of 12C available at the

10At solar metallicity about 1.4%, because most of the initial metal mass fraction are CNO elements, which are
converted into 14N by the CNO-cycle during the main-sequence evolution.

11Another 22Ne+α reaction that is active in parallel is 22Ne(α,γ)26Al, reducing the neutron production.
12Slow compared to the β-decay of nuclei near the line of stability.
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start of core carbon burning - see Section I.2.1.3.1 - determines whether carbon burns convectively or

radiatively. This has consequences for the convective history and the stellar structure at core-collapse

(see Section I.3 but also Ugliano et al., 2012; Sukhbold & Woosley, 2014; Ertl et al., 2016; Sukhbold

et al., 2018; Chieffi & Limongi, 2020). Moreover, the different activity of the 22Ne+α reaction during

core helium or carbon shell burning will affect the nucleosynthesis and final weak s-process yields,

because the burning conditions of the two sites differ and there are different isotopic abundances, e.g.

neutron poison, in the two stages (Prantzos et al., 1990; Raiteri et al., 1991a,b; Pignatari et al., 2010).

Unfortunately, the reaction rate of the 12C(α, γ)16O reaction is subject to large uncertainties (a factor

of a few, Caughlan & Fowler, 1988; Buchmann, 1996; deBoer et al., 2017; Rapagnani et al., 2017),

resulting in quite big uncertainties for the further evolution of massive stars (e.g. Rauscher et al.,

2002; West et al., 2013; Rauscher et al., 2016; Fields et al., 2018; Farmer et al., 2019).

The evolution of the star in the Hertzsprung-Russell diagram during core helium burning and the

location where helium is ignited in the core depends on the mass, the physics used and the imple-

mentation thereof (see Chapters III and IV and also Davies & Dessart, 2018; Schootemeijer et al.,

2019; Wagle et al., 2019; Kaiser et al., 2020). If the star at core helium ignition is still in the hot

part of the Hertzsprung-Russell diagram, it might spend part of the core helium burning lifetime as

a blue supergiant before it moves to the red supergiant branch. After the star reaches the cool part

of the Hertzsprung-Russell diagram, the track rises steeply regardless of whether helium is ignited

or not. Thereafter, it might start doing loops, whose orientation depends on the properties and the

treatment of the models (e.g. opacity, treatment of convection, energy generation and composition,

e.g. Kippenhahn & Weigert, 1994; Wagle et al., 2019). Stars with masses M & 40 M� either lose too

much mass to reach the red supergiant branch or only spend a short time there, losing a substantial

amount of their mass, before becoming a Wolf-Rayet star - see Section I.2.2. These stars are more

compact and therefore have higher surface temperatures, thus they are located in the left part of the

Hertzsprung-Russell diagram. At lower metallicities, the stars generally stay more compact due to the

lower opacity. Hence, they have slightly hotter surface temperatures and prefer the blue supergiant

evolution.

2.1.3 Advanced Burning Stages

The evolution after core helium depletion is often referred to as advanced stages of evolution. During

these advanced burning phases, the temperatures in the centre are hot enough for non-negligible

neutrino production - see Section B.1.2.2 - and the dominant energy transport changes from photon

to neutrino emission (e.g. Thielemann & Arnett, 1985; Woosley et al., 2002, - see also Section B.1.2.2).

Neutrinos have a very small cross-section. Therefore, they immediately escape at the densities existing

during the advanced burning stages. The more efficient energy transport leads to qualitatively different
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burning stages. For example, because energy is transported away faster, the star has to provide more

energy in order to stay in a hydrostatic equilibrium and burns faster through its fuel. Hence, the

stellar lifetimes speed up (see Table I.1). The envelope cannot respond to the fast changes in the

core. Consequently, the position of the star in the Hertzsprung-Russell diagram is nearly unchanged

during those burning stages (see Fig.(I.1a)). This also relates to the fact that the final outcome of the

advanced phases of stellar evolution is almost completely determined by the helium or the carbon-

oxygen core after the helium burning phase rather than the initial mass on the main sequence (e.g.

Thielemann et al., 2011).

During the advanced stellar evolution stages, the central temperatures and densities are much higher

than during core hydrogen or helium burning. Furthermore, there is an increasing amount of potential

seed nuclei and possible reactions that liberate neutrons, protons and α-particles. These conditions

allow for diverse capture-reactions. Indeed, the nucleosynthesis during the advanced burning stages

consists of a large variety of different nuclear reactions. It is during this later burning stages and

the final explosive event - see Section I.3 - where most of the heavy elements with A= 16 − 64 are

synthesised (Arnett & Thielemann, 1985; Thielemann & Arnett, 1985; Woosley et al., 2002; Langer,

2012; Pignatari et al., 2016; Ritter et al., 2018; Limongi & Chieffi, 2018).

After core helium burning, the further contraction increases the density to such levels that the free

electrons in the centre become limited in their movement. This is a quantum mechanical effect where

fermions, such as electrons, are limited to a finite volume at a high density. Therefore, electrons

cannot be indefinitely close to each other and the state population of electrons is determined by the

Pauli exclusion principle rather than the Boltzmann statistics, which is valid for low densities and high

temperatures (e.g. Greiner et al., 1993). The consequence is an additional pressure, the degeneracy

pressure, that counteracts the gravitational contraction. The maximum mass that can be supported

by electron pressure is the Chandrasekhar mass,

MCh(Ye, Se) = 1.44(2Ye)2

[
1 +

(
Se

πYe

)2
]
M�, (I.3)

where Se is the entropy in electrons per baryon and Ye the electron abundance. If the gravitational

mass exceeds this limit, the core of the star can contract further and heat up the centre enough to ignite

the following burning stages in non-degenerate conditions. This applies to stars with initial masses

of & 10 M�. This effect can be seen in Fig.(I.1b) where the wiggles towards the right side indicate

that the matter in the core becomes partly degenerate and a backwards loop and heating indicates

the lifting of the degeneracy. Stars below this mass limit end their life as white dwarfs. However,

stars with the mass of ∼ 9 M� have another way to overcome the degeneracy and evolve through

the advanced phases (Miyaji et al., 1980; Nomoto, 1984, 1987; Jones et al., 2013; Takahashi et al.,
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2013; Schwab et al., 2015). In a degenerate electron gas the Fermi energy increases the energy of the

degenerate electrons. If the Fermi energy is able to overcome the negative Q-value, electron captures

on nuclei and protons become probable which would normally be forbidden. In a degenerate Ne-O-

Mg core, for example, electron captures on 20Ne and 25Mg can become possible if the Fermi energy

overcomes the negative Q-value. The captured electrons do not contribute to the degeneracy pressure

anymore and the reduction of the supporting pressure leads to the collapse of the star, combining all

further burning stages via a nuclear statistical equilibrium on a short collapse timescale (Miyaji et al.,

1980; Nomoto, 1984, 1987). These stars are thought to leave an oxygen-neon-iron white dwarf behind

(Jones et al., 2016, 2019).

On the other hand, there is also an upper mass limit above which the advanced phases proceed in a

different manner. If a star is massive enough they enter the so-called pair-instability region, where high

central temperatures and low densities lead to the thermal concentration of free electron-positron pairs

(Rakavy & Shaviv, 1967). This results in a reduction of the thermal pressure and eventually to violent

pulsations that remove a large part of the star’s mass or, if the star is massive enough, entirely disrupt

the star (Fraley, 1968; Fryer et al., 2001; Kasen et al., 2011; Waldman, 2008; Kozyreva et al., 2017;

Gilmer et al., 2017; Woosley, 2017, 2019; Leung et al., 2019) - see Section I.3.2. At solar metallicity,

massive stars lose enough mass through stellar winds to avoid the pair-instability scenario. However,

at lower metallicity, where the winds are weaker - see Section I.2.2 - stars in the mass range of about

140− 260 M� encounter the pair-instability.

I.2.1.3.1 Carbon Burning If the carbon-oxygen core exceeds the Chandrasekhar limit, non-

degenerate carbon burning ignites. During this burning phase, carbon is mainly burnt via the heavy-

ion fusion reaction 12C(12C,γ)24Mg∗. The excited magnesium nuclei can decay through three channels,

giving 23Mg+n, 20Ne+α or 23Na+p (Arnett & Thielemann, 1985). Other interesting nuclei synthesised

during carbon burning via neutron-, proton-, and α-captures are 16O, 21,22Ne, 24,25,26Mg, 26,27Al and

some smaller amounts of 29,30Si and 31P (Arnett & Thielemann, 1985; Woosley et al., 2002).

In stars with M & 22 M� carbon burns radiatively (Hirschi et al., 2004), meaning the energy transport

is purely radiative, contrary to lower masses where the energy is transported by convection - see also

Section II.1. This change arises because of the smaller carbon abundance available at core helium

depletion with increasing stellar mass - see discussion in Section I.2.1.2. This change leads to a

different outcome of the burning stage and its nucleosynthesis, since there is no mixing occurring that

provides fresh fuel into the burning region. Furthermore, the structure of the star is shaped differently

in the presence of pure radiative transport compared to a convective and radiative transport (see e.g.

the discussions in Sukhbold & Woosley, 2014; Chieffi & Limongi, 2020). However, the mass limit

where the switch occurs is sensitive to the uncertainties of stellar evolution such as the rate of the
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12C(α, γ)16O reaction, which determines the abundance of carbon after core helium burning.

I.2.1.3.2 Neon & Oxygen Burning After carbon burning depletes, the central region consists

mainly of 16O, 20Ne and 24Mg. The “easiest” fusion reaction to take place next is the heavy-ion

fusion of oxygen. However, before the central region reaches the temperature required for oxygen

fusion, the photons from the high energy tail of the Planck distribution have enough energy to pho-

todisintegrate 20Ne. The 20Ne is destroyed rather than the “simpler” 16O nuclei, i.e. with the lower

Coulomb-barrier, because neon has a much lower binding energy than oxygen and the photons with

no electrical charge ignore the Coulomb-barrier. This photodisintegration period is called the neon

burning phase and is initiated by the endothermic absorption of a photon by a neon isotope which

then enters an exited state and nearly immediately decays by emitting an α-particle, 20Ne(γ, α)16O

(Cameron, 1959). The freed α-particles are recaptured by 16O(α, γ)20Ne, establishing an equilibrium

whereafter the α-particles start to be captured by 20Ne, synthesising 24Mg (Arnett, 1974). Some

secondary neon burning reactions can emit a neutron, however, the s-process production differs from

the previous helium and carbon burning because of the efficient photodisintegration reactions and

the different exposure timescales (Thielemann & Arnett, 1985). Other nucleosynthetically-interesting

neon burning products, produced via capture reactions, are 28,29,30Si, 26Al, 31P and some additional

numbers of 36S, 40K, 46Ca, 58Fe and 61,62,64Ni (e.g. Woosley et al., 2002).

After neon is depleted in the core, oxygen burning ignites at slightly higher temperatures (see Table

I.1). Oxygen burning proceeds via the heavy-ion fusion reaction 16O + 16O, synthesising 32S∗ (Arnett,

1972; Woosley et al., 1972). The excited sulfur decays through four possible channels, giving 28Si, 31S

or 30,31P (e.g. Woosley et al., 2002). Similar to the two previous advanced burning stages there are a

number of secondary reactions that occur during oxygen burning. The outcome of the secondary re-

actions follows a certain trend. In a high temperature, low density environment the Coulomb-barriers

are more easily overcome and heavier nuclei are synthesised. On the other hand, at slightly lower

temperatures and higher densities the electrons become more degenerate, enhancing electron capture

on nuclei, see discussion above. This results in a decrease of the electron abundance, Ye, and slightly

neutron-richer matter (Thielemann & Arnett, 1985). Depending on the conditions, the secondary

reactions produce nuclei such as 32,33,34S, 35,37Cl, 36,38Ar, 39,41K and 40,42Ca (Woosley et al., 2002).

The high temperatures achieved during the core oxygen burning phase favour the photodisintegration

of the heavy nuclei produced from the slow s-process during the earlier burning phases into iron-peak

nuclei (Thielemann & Arnett, 1985).

I.2.1.3.3 Silicon Burning Silicon burning proceeds similarly to neon burning via a photodisin-

tegration process rather than a heavy-ion fusion reaction because of the high Coulomb barrier. The
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high temperatures during this burning stage, see Table I.1, allow for the complete photodisintegration

of silicon via 28Si(γ, α)24Mg (γ, α)20Ne(γ, α)16O(γ, α)12C(γ, 2α)α. The freed α-particles and their as-

sociated nucleons are recaptured onto 28Si and other nuclei to produce heavy nuclei (Bodansky et al.,

1968; Weaver et al., 1978; Thielemann & Arnett, 1985). These heavy nuclei are also subject to further

photodisintegration. Therefore, several groups of nuclei are linked via forward and reverse reactions

with increasing temperature, creating a quasi-statistical equilibrium (Hix & Thielemann, 1996, 1999).

It is not a full equilibrium because two main quasi-statistical equilibrium clusters form around 28Si

(12 ≤ Z ≤ 20) and 56Ni (22 ≤ Z ≤ 28), separated by the proton magic number13 Z = 20 (Bodansky

et al., 1968; Weaver et al., 1978; Thielemann & Arnett, 1985). This bottleneck can be overcome by

two possibilities, (i) in higher temperature environments the gap is bridged on the proton-rich side

of the stability and (ii) at low temperature sufficient amounts of neutron-rich calcium nuclei were

already synthesised in prior burning stages (Thielemann & Arnett, 1985). Once the temperature ex-

ceeds T9 & 5 the bottleneck can be bridged and all the nuclei are in a nuclear-statistical equilibrium

via strong and electromagnetic interactions. With increasing temperature the mean atomic weight of

the statistical equilibrium is gradually shifted towards the most tightly bound iron-group nuclei.

During the late phase of core silicon burning an amount of partly-degenerate electron-captures occur.

As a result, the dominant product of silicon burning is not 56Ni, but 54Fe or even 56Fe (e.g. Weaver

et al., 1978). The other important burning products are 55−68Co, 56−69Ni, 53−62Fe, 53−63Mn, 64−74Cu,

49−54Sc, 50−58V, 52−59Cr, 49−54Ti, 74−80Ga, 77−80Ge, 83Se, 80−83As and 75Zn (Bodansky et al., 1968;

Thielemann & Arnett, 1985; Woosley et al., 2002).

2.2 Mass Loss

Stellar winds and their treatment is one of the largest uncertainties of stellar evolution. While this

subject would be enough to fill several other theses and is not the core of this work it nevertheless

should be shortly discussed here in the context of massive star evolution to understand its impact.

There are several reviews that discuss the physics of stellar winds of massive stars, see e.g. Kudritzki

& Puls (2000); Puls et al. (2008); Crowther (2007); Vink (2008); Vink et al. (2011); Massey (2013);

Smith (2014); Vink (2015).

Mass loss is an important ingredient in the evolution of massive stars. For example, a star with an

initial mass of 60 M� at solar metallicity loses more than half of its mass during the main-sequence

evolution, see also Table V.1, and it is left with only about ∼20 M� for the further stages. Compared

to low mass stars such as the Sun, the mass-loss rate, Ṁ , of OB stars during main-sequence evolution

is about 107 times larger. The evolution of massive stars with masses larger than ∼ 30 − 40 M� is

13A magic number is a number of nucleons so that they can fill a complete nuclear shell. Nuclei with magic numbers
are more stable than others.
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largely determined by the strength of their mass loss (e.g. Vink, 2008; Vink et al., 2011; Yusof et al.,

2013; Köhler et al., 2015). The amount of mass lost during the early stages of evolution is crucial

as it influences the later evolutionary stages. Strong stellar winds can remove the outer layers of

a star, making possible evolutionary stages such as the Wolf-Rayet14 and luminous blue variable15

phases. This change in the advanced evolution, i.e. whether the star is a blue or red supergiant or is

stripped from its envelope, will also influence the final fate of the star (e.g. Renzo et al., 2017) - see

also Section I.3. It determines the stellar mass before the collapse and is therefore relevant for the

possible fallback onto the proto-neutron star and it also affects the light curves and absorption lines,

hence, the supernova type (Filippenko, 1997; Turatto, 2003).

Despite the importance of mass loss, there is still a tremendous uncertainty in its derived rates for

massive stars, especially in post-main-sequence evolution. The uncertainty is the largest for the most

luminous stars with M &60 M� (Woosley et al., 2002; Vink, 2008; Langer, 2012) for different reasons.

Very massive stars are rare and therefore there are fewer empirical constraints and the physics of the

stellar winds becomes more challenging. The luminosity of these stars is close to the Eddington-limit

(Ulmer & Fitzpatrick, 1998), their winds become optically thick (de Koter et al., 1997; Vink et al.,

2011) and their atmospheres are often enriched in helium (Mokiem et al., 2006). Also, the gravity of

a very massive star does not follow a simple mass-luminosity relation (Gräfener et al., 2011).

The mass loss in massive stars is driven by the strong radiative output. The strong radiation pressure is

so powerful that it can drive strong stellar winds, the so-called line-driven wind (Lucy & Solomon, 1970;

Castor et al., 1975). Momentum is mainly transferred to matter via absorption of radiation by the

spectral lines. Key parameters in determining the mass-loss rates are the metallicity Z, the luminosity

L, the mass M and the surface temperature Teff . The general consensus is that the mass-loss rates

increase for more massive stars (Puls et al., 2008) and for more metal-rich stars (Mokiem et al., 2007).

Stellar winds in different stages scale differently on these parameters. The relative importance of

stellar winds to supernova explosions, regarding the chemical enrichment of the interstellar medium,

increases with metallicity. Thus, stellar winds become more important at higher metallicity (Vink

et al., 2001).

The radiation-driven winds from hot O- and B stars that still have their hydrogen envelope are

relatively well understood (Kudritzki & Puls, 2000; Vink et al., 2000, 2001; Puls et al., 2008). The

momentum transfer during the main sequence mainly occurs on metal lines, specifically on iron,

despite its rarity. The reason are the many line transitions of the complex atomic structure, which

14Wolf-Rayet stars are massive stars that have experienced strong winds, which removed a substantial part of their
envelopes. Thus, they have broad emission lines and an altered surface composition, reflecting the presence of ashes
from nuclear burning. Hydrogen is either deficient, as in WN stars, or completely absent, as in WC and WO stars. The
N, C and O subtypes of Wolf-Rayet stars indicate the presence of strong lines of nitrogen, carbon or oxygen in their
spectra (e.g. Crowther, 2007)

15Luminous blue variables are massive evolved stars that show temporal variations in their spectra and brightness
(Humphreys & Davidson, 1994; Vink, 2012; Weis & Bomans, 2020).
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make it an efficient absorber of radiation. The momentum is then transferred to the bulk plasma via

Coulomb collisions (Owocki & Puls, 2002). At lower metallicity other metals such as Cl, Ar, P, S or

CNO elements become relevant. Therefore, the host galaxy’s metallicity plays a crucial role for stellar

winds, since stars that are born with lower Fe content lose less matter during their evolution, despite

their larger content of CNO material (Vink, 2008). At present day, the fast and thin radiation-driven

winds from hot O- and B-stars are commonly treated with a theoretical prescription for different

masses M , luminosity L, surface temperature Teff and metallicity Z as (Vink, 2008, 2011):

Ṁ ∝ Z0.6L2.2M−1.3T 1.1
eff . (I.4)

Mokiem et al. (2006), for example, found an excellent agreement with the theoretical prescriptions by

Vink et al. (2000, 2001) for observed stars with log L/L� & 5.4.

The line-driven mass-loss rates are predicted to increase strongly when the surface temperature of a

massive star decreases to lower values and the star crosses the bi-stability jump (Vink et al., 2010;

Vink, 2018). The reason behind the jump in Ṁ is a change in the line-driving element Fe, where Fe

iv recombines to Fe iii, so that the Fe lines fall into the range where the flux distribution is maximal

and the absorption becomes more efficient. The bi-stability jump is relevant when a massive star

evolves to lower Teff around log Teff ≈ 4.34. Since stellar winds remove angular momentum from

rotating stars, see Section I.4, the bi-stability jump might explain the general slow surface rotation of

supergiants (Vink et al., 2010).

The post-main-sequence stellar winds depend on the phases the star evolves through. Massive stars

below about 30−40 M� at solar metallicity16 do not lose a lot of mass on the main sequence. However,

once these stars reach the red supergiant branch they experience relatively strong winds, where mass

loss can potentially remove the entire hydrogen-rich envelope. In red supergiants, mass loss is driven

by the absorption and diffusion of radiation by dust. The driving mechanism for red supergiant

winds is still very uncertain (e.g. discussions in Mauron & Josselin, 2011; Puls et al., 2015), meaning

that the mass-loss rates in this phase cannot be determined from first principles. Instead, stellar

evolution models apply empirical recipes, e.g. from de Jager et al. (1988); Nieuwenhuijzen & de

Jager (1990), which appear to be insensitive to metallicity. However, the red supergiant mass loss

is poorly understood theoretically and work determining a description for Ṁ during this phase is

still ongoing (e.g. Beasor et al., 2020). In cool red supergiants, the dust forms grains in the elevated

atmospheres because of the cooler temperatures. These so-called dust-enshrouded red supergiants

have strong mass-loss rates due to the high dust opacity (van Loon et al., 2005). The mass lost during

the red supergiant evolution is crucial in determining the further evolution and fate of these stars

(Georgy et al., 2013). On the other hand, the winds during the blue supergiant phase can generally

16At lower metallicity this range is higher.

16



I.3. FATE OF MASSIVE STARS

be described by the prescription of Vink et al. (2001). However, some blue supergiants are Cepheids,

which experience large amplitude pulsations, resulting in enhanced mass-loss rates (Neilson & Lester,

2008).

Massive stars above 30− 40 M� at solar metallicity experience strong winds already during the main-

sequence evolution which can strip the star of its envelope, exposing the star’s core. These Wolf-Rayet

stars (see e.g. Crowther, 2007, for a review on Wolf-Rayet stars) have high Ṁ because of their high

luminosity to mass ratio. The mass-loss rates commonly used in stellar evolution models are empirical

mass-loss recipes, e.g. from Nugis & Lamers (2000). According to Vink et al. (2011) the line-driven

winds become optically thick for Γ > 0.717 which favours larger Ṁ compared to optically thin winds.

While other authors find a transition at lower Γ (e.g. Bestenlehner et al., 2014), they agree that the

Eddington factor becomes the most relevant parameter in determining the mass-loss rates of Wolf-

Rayet stars (Gräfener et al., 2011; Vink et al., 2011; Bestenlehner et al., 2014; Bestenlehner, 2020).

3 Fate of Massive Stars

The evolution of massive stars can lead to nature’s biggest explosions, an event with unique physical

conditions, very high energy output and production site of many heavy elements. The explosion ejects

the elements synthesised during the star’s evolution into the interstellar medium (e.g. Thielemann

et al., 1996), which contributes to galactic chemical evolution. The explosive events may leave a

compact remnant such as a neutron star or a black hole or even more exotic objects such as magnetars

and pulsars (e.g. Woosley, 1993; Lyutikov & Blackman, 2001; Woosley & Bloom, 2006; Turolla et al.,

2015). If these compact objects are in a binary system they may merge and generate gravitational

waves (e.g. Abbott et al., 2016; Belczynski et al., 2020a).

There are different fates a massive star can meet, chiefly depending on its initial mass and metallicity.

The details of these events also depend on other physical processes, such as neutrino interactions, fluid

instabilities, rotation, magnetic fields, mass loss and so on. Their impact and importance is debated

and remains uncertain.

Fig.(I.2) depicts the fate of massive stars as a function of the initial mass and metallicity and Fig.(I.3)

illustrates the compact remnant, if any, that will be formed in the process. While the various scenarios

are explained in more detail in the following Subsections, Figs.(I.2) and (I.3) give a complete overview

of the fate of massive stars and how it depends on metallicity and mass. In Section I.2.2, the mass

and metallicity dependence of stellar winds is discussed. In summary stars experience stronger mass

loss with increasing mass and metallicity. This is also reflected in Figs.(I.2) and (I.3).

At zero to low metallicity the stellar winds are weak and massive stars lose nearly no mass during

17Γ is the Eddington factor which is the ratio of the gravitational to radiative forces.
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Figure I.2: The fate of single stars in relation to initial mass and metallicity. This figure presents
the supernova types of the stars, if any, indicated by a colour shading for the different explosion
types, explained in the text. The green line separates the stars that keep their hydrogen envelope
and those that lose it. The dashed blue line borders the regime of direct black hole formation. The
black dash-dotted lines distinguish the regions of stars that experience a supernova but form compact
objects differently, specified by the label. Green horizontal hatching and purple cross-hatching depicts
the regime where supernovae type II occur (for supernova classification, see e.g. Filippenko, 1997;
Turatto, 2003). The stars that lose their hydrogen envelope and experience an explosion will be of
type Ib or c, indicated by the dark green diagonal hatching. The brown diagonal hatching represents
the pulsational pair-instability regime, right next to the pair-instability supernova region indicated
by the red cross-hatching. Stars in regions with no colour shading experience either a direct collapse,
where no supernova occurs because no shock wave is launched, or form a white dwarf (on the left
side) where no supernova is launched. The figure is taken from Heger et al. (2003). More detailed
explanations of the various processes can be found in the text. The acronyms in the figure have the
following meaning; SN: supernova, puls. pair: pulsational pair-instability, pair SN: pair-instability
supernova, BH: black hole.

their evolution. For example the metal-free stars in Fig.(I.2) retain their hydrogen-rich envelope for

all masses; with the exception of stars entering the pulsational pair-instability regime - see Section

I.3.2. Therefore the core and total mass of the metal-free stars scale with their initial mass. The

mass-dependent fate of these stars can be summarised as follows (e.g. El Eid et al., 1983; Heger &

Woosley, 2002; Umeda & Nomoto, 2002; Heger et al., 2003; Chatzopoulos & Wheeler, 2012; Yusof

et al., 2013; Yoshida et al., 2016; Woosley, 2017, 2019; Farmer et al., 2019; Leung et al., 2019):

(i) 9 M� ≈M : Stars form degenerate oxygen-neon cores that collapse because of degenerate electron
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Figure I.3: The fate of single stars in relation to initial mass and metallicity. This figure shows the
remnant, if any, of the explosive event. The various lines have the same meaning as in Fig.(I.2).
The green cross-hatched region represents the stars that form a neutron star. The red cross-hatching
indicates the regime where a black hole is formed due to fallback of matter onto the neutron star,
whereas stars in the black zone will directly collapse into a black hole without launching a supernova
shock wave. The white areas indicate where stars either form a white dwarf (left) or are completely
disrupted by the pair-instability supernova (right). The figure is taken from Heger et al. (2003). More
detailed explanations of the various processes can be found in the text.

capture (Miyaji et al., 1980; Nomoto, 1984, 1987; Jones et al., 2013; Takahashi et al., 2013;

Schwab et al., 2015) - see also discussion in Section I.2.1.3. These stars leave a bound oxygen-

neon-iron white dwarf behind (Jones et al., 2016, 2019).

(ii) 10 M� .M . 40 M�: Stars in this mass range fom an iron core after core silicon depletion,

which collapses and and releases a large amount of gravitational potential energy for a supernova

explosion - see Section I.3.1 for more details. Stars in this mass range explode as a “classical”

supernova type II, because they keep their hydrogen envelope. The explosion in the lower mass

range, i.e. below ∼ 20 - 25 M�, will successfully push the entire envelope away and the core

forms a neutron star. On the other hand, for the higher masses the shock wave is not able to

push all the infalling material away and some will fall back onto the neutron star. This pushes

the configuration over the maximal stable neutron star mass and it collapses to a black hole

(Woosley & Weaver, 1995; Fryer & Kalogera, 2001; Tauris et al., 2011), see also discussion at
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the end of Section I.3.1.

(iii) 40 M� .M . 100 M�: Contrary to (ii) the infalling mass of the stars in this mass range is too

heavy to allow for a successful explosion. The result is a direct collapse to a black hole with no

mass ejected (Fryer, 1999).

(iv) 100 M� .M . 260 M�: The cores of these stars are massive enough for the star to enter the

pair-instability region where the star is subject to violent pulsations, see Section I.3.2. For the

lighter masses the pulsation are relatively weak and remove large parts of the envelope (Woosley

et al., 2007; Waldman, 2008; Leung et al., 2019). These stars will then collapse to black holes.

The pulsations in the higher mass stars are extreme enough to disrupt the entire star and no

remnant is left (Fraley, 1968; El Eid et al., 1983; Bond et al., 1984; Fryer et al., 2001; Waldman,

2008; Woosley, 2017, 2019).

(v) 260 M� .M : Above this limit the stars are thought to directly collapse to a massive black hole

without any explosion (Fryer et al., 2001; Heger & Woosley, 2002).

Increasing the metallicity enhances stellar winds, which in turn changes the final fate of a star. This is

a consequence of the stronger mass loss that peels away the envelope, resulting in a lower total mass

and smaller core masses. In the more extreme cases, the stellar wind is strong enough to remove the

whole hydrogen envelope, see green line in Figs.(I.2) and (I.3), and erode part of the core during the

Wolf-Rayet phase. The stellar winds depend on the mass and the metallicity of the star - see Section

I.2.2. Therefore, the fate of the stars with 10 M� . M . 20− 25 M� is not greatly affected by the

metallicity and they are thought to produce a supernova type II with a neutron star remnant at all

metallicities. However, at higher masses the effects of stellar winds become more prominent, which is

underlined by the discrepancy of the vertical boundaries in Figs.(I.2) and (I.3) for the higher masses.

At an intermediate metallicity, the stars do not form cores massive enough to enter the pair-instability

regime but their core and envelope are still sufficient for the star to directly collapse to a black hole

(Yusof et al., 2013; Leung et al., 2019). Langer et al. (2007) estimate that a metallicity smaller than

Z�/3 is needed to form cores massive enough to enter the pair-instability region. At high metallicity

stellar winds effectively remove the outer layers of stars with M & 30 M�, preventing the formation of

a carbon-oxygen core mass that enters the pair-instability regime, nor are these stars massive enough

for a direct collapse to a black hole. However, black hole formation via fallback is still possible. These

stars explode as supernove type Ib or c18 (Woosley et al., 1993; Eldridge & Tout, 2004; Georgy et al.,

2012), reflecting the missing hydrogen lines, and helium lines in the latter, in the spectrum of the

light curve, and form most probably a neutron star with a small range where black holes are formed,

18Contrary to the supernova types mentioned above, which are all related to the core-collapse of a massive star,
supernovae type Ia are thermonuclear explosions of accreting white dwarfs. It is historically in the same classification
as type Ib and c because all their spectra miss hydrogen lines (e.g. Filippenko, 1997; Turatto, 2003).
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i.e. the range where slightly more massive cores are formed - see Section I.3.1.

It has to be stressed that the picture of the fate, in particular the mass range and metallicity de-

pendence, presented above and in Figs.(I.2) and (I.3) is fraught with uncertainty and should only

be interpreted as indicating trends. For example internal mixing processes strongly affect the post-

main-sequence evolution (e.g. Langer & Maeder, 1995; Schootemeijer et al., 2019; Higgins & Vink,

2019; Kaiser et al., 2020). The different evolutionary paths lead to different structures of the stars,

final masses and surface abundances on which the final fate will depend (e.g. Georgy et al., 2012;

Yoon et al., 2012; Eldridge et al., 2013). Also, the different scenarios build upon the mass-loss rates

during the various evolutionary stages and the scaling of stellar winds with metallicity and mass which

themselves are quite uncertain and widely debated - see Section I.2.2. Additionally, stellar rotation

greatly affects the fate of massive stars by enhancing the mass loss and enlarging the core mass due

to rotation-induced mixing. This will be discussed in Section I.4.

Binarity influences the way a star evolves, mainly due to mass transfer- see discussion in Section I.5.

Therefore, duplicity reduces the amount of red supergiants and increases the predicted amount of

Wolf-Rayet stars and supernovae type Ib/c (Podsiadlowski et al., 1992; Eldridge et al., 2008), which is

more in agreement with observations. Moreover, it changes the pre-supernova structure (e.g. Schnei-

der et al., 2021; Laplace et al., 2021; Zapartas et al., 2021), hence, it will affect the explodability

of stars - see Section I.3.1. However, binarity alone cannot explain all the observations and further

physics is necessary to find a better agreement, such as stellar rotation - see Section I.4.

3.1 Core-Collapse Supernovae

3.1.1 Collapse, Bounce and Shock Formation

After core silicon burning, which is discussed in Section I.2.1.3.3, the star is made up of a core con-

sisting of iron-group elements. This so-called iron core is surrounded by an onion-layered structure

of active burning shells and the ashes thereof. Since the iron-group nuclei have the highest binding

energy (Fewell, 1995), exothermic fusion reactions are not possible anymore. Therefore the star loses

the dominant energy source that opposes gravity. As a consequence, if the core exceeds the Chan-

drasekhar mass, Eq. (I.3), it starts to contract and this will eventually turn into a collapse. However,

active burning shells in the core region after core silicon depletion support it against contraction and

the star will not immediately begin to collapse (Woosley et al., 2002).

During the core oxygen and silicon burning phases in massive stars, the electrons may become mod-

erately degenerate depending on the initial mass of the star. This leads to the electrons having an

increased Fermi energy, as discussed in Section I.2.1.3, allowing for otherwise prohibited electron cap-

tures on the ashes of the burning stages. This slowly turns the stellar matter more neutron-rich, i.e.
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the neutron excess η19 increases and the electron mass fraction, Ye, decreases (Arnett & Thielemann,

1985; Thielemann & Arnett, 1985). η and Ye not only reflect the subtle details of the abundance but

have important effects on the nucleosynthesis, the core size and the dynamic behaviour of the resulting

core-collapse. For example, the Chandrasekhar mass depends on Ye. Baade & Zwicky (1934) were the

first to suggest that a supernova is energised by the gravitational collapse of a star to a neutron star;

Fig.(I.4) presents the current understanding of the core collapse evolution. The collapse is triggered

by degenerate electron captures, reducing the now dominant degeneracy pressure that opposes the

gravitational contraction. The contraction raises the density and temperature, leading to a growth of

the electron capture rates, which depends strongly on the energy (∼ E5
e ). This results in a speed up of

the collapse (Langanke et al., 2003; Thielemann et al., 2011; Burrows & Vartanyan, 2020). Contrary,

in very massive stars, where the density is lower and the temperature higher, the pressure reduction

is dominated by endothermic photodisintegrations instead of electron captures (Weaver et al., 1978;

Thielemann et al., 2011). This early phase of the final stage of stellar evolution, where the core reaches

densities of ∼ 1010 g cm−3, is known as the pre-supernova stage. During this phase the neutrinos are

still able to freely escape. However, the weak interaction rates increase as the collapse proceeds and

the neutrino mean free path shortens, until they are eventually trapped. At this point, the weak

interactions of electron and neutrino captures come into an equilibrium. Hence, Ye and the critical

Chandrasekhar-limit stop shrinking.

During this dynamical phase the inner part of the core collapses homogeneously, with vcollapse ∼ r,

while the velocity at the edge of the core becomes supersonic. Therefore, matter in the core, which is

able to “communicate” at the speed of sound, cannot “communicate” with the free-falling envelope.

When the infalling core reaches nuclear densities of ρc ∼ 2 × 1014 g cm−3, repulsive nuclear forces

stop the collapse. The infalling matter bounces back and launches an outward moving pressure wave

through the core (Colgate et al., 1961; Bethe et al., 1979; Bethe, 1990), which turns into a shock wave

when it reaches the supersonic infalling edge of the core. However, this shock wave does not have

enough energy to launch the explosion (e.g. Myra & Bludman, 1989; Bethe, 1990) and is stalled, due

to dissociation of heavy nuclei at the shock front and neutrino losses from the post-shock region, after

it passed through about 0.25− 0.5M�. Meanwhile, in the centre a proto-neutron star is formed.

The collapse happens on a very short, dynamical timescale which is a few hundreds of milliseconds

from the onset of the collapse and it is reduced to a few milliseconds when the core bounces back at

nuclear densities (e.g. Liebendörfer et al., 2003). Summing up, some hundreds milliseconds after the

collapse was triggered, there is a hot and dense proto-neutron star, accreting matter, and a stalled

shock, which has to be revived in order to obtain a successful explosion. The accreted matter on

the surface of the proto-neutron star is cooled down by neutrino emission. For a long time it was

19The neutron excess is the sum over all species i, η =
∑
i(Ni − Zi)Yi with the number abundance Yi of the nuclear

species i, the number of neutrons Ni and the number of protons Zi (Arnett & Thielemann, 1985).
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thought that this emission is the energy that revives the stalled shock (Bethe, 1990) and blows off the

envelope. However, 1-dimensional simulations show that the energy deposition by neutrinos alone is

not sufficient (Liebendörfer et al., 2001) and another effect is needed, possibly in combination with

the neutrino energy deposition (Woosley & Janka, 2005; O’Connor & Ott, 2011). Possible effects that

might help revive the shock are (i) convection between the proto-neutron star and the accretion front

which increases the neutrino energy deposition, (ii) asymmetric instabilities of the accretion shock

that could push the shock to larger radii, (iii) regions of inverted gravitational and density gradients

subject to the Rayleigh-Taylor instability or (iv) asymmetric infall of shells (e.g. Falk & Arnett, 1973;

Burrows et al., 1995; Fryer & Heger, 2000; Blondin et al., 2003; Scheck et al., 2004; Janka et al., 2005;

Janka, 2012; Couch et al., 2015; Janka et al., 2016; Hix et al., 2016; Müller et al., 2017). Magnetic

fields and rotation might also play a crucial role in exploding massive stars (e.g. Fryer & Heger, 2000;

Piro & Ott, 2011; Janka et al., 2016; Summa et al., 2018). Indeed, multi-dimensional effects are crucial

for a successful explosion and the neutrino-driven mechanism, in combination with other instabilities

and asymmetries, is the most promising scenario20 (e.g. Janka et al., 2016; Hix et al., 2016; Müller,

2020; Burrows & Vartanyan, 2020). Also, asymmetries in the supernova progenitor can enhance

the neutrino-driven turbulent convection in the post-shock region, which aids the possible explosion

(Kazeroni & Abdikamalov, 2020). However, while there exists a growing set of 2- and 3-dimensional

core-collapse supernova explosion simulations, the full solution to the problem has not been solved yet

in a self-consistent way (e.g. Nakamura et al., 2015; Janka et al., 2016; Bruenn et al., 2016; Burrows

et al., 2018; Müller, 2020; Burrows & Vartanyan, 2020). For a recent review of the state-of-the-art

simulations of core-collapse supernovae and their understanding, see e.g. Müller (2020); Burrows &

Vartanyan (2020).

In the end, a process, or the combination of several processes, leads to the observed supernova ex-

plosion (e.g. Smartt et al., 2009). In this dynamical phase, a shock wave propagates outwards and

pushes the surrounding layers into the interstellar medium, where it contributes to the galactic chem-

ical evolution. The outward moving shock sets the condition for explosive burning, leading to the

production of heavy elements in particular neutron- and proton-rich isotopes - see Section I.3.1.4.

The composition of the ejecta is determined by the neutron excess η of the pre-explosive composition

since the timescale of the explosive event is too short to change η (Thielemann & Arnett, 1985). The

core-collapse event contributes to the galactic evolution via ejecta of nearly unburned matter from the

outer stellar zones and explosively processed matter from the inner ejected zones (e.g. Thielemann

et al., 1996). The outward moving shock, even if initially considered spherically symmetric, develops

non-spherical instabilities. Those instabilities affect the propagation of the shock and introduce mix-

ing. The non-spherical effects are important to understand observations, such as supernova 1987A,

20Multi-dimensional effects are not only crucial for the neutrino-driven explosions but also for alternative scenarios,
for example the magnetohydrodynamic mechanism (Akiyama et al., 2003; Winteler et al., 2012)
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Figure I.4: A schematic representation of the evolutionary phases of a core collapse supernova, starting
with the collapse of the core, through the bounce and formation of the shock up to the neutrino-driven
wind during the neutrino-cooling phase of the proto-neutron star. Each panel is separated in an upper
part, which shows the dynamics with the arrow indicating the velocity vectors, and a lower part,
presenting the nuclear composition and the nuclear and weak processes. The vertical axis gives the
corresponding radii whereas the horizontal axis shows the mass coordinates. The accronyms have the
following meanings: RFe - iron core radius, RS - shock radius, Rg - gain radiusa, Rns - neutron star
radius, Rν - neutrinosphere, νe,µ,τ - electron, muon and tau neutrinos. The figure is taken from Janka
et al. (2007).

a Only if the neutrino heating is sufficiently strong, an explosion can be triggered (see text below and Bethe & Wilson,
1985; Burrows & Goshy, 1993; Janka, 2001). Strong heating of the accreted matter reduces the infall speed and
prolongs the neutrino-heating time. On the other hand, strong cooling can accelerate the accretion flow through the
gain layer, which reduces the neutrino-heating time. The gain radius Rg is defined as the radial coordinate where the
neutrino heating and the neutrino cooling, both per nucleon, are equal.
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e.g. the light curve or the details of the spectrum (see discussions in e.g. Woosley et al., 2002; Smartt

et al., 2009; Smartt, 2009; Langer, 2012).

3.1.2 The Progenitor of Core-Collapse Supernovae

The diversity of the supernova light curves and spectra reflects the different envelope properties of the

progenitor stars, such as the envelope mass, the radius and chemical composition (Young, 2004). On

the other hand, the observed explosion energies, the amount of radioactive nickel and the geometry of

the ejecta are determined by the core properties of the progenitor, essentially by the core mass, density

structure, spin and magnetic field (e.g. Woosley et al., 2002; Kasen & Woosley, 2009). Therefore it

is essential to know, for example, whether the star evolves as a blue or red supergiant after the main

sequence as it will affect its supernova progenitor structure, in particular the compactness, core masses

and the total mass of the star. This in turn influences the explosion type and the compact remnant.

The long-standing disagreement whether a star will be a blue or red supergiant - see Chapters III

and IV but also for example the reviews Maeder & Meynet (2012); Langer (2012) - prevents a reliable

prediction concerning the nature of the supernova progenitor in different environments. Also, while

red supergiants in the Local Group are observed with masses up to 25 M� Smartt et al. (2009)

found a lack of supernova II-P21 above ∼ 17 M�. They call this the ”red supergiant problem” for

which they did not find a satisfactory explanation. Suggested explanations include the modification

of our understanding of stellar physics, such as mass-loss rates (Yoon & Cantiello, 2010; Georgy,

2012; Meynet et al., 2015) or the threshold mass for black-hole formation (Smartt et al., 2009), and

systematic effects that lead to underestimation of the supernova progenitor mass, such as errors in

the bolometric corrections (Davies et al., 2013) or the amount of circumstellar extinction (Walmswell

& Eldridge, 2012)22. None of these explanations can satisfactorily explain the discrepancy (see e.g.

discussion in Davies, 2017), however, some authors argue that the statistical significance of the ”red

supergiant problem” is within two standard deviations (Davies & Beasor, 2020a), thus, that there is

no ”problem”. This claim is in controversy (Kochanek, 2020; Davies & Beasor, 2020b). Nevertheless,

recent observations found a new type of pulsating yellow supergiant23 (Dorn-Wallenstein et al., 2020).

They identify these stars as post red supergiant stars, i.e. the star evolved back towards the hotter

part of the Hertzsprung-Russell diagram after losing a large part of their envelope during the red

supergiant phase. Furthermore, the authors estimate the lowest mass of the observed pulsating yellow

supergiants to be close to the highest mass of the red supergiant supernova progenitor. Therefore, the

missing red supergiant supernova progenitor could in fact be red supergiants that evolve to the yellow

21This is the most common core-collapse supernova and is thought to be produced by red supergiants.
22While binary evolution should also be considered as a solution to the ”red supergiant problem”, Zapartas et al.

(2021) discuss that binarity does not significantly affect the issue.
23A yellow supergiant is an evolved post-main-sequence star. They are more compact than red supergiants and have

a slightly hotter surface temperature, i.e. 3.9 & log Teff & 3.66 (Parsons, 1971).
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supergiant phase shortly before the supernova event. However, the detailed evolutionary scenario is

still unclear and further theoretical and observational work needs to be done. A possibility could

include pre-supernova outbursts shortly before the collapse (Fuller, 2017; Leung & Fuller, 2020) - see

also discussions in Chapters III and IV.

3.1.3 Explodability and Black Hole Formation

After a shock wave was successfully launched, a stable neutron star is formed. However, a stellar mass

black hole is the outcome of the core-collapse if (O’Connor & Ott, 2011)

(i) The shock energy is not enough to eject all of the accreted matter of the proto-neutron star.

In this case the matter will fall back onto the nascent neutron star which collapses further to a

black hole.

(ii) Nuclear phase transitions occur during the proto-neutron star cooling.

(iii) The explosion mechanism fails to revive the stalled shock. Then, accretion of material pushes

the proto-neutron star over its maximum mass of MNS,max ∼ 2.1 M�, whereby it collapses to a

black hole (e.g. Woosley & Weaver, 1995).

The black hole formation is not instantaneous in ordinary massive stars but is always preceded by

a proto-neutron star phase, with neutrino cooling and gravitational wave emission, until the proto-

neutron star is engulfed by the black hole horizon.

A major question is the mapping between the progenitor mass and the outcome of the core-collapse

supernova event, i.e. at which progenitor mass does the scenario of a successful explosion with a

neutron star turn into a black hole as the final fate. This is still debated and there might not even

exist such a clear limit, see below.

As discussed above, a core-collapse supernova is a multi-dimensional process and asymmetries are

crucial in launching the explosion. 1-dimensional models are unable to reproduce these characteristic

features, such as the coexistence of accretion flows and expanding plumes shortly after the onset of the

explosion (see e.g. discussion and references in Müller, 2020) However, recent 3-dimensional simula-

tions show a pronounced sphericity, hence the average condition resembles a shock expansion obtained

under the assumption of spherical symmetry. This supports pragmatic 1-dimensional parametrised

explosion studies, allowing the investigation of large sets of core-collapse supernova progenitors.

Many recent studies of 1-dimensional progenitors of core-collapse supernovae show a non-linear be-

haviour of the pre-supernova compactness and the explodability as a function of the initial mass of the

star (O’Connor & Ott, 2011; Ugliano et al., 2012; Sukhbold & Woosley, 2014; Sukhbold et al., 2016;

Müller et al., 2016; Ertl et al., 2016; Sukhbold et al., 2018; Ebinger et al., 2019; Chieffi & Limongi,

2020). The non-linearity is sensitively linked to the convective history during the advanced phases

of stellar evolution, for example the change from convective to radiative core carbon burning or the
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relative timing of the convective zones with respect to each other. While some authors find a nearly

chaotic behaviour (e.g. Sukhbold & Woosley, 2014; Sukhbold et al., 2016, 2018), others argue that

this chaotic behaviour is due to the improper treatment of the numerics (e.g. Chieffi & Limongi, 2020,

M. Limongi, private communication). In general, there is an increase of the explosion energy up to

about ∼ 18 − 20M� (e.g. Sukhbold et al., 2016; Ebinger et al., 2019) and beyond ∼ 20 M� there is

a transition to black hole formation. This picture seems to be in line with observations (e.g. Smartt,

2015). However, theoretical models predict “islands of explodability” above 20 M� where successful

explosions are obtained, while black hole formation can also be obtained for a few lower mass models

(Sukhbold & Woosley, 2014; Sukhbold et al., 2016; Müller et al., 2016; Ertl et al., 2016; Sukhbold

et al., 2018; Ebinger et al., 2019; Chieffi & Limongi, 2020). The observational constraints, on the

other hand, are quite consistent with black hole formation above ∼ 18 M� (e.g. Smartt, 2015). This

contradiction between observations and model prediction is still under debate. Above ∼ 35 M� the

models predict a general tendency of black hole formation. While the details of the models depend on

the physics such as metallicity, treatment of rotation, mass-loss rates, nuclear reaction rates, etc., the

general trend remains (e.g. Ebinger et al., 2017). How rotation and magnetic fields affect this picture

is still debated - see Section I.4 and Chapter IV.

3.1.4 Explosive Burning

Many of the hydrostatic thermonuclear burning processed described in Section I.2 also occur under

explosive conditions. The key difference to the hydrostatic burning is that the temperature reaches

much higher values as the post-bounce shock moves through the interior of the star and the burning

proceeds on a much shorter timescale. The timescales are much shorter than the β+/−-decay half-life

times, leading to a significant production of unstable neutron-rich isotopes, via the rapid neutron cap-

ture process (r-process), or proton-rich nuclei, via proton capture processes (e.g. νp-process), during

the explosive phase, see below. The fuel for the explosive nucleosynthesis consists of the ashes of the

prior hydrostatic burning phases discussed in Section I.2, mainly nuclei with N = Z like 12C, 16O,

20Ne, 25Mg or 28Si, resulting again in nuclei with N = Z. For example the products of explosive

oxygen and silicon burning are similar to the hydrostatic burning case with a slightly modified iso-

topic pattern (e.g. Woosley et al., 1973). Also, at higher densities, captures of degenerate electrons

are important, shifting Z → Z − 1, as discussed above.

Explosive silicon burning proceeds slightly differently from its hydrostatic version, discussed in Section

I.2.1.3.3, and it can be separated in three different regimes depending on the temperature and density

(Woosley et al., 1973; Hix & Thielemann, 1999); (i) at lower temperatures, roughly T < 5×109, cooling

of the burning region due to expansion halts the burning of silicon prematurely. This so-called incom-

plete silicon burning results in a larger concentration of intermediate mass elements than suggested
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by the nuclear statistical equilibrium. For higher temperatures, silicon is completely exhausted and a

full nuclear statistical equilibrium is reached. However, (ii) at lower densities, roughly ρ < 108 g cm−3,

the nuclear abundance consists of a large number of light nuclei, especially 4He. The inability of

the triple-α reaction to keep the light nuclei and the nuclei beyond A = 12 in a nuclear statistical

equilibrium, because of the quadratic dependence of the reaction rate, prevents the incorporation of

the lighter nuclei into heavier nuclei. This results in a large 4He abundance after freeze-out, hence,

an α-rich freeze-out. On the other hand, (iii) at higher densities a full nuclear statistical equilibrium

is reached, where the light nuclei form heavier nuclei as the temperature drops. This is referred to as

normal freeze-out.

After the freeze-out large ratios of neutrons to seed-nuclei can be obtained due to the electron cap-

tures p+ e− → n+ νe, which neutronise matter (Burbidge et al., 1957). Under these conditions it is

possible to experience r-process production, synthesising the heaviest neutron-rich nuclei (Woosley &

Hoffman, 1992). The difference to the s-process discussed in Section I.2.1.2 is that the neutron flux

is much higher and occurs in a hotter environment. This allows the production of nuclei far from

stability with extremely short β-decay half-lives. These nuclei then β-decay back into stable heavy

nuclei. While it is thought that the scenario of two merging neutron stars is the main site for the

r-process (Arcavi et al., 2017; Kasen et al., 2017; Smartt et al., 2017; Pian et al., 2017; Thielemann

et al., 2017b; Côté et al., 2018; Frebel & Beers, 2018) it cannot be the only source of the r-process

and other scenarios, possibly rare classes of supernovae, are responsible for a non-negligible amount of

r-process production, especially in the early Universe (Winteler et al., 2012; Thielemann et al., 2017a;

Côté et al., 2019). Historically, neutrino-driven winds in regular core-collapse supernovae have been

discussed as possible sites for the r-process (Woosley et al., 1994; Takahashi et al., 1994; Farouqi et al.,

2010). However, this site is contradicted by observational constraints and simulations show at most

a weak r-process (Mart́ınez-Pinedo et al., 2012; Roberts et al., 2012), which is responsible for only

lighter nuclei with A < 130 (Wanajo & Ishimaru, 2005; Shibagaki et al., 2016).

During the explosive supernova event, a range of proton-rich nuclei are synthesised. Contrary to the

r-process, proton captures are limited due to the increasing Coulomb-barrier of the heavier elements.

Therefore, only light elements can be synthesised via direct proton captures (e.g. Rauscher, 2010).

The heavier proton-rich isotopes are produced by a combination of several processes. One is the

γ-process, also known as p-process, where energetic photons photodisintegrate neutron-rich elements,

synthesising proton-rich isotopes (Rauscher et al., 2002; Arnould & Goriely, 2003; Rauscher, 2010).

This process is possible in layers where the supernova shock wave moves through, but also in hydro-

static burning phases such as the oxygen-neon layers in massive stars (e.g. Rauscher et al., 2002).

The different sites will obviously influence the resulting proton-rich abundances, i.e. the different

temperature and timescale or the available seed nuclei. The latter implies that this production is
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secondary because it relies on the production of seed nuclei from another process. On the other hand,

in the innermost ejected layers of core-collapse supernovae very proton-rich conditions are found due

to the interaction of the neutrino winds with matter. Therefore, as matter freezes out from nuclear

statistical equilibrium, sequences of rapid proton-captures and β-decays along the proton drip line

produce proton-rich nuclei. The proton-captures are hindered by (γ,p)-reactions but can be bypassed

by (n,p) reactions, where a constant neutron flux is provided by νe + p → e+ + n. This process is

termed the νp-process (Fröhlich et al., 2006) and produces light proton-rich isotopes.

3.2 Pair Instability

In helium cores with masses larger than ∼ 40 M� the high central temperatures and low central

densities lead to the thermal concentration of free electron-positron pairs in the core before oxygen

ignition (Rakavy & Shaviv, 1967). This effect is the so-called pair-instability and it reduces the

thermal energy which normally would contribute to pressure. Therefore, the pressure in the core does

not increase fast enough to counter its contraction. The strength of the instability determines the

contraction speed of the core to higher temperatures, during which the core amasses a considerable

amount of momentum. The rising temperature during the fast contraction causes oxygen and in some

cases silicon to rapidly burn in an explosive manner - see Section I.3.1.4. The further outcome of this

instability depends on the mass of the contracting core, the energy generated by the burning and when

it ignites. In particular the extra energy from burning and the partial recovery from the instability

when the photons become relativistic might slow down the collapse. If the burning is able to be active

long enough before the collapse is stopped, it has generated enough energy to reverse the collapse into

an explosion. On the other hand, if the helium core mass is large enough, i.e. above ∼ 133 M�, the

contraction cannot be halted and the core continues collapsing to a black hole (Fryer et al., 2001).

Therefore, the pair-instability region is limited to the mass range of MHe ∼ 40− 133 M�.

In case an explosion occurs, it can be of two varieties. If the thermodynamic burning is able to deposit

enough energy then the reversed shock wave can unbind the whole star in a single pulse, resulting in a

powerful pair-instability supernova exceeding 1053 ergs (Fraley, 1968; El Eid et al., 1983; Bond et al.,

1984; Fryer et al., 2001; Waldman, 2008). If the energy deposition is not enough to entirely disrupt

the star, it will nonetheless expand violently, throwing off a large part of its outer layers (Barkat et al.,

1967; Woosley et al., 2007; Kozyreva et al., 2017; Gilmer et al., 2017; Leung et al., 2019). The amount

of ejected mass by these thermonuclear outbursts can vary, from a very mild ejection, where nearly

no matter is lost, up to extremely large ones with over 1051 ergs in one pulse. After the pulse the

star will slowly contract until the pair-instability is encountered again and the process repeats itself.

The star continues pulsating until enough mass has been ejected and entropy in form of neutrinos

has been lost so that the pair-instability is avoided. This typically needs a reduction of the helium
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core mass to about 40 M� or below. In general, the lower mass range experiences more but weaker

pulsations but more in numbers, whereas the heavier stars go through fewer but stronger pulsations

(e.g. Woosley, 2017, 2019; Leung et al., 2019). The remaining, compact star then evolves smoothly

until it has formed an iron-core after silicon burning, which gravitationally collapses to a black hole

(Woosley et al., 2007; Waldman, 2008; Powell et al., 2021); partial mass ejection is possible but this

is still an open question. This is often called pulsational pair-instability supernova.

Generally, helium core masses between 40 M� and 133 M� encounter the pair-instability followed by

mass ejection (Bond et al., 1984; Heger & Woosley, 2002; Chatzopoulos & Wheeler, 2012; Woosley,

2017, 2019; Leung et al., 2019). From this mass range, helium cores with 64 M�. M .133 M� will

produce a pair-instability supernova. Helium cores in the mass range 40−64 M� experience violent

pulsations but they are not strong enough to entirely disrupt the star, hence they produce a pulsational

pair-instability supernova. These mass-limits are sensitive to the input physics (Farmer et al., 2019;

Renzo et al., 2020; Umeda et al., 2020).

The pair-instability supernova entirely disrupts the star and does not leave any compact remnant.

Therefore, there will be a gap in the distribution of black hole masses, the pair-instability mass-gap,

and no black hole with a mass between ∼ 50 M� and ∼ 150 M� is expected from a theoretical point

of view. However, a recent discovery of a binary black hole merger with two black hole components

of 85 M� and 66 M� challenges this view (Abbott et al., 2020a,b).

In the previous paragraph, the pair-instability region is only given in terms of the helium core mass

because of two reasons. First, while it would be possible to map the helium core mass to the initial

mass of a star, this correlation depends on the metallicity. Furthermore, it would be very uncertain

due to the missing details, such as the internal mixing processes and mass loss. Second, many recent

studies of the (pulsational) pair-instability supernova limit themselves to pure helium stars (e.g. Heger

& Woosley, 2002; Woosley, 2017, 2019; Farmer et al., 2019; Renzo et al., 2020, to name a few). This

avoids the calculation of the numerically unstable envelope of the very massive stars and reflects the

possible binary interaction where it is thought that the hydrogen envelope is removed by the more

compact partner. While the hydrogen envelope might not affect the pair-instability region, the final

black hole mass of the stars might be affected and massive single stars could produce black holes that

lie in the pair-instability mass-gap (see e.g. Belczynski et al., 2020b; Farrell et al., 2020).

At solar metallicity, strong stellar winds remove the entire hydrogen envelope and part of the core

mass of very massive stars (e.g. Yusof et al., 2013; Leung et al., 2019). These stars therefore avoid

the pair instability. Only stars with a metallicity below ∼ Z�/3 retain enough mass to enter the

pair-instability regime (Langer et al., 2007).
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4 Rotation in Massive Stars

Stars rotate. This is a long-known fact and it was first observed by spectroscopy. The wider lines in

spectroscopic observations due to the Doppler effect allow us to measure the surface rotation rates.

Massive stars rotate with typical rotation rates between 0 − 250 km s−1 on the main sequence with

an average rotation rate at the equator of 200 km s−1 (e.g. Huang & Gies, 2006a; Hunter et al., 2008;

Dufton et al., 2013). Such observations also show that the post-main-sequence surface rotation rate

is relatively small with 0− 100 km s−1 (e.g. Huang & Gies, 2006b; Dufton et al., 2006; McEvoy et al.,

2015).

Asteroseismology (e.g. Beck et al., 2011), the study of stellar oscillations, allows observers to gain

information about the internal structure of stars. Therefore, asteroseismic observations can determine

the internal rotation rate of stars (e.g. Beck et al., 2014; Deheuvels et al., 2014; Aerts et al., 2017).

These measurements show that main-sequence stars rotate nearly uniformly, but during the post main

sequence the core spins up and the envelope slows down, resulting in differential rotation.

In addition to the direct observations of rotation mentioned above, there are also more indirect hints

of rotation-induced effects. For example, nitrogen and helium enhancements at the surface of massive

main-sequence stars (e.g. Gies & Lambert, 1992), however, this could also be a result of binary

interaction. Other examples are the number ratios of Wolf-Rayet to O-stars, of blue to red supergiants

and of supernovae Ib to Ic, which are better reproduced by rotating models (Maeder & Meynet, 2001;

Meynet & Maeder, 2003, 2005). Also, the dependency of long gamma-ray bursts on metallicity shows

a better agreement with rotation (Yoon et al., 2006) and the nucleosynthetic signature of very metal-

poor stars is better explained with fast rotating massive stars than non-rotating stars (Chiappini et al.,

2011).

Rotation changes the way of stellar evolution and therefore, rotational effects need to be included in

stellar evolution theory.

4.1 Effects of Rotation on Structure

Including rotation in stellar evolution simulations changes the structure of stars and how they evolve.

The general effects of rotation can roughly be summarised as follows (see e.g. the review of Maeder,

2009):

(i) Rotation changes the equilibrium configuration of stars. The gravitational force, which points

directly towards the centre in non-rotating stars, is modified by the centrifugal force. Conse-

quently the hydrostatic equilibrium changes to ∇P = ρgeff , with the effective gravity geff which

results from the gravitational and centrifugal acceleration. For solid body rotation or a rota-
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(a) Equipotential with varying ω (b) The meridional circulation

Figure I.5: (a) The shape of the surface equipotential for different rotation rates ω = Ω
Ωcrit

, labelled
at the bottom of each curve. The radii on both axes are given as a fraction of the polar radius, where
the polar radius is plotted on the y-axis and the equatorial axis on the x-axis. The figure is taken
from Georgy et al. (2011).
(b) A representation of the streamlines of the meridional circulation in a 20 M� star at solar metallicity
and vini = 300 km s−1 at the start of hydrogen burning as a function of Mr. The inner sphere is the
boundary of the convective core and the outer boundary is the surface of the star. On the outer
streamlines in the upper right corner matter turns counter clockwise whereas on the inner it turns
clockwise. The figure is taken from Meynet & Maeder (2002).

tion rate constant on cylindrical surfaces, the modified hydrostatic equation implies that the

pressure is constant on an equipotential, i.e. a surface with the same potential. Therefore, the

equipotentials and isobars match, which is said to be barotropic. Also, for these two rotation

laws, the temperature and density are constant on isobars. The stellar surface, for example, is

an equipotential. Contrary, for shellular rotation, where the rotation rate is constant on isobaric

shells, the surfaces of constant pressure intersect the equipotentials but do not coincide, i.e. the

star is baroclinic. In this case, the temperature and pressure are not constant on isobars.

Another result of the additional centrifugal acceleration is that the effective gravity changes with

latitude; it is highest at the poles and decreases towards the equator. Consequently, a rotating

star is more extended at the equator than at the pole due to the reduced gravity (see Fig.(I.5a)).

The deformation is more extreme for a faster rotation rate. What is more, the centrifugal force

lets stars behave as if they have a reduced effective mass (Endal & Sofia, 1976; Meynet & Maeder,

1997). The rotation rate at which the centrifugal force becomes equal to the gravitational at-

traction at the equator is the star’s critical rotation velocity. Above this break-up velocity, there

is no stable configuration for the star.

Rotation also affects the thermal equilibrium in stars. Similar to the surface equipotential, the

equipotentials in the interior are distorted; they are closer to each other at the polar than at the
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equatorial region. Since the radiative flux at some latitude is proportional to the local gradient

between the equipotentials, there is an excess of flux in the polar region and a deficiency in the

equatorial region24. This thermal imbalance creates large circulation motions in the meridian

planes, which transport chemical elements and angular momentum (see Fig.(I.5b) and Section

II.2.2)). Moreover, the von Zeipel theorem (von Zeipel, 1924a) relates the radiative flux on the

surface of a rotating star to the local effective gravity. This leads to the surface temperature Teff

being proportional to geff , thus, the star is hotter at the polar region and cooler at the equator

(von Zeipel, 1924b). This effect is called gravity-darkening.

(ii) Rotation affects the stellar winds discussed in Section I.2.2 in two ways (Maeder & Meynet,

2000b); first it increases the average mass-loss rate for a given luminosity and surface temperature

(see Fig.(I.7)). Second, the hotter polar regions have a higher radiation pressure, making the

stellar winds anisotropic (Georgy, 2010). In stars that evolve near the Eddington-limit the

radiation pressure reduces the threshold of the critical break-up rotation velocity discussed in

point i. Therefore, even a modest rotation rate could potentially significantly increase the mass-

loss rates (Maeder & Meynet, 2000b; Gagnier et al., 2019). However, the dependence of the mass-

loss rates on the changes of the equilibrium configuration of rotating stars and vice versa, how

rotation depends on the mass-loss rates, i.e. by removing angular momentum, is not completely

understood yet (Vink et al., 2010; Müller & Vink, 2014).

(iii) Rotation drives global internal circulation currents due to the thermal imbalance explained in

point i - see also Section II.2.2. In addition to that, the rotation rate throughout the star is often

not constant with layers rotating at different speeds. This differential rotation leads to several

kinds of instabilities which result in turbulent motions. One dominant process, for example, is

the shear turbulence, where a shear between two layers with different rotation speeds induces

mixing. All these processes mix the chemical elements and transport angular momentum - see

Chapter II.2.

(iv) Rotation interacts with magnetic fields. This may couple layers that rotate at different rates,

leading to solid body rotation. External magnetic fields might also interact with the surrounding

stellar medium and brake down rotating stars. Section II.3 discusses magnetic fields in rotating

stars, possible dynamos and their impact.

4.2 The Evolution of Rotating Stars

How does the picture of stellar evolution discussed in Section I.2 change in the presence of rotation?

Rotation mainly influences the evolution of a star during core hydrogen burning, and maybe core

helium burning, because this is the longest burning stage. The impact of rotation during the more

24Assuming there is no local energy source or sink.
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advanced stellar stages is minor because the timescales of the rotational effects are much longer than

the evolutionary timescales. The evolutionary path of massive rotating stars can be divided into two

groups (Hirschi et al., 2004); in stars with M . 30 M� at solar metallicity rotation-induced mixing

dominates and in stars with M & 30 M� the rotation-enhanced mass loss dominates. The effects of

rotation-induced mixing become more important in the more massive stars at lower metallicity, where

the mass loss is weaker and less angular momentum is lost through stellar winds (Hirschi, 2007).

4.2.1 Evolution of Rotation

The distribution of angular momentum in a star at different phases is crucial to simulate the evolution

of a rotating star. It is important to treat the evolution of angular momentum self-consistently

because the rotation rate determines the behaviour of rotation-induced instabilities, which themselves

transport angular momentum, as mentioned above and discussed in more detail in Chapter II. While

turbulent convection is the most efficient angular momentum transport mechanism, it has been shown

that in the radiative layers of rotating massive stars angular momentum is dominantly transported

by the meridional currents and the rotational shear instability (Meynet & Maeder, 2000; Heger et al.,

2000). This changes the rotation rate in different layers and rotation modifies itself.

