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Transmission spectroscopy1,2,3 of exoplanets has revealed signatures of water vapor, aerosols, and 

alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the 

Hubble and Spitzer Space Telescopes were hindered by the observations’ relatively narrow wavelength 

range and spectral resolving power, which precluded the unambiguous identification of other chemical 

species — in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 

0.5–5.5 µm atmospheric transmission spectrum of WASP39 b8, a 1200 K, roughly Saturn-mass, Jupiter-

radius exoplanet, measured with JWST NIRSpec’s PRISM mode9 as part of the JWST Transiting Exoplanet 

Community Early Release Science Team program10,11,12. We robustly detect multiple chemical species at 

high significance, including Na (19σ), H2O (33σ), CO2 (28σ), and CO (7σ). The non-detection of CH4, 

combined with a strong CO2 feature, favours atmospheric models with a super-solar atmospheric 

metallicity. An unanticipated absorption feature at 4µm is best explained by SO2 (2.7σ), which could be 

a tracer of atmospheric photochemistry. These observations demonstrate JWST’s sensitivity to a rich 

diversity of exoplanet compositions and chemical processes.  

 

We observed one transit of WASP-39b on 10 July 2022 with JWST’s Near InfraRed Spectrograph 

(NIRSpec)9,13, using the PRISM mode, as part of the JWST Transiting Exoplanet Community Early Release Science 

Program (ERS Program 1366) (PIs: N. Batalha, J. Bean, K. Stevenson)10,11. These observations cover the 0.5–

5.5µm wavelength range at a native resolving power of R = λ/∆λ ∼ 20–300. WASP-39b was selected for this 

JWST ERS Program due to previous space- and ground-based observations revealing strong alkali metal 

absorption and multiple prominent H2O bands4,6,14,15,16, suggesting strong signal-to-noise could be obtained with 

JWST. However, the limited wavelength range of existing transmission spectra (0.3–1.65µm, combined with two 

ACCELE
RATED ARTIC

LE
 PREVIEW



3 

wide photometric Spitzer channels at 3.6 and 4.5µm) left several important questions unresolved. Previous 

estimates of WASP-39b’s atmospheric metallicity—a measure of the relative abundance of all gases heavier than 

hydrogen or helium—vary by four orders of magnitude6,16,17,18,19,20. Accurate determinations of metallicity can 

elucidate formation pathways and provide greater insight into the planet’s history21. The JWST NIRSpec PRISM 

observations we present here offer a more  detailed view into WASP-39b’s atmospheric composition than has 

previously been possible (see ref. 21 for an initial infrared analysis of this data). 
We obtained time-series spectroscopy over 8.23 hours centered around the transit event to extract the 

wavelength-dependent absorption by the planet’s atmosphere—i.e., the transmission spectrum, which probes 

the planet’s day-night terminator region near millibar pressures. We used NIRSpec PRISM in Bright Object Time 

Series (BOTS) mode. WASP-39 is a bright, nearby, relatively inactive23 G7 type star with an effective temperature 

of 5400 K 8. WASP-39’s J-band magnitude of 10.66 puts it near PRISM’s saturation limit, which fortuitously 

allows us to test the effects of saturation on the quality of the resulting science compared to past measurements 

(see Methods). 

In our baseline reduction using FIREFLy Fast InfraRExoplanet Fitting for Lightcurves24, we perform 

calibrations on the raw data using the jwst Python pipeline12, and then identify and correct for bad pixels and 

cosmic rays. We mitigate the 1/f noise9 at the group level rather than the integration level to ensure accurate 

slope fitting, which we find to be a crucial step for NIRSpec PRISM observations with few groups per integration. 

We bin the resulting spectrophotometry in wavelength to create 207 variable-width spectral channels with 

roughly equal counts in each. Fig. 1 shows the FIREFLy white and spectrophotometric light curves at this step 

in the top panel. Several absorption features are visible by-eye as darker horizontal stripes within the transit 

region in the 2D light curve (Fig. 1), demonstrating the high quality of the raw spectrophotometry achieved by 

the PRISM observing mode. 

To extract the atmosphere’s transmission spectrum, we fit the planet’s transit depth in each wavelength bin 

using a limb darkened transit light curve model using the Python-based Levenburg-Marquardt least squares 

algorithm lmfit25. The light curves show a typical photometric scatter of 0.2–1.2% per integration (1.36 seconds 

each), and the typical transit depth uncertainties vary between 50–200 parts-per-million (ppm), which is in line 

with near-photon-limited precision (see Methods). While we successfully measure fluxes in the saturated 

regions (0.8-2.3 µm), due to the lower number of groups used per integration here (1-3), the measured count 

rates may be adversely affected. We do not find excess red noise in the saturated channels themselves, however 

we notice large point-to-point scatter in the transit depths, which required wider wavelength binning to better 

match previous HST observations. Fig. 2 highlights representative transit light curves spanning the entire 

wavelength range. These data are binned into wider wavelength channels than those used for  the final 

transmission spectrum for ease of presentation. Light curve systematics have not been removed from these data, 

demonstrating the unprecedented stability and precision of the PRISM observing mode. 

We also compared the results from the FIREFLy reduction to three other independent reductions that use 
different treatments for the saturated region of the detector, limb darkening, and various detector systematics 

(see Methods). All four reductions obtain consistent results. Fig. 3 shows a comparison of  the four reductions. 

The consistency provides confidence in the accuracy of derived atmospheric parameters, demonstrating that 

any residual systematics are minimal and do not strongly bias results for NIRSpec PRISM observations. The 

transmission spectrum also agrees well with previous measurements from ground-based telescopes15,16 as well 

as HST and Spitzer6 within error (see Fig. 3), indicating that we can reliably recover a spectrum at these levels 

of saturation. These PRISM observations offer high-quality data from 0.5–5.5 µm, with minimal contributions 

from systematics, and at precisions generally near the photon limit (see Methods). While recovery of the 

saturated region (0.9–1.5µm) is possible, caution is warranted when interpreting this portion of the spectrum 

(see Methods). Future PRISM observations of similarly bright targets should therefore carefully consider if 

saturating the spectrum is an appropriate choice for a given planet, or if building the wavelength coverage from 

multiple transits with different complementary modes is preferable. 

The transmission spectrum of WASP-39b from the FIREFLy reduction is shown in Fig. 4. We select the 

FIREFLy reduction to be our baseline reduction, but comparable results are achieved with the three other 

reductions presented in this work (see Methods). We interpret the spectrum with grids of one-dimensional (1D) 

radiative–convective–thermochemical–equilibrium models (post-processed with some additional gases (see 
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the Methods)), with a representative best-fitting model transmission spectrum shown in Fig. 4, along with 

opacity contributions from atoms, molecules, and grey clouds. We detect the presence of H2O via four 

pronounced independent bands (33σ, 1–2.2 µm), a prominent CO2 feature at 4.3 µm (28σ), Na at 0.58 µm (19σ), 

a CO absorption band at 4.7 µm (7σ), and a grey cloud (21σ). We do not observe any significant CH4 absorption 

(expected at 3.3 µm), despite predictions of its presence for atmospheres at approximately solar metallicity and 

place an upper limit of / 5×10−6 on the CH4 volume mixing ratio between 0.1–2 mbars. We also observe a 

relatively narrow absorption feature at 4.05 µm (∼2.7σ), which we attribute to SO2 — a potential tracer for 

photochemistry26,27,28 — after an extensive search across many possible opacity sources (see Methods). Using a 

Bayesian approach described in the methods section, we calculate that the volume mixing ratio of SO2 needed 

to explain this feature is 10−5. The potential SO2 feature is also observed at higher resolutions with JWST NIRSpec 

G395H29, adding confidence that the feature first reported as an unknown absorber22 is a genuine feature of the 

planet’s atmosphere. With Na detected in the atmosphere, the alkali metal, K, is also expected at optical 

wavelengths14 though not detected. However, the resolution covering the narrow K absorption doublet in the 

optical is low, which may be preventing detection. This might also be because of detector saturation in the 

wavelength range where K absorption is expected. We also do not detect the presence of H2S in the atmosphere. 

