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ABSTRACT

We report the discovery of a third planet transiting the star TOI-1260, previously known to host two transiting sub-Neptune
planets with orbital periods of 3.127 and 7.493 days, respectively. The nature of the third transiting planet with a 16.6-day
orbit is supported by ground-based follow-up observations, including time-series photometry, high-angular resolution images,
spectroscopy, and archival imagery. Precise photometric monitoring with CHEOPS allows to improve the constraints on the
parameters of the system, improving our knowledge on their composition. The improved radii of TOI-1260b, TOI-1260c are
2.36 + 0.06Rg, 2.82 + 0.08R g, respectively while the newly discovered third planet has a radius of 3.09 + 0.09Rg. The radius
uncertainties are in the range of 3%, allowing a precise interpretation of the interior structure of the three planets. Our planet
interior composition model suggests that all three planets in the TOI-1260 system contains some fraction of gas. The innermost
planet TOI-1260b has most likely lost all of its primordial hydrogen-dominated envelope. Planets ¢ and d were also likely to
have experienced significant loss of atmospheric through escape, but to a lesser extent compared to planet b.

Key words: planets and satellites: detection — planets and satellites: individual: TOI-1260b, c, d — stars: individual: TOI-1260
— techniques: photometric — techniques: radial velocities — planets and satellites: composition

1 INTRODUCTION 2021) that further shape their chemical evolution. The CHaracterising
ExOPlanet Satellite (CHEOPS) was launched in 2019 to allow the
precise characterization of known planetary systems in order to better

understand the processes of planetary formation and evolution (Benz

Precise characterization of the bulk properties of transiting extrasolar
planets allows constraining their possible interior composition. This

information is used to infer planet formation processes, as it can
be used to demonstrate, for example, transport of material in the
protoplanetary disk. Additionally, planets orbiting close to their stars
suffer from atmospheric erosion processes (see, e.g. Lampén et al.

* This article uses data from CHEOPS program CH_PR100031.
t E-mail: kristine.lam @dlr.de

© 2022 The Authors

etal. 2021). Since the end of commissioning activities in April 2020,
CHEOPS has successfully characterised several planetary systems
(e.g. Lendl et al. 2020; Hooton et al. 2022), including the discovery
of new planets(e.g. Leleu et al. 2021; Delrez et al. 2021), improving
our knowledge of planetary sciences.

In this paper we report the discovery of a third planet orbiting
the system TOI-1260, which was previously known to host two
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planets (Georgieva et al. 2021, Hereafter G21). The nature of the
third planet is supported by ground-based follow-up observations,
including time-series photometry, high-angular resolution images,
spectroscopy, and archival imagery. Precise photometric monitoring
with CHEOPS allows to improve the constraints on the parameters of
the system, improving our knowledge on their possible composition.
In particular, the study of multiplanet systems with sub-Neptune or
super-Earths planets is very interesting for planet formation models,
as they share the same disk and have evolved in the same timescales,
yet with different outcomes (e.g. Kubyshkina et al. 2019b). The study
of small planets allows exploring the effect of physical processes re-
sulting in the observed variation of core compositions and envelope
sizes (Modirrousta-Galian et al. 2020). Furthermore, multiplanetary
systems provide excellent opportunity to study the dependence of
planet formation, evolution and habitability on factors such as stellar
insolation, age and spectral type (e.g. Weiss et al. 2018a,b; Leleu
et al. 2021).

The planetary system around TOI-1260 was first discovered with
the Transiting Exoplanet Survey Satellite (TESS; Ricker et al. 2014),
a space-borne NASA mission launched in 2018 to survey the sky for
transiting exoplanets around nearby and bright stars. It builds on the
legacy of the NASA’s Kepler space telescope (Borucki et al. 2010)
launched in 2009, which was the first exoplanet mission to perform a
large statistical survey of transiting exoplanets. One of the goals of the
TESS prime mission is to discover 50 exoplanets with radii smaller
than 4Rg (e.g. Armstrong et al. 2020; Delrez et al. 2021; Lam et al.
2021; and see also the overview of the planet yield during the Prime
Mission in Guerrero et al. 2021). Coordinated mass measurements
via precise high-resolution spectroscopic follow-up enable accurate
inferences about the bulk composition and atmospheric characteriza-
tion of small exoplanets. To date, there are more than 100 exoplanets
smaller than 4R in the public domain, with many more in the TESS
pipeline.

CHEOPS and TESS missions complement each other in their aims,
with TESS carrying the weight of the detection efforts, organizing the
community for the ground-based support observations, and CHEOPS
providing accurate measurements of the planetary radius, allowing
detailed characterization of the planetary interiors (e.g. Lacedelli
et al. 2022; Wilson et al. 2022).

The paper is structured as follows. Section 2 describes the TESS
observations and transit analysis. The CHEOPS observations and its
transit analysis is described in Section 3. The HARPS-N data and
the spectral analyses are described in Section 4. Section 5 outlines
the the model and result of the joint analysis of the TESS, CHEOPS
photometry and HARPS-N RVs. Section 6 discusses the results of
the global fit, the interior structure of the planets, planet atmospheric
evolution model and the possible origin of the planetary system.
Finally, the conclusion of our work is presented in Section 7.