The knowledge of the interior distribution of rotational velocity is important to estimate the total

angular momentum content of the star on the zero-age main sequence. Nowadays, it is often assumed

that a star is formed with solid body rotation. This is a very simplifying assumption but the exact

shape of the profile is not very important. Indeed, the initial angular momentum distribution inside

the star converges rapidly towards an equilibrium profile due to two opposing effects; the meridional

currents tend to increase the gradient in the rotation rate whereas the rotational shear tends to

decrease this gradient (Denissenkov et al., 1999; Meynet & Maeder, 2000; Maeder, 2009).

With the knowledge of the initial rotation rate on the zero-age main sequence, stellar models can

be used to predict the evolution of the rotation rate. Fig.(I.6a) depicts the evolution of the surface

rotation velocity of various models. The evolution from the start on the left until there is a sharp

peak in the surface rotation rate is the main-sequence evolution. The evolution of the surface rotation

rate during the main-sequence is an interplay between the meridional flows, which transport angular

momentum to the surface, and stellar winds, removing angular momentum. This interplay becomes

more obvious when comparing the models with “standard” mass loss, indicated by the solid lines,

to the model without mass loss, Ṁ = 0 in Fig.(I.6a). In the latter, the surface velocity increases

until it reaches the critical break-up velocity near the end of the main-sequence phase (Meynet &

Maeder, 2000). A consequence of the interaction of meridional flows and mass loss is that in models

at solar metallicity with “standard” mass loss the surface velocity decreases as a function of time. This

reduction is stronger for larger initial masses because of the stronger stellar winds that remove angular
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(a) Evolution of the surface rotation velocity (b) Rotation profile at different stellar stages

Figure I.6: (a) Evolution of the surface equatorial velocity as a function of time for stars of different
initial masses and an initial velocity of vini = 300 km s−1. The continuous lines refer to solar metallicity
models, the dotted line corresponds to a 20 M� model with Z = 0.004 and the dashed pink line
corresponds to a 20 M� model without mass loss. The figure was taken from Meynet & Maeder
(2000). (b) The angular velocity as a function of the Lagrangian mass coordinate mr inside a 25 M�
model with an initial velocity vini = 300 km s−1 at various evolutionary stages. Figure was taken from
Hirschi et al. (2004).

momentum from the surface. By comparing the 20 M� model at solar metallicity and Z = 0.004, the

dotted line in Fig.(I.6a), it becomes also apparent that there is less reduction of the surface rotation

velocity at lower metallicity due to the weaker winds. Therefore, models at lower metallicity or lower

initial mass can reach the critical break-up velocity more easily during the main-sequence evolution.

Such a scenario would impact the evolutionary and structural properties of the star.

The peak in the surface rotation velocity at the end of the main sequence in Fig.(I.6a) is a consequence

of an overall contraction after core hydrogen depletion. The immediate reduction of vsurf thereafter

results from the expansion of the star during the redwards evolution, because angular momentum is

conserved. Accordingly, the surface rotation velocity in all the stellar models becomes small, whatever

the initial rotation was (Meynet & Maeder, 2000).

The evolution of the interior rotation profile is shown in Fig.(I.6b) in the form of the angular velocity,

Ω, in a 25 M� model for different stages. The change of Ω results from many different processes;

(i) shear erodes Ω-gradients while meridional circulation flows erode or build them. (ii) Convection

enforces solid body rotation, resulting in a constant Ω. (iii) Contraction and expansion, respectively

increases or decreases Ω due to local angular momentum conservation and (iv) mass loss removes

angular momentum from the surface, reducing Ω. The combination of these processes lead to an

overall decrease of Ω during the main-sequence evolution (Meynet & Maeder, 2000; Hirschi et al.,
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Figure I.7: Kippenhahn diagrams with the Lagrangian mass coordinate on the y-axis, showing the
structural evolution as a function of the time left until core-collapse. The central burning phases are
indicated below the x-axis. The black shading depicts convective zones and the top black line shows
the surface of the star. The left figure shows a non-rotating 20 M� model, whereas on the right a
rotating 20 M� model is presented. The key parameters are given on top of the plots. The figure was
taken from Hirschi et al. (2004).

2004). However, the post-main-sequence evolutionary timescale is shorter than the timescale of the

secular rotation-induced angular momentum transport processes and therefore the evolution seen in

Fig.(I.6b) is mainly determined by (ii), (iii) and (iv) (Meynet & Maeder, 2000).

The stellar models in Fig.(I.6) do not include magnetic fields. If magnetic fields are accounted for, the

evolution of rotation is different. A 15 M� model with vini = 300 km s−1, for example, would evolve

nearly as a solid body during the main sequence, meaning Ω would be nearly constant. During the

post-main-sequence evolution differential rotation develops, as a result of the spinning up of the core

and slowing down of the envelope, when the star evolves towards the red supergiant branch. However,

when magnetic fields are included the ratio of core to envelope rotation rate is much smaller than

shown in Fig.(I.6b) - see discussions in Section II.3 and Chapter IV.

4.2.2 Effects of Rotation on the Evolution of Massive Stars

Rotation-induced mixing provides the burning zone with more fuel, prolonging the burning lifetime

(Meynet & Maeder, 2000; Heger et al., 2000). The higher amount of fuel also enhances the energy

production by thermonuclear burning, leading to a higher local luminosity. Consequently, the star has

larger convective cores as shown in Fig.(I.7), where the rotating model shows larger convective cores

than the non-rotating model. Accordingly, the nuclear burning shells are further out and they are also

more separated from each other as can be seen in Fig.(I.7) during the advanced stellar stages. This

becomes more extreme with increasing rotation rate. Also, the two diagrams depict that the rotating
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star loses more mass. This is a result of two effects. First, rotation enhances mass loss as discussed in

Section I.4.1. Second, the rotating model has a hydrogen burning shell that is further out. Therefore

it becomes a red supergiant slightly earlier than the non-rotating model, see discussion below, and

experiences the stronger red supergiant stellar winds for a longer time.

In non-rotating stars, the luminosity increases during the main-sequence evolution as a result of the

growing mean molecular weight in the core - see Section I.2.1.1. As a consequence, the pressure on the

core is reduced. At the same time, the conversion of hydrogen into helium decreases the opacity. The

latter two dominate over the increase of the core luminosity in a massive star, leading to a receding

convective core during the main-sequence evolution. Furthermore, the higher luminosity enlarges the

radius of the star which results in a cooler surface temperature. Rotation-induced mixing adds two

modifications. First, it enables more fuel to be transported into the burning region. Therefore, a more

massive helium core is formed and the star has a higher luminosity. Second, if rotational mixing is

efficient, it mixes helium in the radiative zone and thus reduces the opacity throughout the interior

of the star. The two modifications result in a slower receding convective hydrogen core, for fast rota-

tion the convective core can even grow initially. A higher luminosity also implies larger radii, thus,

rotating stars evolve to lower surface temperatures during the main sequence. However, fast rotating

stars stay more compact during the main sequence, because rotational mixing reduces the opacity in

the envelope, and it evolves to slightly higher surface temperatures.

Rotation also influences the post-main-sequence evolution, whether the star will follow the usual red-

wards post-main-sequence evolution in the Hertzsprung-Russell diagram (see Fig.(I.1a)) or it evolves

towards the hotter side in a more homogeneous evolution, becoming a blue supergiant and likely pro-

ducing a Wolf-Rayet star, see also the discussion further down. Noticeably, for a low or intermediate

rotation rate the red-wards evolution is favoured. This is a consequence of the effects of internal

mixing and of the enhanced mass loss - see Section I.4.1. The first point reduces the extension of

the convective zone associated with the post-main-sequence hydrogen burning shell, which the star

needs to stay in the blue part of the Hertzsprung-Russell diagram, and produces a larger helium core

at core hydrogen depletion. Therefore, the contracting core after the terminal-age main sequence

will be larger and have less support against gravitational contraction, leading to a faster red-wards

evolution25. As a matter of fact, the ratio of blue to red supergiants in rotational models is smaller

for higher rotational velocity, which is more in agreement with the observations (Heger et al., 2000;

Meynet & Maeder, 2000). Furthermore, rotating models give a decreasing blue to red supergiant ratio

with decreasing metallicity, implying a larger number of red supergiants at low Z (Maeder & Meynet,

2001). Finally, rotation lowers the threshold of Wolf-Rayet star formation, at solar metallicity for

example from ∼ 37 M� to ∼ 22 M� (Meynet & Maeder, 2003, 2005; Georgy et al., 2013).

25This is a similar effect as for larger amounts of convective boundary mixing discussed in Chapter III, where a
redwards evolution is favoured for larger amounts of convective boundary mixing.
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Rotation also affects the nucleosynthesis and yields of stars. For example the larger convective cores

and the rotation-induced mixing increase the availability of fuel, leading to a larger production of

carbon and oxygen, and other α-nuclei, during core helium burning. Furthermore, the 12C(α, γ)16O

reaction is more active at the end of core helium burning, creating a lower carbon to oxygen mass

fraction (Maeder & Meynet, 2000b; Heger & Langer, 2000). This effect can be seen in Fig.(I.7); in the

non-rotating model core carbon burning occurs convectively whereas in the rotating models it pro-

ceeds radiatively, which is a result of the lower amount of carbon left at the end of core helium burning

(Hirschi et al., 2004). Rotation-induced mixing between different burning sites can open new channels

of nucleosynthesis. The interaction between hydrogen and helium burning regions, for example, leads

to enhanced formation of 14C, 18O and 19F (Maeder & Meynet, 2000a; Heger & Langer, 2000). Also,

the interaction between the hydrogen and helium burning regions can mix freshly synthesised carbon

and oxygen into the hydrogen shell. Consequently, the burning shell is strongly boosted, especially at

lower metallicity, because the CNO-cycle strongly depends on the availability of the catalysts. This

further creates a convective shell with a primary 14N production. While low-metallicity intermedi-

ate mass stars are the main producers of primary 14N, rotating massive stars also contribute to the

generation of this isotope (Meynet & Maeder, 2002).The interaction between the convective hydrogen

shell and helium core also leads to a large production of primary 22Ne at all metallicities, which is the

main source of the weak s-process in massive stars, see Section I.2.1.2. Therefore, the weak s-process

production in rotating massive stars is boosted (Frischknecht et al., 2012; Choplin et al., 2018). The

weak s-process activity at solar metallicity is modest and the production stops at the strontium peak

as in the non-rotating models. However, at very low metallicity, where the amount of heavy seed nuclei

is limited, the weak s-process production reaches barium. Thus, heavier elements are synthesised by

the s-process at very low metallicity (Frischknecht et al., 2016; Banerjee et al., 2019). Although, this

scenario is very sensitive to metallicity and initial rotation rate.

Rotational mixing can change the surface composition during the main sequence. This would not be

possible in non-rotating massive stars until the red supergiant branch, where the envelope becomes

convective. For example, rotating massive stars alternate their CNO surface abundance by increasing

the helium and nitrogen mass fractions and reducing the hydrogen, carbon and oxygen mass fractions

(Meynet & Maeder, 2000; Heger & Langer, 2000; Hirschi et al., 2005a). The enrichment is higher for

larger masses, lower metallicities and higher initial velocities. The surface enrichments in stars are

mainly important during the early evolutionary stages, predominantly during the main sequence. Dur-

ing the advanced burning stages, the rotational velocities converge towards low values, independent

of the initial rotation rate, and their impact is therefore reduced, see Section I.4.2.1. Nevertheless, a

high helium and nitrogen surface enrichment indicates a fast rotation in the past, even if the star only

rotates very slowly.
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Hunter et al. (2008) compared the observed surface enrichments with the predictions of stellar evo-

lution models in order to test rotation-induced mixing. They plot the surface nitrogen abundance

(12 + log [N/H]) as a function of the projected rotational velocity (v sin i), which is the so-called

Hunter diagram. Although they attempted to constrain the stellar evolution models to the obser-

vations, they can only match 60% of the data, with several discrepant groups during core hydrogen

burning and during the supergiant evolution. Other authors also find inadequacies of stellar evolu-

tion models to represent the surface enrichment in rotating massive stars (e.g. Markova et al., 2018).

Possible explanations for the discrepancy include binarity or magnetic fields but it could also relate

to a missing piece in the understanding of rotation-induced mixing. The subject is still an ongoing

discussion (e.g. Song et al., 2018; Markova et al., 2018; Carneiro et al., 2019; Keszthelyi et al., 2019;

Schneider et al., 2020; Bouret et al., 2021).

Efficient rotational mixing not only affects the surface composition but also reduces the opacity in

the envelope of the star, see discussion above. Therefore, moderate or rapid rotating stars are hotter

on their surface, because Teff ∝ 1/opacity, and more compact, following R ∝ L1/2T−2 (e.g. Kippen-

hahn & Weigert, 1994). Thus, rotation favours a more blueward evolution to the hotter side of the

Hertzsprung-Russell diagram, increasing the blue to red supergiant ratio (Meynet & Maeder, 2000;

Maeder & Meynet, 2001). Also, the mixing of chemicals in the radiative zones of massive stars may

prevent the establishment of a chemical stratification when the timescale of rotation-induced mixing

is shorter than the nuclear timescale, i.e. during the main-sequence evolution. Consequently, the

star can efficiently mix the whole interior and evolves nearly chemically homogeneously (Eddington,

1929; Maeder, 1987b). This so-called quasi chemical-homogeneous evolution depends on the mass,

metallicity, rotation rate and also the numerical implementation of the physics, for the latter see the

discussion in Chapters II and B. Generally, quasi chemical-homogeneous evolution is favoured at lower

metallicity due to the reduced angular momentum loss through stellar winds (Maeder, 1987b; Yoon &

Langer, 2005; Yoon et al., 2006, 2012). At low metallicity, even moderately fast rotators can undergo

efficient rotation-induced mixing, resulting in quasi chemically-homogeneous evolution (e.g. Szécsi

et al., 2015). Nevertheless, quasi chemical-homogeneous evolution is also possible at solar metallic-

ity, which is consistent with discoveries of long-duration gamma-ray burst in (super) solar metallicity

galaxies, but it is much rarer (Levesque, 2010) and a high rotation rate is needed (Yoon et al., 2006).

The fraction of homogeneous evolving stars increases as the metallicity decreases. Therefore, rotation

induced chemically homogeneous evolution might be an important mode of massive star evolution at

low metallicity and it is able to explain many otherwise peculiar observations (e.g. Walborn et al.,

2004; Sander et al., 2012; Martins et al., 2013). Furthermore, while the bulk of observed stars rotate

slowly, with a rotation rate less than 20% of their break-up velocity, there is a significant fraction of

massive stars that rotate rapidly (Ramı́rez-Agudelo et al., 2013), which might evolve quasi chemically
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homogeneously at higher metallicity.

Rotation changes the fate of massive stars. A slow or medium rotation rate favours the formation

of red supergiants which are less compact. The faster redward evolution changes the pre-supernova

structure of the star, in particular the compactness, core mass and total mass. Therefore it shifts the

initial mass-supernova progenitor-explosion type correlation. Furthermore, rotation-induced mixing

favours the entry into the Wolf-Rayet phase in two ways, it modifies the chemical composition in the

radiative envelope and it increases the core mass. While in the non-rotating scenario, a star can only

enter the Wolf-Rayet phase when the stellar wind has peeled of the outer hydrogen layer, the rotating

model can obtain the characteristic surface abundance with the effects of rotation-induced mixing and

mass loss. Therefore, rotating models can also produce Wolf-Rayet stars at lower metallicity, when

mass loss is reduced, by following the homogeneous evolution discussed above. The different structure

of the progenitors also changes the explosive event itself. Indeed, rotating models predict a higher

occurrence of supernovae type Ib and Ic (Georgy et al., 2009). Observations show an increase of the

supernova type Ib and Ic to II with metallicity due to stronger stellar winds (e.g. Prantzos & Boissier,

2003). This trend can be better reproduced with rotating models26 (Meynet & Maeder, 2005; Hirschi

et al., 2005b; Georgy et al., 2009). Rotation also changes the initial mass of the stars that enter the

pair-instability regime by enlarging the core mass. In addition, the scenario of quasi-chemical homoge-

neous evolution reduces the threshold of stars that experience the pair-instability (e.g. Chatzopoulos

& Wheeler, 2012). The typical spectrum of a type Ic supernova is associated with long gamma-ray

bursts (Woosley & Bloom, 2006). Gamma-ray bursts are primarily found at low metallicity (e.g.

Modjaz et al., 2008), where rotation-induced chemical mixing is more efficient and the stars are able

to maintain a high angular momentum in the core. Therefore, quasi-chemical homogeneous evolved

stars are potential progenitors of long gamma-ray bursts (Woosley & Heger, 2006; Yoon et al., 2006,

2012). Chemically homogeneous stars are hotter, more luminous and more compact, following the

same argument from above. Therefore, two massive stars in a binary system are compact enough to

avoid mass transfer (de Mink et al., 2009). Consequently, this scenario can lead to two massive helium

stars where both eventually collapse to a black hole. This is a potential channel to a black hole binary

system, which is the progenitor of a black hole merger and source of gravitational waves (Mandel &

de Mink, 2016).

Generally, stellar models that include rotation are able to better reproduce many observations than

models without rotation. However, some problems remain. For example, the improvement of rota-

tion explains the number of Wolf-Rayet subtypes at solar and lower metallicity and the trend of the

observed ratios as a function of metallicity (Meynet & Maeder, 2003, 2005; Langer, 2012), but it pro-

duces too many nitrogen enhanced Wolf-Rayet (WN) stars at solar and higher metallicities (Meynet

26This trend can also be reproduced by invoking a close binary-star, where the hydrogen-rich envelope is removed
through binary interaction (e.g. Eldridge et al., 2008), hence, the solution is not singular.
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& Maeder, 2005). Also, Eldridge & Vink (2006) show that rotating models cannot simultaneously

reproduce the dependency of the ratio of Wolf-Rayet subtypes on the metallicity and the number ratio

of Wolf-Rayet to O-type stars. Another problem is the fact that there is still a discrepancy between

the observed rotation rates of evolved stars and the ones predicted by stellar evolution theory, also

with the inclusion of a magnetic dynamo which is thought to efficiently slow down the stellar core,

see also Chapter II. In particular, rotating models fail to reproduce the slow rotation rate of white

dwarfs, neutron stars and black holes (e.g. Heger et al., 2005; Suijs et al., 2008; Hirschi & Maeder,

2010) and the internal rotation profiles of subgiants or red giants (e.g. Eggenberger et al., 2005, 2019a;

Cantiello et al., 2014). More recent improvements of angular momentum transport, e.g. the Fuller-

modified Taylor-Spruit dynamo process (Fuller et al., 2019, see also Chapter II), enables stellar cores

to spin down more efficiently but it cannot explain observed rotation profiles in low mass stars in

its current form (e.g. den Hartogh et al., 2019; Eggenberger et al., 2019c). Therefore, an additional

angular momentum transport mechanism is needed. Currently discussed possibilities are magnetic

torques (Spruit, 2002; Maeder & Meynet, 2004; Spada et al., 2016; Fuller et al., 2019) and gravity

waves (Talon & Charbonnel, 2005; Belyaev et al., 2013; Fuller et al., 2015b; Pinçon et al., 2017; Edel-

mann et al., 2019). Another open question is the dependence of the mass-loss rates on the changes

of the equilibrium configuration of rotating stars (Müller & Vink, 2014) and vice-versa, how rotation

depends on the mass-loss rates, i.e. by removing angular momentum (Vink et al., 2010), which is not

well understood.

5 This Work

The overview of stellar evolution given in the previous sections shows that there are still major un-

certainties regarding the evolution of massive stars. In particular, the uncertainty of internal mixing

processes such as turbulent convection and rotation, the treatment of stellar atmospheres and winds

and the uncertainty of nuclear reaction rates have a vast impact on the evolution and fate of stars.

Also, while it was not discussed in the previous sections, the treatment of binarity is another big

question, which still needs to be addressed.

While 1-dimensional stellar evolution models will never be perfect descriptions of a 3-dimensional star,

they can at least describe its average evolution in a reliable way. Therefore, the theories of the various

physical processes have to be consistent and preferably based on physics rather than parametrisation.

A first crucial step in the direction of improving stellar evolution models is to know which physical

processes lead to the largest uncertainties, hence, affect the prediction of stellar evolution the most.

In this work I investigate some uncertainties related to the internal mixing processes. In the context

of convection, the focus lies on convective boundary mixing by assessing the impact of its strength
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and the different criteria of the convective boundary. In the framework of rotation-induced mixing

processes, I compare different treatments of angular momentum transport, mainly by magnetic dy-

namos.

This work is organised as follows; in Chapter II the theory of internal mixing processes is discussed

in more detail. Appendix B gives an overview on the stellar evolution code MESA which is used for

this work and how the physics of Chapter II is numerically implemented. Chapters III and IV present

the results of my thesis. In Chapter III the uncertainty of convective boundary mixing is discussed,

which was published in Kaiser et al. (2020), and Chapter IV presents the investigation of the different

flavours of angular momentum transport.

It should be noted that a large fraction of massive stars, i.e. more than 70%, are members of a

close binary system (Sana et al., 2012). Binarity impacts the evolution of the two companion stars

via mass transfer, possible common envelope evolution or merger. Binary interaction influences the

observed population of massive stars, e.g. supergiants, Wolf-Rayet stars or supernovae. Binary evolu-

tion is also crucial for the understanding of progenitors of gravitational waves. In this thesis, however,

only single stars and their evolution are considered, despite the impact of binarity on massive star

evolution. This is done because of several reasons. First, binary evolution and interaction itself is

quite uncertain. Furthermore, the interaction also depends on the physics of single stars. For example,

rotation and convection influence the blue versus red supergiant evolution and thus the radial extent

of a star. This, on the other hand, affects the amount of interaction between the two companion

stars. Therefore, it is less problematic to study the uncertainty of the internal mixing processes first,

before applying it to the problem of binary interaction. Also, no stellar model to date includes all the

physics needed to describe a star. Simplifications are made to study certain problems. Finally, this

thesis mostly focusses on the interior evolution of massive stars. Therefore, the main findings of this

work are still applicable in a binary system.
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Chapter II
Internal Mixing Processes

Internal mixing processes crucially affect the structure of a star and change their evolution.

Thermally-driven mixing processes arise as a consequence of local heat excess, leading to

turbulent energy transport and turnover of matter. At the convective boundary matter is

turbulently entrained and internal gravity waves are generated. Rotation-induced mixing

processes, on the other hand, are produced either due to the changes by rotation to the

hydrostatic equilibrium or by differential rotation. Both processes mix the chemical com-

position in a star and transport angular momentum. Rotation also interacts with magnetic

fields, creating a possible dynamo action which couples the core and envelope and leads to

near-solid body rotation. The first two sections of this chapter give an overview of both

mixing processes. The last section summarises the interaction between stellar rotation and

magnetic fields and discusses different magnetic dynamo processes.

1 Thermally-Driven Mixing

In most physical systems, a heat excess, which cannot be regulated by radiative transfer alone, leads

to instability and finally to turbulent convective motions, i.e. the turnover of matter in a region where

energy cannot be transported by radiation alone. This turbulent energy transport and radiation are

the two main energy transport processes in stars. In addition, convective motions efficiently mix

the chemical composition and transport angular momentum. At the boundary between convectively

unstable and stable regions, where the convective flow turns, new material is entrained into the convec-

tive region and internal gravity waves are generated, the latter being observable by asteroseismology.

Thermally-driven mixing shapes the interior of stars and replenishes fuel into the burning region, thus,
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is a crucial process in stellar physics and evolution.

Turbulent convection is a chaotic, non-linear process (e.g. Landau & Lifschitz, 1966; Pope, 2000). For

example Figs.(7) and (11) from Cristini et al. (2017) illustrate the chaotic behaviour of the turbulent

flow1. The coherent structures in the figures, forming rolls and plumes, are strongly dynamic; they

appear, break apart and are formed elsewhere. The interaction between the coherent structures leads

to an intermittency of the turbulent convective flow in space and time (Tennekes & Lumley, 1972) and

there is a balance between turbulent driving and damping (Warhaft, 2002). Also, the boundary layers

between the stable and turbulent region are dynamic, see Section II.1.3. There is a growing number

of multi-D hydrodynamic simulations studying stellar convection that show these characteristics (e.g.

Asplund et al., 1999; Herwig et al., 2006; Meakin & Arnett, 2007; Magic et al., 2013; Woodward et al.,

2015; Cristini et al., 2017; Freytag et al., 2017; Jones et al., 2017; Mocák et al., 2018; Arnett et al.,

2019; Yadav et al., 2020).

Turbulent convection is clearly a 3-dimensional (3D) process operating on a timescale of seconds up

to a year. On the other hand, the life of a star is at least millions of years. Therefore, in order to

simulate the long evolutionary timescale, stellar evolution models are limited to one dimension and

the complex 3D turbulent process has to be approximated by 1-dimensional (1D) prescriptions.

Standard 1D stellar evolution models are calculated in spherical symmetry and the convective energy

transport and mixing are often approximated with the mixing-length theory (MLT, Vitense, 1953;

Böhm-Vitense, 1958). This theory represents the convective flow with fluid elements that move up and

down and transport energy and material. While this approximation works surprisingly well for the

bulk of weakly stratified convective regions, it neglects several important facts of turbulent convection,

such as the convective boundary (Renzini, 1987). In an attempt to correct for these issues additional

theories are used, for example the different boundary mixing prescriptions discussed in Section II.1.3

or methods to treat the superadiabatic convection in radiation-dominated regions - see discussion in

Sections III.2 and III.7.

In this Section the thermally-driven mixing processes are discussed, starting with the consideration

of local stability to determine whether global flows develop. The theory of the mixing-length is in-

troduced and how it accounts for mixing and energy transport. The last two subsections present the

current treatment of convective boundaries and the inefficient mixing process called semiconvection.

1.1 Local Stability

Using linear perturbation theory, the stability of a layer can be expressed in terms of the Brunt-

Väisälä frequency, which is the oscillation frequency of a displaced fluid element around its equilibrium

1Movies of the 3D simulations by Cristini et al. (2017) are available at
http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations
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position. The square of the Brunt-Väisälä frequency for a fluid element with an internal density ρint

oscillating in a medium with density ρext can be written as

N2 =
g

ρint

(
dρint

dr
− dρext

dr

)
≡ g

ρint

d(∆ρ)

dr
, (II.1)

with the gravitational acceleration g, so that the stability or instability of the fluid element is defined

as

d(∆ρ)

dr





> 0⇒ stable,

< 0⇒ unstable.

(II.2)

This criterion compares the density change in the displaced fluid element and of the surrounding

medium over a small distance dr. If there is a larger change of the density inside the fluid element

compared to its surroundings, corresponding to a negative d(∆ρ)
dr , then the fluid element will be lighter

and experience unstabilising buoyant forces. Vice versa, if the density in the fluid element changes

less than the density in the surrounding medium, which corresponds to a positive d(∆ρ)
dr , then the fluid

element is lighter and will be stabilised. Therefore the squared buoyancy frequency determines whether

an oscillatory motion of a fluid element around its equilibrium position is damped and stabilised or

whether it grows and moves away from it.

In stellar evolution theory it is convenient to express a process in terms of the basic structure variables2.

The density is not a structure variable but the temperature is. Therefore, it is advantageous to express

Eq.(II.1) in terms of temperature gradients (see e.g. Kippenhahn & Weigert, 1994; Maeder, 2009, for

the derivation),

N2 = N2
T +N2

µ =
gδ

HP

(
∇int −∇+

ϕ

δ
∇µ
)
, N2

T =
gδ

HP
(∇int −∇), N2

µ =
gϕ

HP
∇µ, (II.3)

, where HP is the local pressure scale height, with the two components for the thermal and chemical

composition stratification, the temperature gradients

∇int ≡
d lnTint

d lnP
, ∇ ≡ d lnText

d lnP
, ∇µ ≡

d lnµext

d lnP
, (II.4)

where T is the temperature and P is the pressure, and the thermodynamic quantities

δ ≡ −
(
∂ ln ρ

∂ lnT

)
, ϕ ≡

(
∂ ln ρ

∂ lnµ

)
. (II.5)

2Structure variables are the mass M , pressure P , temperature T and luminosity L and they can be obtained by
solving the stellar structure equations, see Section B.1.2. Other variables are calculated from the structure variables.
The density for example is determined from P and T using the equation of state.
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The condition for stability, Eq.(II.2), can thus be written as

∇ < ∇int +
ϕ

δ
∇µ. (II.6)

This is the famous Ledoux criterion. A positive gradient in chemical composition favours convective

stability by increasing the restoring buoyancy force. In a chemically homogeneous medium, i.e. when

∇µ = 0, Eq.(II.6) becomes

∇ < ∇int, (II.7)

which is known as the Schwarzschild criterion.

It is possible to define an adiabatic and radiative temperature gradient (e.g. Kippenhahn & Weigert,

1994),

∇ad =

(
∂ lnT

∂ lnP

)

ad

=
Pδ

CP ρT
, ∇rad =

3

16πacG

κlP

mT 4
, (II.8)

with the specific heat at constant pressure CP , the opacity κ, the luminosity in a given layer l, the

Stefan-Boltzmann constant a, the speed of light c and the gravitational constant G. In a convective

zone the four temperature gradients follow the relation (Kippenhahn & Weigert, 1994; Maeder, 2009)

∇rad > ∇ > ∇int > ∇ad. (II.9)

In the stellar interior3 convection is nearly adiabatic and an order of magnitude estimate shows that

(∇−∇int)/∇ ≈ 10−8 (Maeder, 2009), hence, ∇ ≈ ∇int = ∇ad. Therefore, Eq.(II.9) simplifies to

∇rad > ∇ad, (II.10)

which is the Schwarzschild criterion for instability in the stellar interior. This criterion basically states

that if the energy excess cannot be transported by radiation alone convective motions set in. Arguing

similarly, the Ledoux criterion for convective instability in the stellar interior can be written as

∇rad > ∇ad +
ϕ

δ
∇µ. (II.11)

The convection in the outer layers of a star are not adiabatic. There, the energy lost by a turbulent

fluid element has to be taken into account as it is transported, see below.

The two stability criteria determine the location where the acceleration of the convective flow drops

to zero. In 1D stellar evolution, this point is often, maybe falsely, labelled as the convective boundary.

The question of the “correct” convective boundary criterion to be used in stellar evolution calculations

has been discussed for several decades. For example the study of Georgy et al. (2014) indicates that

3Roughly the region below the layers where hydrogen and helium are not fully ionised anymore.
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the Ledoux criterion better reproduces observations of blue supergiants. Yet, the solution they found

is not unique and there might be another solution with the Schwarzschild criterion. In a purely

linear theory, in which the two criteria were derived, it is correct to use the Ledoux criterion, in

order to take care of possible chemical composition gradients. Convection, however, is a 3D process

which drives non-linear intermittency and fluctuations. As a result, the convective boundary bends

and stretches as it evolves, contrary to the fixed boundary location given by Eqs.(II.11) and (II.10)

which is sharp and spherically symmetric. Consequently, the chemical composition gradient near the

convective boundary is erased and the location of the boundary in 3D simulations agrees on average

more with the Schwarzschild criterion location (Meakin & Arnett, 2007; Arnett et al., 2019). This

is an initial value problem; the convective boundary of the growing instability starts at the location

determined by the Ledoux criterion. Intermittency and fluctuations at the convective boundary move

the boundary to the Schwarzschild solution on a finite timescale. Thus, it is not sure which criterion

has to be used for convective regions that only exist on a short time scale. This transition needs

further 3D hydrodynamic simulations for verification and to test the transition speed.

1.2 Convection in Stellar Evolution

In a region which is unstable according to the Ledoux or the Schwarzschild criterion, Eqs.(II.11) and

(II.10), turbulent convective motions set in. This turbulent fluid flow efficiently transports energy,

in addition to mixing the chemical species. The average convective flux in a layer results from the

motion of the fluid elements with an average velocity v̄ and an average temperature excess ∆T . In the

1D picture developed here, the flow consists of upward moving hotter and downward moving cooler

fluid elements, which both contribute to the outward transport of energy, thus, a regulation of the

excess. The convective flux, calculated as “mass×velocity×driving gradient”, is (Vitense, 1953)

Fconv = CP ρv̄∆T (II.12)

in the units of energy per units of horizontal surface and time. In order to calculate the flux, the

average velocity of the turbulent flow and the average temperature excess have to be determined first.

The convective flow not only depends on local properties but also on processes in surrounding layers,

hence, it is a non-local process. Most stellar evolution models, however, assume a local theory, i.e. the

properties of convection only depends on local properties, which comes with great simplifications for

the computations but it is a crude oversimplification of the physics. The most common formulation is

the mixing-length theory (MLT, Vitense, 1953; Böhm-Vitense, 1958). There it is assumed that the

fluid element moves over an average distance `MLT, the mixing-length, without losing its identity before

it dissolves into its new surroundings, depositing energy and chemical elements. The mixing-length is
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of the order of the pressure scale height, `MLT = αMLTHP , where αMLT is an adjustable parameter

of order unity and needs to be calibrated. Current estimates lead to a value of αMLT ≈ 1.6 − 1.7

(e.g. Ludwig et al., 1999; Ekström et al., 2012; Trampedach et al., 2014). Arnett et al. (2018) find for

strongly stratified convection an asymptotic limit for the dissipation length of a turbulent flow, which

they identify with `MLT ∼ 5/3HP .

For a fluid element that moves a distance `MLT, the average velocity v̄ and temperature excess ∆T

can be estimated as (Eqs.(6) and (7a) from Vitense, 1953)

∆T ≈ ∆T
`MLT

2
= (∇−∇int)

T

HP

`MLT

2
(II.13)

and

v̄2 = v2 `
2
MLT

4
= gδ(∇−∇int)

`2MLT

8HP
. (II.14)

In the case of a non-negligible temperature excess with respect to the local temperature, the convection

cannot be considered adiabatic anymore and the temperature gradients ∇ and ∇int need to be calcu-

lated explicitly. This can be done by combining the equation for the total flux, i.e. Ftot = Frad +Fconv,

and by considering the energy lost as the fluid element moves over a distance (e.g. Kippenhahn &

Weigert, 1994; Maeder, 2009). In order to solve the problem, two more suitable relations are needed.

Generally, these are (i) the ratio between the energy excess of a fluid element to the energy radiated

away during its lifetime and (ii) the excess rate of energy generation minus the excess rate of energy

loss by radiation of the fluid element relative to its surrounding. This gives the same number of equa-

tions as unknowns, hence, the two temperature gradients ∇ and ∇int can be determined, see Section

B.1.3.1 for more details.

The knowledge of∇ and∇int in the convective zone allows to express the convective velocity (Eq.(II.14))

and the convective flux (Eq.(II.12)) in a non-adiabatic case. Furthermore, the determination of ∇ in

the different regimes,

adiabatic convection→ ∇ ≡ ∇ad,

non-adiabatic convection→ ∇rad > ∇ > ∇int > ∇ad, (II.15)

radiative→ ∇ ≡ ∇rad,

allows to calculate the energy transport in a region with the stellar structure equation in Eq.(B.4).

Finally, Fconv allows to calculate the transport of chemical species and angular momentum in the

convective region. The mixing of chemical species is most commonly done by a diffusion equation, see

Appendix C.3.1,

ρ
∂

∂t
X =

1

r2

∂

∂r
(r2ρDMLT

∂

∂r
X), (II.16)
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(a) (b)

Figure II.1: (a) Simplified schematic representation of a convective boundary. The radial direction is
denoted by r and the horizontal by h. The arrows give a schematic flow pattern which is sub-divided
into the various regimes explained in the text. ur is the radial velocity component and uh the horizontal
one. The figure is taken from Arnett et al. (2015). (b) A schematic illustration of the construction of
the convective boundary with the exponential decaying diffusive scheme (see Eq.(II.17)). The fat black
line depicts the diffusion coefficient from the mixing coefficient, with a sharp drop at the convective
boundary location rCBM given by the Ledoux or the Schwarzschild criterion. The fat red line indicates
the exponential decrease of the diffusion coefficient to the convective boundary mixing scheme. It starts
inside the convective region at r0, illustrated by the dashed black line. The final diffusion coefficient
for convective mixing is shown with a yellow dashed line. The variables are explained in the text.

with the diffusion coefficient DMLT = 1
3`MLTv̄. In the presence of rotation, the transport of angular

momentum can be considered similar but it is often assumed that convective regions rotate as solid

bodies - see discussion in Sections II.2 and B.1.5.

1.3 Convective Boundary Mixing

The convective boundary criteria in Section II.1.1 determine the location where the buoyant driving

force of the turbulent flow changes sign, i.e. where it becomes a damping force. In this sense, the

Ledoux and Schwarzschild criteria are local criteria. However, convection not only depends on local

forces but is coupled to neighbouring layers via momentum transfer, inertia and equation of continuity.

Therefore, a fluid element that was accelerated elsewhere “overshoots” the convective boundary until

its radial motion is stopped and reversed.

3D simulations show nicely4 how the flow approaches the boundary and then u-turns. In these

simulations, several sub-regions in the boundary layer can be observed. A schematic representation

of a 3D convective boundary is shown in Fig.(II.1a) which can be divided into the following regions

(Arnett et al., 2015, other authors, e.g. Cai (2020), find similar partitioned layers):

(a) The driving region - this is the turbulent convective region where the superadiabatic excess is

positive and the material is unstable due to buoyant driving. This region is fully mixed and it is

the “convective” region associated with MLT.

4A visualisation of the simulations by Cristini et al. (2017) can be found at
http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-mixing/visualisations.
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(b) The turning region - as a consequence of a pressure excess and the buoyant force changing sign

the turbulent flow turns around. This region is well mixed.

(c) The shear region - the radial velocity is going to zero and the horizontal velocity dominates. The

horizontal flow may create Kelvin-Helmholtz instabilities which entrain material from the stable

region into the convective region.

(d) The stable region - the radiative region beyond the turbulent convective regime. Gravity waves

are generated, a result of the convective flow joining the stable region (Landau & Lifschitz, 1966),

which can lead to chemical mixing in the stable “radiative” region (e.g. Rogers & McElwaine,

2017). Otherwise, there is no mixing in this region.

Contrary to the convective boundary discussed in Section II.1.1 these layers are not static but dynamic

and subject to fluctuations (Cristini et al., 2017). Recent 3D simulations of turbulent convection (e.g.

Meakin & Arnett, 2007; Woodward et al., 2015; Cristini et al., 2017; Jones et al., 2017) show that

there is indeed a turbulent convective, a turning and a shear region.

In the 1D prescription of the MLT discussed in Section II.1.2 the velocity at the convective boundary

drops from a finite value to zero, as if the fluid flow rams into a solid barrier. This problem arises

because the MLT only considers regions (a) and (d) in the schematic picture outlined above (Renzini,

1987). In order to account for convective boundary mixing in the framework of the MLT, i.e. regions

(b) and (c), an additional theory, or a combination of several, has to be used, patching together the

mixing after the convective boundary.

In the following, the mixing after the convective boundary is called convective boundary mixing

(CBM), which describes an ensemble of physical processes responsible for the mixing. We avoid the

term “overshoot” in this context on purpose, despite its wide use in the literature, because it describes

a particular physical process, the vertical motion driven by buoyancy, which is part of CBM but not

the whole story. Semiconvection is mentioned separately in Section II.1.4 because this mixing process

only occurs in the context of the Ledoux criterion.

In a 1D prescription of convection only the radial velocity is considered. For that reason, convection

is often falsely5 thought of as a radial up-down movement. At the 1D convective boundary, the

acceleration of the radial upwards motion becomes zero. However, the radial velocity is not zero at

this point and the fluid overshoots the convective boundary as a consequence of the Newtonian laws

(Canuto, 1998). This lead to the idea of “overshoot”, an attempt to locally account for CBM (e.g.

Shaviv & Salpeter, 1973; Maeder, 1975).

Observations show the evidence that CBM exists (see e.g. discussion in Zahn, 1991, Section 2). For

example, CBM is needed in stellar models to reproduce the main-sequence width (e.g. Maeder, 1975;

53D simulations clearly show the complexity of the turbulent flow with coherent dynamic structures (e.g. Arnett
et al., 2019, but also see movies at http://www.astro.keele.ac.uk/shyne/321D/convection-and-convective-boundary-
mixing/visualisations).
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Bertelli et al., 1984; Ekström et al., 2012) and asteroseismic observations (e.g. Straka et al., 2005;

Meynet et al., 2009; Moravveji et al., 2015, 2016; Arnett & Moravveji, 2017). Also, observations of

eclipsing binaries show the need to include convective boundary mixing (e.g. Tkachenko et al., 2020).

Currently, there exist different prescriptions and implementations in 1D stellar evolution codes to

account for CBM. The most commonly used prescriptions are (i) the convective penetration (Zahn,

1991) or penetrative “overshoot” (commonly referred to as “step-overshoot”) and (ii) the exponentially

decaying diffusive boundary mixing (Herwig et al., 1997). In the formalism of Zahn (1991) the efficient

heat transport across the convective border with ∇ ≈ ∇ad is called penetrative “overshoot”. Other

implementations use inefficient heat transport with ∇ ≈ ∇rad, which is commonly called “overshoot”

but the use of terminology is often imprecise. The penetrative “overshoot” extends the fully mixed

region after the convective boundary by a fraction of the pressure scale height, dov = αovHP . The

parameter αov needs to be calibrated against observations - see the discussion further down. On

the other hand, the prescription by Herwig et al. (1997) treats the convective boundary mixing as a

diffusive process. The strength of the diffusive mixing decreases exponentially from the convective

boundary, which is inspired by the exponentially decaying velocity fields seen in the multi-dimensional

simulations by Freytag et al. (1996). The diffusion coefficient DCBM is calculated as (Herwig et al.,

1997)

DCBM = D0(f0) · exp

( −2z

fCBM ·HCB
P

)
(II.17)

Fig.(II.1b) schematically illustrates the resulting diffusion coefficient and the dependence of the vari-

ous variables, which are explained in the following. The diffusion coefficient is a function of distance

z = r − r0(f0) from a point close to the edge of the convective boundary. fCBM is a free parameter

which expresses the length scale of the extra mixing as a fraction of the pressure scale height at the

convective boundary, HCB
P . D0(f0) is the diffusion coefficient from the MLT, taken at the location

r0(f0) = rCB−f0 ·HP inside the convective zone, where rCB is the location of the convective boundary

determined by the boundary criterion and f0 is an additional free parameter6. This is done because

the diffusion coefficient from MLT drops sharply towards zero at the convective boundary. The new

diffusion coefficient is then applied starting at r(f0), thus inside the convective zone.

The amount of CBM that is applied, i.e. the calibration of αov or fCBM
7, varies a lot throughout the

literature. Ekström et al. (2012) fit their amount of CBM to the main-sequence width of low mass

stars with αov = 0.1. Brott et al. (2011) constrain CBM with the observed drop of the rotation rates

for massive stars with a surface gravity of log g < 3.2 and find αov = 0.335. Recently, Schootemeijer

et al. (2019) compared a grid of stellar models with varying amounts of internal mixing to observa-

6The implementation of the “step-overshoot” in the MESA code depends on a similar second parameter - see Section
B.1.3.2.

7The two free parameters in the two prescriptions can be mapped with a mapping (conversion) factor between 10−15
(Herwig et al., 1997; Noels et al., 2010; Moravveji et al., 2016; Claret & Torres, 2017).
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tions of massive stars in the Small Magellanic Cloud and conclude that 0.22 . αov . 0.35 is needed

to match observed numbers of blue to red supergiants. Higgins & Vink (2019), on the other hand,

constrain massive star evolution with a Galactic binary system. They need αov = 0.5 (and rotation -

see Section II.2) in order to reproduce the system. Herwig (2000) find that fCBM = 0.016 is needed for

convective core hydrogen burning in intermediate mass stars to reproduce the main-sequence width.

Claret & Torres (2017, 2018) do a semi-empirical mass calibration of fCBM and find a dependence

of fCBM on the stellar mass, with a strong increase of fCBM up to about 2 M� where it levels off

at a value of fCBM ∼ 0.0164 − 0.0181. Costa et al. (2019) reanalyse the sample of Claret & Torres

(2017, 2018) and find a wide distribution of 0.3 − 0.4 < αov < 0.8 for masses M >1.9 M�. When

they include rotation, the models agree with the observed data when αov = 0.4. Castro et al. (2014)

suggest, based on the observational spectroscopic Hertzsprung-Russell diagram of Galactic massive

stars, that the amount of CBM increases with initial mass in order to fit their empirical terminal-age

main-sequence. Other studies (e.g. Vink et al., 2010; McEvoy et al., 2015), however, do not find a

clear boundary corresponding to the terminal-age main-sequence. Nevertheless, McEvoy et al. (2015)

find hints for a broader main-sequence width than adopted in the literature. Denissenkov et al. (2019),

on the other hand, scale the fCBM with the driving luminosity, fCBM ∝ L1/3. This relation also hints

towards larger amounts of convective boundary mixing with increasing initial mass as these stars show

a higher driving luminosity. The values commonly used in theoretical “state-of-the-art” evolution cal-

culations of massive stars range from fCBM = 0.004 (e.g. Farmer et al., 2016; Fields et al., 2018) up

to fCBM = 0.022 (e.g. Jones et al., 2015) or fCBM = 0.025 (e.g. Sukhbold & Woosley, 2014), with

intermediate values around fCBM = 0.014− 0.016 (e.g. Choi et al., 2016; Pignatari et al., 2016; Ritter

et al., 2018). These values are significantly lower than the values for massive stars constrained by

observations and the difference will influence the structure and evolution of these stars - see Chapter

III.

Moravveji et al. (2015) tested the penetrative and exponential decaying “overshoot” against asteroseis-

mic observations. They found a better fit with the exponentially decaying “overshoot”. Furthermore,

Arnett & Moravveji (2017) show that the asteroseismic models from Moravveji et al. (2015, 2016) with

the exponentially decaying “overshoot” prescription create a chemical composition profile similar to

the profile in 3D hydrodynamic simulations. On the contrary, the penetrative “overshoot” creates a

step in the chemical composition profile, which is not supported by asteroseismology or 3D simula-

tions.

Stellar models that include one of the two CBM prescriptions, the penetrative “overshoot” or the

exponential decaying diffusive scheme, may be able to match some observations but they are not able

to reproduce the average shape of the complex convective boundary structure seen in 3D simulations

(e.g. Cristini et al., 2017; Jones et al., 2017). Also, the CBM model prescriptions are used regardless of
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possible chemical composition gradients at the convective boundary. Those might affect the amount

of CBM but will not prevent it entirely (Canuto, 1998).

1.4 Semiconvection

In a region of the star with a strong gradient in chemical composition the scenario can arise where

the Ledoux criterion predicts stability and the Schwarzschild criterion instability,

∇int < ∇ < ∇int +
ϕ

δ
∇µ. (II.18)

This condition implies that a perturbed fluid element is stabilised by the chemical composition gra-

dient, hence, the perturbed fluid element has a higher atomic weight and is brought back to its

equilibrium position by gravity (Kato, 1966). However, following the Schwarzschild criterion, the

fluid element is hotter than its surrounding medium and it will radiate energy. Consequently, the

density in the fluid element increases, which causes the restoring force to rise and the element is

brought further back than its equilibrium position. In this new surrounding, however, the element is

lighter and moves upwards again, leading to an oscillatory movement around the element’s equilib-

rium position. This oscillatory movement slowly erodes the chemical composition gradient, thus, the

restoring force decreases, which may lead to a growth in amplitude of the oscillation. The timescale

of the growth of the amplitude depends on the time the mass element takes to adjust thermally to

its surroundings (Kippenhahn & Weigert, 1994). The growing oscillation leads to a region with slow

chemical mixing called semiconvection. Whether the semiconvective region is stabilised or becomes

convective depends on the changes of the gradients entering Eq.(II.18).

Several methods have been developed to deal with semiconvective regions. For example, Schwarzschild

& Härm (1958) assume that matter is redistributed, which reduces ∇µ, until the condition ∇ad = ∇rad

is met. Langer et al. (1983) treat the semiconvective mixing as a diffusive process with the diffusion

coefficient

Dsc = αsc
K

6CP ρ
× ∇−∇ad

∇ad −∇+ ϕ
δ∇µ

, (II.19)

with the radiative conductivity K. The semiconvective diffusion coefficient is scaled by the semicon-

vective efficiency parameter αsc. Langer et al. (1985) estimate αsc to be of the order of 0.1 but more

recent studies conclude that αsc > 1.0 is needed in order to reproduce observations (e.g. Schootemeijer

et al., 2019). The semiconvective diffusion coefficient assumes the adiabatic limit. The more general

Dsc away from the adiabatic limit would be (Maeder, 2009)

Dsc =
2Γ

Γ + 1
× K

CP ρ
× ∇−∇int

∇ad −∇+ ϕ
δ∇µ

, (II.20)
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with the factor to account for radiative losses

Γ ≡ energy transported

energy lost
=

3ρ2CPκ

4acT 3

v̄`

6
, i.e. N2

T =
Γ

Γ + 1
N2

T,ad (II.21)

Spruit (1992) derived a mixing coefficient on the assumption of layered convection. There, the trans-

port across the stable layers between layers with mixing proceeds via microscopic diffusion. The

diffusion coefficient can be written as

Dsc ∝
√
KKdiff

∇rad −∇ad

∇µ
, (II.22)

with the microscopic diffusion coefficient Kdiff . However, simulations show that a layered structure,

as assumed by Spruit (1992), is rapidly destroyed.

The amount of semiconvective mixing, if any, is still an unsolved problem (e.g. Langer, 2012, and

references therein). The importance of semiconvection during the evolution of a massive star will be

investigated in Chapter III.

1.5 Discussion on Thermally-Driven Mixing Processes

It is worth mentioning that there are some non-local turbulent convection theories for 1D stellar evo-

lution (e.g. Shaviv & Salpeter, 1973; Xiong et al., 1997; Canuto, 1999; Deng et al., 2006; Canuto, 2011;

Gabriel & Belkacem, 2018). For example Canuto (1999, 2011) developed a self-consistent turbulent

convection theory with a two-component fluid, which however is very difficult to apply in stellar evolu-

tion calculations. The difficulty lies in two facts, (i) the equations to solve in the turbulent convection

models are highly non-linear and unstable in numerical simulations and (ii) the complexity to include

the turbulent convective model, because in order to solve these equations the parameters of the stellar

structure are needed. In order to solve the equations of stellar structure, the temperature gradient is

necessary, which however is determined by the turbulent convective model. Therefore, in order to solve

the turbulent convective model, one must simultaneously solve the equation of turbulent convection

and the stellar structure, which is enormously challenging.

Convective boundary mixing is still an open question. 3D hydrodynamic simulations allow to in-

vestigate the dynamics of turbulent boundaries, understand their behaviour and develop theories (e.g.

Arnett et al., 2019, 2018). While these theories may explain the physics of the convective boundaries

in 3D, current state-of-the-art stellar evolution theory has to rely on 1D models due to the high com-

putation cost and small timesteps of 3D hydrodynamic simulations. Hence, the average 3D behaviour

has to be incorporated into 1D codes.
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Commonly used prescriptions for convective boundary mixing are phenomenological, based on the fact

that observations and 3D simulations suggest the existence of turbulent mixing after the boundary,

but there is a lack of theory. While it is possible to match observations by simply extending the

convective core by a fraction of the pressure scale height, it is important to remember that this is

only a constraint of the effects of convective boundary mixing, i.e. larger convective cores and higher

luminosity, but not the physics of convective boundary mixing itself. Moreover, constraining the con-

vective boundary mixing parametrisation for a certain star during a certain evolutionary stage does

not mean that other stars, or even the same star during a different evolutionary phase, experiences

the same amount of convective boundary mixing - see discussion in Chapter III. Also, an unphysical

treatment of the boundary might affect the chemical composition at the boundary location, which

consequently influences the convective history during the advanced evolutionary phases and changes

the pre-supernova structure.

Several new prescriptions are being developed for 1D stellar evolution calculations. For example,

Meakin & Arnett (2007) suggest a turbulent entrainment law at the convective boundary based on

3D hydrodynamic simulations. This prescription calculates the amount of entrained material at the

convective boundary based on the stiffness of the boundary and the turbulent convective velocity.

Recently, Pratt et al. (2017) proposed a diffusion coefficient based on a Gumbel distribution of the

penetration probability in 2D hydrodynamic simulations. Korre et al. (2019) suggest a diffusive Gaus-

sian model, similar to the exponential diffusive model from Herwig et al. (1997). However, instead of

having a free parameter to calculate the distance of the mixing they suggest to calculate the length

scale with properties of the boundary such as the convective velocity and the superadiabatic excess.

Some authors also combine several prescriptions in order to mimic the convective boundary with the

turning and the shear regions seen in 3D simulations. Michielsen et al. (2019), for example, combine

the penetrative “overshoot” and the exponential diffusive model.

2 Rotation-Induced Mixing

In Section I.4 a short overview on rotation and how it influences the evolution of a star has been given.

It is apparent that stars rotate, which leads to a change of their equilibrium configuration and ther-

mal imbalance due to the additional centrifugal force. This can introduce instabilities. Furthermore,

rotation in stars is generally not constant but different layers rotate at different angular speeds. This

differential rotation may also introduce a number of instabilities. The rotation-induced instabilities

can lead to chemical mixing and transport of angular momentum in the interior of stars. Theses mix-

ing processes are especially important in radiative zones of a star where otherwise no mixing would

occur. This drastically changes the structure and evolution of a star, as seen in Section I.4.

55



CHAPTER II. INTERNAL MIXING PROCESSES

Similar to thermally-driven mixing, rotation is a multi-D process and therefore approximative theo-

retical prescriptions are needed in a 1D stellar evolution code. On top of that, due to the historical

development, there exist different ways to describe the large scale meridional flow - see Section II.2.2.

Moreover, the various stellar evolution codes implement the same physics differently - see discussion

in Section B.1. Therefore, the predictions of rotating stellar models depend not only on the physical

processes considered but also on how they are implemented in a stellar evolution code.

In most stellar evolution codes, the rotation-induced chemical mixing is described as a diffusive pro-

cess following Endal & Sofia (1978). In this case, the diffusion coefficient from rotational mixing is

the sum of all diffusion coefficients generated from each instability. In some cases the implementation

of the rotation-induced chemical mixing is an “order-of-magnitude” estimate (Heger et al., 2000) and

the sum is multiplied by a correction factor - see Section B.1. On the other hand, there are two

popular ways to treat angular momentum transport by rotation. One calculates the angular momen-

tum transport as a purely diffusive process (Endal & Sofia, 1978; Pinsonneault et al., 1989; Heger

et al., 2000), whereas the other applies an advective-diffusive scheme (Chaboyer & Zahn, 1992; Zahn,

1992). While the advective term arises from the meridional circulation, the diffusion coefficient for

the diffusive term is, similar to the pure diffusive case, the sum over the remaining rotation-induced

transport processes.

In this Section, an overview of all the commonly considered rotation-induced instabilities is given and

their mixing efficiency is discussed. A discussion about their implementation and treatment in stellar

evolution codes can be found in Section B.1.

2.1 Solberg-Høiland Instability

The Brunt-Väisälä frequency N2 in Section II.1.1 was derived in the absence of rotation. In a rotating

medium, however, a displaced fluid element experiences in addition to gravity and buoyancy force a

centrifugal force (Wasiutynski, 1946). This modifies the Brunt-Väisälä frequency, hence, the condition

for convective stability. This condition for stability against axisymmetric adiabatic perturbations is

the Solberg-Høiland criterion. At the equator, the condition for stability is (Endal & Sofia, 1978)

RSH ≡
gδ

HP

(
∇ad −∇+

ϕ

δ
∇µ
)

+
1

r3

d

dr
(r2Ω)2 ≥ 0. (II.23)

If the specific angular momentum j ∼ r2Ω is constant in a region, Eq.(II.23) reduces to the Ledoux

criterion (Eq.(II.6)). This instability occurs in regions of decreasing specific angular momentum,

according to the second term on the left hand side, and is suppressed in thermally stratified layers.

This instability occurs on the dynamical timescale τdyn =
√
r3/(Gm).

The corresponding diffusion coefficient of the Solber-Høiland instability is estimated as the product
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of the spatial extent of the unstable region rinst, limited by the pressure scale height, and a factor

that determines the intensity of the instability, divided by the local dynamical timescale (Heger et al.,

2000),

DSHI =

{
min(rinst, HP )

[
rRSH

g

]}2

/τdyn. (II.24)

The implementation using Eq.(II.24) means that the instability is smoothly turned on from stable

(RSH = 0) and becomes more intense the more the stability criterion is violated.

2.2 Eddington-Sweet Circulation

A rotating star cannot be in thermal and hydrostatic equilibrium at the same time: In a rotating

star, the centrifugal acceleration leads to oblate equipotentials and isobars towards the equator - see

Section I.4. Since the radiative flux is proportional to the effective gravity, which is proportional to

the equipotential density, there is a flux excess at the poles and a deficiency at the equator. This

thermal imbalance causes large-scale circulation (von Zeipel, 1924a,b; Eddington, 1925; Sweet, 1950;

Kippenhahn & Moellenhoff, 1974; Kippenhahn, 1974), which is called Eddington-Sweet circulation or

Meridional circulation8.

Kippenhahn & Moellenhoff (1974); Kippenhahn (1974) estimated the radial velocity of the circulation

as

vE =
∇ad

δ(∇ad −∇)

Ω2r3l

(Gm)2

[
2εr2

l
− 2r2

m
− 3

4πρr

]
, (II.25)

with the local luminosity l and the nuclear energy generation rate ε per gram and second. A gradient

in chemical composition can suppress or even inhibit the circulation, because the flow has to work

against a potential (Mestel, 1953). Formally, this effect is written as a “stabilising” circulation velocity

vµ that brakes the Eddington-Sweet circulation by friction (Kippenhahn, 1974)

vµ ≡
HP

τ∗KH

ϕ∇µ
δ(∇−∇ad)

. (II.26)

τ∗KH is the local Kelvin-Helmholtz timescale to estimate the timescale for the local thermal adjustment

of the currents (Pinsonneault et al., 1989)

τ∗KH =
Gm2

r(l −mεν)
, (II.27)

with the energy generation via neutrinos εν
9 which reduces the thermal timescale in the advanced

stellar phases.

8In the literature, there seems to be a separation of the two naming conventions: Eddington-Sweet circulation is
often associated with the circulation as described in Kippenhahn & Moellenhoff (1974); Kippenhahn (1974); Endal &
Sofia (1978); Heger et al. (2000). On the other hand, meridional circulation is linked with the solution of Zahn (1992).
Out of convenience, this nomenclature is kept throughout this work.

9The neutrino energy generation is negative because neutrinos transport energy away.
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Since the mixing of chemicals and transport of angular momentum is treated in a diffusive manner in

the MESA code used in this thesis (see Appendix B) the sign of the Eddington-Sweet circulation does

not matter but the braking µ-gradient velocity will always point the opposite way to vE. Therefore,

the effective Eddington-Sweet circulation net-velocity is determined by (Endal & Sofia, 1978)

vES ≡ max {|vE| − |vµ|, 0} (II.28)

The diffusion coefficient is then calculated as the product of the circulation velocity vES and the path

length of the distributing currents (Endal & Sofia, 1978)

DES ≡ min {rinst, Hv,ES} vES (II.29)

with the velocity scale height Hv,ES

Hv,ES =

∣∣∣∣
dr

d ln vES

∣∣∣∣ (II.30)

and the minimum extent of the instability rinst.

Zahn (1992) solved the problem of meridional circulation in a self-consistent picture without making

a rudimentary comparison of “velocities” - see Eqs.(II.26) and (II.28). He showed that the equation

of energy conservation, the Poisson equation and the conservation of angular momentum have to be

treated simultaneously. While the vertical transport of matter is still treated as a diffusion process,

the vertical transport of angular momentum is described by an advective-diffusive equation (Chaboyer

& Zahn, 1992; Zahn, 1992), which in the case of shellular rotation, a rotation law where the rotation

rate is constant on isobaric shells (see Section II.2.3), can be written in Eulerian coordinates as

∂

∂t

(
ρr2Ω

)
r

=
1

5r2

∂

∂r

[
ρr4Ω (U(r)− ṙ)

]
+

1

r2

∂

∂r

[
ρDr4 ∂Ω

∂r

]
. (II.31)

Here, D is the diffusion coefficient resulting from the sum of the various transport processes other than

the meridional circulation10, Ω is the average value of Ω on an isobar, ṙ is the change of the radius

due to expansion or contraction of the star and U(r) is the amplitude of the radial component of the

meridional circulation velocity (see e.g. Maeder & Meynet, 2012, for a review). If Eq.(II.31) is written

in Lagrangian formulation the effects of expansion or contraction will be automatically included and

the ṙ vanishes. The first term on the right hand side is the advection term, indicating the transport

by a velocity current, while the second term is the already discussed diffusive term.

It is more physical to treat the meridional circulation as an advective process rather than a diffusive

one because it describes the transport by a velocity current rather than the movement of angular

10The diffusion coefficients will be in an advective-diffusive scheme and different from the ones derived in this chapter
(see e.g. Ekström et al., 2012, for the GENEC variant).
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momentum from a location with high concentration to an area of low concentration (Zahn, 1992).

However, it is numerically more expensive to include in a stellar evolution code since a fourth order

differential equation needs to be solved. Potter et al. (2012a,b) compared the advective-diffusive and

the purely diffusive schemes for angular momentum transport. While they found differences between

the models on the main-sequence, the authors were unable to identify a preferred implementation and

the different models lead to similar qualitative conclusions. Also, if a magnetic dynamo operates (see

Section II.3) the magnetic coupling of differential rotating layers will dominate the transport of angular

momentum. Therefore, the difference of angular momentum transport between the advective-diffusive

and the purely diffusive scheme is negligible.

2.3 Horizontal Turbulence

Differential rotation gives rise to shear instabilities between layers with different rotation velocity,

creating turbulent motions. In a radiative region, where a thermal gradient stabilises motions in the

vertical direction, the turbulence is much stronger in the horizontal than in the vertical direction11

(Zahn, 1992). The horizontal turbulence is characterised by a diffusion coefficient, which also expresses

the horizontal viscosity. The expression of this coefficient, however, is uncertain and three different

forms have been proposed (Zahn, 1992; Maeder, 2003; Mathis et al., 2004). The horizontal turbulent

coupling favours a constant angular velocity on isobars. This enforces shellular rotation, a rotation

law where the rotation rate is constant on isobaric shells, i.e. Ω ≡ Ω(P ) ≡ Ω(r) with the average

radius r of a isobaric shell (Zahn, 1992), contrary to cylindrical rotation for example. The inclusion of

this rotation law brings many simplifications, for example when formulating the equations of stellar

structure - see Section B.1.2. Therefore, this form of rotation law is often used in stellar evolution

codes.

Some observations support the existence of horizontal turbulent motions. For example, the solar

tachocline12 is very thin according to helioseismic observations, which can be achieved with horizontal

turbulence (Spiegel & Zahn, 1992). Also, observations of the surface CNO elements are in favour

of the horizontal turbulence as explained in the following. It was shown that when only the large

scale meridional or Eddington-Sweet circulation is included in models, the predictions of surface CNO

elements are overestimated (e.g. Charbonneau et al., 1989). The solution is that while meridional or

Eddington-Sweet currents transport both, angular momentum and chemical elements, the two trans-

port processes interact differently with the horizontal turbulence. Chaboyer & Zahn (1992) showed

that the combination of the transport of chemical elements by the meridional circulation and the

horizontal turbulence is equivalent to a diffusion process (see also Fig.(11.10) in Maeder, 2009). The

11Vertical means along the radial direction and horizontal is on an isobar.
12The solar tachocline is the region where the solid body rotation in the radiative solar core transitions into the

convective envelope, where rotation varies with latitude.
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resulting effective diffusivity by meridional circulation in presence of horizontal turbulence is much

smaller than if the circulation would be applied alone, thus, the horizontal turbulence strongly inhibits

the transport of the chemical elements by the meridional circulation. This is not the case for the trans-

port of angular momentum. For the chemical elements, both the advective and diffusive processes

operate on the same quantity, the abundance Xi. In contrast, for angular momentum the diffusive

term acts on the derivative of Ω while the advective term acts on the angular momentum (r sin θ)2Ω.

Consequently, horizontal turbulence favours the horizontal uniformity of Ω and the meridional cir-

culation transports angular momentum, hence, angular momentum transport remains an advective

process and horizontal turbulence does not greatly affect it (Chaboyer & Zahn, 1992). Therefore, the

inclusion of horizontal turbulence will reduce the predicted surface CNO abundances but not influence

the transport of angular momentum and observations are better reproduced (Meynet & Maeder, 2000).

2.4 Shear Instabilities

In their interior rotating stars have density and angular velocity gradients, resulting from their strat-

ified structure. If this stable structure is perturbed instabilities can set in. For example, if a denser

fluid is pushed by a lighter one against gravitational acceleration the Rayleigh-Taylor instability

occurs. Another instability arises if two neighbouring regions rotate with different velocities, the

Kelvin-Helmholtz instability. The balance between the two instabilities needs to be studied in detail.

While a velocity gradient between differentially rotating layers may trigger an instability, a density

stratification favours stability. The condition that expresses the stability is the Richardson criterion

(e.g. Endal & Sofia, 1978), where instability leads to the dynamical shear instability. However, heat

losses and diffusion may change the stability of fluid elements, leading to the so-called secular shear

instability.