We note that although the best-fitting models shown in Figs. 3 and 4 have some CH4, H2S, and K signatures, these 

species are not favored by the data to the level of a detection. We determine the single best-fitting atmospheric 

metallicity, C/O ratio, and grey cloud opacity to be 10×solar, 0.7, and κcld=10−2.07 cm2/g, respectively. A detailed 

discussion on these best-fitting parameters is presented in the methods section.  

JWST/NIRSpec PRISM’s power to constrain multiple chemical species in hot giant planet atmospheres 

provides new windows into their compositions and chemical processes, as we show here with WASP-39b. Using 

our model grids, we find that WASP-39 b’s best-fitting atmospheric metallicity is ∼10× solar. In the limit of 

equilibrium chemistry, our non-detection of CH4 at 3.4 µm paired with the prominence of the large CO2 feature 

at 4.4 µm are indicative of a super-solar atmospheric metallicity, as illustrated in Extended Data Fig. 9. This may 

point to WASP-39 b’s puffy envelope bearing more compositional similarity to the similarly massed ice giants 

than the gas giants. Moreover, the likely detection of SO2, and its unexpectedly high estimated abundance, 

suggests that photochemical processes are pushing this species out of equilibrium. Photochemistry models 

show that sulphur compounds such as H2S efficiently photodissociate and recombine to form SO2 with ∼1 ppm 

abundances and at 1-100 mbar pressures27—roughly the same pressure range probed by our transmission 

spectroscopy (see Extended Data Fig. 10). The abundance measurement of SO2 can therefore serve as an 

important tracer of the thermochemical properties of highly irradiated stratospheres and the efficiency of 

photochemistry. Furthermore, our detection of a qualitatively significant wavelength dependence to the planet’s 

central transit time (Extended Data Fig. 3) suggests that these observations are sensitive to differences in the 

atmospheric composition at the planet’s leading and trailing hemispheres. The measured ∼20 second amplitude 

of this effect is in-line with model expectations30. This indicates that such observations will be informative in 

exploring the 3D nature of hot Jupiter atmospheres, which may give a more holistic understanding of their heat 

redistribution and nightside chemistry. 
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Fig. 1: The light curve of WASP-39b observed by JWST NIRSpec PRISM. a, The normalized white light curve 

created by integrating over all wavelengths using the FIREFLy reduction. b, The binned time-series (with 30 

integrations per time bin) of the relative flux for each wavelength. A constant 200 ppm/hour linear trend 

through time has been removed from the white light curve and each spectral channel for visual clarity. 

 

Fig. 2: Normalized spectrophotometric light curves for the JWST-PRISM transit of WASP-39b. The light 

curves were created by summing over wide wavelength channels (wavelength ranges indicated on the plot). 

Overplotted on each light curve are their best-fit models, which include a transit model and detector 

systematics. Light curve systematics have not been removed from the data. 

 

 

 

 

Fig. 3: WASP-39 b transmission spectral measurements. A comparison of the JWST transmission spectra 

obtained from the four independent reductions considered in this work (coloured points), which are all in broad 

agreement. Previous measurements from HST, VLT, and Spitzer6 are also shown (black) along with our fiducial 

best-fit spectrum model from the PICASO 3.0 grid (grey). All of the transmission spectral data have 1-σ error 

bars shown. The saturated region of the detector is indicated (grey bar) with the shading representative of the 

level of saturation (also see Extended Figure 6). Different reductions are presented on slightly different 

wavelength grids for visual purposes, the original resolution each reduction used is discussed in the Methods. 

 

 

Fig. 4: The JWST-PRISM transmission spectrum of WASP-39b with key contributions to the atmospheric 

spectrum. The black points with error bars correspond to the measured FIREFLy transit depths of the 

spectrophotometric light curves at different wavelengths. The best-fitting model spectrum from the PICASO 3.0 

grid is shown as the grey line and the coloured regions correspond to the chemical opacity contributions at 

specific wavelengths. The best-fitting 1D radiative-convective thermodynamic equilibrium (RCTE) model 

corresponds to a super-solar metallicity and super-solar carbon-to-oxygen ratio with moderate cloud opacity 

(see Methods). The PRISM transmission spectrum is explained by contributions from Na (19σ), H2O (33σ), CO2 

(28σ), CO (7σ), SO2 (2.7σ) and clouds (21σ). The data do not provide evidence of CH4, H2S and K absorption (see 

Methods). Also, note that the detector was saturated to varying degrees between 0.8-1.9 µm. As before, the error 

bars are 1-σ standard deviations. 

 

 

Methods 

Data Reduction 

One transit of WASP-39 b was observed with the NIRSpec PRISM mode, with the 8.23-hour observation 

roughly centered around the transit event. We used NIRSpec’s Bright Object Time Series (BOTS) mode with the 

NRSRAPID readout pattern, the S1600A1 slit (1.6”×1.6”), and the SUB512 subarray. Throughout the exposure, 

we recorded 21,500 integrations, each with 5 0.28-second groups up the ramp. We achieved a duty cycle of 82%. 

We extracted transmission spectra of WASP-39b using four different reductions with the FIREFLy, tshirt, 

Eureka!+ExoTEP, and Tiberius pipelines. The results from all reductions are broadly consistent (see Fig. 3 and 

Extended Data Fig. 1). We used the FIREFLy reduction as our baseline for comparison to models throughout this 

paper, however equivalent overall results can be deduced from the other reductions. Some key attributes of the 
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reductions are compared in Extended Data Table 2. All reductions correct for 1/f noise: correlated frequency-

dependent read noise in the images caused by detector readout and current biases in the electronics31. We note 

that since the GAINSCALE step of the JWST pipeline applies a gain correction to the raw count rate files, the 

counts and count rates quoted herein are in units of electrons and electrons per second, respectively. 

We find that recovery of the saturated region was possible by applying several custom steps described here. 

Without these steps, the heavily saturated region showed a large and unexpected point-to-point scatter of 

several thousand ppm in the transmission spectra. We note that there was limited on-sky NIRSpec calibration 

data available when the data were obtained and reduced, including an incomplete detector bias image whose 

values were all set to zero. We used a custom bias frame for this step (priv. comm., S. Birkmann). While the 

transmission spectra longward of about 2µm could be extracted without the use of this calibration, we found 

that bias correction was critical to extract the spectrum in the saturated region. 

In addition, to recover the saturated region it was necessary to perform a reference pixel correction 

something that was skipped by the default jwst pipeline for NIRSpec PRISM because no official reference pixels 

are present in the sub array (also see t-shirt reduction below). All reductions also expand the saturation flags 

along entire columns and only use the groups prior to saturation for slope fitting in these  regions. With these 

steps, the spectra broadly matched previous HST and VLT observations6, with improvement in the region with 

only one or two groups before saturation. We expect that as updated NIRSpec calibration data becomes available 

the recovery of saturated regions in PRISM observations may become easier, however we still suggest avoiding 

rapid saturation with less than two groups prior to saturation if possible, especially if that region of the spectrum 

is important to one’s science case. 

 

FIREFLy 

We performed custom calibrations on the uncalibrated data, including 1/f noise destriping9 at the group 

level, bad and hot pixel cleaning, cosmic ray removal, and 5σ outlier rejection. Destriping the data also removed 

potential background in the 2D images, though none was apparent in the data. The jump-step and dark-current 

stages of the jwst pipeline12 (version 1.6.2) were skipped, and the top and bottom 6 pixels of the non-illuminated 

sub-array were manually set to be reference pixels in the jwst pipeline reference pixel step. To obtain our final 

wavelength calibration, we extrapolated the STScI-provided in-flight instrumental wavelength calibration data 

product across the detector edge pixels which did not have an assigned wavelength. The calibration was derived 

using the ground-based wavelength solution. We performed tests to search for zero-point offsets in the 

calibration versus the planetary and stellar spectra and did not find any at the level of half a pixel width or 

greater. 