2 TESS PHOTOMETRY

TOI-1260 was observed by TESS during sector 14 (between 18 Jul
2019 and 15 Aug 2019 on camera 4, CCD 3) and sector 21 (between
21 Jan 2020 and 18 Feb 2020 on camera 2, CCD 2) in 2-minute
short cadence mode. This data set was previously analyzed in G21.
The target was further observed in sector 41 (between 23 Jul 2021
and 20 Aug 2021) in 2-minute and 20-second cadence mode. The
TESS data were process by the Science Process Operation Centre
(SPOC Twicken et al. 2010; Morris et al. 2017). SPOC extracted
TESS light curves using a Simple Aperture Photometry (SAP) and
known instrumental systematics are corrected in the Presearch Data
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Conditioning (PDCSAP) light curves (Smith et al. 2012; Stumpe et al.
2012,2014). The TESS PDCSAP light curves were downloaded from
Mikulski Archive for Space Telescopes (MAST!) and were used for
subsequent analyses.Figure 1 shows the PDCSAP light curves of
TOI-1260.

3 CHEOPS PHOTOMETRY

We performed follow-up photometric observations with CHEOPS to
refine the radii of the two inner planets and to confirm the presence
of the outer planet, scheduling 9 visits between 26 Dec 2020 and 4
Mar 2021.

The discovery paper of TOI-1260b and ¢ (G21) reported a possible
third planet, on the basis of a single transit in sector 21, with a
number of period aliases in the range 20.3 d < P < 56.3 d. The
paper discussed the possibility of the third planet having a period of
16.6 days. At the time, only one clear single transit were observed
in the TESS light curves. The 16.6-day signal in the radial velocity
(RV) data was not significant due to the period being close to a
harmonic of the stellar rotation period. The nature of the 16.6-day
signal was uncertain. However, their results encouraged our efforts to
confirm the suspected third planet in the system. We used our code to
identify possible additional transit signatures in the existing data (the
code is described in Osborn et al. 2022). This identified a unique
period of 16.6 d, meaning that the transit fell in the gap in sector
14. The available data at that time was used to constrain the possible
ephemeris of the putative third planet in the system. The visits that we
programmed with CHEOPS lasted between 8.25 and 16.8 hours to
cover the transits of planet b and c, as well as to confirm the presence
of the third planet candidate. The details of each observation runs
are listed in Table 1.

Observations obtained in each visit were processed by the
CHEOPS data reduction pipeline (DRP; Hoyer et al. 2020). The
pipeline calibrated each image by applying bias, gain, non-linear ef-
fects, dark current, and flat field corrections. It also corrects individ-
ual calibrated frames from environmental effects such as smearing
trails, bad pixels, background, and stray-light pollution. The DRP
then performed aperture photometry on the calibrated and corrected
images to extract the photometric fluxes. Next, the DRP pipeline
provides four sets of light curves by performing aperture photometry
on the calibrated images using different aperture sizes (Rap). These
apertures are RINF (Rap = 22.5”), DEFAULT (R, = 257), RSUP
(Rap = 307), and a further aperture OPTIMAL which is optimised
for each visit. We used the root-mean-squared (RMS) values of the
light curve extracted by different aperture in each visit to assess the
the light curves. Apart from the first visit of planet c, the RINF aper-
ture of each visit gives the lowest RMS. Thus the corresponding light
curves were use for subsequent analysis. For the first visit of planet
¢, we used the light curve reduced from the OPTIMAL aperture for
subsequent analysis.

It is known that the rotation of the CHEOPS field-of-view along
with the orbit of the spacecraft can result in varying background,
contaminants, or other non-astronomical sources (e.g. Wilson et al.
2022). This may induce noises in the data and cause short trm trends
in the photometric light curve. Fortunately, the DRP pipeline provides
basis vectors for CHEOPS which is used to correct and detrend these
variabilities in the light curves. For our dataset, we use the open-
source Python package pycheops (Maxted et al. 2021) to evaluate

I https://archive.stsci.edu/tess
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the data produced by DRP and found that the light curves showed
periodic flux variation that is in phase with the orbit of the spacecraft.

For each visit, we performed simultaneous transit fitting and de-
trending of a combinations of standard basis vectors used in the decor-
relation of CHEOPS data (i.e. background, contamination, smear, x
and y centroid positions, and first, second, and third-order harmon-
ics of the roll angle). The Bayesian Information Criterion (BIC) and
minimum XZ of the model in each visit were assessed separately
to select the basis vectors required to optimally detrend each set of
light curve. We also used the addglint function to remove internal
reflection from resulting from the spacecraft rotation cycle in each
visit. The detrended CHEOPS light curves were used for our joint
model described in Section 5.

4 HOST STAR CHARACTERISATION

TOI-1260 was observed between 14 Jan 2020 and 13 Jun 2020, a cam-
paign in which 33 high resolution spectra (R= 115000) were reported
by G21 using the HARPS-N spectrograph (Cosentino et al. 2012).
The HARPS-N Data Reduction Software (DRS) pipeline (Cosentino
et al. 2014) was used to extract the spectra.

