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!
Abstract 

 

The most common clinical treatments for large bone deficiencies resulting from trauma, 

disease or infection are autograft, allograft or bone graft substitutes (BGS). However, these 

treatments still have limitations for clinical applications. Thus, this project aims to 

fabricate an optimal scaffold design for enhanced bone formation.  Human bone is not 

solely hydroxyapatite (HA) but consists of multi-ionic substitutions in the HA lattice. 

Here, we have developed multi-substituted HA (SiCHA) nanopowders as bone substitute 

materials. SiCHA-2 was found to closely mirror the composition of the bone mineral 

content associated with the most enhanced proliferation and osteogenic activity. 

An innovative coating materials assembly was then established using SiCHA-2 

nanopowders in combination with hyaluronan and collagen type I by the Polyelectrolyte 

Multilayers (PEMs) technique. Increasing the number of deposition cycles resulted in 

linear increases of surface properties and cell activities up to 5-bilayers. One common 

problem in scaffold-based tissue engineering (TE) is the rapid formation of tissue on the 

outer edge of the scaffolds whereas inner regions of the scaffold undergo necrosis. In this 

study, we incorporated aligned channels on the structure of three-dimensional (3D) 

scaffolds by Rapid Prototyping (RP) technique using Poly (lactic acid) (PLA) followed by 

PEMs. We investigated the fate of human mesenchymal stem cells (hMSCs) on these 

scaffolds in a rotary bioreactor compared to static conditions using osteogenic and 

proliferation media. We demonstrate that the combination of appropriate substrates with 

aligned channels, biochemical cues from the osteogenic media and better mass transport 

provided by rotary bioreactor enhances bone formation.  
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ii 

In order to create pre-vascularized 3DP hybrid scaffolds, proof of concept work introduces 

the co-culture model of human umbilical vein endothelial cells (HUVECs) and hMSCs 

into the best scaffold design. Co-culture shows enhanced expression of both pro-

angiogenic markers, which is an early indication of an ability supporting vessel formation 

in vitro.  

Keywords: Multi-substituted hydroxyapatite, Polyelectrolyte Multilayers coating, Rapid 

Prototyping, Three-Dimensional scaffolds, Rotary bioreactor, Human Mesenchymal Stem 

Cells, Osteoarthritis, Tissue engineering. 
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1.1. Clinical needs for bone regeneration 

Bone defects resulting from trauma, disease or infection can dramatically alter one’s body 

equilibrium and quality of life (Salgado et al. 2004). It is considered as one of the major 

public health problems, which would result in huge socioeconomic implications (Rupani et 

al. 2012). For younger people who generally have higher regenerative capacity, most of 

fractures will possibly heal without the need of any intervention (Stevens 2008). However, 

as the individual and society grows older (65 years plus population), they are exposed to 

higher risk of bone-related health problems such as osteoarthritis or osteoporosis (Hing 

2004; Lemaire et al. 2004). Osteoarthritis (OA) is not only a wear and tear disease leading 

to loss of cartilage, but rather, an abnormal remodelling of joint tissues driven by a host of 

inflammatory mediators within the affected joint (Loeser et al. 2012; Berenbaum 2013). 

Based on statistical study conducted by Arthritis Research United Kingdom (ARUK) in 

2013, approximately 8 million people in the UK are affected by osteoarthritis in which 

more severe cases were seen in woman aged in the late 40s onwards. On the other hand, 

osteoporosis, typically as a result of hormonal changes and oxidative stress related to 

aging, is a condition that weakens bones, thus making them fragile and more likely to 

break (Hing 2004; Lemaire et al. 2004). The reduction of bone mass from osteoporosis is 

mainly due to a decrease in the number of osteoblasts rather than their functioning 

capacity, which could be due to reduce osteoblastogenesis or increased apoptosis (Jilka et 

al. 1996). According to the National Health Service (NHS) records, more than 300 000 

people received hospital treatment for fragility fractures every year as a result of 

osteoporosis, thus resulting in NHS to spend a massive amount of money. For instance, hip 

fractures alone cost the UK an estimated £5 million per day- that is approximately £2 

billion pounds per year.  
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Historically, bone defects are treated by autograft or allograft. Transplanting autologous 

bone (i.e. bone from patient) has been considered as gold standard in clinic as it integrates 

reliably with the host bone and avoid the immune- and disease-related complications 

(Stevens 2008). Allograft, on the other hand, is bone donated from another member of the 

same species. However, the drawbacks with this treatment such as short supply, high cost, 

donor site morbidity as associated with the harvest and potential risk of disease 

transmission have driven increasing needs and use of bone graft substitute (BGS) materials 

(Lord et al. 1988; Siber et al. 2003). Although several advances have been made for BGS 

to address these drawbacks, each of the current BGS has still their own limitations. To 

date, no adequate bone implant has been developed to meet the clinical needs, hence, bone 

deficiencies remains unresolved. The search of new bone regeneration strategies is 

therefore a key priority fuelled by the debilitating pain associated with bone damage, and 

the increasing medical and socioeconomic challenge of the aging population. In this 

context, bone tissue engineering (BTE) appears to be a promising approach to overcome 

the limitations of current bone grafts (Salgado et al. 2004; Rupani et al. 2012). 

1.2. Bone anatomy  

Bone is a dynamic and a highly vascularized tissue, which undergoes remodelling 

(continuously broken down and rebuilt), throughout the lifetime of an individual (Rodan 

1992; Sommerfeldt & Rubin 2001). Bone tissue is comprised of two core components; (i) 

the mineralized inorganic phase consisting mainly of carbonated hydroxyapatite, and (ii) 

non-mineralized organic phase, which is predominantly the collagen type I. The 

comparative composition of human bone, enamel and synthetic hydroxyapatite (HA) 

ceramics are shown in Table 1.1 (LeGeros 1991; Landi et al. 2003; Pietak et al. 2007; 

Sprio et al. 2008; Landi et al. 2010). 
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Table 1.1: The comparative composition of human bone, enamel and synthetic 
hydroxyapatite (HA) ceramics (LeGeros 1991; Landi et al. 2003; Pietak et al. 2007; Sprio 
et al. 2008; Landi et al. 2010). 

Constituents (wt%) Bone Enamel HA 

Calcium 24.5 36.0 30.9 
Phosphorus 11.5 17.7 18.5 
Sodium 0.7 0.50 tr 
Potassium 0.03 0.08 tr 
Magnesium 0.55 0.44 tr 
Carbonate 2-8* 3.20 tr 
Silicon 0.03-0.5** 0.04 - 
Fluoride 0.02 0.01 - 
Chloride 0.10 0.30 - 
Total inorganic 65.0 97.0 100 
Total organic 35.0 1.0  

*Carbonate content varies depending on the age of the individual and bone site; ** Silicon 
content in bone mineral density depends on the levels of silicon dietary intake, age and sex 
of the individual and bone site; tr = trace elements.  

Typically, bone consists of approximately 65% mineralized inorganic phase and 35% non-

mineralized organic matrix (Weiner & Wagner 1998; Best et al. 2008; Hannink & Arts 

2011). Collagen is known to provide the bone with tensile strength and flexibility, whereas 

mineralization increases the stiffness and the compressive strength of the bone at the 

expense of its energy-storing capacity (Rupani et al. 2012). Besides the collagenous 

matrix, over 200 different types of non-collagenous matrix proteins such as glycoproteins, 

proteoglycans and sialoprotein were also found in the bone extracellular matrix (ECM). 

These organic proteins contribute to the abundance of signals in the immediate ECM 

milieu  (Stevens  2008). In addition, these organic proteins also form physically or 

chemically cross-linked networks, which regulates the expression of osteoblast phenotype 

and supports osteogenesis both in vitro and in vivo (Zhao et al. 2014). Therefore, these 

ECM-like biomacromolecules such as hyaluronic acid and collagen type I have been 

incorporated into the production of 3D scaffolds for bone regeneration with the aim to 

closely mimic the bone structure (Zhang et al. 2005; Hoyer et al. 2012; Yu et al. 2012).  
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The development of macroscopically diverse bony structures in vivo is greatly influenced 

by distinct loading conditions. Adult skeleton is made up of more than 206 different bones, 

ranging from the long bones found in limbs, short bones in the wrist and ankle, flat bones 

in the sternum and skull as well as the irregular bones such as pelvis and vertebrae. The 

human skeleton consists of 80% cortical bone (compact) and 20% spongy cancellous bone 

(porous) (Sikavitsas et al. 2001; Salgado et al. 2004). Cortical bone is the denser bone, 

consisting of parallel cylindrical units with 5-10% porosity (Buckwalter et al. 1995). 

Cortical bone is primarily found in the shaft of long bones (e.g. femur, tibia, fibula) and 

forms the outer shell around the cancellous bone at the end of joints and the vertebrae (Hill 

1998; Sikavitsas et al. 2001).  In contrast, the cancellous bone acquires sponge-like 

honeycomb morphology, comprising of branching bars, plates, and rods of various sizes 

called trabeculae (Buckwalter et al. 1995; Sikavitsas et al. 2001). The mechanical 

properties of cancellous bone are greatly dependent on its porosity and the way it is 

structured. Its porosity ranges from 50 to 90%, making its ultimate compressive strength 

and modulus of elasticity 10 times inferior compared to the cortical bone as shown in 

Table 1.2 (Velasco et al. 2015). Besides that, the pores also perform other physiological 

functions and contain the marrow. Cancellous bone is normally found at the end of the 

long bones in vertebrate and in flat bones like the pelvis (Buckwalter et al. 1995; Hill 

1998; Sikavitsas et al. 2001).   

Table 1.2: Mechanical properties of cortical and cancellous bones (Velasco et al. 2015). 

Property Cortical Cancellous 

Compressive strength (MPa) 130-230 2-12 
Tensile strength (MPa) 50-150 10-100 
Strain to failure 1-3 5-7 
Young Modulus (GPa) 7-30 0.02-0.5 
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Bone performs several primary functions in the maintenance of body systems. These 

include (1) protection of vital internal organs, (2) assists in locomotion by providing 

support and site of muscle attachment, (3) ensuring that the skeleton has sufficient load-

bearing capacity, (4) generation of red and white blood cells for oxygenation and 

immunological protection of other tissues and (5) serving as mineral reservoir of calcium, 

phosphate, and other important ions (Rodan 1992; Sommerfeldt & Rubin 2001; Sikavitsas 

et al. 2001). Fig. 1.1 shows the different level of structural units in typical human bones.  

 

Fig. 1.1: Hierarchical structural units of bones on different scales. The strong calcified 
outer compact layer (a), contains many osteons (b), The resident cells are coated in a 
forest of cell membrane receptors that respond to specific binding sites (c) and the explicit 
nanoarchitecture of the surrounding extracellular matrix (d) (Stevens & George 2005). 
Re-printed with permission from Science.  
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The formation, maintenance and resorption of bone tissue results from the interaction of 

three major cell types: osteoblasts, osteocytes and osteoclasts. The morphological 

characteristics and functions of these cells are listed in Table 1.3 (Salgado et al. 2004; 

Young et al. 2006; Jayakumar & Di Silvio 2010). 

Table 1.3: Bone cell types and their respective functions (Noble & Reeve 2000; Knothe 
Tate et al. 2004; Salgado et al. 2004; Young et al. 2006; Jayakumar & Di Silvio 2010). 

Cell type Morphological characteristics Function 

Osteoblasts Mononuclear cells around 15-30 µm in 
size with a spherical nucleus and 
abundant basophilic cytoplasm 
comprising rough endoplasmic reticulum, 
golgi apparatus, and mitochondria, along 
with active cytoskeletal proteins 

Responsible for the production 
and mineralization of the bony 
matrix (collagen type I and non-
collagenous proteins) 

Osteocytes Most abundant cells in bone, stellate 
shaped, possess fewer organelles than the 
osteoblasts, present in the lacunae within 
the mineralized matrix 

Mechanosensor cells of bone 
and actively involved in bone 
turnover (regulators of 
osteoblasts and osteoclasts) 

Osteoclasts Polarized cells, multi-nucleated cells Responsible for bone resorption 
during remodelling, the repair of 
microdamage and the adaptation 
to mechanical loading 

 

1.3. Natural bone formation and remodelling pathways  

1.3.1. Bone formation 

The development of bone tissue can be classified into two distinct process, endochondral 

or intramembranous ossification, depending on the type of bone that is being developed. 

Both of the ossification processes occur in close proximity to vascular ingrowth. The 

distinction between endochondral and intramembranous formation rests on whether 

cartilage serves as the precursor for the bone (endochondral ossification) or whether the 

bone is formed by simpler method, without the intervention of a cartilage precursor 
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(intramembranous ossification). Endochondral ossification developed the bones of the 

extremities and those parts of the axial skeleton that bears weight, for example, the 

vertebrae. On the other hand, the flat bones of the skull and various facial bones were 

developed by intramembranous ossification during embryonic development (Kanczler & 

Oreffo 2008).  

In endochondral ossification, the coupling of chondrogenesis and osteogenesis to control 

the rate of bone ossification is regulated on the level of vascularization of the growth plate 

(Gerber & Ferrara 2000). Indeed, vascular endothelial growth factor (VEGF) isoforms play 

an important role in organizing metaphyseal and epiphyseal vascularization, cartilage 

formation and ossification during endochondral bone growth (Maes et al. 2002). Besides 

VEGF, Indian Hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) are also 

the essential components in endochondral ossification. Ihh is one of the proteins in the 

mammalian hedgehog family, which involved in chondrocyte differentiation, proliferation 

and maturation especially during endochondral ossification. It regulates its effect by 

feedback control of PTHrP, which acts as endocrine, autocrine, paracrine and intracrine 

hormone. PTHrP regulates endochondral bone development by maintaining the 

endochondral growth plate at a constant width (Lai & Mitchell 2005). 

In contrast, intramembranous ossification is characterized by infiltration of capillaries into 

the mesenchymal zone, as well as the advent and differentiation of mesenchymal cells into 

mature osteoblasts. Bone matrix is then constitutively deposited by osteoblasts leading to 

the formation of bone spicules. These bone spicules will then grow and develop by 

combining with other spicules, subsequently forming trabeculae. While the trabeculae 

increase in size and number, they form interconnected woven bone, which ultimately is 

replaced by more organized, stronger, lamellar bone (Marks & Hermey 1996).  
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1.3.2. Bone remodelling 

Back in 1892, Wolff proposed the idea that bone remodelling is controlled by mechanical 

as well as metabolic factors (Frost 1994). During our daily life, bone is exposed to several 

kinds of loading such as tension, compression, bending, shear, torsion and a combination 

of these loads which has been found to regulate its metabolism and growth (Palmoski et al. 

1979).  

Calcium-containing inorganic mineral is a bone building block and in order to mobilize 

calcium, tissue has to be broken down essentially (Rodan 1992). To provide structural 

support, bone is continuously being remodelled in response to the applied stresses 

(Manolagas 2000). For a normal healthy bone, the breakdown and formation of bones 

should be almost at the same rate so as to avoid bone loss and other serious conditions such 

as osteoporosis, Paget’s disease, and metastatic disease. Besides these diseases, bones are 

also prone to injuries, defects, and tumours. Fig. 1.2 shows the states of (a) normal bone 

remodelling and (b) defective resorption (Kini & Nandeesh 2012). 

 

Fig. 1.2: Bone remodelling. This figure shows the states of (a) normal bone remodelling 
and (b) defective resorption (Kini & Nandeesh 2012). Re-printed with permission from 
Springer, License Number: 3786041281497.  
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Bone remodelling involves the coupling process of bone formation and resorption and they 

consists of six phases as described below (Fig. 1.3) (Rucci 2008; Kini & Nandeesh 2012).  

1. Quiescence phase, where the lining cells are inactive osteoblasts. Quiescence is the 

resting state of the bone surface.  

2. Activation stage. Osteoclasts then gather on the bone surface, in small pits known as 

Howship’s lacunae at the second phase.  

3. Resorption is the third phase, whereby these osteoclasts remove old bone tissues by 

removing the mineral matrix and breaking down the organic collagen fibres.  

4. Reversal phase. The resorption of osteoclasts ends and osteoblasts now replaced 

osteoclasts at phase four.  

5. The formation of new bone begins at phase five where the osteoblasts lay down new 

bone by firstly creating a matrix of collagen knows as osteoid. The osteoblasts then 

mineralize osteoid to form new bone.  

6. The final phase of bone remodelling is called mineralization. The process begins 30 

days after deposition of the osteoid and ends at 90 days in cancellous bone, while ending in 

130 days in cortical bone. The bone returns to its resting state at phase six. At the end of 

bone remodelling, the amount of bone formation should be equal to bone resorbed.  
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Fig. 1.3: Phases of bone remodelling: (a) quiescent phase where flat bone lining cells are 
seen lining the endosteal membrane, (b) showing activation stage characterized by cell 
retraction with resultant membrane resorption, (c) resorption phase where these 
osteoclasts remove old bone tissue by removing the mineral matrix and breaking down the 
organic collagen fibres, (d) reversal phase where the resorption of osteoclasts ends and 
replaced by osteoblasts with underlying new osteoid matrix, (e) formation phase where the 
osteoblasts lay down new bone by firstly creating a matrix of collagen knows as osteoid, (f) 
mineralization phase where formation of bone structure unit with progression to quiescent 
phase (Kini & Nandeesh 2012). Re-printed with permission from Springer, License 
Number: 3786041281497.  
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1.3.3. The role of vascularization in bone development 

Bone is a complex tissue interpenetrated with a highly vascularized network in the human 

body (Salgado et al. 2004; Duttenhoefer et al. 2013). Most tissues in the body are supplied 

with nutrients and oxygen through blood vessels with a maximum distance of 200 µm from 

the adjacent capillary network (Rouwkema et al. 2008; McFadden et al. 2013). The 

maximum distance between these capillaries is correlated with the diffusion limit of 

oxygen (Fig. 1.4). However, only limited soft tissues like skin and cornea, where the cells 

can be supplied with nutrients and oxygen via diffusion from the blood system over longer 

distance (Novosel et al. 2011). As bony tissue is highly dense, the nutrients cannot be 

diffuse over long distance and they therefore demand a highly efficient vascular supply 

(Hing 2004). Even within dense cortical bone tissue, the organization of vascular canals 

ensures that the blood vessels are no more than 300 µm away from the cells (Buckwalter et 

al. 1995).  

 

Fig. 1.4: Schematic description of diffusion and transport processes in vascularized 
tissues in vivo. The surrounding tissue is supplied with oxygen, nutrient and drugs via the 
vasculature. Waste products and CO2 are cart away from the tissue into the blood vessel 
(Novosel et al. 2011). Re-printed with permission from Elsevier, License Number: 
3781960701104. 
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1.4. Bone repair and regeneration 

1.4.1. Bone defects 

Bone has the intrinsic regenerative capacity as part of the repair process in response to 

injury, as well as through the skeletal development or continuous remodelling throughout 

an adult life (Einhorn 1998). Unlike in other tissues, bone injuries or fractures would heal 

without leaving any scar. In fact, the regenerated bone is largely restored and it is 

indistinguishable from the adjacent uninjured bone (Einhorn 1998). However, there are 

cases of impaired fracture healing where, for instance, up to 13% of fractures in the tibia 

are being associated with delayed union or non-union fracture (Audigé et al. 2005). 

According to the US Food and Drugs Administration (FDA), a non-union is defined as a 

fractured bone that has not completely recovered within 9 months of injury and that has not 

shown progression towards healing over 3 following months on serial radiographs 

(Somford et al. 2013). It is a serious complication and may be caused through fracture 

movement, insufficient blood supply or infection. On the other hand, delayed union 

fracture is one that requires more time than usual to heal; in other words it shows healing 

progression over time (Gómez-Barrena et al. 2015). In orthopaedic and maxillofacial 

surgery bone regeneration is required in large quantity beyond the normal potential of self-

healing such as for skeletal reconstruction of large bone defects resulted from trauma, 

infection, tumour resection and skeletal abnormalities. There are also cases in which the 

regenerative process is compromised, including avascular necrosis and osteoporosis. Thus, 

bone repair has been the ultimate goal of surgery from ancient times to the present 

(Dimitriou et al. 2011). 



Introduction Chapter 1 

!

!
Page 14 !

! !
!

1.4.2. Bone graft  

Though bone possesses good capacity of regeneration, in some cases like in repairing large 

bone defects, an aid is usually required to facilitate bone healing (Gómez-Barrena et al. 

2015). There are a number of different methods for treat bone ailments as demonstrated 

schematically in Fig. 1.5 with the pros and cons of each technique are also listed (Rupani 

et al. 2012).  

 

Fig. 1.5: Common treatment for bone trauma and diseases (Rupani et al. 2012). Re-printed 
with permission from Dove Medical Press, License Number: 3786011188175.  
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Standard approaches routinely used in clinical practice in order to stimulate bone 

regeneration include the use of several different bone-grafting methods, such as autograft, 

allograft and bone graft substitutes, BGS (Green et al. 1992; Giannoudis et al. 2005; 

Giannoudis & Einhorn 2009). Typically, bone graft source can be adopted from another 

part of the patient’s body (autograft) or from another individual tissue obtained from a 

bone bank (allograft) (Meeder & Eggers 1994; LeGeros et al. 2006). Bone autograft is 

considered as the gold standard in clinic as it is the safest and most effective grafting 

procedure (Gómez-Barrena et al. 2015). However, harvesting (e.g. from the iliac crest) 

requires an additional surgical procedure, frequent with consequences of pain and 

complications (Dimitriou et al. 2011). The next solution is allograft, which were 10 times 

more commonly used than autograft as reported by Albert et al. (2006). In all orthopaedic 

procedures, allografts were used in 10.7%-12.7% as against 0.9%-1.3% of autografts 

(Albert et al. 2006). Nevertheless, shortage of supply and prone to potential disease 

transmission has become a major concern in the application of allograft procedure to treat 

bone defects (Hing 2005; Kanczler & Oreffo 2008).  

A range of synthetic grafts or implant made of various materials like metals and its alloys, 

ceramics, polymers and composites have also received well-deserved attention, but there 

are associated limitations to their applications (Salgado et al. 2004). For instance, metals 

and their alloys are widely been used for orthopaedic load bearing and joint replacement 

applications, as it is known to have superior mechanical properties like high impact 

strength, tough, ductile and high resistance to wear. However, these metals and alloys have 

low biocompatibility, may corrode over long time usage and exhibit poor overall 

integration with the tissue at the implantation site (Yaszemski et al. 1994).  
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Bioceramic materials are good alternative to metallic implants as they offer unique 

characteristics such as good biocompatibility, corrosion resistance, and the ability to be 

bioresorbed; but the brittle nature and very low tensile strength of ceramics can hinder its 

application for load bearing sites (Yaszemski et al. 1994). Calcium phosphate ceramics 

(CaPs) are one of the most promising groups of synthetic bone substitutes. Hydroxyapatite 

(HA) and tricalcium phosphate (TCP), or intrinsic combinations of the two, are the most 

extensively used CaPs. This is due to their similarity in composition and bone-like 

properties such as, bioresorbability, bioactivity, and osteoconductivity (Bonfield 2006).  

Adaptation of aforementioned materials, which have already been used in prior 

applications in human, proved that they are safe and non-toxic. However, the most critical 

concern of using synthetic materials is related to its bonding ability as they often integrate 

poorly with the host tissue and fail over time. This is most probably due to wear and 

fatigue or adverse body response (Hollister 2005). 

Synthetic materials alone are not able to replace all of the bone functions naturally. The 

lack of vascularisation of the synthetic materials usually leads to non-unions, which will 

cause more pain, longer healing time and increase in cost due to the need for a secondary 

operation. Hence, it is clearly seen that adequate bone replacement is yet to be found as the 

need for bone regeneration is alarming. To address these problems, tissue engineering (TE) 

seems as a possible solution to embarked (Salgado et al. 2004). 
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1.5. Bone Tissue Engineering  

TE is an interdisciplinary field of research that applies the principles of engineering and 

life sciences toward the development of biological substitutes that restore, maintain and 

improve tissue function (Langer & Vacanti 1993). Contrary to classic materials approach 

used in BGS, TE is based on the understanding of tissue formation and regeneration, and 

aims to promote new functional tissue instead of just implant new spare (Salgado et al. 

2004). 

Basically, TE can be divided into cell-based therapies and scaffold-based therapies. Cell-

based therapies involved the direct injection of cell suspension (autologous or allogenic 

origin) or the transplantation of cell-sheets into the injured or defect tissue (Hutmacher & 

Cool 2007). However, since many cell types are anchorage-dependent, this approach could 

lead to cell death due to the absence of a matrix for cells to adhere onto (Gomes 2004). In 

addition, this approach is limited to small bone defects (Rupani et al. 2012). To engineer 

tissues of predetermined shapes, cell-based therapies have serious limitations (Song et al. 

2008). Therefore, scaffold-based TE, which involves growing specific cell types in 3D 

scaffolds, has become increasingly actively investigated (Hutmacher & Cool 2007; Song et 

al. 2008). Scaffold-based TE concept was firstly introduced in the middle of 1980s when 

Dr Joseph Vacanti of the Children’s Hospital approached Dr Robert Langer of MIT with 

an idea to design scaffolds for cell delivery as opposed to seeding cells onto or mixing 

cells into naturally occurring matrices with physical and chemical properties that are 

difficult to manipulate (Vacanti 2006). In scaffold-based TE, there are three main pillars: 

cells, scaffolds and the culture environment (bioreactor) as shown Fig. 1.6 (Vacanti et al. 

2001; Quarto et al. 2001; Warnke et al. 2006).  
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Fig. 1.6: The in vitro tissue engineering approach: (1) A biomaterial scaffold, which can 
be a flat sheet to mimic skin, a bundle of fibres to replace tendons or a three-dimensional 
cylinder to be implanted into bone. (2) Seeding the scaffold with cells (i.e. primary cells or 
cell lines). (3) Culturing the cell-seeded scaffolds in a bioreactor, simulating at least one 
aspect of the in vivo environment. (4) The final step is implantation of the scaffolds, if 
possible, ex vivo monitoring of the behaviour of the scaffold (Rupani et al. 2012). Re-
printed with permission from Dove Medical Press, License Number: 3786011188175.  

TE offers several advantages over current therapies; (1) reducing the number of operations 

needed (after implantation) – resulting in shorter recovery time; (2) avoiding the risk of 

immunological responses (hyperacute and delayed); (3) minimizing viral infections; and 

(4) providing cost-effective treatment for long term usage (Lanza et al. 2000; Stock & 

Vacanti 2001; Rezwan et al. 2006). In this multidisciplinary research field, no organ or 

tissue is excluded, i.e. skin, liver, heart, blood vessels, bone, bone marrow, and cartilage, 

are included as reported by Stock & Vacanti (2001).  

1.6. Development of scaffolds for bone tissue engineering applications 

Scaffolds are defined as three-dimensional (3D) structure biomaterials serve as a support 

for cells to proliferate and maintain their differentiated function, and its architecture 

defines the ultimate shape of the new tissue form (Hutmacher 2000; Dhandayuthapani et 

al. 2011). It is then logical to say that 3D scaffold is an essential component in bone 
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regeneration and repair (Salgado et al. 2004; Swetha et al. 2010). Scaffolds play an 

important role not only in guiding cells growth but also the synthesis of ECM and other 

biological molecules, as well as facilitate the formation of functional tissues and organs 

(Song et al. 2008). Scaffolds can be used either as permanent or temporary template to 

restore organ functionality (Yarlagadda 2005). To meet the requirement for tissue repair, 

scaffold should meet certain criteria, which might vary slightly between types of tissues 

(Jones 2006). Nevertheless, the following properties have been identified as essential 

scaffold criteria for BTE applications:  

(a) Scaffolds should be biocompatible, which suggests that they should be well 

integrated in the host’s tissue without inducing any adverse response(Salgado et al. 

2004; Rezwan et al. 2006). Scaffold should also be osteoconductive in order to 

guide the formation of new bone tissue along their surfaces (Freed & Vunjak-

Novakovic 1998; Leong et al. 2003; Hannink & Arts 2011).   

(b) Scaffolds can either be biodegradable or non-biodegradable depending on its 

intended application, i.e. as temporary or permanent scaffolds, respectively 

(Hutmacher 2000). A temporary scaffold allowed tissues/cells to adhere, 

proliferate, and differentiate to form healthy tissues and help tissue recovers to the 

original shape and strength. Subsequently, the temporary structure would then 

degrade over time with regeneration of the tissues. In the case of young patients, 

these types of scaffolds are useful since the growth rates of tissues are still higher. 

However, temporary scaffold fail to meet the requirement for most cases of the 

older patient due to poor mechanical strength, mismatch between the growth rates 

of tissues and the degradation rate of the scaffold. Thus, there is a need for a 

stronger scaffold which can be either permanent or have a very low degradation 

rate. Permanent scaffold should retain their shape and strength through 
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regeneration/repair process (Chen et al. 2002). For temporary scaffolds, the 

degradation rate of the scaffolds must be tuned approximately with the rate of 

tissue regeneration under the culture conditions of interest. The degradation product 

must also be non-immunogenic and non-toxic (Chen et al. 2001; Dhandayuthapani 

et al. 2011).  

(c) Scaffolds should be osteoinductive by itself in order to promote bone tissue 

regeneration in large bone defects. Natural osteoinduction in combination with a 

biodegradable scaffold may not be enough to facilitate bone healing (Albrektsson 

& Johansson 2001). 

(d) Surface properties both chemical and topographical of a scaffold, are primarily 

important to regulate cell activities, provide sufficient surface for adhesion, 

differentiation, proliferation and thus promote tissue growth (Temenoff & Mikos 

2000; He et al. 2003). The surface roughness can enhance cell adhesion and 

migration, and it could also affect the cytocompatibility of the osteoblastic cells 

(Oh et al. 2006; Schwartz et al. 2008).  

(e) Scaffolds should possess sufficient amount of porosity (40-90% depends on the 

nature of biomaterials used) to allow cell ingrowth as well as flow transport of 

nutrients and metabolic waste throughout the entire scaffold (Hutmacher 2000). To 

allow cell attachment, the scaffold must have a large surface area, which can be 

achieved by having highly interconnected porous structure (Mikos & Temenoff 

2000). Scaffolds fabricated from highly biodegradable biomaterials should not have 

high porosities (>90%), since rapid depletion of the biomaterial will compromise 

the mechanical and structural integrity before the formation of new bone. In 

contrast, scaffolds fabricated using low degradation rate biomaterials and robust 

mechanical properties can be highly porous, because the higher pore surface area 
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interacting with the host tissue can increased the degradation rate due to 

macrophages via oxidation and/or hydrolysis (Karageorgiou & Kaplan 2005). 

(f) The pore size of a scaffold should be large enough to allow cell penetration (Mikos 

& Temenoff 2000). It is well recommended that for BTE application, the pore size 

should be in the range of 200-900 µm (Burg et al. 2000). However, Holy et al. 

(2000) believed that bone reconstruction can only be achieved by having a 3D 

scaffold with large macroporous interconnected structure with pore size ranging 

from 1.2-2.0 mm (Holy et al. 2000). This larger pore was reported to favor in direct 

osteogenesis, since they could facilitate cell, tissue and blood vessels ingrowth as 

well as provides high oxygenation (Salgado et al. 2004; Karageorgiou & Kaplan 

2005).  

(g) Scaffolds should demonstrate adequate mechanical strength so that they do not 

collapse during handling and during the patient’s daily activities (Mikos & 

Temenoff 2000; Salgado et al. 2004; Rezwan et al. 2006). In vitro, the scaffolds 

should have sufficient strength to withstand the mechanical stimuli applied when 

cultured in the 3D environment (Leong et al. 2003). In vivo, and because bone is 

always under continuous stress, the mechanical properties of the implanted scaffold 

should ideally match the natural bone intended to be replaced, so that an early 

mobilization of the injured site can be made possible (Salgado et al. 2004). 

(h) Biomaterials used should also be reproducible and processable into 3D scaffolds 

with various shapes and sizes (Leong et al. 2003; Hutmacher 2000). The fabrication 

process should be controllable and cost-effective (Hutmacher et al. 2004).  

(i) As the scaffolds will be in direct contact with the biological environment, they 

should be easily sterilizable to prevent infection (Rezwan et al. 2006). 
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(j) Substrate stiffness is also important because it affects the strains acting on a cell 

while being attached to a scaffold. It has a huge influence on cell migration, 

proliferation and apoptosis (Pelham & Wang 1997; Wang et al. 2000) . However, it 

is difficult to define a general guideline for a suitable scaffold stiffness that 

optimally stimulates tissue regeneration. According to literature, scaffold stiffness 

should probably exhibit the stiffness of a developing skeletal tissue, which might be 

lower than the stiffness of mature tissue (Breuls et al. 2008). A study on MSC 

cultured on collagen coated polyacrylamide hydrogels with varying stiffness has 

shown that on soft gels (0.1-1.0 kPa), MSC differentiated into neurogenic, stiffer 

gels enabled myogenic development and very stiff gels (25-40 kPa), which mimic 

the bone properties resulted in osteogenic differentiation of MSC (Engler et al. 

2006). 

1.6.1. Biomaterials used as bone tissue engineering scaffolds 

Given the demanding clinical need, it is not surprising the market for biomaterial-based 

treatments in the orthopaedics is evolving at a rapid rate. While materials intended for the 

implantation in the classical approach were in the past designed to be bioinert, materials 

scientists have now shifted toward the used of bioactive materials. These bioactive 

materials are supposed to integrate with the host’s tissue and regenerate tissue (Langer & 

Vacanti 1993; Hench & Polak 2002). For bone TE applications, these bioactive materials 

should preferably be both osteoinductive, osteoconductive and osseointegrative (Stevens 

2008). The term of osteoinductive, osteoconductive and osseointegrative are repeatedly 

used in many orthopaedic papers, but not always correctly defined. Thus, the suggested 

definitions of these terms are shown in Table 1.4 (Albrektsson & Johansson 2001; Stevens 

2008). 
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Table 1.4: Definitions of osteoinductive, osteoconductive and osseointegration 
(Albrektsson & Johansson 2001; Stevens 2008).  

Terms Definitions 

Osteoinductive Capable to stimulate the differentiation of progenitor 
cells down towards osteoblastic lineage. 

Osteoconductive Permits bone growth on its surface and support the 
ingrowth of surrounding bone. 

Osseointegrative Ability to integrate into surrounding bone which formed 
a direct contact between host bones and implant. 

 

The selection of the most appropriate material for the fabrication of a scaffold is very 

important, as its properties will influence the properties of the scaffold to a great extent. A 

number of materials such as metals, ceramics and polymers have been proposed but most 

metals and ceramics are non-biodegradable, which leaves the researcher’s choice to limited 

small number of ceramics and biodegradable polymers (Salgado et al. 2004).  

1.6.1.1. Bioactive ceramics 

Bioactive ceramic materials having similar in composition to the inorganic mineral phase 

of bone, such as hydroxyapatite (HA) and tricalcium phosphate (TCP) are of clinical 

interest (Best et al. 2008; Stevens 2008). The rationale of using these calcium phosphate 

(CaP) based materials is from the fact that CaP is the major component of biological 

apatite and that it shows promises of biocompatibility, osteoconductivity and 

biodegradability. Representative of porous HA scaffolds with fully interconnected pores 

are shown in Fig. 1.7 (Oh et al. 2006). 
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 Fig. 1.7: Representative HA scaffolds showing (a) bulk architecture, (b) micro-crystalline 
surface and (c) nano-crystalline surface (Oh et al. 2006). Re-printed with permission from 
Science Publication. 

Synthetic HA has been used as coatings on metallic implants, fillers in polymer matrices 

and scaffolds for maxillofacial reconstruction, treatment of bone defects, total joint 

replacement and revision surgery for the last 20-30 years (Best et al. 2008). However, 

previous studies have reported that pure HA shows negligible resorption even years after 

implantation (Yuan et al. 1999; Sepulveda et al. 2002; Mastrogiacomo et al. 2006). 

Besides, it was found that the biological apatites differ chemically from stoichiometric HA 

in that they contain a number of additional trace elements substituted into the HA lattice 

(Gibson & Bonfield 2002; Boanini et al. 2010; David et al. 2013).  