JWST detectors integrate using a non-destructive up-the-ramp sampling technique, where the flux is 

measured in counts-per-second from fitting the ramp from the groups contained within each integration. 
Extended Data Fig. 2 shows the regions of the spectrum impacted by saturation. Within a column where a 

pixel was marked as saturated by the pipeline in any given group, we used only the data from the preceding 
groups for ramp fitting, and manually set an entire column of the detector as saturated if a pixel in that 
column was saturated. Because a small portion of the spectrum reaches our saturation threshold in the 

second group, this region of the spectrum only uses one group to derive a “ramp.” While we were able to 

recover the spectra in this wavelength range by flagging and ignoring saturated pixels at the group level, we 

note that the data quality is lower in the saturated region than in the rest of the spectrum given the counts-
per-second ramp was measured from fewer than the total 5 groups. 

We measured the positional shift of the spectral trace across the detector throughout the time series using 

cross correlation and used them to shift-stabilize the images with flux-conserving interpolation. This procedure 

reduced the amplitude of position-dependent trends in the light curves. We optimized the width of our flux 

extraction aperture at each wavelength pixel and extracted the spectrophotometry. For each wavelength we 

tested a wide range of aperture widths and determined the width that minimized the scatter of the photometry 

of the first 350 datapoints. We bin the cleaned spectrophotometry in wavelength to create 207 variable-width 

spectral channels with roughly 105 counts per second in each bin, and widths ranging from 3.3—60 nm. Because 
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we use fewer groups in the saturated detector columns, our bin widths are larger by a factor of a few in this 

region to account for the lower count rates per detector column. 

Before fitting the transmission spectrum, we use a very wide, high-SNR white-light channel (3–5.5 µm) to fit 

for the planet’s orbital parameters (listed in Extended Data Table 1). Restricting the wide bin to the reddest 

wavelengths minimizes the impact of limb darkening on the transit light curve and the resulting covariance with 

the orbital system parameters while ignoring the saturated region. We fit this white-light curve using the 

Markov Chain Monte Carlo sampler emcee32 within the least-squares minimization framework of lmfit. We use 

1,000 steps and uniform priors with extremely wide bounds that encapsulate the limits of physicality to ensure 

that there is no bias introduced by the prior. Our fitting approach accounts for non-Gaussian degeneracies in the 

posterior distribution, thereby addressing the known linear correlation between impact parameter (b) and the 

scaled semimajor axis (a/Rs). 

We excluded the first 3000 integrations as they exhibited a slight non-linear baseline flux trend, and 

integrations 20750–20758 due to a high-gain antenna move which was identified from outliers in the 

photometry which correlated with noticeable trace shifts in the x- and y-directions. To measure the 

transmission spectrum, we fit the light curve at each wavelength channel jointly with a transit model33 and a 

linear combination of systematics vectors composed of the measured spectral shifts in the x- and y-directions. 

At each channel we fit the planet’s transit depth and the stellar limb darkening, while fixing the trans it centre 

time T0, impact parameter b, and normalized semimajor axis a/Rs to the values determined in the white light 

curve fit. We also fix the orbital period to the published value of 4.0552941 days34. With the orbital system 

parameters fixed, we find the posterior distribution is well-fit by a multivariate Gaussian distribution, and 

therefore use a Levenberg-Marquart least squares minimization algorithm25 to efficiently determine the best-fit 

parameters. In each channel, we inflate the transit depth error bars in quadrature with the measured residual 

red noise in the photometry as measured by the binning technique35. Measured uncertainties on the transit 

depths vary from 50–200 ppm, with a median of 99 ppm (see Extended Data Fig. 4). As the noise levels are very 

close to the limit with what is expected including only photon and read noise sources, tools such as PandExo36 

should accurately predict what is achievable for other planets. We measure an increase in red noise for a few 

select spectral channels, but otherwise the light curves show no significant systematic errors, with some 

channels binning down to precision levels of a few ppm. We measure x− and y−jitter systematics at the ∼100 

ppm level. We see differences in the central transit time as a function of wavelength on the order of 10 seconds, 

which may be attributable to limb asymmetries in the atmospheric temperature and composition. We show 

these signatures in Extended Data Fig. 3. Notably, we see a significant timing structure in the 2-3 µm range, 

which may arise from limb asymmetries in temperature and/or cloud coverage at the altitude probed by the 

water vapour absorption feature at 2.7 µm37. Further analysis of the spectrophotometry could be warranted to 

investigate limb asymmetries in more detail. 

 

We fit the transit light curves using a quadratic function to model stellar limb darkening given as, 

𝐼(𝜇)

𝐼(1)
  =  1  −  𝑎(1 −  𝜇)  −  𝑏(1 −  𝜇)2 (1) 

where I(1) is the intensity at the centre of the stellar disk, µ = cos(θ) where θ is the angle between the line of 

sight and the emergent intensity, and a and b are the limb darkening coefficients. We tested a four-parameter 

non-linear limb darkening function38 as well, which provided equivalent results. In practice, we first fit for both 

u+ = a + b and u− = a − b for the quadratic law. When comparing the limb darkening coefficients to theoretical 

values, we find an offset between the theoretically derived values of u+ from the 3D stellar models from ref.39 

and the JWST values derived from the transit light curve fits (see Extended Data Fig. 5). This offset suggests the 

limb of WASP-39A is brighter than the stellar models predict. We fit for this offset and find it to be -0.065±0.022. 

As the wavelength-to-wavelength shape of u+ is well described by the model, we then apply this offset to the 

theoretical limb darkening coefficients and then subsequently fix u+ while allowing only u− to be free (see 

Extended Data Fig. 5). This procedure helps reduce degeneracies when fitting multiple limb darkening 

coefficients and increases the precision of the transmission spectrum, as the limb darkening is often not well 
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constrained, particularly at long wavelengths where the limb darkening is weak39 (Extended Data Fig. 5). The 

main effect of fitting for limb darkening over fixing the coefficients to the 3D models is the transit depth level of 

the optical spectrum, which is lower with values fixed to the model. We compare the optical spectrum with fixed 

limb darkening to the HST data from ref6 in Extended Data Fig. 6, which was also fit with limb darkening fixed 

to the same model. Overall, we find good agreement between the two spectra. We note that the assumptions 

around limb darkening can affect the optical spectra continuum which impacts particularly the interpreted 

levels of aerosol scattering — further investigations are warranted. 

tshirt 

We use the tshirt pipeline e.g.41 to extract an independent set of light curves and spectrum. We begin 

with the uncalibrated “uncal” data product and apply a custom set of processing steps on stage 1 that build on 

the existing jwst stage 1 pipeline software version 1.6.0 with reference files CRDS jwst 0930.pmap. We use a 

custom bias file shared by the instrument team (Stephan Birkmann, private communication), which is the same 

file that was delivered to the JWST Calibration Reference Data System (CRDS). 

We attempt to minimize the biasing effects of count rate non-linearity by modifying the quality flags of pixels 

surpassing 90% of full-well depth at the group stage. To ensure that there are no systematic differences between 

pixels within the spectral trace and in the background region, we adjust the quality flags uniformly along the 

entire pixel column at each group for all integrations. We skip the “jump” and “dark” steps of stage 1. 

The tshirt code includes a Row-by-row, Odd-Even By Amplifier (ROEBA) correction to reduce 1/f noise. We 

first identify source pixels by choosing pixels with more than 5 Data Numbers per second (DN/s) in the rate file 

and expanding this region out by 8 pixels. We then identify background pixels for 1/f corrections by choosing 

all non-source pixels and pipeline flagged non-‘DO NOT USE’ pixels. We loop through every group and subtract 

the median of odd (even) row background pixels from all odd (even) rows. We next find a column-by-column 

median of all background pixels to calculate a 1/f stripe correction and subtract this from each column. 