To retrieve the fundamental parameters of TOI-1260, stellar effec-
tive temperature, T, iron abundance relative to hydrogen, [Fe/H],
and the surface gravity, log g, we modelled the HARPS-N co-added
high resolution spectrum with the spectral analysis package SME
(Spectroscopy Made Easy; Valenti & Piskunov 1996; Piskunov &
Valenti 2017), version 5.22. With atomic and molecular line data
from VALD (Ryabchikova et al. 2015), the MARCS 2012 (Gustafs-
son et al. 2008) atmosphere grids, and a chosen set of fundamental
parameters, SME calculate synthetic stellar spectra which is fitted
to the observations. The models were also checked with the At-
las12 (Kurucz 2013) grids. We followed the modelling procedure
explained in (Persson et al. 2018). In summary, we modelled T.g and
log g with the H,, line wings and the Ca1 1=6102 A, 6122 A, and
6162 A triplet, respectively. The model was checked with the Nar
doublet at 1=5888 A and 5895 A. The abundances and projected
stellar rotational velocity, V sinix, were modelled from unblended
lines between A=6000 A and 6600 A. The results, listed in Table 2,
were checked with the empirical SpecMatch-Emp code (Hirano et al.
2018) which were in very good agreement with SME. The full set of
host star parameters are listed in Table 2.

As recently described in Schanche et al. (2020), we can use a mod-
ified version of the infrared flux method (IRFM; Blackwell & Shallis
1977) to determine the stellar angular diameters and effective temper-
atures of stars through known relationships between these properties,
and estimates of the apparent bolometric flux, via a Markov-Chain
Monte Carlo (MCMC) approach. We perform synthetic photometry
of TOI-1260 by building spectral energy distributions (SEDs) from
stellar atmospheric models with the stellar parameters, derived via
the spectral analysis detailed above, as priors. To compute the ap-
parent bolometric flux, these fluxes are compared to the observed
data taken from the most recent data releases for the following band-
passes; Gaia G, Ggp, and Grp, 2MASS J, H, and K, and WISE W1
and W2 (Skrutskie et al. 2006; Wright et al. 2010; Gaia Collabora-
tion et al. 2021) with the stellar atmospheric models taken from the
ATLAS Catalogues (Castelli & Kurucz 2003). We convert the stellar
angular diameter to the stellar radius of TOI-1260 using the offset
corrected Gaia EDR3 parallax (Lindegren et al. 2021) and obtain
Ry =0.672 £+ 0.010 R.

Together with R, we used the effective temperature and the metal-
licity to then derive the isochronal mass My and age 4. Rather than
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directly adopting [Fe/H] as a proxy for the stellar metallicity, we
estimated the a-element abundance by averaging out the [Mg/H]
and [Si/H], obtaining [a/Fe] = 0.13 £ 0.13. Using Eq. (3) from
Yi et al. (2001), we finally computed the metallic content of the
star (([M/H] = 0 £ 0.15 dex) from [Fe/H] and [a/Fe]. To make our
M, and 14 estimates more robust we employed two different evolu-
tionary models, namely PARSEC? v.1.2S (Marigo et al. 2017) and
CLES (Code Liegeois d’Evolution Stellaire Scuflaire et al. 2008).
In detail, we interpolated the input set ((M/H], T,f, and Ry ) within
pre-computed grids of PARSEC isochrones and tracks through the
isochrone placement technique described in Bonfanti et al. (2015,
2016) and we derived a first best-fit pair of mass and age. The code
further accounted for v sin i and log R}, as outlined in Bonfanti et al.
(2016) to improve the convergence. Instead, the second pair of mass
and age was inferred by directly fitting the input set into the evolu-
tionary track built by CLES according to the Levenberg-Marquadt
minimisation criterion (Salmon et al. 2021). After carefully checking
the consistency of the results outputted by the two codes through the
x?-test described in Bonfanti et al. (2021a), we finally merged the re-

spective output distributions ending up with My = 0.679t%'823 Mo

and t4 = 6.7f§'12 Gyr. The host star mass and radius derived in this
work are consistent within ~ 1-sigma and we adopt values from this
work for subsequent analyses.

5 JOINT LIGHT CURVE AND RADIAL VELOCITY
ANALYSIS

A global analysis of the observational data was performed using
the exoplanet toolkit (Foreman-Mackey et al. 2021). The toolkit
implements the probabilistic programming package PyMC3 (Salvatier
et al. 2016) to perform a Bayesian inference using a Hamiltonian
Monte Carlo (HMC; Duane et al. 1987) method.

We first removed the out of transit variability in the TESS light
curve by first masking the transits in the light curve, then binning
the light curve into 1-hour steps. A Gaussian Process (GP) regres-
sion model with a simple harmonic oscillator (SHO) kernel, im-
plemented by celerite2 (Foreman-Mackey et al. 2017; Foreman-
Mackey 2018), was then applied to remove the light curve variations.