Back in 1960s, Raquel LeGeros first started the work on the characterization of carbonate 

substituted HA (CHA) for biomedical application. Since then, synthetic CHA has been 

extensively studied, as carbonate is the most abundant substitution in bone mineral (2-8 

wt%), the amount depends on bone age, site, animal species and individual. Thus, 

biological apatite is more accurately described as carbonated HA (CHA) rather than HA 

alone (Merry et al. 1998; Tadic et al. 2002; Landi et al. 2003; Best et al. 2008). There are 

three types of carbonate substitution; (i) the substitution of carbonate for hydroxyl ions (A-

type), (ii) carbonate substitution for phosphate site (B-type) or (iii) both hydroxyl and 

phosphate groups substituted by carbonate (AB-type) (LeGeros et al. 1969; Landi et al. 

2010; Shepherd et al. 2012). Previous studies have shown that the presence of B-carbonate 
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in the apatite lattice cause a decrease in crystallinity and increase in solubility in both in 

vitro and in vivo tests (Landi et al. 2003; Porter et al. 2005; Murugan & Ramakrishna 

2006). The increase in solubility has considerably enhanced the bioactivity of CHA. This 

has been shown by greater bone apposition found around dense CHA compared to pure 

HA (Porter et al. 2005). A study conducted by Spence et al. (2009) discovered that greater 

increase in calcium ion concentration occurred when human osteoblasts cells were cultured 

on sintered AB-type CHA compared to HA. They also found increased in collagen 

synthesis, which indicated that human osteoblasts cells on AB-type CHA have produced 

more ECM proteins than when cultured on HA in vitro (Spence et al. 2009).  

Among the biological trace elements, the important role of silicon (Si) for normal bone and 

cartilage growth and development has also been studied (Carlisle 1970; Schwarz & Milne 

1972; Carlisle 1979). Similar to carbonate content in the bone, silicon content also varies 

depending on bone age and site (Landi et al. 2010). The level of Si in human bone mineral 

density (BMD) is also linked to the dietary intake of Si (Pietak et al. 2007). In the early 

1970s, a report by Carlisle (1970) showed that Si deficiency resulted in abnormal bone 

formation. This was confirmed by Schwarz & Milne (1972) who identified Si as a cross-

linking agent in connective tissue and its importance to vascular health. Increasing 

evidences in the role of Si in bone and cartilage development has been reported where Si 

influences cartilage synthesis and the integrity of the ECM as well as the biomineralization 

process (Landi et al. 2010). It was also reported in the literature that Si has a dose-

dependent effect on the differentiation, proliferation and collagen synthesis of osteoblast, 

with a direct influence on the remodelling process and osteoclast development as well as 

the resorption activities (Pietak et al. 2007). All these results show that rapid bone 

remodelling and enhanced quality of the bone around the implant are due to the increased 

in the dissolution rate of the substituted HA compared to pure HA (Klein et al. 1983; 
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Daculsi et al. 1989). The increased reactivity with the existing bone drives to a higher 

stability of the implanted region. This is because a strong mechanical bond is formed 

between the implant and the host’s tissue. As a result, the time required for the 

rehabilitation of patient is reduced once this bond is formed. For all the aforementioned 

reasons, the development of synthetic HA powders with fully complete and controlled 

level of ionic substitutions in the HA lattice seem as promising candidate for an ideal 

scaffold bone materials, in order to approach to the “golde standard”, mimicking the 

composition of the natural human bone mineralized matrix (Sprio et al. 2008).  

1.6.1.2. Biodegradable Polymers 

There are two types of biodegradable polymers, i.e. natural and synthetic polymers (Chen 

et al. 2002; Rezwan et al. 2006). Natural polymers, such as collagen, hyaluronic acid and 

chitosan, are other potential candidates for bone substitute materials which would provide 

essential biological informational guidance to the cells, supporting cell attachment and 

promote chemotactic responses (Stevens 2008). Collagen type I is the major component of 

ECM which is responsible for cellular adhesion and proliferation (Kim et al. 2010; Zhao et 

al. 2014). Collagen occurs in many places throughout our body. For instance, it is found in 

bone (Type I), cartilage (Type II), blood vessel walls (Type III), cell basement membrane 

(Type IV) and cell surfaces (Type V). Collagen type I is a popular choice of material in 

making scaffold for bone regeneration since it offers excellent biocompatibility, easily 

degrade and resorb by the body. It also promotes cell attachment, but its mechanical 

properties alone however, are far less than that of the native bone (Wahl & Czernuszka 

2006; Jones et al. 2010).  

On the other hand, hyaluronic acid is the major non-collagenous component presents in 

ECM and of the synovial fluid (Zhang et al. 2005; Zhao et al. 2014). Therefore, numerous 
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natural ECM components, in particular hyaluronic acid and collagen, have been 

incorporated into 3D scaffolds for bone regeneration (Datta et al. 2005; B. Yu et al. 2012). 

Hyaluronic acid and collagen type I have been used as coating materials on PLLA films to 

enhance cell-material interaction. Zhao et al. (2014) forecasted that these coating materials 

may improve the bioactivity of ECM-based films, which might be a potential application 

for BTE applications (Zhao et al. 2014).  

Chitosan is another example of natural polymer that has been used widely for biomedical 

applications, such as hemodialysis membranes, drug delivery systems, orthopedic and 

dental coating materials as well as artificial skin (Chen et al. 2002; Thein-Han & Misra 

2009). The ability of chitosan to support cell attachment and proliferation is attributed to 

the presence of amino acid sequences in the chitosan structure (Croisier & Jérôme 2013). 

However, poor control of enzymatic degradation and lack of mechanical properties are two 

major objections to the use of natural polymers. In addition, concerns about the availability 

of the materials in large quantity required for clinical application has motivated the 

researchers towards the production of synthetic biodegradable polymers (Karageorgiou & 

Kaplan 2005; Rezwan et al. 2006). 

The most often utilized biodegradable synthetic polymers for 3D scaffolds in BTE are 

saturated poly-α-hydroxyl esters such as poly (lactic acid) (PLA), poly (glycolic acid) 

(PLGA), as well as poly (lactic-co-glycolide) (PLGA) copolyers (Athanasiou et al. 1996; 

El-Amin et al. 2003; Li et al. 2010). These polymers have been approved by the US Food 

and Drug Administration for certain human clinical use, such as surgical sutures and some 

implantable devices (Chen et al. 2001). The chemical properties of these polymers allow 

hydrolytic degradation through de-esterfication. The degradation by-products of these 

polymers can be removed through natural pathway as lactic and glycolic acids by the body. 
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PGA can be broken down by hydrolysis, non-specific esterases and carboxypeptidases, 

while PLA can be eliminated by the tricarboxylic acid cycle (Chen et al. 2002; Rezwan et 

al. 2006). The degradtion rate, physical and mechanical propeties of these polymers can be 

easily tailored over a wide range by using various molecular weights and copolymers. 

However, these polymers undergo bulk erosion process, where a massive release of the 

acidic by-products could cause inflammatory reaction in vivo. Consequently, this can cause 

the scaffold to fail prematurely (Bergsma et al. 1993; Martin et al. 1996; Hutmacher 2000).  

Another drawback of these synthetic polymers is related to its hydrophobicity and lack of 

physiological activity (Kim et al. 2006; Jahno et al. 2007). It has been shown that PLA 

does not provide a favorable surface for cell attachment and proliferation due to lack of 

specific cell recognition signals (Ravichandran et al. 2012). Modification of the outermost 

part of the material is seen to be sufficient as to tailor its biocompatibility, while the bulk 

properties of the materials are maintained  (Tzoneva et al. 2008). The rationale underlying 

this concept is that when the scaffold is implanted in vivo; the surface become in contact 

with the biological environment before the bulk. Recent studies have proposed various 

strategies such as coating, plasma treatment and entrapment in an attempt to influence cell 

adhesion, proliferation and differentiation as in contact with PLA-based scaffolds (Zhao et 

al. 2014).  

Polycaprolactone (PCL) is also a biodegradable synthetic polymer that has been used as 

scaffolds for TE applications. It is a semicrystalline polymer and an important member of 

aliphatic polyester family (Rezwan et al. 2006). PCL has similar biocompatibility to PLA 

and PGA, but much slower degradation rate. This makes PCL less attractive for scaffold-

based TE, but it become an appropriate candidate as long-term drug delivery carrier (Liu et 

al. 2007).  
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1.6.1.3. Composites 

Composite or hybrid materials are generated via the combination of functional polymers 

with inorganic nanostructured compounds. Inorganic-organic composites aiming to closely 

mirror the composite nature of real bone, which combine the toughness of a polymer phase 

with the compressive strength of a ceramic phase has been shown to improve both the 

degradation and mechanical properties of the composite scaffolds (Stevens 2008). For 

instance, tissue-engineered HA-Collagen nanocomposite systems are developing rapidly 

and showing promise (Wahl & Czernuszka 2006; Jones et al. 2010). Comparing ceramic 

scaffolds and ceramic composite scaffolds, it was shown that HA-Collagen composite has 

better osteoinductive capacity compared to single HA or TCP (Wang et al. 2004). Several 

synthetic approaches have been developed to create the inorganic-organic polymer 

composites including blending, sol-gel and emulsion polymerization. The main challenge 

in making composite materials is to re-create the same degree of nanoscale order in the 

organization of the organic and inorganic components found in vivo. However, mechanical 

properties of such composites is still low compared to the native bone (Stevens 2008).  

1.6.2. Fabrication techniques 

Cells and tissues in the body are organized into 3D architecture. In order to engineer these 

functional tissue and organs, scaffold should be fabricated to closely mimic the 

composition and architecture of the intended implant (Subia et al. 2010). A successful 

scaffold should have a balance between temporary mechanical function with 

morphological properties (pore architecture, size and interconnectivity) in order to aid 

biological delivery and tissue regeneration (Hollister 2005; Hutmacher & Cool 2007). 

However, there is often a tradeoff between a denser scaffold offering better mechanical 

function and a more porous scaffold providing better biological delivery (Hollister 2005). 
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For this reason, several fabrication techniques have been developed, but only the main 

techniques are mentioned here. In general, scaffold fabrication can be divided into 

conventional and rapid prototyping (RP) techniques (Hutmacher et al. 2004). A brief 

description on the concept of these fabrication techniques will be discussed in the 

following section.  

1.6.2.1. Conventional fabrication techniques 

This technique includes solvent casting, particulate leaching, gas foaming, phase 

separation and freeze-drying (Hutmacher 2000; Chen et al. 2002; Rezwan et al. 2006; 

Salgado et al. 2004; Subia et al. 2010). Table 1.5 summarizes the advantages and 

disadvantages of conventional scaffold fabrication techniques.  

Solvent casting 

Solvent casting technique is based on the evaporation of some solvent in order to form 

scaffolds by one or two routes (Subia et al. 2010). This can be achieved by dipping the 

mold into polymeric solution and providing ample time to draw off the solution; as a result 

a layer of polymeric membrane is formed. Alternatively, a polymeric solution can be 

poured into the mold and allow sufficient time for the solvent to be evaporated, which will 

then create a layer of polymeric membrane on the mold (Mikos et al. 2004).  

Porogen leaching 

This technique involves the casting of a mixture of polymer solution and porogen in a 

mold, drying the mixture and leaching out the porogen with water to create the pores 

(Hutmacher 2000; Chen et al. 2002). The porogen materials used are usually water-soluble 

particulates such as salts and carbohydrates (Subia et al. 2010). The pore size can be easily 

controlled by manipulating the amount of porogen added as well as the size and shape of 

the porogen (Plikk et al. 2009).  
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Gas forming 

The gas foaming technique uses high-pressure carbon dioxide (CO2) gas for the fabrication 

of highly porous scaffolds (Chen et al. 2002; Subia et al. 2010). The process involves 

saturating highly porous biodegradable polymer (e.g. PLGA) with CO2 at high pressure 

(800 psi). This high level of CO2 is then return to ambient level in order to rapidly decrease 

the solubility of the gas in the polymer, resulting in nucleation and growth of gas bubbles, 

or cells with pore sizes ranging from 100-500 µm in the polymer (Sachlos & Czernuszka 

2003).  

Phase separation 

A biodegradable synthetic polymer is dissolved in phenol or naphthalene, followed by 

dispersion of biologically active molecule (i.e. alkaline phosphatase) in these solutions. By 

lowering the temperature a liquid-liquid phase is separated and quenched to form a two-

phase solid. The solvent is then removed by extraction, evaporation and sublimation to 

give a porous scaffold with bioactive molecules incorporated in the structure (Sachlos & 

Czernuszka 2003; Subia et al. 2010).   
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Table 1.5: Advantages and disadvantages of conventional scaffold fabrication techniques. 

Fabrication 
Technique 

Advantages Disadvantages References 

Solvent casting/ 
particulate 
leaching 

• Control over porosity, pore 
size and crystallinity  

 
• Use of organic solvent 
• Irregular shaped pores and 

insufficient interconnectivity 

Mikos et al. 1996; 
Hutmacher 2000; Rezwan et 
al. 2006 

Porogen 
leaching 

• Control over porosity and 
pore geometry 

 
• Limited pore size and pore 

interconectivity 
Plikk et al. 1999; Chen et al. 
2002; Subia et al. 2010 

Gas foaming • Free from organic solvent 
• Control over porosity and 

pore size 

 
• Limited mechanical property 
• Inadequate pore 

interconnectivity 

Mooney et al. 2006; Sachlos 
& Czernuszka 2003; Subia 
et al. 2010 

Phase 
separation 

• Easily combine with other 
fabrication technology 
 

 
• Difficult to control precisely 

scaffold morphology 
Lo et al. 1995; Sachlos & 
Czernuszka 2003; Mikos et 
al. 2004; Subia et al. 2010 
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1.6.2.2. Rapid Prototyping technology 

Rapid prototyping (RP) is also called solid free-form fabrication (SFF). Unlike 

conventional machining which involves constant removal of materials, RP is able to build 

scaffolds by selectively adding materials, layer by layer, as specified using a computer 

added design (CAD) software, which is then expressed as a series of cross section 

(Woodfield et al. 2009). Corresponding to each cross section, the RP machine deposits a 

layer of material starting from the bottom and moving up a layer at a time to construct the 

3D scaffolds. This is the principal advantage of RP technique compared to other 

fabrication techniques. A section of bone defect from the patient can be imaged using 

Magnetic Resonance Imaging (MRI) or X-Ray computed tomography (CT scan), 

subsequently converting the acquired image to the file format for RP manufacturing 

(usually in stereolithography or .STL format) and finally a customized 3D scaffolds for 

that individual patient can be printed (Bagaria et al. 2011). RP technologies can be 

categorized based on the processing method, and these include fused deposition modeling 

(FDM), 3D Plotter, 3D Printing, selective laser sintering and stereolithography (Hutmacher 

et al. 2004; Hollister 2005). Fig. 1.8 demonstrates the schematic of different RP systems 

categorized by the processing method (Hollister 2005). The merits and demerits of the RP 

techniques with different processing methods are summarized in Table 1.6. In the 

following section, we only focus on the fused deposition modelling method as this 

technique was used to fabricate the scaffolds in this study.  
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 Fig. 1.8: Schematic diagrams of different RP techniques categorized by the processing 
method; (a) Fused Deposition Modelling, (b) 3D Plotter, (c) 3D Inkjet Printing, (d) 
Selective Laser Sintering and (e) Stereolithography (Hollister 2005). Re-printed with 
permission from Nature Publishing Group, License Number: 3786030665261. 
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Table 1.6: The merits and demerits of RP technique for different processing methods. 

 

 

 

 

 

 

 

 

 

Processing 
methods 

Merits Demerits References 

Fused Deposition 
Modelling (FDM) 

 

• Free from organic solvent 
 

• Limited range of polymer can be used 
due to processing parameters and 
temperatures 
 

Leong et al. 2003; Salgado 
et al. 2004 

3D Plotter • Possibility of operating at 
physiological condition 

 
• Limited resolution Landers & Mullhaupt 2000; 

Hutmacher et al. 2008  

3D Printing  • High flexibility in the choice of 
material 

 
• Require post-processing to remove 

binder and enhance mechanical 
properties 

Lam et al. 2002; Leukers et 
al. 2005 

Selective Laser 
Sintering (SLS) 

• Wide range of materials 
 

• Printed model suffer from shrinkage/ 
deformation due to thermal heating 
from the laser and subsequent cooling 

Wang et al. 2007; Gross et 
al. 2014 

Stereolithography 
(SLA) 

• Higher accuracy over SLS method 
 

• Require the use of resin (majority of 
resin are brittle and shrink upon 
polymerization) 

 

Hull 1990; Gross et al. 2014 
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Fused Filament Fabrication 

Fused filament fabrication is also known as fused deposition method, FDM (Fig.1.8 a), 

which was developed by Scott Crump in 1992. In this technique, a moving nozzle is used 

to extrude a fiber of polymeric material from which the physical model is built layer-by-

layer onto a platform. The base of the platform is lowered and next layer is deposited. The 

platform moves in the z direction while the nozzle head moves in x and y direction 

(Hutmacher 2000; Salgado et al. 2004). This technique has been used to produce various 

3D PCL or PCL-HA scaffolds with honeycomb-like morphologies and different degree of 

porosity by Hutmacher (2000) (Fig. 1.9.) In vitro study have shown that human fibroblast 

and periosteal cells can proliferate, differentiate and produce a cellular tissue throughout 

the 3D PCL scaffolds over 3-4 weeks of culture (Hutmacher et al. 2001; Zein et al. 2002). 

The potential application of these FDM fabricated scaffolds were further investigated in 

vivo by Hutmacher’s group, where they found that osteoid formation could be obtained 

when these scaffolds were previously cultured with periosteal cells under osteogenic 

conditions were further implanted in vivo in a subcutaneous model (Schantz et al. 2002).   

 

Fig. 1.9: 3D scaffold systems of various porosity and pore geometry fabricated by FDM. 
Magnification X 7.5, scale bar represents 1mm. (i)-(iii) lay-down pattern: 0/90°; nozzle tip: 
0.016”; porosity: 50, 68, 75%; (iv)-(vi) 0/90°; 0.010”; 50, 68, 75%; (vii)-(viii) 0/60/120°; 0.016”; 
68, 75%; (ix) 0/60/120°; 0.010”; 80%; (x)-(xii) 0/60/120°; 0.010”; 50, 68, 75% (Hutmacher 
2000). 
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1.6.3. Surface modification 

Despite the advance in RP techniques, the application of the fabricated scaffolds for bone 

regeneration is still limited due to the nature of the biomaterial used. Most of the synthetic 

polymer used in RP technique, PLA for example, is known to be hydrophobic (Zhao et al. 

2014). PLA is also poor in cytocompatibility, which resulted in the inefficiency of the 

scaffolds in providing a friendly interface with the living cells. Once implanted in the 

body, it is the surface of a biomaterial that first become into contact with the biological 

environment; hence, the early response of cells to the biomaterial critically dependent, 

among others, on the surface of the biomaterial. Many different strategies have been 

developed as to improve the biocompatibility of PLA, such as, grafting polymerization, 

ozone oxidization, plasma modification and coating natural polymers (Zhu et al. 2003).  

Naturally, the biological world is made up of well organize self-assembly of 

biomacromolecules. This has inspired the researchers to engineer the scaffold via 

macromolecules self-assembly (Kim & Bruening, 2003; Huang et al. 2012). Layer-by-

layer (LbL) is electrostatic self-assembly (ESA) seems to be a novel and promising 

technique in order to modify the polymer surface in a controlled manner (Hammond 2011; 

Ni et al. 2011). LbL is also known as Polyelectrolyte Multilayers (PEMs) assembly. This 

technique involves the alternate deposition of negative and positive charged 

polyelectrolytes as to build up a thin layer of extracellular (ECM) environment on the 

surface. Before PEMs assembly, the surface is initially chemically modified with reactive 

group such as –OH, -NH2 and –COOH to permit binding with biomolecules (Okada & 

Ikada, 1991; Yamauchi et al. 1991; Suh et al. 1998). With the advancement in surface 

modification, many natural ECM-like macromolecules, such as hyaluronic acid and 

collagen type I, have been incorporated into 3D scaffolds for bone regeneration. Table 1.5 

summarize the example of PEMs assembly used in tissue engineering applications. 
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Table 1.7: Examples of PEMs used in Tissue Engineering Applications. 

Research Objective Polyelectrolytes 
used 

Cell type Significant finding Reference 

To enhance osteogenic induction HA / Collagen type 
I 

hMSCs HA/ Collagen type I nanocomposite multilayers 
improved cell adhesion and proliferation and 
enhanced osteogenic induction of hMSCs 

Kim et al. (2010) 

To modify PLA surface toward 
improving its cytocompatibility  

PSS/ Chitosan HUVECs Better cell attachment, activity and proliferation 
of PLA coated with 3- and 5-bilayers of PSS/ 
Chitosan compared to control PLA.  

Zhu et al. (2003) 

To enhance the cell-material 
interaction 

Hyaluronic acid/ 
Collagen type I 

Osteoblasts The present of collagen I has greatly improved 
the cytocompatibility of the PLLA films in terms 
of cell viability, proliferation and ALP 
expression 

(Zhao et al. 2014) 

To improve biocompatibility of 
PLLA scaffolds  

Collagen type I/ 
bFGF 

Chondrocytes Incorporation of bFGF in the collagen layer 
enhanced cell growth.  

Ma et al. (2005) 

*HA= hydroxyapatite, PLA= polylactic acid, PSS= poly (styrene sulfonate, sodium salt), bFGF= basic fibroblasts growth factor, ALP= alkaline 
phosphatase. 
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In summary, the development of scaffolds for BTE applications has not reached the final 

conclusion on the optimal design requirements, biomaterials and fabrication technique to 

produce an ideal bone scaffold. The inherent conflicts in the nature of an ideal bone 

scaffold for bone regeneration ensure that this issue will remain debated, particularly 

among researchers and clinicians. The variety of conclusion may be due to complexity of 

the process of bone regeneration, which is multivariable and multiobjective (Karageorgiou 

& Kaplan 2005; Velasco et al. 2015). In this study, a scaffold is considered as an ideal 

bone scaffolds for bone regeneration when they meet the basic desired characteristics as 

summarized in Table 1.8.  

Table 1.8: Basic desired characteristics for ideal bone scaffolds. 

Characteristic Description References 

Composition 65-70% inorganic mineralized matrix (mainly 
carbonated HA), 30% organic non-mineralized 
matrix (predominantly collagen type I) and the 
remaining portion is organic proteins and water  

Stevens 2008; 
Rupani et al. 
2012; Velasco et 
al. 2015 

Porosity Depends on the nature of biomaterial: 
-Highly degradable biomaterials: <90% 
-Low degradation rate biomaterials: 40-90% 

Hutmacher 2000; 
Karageorgiou & 
Kaplan 2005; 
Velasco et al. 
2015 

Pore size -Minimum pore size to promote osteogenesis: 200-
900 µm;  
-Larger pore size could favor direct osteogenesis 
and support angiogenesis: 1.2- 2.0 mm 

Mikos & 
Temenoff 2000; 
Holy et al. 2000; 
Salgado et al. 
2004 

Mechanical 
properties 

-In vitro: Sufficient to withstand mechanical stimuli 
induced by the 3D culture environment (i.e. 
bioreactor) and maintain the spaces required for cell 
in-growth and matrix production 
 
-In vivo: Match the mechanical properties of bone 
to be implanted (refer Table 1.2) 

Leong et al. 2003; 
Salgado et al. 
2004 

Degradation/ 
resorption 
rates  
(for temporary 
scaffolds) 
 

Depends on the nature of biomaterials: 
-PLLA (2-5 years) 
-PLGA (2-6 months) 
-PCL (2-3 years) 
-TCP (6-24 months) 
-Si-CaP (6-12 weeks) 

Rezwan et al. 
2006; Hing et al. 
2007; Velasco et 
al. 2015 
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1.7. Cells for Bone Tissue Engineering 

One of the major issues in BTE is sources of cells. An ideal cell sources should be easily 

expandable to higher passage, have consistent osteogenic potential, non-immunogenic and 

non-tumorigenic (Heath 2000). The cell used for BTE can either be from cell lines or 

primary osteoblastic cells. The selection of cells is depending on the stage of optimization 

that the researcher is aims to investigate. For instance, primary human mesenchymal stem 

cells (hMSCs) or osteoblasts is typically used for in vitro study that is closer to clinical 

application as these cells could be the final type of cell source used in the tissue engineered 

product being developed. Likewise, for early stage of in vitro study of cell-biomaterial 

interactions, several osteoblast-like cell lines has been utilized, as they are easy to grow 

and the results can be compared (Rupani et al. 2012). Immortalized cell lines, such as 

MG63, SaOS-2 and U-2OS are osteosarcoma cells derived from malignant bone tumors. 

These cells are popular choice for the study of osteoblast models as they share some 

osteoblastic features. However, their chromosomal alterations lead to abnormal molecular 

and cellular functions, hence, they do not fully represent the behavior of natural human 

osteoblasts (Pautke et al. 2004). In this context, stem cell biology appears to be the most 

valid and more promising solution (Salgado et al. 2004).  

Stem cells are undifferentiated cells with high proliferation capability, self-renewal ability, 

multi-lineage differentiation and regenerative capacity (Morrison et al. 1997). 

Nevertheless, stem cells have diverse degrees of differentiation potential. In general, stem 

cells can be divided into two main groups: embryonic stem cells (ES) and adult stem cells 

(ASC). ES cells reside in the Inner Cell Mass (ICM) and are considered to be pluripotent. 

These cells have almost unlimited in vitro growth potential, accessibility and ease of 

genetic manipulation. However, the use of ES cells in biomedical applications are hindered 
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due to ethical constraints and issues regarding their immunogenicity and tumorigenecity 

(Jukes et al. 2010). On the other hand, ASCs also known as multipotent stem cells are the 

cells that reside in the fully differentiated or adult tissues, which are normally found in the 

bone marrow, periosteum, muscle, fat, brain and skin (Salgado et al. 2004; Rupani et al. 

2012). Among the cell sources, bone marrow-derived MSCs typically known as 

Mesenchymal Stem Cells (MSCs) have receive a special attention in BTE field (Petrakova 

et al. 1963; Friedenstein et al. 1968). A brief description on MSCs is described in the 

following section.  

1.8. Mesenchymal stem cells 

1.8.1. The discovery of mesenchymal stem cells 

The discovery of non-hematopoietic stem cells in bone marrow was first proposed by a 

German pathology Cohnheim about 140 years ago. His work suggested that bone marrow 

might be the source of fibroblast that deposits collagen fibres as part of normal process of 

wound healing (Prockop 1997). Following this, Friedenstein and colleagues (1976) 

revealed that bone marrow contains cells that can differentiate into other mesenchymal 

cells, as well as fibroblast (Friedenstein et al. 1976). They placed the whole bone marrow 

in plastic culture dishes and removed the non-adherent cells after 4 hours in order to 

discard the hematopoietic cells. They found that the adherent cells appeared to be 

heterogeneous, but the most tightly adherent cells were spindle shaped and formed foci of 

two or four cells, which remained inactive for 2-4 days and subsequently began to 

proliferate rapidly. After several passages, these cells appeared to be more homogenous 

fibroblast-like shaped. They also reported that the cells could be potentially differentiated 

into colonies that resembled small deposits of bone or cartilage. In the early days, these 

cells are usually referred as marrow stromal cells as they appear to rise from the complex 

array of supporting structures found in the marrow (Ashton et al. 1980; Castro-Malaspina 
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et al. 1980; Bab et al. 1986). Friedenstein’s works were further extended by other groups 

throughout the 1980s (Chamberlain et al. 2007). 

In the meantime, the name of Mesenchmyal Stem Cells has today was given back in early 

1990s by Caplan (Caplan 1991). This is because when these cells were placed in the 

adequate culture conditions, they could be differentiated into cells with mesenchymal 

origin (i.e. bone, cartilage, fat, muscle, skin tendon) through what was called “The 

Mesengenic Process” as shown in Fig. 1.10 (Caplan 1994; DiMarino et al. 2013). In saying 

this, the concept of non-hematopoietic stem cell in bone marrow still did not resonate 

worldwide until additional similar work was published by Pittenger et al. (1999), which 

demonstrated similar observations to the earlier work reported by Friedenstein and 

colleagues (1976).   

 Fig. 1.10: The mesengenic process. Mesenchymal stem cells are multipotent and possess 
the ability to proliferate and commit to different cell types based on the environmental 
conditions. They also may be redirected from one lineage to another (DiMarino et al. 
2013). Re-printed with permission from PubMed Central.  
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1.8.2. In vitro characteristics of mesenchymal stem cells  

Given the various sources and techniques from which MSCs can be isolated, in 2006 the 

International Society of Cellular Therapy (ISCT) proposed minimal criteria for the cell 

characterizations (Dominici et al. 2006). First, MSCs must adhere to tissue culture plastic 

(TCP) under standard culture conditions. Second, MSCs must positively express CD105, 

CD73 and CD90 and lack of CD45, CD34, CD14 or CD11b, CD19 and HLA-DR surface 

molecules (Pittenger et al. 1999; Boxall & Jones 2012). Finally, histological staining 

should also positively demonstrate that the cells are capable to differentiate into 

osteogenic, chondrogenic and adipogenic (Dominici et al. 2006; Chamberlain et al. 2007; 

Phinney & Prockop 2007; DiMarino et al. 2013). 

1.8.3. Mesenchymal stem cells for tissue repair  

The fact that MSCs can be differentiated towards multilineage cell types in vitro, relatively 

easily expanded in culture and being non-immunogenic make MSCs as promising source 

of stem cells for tissue repair and gene therapy (Chamberlain et al. 2007).  

In 2013, there are 344 registered clinical trials in different clinical trial phase intended to 

evaluate the potential of MSCs-based cell therapy worldwide (Wei et al. 2013). In clinical 

settings, MSCs underwent clinical trials for various applications, such as orthopaedic 

injuries, cardiovascular diseases and liver diseases (Kim & Cho 2013). MSCs have 

attracted interest for clinical application due to their therapeutic properties. They are 

believed to be responsible for growth, wound healing, and replacing cells that are lost 

through daily wear and tear and pathological conditions. As a result of these excellent 

functions, MSCs have been shown to be effective in the treatment of tissue injuries and 

degenerative diseases (Wei et al. 2013). The ability of MSCs to differentiate into 

osteoblasts, tenocytes and chondrocytes has attracted attention for their use in orthopaedic 
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settings. Some clinical trials using allogenic bone marrow-MSCs therapy for cartilage 

defects, osteogenesis imperfecta (OI), and hematopoietic stem cell transplantation (HSCT) 

have shown great improvements in the outcome (Horwitz et al. 1999; Horwitz et al. 2002; 

Wakitani et al. 2004; Le Blanc et al. 2005; Baron et al. 2010).  

Cultured MSCs have been clinically applied to treat several conditions including 

osteogenesis imperfecta (OI), which is a genetic disorder in which osteoblasts produce 

defective collagen type I, the primary structural protein in bone. These leads to by 

deformities, multiple fractures, and retarded bone growth, resulting in shortened stature. A 

study conducted by Horwitz et al. (1999) used allogenic bone marrow transplantation 

(BMT) to treat children with OI. After 3 months, there was new dense bone formation, an 

increase in total body bone mineral content, an increase in growth velocity and reduced 

frequency of bone fracture in the child patients. This study shows that allogenic bone 

marrow transplantation can lead to bone engraftment in children with OI, which then give 

rise to osteoblast whose presence correlates with an improvement in bone structure and 

function (Horwitz et al. 1999). However, with increasing time post-transplantation, growth 

rates slowed and finally reached a plateau while bone mineral content continuously 

increase. In 2002, the same author hypothesized that additional therapy using isolated 

hMSCs without marrow ablative therapy would safely boost responses. They infused 

culture-expanded hMSCs into children who had previously undergone conventional BMT 

and found that the hMSCs can engraft after transplantation, differentiate to osteoblasts as 

well as skin fibroblasts, extending the clinical benefits attributable to the engraftment of 

functional mesenchymal precursors (Horwitz et al. 2002).  
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1.9. Approaches to accelerate osteogenesis  

Osteogenesis is a process of bone formation, which can be accelerated by using 

biomolecules, novel scaffold design and culture technique (Rupani et al. 2012). The 

presence of biomolecules in the culture media acts as the chemical cues, which would 

greatly influence the proliferation and differentiation of serially passaged bone marrow 

cells. Two widely used basic culture media for these cells are α-Minimum Essential 

Medium Eagle, alpha-modification (α-MEM) and Dulbecco’s Modified Eagle’s Medium 

(DMEM) with serum and osteogenic supplements. The basic culture media favors in the 

expansion of cells to achieve higher cell numbers before the cells are ready to be used in 

cell- or scaffold-based therapies. Conversely, different nutrient-containing media affect the 

expression of the ostoblastic phenotype (Coelho & Fernandes 2000). The presence of 

dexamethasone, β-glycerolphosphate and ascorbic acid is responsible to stimulate 

osteogenic differentiation of the hMSCs (Birmingham et al. 2012; Langenbach & 

Handschel 2013). Table 1.9 summarized the osteogenic supplements and their respective 

functions. 

Table 1.9: Osteogenic supplements and their respective functions. 

Osteogenic supplements Functions 

Dexamethasone Enhances cell proliferation and differentiation by inducing the 
master osteogenic transcription factor RUNX-2 expression. 
(Gaur et al. 2005; Hamidouche et al. 2008).  

β-glycerolphosphate Serves as a phosphate source needed to produce 
hydroxyapatite mineral, which is the inorganic mineralized 
component of bone (Foster et al. 2006; Fatherazi et al. 2009; 
Tada et al. 2011).  

Ascorbic acid Aids in production of collagenous ECM of bone, associated 
with higher ALP activity and capability to form mineralized 
matrix (Choi et al. 2008;  Vater et al. 2011). 
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Osteoblastic cells are sensitive to the changes in physiological changes such as the oxygen 

level, temperature, pH, solute concentration and osmolarity (Sorkin et al. 2004). Previous 

studies have shown the importance of oxygen in bone formation and osteoblastic cells. 

Most of the studies reported on the process of matrix maturation and mineralization has 

been investigated in cell cultured under regular culture conditions, which is 20% oxygen 

(Nicolaije et al. 2012). Oxygen levels in the bone marrow and the surrounding bone tissue 

however, have been measured and modeled to be approximately between 1 and 10% 

(Chow et al. 2001; Harrison et al. 2002). Oxygen tension can heavily affect the cell-cell 

interaction (Park et al. 2002). For instance, osteoblastic cells cultured under hypoxic 

conditions (under 2% oxygen tension) might influence cell metabolism, reduce in 

mineralization and collagen production (Nicolaije et al. 2012).  

Various innovative scaffolds are being designed to facilitate nutrient transfer and oxygen 

supply from the media to the cell-seeded scaffolds in order to enhance osteogenesis. A 

common problem encountered in using scaffold-based therapies is the rapid formation of 

tissues on the outer edge of the scaffold whilst the tissues in the center undergo necrosis. 

To address this problem, recent studies have incorporated aligned channels into the general 

structure of the scaffold to achieve this goal (Rose et al. 2004; Silva et al. 2006). The idea 

behind this approach is to improve the nutrient and cell transfer to the core of the scaffold 

when cultured in vitro and in vivo (Ma & Zhang 2001; Gabriel et al. 2002; Hollister et al. 

2002; Lin et al. 2003).  

In addition, several bioreactors have been developed to improve mass transfer into larger 

tissue constructs (El Haj & Cartmell 2010). Bioreactors are defined as an automated 

devices that develop biological and/or biochemical process under closely monitored as 

well as strictly controlled environmental and operating conditions (Martin et al. 2004). 
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Bioreactors permit the defined and reproducible control over many environmental 

conditions required for cell culture, including nutrient supply, oxygen, medium flow rate, 

pH, temperature and waste removal (Antoni et al. 2015). Different bioreactors have been 

designed based on dynamic flow, perfusion, mechanical stimulation and magnetic force 

(Martin et al. 2004; El Haj & Cartmell 2010; Rauh et al. 2011; Yeatts & Fisher 2011). In 

the following section, rotary bioreactor that was used in this study is described. The 

comparisons of bioreactor system are summarized in Table 1.9.  