2.4.1 Dynamical Shear Instability

The Richardson criterion was first derived by Chandrasekhar (1961). A velocity gradient between

differential rotating layers provides energy to overcome the gravitational potential for the fluid element

to adiabatically turnover. Assuming there are two neighbouring fluid elements at locations z and z+δz

with velocities v and v+ δv, the work per unit volume to be done against gravity to exchange the two

elements is

δWgrav = gδρδz; with δρ =

(
dρint

dz
− dρext

dz

)
, (II.32)

with the density excess δρ (see Section II.1.1) at the end of the displacement. After their displacement,

both elements have the average velocity 1/2(v + δv). The kinetic energy per unit volume available to
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provide work against the gravitational potential is the difference between the total initial and total

final kinetic energy,

δEkin =
1

2
ρ

[
v2 + (v + δv)2 − 2 · (v +

1

2
δv)2

]
=

1

4
ρ(δv)2. (II.33)

The instability occurs when the kinetic energy from differential rotation overcomes the work against

the gravitational potential, hence, δEkin > δWgrav and which becomes for infinitesimal small variations

Ricrit =
1

4
>
g

ρ

N2

(∂v/∂z)2
≡ Ri, (II.34)

with the critical Richardson number Ricrit and the stabilising buoyancy frequency. Here, the gravity

entering the Brunt-Väisälä frequency is the effective gravity to account for the rotational distortion.

The Richardson criterion does not account for thermal effects. This assumption is only valid if the

instability works on a fast, dynamic timescale, i.e. when the Peclet number13 is much larger than

1. This condition is met, for example, during the advanced pre-supernova phases in massive rotating

stars.

Different formulations of the dynamical shear diffusion coefficients DDSI can be found in the literature

(Zahn, 1992; Maeder, 1997; Heger et al., 2000; Brüggen & Hillebrandt, 2001; Hirschi et al., 2004).

The diffusion coefficient of the dynamical shear instability used in this work is estimated similarly

to the diffusion coefficient of the Solberg-Høiland instability in Section II.2.1 (Endal & Sofia, 1978;

Pinsonneault et al., 1989; Heger et al., 2000),

DDSI =

{
min(rinst, HP )

[
1−max(

Ri
Ricrit

, 0)

]}2

/τdyn. (II.35)

The term in the second bracket allows for a smooth transition from a stable region (Ricrit < Ri) to

the unstable region and increases the mixing as the instability increases.

2.4.2 Secular Shear Instability

The assumption that the thermal timescale is negligible is not necessarily the case. Therefore, more

generally heat losses and heat diffusion need to be taken into account. These effects reduce the thermal

stratification and the shear instability can occur in regions that are stable according to the Richardson

criterion derived in Eq.(II.34). This process operates on a thermal timescale and is therefore a secular

process, hence the name secular shear instability.

The stability criterion for the secular shear instability needs to consider the stabilisation of thermal

stratification including heat losses and the stabilising gradient in chemical composition. Endal & Sofia

13The Peclet number is the ratio of the thermal to the dynamical timescale, Pe = v`/K, with the radiative conductivity
K.
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(1978) include two conditions, that need to be violated simultaneously for the secular shear instability

to set in.

The Prandtl number Pr is the ratio of thermal diffusion time scale to the angular momentum diffusion

time scale and can be calculated by dividing the kinematic viscosity by the thermal diffusivity. A

strong thermal diffusion thus results in a small Prandtl number, Pr � 1 and the stabilising effect of

the density gradient is removed, resulting in a stronger secular shear. The first criterion for instability

against secular shear is (Endal & Sofia, 1978)

RiSSI,1 ≡
Rcrit

8
PrRi < 1

4
, (II.36)

with the critical Reynolds number14 Rcrit ≈ 103 (Zahn, 1974).

The stability condition for RiSSI,1 implies that any differential rotation is unstable in the inviscid

limit (Pr → 0), despite any stabilising gradient in chemical composition. However, this is not correct

because the timescale for chemical diffusion is longer than the thermal timescale. In order to account

for the effect of the µ-gradient, the second condition for instability is the Richardson criterion in

Eq.(II.34) but only the ∇µ in N2 is considered (Endal & Sofia, 1978; Heger et al., 2000),

RiSSI,2 ≡
g2ϕ

ρHP

∇µ
(∂v/∂z)2

<
1

4
. (II.37)

If both criteria, Eqs.(II.36) and (II.37), are met the secular shear instability arises. The growth

timescale of this instability, τSSI ∼ Rcrit/|dΩ/d ln r|, is long compared to the dynamical timescale but

shorter than the Kelvin-Helmholtz timescale. The velocity of the instability, which is needed to esti-

mate a diffusion coefficient, can be calculated from the ratio of the size scale, rinst ∼
√
νdRcrit/|dΩ/d ln r|

and the timescale,

vSSI =

√
ν

Rcrit

dΩ

d ln r
. (II.38)

The diffusion coefficient is then computed by

DSSI ≡ min(vSSI, cs) min(Hv,SSI, HP )

[
1− max(RiSSI,1,RiSSI,2)

Ricrit

]2

, (II.39)

with the speed of sound, cs, and the velocity scale height of the flow, Hv,SSI ≡ |dr/d ln vSSI|. Similar

to the dynamical shear instability, the diffusion coefficient smoothly increases as the stability criterion

is more violated.

The horizontal turbulence from Section II.2.3 reduces the chemical composition gradients and tem-

perature stratification (Maeder, 1997). Consequently, the limiting chemical composition gradient in

14The Reynolds number is the ratio of inertial to viscous forces. This number helps in predicting flow patterns, i.e.
at a high Reynolds number a fluid flow tends to be turbulent.
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RiSSI,2 is reduced and might not completely suppress the occurrence of the shear instability, thus,

some mixing can occur. In order to take the reduction of the chemical composition gradient and the

temperature stratification into account, Heger et al. (2000) introduce two parameters ∈ [0, 1], which

they multiply to chemical mixing efficiency and the ∇µ, respectively - see also discussions in Chapters

B and IV.

2.5 Baroclinic Instabilities

A star with solid body rotation or a cylindrical rotation law is barotropic and ρ, P and T are constant

on equipotentials - see Section I.4. In other cases of differential rotation, such as shellular rotation,

quantities other than the pressure vary with latitude and the star is baroclinic. The variation of

the different quantities with latitude depends on the gradient of Ω. This baroclinicity introduces

various instabilities such as the Goldreich-Schubert-Fricke instability, the ABCD instability (Spruit

et al., 1983) and the triple-diffusive instability (Knobloch & Spruit, 1983). The latter two instabilities

currently lack reliable estimates of their mixing efficiencies. Therefore, their inclusion into stellar

evolution codes is unjustified (Heger et al., 2000).

2.5.1 Goldreich-Schubert-Fricke Instability

The Goldreich-Schubert-Fricke instability arises when there is an angle between surfaces of constant

specific angular momentum and the rotation axis (Goldreich & Schubert, 1967; Fricke, 1968). The

conditions for stability are

∂j

∂r
≥ 0 and

∂Ω

∂z
= 0. (II.40)

The first condition is the secular version of the Solberg-Høiland criterion, where thermal conduction

removed the stabilising temperature gradients. The second condition leads to a baroclinic instability

if the rotation rate depends on the distance from the equatorial plane. A displaced fluid element will

have a larger amount of angular velocity than its surrounding and the excess centrifugal force on this

element will further displace it. Accordingly, if the rotation profile is not conservative, meridional

flows will be driven which tend to enforce uniform rotation in chemically homogeneous regions (Endal

& Sofia, 1978). The stabilising buoyancy force on the displaced element can be removed by heat losses

on a thermal timescale. The larger the angle between the rotation axis and the lines of constant

rotation, the stronger this instability will be and its dependence on differential rotation is stronger

than for the Eddington-Sweet circulation. The circulation velocity can be estimated as (Endal &

Sofia, 1978)

vg =
2HT

Hj

d ln Ω

d ln r
vE, (II.41)
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with the Eddington-Sweet circulation velocity vE, Eq.(II.25), the temperature scale height HT ≡

−(dr)/(d lnT ) and the angular momentum scale height Hj ≡ (dr)/(d ln j). The Goldreich-Schubert-

Fricke instability has the same dependence on the chemical composition gradient as the Eddington-

Sweet circulation, hence, the total circulation velocity is calculated in the same way,

vGSF ≡ max {|vg| − |vµ|, 0} (II.42)

and so is the diffusion coefficient

DGSF ≡ min {rinst, Hv,GSF} vGSF (II.43)

with the velocity scale height Hv,GSF

Hv,GSF =

∣∣∣∣
dr

d ln vGSF

∣∣∣∣ . (II.44)

2.6 Discussion on Rotation-Induced Hydrodynamic Mixing

The treatment of the mixing processes in 1D stellar evolution codes includes many uncertainties. The

uncertainties arise because of the approximate and parametrised way the processes are included in

stellar modelling. For example Edelmann et al. (2017) compare 2D and 1D simulations of the dynam-

ical shear instability and conclude that the dynamical process operates on a much faster timescale

than the evolutionary timesteps in the 1D simulations. As a result, the estimated mixing efficiency

will be overestimated in 1D simulations. Another example is the treatment of a possible chemi-

cal composition gradient. In the rotational instabilities discussed above, this gradient is taken into

consideration by writing it formally as a “breaking-velocity”. This obviously is not the proper treat-

ment, which leads for example to the scenario that a chemical composition gradient can completely

suppress rotation-induced mixing - see discussion in Chapter IV. Other uncertainties are due to the

different schemes used, either a purely diffusive or an advective-diffusive scheme, and approximations

within these schemes. For example, Heger et al. (2000) names the derived diffusive descriptions of

the rotation-induced mixing processes “order-of-magnitude” estimates and therefore scales the sum of

their diffusion coefficients with a parameter - see Section B.1.4. This, however, leads to the question

how much they have to be scaled, if the scaling applies the same way in different stars and whether

all the estimates have to be scaled by the same amount. On the other hand, in the advective-diffusive

scheme, there exist different prescriptions to express the horizontal turbulent coefficient (Zahn, 1992;

Maeder, 2003; Mathis et al., 2004) and two different expressions of the shear turbulence (Maeder,

1997; Talon & Zahn, 1997). Also, in both the purely diffusive and the advective-diffusive schemes, the
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various rotation-induced instabilities are considered separate and their effects are summed together.

This neglects any interaction between them. Maeder et al. (2013) show that the different instabilities

interact with each other and should not be taken into account separately.

The transport of angular momentum by hydrodynamic instabilities alone is not sufficient and the

predicted core rotation rates from 1D calculations are too fast compared to observations (e.g. Heger

et al., 2000; Suijs et al., 2008; Eggenberger et al., 2012; Mosser et al., 2012; Cantiello et al., 2014).

Therefore, an additional mechanism needs to be included. Potential candidates are magnetic dynamos

(see Section II.3 and e.g. Spruit, 2002; Fuller et al., 2019) and gravity waves (e.g. Talon & Charbonnel,

2005; Belyaev et al., 2013; Fuller et al., 2015b; Edelmann et al., 2019). For a recent review on rotation

rates in lower mass stars inferred by asteroseismology and angular momentum transport mechanisms

see e.g. Aerts et al. (2019).

3 Magnetic Fields

Stellar observations show the existence of surface magnetic fields in stars across the Hertzsprung-

Russell diagram and in compact remnants, allowing to measure and characterise them (e.g. Donati

& Landstreet, 2009; Mathys, 2012; Ferrario, 2018). The presence of magnetic fields in massive stars

is often accompanied with slow rotation and a chemically peculiar photosphere (Walder et al., 2012).

Only a small amount of O- and B-stars (. 10%) are reported to have large-scale surface magnetic fields

(Donati & Landstreet, 2009; Fossati et al., 2015). Strong magnetic fields in the cores of stars have

been potentially indirectly detected through asteroseismology, where the magnetic field is thought to

have suppressed dipole oscillatory modes (Fuller et al., 2015a).

There exist two configurations of magnetism: the long-lived, stable and the short-lived, dynamical

configurations. The stable configurations are thought to be fossil fields, which originate from the mag-

netic field in the interstellar medium and get amplified during the formation of a star (e.g. Braithwaite

& Nordlund, 2006). Dynamical field configurations, on the other hand, are thought to be driven by

instabilities and dynamos in rotating stars (Tayler, 1973; Wright, 1973). The understanding of both

types of magnetic configuration is still ongoing (see e.g. Walder et al., 2012, for a review).

Magnetic fields are often one of the least explored topics in stellar evolution theory. Nevertheless,

magnetic fields play a crucial role in some specific problems of stellar evolution. For example, mag-

netic fields can transport angular momentum by torques further reducing the core rotation, or the

interaction between rotation and magnetic fields can wind up the magnetic field lines causing insta-

bilities by magnetic buoyancy. Even initially weak magnetic fields in the interior of stars are expected

to affect the angular momentum transport (Mestel, 1953), which then leads to further changes such as
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Figure II.2: A schematic representation of the Ω-effect and α-effect. The black and purple lines
indicate magnetic field lines.

transport of chemical elements and mass-loss. Magnetic fields affect the final fate of massive stars and

exotic objects such as gamma-ray bursts (e.g. Woosley & Bloom, 2006) and magnetars (e.g. Woosley,

1993; Lyutikov & Blackman, 2001; Woosley & Bloom, 2006; Turolla et al., 2015).

3.1 Magnetic Instabilities and Dynamo Processes

In general, a magnetic dynamo is a process where a magnetic field is preserved against ohmic dissi-

pation by a fluid flow and is amplified in the process by field line stretching. In principle, a dynamo

converts kinetic energy into magnetic energy. The challenge with massive stars is that their envelopes

are radiative, at least most of their life on the main-sequence, therefore the solar-type dynamo15

cannot be applied. Alternative explanations are a different kind of dynamos or the above-mentioned

fossil fields, maybe even a combination of both. The precise origin of both alternatives is still under

debate. One of the problems is the stability of the magnetic fields involved in the dynamo process.

While dynamo theories generally rely on instabilities of the magnetic field to close the dynamo loop,

15In the Sun shear and turbulence near the surface convective zone may create loops in the toroidal or poloidal field
lines.

[
Both, poloidal and toroidal, refer to directions relative to a torus. The poloidal direction is the short way around

the surface of the torus, whereas the toroidal direction follows the outer radius around the torus. Historically, these
coordinates have been used in context of the Earth’s magnetic field, with toroidal being parallel to lines of latitude and
poloidal being the direction of the magnetic field.

]
These loops then generate an electrical current, which according to

Ampères’ law creates a field of the opposite component (α effect). Furthermore, poloidal field lines in a differentially
rotating star are stretched, creating toroidal components (Ω effect) - see also Fig.(II.2).
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fossil field theories depend on stable field configuration so that it lasts for the lifetime of a star. It

has been shown that magnetic fields with mixed poloidal and toroidal components are stable and that

initially unordered fields often relax to this long-lasting mixed topology (Braithwaite & Spruit, 2004;

Braithwaite & Nordlund, 2006). On the other hand, pure poloidal fields are unstable if some field

lines close outside of the star (Wright, 1973) and a pure toroidal field is unstable to non-axisymmetric

perturbations (Tayler, 1973; Wright, 1973).

In the convective core of massive stars a dynamo process is likely to exist (Charbonneau & MacGre-

gor, 2001; Brun et al., 2005), however, it is currently not clear if these generated fields can reach the

surface. In case of rotating stars, differential rotation can generate a dynamo action in the radiative

zone, the so-called Tayler-Spruit dynamo, but it is dependent on the gradient in the rotation rate

(Spruit, 1999, 2002). In this case, the magnetic energy is generated from differential rotation.

An operating dynamo process in the interior of a differentially rotating star creates a torque. This

torque can couple the differential rotating layers and reduce the degree of differential rotation, if it

acts on a faster timescale than the process that creates the differential rotation, i.e. spin-down or

stellar evolution timescale. This may lead to near-solid body rotation - see also Chapter IV.

3.1.1 Tayler Instability

There are several magnetic instabilities that may occur, which all produce displacements that affect

rotation and the magnetic fields. The most important one is the Tayler instability, because this

instability has the lowest threshold and the shortest timescale of the known magnetic instabilities.

Tayler (1973) showed for a non-rotating star that a purely toroidal magnetic field Bϕ(r, θ) is unstable

on the Alfvén timescale τA = ω−1
A = R/vA

16 in a stably stratified medium, even if the field is weak.

Assuming a simple picture with an azimuthal magnetic field (see e.g. Fig.(II.2)) where the field lines

are ordered concentric around the rotation axis as shown in Fig.(II.3). Between the magnetic loops

there is a magnetic pressure PM = B2/(8π). As a consequence, the loops move apart sideways from

the axis of rotation in a disordered way. The instability is mostly restricted to horizontal surfaces

where it avoids work against the stable stratification.

Pitts & Tayler (1985) showed that the Tayler instability also occurs in rotating stars. There, however,

the growth time of the Tayler instability is σB = ω2
A/Ω instead of ωA because the oriolis force reduces

the growth rate of the instability. This argument assumes that ωA � Ω, which is generally the case

with the ordering (Spruit, 2002)

N � Ω� ωA. (II.45)

16with the Alfvén frequency, ωA, and the Alfvén velocity, v2
A = B2/(4πρ) ≡ (tension)/ρ, the velocity with which the

magnetic perturbation of the magnetic field propagates along the field lines, i.e. it characterises magnetic equilibrium
in a non-rotating star.
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Figure II.3: Left : A schematic representation of the Tayler instability. The concentric rings around
the rotation axis, indicated with the rotation velocity Ω, represent an azimuthal magnetic field, which
is exposed to a magnetic pressure, indicated by the red arrows. As a result, the magnetic loops move
apart sideways (black arrows) as an unordered m = 1 instability. Adapted from Spruit (1999).
Right : Schematic representation of magnetohydrodynamic instabilities near the rotation axis of a
star. The magnetic field lines are indicated with arrows on the “rings”. The figure shows the m = 0
disturbance, which requires motion along the rotation axis, and the m = 1 instability, which involves
motion mostly perpendicular to the rotation axis. Adopted from Tayler (1973).

Considering thermal effects, the minimum Alfvén frequency for the Tayler instability to occur can be

found by equating the minimal amplitude of the instability so that it is not damped and the condition

that the magnetic energy has to be larger than the kinetic energy of the restoring forces. This gives

the condition (Spruit, 1999)

ωA

Ω
>

(
N

Ω

)1/2 ( η
K

)1/4 ( η

r2Ω

)1/4

, (II.46)

with the magnetic diffusivity η and the thermal diffusivity K.

In a slowly rotating star, however, the condition changes to ωA > Ω. In this case, the Richardson

criterion (Eq.(II.34)) is first met and the shear instability arises before the Tayler instability sets in.

3.1.2 Tayler-Spruit Dynamo

The first proposed magnetic dynamo operating in the radiative region of a differential rotating star,

often called Tayler-Spruit dynamo, was suggested by Spruit (1999, 2002). The driving magnetic

instability of this dynamo process is the Tayler instability, discussed in Section II.3.1.1.

In a schematic picture, the magnetic dynamo loop works in the following way. For simplicity, the initial

configuration is a star with a shellular rotation Ω(r) and an initially weak poloidal magnetic field17.

Differential rotation winds up the radial component Br of the poloidal field, forming an azimuthal

17A strong field would lead to magnetic coupling between differential rotating layers, hence, the star would rotate as,
or close to, a solid body. Furthermore, a weak magnetic fields obeys the condition ωA � Ω.
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field Bϕ after a few rotation periods. The field components evolve as (Spruit, 1999)

∂Br
∂t

= 0,
∂Bθ
∂t

= 0,
∂Bϕ
∂t

= r sin θBP∇Ω, (II.47)

with the poloidal field BP and the angle of latitude θ. After a few differential turns the field component

Bϕ is

Bϕ = r sin θ

∫ t

0

|∇Ω|dt×
{

BP
∇Ω

|∇Ω|

}
, (II.48)

were the term r sin θ
∫ t

0
|∇Ω|dt is a factor that accounts for the number of differential revolution, i.e.

the number of rotations due to differential rotation , normalised by 2π and ∇Ω/|∇Ω| is a unit vector

in the direction of the gradient of Ω, i.e. orthogonal to the horizontal layers. In simple terms, the

initially weak magnetic field is amplified depending on the differential rotation and number of differ-

ential turns, meaning that the rotation energy is transferred into magnetic energy18. The azimuthal

magnetic component, Bϕ, grows linearly in time and eventually dominates over Br. At some point, Bϕ

becomes unstable to the Tayler instability discussed in Section II.3.1.1. While this instability mainly

generates horizontal components of the magnetic field, it also produces a small amount of Br, which

is limited by the action of the buoyancy work. The radial component of the field is further wound up

by differential rotation, amplifying the field component Bϕ. The toroidal field is once again unstable,

closing the dynamo loop. The maximal amplitude of the magnetic field generated by this dynamo

action is limited by dissipation effects. The horizontal component of the magnetic field favours shellar

rotation whereas the vertical component favours solid body rotation.

In his work, Spruit (2002) considered two cases, case 0 where the chemical composition gradient dom-

inates over the thermal gradient and case 1 with ∇µ = 0. In the following the two cases are considered

and indicated with the subscript 0 and 1, respectively. The condition for the occurrence of the Tayler

instability (Eq.(II.46)) is for case 1 were thermal diffusion reduces the stabilising stratification. In

case 0, (η/K) = 1. Spruit (1999) assumed η/K � 1 for the derivation of Eq.(II.46), hence it is less

restrictive. Therefore, the Tayler instability sets in at lower field strengths in case 1 than in case 0.

Spruit (2002) derives the amplitudes of the dynamo-generated field for a steady equilibrium where the

amplification timescale due to the dynamo matches the damping timescale due to magnetic diffusivity.

He finds for the saturated field components generated by the dynamo process in case 0

Bϕ,0 = (4πρ)
1
2 rq

Ω2

N
, Br,0 = q

(
Ω

N

)2

Bϕ,0 (II.49)

18This is fundamentally different from, for example, the solar dynamo, where the dynamo is driven by the convective
velocity field.
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and in case 1

Bϕ,1 = (4πρ)
1
2 rq

1
2 Ω

(
Ω

N

) 1
8
(

K

r2N

) 1
8

, Br,1 =

(
Ω

N

) 1
4
(

K

r2N

) 1
4

Bϕ,1. (II.50)

q is the dimensionless differential rotation rate or shear

q =
∂ ln Ω

∂ ln r
. (II.51)

The dynamo process generates magnetic energy from differential rotation. Therefore, in order for the

dynamo process to operate there has to be a minimum amount of differential rotation. Spruit (2002)

derived the minimal necessary shear for the Tayler-Spruit dynamo to be active as

q0 =

(
N

Ω

) 7
4 ( η

r2N

) 1
4

, q1 = q0

( η
K

) 3
4

. (II.52)

If the shear is below this limit, then the differential rotation is not strong enough to amplify the

magnetic field in the dynamo loop.

It is worth noting that Maeder & Meynet (2004) avoid the simplification to assume that either the

temperature gradient or a gradient in chemical composition dominates and derive the Tayler-Spruit

dynamo theory for the general case. This also includes non-adiabatic effects, which favour the growth

of the magnetic fields. However, the solution of Maeder & Meynet (2004) requires a fourth- order

differential equation to be solved which is computational expensive and can make the code unstable.

II.3.1.2.1 Angular Momentum Transport by the Tayler-Spruit Dynamo

The main implication of the dynamo process and the magnetic field it produces is the ability to

transport angular momentum. This is especially crucial in radiative layers where otherwise only the

less efficient rotation-induced hydrodynamic instabilities transport angular momentum. The magnetic

coupling is strong enough to favour a solid body rotation and efficiently spin down the cores. This

results in a faster surface rotation, which favours mass and angular momentum loss.

The torque by volume unity, SB , induced by the magnetic fields can be obtained by writing the

Lorentz force and the Maxwell equation (4π/c)j = ∇×B,

SB = r× FL =
1

c
r× (j×B) =

1

4π
r× ((∇×B)×B), (II.53)

which can be written approximately19 in modulus form as SB ≈ (1/4π)BrBϕ, hence, for the two cases

19This form is a dimensional estimate by taking r · δB
δr
·B ≈ δB ·B
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of Spruit (2002)

SB,0 ≈ ρΩ2r2q3

(
Ω

N

)4

, SB,1 ≈ ρΩ2r2q

(
Ω

N

) 1
2
(

K

r2N

) 1
2

. (II.54)

The stress can be expressed in terms of the kinematic viscosity ν = η/ρ, which relates the shear and

the magnetic torque as SB = ρνr∂Ω/∂r ≡ ρνΩq. Combining this and Eq.(II.54) yields the viscosities

for the angular momentum transport,

ν0 = r2Ωq2

(
Ω

N

)4

, ν1 = r2Ω

(
Ω

N

) 1
2
(

K

r2N

) 1
2

. (II.55)

Surprisingly, if the dynamo is active, i.e. the shear satisfies the condition q > q1, the effective viscosity

in case 1 is independent of the shear rate. These viscosities determine the radial transport of angular

momentum under the assumption of shellular rotation.

Under the assumption of a monotonic dependence of the stress on the chemical and thermal strati-

fications, Spruit (2002) suggest a patching formula to connect the two limiting cases. The minimum

shear for the dynamo to operate can be taken as the sum qmin = q0 + q1, which takes into account

that the dynamo action is only possible when ∇Ω is strong enough to overcome the chemical and

compositional stratification. The effective viscosity produced by the Tayler-Spruit dynamo-generated

magnetic field can then be patched together20 with the modified viscosities of the two limiting cases,

ν0 and ν1, as

νAM,TS =
νNµ · νNT

νNµ + νNT

f(q), (II.56)

with

νNµ = r2Ωq2

(
Ω

Nµ

)4

, νNT
= r2Ω max

{(
Ω

NT

) 1
2
(

K

r2NT

) 1
2

, q2

(
Ω

NT

)4
}
. (II.57)

The max-function for νNT
is included to correct for the error in its derivation of not including cases

where thermal diffusion has no effect (Spruit, 2002). The factor in Eq.(II.56) includes the stabilising

effects of the chemical composition and the thermal stratification at the same time. The function f(q)

causes the viscosity to decrease smoothly when the shear approaches the minimum amount required

for the dynamo action to operate and is zero if the dynamo does not operate,

f(q) =





1− qmin/q (q > qmin)

0 (q ≤ qmin)

(II.58)

20Spruit (2002) admits the algebraic complexity of an expression for the general case and, considering the sophistication
of the analysis, presents a simpler patching formula to connect case 0 and case 1. Note however, that Maeder & Meynet
(2004) derived the Tayler-Spruit dynamo for the general case.
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The viscosity for angular momentum transport can then be included in the diffusion equation to

calculate the change in angular momentum - see Appendix C.3.2.

II.3.1.2.2 Chemical Mixing by the Tayler-Spruit Dynamo

The dynamo process described above creates fluid motion that can mix the chemical elements. In

the radial direction the mixing is generated by the same displacements that produce the magnetic

diffusivity. Therefore, the effective diffusivity of the Tayler-Spruit dynamo DTS can be set equal to

the effective magnetic diffusivity within a factor of unity (§3.2 Spruit, 2002). This results in a similar

patched form for the effective diffusivity,

DTS =
DNµ ·DNT

DNµ +DNT

f(q), (II.59)

with f(q) defined in Eq.(II.58) and

DNµ = r2Ωq4

(
Ω

Nµ

)6

, DNT = r2Ω max

{
q

(
Ω

NT

) 3
4
(

K

r2NT

) 3
4

, q4

(
Ω

NT

)6
}
. (II.60)

The comparison of νTS and DTS shows that the latter is generally smaller, since Ω � N . This

is because angular momentum is transported by magnetic stresses whereas the chemical mixing is

produced by Reynolds stresses from the fluid flow.

3.1.3 Fuller-modified Tayler-Spruit Dynamo

The Tayler-Spruit dynamo discussed in Section II.3.1.2 enables more angular momentum transport

in stars. Comparisons with observations, however, suggest that this dynamo process alone does not

transport enough angular momentum - see discussion in Section II.3.2. Furthermore, there are also

problems with the Tayler-Spruit dynamo as proposed by Spruit (1999, 2002). The Tayler instability

grows fastest in the non-axisymmetric m = 1 mode (Tayler, 1973, ; see Fig.(II.3)). Hence, the

Br magnetic field component generated by the instability is non-axisymmetric (Zahn et al., 2007).

Consequently, the winding up of Br will not give an axisymmetric net increase in the Bϕ magnetic

field component and the axisymmetric components of Br and Bϕ are not necessarily related via

Eqs.(II.49) or (II.50). Also, Spruit (2002) might overestimate the damping rate of large background

fields Bϕ that vary on much larger lengthscales than the displacement of the Tayler instability lr

(Denissenkov & Pinsonneault, 2007), which is normally taken as the typical lengthscale for damping,

γdamp ∼ ηeff/l
2
r , with an effective turbulent diffusivity ηeff . Such a large scale field is more or less

constant on the displacement lengthscale. Thus, displacements do not mix the field’s lines of opposite

polarity and no magnetic reconnection or dissipation occurs. Fuller et al. (2019) show that loops in

the field can still dissipate via reconnection after mitigation to the poles where the loop has a smaller
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spatial extent. This mechanism, however, causes less damping of the large scale component of Bϕ.

Therefore, the saturated values of the magnetic field components can reach larger values and produce

stronger magnetic torques.

Based on these issues, Fuller et al. (2019) calculate the damping of the perturbed non-linear fields

from the Tayler instability, δB. They find a non-linear energy dissipation rate of

Ėdamp ∼
δvA

r
|δB⊥|2, (II.61)

with the perturbed Alfvén frequency δvA ∼ δB/
√

4πρ and the horizontal component of the perturbed

magnetic field δB⊥. This is one of the key differences to Spruit (2002) who uses (i) the large-scale

background magnetic field Bϕ to determine the energy dissipation and (ii) for the turbulent damping

rate at saturation the growth rate of the magnetic field, Ėdamp ∼ σB |δBϕ|2 = (ω2
A/Ω)|δBϕ|2. Fuller

et al. (2019) argues that this is unphysical because it is the Alfvén waves that travel on Bϕ that are

damped after cascading to small scales, not Bϕ itself.

At saturation of the instability a statistically stationary state is reached where the growth rate is

equal to the damping rate, (ω2
A/Ω) ∼ (δvA/r), and the perturbed and background fields are related

by δB⊥ ∼ (ωA/Ω)Bϕ. Hence, the non-linear energy dissipation rate can be written as a function of

the background field

Ėdamp ∼
ω4

A

Ω3
|Bϕ|2. (II.62)

In the picture of Fuller et al. (2019), the energy from differential rotation is converted into magnetic

energy by winding up a radial field into a toroidal field. The latter is then unstable to the Tayler

instability, which converts the magnetic field energy into magnetic and kinetic energy of the perturbed

magnetic and velocity field. These perturbations are then damped into heat by the turbulent cascade.

Therefore, in the stationary state, the rate of the amplifying energy, Ėamp ∼ 2BϕḂϕ ∼ qΩBϕBr, must

be the same as the energy dissipation rate, giving

qΩBϕBr ∼
ω4

A

Ω3
|Bϕ|2 (II.63)

Combining the above equations and the ratio21 (Br/Bϕ) ∼ ωA/Neff , with the effective Brunt-Väisälä fre-

quency Neff ' η
KN

2
T + N2

µ (see Eq.(II.3) but also the discussion in Fuller et al. (2019), Appendix C)

21This ratio is the same as for the Tayler-Spruit dynamo. However, there it is only valid for the non-axisymmetric
component of Br, whereas in the Fuller-modified case it relates the axisymmetric component of Br and Bϕ.
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to account for radiative losses, it is possible to write the amplitudes of the fields at equilibrium

Bϕ√
4πρr2

= ωA ∼ Ω

(
qΩ

Neff

) 1
3

,
Br√
4πρr2

∼ Ω

(
q2Ω5

N5
eff

) 1
3

,

δB⊥√
4πρr2

∼ δvA

r
∼ Ω

(
qΩ

Neff

) 2
3

,
δv⊥
r
∼ Ω

qΩ

Neff
. (II.64)

II.3.1.3.1 Angular Momentum Transport with the Fuller-modified Tayler-Spruit dy-

namo

The fields in Eq.(II.64) couple differentially rotating layers, similar to the Tayler-Spruit dynamo

in Section II.3.1.2.1, and transport angular momentum. The angular momentum transport can be

calculated in the same way as for the Tayler-Spruit dynamo by first calculating the magnetic torque

SB ∼ BϕBr ∼ 4πρr2qΩ2

(
Ω

Neff

)2

(II.65)

which then relates to an effective diffusivity of angular momentum

νAM,TSF =
SB

4πρqΩ
= α3r2Ω

(
Ω

Neff

)2

(II.66)

The factor α is introduced to account for the prefactors in the magnetic energy dissipation balance,

which is difficult to predict in an analytical argument (Fuller et al., 2019). α parametrises the result

via the saturated Alfvén frequency,

ωA = αΩ

(
qΩ

Neff

) 1
3

, (II.67)

and is of order unity to fit observational data (Fuller et al., 2019).

As for the Tayler-Spruit dynamo, the Fuller-modified dynamo needs a minimum amount of differential

rotation in order to operate, which is obtained by combining the condition for instability, Eq.(II.46),

and the saturated Alfvén frequency, Eq.(II.67), giving

qmin =
1

α3

(
Neff

Ω

) 5
2 ( η

r2Ω

) 3
4

. (II.68)

II.3.1.3.2 Chemical Mixing by the Fuller-modified Tayler-Spruit Dynamo

Fuller et al. (2019) estimated the effective diffusivity of the Fuller-modified Tayler-Spruit dynamo as

DTSF ∼ r2Ω

(
Ω

Neff

)2(
qΩ

Neff

) 5
3

. (II.69)

The ratio of the effective chemical mixing diffusivity to effective angular momentum diffusivity is

74



II.3. MAGNETIC FIELDS

DTSF/νAM,TSF ∼ (qΩ/Neff)5/3. In most stars Ω/Neff is tiny, hence, the chemical mixing by the

dynamo process is less important than angular momentum transport. Generally22, the timescale for

chemical mixing is longer than the Ohmic diffusion timescale, which is longer than the stellar evolution

timescale (Cantiello et al., 2016). Therefore, the chemical mixing is negligible (Fuller et al., 2019).

3.2 Discussion on Magnetic Fields

Stellar models that include the Tayler-Spruit dynamo are able to efficiently extract angular momen-

tum from the core. For example, this allows the explanation of the near solid body rotation of the

Sun (Eggenberger et al., 2005). A more efficient angular momentum transport will also predict slower

rotation rates of neutron stars and black holes. However, while the Tayler-Spruit dynamo is efficient

at extracting angular momentum from the core of a star, it fails to reproduce the slow rotation rate

of white dwarfs, neutron stars and black holes (Heger et al., 2005; Suijs et al., 2008) or the internal

rotation profiles of sub-giants or red giants (e.g. Eggenberger et al., 2012, 2019a,b; Cantiello et al.,

2014). The Fuller-modified Tayler-Spruit dynamo enables to spin down stellar cores more efficiently

and it can match the rotation rates of neutron stars (Fuller et al., 2019; Ma & Fuller, 2019) but it

cannot explain the observed rotation profiles in low mass stars in its current form (e.g. den Hartogh

et al., 2019; Eggenberger et al., 2019c). The problem is that it cannot simultaneously reproduce the

trend of the asteroseismic measurements in the sub-giant and giant stars.

The existence of the Tayler-Spruit dynamo is still strongly debated. Magnetohydrodynamic simula-

tions of instabilities in the radiative zone of a differentially rotating star of Braithwaite & Nordlund

(2006); Zahn et al. (2007) show the presence of the Tayler instability. However, while the simulations

of Braithwaite & Nordlund (2006) find the existence of a dynamo loop, the results by Zahn et al.

(2007) do not show any dynamo action. Also, Rüdiger et al. (2012) analyse the linear theory of the

Tayler instability and do not find any dynamo action resulting from this instability.

Also, there are other open questions correlated to a magnetic dynamo process. For example little is

known about either the strength of the initial field or the efficiency of instabilities in amplifying the

magnetic fields.

There are other magnetic instabilities that might operate in stars (see e.g. Spruit, 1999). For example,

in a differential rotating star where the angular momentum decreases outwards, a weak magnetic field

is unstable to the magneto-rotational or magnetic shear instability (Velikhov, 1959): Radial motion of

a fluid element in a magnetic differentially rotating region is opposed by two effects: (i) the magnetic

field enforces rigid rotation and (ii) the stretched field lines try to bring back the fluid element. While

(ii) favours stability, (i) leads to an instability because the fluid element has an excess of angular

momentum, similar to the second term in Eq.(II.23). Wheeler et al. (2015) found that the magneto-

22unless q � 1 or Neff � N .
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rotational instability operates in massive stars during the post-main-sequence evolution throughout

the intermediate stages, where it can additionally slow down the core rotation. The instability only

occurs in regions with sufficient shear to overcome the stabilising buoyancy. Therefore the instability

is rather sensitive to convective boundary uncertainties. However, the Tayler-Spruit dynamo is more

efficient at transporting angular momentum than the magneto-rotational instability because it is ac-

tive over a larger spatial extent and less intermittent. Furthermore, it has a lower threshold to be

activated. Hence, in most cases it reduces the shear before the magneto-rotational instability arises.

Another example is the magneto-rotational turbulence, which is created by the redistribution of the

magnetic flux, that can also drive the generation of a large-scale magnetic flux, the so-called α-effect

(Brandenburg, 2001). This process can generate both, poloidal and toroidal fields. However, the

toroidal field is more efficiently generated by shear in differentially rotating stars, which is called the

Ω-effect. Therefore, the α-effect is only applied for the generation of a poloidal field. The combination

of the two processes creates a dynamo loop, the α-Ω dynamo. While Potter et al. (2012c) find that

the α-Ω dynamo allows a better comparison with the observed nitrogen surface enrichment in less

massive stars, they also find that the α-Ω dynamo cannot sustain itself in stars with masses M &

15 M�.

More recently, Takahashi & Langer (2020) proposed a magneto-rotational scheme which treats the

interplay between magnetic fields, rotation, mass-loss and changes in the density and temperature in

a self-consistent manner. They derived the magnetic field components from the mean-field magneto-

hydrodynamic equation using Alfvén’s theorem. In this framework, angular momentum transport

due to the Lorentz force is formulated in a conservative form. Their work so-far is limited to the

evolution of a low mass star, which reproduces the core and envelope rotation periods observed by

asteroseismology. Whether this formalism is able to explain the missing angular momentum transport

in massive stars will be answered by future studies.

4 Discussion

A consequence of a magnetic dynamo is the fact that shear mixing by differential rotation is reduced.

However, the Eddington-Sweet circulation (or meridional circulation) is more rapid in rigid rotat-

ing models than in the differentially rotating ones (Maeder & Meynet, 2005). Consequently, in a

model with strong magnetic coupling, thus closer to solid body rotation, there is more mixing in the

radiative zones due to the meridional flows. This leads to higher surface enrichments and higher sur-

face velocities in magnetic models than in non-magnetic ones. However, the interaction between the

Tayler-Spruit dynamo and the large-scale meridional circulation is not well understood. For example

does a strong magnetic field reduce or even damp the slower hydrodynamic flow?
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Stars at solar metallicity with masses above & 40 M� experience strong stellar winds that remove

large parts of the envelope, if not all, already during the main-sequence. This mass-loss also removes

angular momentum from the surface. Since magnetic fields couple the core and envelope, the core will

also reduce its rotation rate substantially. Therefore, the stellar cores tend to rotate slowly in these

stars, which helps to explain the rotation rate of young pulsars (Heger et al., 2005) but impedes the

explanation of the progenitors of collapsars to produce long soft gamma-ray bursts as proposed by

Woosley et al. (1993). Only stars with initially very rapid rotation might produce a collapsar (Hirschi

et al., 2005b; Yoon & Langer, 2005), thus, magnetic fields reduce the gamma-ray burst rate prediction.

The different mixing processes are generally treated separately, in reality however they do affect

each other. An example is the interaction between convective boundary mixing, rotation and mag-

netic fields. While the problem of convective boundary mixing is occupying scientists already for

decades, the interaction of this process with the effects of rotation and magnetic fields adds another

layer of complexity to the problem (see for example Korre et al., 2021; Varma & Müller, 2021). As

a consequence of the effective angular momentum transport by turbulent convection, there might be

a shear layer building up between the convective region and the radiative zone. This generates shear

mixing and possibly activates a magnetic dynamo. How the two turbulent flows, convective boundary

mixing and rotation-induced shear interact with each other and how they are affected by the possible

magnetic field is still an unanswered question. Moreover, rotation affects other instabilities, such as

the thermal-driven mixing processes, stellar winds and so forth. For example, convection in the core

of rotating massive stars becomes anisotropic due to the rotational deformation of the core. This

anisotropy results in a misalignment between the thermal gradient and the thermal flux, which leads

to baroclinicity and circulation currents in the radiative zone, inducing a much stronger meridional

flow (Jermyn et al., 2018). Therefore, despite the fast development concerning stellar convection,

rotation and magnetic fields in recent years, there is still a lot of work to do.

77



Chapter III
The Relative Importance of Convective

Uncertainties

In this Chapter, I investigate the impact of uncertainties due to convective boundary mix-

ing, commonly called “overshoot”, namely the criterion for the boundary location and the

amount of mixing beyond the convective boundary, on stellar structure and evolution. For

this I calculate two grids of stellar evolution models with the MESA stellar evolution code,

one with the Ledoux and the other one with the Schwarzschild boundary criterion, and

for each vary the amount of convective boundary mixing. I calculate each grid with the

initial masses 15, 20 and 25 M�. The evolution of the stellar models is followed from the

start of hydrogen burning to the end of helium burning. The impact on nucleosynthesis

during helium burning is also investigated. I find a broadening of the main sequence with

an increasing amount of convective boundary mixing, which is in better agreement with

observations. Furthermore during the core hydrogen burning phase there is a convergence

between the Ledoux and Schwarzschild models due to convective boundary mixing. The un-

certainties of the intermediate convective zone causes the models to diverge again after the

main sequence. The behaviour of this convective zone strongly affects the surface evolution

of the model, i.e. how fast it evolves red-ward. The amount of convective boundary mixing

impacts the size of the convective cores and the nucleosynthesis, e.g. the 12C to 16O ratio

and the weak s-process. Lastly, I determine the uncertainty that the range of parameter

values investigated introduce and find differences of up to 70% for the core masses and the

total mass of the star.

The majority of the content of this Chapter was published in Kaiser et al. (2020).
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III.1. INTRODUCTION

1 Introduction

Convection is one of the key physical processes in stars. In massive stars for example, several recent

studies have shown the sensitivity of the pre-supernova structure and their explosion likelihood to the

details of their complex convective history (Ugliano et al., 2012; Sukhbold & Woosley, 2014; Müller

et al., 2016; Sukhbold et al., 2016; Ertl et al., 2016; Sukhbold et al., 2018; Chieffi & Limongi, 2019).

In this Chapter, I investigate the the relative importance of the modelling uncertainties linked with

convective boundary mixing and their impact. In particular, I focus on the location of the convective

boundary (“Schwarzschild versus Ledoux criterion”) and the amount of convective boundary mixing

- see Sections II.1.1 and II.1.3.

This Chapter focusses on the early stellar stages, starting at the zero-age main-sequence and ending at

core helium depletion. The goal is (i) to highlight, which aspects of the convective boundary physics

lead to the largest uncertainties in the model prediction as well as (ii) which observational test and 3D

hydrodynamic simulations may help constrain convective modelling in 1D stellar evolution models. I

do not use any “new” physics nor do I claim to use the “right” physics. I simply use the choices that

are frequently found in the literature. This study therefore helps to estimate the uncertainty of model

predictions found in the literature.

This Chapter is structured as follows. In Section III.2, I outline the input physics and numerics

used for the simulations. In Sections III.3 to III.6, I present the impact of the variations on the stellar

models and their evolution. Finally, in Section III.7, the results are discussed and some quantities are

compared to the literature. The theory of convective mixing is discussed in Section II.1.

2 Physical Ingredients

In order to study the impact of convective boundary uncertainties in massive star models, I computed

a set of non-rotating stellar models at solar metallicity with three initial masses, 15, 20, and 25 M�.

The simulations were computed using the MESA software instrument for stellar evolution (Paxton et al.,

2011, 2013, 2015, 2018), revision 10108 - see Appendix B.

The radiative opacities were calculated using the tables of Asplund et al. (2009) and if log Teff ≤ 3.8 K

the opacity tables from Ferguson et al. (2005) with photospheric metals from Asplund et al. (2009)

were used.

In order to account for the thermonuclear reactions I used a network consisting of 206 isotopes from

hydrogen up to the iron group (see Fig. (III.1)). This network calls all possible reactions and their rates

linking the isotopes selected in the network, including the weak reactions. Therefore it is suitable to
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Figure III.1: The isotopes included in the two nuclear reaction networks used in this work, the
mesa 206.net (empty squares) and the truncated version (filled dots).

calculate the energy generation for all the main burning stages during stellar evolution. Furthermore,

the 206 isotope network allows to calculate the stellar evolution up to core-collapse1; it contains most of

the reactions that affect the structure, such as α-captures on 14N and 22Ne during helium burning - see

discussion in Section III.5 - and is able to properly calculate the neutronisation of matter in the core,

usually tracked using the electron fraction Ye. Lastly, Farmer et al. (2016) showed that key quantities

of the stellar models converge at the 10% level when using an isotope network of at least ∼ 127

isotopes. The stellar models with no convective boundary mixing, fCBM = 0.0, were calculated with

a truncated network because I only use them for comparison reasons. The truncated network consists

of all the elements up to aluminium in mesa 206.net and additionally silicon 27, 28, 29 (compare in

Fig. (III.1)). It is therefore suitable to calculate all the necessary reactions during the hydrogen and

helium burning phases and does not introduce a difference to the mesa 206.net. The reaction rates

are taken from the JINA REACLIB (Cyburt et al., 2010, see also Section B.1.2.1).

The initial metal abundances were taken from Asplund et al. (2009) with some elements (He, C, N,

O, Ne, Mg, Al, Si, S, Ar, Fe) updated based on Nieva & Przybilla (2012) and Przybilla et al. (2013).

The mass loss by stellar winds was accounted for with MESA’s Dutch mass loss scheme - see Section

B.1.6. All the mass loss rates were scaled with a factor of ηwind = 0.85. This reduction factor was

introduced by Maeder & Meynet (2001, see their Section 2.2 for details) for empirical mass loss rates.

While this reduction factor is not necessary for theoretical mass loss rates such as Vink et al. (2000,

2001), we used it for all phases to have mass loss rates similar to published GENEC models (GENEC

applies the factor 0.85 during the main sequence, e.g. Ekström et al., 2012) and MESA models (e.g.

1I limited the discussion in this Chapter to the evolution between core hydrogen ignition and core helium depletion,
because the evolution of the convective history during the advanced phases is complicated and it is difficult to disentangle
the uncertainties of convective boundary mixing. Furthermore, Davis et al. (2019) studied the impact of different
amounts of convective boundary mixing during the advanced burning stages.
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Farmer et al., 2016; Ritter et al., 2018, apply a factor of 0.8).

Some of the models generate enough luminosity so that in their radiation pressure dominated envelope

a gas pressure and density inversion occurs - see Section B.1.3.4. These models become numerically

unstable and the timesteps become prohibitively short. In order to keep the numerics stable and the

timesteps at a reasonable limit we use MESA’s MLT++ (Paxton et al., 2013, and Section B.1.3.4) in all

models that apply the largest amount of convective boundary mixing and also in the 20 and 25 M�

models with the second largest amount - see below. The treatment of MLT++ allows the calculation

of these models until the end of core helium burning with reasonable timesteps. Tests of the MLT++

formalism in 15 M� models do not show any significant differences in the structure and evolution but

see discussion in Section III.7.

The MESA models assume hydrostatic equilibrium and apply the mixing-length theory variation of

Henyey et al. (1965) - see Section B.1.3.2. The mixing length was set to `MLT = 1.6HP , where HP

is the pressure scale height. This is the same value used by Ekström et al. (2012). Furthermore, for

strongly stratified convection Arnett et al. (2018) find an asymptotic limit for the dissipation length of

a turbulent flow, which they identify with `MLT ∼ Hρ ∼ 5/3HP , which is close to 1.6HP . The mixing

of the nuclear species in MESA is assumed to be a diffusive process. In this Chapter, the diffusion

coefficient in the convective region is calculated by Dmix = 1
3`MLTvMLT, where vMLT is the velocity

determined by the mixing-length theory - see Section B.1.3.1.

We use the same resolution, at which our models seem to converge, in all calculations except the

15 M� models with no convective boundary mixing. In these models, the resolution needed to be

increased in order to properly resolve the boundary of the convective zones. The details can be found

in the inlists2, which also contain all the other user-specified settings that differ from the default.

2.1 Convective Boundary Mixing Uncertainties

In this study, I investigate two uncertainties due to convective boundary mixing: (i) the determination

of the convective boundary location and (ii) different amounts of extra mixing after the convective

boundary.

As discussed in Section II.1, the determination of the convective boundary is not included in the

mixing-length theory and either the Ledoux or the Schwarzschild criterion has to be used. Every

model was calculated twice, once applying the Ledoux and once the Schwarzschild criterion to address

this uncertainty.

An investigation of the second point is a much more extensive task because convective boundary

mixing is poorly understood, hence connected with several uncertain aspects. The uncertainties arise

from (a) the poor knowledge of the convective boundary and the breakdown into 1D, thus, how to

2The inlists can be found on http://doi.org/10.5281/zenodo.3871897.
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describe and implement the physics in 1D, (b) the parametrisation of the convective boundary mixing

prescriptions and (c) the different implementations of the same theory in the various stellar evolution

codes, see e.g. discussions in Jones et al. (2015); Stancliffe et al. (2016). In this work, I limit the

investigation to one convective boundary mixing prescription and investigate the impact of different

choices of the free parameters within this setting.

Following the discussion in Section II.1.3, I apply the exponentially decaying convective boundary

mixing prescription by Herwig et al. (1997) (see Eq.(II.17)), which is based on hydrodynamic simu-

lations. Since the interior of the star is simulated, where the instabilities at the convective boundary

behave different than in the surface convection simulations from Freytag et al. (1996), I refer to the

resulting mixing after the convective boundary as convective boundary mixing. This includes an en-

semble of different physical processes which might cause mixing across the convective boundary and is

not only limited to an “overshooting” of the convective flow at the boundary. Even if the convective

flow is simulated as a radial up-down movement in 1D stellar evolution it is still necessary to think of

convection as a 3D process.

In the convective boundary mixing zone, the temperature gradient is set equal to the radiative one.

The chemical composition, on the other hand, is mixed using the diffusion coefficient determined by

Eq. (II.17). The diffusive mixing after the convective boundary is cut-off at a certain value, which

we chose to be Dcut = 102 cm2 s−1, in order to avoid the long exponential tail. This treatment of

convective boundary mixing is applied to all boundaries of all convective zones.

D0 in Eq.(II.17) has to be taken “close” to the edge of the convective boundary (Herwig, 2000), which

is equivalent to a small f0 parameter. It is often not discussed how “close” and only the fCBM param-

eter is mentioned, despite the importance of f0. Changing the f0 parameter in Eq. (II.17) from 0.02

to 0.002, gives a different location (i) where D0 is taken from and (ii) where to begin the exponential

decrease of the diffusion coefficient (compare Fig.(II.1b)). The impact of the first point is negligible

since the mixing-length theory predicts an approximately constant diffusion coefficient. The second

point, however, is not negligible. The fact that the diffusion coefficient begins to decrease deeper in the

convective region and is cut off after it drops below a certain value means that the mixing efficiency

inside the convective zone recedes and there is less and weaker mixing after the convective boundary.

In Section II.1.3, the values for fCBM used in the literature were discussed. In order to cover the

range of fCBM adopted in the literature and the constraints from observations I applied the values

(0.004, 0.01, 0.022, 0.035, 0.05). Moreover, for comparison, I also calculated all the models with an

initial mass of 15 M� with no convective boundary mixing. Additionally, two values for f0, 0.002 and

0.02, are tested in the 15 M� models with fCBM ≤ 0.022. I only test the two values of f0 with small

values of fCBM because the relative importance of f0 becomes negligible in models with large amounts

of convective boundary mixing - see e.g. Table III.1. The 20 and 25 M� models are only simulated
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with f0 = 0.002.

Regions which are unstable according to the Schwarzschild criterion but stable according to the Ledoux

criterion undergo slow semiconvective mixing. Semiconvection in the models is applied as presented

in Section B.1.3.3. The amount of semiconvective mixing, if it occurs, is still an unsolved problem

(e.g. Langer, 2012, and references therein), hence αsc is uncertain. Langer et al. (1985) estimate the

semiconvective efficiency to be of the order of 0.1. The values used in the literature vary greatly,

ranging from small values of αsc = 0.01−0.02 (e.g. Farmer et al., 2016; Limongi & Chieffi, 2018) up to

1.0 (e.g. Brott et al., 2011), with intermediate values of ∼ 0.1 (e.g. Sukhbold & Woosley, 2014; Choi

et al., 2016). Schootemeijer et al. (2019) explore in their calculations a large range of αsc = 0.01−300

and conclude that αsc > 1.0 is needed to reproduce the blue to red supergiant ratio in the Small

Magellanic Cloud. I used two values for αsc, 0.4, fast semiconvection, and 0.004, slow semiconvection,

in my 15 M� models. The 20 and 25 M� models were only calculated with αsc = 0.4 because the

relative importance of semiconvection decreases with increasing amount of mixing at the convective

boundary - see Sections III.3, III.4 and III.5. Therefore, the two values of αsc would predict a similar

outcome. Similarly, Schootemeijer et al. (2019) find that in their massive star models of the Small

Magellanic Cloud semiconvection rarely develops for large amount of convective boundary mixing and

only plays a role after the main sequence. Moreover, Langer et al. (1985) show that while semicon-

vection can occur prominently during the main-sequence evolution in their massive star models the

evolution during this phase is nearly independent of the choice of αsc.

3 Core Hydrogen Burning

In the core hydrogen burning phase, hydrogen is fused into helium which is discussed in Section I.2.1.1.

This increases the mean molecular weight µ and decreases the opacity κ. The first leads to an in-

crease in luminosity, because `rad ∝ µ4 (e.g. Kippenhahn & Weigert, 1994), hence, a reduction of the

pressure onto the core. The decrease of the opacity and pressure dominate over the increase of the

core luminosity in a massive star. Therefore, since ∇rad ∝ κ`radP (e.g. Kippenhahn & Weigert, 1994),

the radiative temperature gradient decreases. On the other hand, the adiabatic temperature gradient,

∇ad, remains roughly constant in the interior of the star. This continuously stabilises the material at

the convective boundary against convection according to the stability criterion - see Section II.1.1 -

and the mass of the convective hydrogen in a massive star decreases during its main-sequence lifetime.

A consequence of the decreasing convective core is a decreasing mean molecular weight above the

convective core. The resulting µ-gradient creates the difference between the two boundary criteria.

Fig. (III.2) shows the location of the convective boundary in stellar evolution models with an ini-

tial mass of 15 M�, either given by the Ledoux or the Schwarzschild boundary criterion, for various
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Figure III.2: The location of the convective hydrogen core boundary, determined by either the Ledoux
or Schwarzschild criterion, as a function of the central hydrogen mass fraction. All tracks are 15 M�
models with f0 = 0.002. The solid lines indicate Schwarzschild models and the other lines are Ledoux
models with either αsc = 0.4 (dotted line) or αsc = 0.004 (dash-dotted line). The colour scheme shows
the different choices of fCBM. The inset window presents the evolution of the convective boundary
location right before it reaches the zero-age main sequence.

amounts of extra mixing and f0 = 0.002. The location presented in Fig. (III.2) is the pure Ledoux

or Schwarzschild boundary excluding the convective boundary mixing region. It is apparent that the

location of the convective boundary is further out with more mixing. This is a consequence of the

larger mixed region after the convective boundary. The inset window in Fig. (III.2) presents a zoom on

the final growth of the convective hydrogen core before the zero-age main sequence. It shows that all

the 15 M� models, except the Ledoux model with no convective boundary mixing and slow semicon-

vection, have a nearly equal convective hydrogen core size at the zero-age main sequence. Therefore,

the differences arising during the main-sequence evolution are due to the larger fCBM values. More

convective boundary mixing increases the overall size of the convective zone, ingesting more fuel into

the burning zone in the centre. This creates a higher hydrogen burning luminosity. Consequently the

decrease in the radiative temperature gradient is relatively slower, which results in a larger convective

hydrogen core - see also Table III.1.

The models with no convective boundary mixing, black lines in Fig. (III.2), predict different loca-

tions of the convective boundary by either using the Ledoux or the Schwarzschild criterion. In the

Schwarzschild model the chemical composition gradient is ignored. Therefore, the convective core

can grow freely during the pre-main-sequence evolution. The Ledoux models estimate a different
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Figure III.3: Profiles of the temperature gradients at the boundary of the convective core as a function
of Lagrangian mass coordinates. Shown are the 15 M� Schwarzschild (left column) and the Ledoux
models with αsc = 0.004 (middle column) and αsc = 0.4 (right column) all with no convective boundary
mixing. The top row is at the zero-age main sequence, Xc(

1H) = 0.717, the middle row at Xc(
1H) = 0.5

and the bottom row at Xc(
1H) = 0.2. Convective regions are indicated by blue shading, whereas yellow

shows semiconvective regions. Additionally, the opacity is plotted as a function of mass coordinate
(black dashed line). The ∇L in the Schwarzschild model is only included for comparison and not used
in the calculation.

boundary location depending on the semiconvective efficiency. The Ledoux model with inefficient

semiconvection, αsc = 0.004, shows a convective core which is smaller. This is because during the

pre-main sequence, where the convective core grows, a strong chemical composition gradient limits its

size - see inset window in Fig. (III.2). A semiconvective layer develops above the convective core but

semiconvection is not efficient enough to completely remove the chemical stratification. As a result,

this model has a smaller convective core during the whole main-sequence evolution. If semiconvection

is efficient, αsc = 0.4, the µ-gradient in the layer above the core is erased and the convective core can

grow more. Therefore, the Ledoux model with efficient semiconvection has a convective hydrogen core

size more similar to the Schwarzschild model at the zero-age main sequence. Afterwards, during the

main-sequence evolution, the Schwarzschild model and the Ledoux model with αsc = 0.4 evolve their

decreasing convective core similarly. This also is presented in Fig. (III.3) where the radial profile of the

temperature gradients, the chemical composition gradient and the opacity are shown. The two models

(left and right columns) behave similarly because in the latter there is a thin semiconvective zone (in

yellow) right at the convective core boundary, which constantly mixes the region above the core. The

Ledoux model with αsc = 0.004 evolves through the main sequence with a smaller convective core

and a large µ-gradient above it (middle column in Fig. (III.3)). These differences affect the helium

core mass at core hydrogen depletion - see Table III.1 - and the luminosity during the main sequence
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Figure III.4: The same as Fig. (III.3) but with fCBM = 0.004. The convective boundary mixing region
is indicated by turquoise.

(Fig. (III.15)) which in turn impact the further evolution.

Fig. (III.3) might suggest that the Ledoux model with inefficient semiconvection (middle column)

develops a chemical composition gradient within the convective zone which then is split up during the

main-sequence evolution. Careful investigation reveals that the inner (left) location is the upper limit

of the convective core, whose growth is limited due to the strong, narrow peak of the µ-gradient at

the edge of the convective core. The convective region above the core develops during the pre-main

sequence, which results in the convective layer after the µ-gradient peaks in the middle column, top

panel.

Convective boundary mixing extends the region above the core that is well mixed. Therefore, changes

in the chemical composition and the increase of opacity are pushed further away from the boundary

location obtained from the stability criteria. Consequently, ∇rad decreases further after the convective

boundary. Fig. (III.4), which shows the same stellar models as Fig. (III.3) but with fCBM = 0.004

instead of 0.0, illustrates this behaviour. Moreover, the chemical composition gradient at the con-

vective boundary vanishes, ∇µ ≈ 0, and its increase further out is not a step-function anymore but

it follows more a sigmoid shape. As a result, the convective hydrogen core boundary predicted by

the Ledoux and Schwarzschild criterion in Fig. (III.2) converge. Obviously, the convergence between

the two stability criteria is consistent when more convective boundary mixing is applied as shown

in Figs. (III.2) and (III.5). The convergence of the two boundary criteria is also apparent in the

Hertzsprung-Russell diagram (Fig. (III.7a)), where the evolutionary tracks with convective boundary

mixing perfectly overlap during the main sequence. Furthermore, they predict the same helium core

mass at the end of hydrogen burning - see Table III.1.
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Figure III.5: The same as Fig. (III.4) but with fCBM = 0.022 and only the Schwarzschild model (left)
and the Ledoux model with fast semiconvection (right) are shown.

Semiconvection only influences the convective hydrogen core size when there is no convective bound-

ary mixing in the 15 M� models. There, a chemical composition gradient on the radiative side of

the boundary limits the growth of the convective hydrogen core depending on the semiconvective effi-

ciency - see Figs. (III.2) and (III.3) with αsc = 0.004 and 0.4. However, as discussed before, convective

boundary mixing removes the chemical stratification on the radiative side of the convective boundary.

Additionally, the radiative temperature gradient further decreases in the convective boundary region,

which creates the condition ∇ad−∇rad > 0 beyond the convective boundary (Figs. (III.4) and (III.5)).

For that reason there is no semiconvective zone right after the convective core region when convective

boundary mixing is applied and the convective hydrogen core size is independent of semiconvection

and its efficiency.

The differences of the convective boundary region discussed above have an effect on the main-sequence

evolution. The larger convective cores enable more hydrogen fuel to be ingested into the central burn-

ing region. Subsequently, the helium core mass at the end of core hydrogen burning increases with

more convective boundary mixing - refer to Table III.1. Furthermore, the luminosity generated by

core hydrogen burning is higher and the increased radiation pressure leads to a slightly larger radius

of the star. The consequence is that the track in the Hertzsprung-Russell diagram in Fig. (III.7a) is

steeper and reaches lower effective temperatures at the end of the main sequence - see also Table III.1

- hence, the main-sequence width broadens, especially for the models with large amount of convective

boundary mixing. Moreover, the increased amount of hydrogen available in the core burning region

enhances the main-sequence lifetime as shown in Table III.1.

The behaviour of the convective hydrogen core and its response to convective boundary mixing un-
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Figure III.6: Snapshots of the temperature gradients at the boundary of the convective core as a
function of Lagrangian coordinates of the 15, top, 20, middle, and 25 M�, bottom, Schwarzschild
models, all with fCBM = 0.004 and f0 = 0.002. The snapshots were all taken when the central
hydrogen mass fraction drops below 0.5. Convective regions are indicated by blue shading, whereas
turquoise shows convective boundary regions and yellow semiconvective regions. Additionally, the
opacity is plotted as function of mass coordinate on the right axis of each figure (the black dashed
line). Beware the different intervals of the x-axis due to the different initial masses, the y-axes have
the same range for comparison reasons.

certainties found for the 15 M� models is similar for stellar models with initial masses of 20 and

25 M� (see Fig.(III.6)). There is, however, a small difference in the Schwarzschild and the Ledoux

model. The thin convective layers found above the convective hydrogen core, the convective fingers

- see discussion further down - penetrate slightly deeper in the models with larger initial masses and

sometimes touch the convective core. This transports fuel into the convective core which leads to an

increase of the convective core. The timing and intensity of the “touching” is different for the Ledoux

and Schwarzschild models and depends on the initial mass. Therefore, the initially converged bound-

ary locations diverge once more and the models end up with slightly different helium core masses at

the end of core hydrogen burning - see Table III.1. A similar scenario is observed by e.g. Farmer

et al. (2016) (their Fig. (3) for a star with an initial mass of 30 M�) and Clarkson & Herwig (2020).

There, however, the process is much more intense and the increase of the convective hydrogen core is

larger compared to my cases. Whether such a merging scenario is realistic needs to be determined,

though, with more realistic boundary physics (e.g. the Richarson number instead of the Ledoux or

Schwarzschild criterion; Turner, 1973) instead of simply adding the diffusion coefficients together.

The 20 and 25 M� models show a larger dispersion of minimum effective temperatures reached at the

end of the main-sequence evolution - see Fig.(III.7a) and Table III.1. This indicates that, if the fCBM

value is indeed as large as recent observational calibrations discussed in Section II.1.3, the widening
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Figure III.7: (a) The spectroscopic Hertzsprung-Russell diagram including the models with the three
initial masses, 15, 20 and 25 M�, and the various values for fCBM indicated by the colour scheme.
The tracks show the evolution from the zero-age to the terminal-age main sequence. The linestyle
indicates the boundary criterion, where the Schwarzschild models have solid, the Ledoux models with
αsc = 0.004 dash-dotted and the Ledoux models with αsc = 0.4 dotted lines. The thin dashed black
line on the right hand side represents the empirical terminal-age main sequence determined by Castro

et al. (2014). The “spectroscopic luminosity” is defined as L ≡ T 4
eff

g = 1
4πσG

L
M . (b) The fraction of

the convective core mass, Mcc, as a function of the total mass of the star. Mcc from all the models
in this Chapter are plotted at three different stages: the zero-age main sequence (circles) and when
the central hydrogen mass fraction drops below 0.35 (squares) and below 0.1 (stars). The amount
of convective boundary mixing is indicated by the colour scheme. The grey crosses are the observed
eclipsing binaries and their convective core mass estimates from Tkachenko et al. (2020).

of the main-sequence is more extreme for higher initial masses. Furthermore, the line of the terminal-

age main sequence is slightly bent towards cooler temperatures rather than to hotter temperatures

with increasing initial mass with increasing fCBM as suggested by recent observations (Castro et al.,

2014; McEvoy et al., 2015). This indicates that stars might experience a larger amount of convective

boundary mixing than currently applied in most published theoretical stellar models. Fig.(III.7b),

which compares the convective core masses to asteroseismic observations, supports this view, since

only the 15 M� models with large fCBM are able to match the data unless the stars are close to the

zero-age main sequence. Fig.(III.7b) does not constrain the models with larger initial masses due to

the limit of the sample.