The joint analysis was subsequently carried out on the "flattened"
TESS light curve from the aforementioned best-fit GP photometry
model, CHEOPS light curve, and the HARPS-N RV data. The toolkit
uses starry (Luger et al. 2019) to model the limb darkened transit
light curves. To account for the limb darkening parameters of the
star, we used the quadratic limb darkening coefficients (uy, uy) pa-
rameterised by Kipping (2013) in the model for each photometric
instrument. Uniform priors were used for the planet orbital periods
(Pp,P. and Py), mid-transit times (70, 70 and 704), planet-to-star
radius ratios (R /Rstar, Rp,c/Rstar and Rp4a /Rstar) and impact pa-
rameters (by, b, bq). We account for the instrument zero-point offset
between the TESS (otgss) and CHEOPS (ochgops) light curves by
fitting a mean to the light curves of the two separate instruments.
Gaussian priors were used for the stellar mass M,y and radius Ry
based on the results in Section 4. The Keplerian orbits of the three
transiting planets are defined by their orbital periods. The planets’
respective semi-major axes (ap, d¢, ag) can be derived using Ke-
pler’s third law and the scaled semi-major axes (ay,/Rstar, @c/Rstars
aq/Rstar) were subsequently derived from the fitted stellar radius.

2 pAdova and TRieste Stellar Evolutionary Code: http://stev.oapd.
inaf.it/cgi-bin/cmd
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Table 1. List of CHEOPS observations of TOI-1260. The file key is the unique identifier which corresponds to the dataset used.

File Key Observation Start Observation End Duration [h]  Exposure Time [s] ~ Nframes
CH_PR100031_TGO18501_V0200  2020-12-26 23:21  2020-12-27 08:04 8.72 60.0 296
CH_PR100031_TGO018502_V0200  2021-01-18 09:34  2021-01-28 18:34 9.00 60.0 270
CH_PR100031_TGO018503_V0200  2021-02-02 09:51  2021-02-02 18:15 8.40 60.0 285
CH_PR100031_TGO018504_V0200  2021-02-17 10:49  2021-02-17 19:14 8.42 60.0 291
CH_PR100031_TG036501_V0200  2021-01-22 21:31  2021-01-23 04:58 7.45 60.0 273
CH_PR100031_TG036502_V0200  2021-02-01 05:58  2021-02-01 14:13 8.25 60.0 254
CH_PR100031_TG036504_V0200  2021-02-13 18:18  2021-02-14 02:33 8.25 60.0 281
CH_PR100031_TG036505_V0200  2021-02-16 22:17  2021-02-17 06:32 8.25 60.0 280
CH_PR100031_TG038201_V0200  2021-03-04 03:50  2021-03-04 19:10 15.34 60.0 522
Table 2. Stellar parameters of TOI-1260.
Parameter [Unit] Value. Note
Identifiers TIC 355867695

RA (ICRS Ep. 2016.0)
Dec (ICRS Ep. 2016.0)
7 [mas]

Ha [mas yr!]

s [mas yr']

157.14401106413
+65.85418726790
13.6226 + 0.0147
-177.340 £ 0.012
-81.693 + 0.013

S

Effective temperature Toq [K]
[Fe/H] abundance

[Si/H] abundance

[Mg/H] abundance

[ @/Fe] abundance

[M/H] abundance

log g [cgs]

Stellar rotation velocity v sini [km s
Stellar rotation period Prot [d]
Chromospheric activity log R,
Stellar mass Moy [Mo]

Stellar radius Rgar [Ro]

Stellar density Ogtar [g cm™3]
Bolometric luminosity [Lg]
Stellar age [Gyr]

4227 + 85
-0.1+0.07
-0.02 £0.15
0.09£0.15
0.13+0.13
0+0.15

4.57 +£0.05
1.5+0.7
30.63 = 3.81
-4.86
06797403
0.672 £ 0.010
3.43 +£0.08
0.129 + 0.004

5.1
6.7’:5_2

BB DD DB W RN NN NN

[1] Gaia Collaboration et al. (2021), [2] this work, [3] Sudrez Mascarefio et al. (2015)

The TOI-1260 star is moderately active where activity-induced
variations were reported by G21. The activity-induced variations in
the RVs were modeled by a GP model alongside the three-planet
Keplerian model. We chose a RotationTerm GP kernel (Foreman-
Mackey 2018), which consists of a mixture of two SHO terms to
describe the stellar rotation. A uniform prior was used for the log
rotation period (log Pror) parameter and the radial velocity semi-
amplitudes (K}, K¢, K¢) in the RV dataset. Finally, we included
jitter (ocgarps) and mean velocity offset or systemic offset (ygarps)
parameters for the RV fit. The host star mass and radius were sampled
using a Gaussian prior which is based on our results in Section 4.
We note that the best-fit stellar rotation period from our GP model
is 30.63 + 3.81 days. This gives a rotation rate of 27 Rsar/Prot =
1.1 km s~! which is consistent with our V sin i value from Section 4.