Rotary Cell Culture System (RCCS) Bioreactors 

Rotary cell culture system (RCCS) bioreactor was designed by National Aeronautics and 

Space Administration (NASA) in the early 1990s to study the growth of 3D cell tissue of 

mammals in microgravity. Fig. 1.11 demonstrates the RCCS developed by Synthecon 

(Houston, Texas, United States).  

 Fig. 1.11: Rotary bioreactor; (a) RCCS with disposable vessel on four stations motor base 
(b) and different vessel sizes i.e. 50 mL (big vessel) and 10mL (small vessel) (Antoni et al. 
2015 and Synthecon official website. Re-printed with permission from MDPI.  

 

(a) (b) 
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This rotary bioreactor (Fig. 1.11 a) has two basic design principles: (1) solid body rotation 

and (2) a silicone rubber membrane for oxygenation. The chamber which is filled with 

culture media that rotates horizontally is the solid body rotation, while, the silicone 

membrane in the centre of the chamber (labelled as A in Fig. 1.11 b) allows oxygen to 

diffuse through (El Haj & Cartmell 2010). 

Uniquely, this bioreactor can be used for both anchorage-dependent and suspension cells. 

In this bioreactor, scaffolds are allowed to freely move in the media in the vessel. The 

station motor base rotates the vessel at a constant angular speed as shown in Fig. 1.11 (a). 

The vessel wall is rotated at a speed which can balance the downward gravitational force 

and the upward hydrodynamic drag force acting on each scaffold. This constant rotation 

permits maximum fluid flow throughout the scaffolds, which helps in the supply of 

nutrient and waste of removal. In addition, gas exchange can also be authorized using this 

bioreactor through the gas exchange membrane. Typical rotational speed for the RCCS lies 

between 15 to 30 rpm depending on the scaffold use (Plunkett & O’Brien 2011). 

Besides bone TE, this bioreactor has also been used in other regenerative studies such as 

cartilage TE, human ovarian surface epithelial (OSE) cells and cardiogenic bioprocess (Li 

et al. 2008; Lawrenson et al. 2009; Consolo et al. 2012).  
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Table 1.10: Comparisons of bioreactor system in BTE applications (Martin et al. 2004; El 
Haj & Cartmell 2010; Rauh et al. 2011; Yeatts & Fisher 2011; Plunkett & O’Brien 2011; 
Henstock et al. 2013). 

 

 

Bioreactor 
system 

Advantages Disadvantages 

Spinner flask Reproducible and easy to use 

 

Turbulent flow increase shear 
stress; leading to cell necrosis 

 Mass transfer is not good enough, 
resulting in cell death in the center 
of the scaffolds 

Rotating 
vessel 

Minimize shear force and 
turbulence associated with stirred 
bioreactor 

Enhances mass transport 
throughout the scaffolds 

Centrifugal force also cause 
scaffold to frequently collide with 
the wall-induce cell damage 

 

Perfusion  Enhanced nutrient and waste 
transport 

Operate under specific cell culture 
and sterile conditions 

Compression Enhanced osteogenesis compared 
to perfusion system 

 

Improved cell ingrowth and ECM 
synthesis 

Any force-producing mechanism 
that invades the bioreactor (i.e. 
piston, compression system) may 
cause infection 

Scaffolds must be strong to 
transmit the force to the cells; 
resulting in long degradation 
times. 

Hydrostatic Provide physiological pressure 
ranges similar to those predicted 
to be sensed by osteocytes in vivo 

Fine computer control of both the 
magnitude and frequency of force 
can be applied 

Evaporation of medium during 
mechanical stimulation 
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1.10. Characterization 

Characterization of scaffold-based tissue engineering can be divided into two primary 

parts; the assessment of the physico-chemical properties of the fabricated scaffold and the 

cell responses in vitro as in direct contact to the scaffold materials. Both parts of the 

characterizations can further be subdivided to another two categories, the qualitative and 

quantitative analyses. Briefly, qualitative analysis is based on visual observation, while 

quantitative analysis allow the reporting summary results in numerical terms to be given 

with a specified degree of confidence.  

1.10.1. Physico-chemical Characterization 

1.10.1.1. X-Ray Diffraction analysis 

The characterization of the crystal structure of a system is made possible through X-Ray 

Diffraction (XRD) and it is considered as one of the most determinative tool in 

characterization of crystalline materials (Brundle et al. 1992). Typically, XRD is used to 

obtain qualitative and quantitative phase analysis, crystallography, and crystal structure of 

the material.  

XRD can also be used to study the variations in chemical composition of a known 

substance involve in the substitution of atoms, generally of somewhat different size; in 

specific in a crystal structure. As a result of this substitution, the unit cell dimensions and 

the interplanar spacing are slightly altered as compared to the standard reference 

diffraction pattern (i.e. for HA, a-axis= 9.418 Å; c-axis= 6.884 Å). By measuring this 

small shift in the position of lines in the powder pattern of substance for the known 

structure, modification in chemical composition may be often accurately detected (Dana 

1977).  
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When x-ray is directed onto a crystalline material, the plane of the atoms within the crystal 

would diffract the x-rays. When the diffraction angle corresponding to a given line on a 

powder photograph has been determined, the interplanar spacing of the family of atomic 

planes can be calculated using Bragg’s law (Eq. 1.1): 

nλ= 2d sinθ 

 

…Equation 1.1 

where, n= integer; λ= wavelength of Copper K-alpha radiation (Cu Kα, λ= 1.5406 Å); d= 

distance between crystal planes; and θ= half of diffraction angle.  

In this study, the diffraction peak at about 25.8° and 32.9° corresponding to the (002) and 

(300) Miller plane family of HA, were chosen to calculate the distance between crystal 

planes along the crystallographic of c- and a-axes, respectively. Plane (002) was chosen to 

calculate the crystallite size because it is the strongest peak without any overlapping in the 

HA pattern (Kee et al. 2013; Bang et al. 2011). The crystallite size of the powders was 

calculated based on Scherrer equation (Equation 1.2):! 

! = !"
!!!"#$ …Equation 1.2 

where, d= crystallite size; K= a shape factor equal to 0.9; λ= wavelength of Copper K-

alpha radiation (Cu Kα, λ= 1.5406 Å); β= full width at half maximum (FWHM) and θ= 

half of diffraction angle. In this study, the lattice parameter and crystallite size were 

calculated automatically using Reitveld refinement software.  

1.10.1.2. Fourier Transform Infra-Red Spectroscopy 

Fourier transform infra-red (FTIR) spectroscopy is one of the most common methods to 

characterize biomaterial surfaces. The principle involved in FTIR spectroscopy is IR 
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radiation is adsorbed and excites molecular vibration. This bond vibration of molecular 

species can then reveal information on specific chemistries and orientation of structures 

(Ratner et al. 2013). FTIR result can be represented either in transmittance or absorbance 

spectrum. This would indicate at which wavelength the IR was transmitted/ absorbed by 

the sample and therefore allow the interpretation of the functional group presents in the 

sample, and thus confirms the phase of the materials (Ślósarczyk et al. 2005). Table 1.11 

represent the typical vibration bands of multi-substituted hydroxyapatite (SiCHA) 

nanopowders, which is the main interest in this study. 

Table 1.11: Typical vibration bands of multi-substituted hydroxyapatite (SiCHA) 
nanopowders. 

Vibration bands! Wavelength (cm-1)! References 

OH-! 1600-1700, 3200-3700! Kim et al. 2003; Murugan & 
Ramakrishna 2006; Lafon et 
al. 2008; 

PO 4
3− ! 565-601, 963, 1036, 1095! Lafon et al. 2008; Fathi et al. 

2008; Kee et al. 2013 
CO 3

2−  (A-type)! 877-880, 1500, 1540-1545! Krajewski et al. 2005; 
Murugan & Ramakrishna 
2006;  

CO 3
2−   (B-type)! 870-875, 1410-1430, 1450-1470! Landi et al. 2003, Ślósarczyk 

et al. 2010; Baba Ismail & 
Mohd Noor 2011; Bang et al. 
2014 

SiO 4
4− ! 490-505, 890-895, 947! Sprio et al. 2008; Marchat et 

al. 2013 

 

In this study, the produced powders were analysed using Perkin Elmer FTIR Spectroscopy 

with Spectrum 100 software. This instrument has limitation in terms of the detected 

wavelength, where the minimum wavelength is 650cm-1. Any wavelength falls under this 

wavelength could not be detected. Therefore, some of the PO 4
3−  and SiO 4

4−  vibration bands 

are not shown on the IR spectra.!!
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1.10.1.3. X-Ray Photoelectron Spectroscopy  

X-Ray Photoelectron Spectroscopy (XPS) is an exceptionally sensitive tool to investigate 

the chemical elements constituting the outermost layer of a surface approximately up to 

200 Å (Shin et al. 2006). The basic principle, depth analysed, spatial resolution and 

analytical sensitivity of XPS analysis is shown in Table 1.12.  

Table 1.12: Basic principle, depth analysed, spatial resolution and analytical sensitivity of 
XPS analysis (Ratner et al. 2013). 

Basic principle X-ray induces the emission of electrons of characteristics energy 

Depth analyzed 10-200 Å 

Spatial resolution 10-150 µm 

Analytical sensitivity 0.1 atom% 

 

XPS is a quantitative technique where the number of atoms recorded for a given transition 

is directly proportional to the number of atoms detected on the surface (Fairley 2009). In 

XPS, x-rays are focused upon a specimen and the interaction of the x-rays with the atoms 

in the specimen causes the emission of core level (inner shell) electrons. XPS then 

measured the energy of these electrons, which provide information about the nature and 

environment of the atoms or atoms from which they originate. The basic energy balance 

describing this process is given by the following relationship (Equation 1.3): 

BE= hν-KE …Equation 1.3 

where, BE is the energy binding the electron to an atom (the desired value), KE is the 

kinetic energy of the emitted electron (the measured value given by XPS) and hν is the 

energy of the x-rays (a known value) (Ratner et al. 2013).  
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An example of a powerful application of XPS in making biomaterials for medical purpose 

is to determine the chemical compositions on a surface of the materials. This has become 

critically important, as any changes in the surface structural and composition will 

indirectly influence their cytocompatibility and thus affect the sequence steps that lead to 

bone bonding (Botelho et al. 2002).  

1.10.1.4. Carbon, Hydrogen, Nitrogen Analysis 

Carbon, Hydrogen, Nitrogen (CHN) analysis is used to estimate the percentage 

compositions of carbon, hydrogen and nitrogen presence particularly in newly synthesised 

organic compounds. In this technique, the sample is encased in a tin cup, subsequently 

dropped vertically into an oxygen-rich chamber and combusted at high temperature in a 

stream of oxygen. The instrument then measures the carbon, hydrogen and nitrogen in a 

single analysis.  

A typical application of CHN in the making of bioceramics (i.e. carbonated 

hydroxyapatite, CHA) is the quantification of carbonate content incorporated in the 

structure (Murugan & Ramakrishna 2006; Lee et al. 2007; Ana  et al. 2010). Similarly, in 

this work only the percentage of carbon was calculated from the CHN analysis obtained, as 

this is the main element of interest. To ensure the measurement is accurate and consistent 

for every batch of powders, the instrument was firstly calibrated using Acetanilide Organic 

Analytical Standard before any analysis was performed. The confidence limits for the 

analysis is <0.3% for solids.  

1.10.1.5. Inductively Couple Plasma Optical Emission Spectroscopy  

In mid-1960s, the inductively couple plasma (ICP) was developed for optical emission 

spectroscopy (OES) at Iowa State University in United States and at Albright & Wilson 

Ltd. in United Kingdom. The first ICP/OES instrument was commercialized in 1974. 
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ICP/OES is a powerful tool in determining trace elements in a numerous of sample types. 

It has been widely used in agricultural and food, geological, environment and water as well 

as in biological and clinical studies. In theory, this technique is based on the spontaneous 

emissions of photon from atoms and ions that had been excited in a radio frequency (RF) 

discharge. ICP/OES instrument require the sample to be either in liquid or gas forms. In 

the case of solid samples, simple preparation is required where sample needs to undergo 

acid digestion to convert the sample into liquid form. The sample solution is transformed 

to an aerosol and directed into the central channel of the plasma. ICP sustains a 

temperature of approximately 10 000K (9726.85°C) at its core to allow the aerosol to 

vaporize rapidly. The elements of interest to be identified or chemically term as analyte 

elements are liberated as free atoms in the gaseous state. Foster collisional excitation 

within the plasma imparts additional energy to the atoms, and hence promotes them to the 

excited states. Appropriate energy is often available to convert the atoms to ions and in 

which afterwards these ions are promoted to excited states. Both atoms and ions in the 

excited states may then relax to the ground state via the emission of photons. These 

emitted photons have characteristics energies that are determined by the quantized energy 

level structure for the specific atoms or ions. The wavelength of the emitted photons 

identified the origin of the anlyte elements (Hou & Jones, 2000). 

In making biomaterial for bone substitutes application for example, ICP-OES is normally 

used to precisely quantify the elements present in the chemical compositions of the 

samples (Kim et al. 2003; Landi et al. 2003; Ibrahim et al. 2011). During each experiment, 

a diluted nitric acid (1M HNO3) and de-ionized water were used as blank and control, 

respectively. Details on the sample preparation for ICP-OES used in this study is described 

in Chapter 2 (section 2.2.2.4).  
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1.10.1.6. X-Ray Fluorescence  

X-Ray Fluorescence (XRF) is fast, accurate and non-destructive for quantitative analysis 

of elemental composition in wide ranges of materials (Brundle et al. 1992). XRF is a bulk 

analysis technique with the depth of sample analysed varying from less than 1 mm to 1 cm 

depending on the energy of the emitted x-ray and the sample composition. The elements 

commonly detected range from beryllium to uranium. Lighter elements from boron to 

fluorine may also be detected. Basically, the sample is irradiated by an intense x-ray beam, 

which causes the emission of fluorescent x-rays. The emitted x-rays can either be detected 

using energy dispersive system or wavelength dispersive system to identify the elements 

present in the sample. The concentrations of the elements are then determined by the 

intensity of the x-rays. The precision and reproducibility of XRF analysis is very high. 

Very accurate results are possible to achieve when good standard specimens are available 

(Brouwer 2010).  

In this study, XRF analysis was used to measure the Ca/P and Si/P ratios of the prepared 

powders. The sample for XRF was prepared by making glass beads. This requires that the 

sample powder to be mixed with flux (lithium tetraborate and lithium metaborate) to get a 

glassy phase. The ratio of flux to sample is 10:1. The flux and sample were accurately 

weighed and placed into a 95% platinum-5% gold fusion crucible. The crucible was then 

placed in the furnace using platinum-tipped tongs at a temperature of 1100°C, and left to 

fuse according to the type of material being fused. The fusing machine was control 

automatically. Prior to XRF analysis, a calibration was firstly run using calcium phosphate 

programme developed by the supplier. The 2910a sample (54.48% CaO, 41.25% P2O5, 

0.21% SiO2, 0.043% Na, 0.011% Mg, 0.094% Al, 0.078% Sr, 0.011% Fe and 0.01% Zr) 

was used as check standards for the analysis, which were run pre, and post sample analyses 

to ensure the accuracy of the results obtained.  
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1.10.1.7. Atomic Force Microscopy  

Atomic force microscopy (AFM) has been beneficial to investigate materials performance, 

processes, physical and surface properties at nanometer scale. The measurement of surface 

topography is an example of typical application of AFM in materials characterization 

(Hoskins et al. 2012). AFM technique has been used to determine the surface roughness of 

the coated samples either in 2D or 3D samples (Zhang et al. 2005; Kim et al. 2010; Zhao et 

al. 2014). 

In AFM, a sharp probe or tip (3-6 µm tall pyramid with 15-40 nm end radius) is use to scan 

the sample. This tip is situated at the apex of a flexible cantilever that is often in V-shaped, 

usually made of silicon. When certain voltage is applied, AFM utilizes a piezoelectric 

scanner that moves the sample in 3 dimensions. The tip is then brought close to the sample 

and raster-scanned over the surface causes the cantilever to be deflected due to probe-

sample interaction. A line-by-line image is generated as a result of this deflection. The 

cantilever vertically bends upwards or downwards as a result of repulsion or attraction 

interactions between the tip and sample surface, respectively (Leite et al. 2007).  

In this study, AFM analysis was used to qualitatively and quantitatively measure the 

surface roughness of different numbers of bilayers coating on 2D PLA films. AFM is a 

sensitive technique to detect the changes in surface roughness, however it still has its own 

limitation. The AFM tip (normal tip), spring constant, scan rates and amplitude available 

are limited. Details on the AFM parameters used in this study are described in Chapter 2 

(section 2.3.4.2).  
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1.10.1.8. Electron microscopy 

For the resolution of detailed materials characterization, two powerful instruments based 

on electron microscopy are used: the Scanning Electron Microscope (SEM) and the 

Transmission Electron Microscope (TEM) (Rosenberg & Weis 1983). 

In SEM, three types of principle images could be produced: secondary electron images, 

backscattered images and elemental X-ray maps. In general, the working voltage of SEM 

is between 2 to 50 kV. Conventionally, the secondary and backscattered electrons are 

separated according to their energies. Secondary electron is considered when the energy of 

emitted electron is <50 kV, while when the energy is >50 kV, it is referred as 

backscattered electrons. SEM is only used to characterize the surface morphology and both 

resolution and crystallographic information are limited. With this, TEM has become an 

attractive alternative over SEM (Voutou et al. 2008).  

TEM is a technique where an electron beam interacts and passes through the specimen 

instead of scanning only the top surface of the material (Voutou et al. 2008). Both SEM 

and TEM are widely been use in the assessment of nanoparticles in particular in 

characterizing the morphology, size, shape and distribution of the particles ranging from 

micron to nano-scale materials (Zhou et al. 2008; Baba Ismail & Mohd Noor 2011; 

Shepherd et al. 2012). In scaffold fabrications, SEM is typically use to observe the pore 

morphology and chemical composition of the surface with the aid of Energy Dispersive X-

Ray analysis (Qing-Qing et al. 1999; Lee et al. 2005). 

1.10.2. Biocompatibility Assessments 

In the past years, biocompatibility assessment had a change of paradigm and is now 

divided into two principal areas. The first principle is assessing the “biosafety”, which 

involves the exclusion of any cytotoxic effects of the biomaterial to the surrounding 
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biological environment. The second area is focussed on the “biofunctionality” of the 

material, i.e. encourage cell proliferation and differentiation of cells towards osteoblastic 

lineage, which will always be the golden goal in scaffold-based TE (Kirkpatrick et al. 

1998). International Standard of Organization (ISO 10993-5) has drawn guidelines for 

biological evaluation of materials for medical devices, which includes both qualitative and 

quantitative analysis. Basically, there are four main evaluations that should be carried out; 

(1) assessment of cell damage by morphological means, (2) measurement of cell damage, 

(3) measurement of cell growth and (4) measurement of specific aspects of cellular 

metabolism. There are three categories of tests, which include extract, direct and indirect 

tests. The choice of test is depend on the nature of the materials to be evaluated, the 

potential site of use and the nature of the use. In extracting condition, attempt should be 

made to stimulate or exaggerate the clinical use conditions so as to determine the potential 

toxicological hazard without causing significant changes in the test sample. This includes 

fusion, melting or any alteration of the chemical structure, unless this is expected during 

application. Direct contact test is the commonly use to assess the biocompatibility of the 

cells seeded directly on the materials. Various sizes, shape physical states of materials can 

be tested by direct contact even in basal culture medium. While, indirect contact test is 

stricter in terms of the culture media used, where, it requires condition growth media. In 

this study, ISO 10993-5 was adapted only as a basic guideline for the in vitro 

biocompatibility study and was modified for lab scale study as shown in Table 1.13. 
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Table 1.13: Categories and common staining/ biochemical assays used for in vitro biocompatibility evaluation of biomaterials. 

Assessment Objective Common staining/ 
biochemical assays used 

Results Interpretation References 

Cell viability -Live/ Dead Staining Green fluorescent (given by Calcein-
AM) indicates the live cells while, 
dead cells represented by Propidium 
Iodide or Ethidium homodimer 

Araujo et al. 2010; Jones 
et al. 2010 

Cell proliferation -Picogreen assay 

-Bradford Total Protein assay 

The amount of DNA and total protein 
roughly indicates the cell number 
presents 

Bradford 1976; Datta et 
al. 2005; Prosecká et al. 
2012 

Cell metabolic activity -Alamar Blue assay 

-MTT assay 

The level of fluorescent indicates the 
intracellular enzyme activity 

Zhu et al. 2003; 
Rodrigues et al. 2013  

Cell differentiation towards 
osteoblastic lineage 

- ALP activity assay ALP is known to be associated with 
bone metabolism and early 
differentiation of cells towards 
osteoblastic lineage 

Chen et al. 2008; Zhao et 
al.2014 

*MTT= 3-(4, 5-dimethylthiazol-2-y-l)-2, 5-diphenyltetrazoliumbromide, ALP= alkaline phosphatase 
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1.10.2.1. Histochemical staining 

Some of the histochemical stain can provide both qualitative and quantitative analysis. For 

instance, Alizarin Red solution is commonly used to stain calcium formation, where 

positive stain will result in red matrix precipitate. The precipitates can be dissolved with 

cetylpyridinium chloride to yield a purple solution, which then can be quantified using 

colorimetric analysis (Yu et al. 2004; Song et al. 2008). 

1.10.2.2. Immunohistochemical staining 

Immunohistochemistry (IHC), or immunocytochemistry is a qualitative method for 

localizing specific antigens in tissue or cells that is based on antigen-antibody recognition. 

The interactions of antigen-antibody can be seen via a coloured histochemical reaction that 

is visible by light or fluorescent microscopy (Taylor et al. 2006). IHC has been used for the 

identification of osteogenic expression using numerous specific osteogenic markers such 

as ALP, runt-related transcription factor 2 (RUNX-2), osteopontin (OPN) and osteocalcin 

(OCN). To identify if the microvascular networks formed throughout the scaffolds were of 

human cell origin, human specific CD31 antibody is commonly used (Pirraco et al. 2014). 

1.10.2.3. Micro-computed tomography  

Micro-computed tomography (Micro-CT) has been established as gold standard for the 

assessment of the 3D structure of bone and scaffolds designed for bone TE (Cartmell et al. 

2004). The density and geometry of the 3D construct can be determined by quantifying the 

attenuated X-rays. By using Micro-CT analysis, it is possible to distinguish between the 

investigated scaffolds and if any mineralized matrix produced by the cells during culture 

(Jones et al. 2010). This can be achieved by analysing the samples at different threshold, 

where low threshold is usually chosen for the scaffolds and the higher threshold is applied 

for the analysis of mineralization (Henstock et al. 2013; Reinwald et al. 2015). 
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1.11. Thesis Aims and Objectives 

Numerous 3D scaffolds have been fabricated as reported in the literature, but none of them 

is able to take over the role of the current clinical gold standard, which is the autograft. To 

date, the existence developed bone scaffolds still have not met the actual practical needs. 

To address this problem, more advance materials and fabrication technique should be 

implemented. Therefore, the overall aim of this project is to fabricate a three-dimensional 

(3D) hybrid scaffold to enhance bone formation in vitro for BTE applications.  

The specific aims of this research are to: 

1. Produce multi-substituted hydroxyapatite nanopowders as bone substitute materials 

2. Develop an innovative coating materials assembly using Polyelectrolyte 

Multilayers (PEMs) technique  

3. Fabricate different structural and functional designs of 3DP hybrid scaffolds using 

Fused Filament Fabrication technique 

4. Investigate the influences of different structural and functional designs of 3DP 

hybrid scaffolds on hMSCs fate in static and dynamic conditions 

5. Introduction of co-culture system of HUVECs and hMSCs as to promotes pre-

vascularized hybrid scaffolds  
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1.12. Research hypotheses 

In order to achieve the research aims, five major hypotheses have been considered in this 

study as described below: 

1. Simultaneous substitutions of carbonate and silicon ions into HA lattice in fully 

controlled amount enhance osteogenic behaviour. 

2. Coating materials assembly consists of osteoconductive (multi-substituted HA) and 

osteoinductive materials (Collagen type I) closely resemble the bone composition. 

3. The novel designs of the 3DP hybrid scaffolds promote better bone formation than 

the commercial HA scaffolds. 

4. Scaffolds cultured under dynamic flow and the use of osteogenic media enhance 

bone formation in vitro compared to those cultured under static condition and in 

proliferation media.  

5. The crosstalk between HUVECs and hMSCs enhance both osteogenis and 

angiogenesis of the pre-vascularized bone scaffolds.  
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2.1. Introduction 

In general, this chapter is divided into four main sections. The first part of the chapter 

describes the wet chemical method used to synthesize the multi-substituted hydroxyapatite 

(SiCHA) nanopowders, followed by the physico-chemical characterizations, i.e., X-Ray 

Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Carbon-Hydrogen-Nitrogen 

(CHN) analysis and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-

OES) technique.  

Prior to in vitro cytotoxicity assessment, the cells used were firstly characterized. Human 

bone marrow-derived mesenchymal stem cells purchased from Lonza (United States) were 

used for all experimental work. The cells donor and passage (P3) number were kept 

constant throughout the experiment. The in vitro cytotoxicity tests were performed on four 

different groups of the optimum multi-substituted HA powders. This test includes the 

investigations on the cell viability obtained by Live/Dead staining, cell proliferation given 

by PicoGreen and total protein production. Cell metabolic activity was assessed by Alamar 

Blue assay and the early indication of osteogenic differentiation from ALP activity.  

In this study, polyelectrolytes multilayers (PEMs) coating was used to fabricate hybrid 3D 

scaffolds. The 3DP scaffolds were initially fabricated by 3D printed (3DP) technique via 

Fused Deposition Modelling method using a synthetic polymer, Poly (lactic acid) (PLA). 

Three different structural designs were fabricated i.e., the mesh, two- and four channel 

scaffolds.  Before fabricating hybrid 3DP scaffolds, the number (n) of coating layers of the 

PEMs method was firstly optimized. Among different n-layers of the coating materials 

assembly, coating surface that could provide the best growth environment for the hMSCs, 

i.e. produces the highest level of total proteins, DNA concentration and early osteogenic 

activity, was chosen as the optimum n-layers. The term “hybrid” is referring to the 
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combination of more than two different materials used to fabricate the 2D films/ 3DP 

scaffolds. For instances, the assemblies of PEMs established in this work consists of newly 

developed SiCHA powders dispersed in two different electrolytes, namely the hyaluronan 

and collagen type I which acts as the polyanions and polycations, respectively. EDC/NHS 

was then introduced to crosslink these layers before proceeding to the next layer. The 

number of coating layers was optimized based on the atomic composition of the deposited 

powders (XPS), surface roughness (AFM), particle scattering (TEM) and semi-

quantification of Calcium and Collagen distribution on the coated surface of the PLA films 

(Alizarin Red and Sirius Red, respectively).  

The 3DP PLA scaffolds were then coated in a similar manner of the PLA hybrid films 

fabrication using the optimum number of layers. These scaffolds were then tested in 

different culture conditions and medium. Rotary Cell Culture System (RCCS, Synthecon 

Inc., Cellon, Strassen, Luxembourg) was used to study the effect of dynamic condition in 

stimulating rapid osteogenesis as compared to the static culture condition. Different culture 

medium was used to investigate the effect of supplements on the cell activity in particular 

when the samples were exposed to dynamic condition. Hydroxyapatite (HA) scaffolds 

purchased from Ceramisys (Sheffield, United Kingdom) was used as the experimental 

control.  

The scaffolds were tested in vitro to investigate the cells survival and capability to 

differentiate into osteoblastic lineage. The early osteogenic differentiation of hMCSs 

cultured on different structural designs of the hybrid scaffolds was qualitatively quantified 

using ALP staining. Micro-computed tomography (Micro-CT) analysis was an important 

tool in determining the best structural design and functional 3DP hybrid scaffolds.  
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The final section of this chapter described the procedure used to promote the pre-

vascularization of the scaffolds. In this study, human umbilical vein endothelial cells 

(HUVEC) and hMSCs were used as the coculture system. Both cells were fluorescently 

labelled as to ease the imaging and quantification of relative fluorescence intensity. 

RUNX-2 and CD31 expression were used to define the early osteogenesis and 

vasculogenesis. The level of pro-angiogenic markers, namely, Platelet Derived Growth 

Factor (PDGF-BB) and Vascular Endothelial Growth Factor (VEGF) were quantified 

using the enzyme linked immunosorbent assay (ELISA).  
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2.2. Synthesis of multi-substituted HA by nanoemulsion method 

2.2.1. Optimization of carbonate and silicon ions contents 

The synthesis of multi-substituted HA (SiCHA) powders was performed based on a 

nanoemulsion method at ambient temperature described elsewhere (Zhou et al. 2008). 

Acetone was used as organic solvent to create the nanoemulsion phase. An acetone 

solution of calcium nitrate tetrahydrate was added dropwise into the di-ammonium 

hydrogen phosphate, ammonium hydrogen carbonate and silicon tetra acetate in aqueous 

solution. Before making the SiCHA powders, pure carbonate substituted HA (CHA) and 

silicon substituted HA (SiHA) were synthesized to optimize the composition of carbonate- 

and silicon substituted into the apatite structure. The best compositions of the pure CHA 

and SiHA powders were chosen to closely mimic the composition of carbonate and silicon 

in bone mineral as shown in Table 1.1 (section 1.2); these powders then act as the control. 

Table 2.1 listed all the reagents used in the nanoemulsion method and their functions.  

Table 2.1: Summary of the raw material used in nanoemulsion method and their functions. 

Chemical Name Chemical 
Formula 

Molecular 
weight 
(g/mol) 

Function Source Purity 

Calcium nitrate 
tetrahydrate 

Ca(NO3)2.4H2O 236.15 Calcium Source Sigma ≥ 99.0 

Di-ammonium 
hydrogen phosphate 

(NH4)2HPO4 132.00 Phosphate 
Source 

Sigma ≥ 98.0 

Ammonium 
hydrogen carbonate 

NH4HCO3 79.06 Carbonate 
Source 

Sigma ≥ 99.0 

Silicon tetra acetate Si(CH3COO)4 264.27 Silicon Source Sigma ≥ 98.0 
Acetone C3H6O 58.08 Solvent for 

making 
nanoemulsion 

 100 

Sodium hydroxide NaOH 40.00 pH adjustment Sigma ≥ 99.0 
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The amounts of CO3 and SiO 4
4−  substituted into the apatite structure were calculated based 

from the stoichiometry empirical formula as shown in Equations 2.1-2.3: 

 

The flowcharts (Fig. 2.1-2.3) demonstrate the process involved in the synthesis of CHA, 

SiHA and SiCHA hydroxyapatite powders, repectively. In brief, Ca(NO3)2.4H2O solution 

which was prepared in acetone was added dropwise using a dropping funnel into the 

mixture of the (NH4)2HPO4 containing  either NH4HCO3, Si(CH3COO)4, or both carbonate 

and silicon sources. The addition of calcium solution caused a drastic change in the colour 

of the mixture from crystal transparent to milky and wax-like in apperance. The mixture 

was stirred for 30 minutes at 450 rpm using a magnetic stirrer. Subsequently, the mixture 

was filtered using a Whatmann vacuum filtration set. About 1000 mL of dH2O was used in 

each washing stage. The filtration cake formed after filtration was washed three times with 

dH2O to clean from potential by-product or impurities, e.g. ammonia. Finally, the filtered 

cake was dried at 90°C for overnight in an oven (Carbolite, United Kingdom). The dried 

filtered cake was ground with an agate mortar; 90 µm particles were extracted using a 

sieve. The synthesized powders were then characterized physically and chemically using 

various techniques, i.e. XRD, FTIR, CHN and ICP-OES. The term “as-synthesized 

powders” refers to the powders produced by the nanoemulsion method in this study.  

For CHA: Ca10-x/2 (PO4)6-x (CO3)x (OH)2                                                   …Equation 2.1 

For SiHA: Ca10 (PO4)6-y (SiO4)y (OH)2-y                                                     …Equation 2.2 

For multi-substituted HA: Ca10-x/2 (PO4)6-x-y (CO3)x (SiO4)y (OH)2-y              …Equation 2.3 

Provided no carbonation in A site occurred. 
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Fig. 2.1: Flowchart of the process for the synthesis of CHA powders by nanoemulsion 
method. 
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Fig. 2.2: Flowchart of the process for the synthesis of SiHA powders by nanoemulsion 
method. 
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 Fig. 2.3: Flowchart of the process for the synthesis of SiCHA powders by 
nanoemulsion method. 
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2.2.2. Physico-chemical characterization  

2.2.2.1. X-Ray Diffraction  

X-Ray Diffraction (XRD) was used to obtain qualitative and quantitative purity of the 

phases, crystallography, and structure of the materials of as-synthesized powders. HA 

standard pattern with ICDD file number of 09-0432 was used as the reference pattern. 

XRD was carried out using a Bruker D8 XRD with a copper anode (Cu Kα, = 1.5406 Å) 

as X-Ray source. X-ray data for the prepared powders were collected using PANalytical 

X’Pert Pro diffractometer with the X’Celerator area detector. All samples were mounted 

on a silicon low background substrate using a drop of isopropanol. The range of x-ray scan 

was fixed from 2 = 10° to 90° with scan step size= 0.01. Data analyses were done using 

X’Pert HighScore Plus software. Lattice parameters and crystallite size were calculated 

based on Rietveld refinement.  

2.2.2.2. Fourier Transform Infra-Red Spectroscopy 

The as-synthesized powders were characterized using Fourier Transform Infra-Red (FTIR) 

Spectroscopy by transmittance mode (Perkin Elmer 100, Perkin Elmer, United Kingdom) 

to determine the mechanism of carbonate and silicon substitutions within the HA structure. 

The wavenumber range was 4000 to 650 cm-1; with a resolution of Spectrum 100 Software. 

Each sample was scanned four times. The detected bands were compared to the typical 

vibration bands of SiCHA as shown in Table 1.11 (section 1.10.1.2). 

2.2.2.3. Carbon, Hydrogen, Nitrogen Analysis 

The carbonate content (wt%) of the as-synthesized powders were measured using Carbon, 

Hydrogen, Nitrogen (CHN) analysis. CHN was performed by Carlo Erba 1180 Elemental 

Analyser controlled with CE Eager 200 Software, run in accordance to the manufacturer’s 

instruction and weighed using a certified Mettler MX5 Microbalance. In this 

λ

θ
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characterization method, samples used was in the form of powders of about 1.5-2.0 mg. 

The powders were combusted at high temperatures in a stream of oxygen, and the products 

of the combustion for carbon, hydrogen and nitrogen were measured by the instrument in a 

single analysis. The sample, enchased in a tin cup, was dropped vertically into an oxygen-

rich chamber and was combusted into its elemental oxides at high temperatures of 925°C. 

In this particular study, the carbonate in the apatite powder will easily decompose into CO2 

gas as exposed at high temperature. This resultant gas was then transferred to a gas 

chromatographic column for separation. Thermal conductivity detector (TCD) then 

detected and quantified these resultant gases. In order to estimate the amount of carbonate 

present in the sample, the wt% of carbon obtain was multiplied by a factor of five 

(Krajewski et al. 2005). 

2.2.2.4. Inductively Coupled Plasma-Optical Emission Spectroscopy Measurement 

The concentrations of Ca, P and Si in the as-synthesized apatite powders were determined 

by inductively coupled plasma with optical emission spectroscopy (ICP-OES) using Perkin 

Elmer Optimal 4300DV instrument. About 0.01 g of the as-synthesized powders was 

digested in 1M HNO3 (2.5 mL of HNO3, 1.5 mL of H2O2, and 0.3 mL of HCl )in a 100 mL 

Erlenmeyer flask (Vázquez et al. 2005).  