After calculating rate files in DN/s, we use tshirt to perform covariance-weightExtraction of the spectrum31. 

We do a column-by-column linear background subtraction using pixels 0 through 7 and 25 through 32. We use 

a rectangular source extraction region centered on Y=16 pixels with a width of 14 pixels. We assume the 

correlation between pixels to be 8% from previous studies of background pixels31. We use a spline with 30 knots 

to estimate a smooth spectrum of the star at the source pixels and identify bad pixels as ones that deviate by 

more than 50σ from the spline. Pixels that are more than 50σ or else marked as ‘DO NOT USE’ are flagged and 

then the spatial profile is interpolated over those pixels. No corrections were made to the centroid or wavelength 

solution due to the exceptional pointing stability of the observatory42. 

When fitting the light curves, we exclude all time samples between UT 2022-07-10T23:20:01 and 202207-

10T23:21:08 to avoid the effects of the high gain antenna move. We first fit the broadband light curve with all 

wavelengths. We assume zero eccentricity and the orbital parameters from34 for a/R∗ and period. We try fitting 

the white light curve with eccentricity and argument of periastron set free and find that eccentricity is consistent 

with 0. We therefore assume zero eccentricity and a transit centre projected to the time of observations from a 

fit to the TESS data. We also assume an exponential temporal baseline in time to the data and a second -order 

polynomial trend in time. We fit the quadratic limb darkening parameters with uninformative priors43 and the 

exoplanet code44,45,46 with 3000 burn-in steps and 3000 sampling steps and 2 No U Turns Sampling chains47. We 

next binned the spectra into 116 bins, each 4 pixels wide. We fit all the individual spectroscopic channels with 

the orbital parameter fixed from the broadband light curve fit and only allowed the transit depth and limb 

darkening parameters to be free. Our resulting transit depth uncertainties ranged from 35 ppm to 732 ppm, 

with a median of 90 ppm. 
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Eureka! and ExoTEP 

We use the Eureka! pipeline48 for the data reduction steps of detector processing, data calibration and stellar 

spectrum extraction, and the ExoTEP pipeline49,50,51 to generate light curves in each wavelength bin and 

perform light curve fitting. 

We start our data reduction using the uncalibrated “uncal” outputs of the jwst pipeline’s Stage 0. From there, 

Eureka! acts as a wrapper for the first two stages of the jwst pipeline, version 1.6.0. We use the jwst pipeline to 

fit slopes to the ramp in each pixel and perform data calibration, and follow the default pipeline steps unless 

otherwise stated. We skip the jump detection step, meant to correct the ramps for discontinuities in the slopes 

of group count rates as a function of time. Due to the small number of groups up the ramp, performing this step 

leads to a large fraction of the detector pixels being incorrectly flagged as outliers, and we therefore rely on the 

time series outlier clipping steps in the subsequent stages to correct for cosmic rays. A custom bias frame is 

used, rather than the default one available on CRDS at the time of reduction. We also expand the saturation flags 

in Stage 1 to ignore saturated pixels more conservatively than allowed by the default jwst pipeline settings: in 

each group, we flag pixels as saturated if they reach ∼85% of the full well in the median image across all 

integrations for that group and expand the saturation flag such that in a given detector column (constant 

wavelength) all pixels are marked as saturated if any one pixel in that column is flagged. This is implemented 

by inputting the indices of columns to mask based on inspection of the uncal data products, rather than an 

internal calculation of the full well percentage. We include a version of the ROEBA correction described above, 

using the top and bottom 6 rows. We further add a custom background correction at the group level prior to 

ramp fitting, and subtract from each column the median of the six pixels at the top and at the bottom of the 

detector, excluding outliers at more than the 3-σ level. We skip the “photom” step in Stage 2 of the STScI 

detector pipeline because absolute fluxes are not needed in our analysis. We also skip the “extract1d” step as 

we perform custom spectral extraction using Eureka!. 

For 1D spectral extraction, we trim the array to include only columns 14 to 495 in the dispersion direction, 

as NIRSpec’s throughput is negligible beyond this range. We then use the median detector frame to construct 

the weights used in the optimal extraction based on52. Pixels are masked if they have an marked data quality 

flag (i.e., bad pixels that are flagged by the jwst pipeline as “DO NOT USE” for various reasons) or if they are 

clipped by two iterations of 10-σ-clipping of the time series. We perform the optimal extraction over 8 rows 

centered on the source position (corresponding to a spectral half-width aperture of 4 pixels). The source 

position is identified from the maximum of a Gaussian fitted to the summed spatial profile from all detector 

columns over the entire integration. 

We use ExoTEP to generate median-normalized light curves at the native pixel resolution from each 

detector column, using the stellar spectra outputs from Stage 3 of Eureka!. We then perform further clipping of 

outliers in time in the white and wavelength-dependent light curves by computing a running median with a 

window size of 20 and excluding 3σ outliers in several time series. This outlier-clipping was applied to the flux, 

source position and width in the cross-dispersion direction in each frame and spectrum shifts in the dispersion 

direction. 

We jointly fit astrophysical and systematics model parameters to the white (0.5–5.5µm) light curves and 

each of the wavelength-dependent light curves. Our astrophysical transit model is calculated using the batman 

package33. Using the white light curve, we fit for the two coefficients of a quadratic limb darkening law 

(Equation 1), WASP-39b’s impact parameter, scaled semi-major axis a/Rs, time of transit centre, and the planet-

to-star radius ratio. In each of the wavelength channels we then fix the planet’s impact parameter, semi-major 

axis and transit time to the values derived from the white light curve and fit only for the planet-to-star radius 

ratio and the two quadratic limb darkening coefficients. For the systematics model, we assume a linear trend 

with time that can be different in each spectroscopic channel, and fit for its slope and y-intercept. Lastly, we fit 

a single-point scatter to each light curve, which illustrates the level of scatter required for our joint model to 

reach a reduced chi-squared of 1. The fitted light curve scatter in both the white light curve and wavelength-

dependent channels is within a few percent of the expectation from the high-frequency scatter in the raw light 

ACCELE
RATED ARTIC

LE
 PREVIEW



11 

curves, which attests to the lack of systematics. We bin the final transmission spectrum (four points binned 

together throughout the spectrum) for visual comparison with the other reductions in Figure 3. 

Tiberius 

The Tiberius pipeline builds upon the LRG-BEASTS spectral reduction and analysis pipelines introduced 

in53,16,54. The Tiberius pipeline operates on the Stage 1 JWST data products to obtain 1D stellar spectra via 

tracing of the stellar spectra, fitting and removal of the background noise, and simple aperture photometry. We 

used the FIREFLy-processed Stage 0 data. 

Prior to tracing the spectra, we interpolate each column of the detector onto a finer grid, 10× the initial 

spatial resolution. This step improves the extraction of flux at the sub-pixel level, particularly where the edges 

of the photometric aperture bisect a pixel, and leads to a 14% reduction in the noise in the data. We also 

interpolate over the bad pixels using their nearest neighboring pixels in x and y. We identify bad pixels by 

combining 5σ outlying pixels found via running medians operating along the pixel rows with bad pixels 

identified by visual inspection. We trace the spectrum by fitting a Gaussian distribution at each column (where 

a column refers to the cross-dispersion direction) to the stellar spectra. We then use a running median, 

calculated with a moving box with a width of five data points, to smooth the measured centres of the trace. We 

fit these smoothed centres with a fourth-order polynomial, removed five median absolute deviation outliers, 

and refitted with a fourth-order polynomial. 