Comparing the different log10 TMS
eff,min values in Table III.1 reveals that the main-sequence width is

nearly independent of the convective boundary criterion and the semiconvective efficiency. This is

because during the main-sequence evolution (i) there is a convergence between the two boundary cri-

teria and (ii) the relative importance of semiconvection is massively reduced with increasing convective

boundary mixing - see discussion above.

In Section III.2.1 we mentioned the importance of another free parameter, f0, in the exponentially

decreasing diffusive convective boundary mixing scheme. Changing this parameter from our default

value of 0.002 to 0.02 decreases the amount of mixing beyond the convective core. Consequently,

slightly less fuel is brought down into the burning region, resulting in a lower ∇rad, hence, the con-

89



CHAPTER III. THE RELATIVE IMPORTANCE OF CONVECTIVE UNCERTAINTIES

vective boundary location decreases faster during the main-sequence evolution for the same fCBM.

This flattens the main-sequence evolution track in the Hertzsprung-Russell diagram and reduces the

main-sequence width. Moreover, the helium core mass at core hydrogen depletion is smaller, see Table

III.1. However, the differences due to the two f0 values decrease with increasing fCBM, because the

f0 is smaller relative to the fCBM parameter. Therefore, the impact of the earlier decrease of the

diffusion coefficient is reduced.

3.1 Convective Fingers

In the region above the convective hydrogen core, the radiative temperature gradient has a profile close

to the adiabatic one, ∇rad ≈ ∇ad (see in Figs. (III.3), (III.4), (III.5) and (III.6)). Such a convective

neutral region above the convective hydrogen core in massive stars was first predicted by Schwarzschild

& Härm (1958). In their argument they use the fact that (1) the opacity is dominated by electron

scattering, κ ∝ 1 + X(1H), and that (2) a hydrogen-rich mixture has more free electrons per unit

mass than a helium-rich. The hydrogen burning leads to a helium-richer convective core than the

overlying radiative layers. Consequently, the opacity is higher in the radiative side of the convective

boundary than in the convective zone. Accordingly, the radiative temperature gradient, ∇rad ∝ κ,

has a flatter profile, or even slightly increases, in the region above the receding convective hydrogen

core. Schwarzschild & Härm (1958) propose that this zone above the convective core is slowly mixed

to maintain convective neutrality. My simulations with no convective boundary mixing (Fig. (III.3))

show a similar behaviour: At the zero-age main sequence (top row) the temperature gradient above the

convective core decreases outwards (increasing mass coordinate). During the main-sequence evolution

the convective core slowly retreats, leaving behind a composition gradient between the helium and

hydrogen gas mixtures, which increases the opacity. Consequently, the radiative temperature gradient

above the receding convective hydrogen core is close to adiabatic. Hence, small discontinuities in

the opacity profile, which create small local peaks in the radiative temperature gradient, violate the

Schwarzschild stability criterion. This results in a thin layer with mixing, that reduces the radiative

temperature gradient back to the adiabatic one. At the boundary of these mixed layers, a new

discontinuity in opacity is created and the process repeats itself there. This creates a finger-like

structure in the region above the core (e.g. Langer et al., 1985). The difference between the Ledoux

and Schwarzschild criteria is the type of mixing in the thin layers. In the Schwarzschild models the

convective fingers are always convectively mixed. In the Ledoux models, however, the layer appears

as a semiconvective layer because of the strong chemical stratification above the receding hydrogen

core. If semiconvection is not efficient, a large semiconvective region develops above the convective

core because the mixing is not able to completely remove the chemical composition gradient. If

semiconvection is more efficient, it is able to remove the chemical composition gradient. It should be

90



III.4. THE INTERMEDIATE CONVECTIVE ZONE

noted that semiconvection, as we use it, only mixes the chemical composition but not the entropy

- see Section B.1.3.3. Therefore, the layer becomes convectively unstable because ∇rad > ∇ad still

holds. Thus, a similar finger-like convective-semiconvective structure as in the Schwarzschild models

develops (Fig. (III.3)).

Convective boundary mixing (i) pushes the transition from the helium-rich mixture in the convective

core to the hydrogen-rich mixture in the envelope further away from the convective boundary (compare

Figs. (III.4) and (III.5)) and (ii) creates a smoother transition due to the exponential nature of

the convective boundary mixing. The latter creates a more continuous opacity profile, therefore a

smoother ∇rad profile. The first point, on the other hand, causes the opacity to increase further

away from the boundary. This allows the radiative temperature gradient to further decrease in the

convective boundary mixing region before it rises once more due to the increase of opacity. Hence,

the appearance of convective fingers is either further out (Fig. (III.4)) or they never occur because

∇rad drops enough for the region above the core to stay convectively stable (Fig. (III.5)). Thus, the

spatial area where convective fingers occur, if any, is reduced with increasing amount of mixing at the

convective boundary. For fCBM & 0.01 there are no convective fingers in my 15 M� models.

The 20 and 25 M� models exhibit a similar behaviour regarding the mixing in the zone beyond the

convective core as the 15 M� models but there are some important differences. Stars with a larger

initial mass generate a higher luminous output. Hence, ∇rad ∝ `rad is much closer to convective

neutrality in the radiative zone beyond the convective core (see Fig. (III.6)). Therefore, in models

with a larger initial mass, smaller changes in the entropy immediately create a situation where the

stability criteria predict convection or semiconvection. Consequently, the convective fingers are much

more present in the simulations with the same fCBM but higher initial masses. As a result, the limit of

convective boundary mixing above which no convective fingers or semiconvective layers appear above

the convective hydrogen core increases with initial mass. In the 20 M� models I do not find convective

fingers for fCBM & 0.022 and in the 25 M� models for fCBM & 0.035.

4 The Intermediate Convective Zone

After hydrogen is depleted in the core of the star, the convective core completely recedes and the

star enters a short but crucial phase, which influences its fate - see also Section I.2.1.1. Since there is

no nuclear energy generation left in the core, the star contracts, releasing gravitational energy. As a

consequence of the Virial theorem, energy conservation and contraction on a short timescale the outer

layer expands and cools down (mirror principle - e.g. Kippenhahn & Weigert, 1994). The layers above

the previous hydrogen core, where there is still hydrogen left, heat up due to the contraction and

set the condition for hydrogen burning. This hydrogen burning shell is accompanied by a convective
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region - the intermediate convective zone (Figs. (III.8), (III.9) and (III.11)).

It is during this phase that the star leaves the main sequence and, in the mass range studied here,

crosses the Hertzsprung-Russell diagram to the red super-giant branch, as shown in Fig. (III.15). The

details of this phase depend strongly on the duration, location and size of the intermediate convective

zone with respect to the hydrogen burning shell. The properties of the intermediate convective zone,

in turn, depend strongly on the choices of the convective boundary criterion and the amount of extra

mixing at the boundary. If the intermediate convective zone only exists above the hydrogen burning

shell, the latter can only consume the hydrogen at its location via nuclear burning and is consequently

relatively weak. However, an overlap of the two creates a situation where the convective zone ingests

fuel into the burning shell. This results in a much stronger burning shell which provides more support

to the core against the gravitational pressure from the outer layers.

Figs. (III.8) and (III.9) present structure evolution diagrams focussed on the intermediate convective

zone in the 15 M� models. They show the amount of overlap between the intermediate convective zone

and the hydrogen burning shell. Furthermore they visualise the size and give a hint of the duration of

the intermediate convective zone. Fig. (III.10) presents the different post-main-sequence luminosities

of the simulations. Shown are the total luminosity and the luminosities generated by hydrogen and

helium burning. The difference between the luminosities from the two burning types and the total

luminosity is due to changes of the gravitational potential. The sudden drop in luminosity powered

by hydrogen burning, if any, indicates the end of the boost of the intermediate convective zone, thus,

its duration.

In the 15 M� models with no convective boundary mixing there is a clear difference between the

Schwarzschild and the Ledoux models. The intermediate convective zone in the Schwarzschild model

has an initial overlap with the hydrogen burning shell, whereas the Ledoux models develop an in-

termediate convective zone outside of the hydrogen burning shell. This difference arises because of

the chemical stratification which prevents convection in the Ledoux models. These findings are sim-

ilar to Langer et al. (1985), Georgy et al. (2014) and Davies & Dessart (2018) who found that the

depth at which the intermediate convective zone forms is sensitive to the stability criterion used. The

comparison between the Ledoux model with αsc = 0.4 and αsc = 0.004, both with no convective

boundary mixing, reveals that the intermediate convective zone appears at the same location. The

difference between the two Ledoux models is introduced by the mixing efficiency of semiconvection.

Slow semiconvection is not able to remove the chemical composition gradient. Therefore, the inter-

mediate convective region consists mainly of a semiconvective region in the Ledoux model with slow

semiconvection. In the case with efficient semiconvection, the convective fingers partly removed the

chemical composition gradient. Hence, the intermediate convective zone is mostly convective. These

differences affect the time when the surface is enriched with hydrogen burning products, since the large
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Figure III.8: Structure evolution diagrams, also known as Kippenhahn diagrams, of the 15 M� models
showing the intermediate convective zone. The left column presents the Schwarzschild model and the
right column the Ledoux models with αsc = 0.4. The fCBM increases top to bottom with (0.0, 0.004,
0.01). The blue region indicates convective regions, whereas the convective boundary region is shown
in turquoise and semiconvection in the Ledoux models is shown in yellow. The red shading indicates
the energy generation. The time on the x-axis is with respect to the time of core hydrogen depletion,
τHdep. The structure evolution diagrams are limited to the evolution between the locations where
Xc(

1H)< 0.01 and Xc(
4He)> 0.95.
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Figure III.9: Same as Fig. (III.8) but for fCBM top to bottom equal to (0.022, 0.035, 0.05).
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Figure III.10: The total luminosity, Ltot (red), and the luminosity generated by hydrogen and helium
burning, LH (purple) and LHe (blue) respectively, as a function of the central helium mass fraction.
All the figures show 15 M� models with varying fCBM. Within one panel, all boundary criteria are
shown, the Schwarzschild (solid) and the Ledoux one, the latter with αsc = 0.004 (dash-dotted) and
αsc = 0.4 (dotted).

surface convective zone penetrates into these layers shortly after the disappearance of the intermediate

convective region (Fig. (III.8) right upper corner). Furthermore, the energy transport in this region is

more efficient when semiconvective layers, which only mix the chemical composition, are turned into

convective layers. This slightly increases the luminosity as can be seen in Fig. (III.10), which in turn

influences the mass loss rates. However, the impact is modest.

Convective boundary mixing changes this picture. The extra mixing at the boundary (i) removes

possible chemical stratification. Furthermore it increases the region with efficient mixing, hence, (ii)

the energy excess is regulated faster and (iii) more fuel is provided for the burning shell. The latter

simply increases the amount of boosting of the hydrogen shell. This is indicated by the hydrogen

burning luminosity in Fig. (III.10), where the simulations with an overlap between the intermediate

convective zone and the hydrogen shell have a higher LH for the duration of the intermediate convec-

95



CHAPTER III. THE RELATIVE IMPORTANCE OF CONVECTIVE UNCERTAINTIES

tive zone before the hydrogen powered luminosity drops. The second point decreases the lifetime of

the intermediate convective core by increasing the region with efficient energy transport, thus, ∇rad

drops faster. This is illustrated in Figs. (III.8) and (III.9), where the models with larger values of

fCBM have a shorter duration of the intermediate convective zone. Furthermore, in Fig. (III.10) the

luminosity powered by the hydrogen burning shell experiences the drop earlier with higher fCBM. In

the most extreme cases with fCBM = 0.05 and the Ledoux models with fCBM = 0.035 the envelope

to core ratio is too small to produce a proper intermediate convective zone that ever overlaps with

the hydrogen shell. In these models, LH constantly drops because the burning shell depletes its fuel,

very similar to the Ledoux models with no convective boundary mixing. The first point crucially

impacts the Ledoux models, because it efficiently removes the µ-gradient at the convective boundary,

which prevents the intermediate convective zone from moving inward. Consequently, the intermediate

convective zone moves downwards in mass coordinates and eventually3 overlaps with the hydrogen

burning shell (compare Fig. (III.8) right column top to bottom). In the Ledoux models there is always

a short semiconvective region before the intermediate convective zone penetrates downward. How-

ever, semiconvection is not efficient enough for the αsc values tested in this work to erase the chemical

stratification by themselves because of the short timescale of this evolutionary phase. Moreover, when

moving downwards the intermediate convective zone leaves behind a chemical composition gradient.

Therefore, the intermediate convective zone has, when it starts boosting the burning shell, a semicon-

vective zone at its upper boundary. These semiconvective regions, however, become smaller as fCBM

is increased and disappear for the two largest values used. In contrast, the intermediate convective

zone in the Schwarzschild models include this region, hence, they span a wider region and are able to

boost the hydrogen shell for a longer time. This creates the difference in the luminosity powered by

hydrogen burning between the Ledoux and Schwarzschild criterion in Fig. (III.10).

It should be noted that the impact of the above mentioned points (ii) and (iii) affect the intermediate

convective zone differently; (ii) reduces the duration of the convective shell, whereas (iii) boosts the

hydrogen burning region more, which in turn leads to a longer duration of the intermediate convective

zone. In the Schwarzschild model (ii) leads to a decrease of the duration of the intermediate convective

zone (compare Figs. (III.8), (III.9) and (III.10)). In the Ledoux models, on the other hand, at low

fCBM (i) dominates. This leads to a boost of the intermediate convective zone due to the ingestion

of fuel into the burning shell. When increasing the amount of convective boundary mixing, the point

(ii) starts to reduce the duration of the intermediate convective zone, similar to the Schwarzschild

models.

Convective boundary mixing does not change the initial location of the intermediate convective

3The downward movement is not instantaneous because only the µ-gradient in the convective boundary layer is
erased. Hence, the overlap of the intermediate convective zone and the hydrogen shell in the Ledoux models, if any, is
always delayed compared to the Schwarzschild models (compare left and right column in Fig. (III.8)).
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zone. The Ledoux criterion always predicts the initial location above the hydrogen shell, whereas

the Schwarzschild criterion always predicts an overlap (see Figs. (III.8) and (III.9)) except when the

envelope to core ratio is too small to produce an intermediate convective zone as in the models with

fCBM = 0.05. This difference, and point (ii) above, also lead to the two behaviours, overlap and no

overlap, in the 15 M� models with fCBM = 0.035 in Fig. (III.9), where the intermediate convective

zone in the Ledoux model does not overlap but in the Schwarzschild model it does.

Davies & Dessart (2018) predict the first overlap of the intermediate convective zone and the hydrogen

burning shell in their Ledoux models around 16 M�. I show here that the lowest initial mass that

shows an overlap is dependent on the amount of mixing at the convective boundary. Furthermore, an

overall result is that the differences of the intermediate convective zone in the 15 M� models due to

the choice of the stability criterion decrease with increasing amount of convective boundary mixing,

and for fCBM = 0.05 Figs. (III.9) and (III.10) show similar results.

The intermediate convective zone exhibits the same dependence on convective boundary mixing in

the 20 and 25 M� models as in the 15 M� models. There are, however, some important differences.

As discussed in Section III.3, in stars with higher initial masses (a) the luminosity is higher and

(b) the convective fingers above the convective core are more pronounced. (a) leads to an increased

radiative temperature gradient in the region above the hydrogen burning shell. Consequently, the

intermediate convective zone spans a larger radial distance in the models with higher initial masses

(see Fig. (III.11)). Therefore, more fuel is provided for the hydrogen burning shell and it is boosted

longer. This in turn prolongs the lifetime of the intermediate convective zone, leading to a convective

region that can be present during nearly all of the core helium burning lifetime - see Table III.1.

In general, the relative duration of the intermediate convective zone with respect to the core helium

burning duration increases with initial mass and, in accordance with the previous discussion, decreases

with fCBM. (b) may lead to convective fingers that exist until the appearance of the intermediate

convective zone, as shown in Fig. (III.11, top row). These convective layers partly remove the chemi-

cal composition profile left behind by the receding convective hydrogen core. This mainly influences

the Ledoux models, where the intermediate convective zone overlaps much faster with the hydrogen

burning shell compared to the Ledoux model with no convective fingers, nearly at the same time

as in the Schwarzschild model. Moreover, the intermediate convective zone in the Ledoux model is

slightly bigger compared to the Schwarzschild model because of the slightly higher temperature at the

location of the hydrogen shell. Therefore, it can replenish the hydrogen shell with fuel for longer and

is active for longer compared to the Schwarzschild models of the same initial mass. This leads to an

intermediate convective zone that lasts longer in the Ledoux models than in the Schwarzschild models

with higher initial masses.

In the 20 M� model with fCBM = 0.022 there are no convective fingers at the same mass coordinate
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Figure III.11: Structure evolution diagram of the 20 M� simulations showing the intermediate convec-
tive zone as in Fig. (III.8). The left column presents the Schwarzschild model and the right column
the Ledoux models with αsc = 0.4. The top row uses fCBM = 0.004, the middle fCBM = 0.022 and
the bottom fCBM = 0.035.
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where the intermediate convective zone eventually appears. Consequently, the Ledoux model behaves

very similar to the 15 M� model. As a result, the drops in luminosity of the Ledoux model are much

earlier compared to the models with less convective boundary mixing.

The 25 M� Ledoux model with fCBM = 0.01 defies the general trend by creating an intermediate

convective zone which lasts longer than the core helium burning (similar to Ritter et al., 2018, theri

Fig.(11)).

The different behaviour in depth and duration of the intermediate convective zone has an important

impact on the further evolution of the star. In summary, the intermediate convective zone influ-

ences the strength of the hydrogen burning shell. This shell supports the contracting core underneath

against the gravitational pressure from the outer layers, which affects the way the star evolves through

the Hertzsprung gap and sets the structure for its further evolution, e.g. the convective helium core

(Section III.5) or the surface evolution (Section III.6).

5 Core Helium Burning

5.1 Convective Helium Core

During the helium burning stage, the convective helium core constantly grows in mass. This is because

of (i) the increase of the core luminosity due to the active hydrogen burning shell which continuously

synthesises hydrogen into helium, thus increasing the helium core mass, (ii) the increase of opacity and

mean molecular weight due to the conversion of helium into carbon and oxygen and (iii) the density

dependence of the 3α (second order) and 12C(α, γ)16O (first order) reaction rate - see also Section

I.2.1.2.

Fig. (III.12) presents the location of the convective helium core boundary as a function of the central

helium mass fraction. The boundary shown is the convective core determined by the stability criterion

without the boundary mixing region. The size and growth of the convective helium core depends on

(i) the amount of mixing at the convective boundary, (ii) the strength and location of the hydrogen

shell discussed in Section III.4 and (iii) on the choice of the stability criterion. Fig. (III.12) clearly

illustrates that the convective core is larger in the models with more convective boundary mixing for

a given convective boundary criterion. It furthermore shows that the different sizes of the convective

cores arise mainly during their initial growth. During the rest of the core helium burning phase the

cores grow at a similar rate. Interestingly, the models applying the Ledoux criterion predict a faster

initial growth of the convective core than the corresponding Schwarzschild models, with the exception

of the models with no convective boundary mixing and the models with fCBM = 0.05. In the latter

the Schwarzschild model initially predicts a convective helium core which is only slightly larger before
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Figure III.12: The location of the convective helium core boundary, determined either by the Ledoux
or the Schwarzschild criterion, as a function of the central helium mass fraction. Shown are the 15
and 25 M� models. The boundary criterion is shown by the linestyle, where a solid line indicates
the Schwarzschild criterion and the Ledoux criterion is shown with a dash-dotted (αsc = 0.004) or a
dotted line (αsc = 0.4). The colour scheme indicates the value of fCBM.

the helium core in the Ledoux models overtake it. The initial size of the convective core depends

strongly on the activity of the hydrogen shell, which itself is strongly affected by the intermediate

convective zone as discussed in Section III.4. A stronger hydrogen shell supports the core against the

gravitational pressure from the outer layers. Consequently, the helium core contracts less and the

burning is slightly less energetic, hence, because of ∇rad ∝ `, the convective helium core is smaller.

A larger amount of convective boundary mixing increases the mixed zone above the convective core

and smooths the chemical composition gradient at the boundary. The first point provides the central

burning region with fuel, increasing the energy generation. This results in a higher luminosity (LHe

in Fig. (III.10)) thus a larger convective core. The second point removes the limiting chemical strat-

ification in the Ledoux models. Consequently, the growth of the convective core in these models is

less limited than in the models with no convective boundary mixing. Additionally, the semiconvective

regions above the convective core disappear in the models with convective boundary mixing because

the µ-gradient is only non-zero in the radiative layers. Therefore, the relative importance of semi-

convection on the evolution of the convective helium core in the simulation with convective boundary

mixing is reduced. The small differences between the Ledoux models with convective boundary mixing

and different semiconvective efficiency arise from the different strength of the hydrogen burning shell

- see Section III.4.

After its initial growth the convective core mass continues to increase because of the growth of the

helium core mass due to the active hydrogen shell and the increase in opacity. This nearly constant

increase is occasionally disrupted by kinks, for example in the Schwarzschild model with fCBM = 0.022

at Xc(4He) ∼ 0.87 in Fig. (III.12), which are a consequence of the convective core regulating itself to

the changes of the energy generation in the hydrogen shell or the opacity in the core.
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The kinks around Xc(
4He) ∼ 0.7 and 0.5 for the models with fCBM = 0.01, around Xc(

4He) ∼ 0.35

for the models with fCBM = 0.004 occur due to vibrational up-down movements of the convective

boundary. This ingests a larger amount of fuel into the convective zone and finally increases the zone

as a consequence of the higher energy generation. I omit the discussion here whether these are core

breathing pulses (Castellani et al., 1985) or numerical artefacts (e.g. Constantino et al., 2016; Farmer

et al., 2016) and call these events core breathing pulses out of convenience. The presence of the core

breathing pulses is discussed in Section III.7. However, I want to outline that the intensity of these

core breathing pulses decreases, or they even vanish, with increasing amount of convective boundary

mixing, e.g. fCBM > 0.022 for the 15 M� models. The messy behaviour of the 15 M� Schwarzschild

model with no convective boundary mixing is due to a fast, nearly step-like, increase of the convective

core.

The differences in the convective core size of the 15 M� models with the same amount of convective

boundary mixing but different boundary criteria, which are more dominant for fCBM & 0.022, arise

because of the different (i) amounts of energy generation and (ii) radial location of the hydrogen

burning shell. (i) supports the core more or less against the gravitational pressure of the outer layers,

where a higher energy output by the burning shell leads to a smaller convective core. (ii), on the

other hand, changes the helium core mass. If the burning shell is further out or moves outwards faster

due to a smaller amount of fuel available, the core mass is bigger, hence a higher helium burning

luminosity and a larger convective core. This dependency is apparent when comparing Figs. (III.8),

(III.9), (III.10) and (III.12). The behaviour is not linear because the interaction between the inter-

mediate convective zone and the hydrogen burning region is not linear. Therefore, contrary to the

trend of finding convergence between the two convective stability criteria with an increasing amount

of convective boundary mixing during core hydrogen burning, the different sizes of the convective

helium core between the Schwarzschild and the Ledoux models varies more for fCBM & 0.022, with

the exception of the case with no convective boundary mixing.

These uncertainties of the convective helium core affect the helium and carbon-oxygen core masses

- see also Table III.1. This will influence the further central evolution and affect the pre-supernova

structure, which depends on the helium core mass.

In the Ledoux models with no convective boundary mixing the convective core grows to a size of about

1 M� (Fig. (III.12)) black dashed and dash-dotted lines, before the chemical stratification limits the

increase of the convective core in the Ledoux models. The radiative temperature gradient continues to

increase and a semiconvective region develops above the core. The semiconvection in the model with

αsc = 0.004 is not efficient enough to fully remove the restricting µ-gradient above the convective core

and the convective helium core stops growing for the rest of the burning phase. Above the convec-

tive core, however, several sandwiched layers of semiconvection and convection occur, which increase
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in number with time, because the semiconvective process slowly erases the chemical stratification4.

In the model with fast semiconvection, αsc = 0.4, the stratification is steadily removed by a thin

semiconvective layer just above the convective core. This, however, leads to a wiggly convective core

boundary but the core can initially grow very similarly to the convective core in the Schwarzschild

model. The Schwarzschild model with no convective boundary mixing ignores the µ-gradient and

initially grows similarly to the other Schwarzschild models with convective boundary mixing. At

around Xc(
4He)≈ 0.9 in Fig. (III.12), the convective core growth plateaus before it continues to grow

further at Xc(
4He)≈ 0.8. This is a result of the hydrogen shell, which is boosted there as a result

of the interaction with the intermediate convective zone. Consequently, the Ledoux model with fast

semiconvection predicts a bigger convective helium core at the beginning of core helium burning. As

the evolution proceeds, however, a chemical composition gradient builds up above the core, which

becomes too strong for semiconvection to erase. This reduces the increase of the convective core. The

convective core in the Schwarzschild model on the other hand grows further, predicting a overall larger

convective helium core than in the Ledoux models - compare Table III.1.

The chaotic behaviour of the core boundary around Xc(
4He)≈ 0.1 in the Schwarzschild model with

no convective boundary mixing (solid black line in Fig. (III.12)) is due to a convective pillar that rises

on top of the convective core, much stronger than the core breathing pulses previously mentioned. We

tested this behaviour against an increased resolution but the feature remained.

The right panel in Fig. (III.12) shows the convective helium core boundary of the various 25 M�

models. The convective helium core grows with time as in the 15 M� models but there are some

important differences, which are more prominent in the models with larger fCBM. These differences,

apart from the generally larger convective helium core with increasing initial mass, are due to the

different behaviour of the intermediate convective zone.

In the 25 M� case, the initial growth of the convective helium core is larger in all Ledoux models

than in the Schwarzschild models with the same amount of convective boundary mixing. This is

because the hydrogen shell is less active in the latter and slightly closer to the convective core. This

is a consequence of the different evolution of the intermediate convective zone similar to Fig. (III.11,

middle and bottom row). Therefore, the Ledoux models predict a larger convective helium core than

the Schwarzschild models with the same amount of convective boundary mixing. The gap is larger

for higher fCBM values. Interestingly, the behaviour of the intermediate convective zone in the 25 M�

models leads to convective helium cores more similar in the Schwarzschild models with fCBM = 0.004

and 0.01 than with their Ledoux counterparts and vice versa for the Ledoux models (Fig. (III.12) and

Table III.1). The convective core in the Schwarzschild models experiences a faster growth starting

around Xc(
4He) ∼ 0.5. There the hydrogen shell narrows and with it the intermediate convective zone.

4When the µ-gradient decreases the term (∇L − ∇)−1 in Eq. (II.19) increases, which enhances the semiconvective
mixing in this layer. The result is a very spiky chemical composition profile.
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Consequently the core generates more energy and the convective region grows. This finally leads to

similar core masses at the end of core helium burning for all the 25 M� models with fCBM = 0.004,

0.01 and 0.022. On the other hand, in the 25 M� models with fCBM = 0.035 and 0.05 the initial

difference of the convective core sizes between the Ledoux and Schwarzschild models is large and the

Ledoux models predict larger helium core masses.

The behaviour of the convective helium core in the 20 M� models is a mixture of the behaviours of the

models for the two other initial masses. The simulations with fCBM = 0.004 behave similarly to the

25 M� case with the exception of stronger core breathing pulses. The calculations with fCBM = 0.022

are similar to the 15 M� models with the difference that the hydrogen shell is at about the same lo-

cation in the Ledoux and Schwarzschild models. Therefore the convective core size grows at a similar

rate, apart from an increase around Xc(
4He)∼ 0.6, which is due to the disappearance of the interme-

diate convective zone; this is no core breathing pulse. The 20 M� models with the two largest values

of fCBM show a different intermediate convective zone and hence different convective helium cores

depending on the boundary criterion, again similar to the 25 M� models.

The convective core in the 20 M� models with fCBM = 0.01 is the exception from the above dis-

cussion. There the Schwarzschild model predicts a larger convective helium core than the Ledoux

models. This is because of the larger intermediate convective zone in the Ledoux models compared

to the Schwarzschild model. Therefore, the Schwarzschild model provides more energy from central

helium burning compared to the Ledoux model, hence, the relatively smaller convective core in the

latter.

5.2 Nucleosynthesis during Core Helium Burning

The two dominant reactions by which helium burns are the triple-α process, 3α → 12C, and α capture

on carbon, 12C(α, γ)16O - see also Section I.2.1.2 for more details on this burning phase. The first

reaction has a second order dependence on density whereas the latter a first order (e.g. Kippenhahn

& Weigert, 1994; Arnett & Thielemann, 1985; Woosley et al., 2002). Therefore, with increasing abun-

dance of 12C towards the end of core helium burning, the second reaction dominates. Furthermore,

the density dependency favours the latter reaction at higher entropy, i.e. higher masses. Stars at solar

metallicity additionally contain some 14N in their cores, ∼ 1.4%, which is left over from the CNO-cycle

during the main sequence (Arnould & Mowlavi, 1993). At the start of core helium burning, before

the energy generation by the triple-α process becomes noteworthy, the 14N burns convectively away

via 14N(α, γ)18F(β+ν)18O(α, γ)22Ne (Cameron, 1960). The synthesised 22Ne will capture another α

nucleus once the central temperature exceeds ∼ 2.5×108 K via 22Ne(α,n)25Mg, creating the condition

for the weak slow neutron capture process (weak s-process; Couch et al., 1974; Arnett & Thielemann,

1985; Prantzos et al., 1990; Kaeppeler et al., 1994; Frischknecht et al., 2016). Yet only a part of the
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Table III.1: Properties of the stellar models at core helium depletion.

model fCBM & αsc Mfinal Mα
a Mα MCO τH τHe τBSG/τHe

b log10 TMS
eff,min

c

(M�) (M�) (M�) (M�) (Myrs) (Myrs) (K)

15M�, fCBM = 0.0 14.35 2.55 4.07 2.08 11.08 1.47 0.78 4.40

Schwarzschild, fCBM = 0.004 13.83 2.73 4.08 2.14 11.40 1.48 0.54 4.39

f0 = 0.002 fCBM = 0.01 13.43 3.03 4.28 2.34 11.93 1.34 0.36 4.38

fCBM = 0.022 12.34 3.60 4.68 2.75 12.86 1.19 0.02 4.36

fCBM = 0.035 11.23 4.23 5.39 3.45 13.74 1.03 0.02 4.32

fCBM = 0.05 11.13 4.95 6.22 4.33 14.60 0.84 0.01 4.28

15M�, fCBM = 0.004 14.28 2.65 4.05 2.10 11.28 1.52 0.77 4.40

Schwarzschild, fCBM = 0.01 13.61 2.96 4.24 2.29 11.83 1.39 0.46 4.38

f0 = 0.02 fCBM = 0.022 12.47 3.59 4.65 2.72 12.81 1.20 0.02 4.36

15M�, fCBM = 0.0, αsc = 0.004 14.30 2.21 3.51 0.56 10.47 0.93 0.02 4.41

Ledoux fCBM = 0.0, αsc = 0.4 14.09 2.54 3.73 2.13 11.07 1.26 0.01 4.40

f0 = 0.002 fCBM = 0.004, αsc = 0.004 13.85 2.72 4.07 2.13 11.40 1.44 0.49 4.39

fCBM = 0.004, αsc = 0.4 13.85 2.72 4.07 2.13 11.40 1.44 0.49 4.39

fCBM = 0.01, αsc = 0.004 13.18 3.02 4.24 2.31 11.93 1.34 0.15 4.38

fCBM = 0.01, αsc = 0.4 13.18 3.02 4.24 2.31 11.93 1.33 0.15 4.38

fCBM = 0.022, αsc = 0.004 11.88 3.60 4.92 2.94 12.86 1.16 0.01 4.36

fCBM = 0.022, αsc = 0.4 11.92 3.60 4.96 2.98 12.86 1.14 0.01 4.36

fCBM = 0.035, αsc = 0.004 12.46 4.23 5.30 3.40 13.74 0.95 0.02 4.32

fCBM = 0.035, αsc = 0.4 12.41 4.23 5.34 3.44 13.74 0.94 0.02 4.32

fCBM = 0.05, αsc = 0.004 10.39 4.96 6.41 4.50 14.60 0.84 0.01 4.28

fCBM = 0.05, αsc = 0.4 10.90 4.95 6.28 4.39 14.60 0.83 0.01 4.28

15M�, fCBM = 0.004, αsc = 0.004 13.63 2.64 4.06 2.14 11.25 1.27 0.01 4.40

Ledoux, fCBM = 0.01, αsc = 0.004 13.40 2.96 4.20 2.27 11.82 1.35 0.27 4.38

f0 = 0.02 fCBM = 0.022, αsc = 0.004 11.90 3.59 4.91 2.94 12.82 1.16 0.01 4.36

20M�, fCBM = 0.004 17.37 4.39 5.94 3.63 8.12 0.99 0.64 4.43

Schwarzschild, fCBM = 0.01 17.49 4.89 6.24 3.95 8.40 0.89 0.64 4.42

f0 = 0.002 fCBM = 0.022 14.48 5.70 6.71 4.45 8.95 0.82 0.17 4.38

fCBM = 0.035 11.93 6.54 7.35 5.13 9.46 0.78 0.02 4.34

fCBM = 0.05 10.95 7.49 8.74 6.52 9.97 0.66 0.01 4.27

20M�, fCBM = 0.004, αsc = 0.4 18.90 4.49 5.89 3.58 8.09 0.96 0.92 4.43

Ledoux, fCBM = 0.01, αsc = 0.4 18.66 4.90 6.13 3.86 8.40 0.92 0.87 4.42

f0 = 0.002 fCBM = 0.022, αsc = 0.4 13.02 5.70 6.90 4.61 8.95 0.79 0.02 4.38

fCBM = 0.035, αsc = 0.4 10.84 6.54 8.01 5.71 9.46 0.72 0.02 4.34

fCBM = 0.05, αsc = 0.4 11.02 7.50 8.83 6.64 9.97 0.63 0.01 4.28

25M�, fCBM = 0.004 17.10 6.54 7.84 5.24 6.63 0.75 0.36 4.44

Schwarzschild, fCBM = 0.01 15.69 6.85 7.86 5.31 6.70 0.77 0.26 4.44

f0 = 0.002 fCBM = 0.022 12.57 7.95 8.54 6.05 7.08 0.69 0.02 4.38

fCBM = 0.035 14.03 9.00 9.73 7.24 7.43 0.64 0.02 4.34

fCBM = 0.05 12.69 10.16 11.27 8.86 7.78 0.55 0.01 4.24

25M�, fCBM = 0.004, αsc = 0.4 21.35 6.43 7.77 5.18 6.53 0.71 0.72 4.45

Ledoux, fCBM = 0.01, αsc = 0.4 21.59 6.91 7.72 5.15 6.70 0.70 0.78 4.43

f0 = 0.002 fCBM = 0.022, αsc = 0.4 14.87 7.94 8.59 6.11 7.08 0.66 0.12 4.38

fCBM = 0.035, αsc = 0.4 13.70 9.00 9.88 7.39 7.43 0.61 0.02 4.33

fCBM = 0.05, αsc = 0.4 12.76 10.16 11.68 9.25 7.78 0.52 0.04 4.24

Notes: Shown are the total star mass, Mtot, the helium core mass, Mα, the carbon-oxygen core mass, MCO, the
main-sequence lifetime, τH, the core helium burning lifetime, τHe and the blue supergiant to core helium burning
lifetime, τBSG/τHe. The core mass is defined as the location where the abundance of the main fuel in the burning
process, which creates the main end product of the burning phase, is below 0.1 and the abundance of the end product
is above 0.01.
a Hydrogen free core at hydrogen depletion.
b τBSG, the blue supergiant lifetime is defined as the time when the star (i) has left the main-sequence stage of core
hydrogen burning, (ii) the surface temperature is in the range 4.4 > log10 Teff > 3.9 and (iii) it is not an extremely
helium-enriched Wolf-Rayet-like star, i.e. Xsurf(

1He) > 0.3.
c The logarithm of the minimum effective temperature during the main-sequence evolution. The terminal-age main-
sequence is defined as the time when the central hydrogen mass fraction drops below 10−5.
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central 22Ne captures an α nucleus during core helium burning. The leftover 22Ne will capture an α

during carbon shell burning, where the αs are provided from the α-emission channel of the 12C+12C

reaction. This creates the condition for the weak s-process at higher temperatures and slightly dif-

ferent conditions (e.g. Couch et al., 1974; Prantzos et al., 1990; Raiteri et al., 1991b; Pignatari et al.,

2010). This secondary neutron-source reaction competes during the late core helium burning with the

12C(α, γ)16O reaction for the remaining α nuclei.

The outcome of core helium burning affects the further evolution of the star in several ways. The 12C

to 16O ratio at core helium depletion depends strongly on the nucleosynthesis and its uncertainties

(e.g. Arnett & Thielemann, 1985; Fields et al., 2018). The outcome not only sets the fuel for the

subsequent carbon and oxygen burning phases but also influences the pre-supernova abundances (e.g.

Thielemann & Arnett, 1985; Woosley et al., 2002). Furthermore, the amount of 12C available at

core carbon burning ignition determines whether carbon burns convectively or radiatively, which has

consequences for the convective history and the stellar structure at core collapse (Ugliano et al., 2012;

Sukhbold & Woosley, 2014; Müller et al., 2016; Sukhbold et al., 2016; Ertl et al., 2016; Sukhbold et al.,

2018; Chieffi & Limongi, 2019). Moreover, the different activity of the 22Ne+α reaction during core

helium or shell carbon burning will affect the nucleosynthesis and final weak s-process yields, because

the burning conditions differ and there are different isotopic abundances, e.g. neutron poison, in the

two stages (Prantzos et al., 1990; Raiteri et al., 1991a,b; Pignatari et al., 2010).

Convective boundary mixing increases the effective size of the convective helium core (Fig. (III.12))

which slightly changes the central conditions. Furthermore, the convective stability criterion influ-

ences the size of the convective core and when it grows - see discussion in Section III.5.1. These facts

affect the amount of α nuclei available during a certain period of core helium burning and the central

conditions. This impacts the 12C to 16O ratio and the amount of 22Ne capturing an α nucleus, thus,

the efficiency of the weak s-process during core helium burning (see also e.g. Costa et al., 2006).

Fig. (III.13) presents the 12C and 16O mass fraction in the centre of the star at core helium depletion

as a function of the carbon-oxygen core mass for the different initial masses. In the 15 M� models the

12C mass fraction decreases and the 16O mass fraction increases with increasing fCBM. The 15 M�

models with the two highest values of fCBM follow this trend but are shifted to slightly larger 12C and

smaller 16O mass fractions. The first trend is a consequence of the increasing convective core mass

during core helium burning with larger fCBM, as discussed in Section III.5.1, therefore more α-nuclei

are ingested into the central burning zone. Thus, during late core helium burning, when the 12C+α

is dominant, more 12C is turned into 16O. The second point is related to the timing of the convective

helium core growth (see Fig. (III.12)). Whilst in the 15 M� models with fCBM ≤ 0.022 the core growth

is roughly linear in time, in the models with fCBM = 0.035 or 0.05 core growth occurs mainly during

the initial phase of core helium burning, i.e. when Xc(
4He) ≥ 0.8, and the core growth is relatively
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Figure III.13: The 12C, top, and 16O, bottom, mass fractions in the centre as a function of the carbon-
oxygen core mass at core helium depletion. Plotted are the values for the 15 (black edge) 20 (blue
edge) and 25 M� (red edge) models. The Schwarzschild boundary criterion is indicated by a circle and
Ledoux criterion with a star (αsc = 0.004) or a square (αsc = 0.4), respectively. The colour scheme
shows the value of fCBM.

slower thereafter. Therefore, there is less α entrained during the late burning phase, when the 12C+α

reaction is dominant, resulting in a slightly higher 12C and lower 16O mass fraction in these models.

The Schwarzschild model with fCBM = 0.035 has a convective core growth more similar to the models

with lower amounts of convective boundary mixing. This is also reflected in its lower 12C and higher

16O compared to the rest of the models with large amounts of convective boundary mixing.

Fig. (III.13) also depicts that with the semiconvective efficiencies used in this work, semiconvection

has almost no influence on the carbon and oxygen mass fraction at the end of core helium burning.

The only models where there is an impact are the ones with no convective boundary mixing, where a

higher semiconvective efficiency leads to a larger convective core shown in Fig. (III.12). Consequently,

there is more fuel available during the late burning phase, resulting in the lower 12C and higher 16O

mass fraction.

The 15 M� Schwarzschild model with no convective boundary mixing does not follow this trend. This

model has a much higher 16O to 12C ratio in the centre than any other of the 15 M� simulations. This

is because of the sharp increase of the convective core described in Section III.5.1, which transports

fuel into the convective region during late core helium burning. This brings a lot of fresh α into the

core and more carbon is synthesised into oxygen.

Fig. (III.13) clearly shows a higher 16O to 12C ratio with increasing initial mass. This is expected due
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to the temperature dependence of the 12C+α reaction, hence, more massive stars synthesise more 16O

and less 12C during core helium burning (e.g. Prantzos et al., 1990).

The central 12C and 16O mass fractions in the 20 and 25 M� models with different amounts of convec-

tive boundary mixing appear to be constant around Xc(
12C)∼ 0.3, Xc(

16O)∼ 0.68 and Xc(
12C)∼ 0.22,

Xc(
16O)∼ 0.7, respectively. Contrary to the 15 M� models the 12C+α reaction seems to be saturated

under the conditions in these models. This is a result of the higher central temperatures in the models

with the same initial mass but larger amounts of convective boundary mixing, which leads other re-

actions to activate, such as 16O(α, γ)20Ne (e.g. Arnett & Thielemann, 1985). The models with values

of fCBM ≤ 0.01 have a lower 12C and higher 16O mass fraction. This behaviour is a consequence of

the core breathing pulses, which occur during the late stages of core helium burning and affect the

size of the convective core - see discussions in Sections III.5.1 and III.7. These events ingest more fuel

into the burning region. Therefore the final 16O mass fraction is increased and the 12C mass fraction

is decreased. Since the core breathing pulses are more extreme with less convective boundary mixing,

the 16O to 12C ratio is slightly higher with less convective boundary mixing.

Comparing the different initial masses it is obvious that depending on the amount of convective bound-

ary mixing lower mass models can have a similar 16O to 12C ratio at the end of core helium burning to

higher mass models with less convective boundary mixing. This is striking because this ratio is crucial

in determining the evolution of the advanced burning phases, in particular the convective history (see

discussions in Sukhbold & Woosley, 2014; Chieffi & Limongi, 2019). Therefore, the amount of convec-

tive boundary mixing not only directly affects these convective regions by enhancing the convectively

mixed region but also indirectly by setting the 16O to 12C ratio at the end of core helium burning.

The carbon to oxygen ratio at core helium depletion is very uncertain, especially due to the uncertainty

in the reaction rate (e.g. Woosley et al., 2002). I show here that the amount of convective boundary

mixing introduces another uncertainty in this ratio. The convective boundary criterion seem to affect

the ratio less when comparing the different models with the same initial mass but varying fCBM in

Fig. (III.13). Nevertheless, the importance of this uncertainty needs to be determined in the absence

of core breathing pulses which are thought to be numerical artefacts (Constantino et al., 2016) but see

discussion in Section III.7.

The weak s-process in massive stars depends on the efficiency of the neutron source reaction 22Ne(α,n)25Mg,

which determines the neutron density in the helium core. The efficiency of the neutron source reac-

tion depends on (i) the nuclear abundances of 22Ne and 4He and (ii) the central conditions such as

temperature and density. At solar metallicity, most of the metals are CNO elements, which are mostly

turned into 14N during hydrogen burning. Hence, the 22Ne abundance before the activation of the

22Ne+α reaction during core helium burning is directly related to the initial metal abundance in all

my calculations (X(22Ne) ≈ 22
14 ·XCNO

ini ). The amount of α available, on the other hand, depends on
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Figure III.14: The 25Mg mass fraction produced at the centre by the neutron source reaction during
core helium burning as a function of the carbon-oxygen core mass at core helium depletion. Plotted
are the values for the 15 (black edge) 20 (blue edge) and 25 M� (red edge) models. A circle indicates
the Schwarzschild criterion, a star the Ledoux criterion with αsc = 0.004 and a square the Ledoux
criterion with αsc = 0.4. The colour scheme shows the value of fCBM.

the size of the convective core and on the amount of fuel entrained at the top of the convective core.

The differences in the central thermodynamic condition between the models depend on the different

amounts of convective boundary mixing as well.

Fig. (III.14) presents the 25Mg mass fraction produced at the centre by the neutron source reaction

22Ne(α,n)25Mg during core helium burning as a function of the carbon-oxygen core mass for the three

initial masses. The number of neutrons released by the neutron source reaction is equal to the number

of 25Mg produced in Fig. (III.14), thus, it indicates the neutron flux and with it the activity of the

weak s-process.

Fig. (III.14) shows a clear trend of an increasing 25Mg production with increasing fCBM for all initial

masses. This is because (i) more fuel is entrained into the convective zone with an increasing amount

of convective boundary mixing and (ii) the models with more convective boundary mixing have larger

core masses, hence they burn helium in the centre at a slightly higher temperature and lower den-

sity compared to models with less convective boundary mixing. Moreover, the convective boundary

criterion leads to different convective core sizes (Fig. (III.12)) which leads to different activity of the

neutron source reaction. The shift of Xc(25Mg) to higher values with larger initial mass results from

the fact that these models have larger core masses and burn helium at higher temperatures.

Fig. (III.14) depicts that the different semiconvective efficiencies do not change the amount of 25Mg
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produced by the 22Ne+α reaction, which is a result of the reduced occurrence of semiconvection with

increasing amount of convective boundary mixing. Therefore, the semiconvective efficiency does not

affect the weak s-process efficiency during core helium burning.

Again, it is interesting to see in Fig. (III.14) that models with a large amount of convective boundary

mixing behave like models of a larger initial mass but less convective boundary mixing in terms of

carbon-oxygen core mass and s-process activity.

I want to stress here that the Xc(25Mg) in Fig. (III.14) is not equal to the 25Mg abundance at core

helium depletion. Indeed, Xc(25Mg) corresponds to the production at the very centre, whereas the

final 25Mg abundance is determined by the conditions throughout the convective core. Additionally,

some of the 25Mg is further processed by burning.

The difference in s-process activity during core helium burning can shift the final weak s-process pro-

duction between iron and strontium. Furthermore, more 22Ne+α consumption during core helium

burning leads to higher s-process yields (Pignatari et al., 2010).

The changes in nucleosynthesis due to the f0 parameter is linear. A larger f0 implies slightly less

convective boundary mixing, thus, smaller amount of fuel available in the late core helium burning.

Therefore, the abundances of 12C and 22Ne are higher and the abundances of 16O and 25Mg are lower

than shown in Figs. (III.13) and (III.14). The differences of the nucleosynthesis during core helium

burning due to semiconvection are slim as can be seen in Figs. (III.13) and (III.14) and mainly affect

the simulations with no convective boundary mixing.

6 Blue versus Red Supergiant Evolution

The different behaviour in depth and duration of the intermediate convective zone discussed in Section

III.4 has an important impact on the surface evolution of the model, which in turn influences the later

stellar structure and evolution.

Fig. (III.15), left panel, shows the Hertzsprung-Russell diagram for the 15 M� models. The main-

sequence tracks in the Hertzsprung-Russell diagram are discussed in Sections I.2 and III.3. The mod-

els leave the main sequence via the Henyey hook where the first difference between the two boundary

criteria arises. The tracks of the Ledoux models form a loop (top left of the tracks) before they start

crossing towards the cooler, red side of the Hertzsprung-Russell diagram, whereas the Schwarzschild

models evolve via a hook. With increasing amount of convective boundary mixing, the latter show

loops as well. This contrast arises from the different location of the intermediate convective zone,

which becomes more similar with increasing fCBM (see Figs. (III.8) and (III.9)).

The Ledoux models with no convective boundary mixing (black dotted and dashdotted lines in

Fig. (III.15)) show the most different tracks when crossing to the red supergiant branch on the cool
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Figure III.15: The Herzsprung-Russell diagram for various calculations of models with initial masses
of 15 and 25 M�, both with f0 = 0.002. The solid lines indicate Schwarzschild models and all the
others are Ledoux models with either αsc = 0.4 (dotted line) or αsc = 0.004 (dash-dotted line). The
colour scheme indicates the amount of convective boundary mixing. The markers show the location
where helium burning is ignited in the core, i.e. when 0.3% of the helium left after core hydrogen
depletion is burnt. The different marker styles indicate the different boundary criteria used in the
calculation, where circles indicate the Schwarzschild criterion and the others are Ledoux models with
αsc = 0.004 (square) or αsc = 0.4 (star).

side of the Hertzsprung-Russell diagram by decreasing their surface luminosity. Fig. (III.16) (left

panel) which presents the evolution of the surface temperature as a function of the central helium

mass fraction sheds light on what happens in the interior of these models. The two Ledoux models, af-

ter the Henyey hook in the upper left corner, drop their surface temperature before they consume any

significant amount of helium in their interior. Hence, they directly cross the Hertzsprung gap to the

cool side of the Herztsprung-Russell diagram before they fully ignite helium in their core, despite the

fact that Fig. (III.15) suggests that they start burning helium at log Teff ≈ 4.0. The fast red-ward evo-

lution results in a primarily adiabatic expansion of the envelope, thus a decrease in surface luminosity.

The Schwarzschild model with no convective boundary mixing (the black solid line in Fig. (III.15)) on

the other hand, ignites helium in its core at around log Teff ≈ 4.2. Fig. (III.16) reveals that the model

consumes ∼ 80% of its central 4He in the hotter, blue side of the Hertzsprung-Russell diagram, before

it moves to the cool, red side. The crossing of the Hertzsprung gap in this simulation occurs with a

nearly constant surface luminosity, which is due to a quasi-hydrostatic contraction/expansion. The

short loop-like structure at log Teff ≈ 4.2 in the Schwarzschild model is because of a strong, boosted

hydrogen shell, which stops the expansion of the envelope by supporting the core.

These two scenarios, either spending the whole of the core helium burning phase as a red supergiant

or spending most of core helium burning as a blue supergiant, are a consequence of the different

intermediate convective zone and the activity of the hydrogen shell described in Section III.4.

These extreme differences of red- or blue-ward evolution with either the Ledoux or the Schwarzschild

criterion in the 15 M� models decrease with increasing amount of convective boundary mixing (see
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Figure III.16: Evolution of the effective temperature as a function of the central 4He mass fraction.
Shown are the 15 and 25 M� models, all with f0 = 0.002. The solid lines indicate Schwarzschild models
and all the other are Ledoux models with either αsc = 0.4 (dotted line) or αsc = 0.004 (dash-dotted
line). The colour scheme indicates the amount of convective boundary mixing.

Figs. (III.15) and (III.16)). However, crucial variations arise with the choice of fCBM. When a small

amount of convective boundary mixing is applied, i.e. fCBM = 0.004, the erasing of the chemical strat-

ification at the lower convective boundary of the intermediate convective zone in the Ledoux models

dominates - see discussion in Section III.4. As a result, both, the Ledoux and the Schwarzschild

models, predict an overlap of the intermediate convective zone and the hydrogen burning shell. Con-

sequently, these models experience a more “Schwarzschild -like” evolution where the star consumes

∼ 50% of its central helium before they evolve red-ward. The blue supergiant lifetime is shorter in

these models compared to the Schwarzschild model with no convective boundary mixing (compare in

Table III.1) because of the shorter duration of the intermediate convective zone (Fig. (III.10)). These

three models exhibit a vertex at log Teff ≈ 4.2 which is due to the boost of the hydrogen shell. When

higher amounts of convective boundary mixing are used, fCBM = 0.01, 0.022 and additionally 0.035 in

the Schwarzschild case, the effect of faster energy regulation dominates - see Section III.4. This results

in a shorter duration of the intermediate convective zone and a weaker hydrogen shell. As a conse-

quence, the models evolve more “Ledoux -like”, meaning they evolve red-ward faster and spend most

of their core helium burning phase as red supergiants. The loop-like structure around log Teff ≈ 4.2

in Fig. (III.15) flattens and the point of central helium ignition is shifted to slightly cooler values of

the surface temperature. For even more convective boundary mixing, fCBM = 0.05 and 0.035 for the

Ledoux models, the intermediate convective zone does not overlap with the hydrogen burning shell

anymore, even less than in the Ledoux models with no convective boundary mixing. Therefore, the

energy generation of hydrogen burning decreases fast and the shell moves outwards due to the lack

of fuel at the shell location - see Section III.4. Consequently, the model moves very fast to the cooler

part of the Hertzsprung-Russell diagram as shown in Fig. (III.16) and Table III.1. Moreover, core

helium burning only ignites once the model has ascended the red supergiant branch. This is in fact
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the result from an even faster red-ward evolution than the other models. The Ledoux models with no

convective boundary mixing and with fCBM = 0.022 and the Schwarzschild model with fCBM = 0.035

reach the red supergiant branch after they have consumed ∼ 80% of their Xc(
4He). On the contrary,

the Ledoux models with fCBM = 0.035 reach the red supergiant branch with having less helium con-

sumed and the models with fCBM = 0.05 do not consume any notable amount of helium before they

start ascending the red supergiant branch. Since these models do not have a strong hydrogen shell to

support the core against contraction, more gravitational energy is released, of which part leads to a

more extreme expansion and relatively high mass-loss rate before helium is ignited in the centre. The

effect of this transition, from “Schwarzschild -like” to “Ledoux -like”, is nicely presented in Fig. (III.16)

and is a function of fCBM.

The generally larger intermediate convective zone in the 20 and 25 M� models leads to a slower red-

ward evolution and these models generally consume more helium in their cores as blue supergiants,

as shown in Figs. (III.15) and (III.16) for the 25 M� models. The location of helium ignition in

Fig. (III.15), however, does not greatly change with higher initial mass and seems to be more depen-

dent on the amount of convective boundary mixing.

Interestingly, the central evolution presented in Fig. (III.16) reveals important qualitative differ-

ences. The Ledoux models with fCBM = 0.004 and 0.01 both spend nearly their whole core helium

burning phase as blue supergiants, ∼ 90% and ∼ 75%, respectively (see Table III.1), whereas their

Schwarzschild counterparts only spend ∼ 64% and ∼ 30%, respectively, of their core helium burning

phase as blue supergiants. Furthermore, the Ledoux models with fCBM = 0.004 and 0.01 behave

more similarly during this stage than the respective Schwarzschild model with the same fCBM and

vice-versa. Hence, the stability criterion introduces a larger uncertainty in these models with medium

and low amounts of convective boundary mixing during this stage. This occurs for both initial masses,

20 and 25 M�.

Another interesting feature appearing in Figs. (III.15) and (III.16) is that the models with large

amount of convective boundary mixing, fCBM = 0.035 and 0.05, start to move back to the hot side

of the Hertzsprung-Russell diagram towards the end of helium depletion. This is a consequence of

the fast red-ward evolution after the main sequence of these models and the resulting relatively large

mass loss (see Fig. (III.17)) which erodes most of the hydrogen rich envelopes of these stars - also

compare Mtot and Mα in Table III.1. Indeed, the 25 M� models with fCBM = 0.05 lose enough mass

to evolve blue-wards with the Ledoux model ending in the Wolf-Rayet phase, defined in our models

as Xsurf(
1H) < 0.4 and log10Teff > 4.0. As expected, this behaviour is more dominant in the 25 M�

models than in the 20 M� models.

The effect of the convective fingers on the intermediate convective zone in the models with fCBM =

0.022 - as discussed in Section III.3 - is also apparent. In the 20 M� Ledoux model the duration

112



III.6. BLUE VERSUS RED SUPERGIANT EVOLUTION

of the intermediate convective zone is shorter due to the influence of the convective fingers and it

crosses nearly directly to the cool part of the Hertzsprung-Russell diagram, whereas its Schwarzschild

counterpart stays for some time in the hot part. In the 25 M� Ledoux models with fCBM = 0.022,

on the other hand, the intermediate convective zone is larger due to the interference of the convective

fingers and it experiences a slower red-ward evolution than its Schwarzschild counterpart.

Table III.1 includes the ratio of the blue supergiant to core helium burning lifetimes. This shows once

more that the simulations with a larger and longer intermediate convective zone stay longer in the

hot part of the Hertzsprung-Russell diagram. Vice versa, a smaller intermediate convective zone leads

to a faster red-ward evolution. Furthermore, the Schwarzschild models predict constant or slightly

decreasing blue supergiant lifetimes with increasing initial mass whereas the Ledoux models predict

first an increase and then a decrease for the two largest values of fCBM. This difference is due to the

initial location of the intermediate convective zone.

Some of the models spend more than half of their core helium burning lifetime as blue supergiants.

This is partly in contradiction with Davies & Dessart (2018) who found a transition from fast to slow

red-ward evolution around 15 - 25 M�. Moreover, Davies & Dessart (2018) state that the location of

helium ignition impacts the way the star crosses the Hertzsprung-Russell diagram. I, however, do not

see a clear indication of this in my mass range because all of the models with fCBM . 0.022 ignite

helium burning in their cores at around log10Teff ≈ 4.2 − 4.1 with the exceptions being the models

with large amount of convective boundary mixing. So the location of helium ignition in my models

only shows whether a low and intermediate fCBM or a large fCBM is used. The main impact I find, as

stated by Davies & Dessart (2018) as well, is the location and duration of the intermediate convective

zone.

These two different evolutionary paths, core helium burning as a blue or red supergiant, or a com-

bination thereof, have an important impact on the structure of the star and its further evolution, in

particular (i) the mass loss rates, (ii) the shape of the surface convective zone and surface enrichment,

(iii) the central evolution (Section III.5) and (iv) the star type at the end of core helium burning,

either red supergiant, blue supergiant or Wolf-Rayet star.

Fig. (III.17) presents the mass loss rates, Ṁ, as a function of the central helium mass fraction, starting

at core hydrogen depletion, at the bottom left. Ṁ shows similar low values in all models at the end

of their main-sequence evolution. Thereafter the mass loss rates evolution exhibits quite a contrast.

The mass loss rates depend crucially on the time when the model enters the red supergiant phase.

During the time a model evolves as a blue supergiant, its mass loss rates stay relatively low, following

the mass loss prescription from Vink et al. (2000, 2001) - see Section B.1.6. However, once the model

evolves red-ward it experiences a drastic increase in its mass loss rate. This is around log10Teff = 4.0

when the stellar evolution code switches from the mass loss prescription for O-stars to the empirical
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Figure III.17: The mass-loss rate per year as a function of the central helium mass fraction. The
tracks begin at central hydrogen depletion and go up to central helium depletion. Shown are the
tracks for the 15 and 25 M� models, left and right respectively, all with f0 = 0.002. The solid lines
indicate Schwarzschild models and all the other lines are Ledoux models with either αsc = 0.4 (dotted
line) or αsc = 0.004 (dash-dotted line). The colour scheme shows the amount of convective boundary
mixing.

mass loss rates by de Jager et al. (1988). The different dependency on the surface temperature and

luminosity leads to the drastic increase of the mass loss rates - see Section B.1.6.

As previously discussed, the time a model spends as a blue supergiant depends on the duration, lo-

cation and size of the intermediate convective zone, which itself depends on the stability criterion

used and the amount of convective boundary mixing applied. In general, models with a larger fCBM

parameter experience a faster red-ward evolution, hence, they experience an increased Ṁ earlier. Ad-

ditionally, there is a difference between the Ledoux and the Schwarzschild criterion models, in that

the latter experience a later and less intense increase in Ṁ, which is present for all fCBM-values used

in this work. This is a result from the differences in the intermediate convective zone.

The simulations with no convective boundary mixing (the black lines in Fig. (III.17)) defy this gen-

eral trend, because the Schwarzschild model has the longest blue supergiant lifetime whereas the

Ledoux models the shortest. Furthermore, the models with fCBM = 0.05 and the Ledoux models

with fCBM = 0.035 experience a relatively high Ṁ which is reduced by about half in the subsequent

evolution. This is due to the drop of the total luminosity (see Fig. (III.10)). The high luminosity

after core hydrogen depletion in these models is due to the more extreme central contraction without

a strong support from the hydrogen shell, as discussed in Section III.4.

The 20 and 25 M� models generally have higher mass-loss rates with increasing fCBM and hence a

smaller total mass at core helium depletion (Table III.1). There are, however, some exceptions. The

Ledoux and Schwarzschild models, each with fCBM = 0.004 and 0.01, show more similar mass loss

rates than their counterparts with the same fCBM but different stability criterion. This is a conse-

quence of the more similar intermediate convective zone previously discussed.
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The changes in mass-loss rates seen in Fig. (III.17) are due to the different phases the models are in,

as discussed above. The variation due to the uncertainty of convective boundary mixing leads to a

wide range of total masses at core helium depletion (see Table III.2). The most extreme cases are the

models with an initial mass of 25 M� where the final mass ranges from 21.59 M� down to 12.57 M�.

The depth and strength of the intermediate convective zone further affects the appearance of the

surface convective zone. A less energetic hydrogen shell favours core contraction, thus expansion of

the envelope, which in turn cools down and the opacity in the envelope increases. As a consequence,

a surface convective zone develops, which penetrates deep into the star - see Figs. (III.8) and (III.9)

where some panels show a convective zone in the upper right side - and enriches the surface with pre-

viously synthesised material from the interior. A stronger hydrogen shell, on the other hand, delays

the formation of the surface convective zone and the surface enrichment occurs later (see discussion

in e.g. Georgy et al., 2014). Therefore, the surface composition and composition of winds will be

affected.

In Section III.4 I have shown that the f0 parameter has an important effect on the intermediate

convective zone when small values of fCBM are used, especially in the Ledoux models. Following the

discussion, this affects the red-ward evolution (Table III.1) and with it the mass loss rates. Therefore,

this parameter should not be overlooked in discussions.

7 Discussion

One of the main goals of this work is to show the relative importance of convective boundary mixing

uncertainties and which quantities of stellar evolution are mostly affected. In Table III.2 I list the vari-

ation of the core masses and the total mass at core helium depletion and in Table III.3 the variation of

the lifetime of some stellar stages. The two tables show for each initial mass the maximum difference

in the predicted values of my simulations and the relative variation with respect to a reference model.

The reference model for all initial masses is the Ledoux model with fCBM = 0.035 and αsc = 0.4,

which is, in the 15 M� case, the closest setting to the calibration of Brott et al. (2011).

The two largest relative deviations in Table III.2 are the total mass of the star and the carbon-oxygen

core mass, which are both above 50%. For the two higher initial masses, the uncertainty of the total

star mass dominates, with ∼ 65% and ∼ 75% respectively for the 20 and 25 M� models, whereas in

the 15 M� models the relative variation of the carbon-oxygen core is the largest with ∼ 70%. The

absolute deviation of the total mass is about 9 M�. This large uncertainty is a result of the models

spending different amounts of time as blue or red supergiants, where different mass loss prescriptions

apply. This is a consequence of both, the boundary criterion and the amount of convective boundary

mixing which influence the location, shape and duration of the intermediate convective zone - see Sec-
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tion III.4. The core masses, with the exception of the carbon-oxygen core mass in the 15 M� models,

show smaller but still non-negligible deviations. The helium core masses have differences up to 4 M�

and relative variations of ∼ 35− 45%. The absolute difference is larger for the higher initial masses,

a consequence of the size difference of these models, but the relative variation is smaller because of

the larger MHe of the reference model. The uncertainty of helium core mass is dominated by the

amount of convective boundary mixing and the choice of the boundary criterion only gives maximal

differences up to 0.5 M� (see Table III.1). The carbon oxygen-core masses follow the same trend but

with larger absolute and relative variations, i.e. ∼2.5− 4.1 M� and ∼ 50− 70%, respectively. These

differences are mainly influenced by the choice of fCBM and the choice of the boundary criterion is

less important than for MHe in most cases. The boundary criterion mainly influences the timing when

the convective helium core grows but has less impact on its maximal extent. MCO shows a slightly

higher absolute variation because the variations from the previous stellar phases cumulate. Thus, the

relative uncertainty of the core masses increases as stellar evolution proceeds and might be even higher

for the further evolution (see e.g. Davis et al., 2019). The uncertainty of the mixing assumptions also

influences convective shell interactions during the later evolutionary stages (e.g. Clarkson & Herwig,

2020).

I want to stress here, that some of the core masses in the 15 M� models with larger values of fCBM

are as large as the same core mass in the 20 M� models with moderate values of fCBM. The same

applies for the 20 and 25 M� models. These models with large amounts of convective boundary mixing

would therefore have an evolution after core helium burning that is more similar to models with a

higher mass but less convective boundary mixing. This would change the “zero-age main sequence -

supernova progenitor” relation and the final fate of massive stars as a function of their initial mass.

Furthermore, the core masses are often used to relate to the pre-supernovae compactness and explod-

ability of a star (e.g. O’Connor & Ott, 2011; Müller et al., 2016; Ertl et al., 2016; Sukhbold et al., 2018;

Chieffi & Limongi, 2019). Relative uncertainties of & 40− 70% make these predictions unreliable and

more dependent on the parameter choices than the actual physics. Moreover, these uncertainties will

impact 3D hydrodynamics simulations for which 1D stellar evolution models are used as input model.

The core hydrogen and core helium burning lifetimes in Table III.3 show a decreasing variation, rel-

ative and absolute, with initial mass. Convective boundary mixing mainly influences the burning

lifetimes by extending the convective core and providing more fuel for the burning phase. The models

with higher initial masses consume their fuel faster, hence the smaller variation in lifetimes with in-

creasing initial mass. The differences of the core hydrogen burning lifetimes are nearly completely due

to the choice of fCBM and only the models with no convective boundary mixing show a dependence on

the boundary criterion. The relative variation of the helium burning lifetimes is more than twice the

relative variation of the hydrogen burning lifetimes. Similar to hydrogen burning, these differences
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in the helium burning lifetimes are mainly determined by the amount of convective boundary mixing

but there is also a small dependence on the boundary criterion. The variation in the blue supergiant

lifetimes is extreme but this is to be expected considering the uncertainty connected with this phase.