2.2.2.5. X-Ray Fluorescence Analysis 

X-Ray Fluorescence (XRF) is an emission spectroscopic technique, which identify the 

elements present in the sample. XRF is a simple, non-destructive technique for qualitative 

and quantitaive analyses of elemental composition in wide range of materials (Brundle et 

al. 1992). The sample preparation and analysis of the as-synthesized powders were 

performed at Glass Technology Service (GTS) in Sheffield. The elemental compositions in 

the powders were quantified using a Rigaku RIX-3000 wavelength dispersive XRF 
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spectrometer. The 2910a sample (54.48% CaO, 41.25% P2O5, 0.21% SiO2, 0.043% Na, 

0.011% Mg, 0.094% Al, 0.078% Sr, 0.011% Fe and 0.01% Zr) was used as check 

standards for the analysis, which were run pre- and post-sample analyses to ensure the 

accuracy of the results obtained. The results obtained were then used to quantify the 

percentage of silicon that successfully incorporated into the apatite structure and the ratio 

of Si/P of the multi-substituted HA (SiCHA) before and after calcination was performed.  

 

2.2.3. As-calcined multi-substituted HA 

Three different groups of powders with optimize carbonate (x) and silicon (y) molar 

contents were synthesized in this work: CHA, SiHA and multi-substituted HA (SiCHA-1 

and SiCHA-2), as shown in Table 2.2.  

Table 2.2: Different carbonate (x) and silicon (y) molar contents of the powders. 
. 

Sample codes x (molar content) y (molar content) 

CHA 2.0 - 

SiHA - 0.3 

SiCHA-1 2.0 0.5 

SiCHA-2 2.0 0.3 

 

Calcination was then performed on the as-synthesized powders at 500, 600 and 700°C with 

a heating rate of 10°C /min and at least one hour soaking time in ambient atmosphere. The 

term “as-calcined powders” refers to the powders after heat treatment (calcination).  
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2.2.4. Physico-chemical characterization 

2.2.4.1. X-Ray Photoelectron Spectroscopy 

X-Ray Spectroscopy (XPS) is an extremely sensitive technique used to quantify the 

surface chemistry of the sample at the atomic level. In this study, XPS was used to study 

the effect of  calcination temperature on the surface atomic chemistry of the calcined 

powders. This technique required a simple sample preparation where, the powders were 

formed into a compacted layer (>10 nm thickness) immobilised onto the foil which could 

then be mounted on carbon tape for analysis using Theta Probe instrument (Thermo 

Scientific, United States). The XPS spectrometer employed a monochromatic Al Kα X-

Ray source. Samples were dried completely under ambient conditions before analysis was 

performed. The XPS analysis was carried out by NEXUS (Newcastle University, United 

Kingdom). CasaXPS Processing Software was used to analyse the XPS spectrum obtained.  

2.2.4.2. XRD Analysis 

XRD was used to determine the crystallinity of powders after calcination, using the same 

method as described for the as-synthesized powders (section 2.2.2.1.).  

2.2.4.3. FTIR Spectroscopy 

FTIR spectroscopy was used to identify any changes in the mechanisms of carbonate and 

silicon ions substitution within the HA structure after calcination. The same method as 

describe for the as-synthesized powders (section 2.2.2.2.) was used.  

2.2.4.4. CHN Analysis 

The percentages of carbonate incorporated in the calcined powders were determined using 

CHN analysis using the same method for the as-synthesized powders (section 2.2.2.3.).  



Materials and Methods Chapter 2 

 

 
!

Page 77 
!

! !

2.2.4.5. ICP-OES Measurement 

The same technique as describe in section 2.2.2.4. was used to quantify the amount of Si 

presents in the calcined powders.  

2.2.4.6. XRF Analysis 

The Ca/ P ratio of the calcined powders was determined using the using the same method 

as described for the as-synthesized powders (section 2.2.2.5.).  

2.2.4.7. Transmission Electron Microscopy  

Philip CM100 Transmission Electron Microscope (TEM) was used to examine the 

morphology of the as-calcined powders in terms of their particle size and shape. Prior 

imaging the samples, 0.1 mg of powders were suspended in pure water and sonicated for 

ten minutes to allow the powders to be well dispersed. A drop of the suspension was then 

carefully placed onto a copper grid (diameter= 3.05 µm, mesh= 400) and allowed to dry. 

Samples were imaged at a magnification of 130 kX at HV= 100.0kV.  
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2.2.5. Cell Characterization 

Human bone marrow-derived mesenchymal stem cells (hMSCs) used were obtained from 

Lonza (United States). The cells used were obtained from a 24 years old male donor. 

hMSCs were characterized upon isolation by evaluating their multi-lineage differentiation 

(section 2.2.5.1.-2.2.5.2.) and the expression of key cell CD surface markers, which were 

quantified qualitatively using immunostaining (section 2.2.5.3) and quantitatively by flow 

cytometry (section 2.2.5.4.). The same batch of cells was used for the characterization of 

hMSCs (section 2.2.5.1.- 2.2.5.4.). 

2.2.5.1. Multi-lineage Differentiation of hMSCs 

The ability of hMSCs to adhere to the tissue culture plastic and undergo differentiation into 

osteocytes, chondrocytes and adipocytes was investigated by histological staining for 

Osteogenic (Alizarin Red; section 2.2.5.2.1.), Chondogenic (Alcian Blue; section 

2.2.5.2.2.) and Adipogenic (Oil Red O; section 2.2.5.2.3) lineages. Cells were seeded at a 

density of 2.5 X 103 cells/cm2 (n=3) and cultured in the relevant differentiation media as 

shown in Table 2.3. Cells cultured in proliferation media acted as the experimental 

controls. Cells were cultured for 21 days. Media was changed every three days. For 

histological staining, cells were fixed after 21 days. In order to characterize the osteogenic 

and chondrogenic samples, cells were fixed with 95% methanol (Fisher Scientific, United 

Kingdom) for 15 minutes. While, for adipogenic samples, cells were fixed in 4% formalin 

(Sigma-Aldrich, United Kingdom). 
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Table 2.3: Relevant proliferation and differentiation media compositions used in this study. 

Reagent Quantity 
Proliferation media  
4.5g/L Dulbecco’s Modified Eagle Medium, DMEM (Lonza, United Kingdom) 500 mL 
L-glutamine (Lonza, United Kingdom) 1%  v/v 
Penicilin-Streptomycin (Lonza, United Kingdom) 1%  v/v 
Fetal Bovine Serum (Biosera labtech, United Kingdom) 10% v/v 
  
Osteogenic media  
4.5g/L Dulbecco’s Modified Eagle Medium, DMEM (Lonza, United Kingdom) 500 mL 
L-glutamine (Lonza, United Kingdom) 1% v/v 
Penicilin-Streptomycin (Lonza, United Kingdom) 1% v/v 
Fetal Bovine Serum (Biosera labtech, United Kingdom) 10% v/v 
Dexamethasone  (Sigma-Aldrich, United Kingdom) 0.1 µM 
Ascorbic Acid (Analar, United Kingdom) 50 µM 
β-Glycerophosphate (Sigma-Aldrich, United Kingdom) 50 mM 
  
Chondrogenic media  
DMEM-F12 (Lonza, United Kingdom) 500 mL 
L-glutamine (Lonza, United Kingdom) 1% v/v 
Penicilin-Streptomycin (Lonza, United Kingdom) 1% v/v 
Fetal Bovine Serum (Biosera labtech, United Kingdom) 1% v/v 
Insulin Transferin, ITS (Sigma-Aldrich, United Kingdom) 1% v/v 
Dexamethasone (Sigma-Aldrich, United Kingdom) 0.1 µM 
Ascorbic Acid (Analar, United Kingdom) 50 µM 
L-proline (Sigma-Aldrich, United Kingdom) 40 µg/mL 
Sodium pyruvate (Sigma-Aldrich, United Kingdom) 1% v/v 
Transforming growth factor- beta 3, TGF-β3 (Peprotech, United Kingdom) 10 ng/mL 
  
Adipogenic media  
4.5g/L Dulbecco’s Modified Eagle Medium, DMEM (Lonza, United Kingdom) 500 mL 
L-glutamine (Lonza, United Kingdom) 1%  v/v 
Penicilin-Streptomycin (Lonza, United Kingdom) 1%  v/v 
Fetal Bovine Serum (Biosera labtech, United Kingdom) 10% v/v 
3-Isobutyl-1-methylanthine, IBMX (Sigma-Aldrich, United Kingdom) 0.5mM 
Dexamethasone (Sigma-Aldrich, United Kingdom) 0.5 µM 
Insulin (Sigma-Aldrich, United Kingdom) 10 µg/mL 
Indomethacin (Sigma-Aldrich, United Kingdom) 100 µM 
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2.2.5.2. Histological Staining 

2.2.5.2.1. Alizarin Red 

The osteogenic differentiation of hMSCs was confirmed by Alizarin Red (Sigma-Aldrich, 

United Kingdom) staining. Prior to staining, Alizarin Red solution was prepared at 1% in 

dH2O and syringe filtered using a 2 µm filter. The pH of the solution was kept at pH 4. 

Samples were washed in Phosphate Buffer Saline, PBS (Sigma-Aldrich, United Kingdom) 

and stained with Alizarin Red solution for 5 minutes at room temperature. The stain was 

removed and washed three times in dH2O. Calcium depositions were stained red (positive) 

and imaged using a bright field microscope AMG-EVOS X1 CORE at magnification of 

10X. Results are demonstrated in the Appendix (Fig. A2). 

2.2.5.2.2. Alcian Blue 

Alcian Blue stain (Sigma-Aldrich, United Kingdom) was used as to characterize the 

chondrogenic differentiation. The stain was prepared at pH 1.5 using 3% acetic acid made 

using dH2O and syringe filtered (2 µm filter). Samples were washed in PBS and stained 

with Alcian Blue solution for overnight at room temperature. The stain was removed and 

samples were washed three times in dH2O. Blue staining of matrix indicated a positive 

result for the presence of GAGs secreted by chondrocytes. Samples were imaged using a 

bright field microscope AMG-EVOS X1 CORE at magnification of 10X. Results are 

shown in the Appendix (Fig. A2). 

2.2.5.2.3. Oil Red O 

Adipogenic differentiantion was characterised using Oil Red O (Sigma-Aldrich, United 

Kingdom) prepared in 60% Isoproranol (IPA) and syringe filtered using 2 µm filter. After 

fixation, formalin was completely removed and the cells were washed twice with dH2O 

followed by 60% IPA for five minutes at room temperature. The prepared staining solution 

was then added into the well and allowed to stain for 15 minutes at room temperature. 



Materials and Methods Chapter 2 

 

 
!

Page 81 
!

! !

Upon removal of the staining solution, samples were washed three times in dH2O.  Lipid 

formation as a result of differentiated hMSCs into adipocytes appeared as small red 

droplets. Samples were imaged using a bright field microscope AMG-EVOS X1 CORE at 

magnification of 10X. Results are presented in the Appendix (Fig. A2). 

2.2.5.3. Immunostaining of hMSCs surface markers 

hMSCs at passage two (P2) were seeded at a density approximately 5000/cm2 and cultured 

in standard basal media until 80-90% confluency prior to immunophenotyping. Once the 

cells reached about 80-90% confluency, the cells were washed with PBS and fixed with ice 

cold 90% methanol for 10 minutes. The cells were washed once again with PBS. In order 

to block non-specific antibody binding, 2% Bovine Serum Albumin, BSA (Fisher 

Scientific, United States) in PBS was added to each well and allowed to stand for 1 hour at 

room temperature. After 1 hour had elapsed each well was washed twice with PBS and 

cells were characterized using human MSCs characterization kit, which contained anti-

human mouse anti-CD73, anti-CD90, and anti-CD105 (BD Bioscience, United Kingdom). 

IgG1 and IgG2a were used as the assorted isotypes and negative controls consisted of 

CD14, CD20, CD34 and CD45 (Immunotools, Germany). The fluorophores associated for 

each isotype is in red. The following CD markers and isotype controls were used at the 

described concentrations in 2% BSA/PBS; CD73 (1:20), CD90 (1:200) and CD105 (1:50), 

CD14 (1:50), CD19 (1:50), CD34 (1:100), CD31 (1:50), CD45 (1:200), CD105 (1:50). 

Isotype control antibodies include IgG1 (1:50) and IgG2a (1:50). Propidium iodide 

staining to detect dead cells was not included. Cells were then incubated at 4°C on a shaker 

overnight. Cells were washed with PBS, counterstained with DAPI and washed again in 

PBS. A UV fluorescent microscope (Nikon Eclipse Ti-ST, Japan) was used to image the 

cells once the staining was completed. Results are demonstrated in the Appendix (Fig. A3). 
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2.2.5.4. Flow cytometry 

The cell CD surface markers were evaluated using Fluorescence-Activated Cell Sorting 

(FACS; FACS can flow cytometer (Becton Dickinson, UK)). hMSCs at passage two (P2) 

were expanded to 80-90% confluence, trypsinised, and re-suspended at a cell density of 

1 X 106 cells/mL in PBS supplemented with 10% Human IgG (Flebogamma, United 

Kingdom). Cells were incubated for 1 hour at 4°C, then centrifuged at 400 g to form a cell 

pellet; the supernatant was discarded. Cells were then re-suspended in 2% BSA/ PBS 

solution resulting in a cell density of 1 X 106 /mL and dispensed at a at a cell density of 

1.68 X 104 cells per 5 mL in Falcon tube. The directly conjugated antibody or the 

respective isotype control (same as those used in immunostaining) was then re-suspended 

in 2% BSA/PBS and added to cells for 30 minutes at 4°C with gentle agitation. Cells were 

centrifuged twice at 400 g for 5 minutes before being re-suspended in a final volume of 

200 µL of  2% BSA/PBS to be analysed.  

Fluorescein isothiocyanate (FITC) fluorescence was detected using FL-1 channel, while, 

FL-2 channel was used to detect R-phycoerythrin (R-PE). FITC has the maximum 

absorbance and maximum emission at 565 nm and 578 nm, respectively. R-PE has 

maximum absorbance at 490 and 565 nm and maximum emission at 578 nm. Excitation 

was achieved at 488 nm with an Argon laser. Data gated to exclude dead cells and select 

the required cell population on the basis of forward scatter versus side profiles. Mean 

fluorescence intensity (MFI) and percentage positive cells were measured. Data were 

collected and displayed in dot plot and histogram format using CellQuestPro software 

(Becton Dickinson, United Kingdom). Results are demonstrated in the Appendix (Fig. A4). 
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2.2.6. In vitro biocompatibility assessment 

International Organization for Standardization (ISO) 10993-5: Biological Evaluation of 

Medical Devices, Part 5: Tests for Cytotoxicity, was adapted and used as guideline in this 

study. This test involved the study on the cell viability, proliferation, metabolic activity 

and early osteogenic differentiation of hMSCs in direct contact with the investigated 

samples.  

2.2.6.1. Sample Preparation 

As all samples tested were in powder form, aliquots of 0.05 g of the calcined powders were 

sterilized in 1.0 mL of 70% industrial methylated spirit (IMS) for three hours followed by 

rinsing twice with PBS. 

2.2.6.2. Cell culture and seeding 

Human bone marrow derived-mesenchymal stem cells (hMSCs) obtained from a 24-year 

old male (Lonza, United States) were expanded until passage two when the required cell 

number was obtained. Cells were cultured in the proliferation media (PM) with 

composition as shown in Table 2.3 followed by, incubation at humidified environment at 

37°C with 5% CO2. hMSCs at passage 3 were seeded at 5x104 into 24 well plates. Cells 

were allowed to adhere for three hours before 0.05 g of the powders were added into the 

well. Osteogenic media (OM) was used after the addition of powders and culture media 

was replenished every three days for 21 days. In all cases, tissue culture plastic alone 

cultured in OM acts as the positive control. At 7, 14 and 21 days, cells were rinsed with 

PBS, trypsinized, washed again with PBS and finally samples were lysed in 1mL of dH2O 

followed by being frozen at -80°C. 
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2.2.6.3. Cell viability 

The cell viability was observed using Confocal Laser Scanning Microscope (CLSM) 

Olympus Fluoview FV 1200 with Fluoview Version 4.1 software (Olympus, UK). The 

viability of the cells was assessed at 7, 14 and 21 days using the Live/Dead Assay Kit 

(Invitrogen, United Kingdom) according to the manufacturer’s instructions. Calcein-AM 

ester was used to fluorescently label viable cells (green); the nucleus of dead cells is 

labelled with Propidium Iodide (red). Briefly, cell culture media was removed from 

samples. They were washed with PBS then immersed in a PBS staining solution containing 

10 µM Calcein-AM and 1 µM Propidium Iodide and incubated at 37°C for 20 minutes in 

the dark. The samples were then washed once with 1.0 mL of PBS and immediately 

imaged using CLSM.  

2.2.6.4. Cells activity and proliferation 

The Quant-iTTM Picogreen® dsDNA assay kit (Invitrogen, United Kingdom) was used 

according to the manufacturer’s instruction. The Picogreen solution was prepared as 1: 200 

dilutions in 1 X Tris-EDTA (TE) buffer. Ranges of DNA dilutions (0-2 µg/mL) were used 

to construct a standard curve. 100 µL of cell lysate or DNA standard was placed each well 

of a 96 well plate, followed by 100 µL of Picogreen reagent to each well. This was placed 

in the dark for 5 minutes before reading the fluorescence at 485/535 nm 

(excitation/emission) using Synergy II BioTek plate reader.  

Alkaline phosphatase (ALP) activity was obtained from a 4-Methylumbelliferyl phosphate, 

4-MUP (Sigma-Aldrich, United Kingdom) reaction. Ranges of 4-Methylumbelliferone, 4-

MU (Sigma-Aldrich, Switzerland) dilutions (0-2 µg/mL) were used to construct a standard 

curve. 50 µL of the cell lysate from each sample or standard of 4-MU and 50 µL of 4-MUP 

was then added into the relevant well of 96 well plate to this followed by incubation at 
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37°C for 90 minutes. To terminate the reaction, 100 µL of 1 X TE was added and the 

reading of the fluorescence was taken at 360/440 nm (excitation/emission) using Synergy 

II BioTek plate reader.  

2.2.6.5. Cells metabolism  

The levels of total protein were quantified using Bradford reagent (Sigma-Aldrich, United 

Kingdom). Ranges of protein standard solutions (0-2 mg/ mL) were prepared by dissolving 

Bovine Serum Albumin, BSA (Sigma-Aldrich, United Kingdom) in distilled water. For 

total protein assay, 50 µL samples or standards were placed in each well of 96 well plates, 

followed by addition of 50 µL of Bradford reagent. Samples were incubated for 5 minutes 

at room temperature before reading the absorbance level at 595 nm using Synergy II 

BioTek plate reader.  

Alamar Blue (Sigma-Aldrich, United Kingdom) reduction was measured after every time-

points to determine the cell metabolic activity. The cells were washed with PBS and 

stained with Alamar Blue reagent, which was prepared as 1: 10 dilution of stock (prepared 

by the manufacturer) in DMEM. The samples were incubated at 37°C for three hours in 

dark environment. Subsequently, 100 µL of the supernatant was transferred into a 96 well 

culture plates and fluorescence readings were taken at 530/590 nm (excitation/emission) 

using Synergy II BioTek plate reader.  

2.2.6.6. Statistical analysis for different powders group 

Quantitative data were presented as means ± standard deviation (SD). Data were initially 

tested for normality using the Kolmogorov-Smirnov test, with Dallal-Wilkinson-Lillie for 

corrected P value (recommended for small n data analysis). To determine any differences 

between powders group at each time point, a two-way ANOVA with multiple comparisons 

Tukey test was performed. Statistical significance was considered for p ≤ 0.05 (*), p ≤ 0.01 
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(**), p ≤ 0.001 (***) and p ≤ 0.0001 (****).  For biochemical assays, tests were performed 

on n=3 in duplicate. All statistical analyses were performed using GraphPad Prism 7 

software. No statistical test was performed on the confocal analysis, n=1 was used for 

imaging.  

2.3. Polyelectrolyte multilayer assemblies using two-dimensional Poly (lactic acid) 

films to enhance cell-material interaction. 

These sections described the construction of multilayer depositions on two-dimensional 

(2D) poly (lactic acid) (PLA) films using the innovative coating materials assembly 

established in this study. The numbers of bilayers depositions were then optimized by the 

physical and chemical characterizations followed by in vitro biocompatibility assessment 

using hMSCs. 

2.3.1. Fabrication of PLA films 

PLA resin was dissolved in 1, 4 Dioxane (Sigma-Aldrich, United Kingdom) (30 mg/mL) 

with magnetic stirrer at 70°C for three hours to obtain a homogenously dissolved solution. 

The viscous translucent solution was carefully poured to cast into a glass petri dish as to 

prevent any formation of bubbles. The glass culture dish was then covered with parafilm 

(small pores were created in the film to permit slow evaporation of the solvent) and left in 

the fume cupboard overnight providing a PLA film of 5 µm thickness. The film was 

removed from the petri dish and cut into 1 mm X 1 mm squares. 

2.3.2. Surface modification of PLA films 

The surface of the PLA films were modified by introducing amino functional groups 

through aminolysis, which has been described by previously Liu et al. (2010). Briefly, the 

PLA films were immersed in 0.1 M sodium hydroxide, NaOH (Sigma-Aldrich, United 

Kingdom) for 20 minutes and then rinsed in distilled water for 5 minutes. The films were 
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washed in 1:1 v/v of ethanol/water solution for 30 minutes and washed in distilled water 

for 5 minutes. Films were subsequently immersed in the solutions of 3 mg/mL of 1-ethyl-

3- (3-dimethylaminopropyl) carboiimide hydrocholoride, EDC (ThermoFisher Scientific, 

United Kingdom) and 5 mg/mL of N-hydroxysulfosuccinimde sodium salt, NHS (Sigma-

Aldrich, United Kingdom). Afterwards, the PLA films were transferred into a mixture of 

EDC/NHS solution (3 and 5 mg/mL respectively, pH 6.0) solution under constant shaking. 

The films were then washed with excess distilled water. Finally, the films were immersed 

in 10 mg/mL Poly (ethylene imine) solution, PEI (Sigma-Aldrich, United Kingdom) at pH 

7.4 and stirred for 3 hours at 40°C followed by washing thoroughly in large amounts of 

distilled water for 15 minutes before left to dry for overnight. 

2.3.3. Construction of multilayered PLA films 

The multilayered PLA films were fabricated by Polyelectrolytes Multilayers (PEMs) 

technique modified from the process used by (Zhao et al. 2014). Prior to the layer-by-layer 

(LBL) assembly, the coating solutions were firstly prepared. 0.5 g of the optimum SiCHA 

powders were dispersed in 1.0 mg/mL hyaluronic acid (Lifecore Biomedical, United 

States) solution with the pH of the solution adjusted to pH 5.0, which served as the 

polyanions solution. The polycations solution was prepared by dispersing 1.0 g of the 

optimum SiCHA powders in 2.0 mg/mL Collagen type I (high concentration rat tails) (BD 

Bioscience, United Kingdom) and was kept constant at pH 5.0. In this study, we 

introduced a coupling agent to cross-link the LBL assembly in order to improve the 

chemical bonding between the polyanions and polycations. The coupling agent consists of 

3 mg/mL EDC mixed with 5 mg/mL NHS solutions at pH 5.0. All solutions were adjusted 

to pH 5.0 using either 0.1 M HCl (Sigma-Aldrich, United Kingdom) or 1 M NaOH 

(Sigma-Aldrich, United Kingdom).  
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In brief, the aminolyzed PLA films that have a positive charged surface were firstly 

immersed into the polyanions solution for 15 minutes followed by rinsing in the ultrapure 

water (pH 5.0). After washing, the films were subsequently immersed into the polycations 

solution for 15 minutes. The films were then washed again in fresh ultrapure water 

(pH 5.0) to remove any unbound materials and prevent contamination of the 

polyelectrolytes solution. EDC/NHS solution was then introduced at the final step of each 

multilayer coating followed by washing in ultrapure water. These coating steps were 

repeated for three, five and ten multilayers as to optimize the number of coating layers. 

The coated films were then dried at room temperature for overnight.  

2.3.4. Physical and chemical characterization  

2.3.4.1. X-Ray Photoelectron Spectroscopy Analysis 

The XPS analysis was carried out by NEXUS (Newcastle University, United Kingdom). 

XPS analysis is important tool to detect the elements present before and after coating. The 

films were analyzed using K-Alpha Instrument (Thermo Scientific, United States). This 

technique employed a monochromatic Al Kα X-Ray source. Samples were dried 

completely under ambient conditions before analysis was performed. The relative atomic 

concentrations were determined using the built-in CASAXPS software. The elements of 

interest and their binding energies (BE) are listed in Table 2.4. At least 3 samples of each 

film were used for XPS analysis. 

Table 2.4: Elements of interest and their binding energies on PLA films (Botelho et al. 
2002; Li et al. 2008; Kim et al. 2010; Zhao et al. 2014). 

Elements of interest Binding Energy (BE, eV) 
C1s 288.9 
O1s 533.0 
N1s 400.0 

Ca2p 349.0 
P2p 135.0 
Si2p 101.0 



Materials and Methods Chapter 2 

 

 
!

Page 89 
!

! !

2.3.4.2. Atomic Force Microscopy Analysis 

The surface topography of the PLA films before and after coating with different number of 

multilayers was observed using atomic force microscopy (AFM) in the tapping mode using 

BioScope Catalyst AFM (Bruker, Germany) with ScanAsyst Adaptive Mode. The PLA 

films were imaged using an RTESPA tip of spring constant 4 N/m, 896 scans/lines, 0.32 

Hz scan rates, and 1.102 V amplitude (Hoskins et al. 2012). The scan area was 1 mm X 1 

mm squares. At least 3 samples were imaged to calculate the surface roughness for both 

whole and localized areas of the films. The term whole area refers to the entire scan area of 

1mm2; localized areas means several spot areas of 1 nm2 on the entire scan area.  

2.3.4.3. Transmission Electron Microscopy Analysis 

The uniformity of the SiCHA nanopowders distribution on the PLA films coated with 

different number of multilayers were observed using Transmission Electron Microscope 

(TEM, Philip CM100). Three samples with scan area 1 mm X 1 mm were used for TEM 

analysis (n= 3). 

2.3.4.4. Semi-quantitative analysis of Calcium and Collagen distribution  

The distribution of the coating materials on the PLA films were further characterized 

specific to the SiCHA nanopowders and Collagen type I. Alizarin Red (AR) was used to 

stain the Calcium deposition while Collagen type I was stained using Sirius Red (SR) 

solutions. Samples (n=3) were imaged using a bright field microscope AMG-EVOS x1 

CORE with a magnification of 4X.   

2.3.5. In vitro biocompatibility tests 

Cytotoxicity test was performed on the PLA films coated with different number of 

multilayers. A protocol similar to that explained in section 2.2.6. was used in this study. 
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The cell donor (24 year old male) and passage number (P3) were kept constant throughout 

the experimental study.  

2.3.5.1. Samples Preparation 

Samples with an area of 1 mm X 1 mm squares were used for the in vitro biocompatibility 

test on different n-layers of the coating materials assembly deposited on the 2D PLA films. 

The bare (uncoated) and coated PLA films were sterilized for three times for 90 seconds in 

the Ultra Violet (UV) chamber before cell seeding. 

2.3.5.2. Cell seeding 

After cell counting, 0.5 X 105 of hMSCs (P3) were directly seeded on the surface of the 

PLA films and incubated for 3 hours at 37°C with 5% CO2 and humidified atmosphere to 

allow cell attachment. Afterwards, 1.5 mL of complete proliferation media (PM) was 

added to each sample in wells of 24 well plates. Samples were cultured for 14 days. 

hMSCs on tissue culture plastic acted as the experimental control in comparison to the bare 

PLA, 1-, 3-, 5-, and 10 multilayers samples. Media was changed every three days.  

2.3.5.3. Statistical analysis for different number of multilayers PLA films  

Quantitative data were presented as means ± standard deviation (SD). Data were initially 

tested for normality using the Kolmogorov-Smirnov test, with Dallal-Wilkinson-Lillie for 

corrected P value (recommended for small n data analysis). A two-way ANOVA with 

multiple comparisons Tukey test were performed to optimize the number of multilayer 

depositions on the 2D PLA films. Statistical significance was considered for p ≤ 0.05 (*), p 

≤ 0.01 (**), p ≤ 0.001 (***) and p≤ 0.0001 (****).  All statistical analyses were performed 

using GraphPad Prism 7 software. For biochemical assays, tests were performed on n=3 in 

duplicates.  
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2.3.6. Fabrication of three-dimensional scaffolds  

These sections demonstrated the fabrication of three-dimensional (3D) scaffolds by Rapid 

Prototyping (RP) technique. Different channel designs were incorporated in the scaffolds 

fabrication. The fabricated scaffold is referred as 3DP scaffolds in this study. 

2.3.6.1. Three-dimensional printing of Poly (lactic acid) scaffolds 

RP technique was used to engineer three different structural designs of the scaffolds 

namely four (4C), two channels (2C) and mesh scaffolds. The 3D scaffolds were fabricated 

via Fused Deposition Modelling method using Poly (lactic acid) resin (Product code: 4032 

D) purchased from NatureWorks® LLC (United States). Scaffolds were printed using 

Ultimaker 2 from Ultimaker (United Kingdom). Prior printing, the scaffolds were firstly 

designed using Autodesk Inventor Professional 2014. The computer-aided design (CAD) 

drawings for 2- and 4 channel scaffolds are illustrated in Fig. 2.4. This is followed by 

optimization of the printing parameters (i.e. fill density, print speed and temperature) using 

the Cura software provided by Ultimaker. The scaffolds were then printed at the optimized 

speed of 40% (at 210°C) for the first four layers from bottom, slightly slower speed for the 

middle layers (5-14 layer from bottom), which was 25% (at 200°C) and finally the last five 

layers were printed at 40% (at 210°C). The fill density was kept constant for each layer at 

75%. Fig. 2.5 (a-d) shows the printing steps at different layers in the construction of the 3D 

scaffolds. 
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Fig. 2.4: CAD drawings for (a) 2- and (b) 4 channel scaffolds designed in this study. The 
outer diameter of the scaffolds = 10 mm; channel diameter= 1.5mm and the thickness of 
the scaffolds= 2 mm.  
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Fig. 2.5: Printing steps at different layers in the construction of the 3D scaffolds; 

(a) First layer; (b) Fifth layer; (c) Tenth layer and (d) Final layer. 

  

2.3.7. Fabrication of 3DP hybrid scaffolds 

The fabricated scaffolds were then surface modified by a chemically route. In order to 

create the 3DP hybrid scaffolds, the printed scaffolds were deposited with the innovative 

coating materials assembly, which was established in this study.   

2.3.7.1. Surface modification of 3DP PLA scaffolds 

Similar steps described in section 2.3.2. were used to modify the surface charge of the 3DP 

PLA scaffolds.  

2.3.7.2. Scaffold assemblies with newly developed coating materials 

The 3DP PLA scaffolds were coated with 5 bilayers (5-BL) of the newly developed 

coating materials assembly of SiCHA nanopowders in hyaluronan and collagen type I. 

Mixture of EDC/NHS was used to crosslink the polyelectrolytes layers. Details on the 

coating procedure were described in section 2.3.3.  
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2.3.8. In vitro study on the 3DP hybrid scaffolds 

The characterized hMSCs were used to study the effect of different structural and 

functional designs of the 3DP hybrid scaffolds on the cells fate in vitro, which can be 

divided into two main studies; (1) a bioreactor system was used to investigate the impact of 

dynamic flow on the cell behaviour compared to the static culture condition and (2) 

different culture medium was used to identify the effect of biochemical cues that could 

enhanced the bone formation. 

2.3.8.1. Seeding efficiency on 3DP scaffolds 

Coated hybrid scaffolds were firstly sterilized for three times in the UV Chamber for 90 

seconds each cycle followed by pre-wetting in PM for three hours before cell seeding. 

Commercial hydroxyapatite (HA) scaffolds were used as control samples and scaffolds 

required longer soaking in PM (72 hours) as recommended by the manufacturer 

(Ceramisys, Sheffield, United Kingdom). Pre-wetting is a crucial step to improve the 

seeding efficiency by promoting a formation of thin layer of proteins which are required 

for cell adhesion to the scaffolds.  

Scaffold seeding was carried out in 24 well plates coated and uncoated well plates. The 

coated well plate used was a 24 well plate coated with 1% w/v Pluronic F-127 (Sigma-

Aldrich, United States), to prevent the cell from attached to the well plate. As control, the 

uncoated well plate (ordinary 24 well culture plate) was used. After cell counting, 1 X 105 

cells were seeded onto each scaffold in the wells. To choose the right seeding method, cells 

were seeded by two ways i.e. (1) seeded the total amount of cells only one side; (2) seeded 

half of the amount on one side, incubate for 3 hours and repeat these steps on the other side 

before toping up with proliferation media. The cell volume suspensions were also 

optimized using two different volume suspensions namely, 20 and 40 µL. The cellular 
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scaffolds were then cultured for 6 hours at 37°C and 5% CO2 in humidified atmosphere. 

Seeding efficiency was then calculated using the following formulation.  

!"##!!""#$%&!!""#$#!%$&! % = !!! − !!!!
!∗ 100 

where, !! is the cell number seeded and !!is the cell number adhered to the scaffolds after 

6 hours incubation at 37°C and 5% CO2 in humidified atmosphere, respectively. The cell 

distributions throughout the scaffolds were indicated using MTT stain and live/dead 

staining.  

2.3.8.2. Static versus rotary bioreactor cultivation 

Optimized seeding conditions (small cell volume suspension ≤ 20 µL, seeded in two-sided 

method in a coated well plate) were then applied in the following study. Briefly, after 

incubation overnight, the cellular scaffolds were then divided into two groups namely 

static and dynamic cultivation. A rotary bioreactor (Synthecon Inc., Cellon, Strassen, 

Luxembourg) was used to culture the cellular scaffolds in dynamic condition. The speed of 

the rotating bioreactor was firstly tested at two different speeds (20 and 40 rpm) and the 

speed that could allow the scaffolds to maintain in the free-fall condition throughout the 

cultivation period was chosen as the best speed (20 rpm) and used to study the effect of 

culture conditions on different scaffold designs. Two test groups were then established: 

half of the scaffolds were transferred to fresh 24 well plates and incubated statically after 

adding up 1.5 mL media to each well; the other half of the cellular scaffolds were directly 

transferred to the rotary bioreactor chambers containing 60 mL complete medium (either 

osteogenic or proliferation media). Both of the tested groups were then divided into two 

more groups of different culture medium used: (1) Osteogenic media (OM); and (2) 

Proliferation media (PM). Both media were prepared with the same compositions 
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described in Table 2.3. In order to identify the best structural design and functional 3DP 

hybrid scaffolds, in vitro assessments including cell viability, proliferation, metabolic 

activity and early osteogenic differentiation were performed following similar procedure as 

described in section 2.2.6. 

2.3.8.3. Alkaline phosphatase staining 

The pre-cursor of early bone mineralization was stained using alkaline phosphatase (ALP) 

detection kit purchased from Merck Milipore (United Kingdom). Scaffolds were 

transferred to fresh 24 well plates and rinsed once with PBS. Scaffolds were fixed in 4% 

Paraformaldehyde (Sigma-Aldrich, United Kingdom) for 90 seconds followed by washing 

in TBST solution (20 mM Tris-HCl, pH 7.40, 0.15 M NaCl, 0.05% Tween-20). The 

working solution was freshly prepared according to the manufacturer’s instruction with 

2:1:1 ratios of Fast Red Violet solution: Naphthol AS-BI phosphate solution: ddH2O. To 

each well, 500 µL of the working solution was added and left in dark condition at room 

temperature for 30 minutes. Afterward, the scaffolds were carefully rinsed twice with 

distilled water. The stained scaffolds were imaged under dissection microscope (Leica, 

United Kingdom).  