The fitted parameters were first optimised with the
scipy.optimize.minimize function, integrated in the
exoplanet package, to find the respective maximum a poste-
riori parameters. These estimates were used to initialise parameters
in the sampling space via a “No U-Turn Sampling” (NUTS; Hoffman
& Gelman 2011), a gradient-based HMC sampler implemented
in PyMC3. We initiated 4 sampling chains where each chain has
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2000 tuning steps and 2000 draw iterations. The Gelman-Rubin
statistic (Gelman & Rubin 1992) of the sample is < 1.003, indicating
the chains are converged.

The phase-folded TESS and CHEOPS transit light curves and the
corresponding best-fit transit models are shown in Figure 2. The
HARPS-N RVs and best-fit three planet RV model is shown in Fig-
ure 3. The phase-folded RVs for each planet and their respective
best-fit models are shown in Figure 4.

We studied the case where planet eccentricities are allowed to
float in the model and found that there are no difference between
the zero and non-zero eccentricities models. Hence we adopted the
zero eccentricity model. The resulting median parameters and their
1-0 uncertainties are listed in Table 3. The posterior distributions of
fitted parameters are shown in the corner plot in Figure Al.

TOI-1260 is a multiplanet system that consists of three transiting
exoplanets where the innermost planet TOI-1260b has a radius and
mass of 2.41 + 0.05 Rg and 8.56 + 1.54 Mg, respectively. TOI-
1260c has a radius and mass of 2.74 +0.07 Rg and 13.20+4.23 Mg,
respectively, while the outermost planet TOI-1260d has a radius
of 3.12 + 0.08 Rg and a mass of 11.84 + 7.79 Mg, respectively.
With the addition of the CHEOPS photometry as well as TESS data



The TOI-1260 system 5

TESS sector 14
De-trended flux

+  de-trended data —— planet b planet ¢ —— planetd

ain

i

TESS sector 21
De-trended flux

CHEOPS
De-trended flux

2248.0

2248.5

CHEOPS
De-trended flux
[ppt]

2262.4 226282.8

22632 2277.6

2278.4

TESS sector 41
De-trended flux
[ppt]

o

2420 2425 2430

2435 2440 2445

BJD - 2457000 [days]

Figure 1. Time-series light curves of TOI-1260. From top to bottom: The TESS PDCSAP light curves from Sectors 14, 21, and 41 are shown in the first, second,
and last panels, respectively. The TESS light curves were detrended using a Gaussian Process model described in Section 5. The CHEOPS light curves are

shown in the third and fourth rows.

from more recent sectors, this work has significantly improved the
precision of the radius measurements of TOI-1260b and ¢ compared
to previous work. The radii of all three transiting planets are measured
with a precision of better than 3%. We note that the mass precision of
planets b and ¢ in our work is does not improve despite the inclusion of
planet d in the Keplerian model. This may be due to the methodology

used to model the stellar activity induced variation in the RV data.
In G21, the author applies a multi-dimensional GP approach and
used activity indicators as prior to constraining the GP model which
reduced the flexibility of the GP to model the RVs and may have
resulted in a smaller semi-amplitude precision. Nevertheless, the

MNRAS 000, 1-17 (2022)
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Figure 2. Phase folded light curves of TOI-1260b (top), TOI-1260c (middle),
TOI-1260d (bottom). The TESS data are shown in the left panels and the
CHEOPS data are shown in the right panels. Residuals of each transit are
shown below each phase-folded light curves. The phase binned data are
denoted by green points and the orange line shows the best-fitted transit

models for each planet.

mass determination of planets b and c are consistent within 1-sigma
with values derived in G21.

The mass precision of the planets is the main source of uncertainty
in the determination of the planetary bulk densities in the system.
This work highlights the need to strategically obtain more RVs for
the system in order to understand the effect of stellar activity on the
RVs of the system and better constrain the planetary masses.
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6 DISCUSSION

The follow-up photometric observations of TOI-1260 allows the pre-
cise characterisation of the two inner transiting planets and confirms
the planetary nature of the transiting outer planetary companion.
Figure 5 shows the mass-radius diagram of known exoplanets with
masses below 30 Mg and radii less than 4 Rg. We proceed now with
the discussion of the interior composition and atmospheric evolution
of the planetary system.
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Figure 3. Top: Time-series HARPS-N RVs of TOI-1260. The RVs were modelled using a three-planet Keplerian RV model and a GP simultaneously to model
the activity-induced RV variations (see Section 5). The green dash line shows the 3-planet Keplerian model and the orange dash-dot line shows the GP model
that accounts for activity induced RV variations. The blue solid line shows the median three-planet Keplerian + GP model. The 1-sigma credible intervals of the

best fit Keplerian + GP model is indicated by the blue shaded region.

Bottom: Residuals of the RV data.
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Table 3. System parameters obtained from the joint light curves and radial velocities analysis. The median values and 1-sigma uncertainty are reported.