This huge variation translates into the uncertainty of the total mass in Table III.2.

The blue values in brackets in Tables III.2 and III.3 represent the same variations but they include

the 15 M� models with no convective boundary mixing. These variations are larger, mainly because

of the pure Ledoux model with slow semiconvection, which has much smaller cores (see Table III.1).

In Sections III.3 and III.5 I have shown that the helium and carbon-oxygen core masses increase

with increasing amount of convective boundary mixing. Furthermore, convective boundary mixing

enhances the main-sequence width and prevents the occurrence of convective fingers. Also, models

with more convective boundary mixing have longer main-sequence and core helium burning lifetimes

as shown in Table III.1 and experience more mass loss (see Fig. (III.17)). These are effects which

are generated by rotation as well (e.g. Heger et al., 2000; Meynet & Maeder, 2000, and Chapter IV).

Therefore, some solutions of stellar models might not be singular and care has to be taken when trying

to fit 1D stellar evolution models to observations. In this Chapter I studied non-rotating stellar models

in order to investigate the effects of convective boundary mixing without blurring of rotation-driven

mixing. In reality, both processes occur and influence each other (e.g. Brun et al., 2017; Korre et al.,

2019) but it is still an open question how convection and rotation interact with each other - see also

Chapter IV.

Gabriel et al. (2014) discuss the important issue of discontinuities at convective boundaries and how

to choose the “right” convective boundary location in the framework of the mixing-length theory.

They argue that the convective boundary is determined by either Frad = Ftot, vconv = 0 or, following

Biermann (1932), ∇rad = ∇ad, all taken on the convective side of the boundary. On the radiative

side of the boundary, the condition ∇rad ≤ ∇ad must hold: (i) equality if there is no discontinuity in

the chemical composition, since all other variables T , P , ρ, and L are continuous and (ii) inequality if

there is a discontinuity of the chemical composition, resulting in the density and opacity to be discon-

tinuous, which is generally the case. In many present-day stellar evolution codes, including MESA which

was used for this work, the boundary location is determined as the position where the discriminant

y = ∇rad − ∇ad or y = ∇rad − ∇ad + B, respectively, changes sign - see Section B.1.3.2. Therefore,

the codes include points in the radiative region to identify the convective boundary, contrary to the

argument above. If y is continuous at the convective boundary interface, this method works as well.

However, if discontinuities are present, this procedure can lead to an incorrect positioning of the

boundary as shown by Gabriel et al. (2014). For both, the Ledoux and the Schwarzschild criterion, y
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is discontinuous if the chemical composition profile is discontinuous. In addition, y is discontinuous if

there is a µ-gradient in an adjacent layer of the boundary and the Ledoux criterion is used. Further-

more, in order to find the boundary location between cell k and k + 1 the codes interpolate in order

to find the exact location where y cancels. However, interpolation over an interval is mathematically

not allowed, which may have important consequences on the positioning of the boundary (see Gabriel

et al., 2014, for more details).

Similar issues arise in the calculations with no convective boundary mixing, especially with the Ledoux

criterion. Convective boundary mixing removes possible discontinuities at the convective boundary.

Therefore, the problem with a discontinuity in the chemical composition or its gradient at the con-

vective boundary is reduced, depending on the degree of convective boundary mixing and amount

of resolution at the boundary. In thin convective layers such as the convective fingers the problems

still arise. However, these convective regions might be a relic of 1D stellar evolution and might not

occur in reality - see discussion further down. Nevertheless, in most of the 1D stellar evolution codes

the convective boundary is determined before convective boundary mixing is applied, as discussed in

Section B.1.3. Hence, this problem is not solved but rather avoided in my models.

The convective fingers discussed in Section III.3 do not influence the simulation significantly, except

if they are able to connect with the convective hydrogen core or if they persist until the intermediate

convective zone appears. Especially the first event can lead to significant changes of, e.g., the helium

core mass and hydrogen burning lifetime. I demonstrated that there is a limiting amount of convective

boundary mixing above which no convective fingers appear. This limit, however, increases with in-

creasing initial mass. On the other hand observations suggest, that the required amount of convective

boundary mixing during the main-sequence evolution is above the fCBM limits for convective fingers.

Therefore, they might not occur at all. If they do occur, there are other issues, such as the high diffu-

sion coefficient and convective velocity predicted by the mixing-length theory, which seem unrealistic

for thin convective layers. Furthermore, if some sort of mixing above the convective hydrogen core

takes place, its nature needs to be determined, i.e. whether it has a finger-like structure as found by,

e.g., Langer et al. (1985) and discussed in my work or whether it is more a slow constant mixing as

suggested by Schwarzschild & Härm (1958) and implemented in the MESA code (Paxton et al., 2019).

Another possibility could be to limit the mixing efficiency in thin convective layers by the distance

to the convective boundary, as shown in Section B.2.2. However, convective fingers might be a relic

of 1D stellar evolution and finite timestepping, that introduce discontinuities at the location of the

convective boundary of the retreating hydrogen core at a certain timestep. Moreover, 3D simulations

cleary show that the convective boundary is dynamic and fluctuates (e.g. Cristini et al., 2017; Jones

et al., 2017), which affects the chemical composition profile that is left behind the retreating hydrogen
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core. Furthermore, 3D simulations clearly show that at the interface of the convective and radiative

region internal gravity waves are generated, that propagate to the surface (Cristini et al., 2017; Edel-

mann et al., 2019). How much these waves mix the composition needs to be determined but they

definitely affect the radiative region above the convective core.

Some of the convective helium cores in Fig. (III.12) show core breathing pulses (Castellani et al.,

1985). There is evidence that these core breathing pulses might be of a theoretical or numerical nature

(Constantino et al., 2016; Farmer et al., 2016). We note that the core breathing pulses that occur in

some of our models always appear after the intermediate convective zone disappeared and the energy

generation of the hydrogen shell drops (compare Figs. (III.8) and (III.10)). At this point the convec-

tive core experiences an increase in pressure and readjusts itself. This process, however, is dynamic

and time dependent. The pulses of the convective core could therefore be a result of the 1D mixing

prescription (e.g. Renzini & Fusi Pecci, 1988), hence, they could be the issue of idealised physics

rather than a numerical problem. Moreover, we note that when the convective boundary mixing zone

is large enough, this scenario does not occur, i.e. fCBM ≥ 0.022 (Constantino et al. (2017) found a

similar dependence and proposed an entrainment rate for the convective helium core). Therefore, it

could be that core breathing pulses occur when the envelope to core ratio is above a critical value,

where the envelope exerts enough pressure on the core once the hydrogen shell disappears to introduce

contraction. On the other hand, if the ratio is below the critical value the envelope is not massive

enough to introduce a contraction of the core after the disappearance of the hydrogen shell and no

core breathing pulses occur.

A complete understanding of the blue versus red evolution after the main sequence is still missing.

Several ideas have been suggested (e.g. Renzini et al., 1992; Sugimoto & Fujimoto, 2000; Stancliffe

et al., 2009) but there is no general accepted solution. Nevertheless, it is known that the blue to red

supergiant ratio depends strongly on internal mixing processes (e.g. Langer & Maeder, 1995; Georgy

et al., 2014; Schootemeijer et al., 2019). There are two possible ways massive stars evolve into the

blue supergiant region. Either they evolve from the main sequence to the blue supergiant region, type

I, or they evolve directly from the main sequence to the red supergiant region and then back towards

the blue region, type II. Ekström et al. (2012) find in their evolutionary grid that blue supergiant type

II occurs in massive stars of about 20 M� or higher; this limit depends on the mass loss rates that

are assumed during the red supergiant phase (e.g. Georgy, 2012). The two types of blue supergiants

have a different mass, structure and surface abundances. Furthermore, their following evolution and

supernova type will differ (e.g. Georgy et al., 2012; Yoon et al., 2012; Eldridge et al., 2013).
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In Section III.4 I discussed that blue supergiants in my grid are either type I, with small and interme-

diate values of fCBM, or possibly type II, when large values of fCBM are used, depending on the initial

mass. This is due to the impact of the intermediate convective zone on the evolution of the star. The

type I blue supergiant models move to the red supergiant region as soon as the intermediate convective

zone disappears and the hydrogen shell weakens. Nonetheless, some models spend more than half,

or nearly all, of their core helium burning phase as blue supergiants depending on the convective

boundary criterion and the amount of convective boundary mixing (see Table III.1). The type II blue

supergiant phase only occurs in the 25 M� models with large amounts of convective boundary mixing

and the star only spends a short fraction of core helium burning as this type. Nevertheless, this model

becomes a Wolf-Rayet star at the end of core helium burning, which will change its further evolution

and final fate. Moreover, we find that semiconvection with the efficiencies tested has no remarkable

impact on the blue to red supergiant ratio. Recently, Schootemeijer et al. (2019) compared a grid of

stellar models with varying amounts of internal mixing to observation of massive stars in the Small

Magellanic Cloud and conclude that a medium amount of convective boundary mixing - they use the

penetrative ‘overshoot’ with 0.22 . αov . 0.33, and efficient semiconvection, αsc & 1 - is needed to

match observations. Furthermore, they find that inefficient semiconvection, αsc . 1, can be ruled

out because not enough blue supergiants are created. I agree with Schootemeijer et al. (2019) that

in general less convective boundary mixing favours blue supergiants but a straight comparison is not

possible due to the different initial metallicity (at a lower initial metallicity, more blue supergiants

are expected, e.g. Georgy et al., 2013). Nevertheless, I seem to contradict Schootemeijer et al. (2019)

in my claim that the relative importance of semiconvective mixing decreases with increasing amount

of convective boundary mixing. The simple explanation is the fact that Schootemeijer et al. (2019)

only apply convective boundary mixing at the convective hydrogen core whereas I include it at all

convective boundaries. This leads to a different behaviour of the intermediate convective zone, hence,

red-ward evolution - see Sections III.4 and III.6. Furthermore, Schootemeijer et al. (2019) apply the

penetrative convective boundary mixing scheme, “step-overshoot”, which creates a discontinuity in

the chemical composition at the boundary. I conclude that in my simulations a more efficient semi-

convection of αsc > 1 might only affect the outcome in the calculation with no or a small amount of

convective boundary mixing.

Another important impact on possible blue loops is the amount of mass loss during the red supergiant

phase, especially at solar metallicity. This might strip the star of its envelope and move it back to the

blue supergiant region. Indeed, if I enhance the mass loss rates due to dust formation during the red

supergiant phase following the prescription of van Loon et al. (2005), the models with a fast red-ward

evolution go back into the blue region. The models that stay in the blue region right after the main

sequence do not experience enough mass loss once they enter the red supergiant phase to do a blue
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loop. However, the mass loss rates during the red supergiant branch are very uncertain and it is not

sure which mass loss prescription is the correct one, if any. Saio et al. (2013) suggest to distinguish

between the two blue supergiant types with radial pulsations (e.g. Bowman et al., 2019) in addition to

the CNO surface enrichment, i.e. blue supergiants type II exhibit radial pulsations. Observed number

ratios of blue supergiant type I or II to red supergiant would help to constrain the internal mixing

process of, e.g., the intermediate convective zone, the boundary criterion (e.g. Georgy et al., 2021)

and the mass-loss rates.

Vink et al. (2010) find a steep drop in the rotation rates of B supergiants and propose two possible

explanations for their nature. I want to discuss the possibility that this could be a consequence of the

intermediate convective zone. As discussed in Section III.6, if a massive star has a strong intermediate

convective zone it can spend 75 − 90% of its helium burning phase as a blue supergiant right after

the main sequence. On the other hand, rotation tends to smooth the structure above the convective

hydrogen core, which reduces the intermediate convective zone and leads to a faster red-ward evolu-

tion (Maeder & Meynet, 2001, and Chapter IV). Thus, it is much less probable for these stars to be

observed during the crossing to the red supergiant branch. Therefore, the observed blue supergiants

after the main sequence are most probably the ones with a strong intermediate convective zone, hence,

no or a slow rotation. If this is indeed the case, such observations could be used to constrain the mix-

ing of the intermediate convective zone.

Smartt et al. (2009) found a lack of supernovae originating from red supergiants above ∼ 17 M� in

contrast to theoretical predictions, which they labelled as “red supergiant problem” - see Section I.3.1

for more details. Recently, Dorn-Wallenstein et al. (2020) found pulsating yellow supergiants which

they identify as post red supergiant stars and they estimate their mass to be in the “problematic”

region. This indicates that the “missing red supergiants” above ∼ 17 M� are indeed missing because

these stars evolved away from the red supergiant branch and that the traditional theoretical predicted

fate of stars in this mass range could be wrong. In fact, the post-main-sequence evolution of massive

stars is blurred by many uncertainties and parametrisations. Therefore, the details of such an evolu-

tionary scenario is still unclear. Some authors argue that pre-supernova outbursts shortly before the

collapse could be responsible (Fuller, 2017; Leung & Fuller, 2020). An other solution could be binarity.

The more massive stars expand to larger radii during the red supergiant phase, hence, they are able

to fill the Roche lobe more easily and will lose more mass via mass transfer. The stripped star will

evolve away from the red supergiant phase, becoming a blue or yellow supergiant or a Wolf-Rayet star.

Also, the red supergiant mass-loss rates are a major uncertainty in stellar evolution calculations, see

discussion in Section I.2.2. Depending on the mass-loss rates, massive stars above ∼20 M� can lose

enough mass to evolve back to the blueor yellow supergiant branch or even become Wolf-Rayet stars.

Here, I want to point out that a proper treatment of the convective boundary could play a crucial role
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Table III.2: The absolute and relative variation of the total mass, Mtot, the helium core mass, Mα, and
the carbon-oxygen core mass, MCO. The individual values of each model are shown in Table III.1. The
values include Ledoux and Schwarzschild models.

∆Mtot/M� δMtot ∆Mα/M� δMα ∆MCO/M� δMCO

15 M� 3.38 (3.45) 27.72% (27.80%) 2.30 (2.74) 43.07% (51.31%) 2.40 (3.94) 69.77% (114.53%)

20 M� 8.60 74.35% 2.94 36.70% 2.94 51.49%

30 M� 9.02 65.84% 3.96 40.08% 4.1 55.48%

Notes: The variation for a quantity Q is calculated as

δQ =
∆Q

Qref
≡
Qmax −Qmin

Qref
× 100, (III.1)

where Qmax and Qmin are the maximal and minimal value of the quantity for the initial mass and Qref the value of the
reference model (see text).
* The blue values in brackets include the models with no convective boundary mixing.

Table III.3: The absolute and relative variation of the main-sequence lifetime, τH, the core helium burning
lifetime, τHe and the blue supergiant lifetime, τBSG. The individual values of each model are shown in Tables
III.1. The values include both, the Ledoux and Schwarzschild models.

∆τH/Myrs δτH ∆τHe/Myrs δτHe ∆τBSG/Myrs δτBSG

15 M� 3.35 (4.13) 24.38% (30.06%) 0.69 (0.69) 73.40% (73.40%) 1.16 (1.16) 5800.0% (5800.0%)

20 M� 1.88 19.87% 0.36 50.00% 0.88 4400.0%

25 M� 1.25 16.82% 0.25 40.98% 0.54 2702.5%

Notes: See Table III.2 for the calculation of ∆Q and δQ.
* The blue values in brackets include the models with no CBM.
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in particular due to the impact of the intermediate convective zone. Fig.(III.15) illustrates that all

the 15 M� models are red supergiants at the end of core helium burning, however, the 25 M� models

with large fCBM naturally evolve away from the red supergiant branch at the end of core helium burn-

ing, becoming blue supergiants or Wolf-Rayet stars (see also Table III.1). Therefore, the inclusion of

convective boundary mixing might partly help to solve the “red supergiant problem”. It is important

to note, that I do not claim that the red supergiants become yellow supergiants, or any other star

type, but that the prediction of traditional stellar evolution models are blurred by the uncertainties of

stellar evolution. Consequently, the model predict a fate that is not observed. However, considering

the uncertainties, it is possible that massive stars above ∼ 17 M� evolve away from the red supergiant

branch, towards the blue or yellow supergiant phase or the Wolf-Rayet phase. The details of this

evolutionary scenario and its fate depends on many input physics and their uncertainties and needs

further investigation.

For simplicity, I use the same fCBM at all convective boundaries in all evolutionary stages, core

and shell convective zones and all initial masses in my simulations. However, the amount of convec-

tive boundary mixing depends on the stiffness of the boundary (e.g. bulk Richardson number, Cristini

et al., 2019) and different fCBM-values might be needed for different stellar stages, resulting in differ-

ent evolutionary paths. It is an ongoing effort to create a convective boundary mixing prescription

which depends on the physics of the boundary rather than the parametrisation (e.g. Pratt et al., 2017;

Arnett et al., 2018, 2019).

In Section III.2 I mentioned the use of MESAs MLT++ in models that experience envelope inflation.

Only models with large amounts of convective boundary mixing experience density and gas-pressure

inversions in their outer layers. Recent efforts to constrain internal mixing in massive stars with obser-

vations (e.g. Brott et al., 2011; Castro et al., 2014; Schootemeijer et al., 2019; Higgins & Vink, 2019)

indicate that stars in the mass range studied here have larger amounts of convective boundary mixing

than often assumed in “traditional state-of-the-art” stellar evolution models. Therefore, models in

the mass range 15-25 M� might experience inflated envelopes. However, the stability and treatment

of such radiation-dominated envelopes is still an open question (e.g. Joss et al., 1973; Maeder, 1987b;

Langer, 1997; Bisnovatyi-Kogan & Dorodnitsyn, 1999; Maeder, 2009; Suárez-Madrigal et al., 2013)

8 Conclusions

I calculated two grids of stellar models, one with the Ledoux and the other one with the Schwarzschild

convective boundary criterion, for three initial masses 15, 20 and 25 M�, in order to investigate
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the impact of some convective boundary mixing uncertainties. In each grid I varied the amount

of convective boundary mixing between (0.004, 0.01, 0.022, 0.035, 0.05) and, in the Ledoux case, the

semiconvective efficiency. In Sections III.3, III.4 and III.5 I presented the impact of the uncertainties

on the stellar structure. The key findings are the following:

1. During the main-sequence evolution the difference of the convective core size due to the two

convective stability criteria converges in all models when convective boundary mixing is included.

Furthermore, the region above the core converges with more convective boundary mixing. I find

that the minimum amount of convective boundary mixing, above which no convective fingers

are present increases with initial mass. This indicates that convective fingers might be a relic

of 1D stellar evolution since observations suggest larger amounts of convective boundary mixing

during the main-sequence evolution in massive stars.

2. The width of the main sequence broadens significantly with increasing amount of convective

boundary mixing and with the largest fCBM values the terminal-age main sequence bends to

cooler effective temperatures with increasing initial mass, which is more in agreement with recent

observations (e.g. Castro et al., 2014; McEvoy et al., 2015). The width of the main sequence is

nearly independent of the convective boundary criterion and semiconvective efficiency.

3. The initial location of the intermediate convective zone strongly depends on the stability crite-

rion, regardless of the amount of convective boundary mixing. When using the Schwarzschild

criterion there is an overlap with the hydrogen burning shell, whereas there is no overlap when

using the Ledoux criterion. The further evolution of the intermediate convective zone is largely

determined by the amount of convective boundary mixing. More mixing shortens the lifetime

of the intermediate convective zone and leads to an overlap with the hydrogen burning shell in

the Ledoux models. An overlap between the two boosts the latter, leading to crucial differences

in the further central and surface evolution of the model.

4. The relative importance of semiconvection drastically decreases with an increasing amount of

convective boundary mixing.

5. Generally, more convective boundary mixing leads to larger core masses and longer lifetimes.

The larger convective hydrogen cores are supported by asteroseismic observations of eclipsing

binaries (e.g. Tkachenko et al., 2020). Models with large amounts of convective boundary mixing

behave more like models of a higher initial mass but less convective boundary mixing in terms

of core masses, core helium burning lifetimes and nucleosynthesis. This would lead to a different

further evolution, supernova progenitor structure and explodability than currently presented in

the literature.
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In Section III.5.2, I showed the impact of the convective boundary mixing uncertainties on the nu-

cleosynthesis during central helium burning. In the 15 M� models the 12C to 16O ratio decreases

as fCBM increases due to the larger amount of fuel available during the late stage of this burning

phase. The 12C to 16O ratio is naturally saturated in the models with higher initial masses due to the

activation of other particle capture reactions. Furthermore, I find an increase of the weak s-process

activity in the simulations with larger amounts of convective boundary mixing. This might affect the

peak production of the weak s-process and will be subject of further studies.

In Section III.6 the impact of the intermediate convective zone on the surface evolution of the star

was discussed. The simulations that predict a strong intermediate convective zone remain in the blue

supergiant region until the convective shell recedes, whereas models with a short intermediate con-

vective region evolve directly to the red supergiant branch. As a result, some models spend nearly

their whole core helium burning lifetime as blue supergiants, depending on the strength of the inter-

mediate convective zone. On the other hand, some of the more massive models very quickly enter the

red supergiant phase after the main sequence and become blue supergiants, and later on Wolf-Rayet

stars, at the end of core helium burning due to strong mass-loss. This not only affects the blue to

red supergiant ratio but also the total mass at core helium depletion, the further evolution, the pre-

supernova structure and explodability of these models.

In Tables III.2 and III.3 the absolute and relative variations of the total mass, the core masses and

the stellar life times are presented to show which part of stellar evolution is mostly affected by the un-

certainties of convective boundary mixing. The most affected values are the blue supergiant lifetimes

and, correlated, the mass loss rates. The importance of the latter increases with initial mass. The core

masses show an uncertainty of ∼ 40% for the helium core mass and ∼ 50−70% for the carbon-oxygen

core mass. The lifetimes show a relative variation of ∼ 15 − 25% for the hydrogen burning phase

and ∼ 40 − 70% for the helium burning lifetime. The biggest uncertainty for all phases comes from

the amount of convective boundary mixing. The choice of the boundary criterion, either Ledoux or

Schwarzschild, mainly influences the intermediate convective zone, by determining its initial location,

and the growth of the convective helium core. The convective cores, however, grow to similar maximal

sizes and the difference introduced by the boundary criterion is small. Therefore, the choice of the

boundary criterion has nearly no impact on the main-sequence evolution but it crucially affects the

surface evolution.

This work shows the need to improve the treatment of convective boundaries in 1D stellar evolution

codes in order to have more reliable predictions of the evolution of massive stars. The intermediate

convective zone, for example, should be investigated in multi-dimensional simulations to constrain the

amount of mixing at the convective boundary and to test the two boundary criteria. Furthermore,

observations of the ratio of the two blue supergiant types (i.e. a blue supergiant right after the main
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sequence or after the red supergiant phase, e.g. Saio et al., 2013) and red supergiants would help to

constrain the internal mixing processes and the boundary criterion. Also, asteroseismic observations

may help in constraining the amount of extra mixing at the convective boundary (see e.g. Fig.(III.7b)).

However, constraining the amount of mixing is only a first step. In order to have more reliable predic-

tions ultimately a non-parametrised but physical theory is sought, which is work in progress by many

teams.
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Chapter IV
The Uncertainty in Angular Momentum

Transport

Transport of angular momentum is one of the big open questions of stellar evolution theory.

Current stellar models fail to predict the rotation rates of the compact objects left at the

end of a star’s evolution and to reproduce the observed internal rotation profile of stars.

New theoretical prescriptions for the missing angular momentum transport are suggested,

however, none is accepted as the general solution to the problem. Recently, Fuller et al.

(2019) published a modification to the Tayler-Spruit magnetic dynamo, claiming that it

largely reproduces observations but there is some controversy. In this Chapter, I present MESA

stellar evolution models, using three different angular momentum transport mechanisms,

transport by hydrodynamic instabilities, the Tayler-Spruit dynamo and the Fuller-modified

version thereof. In these models, I study the differences in angular momentum transport

and changes in the evolution of rotation. Additionally, I investigate several uncertainties in

the implementation of the magnetic dynamos. I find the three transport processes predict

distinct ranges of core rotation at the end of their evolution, mostly independent of the

uncertainties investigated. However, the evolution of rotation and the angular momentum

distribution vary, depending on the transport mechanism and the uncertainty. This not

only implies different rotation rates at a certain stage of the star’s life, influenced by the

numerical choices, but also affects the structure of the star and its subsequent evolutionary

path, nucleosynthesis and timescales, which will be discussed in future work.
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1 Introduction

Rotation is often considered as a secondary process of stellar evolution. However, rotation is present

throughout the entire evolution of a star, influencing the evolutionary path, the timescales and the

nucleosynthesis. Rotation-induced instabilities drive internal mixing processes that mix the chemical

composition and rotation can enhance the mass-loss rates - see Sections I.4 and II.2. The internal

transport processes also allow for a redistribution of angular momentum in the star. Thus, the ro-

tational velocities of a star evolve over time. Recent work (Marigo et al., 2001; Meynet & Maeder,

2002; Hirschi, 2007; Ekström et al., 2008; Frischknecht et al., 2016; Chieffi & Limongi, 2020; Rizzuti

et al., 2021) even suggest that at low metallicity rotation plays a dominant role in the evolution and

nucleosynthesis. Therefore, the rotational effects are a crucial ingredient to model the life of a star

and enable to explain observations - see Section I.4.

Rotating liquid bodies at constant density have been studied for a long time, starting with the works

by McLaurin, Jacobi, Poincaré and K. Schwarzschild. Kippenhahn & Thomas (1970) presented a

method to numerically treat rotation in stellar evolution models which was simulated in a simple

model for angular momentum transport by Kippenhahn et al. (1970). In their pioneering work, Endal

& Sofia (1978) include several rotation-induced instabilities in their simulations of rotating stars. They

derived order-of-magnitude estimates for the diffusive efficiency of the rotational mixing processes and

carried out time-dependent stellar evolution calculations. Pinsonneault et al. (1989) introduced the

parametrisation discussed in Section B.1.4 for a more accurate estimate of the rotational mixing ef-

ficiencies and constrained the parameters to solar models. Chaboyer & Zahn (1992); Zahn (1992)

showed, while the rotation-induced mixing of matter can be treated as a diffusive process the angular

momentum transport by the large scale meridional flows has to be simulated as an advective process.

This led to a split in the treatment of angular momentum transport in stellar evolution codes, those

that treat angular momentum transport as a purely diffusive process (e.g. Heger et al., 2000; Petrovic

et al., 2005; Paxton et al., 2013) and those that compute transport of angular momentum with an

advective-diffusive scheme (e.g. Ekström et al., 2012; Potter et al., 2012a; Chieffi & Limongi, 2013).

Stellar models that transport angular momentum by hydrodynamic instabilities only are known to

predict faster core rotation rates of white dwarfs, neutron stars and black holes than observed (Heger

et al., 2000; Suijs et al., 2008; Eggenberger et al., 2012; Mosser et al., 2012; Cantiello et al., 2014),

implying that an additional mechanism, or several mechanisms, operate. Possible candidates are a

magnetic dynamo, where magnetic field lines generated by the dynamo action create a torque between

differentially rotating layers and slow it down - see Section II.3 - or gravity waves (Talon & Char-

bonnel, 2005; Belyaev et al., 2013; Fuller et al., 2015b; Edelmann et al., 2019). The true nature of

the missing transport mechanism is still under debate and in the following I will focus on magnetic
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dynamos.

A magnetic dynamo action in the convective regions of a star is likely to exist (Parker, 1979; Charbon-

neau & MacGregor, 2001; Brun et al., 2005), however, it is currently not clear if these generated fields

can reach the surface and how deep they penetrate the radiative region. Since the turbulent flow in

the convective regions transports angular momentum very effectively, an additional magnetic dynamo

would have little influence on the angular momentum distribution. Spruit (1999, 2002) showed that,

in a differentially rotating star, a magnetic dynamo can be active in the radiative regions of the star,

depending on the gradient of the rotation rate. The torque created by this Tayler-Spruit dynamo can

effectively reduce the differential rotation between layers, leading to near-solid body rotation. How-

ever, the existence of the Tayler-Spruit dynamo is strongly debated - see discussion in Section II.3.2.

Moreover, while the Tayler-Spruit dynamo allows to reduce the angular momentum of the cores, it

fails to predict the observed rotation rates of white dwarfs, neutron stars and black holes (Heger

et al., 2005; Suijs et al., 2008). Alternative magnetic dynamos based on other magnetic instabilities

have been proposed, such as the magnetorotational instability (Velikhov, 1959; Wheeler et al., 2015),

the α-Ω dynamo (e.g. Brandenburg, 2001; Potter et al., 2012c) or other theoretical prescriptions for

dynamos in magnetic rotating stars (e.g. Fuller et al., 2019; Takahashi & Langer, 2020). The inco-

herency of the different angular transport mechanisms leads to a uncertain prediction of the evolution

of rotation and consequently the structure and evolutionary path of rotating stars. On top of the

various magnetic dynamos, each dynamo is differently implemented in the stellar evolution codes and

includes different numerical aides such as smoothing, dependence on chemical stratification and free

parameters. Consequently, angular momentum transport in stars is subject to large uncertainties and

prediction of rotating stars, for example the core rotation rate of massive stars at the pre-supernova

stage, are highly unreliable.

In this Chapter, I present a grid of stellar evolution models of massive stars using different flavours

of angular momentum transport, in order to investigate the difference between the transport mech-

anisms and asses the uncertainty on the evolution of rotation. In particular, I compare models with

no magnetic fields, with the Tayler-Spruit dynamo of Spruit (2002) and with the Fuller-modified

Tayler-Spruit dynamo of Fuller et al. (2019). Moreover, I study the influence of spatial and temporal

smoothing processes, the dependence of the angular momentum transport on the inhibiting effect of

chemical stratification, a possible interaction between the shear created by the turbulent motion at

the convective boundary and the magnetic dynamo and the dependence of angular momentum trans-

port on the metallicity and the initial rotation rate. In the current Chapter, I focus the discussion

mainly on the aspect of angular momentum transport and how the rotation rate evolves over time.

The impact on the structure, evolution and fate of the rotating stars will be discussed in future work.
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2 Stellar Models - Physical Ingredients

In order to study the uncertainty introduced by the transport of angular momentum in models of

massive stars, I computed a set of rotating stellar models with initial masses of 15, 25, 30 and 60 M�.

The simulations were carried out using the MESA stellar evolution code (Paxton et al., 2011, 2013,

2015, 2018), revision 10108 - see also Appendix B. The set up of the models is similar to Chapter

III. Here, I only discuss the different physics used and refer the reader to Section III.2 for a complete

overview of the modelling ingredients.

The thermonuclear reactions were accounted for with MESA’s approx21 network. This is a 21 iso-

tope reaction network, which is capable of efficiently generating reasonably accurate nuclear energy

generation rates from hydrogen through silicon burning. It incorporates an “electron-dump” isotope

from the iron group with the task to fake the electron captures that occur during the late phases

of the evolution. It includes pp-I reactions (the simplest pp-chain reaction - see Section I.2.1.1) and

steady-state CNO-cycles for hydrogen burning, standard α-chains, heavy ion-reactions, aspects of

photodisintegration into 54Fe and neutron-proton conversion (Paxton et al., 2011). The approx21

reaction network reduces the computational cost immensely and allows to compute models on a faster

timescale, however, some key quantities are subject to uncertainty due to the small network (Farmer

et al., 2016).

The same physics for mass loss by stellar winds was used as in Section III.2, but the wind scaling

factor, ηwind, is set to 1.0 contrary to ηwind = 0.85 used in Chapter III. Maeder & Meynet (2001)

introduced this reduction factor to scale empirical mass-loss rates to observations (see their Section 2.2

for details). Theoretical mass-loss rates such as the one from Vink et al. (2000, 2001), however, do not

need to be scaled to observations, justifying ηwind = 1.0. This wind-scaling parameter is multiplied

to all the mass-loss recipes in the MESA’s Dutch scheme, including the empirical mass-loss rates by de

Jager et al. (1988) - see Section B.1.6. However, the latter is subject to large uncertainties, which

reduces the relative impact of the different scaling factor. This is a point to improve in the future.

Contrarily to the models in Chapter III, the treatment of MLT++ is used in all the models to deal with

density and pressure inversions in the envelope.

I modelled convection using the Henyey flavour (Henyey et al., 1965) of the mixing-length theory

(Vitense, 1953; Böhm-Vitense, 1958) - see Section B.1.3.1. The mixing-length `MLT was set to

1.67HP , in accordance with Arnett et al. (2018). The convective boundary was determined with

the Schwarzschild criterion for stability, which is justified by 3D hydrodynamic simulations (Arnett

et al., 2019). Convective boundary mixing was accounted for with the exponential decaying diffusive

model of Freytag et al. (1996) - see Section B.1.3.2 for more details. I further modified the diffusion

coefficient and convective velocity following Jones et al. (2017) to mimic the spherically averaged
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radial diffusion and velocity profiles from their 3D simulations. The implementation of this scheme

is outlined in Section B.2.2. Jones et al. (2017) suggest to use fCBM = f0 = 0.03, based on the

results from their oxygen shell simulation. In this Chapter, however, I use fCBM = f0 = 0.05 for all

models. A larger fCBM is supported for 15 to 25 M� by the main-sequence width which increases

with mass (see for example Fig.(III.7a)) and the size convective boundary mixing region predicted

by the entrainment law during the main sequence (Scott et al., 2021). This value for the parameter

is derived from non-rotating models and rotating models might have a smaller value of ∼ 0.04 (J.

Klencki, priv.comm.), however, it is still an open question. Furthermore, higher mass models might

predict a different amount of convective boundary mixing, which is another open question. Therefore,

the value of 0.05 was chosen for all models for comparison reasons.

The models are computed until the pre-supernova stage, defined as the point when the infall velocity

reaches vinfall = 108 cm s−1 in any zone. The radial velocity flag is activated when the electron mass

fraction, Ye, drops below 0.47, which is shortly after core silicon depletion or right before it. Before

this point, the radial velocity is always zero.

Rotation is initiated once the star approaches the zero-age main sequence, determined by Lnuc

Ltot
= 0.99.

This avoids problems with the convergence during the pre-main-sequence contraction. At this point,

the angular rotation velocity, Ω, is set to 0.4 of the critical angular rotation velocity, Ωcrit =
√

GM
R2 .

The rotation velocity is adjusted to the desired velocity over timesteps via a relaxation method. As

part of the relaxation method the nuclear burning is ignored, i.e. the thermonuclear evolution is

frozen. This allows the model to fully adjust to the imposed rotation before it resumes with its evo-

lution.

In all models I included the Eddington-Sweet circulation and the secular shear instabilities and their

respective scaling factors in Eq.(B.40) are all set to unity. The other rotation-induced hydrodynamical

instabilities are excluded for the reasons outlined in Section B.1.4. The factor fc, which is multiplied

to the sum of the diffusion coefficient of all rotation-induced instabilities, is set to 0.0228 following the

calibration of Brott et al. (2011). The default models apply fµ = 0.1, according to Yoon et al. (2006),

in order to reduce the inhibiting effect on mixing by the chemical stratification - see also Section B.1.4.

In Section IV.3.5, different values for fµ in the range of [0.0, 0.0001, 0.001, 0.01, 0.1] are discussed, in

order to investigate the impact of the chemical stratification on angular momentum transport. In all

models, the convective zones are treated as layers with solid body rotation.

The smoothing schemes for rotational mixing is outlined in Appendix B.1.5.1.1. In the default models,

only the diffusion coefficient and the turbulent viscosity generated by the Tayler-Spruit dynamo is

spatially smoothed, including two neighbouring cells on each side. Temporal smoothing in the default

models is also only applied to the Tayler-Spruit dynamo, using fr = 0.001 and ft = 0.2. The default

implementation of the Fuller-modified Tayler-Spruit dynamo is explained in Section B.2.1.
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I used the same resolution, at which my models seem to converge, in all simulations. The settings

are chosen to properly resolve gradients, focussing around convective boundary and nuclear burning

regions, and appropriate timestepping, especially during the advanced stellar evolution. The details

can be found in the inlist in Appendix B.3.

In order to investigate the uncertainty in angular momentum transport, I computed three default

models for each initial mass, (i) one without magnetic fields, (ii) one with the Tayler-Spruit dynamo

and (iii) one with the Fuller-modified Tayler-Spruit dynamo. Additionally, I computed models that

investigate (iv) different amounts of smoothing, (v) a reduced inhibiting effects of the chemical strat-

ification on the rotational mixing, (vi) the interaction between the magnetic field and the convective

boundary mixing, (vii) the change of angular momentum transport at lower metallicity and (viii) the

impact of the initial rotation rate.

3 Angular Momentum Transport with Different Mech-

anisms

3.1 15M� models

Fig.(IV.2) presents the rotation profile of the 15 M� models at various stellar stages using the three

different angular momentum transport mechanisms; only hydrodynamic and no magnetic fields, the

Tayler-Spruit dynamo and the Fuller-modified Tayler-Spruit dynamo. All three models begin with

the same rotation rate, Ω
Ωcrit

= 0.4, however, the evolution of the rotation rate depends strongly on

the angular momentum transport mechanism.

The rotation profile of the model where angular momentum is only transported by hydrodynamical

instabilities is shown in Fig.(IV.2a). The angular rotation velocity, Ω, which is assumed to be constant

throughout the star at the zero-age main sequence, increases in the central region of the star during

its evolution whereas it decreases in the envelope. On the other hand, the specific angular momentum

is roughly similar in the core with a modest decrease as evolution proceeds and a slightly larger

reduction in the envelope. This is a result from the inefficient angular momentum transport of the

hydrodynamical instabilities discussed in Section II.2. Therefore, most of the angular momentum

present at the zero-age main sequence remains in the core, which spins up when the star contracts

during the subsequent evolution due to angular momentum conservation. This results in a fast spinning

core. Similarly, the expanding envelope spins down. The location of the split between contraction and

expansion is related to the hydrogen burning shell, i.e. the mirror-principle - see discussion in Chapter

132



IV.3. ANGULAR MOMENTUM TRANSPORT WITH DIFFERENT MECHANISMS

III. The step-like features in Ω and the spikes in j, which are more present during the advanced stellar

evolution phases, result from the occurrence of convective zones. The turbulent convective motion

is very efficient at transporting angular momentum. Therefore, in this Chapter convective zones are

assumed to rotate as solid bodies (this is an assumption often made in stellar evolution models).

Hence, the Ω profile is flat and j = r2Ω increases outwards in the convective zone. At the bottom

boundary location there is a drop in both profiles due to the efficient transport of angular momentum

in the convectively mixed regions. Also, it is apparent that stellar winds, even though relatively weak

in these models, remove mass and angular momentum from the surface of the star.

Fig.(IV.2b) displays the 15 M� model with the Tayler-Spruit dynamo, as discussed in Sections II.3.1.2

and B.1.5.1. The dynamo action couples the differentially rotating layers if the shear exceeds a minimal

shear, Eq.(II.52). This introduces angular momentum transport that can efficiently extract angular

momentum from the core. Indeed, the rotation rate of the core at silicon depletion in Fig.(IV.2b) is

about two orders of magnitude slower compared to the non-magnetic model in Fig.(IV.2a). Comparing

the angular momentum transport during the main-sequence evolution, i.e. the difference between the

black solid and the orange dashed curves, reveals that no angular momentum is transported out of

the core. The envelope, on the other hand, shows a flatter Ω profile in the magnetic model due to

the coupling of the differentially rotating layers. This is also apparent in the j profile where there

is a drop in the specific angular momentum at the bottom of the envelope. The absence of angular

momentum transport, followed by an abrupt drop which indicates transport to occur is a consequence

of the fact that the magnetic dynamo is ignored in the convective boundary mixing region - see

Section B.1.5.1. This introduces a bottleneck for the transport of angular momentum during the

main sequence. During the post-main-sequence evolution, i.e. between the orange dashed and the

cyan solid line, the evolution of rotation in the envelope is similar in both, the magnetic and the

non-magnetic case. The reason is the dominating effect of the envelope expansion which results in a

decrease of Ω. Furthermore, the dominant redistribution of angular momentum in both models occurs

from the surface convective zone that appears shortly before core helium ignition, indicated by the

very flat Ω profile and the dip in the j profile around ∼6 M�. The magnetic dynamo is active in

the envelope of the Tayler-Spruit model but its impact is overshadowed by the other two processes.

In the core, however, a drastic difference between the two models occurs. The rotation rate in the

whole core of the magnetic model is reduced, despite the post-main-sequence contraction. At the

same time, the specific angular momentum in this region is strongly reduced, signalling an efficient

transport of angular momentum from the core to the envelope, which is due to the magnetic coupling.

Nevertheless, the coupling is not strong enough to sustain solid body rotation and a difference in Ω

of several orders of magnitude between the core and the envelope develops. During the subsequent

evolutionary phases, some angular momentum is removed from the core, visualised by the reduction of
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Figure IV.1: The evolution of the angular rotation velocity in the 15 M� models with the default
angular momentum transport mechanisms, non-magnetic (blue dashed line), Tayler-Spruit dynamo
(orange solid line) and Fuller-modified Tayler-Spruit dynamo (red dotted line), as a function of the
time left until core collapse. The top panel shows the evolution of the ratio of the rotation rate in the
centre to the one at the surface from the zero-age main sequence up to silicon depletion. The middle
panel presents the same as in the top panel but limited between core helium ignition and silicon
depletion and the curves have been normalised to the values at core helium ignition. The bottom
panel plots the central and surface rotation rate separately. The ignition of the various burning
stages are indicated by a solid, labelled line and the depletion is marked by a consecutive dashed
line. Helium ignition is pointed out by a marker, with a blue square representing the non-magnetic,
an orange triangle the Tayler-Spruit dynamo and a red star the Fuller-modified Tayler-Spruit model,
respectively. Hydrogen depletion is designated with the same marker shape but black color.
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(b) Taylor-Spruit dynamo
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(c) Fuller-modified Taylor-Spruit dynamo

Figure IV.2: The rotation profile of the 15 M� models for the differ-
ent angular momentum transport mechanisms, showing on the top left
panel the angular rotation velocity, Ω, on the top right panel the spe-
cific angular momentum, j, and on the bottom panel the ratio of the
angular rotation velocity to the critical angular rotation velocity. Each
line presents the profile at a different evolutionary stage indicated by
the colour and linestyle. To enable a better comparison, the axis of
each thematic subplot group has been scaled to the same values. The
ignition of a burning phase is defined as when 0.3% of the mass frac-
tion of the fuel is burnt and depletion when the fuel drops below 1%.
The latter is early enough to avoid a spinning up of the core due to
contraction after the burning phase ends.
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j, however, Ω increases due to contraction of the core. The latter dominates the evolution of rotation

during the advanced stellar stages because of the shorter evolutionary timescale. At the same time,

Ω decreases in the envelope because of expansion and a small portion of angular momentum is lost

through stellar winds. Therefore, the phase between core hydrogen depletion and helium ignition is

key in slowing down the spinning core with the Tayler-Spruit dynamo.

Fig.(IV.2c) shows the 15 M� model with the Fuller-modified Tayler Spruit dynamo, discussed in

Sections II.3.1.3 and B.2.1. This version of the magnetic dynamo operates on a shorter timescale and

has a higher saturation level, creating a stronger magnetic torque. Therefore, the model including the

Fuller-modified Tayler-Spruit dynamo experiences an efficient spin down of its core. This can be seen

in Fig.(IV.2c), where the core rotation rate at silicon depletion is about two orders of magnitude slower

than the one predicted by the Tayler-Spruit dynamo. Comparing Figs.(IV.2b) and (IV.2c) it can be

seen that the evolution of angular momentum during the post-main-sequence evolution is similar with

a slightly higher angular momentum transport in the core during the advanced phases in the model

with the Fuller-modified dynamo. However, during the main sequence the Fuller-modified dynamo

is able to maintain a solid body rotation and j drops significantly throughout the star, indicating a

strong transport of angular momentum from the core to the envelope. This efficient spinning down

during the main sequence finally leads to the much slower spinning core at core collapse.

Fig.(IV.1) shows the evolution of the angular rotation velocity in the 15 M� models throughout the

star’s life. The ratio of the angular velocity in the centre to the surface in the top panel confirms

several points:

1) During the main sequence, from the very left of the plot up to the black markers, the models

without magnetic fields and with the Tayler-Spruit dynamo develop a similar differential rotation

between the centre and the surface. This indicates that the magnetic coupling between core and

envelope during the main-sequence evolution is very inefficient in the default Tayler-Spruit model.

The reason is the strong chemical stratification above the receding hydrogen core that suppresses

the rotation-induced instabilities and reduces the magnetic dynamo - see discussion in Section

IV.3.5. Furthermore, the Tayler-Spruit dynamo is ignored in the convective boundary mixing

region - see Section IV.3.6. For these reasons, a bottleneck for the transport of angular momentum

as well as for the chemical mixing arises in the region above the convective core (see Fig.(IV.3)).

Therefore, the star cannot maintain the solid body rotation which is imposed at the zero-age main

sequence and the core begins to spin up towards the end of the main sequence. On the other hand,

the Fuller-modified Tayler-Spruit dynamo is able to maintain a constant ratio between the angular

rotation velocity in the centre and the surface. This is a result from several factors: (a) this dynamo

version generates stronger torques and operates on a shorter timescale, hence, it is more efficient

at coupling differentially rotating layers, (b) the implementation of the Fuller-modified dynamo
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includes the full convective region, including the boundary region and (c) the chemical stratification

is taken differently into account, i.e. the Tayler-Spruit dynamo uses a patching formula with

νTS ∝
(

Ω
Nµ

)4

whereas the Fuller-modified version uses νTSF ∝
(

Ω
Neff

)2

. Therefore, the magnetic

dynamo action creates a strong torque that efficiently couples the differentially rotating layers.

The resulting viscosity generated by the Fuller-modified dynamo can locally exceed the viscosity

of the Tayler-Spruit dynamo by several orders of magnitude as shown in Fig.(IV.3). Therefore, the

Fuller-modified Tayler-Spruit dynamo maintains a near solid-body rotation. It should be noted,

that the difference in the ratio between the three models seen in Fig.(IV.1, top panel), is due to

the removal of angular momentum from the core. The bottom panel in Fig.(IV.2) clearly shows

that the surface rotation rate is roughly decreasing by the same amount in the models during the

main-sequence evolution. In the centre, the Fuller-modified Tayler-Spruit dynamo slows down the

core rotation, whereas the pure hydrodynamic and the Tayler-Spruit model have a nearly constant

Ωcentre throughout the main sequence, indicating no angular momentum transport out of the core.

2) All three models with different efficiencies in angular momentum transport experience a drastic

increase in differential rotation during the post-main-sequence phase. In all models, the difference

between the surface and the central rotation rate increases by more than two orders of magnitude.

This similarity, however, is misleading and is a result from the rapid expansion of the star which

in all models drastically reduces the surface rotation speed. At the same time, the core in the

hydrodynamic model spins up because of the contraction and the rotation-induced hydrodynamical

instabilities do not transport angular momentum efficiently enough to prevent this spin up - see also

Figs.(IV.2a) and (IV.4a). On the other hand, in both magnetic models the core first spins up until

the shear between the core and envelope is strong enough for the activation of the magnetic dynamo,

leading to a spin-down of the rotating core. Interestingly, during this short post-main-sequence

phase the Tayler-Spruit dynamo is able to spin down the core by a larger amount than the Fuller-

modified version (compare also Fig.(IV.2)). The reason for this is that the viscosity generated

by the Tayler-Spruit dynamo is large throughout the star during this phase (log νTS & 10 in

Fig.(IV.4b)), whereas the viscosity generated by the Fuller-modified version shows a drop to lower

values in the intermediate region of the star (see Fig.(IV.4c)). Therefore, the Tayler-Spruit dynamo

is able to efficiently diffuse angular momentum from the core, despite the jaggy viscosity profile.

In the model with the Tayler-Spruit-Fuller dynamo, angular momentum is less efficiently diffused

from the core due to the drop of νTSF in the intermediate region1. Therefore, the core rotation is

1This drop results from numerical smoothing - see Section B.2.1. The issue is that the smoothing equation, Eq.(B.76),
is implemented in two steps. First, if a region is not convective, log νTSF is divided by 2n+ 1, where n is the number
of zones included in the smoothing. Second, if the region is radiative, convective, a convective boundary region or
semiconvective, log νTSF is unchanged in this cell after the first step, otherwise it is the sum following Eq.(B.76).
Theoretically, this should not pose an issue, since the dynamo is not active in radiative regions without rotation because
there is no differential rotation. However, the intermediate region shown in Fig.(IV.4c) is marked as radiative despite
having a gradient in Ω. In general, the mixing type in a cell is set to “rotation mixing” if the diffusion coefficient for
mixing, Dmix, is larger than zero and if the cell is not mixed otherwise, i.e. if the mixing type is “no mixing”. However,
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less reduced in the Fuller-modified dynamo than in the Tayler-Spruit version. Nevertheless, both

models massively spin down their cores during the short phase between core hydrogen depletion

and core helium ignition.

3) The top panel in Fig.(IV.2) indicates that the evolution of the ratio Ωcentre/Ωsurf is similar after

core helium ignition. The middle panel presents the same ratio but limited to the evolution between

core helium ignition and core silicon depletion and normalised to the ratio at core helium ignition.

Indeed, the curves evolve very similarly during core helium burning and the star’s advanced stages.

There are some small differences, the main one arising after core helium depletion where the

contracting core generates a rotational shear, which allows the magnetic dynamos to be active.

The similarity of the angular rotation velocity ratio between the three models is due to two reasons.

First, the evolutionary timescale becomes shorter as the evolution proceeds - see Section I.2. Thus,

there is less time to diffuse angular momentum and restore solid-body rotation. Therefore, despite

the strong magnetic viscosity generated in the models (see for example Fig.(IV.5)) not much

more angular momentum is transported from the core than in the non-magnetic models. This

behaviour becomes more dominant for the later phases due to the shorter timescales, which can

also be observed in Fig.(IV.2), where there is nearly no difference in j between oxygen ignition

and silicon depletion in the core. Second, a strong chemical stratification arises at the boundaries

of convective regions due to the interface of the newly synthesised and the unburnt material. For

example, in Fig.(IV.5) there are layers with a strong ∇µ which are generated by the boundary

regions of the convective helium core, the hydrogen shell and bottom of the surface convective

zone. In these zones, the rotation-induced mixing is suppressed. In fact, below each layer with

a strong chemical stratification there is a faster rotating layer in Fig.(IV.5), showing that these

layers create a bottleneck for the transport of angular momentum (and rotation-induced chemical

mixing).

In summary, the largest differences between the three different treatments of angular momentum

transport occur during the main-sequence evolution and the short post-main-sequence phase before

core helium ignition.

In order to discuss the qualitative difference in angular momentum transport during the main se-

quence, Fig.(IV.3) presents the profiles of the turbulent viscosities in the 15 M� models when the

hydrogen mass fraction drops below 0.3. The rotation-induced angular momentum transport in the

non-magnetic model (Fig.(IV.3a)) is clearly dominated by the Eddington-Sweet circulation through-

out the envelope of the star, except for the region of the retreating hydrogen core. There, a strong

chemical stratification suppresses the mixing by the Eddington-Sweet circulation. In this region, the

Dmix drops to zero in the intermediate region due to the strong chemical stratification where rotation-induced mixing
is suppressed. (In contrast, in the Tayler-Spruit model, Dmix is never zero because there is mixing due to the magnetic
dynamo and the jaggy ∇µ profile allows for some zones to be mixed by the Eddington-Sweet circulation.) Therefore,
log νTSF is reduced by a factor 1

5
.
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retreating convective core left behind a jaggy chemical composition gradient, leading to thin layers

where the circulation is active. The lack of an efficient angular momentum transport leads to an

increase of the rotational shear between the core and the envelope, giving rise to the secular shear

instability which is confined to thin layers where the chemical stratification does not suppress it. In

the convective boundary region, the secular shear instability is not active, because convection effi-

ciently redistributes angular momentum and a rotational shear only develops at the outer part of

the boundary region. Simultaneously, the gradient in chemical composition, which is low throughout

the convective core, increases towards the outer boundary of the convective boundary mixing region.

Therefore, the Eddington-Sweet circulation arises in the inner part of the convective boundary but

is suppressed further out by the chemical stratification. This prediction needs to be considered with

care due to the limitations of 1D modelling - see Sections II and B - i.e. should a slow large-scale

fluid motion develop due to thermal imbalance in the convective boundary mixing layer that is well

mixed?2 Nevertheless, the total viscosity, νAM = νAM,rot + νAM,non−rot, is smaller in the convective

boundary mixing than in the neighbouring convective zone. Additionally, the bottleneck in νAM at

the outer part of the convective boundary mixing region maintains a separation between the turbu-

lent viscosity in the core and the envelope, hence, this modelling inconsistency does not affect the

large-scale angular momentum transport.

The non-magnetic hydrodynamic instabilities in the model with the Tayler-Spruit dynamo in Fig.(IV.3b)

predict similar turbulent viscosities, with the exception in the transition region between the convective

core and the radiative envelope. Additionally, the torque by the magnetic dynamo generates an strong

viscosity, leading to a near solid-body rotation. The sharp cut-off of νTS outside of the convective

boundary mixing region is due to the numerical suppression of the dynamo action in convective and

convective boundary regions. Therefore, the rotation rate increases inside of the convective boundary

mixing region, contrarily to the non-magnetic model where it begins to increase at the point where

the top boundary of the convective hydrogen core was located at the zero-age main sequence. In the

magnetic model, there is therefore a thin layer in the outer convective boundary mixing region where

the secular shear instability is active.

Fig.(IV.3b) nicely presents the bottleneck of angular momentum transport between the core and en-

velope, with a small gap between convective core and radiative envelope where nearly no angular

momentum is transported through3. This creates the rotational shear between core and envelope pre-

viously discussed. In the region between the convective core and the envelope, the jaggy profile of the

chemical composition gradient is flatter. Consequently the Eddington-Sweet circulation is present over

larger layers and is present down to where it overlaps with the outer layer of the convective boundary

2It should be remembered that the implementation of convective boundary mixing only considers the mixing of
chemical elements but ignores the mixing of entropy. Therefore, a thermal imbalance develops in this chemically
well-mixed layer.

3A tiny amount is transported by the convective boundary mixing but this is negligible.
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mixing zone. The reason for this different behaviour is the chemical mixing by the magnetic dynamo.

Even though it is weaker than the viscosity generated by the magnetic dynamo, the derived diffusion

coefficient in the envelope still has values around log DTS ∼ 8, hence, this process contributes to the

reduction of the chemical stratification.

The turbulent viscosities of the hydrodynamical mixing processes are very similar in the model with

the Fuller-modified Tayler-Spruit dynamo in Fig.(IV.3c), however, the rotation-induced instabilities

are not present in the intermediate region. There, a strong chemical stratification with a smooth profile

suppresses any rotation-induced chemical mixing. The reason for the smooth ∇µ in the intermediate

region is the fact that the Fuller-modified dynamo efficiently couples any differentially rotating layers,

leading to a near solid-body rotation. Hence, the shear is not strong enough for the secular shear

instability to be activated. In addition, the implementation of the Fuller-modified magnetic dynamo

does not consider any chemical mixing. Therefore there is no rotation-induced chemical mixing that

reduces the chemical stratification as in the other two models. The Fuller-modified Tayler-Spruit

dynamo is only active in distinct layers, where in most layers the viscosity generated by the magnetic

torque, νTSF, is slightly smaller than in the model with the Tayler-Spruit dynamo. The reason for

this is that the model rotates close to solid body, hence, there is nearly no shear present - compare

the range of Ω in Fig.(IV.3). This is the result of the Fuller-modified dynamo that efficiently couples

differentially rotating layers in the first place. The numerous peaks in the magnetic viscosity seen

in Fig.(IV.3c) are in fact layers where a weak differential rotation is present and the dynamo acts to

restore solid-body rotation. If the shear is large, as for example at the bottom of the region with

the Eddington-Sweet circulation, a strong viscosity is generated, which efficiently couples the rotating

core and the envelope. The peak between the convective and the convective boundary mixing region

is numerically suppressed towards the convective core, because there is no dynamo for N2 ≤ 0. In the

intermediate zone, however, a shear resides but the transport of angular momentum is reduced due

to the strong chemical stratification, νTSF ∼ N−2
µ .

Similar to Fig.(IV.3), Fig.(IV.4) presents the turbulent viscosity but during the phase when the model

has left the main sequence and is evolving towards the red supergiant branch. The impact of the pro-

files has already been discussed above. In the non-magnetic-model, the Eddington-Sweet circulation

is the dominant hydrodynamic process to transport angular momentum throughout the star because

convective regions are mostly absent during this evolutionary stage. In the mass region 2 − 4 M�

and in the envelope, the secular shear instability activates due to the development of a strong shear.

However, νAM is not strongly affected by this instability because in those regions the Eddington-Sweet

circulation is active as well. The jaggy viscosity profile in the intermediate region is a result from ∇µ
in these regions, which developed during the main-sequence evolution. The zigzag pattern is elongated

because of the narrow layers of the intermediate convective zone and secular shear mixing. In the
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Tayler-Spruit dynamo, the turbulent viscosity is dominated by the dynamo action in the entire star,

which efficiently couples the differentially rotating layers. In the intermediate region, there are two

layers where the viscosity is dominated by the convective motions generated by the intermediate con-

vective zone. The Eddington-Sweet circulation is active in the core and envelope of this model but its

contribution to angular momentum transport is negligible compared to the magnetic viscosity. In the

intermediate region, the circulation is only active in narrowly confined layers because it is suppressed

by the chemical stratification otherwise. The latter is also the reason for the jaggy νTS profile. Due to

the weaker shear the secular shear instability is almost absent in this model with the exception of the

intermediate region. There, however, the instability is often suppressed by the chemical stratification.

As a result of the strong turbulent viscosity throughout the star, the Tayler-Spruit model, which had

a similar rotation rate profile to the non-magnetic model during the main-sequence evolution, slows

down the core spin during this phase. Nevertheless, this phase is not long enough to spin down the core

to the same magnitude as the model with the Fuller-modified dynamo. The Fuller-modified Tayler-

Spruit dynamo predicts a strong magnetic viscosity in the evelope and core, but in the intermediate

region it drops to lower values due to the numerical smoothing routine, as discussed above. Conse-

quently, a rotational shear begins to build up in this region, however, the secular shear instability is

not activated due to the strong chemical stratification. Therefore, the smoothing routine creates a

bottleneck for the angular momentum transport in the current implementation of the Fuller-modified

magnetic dynamo as published in Fuller et al. (2019). It could potentially underestimate the angular

momentum transport, see discussion in Section IV.3.4, and could reduce the core rotation of massive

stars more than anticipated (e.g. Fuller & Ma, 2019; Ma & Fuller, 2019).

Fig.(IV.5) presents the profile of the turbulent viscosity during core helium burning. In each sub-

plot, the large turbulent viscosity from non-rotating fluid instabilities on the left hand side is due

to the convective helium core and on the right hand side from the surface convective region. These

two convective zones sandwich a radiative region with an outward moving hydrogen burning shell.

In this intermediate layer, only rotation-induced mixing processes take place. In the non-magnetic

model, the Eddington-Sweet circulation is the dominant angular momentum transport process and

it is able to maintain a nearly constant Ω in the regions it is active. However, there are two layers

where a strong chemical composition gradient is present: at the boundary of the convective core and

at the location of the hydrogen shell. There, any rotational mixing is suppressed and this bottleneck

in angular momentum transport leads to a further increase in the shear between the slowly rotating

envelope and the core region. At the boundary of these regions and below the surface convective

zone, where the rotational shear is stronger, the secular shear instability is active but it is limited to

narrow layers due to the strong chemical stratification and does not change the angular momentum

distribution significantly. In the Tayler-Spruit dynamo, the hydrodynamic instabilities, rotating and
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(c) Fuller-modified Taylor-Spruit dynamo

Figure IV.3: The profile of the turbulent viscosity in 15 M� models
with different angular momentum transport mechanisms during core
hydrogen burning when the hydrogen mass fraction drops below 0.3.
Each top panel shows the total turbulent viscosity generated by non-
rotating sources such as convection (black dotted line) and the tur-
bulent viscosity generated by rotation-induced instabilities (sky-blue
dotted line). Additionally shown are the turbulent viscosities gener-
ated by each rotation-induced instability, the viscosity produced by the
Eddington-Sweet circulation (dark-blue solid line), the secular shear
instability (grey solid line) and the magnetic dynamo (magenta solid
line). The yellow shaded region indicates the location of convective
boundary mixing regions. The bottom panel depicts the rotation rate
(red) and the gradient in the chemical composition (blue). It should be
noted that the range of the axis in the bottom panel varies between the
figures.
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Figure IV.4: The same as in Fig.IV.3 but during the post-main-sequence
evolution, exactly between hydrogen depletion and helium ignition. A
dotted line in ϕ

δ∇µ indicates negative values.
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(c) Fuller-modified Taylor-Spruit dynamo

Figure IV.5: The same as in Fig.IV.3 but during the core helium burn-
ing when the mass fraction 4He in the core drops below 0.4. A dotted
line in ϕ

δ∇µ indicates negative values.
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non-rotating, generate a similar viscosity as in the non-magnetic model but their viscosities are weaker

on average by about two orders of magnitude. This is because of the different gradient in chemical

composition and the different rotation profile, i.e. Ω is roughly constant and has a drop at the location

of the hydrogen shell, which is weaker in the magnetic model due to the slower rotating core. Indeed,

rotation in the radiative layer is mainly coupled by the magnetic torque, which is only interrupted

at the hydrogen shell due to the dependence of νTS on N2
µ - see Section II.3.1.2. Similarly to the

non-magnetic model, this interruption of νTS creates a bottleneck in angular momentum transport

and further increases the rotational shear between the core and the envelope. The magnetic viscosity

in the model with the Fuller-modified Tayler-Spruit dynamo is also active throughout the radiative

region, with a magnitude larger than the one predicted by the Tayler-Spruit dynamo. However in

some regions the viscosity drops to a fifth of the value. This is a result of the smoothing routine as

previously discussed.

A careful reader might notice that in Fig.(IV.5b) the Tayler-Spruit dynamo generates a magnetic vis-

cosity in the convective boundary mixing region despite the claim in Section B.1.5.1 that it is excluded

from this zone. However, the magnetic dynamo is not computed in this layer. The magnetic viscosity

in the convective boundary region seen in Fig.(IV.5b) is a result of numerical smoothing, where νTS

is smoothed into the boundary region of the growing convective core - see also discussion in Section

IV.3.4.

The key points discussed in the context of Fig.(IV.5) are also applicable to the further evolution-

ary stages, where the structure of the turbulent viscosity between convective and radiative regions

looks qualitatively similar. There, the angular momentum transport in the radiative regions between

convective zones is limited by the chemical stratification. Furthermore, the evolutionary timescale

becomes shorter with each burning stage, giving less time for the redistribution of angular momen-

tum. Therefore, the core region spins up (see Fig.(IV.2)). The separation between the fast spinning

core and the slow rotating envelope at the location of the hydrogen shell remains for the rest of the

evolution.

3.2 25 and 30M� models

In Section I.4.2 I explained that the evolutionary path of rotating stars at solar metallicity can roughly

be separated into two groups, stars with M . 30 M� where rotation-induced mixing dominates and

stars with M & 30 M� where the rotation-enhanced mass loss dominates. Indeed, the models with an

initial mass of 25 and 30 M� predict a similar angular momentum distribution as the 15 M� models at

the various stellar stages in the core region and hence a similar core spin at collapse (see Fig.(IV.6)).

However, due to the higher initial mass the model predicts higher mass-loss rates which remove nearly

the entire hydrogen-rich envelope - in some cases even the entire envelope (see Table V.1). The removal
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(b) Taylor-Spruit dynamo

0 5 10 15 20 25 30
M [M ]

10 10

10 8

10 6

10 4

10 2

100

 [r
ad

s
1 ]

0 5 10 15 20 25 30
M [M ]

12

13

14

15

16

17

18

19
lo

g 1
0
j [

cm
2
s

1 ]

0 5 10 15 20 25 30
M [M ]

0.0

0.5

1.0

/
cr

it

(c) Fuller-modified Taylor-Spruit dynamo

Figure IV.6: The rotation profile of the 30 M� models for the differ-
ent angular momentum transport mechanisms, showing on the top left
panel the angular rotation velocity, Ω, on the top right panel the spe-
cific angular momentum, j, and on the bottom panel the ratio of the
angular rotation velocity to the critical angular rotation velocity. Each
line presents the profile at a different evolutionary stage indicated by
the colour and linestyle. For comparison reasons, the axis of each the-
matic subplot group have been scaled to the same values. The ignition
of a burning phase is defined as when 0.3% of the fuel is burnt and
depletion when the fuel drops below 1%.
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of the envelope by winds does not influence the angular momentum distribution in the core because

it occurs during core helium burning, whereas most of the angular momentum transport happens

between core hydrogen exhaustion and core helium ignition. Consequently, the rotation rate in the

core increases during the advanced stellar phases because of contraction but the angular momentum

distribution remains roughly the same and thus is similar to the prediction of the 15 M� models.

Fig.(IV.6c) suggests that the Fuller-modified Tayler-Spruit dynamo transports more angular momen-

tum during the main-sequence and less during the post-main-sequence phase compared to the 15 M�

model in Fig.(IV.2c). This, however, is misleading because at Xc(4He) = 0.1 the angular momentum

profiles are similar. The difference seen between Figs.(IV.2c) and (IV.6c) results from the fact that

the more massive cores begin to contract earlier, which builds up a stronger shear, allowing more

angular momentum to be transported before hydrogen depletes completely in the core. This results

in a weaker shear during the post-main-sequence evolution, hence, less angular momentum transport

and finally a similar core spin at helium ignition as in the 15 M� model.