2.3.8.4. Lactate dehydrogenase Assay 

Lactate dehydrogenase (LDH) assay is a reliable colorimetric assay to quantify the LDH 

release into the media from damaged cells as a biomarker for cellular cytotoxicity. LDH 

assay kit (Thermo Fisher, United Kingdom) was used according to the manufacturer’s 

instruction. At every time-point, 50 µL of media from either the well or rotary chamber 

were transferred into a 96 well plate followed by incubation for 45 minutes at 37°C with 

5% CO2. Afterward, 50 µL of reaction mixture was added into the relevant well. Samples 

were incubated for 30 minutes in the dark at room temperature. Finally, 50 µL of stop 

solution was added to each well followed by mixing with gentle tapping. Absorbance 
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readings were taken at 530/590 nm (excitation/emission). LDH activity and percentage of 

cytotoxicity (%cytotoxicity) of each sample was calculated using the following equations:  

LDH Activity= Abs. value (490 nm)- Abs. value (680 nm)                           …Equation 2.4 

 %!!"#$#$%&'&#" = !"#$"%&'!!"#$!#%!!"#!!"#$%$#&!!"#$%&$#'(!!"#!!"#$%$#&!!
!"#$%&%!!"#!!"#$%$#&!!"#$%&$'#()!!"#!!"#$%$#& ∗ 100…Equation 2.5 

2.3.8.5. Micro-computed tomography analysis 

At every time-point, media was aspirated from the wells/chambers and scaffolds were 

rinsed with 1.0 mL PBS. Scaffolds were then fixed in 1.0 mL of 10% formalin (Sigma-

Aldrich, United Kingdom) and kept at 4°C for overnight. X-ray micro-computed 

tomography, Micro-CT (microCT40 Scanco Medical GmbH, Switzerland) with beam 

energy of 55 kVp, beam intensity of 145 µA, 200 ms integration time, and spatial 

resolution of 10 µm was used to observe any sign of early formation of bone 

mineralization on the cellular scaffolds. Scaffolds were scanned and analyzed at threshold 

40, 42, 55 and 120 for bare PLA 3DP scaffolds, coated scaffolds, cell-seeded scaffolds and 

bone mineralization, respectively. For control, acellular scaffolds were also scanned at the 

same thresholds. The total volume (TV) value was obtained at threshold 55, while bone 

volume (BV) value was generated at higher threshold of 120. The estimated percentage of 

bone mineralization (% BV/TV) was obtained by normalizing the values of BV at 

thresholds 120 over TV at threshold 55.  

2.3.8.6. Statistical analysis 

Quantitative data were presented as means ± standard deviation (SD). A Kolmogorov- 

Smirnov test, with Dallal-Wilkinson-Lillie for corrected P value was performed to 

determine the normal distribution of the data (recommended for small n data analysis). A 

three-way ANOVA with multiple comparisons Tukey test was used to determine the 
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effects of culture conditions (static and dynamic) and culture medium (OM and PM) in the 

cell responses on different structural scaffold designs over time. A two-way ANOVA with 

multiple comparisons Tukey test was performed to define the best scaffold design after 21 

days under different culture conditions and culture medium. Statistical significance was 

considered for p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***) and p ≤ 0.0001 (****). For 

biochemical assays, tests were performed on n=3 in duplicates. All statistical analyses 

were performed using GraphPad Prism 7 software. No statistical analyses were performed 

for the confocal microscopy analysis (n=1), ALP staining (n=3), µCT analysis (n=3). 

2.4. Promoting pre-vascularization of the scaffolds 

2.4.1. Scaffolds fabrication 

Four channel (4C) scaffolds were used as this design demonstrated the highest percentage 

of mineralization among the three scaffold designs tested as demonstrated in Chapter 5. 

The surface modified 3DP scaffolds was coated using the similar PEMs technique 

described in section 2.3.3.  

2.4.2. Sample preparation 

The hybrid scaffolds were sterilized three times in the UV Chamber for 90 seconds at each 

cycle followed by pre-wetting in PM for three hours incubation prior to cell seeding. 

Samples were kept at 4°C during incubation.  

2.4.3. Cell culture 

Human umbilical vein endothelial cells, HUVECs (Life Technologies, United Kingdom) at 

passage three (P3) were cultured in complete Endothelial Media (EM) consists of Medium-

200 with Low Serum Growth Supplement (LSGS) containing 2% v/v FBS, 1 µg/mL 

hydrocortisone, 10 ng/mL human epidermal growth factor, 3 ng/mL basic fibroblast 

growth factor and 10 µg/mL heparin. Both Medium-200 and LSGS kits were purchased 
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from Thermo-Fisher Scientific (United Kingdom). hMSCs (Lonza, United States) at same 

passage number (P3) was expanded in proliferation media. Both cell types were cultured in 

standard cell culture flasks incubated at 37°C with 5% CO2 and 95% relative humidity for 

about 10 days till 80-90% confluent levels were achieved. Both HUVECs and hMSCs 

were expanded up to passage three (P3) and used for the study at passage four (P4).  

2.4.4. Labelling with fluorescent dyes 

Red fluorescent dye, PKH26 (Paul Karl Horan 26, Sigma-Aldrich, United Kingdom) was 

used to label the HUVECs, while hMSCs were labelled using the Cell Tracker Blue 

CMAC (7-amino-4-chloromethylcoumarin, Molecular Probes, Life Technologies, United 

States). The fluorescent dyes were used to allow morphological observations within the 

scaffolds as they clearly distinct the two cell types used in the co-culture particularly. 

Labelling was carried out according to the manufacturer’s instructions with 4 µL/mL 

PKH26 (red dye) in Dilute C. Briefly, after cell counting, 2.0 X 106 cells were resuspended 

in complete media. The cell pellet obtained was then washed with serum-free media and 

resuspended in complete media; these steps were repeated for three times. After pelleting, 

1.0 mL of Dilute C was added directly to the cell suspension and mixed well, subsequently 

4 µL of red dye was then added to the cell solutions followed by incubation at 37°C for 

10 minutes. To ensure the cells were properly labelled, the unbound dye was blocked using 

1% BSA followed by incubation at room temperature for one minute. Cell solution was 

resuspended and subsequently washed three times with complete EM. To ease HUVECs 

proliferation, 1344 µL Matrigel from BD Bioscience (United States) was then added to the 

cell solution. This was then divided into two groups with each aliquot containing 1.2 X 106 

and 0.6 X 106 cells for the HUVECs control and co-culture samples, respectively.  
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Similar procedure was used to label the hMSCs with CMAC (blue dye). The concentration 

of the blue dye used was 4 µL/mL blue dye in serum-free media. For hMSCs, the cell 

solution was incubated at 37°C for 30 minutes after the blue dye was added. The cell 

solution was washed with PM three times. Finally, 2.0 mL of fresh OM was added into the 

cell solution and the total amount was divided into two groups with each aliquot containing 

1.2 X 106 and 0.6 X 106 cells for the hMSCs control and co-culture samples, respectively. 

2.4.5. Seeding of 4C scaffolds 

For co-culture samples, 1:1 of HUVECs:hMSCs cell ratio was used based on the previous 

studies reported by Rouwkema et al. (2006) and Gershovich et al. (2013). The culture 

medium of 1:1 of endothelial media (EM) to osteogenic media (OM) was reported to 

support the proliferation of both cells (Rouwkema et al. 2006). The channels on the 4C 

scaffolds were directly seeded with 6.25 X 103 of HUVECs in 1.75 µL Matrigel per 

channel. Scaffolds were then incubated for 30 minutes at 37°C to enhance gelation of 

Matrigel. The scaffolds were then turned onto the opposing side, and the process repeated. 

The cellular scaffolds were cultured for 3 days in complete EM at 37°C with 5% CO2 and 

95% relative humidity prior to the addition of hMSCs (McFadden et al. 2013). Each side of 

the scaffold was seeded with 2.5 X 104 labelled hMSCs. Each side was subjected to 3 hours 

incubation to allow the hMSCs to adhere to the surface, followed by repeating the seeding 

procedure on the other side. The HUVECs-hMSCs seeded scaffolds were then cultured in 

1:1 of EM:OM mixture. Figure 2.6 shows the seeding protocols for the co-culture. Control 

scaffolds were seeded with a single cell type, either HUVECs or hMSCs alone. Same 

seeding protocols were used. For ECs controls, 5 X 104 of labelled HUVECs were seeded 

in the channels and cultured in EM. While 5 X 104 of labelled hMSCs were seeded on the 

surface of the scaffolds and cultured in OM acting as the hMSCs control samples. Medium 

was refreshed every 3 days.  



                                                         Materials and Methods Chapter 2 
 

 
!

Page 101 
!

! !

 

Figure 2.6: Illustration, summarising the seeding protocols for the co-culture of HUVECs/hMSCs on 4C scaffolds. 
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2.4.6. Imaging  

Cell seeded scaffolds were imaged in 3D using a CLSM to identify the distribution of each 

cell type and to observe any vessel formation. Cultures were terminated after 3 and 10 

days. At each time-point, the samples were washed once in PBS and fixed with 4% 

Paraformaldehyde, PFA (Sigma-Aldrich, United Kingdom). Samples were then imaged 

using a CLSM to observe cell migration across the scaffolds. Samples were kept at 4°C 

overnight prior to immunocytochemical staining of RUNX-2 and CD31 expressions. 

Quantification of the fluorescence signals was conducted on the 3D reconstruction of the 

confocal series using IMARIS (Bitplane, CH). Contour surfaces were generated in Surpass 

mode and the intensity sum was used to calculate the relative intensity of the fluorescence 

signals. Surpass mode was used to create the contour surfaces by segmenting the image 

based on colour and intensity. The contour surface allows the extraction of a 3D object by 

manually drawing the object contours on 2D slices focusing on specific details, i.e. by 

selecting the red fluorescent on the image. The IMARIS software will then automatically 

calculated the intensity of the specific dye selected.  

2.4.6.1. RUNX- 2 staining 

In this study, RUNX-2 was used to determine the early osteogenic makers. Fixed samples 

were washed twice in PBS. The cells were permeabilized in 0.1% Triton-X 100 (Sigma-

Aldrich, United Kingdom) in PBS for 10 minutes followed by washing twice in PBS. 

Samples were blocked using 1% BSA for 1 hour at room temperature. Again, samples 

were washed twice in PBS. Primary antibody of Goat anti Human RUNX-2 (R&D System, 

United Kingdom) of 2 µg/mL diluted 1:1000 in 0.1% BSA, 0.1% Tween-20 in PBS was 

added to the samples and incubated at 4°C overnight. Samples were washed twice in PBS. 

Scaffolds were incubated in secondary antibody donkey- anti-goat Alexa Fluor 488 (R&D 

System, United Kingdom) diluted 1:200 in 0.1% BSA, 0.1% Tween-20 in PBS for 1 hour. 
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Finally, samples were washed twice in PBS and fresh PBS was then added to each well to 

prevent the samples from drying.  

2.4.6.2. CD31 staining 

Fixed samples were washed twice in PBS. Samples were incubated for 30 minutes in 10% 

FBS in PBS to prevent non-specific background staining. All PBS was removed and 

samples were then incubated for 1 hour with CD31 monoclonal mouse-anti-human primary 

antibody (DAKO, United Kingdom) diluted 1:20 in PBS. Samples were washed twice in 

PBS followed by incubation in goat-anti-mouse secondary antibody Alexa Fluor 488 

(R&D System, United Kingdom) diluted 1:200 in PBS. Finally, samples were washed with 

PBS and imaged using a CLSM. 

2.4.7. Enzyme linked immunosorbent assay for platelet derived growth factor-BB 

and vascular endothelial growth factor  

The levels of platelet derived growth factor-BB (PDGF-BB) and vascular endothelial 

growth factor (VEGF) were quantified using enzyme linked immunosorbent assay 

(ELISA) kits purchased from R&D Systems (United Kingdom). The cell culture media of 

HUVECs alone, hMSCs alone and co-culture of HUVECs/hMSCs were collected at day 3 

and 10 of culture. The culture medium (without cells) of EM, OM and mix media of 

EM:OM were used as the experimental control for both immunoassays. Assays were 

performed according to the technical datasheet provided by the manufacturer and the 

absorbance of each sample was read at 450 nm. Assays were performed in duplicates for 

three samples (n=6) and the mean ± SD. 
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2.4.8. Statistical analysis  

Quantitative data were presented as means ± standard deviation (SD). Data were initially 

tested for normality using the Kolmogorov-Smirnov test, with Dallal-Wilkinson-Lillie for 

corrected P value (recommended for small n data analysis). To compare the level of PDGF 

and VEGF expressions secreted by the co-culture and their monoculture systems at each 

time point, a two-way ANOVA with multiple comparisons Tukey test was performed. 

Statistical significance was considered for p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***) and 

p ≤ 0.0001 (****). Tests were performed on n=3 in duplicates. All statistical analyses were 

performed using GraphPad Prism 7 software. No statistical tests were performed on the 

immunocytochemical staining and relative fluorescent intensity, n=3 were used for each 

sample for every time-point.   
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3.1. Introduction 

Hydroxyapatite (HA) is among the most widely used bone replacement materials due to its 

strong affinity with the mineral component of bones; it possesses good bioactivity, 

osteoconductivity and biocompatibility with the human bone tissue (Sprio et al. 2008; 

David et al. 2013). Although, stoichiometric Hydroxyapatite (HA) - Ca10(PO4)6 (OH)2 has 

been a widely used model for the apatite present in the bone tissues for many years, the 

chemical composition of biological apatites differs from the stoichiometric HA (Landi et 

al. 2010). The biological apatites are uniquely similar in that they all comprise carbonate in 

varying amounts of 2-8wt%, preferentially substituting the phosphate site (B-type) 

compared with hydroxyl (A-type) ions in the apatite lattice. The composition of carbonate 

depends on bone age, site, sex and health of the individual (Driessens et al. 1983; Gibson 

& Bonfield 2001; Landi et al. 2010; Boyer et al. 2013). Among other trace elements 

present in natural bone, silicon (Si) plays an important role in stimulating bone growth and 

development (Hing et al. 2006; Landi et al. 2010). 

The development of multi-substituted HA powders with a fully controlled level of ionic 

substitutions into the HA lattice and high similarity to bone mineral, is of great interest to 

achieve the “gold standard” represented by the natural bone. For this reason, researchers 

have now focussed on the production of multi-substituted HA for instance, silicon 

carbonated hydroxyapatites (SiCHA). The adequate solubility of CHA and the benefits of 

soluble silicon could be combined in order to improve the bioactivity of the apatite 

bioceramics (Boyer et al. 2013). Thus, SiCHA has great potential as a biomedical material 

for promising approach toward achieving the “gold standard”.  

Several studies on the development of multi-substituted HA powders has been reported in 

the literature. However, limited studies have investigated the effect of ionic substitutions in 
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the HA lattice on the cell responses. Many research groups focus on the different synthesis 

techniques used to produce the powders, various physico-chemical characterizations and 

some solubility tests in simulated body fluid (SBF) to predict the ability to form apatite 

layer in vitro (Sprio et al. 2008; Zhou et al. 2008; Bianco et al. 2009; Boanini et al. 2010; 

Marchat et al. 2013). A number of studies on human osteoclast differentiation and 

resorption on CHA and SiHA has also been reported in the literature. For instance, the 

osteoclastogenesis on CHA was significantly enhanced compared to HA and β-tricalcium 

phosphate (Nakamura et al. 2013). On sintered ceramics, no significant differences were 

found in the osteoclast numbers on HA and SiHA after 21 days in vitro, but actin ring 

sealing zone morphology on SiHA resembled that commonly found on bone or CHA 

(Friederichs et al. 2015). These findings highlighted the benefits of CHA and SiHA in 

stimulating better cell responses compared to HA alone. As the production of multi-

substituted HA is aimed for BTE, it is extremely important to understand the cell 

behaviour in particular osteogenic cells as they become in contact with the powders. For 

this reason, Landi et al. (2010) has looked at the human osteoblasts behaviour on as-

synthesized CHA and different compositions of SiCHA powders. The aim of the work 

presented in this chapter was to develop multi-substituted hydroxyapatite (SiCHA) 

powders with controlled amounts of carbonate (2-8 wt%) and silicon (0.03-0.5 wt%) 

substituted into the apatite structure to closely mimic the range of compositions observed 

within bone mineral as demonstrated in Table 1.1 (Sprio et al. 2008; Landi et al. 2010). 

Different compositions of as-synthesized powders as a mean to optimize the level of ionic 

substitutions, followed by the calcination process to obtain pure SiCHA powders were 

investigated. In order to meet the main aim in developing biomedical materials, the 

produced powders were tested in vitro with human bone marrow-derived mesenchymal 

stem cells (hMSCs).  
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3.2. Results  

3.2.1. Optimization of carbonate and silicon ions contents 

3.2.1.1. XRD Analysis 

The as-synthesized powders were found to be nanocrystalline as evidenced from broad 

diffraction peaks. The XRD pattern of the pure hydroxyapatite (HA) reported in 

International Centre of Diffraction Database (ICDD) with file number of 09-0432 was used 

as the reference pattern as the patterns are similar with only a slight shift of the peaks 

position due to the ion substitutions. The amount of carbonate substituted into the HA 

lattice is less than 10%, and so is unlikely to affect the structural pattern of HA.  

Samples containing 0.5, 1.0 and 2.0CHA demonstrated that only a single phase HA pattern 

was present. No secondary phases such as CaCO3 or CaO were found, as shown in Fig. 3.1. 

The peak of (112) at 2! = 32°, which usually appears in pure HA, was not detected in the 

XRD pattern of any samples. There were eight main peaks detected; 2θ= 26° which was 

indexed to (002), 2θ= 32-34°, which represent three overlapped peaks of (211), (300) and 

(202), 2! = 39.8° indexed to (310), 2!= 49.4° for (222), 2!= 50 and 53° indexed to (213) 

and (004), respectively. The presence of CaCO3 was detected at 2!!= 29.4, 35.9 and 43.2 

for 3.0 and 4.0CHA with high carbonate contents.  

For SiHA as-synthesized powders, the only diffraction peak detected was closely related to 

HA characterized patterns (ICDD: 09-0432) as shown in Fig. 3.2. The incorporation of Si 

ions into the HA lattice had no significant effect on its crystallographic structure or 

crystallinity. 
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Fig. 3.1: XRD pattern of the CHA as-synthesized powders with different carbonate 
contents. At low carbonate contents (0.5-2.0CHA), only pure single HA phase detected. 
As the carbonate content increased, secondary phase of calcium carbonate (CaCO3) was 
found besides the HA phase. 

Fig. 3.2: XRD pattern of the SiHA as-synthesized powders with different silicon contents. 
Only pure single phase of HA was revealed. The diffraction patterns getting marginally 
broader as more silicon enter the apatite structure. 
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It is widely accepted that the ionic substitutions in the HA lattice cause changes of lattice 

parameters. However, in this study, the effect of carbonate (CO ) and silicon (Si) 

substitutions into the HA structure were less apparent on the XRD spectra. The lattice 

parameters (a- and c- axis) and crystallite sizes of CHA and SiHA as-synthesized powders 

were refined by Rietveld and the values obtained are presented in Table 3.1.  

Table 3.1: Lattice parameters and crystallite sizes of CHA and SiHA as-synthesized 
powders. 

Samples Lattice parameters (Å) Crystallite size  
(nm) a ± 0.003 c ± 0.003 

0.5CHA 9.415 6.891 19.86 
1.0CHA 9.411 6.895 18.25 
2.0CHA 9.409 6.902 16.95 
3.0CHA 9.406 6.907 16.21 
4.0CHA 9.401 6.909 15.87 
0.1SiHA 9.420 6.889 20.29 
0.2SiHA 9.425 6.893 22.09 
0.3SiHA 9.437 6.906 22.82 
0.4SiHA 9.439 6.912 23.59 
0.5SiHA 9.442 6.915 24.93 

 

From the refinement analysis, it is clearly seen that the substitution of CO  and Si into the 

HA structure resulted in distinct effects on the lattice parameters and crystallite size. A 

contraction in a-axis and expansion in c-axis was observed when CO  substituted PO in 

the apatite structure. The crystallite size of CHA nanopowders gradually decreased with 

increasing CO  content. In contrast, Si-substituted HA structure caused increases in both 

a- and c-axes as well as the crystallite size of SiHA nanopowders. 
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3.2.1.2. FTIR Analysis 

The FTIR analysis of the CHA powders in Fig. 3.3 clearly demonstrated typical peaks of 

B-Type CHA with the bands originating from stretching vibrations of CO  ions at 870-

875, 1410-1430, and 1450-1470 cm-1. These data confirmed that the as-synthesized CHA 

powders were B-Type CHA. The bands at about 550-570 (v4), and 960-966 cm-1 (v1), 

which correspond to the phosphate group as reported by Krajewski et al. (2002); 

Blaskeslee et al. (2006); and Kovaleva et al. (2008) were also detected. The broad bands 

around 1600-1700 cm-1 and 3200-3600 cm-1 are attributed to the presence of absorbed and 

occluded water. This is also reported by Liu et al. (2003) and Wang et al. (2006). However, 

the CaCO3 phase as detected in XRD was not detected in the FTIR spectra. No calcite band 

was observed at 712 cm-1 due to the small amount present (Krajewski et al. 2002). Fig. 3.4 

illustrated the FTIR spectra of the as-synthesized SiHA powders. All of the spectra 

represent the characteristic transmittance bands correspond to HA with an additional band 

of Si in SiHA band detected at about 880-895 and 947 cm-1. The triple intense bands at 

963, 1036 and 1090 cm-1 corresponds to the stretching vibration modes of phosphate were 

also detected. IR spectra of the SiHA powders revealed the broad band at about 1600-1700 

cm-1 corresponds to the adsorbed water on the surface (Tang et al. 2005).  

Higher silicon content substituted the apatite structure resulted in significantly narrower 

phosphate group (the triplet bands). There was also a missing band of one of the hydroxyl 

groups at 3500-3700 cm-1, which is in agreement with the work reported by Tang et al. 

(2005). 

−2
3
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Fig. 3.4: FTIR spectra of SiHA as-synthesized powders. The spectra of the as-
synthesized SiHA powders showed at various Si contents showed the present of Si in 
SiHA structure with the band detected at 880-895 and 947 cm-1.      

Fig. 3.3: FTIR spectra of CHA as-synthesized powders. The typical peaks of B-type 
CHA were detected at 870-875, 1410-1430, and 1450-1470 cm-1. Calcium 
carbonate peak at 712 cm-1 was not appeared in the spectra. This confirmed that the 
as-synthesized powders are pure B-type CHA.  
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3.2.1.3. Quantification of carbonate and silicon substituted apatite structure 

The percentage of carbonate present in the apatite structure increased with increasing 

carbonate molar content. It is observed that, for 0.5CHA and 1.0CHA, the percentages of 

carbonate detected were relatively low, which were less than 5wt%. While, 3.0CHA and 

4.0CHA have extremely high carbonate contents. 2.0CHA shows the optimum 

composition of carbonate, which falls in the range of carbonate presents in the natural bone 

as represented in Table 3.2. All as-synthesized SiHA powders revealed negligible amount 

of carbonate incorporated in the apatite structure.  

The Ca/P+Si ratio for every sample of as-synthesized SiHA powders was determined from 

the ICP-OES measurements. Results demonstrated a higher value compared to the nominal 

Ca/P of the standard HA (1.67). The work by Sprio et al. (2008) suggested that the ratio of 

initial Si/P ratio is required to be equal to 0.05 for the simultaneous occupation of the 

phosphate site by carbonate and silicate ions to occur (Table 3.1).  

Table 3.2: Percentage of carbonate, Ca/P+Si and Si/P ratios of the as-synthesized CHA 
and SiHA powders. 

Samples 
 

% CO3 Ca/P+Si Si/P 
0.5CHA 3.48 - - 
1.0CHA 4.08 - - 
2.0CHA 7.40 - - 
3.0CHA 12.93 - - 
4.0CHA 18.25 - - 
0.1SiHA 0.07 1.70 0.03 
0.2SiHA 0.05 1.72 0.04 
0.3SIHA 0.04 1.73 0.05 
0.4SiHA 0.05 1.73 0.06 
0.5SiHA 0.04 1.75 0.08 
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3.2.2. Development of the as-synthesized multi-substituted HA (SiCHA) 

3.2.2.1. XRD Analysis 

Figure 3.5 indicates the XRD spectra of SiCHA as-synthesized powders containing 

different molar content of carbonate and silicon substituted HA lattice. The addition of a 

small amount of silicon (y= 0.1-0.5 mol) has no significant different on the HA lattice 

(ICDD:09-0432).  

From the XRD spectra, it is also revealed that at high carbonate content (x=4.0) in any of 

the combinations assessed (4.0:0.1SiCHA and 4.0:0.5SiCHA), there are additional peaks 

of calcite detected besides the HA peaks. On the other hand, at low carbonate content 

(x=0.5 and 2.0) the SiCHA as-synthesized powders in particular exhibits the XRD 

spectrum of an amorphous and purely single phase of carbonated hydroxyapatite with 

corresponds to the HA standard pattern. No secondary phase of other calcium phosphate or 

silicate was found. It was also observed that the addition of carbonate and silicon 

simultaneously has a great effect on the crystallinity of the powders. At highest carbonate 

and silicon content, 4.0:0.5SiCHA for instance, the crystallinity of the powders was 

substantially decreased.  

 

 

 

 

 

 



 Results and discussion Chapter 3 
       
 

!
Page  

!
! !
 

115 

 Fig. 3.5: XRD spectra of the SiCHA as-synthesized powders. The diffraction spectra 
indicating the present of secondary phase at higher carbonate substitution (x= 4.0). 
Simultaneous substitution of silicon and low carbonate ions (x ≤2.0) into the apatite 
structure resulted in a single phase HA. 

 Regardless of the degree of carbonate and silicon substitutions into the HA structure, all 

SiCHA as-synthesized powders showed that the simultaneous substitutions of these ions 

resulted in a contraction of a-axis and expansion in the c-axis. The crystallite size of 

SiCHA as-synthesized powders falls in between the crystallite sizes of SiHA and CHA as-

synthesized powders demonstrated earlier in section 3.2.1.1.  

Table 3.3: Lattice parameters and crystallite sizes for as-synthesized SiCHA nanopowders. 

Samples Lattice parameters (Å) Crystallite size  
(nm) a ± 0.003 c ± 0.003 

4.0:0.1SiCHA 9.401 6.970 16.95 
0.5:0.5SiCHA 9.425 6.982 21.38 
2.0:0.5SiCHA 9.412 6.897 18.79 
2.0:0.3SiCHA 9.407 6.899 17.02 
4.0:0.5SiCHA 9.402 6.972 22.18 
0.5:0.1SiCHA 9.405 6.890 19.91 
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3.2.2.2. FTIR Analysis 

The IR spectra of the investigated SiCHA as-synthesized powders show the typical bands 

at 963, 1036 and 1090 cm-1, which corresponds to the stretching vibration modes of 

phosphate (Fig. 3.6). The presence of silicon can only be detected at 880-895cm-1 (Sprio et 

al. 2008) on sample 0.5:0.5SiCHA as-synthesized powders. All the other samples can be 

considered mainly B-type CHA, as carbonate is the domain substitution. The carbonate 

ions in the B position were detected at about 870-875, 1414-1430 and 1450-1470cm-1. 

 
Fig. 3.6: FTIR spectra of the SiCHA as-synthesised powders. IR spectra showing the 
typical bands of B-type CHA at 870-875, 1414-1430 and 1450-1470 cm-1 besides the bands 
of phosphate and hydroxyl. Silicon band at 880-895 cm-1 can only be detected in 0.5:0.5 
SiCHA as-synthesized powders. 
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3.2.2.3. CHN Analysis 

It is observed that all SiCHA as-synthesized powders have lower wt% CO3 compared to 

the pure CHA (Table 3.4). For instances, sample 0.5:0.1SiCHA, the percentage of 

carbonate was <2wt%. While, at higher carbonate content for instance 4.0:0.1 and 

4.0:0.5SiCHA, the percentage of carbonate were far beyond the required value. Thus, 

2.0:0.3 and 2.0:0.5SiCHA seem to possess the physiological relevant amounts of carbonate 

required because they falls between the ranges of carbonate present in the bone mineral. 

Table 3.4: Percentage of carbonate (wt% CO3) of SiCHA as-synthesized powders. 
 

Sample code Average wt%CO3 Standard deviation 
0.5:0.1SiCHA 1.35 0.14 
4.0:0.5SiCHA 12.65 0.07 
2.0:0.3SiCHA 5.20 0.21 
2.0:0.5SiCHA 3.85 0.14 
4.0:0.1SiCHA 16.28 0.18 
0.5:0.5SiCHA 2.15 0.49 

 

3.2.2.4. ICP-OES Measurement 

ICP-OES is a chemical analysis, which was performed on SiCHA as-synthesized powders 

to confirm the presence of silicon ions, as they were not visible in the FTIR spectra. The 

results suggested that the amount of silicon decreased as carbonate molar content increased 

as shown in Table 3.5. 

Table 3.5: Ca, P and Si concentrations of the SiCHA as-synthesized powders.  

Sample code Ca (ppm) P (ppm) Si (ppm) Si/P 
0.5:0.1SiCHA 652.03 332.41 5.57 0.02 
4.0:0.5SiCHA 524.30 260.50 2.69 0.01 
2.0:0.3SiCHA 528.00 314.80 12.59 0.04 
2.0:0.5SiCHA 587.00 284.50 14.23 0.05 
4.0:0.1SiCHA 529.0 253.60 3.050 0.01 
0.5:0.5SiCHA 455.50 216.40 17.32 0.08 
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3.2.2.5. XRF Analysis 

XRF analysis was performed in order to further confirm the presence of silicon ions and 

quantify the amount of silicon incorporated in the multi-substituted HA as-synthesized 

powders. The calculated and measured Si shown in Table 3.6 represent the amount of Si 

calculated based on the stoichiometry empirical formula described earlier compared to the 

amount of Si obtained from the XRF analysis.  

Table 3.6: Calculated Si, measured Si and Si/P ratio of SiCHA as-synthesized. 

Sample code 0.5:0.1 
SiCHA 

4.0:0.5 
SiCHA 

2.0:0.3 
SiCHA 

2.0:0.5 
SiCHA 

4.0:0.1 
SiCHA 

0.5:0.5 
SiCHA 

Calculated Si (wt%) 0.28 3.81 0.86 1.99 0.36 1.35 

Measured Si (wt%) 0.08 0.77 0.68 0.85 0.14 0.51 

 

Higher carbonate content resulted in lower Si-substituted into the apatite structure and vice 

versa. This result highlights the evidence on the competitive substitution of carbonate and 

silicon ions to substitute the same position in the crystallographic structure of the 

phosphate sites.  
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3.2.3. Development of multi-substituted HA as biomedical materials 

3.2.3.1. XPS analysis  

The XPS spectra indicated that the carbonate and silicon ions were successfully substituted 

into the HA lattice. This was confirmed by the presence of the carbon and silicon peaks 

binding energies (BE) of 209 and 101 eV, respectively (Li et al. 2007; Zhao et al. 2014). 

The typical BE of HA elemental composition were also detected at 533 eV (O1s), 349 eV 

(Ca2p), and 135 eV (P2p) as demonstrated in Fig. 3.7 (Kim et al. 2010). Qualitatively, the 

XPS spectra of the calcined powders were not affected by increasing temperature from 500 

to 700°C; with all peaks traced at similar binding energies.   

 

 

Fig. 3.7: XPS analysis of the as-calcined powders. Spectra confirmed the surface 
atomic compositions of the investigated powders calcined at 500-700°C; (a) CHA; 
(b) SiHA; (c) SiCHA-1; (d) SiCHA-2. 
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3.2.3.2. XRD analysis  

Regardless of the specific composition, all powders remained stable in a single-phase 

diffraction pattern, which corresponds to hydroxyapatite (ICDD: 09-0432). Varying the 

calcination temperature from 500°C to 700°C shows no obvious difference between the 

diffraction patterns as shown in Fig. 3.8. There were eight main peaks detected i.e. at about 

2θ=26° which was indexed at (002), 2θ=32-34° which represents three overlapped peaks of 

(211), (300) and (202), 2θ=39.8° indexed to (310), 2θ=49.4° for (222), and 2θ= 50 and 53° 

indexed to (213) and (004), respectively. Most importantly, no other phase of calcium 

phosphate, such as calcite or calcium oxide (CaO) was traced (Kim et al. 2003). The main 

peak of CaO at 2θ= 37.347° (ICDD= 37-1497) was absent even at high calcination 

temperature of 700°C for all the compositions of the as-calcined powders (Boyer et al. 

2013). 

 

 

Fig. 3.8: XRD analysis of the calcined powders at 500-700°C; (a) CHA; (b) SiHA; (c) 
SiCHA-1; (d) SiCHA-2, demonstrating single phase of HA without the formation of 
secondary phase. 
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Although all the calcined powders remained as single phase, further refinement on the 

crystallographic properties showed that increasing calcination temperature from 500 to 

700°C have evident effects on the lattice parameters and crystallite size of the calcined 

powders. Regardless of the powders composition, the crystallite size increased with 

increasing calcination temperature. It was also observed that the as-calcined powders still 

showed the same trends in the changes of the lattice parameters when compared to the as-

synthesized powders as represented in Table 3.7. For instance, powders containing 

carbonate demonstrated a contraction in a-axis and expnasion in c-axis while carbonate-

free powders (SiHA) as-calcined powders showed expansions in both a- and c-axes at any 

calcination temperature (500-700°C).  

Table 3.7: Lattice parameters and crystallite sizes of CHA, SiHA, SiCHA-1 and SiCHA 
nanopowders calcined at 500-700°C. 

Samples Calcination 
temperature 

(°C) 

Lattice parameters (Å) Crystallite size 
(nm) a ± 0.003 c ± 0.003 

CHA 500 9.389 6.918 10.02 
600 9.367 6.920 17.83 
700 9.352 6.923 20.76 

SiHA 500 9.452 6.921 17.21 
600 9.455 6.923 21.02 
700 9.459 6.928 28.89 

SiCHA-1 500 9.399 6.901 12.86 
600 9.391 6.912 19.87 
700 9.387 6.918 23.73 

SiCHA-2 500 9.378 6.898 12.09 
600 9.372 6.893 18.92 
700 9.369 6.899 21.07 
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3.2.3.3. FTIR analysis 

The full FTIR spectra scanned at 600-4000 cm-1 and their typical bands of the carbonate 

and silicon ions substituted into the apatite structure are represented in Fig. 3.9 for pure 

CHA and SiHA as-calcined powders followed by Fig. 3.10 for the multi-substituted HA. 

For CHA and SiHA powders calcined at 500-700°C, the typical peaks of hydroxyl groups 

were detected at 3570 and 1643 cm-1, while only one main peak of hydroxyl was detected 

at 3570 cm-1 for SiCHA-1 and SiCHA-2 as-calcined powders (Gibson and Bonfield, 2001; 

Sprio et al. 2008).  

All as-calcined powders showed the main characteristic bands of phosphate groups at 

about 960, 1020 and 1080 cm-1 as these are the most intense peaks in characterizing the 

hydroxyapatite crystals structure shown in the study conducted by Koutsopoulos (2002).  

The IR spectra also confirmed that there is no other secondary phase such as calcite ~712 

cm-1, aragonite ~713 and 700 cm-1 and vaterite ~745 cm-1 were observed for all samples 

(Landi et al. 2004; Slosarczyk et al. 2005).  

In addition to these phosphate and hydroxyl bands, the characteristic bands of carbonate 

and silicon ions were also detected. All CHA as-calcined powders regardless of the 

calcination temperature produced bands corresponding to the B-type carbonated apatites at 

about 870-875, 1410-130 and 1450-1470 cm-1 (Krajewski et al. 2005; Zhou et al. 2008; 

Sprio et al. 2008).  
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Fig. 3.9: FTIR spectra of CHA and SiHA as-calcined powders. IR spectra 
demonstrating the pure (a) CHA and (b) SiHA as-calcined powders at 500-700°C 
and their typical bands of the (a*) carbonate and (b*) silicon ions substituted into 
the apatite structure. Green and purple dotted lines represents the carbonate and 
silicon substituted HA characteristic bands. 
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For SiCHA-1 and SiCHA-2 as-calcined powders, a missing band of carbonate at 870-

875 cm-1 was observed and only two main bands of carbonate were found at 1410-1430 

and 1450-1470 cm-1. Despite of the missing band, no carbonation occurred at the hydroxyl 

sites (A-type CHA) which is normally detected at 877-880, 1500 and 1540-1545 cm-1  

(Koutsopoulos, 2002; Lafon et al. 2008) in any composition of the as-calcined powders at 

700°C.  