Parameter [Unit] Planet b Planet ¢ Planet d
Fitted parameters

Period P [day] 3.127463 + 0.000005 7.493134 + 0.000020 16.608164 + 0.000083
Epoch TO [BJD-2457000] 2065.564269 + 0.000396  2068.270505 + 0.000577  2062.017406 + 0.001309
Planet-to-Stellar radius ratio [Rp/Rs] 0.0329 + 0.0006 0.0377 + 0.0007 0.0425 + 0.0009
Impact paramater b 0.20+0.12 0.75 +0.02 0.53 £0.05
Radial velocity semi-amplitude K [m s~ 4.93+0.83 5.67+1.77 3.90 £2.54
Eccentricity e 0 (adopted) 0 (adopted) 0 (adopted)
Angle of periastron w [°] 0 (adopted) 0 (adopted) 0 (adopted)
Derived parameters

Transit duration T14 [hr] 2.06 +0.02 1.97 +£0.03 3.19+0.07
Transit depth [ppm] 1082 + 37 1421 £ 55 1808 + 78
Scaled semi-major axis a/Rs 11.73 +£0.35 20.99 +0.63 35.69 + 1.06
Orbital semi-major axis a [au] 0.0367 £ 0.0011 0.0657 + 0.0020 0.1116 £ 0.0033
Inclination i [deg] 89.03 £ 0.61 87.97 +0.11 89.14 +£0.10
Planet radius R, [Rg] 2.41 +£0.05 2.76 £0.07 3.12+0.08
Planet mass M, [Mg] 8.56 + 1.54 13.20 +4.23 11.84+7.79
Planet density pj, [g cm™3) 3.35+£0.64 3.45+1.14 2.14+1.42
Planet surface gravity log g, 3.16 £ 0.09 3.23+0.15 3.08 £ 0.30
Equilibrium dayside temperature [K] 871 +24 651 + 18 499 + 14
Stellar insolation [Sg] 95.58 +0.07 29.81 +0.05 10.32 +0.07
TESS instrument offset orgss [ppm] 64.0 £ 8.6

CHEOPS instrument offset orgss [ppm] 48.8 £ 14.7

HARPS jitter ogagps [m s~'] 0.22+/-0.79

Systemic radial velocity ygarps [m s 10.73 £2.63

Limb darking parameter u| TEss 0.21 £0.18

Limb darkening parameter u> Tgss 0.53 +£0.26

Limb darking parameter 1 cHEOPS 0.92+0.18

Limb darking parameter 1 cHEOPS -0.33 +0.21

GP RotationTerm parameters

GP rotation period Ryor,Gp [day] 30.63 +3.81
oGp 6.62 + 1.45
Q0 0.83 £1.48
do 1.94 +3.67
f 0.70 £ 0.23
Stellar mass Mg [Mg] 0.67 +£0.06
Stellar radius Rg [Ro] 0.67 £ 0.01
Stellar density ps [g cm™3) 3.12+0.33
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Figure 5. Mass-radius diagram showing low mass planets in the range of 0.4-
30 Mg which have mass and radius precision measured to better than 30%
and 15%, respectively. TOI-1260b, TOI-1260c, TOI-1260d, are indicated
by the star symbols. All exoplanets are colour-coded according to their the
equilibrium dayside temperatures as shown in the colour bar. The different
lines plotted are the theoretical mass-radius relations corresponding to the
planet interior compositions (Zeng et al. 2019).

Figure 4. Phase-folded radial velocities and residuals of TOI-1260b (top),
TOI-1260c¢ (middle), TOI-1260d (bottom). The best-fit RV models are indi-
cated by the solid blue line and the corresponding 1-sigma credible interval
is shown by the blue shaded region.
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6.1 Interior composition of the planets

The TOI-1260 system has three sub-Neptune transiting exoplanets
where planets b, ¢ and d have masses of 8.56 + 1.54 Mg, 13.20 +
4.23 Mg and 11.84 + 7.79 Mg, respectively, and their radii are
2.41 £0.05 Rg, 2.76 £ 0.07 Rg, and 3.12 + 0.08 Rg, respectively.
This means that the three sub-Neptunes TOI-1260 b, ¢ and d have
bulk densities of 3.35 + 0.64 g cm™, 3.45 + 1.14 g cm™3, and
214 £ 142 ¢ em™3, respectively. Figure 5 shows the distribution
of known exoplanet with precise mass and radius measurements in
the mass-radius diagram, alongside some theoretical mass-radius
relations for different planet interior compositions. The interior of
TOI-1260 b is likely to be consisted of up up 50% rocky core and a
50% H,O layer. In the case of TOI-1260 c, the sub-Neptune planet is
likely a water world or it could be composed of a water-rich core with
a small fraction of H2 atmosphere. For the outermost planet TOI-
1260 d, its interior is likely to consist of a water-rich or Earth-like
rocky core with up to ~ 2% of H2 atmosphere.