3.3 60M� models

Contrarily to the massive stars discussed above, the 60 M� models at solar metalicity already lose

more than 10 M� during their main-sequence evolution via stellar winds. This allows the star to lose

a substantial amount of angular momentum from its surface. This can be seen in Fig.(IV.7a), showing

the rotation profile of the non-magnetic 60 M� model. Earlier, I showed that the hydrodynamic

instabilities alone are not able to reduce the rotation rate in the core during the main sequence (see

Fig.(IV.2a)). However, Fig.(IV.7a) depicts that there is a reduction of angular momentum and the

angular velocity during hydrogen burning - the latter only by a small amount. This is because at the

beginning of the main-sequence evolution, when there is no strong chemical stratification present, the

Eddington-Sweet circulation generates a viscosity of log νAM & 9.5 throughout the radiative envelope4.

Therefore, angular momentum is evenly redistributed to replenish the removed angular momentum

at the surface of the star. Indeed, the reduction of j and Ω in the central region occurs during the

beginning of the main sequence, when Xc(4He) > 0.4. Thereafter, the chemical stratification above

the receding hydrogen core prevents transport of angular momentum from the core to the surface.

Thus, stellar winds still slow down the envelope rotation but do not affect the core rotation after

a chemical stratification has built up above the receding convective hydrogen core. There is also a

reduction of angular momentum during core helium burning, where stellar winds remove the entire

envelope and part of the helium core including its angular momentum. Thereafter, the evolutionary

4The viscosity generated by the Eddington-Sweet circulation is stronger in more massive stars due to its local
luminosity and temperature gradient dependence (see Eq.(II.25))
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(b) Taylor-Spruit dynamo
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(c) Fuller-modified Taylor-Spruit dynamo

Figure IV.7: The same as in Fig.(IV.6) but for models with an initial
mass of 60 M�.
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timescale speeds up and mass loss is not fast enough to remove a substantial amount of matter and

angular momentum from the surface of the star. The rotating core contracts and spins up during the

advanced stages, predicting a slightly slower rotating core than the lower mass models discussed earlier.

A similar main-sequence scenario is predicted by the 60 M� model with the Tayler-Spruit dynamo,

leading to a reduction of Ω and j (see Fig.(IV.7b)), similar to the non-magnetic case. Contrarily to

the 15 M� Tayler-Spruit model, where the dynamo strongly couples the differentially rotating layers

during the post-main-sequence phase and reduces the angular momentum in the core (see Fig.(IV.2b)),

the 60 M� model with the Tayler-Spruit model transports only a small amount of angular momentum.

This is because the convective core never disappears entirely after hydrogen depletes and maintains a

size of ∼ 15 M�. Therefore, the Tayler-Spruit dynamo is only active in confined regions between the

convective core and the intermediate convective zone and in the envelope. As a result, the transport of

angular momentum transport is “disconnected” into regions, leading to an overall inefficient transport

- see discussions in Sections IV.3.5 and IV.3.6. The reduction of angular momentum during the core

helium burning phase is mainly due to strong stellar winds that erode away the envelope and part

of the convective core, similarly to the non-magnetic case. During the advanced stages the angular

momentum does not change significantly and the predicted rotation rate at silicon depletion is larger

than in the 15 M� model. The evolution of the rotation in the 60 M� model with the Fuller-modified

Tayler-Spruit dynamo, shown in Fig.(IV.7c), is very similar to the 30 M� model but additional removal

of angular momentum takes place due to stellar winds. The rotation rate at silicon depletion, however,

is very similar to the lower mass models because the contraction during the advanced phases dominates

the evolution of the angular rotation velocity.

3.4 Smoothing of the Tayler-Spruit and the Fuller-modified

Tayler-Spruit dynamo

In Section B.1.5.1 I discussed the option to spatially and temporally smooth the diffusion coeffi-

cient and the turbulent viscosity generated by the Tayler-Spruit dynamo. The amount of angular

momentum transported by the Tayler-Spruit dynamo depends strongly on the smoothing process.

Fig.(IV.8a) presents the Tayler-Spruit model with no smoothing, i.e. spatial and temporal smoothing

are switched off. Indeed, the rotation profile of this model looks very similar to the non-magnetic

model in Fig.(IV.2a), hence, if no smoothing is included the magnetic dynamo is not able to transport

a significant amount of angular momentum. This is because the dynamo is only allowed to be active

in confined regions where q > qmin - see Section II.3.1.2 - leading to a jagged profile of the magnetic

viscosity shown in Fig.(IV.9a). The layers with q < qmin prevent an efficient transport of angular

momentum. The spatial smoothing routine does not increase the amount of angular momentum
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(e) spatial: 0, temporal: fr = 0.001, ft = 0.2

Figure IV.8: The Ω- and j-profiles as a function of the mass coordinate at different evolutionary stages
in the 15 M� models applying the Tayler-Spruit dynamo with different smoothing coefficients. The
three coefficients for each model are indicated in the caption of each subfigure - see Section B.51 for
more details on the coefficients. The colour indicates the evolutionary stage.

transported by the dynamo, even for a large number of cells included in the smoothing process as can

be seen in Fig.(IV.8b). It can be seen in Fig.(IV.9b) that νTS is continuously large over a wider range

and only drops to zero in the middle of the radiative envelope and in the region close to the core, which

finally prevents an efficient rotational coupling of the whole envelope. However, Fig.(IV.9b) reveals a

troublesome feature: the magnetic dynamo is active in regions with q < qmin. This is a result of the

smoothing process, where νTS is smoothed into the “forbidden” region. The consequence is the rugged

νTS connecting layers with active and inactive magnetic dynamo. Therefore, it is important to use

small numbers of cells for the smoothing process to avoid an oversmoothing of the “forbidden” region,

hence the default value of 2 for the spatial smoothing process in this work. The temporal smoothing

routine can lead to a considerable amount of angular momentum as it is shown in Fig.(IV.8), how-

ever, it depends on the two parameters, fr and ft (see Eq.(B.51)). If ft = 0.0 the smoothing is not
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(c) spatial: 0, temporal: fr = 0.0, ft = 0.2
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(d) spatial: 0, temporal: fr = 0.001, ft = 0.2

Figure IV.9: The magnetic viscosity νTS (solid blue), the rotational shear (dotted orange) and the
minimum shear qmin (dashed red) (see Eq.(II.52)) as a function of the mass coordinate in the 15 M�
models applying the Tayler-Spruit dynamo. The profile is during the main sequence when the hydrogen
mass fraction in the core drops below 0.3. The grey shaded area on the left represents the convective
core including the convective boundary mixing region.

applied, unaffected by the value of fr. Therefore, the rotation profile in Fig.(IV.8c) is the same as in

the model without numerical smoothing of the Tayler-Spruit dynamo. If fr ≥ 0.0 and ft > 0.0, the

temporal smoothing is used as shown in Eq.(B.51), trying to limit the change of the magnetic viscosity

within a certain range of the value from the previous time step. For very large values of fr and ft,

the smoothing routine neglects the value from the previous time step and the value from the current

time step is used. This can lead to an “on-off ” behaviour of the magnetic dynamo in a layer due to

the condition q > qmin for the dynamo to be active and its dependence on the transport of angular

momentum. Therefore, intermediate values for fr and ft are needed for smoothing. Nevertheless, the

temporal smoothing routine also leads to problems. Fig.(IV.9c) presents the magnetic viscosity, shear

and qmin for the model where no spatial smoothing is included but temporal smoothing is used with

fr = 0.0 and ft = 0.2. The subfigure shows that νTS is suppressed by the smoothing process in regions

where q � qmin. Consequently, this model transports even less angular momentum during the main-

sequence evolution than the model with no smoothing. Finally, if fr = 0.001 and ft = 0.2, the model

seems to predict a more constant magnetic viscosity throughout the radiative envelope of the star.

However, again the dynamo is active in “forbidden” region. Including both, spatial smoothing and

temporal smoothing leads to a similar profile with an active dynamo in the “forbidden” region. This

problem seems to be limited by the current implementation of the Tayler-Spruit dynamo in the MESA
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stellar evolution code. Possibly a general formulation of the dynamo, instead of a patching formula as

described in Eq.(II.56) could improve the situation but this is future work. For now, it is important

to be aware of the limitations of the Tayler-Spruit dynamo and its dependence on smoothing processes.

Earlier, I discussed that there is an inconsistency in the routine which numerically smooths the

magnetic viscosity of the Fuller-modified Tayler-Spruit dynamo. In detail, the smoothing proceeds

via two sequential if-conditions. The first condition prepares the array containing the unsmoothed

values of log νTSF by dividing them by the number of cells included in the smoothing routine, i.e.

2n+ 1 where n is the number of cells on one side that are included in the smoothing. However, if the

cell is mixed by convection it is excluded from this step. The second condition adds the values of the

2n neighbouring cells to the new log νTSF, if the cell is not convective, semiconvective, a convective

boundary mixing cell or is labelled as radiative, i.e. no rotational mixing occurs. Otherwise, the zone

is excluded from the sum. This avoids smoothing the convective diffusivity into non-convective zones

but introduces two inconsistencies. (i) Excluding a summand in the second step artificially reduces

the magnetic viscosity close to cells which are convective, semiconvective, convective boundary mixing

or radiative because in the first step the values are divided by 2n+ 1 in all cells but convective ones.

(ii) In MESA, a non-convective, non-semiconvective or non-convective boundary cell is marked with

“rotation mixing” if it contains a non-zero diffusion coefficient. Otherwise it is radiative. However,

in regions with a strong chemical stratification the rotation-induced chemical mixing is suppressed

(see Figs.(IV.3), (IV.4) and (IV.5)). Therefore, it is marked as radiative despite containing differ-

entially rotating layers where the magnetic dynamo action could operate. Consequently, the second

if-condition of the smoothing routine excludes these cells from the smoothing sum, which artificially

reduces the magnetic viscosity - see discussion above.

In order to test the problematic behaviour of the smoothing routine outlined in the previous para-

graph, I compute a 15 M� model with the Fuller-modified Tayler-Spruit dynamo but exclude any

smoothing of log νTSF and log νΩ. Fig.(IV.10) shows that the low values of the magnetic viscosity

disappear in the radiative regions as expected. Therefore, log νTSF is large throughout the star dur-

ing the post-main sequence evolution but there is a small reduction in the intermediate region due to

the dependence of the magnetic viscosity on the chemical stratification through N2
µ. Consequently, a

modest shear develops in this layer, with a sharp drop at the hydrogen shell. Similarly, the magnetic

viscosity profile during core helium burning does not have the deep dips from the smoothing but at

the locations with a strong chemical stratification there is a reduction of angular momentum transport

due to the chemical stratification. As a result, the Ω profile has a drop at each location where there

is an increased ∇µ. Most important is the hydrogen shell, where the chemical stratification leads to a

local minimum of log νTSF and prevents angular momentum transport from the core to the envelope.
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Figure IV.10: The profile of the turbulent viscosity in the 15 M� model applying the Fuller-modified
Tayler-Spruit dynamo but excluding the smoothing of the magnetic viscosity (a) between the main
sequence and core helium burning as in Fig.(IV.4) and (b) during core helium burning, when the
helium mass fraction drops below 0.4, compare to Fig.(IV.5). The figure is organised as those two
figures.
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Accordingly, a shear between envelope and core develops similarly to the model with the smoothed

Fuller-modified dynamo. Thus, while the smoothing routine can change the local profile of log νTSF,

the bottleneck in angular momentum transport at the hydrogen shell, and other chemically stratified

layers, is not much influenced, leading to a very similar Ω-profile in the Fuller-modified Tayler-Spruit

models with and without smoothing.

The Fuller-modified Tayler-Spruit dynamo is controversial and some scientists argue that the increased

amount of angular momentum transport generated by the dynamo action in the MESA code is a re-

sult of the smoothing routine (e.g. P. Eggenberger, private communication). Comparing Figs.(IV.10),

(IV.4c) and (IV.5c) shows that the magnetic viscosity is of the same magnitude for both, the smoothed

and unsmoothed dynamo, except in the regions discussed in the previous paragraph. Therefore, the

magnitude of the viscosity generated by the Fuller-modified dynamo does not depend on the smoothing

process.

3.5 The Parameters fµ and fc

In Section B.1.4, the two parameters fc and fµ were introduced in order to calibrate the uncertain

order-of-magnitude estimates for the rotation-induced mixing processes in the diffusive framework of

the Heger et al. (2000) implementation. The diffusion coefficients generated by the rotational insta-

bilities (see Eq.(B.40)), are multiplied by fc. ∇µ, on the other hand, is multiplied by fµ in order to

reduce the sensitivity of the rotation-induced instabilities to the chemical stratification5. Heger et al.

(2000) calibrated fc and fµ to match the surface enrichment of nitrogen in observed stars in the mass

range 10-20 M� and the helium enrichment in 60 M� stars and stars below 20 M�. They find the best

match with fc = 1
30

6 and fµ = 0.05. Yoon et al. (2006) concluded that when the chemical mixing

by the magnetic dynamo is used, fµ = 0.1 should be used. Brott et al. (2011) calibrate the mixing

efficiency, fc, to observations of B-stars. For their 13 M� model they conclude that fc = 0.0228 with

fµ = 0.05 matches the observations best7. In this work, the values fc = 0.0228 and fµ = 0.1 are the

default choices for the two parameters.

In order to asses the uncertainty in angular momentum transport, the dependence of the rotation-

induced instabilities on fc and fµ needs to be determined. It could be argued that the two values

are calibrated to observations and there is no need to asses their uncertainty. However, the models

5It is crucial to notice that fµ is only multiplied to ∇µ but not to Nµ = gϕ
HP
∇µ. Hence, the chemical stratification

is only reduced in the stability criterion in the dynamical and secular shear instability and in the “breaking velocity” of
the Eddington-Sweet circulation and the Goldreich-Schubert-Fricke instability. In all the other instabilities, where the
chemical stratification is taken into account through Nµ, it is not reduced.

6There seems to be some confusion in the literature concerning the factor fc and the work of Chaboyer & Zahn
(1992). Heger et al. (2000) state that Chaboyer & Zahn (1992) find a similar fc value based on a theoretical approach.
Moreover, Brott et al. (2011) discuss that Heger et al. (2000) adopted fc from the work by Chaboyer & Zahn (1992).
However, Chaboyer & Zahn (1992) do not introduce such a scaling factor and the numerical term in their Eq.(16), which
only affects one term and not the sum of the diffusion coefficients, is not comparable with a fully diffusive prescription
since the meridional circulation is treated in a different manner.

7They exclude chemical mixing from the Taylor-Spruit dynamo due to its controversy.
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were calibrated with one set of values for all initial masses, metallicity and initial rotation velocity,

whereas they could vary with initial mass for example. In addition, the values are calibrated to the

surface enrichment of helium and nitrogen, hence, the observations account for the rotational chemical

mixing processes but do not cover the angular momentum transport processes. Moreover, the same

value for fc multiplies all diffusion coefficients and the same dependence on the chemical stratifica-

tion is assumed. Lastly, different implementations of the diffusive scheme for rotational mixing might

need different values for fc and fµ. Therefore, the two parameters in the Heger-implementation of

rotational mixing are still uncertain and their impact on angular momentum transport needs to be

discussed.

In this work, I keep fc = 0.0228 and only investigate different values for fµ. The reason for this is that

fc is multiplied to the rotational diffusion coefficient for chemical mixing but not to the viscosities for

angular momentum transport. Therefore, the parameter fc influences angular momentum transport

only indirectly through the mixing of chemical elements, i.e. by reducing the chemical stratification

where rotation-induced mixing is active. However, as discussed above, the bottlenecks for angular

momentum transport are layers with a strong chemical stratification where chemical mixing is sup-

pressed. Consequently, different choices of fc do not greatly affect the overall distribution of angular

momentum such as the fast rotating core. In contrast, different values for fµ can allow for mixing

in the regions with strong chemical stratification, hence, it crucially impacts the rotational chemical

mixing and transport of angular momentum.

Fig.(IV.11) shows the rotation profile of the 15 M� models with the Tayler-Spruit dynamo and dif-

ferent values of fµ. The comparison between this figure and Fig.(IV.2b) shows that a smaller fµ,

leads to a reduction of Ω and j in the core during the main-sequence evolution, hence, angular mo-

mentum is transported out of the core. The angular momentum transport becomes more efficient

for lower values of fµ. This is because fµ reduces ∇µ enough so that rotation-induced mixing is not

suppressed anymore. Consequently, the angular momentum is transported more efficiently through

the bottleneck layers. Additionally, the chemical composition is mixed throughout the envelope, lead-

ing to a much weaker chemical stratification and in turn more efficient rotational mixing. Indeed,

comparing Figs.(IV.3b), (IV.12a) and (IV.12b) illustrates that a smaller fµ is able to overcome the

chemical stratification above the convective core that forms a bottleneck for chemical mixing and

angular momentum transport. While for fµ = 0.01, the stratification is only partly overpowered, the

radiative and convective boundary is fully mixed by the Eddington-Sweet circulation in the model with

fµ = 0.0001 and log νTSF is smooth throughout the radiative envelope. The chemical mixing results

in a smooth ∇µ profile and a much weaker chemical stratification, because the model evolved closer

to homogeneous - see discussion in Section I.4.2. In addition to the chemical mixing, the reduction

of the chemical stratification also allows for more angular momentum to be removed from the core,

155



CHAPTER IV. THE UNCERTAINTY IN ANGULAR MOMENTUM TRANSPORT

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

10 10

10 8

10 6

10 4

10 2

100

 [r
ad

s
1 ]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

12

13

14

15

16

17

18

19

lo
g 1

0
j [

cm
2
s

1 ]

(a) fµ = 0.01

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

10 10

10 8

10 6

10 4

10 2

100

 [r
ad

s
1 ]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

12

13

14

15

16

17

18

19

lo
g 1

0
j [

cm
2
s

1 ]

(b) fµ = 0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

10 10

10 8

10 6

10 4

10 2

100

 [r
ad

s
1 ]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

12

13

14

15

16

17

18

19

lo
g 1

0
j [

cm
2
s

1 ]

(c) fµ = 0.0001

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

10 10

10 8

10 6

10 4

10 2

100

 [r
ad

s
1 ]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
M [M ]

12

13

14

15

16

17

18

19

lo
g 1

0
j [

cm
2
s

1 ]

(d) fµ = 0.0

Figure IV.11: The rotation profile of the 15 M� Tayler-Spruit model with different values of fµ,
showing for each subfigure the angular rotation velocity, Ω, on the left and the specific angular
momentum, j, on the right. Each line represents the profile at a different evolutionary stage, indicated
by the colour and the linestyle. For comparison reasons, the axes of each thematic subplot are scaled
to the same values in this and in Fig.(IV.2).

as discussed above, due to the constant magnetic viscosity and the Eddington-Sweet circulation that

is continuous in the radiative and convective boundary mixing region. However, as can be seen in

Fig.(IV.12b), the largest difference in Ω remains in the convective boundary mixing zone, where the

Tayler-Spruit dynamo is artificially suppressed. Therefore, the 15 M� model with the Tayler-Spruit

dynamo and fµ = 0.0001 still has a faster core rotation at the end of the main sequence than the model

with the Fuller-modified dynamo - but see discussion in Section IV.3.6. Nevertheless, the sharp rise in

Ω between the interface of the convective core and the radiative envelope is spread out over a larger

region. Therefore, the shear in each zone in this layer is weaker and in the model with fµ = 0.0001

the secular shear instability does not occur anymore.

Fig.(IV.2b) and Fig.(IV.11) both predict a similar rotation rate and angular momentum profile at

core helium ignition, suggesting that during the post-main-sequence evolution the Tayler-Spruit mod-

els with a larger value for the fµ parameter transport more angular momentum away from the core.

The cause for this behaviour is the receding convective hydrogen core at the end of the main-sequence.

In all models, the convective zone begins to recede and the core starts to contract due to the dimin-

ishing nuclear energy generation. The gravitational contraction of the core leads to an increase in the

angular rotation rate due to conservation of angular momentum. In the default Tayler-Spruit model
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Figure IV.12: The profile of the turbulent viscosity in the 15 M� Tayler-Spruit model with different
values of fµ during the main-sequence evolution, when the central hydrogen mass fraction drops below
0.3. The colour and linestyle are the same as in Fig.(IV.3).
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Figure IV.13: The evolution of the angular rotation velocity at the surface (top) and in the core
(bottom) in the 15 M� models with the Tayler-Spruit dynamo and different values for fµ: 0.1 (black
solid line), 0.01 (light blue dashed line), 0.001 (yellow dash-dotted line), 0.0001 (dark blue dotted line)
and 0.0 (pink dashed-dotted-dotted line). The various overlapping markers indicate where hydrogen
depletes (black) and where helium is ignited (coloured). The start of the various burning phases is
labelled.

and the one with fµ = 0.01, the receding convective core experiences two minor growth phases on a

short timescale (small compared to the time the convective core receedes), accompanied by a local

expansion, before it completely vanishes. Therefore, Ω in the core region is redistributed, leading

to a lower value in the inner core but a flatter profile up to the outer location of the minor core

growth. After the convective core entirely disappeared, the core region contracts until helium burning

is ignited and the angular rotation rate increases in all models. On the contrary, the convective core

in models with fµ ≤ 0.001 recedes smoothly without any disturbance, leading to an increase of Ω in

the core. Consequently, the rotation rate at core helium ignition in all the Tayler-Spruit models with

different fµ is very similar despite the difference at core hydrogen depletion. Whether the behaviour

of the receding convective core is physical or numerical is an open question and the investigation is

beyond the scope of this thesis. It should be noted that this is a very sensitive phase, where the

superadiabaticity ∇rad −∇ad is close to zero, hence, a small perturbation, numerical or physical, can

lead to convection. Also, if rotational mixing ingests hydrogen into the receding convective core it can

temporarily reignite the burning. On the other hand, if fµ is small, rotational instabilities mixed the

radiative region, thus, the hydrogen content above the convective core is much lower and it is harder

to ingest fuel into the convective region.

Fig.(IV.2b) and Fig.(IV.11) show that the profiles of Ω and j during core helium burning and onward

do not depend on the value of fµ. Indeed, the rotation rate in the core evolves nearly independently of
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fµ (see Fig.(IV.13)) and the small differences are mainly due to the longer burning phase, hence a later

contraction of the core thereafter. It might be expected that more angular momentum is transported

from the core because (a) the chemical stratification in the radiative regions between the convective

zones suppresses the transport instabilities less with lower fµ and (b) the strength of the rotational

diffusion coefficients is not sustainably changed. However, because the evolutionary timescale becomes

shorter with each stage, the large scale rotation-induced transport processes, which operate on slower

timescales, are not fast enough to diffuse angular momentum from the core. Therefore, the many

convective shells become the dominant process for angular momentum transport during the advanced

phases. On the contrary, the surface rotation rate in Fig.(IV.13) shows quite a different evolution.

This, however, is not a result of angular momentum transport but a matter of the compactness of

the envelope. While the models with fµ ≥ 0.01 evolve directly to the red supergiant branch, where

the envelope expands by several orders of magnitude, the models with fµ ≤ 0.001 experience a quasi

chemical-homogeneous evolution during core hydrogen burning. Consequently, they evolve into Wolf-

Rayet stars shortly after the main sequence, which have a more compact envelope. The changes of

the envelope between expansion and contraction lead to the change in Ωsurf seen in Fig.(IV.13).

A similar behaviour is found in the non-magnetic and the Fuller-modified Tayler-Spruit models with

smaller fµ values, however, the conclusion for the total angular momentum transported is different

due to the different nature of the models. In the default non-magnetic model with fµ = 0.1, nearly no

angular momentum is transported from the core (see Fig.(IV.2a)) because of the prohibiting chemical

stratification. Therefore, lowering the importance of the limiting stratification allows angular mo-

mentum to be transported from the core. Consequently, there is a significant reduction of angular

momentum in the core during the main sequence. During the further evolution, the non-magnetic rota-

tional instabilities are not fast enough to redistribute a significant amount of angular momentum - see

discussion above - independent of fµ. As a result, the core rotation in non-magnetic models is slower

with a lower fµ, contrary to the Tayler-Spruit dynamo. In the Fuller-modified Tayler-Spruit model,

a lower fµ allows for the Eddington-Sweet circulation to be active throughout the entire radiative

envelope, which reduced the chemical stratification above the receding convective hydrogen core. This

in turn reduces the chemical term of the Brunt-Väisälä frequency, N2
µ, leading to a stronger magnetic

coupling and more angular momentum transport during the main-sequence evolution. Therefore, the

models with lower fµ have a slower core rotation at the end of the main sequence, similar to the Tayler-

Spruit dynamo. During the post-main-sequence phase, the Fuller-modified Tayler-Spruit model with

the default fµ value has a larger Ω in the core than the models with lower fµ values. Consequently, the

core contraction generates a higher angular rotation velocity and the rotation-induced instabilities,

in particular the magnetic dynamo, produce stronger angular momentum transport in the core. As a

result, the model with default fµ predicts a similar Ω-profile in the core region at core helium ignition
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as the models with lower values of fµ. In the Fuller-modified Tayler-Spruit models, this occurs without

the odd behaviour of the receding convective hydrogen core seen in the Tayler-Spruit models. In the

envelope, the rotation profile differs due to the different structure, i.e. the models with fµ ≤ 0.001

experience a quasi chemical-homogeneous evolution. However, the angular rotation velocity of the

envelope is tiny in all models and the differences are negligible. In both the non-magnetic and the

Fuller-modified Tayler-Spruit models the angular momentum transport during the advanced phases

of stellar evolution is negligible due to the faster evolutionary timescale.

In summary, the different fµ values influence when angular momentum is transported. While this

leads to a different rotation rate in the non-magnetic models, the models including a magnetic dy-

namo do converge to roughly the same core rotation rate at helium ignition, nearly independently of

fµ. However, the structure of the stars is different due to the more efficient mixing during the main

sequence - see Section V.2. Also, the Tayler-Spruit dynamo and the Fuller-modified Tayler-Spruit

dynamo predict different amounts of angular momentum transport even if the impact of the chemical

stratification is reduced. This is because the latter has a higher saturation level, generating a stronger

magnetic torque and it operates on a shorter timescale.

3.6 The Taylor-Spruit Dynamo and Convective Boundary Mix-

ing

In Section B.1.5.1, I discussed the fact that the implementation of the Tayler-Spruit dynamo is ignored

in convective zones, in particular in convective boundary mixing regions, where νTS is artificially set

to zero. The result can be seen in Fig.(IV.3b) where the magnetic viscosity drops sharply at the

outer edge of the convective zone. This creates a one-zone layer with inefficient angular momentum

transport between the convective core, where transport occurs by turbulent motion, and the radiative

envelope, where the magnetic dynamo operates. The theory of the Tayler-Spruit dynamo has been

developed for the radiative zones of the star, where differential rotation winds up the magnetic field

lines. It is therefore not applicable in the convective regions of the star where other magnetic dynamos

can operate (see e.g. Spruit, 1999; Charbonneau, 2005, and citations therein for alternative theories).

The magnetohydrodynamical coupling between a convective and radiative zone is still an open question

(e.g. Wood & Brummell, 2018; Korre et al., 2021). The evolution of the large-scale magnetic fields

not only depends on the interaction with the mean fluid flow but also on the fluctuation-induced

electromotive force and the evolution of the flow depends on Reynolds and Lorentz stresses. In

radiative zones these terms are likely negligible. However, at the interface between a radiative and a

convective region they are expected to influence the evolution of the large-scale magnetic fields and

flows due to convective boundary mixing. Therefore, the magnetohydrodynamical coupling between
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a convective and radiative region will be a combination of interaction between large-scale fields and

flows and small-scale fields and flows. Some of the fields can be produced by a dynamo action in the

convective or radiative zone but part of the fields are also generated locally by the interaction of the

convective boundary mixing motion with the large-scale magnetic field from the radiative layers. Up

to date, there is no complete theory that allows to make predictions on the magnetic coupling between

radiative and convective zones.

In order to investigate the possible impact of a magnetic dynamo in the convective boundary mixing

region, I computed a 15 M� model where the Tayler-Spruit dynamo is computed in the convective

boundary mixing region. I only include the dynamo action in the convective boundary mixing region

because this is where the convective core generates shear, whereas the assumption of solid-body

rotation in convective zones suppresses any shear in the rest of the convective core. The dynamo

action in the convective boundary mixing layer is simulated in the same way as in the radiative layers.

While this is a very crude, and most probably wrong approach, it nevertheless gives insight on how a

possible magnetic dynamo, or another possible angular momentum transport mechanism, might affect

the angular momentum distribution if it is able to operate in the bottleneck region. Fig.(IV.14a) shows

the turbulent viscosity in the 15 M� model, which includes the Tayler-Spruit dynamo in the convective

boundary mixing region. It can be seen that the magnetic dynamo operates in the convective boundary

mixing zone, represented by the yellow shaded region, generating a magnetic viscosity, depicted by

the solid magenta line. The dynamo action is only active in the very outer layers of the convective

boundary region and is inert in the region closer to the convective zone. This is a result of the

exponentially decaying mixing efficiency of the boundary mixing scheme, leading to a less efficient

angular momentum transport further away from the Schwarzschild boundary which creates a gradient

in the Ω profile, hence, shear. In the inner region, however, angular momentum is redistributed well

enough to keep a constant angular rotation speed.

In the context of 3D hydrodynamic simulations of turbulent convective boundaries, this could be

thought of in the following way. The region after the mixing-length boundary - the turning region

in Section II.1.3 - is fully mixed and angular momentum is equally distributed, depending on the

rotation law for convective bodies. In the region further out, where the flow turns around - the shear

region in Section II.1.3 - the radial velocity is going to zero and the horizontal velocity dominates.

This could produce a gradient in the angular momentum distribution, similar to the sigmoid-shape

seen for the chemical species in 3D hydrodynamic simulations. Furthermore, the horizontal velocity

introduces convective shear which could generate a dynamo action, or give rise to another instability,

that transports angular momentum. Therefore, it is possible that there could be a dynamo active at

the edge of the convective zone. However, the interaction between the convective and rotation-induced

shear and possible magnetic fields is still an open question.
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Figure IV.14: (a) The turbulent viscosity in the 15 M� model applying the Tayler-Spruit dynamo,
including in the convective boundary mixing region. The figure is organised as Fig (IV.3). (b) The
rotation profile of the 15 M� Talyer-Spruit model, including the dynamo in the convective boundary
layer, showing on the top left panel the angular rotation velocity, Ω, on the top right panel the specific
angular momentum, j, and on the bottom panel the ratio of the angular rotation velocity to the critical
angular rotation velocity. Each line presents the profile at a different evolutionary stage indicated by
the colour and linestyle. For comparison reasons, the axes of each thematic subplot group have been
scaled to the same values. The ignition of a burning phase is defined as when 0.3% of the fuel is burnt
and depletion when the fuel drops below 1%. The latter is early enough to avoid a spinning up of the
core due to contraction after the burning phase ends.
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Fig.(IV.14b) presents the evolution of the rotation profile in the 15 M� model with the Tayler-Spruit

dynamo, including the magnetic dynamo in the convective boundary mixing region. Indeed, including

the dynamo into the convective boundary mixing region allows the model to overcome the angular

momentum transport bottleneck during the main sequence, reducing the angular momentum content

of the core and slowing it down. The chemical stratification above the receding convective core limits

the dynamo action which leads to a slower rotating envelope already during the main sequence. During

the post-main-sequence evolution, the angular momentum in the core is further reduced, however, the

core spins up due to contraction. Consequently, the model predicts a similar angular rotation profile

as the default Tayler-Spruit model. Furthermore, during the advanced evolution, the evolutionary

timescale is too short for the dynamo to effectively operate and there is no significant difference

between the two models (compare Figs.(IV.2b) and (IV.14b)).

3.7 Convergence between the Magnetic Dynamos?

In the previous Sections, I first discussed the default version of the 15 M� model with the Tayler-

Spruit model, pointing out the bottleneck in regions with a strong chemical composition gradient and

the convective boundary mixing zone. This prevents the magnetic dynamo to transport any angu-

lar momentum between the core and envelope during the main-sequence evolution. Following this

discussion, I investigated two options to overcome the bottleneck of angular momentum transport:

a reduced impact of the chemical stratification by lowering the artificial parameter fµ and allowing

the Tayler-Spruit dynamo to be active in the convective boundary mixing region. Indeed, both op-

tions are able to reduce the specific angular momentum during the main sequence. This leads to

the question whether the Tayler-Spruit dynamo is able to reduce the core spin to a similar extent as

the Fuller-modified dynamo. Fig.(IV.15) presents the surface angular velocity, Ωsurf , and the angular

velocity in the centre, Ωcentre, of the various models with a magnetic dynamo discussed in the previous

Sections. The bottom plot clearly illustrates that during the main-sequence evolution the model with

the default Tayler-Spruit dynamo maintains a nearly constant, slightly increasing Ωcentre, whereas

the model with the default Fuller-modified Tayler-Spruit dynamo experiences a slowdown of Ωcentre.

As expected, all the models that include a variation of the Tayler-Spruit dynamo to overcome the

bottleneck of angular momentum transport reduce their Ωcentre during the main sequence. Fig.(IV.15)

includes (i) a Tayler-Spruit model where the dynamo action is included in the convective boundary

mixing region - see Section IV.3.6 - (ii) a Tayler-Spruit model where the dependence of the rotation-

induced instabilities on the chemical stratification is reduced, i.e. fµ = 0.00018 - see Section IV.3.5

- and (iii) a model that includes the first and second case. The three Tayler-Spruit variations evolve

similarly during the main sequence regarding the core rotation. In the first half of main sequence

8I chose the model with fµ = 0.0001 because it represents the most optimistic case.
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Figure IV.15: The evolution of the angular rotation velocity on the surface, top, and in the centre,
bottom, in various 15 M� models with a magnetic dynamo as a function of the time left until the core
collapses. The models include different versions of the magnetic dynamos discussed in the previous
Sections, see the legend for details. The black marker indicate the depletion of hydrogen in the centre
and the colored marker the ignition of helium in the core. The different burning stages are labeled.
The inset window presents an enlarged view on the main-sequence and post-main-sequence evolution.

they have a similar reduction of Ωcentre as the Fuller-modified dynamo. This is the result of angular

momentum being transported through the region above the convective hydrogen core, which is re-

stricted in the default Tayler-Spruit dynamo. However, beginning at the middle of the main-sequence

lifetime the Fuller-modified Tayler-Spruit model shows a faster reduction of Ωcentre compared to the

variations of the Tayler-Spruit models, which all continue to slow down the core at the same rate. The

difference arises from the amplitude of the coupling: in the model with Fuller-modified Tayler-Spruit

model the dynamo creates a strong viscosity of the order of log νTSF ∼ 15 in layers with strong shear

(see Fig.(IV.3c)) whereas in the models with the different versions of the Tayler-Spruit dynamo the

magnetic viscosity is of the order of log νTSF ∼ 10 (see Figs.(IV.12b) and (IV.14a)). Consequently,

the angular momentum distribution in the Fuller-modified model remains close to solid body rota-

tion whereas in the different Tayler-Spruit models shear between core and envelope develops. The

difference in Ωcentre at the end of the main sequence between the Taylor-Spruit models results from

the different efficiencies of angular momentum transport through the bottleneck region above the

convective core. The model that includes the dynamo in the convective boundary mixing region and

ignores the chemical stratification predicts the slowest core rotation at the end of the main sequence.

During the post-main-sequence evolution the cores in the modified Tayler-Spruit models spin up, as

explained in Sections IV.3.5 and IV.3.6, and they predict a similar angular rotation rate of the core

during the further evolution as the default Tayler-Spruit model. Thus, in terms of final rotation rate
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predicted by the models, there is no convergence between the Fuller-modified Tayler-Spruit dynamo

and optimistic versions of the Talyor-Spruit dynamo, but between the different versions of the Taylor-

Spruit dynamo. However, the different efficient coupling during the main-sequence evolution in the

Taylor-Spruit model leads to slightly different evolution of the rotation rate. For example, the bottom

plot in Fig.(IV.15) reveals that the contraction at the end of the advanced burning stages occurs at

different times, indicating different burning lifetimes. Also, the surface rotation rate, Ωsurf , increases

during core helium burning in the models with fµ = 0.0001, pointing out a contraction and expansion

of the envelope. These differences will affect the evolution of the model.

Fig.(IV.15) shows that the chemically stratified region above the convective hydrogen core is one of the

big problems in terms on angular momentum transport and a proper treatment of the chemical strat-

ification and its impact on the rotation-induced angular momentum transport and chemical mixing

would help in reducing the uncertainty of angular momentum transport by a magnetic dynamo.

4 Angular Momentum Transport at Lower Metal-

licities

In Section IV.3, I discussed how the evolution of the angular momentum distribution in higher mass

stars at solar metallicity is influenced by strong mass loss. The question that naturally arises is how

the angular momentum transport behaves at lower metallicities. In order to test the impact of lower

initial metallicities on the distribution of angular momentum, I calculated the models presented in

Section IV.3 at metallicities of Z = 0.002 and 0.0004. In terms on angular momentum transport,

the main impact from the lower initial metallicity are the weaker stellar winds. In fact, the 15 M�

models at Z = 0.0004 show a very similar evolution of the angular momentum distribution to the

15 M� models at solar metallicity. Since the mass-loss rates increase gradually with initial mass, I

only discuss the change in angular momentum transport at lower metallicities in the 60 M� models.

The lower mass models in the sample show gradually reduced differences on the angular momentum

distribution when changing the initial metallicity.

Fig.(IV.18) presents the evolution of the Ω and j in the 60 M� models at Z = 0.0004 for the models

with the three default angular momentum transport mechanisms. The shape of the rotation rate

and the specific angular momentum profile in the non-magnetic model (see Fig.(IV.18a)) are more

similar to the 15 M� models because it does not lose angular momentum through stellar winds. Hence,

the redistribution mainly occurs by rotation-induced hydrodynamic instabilities, which are not very

efficient as discussed in the earlier Sections. The biggest difference in Ω is in the envelope, where in the

low metallicity models the rotation rate does not drop as much. This is because the initial composition
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contains less metals and therefore the opacity is lower - see Appendix B.1.2.0.1. Consequently, the

envelope expands less, thus, Ω does not drop to the same low values. This difference exists for all the

initial masses studied here. If the metallicity is increased to Z = 0.002, the mass loss is not negligible

and a small amount of angular momentum is removed from the core. Also, the envelope expands

more, leading to a slower surface rotation, before it is stripped away by stellar winds. It should be

noted that at both lower metallicities the model reaches critical rotation in the envelope towards the

end of their evolution, which drives strong rotation-induced mass loss.

The angular rotation rate and specific angular momentum distribution in the 60 M� models with the

Tayler-Spruit dynamo at Z = 0.002 and 0.0004 evolve very similar to the respective model at solar

metallicity. The main difference is that the model at solar metallicity loses more mass during core

hydrogen burning. However, both lower metallicity models lose a substantial part of their mass during

core helium burnin g. The reason for the high mass-loss rates at low metallicity is the formulation and

implementation of the mass-loss rates for red supergiants - see also Appendix B.1.6: when the effective

temperature drops below log Teff < 4.08 the MESA code smoothly switches to the red supergiant mass-

loss rates given by Eq.(B.59), which is fully active for log Teff < 3.9. Furthermore, the mass-loss

recipe for red supergiants by de Jager et al. (1988) does not include a metallicity dependence, hence,

it predicts the rates on mass and luminosity alone, see Eq.(B.59). The low metallicity 60 M� models

with the Tayler-Spruit dynamo both evolve to log Teff < 3.9 after the main sequence, where they

ignite helium burning and do not return back to effective temperatures of log Teff > 4.08. This

is because they have a short and weak intermediate convective zone, see discussion in Chapter III

and Section V.2. Therefore, they experience a strong red supergiant mass loss, despite not being

on the red supergiant branch, showing the need for a revision of the mass-loss recipes in the region

log Teff < 4.1. In this case, an overestimation of the stellar winds leads to a wrong prediction of the

angular momentum transport during the evolution of massive stars at low metallicity and could affect

predictions of low-metallicity black hole spins.

The 60 M� models with the Fuller-modified Tayler-Spruit dynamo at Z = 0.002 predict a very similar

evolution of the angular rotation velocity and specific angular momentum distribution compared to the

solar metallicity model but less mass loss. The same could be said for the model at Z = 0.00004, but

there the angular momentum profile is higher at the end of core hydrogen burning. This, however, is

a result of the timing when contraction at the end of the main sequence begins and the shear between

core and envelope increases, similar to the 30 M� models. Indeed, once central helium burning ignites,

the angular momentum profiles are similar once again until the end of silicon burning. In the envelope,

the angular rotation velocity profile remains mostly flat until the helium burning phase because of

the reduced expansion of the envelope at lower metallicity. This allows for more angular momentum

transport by the Eddington-Sweet circulation, νES ∝ Ω2, but reduces the strength of the magnetic
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dynamo which depends on the shear.

In summary, at lower metallicity where the stellar wind are weaker, the angular momentum transport

is dominated by rotation-induced instabilities in massive stars, contrary to solar metallicity where mass

loss has a crucial impact on the rotation rate. However, due to the formulation and implementation

of stellar winds in the stellar evolution code, some of the low metallicity models still experience a

modest mass loss, which blurs this picture.

The points discussed above lead to different predictions of the rotation rate at silicon depletion and

finally the spin of the final compact object. Generally, the models at lower metallicity have a faster

rotation rate and more angular momentum in the core. The exception is the Tayler-Spruit model at

Z = 0.0004 which predicts a slower rotating core due to the behaviour of the stellar wind mentioned

above. If the mass-loss rates in the region log Teff < 4.1 would include a metallicity dependence, this

model would most probably follow the same trend as the other models. Therefore, the 60 M� models

predict faster rotating cores at lower metallicities, hence, faster spinning compact objects at the end

of their life. This discrepancy with metallicity disappears with decreasing initial mass.

5 Dependence of Angular Momentum Transport on

the Initial Rotation Speed

Stars are observed to rotate at different speeds on the main sequence with typical rotation rates

between 0 − 250 km s−1 (e.g. Huang & Gies, 2006a; Hunter et al., 2008; Dufton et al., 2013). It is

therefore of interest to know how the evolution of different initial rotation rates is affected by the three

angular momentum transport mechanisms discussed in the earlier Sections and what the predicted

pre-supernova spin is.

Fig.(IV.16) presents the specific angular momentum at hydrogen, helium and silicon depletion in

32 M� model at the metalicity Z = 0.002 for the three angular momentum transport mechanisms.

These models are published in Belczynski et al. (2020a). Fig.(IV.16a) shows that at the end of the

main sequence the angular momentum distribution in the models depends on the initial rotation

rate and the angular momentum transport mechanism, with no strong trend. However, the angular

momentum distribution in the inner part of the star after the core helium burning phase, presented

in Fig.(IV.16b), clearly depends on the transport mechanism and is mostly independent of the initial

rotation. This convergence of the rotation rate for a given angular momentum transport mechanism

is a result of the dependence of (a) the rotation-induced instabilities on the rotation rate and the

shear, which becomes stronger in faster rotating models, and (b) the rotation-enhanced winds on

the initial rotation rate. In fact, a faster initial rotation leads to enhanced mass-loss rates during
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(a) hydrogen depletion
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(b) helium depletion
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(c) silicon depletion

Figure IV.16: The profile of the specific
angular momentum in the 32 M� models
of the three angular momentum trans-
port processes with different initial rota-
tion rates. Each plot presents the profile
at a different stellar stage. The dominant
transport mechanism is indicated by the
linestyle and the initial rotation by the
colour scheme.
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Figure IV.17: The profile of the angular rotation rate in the 32 M� models for three default angular
momentum transport processes with different initial rotation rates at silicon depletion. The linestyle
depicts the dominant angular momentum transport mechanism and the colour scheme indicates the
initial rotation rate.
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(a) no magnetic fields
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(b) Taylor-Spruit dynamo

0 10 20 30 40 50 60
M [M ]

10 10

10 8

10 6

10 4

10 2

100

 [r
ad

s
1 ]

0 10 20 30 40 50 60
M [M ]

12
13
14
15
16
17
18
19
20

lo
g 1

0
j [

cm
2
s

1 ]

0 10 20 30 40 50 60
M [M ]

0.0

0.5

1.0

/
cr

it

(c) Fuller-modified Taylor-Spruit dynamo

Figure IV.18: The rotation profile of the 60 M� models at a metallicity
of Z = 0.0004 for the different angular momentum transport mecha-
nisms, showing on the top left panel the angular rotation velocity, Ω,
on the top right panel the specific angular momentum, j, and on the
bottom panel the ratio of the rotation rate to the critical rotation rate.
Each line presents the profile at a different evolutionary stage indicated
by the colour and linestyle. For comparison reasons, the axes of each
thematic subplot group have been scaled to the same values. The igni-
tion of a burning phase is defined as when 0.3% of the fuel is burnt and
depletion when the fuel drops below 1%.
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also Section V.2.

6 Conclusion and Discussion

In this Chapter, I presented rotating stellar models of different initial masses, each of which was com-

puted with three different angular momentum transport mechanisms, in order to study the uncertainty

of the angular momentum distribution during the evolution of massive stars. The three transport

mechanisms are (1) hydrodynamic instabilities, (2) hydrodynamic instabilities and the Tayler-Spruit

dynamo and (3) hydrodynamic instabilities and the Fuller-modified version of the Tayler-Spruit dy-

namo. In this Chapter I focussed the discussion on the angular momentum distribution and evolution

of rotation. The impact of the uncertainties in the different transport mechanisms on the structure

and evolutionary path of massive stars will be investigated in future work.

The behaviour of the default models can be summarised as follows:

1. The default versions of the three angular momentum transport mechanisms predict three distinct

core spins at the end of their evolution when they begin to collapse. The model with the purely

hydrodynamic angular momentum transport predicts the fastest core rotation, whereas the

Tayler-Spruit dynamo estimates a medium value and the Fuller-modified Tayler-Spruit dynamo

the slowest.

2. In general, most of the angular momentum transport occurs before core helium depletion. There-

after, the evolutionary timescales become much faster and large-scale angular momentum trans-

port becomes negligible. During the advanced stellar phases, the core spins up by several orders

of magnitude due to contraction and conservation of angular momentum.

3. The default implementations of the three mechanisms transport angular momentum during

different stages. The hydrodynamic instabilities alone do not efficiently transport angular mo-

mentum and the initial angular momentum content of the core is only slightly reduced. The

Talyer-Spruit dynamo transports a large amount of angular momentum during the post-main-

sequence evolution, before helium ignites in the centre, and a small amount during all the

subsequent phases up to core oxygen ignition. It removes about three orders of magnitude of

angular momentum from the core, reducing the spin of the core by about two orders of mag-

nitude compared to the non-magnetic models. However, this magnetic dynamo is not able to

extract angular momentum from the core during the main-sequence evolution because of (a)

the inhibiting chemical stratification above the convective core and (b) the convective bound-

ary mixing region where the magnetic dynamo is ignored. The Fuller-modified Tayler-Spruit

dynamo efficiently removes angular momentum from the core during the main-sequence and
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post-main-sequence evolutionuntil helium ignites in the core and smaller amounts in the ensuing

phases up to core oxygen ignition. It is able to reduce j in the core by more than four orders

of magnitude. The efficient transport of angular momentum maintains a near-solid body ro-

tation during the main-sequence phase and a comparatively low Ω during the further phases.

The final core spin is more than three orders of magnitude lower compared to the model with

hydrodynamic instabilities only.

4. The core spin at collapse of a model with a given angular momentum transport mechanism is

nearly independent of the initial rotation. However, the models experience different amounts

of spin-down during their evolution, hence, the distribution of angular momentum during these

phases differs. This affects the structure of the star.

5. The initial metallicity of the stellar models mainly influences rotation through the strength of

stellar winds, which remove angular momentum from the surface. The impact is dominant in

the 60 M� models and becomes gradually weaker for the lower initial masses.

Angular momentum transport in massive stars depends strongly on the treatment of the chemical

stratification that develops above the convective core during the main sequence. This layer, plus the

fact that the magnetic dynamo is ignored in the convective boundary mixing zone, creates a bottle-

neck in angular momentum transport that leads to the separation between core and envelope rotation.

Indeed, I find that if the inhibiting effect of the stratification is reduced, implemented by a lower fµ

parameter, the Tayler-Spruit dynamo in combination with the rotation-induced hydrodynamic insta-

bilities is able to transport a substantial amount of angular momentum during the main-sequence

stage. Similarly, including the Tayler-Spruit dynamo into the convective boundary mixing region -

a crude estimate to couple the differential rotation introduced by this region and the magnetic dy-

namo - leads to a reduction of more than an order of magnitude in j. Interestingly enough, a more

efficient angular momentum transport during the main sequence reduces the shear developing dur-

ing the post-main-sequence phase. Therefore, the magnetic dynamo is relatively weaker during this

phase. Consequently, the modified models with the Tayler-Spruit dynamo predict a similar angular

momentum content and rotation rate of the core as the default model with the Tayler-Spruit dynamo.

Therefore, for a given initial mass, each angular momentum transport flavour predicts a distinct range

of spins of the core at collapse, only weakly varying with the uncertainties studied in this Chapter.

However, the evolutionary path of the star depends on the uncertainties, as angular momentum is

transported during different phases.

This Chapter shows that the treatment and prediction of rotation in stellar evolution codes is highly

uncertain and much effort is needed to improve it. One needed improvement is the dependence of the
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rotation-induced mixing on the chemical stratification. First, the Heger et al. (2000) implementation

of some rotational-induced instabilities accounts for the limiting effect of the chemical stratification via

a “braking velocity” - see Section II.2. This overestimates its inhibiting effect, creating the bottleneck

in angular momentum transport above the convective hydrogen core seen in this Chapter. Second,

the chemical composition gradient is multiplied by a factor fµ in some rotation-induced instabilities in

order to reduce its limiting effect - see Section II.2 for more details. The choice of this free parameter

influences the amount of mixing that occurs in chemically stratified regions. It is therefore crucial to

constrain its value or replace it with a physical formulation. In addition, if the chemical composition

gradient is considered through the Brunt-Väisälä frequency, N2 = gδ
HP

(
∇ad −∇rad + ϕ

δ∇µ
)
, the ∇µ is

not multiplied by fµ. Therefore, the limitation of the chemical stratification is not taken into account

consistently in the various rotation-induced instabilities - a fact that should be improved. There are

theories and implementations of rotational instabilities that consider the gradients in chemical com-

position as physical effects (see e.g. Chaboyer & Zahn, 1992; Zahn, 1992; Maeder & Zahn, 1998)9,

hence, an update of the Heger et al. (2000) implementation in the MESA code is needed.

Another uncertainty in the rotation scheme implemented in MESA is the free parameter fc, which is

multiplied to the sum of the diffusion coefficients generated by rotational instabilities. This parameter

is introduced, as well as fµ, to account for the order-of-magnitude estimates of the rotation-induced

mixing efficiencies (see Eq.(B.40)). Introducing non-physical parameters is tricky, because they can

be used to do anything. There are several publications that try to constrain fc and fµ (e.g. Pin-

sonneault et al., 1989; Heger et al., 2000; Yoon et al., 2006; Brott et al., 2011; Chieffi & Limongi,

2013). However, calibration is difficult because the observed effects used are also dependent on other

uncertain physics, for example convective boundary mixing, and a solution might not be unique. Fur-

thermore, calibration of the two parameters with a certain observation does not necessarily reproduce

other observations nor does it have to be true for other initial conditions such as mass or metallicity

or evolutionary stages. Additionally, one parameter, fc, is used to correct the sum of all diffusion

coefficients for rotation-induced chemical mixing, despite the fact that some need different scaling and

some do not need rescaling at all. For example, the diffusion coefficient for chemical mixing generated

by the Tayler-Spruit dynamo, DTS in Eq.(II.59), is computed within a factor of unity (§3.2 Spruit,

2002) and does not need to be rescaled.

Both the magnetic dynamos studied in this Chapter use numerical smoothing - see Sections B.1.7 and

B.2.1. In the case of the Tayler-Spruit dynamo, numerical smoothing is needed to obtain a large-scale

angular momentum transport by the dynamo action. On the other hand, too much smoothing leads

to the dynamo being active in “forbidden” regions - see Section IV.3.4. The dependence of the imple-

mentation of the dynamo on numerical smoothing indicates the theory itself needs revision. A first

9Note that the implementations in the named publications are for the advective-diffusive scheme.
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step could be to implement a general description of the Tayler-Spruit dynamo (as for example done by

Maeder & Meynet, 2004, 2005) rather than the inaccurate formulation in MESA, which patches together

two different regimes - see Section II.3.1.2.1. The Fuller-modified Taylor-Spruit dynamo also includes

a numerical smoothing routine. In this case, the default implementation leads to a non-physical re-

duction of the magnetic viscosity in some layers - see discussion in Section IV.3.4. Excluding the

smoothing process in the simulation removes this behaviour but introduces thin layers with a very

strong dynamo action, which might not be physical either. The problem with the simulation of a

magnetic dynamo in a stellar evolution code is the fact that the magnetic fields themselves, and their

effects such as the torque, are not directly simulated. Instead, only the resulting magnetic viscosity

and diffusion coefficient are computed in a region where the shear exceeds a minimum shear for the

dynamo to be active. Consequently, the transport process needs to be smoothed over the other cells

in order to generate a large-scale transport, otherwise the dynamo action is not able to generate an

efficient angular momentum transport.

6.1 The role of qmin in the Fuller-modified Tayler-Spruit dy-

namo

The theory of the Fuller-modified Tayler-Spruit dynamo only allows for an active magnetic dynamo

when the shear, q, is larger than a minimum shear, qmin (see Eq.(II.68)). In Section B.2.1 I explained

that the current implementation does not check for this condition (see Fuller et al., 2019, Appendix

D1)10. Therefore, the magnetic dynamo can be active in regions where the shear is not sufficiently

strong. This could lead to an overestimation of the angular momentum transport by the Fuller-

modified Tayler-Spruit dynamo. In the following, I present a short discussion on a model that includes

the condition of q > qmin for the Fuller-modified Tayler-Spruit dynamo to be active. Note that this

study is preliminary and further work is needed.

Fig.(IV.20) presents the profile of the turbulent viscosity in the models applying the Fuller-modified

Tayler-Spruit dynamo, which includes the qmin condition and excludes numerical smoothing - for the

latter see Section IV.3.4. The profile is shown at three different stellar phases, during core hydrogen

burning, during the post-main-sequence evolution and when the star burns helium in the core. The

qmin condition prevents the magnetic dynamo from being active in regions where the shear is not

strong enough to generate a dynamo action, i.e. no magnetic dynamo where q < qmin. Comparing

Fig.(IV.20) to Figs.(IV.3c), (IV.4c) and (IV.5c) reveals that the magnetic dynamo is not always active

if the qmin condition is considered. For example, during core hydrogen burning the Fuller-modified

dynamo is only active in a thin layer below the large-scale Eddington-Sweet circulation in the envelope.

10All subsequent papers that use this implementation will have the same issue.
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Figure IV.19: The rotation profile of the 15 M� model with the Fuller-modified Tayler-Spruit dynamo
that includes the qmin condition and excludes numerical smoothing. The top left panel shows the
angular rotation velocity, Ω, the top right panel the specific angular momentum, j, and on the bottom
panel the ratio of the angular rotation velocity to the critical angular rotation velocity. Each line
presents the profile at a different evolutionary stage indicated by the colour and linestyle. The ignition
of a burning phase is defined as when 0.3% of the fuel is burnt and depletion when the fuel drops
below 1%.

This is the only location where the gradient in the rotation profile is strong enough to trigger the

dynamo action. In the envelope, Ω experiences a tiny gradient but is close to solid-body rotation

due to the Eddington-Sweet circulation. Similarly, the core rotates close to solid-body due to the

convective motion that efficiently redistributes angular momentum. Therefore, the region where the

shear rises above the minimal shear during the main sequence is in the intermediate region. As soon

as the criterion q > qmin is satisfied, a strong viscosity is generated with log νTSF > 16 which keeps the

layer between the core and the envelope close to solid-body rotation. In between core hydrogen and

core helium burning, the qmin condition is met throughout the entire star and the magnetic dynamo

generates strong viscosity throughout the star, transporting a similar amount of angular momentum as

in Fig.(IV.10a). During core helium burning, the qmin condition is satisfied in nearly all of the radiative

zone between the convective core and envelope, with the exception of a few narrow layers. At these

locations, the chemical stratification leads to a reduction of νTSF (see Fig.(IV.10b)). Consequently, the

resulting transport of angular momentum during core helium burning is very similar in the models

with and without the qmin condition. A similar behaviour occurs during the subsequent phases of

stellar evolution in terms of magnetic dynamo and angular momentum transport. Therefore, the qmin

condition can affect the local strength of νTSF, however, the difference for νAM is not strong enough
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and the overall rotation rates do not change significantly, as can be seen by comparing Figs.(IV.2c)

and (IV.19). Nevertheless, even if excluding the qmin condition does result in the similar outcome

does not mean it is justified to do so. The stellar model should simulate the physics correctly and

in the derivation of the magnetic dynamo it was assumed that the dynamo action is only active in

regions where q > qmin. Consequently, it is essential to include the qmin condition in the computation

of magnetic stellar models.
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(a) core hydrogen burning
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(c) core helium burning

Figure IV.20: The profile of the turbulent viscosity in the 15 M� model
with the Fuller-modified Tayler-Spruit dynamo that includes the qmin

condition and excludes numerical smoothing. νAM is shown (a) dur-
ing core hydrogen burning when the hydrogen mass fraction drops be-
low 0.3, (b) during the post-main-sequence evolution and (c) during
core helium burning when the hydrogen mass fraction drops below 0.4.
Each top panel shows the total turbulent viscosity generated by non-
rotating sources such as convection (black dotted line) and the tur-
bulent viscosity generated by rotation-induced instabilities (sky-blue
dotted line). Additionally shown are the turbulent viscosities gener-
ated by each rotation-induced instability, the viscosity produced by the
Eddington-Sweet circulation (dark-blue solid line), the secular shear in-
stability (grey solid line) and the magnetic dynamo (magenta solid line).
The yellow shaded region indicates the location of convective boundary
mixing regions. The bottom panel depicts the rotation rate and the
gradient in the chemical composition. A dotted line for ϕ

δ∇µ stands for
negative values. It should be noted that the range of the axis in the
bottom panel varies between the figures.
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Chapter V
Conclusion and Outlook

In this Thesis, I investigated two groups of internal mixing processes in massive stars: convection and

rotation. I focussed the study on convective boundary mixing and angular momentum transport by

rotation-induced instabilities, exploring their uncertainty and impact on stellar evolution. I examined

the two physical processes separately, in order to study them without interference between the two.

Convective boundary mixing is discussed in Chapter III. I investigated how the location of the convec-

tive boundary and different amounts of convective boundary mixing affect the structure and evolution

of massive stars. I found that while the boundary location converges during core hydrogen burning

with more convective boundary mixing, there is a divergence in the subsequent evolution. Moreover,

the behaviour of the intermediate convective zone and how it interacts with the hydrogen burning

shell is a crucial phase for the further evolution of the star. In total, the core masses experience an

uncertainty of up to ∼ 70% at core helium depletion. Furthermore, the surface evolution of stars, such

as the main-sequence width and blue versus red supergiant evolution, depend critically on the mixing

choices. Hence, these uncertainties affect the lifetimes in regimes with different surface temperatures

and star radii. Since the mass-loss rates depend strongly on the location in the Herzsprung-Russell

diagram, the mixing choice further affects these observables through mass-loss. Comparison between

model predictions and spectroscopic observations of the main-sequence width and asteroseismic obser-

vations of convective core masses suggest that models require larger amounts of convective boundary

mixing during their main-sequence evolution than currently adopted in the literature. Therefore,

studies focusing on the later stages or the final fate of massive stars need to be revised to have a more

accurate understanding of massive star evolution.

In Chapter IV, I investigated rotation-induced instabilities and how related theoretical and imple-

mentation uncertainties affect the transport of angular momentum. I limited this study to hydrody-

namical instabilities and two magnetic dynamos, the Tayler-Spruit dynamo (Spruit, 2002) and the

Fuller-modified Tayler-Spruit dynamo (Fuller et al., 2019). The three transport processes predict dis-
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tinct ranges of the core rotation rate at core collapse. However, the timing and strength of angular

momentum transport during the evolution of the star depends strongly on the transport mechanism

and its uncertainty. Generally, the main transport of angular momentum occurs before core helium

ignition and no angular momentum is transported after core oxygen ignition.

This work presents the uncertainty of stellar evolution models and their predictions, generated by

the uncertainties of convective boundary mixing and rotation-induced mixing. It is clear that the

evolution of massive stars is strongly influenced by the uncertain implementation of these physical

processes, be it either the simplification of 3D processes into 1D, parametrisation of physical pro-

cesses, numerical issues such as smoothing, missing processes or knowledge. It shows that more work

is needed to provide reliable predictions for stellar evolution.

1 Future Work

In an ideal world of modelling, it would be possible to simulate the structure of a star in 3D over

the whole stellar lifetime, including collapse and the ensuing explosion phase. Moreover, it would be

possible to run these models in a reasonable time, allowing to study a large parameter space of initial

mass, metallicity, rotation rate and distribution of binary companions. This would allow us to explain

in more detail the status of the Universe observed today. In reality, numerical models of stars are

far from ideal. The study of stellar evolution is limited to 1D due to the computational cost and the

short timesteps needed in 3D simulations, for example to resolve turbulence, imposing simplifications

and uncertainties.

In the following, I discuss a few points to improve upon, based on the content of the earlier Chapters.

1.1 Convective Boundary Mixing

• The need to include convective boundary mixing in stellar evolution calculation is generally ac-

cepted, but questions like “how” and “how much” are still under debate. The exponentially decay-

ing convective boundary mixing scheme, for example, is based on multi-D simulations and its free

parameter is constrained for certain initial masses and stages. This prescription allows to reproduce

the radially decaying velocity profile and the sigmoid-shape of the chemical composition at the

convective boundary seen in multi-D simulations. However, mixing is only applied to matter but

not entropy. A next step is therefore to include a treatment for energy transport in the convective

boundary region which allows a better prediction of this region (see Michielsen et al., 2019) and

provide a physical reason for the amount of mixing rather than a free parameter. Scott et al. (2021)

implemented an entrainment law which mixes an amount of matter at the convective boundary

depending on its structure. Therefore, it would be interesting to study the evolution of massive
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stars up to core collapse with the entrainment law. However, due to the cumulative nature of the

entrainment law it is difficult to implement for the advanced burning stages. Alternatively, the

instantaneous entrainment could be used (Staritsin, 2013).

• Meakin & Arnett (2007) show that the boundary location in 3D hydrodynamical simulations agrees

on average more with the Schwarzschild solution. This, however, is an initial value problem. The

convective boundary of the growing instability starts at the location determined by the Ledoux

criterion. It is the intermittency and fluctuations at the convective boundary which erase the

chemical stratification near the boundary and move the location to the Schwarzschild solution on

a finite timescale. While this is less of an issue for convective zones with a long lifetime, such as

the convective hydrogen core, it is crucial for short-living convective layers such as the intermediate

convective zone. The behaviour of the intermediate convective zone depends strongly on the choice

of the boundary location, which then influences the evolutionary path of the star - see Chapter

III. Therefore, the timescale on which the boundary changes from the Ledoux to the Schwarzschild

criterion, on average, should be investigated with 3D hydrodynamic simulations. Additionally, it is

advisable to study the behaviour of the intermediate convective zone in 3D as it crucially impacts

the later evolution of the star. Alternatively, it would also be interesting to explore this evolutionary

phase using the entrainment law implementation - see previous point.

• There are two types of blue supergiants, the ones that evolved directly from the main sequence

and those that were red supergiants before. The latter generates radial pulsations, which allow us

to distinguish between the two types (e.g. Saio et al., 2013). Since the evolution during the post-

main-sequence phase is crucially dependent on the intermediate convective zone, such observations

would constrain its mixing. However, the analysis would not be straightforward as the evolution

also depends on other processes such as rotation and mass-loss rates.

1.2 Rotation-Induced Mixing and Magnetic Fields

• The implementation of the Fuller-modified Tayler-Spruit dynamo still has some issues that need to

be sorted out and its impact needs to be further investigated.

- At the end of Chapter IV, I presented preliminary models of the Fuller-modified Tayler-Spruit dy-

namo using the qmin condition. This needs a more in depth examination. Also, its implementation

can be improved. For example, there could be a smooth transition between the on-off behaviour,

introduced by the if-condition in the implementation, of the dynamo action.

- The smoothing process in the current implementation leads to an artificial reduction of the mag-

netic viscosity. In this Thesis I simply switched off the smoothing routine to test the impact of

the magnetic dynamo without such a reduction. In the future, a better smoothing routine should

be implemented and tested.
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- In Section B.2.1 I discussed that an analytical solution for the equation determining N2
eff requires

a difficult root-finding problem. The short-term solution used in the implementation suggested

by Fuller et al. (2019) (a) applies the Tayler-instability timescale of a non-rotating star (which

can be justified only for slowly rotating stars) and (b) initially calculates ωA with N2 instead of

N2
eff . This simplification should be improved or at least it should be verified that is does not lead

to a drastically wrong N2
eff in all the scenarios it is used.

- The dynamo action and the viscosity it generates have to be revised in the close proximity of

convective regions. In these layers, the magnetic torque can approach infinity because N2
eff ap-

proaches zero. In order to prevent this scenario, Fuller et al. (2019) computes the viscosity as

νTSF = qΩr2 if N2
eff < 2q2Ω2. The limit is arbitrary and could be chosen differently (Fuller, priv.

comm.). Also, the formulation of the viscosity does not represent the physics occurring in the

convective boundary mixing layer and its neighbouring region. This problem is similar to the

issue with the Tayler-Spruit dynamo, where the convective boundary mixing region is ignored -

see Section IV.3.6.