To remove residual background flux not captured by the 1/f correction, we fit a linear polynomial along 

each column in the spatial direction. We mask the stellar spectrum, defined by an aperture with a full width of 
4 pixels centered on the trace we found in the previous step, from this background fit. We also mask an 
additional 7 pixels on either side of this aperture so that the background fit is not impacted by the wings of the 
stellar PSF. This left us with 7 pixels at each edge of the detector (a total of 14 pixels) to estimate the background 
with. We also clipped any pixels within the background that deviate by more than three standard deviations 

from the mean for that particular column and frame to avoid residual bad pixels and cosmic rays impacting our 
background estimation. We found that this additional background step led to a 3% improvement in the 
precision of the transmission spectrum. 

The stellar spectra are then extracted by summing the flux within a 4-pixel-wide aperture following the 

removal of the background at each column. The background count level, as estimated by the JWST Exposure 

Time Calculator (ETC) is on the order of a few counts per second, meaning the background is negligible. Further, 

since we perform 1/f subtraction, this faint background is subtracted column-by-column. We experimented 

with the choice of the aperture width, also running reductions with 8- and 16-pixel-wide apertures. The 8-pixel-

wide aperture gave a median uncertainty 1% larger than a 4-pixel aperture and a 16 pixel aperture gave an 

uncertainty 15% larger than 4-pixels. This same change was reflected in the median RMS of the residuals to the 

light curve fits. Since the stellar PSF is so narrow in PRISM data, we believe that the increase in noise with 

increasing aperture width is related to the increasing influence of photon noise, readnoise and bad pixels where 

the stellar flux is lower. Following the extraction of the stellar spectra, we divide the measured count rates by 

a factor of 10 to correct for our pixel oversampling, as described above. 

To remove residual cosmic rays, we identify outliers in each stellar spectrum via comparison with the 

median stellar spectrum. We did this in three iterations, each of which involves making a median spectrum, 

identifying outliers (10, 9, 8 σ) and replacing pixels containing a cosmic ray with a linear interpolation between 

neighboring pixels. We tested this interpolation against assigning the cosmic ray pixels zero weight and found 

that this led to a negligible difference in the transmission spectrum. To correct for shifts in the stellar spectra 

and align each spectrum in pixel space, we cross-correlate each stellar spectrum with the first spectrum of the 

observation and linearly resample each spectrum onto a common wavelength grid. We adopt the custom 

wavelength solution calculated by the tshirt pipeline, which uses the jwst pipeline to evaluate the wavelengths 

at pixel row 16 using the world coordinate system. 

Our white light curves are created by summing over the full wavelength range between 0.518–5.348µm. We 

make two sets of spectroscopic light curves: one set of 440 light curves at 1-pixel resolution and one set of 147 

light curves at 3-pixel resolution. We mask integrations 20751–20765 due to a high gain antenna move that 
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leads to increased noise in the light curves. We also mask the first 2000 integrations from our analysis due to a 

systematic ramp. This means our light curves each contained 19486 data points. 

To fit our light curves, we began by fitting the white light curve to determine the system parameters. 
We fit for the following parameters: the scaled planetary radius (Rp/Rs), the planet’s orbital inclination (i), the 

time of mid-transit (TC), the scaled separation (a/Rs), the linear limb darkening coefficient (u1), and the 

parameters defining the systematics model. We fix the planet’s orbital period to 4.0552941d and eccentricity 

to 034. For the remaining parameters, we use the values from34 as initial guesses. 

For the analytic transit light curve model, we use batman33 with a quadratic limb darkening law. We use 

ExoTiC-LD55,56, with 3D stellar models39 to determine the appropriate coefficients, adopting the stellar 

parameters (Teff = 5512±55K, logg = 4.47±0.03 cgs, [Fe/H] = 0.01±0.09 dex) from34 and Gaia DR357,58. For our 

final fits, we fix the quadratic coefficient, u2, to the values determined by ExoTiC-LD. However, we also run a set 

of fits with neither u1 nor u2 fixed and find this leads to a transmission spectrum that is qualitatively similar to 

the one in which LDs are fixed. For the systematics model, we sum the following three polynomials: quadratic 

in time, linear in x position of the star on the detector, and linear in y position of the star on the detector. The 

final fit model, M, was of the form: 

M(t) = T(t,p) × (Σi(Si(ai,s)ni)) (2) 

Where t is time, p are the parameters of the transit model, T, a are the ancillary data, and s are the 

parameters (polynomial coefficients) of the systematics model, S. The systematics model is the sum of the 

polynomials operating over each ancillary input, ai, with ni defining the order of the polynomial used for each 

input. 

We fit our white light curve in three steps: a first fit to remove any 4σ outliers from the light curves, a second 

fit that is used to rescale the photometric uncertainties such that the best-fitting model gives χν 2 = 1, and a third 

fit with the rescaled photometric uncertainties, from which our final parameter values and uncertainties are 

estimated. The parameter uncertainties were calculated as the standard deviation of the diagonal of the 

covariance matrix that was in turn calculated from the Jacobian returned by scipy.optimize. 

Following the white light curve, we fit our spectroscopic, wavelength-binned, light curves. For these fits, we 

held a/Rs, i, and TC fixed to the values determined from the white light curve fit: 11.462 ± 0.014, 87.847 ± 0.015 

deg, 2459770.835623 ± 0.000008 BJDTDB. These values are somewhat different to the FIREFLy-reduced white 

light parameters, and these differences will be explored in greater detail in a future work. To zeroth order, 

offsets in orbital parameters result in simple vertical offsets in the resulting transmission spectrum. The 

remaining fit parameters were the same as for the white light curve fit. We perform the same iteration of fits 

using a Levenberg–Marquardt algorithm to determine Rp/Rs  as a function of wavelength. 

Reduction Comparison 

Procedural differences exist across the four main reductions of the dataset, which may account for the 

subtle qualitative differences between the final reduced spectra. A careful investigation of these nuances is 

warranted and will be presented in a future paper. Extended Data Table 2 highlights some key procedural 

differences between the reductions. We note that despite these differences, the resulting exoplanet spectra are 

qualitatively in excellent agreement with each other (see Fig. 3), owing to the stability of the data and the self-

calibrating nature of the transit technique. 

Stellar Activity 
WASP-39b has a reported low activity level8, with a Ca II H and K stellar activity index of logR’HK=-

4.994[ref. 4]. NGTS and TESS photometric monitoring of WASP-39A is reported in ref.23, which finds low 

modulations at the 0.06% level with no apparent star-spot crossings. With low stellar activity levels, the transit 

observations are unlikely to be affected by stellar activity. 
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Forward Model Grids 

We use four different 1D radiative–convective–thermochemical–equilibrium (RCTE) model grids to assess 

atmospheric properties like detection of individual gases, metallicity, carbon–to–oxygen (C/O) elemental 

abundance ratio, and the presence/absence of clouds. The ScCHIMERA59, 60, PICASO 3.061,62,63,64, ATMO65,55,67, 

and PHOENIX68,69 models were used to generate these grids specifically for WASP-39 b. While the ATMO and 

the PHOENIX grids were used to fit the data with a reduced χ2 based grid search method, the PICASO 3.0 and 

ScCHIMERA grids were used in a grid retrieval framework using a nested sampler70,71. Within each nested 

sample likelihood calculation, the transmission spectra are generated on-the-fly by post-processing the pre-

computed 1D RCTE model atmospheres. The SO2 volume mixing ratio and cloud properties are injected into 

spectrum during this post-processed transmission calculation. Extended Data Fig. 7 shows best-fit models 

obtained by each of the four grids compared with the transmission spectrum obtained with the FIREFLy data 

reduction pipeline. ScCHIMERA, PICASO 3.0, and ATMO produce fits with reduced χ2 between 3.2–3.3, while the 

PHOENIX grid obtains a reduced χ2 of 4.3. The reduced χ2 is defined as the total χ2 calculated from all the data 

points divided by the total number of data points. While PICASO 3.0, ScCHIMERA, and ATMO predict the 

metallicity of the atmosphere to be about 10×solar, PHOENIX finds a best-fit metallicity to be a 100×solar which 

might be due to the larger grid spacing of the PHOENIX grid along both the cloud and metallicity dimensions. 