The typical bands of Si-substituted HA structure was detected at 947 and 880 cm-1 

(Marchat et al. 2013) in the carbonated free HA (SiHA) as-calcined powders at 500-700°C. 

Again, the multi-substituted HA as-calcined powders demonstrated the absence of one of 

the Si-substituted HA band at about 947 cm-1. A careful inspection of the IR spectra shows 

a small band of Si-substituted HA at 880-890 cm-1 for both SiCHA-1 and SiCHA-2 

regardless the calcination temperature. Since the band of Si-substituted HA appears to be 

too small to be observed on the spectra, the results of FTIR analysis of as-calcined 

powders was listed in Table 3.8 for a clear comparison between the samples. 

 

 

 

 

 

 



Results and discussion Chapter 3 

 
 

!
Page  

!
! !
 

125 

 

 

 

 

 

Fig. 3.10: FTIR spectra of SiCHA-1 and SiCHA-2 as-calcined powders. IR spectra 
demonstrating the multi-substituted HA  (a) SiCHA-1 and (b) SiCHA-2 as-calcined 
powders at 500-700°C and their typical bands of the carbonate and silicon ions 
substituted into the apatite structure indicated as (a*) and (b*), respectively. Green 
and purple dotted lines represents the carbonate and silicon substituted HA 
characteristic bands. 
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Table 3.8: Results of FTIR analysis of as-calcined powders at 500-700°C. 
 

Samples T(°C) OH PO4 CO3 Si 

CHA 500 3573.0, 

1649.7 

962.9, 1024.4, 

1083.3 

873.7, 1414.8, 

1458.8 

- 

600 3573.3, 

1643.0 

962.5, 1020.0, 

1080.0 

873.1, 1414.8, 

1454.3 

- 

700 3573.5, 

1638.2 

962.3, 1019.9, 

1081.2 

872.7, 1417.1, 

1459. 9 

- 

SiHA 500 3562.5, 

1651.1 

963.2, 1024.9, 

1086.4 

- 947.4, 885.7 

600 3569.7, 

1635.8 

962.5, 1024.7, 

1089.7 

- 946.9, 883.5 

700 3570.9, 

1633.5 

962.4, 1024.1, 

1090.1 

- 947.2, 884.2 

SiCHA-1 500 3572.5 962.7, 1027.7, 

1088.0 

1418.2, 

1461.9 

883.1 

600 3570.8 962.2, 1022.9, 

1087.9 

1418.6, 

1461.8 

885.3 

700 3569.9 962.5, 1023.5, 

1089.0 

1413.6, 

1461.9 

887.7 

SiCHA-1 500 3572.5 962.7, 1027.7, 

1088.0 

1418.2, 

1461.9 

883.5 

600 3578.7 962.2, 1022.9, 

1080.0 

1412.8, 

1461.8 

886.3 

700 3579.6 962.5, 1023.5, 

1089.0 

1418.2, 

1461.3 

884.9 
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3.2.3.4. TEM analysis 

The TEM micrographs of the as-calcined powders at 500°C are shown in Fig. 3.11. The 

CHA powders appeared to be more spherical (20-30 nm length, 10-30 nm width) 

compared to pure SiHA, which have elongated rod-like particles (50-100 nm length, 15-30 

nm width). At 500°C, the multi-substituted HA (SiCHA-1 and SiCHA-2) powders 

produced particles with dimensions which fall in the range of 30-50 nm length and 15-30 

nm width, which perfectly matching the dimension of biological apatites. The particle sizes 

of the as-calcined powders correlates well with the crystallite sizes obtained from XRD 

analysis (section 3.2.3.2), where the same trends were seen in both analyses.  

 

Fig. 3.11: TEM images of the investigated powders calcined at 500°C; (a) CHA; (b) 
SiHA; (c) SiCHA-1; (d) SiCHA-2 (scale bar = 100 nm).  
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3.2.3.5. CHN analysis 

 

CHN analysis clearly demonstrated that the carbonated-substituted HA as-calcined 

powders, namely the CHA, SiCHA-1 and SiCHA-2 showed a similar trend of carbonate 

loss as the temperature increased (Table 3.9). For example, even at a low calcination 

temperature of 500°C, there is about 21% carbonate loss from the CHA powders; a similar 

trend is seen for SiCHA-1 and SiCHA-2. On the other hand, carbonated-free HA (SiHA) 

as-calcined powders showed an increment in the percentage of carbonate with increasing 

temperature. It is observed that as-calcined SiHA can potentially absorb as much as three 

times the relative amount of carbonate after calcination at 700°C as compared to the as-

synthesized SiHA powders. The average percentage of carbonate in the as-synthesized was 

about 0.04wt% goes up to about 0.05, 0.08 and 0.12wt% at 500, 600 and 700°C, 

respectively. However, the percentage of carbonate present in the SiHA as-calcined 

powder is relatively low as compared to the carbonate-substituted HA powders given any 

calcination temperature. 

Table 3.9: CHN analysis of  the investigated powders at 500-700°C. 
 

Samples  T(°C) %C (wt%) %CO3 (wt%) %CO3 changes after 
calcination (wt%) 

CHA 500 1.08 5.80 -21.63 
600 0.99 4.95 -33.11 
700 0.57 4.15 -43.92 

SiHA 500 0.01 0.05 +125.00 
600 0.02 0.08 +200.00 
700 0.02 0.12 +300.00 

SiCHA-1 500 0.48 2.90 -24.68 
600 0.42 2.25 -41.56 
700 0.36 1.90 -50.65 

SiCHA-2 500 0.79 3.98 -23.50 
600 0.50 3.25 -37.50 
700 0.38 2.98 -42.69 

Note: (-) means carbonate loss; (+) means carbonate absorb.  
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3.2.3.6. Elemental analyses 

 

The ICP-OES and XRF elemental analyses shown in Table 3.10 suggest that the ionic 

substitutions either the CO3 or Si or simultaneous substitution of both ions into the apatite 

structure have a significant effect on the ratio of Ca/P. The ratio of Ca/P obtained for all 

the as-calcined powders are significantly higher than the stoichiometric HA which is 1.67. 

The ratio of Ca/P was found to be in the range of 1.7-2.6 for the substituted-HA powders 

as stated in the literature (LeGeros and LeGeros, 2003; Gibson and Bonfield, 2001; Landi 

et al. 2010; Boyer et al. 2013; Friederichs et al. 2015).  

The amount of Si measured by ICP-OES, which was given in ppm, was multiplied by 

1X104 to convert the value to weight percentage. Results showed a slight decrease in Si 

wt% as the calcination temperature increased. It was stated that the amount of Si present in 

vivo within the mineralising osteoid regions was 0.5wt% by Carlisle et al. (1970). Hence, 

the SiCHA produced in this work could be considered comparable to the mineral content 

found in vivo.  

 
Table 3.10: ICP-OES and XRF elemental analyses of  the investigated powders at 500 -
700°C. 
 

Samples  T(°C) Ca/P 
Measured value 

(XRF) 

Si (wt%) 
Measured value 

(ICP-OES) 
CHA 500 1.76 - 

600 1.77 - 
700 1.79 - 

SiHA 500 1.71 0.49 
600 1.72 0.46 
700 1.74 0.41 

SiCHA-1 500 1.89 0.58 
600 1.91 0.47 
700 1.95 0.43 

SiCHA-2 500 1.86 0.45 
600 1.89 0.42 
700 1.92 0.40 
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3.2.4. In vitro biological assessments 

Based from physico-chemical characterizations, a calcination temperature of 500°C was 

chosen as the best calcination temperature to produce the multi-substituted HA powders in 

order to maintain the carbonate and silicon contents in the HA structure as close as 

possible to those presents in the natural bone mineral. In vitro biocompatibility 

assessments were conducted on the optimum powders of CHA, SiHA, SiCHA-1 and 

SiCHA-2. The main goal of this biocompatibility test is to explore the most 

osteoconductive powders when seeded with human bone marrow-derived mesenchymal 

stem cells (hMSCs) in vitro. The aim is to select the greatest biomedical materials to be 

used in the scaffold fabrication for bone tissue engineering (BTE) applications. 

3.2.4.1. Cell viability 

The cell viability of hMSCs in contact with the as-calcined powders was investigated using 

live/dead staining. Confocal laser scanning microscopy (CLSM) images for the controls 

and calcined powders at 500°C after 7, 14 and 21 days in culture are presented in Fig. 

3.12-3.13. Cells demonstrated an elongated fibroblast-like morphology. Fig. 3.12 

represents the control samples, where the viability remained high with low numbers of cell 

death detected at day 7 and 14 and confluence attained by day 21.  

At day 7, SiCHA-1 revealed a lower proportion of live cells in comparison to SiCHA-2, 

SiHA and CHA powders; similar trends were observed at day 14 and 21. While, SiCHA-2, 

SiHA and CHA powders showed gradual increased in cell viability from day 7 to day 21. 

The morphology of the cells adhered to the Si-substituted HA powders was observed to be 

more fibroblastic (elongated morphology) compared to the cells in direct contact with 

CHA powders as shown in Fig. 3.13. 



Results and discussion Chapter 3 

 
 

!
Page  

!
! !
 

131 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13: CLSM images of CHA, SiHA, SiCHA-1 and SiCHA-2 powders 
cultured in osteogenic media for different time periods. Green indicates 
viable cells and red indicates dead cells. Scale bar = 200 µm.  

Fig. 3.12: CLSM of the positive controls; hMSCs cultured on tissue-cultured 
plastic at 7(i), 14(ii) and 21(iii) days. Scale bar = 200 µm. 

 



Results and discussion Chapter 3 

 
 

!
Page  

!
! !
 

132 

3.2.4.2. Cell proliferation and osteogenic activity 

DNA quantification was used as an indicator for cell proliferation (Fig. 3.14 a). Mean 

DNA concentrations increased over time for all the tested powders (p ≤ 0.0001) and 

differed between the powders (p ≤ 0.0001). There was a significant interaction between 

time and powder compositions (p ≤ 0.05) suggesting that the increase in DNA 

concentration over time differed between powders.  

Compared to the control (tissue culture plastic, TCP) the powders CHA, SiHA and 

SiCHA-2 showed no significant differences at day 7 (p ≥ 0.05 for each), but at day 21 

significantly increased DNA contents were detected for these powders as compared to TCP 

(p ≤ 0.0001 for each). Among all the investigated powders, SiCHA-1 had the lowest mean 

DNA concentrations, which were 0.44 ± 0.02 µg/mL on day 14 and 0.73 ± 0.01 µg/mL on 

day 21. When comparing SiCHA-1 with TCP, significantly lower DNA concentrations 

were found on day 7 (p= 0.034) and day 21 (p=0.0082) but no significant differences were 

detected at day 14 (p=0.8466).   

When comparing the powders with each other there was no significant difference between 

SiCHA-1, CHA and SiHA on day 7, but SiCHA-2 was significantly increased over 

SiCHA-1 (p =0.0021). Cells cultured on SiCHA-2 powder showed the highest DNA 

concentrations after 14 days and 21 days compared to all other investigated powders and 

were found to be significantly different (p ≤ 0.0001 for each). On day 21, single-

substituted powder SiHA was significantly higher compared to CHA (p=0.0491).  

Overall, SiCHA-2 showed the highest DNA content compared to all other investigated 

groups (TCP and powders) on day 14 and day 21 (p ≤ 0.0001 for each).  
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Normalizing the alkaline phosphatase (ALP) activity results to the DNA levels give an 

indication of the early osteogenic activity, as demonstrated in Fig. 3.14 (b). Mean ALP 

activity of all investigated powders showed gradual increases over time (p ≤ 0.0001) and 

differed between the powders (p ≤ 0.0001). There was a significant interaction between 

time and powder compositions (p ≤ 0.0001) suggesting that the increase in ALP activity 

over time differed between powders. 

Compared to the TCP control, all the investigated powders demonstrated significantly 

higher levels of ALP/DNA at 7, 14 and 21 days of culture (p ≤ 0.0001 for each). When 

comparing different compositions of the tested powders, cells cultured on SiCHA-2 

showed the highest mean ALP/DNA at either time-point (p ≤ 0.0001 for each). At day 7, 

cells cultured on SiHA revealed significantly lower levels of mean ALP/DNA as compared 

to CHA (p = 0.0098) and SiCHA-1 (p = 0.0003). Between the single substitution powders, 

CHA showed significantly higher levels of mean ALP/DNA relative to SiHA as culture 

progressed (p ≤ 0.0001 for each). SiCHA-1 demonstrated similar trend, where the levels of 

ALP/DNA of SiCHA-1 significantly increased on day 14 (p = 0.0047) and day 21 (p = 

0.0007) as compared to SiHA.  

Overall, cells cultured in direct contact with SiCHA-2 exhibited the highest level of mean 

ALP/DNA compared to all other investigated groups (TCP and powders) on day 7, 14 and 

21 (p ≤ 0.0001 for each).  
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Fig. 3.14: Effect of CHA, SiHA, SiCHA-1 and SiCHA-2 as-calcined powders on (a) 
cell proliferation indicated by the amount of DNA and (b) the ALP activity were 
measured after day 7, 14 and 21 of treatment. Control represent the tissue culture 
plastic. Values represent the mean ± SD of three samples in duplicate. (*p ≤ 0.05, 
**p  ≤  0.01, ***p  ≤   0.001, ****p ≤  0.0001). 
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3.2.4.3. Cell metabolic activity 

Regardless of the powder compositions, the levels of protein production increased over 

time (p ≤ 0.0001) and differed between the powders (p ≤ 0.05). There was a significant 

interaction between time and powder compositions (p ≤ 0.05) suggesting that the increase 

in total protein production over time differed between powders.  

Compared to the control (tissue culture plastic, TCP), the powders CHA, SiHA and 

SiCHA-2 showed significantly higher levels of mean total protein (p ≤ 0.0001 for each) at 

day 7. As culture progressed, these tested powders demonstrated significantly increased 

levels of mean total protein produced as compared to TCP (p ≤ 0.0001 for each). Among 

all the investigated powders, SiCHA-1 had the lowest levels mean total protein but still 

higher compared to TCP on day 7 (p = 0.0006) and day 14 (p ≤ 0.0001). However, the 

cells in direct contact with SiCHA-1 produced lower level of total protein compared to 

TCP on day 21 (p ≤ 0.0001).  

When comparing the powders with each other, significantly higher levels of mean total 

protein was detected on SiCHA-2 than CHA powders (p = 0.0005) at day 7. Cells cultured 

on SiHA and SiCHA-1 showed no significant differences in total protein production (p = 

0.8504) on day 7. As culture progressed, significantly higher levels of total protein 

detected on SiHA compared to SiCHA-1 at day 14 (p = 0.0027) and day 21 (p ≤ 0.0001). 

Overall, cells on SiCHA-2 produced the highest total protein compared to all other 

investigated groups (TCP and powders) on day 7, 14 and 21 (p ≤ 0.0001 for each).  
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Alamar blue data showed consistent trend with the levels of total protein obtained. Overall, 

the mean levels of alamar blue increased for all the investigated powders over the culture 

period (p ≤ 0.0001) and differed between the powders (p ≤ 0.05). There was a significant 

interaction between time and powder compositions (p ≤ 0.05) suggesting that the increase 

in levels of alamar blue over time differed between powders.  

Compared to the control (tissue culture plastic, TCP), the powders CHA, SiHA and 

SiCHA-2 showed significantly higher levels of mean alamar blue (p ≤ 0.0001 for each) at 

day 7. As culture progressed, these tested powders demonstrated significantly increased 

levels of mean alamar blue as compared to TCP (p ≤ 0.0001 for each). Among all the 

investigated powders, SiCHA-1 had the lowest level mean alamar blue but still higher 

compared to TCP on day 7 (p = 0.0062). However, the cells in direct contact with SiCHA-

1 were found to be significantly less metabolically active compared to TCP on day 14 (p = 

0.0098) and 21 (p ≤ 0.0001).  

When comparing the powders with each other, significantly higher levels of alamar blue 

were obtained when cells were cultured on SiCHA-2, while SiCHA-1 remained the lowest 

at each time-point (p ≤ 0.0001 for each). Between the single substitution powders, 

statistically higher level of metabolic activity was found when hMSCs were cultured in 

direct contact with CHA powders at day 7 (p ≤ 0.0029). The metabolic activity of hMSCs 

on CHA remained the highest as compared to SiHA on day 14 and 21 (p ≤ 0.0001 for 

each).  

Overall, hMSCs cultured on SiCHA-2 powder were found to be the most metabolically 

active compared to all other investigated groups (TCP and powders) over the culture 

period (p ≤ 0.0001 for each). 
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(a) 

(b) 

Fig. 3.15: Effect of carbonate or/and silicon-substituted HA as-calcined powders on (a) 
the total protein production and (b) cell metabolic activity determined by alamar blue. 
Values represented the mean ± SD of three samples in duplicates. (*p ≤ 0.05, **p  ≤  0.01, 
***p  ≤   0.001, ****p ≤  0.0001). 
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3.3. Discussion 

3.3.1. Preparation of as-synthesized multi-substituted HA powders 

The overall aim of this chapter was to produce a selection of novel muliti-substituted 

hydroxyapatite (SiCHA) powders and identify the most favorable composition to elicit 

osteogenic behaviour, before proceeding to the fabrication of final scaffolds as biomedical 

implants for BTE applications. In this study, powders that meet the following criteria are 

considered as the ideal powder formulation to be used as biomedical materials; (1) 

powders remained as single phase B-type CHA; (2) powders closely mirror the carbonate 

(2-8wt%) and silicon (<0.5wt%) contents of bone mineral and (3) powders encourage the 

fastest cell proliferation, produce the highest level of total protein and ALP activity over 21 

days of culture period.  Therefore, the focus in the first part of this study is to optimize the 

CO3 and Si ions substitution into the HA structure. This is a major step in the development 

of new biomaterials for BTE applications as different osteogenic cells behave relatively 

different in response to the multi-substituted HA powders in particular when the 

composition and precursor used are different (Shepherd et al. 2012). The second part of 

this study identified the selection calcination temperature in order to complete the chemical 

reaction of the synthesized powders, where at the same time this temperature should 

remained the maximum amount of the substitution ions in the apatite structure. Finally, this 

study provided an interesting information on human mesenchymal stem cells  behaviour as 

cultured in direct contact with different compositions of the powders produced.  

From the physico-chemical analyses, as-synthesized powders with low carbonate contents 

such as 0.5-, 1.0-, and 2.0CHA remained as highly pure amorphous HA structure and no 

secondary phase such as calcite or calcium carbonate (CaCO3) was detected as previously 

seen in 3.0CHA and 4.0CHA as-synthesized powders. Due to limited substitution, powders 
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with high composition of carbonate were not able to substitute all the carbonate ions at the 

phosphate sites in the apatite structure during the synthesis. Therefore, the excess 

carbonate would then reacts with calcium and thus forms CaCO3. The presence of CaCO3 

was detected at 2θ= 29.4, 35.9 and 43.2°. The same behaviour was reported by Lafon et al. 

(2008) who found the formation of secondary phase of calcite when the molar ratio of 

carbonate to phosphate was too high, i.e. (NH4) HCO3: (NH4)2 HPO4 > 3:2 (Lafon et al. 

2008). In this study, substitution of  CO 3
2−  in HA structure has resulted in smaller 

crystallite size. This was attributed to replacement of larger tetragonal PO 4
3−  site by smaller 

trigonal planar of CO 3
2− . The CO 3

2−  substitution into apatite structure can also altered the 

lattice parameters as compared to the synthetic HA lattice, i.e. contraction in a-axis 

(<9.418 Å) and expansion in c-axis (>6.884 Å), which gives B-type CHA; while 

substitution of OH- induces a vice versa effect on the lattice parameters, which will then 

resulted in A-type CHA (Baba Ismail & Mohd Noor 2011; Kee et al. 2013; Bang et al. 

2014). This indicates that CHA powders at any CO 3
2−  content synthesized in this study are 

B-type CHA.  

A careful inspection of the IR spectra confirmed that the CHA synthesized powders at any 

composition (0.5-4.0CHA) are mainly B-type CHA, where the carbonation occurred only 

in the phosphate sites. The hydroxyl sites were not affected by the single ion substitution 

into the apatite structure for these CHA powders as shown in Fig. 3.3. The typical peaks of 

A-type CHA at 877-880, 1500, and 1540-1550 cm-1, were not visible in the spectra (He et 

al. 2007). This confirmed the assumption in the chemical formulation used in the making 

of CHA powders (as described in section 2.2.1) established in this work, where the 

carbonate ions were assumed to substitute the phosphate sites and no carbonation occurred 

in the hydroxyl crystallographic groups. This assumption is acceptable for the CHA 
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powders synthesized with low carbonate contents (x ≤ 2.0) where no secondary phase was 

detected. Similar observation was reported by Zhou et al. (2008) who used a similar 

method to synthesize B-type CHA powders at room temperature. Vignoles et al. (1988) 

reported that under basic condition (i.e. in the presence of added ammonia) and low 

precipitation temperature, the probability of carbonate to substitute phosphate sites in the 

apatite lattice was higher. In this condition, more hydroxyl ions were present in the 

reaction and thus they would be more competitive to fill the apatite structure easily than 

the carbonate ions. As a result, carbonate ions would only substitute the phosphate sites 

without substituting any of the hydroxyl sites (Vignoles et al. 1988).  

The percentage of CO3 substituted into the structure increased with increasing molar 

content, indicating completion of the reaction and successful incorporation of carbonate 

into the apatite lattice (Lafon et al. 2008; Kee et al. 2013). Controlled amounts of 

carbonate substitution are crucial in order to properly mimic the mineral content of native 

bone, which contains B-type CHA with purely single phase HA and adequate amounts of 

CO3. The carbonate content in bone mineral has been shown to vary depending on the 

individual age, with an increase in the amount of A-type CHA substituted apatite in aging 

bone (Rey et al. 1991). Hence, B-type CHA is the most abundant inorganic minerals in 

bones of young people. A study on different carbonate substitution mechanisms in bulk 

HA conducted by Astala and Stott (2005) showed that B-type CHA (phosphate ions 

substitutions) is energetically preferred to A-type CHA (hydroxyl ions substitution). This 

can probably explain that most as-synthesized CHA reported in the literature as well as 

found in this current study, is the B-type CHA. For this reason, CHA with x=2.0 was 

chosen as the optimum composition because it posses the most sufficient amount of 
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carbonate which is about 7.40wt% incorporated in the HA structure as compared to other 

compositions, typical B-type CHA and possess single phase HA.  

Si-substituted HA (SiHA) powders were synthesized using the same nanoemulsion 

method. Varying the Si contents had no significant effect on the XRD spectrum as all 

compositions exhibited a pure single amorphous phase of HA. The diffraction patterns 

were marginally broader as more Si is incorporated into the apatite structure. The powder 

crystallinity decreased with the increased Si amounts substituted the apatite structure. 

Contradicting observations were made for synthesizing SiHA powders as compared to 

CHA powders, where both lattice parameters and crystallite size of the powders increased 

with increasing Si-substituted HA lattice. This could be explained by the replacement of 

smaller P5+ ions (0.35 Å ) with larger Si4+ ions (0.42 Å) in the HA framework (Kim et al. 

2003; Bianco et al. 2009). The substitution of larger SiO  in the PO  site caused 

crystallite strain of the HA lattice, which contributes to a larger crystallite size of SiHA 

powders as compared to CHA powders synthesised in the same manner. This finding is 

strongly supported by the previous studies reported in the literature (Kim et al. 2003; 

Bianco et al. 2009; Palard et al. 2008; Gomes et al. 2011). The substitution of silicon into 

the apatite structure has been known to induce chemical and structural changes in HA 

lattice that lead to changes in vitro response of the osteogenic cells as previously studied 

by Botelho et al. (2006). This is because, decreased in the crystallinity resulted in increased 

solubility of the powders and the higher the dissolution rate. Friederichs et al. (2015) has 

stated that the dissolution rates of SiHA was higher as compared to HA which may 

contribute to the success of SiHA as bone graft materials. 

The IR spectra of the SiHA as-synthesized powders demonstrated the typical HA bands 

with additional band of Si detected at 880-895 and 947 cm-1.  It is observed that the triplet 
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bands of the phosphate groups become narrower as more Si-substituted the HA lattice. One 

of the hydroxyl band was found missing and this indirectly showing that the Si ions have 

substituted both phosphate sites and also the hydroxyl groups as assumed in the chemical 

equation shown below:  

Ca10-x/2 (PO4) 6-x-y (SiO4)y (OH)2-y              with y= 0.1, 0.2, 0.3, 0.4 and 0.5 molar contents    

Quantification of CO3 content by CHN analysis in SiHA powders shows that a very small 

amount (<1wt%) of CO3 present in all compositions of the as-synthesized SiHA powders. 

This is most likely the impurities used in the synthesis, e.g. the silicon tetraacetate, 

Si(CH3COO)4 contains carbon in the chemical structure, which possibly remained in the 

end products. In addition, the carbonate present in the SiHA structure might be due to the 

carbon dioxide in the atmosphere had dissolved in the mother-liquor solution during the 

synthesis, as this process take place at room temperature. Although the elemental analysis 

showed the present of CO3 in the SiHA as-synthesized powder, no typical carbonate bands 

corresponding to either A- or B-type were evident in any of the powders. Therefore, it is 

likely that the carbonate present only on the surface and not incorporated into the HA 

lattice.  

Prior to the development of multi-substituted HA (SiCHA) powders, the amounts of CO3 

and Si-substituted HA optimised to closely mimic the physiological relevant amounts of 

CO3 and Si presents in the biological apatite. There is a discrepancy regarding the optimum 

amount of Si-substituted into HA powders. For instance, Carlisle et al. (1970) highlighted 

the presence of 0.5wt% silicon in the active calcification sites. However, a concentration of 

0.8wt% was found to be optimal to induce the development of important bioactivity as 

reported by Hing et al. (2006) and Botelho et al. (2006). In order to develop SiCHA 
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powders where the carbonate and silicon ions are simultaneously substituted into the 

apatite structure, a study by Sprio et al. (2008) suggested the initial Si/P ratio should be 

equal to 0.05. For this reason, we chose 0.3SiHA as the optimum composition (0.3SiHA = 

0.05 Si/P, 0.04% CO3 and 1.73 Ca/P + Si).  

Multi-substituted HA (SiCHA) powders were synthesized with different combinations of 

the highest (x= 4.0 and y= 0.5), lowest (x= 0.5 and y= 0.1), and optimum amounts (x= 2.0 

and y= 0.3), of carbonate and silicon ions. Same results obtained as described in the 

production of CHA powders, where powders with high carbonate content (x=4.0) lead to 

the formation of a secondary phase of CaCO3 besides the HA phase detected in the 

diffraction patterns.  

On the other hand, at low carbonate content (x=0.5 and 2.0) the SiCHA as-synthesized 

powders in particular exhibit the XRD spectrum of an amorphous and purely single phase 

carbonated hydroxyapatite with corresponds to the HA standard pattern. No secondary 

phase of other calcium phosphate or silicate was found. This indicates the competitive 

substitution between carbonate and silicon ions, as both ions tend to substitute the 

phosphate crystallographic site as assumed in the stoichiometry empirical formula 

described earlier. Sprio et al. (2008) found similar phenomenon where no secondary phase 

detected to contaminate the multi-substituted HA, except for samples containing high 

carbonate ions attributed to the formation of CaCO3. Refined analysis on the lattice 

parameters and crystallite size of SiCHA nano-powders showed that the crystallographic 

parameter falls about midway between CHA and SiHA powders. These changes in the 

lattice parameters clearly demonstrated that both carbonate and silicon ions are structurally 

incorporated into the HA framework, and not only cover the surface of HA. 
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The IR spectra of the SiCHA as-synthesized powders show the typical bands stretching 

vibration modes of phosphate. The presence of silicon can only be detected on sample 

0.5:0.5SiCHA as-synthesized powders as it contained the combination of the highest 

silicon content with lowest carbonate content. All the other samples can be considered 

mainly B-type CHA as the carbonate substitution predominates. The typical peaks of A-

type CHA, which typically appear at wave numbers of 877-880, 1500 and 1540-1550 cm-1, 

were not visible in the spectra (He et al. 2007). There is also a missing band of one of the 

OH- group at 1600-1700 cm-1 (Tang et al. 2005). This proved that the silicon ions 

substituted the phosphate position and partially substituted the hydroxyl position (Gibson 

et al. 2002) as assumed in the empirical formula. 

It is noted that all SiCHA as-synthesized powders possess lower carbonate content in 

comparison to the pure CHA. This is due to the limitation of position occupancy as both 

carbonate and silicon ions trying to compete to simultaneously substitute the phosphate 

group. Thus, this might cause slight loss in the amount of carbonate. The results show that 

silicon ions have successfully substituted all the as-synthesized powders. It is observed that 

the amount of silicon decreased as carbonate molar content increased. Again, this is due to 

the competitive ion substitutions into the phosphate group.  

The Si contents measured in all the as-synthesized SiCHA powders with different 

combinations of carbonate and silicon compositions revealed <1wt% Si presents. It was 

suggested in the literature that an amount of only 1wt% Si-substituted into HA was 

sufficient to elicit important bioactive improvements, i.e. Si has been reported to have a 

specific metabolic role connected to bone growth (Boanini et al. 2010). Hence, the SiCHA 

powders produced in this work offer the potential for enhancing bioactivity. Similar 

amount of Si wt% was obtained by the work reported by Bang et al. (2014) who 
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synthesized SiCHA via wet precipitation method. Therefore, based on physico-chemical 

characterization, the optimum as-synthesized powder compositions produced were 

2.0:0.3SiCHA and 2.0:0.5SiCHA, because they fulfilled the ideal criteria, i.e. B-type CHA 

with single phase HA and yielded closely mirror the carbonate and silicon contents of bone 

mineral. 

3.3.2. Development of multi-substituted HA powders as biomedical materials 

The next phase of this study investigated the effect of calcination at low temperature (500-

700°C) under atmospheric conditions (air), i.e. calcination on the optimum as-synthesized 

SiCHA denoted by SiCHA-1 (2.0:0.5SiCHA) and SiCHA-2 (2.0:0.3SiCHA). The main 

purpose of calcination is to ensure the synthesis process is completed and to remove any 

unreacted components incorporated during synthesis (Zhou et al. 2008). According to 

Ivanova et al. (2001), carbonate loss in air generally starts at 550°C and is completed 

above 900°C, depending on treatment-time and composition. Therefore, the calcination 

temperature was limited up to 700°C for 1 hour (soaking period) in this study to retain the 

carbonate content.  

It is particularly important to ensure that the ionic substitutions remained in the structure 

after the heat treatment. XPS was conducted on the as-calcined powders in order to detect 

any possible changes that could alter the composition of the powders during calcination. 

Qualitatively, the XPS spectra of the calcined powders were not modified by increasing 

temperature from 500 to 700°C; with all profiles demonstrating similar binding energies. 

The analysis by XPS confirm that carbon and silicon does exist in all the as-calcined 

powders from 500 to 700°C. The BE of SiO  was detected at 102.0 ± 0.2 eV (Mekki et 

al., 1997; Botelho et al. 2002). While, the BE of SiO2 was centered at 103.9 eV as stated in 

other study (Beshkov et al. 2002). In this study, it was conclusively confirmed that silicon 

4
4−
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does exist as tetrahedral silicate (SiO4), rather than in a polymeric or SiO2 form. This was 

determined by the binding energy (BE) detected on the spectra, i.e. 101 eV. This important 

finding supports the different term between silicon or silicate substitution with the well-

characterized carbonate substitution of phosphate groups in the HA structure.  

The physical and chemical analyses established that simultaneous substitution of carbonate 

and silicon ions into the HA lattice remained as pure single phase HA as shown in the as-

synthesized powders even after calcination at 500 to 700°C. The absence of (112) Miller’s 

plane, which usually appears on a standard HA diffraction pattern is typically attributed to 

the substitution of the ions into the HA structure (He et al. 2007). The formation of 

secondary phase of CaO or CaCO3 which normally resulted after the heat treatment of 

substituted-HA powders in particular the carbonate-substituted HA at temperature above 

750°C in air atmosphere (Gibson & Bonfield 2002), was effectively prevented with 

slightly lower calcination temperature used. Regardless of the powder formulation, 

increasing the calcination temperature has resulted in increased crystallite size of the 

powders. This could easily be explained as higher calcination temperature leads to an 

increase in the atomic mobility, which gives rise in the grain growth resulting in a larger 

crystallite size.  

The IR spectrum shows a clear comparison between CHA, SiHA and SiCHA after 

calcination. Both SiCHA as-calcined powders demonstrated similar characteristics with 

missing bands of carbonate and silicon ions at 870-875 cm-1and 947 cm-1, which is one of 

the typical bands of B-type CHA and Si-substituted HA, respectively. The two main 

carbonate bands detected in SiCHA powders calcined at 500 to 700°C belongs to the B-

type CHA (Koutsopoulos 2002; Landi et al. 2010), besides the Si-substituted bands 

detected at 880-895 cm-1 (Sprio et al. 2008; Marchat et al. 2013). The main characteristic 
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bands of the typical carbonate and Si-substituted HA are highlighted in Fig 3.10-3.11 (inset 

expanded region of whole spectra). The FTIR results as listed in Table 3.8 precisely 

indicated the mode of ion substitutions in the apatite structure. It is clear that the missing 

bands in SiCHA powders provide evidence of the competitive substitutions between the 

carbonate and silicon ions into the phosphate sites. This provides important information 

regarding the simultaneous ionic substitution after calcination.  

The low calcination temperature used in this work allow the powders to remain as B-type 

CHA and not transforming from B-type to more complex mixture of AB-type or A-type 

CHA. This phase transformation normally occurs when as-synthesized powders are heat 

treated between 700-1200°C (LeGeros et al. 1969; Gibson & Bonfield 2001; Lafon et al. 

2008). This indicated that the as-calcined powders produced in this study are thermally 

stable up to 700°C. 

Surprisingly, carbonate-free substituted HA (SiHA) powders shows an increment in the 

percentage of carbonate as the calcination temperature increased. At 700°C, SiHA powders 

contain up to three times as much carbonate compared to the as-synthesized powders. 

However, the carbonate presents in the SiHA powders was not detected in the IR spectra. 

This means that the CO2 from the atmosphere was absorbed only on the surface of the 

powders during calcination and not incorporated in the crystal structure. As mentioned 

earlier, this small amount of CO3 in SiHA might be due to the presence of acetate group 

that would have remained from the silicon acetate precursor Gibson et al. (2002). In order 

to prevent any carbonation in the SiHA structure, the calcination of the powders could be 

performed in argon atmosphere instead of ambient condition (David et al. 2013). However, 

it should be noted that a CO2 atmosphere can be beneficial during calcination of carbonate-
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substituted HA powders, in order to retain the substituted carbonate in the apatite structure, 

avoiding phase decomposition Boyer et al. (2013).  

The surface morphologies of the optimised powders show a significant difference in the 

particle size and shape. This discrepancy is thought to be due to the differences in ionic 

substitutions. The presence of high carbonate concentrations in the CHA powders caused 

the powders to be more spherical; which is a similar observation made by Zhou et al. 

(2008). On the other hand, SiHA powders possess more elongated and larger particle size 

with about 80-100 nm in length. The multi-substituted HA (SiCHA-1 and SiCHA-2) 

powders produced in this study perfectly matched the dimensions of the biological apatite 

with particle sizes falling in the range of 30-50 nm in length and 15-30 nm in width (Wang 

et al. 2006). It is important to ensure that the powders produced are at the nanoscale level 

in particular for bone tissue engineering applications as it directly affects the mechanical 

and biological performances of the end products. It was shown in other studies that 

nanoparticles are used as to ensure the optimum strength and maximum tolerance to flaws. 