The interior compositions of exoplanet correlates with the compo-
sitions of their host stars (Adibekyan et al. 2021a). This is because
they were formed from accretion of the same disk material. There-
fore, using physical parameters of the host star in addition to the
planet’s mass and radius provides a better constrain to the planet’s
interior composition. Using the values of radius, mass, and stellar
properties derived in Section 5, we performed an analysis of the
internal structure of the three planets in the TOI-1260 system. Our
method is based on a global Bayesian model that fits the observed
properties of the star (mass, radius, age, effective temperature, and the
photospheric abundances [Si/Fe] and [Mg/Fe]) and planets (planet-
star radius ratio, the RV semi-amplitude, and the orbital period). The
hidden parameters in the Bayesian model are, for each planet, the
masses of solids (everything except the H or He gas), the mass frac-
tions of the core, mantle and water, the mass of the gas envelope, the
Si/Fe and Mg/Fe mole ratios in the planetary mantle, the S/Fe mole
ratio in the core, and the equilibrium temperature. All details on the
methods are presented in Leleu et al. (2021).

The Bayesian analysis relies on a forward models that computes
the expected planetary radius and bulk internal structure as a function
of the hidden parameters. In the forward model, we assume a fully
differentiated planet made of a core (composed of Fe and S), a mantle
(composed of Si, Mg, Fe, and O), a pure water layer, and a H and He
layer. The temperature profile is adiabatic, and the equations of state
(EoS) used for these calculations are taken from Hakim et al. (2018)
and Fei et al. (2016) for the core materials, from Sotin et al. (2007)
for the mantle materials, and Haldemann et al. (2020) for water.
The thickness of the gas envelope is determined as a function of the
gas mass fraction, the equilibrium temperature, the mass and radius
of the solid planet, and the age (assumed to be equal to the stellar
age), using the semi-analytical model of Lopez & Fortney (2014).
Importantly, the radius of the high-Z part of the planet (core, mantle
and water layer) is computed independently of the thickness of the
gas layer. This implies in particular that the compression effect of the
gas envelope onto the core, as well as the effect of the temperature at
the basis of the gas envelope are not included in the mode.

The Bayesian analysis is done assuming the following priors: the
mass fractions of the planetary cores, mantles, and water layers have
uniform positive priors (the mass fractions of water being limited
to a maximum value of 0.5). The prior on the gas mass is uniform
in log, and the bulk Si/Fe and Mg/Fe mole ratios in the planet are

MNRAS 000, 1-17 (2022)

assumed to be equal to the values determined for the atmosphere of
the star, given above 3,

The posterior distribution of the main planetary hidden parame-
ters are presented in Fig. 6. All planets have some fraction of gas,
the mass of gas increasing for decreasing equilibrium temperatures
(see Fig. 7). The fraction of water, on the other hand, is essentially

unconstrained.

6.2 Atmospheric evolution

We considered the stellar and planetary parameters derived in our
paper, as well as the present-day planetary atmospheric mass frac-
tions presented in Section 6.1, to reconstruct the evolution of the
stellar rotation rate and of the planetary atmospheres. In particular,
we constrain the evolution of the stellar rotation period, which we use
as proxy for the evolution of the stellar high-energy emission affect-
ing atmospheric escape, and the predicted initial atmospheric mass
fraction of the detected planets f32", that is the mass of the planetary
atmosphere at the time of the dispersal of the protoplanetary disk,
which we assume being at 5 Myr.

We reach these results by using the Planetary Atmospheres and
Stellar RoT'ation RAtes (PASTA; Bonfanti et al. 2021b) code, which
is an updated version of the original code presented by Kubyshk-
ina et al. (2019c,a). In short, PASTA constraints the evolution of
planetary atmospheres and of the stellar rotation rate combining a
model predicting planetary atmospheric escape rates based on hydro-
dynamic simulations (this has the advantage over other commonly
used analytical estimates to account for both XUV-driven and core-
powered mass loss; Kubyshkina et al. 2018), a model of the stellar
high-energy (X-ray plus extreme ultraviolet; XUV) flux evolution
(Bonfanti et al. 2021b), a model relating planetary parameters and
atmospheric mass (Johnstone et al. 2015b), and stellar evolutionary
tracks (Choi et al. 2016). PASTA works under two main assump-
tions: 1) planet migration did not occur after the dispersal of the
protoplanetary disk; 2) the planets hosted at some point in the past
or still host a hydrogen-dominated atmosphere. PASTA returns re-
alistic uncertainties on the free parameters (i.e. the planetary initial
atmospheric mass fractions at the time of the dispersal of the proto-
planetary disk, and the indexes of the power law controlling the stellar
rotation period that is used as proxy for the stellar XUV emission)
by implementing the atmospheric evolution algorithm in a Bayesian
framework (Cubillos et al. 2017), using the system parameters with
their uncertainties as input priors. All details of the algorithm can
be found in Bonfanti et al. (2021b). The only difference with respect
to the analysis of the systems considered by Bonfanti et al. (2021b)
is that here we fit the planetary atmospheric mass fractions given in
Section 6.1 instead of the planetary radii. This enables the code to be
more accurate by avoiding the continuous conversion of the atmo-
spheric mass fraction into planetary radius, given the other system
parameters (see e.g. Delrez et al. 2021).