While the models qualitatively match the data, the reduced χ2 obtained by the best-fitting models from these 

grids are also > 3, which suggests that these are not fitting the data particularly well. These poor fits could arise 

for multiple reasons, such as the region of the data affected by saturation, the presence of disequilibrium 

chemistry in the atmosphere due to vertical mixing or photochemistry, and the non-grey nature of scattering 

in the upper atmosphere. Extended Data Table 3 provides a summary of the best-fit atmospheric parameters 

obtained by the four different grids with different fitting methods (grid retrievals and grid search). To explore 

the effect of the saturated region on the best-fit parameters, we inflate the transit depth errors in the saturated 

regions (0.68 µm – 1.91 µm) by a factor of 1000 and recompute the best-fit models using the grid retrieval 

framework with both the PICASO 3.0 and ScCHIMERA grids. We find that this did not significantly change any 

of the best-fit parameters including the metallicity and the C/O ratio. Extended Data Table 3 lists the best-fit 

parameters obtained when the saturated region error bars were inflated by a factor of 1000.We summarize the 

main results obtained by these 1D grids here and refer the reader to ref. 22 for detailed descriptions of each of 

these model grids. 

 

Detection Significance of Gases 

We quantify the detection significance of each species through a Bayes factor analysise.g.,72. To do so within 

the ScCHIMERA grid retrieval framework, we remove each gas during the transmission spectrum computation 

step (the 1D RCTE atmosphere models remain unchanged) one at a time and re-run the nested sampler. We 

compare the Bayesian evidence of each removed-gas run to that of grid retrieval with all the gases. There is no 

change in the number of parameters except the cloud and SO2 mixing ratio parameters. Extended Data Table 4 

shows the result of this exercise summarized as the log-Bayes factor and a conversion to the detection 

significancee.g.,73. 

We also quantify the detection significances of different gases following the procedure used in ref. 22. To 

calculate the detection significance of each gas, the best-fit transmission spectrum model from the PICASO 3.0 

grid ([M/H] = +1.0, C/O= 0.68) is re-calculated without that gas. The wavelength ranges where the particular 

gas has the most prominent effect are first identified and then a residual spectrum is calculated by subtracting 

the model without the gas from the data. The residual spectra for H2O, CO2, CO, Na, SO2 and CH4 are shown in 

the six panels of Extended Data Fig. 8. We fit each of these residual spectra with two functions,  a 

Gaussian/double Gaussian/Voigt function and a constant line. We use the Dynesty nested sampling routine70 

to perform the fits and to determine the Bayesian evidence associated with each fit. The Bayes factor between 

the fits of the residual spectrum with the Gaussian/Voigt function and the constant line is then used to 

determine the detection significance of a gas. For example, for computing the detection significance of H2O, two 

adjacent H2O features between 1 and 2.2 µm are used. We note that H2O is expected to be the dominant opacity 

source in other wavelength ranges (e.g., 2.2–3 µm) as well, so choosing two features for this analysis would 
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produce a lower limit on the detection significance of H2O. The best–fit double Gaussian function to these 

features along with its 1σ and 2σ envelopes are shown with the red line and shaded regions in Extended Data 

Fig. 8 top–left panel. The same residual spectrum is also fitted with a straight line shown with blue colour in 

Extended Data Fig. 8. The logarithm of the Bayes factor between the two models is found to be lnB=242, which 

shows that the model with H2O is significantly favored over a model without any H2O. The detection significance 

of H2O corresponding to this Bayes factor is calculated using the prescription in ref. 73 and is found to be 22σ. 

The same methodology, but with a single Gaussian function, is also followed for CO2, CO, SO2, H2S, and CH4 to 

get their detection significance summarized in Extended Data Table 4, last column. Our Gaussian residual fit 

significance for CO2 matches the initial analysis of the NIRSpec PRISM data presented in ref. 22. 

As shown in Extended Data Table 4, the detection significance of all gases increases with the Bayes factor 

analysis technique relative to the Gaussian/Voigt function technique. This is notably also the case for SO2, 

lending confidence to the detection and identification of the molecule, as the feature is better fit by its 

respective opacity profile. 

 

Resolution Bias and the detection Significance of CO 

The Resolution-Linked Bias effect (RLB) serves to dilute the measured amplitudes of planetary 

atmospheric features due to overlapping absorption lines in the stellar atmosphere. While this effect is 

negligible for most stars earlier than M dwarfs, some stellar CO absorption is expected in WASP-39, meaning 

the measured planetary CO abundance may be biased. Following Eq. 4 of ref.74 and using high-resolution (R ∼ 

105) PHOENIX models of the planet and the star, we quantify an upper limit on the magnitude of this bias effect. 

We find that the planetary CO feature is biased by 30 to 40 ppm in the 4.5-5.1 µm region, leading to as much as 

a ∼1-σ underestimate of the planetary CO absorption strength, and subsequently a similar underestimate of its 

abundance. We note that this effect is potentially weakened by Doppler broadening of the molecular lines 

(which is unaccounted for by PHOENIX) due to stellar rotation, planetary orbital radial velocity, and planetary 

winds. Future work, which may benefit from more detailed modeling and high-resolution observations of 

WASP-39’s CO band heads, will better quantify the magnitude of this dilution. 

Metallicity, C/O Ratio and CH4 abundance 

The best–fitting atmospheric metallicity for WASP-39 b is found to be ∼10× the solar metallicity using the 

model grids. The top panel in Extended Data Fig. 9 shows the observed transmission spectrum of the planet 

between 2.0–5.3 µm (where variations due to metallicity are most prominent), along with multiple 

transmission spectrum models assuming different atmospheric metallicities ranging from sub-solar values 

(e.g., 0.3×solar) to super-solar values (e.g., 100×solar). The bottom panel demonstrates the effect of different 

atmospheric C/O ratios at 10×solar metallicity on multiple transmission spectrum models along with the data. 

Since the star WASP-39 has near-solar elemental abundances83, scaled solar abundances are a reasonable 

choice for this star. The CH4 feature between 3.1–4 µm and 2.2–2.5 µm is very prominent in sub-solar and solar 

metallicity thermochemical equilibrium models shown in Extended Data Fig. 9. The absence of such a CH4 

feature in the data is evident. This, combined with the large CO2 feature between 4.3–4.6 µm and measurable 

CO feature at 4.7 µm, led to a super-solar (10×) metallicity estimate for the planet. The C/O ratio of the RCTE 

models significantly affects the predicted gas abundances, and therefore the calculated transmission spectrum. 

Extended Data Fig. 9 bottom panel shows that for metal-rich atmospheres (e.g., >10× solar) with C/O ratios 

lower than 0.7, the transmission spectrum is dominated by features of oxygen-bearing gases (H2O, CO2, CO) 
e.g.,84,85,67. But for higher C/O ratios (e.g., 0.916), the transmission spectrum becomes CH4 dominated at 

wavelengths greater than 1.5 µm. We obtain an upper limit on the C/O ratio of WASP-39 b at about ∼ 0.7. 