Furthermore, nanoparticle apatite has been shown to have a good influence on a variety of 

metabolic functions and remodelling processes (Dorozhkin 2009). For instance, in vitro 

tests of fibroblast and osteoblasts cells on the nanocrystalline octacalcium phosphate 

phosphate (OCP) coatings, proved that both cell types could adhered, formed a normal 

morphology, proliferated and remained viable, thus supporting a good biocompatibility 

and absence of any toxicity effects.  
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3.3.3. In vitro biocompatibility assessments of the optimum as-calcined powders 

The optimum as-calcined powders were then tested in vitro using human MSCs. The aim 

of the last part in this study was to determine the highly osteoconductive powders 

formulation for use as biomedical material in bone tissue engineering applications. In this 

case, the most osteoconductive powders formulation can be defined as powders that can 

allow the fastest cell proliferation, produced the highest proteinaceous material and the 

ability to stimulate rapid osteogenic differentiation of the hMSCs over 21 days culture 

period.  

Despite their composition, no sign of toxicity was evident from any of the powders using a 

direct contact method with hMSCs. It was previously reported that the toxicity of a 

material is mainly caused by either the release of ions or compounds, or worn debris from 

the ceramic material itself (Li et al. 1993). In the present finding, we observed that the cells 

in direct contact with SiCHA-1 powders were less confluent than on other powders at each 

time-point. This is due to the ions released from SiCHA-1 powders as it contains the 

highest silicon content among them. The release of the silicon ions in high proportions 

might have caused some cell death at the early stage of culture, which resulted in a slight 

loss of cells (Landi et al. 2010). As a consequence, the population of the viable cells in 

direct contact with SiCHA-1 remains low at every time point. However, <30% of cell 

death were found on all the exposed powders at 21 days. According to ISO 10993-5, a 

reduction of more than 30% viability is considered as cytotoxic. Thus, SiCHA-1 prepared 

in this study is considered as non-toxic, but is hindering the proliferation of hMSCs. 

Similar observation was reported by Landi et al. (2010) in their finding, where 0.8wt% Si 

in SiCHA powders caused a toxic effect on the human osteoblast cells, while SiCHA 

powders with lower Si content (0.55wt%) inhibited the proliferation of human osteoblast, 
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but after 7 days of culture, powders were not considered to be toxic. The higher the Si 

content incorporated in the HA structure, the higher the cell death. This is due to higher ion 

release as powders with high Si content have higher solubility (Lin et al. 2006; Ni et al. 

2007). In this work, SiCHA-2 which contain <0.55wt% Si shows higher cell viability 

compared to SiCHA-1 with >0.55wt% Si. This observation is in agreement to the finding 

demonstrated by Landi et al. (2010) where although no toxicity effect found with the 

present of 0.55wt% Si in SiCHA powders, the cells proliferation was impeded.  

The quantity of DNA was used to indicate an increase in cell population. Results supported 

the observations of cell viability, identifying that SiCHA-2 powders outperformed other 

powders at all time-points in terms of DNA quantity and viability. In contrast, SiCHA-1 

with highest Si-substituted HA shows the lowest level of DNA throughout the culture. This 

negative behaviour of SiCHA-1 was apparently in contrast with the previous study 

reported in the literature (Botelho et al. 2006; Pietak et al. 2007), where good interaction of 

human osteoblasts was found as in contact with high Si-substituted HA (0.8wt%). The 

discrepancy in the results is due to different nature of the tested materials. For instance, the 

work conducted by Botelho et al. (2006) was based on dense, sintered SiHA pellets. Thus, 

the solubility-reactivity and the extent of the biomaterial-cell interactive surface were 

remarkably lower as compared to that of a powdered form (Landi et al. 2010).  

After 21 days culture, SiCHA-2 shows the highest level of ALP/DNA ratio, which 

indicates the powder may stimulate osteogenic behaviour to greater extent than other 

powders. Botelho et al. (2006) found a similar behaviour up to 21 days and decreased in 

the ratio of ALP/COL I after 27 days treatment, which was related to the onset of 

mineralization. However, the later trend was not observed in this study as the powders 
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were tested only for 21 days. Further work in the future, including immunostaining, qPCR 

and flow cytometry would provide better indications for the osteogenic bone markers.  

Carbonate-substituted HA appeared to perform better than other powders in the production 

of total protein after 21 days culture. This indicated that hMSCs were the most 

metabolically active when in contact with CHA powders. An increasing carbonate content 

resulted in higher metabolic activity of the particular cells/tissues as stated in the literature 

(Gibson et al. 1999). For instance, bone, which is very active tissue contained higher 

carbonate compared to almost inert enamel (LeGeros 1991; Boanini et al. 2010, Landi et 

al. 2010). This explained the underlying reason for the highest level of total protein 

produced by CHA powders, as it possesses the highest percentage of carbonate content 

among the investigated powders. Comparing the multi-substituted HA powders, SiCHA-2 

shows relatively higher protein production than SiCHA-1. This is related to the cell 

number as represented by the amount of DNA obtained. Essentially, as the cell population 

increases in size so does the quantity of total protein. In addition, SiCHA-2 powders 

contained higher carbonate content as compared to SiCHA-1. Alamar blue results correlate 

with the total protein levels observed. This assay is typically used to evaluate cell viability 

and proliferation, which could be an indicator of the cell metabolic activity (Rodrigues et 

al. 2013). hMSCs were found to be more metabolically active as in contact with 0.45wt% 

Si (SiCHA-2) than 0.58wt% Si (SiCHA-1). This is in agreement with the previous study 

reported by Gibson et al. (1999) where higher metabolic activity was found as 

osteosarcoma cells were seeded on 0.8wt% SiHA than 1.6wt% SiHA and HA (Gibson et 

al. 1999).  

At this stage of study, only one batch of the prepared powders was used for the in vitro 

biocompatibility test due to time limitation. Ideally, the test should be performed using 
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different batches of powders in order to ensure the reproducibly and repeatability of 

powder production. Besides, all different compositions of the prepared powders in this 

work should be tested for their in vitro biocompatibility in order to select the ideal powder 

formulation. For this particular study, the cell source used was only from one donor due to 

cost and time limitations. However, to fully meet the requirements of ISO 10993-5, several 

cell donors (n=3) should be used to test different batches of the prepared powders in the 

future. 

3.4. Conclusion 

The osteoblast behaviour are directly linked to the rate and amount of ions released by the 

multi-substituted HA structure, which in turn depends on the physico-chemical properties 

of the material. The solubility-reactivity and biomaterial-cell interactive surfaces are two 

key points in determining the cell survival and response. Thus, controlled amounts of the 

ionic substitutions into the apatite structure are mandatory in order to promote the desired 

osteoblast behaviour. In this study, powders with 3.98wt% carbonate and 0.45wt% Si-

substituted HA namely, SiCHA-2, shows the closest compositions to the physiological 

range of ionic substitutions in bone mineral, thus, make it the most favourable growth 

environment for hMSCs up to 21 days culture in vitro. These powders were associated 

with the most rapid proliferation of cells showed the strongest potential for osteogenic 

activity (ALP/DNA ratio). hMSCs also produced more proteinaceous material and were 

most metabolically active in direct contact with SiCHA-2 as compared to SiCHA-1. It can 

be concluded at this point that, among the tested powders, SiCHA-2 was the best powder 

formulation and that it was suitable for the next phase in the development of a novel 3D 

multi-substituted HA scaffold for BTE.  
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4.1. Introduction 

Poly (α-hydroxyl ester) in particular, poly (lactic acid) (PLA) has been used as a substrate 

material to support the regeneration of different tissues and organs, such as bone and 

articular cartilage (Chen et al. 2008; Zhao et al. 2014). It is non-toxic, possess low level of 

immunogenic reaction, have easily tailored mechanical properties and predictable 

degradation rates (Suh et al. 2001). However, the application of PLA in the biomedical 

field is hampered to a certain extent by its hydrophobic nature and lack of cell recognition, 

i.e. poor cell adhesion and proliferation (Kim et al. 2006; Jahno et al. 2007). As tissue 

engineering (TE) scaffolds and implants interact with the biological environment via their 

surface, modification on the outermost surface of the materials was considered as an 

effective approach (Tzoneva et al. 2008). The main aim in surface modification of a 

polymer substrate is to provide a surface with reactive group such as -OH, -NH2 and -

COOH to permit binding with biomolecules (Soldana et al. 1991; Yamauchi et al. 1991; 

Okada & Ikada, 1991; Suh et al. 1998).  

Human bone is a complex organic and inorganic composite material, in which 

biomacromolecules such as collagen type I, proteoglycans and carbonate substituted 

hydroxyapatite (CHA) nanocrystals are well organized into hierarchical architecture (Liao 

et al. 2005). The ideal bone scaffolds designed to enhance the bone formation should 

closely mimic the naturally occurring environment in the bone matrix. These 

biomacromolecules could then form physical or chemical cross-linked networks, which 

regulates the expression of osteoblastic phenotype and supports ostegenesis both in vitro 

and in vivo (Datta et al. 2005; Yu et al. 2012). Therefore, ECM-like biomacromolecules 

such as hyaluronic acid or collagen type I have been incorporated into the 3D scaffolds for 

bone regeneration besides CHA nanocrystals (Zhang et al. 2005; Yu et al. 2012; Hoyer et 
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al. 2012). Since our bone comprises of both osteoconductive (CHA nanocrystals) and 

osteoinductive (collagen type I) components, thus, bone scaffold fabricated from such 

components is likely to behave in similar way as natural bone, and to be of more use 

compared to a monolithic scaffold (either collagen type I or CHA alone) (Wahl & 

Czernuszka 2006). Indeed, both collagen type I and HA as monolithic scaffold were found 

to enhance osteogenesis, but the combination of both collagen type I and HA as composite 

scaffolds has successfully accelerated osteogenic differentiation as compared to the 

monolithic scaffolds (Xie et al. 2004).  

Therefore, the overall aim of this thesis was to fabricate a novel 3DP hybrid scaffolds, 

which consists of SiCHA nanocrystals, collagen type I and hyaluronic acid as a mean to 

fabricate an ideal bone scaffolds in order to enhance bone formation. Prior to the 

construction of 3DP hybrid scaffolds, the fabrication technique used in this work was 

firstly investigated on two-dimensional (2D) PLA films. The assembly of the ECM-like 

biomacromolecules onto the charged PLA film was performed using PEMs technique 

adapted from Zhao et al. (2014) with some modification. Hyaluronan and collagen type I 

were chosen as the building blocks, which acts as the carrier for the SiCHA nanopowders 

to be deposited on the PLA films. These polyelectrolytes helped SiCHA nanopowders to 

chemically bind onto the surface. Hyaluronic acid or hyaluronan is a major component in 

ECM and synovial fluid. It is one of the polyanions, which has been widely used in PEMs 

assembly (Khademhosseini et al. 2004; Zhang et al. 2005).  Collagen type I is positively 

charged below the isoelectric point, which allows it to be used as the polycation (Zhang et 

al. 2005). In this study, the bilayers were finally cross-linked with and without 1-ethyl-3- 

(3-dimethylaminopropyl) carboiimide hydrocholoride (EDC) and N-

hydroxysulfosuccinimde sodium salt (NHS) as to maximize the coating materials 

deposition. PLA films were coated with different number of layers followed by physical 
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and chemical/elemental characterizations. In vitro studies using human bone marrow-

derived mesenchymal stem cells (hMSCs) were performed to investigate the most 

favourable environment for cell-material interaction, which was then selected as the 

optimal condition. This optimal condition was then applied in the similar manner for the 

fabrication of 3DP hybrid scaffolds, which will be discussed in the next chapter. 

4.2. Results  

4.2.1. Investigation of the novel coating materials on PLA films  

Scanning electron microscopy (SEM) analysis was used to inspect the PLA films before 

and after surface modification. The films exhibited a smooth surface morphology before 

chemical modification was performed. However, post-aminolysis, the films demonstrated a 

rougher surface topography (Fig. 4.1). The chemically modified PLA films were deposited 

with one bilayer of the newly developed materials with and without the presence of 

EDC/NHS coupling agent. After one bilayer, PLA films with EDC/NHS surface finish (1-

BL) resulted in better deposition of coating materials as compared to coated PLA films 

without the coupling agent (1-BL*). It was observed that without the use of the coupling 

agent, agglomeration of SiCHA nanopowders occurred. This agglomeration was not seen 

when the coupling agent was used. Essentially, the coupling agent was associated with a 

more homogenous distribution of the nanopowders on the surface of the PLA films.  

Based from the morphological characterization, novel coating materials assembly for 

PEMs technique was established in this work. This coating assembly involves the 

dispersion of SiCHA nanopowders in two different polyelectrolytes, namely hyaluronan 

and collagen type I. The PEMs were finally cross-linked with EDC/NHS as the surface 

finish for each bilayer. To our knowledge this coating materials has not been reported 

anywhere else in the literature.  
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Fig. 4.1: Surface topography of the PLA films was assessed using SEM analysis. Images demonstrated different PLA surfaces, (a) control PLA 
(0-BL), (b) aminolyzed PLA (0-BL*), (c) coated PLA with EDC/NHS coupling agent (1-BL) and (d) coated PLA without EDC/NHS coupling 
agent (1-BL*). The surface of 1-BL PLA films was homogenously covered with coating materials whereas, localized agglomeration of the 
SiCHA nanopowders formed on 1-BL* PLA films. Scale bar = 20 µm.  
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4.2.2. Optimization on the number of deposition cycles 

4.2.2.1. Atomic Force Microscopy analysis 

The surface morphology of biomaterials plays an important role on cell attachment, 

proliferation and function. The changes in surface topography during PEMs process were 

investigated by atomic force microscopy (AFM) analysis. The surface roughness of the 

control and coated PLA films were measured by AFM. There was a slight difference 

between the roughness of the whole film and individual, localized areas on each film.  

In general, the surface roughness increased with increasing number of layers up to 5-BL. 

The surface roughness of 1-BL PLA films was approximately twice as rough relative to the 

unmodified control PLA films. However, only a slight increase in surface roughness was 

observed after the third alternate deposition of the coating materials. Further deposition 

(>5-BL) resulted in a small drop in surface roughness.  

Table 4.1: Surface roughness of PLA films measured on the control PLA (0-BL) and 
coated PLA with 1-, 3-, 5- and 10-BL, respectively. 

Surface roughness/ 

Samples 

Whole area (nm) Localized areas (nm) 

0-BL 52.83 ± 0.71 50.11 ± 0.91 

1-BL 98.97 ± 0.97 96.48 ± 1.47 

3-BL 177.33 ± 1.53 175.18 ± 2.71 

5-BL 208.13 ± 0.80 214.98 ± 3.36 

10-BL 186.37 ± 0.86 184.40 ± 2.10 

Note: Surface roughness of the whole area was measured on each PLA films (n=3) and 
localized areas represent the mean of five different spots on each PLA films.  
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AFM topography results shown in Fig. 4.2 support the values measured for surface 

roughness shown in Table 4.1. The colour gradient indicates the surface roughness where 

dark red and light yellow represented the rough and smooth areas, respectively. It is 

assumed that, the rougher the surface area, the higher the percentage of coating materials 

deposited. After 3 deposition cycles, about 70-80% of the surface area of the films were 

covered with the coating materials (Fig. 4.2 c). At the end of 5 deposition cycles, the 

surface coverage increased to more than 90% of the entire films. However, after 5 

deposition cycles, little influence on the surface roughness was observed as shown in Fig. 

4.2 (e). In fact, 10-BL films showed a slight decrease in the surface covered compared with 

5-BL films.  

AFM images were also used to investigate the homogeneity of the coating materials on the 

PLA films. It is clearly seen that the surface coverage of the coating materials designated 

by the rough surface area was not uniformly distributed throughout the entire surface. 

Surfaces with 3-BL and 5-BL seems to be the most homogenously coated surface as 

compared to 1-BL and 10-BL coated PLA films. The distribution of coating materials 

deposited on the PLA films will be further characterized in the next section. 
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Fig. 4.2: AFM images showing topography of (a) 0-BL; (b) 1-BL; (c) 3-BL; (d) 5-BL and (e) 10-BL PLA films. The surface roughness of the 
PLA films increased with increasing number of coating layers as represented by the changes of the colour bar. *Dark red = rough area and 
light yellow= smooth area. AFM was performed in air using RTESPA tip of spring constant of 40 N/m, 896 scans/lines, 0.32 Hz scan rates, 
and 1.102 V amplitude. 
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4.2.2.2. Transmission electron microscopy analysis 

Representative transmission micrographs of the surface modified PLA films deposited 

with 1-, 3-, 5- and 10-BL layers are shown in Fig. 4.3. Transmission electron microscopy 

(TEM) demonstrated that the PLA films were covered with coating materials on the 

surface. The distribution of particles covering the surface increased with increasing 

number of layers. Coating materials were found to be more homogenous and well 

distributed on 5-BL layers as compared to the other coated films. Results were in 

agreement with the observation obtained from AFM analysis.  

  Fig. 4.3: TEM images of (a) 1-BL; (b) 3-BL; (c) 5-BL and (d) 10-BL. Red, black and white 
arrows on the images represent the coating materials, PLA film surface and background, 
correspondingly. Coating materials were found to be more homogenously distributed on 5-
BL layers compared to the other coated films. Scale bar = 10 µm. 
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4.2.2.3. X-Ray Photoelectron Spectroscopy analysis 

X-Ray Photoelectron Spectroscopy (XPS) is an effective tool to confirm the formation of 

thin layer of coating materials deposited on the surfaces. This is achieved through the 

detection of the chemical composition represented by the specific peak for the elements 

that comprise the coating. Details on the element of interest and their respective binding 

energies were described in Chapter 2 (Table 2.4).  

For control PLA (0-BL), only two main peaks appeared in the XPS spectra (Fig. 4.4 a), 

representing the elements of carbon and oxygen. These peaks were detected at binding 

energies of 288.9 and 533.0 eV; denoted the C1s and O1s, respectively. After surface 

modification (0-BL*), an additional elemental peak for nitrogen was detected at 400.0 eV 

as can be seen in Fig. 4.4 (b). Spectra associated with coated PLA films with 1-, 3-, 5- and 

10-BL are represented in Fig. 4.5 (a-d). Two additional elemental peaks, which 

corresponded to calcium (Ca) and phosphorus (P), as expected for HA, were observed 

besides those associated with aminolyzed PLA films (Fig. 4.4 b). The intensity of the 

nitrogen peak increased with increasing number of bilayers coating on the surfaces; 

indicating more collagen deposited. However, the typical peak of silicon at binding 

energies of 101.0 eV was not observed. Thus, the atomic percentages of all the elements of 

interest on the modified PLA films were quantified (Table 4.2). The carbon content of the 

PLA film reduced from 77.7 at% (0-BL) to 74.6 at% (0-BL*). The increase in the number 

of layers has no obvious effect on the atomic percentage of carbon as compared to the 

aminolyzed PLA films. However, it was observed that the levels of Nitrogen (N1s) became 

relatively higher. Concurrently, higher calcium and phosphorus atomic percentages were 

observed with increasing number of layers. In addition, silicon was found to be present on 

the thin coating layer of the PLA films, despite the peak not being visible on the spectra 

(Fig. 4.5 a-d).  
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 Fig. 4.4: XPS scan spectra of control PLA films, (a) before (0-BL) and (b) after (0-BL*) 
aminolysis. The peak intensity of the material detected on the surface is expressed in 
relation to the binding energy.  

 

Fig. 4.5: XPS scan spectra of coated PLA films deposited with (a) 1-BL, (b) 3-BL, (c) 5-BL 
and (d) 10-BL, respectively.  
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Comparing the quantitative data within the coated PLA films, 10-BL demonstrated a slight 

drop in the atomic percentages of all the detected elements than 5-BL PLA films. The 

highest atomic percentages of calcium, phosphorus and silicon (which represent the 

chemical composition of the coating materials) were obtained on 5-BL PLA films. 

Table 4.2: Atomic percentage (at%) of the control PLA (0-BL) and coated PLA with 1-, 3-, 
5- and 10-BL, respectively.  
 
Samples C1s O1s N1s Ca2p P2p Si2p 

0-BL 77.74 ± 3.16 22.26 ± 3.16 - - - - 

0-BL* 74.62 ± 0.32 23.42 ± 0.34 1.96 ± 0.14 - - - 

1-BL 73.83 ± 1.74 22.48 ± 1.54 2.07 ± 0.07 0.91 ± 0.03 0.47 ± 0.02 0.24 ± 0.18 

3-BL 74.22 ± 1.12 19.19 ± 1.26 4.46 ± 0.51 1.21 ± 0.05 0.60 ± 0.02 0.32 ± 0.06 

5-BL 74.09 ± 0.89 18.95 ± 0.66 4.92 ± 0.02 1.47 ± 0.05 1.12 ± 0.44 0.45 ± 0.26 

10-BL 73.97 ± 0.97 18.86 ± 0.44 3.70 ± 0.34 1.39 ± 0.05 1.08 ± 0.05 0.42 ± 0.08 

Note: values represent mean ± SD for n=3. 
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4.2.2.4. Histochemical characterization of calcium and collagen deposition  

Qualitative histochemical methods were used to confirm the presence of both SiCHA 

nanopowders and collagen depositions on the PLA coated films. Alizarin Red (AR) 

staining is a commonly used histochemical technique to detect calcium deposits in 

mineralized tissue and cultures. In this study, AR staining was used to observe the 

distribution of calcium, which is the main component in SiCHA nanopowders on the PLA 

films with different numbers of multilayers. Positive AR staining (bright red) was obtained 

from all the coated PLA films as demonstrated in Fig. 4.6, indicative of the presence and 

distribution of calcium throughout the sample. More homogenous bright red stain was 

observed on the PLA film surface with increased deposition cycles as can be seen on 3-, 5- 

and 10-BL relative to 1-BL coated films. 

The collagen deposition on the PLA films were quantified by Sirius Red (SR) staining 

(Rich & Whittaker 2005; Vandrovcová et al. 2011). The bright orange stain indicated a 

positive result for the presence of collagen. The brightness of the stain is directly 

proportional to the amount of collagen present within the multi-layered films (the same 

applies for AR stain and calcium content). All coated films demonstrated the presence of 

both calcium and collagen. With increasing number of multilayers deposited, brighter and 

more homogenous staining was apparent. For instance, after three deposition cycles, 

almost the whole surface area of the coated films was covered with the bright orange stain 

as showed in Fig. 4.6. No obvious differences in stain intensity were observed with 

increasing number of bilayers.  

The control PLA films (0-BL), which were chemically unmodified shows the absence for 

both AR and SR staining. A distinct difference was observed between control and coated 

films; as neither calcium nor collagen was present on the control films. However, the 
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actual amount of calcium or collagen was not quantified, as the purpose of staining was to 

confirm the homogenous distribution of coating materials. 

 

Fig. 4.6: Light microscopy imaging of Alizarin Red (AR) and Sirius Red (SR) Staining on 
0-, 1-, 3-, 5- and 10-BL films. All coated PLA films showed positive stains for both AR and 
SR and the amount of stained material appeared to increase with the increasing number of 
layer, up to 5-BL. Scale bar = 50 µm. 



Results and discussion Chapter 4 
 

!
Page 167 

!
! !
 

4.2.3. In vitro biocompatibility test 

4.2.3.1. Cell viability 

The viability of hMSCs seeded on different surfaces of the PLA films was observed after 7 

and 14 days of culture, as shown in Fig. 4.7. Confocal Laser Scanning Microscopy 

(CLSM) images demonstrated that cells were homogenously distributed on the surface of 

all coated PLA films. On the other hand, the cell density appeared to be considerably lower 

on unmodified, control PLA films, relative their coated counterparts.  

CLSM images also indicate diverse proliferation ability of hMSCs as a function of number 

of multilayers deposition. The proliferation of hMSCs onto the modified PLA films with 

the newly developed coating materials assembly were greatly augmented compared to the 

unmodified PLA films (0-BL). In addition, cellular proliferation was considerably 

enhanced with the number of deposited multilayers. Close observation on the CLSM 

images suggested that 5-BL PLA films revealed the highest proportion of cell attached and 

proliferated onto the surface after 7 days in culture. 

Over the culture period of 14 days, hMSCs seeded on the coated films reached confluence 

regardless the deposition cycles applied to the PLA films. Very few dead cells (stained red) 

were found on any of the PLA films including the control. However, cells seeded on the 

control PLA films were associated with a slower proliferation rate as fewer cells found on 

the surface compared to the coated PLA films. These results clearly highlighted that all the 

modified PLA films could effectively increase the cell viability, proliferation and provide 

better surface for efficient cell adhesion as compared to the control PLA films. 
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Fig. 4.7: CLSM images of control and coated PLA films. Cell viability of hMSCs cultured on different PLA surfaces namely the control (0-BL) 
and coated PLA films deposited with 1-, 3-, 5-, and 10-BL on 1 mm X 1 mm PLA films. Scale bar = 200 µm.  
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4.2.3.2. Cell proliferation and differentiation 

The extent of cell proliferation was estimated by DNA quantification. Overall, the 

deposition of the innovative coating materials assembly on the PLA films resulted in 

increased cell proliferation over the culture period (p ≤ 0.0001) and differed between the 

coated films (p ≤ 0.0001). There was a significant interaction between time and coated film 

(p ≤ 0.05) suggesting that the increase in DNA concentration over time differed between 

coated films. 

Compared to the control (non-coated PLA films), cells cultured on all coated films 

demonstrated significantly increased DNA content at day 7 and day 14 (p ≤ 0.0001 for 

each). No significant differences were observed in the cell proliferation of hMSCs seeded 

on the control PLA films over the culture period (p = 0.9999), as shown in Fig. 4.8.  

Among the coated films, hMSCs cultured on 5-BL coated films showed the highest DNA 

concentration at each time-point (p ≤ 0.0001). Cells cultured on 10-BL showed no 

significant differences in DNA content as compared to 3-BL coated films at 7 days (p = 

0.062) but significantly higher on 14 days (p = 0.0013). No significant differences were 

observed in the cell proliferation of hMSCs seeded on 1-BL and 3-BL coated films on day 

14 (p = 0.9981). 

Overall, the highest DNA contents were obtained by culturing hMSCs in direct contact 

with 5-BL coated films compared to all tested films (non-coated and coated films) on day 7 

and day 14 (p ≤ 0.0001 for each).  
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The early osteogenic differentiation of the hMSCs cultured on the control (non-coated) and 

coated PLA films was assessed by measuring their ALP activity after culturing for 7 and 

14 days in proliferation media. The ALP activity shown in Fig. 4.9 represented the values 

of ALP normalised to DNA concentration. The mean ALP activity of all the investigated 

films significantly increased over time (p ≤ 0.0001) and differed between films (p ≤ 

0.0001). There was a significant interaction between time and all the investigated films (p 

≤ 0.05) suggesting that the increase in ALP activity over time differed between these films. 

Regardless of the number of deposition cycles on the PLA films, significantly higher levels 

of mean ALP activity were obtained when hMSCs were cultured on the coated films than 

the control (non-coated films) on day 7 and day 14 (p ≤ 0.0001 for each). 

When comparing the coated films with each other, the highest levels of mean ALP activity 

were found when cells were cultured on 5-BL coated films at each time-point (p ≤ 0.0001). 

At 7 days, the mean ALP activity of cells cultured on 3-BL coated films was statistically 

higher than those on 1-BL (p = 0.0005) and this trend was also observed on 14 days 

(p ≤ 0.0001). Cells cultured on 10-BL revealed statistically higher level of mean ALP 

activity than those on 3-BL films after 14 days (p = 0.0036), although no significant 

differences were detected on day 7 (p = 0.1892).  

Overall, hMSCs cultured on 5-BL coated films exhibited the highest levels of mean ALP 

activity on day 7 and 14 (p ≤ 0.0001 for each) as compared to all other tested films (non-

coated and coated PLA films).  
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 Fig. 4.8: Cell proliferation of hMSCs indicated by the DNA contents after 7 and 14 days 
cultured on control PLA (0-BL) and PLA films deposited with different number of coating 
layers of 1-, 3-, 5- and 10-BL, respectively. 5-BL shows significantly higher DNA 
concentrations after 7 and 14 days in culture compared to other films (p ≤ 0.0001). 
Regardless of the number of deposition cycles, cells seeded on all coated films 
demonstrated significant increased in the DNA concentration from day 7 to day 14 
(p ≤ 0.0001). Cells cultured on control PLA films showed no significant differences over 
time (p = 0.9999). 

 Fig. 4.9: The ALP activity of hMSCs seeded on control PLA (0-BL) and PLA films 
deposited with different number of coating layers of 1-, 3-, 5- and 10-BL, respectively. The 
highest levels of ALP activity were found when cells were cultured on 5-BL films 
(p ≤ 0.0001). Cells cultured on 3-BL and 10-BL films showed no significant differences 
after 7 days (p = 0.1892) but as culture progressed, cells cultured on 10-BL revealed 
statistically higher levels of ALP activity (p = 0.036).  
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The levels of total protein produced by hMSCs cultured on control PLA (0-BL) and PLA 

films deposited with different number of coating layers of 1-, 3-, 5- and 10-BL, 

respectively are shown in Fig. 4.10. The levels of total protein production steadily 

increased over the culture period for all the coated PLA films (p ≤ 0.0001) and differed 

between these films (p ≤ 0.0001). There was a significant interaction between time and all 

the coated films (p ≤ 0.05) suggesting that the increase in total protein over time differed 

between these films. 

Compared to the control (non-coated PLA films), cells cultured on all coated films 

demonstrated significantly increased levels of mean total protein production at day 7 and 

day 14 (p ≤ 0.0001 for each). However, hMSCs cultured on the control PLA films showed 

no significant differences in the levels of total protein produced as culture progressed (p = 

0.1367).  

When comparing the coated films with each other, no significant differences were 

observed when hMSCs were cultured on 5-BL and 10-BL coated films at day 7 (p = 

0.8486). As culture progressed, significantly increased levels of mean total protein was 

observed on 5-BL compared to 10-BL on day 14 (p = 0.0005). At early 7 days of culture, 

higher levels of total protein produced when cells were cultured on 3-BL than 1-BL (p = 

0.0031), but significantly higher levels of mean total protein produced on 10-BL compared 

3-BL (p = 0.0001).  

Overall, hMSCs cultured on 5-BL coated film produced the highest levels of mean total 

protein on day 14 (p ≤ 0.0001 for each) compared to all other tested films (non-coated and 

coated films).  
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4.2.3.3. Cell metabolic activity 

The metabolic activity of hMSCs on control and coated PLA films after 7 and 14 days was 

measured using the alamar blue assay (Fig. 4.11). Over time, hMSCs in direct contact with 

coated films showed significant increase in the levels of alamar blue (p ≤ 0.0001) and 

differed between these films (p ≤ 0.0001). There was a significant interaction between time 

and all the coated films (p ≤ 0.05) suggesting that the increase in alamar blue over time 

differed between these films. 

Compared to the control (non-coated PLA films), cells were found to be more 

metabolically active on the coated films independent of the number of deposition cycles at 

both time-points (p ≤ 0.0001 for each). 

When comparing the coated films with each other, increasing number of deposition cycles 

on the PLA films resulted in higher levels of alamar blue at each all time-points (p ≤ 

0.0001 for each). At 7 days, cells cultured on 10-BL showed statistically higher level of 

metabolic activity than those on 5-BL (p = 0.0046). However, after 14 days in culture, 

hMSCs showed no significant differences in the metabolic activity when cultured on 5-BL 

and 10-BL films (p = 0.9920).  

Overall, the highest levels of alamar blue were obtained when cells were cultured on 5-BL 

and 10-BL on day 14 (p ≤ 0.0001 for each) as compared to all other tested films (non-

coated and coated films).  
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 Fig. 4.10: The levels of total protein produced by hMSCs cultured on control PLA (0-BL) 
and PLA films deposited with different number of coating layers of 1-, 3-, 5- and 10-BL, 
respectively. The levels of total protein production steadily increased over the culture 
period for all the coated PLA films (p ≤ 0.0001). After 7 days, no significant differences 
were found when cells were cultured on 5-BL and 10-BL films (p = 0.8486). As culture 
progressed, more total protein produced by hMSCs on 5-BL films compared to those 
cultured on 10-BL (p ≤ 0.001). 

 Fig. 4.11: Metabolic activity of hMSCs seeded on control and coated PLA films at 7 and 
14 days of culture. The levels of alamar blue of hMSCs on all coated films were found to 
be statistically higher than the control after 7 days with cells seeded on 10-BL shows the 
highest levels of alamar blue. After 14 days, no significant differences were observed on 
the levels of alamar blue of hMSCs cultured on 5-BL and 10-BL films (p = 0.9920).  
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4.3. Discussion 

4.3.1. The effect of coupling agent in PEMs assembly 

In the current study, novel coating materials assembly for PEMs technique has been 

established. To our knowledge, this combination of coating materials assembly has not 

been reported anywhere else in the literature. The rationale underpinning the selection of 

this coating materials assembly was to closely mimic the bone composition and ECM 

environment. The novel multi-substituted HA (SiCHA) nanopowders used in this work 

possess similar composition to the mineral content of bone as discussed in the previous 

chapter. Collagen type I was chosen as a component for the polycations in PEMs as it 

remains positively charged in solution, below the isoelectric point which is close to pH 5.0 

(Zhao et al. 2014). In this work, collagen type I was used as a carrier to bind the SiCHA 

powders on the PLA films. By incorporating collagen type I into the assembly, it provides 

more cell recognition sites, thus enhanced the cellular adhesion and proliferation on the 

PLA films surface (Wang et al. 2014). It is known to have a variety of cell adhesive 

peptide moieties (i.e. Arg-Gly-Asp, RGD) for anchoring cells and act as structural cue for 

stimulating cell growth. Therefore, surface chemical and topographical cues created by 

hydroxyapatite-based nanoparticles and collagen multilayer deposition mimicked the 

natural ECM (Kim et al. 2010). Moreover, many reports have focused on osteogenic 

differentiation of MSCs cultured on collagen type I. The activation of specific integrins by 

collagen type I was reported to mediate the osteogenic response of hMSCs (Mizuno & 

Kuboki 2000; Salasznyk et al. 2004; Dawson et al. 2008). In order to allow PEMs 

assembly, hyaluronan was used as the polyanion. Hyaluronan is also called hyaluronic 

acid, a major component of the ECM and synovial fluid. Thus, in this study we proposed 

the combination of SiCHA nanopowders, collagen type I and hyaluronan as attractive 

innovation in the development of coating materials assembly for osteogenesis applications. 
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Firstly, the validity in the use of EDC/NHS as coupling agent was verified. Since collagen 

type I and hyaluronan are the major ECM proteins, it is possible to covalently immobilize 

these ECM proteins using coupling agents such as hexamethylene diisocyanate (HMDIC), 

1, 6-dimethyl suberimidate dihydrochloride (DMS) (Higuchi et al. 2005) or EDC/NHS 

(Melkoumian et al. 2010). EDC is a water-soluble carbodiimide that is generally used at 

pH 4.0-6.0 (Melkoumian et al. 2010). It is critically important to preserve the pH 

throughout the multi-layered depositions in order to avoid degrading the efficiency of the 

coating materials in PEMs. Besides HMDIC, DMS and EDC/NHS, glutaraldehyde is one 

of the typical cross-linking agents used in PEMs. Glutaraldehyde is not commonly used in 

tissue engineering as it can cause a toxic effect to the stem cells. EDC/NHS promotes 

cross-linking between carboxylic acids and amino groups in ECM proteins. Thus, 

EDC/NHS was chosen as the coupling agent in this work because it functions at 

approximately pH 5.0, similar to both the polyelectrolytes used in the PEMs and it has 

limited toxicity (Higuchi et al. 2012). Therefore, it was used to immobilize the functional 

coating materials onto PLA films.  