• Angular momentum transport by the Eddington-Sweet circulation is implemented as a diffusive

process in MESA. An analogous implementation of this large-scale fluid motion, the meridional cir-

culation, is described as an advective-diffusive process. Strictly speaking, the treatment of the

circulation as an advective-diffusive process is physically correct, because it is the fluid motions,

which arise from a thermal imbalance, that transport angular momentum. Therefore, angular mo-

mentum is transported inwards and outwards, depending on the location in the star (see Fig.(I.5b)).

This is contrary to the implementation of the Eddington-Sweet circulation in MESA, where angular

momentum is only diffused to a lower concentration. Consequently, even if the Eddington-Sweet cir-

culation predicts a similar magnitude of angular momentum transport as the meridional circulation,

it might transport it into the wrong direction, hence, it fails at reproducing the local rotation profile.

Therefore, a stellar evolution code would use ideally the advective-diffusive scheme. However, in

Chapter IV, I have shown that the angular momentum transport in magnetic models is dominated

by the dynamo action. It would be useful to investigate if the diffusive versus advective-diffusive

treatment matters in the presence of a magnetic dynamo or if the difference is overshadowed by the

much more efficient angular momentum transport by magnetic fields. Furthermore, the interaction

between magnetic fields and the slow large-scale mixing is an open question. It may be that the

circulation is suppressed in presence of strong magnetic fields, hence, this would avoid the issue of

diffusive versus advective-diffusive.

• The implementation of rotation-induced mixing and angular momentum transport in MESA (and

other stellar evolution codes) is based on “order-of-magnitude” estimates (Endal & Sofia, 1978;

Heger et al., 2000), multiplied with free parameters in order to scale their impact (Pinsonneault
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et al., 1989). This approach leads to many uncertainties and it is time to include more accu-

rate prescriptions, that include physics rather than “order-of-magnitude” estimates multiplied with

scaling parameters. For example, I (in collaboration with Z. Kesztheli, G. Meynet, R. Hirschi,

P. Eggenberger) implemented the meridional circulation for chemical mixing, following the GENEC

implementation, into the MESA code. However, the complication is that this is only applicable for

chemical mixing and not angular momentum transport due to the advective-diffusive prescription

in GENEC. This is still work in progress.

• In Chapter IV, I showed that the rotation-induced transport of angular momentum and mixing of

chemical elements depends strongly on the treatment of the chemical stratification. The Eddington-

Sweet circulation and the Goldreich-Schubert-Fricke instability consider the chemical stratification

as a “braking velocity”, which overestimates its inhibiting effect. Including the gradient of chemical

composition in the derivation of the Eddington-Sweet circulation (see e.g. Maeder & Zahn, 1998,

their Section 4; beware this is for the advective-diffusive case) would reduce this uncertainty. Also,

the impact of the chemical stratification is scaled with the fµ parameter, but it is not done con-

sistently. The parameter is only multiplying ∇µ if this term is used directly in the formula for the

instability. However, if the chemical stratification is considered via the Brunt-Väisälä frequency,

N2 = gδ
HP

(
∇ad −∇rad + ϕ

δ∇µ
)
, it is not scaled. In order to have a consistent prescription, it is

recommended to scale the impact of the chemical stratification for rotational instabilities the same

way. Thus, including fµ also in the computation of N2 where it is used to compute rotation-induced

instabilities.

• The Tayler-Spruit dynamo in MESA is implemented following the formula suggested by Spruit (2002).

This prescription computes the magnetic viscosity and diffusion coefficient for chemical mixing in

two extreme cases: (a) when the chemical stratification dominates over the thermal gradient and

(b) when there is no gradient in the chemical composition. In the intermediate case, the viscosity

and diffusion coefficient are patched together from the two cases. The solution is therefore an

estimate rather than an exact solution. It would be desirable to implement a general equation for

the magnetic dynamo as, e.g., suggested by Maeder & Meynet (2004, 2005).

• In stellar models, the total diffusion coefficient is often considered to be the sum of the diffusion

coefficients from the rotation-induced and non-rotating instabilities. However, in reality the different

instabilities cannot be taken into account separately as they interact with each other. Maeder et al.

(2013) propose a treatment to simultaneously consider various instabilities and their interaction.

This general description has not been implemented into a stellar evolution code yet, mainly because

a non-linear second-order equation needs to be solved. Nevertheless, in the future the interaction of

the different instabilities should be considered to get the physics correct, for example by following

Maeder et al. (2013).
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• In this work, I only investigated the “traditional” hydrodynamic instabilities and two magnetic

dynamos. There are other possibilities that could transport angular momentum and it would be

interesting to investigate them, possibly in combination with the two magnetic dynamos. For

example, the magnetorotational instability is more active during the late phase of stellar evolution

(Wheeler et al., 2015). Therefore it could provide the missing angular momentum transport in

the model with the Tayler-Spruit dynamo. Also other instabilities, such as internal gravity waves

(Talon & Charbonnel, 2005; Belyaev et al., 2013; Edelmann et al., 2019) and how they interact with

possible magnetic dynamos, should be considered in future work.

The analysis in Chapter IV is limited to the evolution of rotation and angular momentum distribution.

Rotation also changes the structure and evolution of stars, which in turn depends on the uncertainties

discussed in Chapter IV. An in depth study to assess the impact of these uncertainties on the stellar

structure, evolution and fate of massive stars will be done in the future. Some preliminary results

are presented in Section V.2. Also, the nucleosynthesis in the models presented in Chapter IV can

be examined by post-processing the models. I have saved the necessary output files from all the

rotating models to do so. This would allow to investigate the production and yields of rotating models

with improved physics such as the mixing prescription and magnetic dynamo. Vice versa, studying

observables such as the surface enrichment could help in constraining some of the uncertainties.

2 Preliminary Results

Rotation changes the evolutionary path of a star by mixing regions that would otherwise remain

unchanged. Rotational mixing can transport fuel into an active burning region, which changes the nu-

cleosynthesis, prolongs the burning timescale and increases the core size. Vice versa, the end products

of the thermonuclear reactions can be transported into the envelope of massive stars. Furthermore,

mixing of matter in the envelope of massive stars changes the opacity profile and surface composition.

Hence, rotating stars will follow a different evolutionary path, for example they are more likely to form

Wolf-Rayet stars, and therefore have a different observational signature. In Chapter IV, I discussed

three different angular momentum transport processes and how they affect the angular momentum

distribution and evolution of rotation. The distribution of angular momentum affects the presence

and strength of rotation-induced mixing processes, which in turn change the structure of the star and

the way it evolves. Here, I present some preliminary results, investigating the structure of rotating

massive stars and their predicted neutron star spin period. The full analysis will be published in the

future.
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2.1 The Structure of Rotating Massive Stars

The core mass is defined as the location where the abundance of the main element drops below a

certain value, in my case 0.01, and where the main fuel of the previous burning phase rises above a

threshold, here 0.1. The core mass depends strongly on the extent of the convective zone accompanying

the burning layer and additional mixing above it. In non-rotating models, the only mixing occurring is

thermally-driven, dominantly turbulent convection. Consequently, core masses are tightly correlated

to the upper location of convective regions. For example, the helium core mass at the end of the

main-sequence phase coincides with the location of the convective core before it recedes. Similarly, the

helium core mass after core helium depletion is located above the hydrogen burning shell. Rotation

mainly influences the structure through mixing of matter in the radiative zones of the star. This

provides the convective region with unburnt fuel, reflected by, e.g., the longer hydrogen burning

lifetimes in Table V.1, and transports away synthesised products, changing the composition in the

radiative envelope. This results in larger core masses, because the main product of the current

burning is transported further out. Indeed, all the rotating 15 and 25 M� models in this thesis

have a larger helium core mass at core helium depletion compared to the non-rotation model, as

shown in Table V.1. Likewise, the carbon-oxygen core mass is larger at core helium depletion in the

rotating models. However, in the default rotating models the difference for each respective core mass

is modest because the rotation-induced mixing above the convective zones is limited by the chemical

stratification, similarly to the angular momentum transport discussed in Section IV.3.

The small differences in Mα and MCO in Table V.1 between the rotating models result from small

differences in the diffusion profile in the radiative layers. For example, the helium core mass depends

on the interface of the radial helium and hydrogen abundance profiles above the hydrogen burning

layer. First, the profiles are used to determine the mass location of the helium core. Second, the

hydrogen abundance profile in the radiative zone determines the behaviour of the ensuing hydrogen

burning shell. A shallow profile forces the burning zone to move outwards faster, resulting in a more

massive helium core mass according to its definition. On the other hand, a high hydrogen abundance

in a layer keeps the hydrogen burning shell longer at that location, leading to a less massive helium

core.

In the non-rotating model, the outward receding helium profile and the outwards increasing hydrogen

profile are both very smooth, a result from the “new” convective mixing scheme - see Appendix B.2.2

- and well resolved physics. In the rotating model with hydrodynamic instabilities only, the same

resolution and convective mixing is used. There, however, the secular shear instability generates a

very jaggy mixing profile at the boundary between convective and radiative layers. As a result, both

the radial hydrogen and helium abundance profiles are not smooth anymore but are step-like. This
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Table V.1: Properties of the models at core helium depletion, when the central helium
mass fraction drops below 0.01%.

model rotation features Mtot Mα MCO τH τHe log10 TMS
eff,min

[M�] [M�] [M�] [Myrs] [Myrs] [K]

Z = 0.014

12 M�, fµ = 0.1, no B-field 9.38 4.59 2.88 20.18 1.28 4.27

Schwarzschild, fµ = 0.1, TS 9.44 4.54 2.87 20.18 1.24 4.27

fCBM = 0.05 fµ = 0.0001, TS 7.02 6.34 4.38 25.20 0.93 4.33
Ω

Ωcrit
= 0.4

15 M�, non-rotating 11.38 5.77 3.65 14.04 0.91 4.29

Schwarzschild, fµ = 0.1, no B-field 10.68 5.91 3.69 14.30 0.94 4.30

fCBM = 0.05 fµ = 0.1, TS 10.78 5.86 3.74 14.31 0.91 4.29
Ω

Ωcrit
= 0.4 fµ = 0.1, TS (include CBM) 8.96 6.43 4.23 14.74 0.86 4.27

fµ = 0.1, TSF 10.43 5.91 3.77 14.27 0.91 4.29

fµ = 0.1, TSF (no-smooth) 10.24 5.95 3.81 14.27 0.91 4.29

fµ = 0.1, TSF (qmin) 10.32 5.93 3.79 14.27 0.91 4.29

fµ = 0.01, TS 9.33 6.30 4.10 14.69 0.88 4.29

fµ = 0.001, TS 8.77 8.15 5.71 17.51 0.74 4.37

fµ = 0.0001, TS 8.68 8.21 5.79 17.63 0.72 4.36

fµ = 0.0001, TS (include CBM) 8.67 8.23 5.80 17.65 0.71 4.36

fµ = 0.0, TS 8.65 8.22 5.80 17.64 0.72 4.36

15 M�, fµ = 0.1, no B-field 11.30 5.82 3.89 14.05 0.91 4.30

Schwarzschild, fµ = 0.1, TS 10.81 5.96 4.07 14.05 0.90 4.30

fCBM = 0.05 fµ = 0.0001, TS 9.81 6.26 4.36 14.31 0.88 4.29
Ω

Ωcrit
= 0.1

25 M�, non-rotating 11.84 10.69 7.99 7.54 0.57 4.26

Schwarzschild, fµ = 0.1, no B-field 12.16 11.21 8.32 7.67 0.58 4.26

fCBM = 0.05 fµ = 0.1, TS 11.90 11.00 8.29 7.67 0.56 4.25
Ω

Ωcrit
= 0.4 fµ = 0.1, TS (include CBM) · · · 11.51 8.55 7.89 0.52 4.19

fµ = 0.1, TSF 11.89 10.96 8.24 7.62 0.57 4.25

fµ = 1.0, no B-field 11.84 10.73 7.92 7.64 0.59 4.29

fµ = 1.0, TS 11.76 10.84 8.12 7.65 0.57 4.28

fµ = 1.0, TSF 11.86 10.80 8.10 7.64 0.57 4.28

fµ = 0.05, no B-field 12.23 11.27 8.37 7.72 0.57 4.24

fµ = 0.05, TS 12.13 11.33 8.62 7.72 0.55 4.24

fµ = 0.0001, no B-field · · · 10.98 8.16 8.85 0.50 4.34

fµ = 0.0001, TS · · · 11.79 8.80 8.77 0.50 4.33

fµ = 0.0001, TS (include CBM) · · · 11.65 8.74 8.78 0.50 4.33

30 M�, non-rotating · · · 12.85 9.81 6.32 0.48 4.19

Schwarzschild, fµ = 0.1, no B-field · · · 13.24 9.97 6.44 0.51 4.20

fCBM = 0.05 fµ = 0.1, TS · · · 12.80 9.79 6.44 0.49 4.19
Ω

Ωcrit
= 0.4 fµ = 0.1, TSF 14.12 13.59 10.67 6.40 0.49 4.20

60 M�, non-rotating · · · 18.92 15.35 3.88 0.36 4.22

Schwarzschild, fµ = 0.1, no B-field · · · 18.82 15.22 3.89 0.36 4.54

fCBM = 0.05 fµ = 0.1, TS · · · 23.80 19.50 3.88 0.34 4.45
Ω

Ωcrit
= 0.4 fµ = 0.1, TSF · · · 23.32 19.39 3.86 0.34 4.50

Z = 0.002

60 M�, non-rotating · · · 31.66 27.03 3.95 0.33 3.93

Schwarzschild, fµ = 0.1, no B-field · · · 29.52 24.84 4.04 0.34 3.67

fCBM = 0.05 fµ = 0.1, TS · · · 31.31 26.61 4.03 0.33 4.02
Ω

Ωcrit
= 0.4 fµ = 0.1, TSF · · · 32.61 27.90 4.01 0.33 3.89

Z = 0.0004

60 M�, non-rotating 44.30 30.01 25.50 3.93 0.32 4.37

Schwarzschild, fµ = 0.1, no B-field 44.36 29.52 24.63 4.03 0.34 4.46

fCBM = 0.05 fµ = 0.1, TS 33.37 30.92 26.81 4.02 0.33 3.87
Ω

Ωcrit
= 0.4 fµ = 0.1, TSF 48.20 27.66 23.31 4.02 0.33 4.28

Notes: Shown are the total star mass, Mtot, the helium core mass, Mα, the carbon-oxygen core
mass, MCO and the minimum effective temperature reached during the main-sequence evolution,
log10 TMS

eff,min. The core mass is defined as the location where the abundance of the main fuel in

the burning process, which creates the main end product of the burning phase, is below 0.1 and the
abundance of the end product is above 0.01. The main-sequence phase is defined to start when 0.3%
of hydrogen has burnt and ends when the central hydrogen mass fraction drops below 10−5. There
is no entry for Mtot if the star has lost its entire hydrogen envelope, either through stellar winds or
rotation-induced mixing.
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scenario is even more pronounced in the model with the Tayler-Spruit dynamo. There, the dynamo

action provides an additional chemical mixing with a strongly jaggy profile. Consequently, the step-

like features in the radial hydrogen and helium abundance profiles are more prominent. In contrast,

the model with the Fuller-modified Tayler-Spruit dynamo does not include chemical mixing by the

magnetic dynamo nor is the secular shear instability active at the interface between convective and

radiative regions - see Section IV.3. Therefore, this model predicts smooth radial abundance profiles of

hydrogen and helium similar to the non-rotating model. These differences create the small differences

in the core masses in Table V.1. It should be noted that the step-like abundance profiles can lead to

a slightly arbitrary variation of the predicted core mass. This is an issue that needs to be considered

with all rotating stellar models throughout the literature.

The impact of rotation-induced mixing on the core masses can also be seen in the models with a

reduced inhibiting effect of the chemical stratification in Table V.1. If fµ is lowered, the core mass

increases. This is mainly because a weaker limiting restriction by the chemical stratification allows

for more mixing in the radiative layer above the convective zone - see Section IV.3.5. Additionally,

in models with fµ ≤ 0.001 the convective hydrogen core initially grows during the main-sequence

evolution before it recedes. Recalling from Section II.1.1, a convective zone is defined as the region

where ∇rad > ∇ad when the Schwarzschild criterion is used. The adiabatic temperature gradient is

roughly constant in the interior of the star and very similar in the models with the same initial mass.

On the other hand, ∇rad ∝ κ`radP . In Section III.3 I discussed the reason why the convective core in

non-rotating stars recedes during the main-sequence evolution. The rotating models with the default

values of fµ experience no rotation-induced mixing in the chemically stratified layer above the receding

convective hydrogen core. Therefore, ∇rad behaves roughly similar in this region. However, for values

of fµ ≤ 0.001, the stratification is overcome and the layer is fully mixed (see Fig(IV.12b)). Therefore,

(i) the opacity is lower because more helium is mixed into this region and (ii) the local luminosity is

higher due to the higher energy generation from the more abundant fuel. Consequently, the condition

∇rad < ∇ad is met further out and the convective core actually grows during the beginning of the

main-sequence evolution before it recedes. This leads to much larger core masses as can be seen in

Table V.1. The model with fµ = 0.01 is in the transition, where rotational mixing partly overcomes

the stratification but not enough to generate a growing convective hydrogen core.

At solar metallicity, models with initial masses M & 25 M� experience strong stellar winds that

remove the entire hydrogen envelope and part of the helium core mass before helium depletion in the

centre. The changes in the helium core mass further influence the structure of the subsequent burning

stages. Consequently, the structure of these stars is not only influenced by rotation-induced mixing

and rotation-enhanced mass-loss rates but also by how the surface evolution of the star proceeds. For

example, a chemically homogeneous evolution will form more massive cores and a star that moves
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below log Teff ∼ 4 will experience the stronger red supergiant mass-loss rates, hence, it is more likely

to end up with smaller core masses.

2.2 Rotation Rate of Compact Objects

One of the arguments in favour of a missing angular momentum transport process is the fact that

the model predictions of massive rotating stars are not able to match the observed spin period of

young neutron stars (e.g. Heger et al., 2000, 2005; Petrovic et al., 2005; Hirschi et al., 2005b; Wheeler

et al., 2015). However, Ma & Fuller (2019) suggest that they match the observed slow rotation rates

of neutron stars when including the Fuller-modified Tayler-Spruit dynamo. Fig.(V.1) presents the

estimated neutron star period as a function of the gravitation mass1, Mgrav,NS, for the 15 M� models

at solar metallicity with different angular momentum transport assumptions and for a few 12 and

60 M� models presented in Table V.1 - see the legend for details. The spin period and the gravi-

tational mass are computed following Heger et al. (2005), their Section 3.4. Additionally, Fig.(V.1)

shows observed spin periods of young neutron stars. A few neutron stars have fast natal spin periods

of 11 ms (Marshall et al., 1998) or 20 ms (Muslimov & Page, 1996; Kaspi & Helfand, 2002) but the

majority rotate slower with a spin period of 50 − 100 ms (Muslimov & Page, 1996; Faucher-Giguère

& Kaspi, 2006; Popov et al., 2010; Popov & Turolla, 2012). There are also a few very slowly rotating

neutron stars with a natal spin of up to 400 ms (Gotthelf et al., 2013). The comparison between the

model predictions and observations reveals several points. First, the three different angular momen-

tum transport mechanisms predict three distinct ranges for the spin period of neutron stars. Also,

the period is mostly independent of the various related uncertainties in angular momentum transport

investigated in Chapter IV. However, Mgrav,NS does show a dependence on the uncertainty, mainly

due to the amount of chemical mixing occuring during the stellar evolution. Second, the non-magnetic

models fail to predict the observed rotation rate of neutron stars because of missing angular momen-

tum transport. Considering the critical rotation rate for stars, Ωcrit =
(
GM
R2

)1/2
, a simple estimate for

the minimum rotation period of a stable configuration can be obtained, P > 2π
Ωcrit

= 2π
(
GM
R2

)−1/2
.

Thus, for a typical neutron star mass of 1.4 M� with a radius of 10;km the minimum stable rotation

period is P > 0.46 milliseconds. Therefore, the rotation rate of he non-magnetic models predict un-

stable neutron star configurations, see for example discussion in Heger et al. (2000). Third, the two

magnetic dynamos predict spin periods that are in the range of observations. However, the estimate

1A proto-neutron star with a baryonic mass Mbary loses binding energy due to neutrino emission. The gravitational
mass is the baryonic mass corrected for neutrino losses, Mgrav = Mbary − f ×Mgrav. The baryonic mass is the mass
below the mass cut in a supernova explosion, which typically occurs at the location where the entropy drops below a
value of 4 × kB (Janka, 2004), where kB is the Boltzmann constant. The factor to correct for the neutrino losses is

estimated as f = 0.6×β
1− 1

2
β

with β =
GMgrav

RNSc
2 (Lattimer & Prakash, 2001). Here, G is the gravitational constant, c the

speed of light and RNS the radius of the neutron star assuming a Newtonian polytrope, RNS = 15.12 ×
(
Mbary

M�

)− 1
3

(Shapiro & Teukolsky, 1983).
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Figure V.1: Observed and estimated neutron star spin period as a function of the gravitational mass
for (a) the 15 M� models presented in Chapter IV and (b) the 12 M� and 60 M� models presented in
Table V.1 and the 15 M� models shown in (a) but with a slower initial rotation rate. The coloured
markers present estimates based on the models and the black crosses show observed neutron star
spins by Muslimov & Page (1996) and Faucher-Giguère & Kaspi (2006). The grey rectangle depicts
an observed range of neutron star spins (Marshall et al., 1998; Kaspi & Helfand, 2002; Faucher-Giguère
& Kaspi, 2006; Popov et al., 2010; Popov & Turolla, 2012; Gotthelf et al., 2013) with an assumed
neutron star mass of 1.4 M�.
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of the models with the Tayler-Spruit dynamo only covers the very fast rotating neutron stars, whereas

the prediction by the models with the Fuller-modified Tayler-Spruit dynamo agrees with the slower

rotating neutron stars in the sample. None of the models manages to predict the majority of natal

neutron star spin periods. Therefore, while the Tayler-Spruit dynamo does not transport enough

angular momentum, the Fuller-modified version slows down the rotation cores too much. It should

be noted, that Fig.(V.1) only shows three different initial masses and two different initial rotation

rates. A range of initial masses, initial rotation rates and metallicities may produce a broader range.

However, Subfig.(V.1b) indicates that changing the initial mass and initial rotation rate reproduces

the trend discussed for the 15 M� models. Thus, the question of the missing angular momentum

transport mechanism is still open.
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Appendix B
Software Tools

In this Appendix, the stellar evolution code used for this thesis is introduced and the numer-

ical methods of the key physics are outlined. In the last Section, two code extensions, which

are used in later Chapters, are explained and the lists with the input physics are presented.

Stellar evolution is a theory that includes a broad range of physics, some of which was introduced in

Chapter I. Therefore, in order to explain the life of a star, a variety of physical processes have to be

included into a mathematical model. In the past, the model was solved by hand. Nowadays it can

easily be solved with computers, allowing to evolve a star through its entire life in a relatively short

timescale, depending on the scenario. A software tool that solves the mathematical model is called a

stellar evolution code. This Chapter introduces the methodology to perform detailed numerical sim-

ulations of stars and describes the methods and tools that were used to produce the results presented

later in this thesis.

1 Stellar Evolution Code - MESA

The stellar evolution code Modules for Experiments in Stellar Astrophysics (or MESA in short - Paxton

et al., 2011, 2013, 2015, 2018, 2019) is a software instrument. MESA is a suite of open source libraries

for a wide range of applications in computational stellar astrophysics, made of independent modules

for physics and numerical algorithms. It is constructed in a way that each of the individual modules is

usable on its own, encouraging new computational experiments in astrophysics (Paxton et al., 2011).

The code includes comprehensive microphysics and is being maintained and developed since its first
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release in 2007 by a dedicated code development team1. MESA is publicly available2.

MESA/star solves the equations of stellar structure and the composition equations, presented in Section

B.1.2, simultaneously in a fully coupled manner (structure, burning and mixing, Paxton et al., 2011,

2013). This is advantageous for the accuracy of the converged solution at each time step because there

is feedback between these three main sets of equations. MESA/star uses an adaptive spatial resolution

refinement at each timestep - see Section B.1.7.2 - sophisticated timestep control - see Section B.1.7.1

- and supports “thread-safe” shared memory parallelism based on the OpenMP3. Also, it is possible

to extend MESA by making use of the so-called hooks, which are provided in the source code - see

Section B.2. There, extra physics can be included into the computations and easily shared with the

community, instead of altering the source code. Users are encouraged to share all information needed

for others to recreate their results, which are made available on the MESA market and zenodo.

The MESA code is applicable to a wide range of stellar evolution scenarios4, covering the evolution of

low-mass stars from the pre-main-sequence to a cooling white dwarf, intermediate-mass stars through

the thermal pulses during the asymptotic giant branch phase, the complete evolution of massive stars

from the pre-main-sequence to the onset of core-collapse and the evolution of giant planets. MESA

also allows to compute more specific scenarios, such as pulsation in stars, binary evolution and the

explosive phase of massive stars. More detailed information can be found in the instrument papers

(Paxton et al., 2011, 2013, 2015, 2018, 2019) or on http://mesa.sourceforge.net.

The stellar evolution models presented in this thesis have been calculated with MESA revision 10398,

which was released in March 2018. There exist newer releases but I kept using the same revision

throughout my PhD work. This avoids the testing needed when updating to a later version and allows

direct comparison between models in the various Chapters.

In this Chapter, the numerical method of the physics used in this work and some other key features

are presented. First, the equations of stellar structure are introduced which are the core of the stellar

evolution code. In the following Subsections, the implementation of the thermally-driven and rotation-

induced mixing is described, in particular the parametrisations and input parameters are highlighted.

Also, the reason for inclusion or exclusion of certain processes is debated. At the end, some of the

code alterations are discussed.

1.1 Numerical Method

MESA includes several modules that provide numerical methods, each for a different aspect of physics

or numerics. MESA/star is a full-featured stellar structure and evolution library which utilises these

1mesa.sourceforge.net/index.html
2How to obtain the latest MESA revision.
3https://www.openmp.org
4The broad applicability of MESA is visible in the list of published results, which can be found on the MESA market.
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modules to provide a coupled solution of the structure and composition equations with automatic mesh

and timestep refinement and analytic Jacobian matrices. At the start of a simulation, MESA/star reads

all the input files and initialises the physics modules, which accesses the opacity and equation of state

tables - see Section B.1.2.0.1 - and creates the nuclear reaction network (see Eq.(B.9)). Afterwards,

the specified starting model is prepared. MESA offers two ways to begin a new evolutionary sequence

(see Paxton et al. (2011)). The first option is to load a model, which is called “photo” in the MESA

community5, created from a previous run. Additionally, each MESA distribution includes a variety of

saved models. It is also possible to relax a model of a certain mass to a new mass with a specified mass

gain or loss. The second option is to construct a pre-main-sequence model, based on a user-chosen

mass, uniform composition, luminosity and central temperature - the latter has to be low enough so

that thermonuclear burning is insignificant, i.e. the default is Tc = 9× 105 K. Based on this, an initial

guess for ρc is made by assuming a polytrope with n = 1.5 - see Section I.2.1. This is an appropriate

choice for a fully convective star, however, in the subsequent search for a converged pre-main-sequence

model MESA uses the mixing-length module, the equation of state module and a Newton solver to find

a ρc satisfying the desired mass. Once the starting model is loaded, the computation enters the

evolution loop, consisting of four components for each timestep:

(i) The new timestep is prepared by remeshing the model where necessary - see Section B.1.7.2.

Also, a backup of the current state is created to allow for another attempt if the timestepping

fails.

(ii) The model is adjusted to possible mass loss or mass gain. The variables for the model are

evaluated, reflecting the changes made by remeshing and changing mass, including the Brunt-

Väisälä frequency and the diffusion coefficient for mixing of the composition. Rotation is set, if

it is enabled in the model.

(iii) The model is solved for its new structure and composition through repeated Newton iterations.

MESA/star uses the previous modified model - see steps above - as the initial trial solution and

converges to a final solution by iterating through the Newton-Raphson solver. A solution is

accepted when the corrections and residuals meet a specified set of convergence criteria. Non-

convergence causes the loop to return to the beginning, indicating a failure which leads to a

retry. Convergence, on the other hand, is followed by a call for a routine that adjust the total

angular momentum via a diffusion equation.

(iv) Finally, output files for the new model are generated.

After succeeding this evolution loop, the model has evolved one timestep and re-enters the loop until

a stopping condition is met or an error in one of the four components occurs - for more details see

Paxton et al. (2011) and Paxton et al. (2013), Appendix B.

5a binary file containing the complete state of the current model.
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MESA/star discretises the star into cells. The number of cells depends on the complexity of nuclear

burning, gradient of state variables, composition and various user-defined tolerances. For each cell,

MESA/star simultaneously solves the full set of coupled equations that describe the structure of the

star using a Newton method, a N -dimensional root find, to solve a system of N non-linear differential-

algebraic equations. N is the number of basic variables in each zone times the number of zones in

the current model. The equations are written in a relation F(basic variables) = 0, with F being the

vector-valued function of the residuals. While the solution never reaches F = 0, a solution is accepted

depending on the magnitude of F and the relative size of the adjustments to the basic variables (see

Paxton et al., 2011, for more details).

Each cell of the star contains variables that are defined at the outer boundary of the cell (extensive

variables) or that are mass-averaged over the cell (intensive variables). The latter are variables that

describe matter, such as thermodynamic or composition variables. This separation of the definition is

a consequence of finite volume, flux conservation formulation of the equations and improves stability

and efficiency of the simulation (Sugimoto et al., 1981). All variables are evaluated at the same time

t+ δt.

In the following Subsections, the key structure and evolution equations are presented. Many of these

equations are reformulated in MESA to enhance numerical stability of the linear algebra and minimise

round-off errors.

1.2 Equations of Stellar Structure

Models of the stellar structure describe the interior profile of a star and allow to make predictions

on how a star evolves. In order to describe the structure of a star, one needs to consider the mass

distribution, motions due to forces, energy generation and loss, the transport of energy and the change

of the nuclear abundance. Quantifying these physical procedures gives a full set of five equations -

the equations of stellar structure (see Eqs.(B.1)-(B.5)). A solution of those fully coupled, non-linear

partial differential equations for a time t and given boundary conditions is called a stellar model.

In a non-rotating, single star without strong magnetic fields the dominant forces are pressure and

gravity, which are isotropic. Therefore, the stellar models are often assumed to be spherically sym-

metric, meaning that the quantities of a star are constant on spheres and depend only on the radial

direction6. This assumption immensely simplifies the equations of stellar structure, because only one

dimension has to be considered. The radius r could be the independent variable, however, often it

is more convenient to use the mass m as the independent variable because, contrarily to the radius,

the stellar mass remains almost constant, except for particular cases of heavy mass-loss. Therefore,

6The 3D character of physical processes, such as turbulent convection and rotation, was already outlined in Chapters
I and II. Obviously, these processes are not spherically symmetric and their 1D approximative descriptions have to be
thought of as a prediction of the average behaviour of the 3D processes.
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MESA (and many other stellar evolution codes) uses the Lagrangian mass coordinates instead of the

Eulerian coordinates.

The derivation of the stellar structure equations can be found in most stellar astrophysics textbooks

(e.g. Kippenhahn & Weigert, 1994; Maeder, 2009). For completeness, the full set of the stellar struc-

ture equations is described below, following their implementation in MESA/star (Paxton et al., 2011):

∂m

∂r
= 4πr2ρ, (B.1)

∂P

∂m
=

1

4πr2

[
−Gm
r2
− ∂2r

∂t2

]
, (B.2)

∂l

∂m
= εnuc − εν,thermal + εg, (B.3)

∂T

∂m
= − GmT

4πr4P
∇, (B.4)

(
dYi
dt

)

m

=
∂

∂m

[(
4πr2ρ

)2
D
∂Yi
∂m

]
+

(
∂Yi
∂t

)

nuc

(B.5)

These are the equation of mass conservation, the equation of motion, the energy equation, the energy

transport equation and the equations for the nuclear species, respectively. Eqs.(B.1) and (B.2) describe

the mechanical part, which is coupled to the thermo-energetic part in Eqs.(B.3) and (B.4) only through

the density ρ. Eq.(B.5) can be regarded as the chemical part. The variables have their usual physical

meaning, either explained in the earlier Chapters or below.

The mass conservation equation, Eq.(B.1), relates the mass coordinate, the radius and the density

of a given point in the star. It can also be used to translate the equations of stellar structure from

Lagrangian to Eulerian coordinates.

The equation of motion, Eq.(B.2), also known as conservation of momentum, describes the opposing

forces of gravity and the internal pressure gradient on a mass element. In the case of an imbalance,

the mass element will receive an acceleration ∂2r
∂t2 . However, the evolutionary timescale of the stellar

interior is generally much longer than the sound crossing time and the star can be assumed to be in

hydrostatic equilibrium. In certain cases, such as the evolution towards collapse, this assumption does

not hold anymore and the hydrodynamic term needs to be included. In MESA it is possible to include

the dynamical term via the boolean v flag. This enables the use of implicit hydrodynamics, which

also allows to simulate shocks (see Paxton et al., 2015, 2018, for more details).

The energy equation, Eq.(B.3), considers the conservation of energy by describing the luminosity of

the stellar material enclosed within a mass m. Unless there is an energy source or sink in a shell

there is no change in luminosity, i.e. ∂l
∂m = 0. The energy equation in MESA considers three terms:

thermonuclear energy, gravitational energy and energy loss by thermal neutrinos. The thermonuclear
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energy generation rate, εnuc, is calculated as (Arnett & Thielemann, 1985)

εnuc =
1

ρ

∑

i,j

ri,jQi,j (B.6)

where ri,j is the reaction rate which turns nuclei i into nuclei j and Qi,j is the Q-value of the ij-reaction

process. The gravitational energy generation rate, εg, is the specific amount of work done on or by

the shell during expansion or contraction. It is theoretically calculated as (Kippenhahn & Weigert,

1994, p.23)

εg ≡ −T
ds

dt
= −cP

dT

dt
+
δ

ρ

dP

dt
, (B.7)

where s is the specific entropy. There are several options in MESA for how εg is calculated. These alter-

natives are equivalent from an “ideal” physics viewpoint, but they can be very different numerically,

depending on the situation7. The default form is

εg = −TcP
[
(1−∇adχT )

d lnT

dt
−∇adχρ

d ln ρ

dt

]
, (B.8)

with χT ≡ ∂ lnP
∂ lnT

∣∣
ρ

and χρ ≡ ∂ lnP
∂ ln ρ

∣∣∣
T

. εν,thermal is the specific thermal neutrino-loss rate

The transport equation, Eq.(B.4), describes the temperature stratification as a function of mass

coordinate. ∇ ≡ d lnT/d lnP is the actual temperature gradient in terms of the pressure, taken

from the corresponding theory - see Section II.1, in particular Eq.(II.15). An important note is that

in Eq. (B.4), the right hand side is only valid in hydrostatic equilibrium. This is acceptable, since

the local adjustment time in case of radiative transport is short and the mixing-length theory for

convection assumes a hydrostatic equilibrium anyway - see Section II.1.2. MESA/star includes the

option to switch off convective motions when the v flag is switched on.

Eq.(B.5) describes the changes in abundance of the nuclear species i. The first term on the right

hand side describes the change due to transport, for example by convection or rotation. The diffusion

coefficient, D, sums up all transport processes of the nuclei which are treated as diffusive processes

- see Sections B.1.3 and B.1.4. The second term describes the change in the abundance of nuclear

species i due to nuclear burning processes (e.g. Arnett & Thielemann, 1985),

(
∂Yi
∂t

)

nuc

=
∑

j

ci(j)λjYj +
∑

j,k

ci(j, k)ρλj,kYjYk

+
∑

j,k,l

ci(j, k, l)ρ
2λj,k,lYjYkYl, (B.9)

with i = 1, . . . , N and N is the total number of nuclei in the model (see e.g. Fig.(III.1)). Eq.(B.9)

stands for the N equations that describe the temporal changes of the abundance of the N nuclear

7All the possible options are listed on the MESA documentation page.

214

http://mesa.sourceforge.net/docs/r10398/controls_defaults.html#eps_grav


B.1. STELLAR EVOLUTION CODE - MESA

species. The three terms on the right hand side stand, from left to right, for (1) β-decay, electron

captures and photodisintegrations, (2) two-body reactions (e.g., 12C(12C,γ)24Mg∗) and (3) three-body

reactions (e.g., the triple-α reaction), respectively. The rates of weak interactions and photodisinte-

gration, (1), is represented by λj and the two- (or three-)body reaction rates, (2) and (3), are given

by λj,k = NA〈σν〉j,k and λj,k,l = N2
A〈σν〉j,k,l, respectively. NA is Avogadro’s number and 〈σν〉 is

the energy-integrated cross-section of the reaction (e.g. Kippenhahn & Weigert, 1994; Maeder, 2009).

The coefficients ci can be calculated, from left to right, by ci(j) = ±Ni, ci(j, k) = ±Ni/(Nj !Nk!) and

ci(j, k, l) = ±Ni/(Nj !Nk!Nl!). Here Ni indicates how many particles of species i are involved in the

reaction. The ± sign indicates whether the particle of species i is produced or destroyed (e.g. Arnett

& Thielemann, 1985).

For a system with N different chemical species, Eq.(B.5) describes a set of N equations. Therefore,

Eqs.(B.1)-(B.5) form a set of 4+N equations. In (B.5) one of the equations can be replaced by the nor-

malisation of the mass fraction Xi,
∑
iXi =

∑
iAi ∗ Yi = 1, with the molar mass Ai. Eqs.(B.1)-(B.5)

contain functions which describe the properties of the stellar material, such as

(i) an equation of state,

(ii) equations to describe the thermodynamic properties cP , δ and ∇ad,

(iii) the opacity κ,

(iv) the actual temperature gradient ∇,

as well as the nuclear reaction rates, the energy production and energy loss via neutrinos. By including

these additional functions, which are described in the paragraphs further down, only 4+N variables,

r, P, T, l, Y1, · · · , YN are left. Therefore, the system of Eqs.(B.1)-(B.5) can be solved numerically, with

the independent variables m and t.

In a rotating star, spherical symmetry can no longer be assumed - see Sections I.4 and II.2. Therefore,

the equations of stellar structure shown in Eqs.(B.1) - (B.5) are no longer valid. However, it is possi-

ble to write the stellar structure equations in one dimension; Kippenhahn & Thomas (1970) devised

a method where they replaced the spherical stratification by a rotationally deformed stratification.

The problem stays one dimensional if the potential of the star is conservative and an effective gravity

can be derived from it. In this case, the pressure and density are constant on an equipotential - see

Section I.4.1. The temperature is also constant, if the chemical composition is homogeneous on an

equipotential. Therefore, the stellar structure equations can be written similarly to the non-rotating

case if they are written on equipotentials.

Zahn (1992) and Chaboyer & Zahn (1992) showed that turbulence induced by differential rotation is

anisotropic and acts much faster in the horizontal direction, i.e. perpendicular to gravity, than in the

vertical one, i.e. parallel to gravity, which is a result from the stabilising effect of stratification. Conse-
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quently, rotation is enforced to be constant on isobars. This shellular rotation law is not conservative

and the method by Kippenhahn & Weigert (1994) is not valid anymore. However, Meynet & Maeder

(1997) show that for the shellular rotation law surfaces with a constant total potential are isobars, but

they are not equipotentials, and that Ω is constant on them. Therefore, the one-dimensional stellar

structure equations can be written on isobars following Kippenhahn & Thomas (1970). The following

set of stellar structure equations for the rotating case is implemented in the MESA code (Paxton et al.,

2013):

∂mP

∂rP
= 4πr2

P ρ̄, (B.10)

∂P

∂mP
= −GmP

4πr4
P
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1
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∂t2

)
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, (B.11)

∂lP
∂mP

= εnuc − εν + εg, (B.12)
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with

fP =
4πr4

P

GmPSP

1

〈g−1〉 , fT =

(
4πr2

P

SP

)2
1

〈g〉〈g−1〉 (B.14)

where SP is the surface of an isobar and VP its volume. The radius coordinate is defined as the radius

of a sphere containing the same volume VP = (4/3)πr3
P . The index P refers to values on an isobar,

〈x〉 ≡ 1
SP

∮
SP
xdσ is the average of x on an isobaric surface and x̄ is the average of x in the volume

between two isobars. The two factors fP and fT account for the effects of rotation on the stellar

structure - see Section I.4.1; fP considers the change of the effective gravity due to centrifugal forces

and fT the change of the radiative flux with latitude. Furthermore, the consideration of isobars takes

into account the deformation from spherical symmetry. The rotation-induced mixing of chemicals

and transport of angular momentum is considered by including new terms into the equation for the

transport of chemical elements and angular momentum, respectively - see Sections B.1.3 and B.1.4.

The equation of energy, Eq. (B.3), does not change under the influence of rotation since the nuclear

physics is unchanged. In Eq. (B.13) the two cases of radiative or convective energy transport are

already summarised. ∇MLT is the temperature gradient from the corresponding mixing process in

convective regions.

B.1.2.0.1 Equation of State and Opacities

The equation of state relates the thermodynamic properties of the stellar material, usually formulated
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as P ≡ P (ρ, T, Yi). The equation of state for a gas can be written as

Pαgas =
ρ

µϕ
kT δ (B.15)

with the Boltzmann constant k = 1.38 · 10−13 cm2 g s−2 K−1 and the thermodynamic quantities

α ≡
(
∂ ln ρ

∂ lnP

)

µ,T

δ ≡ −
(
∂ ln ρ

∂ lnT

)

P,µ

, ϕ ≡
(
∂ ln ρ

∂ lnµ

)

P,T

. (B.16)

In an ideal, non-interacting gas, α = δ = ϕ = 1. In a star, however, matter also interacts with

radiation and can be found in extreme conditions such as degeneracy - see Section I.2.1.2. Therefore,

a more general equation of state is used in stellar evolution codes, which needs to account for radiation

and electron degeneracy pressure (e.g. Kippenhahn & Weigert, 1994; Maeder, 2009), i.e. P = Pgas +

Prad + Pdeg, with

Prad =
a

3
T 4 (B.17)

and

Pdeg =





h2

5me

[
3

8π

] 2
3 n

5
3
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hc
4

[
3

8π

] 1
3 n

4
3
e non-relativistic.

(B.18)

where ne is the electron number density and h the Planck constant. Furthermore, matter in the cooler

layers of a star becomes partly ionised, which needs to be accounted for in the equation of state as

well. Note that in massive stars, which are discussed in this thesis, the radiation pressure dominates.

A general equation of state needs to cover an extreme range of values, from the interstellar medium

with a density of about 10−23 g cm−3 to neutron stars with a density of 1015 g cm−3. While the

computation of a massive star does not cover such an extreme range, there are still many orders of

magnitude difference between the density in the core and the surface of the star. Therefore, deter-

mining the equation of state of the stellar material P (ρ, T, Yi) requires detailed calculations which can

impose a substantial computational overhead. However, since P (ρ, T, Yi) is a fixed property of the

material, its calculation can be pre-processed and provided to the stellar evolution calculation, which

alleviates the computational burden. The MESA module eos provides the pressure as a function of

density and temperature via tables. The coverage of the pre-computed tables is shown in Fig.(B.1a)

in the log ρ - log T plane. If the density or temperature is outside of those ranges, the solution is

computed during the runtime. The MESA equation of state tables are built from the OPAL tables

(Rogers & Nayfonov, 2002). In order to rectify the treatment of the partially ionised region at high

metallicity, i.e. Z > 0.04, new MacDonald equation of state tables have been computed (Paxton et al.,

2013). At lower temperatures and densities (see Fig.(B.1a)), the SCVH tables (Saumon et al., 1995)

are used, which account for partial dissociation and ionisation of the composition. There is a smooth
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(a) (b)

Figure B.1: (a) The log ρ - log T plane showing the regions covered by the MESA equation of state
tables. The details are explained in the text. The red dashed line bounds the region of pair creation.
(b) Regions in the log ρ - log T plane which are covered by the MESA opacity tables. The orange
lines surround the regions for which tabulated opacities are available and the black line extends to
the region where the radiative opacity is taken at log R = 1 - see text for details. The red dashed
line indicates where pair creation is dominant and the blue dotted line marks the region for which
electron conduction becomes the dominant source of opacity. Both figures were taken from Paxton
et al. (2011).

.

transition between the two tables, shown by the blue dotted lines in Fig.(B.1a), where the data is

blended using a sinusoidal function for each of the physical quantities. Outside of the region covered

by these tables, the HELM (Timmes & Swesty, 2000) and the PC (Potekhin & Chabrier, 2010) equa-

tion of states are employed. Again, the overlapping regions between the tables are blended together,

indicated by the dashed black and red dash-dotted lines in Fig.(B.1a). The location of the smoothing

region in the log ρ - log T plane can be modified by the user. The tables are interpolated in the

independent variables using a bicubic function and separate quadratic interpolations are performed in

the hydrogen and metal mass fraction (see Paxton et al., 2011, §4.2 for more details). MESA eos also

has the flexibility to accept user-defined equation of state tables.

The opacity of stellar matter controls the rate at which light passes through a layer in the star,

i.e. how fast the star loses its energy. Consequently, the luminosity of a star is determined by the

opacity rather than its nuclear reactions, hence, it is a crucial ingredient for modelling stars. Opac-

ity is a result of many processes in atomic physics that influence the transfer of radiation (see e.g.

Kippenhahn & Weigert, 1994, §17), mainly

(i) electron scattering, where the energy of an electromagnetic wave is partly scattered by an elec-

tron,

(ii) free-free transitions, where a free electron moving in the Coulomb field of an ion can absorb and

emit radiation,
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(iii) bound-free transitions, where an incident photon ionises an atom (for example negative hydrogen

absorption, where hydrogen can become a negative charged ion with a loosely-bound second

electron which can absorb radiation, giving rise to a bound-free transition),

(iv) bound-bound transitions or line absorption, where an electron in an atom absorbs the radiation,

reaches a higher energy level and re-emits it later in an arbitrary direction and

(v) electron conduction, where heat is transported by electrons via conduction, which is only impor-

tant in degenerate matter.

The total opacity at a given frequency ν is the sum of all the various processes at frequency ν, where

coefficients from points (ii)-(iv) are corrected by a term to account for stimulated emission8.

In massive stars, (i) and (iv) dominate. Fig.(B.2a) presents the opacity profiles of massive stars with

three different initial masses: 15, 25 and 60 M�. In the interior the opacity has a relatively low value

because at high temperatures the elements are fully ionised and electron scattering dominates. In

the outer layers, at lower temperatures, there are three distinct peaks. The peak at log T ≈ 5.3,

often called the iron opacity bump, is due to the many iron lines that originate in the M shell of

iron which allow the element to efficiently absorb radiation (Iglesias & Rogers, 1993; Badnell et al.,

2005). The much smaller bump around log T ≈ 6.3 originates from iron too, due to L shell bound-free

transitions, and minor contributions from nickel and CNO elements. The peak at log T ≈ 4.7, the

so-called helium opacity bump, results from the bound-free transition of ionised helium. The opacity

profiles show similar features for all initial masses but more massive stars have a lower opacity in

the envelope, which is because they have more compact envelopes and higher effective temperature,

hence, the atoms are more ionised and the effectiveness of the process (iv) decreases. This leads to the

disappearance of the helium opacity bump in the 60 M� model. Similarly to the equation of state,

the opacity κ(ρ, T, Yi) is provided in tabular form from the MESA module kap as a function of density

and temperature in order to avoid the computational burden. Fig.(B.1b) presents the coverage of the

tables. The opacity tables are divided into a high-temperature, log (T/K) & 4, and a low-temperature

domain, in order to facilitate the use of different sources of low-T opacity data. The exact range of

log T over which the tables are blended can be adjusted at runtime. The pre-processed opacity tables

are constructed from several sources:

• The radiative opacities are covered by either Ferguson et al. (2005) or Freedman et al. (2008) for

the low-temperature range, 2.7 ≤ log T ≤ 4.5, and OPAL (Iglesias & Rogers, 1993, 1996) for

3.57 ≤ log T ≤ 8.7. MESA offers the choice between OPAL Type 1 (Iglesias & Rogers, 1993) and

OPAL Type 2 (Iglesias & Rogers, 1996). The latter accounts for varying abundances of carbon

and oxygen, rather than assuming that they scale directly with metallicity. MESA also provides the

option to use the OP tables (Seaton, 2005) in place of the OPAL tables. If log T ≥ 8.7, the radiative

8This is a process by which radiation of a specific energy can reduce the energy level of an excited atomic electron.
9http://cococubed.asu.edu
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Figure B.2: (a) The opacity κ at the zero-age main sequence for different initial masses as a function
of the temperature. The non-rotating stellar models are presented in Chapter IV. (b) The log ρ -
log T plane, showing the dominant mechanisms of neutrino production in case of 12C matter. The
colour indicates the total energy loss rate by the neutrinos obtained with the fitting formulae of Itoh
et al. (1996). The figure was created using the tool sneut5 provided by F.X. Timmes9.

.

opacity is dominated by Compton scattering and is calculated with the equations from Buchler &

Yueh (1976). In the region of pair production - see Section I.3.2 - the number of electrons and

positrons per baryon is calculated with the HELM equation of state.

• The electron conduction opacities in the regions for −6 ≤ log ρ ≤ 11.5 and 3 ≤ log T ≤ 10 are

taken from Cassisi et al. (2007), including an expansion to cover higher temperatures and densities

(see Paxton et al., 2013, A.3). Outside of this region two different fits to the electron conduction

tables from Hubbard & Lampe (1969) are used; in the non-degenerate case the fits from Iben (1975)

are applied, whereas the Yakovlev & Urpin (1980) fits are included for the degenerate case.

The various tables are blended together with a sinusoidal function (see Paxton et al., 2011, §4.2 for

further details); the exact range of the blend can be adjusted. The tables are interpolated in log T and

log R using a bicubic function and the user has the option to choose either linear or cubic interpolation

in the hydrogen and metallicity mass fraction.

In the regions with no radiative opacity available, i.e. between log R = 1 and log R = 8 in Fig.(B.1b),

the radiative opacities are fixed at their value at log R = 1 and combined with the electron conduction

opacities (see Paxton et al., 2011, §4.2 for further details). Similarly, for the region left of log R = −8

and below log T = 8.7, where electron scattering dominates, the opacity from the table at log R = −8

and the appropriate value for log T is used. Above log T = 8.7, the production of electron-positron

pairs becomes relevant. MESA incorporates the enhancement to the opacity from the increasing number

of leptons per baryon.
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1.2.1 Nuclear Reaction Rates

Both, the energy generation (Eq.(B.6)) and the change in the abundance of nuclear species due

to thermonuclear burning (Eq.(B.9)) depend on the nuclear reaction rates. In MESA most reaction

rates are taken from the REACLIB database10 (Cyburt et al., 2010). This database is compiled from

recommended reaction rates, including theoretical and experimentally measured contributions, and

preference is given to the experimentally determined rates where applicable. Often the experimental

rates are supplied by Caughlan & Fowler (1988) or the NACRE compilation (Angulo et al., 1999; Xu

et al., 2013), with preference given to the latter. The REACLIB database provides each rate as a

function of the temperature in GK, T9,

λ<> = exp

{
a0 +

5∑

i=1

aiT
2i−5

3
9 + a6 ln T9

}
, (B.19)

with ai being fitting parameters from the database. For each reaction in the network, λ<> is computed

from Eq.(B.19) and then used to determine the change in chemical species via Eq.(B.9). The units of

λ<> differ, depending on the reaction type (Cyburt et al., 2010). For single-body reaction, λi has units

of s−1, whereas for two-body and three-body reactions λij and λijk have the units of cm3 mol−1 s−1

and cm6 mol−2 s−1, respectively. The REACLIB database also provides the Q-value for each reaction

to calculate the corresponding release of thermonuclear energy (see Eq.(B.6)).

The reaction rate library in MESA includes significant updates to the NACRE rates for some of the key

reactions. The 14N(p,γ)15O and 14N(α, γ)18F, which are important in the hydrogen-burning CNO

cycle, are taken from Imbriani et al. (2005) and Görres et al. (2000), respectively. The updated rate

of Fynbo et al. (2005) for the triple-α process and the rate of Kunz et al. (2002) for the 12C(α, γ)16O

are used in this work.

The weak reaction rates, i.e. the rates for lepton capture and β-decay reactions, are based on the

tabulations of Fuller et al. (1985); Oda et al. (1994); Langanke et al. (2003) for isotopes with atomic

mass numbers 45 < A < 65, where precedence is given to the tables in the latter publication.

1.2.2 Neutrino Energy Losses

During the advanced evolutionary phases of massive stars, the temperature in the centre is hot enough

for non-negligible neutrino production - see Section I.2.1.3. Possible non-nuclear neutrino production

processes are (Fowler & Hoyle, 1964; Itoh et al., 1996)

Plasmon decay : γplasma → ν + ν̄

Pair annihilation/creation: e+ + e− → ν + ν̄

Neutrino bremsstrahlung : e± + (Z,A)→ e± + (Z,A) + ν + ν̄

Photoneutrino process: e− + γ → e− + ν + ν̄

10https://reaclib.jinaweb.org
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Neutrinos have a very small cross-section and at the densities encountered in the stellar interior their

mean free path is much longer than the stellar radius11. Therefore, any neutrino will immediately

escape the star, resulting in a direct loss of energy in this region. MESA describes the energy loss from

non-nuclear neutrino processes, εν , with the fits of Itoh et al. (1996), which is used in Eq.(B.3). These

fits do not include the energy loss by neutrinos created from weak nuclear reactions which are included

in the εnuc term - see Section (B.1.2.1).

Fig.(B.2b) illustrates the dominant neutrino production mechanisms in different regions in the log ρ−

log T plane and the corresponding neutrino energy loss rates. The neutrino pair creation dominates

at high temperatures and low density. There black-body radiation produces e−e+-pairs in a equilib-

rium, which are converted directly to νν̄-pairs (Chiu & Morrison, 1960). The photo-neutrino process

dominates at lower densities and temperatures. Energy loss by plasmon neutrinos12 depends strongly

on the electron density, with a maximum in the domain where ~ω0 � kT , where ω0 is the plasma

frequency. Therefore, the plasma neutrino energy loss rate is peaked at higher electron densities for

higher temperatures - see Fig.(B.2b) but also Beaudet et al. (1967). Bremsstrahlung neutrinos can

be produced by electromagnetic radiation that is generated when an electron is slowed down in a

Coulomb field of a charged nucleus. The emission rate depends on ∼ ρT 6 and is dominant at very

high densities. Fig.(B.2b) shows that there is a small region where the recombination process dom-

inates. There, a free electron transitions into a bound atomic state, which can generate a neutrino.

However, these emission rates are very low and have little significance. Also, there are other neutrino

emission processes, though only the above mentioned ones play a significant role in the conditions

found in stellar evolution.

1.3 Thermally-Driven Mixing

MESA/star treats convective mixing as a time-dependent diffusive process. The diffusion coefficient D

is determined following the mixing-length theory - see Sections II.1.2 and B.1.3.1. After the convective

mixing has been solved, MESA/star computes the semiconvective and convective boundary mixing

diffusion coefficients, according to Sections B.1.3.3 and B.1.3.2, respectively.

The change of the mass fraction Xi,k of nuclear species i in cell k for a timestep δt in MESA is determined

by (Paxton et al., 2011)

Xi,k(t+ δt)−Xi,k(t) =
dXi,k

dt
(t)δt+ (Fi,k+1 − Fi,k)

δt

dmk
, (B.20)

11For example, the mean free path of an electron neutrino is `free = 1
nσν

with its cross-section σν ≈

10−44
(

Ev
mec2

)2
cm2, nuclei concentration n and energy Eν (Maeder, 2009). Therefore, for 1 MeV electron neutrinos in

ordinary lead the mean free path is about 20 light-years.
12A plasmon is a quantum of plasma oscillation, generated by an electromagnetic wave entering a dense plasma.

Plasmons are unstable quasi-particles, the decay of which can produce a νν̄-pair.
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which is solved together with the other stellar structure equations - see Section B.1.2.
dXi,k
dt (t) is the

rate of change of species Xi in cell k due to nuclear burning (see Eq.(B.9)) and Fi,k is the mass of

chemical species i flowing across the boundary of cell k:

Fi,k = (Xi,k −Xi,k−1)
σk

dmk

(B.21)

with the averaged cell mass dmk = 1
2 (dmk−1 + dmk) and the Lagrangian diffusion coefficient, σk =

(4πρr2)2Dtot, where Dtot is the sum of the diffusion coefficients of convection, semiconvection, convec-

tive boundary mixing and, if active, rotation. It should be noted that σk is calculated at the beginning

of a timestep and held constant during the implicit solver iterations, which significantly improves the

numerical convergence (Paxton et al., 2011). However, it can lead to small inconsistencies between

the mixing boundary and the boundary of convection, which is determined at the end of a timestep.

1.3.1 Convection

The treatment of convection and mixing in stellar models arise from considerations of dynamical and

secular stability, which was outlined in Section II.1, based on the mixing-length theory derived in

Vitense (1953); Böhm-Vitense (1958). However, different flavours of the mixing-length theory have

been developed over the years under different assumptions. MESA implements different variations of the

mixing-length theory in the mlt module. In this paragraph, a short overview over the most commonly

used versions is given.

The key equations of the mixing-length theory can be written in a general way (cf. Cox & Giuli, 1968;

Ludwig et al., 1999), with the convective flux, Eq.(II.12),

Fconv = f2
ρCP v̄T `MLT

HP
(∇−∇int), (B.22)

the convective velocity, Eq.(II.14),

v̄2 = f1gδ(∇−∇int)
`2MLT

HP
(B.23)

and the convective efficiency, i.e. the ratio of the transported energy and the energy lost during the

fluid element’s lifetime,

Γ ≡ ∇−∇int

∇int −∇ad
=
ρCP v̄τe
f3σT 3

(
1 +

f4

τ2
e

)
. (B.24)

where σ is the Stefan-Boltzmann constant, `MLT = αMLTHP is the mixing length, CP the specific

heat at constant pressure and the ∇s are the four temperature gradients discussed in Section II.1.
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Table B.1: The fi parameters for the various mixing-length theory versions implemented in MESA.
The coefficients are hard-coded with the exception of νH and yH in the Henyey flavour which can be
defined by the user during runtime, usually νH = 8 and yH = 1

3 or 3
4π2 , to adjust the opaqueness of

the fluid element. The values were taken from Ludwig et al. (1999), Table 1.

mixing-length theory flavour MLT_option f1 f2 f3 f4

Cox & Giuli (1968) Cox 1
8

1
2 24 0

Böhm-Vitense (1958) ML1 1
8

1
2 24 0

Bohm & Cassinelli (1971) ML2 1 2 16 2

Henyey et al. (1965) Henyey 1
νH

1
2

8
yH

1
yH

Mihalas (1978); Kurucz (1979) Mihalas 1
8

1
2 16 2

The optical thickness of a convective fluid element, τe, is defined as

τe ≡ κρ`MLT. (B.25)

The four dimensionless free parameters, f1, f2, f3 and f4, vary, depending on the underlying assump-

tions of the mixing-length theory flavour used. Table B.1 presents the fi parameters for the various

mixing-length theories implemented in MESA13. The MESA default version is Cox, which assumes op-

tically thick material, hence, high optical depths and no radiative losses. In contrast, the Henyey

flavour allows the convective efficiency to change with opaqueness of the fluid element, which is an

important effect for convective layers in the envelope. In this work, the mixing-length theory option

Henyney is chosen with νH = 8 and yH = 1
3 . MESA includes other flavours for specific situations such

as atmospheres and white dwarfs (Paxton et al., 2013), listed in Table B.1 for completeness. Their

discussion, however, will be omitted here.

Following the discussion in Section II.1.2, with (i) the knowledge of the total flux,

Ftot = Frad + Fconv ≡
4ac

3

T 4

κρHP
∇rad, (B.26)

(ii) the adiabatic temperature gradient ∇ad and (iii) the knowledge of the physical variables CP , κ,

`MLT = αMLTHP , ρ and T , it is possible to form three equations with three unknowns,

∇rad = ∇+ a0A(∇−∇int)
3
2 , (B.27)

Γ = A(∇−∇int)
1
2 , (B.28)

Γ =
∇−∇int

∇int −∇ad
. (B.29)

13A careful reader may notice that the fi parameters in Table B.1 for the MLT_option Cox and ML1 are identical. In
the MESA code, both options are listed and two different implementations are used, however, they both are calculated
exactly the same. According to the developers, “the two options were implemented at different times and the availability
of both is a relict of that (in accordance with the jumble of descriptions of different prescriptions strewn throughout the
literature), for more detail follow the message thread”. Both options were kept in the table for completeness.
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with the two quantities

a0 =
3

16
× f2f3(

1 + f4

τ2
e

) (B.30)

A2 =
f1gδ`

2
MLT

HP

Γ2

v̄2
. (B.31)

This equation system allows to determine ∇, ∇int and Γ via a cubic equation. The knowledge of the

temperature gradient ∇ enables the computation of the convective velocity and finally the diffusion

coefficient for chemical mixing (see Eq.(II.16)).

In the very centre of the star, with r → 0 the definition of the pressure scale height, HP = P
gρ ,

diverges because g → 0. MESA provides the option to include the alternative definition of the pressure

scale height by Eggleton (1971), HP,Eggl. =
√

P
Gρ2 , when HP,Eggl. < HP . In the centre of the star,

HP,Eggl. ∼ r, hence, the divergence is avoided.

1.3.2 Convective Boundary Mixing

The boundaries of a convective zone in a stellar model are determined either by the Ledoux or

the Schwarzschild criterion - see Section II.1.1. MESA offers the choice between the two criteria. The

boundary is determined as the location where the discriminant, y = ∇rad−∇ad or y = ∇rad−∇ad +B,

respectively, changes sign, where B is the composition term of the Ledoux criterion - see below. While

this procedure works well if y is continuous at the interface of the convective and radiative region,

problems arise if there is a discontinuity - see discussion in Section III.7 and Gabriel et al. (2014).

The adiabatic and radiative temperature gradient are determined according to Eqs.(II.8). ∇rad is

directly computed. In the atmosphere, i.e. where the optical depth drops below 2
3 , it is however

multiplied by a factor to account for the dilution of stellar radiation following Paczyński (1969). On

the other hand, ∇ad is an output quantity from the eos module - see Appendix B.1.2.0.1 and Paxton

et al. (2011). The chemical composition term in the Ledoux criterion explicitly takes into account the

effect of composition gradients. In MESA, this term is implemented slightly differently to ensure that

the description is both, numerically robust and simpler to implement (see Paxton et al., 2013, §3.3

for more details),

B = − 1

χT

N−1∑

i=1

(
∂ lnP

∂ lnXi

)

ρ,T,{Xj 6=i}

d lnXi

d lnP
(B.32)

≡ − 1

χT
lim

δ lnP→0

lnP (ρ, T,X + (dX/d lnP ) δ lnP )− lnP (ρ, T,X)

δ lnP
. (B.33)

This term takes a directional derivative along the radial composition gradient, dX/d lnP , in the stellar

model. For the kth mesh point, indicated by the subscript, the chemical composition term is computed
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as

B = − 1

χT

ln P (ρk, Tk, Xk+1)− ln P (ρk, Tk, Xk)

ln Pk+1 − Pk
. (B.34)

This formulation requires only one numerical difference along the radial chemical composition, X.

The Ledoux criterion for stability is then formulated as ∇rad < ∇ad + B ≡ ∇L. It should be noted

that when the Schwarzschild criterion is used, the composition term is artificially set to zero.

The chemical composition profile often contains step-like features, a result of finite mesh grid and

timesteps. This can lead to “numerical noise” in the chemical composition gradient; for example the

radial profile of B can contain large peaks during the main-sequence evolution of a massive star in the

region of the receding convective core. These peaks can lead to an over-stabilisation of the region and

affect the later evolution of, e.g., the intermediate convective zone - see discussion in Section III.4.

MESA implements a weighted smoothing routine - see Appendix C.1 - where the number of cells to be

included in the smoothing are chosen by the user.

In an attempt to account for the problems with the identification of the convective boundary outlined

by Gabriel et al. (2014), a “predictive mixing” scheme was implemented in MESA (Paxton et al., 2018).

This scheme first locates the convective boundary by identifying the cells where the discriminant

y changes sign. Next, the algorithm expands the convective boundary during a timestep, with the

assumption of a uniform composition, until ∇rad = ∇ad on the convective side of the boundary

interface14. The expansion is achieved by modifying the convective diffusivity in the cells on the

radiative side of the boundary. While “predictive mixing” is able to achieve ∇rad = ∇ad on the

convective side of the boundary in most cases, it fails in some scenarios such as the retreating main-

sequence convective core in a 16 M� model (see Paxton et al., 2019, §5.1 for details), showing the need

for further work. For this reason, the “predictive mixing” scheme is not included in this thesis15.

Convective boundary mixing and the different, commonly-used implementations have been discussed

in Section II.1.3 to some extent. MESA adopts different schemes for convective boundary mixing in

stellar models, from which the user can choose.

Exponentially-decaying diffusive scheme: Convective boundary mixing is implemented via an

exponential decay of the convective diffusion coefficient beyond the convective boundary (see

Eq.(II.17)). The user-specified parameters fov and f0 determine the extent of the convective

boundary mixing region and the location in the convective region where the exponential decay

begins, respectively - see Section II.1.3 for more details. The convective boundary mixing is cut

off once the diffusion coefficient drops below a certain value; the default is Dcutoff = 102 cm2 s−1,

in order to avoid the infinite exponential tail.

14In the convective zone, the composition is assumed to be well mixed and B = 0, hence, the Ledoux and Schwarzschild
criterion are identical in the convective region.

15Paxton et al. (2019) developed a new scheme for treating convective boundaries, “convective pre-mixing”. This
scheme, however, was developed in a later MESA revision and shall not be discussed here.
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Step-overshoot: This options refers to the penetrative “overshoot” in Section II.1.3, where the fully

mixed region is extended at the convective boundary for a fraction of the pressure scale height,

dov = αovHP , with the user-adjusted free parameter αov. A constant user-defined diffusion

coefficient is applied in this region: Dov = Duser +fuser ·D0, where D0 is the diffusion coefficient

at the edge of the convective region. Similar to the exponentially-decaying diffusive scheme, the

step-overshoot implementation depends on a second user-selected parameter, f0, to determine

the exact starting location of the step-overshoot.