However, these interpretations are based on single-best fits from model grids assuming thermochemical 

equilibrium. Other chemical disequilibrium processes like atmospheric mixing and high–energy stellar 

radiation-induced photochemistry can also potentially affect this interpretation. These disequilibrium 

chemistry effects require further exploration in the context of WASP-39 b and will be discussed in future work 

(Welbanks et al. (in prep), Tsai et al. (submitted)). 
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The best-fitting metallicity models can be used to place an upper limit on the CH4 abundance, if the 

pressure ranges probed by the transmission spectrum are estimated. To estimate the pressure ranges probed 

by the data, we use the best-fit PICASO 3.0 model to calculate a pressure- and wavelength-dependent 

transmission contribution function of the atmosphere86. This contribution function for the best-fit 10×solar 

metallicity PICASO 3.0 model is shown as a heat-map in Extended Data Fig. 10. This shows that the data mostly 

probes pressure ranges between 0.1–2 mbars. We also computed contribution functions for models with solar 

metallicity and find that they probe similar pressure ranges as well. Extended Data Fig. 10 also shows the 

pressure dependent CH4 abundances in models with different metallicities presented in Extended Data Fig. 9 

top panel. As only super-solar metallicity thermochemical equilibrium models are preferred by the data, the 

abundance profiles in Extended Data Fig. 10 help us in putting an upper limit of / 5×10−6 on the CH4 volume 

mixing ratio between 0.1–2 mbars. 

 

Clouds 

The observed spectrum shows slightly muted transit depths, across the entire wavelength range, 

compared with the depths expected from clear atmospheric models. This hints toward some additional opacity 

source in the atmosphere with weak wavelength dependence. Opacity sources such as clouds can mute the 

spectral features in a transmission spectrum2,4. We post–process the transmission spectrum models with grey 

(i.e., wavelength-independent) cloud opacities to check whether they are preferred over clear atmospheric 

models by the data. However, the treatment of clouds differ between the four 1D RCTE model grids. PICASO 3.0 

and ScCHIMERA grids implemented the cloud opacities using the following equation, 

 

𝜏𝑖, 𝑐𝑙𝑑  =  𝜅𝑐𝑙𝑑
𝛿𝑃𝑖

𝑔
    (3) 

where τi,cld is the cloud optical depth of the i’th atmospheric layer in the model with pressure–width δPi and g 

represents the gravity of the planet. The best-fit value of the grey cloud opacity κcld = 10−2.07 cm2/g is calculated 

in a Bayesian framework by post-processing the RCTE model grid with this cloud opacity and comparing these 

post-processed models with the data. The ATMO grid includes grey cloud decks at multiple pressures between 

1 and 50 mbars, but with variable factors 0, 0.5, 1, and 5 governing cloud opacity with respect to H2’s scattering 

cross-section at 0.35 microns, where a factor 0 implies a cloud-free model spectrum. The PHOENIX grid includes 

similar cloud decks but between 0.3-10 mbars with cloud optical depth enhancement factors (identically 

defined as the ATMO grid) 0 and 10. We find that the cloudy models better fit the data than clear models across 

all four model grids. The contribution of clouds in limiting the depths of the gaseous features across the entire 

wavelength range is also shown in Fig. 4 with the grey shaded region. 

4 µm SO2 feature identification 

None of the 1D RCTE models capture the 4µm absorption feature seen in the data. We searched for multiple 

candidate gas species that could produce this feature if their abundances differ from the expected abundances 

from thermochemical equilibrium. The list of searched chemical species include C-bearing gases like C2H2, CS, 

CS2, C2H6, C2H4, CH3, CH, C2, CH3Cl, CH3F, CN, and CP. Various metal hydrides, bromides, flourides and chlorides 

such as LiH, AlH, FeH, CrH, BeH, TiH, CaH, HBr, LiCl, HCl, HF, AlCl, NaF, and AlF were also searched as potential 

candidates to explain the feature. SO2, SO3, SO, and SH are among the sulphur-based gases which were 

considered. Other species which were considered include gases like PH3, H2S, HCN, N2O, GeH4, SiH4, SiO, AsH3, 

H2CO, H+3, OH+, KOH, Brα-H, AlO, CN, CP, CaF, H2O2, H3O+, HNO3, KF, MgO, PN, PO, PS, SiH, SiO2, SiS, TiO, and VO. 

Among all these gases, SO2 was the most promising candidate in terms of its spectral shape and chemical 

plausibility, although the expected chemical equilibrium abundance of SO2 is too low to produce the absorption 

signal seen in the data. However, previous work exploring photochemistry in exoplanetary atmospheres27,26 

have shown that higher amounts of SO2 can be created in the upper atmospheres of irradiated planets through 

photochemical processes. Therefore, we post-process the PICASO 3.0 and ScCHIMERA chemical equilibrium 

models with varying amounts of SO2 in a Bayesian framework to estimate the SO2 abundance required to explain 

the strength of the 4-µm feature. The required volume mixing ratio of SO2 was found to be ∼10−5–10−6. Note 
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that in obtaining this estimate we assumed that the SO2 volume mixing ratio does not vary with pressure for 

simplicity. In a photochemical scenario this assumption is likely not realistic, though the pressure range probed 

by SO2 is also limited. Whether photochemical models can produce this amount of SO2 in the atmospheric 

conditions of WASP-39 b is a pressing question which the ERS team is currently exploring (Welbanks et al. (in 

prep), Tsai et al. (submitted)). Whether this feature can be better explained by any other gaseous absorber is 

also currently under investigation by the ERS team. 

 

Data Availability 

The data used in this paper are associated with JWST program ERS 1366 and are available from the Mikulski 

Archive for Space Telescopes (https://mast.stsci.edu). The data products required to generate Figures 1, 2, 3, 

5, and 7 are available here: https://zenodo.org/record/7388032. All additional data is available upon request.  

Code Availability 

The codes used in this publication to extract, reduce, and analyse the data are as follows; STScI JWST 

Calibration pipeline (https://github.com/spacetelescope/jwst), FIREFLy24 , tshirt41 , Eureka!48 

(https://eurekadocs.readthedocs.io/en/latest/), and Tiberius16,53,54.  

In addition, these made use of Exoplanet44 (https://docs.exoplanet.codes/en/latest/), Pymc387 

(https://docs.pymc.io/en/v3/index.html), ExoTEP 49,50,51, Batman33 

(http://lkreidberg.github.io/batman/docs/html/index.html), ExoTiC-ISM55 

(https://github.com/Exo-TiC/ExoTiC-ISM), ExoTiC-LD56 (https://exotic-ld.readthedocs.io/en/latest/), 

Emcee32 (https://emcee.readthedocs.io/en/stable/), Dynesty70 

(https://dynesty.readthedocs.io/en/stable/index.html), and chromatic (https://zkbt.github.io/chromatic/), 

which use the python libraries scipy88, numpy89, astropy90,91, and matplotlib92. 

The atmospheric models used to fit the data can be found at PICASO61,62,63,64 

(https://natashabatalha.github.io/picaso/), Virga85 (https://natashabatalha.github.io/virga/), 

ScCHIMERA59,60 (https://github.com/mrline/CHIMERA), ATMO66,67, and PHOENIX68,69. 
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Extended Data Fig. 1: A comparison of the extracted 1D spectrophotometry across the four reductions.  

Plotted is the spectrophotometry with time on the x-axis and wavelength on the y-axis, with color indicating 

the relative flux. The transit is visible as a dark band in the middle of the observation. All four reductions show 

nearly identical noise properties. 

Extended Data Fig. 2: Demonstration of the impact of saturation. Shown are the group-level median frames 

from the uncalibrated data products across the entire integration. The dashed blue line represents the 
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empirically derived saturation level, with the orange dotted line representing 85% saturation, the level adopted 

in the Eureka! reduction. Grey shaded regions represent columns that reach 85% full well in a given group. 

Extended Data Fig. 3: The wavelength-dependent central transit time in seconds. Structure is apparent–

the prominent water and carbon dioxide absorption features at 2.7 µm and 4.2 µm, respectively, appear to 

arrive ∼20 seconds after the optical continuum. A slope is also apparent from the blue side to the red. The error 

bars are 1-σ standard deviations. 