Figure 8 shows the results obtained from PASTA. As a proxy for
the evolution of the stellar rotation period, Figure 8 displays the pos-
terior distribution of the stellar rotation period at an age of 150 Myr
(Prot,150), also in comparison to that of stars member of young open
clusters and of comparable mass extracted from Johnstone et al.
(2015a). The posterior distribution is slightly shifted towards slower
rotation compared to that of the open cluster stars, indicating that the

3 1t should be noted however that Adibekyan et al. (2021b) has found that
despite an existing correlation between the abundances of planets and host
stars, the relation is not always strictly one-to-one.
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Figure 6. Corner plot showing the results on the interior composition models of (a) TOI-1260 b, (b) TOI-1260 ¢ and (c) TOI-1260 d. The vertical dashed lines
and the ’error bars’ given at the top of each columns represent the 5 % and 95 % percentiles.

planets were likely subject to somewhat less XUV radiation than the the constraints given by system parameters prevent those planets to
average. host a massive initial atmosphere regardless of the age of the system.

The current stellar XUV fluxes impinging on each planet are
Fxuv.p = 2.87 - 10* erg/(cm? s), Fxyv.c = 8.97 - 10 erg/(cm?
s), and Fxyy,q = 3.10 - 103 erg/(cm2 s). The correspondent mass-

Figure 8 shows also the posterior distribution of the initial atmo-
spheric mass fraction for planets b (in linear scale), ¢ (in logarithmic
scale), and d (in logarithmic scale) in comparison to the present-day

atmospheric mass fraction (Section 6.1). The posterior distribution loss rate values expected for the planets right now are My, = 1010
for planet b is flat, indicating that the planet has most likely lost (al- g/s, Mc = 1.59 - 10° gls, and Mg =7.43 - 108 g/s. Assuming that
most) entirely its primordial hydrogen-dominated envelope through the stellar XUV flux does not change over time in the future, which
escape at some point in the past, which is why PASTA is unable to is a reasonable assumption given the old age of the star, these values
constrain the initial atmospheric mass fraction. Figure 8 indicates imply that in the next Gyr the planets are respectively going to lose
that also planets ¢ and d have gone through significant evolution 0.6%, 0.06%, and 0.03% of their mass. From Fig. 7 these values then
through escape that has significantly eroded the primordial atmo- imply that planet b is going to lose entirely its hydrogen-dominated
spheric content, which was however small in comparison to the plan- envelope, while planets ¢ and d are going to keep it. As the results
etary masses. Therefore, we conclude that both planets (i.e. ¢ and of planet b are consistent with no hydrogen atmosphere at all, it is
d) accreted a small hydrogen envelope during the formation process unlikely that the position of these planets in the period-radius dia-
compared to their masses. This may have been the result of several gram (e.g. Fulton et al. 2017) is going to change in the future.

physical mechanisms, such as late planet formation compared to the
age of the protoplanetary disk, early dispersal of the protoplanetary
disk, low gas content of the disk.

As the isochronal age is loosely constrained, we performed addi- 7 CONCLUSIONS

tional evolution runs by artificially making the star much younger or We presented the follow-up observations of the TOI-1260 system
older, further imposing tighter constraints on the stellar age. Despite using CHEOPS and TESS. The addition of the recent photometric
the different evolutionary time scales, we did not find significant dataset allow us to refine the physical parameters of the planetary
changes in the asttr";ft of the planets. This is because (1) atmospheric system and discover a third additional transiting planet. For planets

mass loss is significant only during the first Myrs of evolution and (2) TOI-1260 b and c, we found that the radii are 2.36 + 0.06 Rg, 2.82 +

At and ;tt,?f , are always found to be rather small, indicating that 0.08 Rg, respectively, and the masses 8.52 + 1.45 Mg and 13.29 +

MNRAS 000, 1-17 (2022)
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3.94 Mg . The newly discovered TOI-1260-d has bulk properties
3.01 +0.09Rg and 11.8 £ 7.5 Mg.

The detailed characterization of the planetary parameters allows
us to derive constraints of their internal composition and evolution
that we related to the formation processes in the system and its future
evolution.

The TOI-1260 system presents an exciting opportunity for compar-
ative exoplanetology using JWST transmission spectroscopy. Moses
et al. (2013) predicted that sub-Neptune sized exoplanets such as
those in the TOI-1260 system can harbour a large diversity of atmo-
spheric compositions. Multi-planet systems such as TOI-1260 give
us the opportunity to test whether such diversity can exist within dif-
ferent sub-Neptunes in the same system. All three of the planets in the
TOI-1260 system appear to be favourable for atmospheric categori-
sation with JWST, with transmission spectroscopy metrics (TSMs
Kempton et al. 2018) of 43.6, 36.1 and 40.4 for planets b, c, and
d, respectively. Figure 9 shows how this compares to similar multi-
planet systems as a function of planetary radius and semi-major axis.
In addition, due to its high northern declination TOI-1260 is partic-
ularly favourable for JWST visibility, with observations possible for
196 days each year (Bourque et al. 2021).

The TOI-1260 system 13
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APPENDIX A: EXTRA MATERIAL

We present in Figure A1l the posterior distribution of the fitted pa-
rameters.

This paper has been typeset from a TeX/IATgX file prepared by the author.
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Figure A1. Corner plot showing the posterior distribution of the fitted parameters.
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