Double-f: This scheme follows the exponentially-decaying diffusive scheme with the difference that it

combines two regions with different scale lengths and starting value for the exponential decay. In

this context, a diffusion coefficient is chosen, at which the code switches from the first exponential

decay to the second one, which is in general shallower. The idea for this scheme is based on

multi-dimensional hydrodynamic simulations, which report that the mixing efficiency after the

convective boundary is best described with an initially steep slope followed by a shallower one

(Herwig et al., 2007).

It is possible to combine the different convective boundary mixing schemes. In all cases, convective

boundary mixing only mixes the chemical composition but not the entropy, thus ∇ = ∇rad in the

convective boundary region.

In the very centre of the star, where the pressure scale increases immensely, convective boundary

mixing is suppressed. This provides a simple way to avoid the problem with small convective regions

in the core having an excessively large convective boundary mixing region. By default, convective

boundary mixing is not allowed in regions with a mass fraction below 10−3 of the total star mass, a

value that can be modified by the user. Also, convective boundary mixing is artificially omitted by

default if the extra-mixed region is larger than the convective zone itself. This steers clear of poten-

tially small convective regions being enlarged massively due to convective boundary mixing. Lastly,

stabilising chemical composition gradients at the convective boundary might affect the amount of con-

vective boundary mixing. MESA offers an optional user-chosen argument to terminate the convective

boundary mixing region when a strong gradient in chemical composition is encountered by setting a

maximum B for convective boundary mixing. However, strong chemical composition gradients might

not entirely prevent convective boundary mixing from happening but only reduce its amount (Canuto,

1998).

1.3.3 Semiconvection

The theory of semiconvection was introduced in Section II.1.4. In MESA/star , semiconvection is im-

plemented distinctly from convective boundary mixing, as a time-dependent diffusive process (Paxton

et al., 2013). It is only applied if the Ledoux criterion for the convective boundary location is used.
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In this case, if a cell is Ledoux stable but subject to an unstable temperature gradient it is mixed

by semiconvection. MESA uses the scheme introduced by Langer et al. (1983), presented in Eq.(II.19).

The implementation offers two options: (i) the actual temperature gradient ∇ in Eq.(II.19) is set to

∇rad or (ii) the actual temperature gradient in the semiconvective region is directly computed follow-

ing Langer et al. (1983), in consistency with the theory of superadiabatic convection (Vitense, 1953;

Böhm-Vitense, 1958), see Section II.1.2.

The semiconvective efficiency parameter, αsc - see Section II.1.4 - has to be specified by the user

during runtime.

1.3.4 MLT++

Massive stars are dominated by radiation pressure, which can cause gas pressure and density inversion

in their loosely-bound envelopes as the radiation approaches the Eddington luminosity (e.g. Joss

et al., 1973). The inversion is more often present at higher metallicities because the iron opacity

bumps are more pronounced - see Section B.1.2.0.1 - which cause the local radiation pressure to

dominate and the local luminosity to approach the Eddington luminosity. These inflated envelopes

are numerically unstable and the evolutionary timesteps become prohibitively short (of the order of

hours). Furthermore, the energy transport by the classical mixing-length theory is clearly out of

its range of applicability in such regions. The stability and treatment of such radiation-dominated

envelopes is still an open question (Joss et al., 1973; Maeder, 1987b; Bisnovatyi-Kogan & Dorodnitsyn,

1999; Maeder, 2009; Paxton et al., 2013; Suárez-Madrigal et al., 2013; Sanyal et al., 2015, 2017) and

stellar evolution codes apply different techniques for their computation, mostly numerical fixes of

which none actually treats the true nature of the radiation-dominated envelope. This is yet another

uncertainty in massive star evolution.

Following Joss et al. (1973); Paxton et al. (2013), an inversion of the gas pressure occurs if

dPgas

dr
=

(
dPrad

dr

)[
LEdd

Lrad
− 1

]
> 0, (B.35)

with the Eddington luminosity LEdd = 4πcGm
κ ≈ 1.3 × 104 1

κ
M

M�
L�. Since dPrad

dr < 0, a gas pressure

inversion occurs for Lrad > LEdd. On the other hand, a density inversion occurs when

Lrad

LEdd
>

Linv

LEdd
≡
[

1 +

(
∂Pgas

∂Prad

)

ρ

]−1

, (B.36)

where Linv is the luminosity for the onset of the density inversion. Under the conditions of interest, i.e.

in the envelope,
(
∂Pgas

∂Prad

)
ρ
> 0, hence, density inversion can occur below the Eddington luminosity.

Interestingly, for Linv < Lrad < LEdd a density inversion occurs without a gas pressure inversion.
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Figure B.3: (a) The critical luminosities Lrad = Lonset (dot-dashed line) Lrad = Linv (dashed line) and
Lrad=LEdd

(solid line) as a function of Pgas/P for an ideal gas-radiation mixture. For Lrad < Lonset

the gas is stable against convection; for Lonset < Lrad < Linv the gas becomes convective; for Linv <
Lrad < LEdd a density inversion occurs and for LEdd < Lrad a Pgas inversion occurs. The subplots
include a part of the profile of a 30 M� (left) and 70 M� (right) model, respectively, at solar metallicity
when the respective star meets Teff = 5000 K during its first crossing of the Hertzsprung gap. The
blue dots represent radiatively stable layers and the red dots ∇rad > ∇ad. A black border around the
dots indicates density inversion in the model and cells with a yellow dot have a gas pressure inversion.
As the profile moves out from the stellar centre to the surface, it traces out the points on the plot
from bottom to top. The figure is taken from Paxton et al. (2013).

.

Lastly, convection sets in when

Lrad

LEdd
>
Lonset

LEdd
≡
[
1− Pgas

P

](
∂ lnPrad

∂ lnP

)
(B.37)

with Lonset the luminosity at which convection convection begins. Joss et al. (1973) argue that entropy

decreases as density increases. Therefore a density inversion requires a superadiabatic temperature

gradient, resulting in Lonset < Linv. At high luminosities, where the gas is radiation dominated, the

difference in Linv − Lonset becomes small and a small inefficiency in convection is enough to generate

a density inversion. Indeed, in radiation-dominated, convective envelopes of massive star simulations

such inefficient convection can arise (Paxton et al., 2013). Fig.(B.3) presents the critical onset lu-

minosities as a function of Pgas/P , showing that there is only a small gap between an adiabatically
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stratified model and a model with a density inversion, i.e. the region between Lrad = Lonset and

Lrad = Linv. On the other hand, a gas pressure inversion only occurs once L > LEdd, i.e. above

the solid line in Fig.(B.3). The plot includes the profile of a 30 and 70 M� model during their first

crossing of the Hertzsprung gap - see the caption for details.

Fig.(B.3) confirms several points. First, it shows the excellent agreement between the analytical con-

ditions, Eqs.(B.36) and (B.37), and the detailed MESA evolutionary calculations. Second, it verifies

that for massive stars, there is indeed a density inversion and, for even higher luminosity, a gas pres-

sure inversion. Furthermore, the higher mass model enters deep into the low Pgas/P , high Lrad/L

regime. In this stellar model, the superadiabaticity ∇ −∇ad increases to & 10−2 in the region with

Lrad > LEdd and becomes larger than unity in the very outer layers. The large superadiabatic gradi-

ent encountered in its radiation-dominated envelopes leads to prohibitively short timesteps. Energy

is mostly transported by radiation and the convective velocity in the framework of the mixing-length

theory approach the speed of sound. In such a regime, the mixing length theory, as discussed in

Sections II.1.2 and B.1.3.1, is out of its application domain. In fact, waves excited by the near-sonic

turbulent convection (e.g. Maeder, 1987a), radiative diffusion enhanced by porous clumping of the

envelope (e.g. Owocki et al., 2004) and other hydrodynamical instabilities become crucial for energy

transport.

In order to calculate massive star models up to core collapse MESA/star offers the option of a treatment

known as MLT++, which artificially reduces the superadiabaticity in a radiation-dominated convective

region. The MLT++ routine computes for every model two values,

λmax ≡ max

(
Lrad

LEdd

)
and βmin ≡ min

(
Pgas

P

)
. (B.38)

If λmax is large and βmin is small, and if the mixing-length routine yields a superadiabaticity, δ∇ ≡

∇−∇ad, that is larger than a user-specified threshold δ∇,thres, the MLT++ routine artificially decreases

the superadiabaticity. The default threshold value is δ∇,thres ∼ 10−4, which is sufficiently large and

convection is inefficient. The MLT++ module reduces the superadiabaticity by setting ∇ so that it

reduces δ∇ − δ∇,thresh by a factor f∇α∇, where f∇ is a free parameter chosen by the user, which

controls the maximum reduction of the superadiabaticity, and α∇ is computed by the module at each

time step as

α∇ = χ∇α∇,old + (1− χ∇)α̃∇, (B.39)

a linear combination of the value from the previous time step, α∇,old, and the current timestep,

α̃∇ (λmax, βmin). α̃∇ is between 0 and 1 and depends on the strength of the density and gas pressure

inversions. For a more extreme density and gas pressure inversion, i.e. large λmax and small βmin,

α̃∇ → 1. Vice versa, for small λmax and large βmin, i.e. no inversion occurs, α̃∇ → 0. In a typical
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Table B.2: Table listing the user-specified parameters of the MLT++ routine, their names in the MESA

code, their default values and the values used in this work. An empty row in the last column indicates
the use of the default value. The last six parameters are explained in Appendix C.2.

parameter in-code name default value my value

δ∇,thres gradT excess f1 10−4

f∇ gradT excess f2 10−3

χ∇ gradT excess age fraction 0.9 0.999

∆max gradT excess max change not active 0.001

λ1 gradT excess lambda1 1.0

λ2 gradT excess lambda2 0.5

∆λ gradT excess dlambda 0.1

β1 gradT excess beta1 0.35

β2 gradT excess beta2 0.25

∆β gradT excess dbeta 0.1

model, the transition happens where λmax ≈ 0.5 and βmin ≈ 0.3. Appendix C.2 demonstrates how

the MLT++ module calculates α̃∇. χ∇ is a user-defined parameter, smoothing the change in α∇

over time. α∇ is further smoothed by limiting the maximum change at each timestep, i.e. α∇ =

min {α∇, α∇,old + ∆max}. Table B.2 summarises all the free parameters used in the MLT++ module,

how they are named in the code, the MESA default values and the values that are used in this work. It

should be stressed that the radiatively dominated envelopes are physically unstable, which can result

in strong enhancement of mass loss. Therefore, even if the use of MLT++ allows the computation of

models up to core collapse, the prediction should be considered as highly uncertain.

1.4 Rotation-Induced Mixing

MESA includes the treatment of rotation if the rotation flag, rotation flag, is activated by the user,

either after a starting model has been created or after a restart. The implementation of rotation in

MESA/star is derived from the stellar evolution code STERN (Langer et al., 1988; Heger et al., 2000;

Petrovic et al., 2005; Yoon & Langer, 2005). The shellular approximation is adopted - see Sections

I.4 and II.2 - and the stellar structure equations are modified due to the centrifugal acceleration as

outlined in Section B.1.2. The rotation-induced transport of chemical elements is implemented in a

diffusive approximation following Endal & Sofia (1978); Pinsonneault et al. (1989); Heger et al. (2000).

The theory of the various instabilities is discussed in Section II.2. MESA/star has the capability to

calculate the diffusion coefficient of five rotation-induced instabilities: the Solberg-Høiland instability,

the Eddington-Sweet circulation, the dynamical and secular shear instability, the Goldreich-Schubert-

Fricke instability as well as the mixing due to the Tayler-Spruit dynamo. Their implementation is

based on Heger et al. (2000). The total diffusion coefficient is calculated as the sum of the diffusion
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coefficient of each instability,

Dmix = Dnon−rot + fT · fc ×Drot

= Dnon−rot + fT · fc × [αSH ·DSH + αES ·DES + αDSI ·DDSI + αSSI ·DSSI + αGSF ·DGSF + αTS ·DTS] .

(B.40)

The free parameter fc is introduced because the diffusion coefficients used are oder-of-magnitude

estimates and are subject to large uncertainties. fc allows to calibrate the diffusion coefficients with

observational data. This parameter is only applied to compute the reduction of the diffusion coefficient

but not the turbulent viscosity (see Eq.(B.46)). In addition, a second parameter, fµ ∈ [0, 1], is

used to describe the sensitivity of the rotation-induced mixing to chemical composition gradients by

multiplying ∇µ with it; the paragraphs below explain in which instabilities fµ is included. The values

used for the two parameters fc and fµ throughout the literature and in this work are discussed in

Chapter IV. The user-chosen parameters αs allow to adjust the diffusion coefficient of each rotation-

induced instability individually, where α = 0 excludes the instability from the stellar model. Also, the

diffusion coefficient profile of each instability can be spatially and temporally smoothed - see Appendix

B.1.5.1.1. In this work, however, only the diffusion coefficient from the Tayler-Spruit instability is

smoothed. fT is another parameter that allows to manipulate the diffusion coefficient for rotation-

induced chemical mixing. This parameter is equal to unity as long as the temperature is below a

user-chosen temperature. If the temperature exceeds this specific value, fT = 0, hence, it allows to

turn off rotation above a temperature threshold, e.g., as the star approaches core collapse. The default

value for the temperature limit is log T = 9.5

The diffusion coefficient Dmix enters the abundance diffusion equation, Eq.(B.5), which is solved at

each time step. In the following, the implementation of each rotation-induced instability is discussed.

1.4.1 Solberg-Høiland Instability

In MESA the condition for the Solberg-Høiland instability to occur, RSH in Eq.(II.23), is formulated as

RSH =
g

ρ

[(
dρ

dr

)

ad

− dρ

dr

]
+

9j

2r3

dj

dr
< 0. (B.41)

The first bracket term is equivalent to the first term containing the temperature gradients and the

chemical composition gradient in Eq.(II.23) - see Section II.1.1. It should be noted that the stabilising

stratification of the chemical composition is contained in the equation of state but its effect cannot

be scaled via fµ as in the other rotation-induced instabilities. The second term is equivalent to the

second term in Eq.(II.23) under the assumption that the specific angular momentum j can be written

for a thin spherical shell, hence, the specific moment of inertia is i = 2
3r

2.

232



B.1. STELLAR EVOLUTION CODE - MESA

The computation of the diffusion coefficient follows Eq.(II.24), however, the maximum diffusion coef-

ficient is limited by the product of the pressure scale height and the speed of sound. In reality, this

limit is more than ten orders of magnitude larger than a typical value for DSH and is therefore not

met under normal circumstances.

Generally, in regions where the Solberg-Høiland instability is active, the condition for the dynami-

cal shear instability is satisfied as well (see, e.g., Hirschi et al., 2004). Therefore, in this work the

Solberg-Høiland instability is set to zero by αSHI = 0.

1.4.2 Eddington-Sweet Circulation

The large scale meridional flows are implemented as a diffusive process in MESA called the Eddington-

Sweet circulation - see Section II.2.2. The computation follows the diffusive procedure discussed there.

In addition, the calculation of the circulation velocity vE (Eq. (II.25)) limits the luminosity, mass

and radius in the denominator of the fractions in the bracket by a thousandth of the respective solar

value. This avoids the scenario where vE → ∞ as the centre is approached. Also, the chemical

composition gradient in the “stabilising” circulation velocity vµ (Eq.(II.26)) is multiplied with fµ to

scale its importance. Finally, vES (Eq.(II.28)) is limited by the local sound speed and the diffusion

coefficient from the Eddington-Sweet circulation is restricted by the product of the pressure scale

height times the sound speed, which however is not reached under normal circumstances.

1.4.3 Dynamical Shear Instability

The Richardson number is computed according to Eq.(II.34), where the term (∂v/∂z)2 is written in

terms of the angular velocity ω, (∂z/∂v)2 = (∂ ln z/∂ω)2. Also, the ∇µ in Eq.(II.34) is scaled with fµ,

i.e. fµ · ∇µ. The Richardson number is artificially set to zero if ∇ad −∇ < 0, hence, the instability is

switched off in convective regions.

In MESA the diffusion coefficient for the dynamical shear instability is calculated as

DDSI = min

[
min {rinst, HP }2

tdyn
, HP · csound

]
, (B.42)

with the sound speed csound and the spatial extent of the instability rinst. This implementation differs

from Eq.(II.34) with the facts that first, the mixing does not smoothly transition from the stable region

and second, the mixing does not increase as the instability increases but is limited by the product of

the pressure scale height scale and the speed of sound. However, the latter limit exceeds usual values

of DDSI by more than ten orders of magnitudes and is not reached in standard stellar models.

As discussed in Section II.2, the dynamical shear instability occurs on the dynamical timescale

τdyn ≡
√
r3/(Gm). Edelmann et al. (2017) compared 2D hydrodynamical simulation of the dy-
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namical shear instability with the 1D prescription and concluded that most of the differences come

from the fact that the evolutionary timescale in stellar evolution models is much longer than the

dynamical timescale. Therefore, the estimated mixing efficiency in stellar models is overestimated.

Another point is that the dynamical shear instability is often suppressed by the Brunt-Väisälä fre-

quency. In rotating massive stars, only during the advanced pre-supernova phases the shear becomes

strong enough to overcome the stable density stratification. Furthermore, the dynamical shear is only

active over a very thin zone, because it needs very steep Ω gradients that arise only in very limited

regions, where the µ-gradients are also very steep. Thus, despite the rather large diffusion coefficients

from this instability, the global effect is minor. For these two reasons, the dynamical shear instability

is excluded from the models in this work by setting αDSI = 0.

1.4.4 Secular Shear Instability

The condition for the secular shear instability in MESA is determined similarly to Section II.2.4.2 with

the following differences. First, the critical Reynolds number is Rcrit = 2500. Second, the Richardson

number Ri entering the first criterion RiSSI,1, Eq.(II.36), is computed as Ri ≡ g
ρ

N2
T

(∂v/∂z)2 , where N2
T is

the thermal part of the Brunt-Väisälä frequency, hence, the chemical stratification is ignored. Lastly,

the chemical composition gradient in RiSSI,2, Eq.(II.37), is multiplied by fµ, reducing its effects.

The diffusion coefficient arising from the secular shear instability is computed as described in Eq.(II.39),

with the exception that the maximal allowed diffusion coefficient is limited by the product of the pres-

sure scale height and the speed of sound. In reality, this limit is more than ten orders of magnitude

larger than a typical value for DSH and is therefore not met under normal circumstances.

1.4.5 Goldreich-Schubert-Fricke Instability

In MESA, the activity of the Goldreich-Schubert-Fricke instability is checked with several conditions.

First, the code compares the difference of the specific angular momentum between two neighbouring

cells, which is equivalent to Eq.(II.40). If the angular momentum increases outwards, the local scale

height of angular momentum is computed as

Hj ≡
dr

d ln j
> 0, (B.43)

otherwise Hj is set to zero. If Hj is positive the velocity vg is calculated following Eq.(II.41) if not

vg is set to zero. Finally, the code computes vGSF following Eq.(II.42) and defines the instability as

active only when vGSF > 0. The latter two conditions are numerical in nature. The computation

of the diffusion coefficient follows the discussion in Section II.2.5.1. Similarly to the implementation

of the Eddington-Sweet circulation, the chemical composition gradient in vµ is multiplied with fµ.
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Furthermore, the maximal velocity of the Goldreich-Schubert-Fricke instability is limited by the sound

speed and the diffusion coefficient DGSF is controlled by the product of the sound speed and the

pressure scale height. Again, this limit is many orders of magnitude larger than the values reached

for DGSF in standard stellar evolution models.

The Goldreich-Schubert-Fricke instability is strongly suppressed by µ-gradients and is only triggered

in layers with an extremely strong shear. Both, Hirschi & Maeder (2010) and Caleo et al. (2016)

independently investigated the instability and concluded that viscosity, either turbulent as in Hirschi

& Maeder (2010) or molecular and radiative as in Caleo et al. (2016), suppresses the Goldreich-

Schubert-Fricke instability. Hirschi & Maeder (2010) further show that the transport coefficient of

the Goldreich-Schubert-Fricke instability during the late stages of stellar evolution can become larger

than the shear instability and as large as the thermal diffusivity. However, the instability is confined

to extremely narrow regions and there is not enough time left for siginificant mixing to occur before

the core collapses, hence, its impact is insignificant. For these reasons, the Goldreich-Schubert-Fricke

instability is excluded from the models in this work, i.e. αGSF = 0.

1.5 Angular Momentum Transport

Angular momentum transport in MESA is implemented as a purely diffusive process,

dj

dt
=

d

dm

[
(4πr2ρ)2

(
νΩ · irot

dΩ

dm
+ νj

dj

dm

)]
, (B.44)

with irot the specific moment of inertia and νΩ and νj the turbulent viscosities for the rotation rate and

the specific angular momentum, respectively. The two viscosities are calculated from the contribution

of the rotating and non-rotating sources as

νΩ = fΩ,non−rot · νnon−rot + fΩ,rot · νrot (B.45)

νj = fj,non−rot · νnon−rot + fj,rot · νrot, (B.46)

where νnonrot is the sum of the turbulent viscosities for convection and semiconvection16 and νrot is

the sum of the turbulent viscosities for the rotation-induced instabilities - see Section B.1.4 for a list

- plus an additional user-chosen viscosity for angular momentum transport νvisc,

νrot = βDSI · νDSI + βSSI · νSSI + βSH · νSH + βES · νES + βGSF · νGSF + βTS · νTS + βvisc · νvisc. (B.47)

16It is important to note that the convective boundary mixing is not included in this sum - see discussion in Chapter
IV.

235



APPENDIX B. SOFTWARE TOOLS

The viscosities are equal to the diffusion coefficients computed for the chemical mixing, with the

exception for the magnetic dynamo (see below), times a free parameter β for each product to adjust

the strength of the viscosity; they are set to unity by default. Contrarily to the diffusion coefficient for

rotation-induced instabilities, the final rotational viscosity are not scaled with the fc parameter. The

fs are user-defined free parameters, by default fΩ = 1 and fj = 0. Eq.(B.46) is equivalent to Eq.(46)

in Heger et al. (2000) if νj = 0. This implementation in MESA allows to (i) adjust the non-rotational

and rotational viscosity and (b) adapt different specific angular momentum distributions, i.e. solid

body rotation or uniform specific angular momentum in convective zones (see below and discussion

in Zahn, 1992; Potter et al., 2012a).

In the radiative zones, shellular rotation can be assumed because the horizontal turbulence smooths

out differential rotation along isobars. The large diffusion coefficient in the convective region leads to

a rotation law which is not far from solid body rotation, a common assumption for convective regions

in 1D stellar evolution codes (Pinsonneault et al., 1989; Heger et al., 2000; Eggenberger et al., 2008)

which however is not true for, e.g., the solar convection zone (e.g. Brown et al., 1989). Currently, there

are two treatments used in the convective regions: (a) convective regions are considered solid bodies,

i.e. the turbulent viscosity νconv in the convective zone is strong enough to homogenise the angular

velocity distribution or (b) convective regions have a constant angular momentum distribution because

the large-scale convective motions dominate and they conserve their angular momentum (Arnett &

Meakin, 2010)17.

MESA/star initialises rotation from a non-rotating model by adding a user-specified constant rotation

rate - either a surface rotation velocity or a fraction of the critical rotation rate18 - throughout the

star, resulting in a solid body rotation. At each subsequent step, the angular momentum is changed

according to Eq.(B.44), including remeshing and mass and radius adjustment (see Paxton et al.,

2013, Appendix B.6 for more details). The evolution of angular momentum uses substeps from the

stellar evolutionary time step and quad-precision linear algebra to obtain a high accuracy. Thus, it

is performed as a separate operation after the structure and composition evolution. This also avoids

additional operator splitting errors of the rotation rate.

1.5.1 Magnetic Dynamo

MESA/star offers the option to include a magnetic dynamo for the transport of angular momentum and

chemical mixing. In MESA, magnetic fields generated by differential rotation in radiative regions - see

Section II.3 - are implemented following the work of Spruit (2002) in a similar fashion to Petrovic et al.

(2005) and Heger et al. (2005). The rotation-induced shear (see Eq.(II.51)) contains a differentiation

17However, reality is not as simple. 3D hydrodynamic simulation show that neither the angular velocity nor the
angular momentum are constant in convective regions (e.g. Browning et al., 2004). Also, the convective motion depends
on the rotation rate of the star (e.g. Brun & Palacios, 2009; Brun et al., 2017).

18Ω2
crit = (1− ΓEdd)Gm

r3
with the Eddington factor ΓEdd = κL

4πcGm
.
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and needs to be evaluated carefully. MESA calculates this dimensionless differential rotation rate in

cell k as

q(k) =
r(k)

Ω(k)
· Ω(k − 1)− Ω(k + 1)

r(k − 1)− r(k + 1)
≡ ∂ ln Ω

∂ ln r
(k), (B.48)

where k = 1 is the cell at the surface. For numerical stability the shear is limited between 10−30

and 1030. Similar to Spruit (2002) two cases are considered; if the chemical composition term of the

Brunt-Väisälä frequency is dominant case0 from Section II.3.1.2 is calculated and if the thermal term

is dominant case1 is computed. In the two limiting cases, only the respective case is taken for the

determination of the magnetic viscosity and the magnetic diffusivity, i.e.

νTS =





ν0 · f(q) if N2
T ≤ 0 and N2

µ > 0

ν1 · f(q) if N2
T > 0 and N2

µ ≤ 0

ηTS =





η0 · f(q) if N2
T ≤ 0 and N2

µ > 0

η1 · f(q) if N2
T > 0 and N2

µ ≤ 0

, (B.49)

with the function f(q) from Eq.(II.58). In the two limits, the Brunt-Väisälä frequency is always

composed of the dominant term, either N2 = N2
µ or N2 = N2

T . In between, if N2
T > 0 and N2

µ > 0

the patching formulae in Eqs.(II.56) and (II.59) are used. This is implemented in a way that the

terms from the two limiting cases are calculated first, i.e. case0 and case1 outlined in Section II.3.1.2,

and then are patched together. If N2
T < 0 and N2

µ < 0 or N2 < 0 the mixing by the Tayler-Spruit

dynamo is artificially switched off by setting νTS = 0 and ηTS = 0. Also, the Tayler-Spruit dynamo is

artificially suppressed in convective zones and convective boundary mixing regions - see discussion in

Chapter IV.

The tubulent viscosity in semiconvective regions is treated specially following Heger et al. (2005):

The viscosity νTS,semiconv is computed as the geometric mean between the semiconvective “effective

viscosity” and the magnetic diffusivity ν0 resulting from case0 ; case1 is undefined in semiconvective

layers. It is assumed that the flux is dominated by the convective flux and given by the local luminosity.

νTS,semiconv = (νeff,semiconv · ν0)
1
2 ≈

(
1

3
v̄`mix · ν0

) 1
2

≈
(

1

3
HP

[
gδHP ·max (0, L)

64πρCPTr2

] 1
3

· ν0

) 1
2

(B.50)

The mixing length `mix is assumed to be equal to the pressure scale height and v̄ is computed from

the mixing-length theory (Eqs.(II.14) and (B.22)).

Each of the composition term and the thermal term of the Brunt-Väisälä frequency, the effective

diffusivity DTS and the magnetic viscosity νTS, are multiplied with a factor that allows to adjust their

strength. The default of each factor is set to unity.
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B.1.5.1.1 Smoothing of the Tayler-Spruit Dynamo

The nature of the treatment of the chemical composition gradients in MESA can lead to a rapidly

changing profile of the turbulent viscosity, in space and time, and the diffusion coefficients discussed

above - see also discussion in Chapter IV. In order to avoid the jittery profiles, which arise due to

numerics, improper treatment of the physics or the limitation to one-dimensional modelling, numerical

smoothing routines are applied.

MESA implements a weighted smoothing routine - see Appendix C.1 - to spatially smooth the viscosity

and diffusion coefficients derived for the Tayler-Spruit dynamo and the other rotation-induced insta-

bilities discussed in Section B.1.4. The number of cells to be included in the smoothing routine are

chosen by the user at runtime. By default, no spatial smoothing is applied.

MESA applies two time-smoothing processes for the viscosity and diffusion coefficient derived for the

Tayler-Spruit dynamo and the other rotation-induced instabilities discussed above. The first scheme

smooths the variable as

x = max

{
xold

1 + ft
, min [xnew, max (xold · (1 + ft), xold + δτ)]

}
(B.51)

where for cell k

δτ(k) = fr ·
(r(k)− r(k + 1)) · r(k − 1) · r(k)

∆t
, (B.52)

where xold is the variable from the previous time step and xnew is as calculated for the current time

step before time smoothing is applied. ∆t is the time of the substep. ft and fr are user-defined

parameters with the default of 0.2 and 0.001, respectively, for the Tayler-Spruit dynamo and ft = 0

for the other instabilities. This smoothing prevents large changes in x by limiting the new value to

be within a certain range of the old value, either defined by a pure numeral or the distancing of the

neighbouring cells.

The second option calculates the arithmetic averages between the variable from the current and the

old time step,

x =
xnew + xold

2
, (B.53)

where again xold is the variable from the previous time step and xnew is as calculated for the current

time step before time smoothing has been applied. This smoothing prevents fast changes between

timesteps, but in contrast to the first scheme it allows for more changes and always considers half of

the old value.
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1.6 Mass Loss

In MESA/star, the adjustment of the mass due to mass loss or accretion is done at the beginning of

each timestep, before the equations of stellar structure are solved (Paxton et al., 2011, 2013). There

is a variety of prescriptions included in MESA to compute the mass-loss rate Ṁ - see also Section

I.2.2. The available options for massive stars are the mass-loss rates by Kudritzki et al. (1989); Vink

et al. (2000) and Vink et al. (2001) for main-sequence stars, Nugis & Lamers (2000) and Gräfener

& Hamann (2008) for Wolf-Rayet stars and Nieuwenhuijzen & de Jager (1990) for cool supergiants.

Further possibilities include the implementations from Reimers (1975) for red giants, Bloecker (1995)

for asymptotic giant branch stars, van Loon et al. (2005) for dust-enshrouded red supergiants, de Jager

et al. (1988) for a range of stars in the Hertzsprung-Russell diagram but often used for red supergiant

branch stars, inspiration from Prialnik & Kovetz (1995) for supersonic mass loss and super-Eddington

mass loss by Paczynski & Proszynski (1986). The Dutch wind scheme for massive stars combines two

mass-loss prescriptions following Glebbeek et al. (2009); if Teff > 104 K and the surface hydrogen mass

fraction, Xsurf(
1H), is larger than 0.4 the Vink et al. (2000, 2001) prescription is used, if Teff > 104 K

and Ysurf(
1H)< 0.4 the formula by Nugis & Lamers (2000) is applied and for Teff < 104 K the user can

choose between the mass-loss prescriptions from either de Jager et al. (1988), van Loon et al. (2005)

or Nieuwenhuijzen & de Jager (1990). MESA also offers the option of a constant mass-loss rate specified

in the input file or a user-defined mass-loss rate. The mass-loss rate is multiplied with a user-defined

wind-efficiency parameter, ηwind.

The user can choose a wind scheme for three different regions, a “hot wind scheme” and a “cool wind

scheme” for each, the red and the asymptotic giant branches. The code smoothly switches between the

hot and cool wind prescriptions when a user-specified surface temperature is reached. The asymptotic

giant branch wind is used over the red giant branch wind if the central hydrogen mass fraction is

smaller than 0.01 and the helium abundance in the centre drops below a user-defined value - usually

10−4.

In this work the Dutch wind scheme for massive stars is used, with the de Jager et al. (1988) option

for the cool wind. The mass-loss recipe by Vink et al. (2000, 2001) is calculated in MESA as

log10 ṀVink =





log ṀVink,1 if Teff > 27500 K

αṀ · log ṀVink,1 + (1− αṀ ) · log ṀVink,2 22500 K ≤ Teff ≤ 27500 K

log ṀVink,2 if Teff < 22500 K

, (B.54)
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with

log10 ṀVink,1 =− 6.697 + 2.194 log10

(
Lsurf

105L�

)
− 1.313 log10

(
Msurf

30M�

)
− 1.226 log10

(
v∞

2vesc

)

+ 0.933 log10

(
Teff

4× 104 K

)
− 10.92 log10

(
Teff

4× 104 K

)2

+ 0.85 log10

(
Z

Z�

)
,

(B.55)

where v∞ is the terminal velocity and vesc the escape velocity, and

log10 ṀVink,2 =− 6.688 + 2.21 log10

(
Lsurf

105L�

)
− 1.339 log10

(
Msurf

30M�

)
− 1.601 log10

(
v∞

2vesc

)

+ 1.07 log10

(
Teff

2× 104 K

)
+ 0.85 log10

(
Z

Z�

)
. (B.56)

This formulation includes the jump in the mass-loss rates around

Teff,jump = 1
3

{
61.2 + 2.59

[
−13.636 + 0.889 log

(
Z
Z�

)]}
due to a change in the main line-driving

element iron, which recombines from Fe iv to Fe iii (Vink et al., 2000). Between 22500 K ≤ Teff ≤

27500 K MESA/star smoothly computes the transition between the two mass-loss rates with

αṀ =





1 if Teff > Teff,jump + 100

Teff−(Teff,jump−100)
200 Teff,jump − 100 < Teff < Teff,jump + 100

0 if Teff < Teff,jump − 100

(B.57)

The mass-loss rate by Nugis & Lamers (2000), which is applied to helium rich Wolf-Rayet stars, is

computed as

log10 ṀNL = −11 + 1.29 log10

(
Lsurf

L�

)
+ 1.7 log10 Xsurf(

4He) + 0.5 log Z. (B.58)

Lastly, the mass-loss scheme by de Jager et al. (1988) determines Ṁ by

log10 ṀJ = −1.769 log10

(
Lsurf

L�

)
− 1.676 log10 Teff − 8.158 (B.59)

This mass-loss recipe includes neither the mass nor the metallicity. While it is widely applied in

models of red supergiants, it is one of the most uncertain mass-loss rates.
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1.6.1 Rotation-enhanced Mass Loss

In Section I.4.1, it was discussed that rotation enhances the mass-loss rates. Following Langer (1998);

Heger et al. (2000), MESA/star computes the enhancement of the mass-loss rate as

Ṁ(Ω) =
Ṁnon−rot(

1− Ωsurf

Ωsurf,crit

)ξ , (B.60)

with the adjustable parameter ξ - usually 0.43 (Langer, 1998) - and

Ω2
surf,crit = (1− ΓEdd)

Gm

r3
eq

=

(
1− L

LEdd

)
Gm

r3
eq

, (B.61)

where ΓEdd = κL
4πcGm is the Eddington factor, LEdd = 4πcGm

κ the Eddington luminosity and req the

radius at the equator. MESA limits the boosting factor in Eq.(B.60) with a lower limit of 10−22 and

a user-specified upper limit - the default is 104. Also, the change of the rotation-enhanced stellar

wind during a timestep is not allowed to be larger than the wind from the previous timestep times a

user-defined parameter - the default is 2.

As the star approaches critical rotation, i.e. Ω/Ωcrit → 1, Eq.(B.60) diverges. Luminous stars approach

this limit without having to rotate fast because Ωcrit → 0 as L/LEdd → 1. MESA/star limits the mass-

loss timescale to the thermal timescale of the star, τKH, following Yoon et al. (2010) as

Ṁ = min

[
Ṁ(Ω), fṀcrit

M

τKH

]
, (B.62)

where fṀcrit
is an efficiency factor of order unity with the default value of 0.3.

Normally, the angular momentum removed from the stellar surface via winds corresponds to that

contained in the removed layers. Since j can increase steeply in the very outer layers, very small

timesteps are required to obtain a converged solution. MESA/star adjusts the angular momentum

content of layers below the ones removed, an option which is applied by default but can be turned off

by the user. The adjustment is such that

jlost = fadj · Ṁjsurf + (1− fadj) · jremoved (B.63)

where jremoved is the angular momentum contained in the removed layers of the star in the current

step. It should be noted that while jsurf is the specific angular momentum of the surface cell, i.e.

in units of angular momentum per mass, jremoved is in units of angular momentum. In the context

of this scheme, the user defines the region from which angular momentum is removed by choosing a
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maximal fraction of the total star mass, a fraction of jlost that needs to be in this region and that is

below a chosen optical depth. Angular momentum in this region is adjusted so that no artificial shear

is generated at the inner boundary.

1.7 Resolution

Spatial and temporal resolutions are a crucial part of stellar evolution modelling. The model needs

to be resolved to allow convergence and resolve the physical processes on their timescales.

The timesteps have to be small enough to allow convergence but large enough to allow for an efficient

modelling. Furthermore, the length of a timestep needs to follow the rapid changes in the structure

and composition conditions but, on the other hand, have to be controlled to avoid over-correcting

which reduces the convergence.

The spatial resolution, given as a mesh grid, is a key ingredient of stellar modelling and requires careful

settings. The resolution must properly render the gradients in the structure, chemical composition

and energy generation, in order to give an accurate result. However, it should not be too tight to avoid

an unnecessary computational cost and a reduction of the convergence due to numerical challenges

with small differences.

The resolution settings chosen in the stellar models from this work are presented in Appendix B.3.

1.7.1 Temporal Resolution

MESA/star selects a timestep in two steps. First, a timestep for the next step, δti+1, is estimated as

δti+1 = δtif

[
f(vt/vc,i) · f(vt/vc,i−1)

f(dti/dti−1)

] 1
4

(B.64)

with f(x) = 1 + 2 tan−1 [ 1
2 (x − 1)]. vc is the control variable, which is the unweighted average over

all cells of the relative changes in ln ρ, ln T and ln R. vt is the target value with a default of 10−4.

Eq.(B.64) is a low-pass filter, that uses the results of the previous two timesteps indicated with the

indices i and i− 1. This control scheme allows for rapid changes in the timestep without undesirable

fluctuations.

In a second step, the timestep computed from Eq.(B.64) can be reduced by a variety of tests that

have hard and soft limits, which are specified by the user. If a change exceeds a specified hard limit,

the current solution is rejected and the code forces a retry or backup. On the other hand, if a change

exceeds its specified soft limit, the next timestep is reduced proportionally (see Paxton et al., 2011,

2013, for more details). The various classes of tests include changes in the limit of the relative or

absolute mesh structure, limits in changes in composition, nuclear burning rates or changes in the

luminosity resulting from nuclear burning and changes in other variables such as Teff , L, M , Tc, ρc.
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A full list can be viewed in the MESA documentation.

1.7.2 Spatial Resolution

The mesh, i.e. the distribution of grid points, of the structure and composition profiles is checked

at the beginning of each timestep and adjusted if necessary by either splitting a cell into two or

more sub-cells or merging two or more adjacent cells into one. The code implements remeshing in

a way that most cells are not changed during a remesh. This minimises the numerical diffusion and

supports convergence. Remeshing is made in two stages; a planning stage and an adjustment stage.

In the planning stage, the code determines which cells to split or merge based on allowed changes of

certain mesh functions between adjacent cells. Mesh functions include gradients of m, r, P , T , ∇ad,

Ω and mass fractions above some threshold. Users can also specify regions in which the sensitivity is

increased. In the adjustment stage the cells are merged or split by performing operations to calculate

the value of the new basic variables for the remeshed cells. In doing so, physical principles such as mass

and energy conservation, species conservation and conservation of angular momentum are accounted

for (for more details see Paxton et al., 2011, 2013).

2 Code Alterations

Many of the modules in MESA are equipped with so called hooks which allow users to implement their

own routines into the stellar evolution code. MESA also provides a way to override most of the physics

routines via “other hooks” without having to change the core code. The use of hooks is beneficial

because it allows an easier exchange of the code extensions with other users and simplifies the update

process to a newer MESA revision19.

The hooks can be used for many gimmicks, such as custom stopping conditions or additional model

output when certain conditions are met. While I made extensive use of the hooks in this thesis,

only two physically relevant extensions are presented in the following: the implementation of the

Fuller-modified Tayler-Spruit dynamo and a modification of the mixing-length theory.

2.1 Implementation of the Fuller-modified Tayler-Spruit Dy-

namo

The theory of the Fuller-modified Tayler-Spruit dynamo is introduced in Section II.3.1.3 and the the-

oretical differences between the classic Tayler-Spruit dynamo and this modified version are discussed

there. Here, the implementation of the Fuller-modified Tayler-Spruit dynamo, as published in Fuller

19The documentation on hooks provides more insight on how to use them.
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et al. (2019), is discussed and differences in the numerics are highlighted.

First, the dimensionless rotational shear is smoothed. For cell k the shear becomes

qsmooth(k) =
1

2n+ 1

k+n∑

i=k−n

q(i), (B.65)

with q(i) calculated from Eq.(B.48) for cell i. n is an integer that controls the number of adjacent

cells to be included in the smoothing process. In the current implementation n = 5 is hard-coded but

this can easily be made a user-defined variable.

Next, the thermal diffusivity K is computed as

K =
16σT 3

3κρ2CV
, (B.66)

which uses the specific heat at constant volume CV , i.e. isochoric, instead of the specific heat at

constant pressure CP .

In contrast to the implementation of the Tayler-Spruit dynamo, the Fuller-modified version computes

an effective Brunt-Väisälä frequency, Neff , where the thermal diffusion - which is efficient at the

short radial length scales characteristic for the Tayler instability - mitigates the thermal stratification

(Spruit, 2002; Maeder & Meynet, 2004). A fluid element displaced by a radial distance `r on the

timescale τB diffuses away its temperature fluctuations on a timescale τtherm ≈ `2r
K , with the maxi-

mum radial lengthscale for the Tayler instability, `r = rωA

Neff
and the Alfvén frequency ωA = B2√

4πρr2
.

Therefore, after the time τB thermal losses have reduced the fluctuation by a factor

f =
τB

τtherm
+ 1 = τB ·

KN2
eff

r2ω2
A

+ 1. (B.67)

The growth rate of the Tayler instability is largest form = 1 - see Section II.3.1.1 - and is approximately

σB =
ω2

A

Ω for wA � Ω - see Section II.3.1.1 - hence, τB = σ−1
B = Ω

ω2
A

. This allows to compute the

effective Brunt-Väisälä frequency as

N2
eff = N2

µ +N2
T,eff = N2

µ +
N2

T

1 + K
r2

N2
effΩ

ω4
A

⇒ N2
eff −N2 + (N2

eff −N2
µ) · K

r2

N2
effΩ

ω4
A

= 0, (B.68)

with the saturated Alfvén frequency ωA = αΩ
(
qΩ
Neff

) 1
3

and the Brunt-Väisälä frequency N2 = N2
µ +

N2
T . Eq.(B.68) can be solved to obtain the appropriate value of Neff given a stellar structure. In the

limits of the thermal diffusivity, the two cases of Spruit (2002) are recovered: for K → 0, N2
eff = N2,

for K →∞, N2
eff = N2

µ and if N2
µ → 0 and thermal diffusion is large, N2

eff � N2. In practice, however,

an analytical solution to Eq.(B.68) includes a difficult root finding problem to solve for Neff due to

the dependence of ωA on Neff . Fuller et al. (2019) avoided this problem by using the Tayler instability
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timescale of a non-rotating star, τB = τA = ω−1
A , which neglects the coriolis force that reduces the

growth rate of the instability20 - see Section II.3.1.1 - and using N2 instead of N2
eff to calculate ∗ωA,

where the asterisk indicates the use of N2 in the following. In this approximation, the thermal part

of the effective Brunt-Väisälä frequency is written as

N2
T,eff =

N2
T

1 + K
r2

N2

∗ω3
A

. (B.69)

While this leads to a less accurate N2
eff , in reality, they found that in their models they are always in

the limit with K
r2

N2

∗ω2
A
� ∗ωA, such that the thermal component N2

T is totally suppressed and only the

compositional component matters (Fuller, priv. comm., see also Fig.(2) in Fuller et al. (2019)).

Maeder & Meynet (2004) derive an alternative formula to compute the effective Brunt-Väisälä fre-

quency,

N2
eff = N2

µ +
η
K

η
K + 2

·N2
T ≈ N2

µ +
η

K
·N2

T, (B.70)

where in the last step it was assumed that η � K. In the implementation of the Fuller-modified

Tayler-Spruit dynamo, both versions of the effective Brunt-Väisälä frequency, Eqs.(B.69) and (B.70),

are considered and the final N2
eff is calculated as

N2
eff = N2

µ + (N2 −N2
µ) ·max

{
1

1 + K
r2
N2Ω
∗ω3

A

,min
[
1,
η

K

]}
. (B.71)

Once N2
eff is determined, ωA is re-evaluated using the effective Brunt-Väisälä frequency.

The magnetic viscosity generated by the dynamo action is computed in regions with N2
eff > 0, similar

to Eq.(II.66), as

νAM,TSF = F( αωA
ωmin

) · α3r2Ω

(
Ω

Neff

)2

, (B.72)

where F is a function to suppress the angular momentum transport if the saturated Alfvén frequency

drops below the minimal frequency, ωmin, for the Tayler instability to occur (see Eq.(II.46)),

F(x) =
1

2
+

1

2
tanh (5 · log10 [x]) . (B.73)

The magnetic torque provided by the Fuller-modified Tayler-Spruit dynamo (Eq.(II.65)) SB →∞ as

N2
eff → 0, which can happen in regions near the convective boundaries for example. Consequently,

the torque generates an infinitely strong magnetic coupling. To prevent this, the viscosity computed

in Eq.(B.72) is only applied above a limit for N2
eff . Since the magnetic dynamo was derived assuming

Ω2 � N2
eff , the implementation in Fuller et al. (2019) only uses Eq.(B.72), if N2

eff > 2q2
smoothΩ2.

20The dynamo action by Spruit (2002) was established under the assumption of fast rotation, i.e. Ω � ωA, where
the growth rate of the magnetic field is reduced by the coriolis force. However, in case of very slowly rotating stars, i.e.
Ω� ωA, the timescale of the instability becomes τB = τA = ω−1

A (Maeder & Meynet, 2005, Appendix A).
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This limit is arbitrary and a similar expression such as N2
eff > Ω2 could have been used (Fuller,

priv. comm.). Nevertheless, the choice only affects the torque in regions where N2
eff is very small

and the star is nearly rigidly rotating there, regardless of the limit. In the case the effective Brunt-

Väisälä frequency is below this limit, 2q2
smoothΩ2 > N2

eff > 0, the magnetic viscosity is calculated as

νAM,TSF = α · qsmoothΩr2. (B.74)

It should be noted that in the current implementation the Fuller-modified Tayler-Spruit dynamo is

computed without considering the qmin condition (Eq.(II.68)). Consequently, the dynamo action is

also activated even if the shear is not strong enough, i.e. q < qmin. This is contrarily to the Tayler-

Spruit dynamo, where the dynamo is only active when q > qmin, and could lead to an overestimation

of νTSF and consequently the angular momentum transport - see Section IV.6.1.

Finally, the magnetic viscosity is added to the total viscosity of all sources,

νΩ = νΩ,hydro + νAM,TSF + 10−1. (B.75)

The factor 10−1 is added by default for numerical reasons; if the viscosity were reduced to zero, very

sharp shear layers would develop which potentially cause numerical problems. That being said, this

value is very small and does not affect the results.

It should be noted that the factor α, which is introduced in Section II.3.1.3 to account for the pre-

factors in the magnetic energy dissipation balance (see Eqs.(II.66)) and (II.67), is only included in

the computation of νTSF. Otherwise, the proportionality given in the equations in Section II.3.1.3

is taken as equal, e.g., for the saturated Alfvén frequency. Therefore, studies that compare different

values for α with this current implementation of the magnetic dynamo (as in Fuller et al., 2019; den

Hartogh et al., 2020) do not fully take into account the pre-factors of the magnetic energy dissipation

in all equations, e.g., in the shear and ωA, and it is assumed α = 1.

In the end, the implementation provided by Fuller et al. (2019) applies a smoothing routine. However,

instead of smoothing νTSF the routine is applied to the total viscosity νΩ in Eq.(B.75). The “other

hook” for angular momentum transport, in which this dynamo action is implemented, is called after

all the other angular momentum transport discussed above, rotating and non-rotating, has been

computed. Therefore, νΩ already contains the values for these mixing processes. Consequently,

smoothing νΩ,rot instead of νTSF not only smooths the transport of angular momentum by the magnetic

torque but also the transport by all the other mechanisms. The smoothed rotation-induced processes

can transport different amounts of angular momentum compared to the unsmoothed processes - see
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also Section IV.3. The viscosity for cell k is smoothed as

νΩ,smooth(k) = 10x with x =
1

2n+ 1

k+n∑

i=k−n

log10 (νΩ(i)), (B.76)

where again n is an integer that controls the number of adjacent cells to be included in the smoothing

process and is hard-coded to be 5. The viscosity is not smoothed, if k is either a convective cell or if

one of the 2n neighbouring cells is radiative21, convective, semiconvective or a convective boundary

region. In the implementation the viscosity in each cell is first divided by 5, except in convective

cells, before they are added together following Eq.(B.76). The implementation of this separation into

different regions is physically necessary, for example to not smooth the convective diffusivity into the

radiative region, but it can lead to unexpected features as is discussed in Section IV.3.

As discussed in Section II.3.1.3, chemical mixing by the magnetic dynamo is negligible and is therefore

excluded in this implementation.

2.2 Variant of the Mixing-Length Theory

The mixing-length theory - discussed in Sections II.1.2 and B.1.3.1 - predicts radial turbulent velocity

and mixing profiles which are roughly constant throughout the convective zone. On the contrary,

3D hydrodynamic simulations show that these profiles have an “n-shape” (see e.g. Jones et al., 2017,

their Fig.(21)), i.e. a faster radial velocity is predicted in the bulk of the convective region which

slows down as the boundary is approached. Jones et al. (2017) analysed the mixing from their 3D

hydrodynamic simulations in a 1D diffusive framework and provide a modified diffusion coefficient for

the convective and the boundary region, which mimics the spherically averaged radial diffusion and

velocity profiles from their 3D simulation. The best match is obtained in the following way. First, the

diffusion coefficient is calculated as

D(r) = vMLT ×min(αMLT ·HP , |r − rCB|), (B.77)

where rCB is the radius of the convective boundary as determined by the Ledoux or Schwarzschild

criterion and vMLT is the convective velocity estimated from MLT. This form limits the mixing near the

boundary by limiting the mixing length with the distance from the convective boundary as suggested

by Eggleton (1972). Second, the diffusion coefficient computed with the mixing-length theory, DMLT =

1
3vMLTαMLT · HP , is multiplied by a factor of 3, increasing the mixing and the convective velocity,

vconv, in the bulk of the convective zone. Third, the exponential decaying diffusive boundary mixing

scheme has to be used (see Eq.(II.17)) and the two free parameters are set equal, fCBM = f0. Jones

21i.e no rotation
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et al. (2017) find the best fit to their oxygen burning shell simulations with fCBM = f0 = 0.03.

3 Inlists

At the start of each run, MESA reads a file called inlist. The inlist contains controls to set up the numer-

ical models such as options on how to evolve the star and initial conditions22. The inlists used for the

stellar models in this work are all publicly available on the MESA marketplace:http://cococubed.asu.edu/mesa

market/inlists.html.

4 MESA Code Extensions

In the framework of this Thesis, I made use of MESA’s hooks, i.e. including user-specified code,

several times. The code alterations in Section B.2 are two examples that introduce new physics

into the source code. In addition to new physics I also made use of the extensions to generate

an artificial viscosity or modify the output, for example to generate additional output files when

a specific condition is met or to provide the energy generation of a certain reaction. All these MESA

Code Extensions can be found on my GitHub: hrefhttps://github.com/eddylegrand/MESA run star

extrashttps://github.com/eddylegrand/MESA run star extras

22A full list is given on the MESA source page, for the star job (http://mesa.sourceforge.net/star job defaults.html
and the controls http://mesa.sourceforge.net/controls defaults.html).
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Appendix C
Numerics & Derivations

1 Weighted Smoothing

The weighted smoothing algorithm calculates the weighted average of the n neighbouring cells, where

the original cell k received the maximum weight,

xsmooth(k) =

∑k+n
i=k−n xi ∗ weight(i)
∑k+n
i=k−n weight(i)

. (C.1)

In MESA , the weight(i) is based on the binomial coefficients of Pascal’s triangle. The rows in this

triangle are numbered with n, starting with n = 0 at the top. Each row consists of m entries with

m = n + 1. The first entry is one. Each subsequent row entry is constructed by adding the two

numbers above, treating blank entries as zero,



n

m


 =



n− 1

m− 1


+



n− 1

m


 . (C.2)

The first seven entries of Pascal’s triangle are shown below.

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

n = 6: 1 6 15 20 15 6 1

n = 7: 1 7 21 35 35 21 7 1

249



APPENDIX C. NUMERICS & DERIVATIONS

2 MLT++: Calculation of α̃∇

α̃∇ is the parameter to reduce the superadiabaticity encountered during density and gas pressure

inversions - see Section B.1.3.4. In the following, it is shown, how α̃∇ is calculated as a function

of λmax and βmin. MESA includes six user-chosen parameters to separate the λmax-βmin plane into

different subsections, λ1, λ2, ∆λ, β1, β2 and ∆β (see Table B.2), in order to determine the severity

of the gas pressure and density inversion and compute α̃∇ (λmax, βmin) accordingly:

α̃∇ =





1 if λ1 < 0

if λ1 ≤ λmax :





1 if βmin ≤ β1

β1+∆β−βmin

∆β if βmin < β1 + ∆β

0 if β1 + ∆β ≤ βmin

if λ2 ≤ λmax :





1 if βmin ≤ βlim

βlim+∆β−βmin

∆β if βmin < βlim + ∆β

0 if βlim + ∆β ≤ βmin

if λ2 −∆λ < λmax :





1 if βmin ≤ β2

λmax−(λ2−∆λ)
∆λ if βmin < β2 + ∆β

0 if β21∆β ≤ βmin

0 if λmax ≤ λ2 −∆λ

(C.3)

βlim is a blend βlim ≡ β2 + (λmax−λ2)(β1−β2)
λ1−λ2

. The code runs through a number of if-else statements,

following the structure of Eq.(C.3), starting from top to bottom.

3 Derivations

In this section some of the formulae used in this work are derived from basic principles.

3.1 Diffusion Equation

Imagine particles of species i in presence of an abundance gradient along the radial direction and the

other quantities constant in space. Particles i with mass fraction Xi and thermal velocity vT,i can

move a distance δr along the abundance gradient and enter or leave a sphere at coordinate r. This
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results in an average flux of particles i

j±i =
1

6
vT,i(r ∓ δr)Xi(r ∓ δr) = −1

6

∂

∂r
(vT,iXi)δr, (C.4)

where the factor 1
6 is the probability of the particles i at r∓ δr with random motion to move towards

the surface of the sphere. The + and − sign indicate particles i entering or leaving, respectively, which

results in a total flux ji = j+
i + j−i . The flux of particles i can also be expressed with the average

diffusion velocity vi,

ji = ρXivi. (C.5)

Eqs. (C.4) and (C.5) give the general expression of the diffusion velocity vi. Since the diffusion is

assumed to be a result of an abundance gradient the radial derivation of the thermal velocity can be

neglected. Therefore the diffusion velocity of particles i can be expressed as

vi = −Di

Xi

∂

∂r
Xi, (C.6)

with the diffusion coefficient Di = 1
3`ivT,i. The minus sign indicates that the movement is in the

opposite direction of the concentration gradient. Eq. (C.6) can similarly be derived for a turbulent

medium, when appropriate expressions for vT and ` are used.

The number of particles, ni = ρXi, is conserved, hence, with the continuity equation and spherical

symmetry

∂

∂t
(ρXi) = − 1

r2

∂

∂r
(r2ρXivi) =

1

r2

∂

∂r
(r2ρDi

∂

∂r
Xi). (C.7)

In the last step Eq. (C.6) is used. This equation can further be simplified by taking the sum over all

particle species on both sides. The left hand side simplifies to

∑

i

∂

∂t
(ρXi) =

∂

∂t
(ρ
∑

i

Xi) =
∂

∂t
ρ. (C.8)

The right hand side gives, using the fact that the total mass fraction is of unity (
∑
iXi = 1),

∑

i

1

r2

∂

∂r
(r2ρDi

∂

∂r
Xi) =

1

r2

∂

∂r
(r2ρDi

∂

∂r

∑

i

Xi) = 0. (C.9)

Combining the left and right hand side results in

∂

∂t
ρ = 0 (C.10)
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and Eq. (C.7) can be written in the form

ρ
∂

∂t
Xi =

1

r2

∂

∂r
(r2ρDi

∂

∂r
Xi), (C.11)

at a Lagrangian mass coordinate Mr. This is the diffusion equation in spherical symmetry as it is

assumed in 1D stellar evolution. The diffusion equation can be written more generally,

ρ
∂

∂t
Xi = ∇ · (ρD∇Xi), (C.12)

with an appropriate diffusion coefficient in any direction. In the case of a general fluid motion with

velocity u the more general diffusion equation is written as (Landau & Lifschitz, 1966)

ρ
d

dt
Xi = ρ

∂

∂t
Xi + ρu · ∇Xi = ∇ · (ρD∇Xi). (C.13)

The second term in the middle part is an advective term due to the motion of the fluid.

3.2 Angular Momentum Transport Equation

The torque M exerted by a force

F =
d

dt
(mv), (C.14)

with the mass m and the velocity v, about a fixed point s is

M = s× F = s× d

dt
(mv), (C.15)

where × marks the cross-product of two vectors and d
dt the Lagrangian time derivative. The angular

momentum L of a point at s with respect to the centre on which the force F is applied is

L = s×mv. (C.16)

The absolute time derivative of L is

d

dt
L =

d

dt
(s×mv) =

d

dt
s×mv + s× d

dt
(mv) = m (v × v)︸ ︷︷ ︸

=0

+s× d

dt
(mv) = s× d

dt
(mv), (C.17)

thus, with Eq. (C.15),

M =
d

dt
L. (C.18)
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In spherical coordinates (êr, êθ, êϕ), the distance s can be expressed as s = r sin(θ). This allows to

rewrite the time derivative of the angular momentum as

d

dt
L = m

d

dt
(s× v) = m

d

dt

(
s2Ω

)
= m

d

dt

(
r2 sin2(θ)Ω

)
, (C.19)

where in the second step s2Ω = s× v with the angular velocity Ω was used.

The angular momentum of a volume element dm = ρ · dV is

dL = ρr2 sin2(θ)Ω · dV = ρr2 sin2(θ)Ω · r2 sin(θ)dθdϕdr. (C.20)

With Eq. (C.19) the time derivative of the angular momentum in Lagrangian coordinates becomes1

ρ
d

dt
(L) = ρ

d

dt

(
r2 sin2(θ)Ω

)
Mr
· r2 sin(θ)dθdϕdr, (C.21)

where the subscript Mr is used to indicate a derivative in Lagrangian coordinates. The time derivative

can be rewritten

ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr

=
d

dt

(
ρr2 sin2(θ)Ω

)
Mr
− r2 sin2(θ)Ω

d

dt
(ρ)Mr

=
∂

∂t

(
ρr2 sin2(θ)Ω

)
r

+ u∇ ·
(
ρr2 sin2(θ)Ω

)
− r2 sin2(θ)Ω

∂

∂t
(ρ)r − r2 sin2(θ)Ω · u · ∇ρ, (C.22)

where the subscript r indicates a derivative in Eulerian coordinates and u is the speed of the co-moving

system. Using the continuity equation,

∂

∂t
ρ = −∇ · (uρ) (C.23)

one can write

− ∂

∂t
ρ− u · ∇ρ = ∇ · (uρ)− u · ∇ρ = ρ∇ · u. (C.24)

With this, Eq. (C.22) can be further simplified,

ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr

=
∂

∂t

(
ρr2 sin2(θ)Ω

)
r

+ u∇ ·
(
ρr2 sin2(θ)Ω

)
+ ρr2 sin2(θ)Ω∇u

=
∂

∂t

(
ρr2 sin2(θ)Ω

)
r

+∇
(
ρr2 sin2(θ)Ω · u

)
(C.25)

This expresses the temporal changes of angular momentum of a volume element in an Eulerian coor-

dinate system. Eq. (C.15) indicates that the angular momentum only changes if there is a torque (see

1The volume can be considered continuous and steady. Therefore d
dt
·
∫

(x) =
∫
· d
dt

(x).
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Section II.3 for an example of a torque in a star).

In order to find the shear stress, the shear tensor has to be considered. The Navier-Stokes equation

for incompressible fluids in tensor notation is

ρ

(
∂vi
∂t

+ vk
∂vi
∂xk

)
= − ∂p

∂xi
+ η

∂2vi
∂x2

k

(C.26)

with the shear tensor

σik = −pδik + η

(
∂vi
∂xk

+
∂vk
∂xi

)
. (C.27)

δik is the Kronecker symbol and η the dynamic viscosity.2 . It was assumed that the velocity gradients

are small (linearity of the derivations ∂vi
∂xk

) and that η ∼= const.

The tensor notation in Eq. (C.27) only holds in Cartesian coordinates and has therefore to be trans-

formed into spherical coordinates (Landau & Lifschitz, 1966, Eq. (15.17)). In the context of a differ-

entially rotating star we are interested in the vertical and tangential shear, hence we need the σrϕ

and the σrθ component respectively. In spherical coordinates the vertical shear tensor component is

written as

σrϕ = ηr
∂

∂r

(vϕ
r

)
+ η

1

r sin(θ)

∂vr
∂ϕ

= η

(
∂vϕ
∂r
− vϕ

r
+

1

r sin(θ)

∂vr
∂ϕ

)
. (C.28)

By using the identity s2|Ω| = |s× v| and the fact that v = v êϕ, Eq. (C.28) can be written as

σrϕ = η

(
∂vϕ
∂r
− vϕ

r

)
= η

(
r sin(θ)

∂Ωϕ
∂r

+ Ωϕ
∂r sin(θ)

∂r
− Ωϕr sin(θ)

r

)

= η

(
r sin(θ)

∂Ωϕ
∂r

+ Ωϕ sin(θ)− Ωϕ sin(θ)

)
= ηr sin(θ)

∂Ωϕ
∂r

(C.29)

Similarly, the tangential shear tensor component is written as

σrθ = ηr
∂

∂r

(vθ
r

)
+ η

1

r

∂vr
∂θ

= η

(
∂vθ
∂r
− vθ

r
+

1

r

∂vr
∂θ

)
= ηr sin(θ)

∂Ωθ
∂r

(C.30)

The force acting on a surface element df = dfn, where n is a unit vector along the surface’s normal,

is equal to the momentum flux through this element:

Fi = Πikdf = (ρvivj − σij) df (C.31)

2The dynamic viscosity µ is the measurement of the fluid’s internal resistance to flow while the kinematic viscosity ν
refers to the ratio of dynamic viscosity to density. Simply put, µ gives information of the force needed to make the fluid
flow at a certain rate, while ν states how fast the fluid is moving when a certain force is applied (Landau & Lifschitz,
1966, p.55).
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In determining the force on a surface element, each surface element has to be considered in a frame

where it is at rest (Landau & Lifschitz, 1966). Thus, the force per unit area acting on the surface

element is

Pi = σijni (C.32)

This gives a force per unity surface (Maeder, 2009)

dF = dA τ(u) = dAν∇ · v. (C.33)

The change of force of a volume element over a distance d` = (dr, rdθ, r sin(θ)dϕ) is

dM≡ ∇ · dFd` =

(
∂

∂r
dFr +

∂

r∂θ
dFθ +

∂

r sin(θ)∂ϕ
dFϕ

)
d` ≡ ∇ · (dAν∇ · v) d`. (C.34)

Therefore, combining Eqs. (C.18), (C.18), (C.21) and (C.34), an equation for the change of angular

momentum is recovered,

ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr
· r2 sin(θ)dθdϕdr = ∇ · (dAν∇ · v) d`

=
1

r2

∂

∂r

(
r2 sin(θ)dθdϕν

1

r2

∂

∂r
vr

)
dr · êr +

1

r sin(θ)

∂

∂θ

(
r sin(θ)drdϕ · ν 1

r sin(θ)

∂

∂θ
vθ

)
· rdθ · êθ,

(C.35)

where symmetry in êϕ was assumed. This can be simplified to

ρ
d

dt

(
r2 sin2(θ)Ω

)
Mr
· r2 sin(θ) =

1

r2

∂

∂r

(
sin(θ)ν

∂

∂r
· ur
)
· êr +

1

r sin(θ)

∂

∂θ

(
ν
∂

∂θ
· uθ
)
· êθ. (C.36)

In the literature, there exist different descriptions and formulation for angular momentum transport.

If in Eq. C.36 only the radial transport is considered one can further simplify,

d

dt

(
r2 sin2(θ)Ω

)
Mr

=
1

ρr4 sin(θ)

∂

∂r

(
sin(θ)ν

∂

∂r
· ur
)
· êr =

1

ρr4

∂

∂r

(
ν
∂

∂r
ur

)
· êr. (C.37)

When using the transformation (Eq. (1.7) from Kippenhahn & Weigert (1993))

∂

∂r
= 4πr2ρ

∂

∂m
, (C.38)

it follows that

d

dt

(
r2 sin2(θ)Ω

)
Mr

=
d

dt
(r2 sin2(θ))Mr

Ω + r2 sin2(θ)
d

dt
(Ω)Mr

=
4πr2ρ

ρr4

∂

∂m

(
4πr2ρν

∂

∂m
ur

)
.

(C.39)
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This can be rewritten as

dΩ

dt

∣∣∣∣
Mr

=
1

r4 sin2(θ)

∂

∂m

(
(4π)2r2ρν

∂

∂m
ur

)
− Ω

r2 sin2(θ)

d

dt
(r2 sin2(θ))Mr

. (C.40)
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