Extended Data Fig. 4: A summary of the positional shifts of the trace, the wavelength-dependent light 

curve scatter, and the transit depth noise. (Top) The X- and Y-shift vectors as measured by 1D cross 

correlation with FIREFLy. (Middle) The residual spectrophotometric light curves are shown for four 

representative spectral channels spanning the PRISM wavelength range with no temporal binning. The residual 

scatter is approximately Gaussian for each, as indicated by the histogram on the right y-axis. We validate this 

by performing Anderson-Darling tests on the residuals of the spectral and white-light curves, and find that all 

of the Anderson-Darling test statistics lie below the respective critical values 1% significance level. Therefore, 

we find that there is not sufficient evidence that the residuals are not normally distributed. (Bottom) The top 

two purple curves show the expected and measured normalised light curve root mean square (RMS) residuals, 

with no temporal binning. Longward of 2 µm, the scatter in each light curve matches well with the expected 

noise as estimated by the jwst pipeline, which is dominated by photon noise. This agreement indicates the 

majority of the light curves reach near the photon limit. The transit depth uncertainties are also plotted below, 

including the white noise (blue, σw), red noise (red, σred), and total noise components (grey, σtot). Some 

wavelength bins have enhanced red noise, but the majority of the transmission spectrum is consistent with 

minimal red noise from residual systematic errors. The wavelengths affected by detector saturation are 

indicated by the grey shaded bar, with darker colors corresponding to quicker saturation. The colored dots are 

the measured RMS values from the light curves shown in the top panel. 

 

Extended Data Fig. 5: Empirically derived stellar limb darkening coefficients fit with a quadratic law. a, 

the fit u+ coefficients (black) along with the theoretically predicted values derived from a 3D stellar model (red). 

The theoretical u+ values with a constant offset of -0.065±0.022 (purple) is also shown. The theoretical models 

predict the wavelength-to-wavelength shape of u+ well. As u+ is directly related to the intensity of the star at the 

stellar limb ref.40, these findings suggest WASP-39A is 6% brighter at the limb than models predict. b, similar 

as a, but for the u− coefficient. As the shape of the derived coefficients differs from the model prediction, u− was 

left free to vary in the transmission spectral fits. The error bars are 1-σ standard deviations. 

Extended Data Fig. 6: Comparison of the JWST NIRSpec PRISM data (black) to HST and VLT data from 

ref.15,6 and WHT data from ref.16, respectively. The JWST spectrum was derived with the limb darkening 

fixed to the same 3D stellar model as in6 to aid comparisons. With fixed limb darkening, the JWST transmission 

spectrum has lower overall transit depths especially at optical wavelengths. The broadband spectrum from the 

two space telescopes compares well, including the amplitude of the 1.4µm water feature first observed by 

HST/WFC3 and the Na feature near 0.6µm observed by HST/STIS. The error bars are 1-σ standard deviations. 

Extended Data Fig. 7: Best-fit models from ScCHIMERA, PICASO 3.0, ATMO, and Phoenix 1D RCTE model 

grids for WASP-39b. The FIREFLy reduction is overlaid in the top panel. The top left inset panel shows the 

data and the models between 0.5-1.2 µm. All these models prefer super-solar atmospheric metallicities and 

cloudy atmospheres for WASP-39 b. The C/O ratio estimated by these models lies in the range 0.6– 0.7. 

Additional SO2 was injected in the PICASO 3.0 and ScCHIMERA grids to estimate the abundance of SO2 required 

to explain the 4.0 µm feature, in a Bayesian framework. The ATMO and PHOENIX models are shown without 

any additionally injected SO2 to emphasize that RCTE models do not predict such an SO2 feature and chemical 
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disequilibrium effects are required to explain the observed feature. The bottom panel shows the residuals from 

each best-fit model divided by the noise in the transit depth as a function of wavelength. The error bars are 1-

σ standard deviations. 

Extended Data Fig. 8: Each panel shows the residual spectrum of a particular gas. This residual spectrum 

was obtained by removing one gas at a time from the best-fit model atmosphere and subtracting the 

recalculated model transmission spectrum without that gas from the data. This residual spectrum was then 

fitted with a Gaussian distribution (and a Voigt profile for Na) and a constant offset, in a Bayesian framework. 

The median fit (solid lines) along with the 1σ and 2σ confidence intervals are shown with shaded red and blue 

regions for the Gaussian fits and the constant offset fits, respectively. The Bayes factor between the two 

functional fits was used to determine the detection significance of each gas. Note that the wavelength range 

covered in each panel is different. The error bars are 1-σ standard deviations. 

Extended Data Fig. 9: Models of varying metallicity (top) and C/O ratio (bottom) compared to the 

FIREFLy reduction. A comparison of cloud-free PICASO 3.0 RCTE models across a span of metallicities with the 

best-fit C/O ratio (0.68) is shown in the top panel. Each line coloured from faded to deep pink represents models 

with different metallicities between sub-solar to super-solar values. The simultaneous lack of a prominent CH4 

feature at 2.3 and 3.3 µm and the presence of a strong CO2 feature indicate that the observations disfavor a low-

metallicity atmosphere. The bottom panel shows transmission spectrum models with different C/O ratios from 

sub-solar to super-solar values at 10×solar metallicity compared with the observed spectrum. The cloudy best-

fit model obtained with the grid retrieval framework also has been shown in both the panels with the grey line. 

As before, the errorbars are 1σ standard deviations. 

Extended Data Fig. 10: The wavelength-dependent contribution function. The shaded regions highlight 

the parts of the atmosphere probed by the observed transmission data as a function of wavelength, as calculated 

from the best-fit model. This shows that the data mostly probe pressure ranges between 0.1 to 2 mbars. The 

CO2 feature shows contribution at pressures approaching a microbar. The various shaded lines in pink show 

the volume mixing ratio of CH4 (upper x-axis), from thermochemical equilibrium models, with different 

atmospheric metallicities at the best-fit C/O ratio of 0.68. 

Extended Data Table 1: Best-fit orbital parameters as measured from the FIREFLy white light curve. 
The scaled semimajor axis and impact parameter are fixed when fitting for the transmission spectrum. 

Extended Data Table 2: An overview of the analysis procedures used by the independent data 

reductions. The spectrophotometric scatter is estimated from the standard deviation of the pre-transit data 

between 0.62-5.42 µm with only a linear baseline trend removed. 

Extended Data Table 3: Overview of the best-fit model parameters obtained from each grid. PICASO 3.0 

and ScCHIMERA grids follow the grid retrieval (GR) framework to obtain the best-fit models whereas ATMO 

and PHOENIX use the reduced χ2 minimization based grid search method (GS). To test the effect of the saturated 

region on the obtained best-fit parameters, the PICASO 3.0 and ScCHIMERA grid were used to also do a fit with 

the error bars in the saturated region (0.68 µm – 1.91 µm) inflated 1000 times. The best-fit parameters did not 

show any significant change due to this exercise but are still listed in the table under the w/o SR column. The 
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best-fit parameters obtained by fitting the full spectrum are listed under the w/ SR column. Note that even 

though the w/o SR fits were obtained by inflating the errorbars in the saturated region, the reduced χ2 reported 

in the w/o SR column are computed without the points in the saturated region for direct comparison with the 

reduced χ2 obtained from fitting the full spectrum. Also, note that the ATMO models include cloud opacities with 

an adjustable multiple of the H2 Rayleigh scattering opacity at 350 nm. Therefore the 5×H2 in this table for the 

ATMO grid corresponds to a gray cloud opacity which is 5× the H2 Rayleigh scattering opacity at 350 nm 

between 1 to 50 mbar pressures. 

 

Extended Data Table 4: Detection significances of individual opacity sources with our two techniques: 

Bayes factor analysis with gas removal, and Gaussian/Voigt fits to the residual absorption profiles. Note, 

a negative ln(B) indicates that that specific opacity source is not preferred by the data. 
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3

ACCELE
RATED ARTIC

LE
 PREVIEW



Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6
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Extended Data Fig. 7
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Extended Data Fig. 8
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Extended Data Fig. 9
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Extended Data Fig. 10
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Extended Data Table 1
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Extended Data Table 2
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Extended Data Table 3
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Extended Data Table 4
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