SEM images have demonstrated that PLA films coated with one bilayer of coating 

materials having EDC/NHS as the outermost layer (1-BL) showed significantly better 

distribution of the coating materials throughout the surface than those without EDC/NHS 

surface finished (1-BL*). The introduction of EDC/NHS was believed to successfully 

immobilize the coating materials onto the films surfaces. EDC/NHS had firmly bound the 

bilayers deposited on the 1-BL PLA films, evidenced by the retention of the coating after 

washing was performed. On the other hand, some of the coating materials on the 1-BL* 

PLA films were slightly washed off at the final stage where the films were rinsed in dH2O 

before proceeding with the next deposition cycles, resulting in localized agglomerated 

coating materials on the surface as seen in SEM images (Fig. 4.1 d). This observation 
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highlighted the importance of using EDC/NHS in PEMs and appears as an innovative way 

to improve the surface modification of the hydrophobic nature of PLA films. Thus, the 

newly developed coating materials assembly consists of novel SiCHA powder in 

hyaluronan, SiCHA powder in collagen type I and EDC/NHS deposition cycles was then 

adapted in the following study. 

4.3.2. The effect of different number of bilayers on surface properties 

The effect of these novel coating materials assembly with different number of layers 

deposited on the PLA films was studied in terms of physical, chemical and biological 

properties. It is known that the surface properties of a biomaterial such as topography, 

chemical composition and hydrophilicity can affect cell-biomaterial interaction (Chesmel 

et al. 1995; Lincks et al. 1998). Surface properties greatly influence the viability and 

functional activity of anchorage-dependent cells such as osteoblasts, upon implantation of 

TE constructs into the body.  Cells directly get in contact with the implant surface before 

the interaction throughout the entire construct could occur, i.e. cells adhere to the protein 

adsorb layer on the implant surface and proliferate, followed by migrating over the entire 

construct over time (Zhao et al. 2014).  

The surface roughness and topography of the unmodified and modified PLA films were 

evaluated using AFM. Amino functional groups were introduced onto PLA films surface 

through aminolysis (Bunnett & Davis, 1960). This process provides a positive charged on 

the surface, which allows the alternate absorption of polyanion (i.e. SiCHA in hyaluronan) 

followed by polycation (i.e. SiCHA in Collagen type I) solutions. The introduction of the 

coating materials assembly induces a rougher surface area on the films compared to the 

control PLA films (unmodified). This is due to the presence of the aggregates of SiCHA 

nanopowders deposited on the surface of the film with increasing number of layers. This 
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could influence the cell behaviour in contact with the coated PLA films (Deligianni et al. 

2001). It is well known that cell adhesion and proliferation are sensitive to the surface 

topography of the biomaterial (Brunette, 1988). It has been demonstrated that human 

osteoblast-like cells cultured on titanium alloy surfaces with rougher surfaces resulted in 

greater cell spreading and proliferation relative to smoother surfaces of the same material 

(Schwartz et al. 2008).  

In this work, 5-BL coated films possess the highest surface roughness of all the groups 

tested. However, after 5 deposition cycles, there was a small drop in the surface roughness 

of the 10-BL coated films. This result was consistent with the findings by Zhu et al. 

(2003). Subsequent deposition of polyelectrolytes serves to fill voids and defects present in 

previous layers of the coating, effectively creating a smoother surface (Lowman & Buratto 

2002). It is also believed that after finite n-layers deposition (which varies depending on 

the materials used), the electrostatic force binding the polyelectrolytes become weaker and 

the surface might have reached the saturated level of absorption; no further absorption 

occurs (Szilagyi et al. 2014). Thus, increasing number of coating layers could cause 

collapse of the layers formed as the coating materials fail to properly bind to the surface.  

The distribution of coating materials on the surface was further observed using TEM. The 

images acquired support the surface topography observed under AFM. The surface was 

covered with more coating materials as a function of the increase in number of layers. 

Coating materials were found to almost cover the entire surface of 5-BL coated films and 

seemed reduced on 10-BL PLA films as coating materials assembly possibly reached 

saturated adsorption point after 5-BL deposition cycles. This explained why 5-BL has the 

highest surface roughness compared to the other coated films. 
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In the current investigation, the chemical compositions of the coating deposited on the 

PLA films were also evaluated. XPS analysis confirmed that the hydrophobic PLA films 

were effectively modified by aminolysis process, as identified by the presence of N1s 

peak. Increasing number of layers means more collagen deposited on the surface, which 

associated with the increased of amino acid residues (from collagen) on the surface. As a 

consequence, the intensity of N1s peak appeared higher on the coated PLA films with 

increasing deposition cycles compared to the aminolyzed PLA films (Zhang et al. 2006).  

The composition of the coating materials assembly deposited on the PLA films was further 

assessed qualitatively by histochemical staining. Both Alizarin Red and Sirius Red showed 

positive stains, which confirmed the presence of calcium and collagen deposited on the 

surfaces. Brighter and more homogenous stains were obtained as more coating materials 

were deposited on the surface. After three deposition cycles, no obvious differences in SR 

staining were observed. This indicates that the adsorption of the coating materials on the 

surface is approaching the saturation level. Comparing 5 deposition cycles with 10 cycles, 

less AR stain was observed on 10-BL than 5-BL films. This suggests that the surface has 

become saturated and could not adsorb more deposition of the coating materials.  

4.3.3. In vitro hMSCs growth and osteogenic differentiation   

The final aim of this work was to investigate the cytotoxicity effect of the newly developed 

coating materials assembly on hMSCs behaviour particularly, the SiCHA nanopowders 

and PLA films, which are the major components of the hybrid system. While, collagen 

type I and hyaluronic acid were only the carriers for SiCHA nanopowders to allow these 

powders to be chemically bound to the PLA films. Therefore, only unmodified PLA films 

was used as control in this study. Ideally, PLA films coated with either collagen type I or 

hyaluronic acid alone should be tested in the future for determining the most favourable 
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growth environment for hMSCs on PLA films. This will also provide a better 

understanding for the role of each component used in the hybrid system that could affect 

the outcome.  

For an ideal bone scaffolds, the construct itself should be able to provide a cell-favourable 

microenvironment for supporting cellular adhesion and proliferation (Kim et al. 2010). The 

seeded hMSCs on the control and coated PLA films deposited with different number of 

bilayers showed no toxicity effects after 14 days. There was no evident difference in the 

cell morphology on different substrates; hMSCs showed an elongated fibroblast-like 

morphology on all tested films. However, more viable cells were found on the coated PLA 

films than the control PLA films (unmodified). Rodrigues et al. (2013) reported similar 

observation upon culturing MG63 osteoblast-like cells on collagen-nano HA scaffolds and 

collagen scaffolds. These results confirmed that the coating materials invented are 

biocompatible and lead to better cell viability. It is believed that cell adhesion was likely to 

have improved as a result of increasing number of deposited layers (Kim et al. 2010). 

The amount of DNA as a function of culture period was used to assess the proliferation of 

hMSCs. The presence of the multilayer coating played an important role in favouring the 

cellular adhesion and proliferation on the surface. As expected, 5-BL coated films seem to 

have prominent effects on cell proliferation. 5-BL surfaces have the highest surface 

roughness and well-distributed coating materials on the surface. This proved that the 

rougher the surface area, the better the cellular adhesion and proliferation (Schwartz et al. 

2008; Rodrigues et al. 2013). As mentioned above, the surface roughness increased with 

the layer of deposition cycle (up to 5-BL), means larger specific surface area available that 

subsequently, might promote more proteins interaction on the surface (i.e. adsorption, 

conformation and bioactivity), which further enhanced the cell adhesion and proliferation 
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(Kim et al. 2010; Laranjeira et al. 2010; Ribeiro et al. 2010; Rodrigues et al. 2013). 

However, there are discrepancies in the literature on the effect of surface roughness on cell 

attachment, proliferation and differentiation. These inconsistencies may be due to 

differences in the cell type used, culture conditions, serum concentration, surface 

fabrication methods, sterilization technique and type of substrate as highlighted by 

Osathanon et al. (2011).  

Besides surface roughness, the chemical composition also plays an important role in cell 

responses. Among the multilayer components, collagen is known to contains an adhesion 

sequence (RGD), which favours cell attachment and proliferation (Bisson et al. 2002; 

Becker et al. 2002; Ma et al. 2005). A study using SaOS-2 osteosarcoma cell line on PLLA 

with apatite and apatite/collagen composite coating reported in the literature found that the 

presence of collagen assisted cell attachment and proliferation when it was combined with 

apatite crystals (Chen et al. 2008). It was also discovered that a favourable matrix for cell 

attachment and growth was provided by grafted collagen type I (Suh et al. 2001). The 

benefits of collagen have also been investigated using other cell types than osteoblast-like 

cells. For instance, Ma et al. (2005) cultured chondrocytes on collagen immobilized PLLA 

surfaces and reported that the surfaces displayed considerably enriched cell spreading and 

growth. In the current study, cell adhesion and proliferation were facilitated with the 

present of collagen as polycations in PEMs assembly. The composition of the newly 

developed coating materials assembly is closely resembled the bone mineral composition. 

This may be the main reason for the observation that the highest cell proliferation level had 

been obtained on the coated PLA films compared to the control (unmodified PLA) (Chen 

et al. 2008). Regardless the deposition cycles, all coated PLA films encourage rapid cell 

proliferation.  
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ALP production by hMSCs increased overall with the culture period. In consistency with 

hMSCs viability, adhesion and proliferation, ALP activity increased with number of 

deposited cycles. This indicated that the coating materials assembly are both 

osteoconductive and osteoinductive as they provide a suitable basis that could accelerate 

matrix-mediated intracellular signalling related to osteoblastic activity (Kim et al. 2010). 

Moreover, this result demonstrated the efficacy of the SiCHA nano aggregates formed on 

the surface, which not only improved cell adhesion by providing rougher surface but also 

enriched the osteoblastic phenotype. Considering a patient with large bone defects, the 

implanted scaffold should be both osteoconductive and osteoinductive by itself. Indeed, a 

monolithic scaffold fabricated either from osteoconductive material (i.e. HA-based 

nanocrystals) or osteoinductive material (i.e. collagen type I) could favour osteogenesis, 

but having composite scaffolds of collagen-HA has been proven to accelerate the new bone 

formation leading to rapid recovery. Previously, Tsai et al. (2008) cultured MG63 

osteosarcoma cell line on collagen-HA composite beads and discovered that HA increased 

the ALP activity of the cells when cultured on collagen-HA composite beads than they 

were cultured on collagen alone. In addition, osteoblast responses to gelatin-HA 

nanocomposites were investigated over 14 days in culture. It was determined that the ALP 

levels were significantly higher on the nanocomposite when compared to pure gelatine 

(Kim et al. 2005). This is due to the good osteoconductive properties of HA (Tang et al. 

2005; Fathi et al. 2008). Several studies have demonstrated that calcium ions (a major 

component of HA) are directly involved in boosting the proliferation and osteoblast cell 

type phenotype expression through membrane-mediated ion transfer, which is a possible 

explanation for the here observed results (Rodrigues et al. 2013). This highlighted the 

benefits of having both collagen type I and HA-based material as the major components in 

fabricating a hybrid scaffold with the aim to enhance bone formation.  
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In consistence with the DNA contents, hMSCs cultured on coated PLA films showed an 

increased protein release when compared to the control unmodified PLA films. The levels 

of total protein increased as a function of deposition cycles up to 5-BL. The unmodified 

PLA films produced the lowest levels of total protein at either time-point compared to the 

coated films (p ≤ 0.0001). After 14 days, hMSCs cultured on 5-BL films produced the 

highest levels of total protein, meaning more proteinaceous materials produced as in direct 

contact to 5-BL films than others. The trend for the levels of total protein production for 

different number of deposition cycles is as follows:  

5-BL > 10-BL > 3-BL > 1-BL > 0-BL 

 

 

Coated PLA films demonstrated enhancement in the cell metabolic activity as compared to 

the unmodified PLA films; which is the similar response to the levels of total protein 

produced. Cells were found to be the most metabolically active when cultured on 5-BL and 

10-BL PLA films with no significant differences were observed (p ≥ 0.05) after 14 days in 

culture. This showed that increasing number of deposition cycles after 5-BL has no 

improvement on the cell metabolic activity.  

 

 

 

Decreasing trend of total protein production 
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4.4. Conclusions 

In this study, the hydrophobic PLA films were successfully modified with different layers 

of novel coating materials assembly. The use of EDC/NHS coupling agent has effectively 

immobilized the coating layers onto the PLA substrate. Surface roughness, topography and 

chemical compositions of the coatings deposited on the PLA films increased with 

increasing the number of deposition cycles. It was found that 5-BL PLA films possess the 

highest surface roughness and homogenous distribution of coating materials assembly.  

In vitro tests confirmed that the newly developed coating material is biocompatible and 

able to support cell adhesion and proliferation over the surface of the materials. The coated 

PLA films were able to encourage faster cell proliferation and functional activity as 

compared to the unmodified PLA films, as determined by DNA quantification and cell 

activity markers, i.e. metabolism, protein production and ALP activity. This finding proved 

that the aminolysis process followed by deposition of PEMs with different deposition 

cycles of coating materials assembly have efficiently enhanced the surface properties of 

PLA films. PLA films deposited with 5 deposition cycles of coating materials provided 

more adequate environment for cell adhesion, proliferation and improving cell response 

after 14 days and this is likely to be as a consequence of increased surface roughness and 

homogenous distribution of coating materials on 5-BL materials.  

By considering all the aforementioned physical, chemical and cell behaviour on different 

surface of the PLA films, finding leads to conclusion that 5-BL of PEMs assembly are 

potentially ideal deposition cycles to fabricate hybrid three-dimensional printed (3DP) 

scaffolds for BTE applications. Taken into account that the hybrid 3DP scaffolds will be 

fabricated in a large scale, it is critically important to ensure that the fabrication technique 

involved is simple, easily reproducible and most importantly time and cost-effective. 
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Minimum manufacturing consumption with maximum performances is always the goal in 

the production line. Again, 5-BL perfectly fulfilled this requirement. Increasing the 

number of deposition layers after 5 deposition cycles had no improvement on the 

performance of the coating material. Instead, the production time taken and chemicals used 

for 5-BL was half as required for 10-BL PLA films. Thus, 5-BL coating layers consist of 

newly developed coating materials assembly of SiCHA in hyaluronan, SiCHA in collagen 

type I and EDC/NHS was established and implemented in further investigation for the 

fabrication of 3DP hybrid scaffolds discussed in the following chapter.  
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5.1. Introduction 

The tremendous demand for a bone graft substitutes to treat patients with congenital 

defects, tumour or non-union fracture is still alarming. Limited availability of suitable bone 

graft has driven the development of tissue engineering (TE) approaches to overcome the 

limitations of bone regeneration (Sheyn et al. 2010). There are three proposed approaches 

in bone TE: (i) the use of isolated cells or cell substitutes to replace the defective tissues, 

(ii) the delivery of tissue-inducing substances such as growth factors, to the targeted 

locations and (iii) growing cells in three-dimensional (3D) scaffolds which is also known 

as scaffold-based TE (Langer & Vacanti 1993; Bloch et al. 2001; Peterson et al. 2002). 

The first two approaches are mostly employed when the defects are small and well 

confined. However, for large bone defects, these two approaches have serious limitations 

(Song et al. 2008). An intervention is usually required to heal the majority of the large 

bone defects and the ability to heal these sizes of injuries is limited (Stevens 2008). 

Therefore, researchers worldwide have been focussed on the third approach e.g. scaffold-

based TE, which involves the combination of scaffolds, cells and potentially an appropriate 

3D culture environment as regenerative strategy (Hutmacher et al. 2004). 

A biodegradable scaffolds is a temporary substrate for cell growth and activity as well as 

encourage cells to synthesize their extracellular matrix (ECM) and other biological cues 

that could facilitate the formation of functional tissues/ organs (Salgado et al. 2004; Song 

et al. 2008). Several kinds of scaffolds have been fabricated using polymer, ceramic or 

natural based materials for example poly (lactic acid) (PLA), poly (glycolic acid) (PLGA), 

hydrogel, chitosan, hydroxyapatite (HA), and so forth by various fabrication techniques 

(Hutmacher 2000; Sachlos & Czernuszka 2003). Recently, the Rapid Prototyping (RP) 

techniques have become an attractive alternative to fabricate an intricate scaffolds design 
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for bone TE, as it allows customization of scaffold designs to treat the variable needs of 

patients. For instance, a section of bone defect from the patient can be imaged using 

Magnetic Resonance Imaging (MRI) or X-Ray computed tomography (CT scan), which 

can then be converted to the file format for RP manufacturing (usually in 

stereolithographic or .STL format). The final stage is to print a customized 3D scaffolds 

for that individual patient (Bagaria et al. 2011). The 3D scaffolds can be constructed using 

different types of RP techniques such as fused deposition modeling (FDM) (also known as 

fused filament fabrication, FFF), 3D plotter and 3D printing (Subia et al. 2010). 

In order to induce a 3D pattern of cell ingrowth and differentiation, a 3D scaffold alone is 

insufficient. The addition of progenitor cells can promote more rapid growth when 

delivered to the patient. The growth of these 3D constructs requires specialized growth 

chambers termed bioreactors. These chambers enhance mass transfer throughout the 

scaffold and provide optimized conditioning of the constructs with tailored biomechanical 

conditions related to the implant site (El Haj & Cartmell 2010). Previous research has 

demonstrated that preconditioning with mechanical forces can lead to scaffolds and 

matrices being remodeled and therefore being adapted to the implant site (Baas et al. 

2010). In our experiments where we have designed a 3DP hybrid scaffold with aligned 

channels there is more of a need for a culture environment that supports larger TE 

constructs and promotes cell proliferation and differentiation such as the rotary bioreactor 

selected for this study.  

Bioreactors technologies are the most commonly used for dynamic cell culture studies 

(Rauh et al. 2011; Yeatts & Fisher 2011). Ideally, a bioreactor should enable controlled 

biochemical and/or biological processes. One example of an early bioreactor design still 

commercially available today is the rotating wall vessels (RWVs) bioreactor, which was 
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originally developed by NASA for space research. The aim of these bioreactors was to 

protect cell cultures from the high shear forces generated during launch and landing of the 

space transport, however, the system has also been found to provide a good growth 

environment for TE which requires improved mass transport without mechanical 

conditioning. In this system, cell constructs are able to rotate in the vessels with minimal 

disruptive shear stresses, thus simulating microgravity conditions and essentially free from 

turbulence (Granet et al. 1998). RWVs are used to support high-density and large scale 3D 

cell cultures and provide controlled supply of oxygen and nutrients needed for cell growth 

(Gao et al. 1997).  

There have been various studies on the effects of microgravity in the culture of osteoblast-

like cells have been investigated (Sikavitsas et al. 2002; Facer et al. 2005; Sheyn et al. 

2010). However, contradictory results have been described. Some authors reported that 

microgravity inhibits the proliferation and osteogenic differentiation of mesenchymal stem 

cells (MSCs) (Dai et al. 2008; Zayzafoon et al. 2013). On the other hand, Nakamura et al. 

(2003) found that the viability of human osteoblasts cells were not affected by the 

microgravity conditions even after several days in culture. In fact positive impacts of using 

RWVs bioreactor were demonstrated by Sheyn et al. (2010) and Araujo et al. (2010) where 

the improved  mass transfer provided by the bioreactor in combination with the appropriate 

substrate were thought to be a  decisive factor for stimulating osteogenic differentiation. 

However, it is known that the cell viability and ingrowth are not solely dependent on the 

cell culture conditions. There are other important parameters, which should be taken into 

consideration such as the scaffold surface properties in particular the surface roughness, 

chemical composition and porosity. These properties could greatly affect the cell 

attachment and activity (Salgado et al. 2004). Alongside the microgravity effect, the 

chemical cues and the rotating speed might also contribute to the different outcomes in the 
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cell response. The interplay between these factors must be optimized for the best outcome 

of tissue growth prior to implantation.  

The aim of this study was to investigate the fate of human bone marrow derived-

mesenchymal stem cells (hMSCs) cultured on different structural and functional designs of 

three-dimensional printed (3DP) hybrid scaffolds in static and dynamic conditions with the 

use of the rotary bioreactor (RCCS systems, Cellon, Synthecon, Texas). The 3DP scaffolds 

were initially fabricated by Fused Filament Fabrication technique followed by surface 

modification using Polyelectrolyte Multilayers (PEMs) assembly. The optimized coating 

technique described in the previous chapter was adapted to engineer the 3D hybrid 

scaffolds. The effect of the chemical cues in the culture medium were also investigated in 

this study by culturing the cellular scaffolds in two differences culture medium i.e. the 

osteogenic media (OM) and proliferation media (PM) for both conditions. Pure 

hydroxyapatite (HA) scaffolds purchased from Ceramisys (Sheffield, United Kingdom) 

was used as the experimental control since this product is commercially available and has a 

supporting clinical data. It should be noted that the clinical data is not shown in this study 

since it is highly confidential.  

5.2. Results 

5.2.1. Scaffold designs for bone TE 

In this study, three different scaffold designs were fabricated by FDM technique followed 

by PEMs (as described in Chapter 4) in order to produce 3DP hybrid scaffolds. 

Commercially available scaffolds of pure sintered HA scaffolds were used as the 

experimental control. The basic properties of commercial HA, 2 channels (designated as 

2C), 4 channels (designated as 4C) and mesh scaffolds are summarized in Table 5.1. The 
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examples of three-dimensional drawing for 2- and 4-channel scaffolds are illustrated in 

Fig. 5.1.  

Table 5.1: Summary of the basic properties of HA, 2C, 4C and mesh scaffold. 

 

** SA: V= surface area to volume ratio. 

 

 

Fig. 5.1: Examples of three-dimensional drawing for 2- and 4-channel scaffolds. 
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5.2.2. Seeding efficiency on three-dimensional scaffolds 

The concept of Bone tissue engineering (BTE) holds great promise for the treatment of 

clinical defects. However, much optimization is required before BTE can be broadly 

applied clinically. This study evaluated various cell seeding methods on the different 

designs of 3D scaffolds i.e. the HA, 2C, 4C and mesh scaffolds seeded with different 

volume of cell suspensions (20 and 40 µL) in coated and non-coated well plates. The 

seeding efficiency on different scaffolds is represented in terms of percentages of cell 

attachment onto the scaffolds as shown in Table 5.2.  

Table 5.2: Percentages of cell attachment onto the scaffolds with different cell volume 
suspensions on different scaffold designs. 

Scaffolds Coated well plates Non-coated well plates 

20 µL 40 µL 20 µL 40 µL 

HA 55% 47% 46% 45% 

2C 87% 80% 56% 48% 

4C 85% 77% 60% 52% 

Mesh 80% 75% 48% 40% 

Note: Coated well plates = 1 w/v% Pluronic F-127 coated 24-well cell culture plates; non-
coated well plates= normal 24-well cell culture plates. The volumes indicate 5 X 104 cells 
in 20 and 40 µL delivered to the scaffolds. 

The results suggested that scaffolds seeded with small cell volume suspension of 20 µL 

have higher percentages of cell attachment onto the scaffolds as compared to 40 µL cell 

volume suspension. Regardless of the scaffold designs, lower cell attachment was found on 

scaffolds seeded in the non-coated well plates. Overall, HA scaffolds exhibited the lower 

percentages of cell attachment as compared to the 3DP hybrid scaffolds. In order to further 

optimize the seeding efficiency, scaffolds were then seeded in two different methods using 

20 µL volume suspension and coated well plates.  



Results and discussion Chapter 5 
 

!
Page  

!
! !
 

193 

The cells were seeded either on one-side or two-sides on all scaffolds types. MTT stain 

was used to qualitatively determine the cell distribution throughout the scaffolds. Images 

are shown in Fig. 5.1. A positive MTT stain forms a blue formazan upon reduction at the 

site of metabolically active viable cells (Stoddart 2011). 

 Fig. 5.2: Cell distribution on different scaffold designs seeded with one-sided and two-
sided seeding method. Scale bar = 1 mm.   

MTT staining indicates that two-sided cell seeding resulted in better cell distribution across 

the surface of the scaffold than one-sided seeding represented by the purple stained (Fig. 

5.2). After 6 hours incubation, cells were found to have attached and were more 

homogenously spread over the entire scaffolds when seeded on both sides of the scaffolds 

(data not shown). It was observed that 2C and 4C scaffolds showed brighter stains 

compared to the porous HA and mesh scaffolds. This indicates that the former scaffolds 

have better cell attachment and distribution compared to the latter.  
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5.2.3. Optimization on the rotational speed of the rotary bioreactor 

In our initial experiments, the rotational speed of the rotary bioreactor has been optimized. 

To achieve this, the cellular scaffolds with the most optimal seeding method (small volume 

suspension of about 20 µL with cell seeded in two-sided method in a coated well plate) 

were cultured in the 50 mL vessels of the rotary bioreactor then rotated at 20 and 40 rpm 

for 24 hours. The cell viability was then observed by live/dead staining under confocal 

laser scanning microscope (CLSM) as shown in Fig. 5.3. The images indicated that more 

viable cells were found on the cellular scaffolds cultured at 20 rpm compared to 40 rpm. 

This indicates that the lower rotational speed allows for a better cell attachment across the 

scaffolds whilst the cells tend to detach from the scaffolds when they were rotated at 

higher speed. At a higher speed of 40 rpm, scaffolds started to collide with each other and 

the wall of the chamber, resulted in some loss of cells. At lower speed than 20 rpm, 

scaffolds sediment at the bottom of the chamber and stick to each other (data not shown). 

Thus, 20 rpm was chosen as the ideal speed to study the effect of dynamic condition on the 

hMSCs fate cultured on different structural design of 3DP hybrid scaffolds. 

 

Fig. 5.3: Cell viability on different structural designs of 3DP hybrid scaffolds at 20 and 40 
rpm, respectively. Results suggested more viable cells were found as cells were cultured at 
20 rpm where the scaffolds were free floating in the rotary bioreactor. Scale bar= 500 µm. 
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5.2.4. Determining the fate of cellular scaffolds in several culture conditions 

Having determined the best seeding and growth conditions for the cellular scaffolds, e.g. 

cells were seeded onto the scaffolds using the two-sided seeding method in which each 

scaffold was seeded with about 20 µL cell volume suspension contains 5X104 hMSCs on 

each side of the scaffold, the fate of the cells with time in culture was determined.  

The results did demonstrate a difference, however, in terms of the incubation time (before 

transferring to the bioreactor) required for the 3DP hybrid scaffolds and the control HA 

scaffolds. For the 3DP hybrid scaffolds, the cellular scaffolds were cultured in static 

condition for 24 hours before transferring them to the rotary bioreactor. However, the HA 

scaffolds needed longer incubation time in static before they can be transferred to the 

bioreactor in order to allow for cell adhesion. As suggested by the manufacturer, these 

scaffolds should be incubated at least for 72 hours post-seeding before the same dynamic 

condition use for the 3DP hybrid scaffolds can be applied.  

In this study, we have two hypotheses; (1) the dynamic flow and the use of osteogenic 

media are expected to enhance the bone formation in vitro compared to those cultured 

under static condition and in proliferation media; and (2) Our second hypothesis was the 

novel designed of the 3DP hybrid scaffolds are assumed to promote better bone formation 

than the commercial HA scaffolds. While, our null hypothesis was the designs of 3DP 

hybrid scaffolds have no effect on bone formation in vitro. The role of the osteogenic 

media versus culture environment was evaluated by assessment of the chemical cues from 

the culture medium. Cellular scaffolds were cultured in ostegenic media (OM) and 

proliferation media (PM) for both conditions. The cellular scaffolds were then 

characterized qualitatively and quantitatively after 7, 14 and 21 days in culture. The cell 

viability of the hMSCs seeded on different scaffold were observed using live/dead staining. 
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To determine the early osteogenic differentiation, ALP kits were used to determine the 

level of alkaline phosphatase expression on the cellular scaffolds. Furthermore, 

biochemical assays were performed to quantitatively determine the scaffolds cellularity, 

the capability to produce extracellular matrix and protein, the early indicator for osteogenic 

differentiation as well as cell death. Finally, the scaffolds were analysed using µCT to 

estimate the formation of the mineralized matrix on the cellular scaffolds in different 

culture conditions. 

5.2.4.1. Cell seeding and cell viability 

Live/dead staining was performed before the cellular scaffolds were transferred into the 

rotary bioreactor to confirm that the cells were attached to scaffolds before any stimulation 

was applied. This allowed confirmation that all scaffolds were comparably seeded prior to 

the application of dynamic culture, ensuring that any differences could be attributed to the 

culture condition, rather than differences in the initial cell seeding density. The CLSM 

images (Fig. 5.4) showed that higher proportions of viable cells were found on 3DP hybrid 

scaffolds than the HA scaffolds one day after seeding. However, no quantitative analysis 

was performed to determine the actual proportion of viable cells attached on each scaffold. 

 

Fig. 5.4: CLSM of hMSCs seeded on all four scaffold designs cultured under static 
condition OM and PM after 1 day (for 3DP hybrid scaffolds) and 3 days (for HA scaffolds). 
Green indicates the live cells and red represents the dead cells. Yellow scale bar = 500 µm. 
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The obtained CLSM images showed in Fig. 5.5 revealed that hMSCs seeded on HA 

scaffolds were only able to attach when scaffolds were cultured in static condition. 

Regardless of the culture medium, no cells were found on the HA scaffolds in the rotary 

bioreactor up to 21 days.  

 Fig. 5.5: CLSM images of hMSCs seeded on HA scaffolds cultured either under static or 
dynamic conditions in OM and PM for different time periods of 7, 14 and 21 days. Green 
indicates the live cells and red represents the dead cells. Yellow scale bar = 500 µm.  

  
Cells were able to proliferate throughout the HA scaffolds in static condition over the 

culture period. On the other hand, cells seeded on the 3DP hybrid scaffolds remained 

viable over the culture period in all culture conditions. Very few dead cells (<30%) were 

detected on these cellular scaffolds for all three designs as shown in Fig. 5.6-5.8. 
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The cell viability of hMSCs seeded on 2C scaffolds is represented in Fig. 5.6. Cells were 

able to attach and proliferate throughout the entire scaffolds over time. In addition, the 

hMSCs started to form bone-like nodules (as indicated by arrows in Fig. 5.6) on the 

surface of the 2C scaffolds after 14 days cultured with the use of the rotary bioreactor in 

osteogenic media. However, no aggregates were detected when the cellular scaffolds were 

cultured in the bioreactor without the presence of the osteogenic supplements in the culture 

media. Similar observations were obtained as the cellular scaffolds cultured in static 

conditions for both media. Under static conditions, cells were able to proliferate and fully 

cover the surface of the scaffolds in particular after 21 days in culture.  

 Fig. 5.6: CLSM images of hMSCs seeded on 2C scaffolds cultured either under static or 
dynamic conditions in OM and PM for different time periods of 7, 14 and 21 days. Green 
indicates the live cells and red represents the dead cells. Bone-like nodules (indicated by 
the white arrows) were observed as the cellular scaffolds were cultured in the rotary 
bioreactor with the use of osteogenic media after 14 days in culture. Yellow scale bar = 
500 µm. 
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The hMSCs were able to proliferate on 4C scaffolds in both static and dynamic conditions 

as shown in Fig. 5.7. Interestingly, the bone-like nodules (indicated by the white arrows) 

were detected in both static and dynamic condition as the 4C cellular scaffolds were 

cultured after 21 days in osteogenic media. However, a distinct outcome obtained when the 

4C cellular scaffolds were cultured in proliferation media. After 21 days, the hMSCs were 

found to reach confluence when the 4C cellular scaffolds were cultured under static 

conditions whereas cell detachment was observed from the surface when grown in the 

rotary bioreactor. 

 
Fig. 5.7: CLSM images of hMSCs seeded on 4C scaffolds cultured either under static or 
dynamic conditions in OM and PM for different time periods of 7, 14 and 21 days. Green 
indicates the live cells and red represents the dead cells. Bone-like nodules (indicated by 
the white arrows) were observed as the cellular scaffolds were cultured in the osteogenic 
media for both static and dynamic culture conditions after for 21 days. Yellow scale bar = 
500 µm. 
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Similar to the 2C and 4C 3DP hybrid scaffolds demonstrated earlier, cells were able to 

attach to the mesh scaffolds and remained viable throughout the culture period of 21 days 

(Fig. 5.8). However, less viable cells were found when the cellular scaffolds were cultured 

in Dynamic/PM with increasing culture periods, i.e. a deleterious effect was seen after 21 

days when most of the cells detached from the scaffolds. The opposite outcome was 

obtained when the cellular scaffolds were cultured in Dynamic/OM. The cells 

homogenously distributed across the scaffolds after 21 days. For the cellular scaffolds 

grown in static conditions, regardless of the culture medium, the cells were able to attach 

and proliferate along the struts of the mesh scaffolds. 

 Fig. 5.8: CLSM images of hMSCs seeded on mesh scaffolds cultured either under static or 
dynamic conditions in OM and PM for different time periods of 7, 14 and 21 days. Green 
indicates the live cells and red represents the dead cells. Cells were stretched out across 
the struts of the mesh scaffolds after 21 days cultured in Dynamic/OM. Negative effect of 
microgravity was seen in Dynamic/PM as the cells were found to detach from the 
scaffolds. Yellow scale bar = 500 µm. 
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The end goal of this study is to select the ideal scaffold design from our studies to translate 

for bone TE applications in the clinic. To do so, the results obtained after 21 days of 

culture was used to compare the impact of culture condition on different scaffold designs. 

In terms of cell viability, the results demonstrate that the 3DP hybrid scaffolds 

outperformed the HA scaffolds (experimental control) as seen in Fig. 5.9. The formations 

of bone-like nodules were found on the 3DP hybrid scaffolds in particular the 2C and 4C 

scaffolds in Dynamic/OM. While, cells seeded on HA scaffolds were not able to survive 

once they had been exposed in the rotary bioreactor regardless of the culture medium used.  

 

Fig. 5.9: Comparison of cell viability for different scaffold designs after 21 days cultured 
under static and dynamic conditions in OM and PM. For the HA scaffolds, cells were only 
able to attach in static condition while, better cells attachment and proliferation were 
obtained when the cells were seeded on the 3DP hybrid scaffolds for all culture conditions 
except for 4C and mesh scaffolds in Dynamic/PM where some lost of cells were detected 
after 21 days. Yellow scale bar = 500 µm. 
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5.2.4.2. Cell proliferation on different scaffold designs 

The cell proliferation of hMSCs on HA, 2C, 4C and mesh scaffolds, cultured in different 

conditions were assessed by their amounts of DNA after 7, 14 and 21 days (Fig. 5.10).   

For HA cellular scaffolds, mean DNA concentrations increased when cultured in static 

condition (p ≤ 0.0001) in OM and PM, however, decreased in dynamic condition (p ≤ 

0.0001) for both culture media over time and differed between cultured conditions and 

media (p ≤ 0.05). There were significant interactions between time, culture condition and 

media (p ≤ 0.05), suggesting that the increase/decrease in DNA concentrations over time 

differed between culture conditions and media.  

Comparing the culture conditions, HA cellular scaffolds in static culture showed 

significant increase in DNA concentrations in both OM and PM over time (p ≤ 0.0001 for 

each). While, exposing these scaffolds in dynamic condition independently of used culture 

media, significantly reduced DNA concentrations were detected on day 14 (p ≤ 0.0001). 

No significant differences in DNA concentrations were observed for scaffolds in 

Dynamic/OM, while, cellular scaffolds in Dynamic/PM continuously decreased (p = 

0.0007) on day 21. Culturing hMSCs on HA scaffolds in static condition regardless of the 

culture media resulted in significantly higher mean DNA concentrations compared to 

dynamic at each time-point (p ≤ 0.0001 for each). 

When comparing different culture media, no significant differences were observed when 

these scaffolds were cultured in Dynamic/OM and Dynamic/PM on day 7 (p = 0.9989) and 

day 14 (p = 0.9976). Mean DNA concentration was significantly lower when cultured in 

Dynamic/PM relative to Dynamic/OM on day 21 (p = 0.0010). In static condition, 
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culturing HA cellular scaffolds in Static/OM resulted in higher DNA concentrations than 

Static/PM on day 7 (p = 0.0052), day 14 (p = 0.036) and day 21 (p ≤ 0.0001).  

Mean DNA concentrations for HA cellular scaffolds in static condition for both OM and 

PM increased as culture progressed (p ≤ 0.0001 for each). While, no significant differences 

were observed when these scaffolds were cultured in dynamic condition regardless of 

culture media used (p ≤ 0.0001 for each). 

Overall, culturing HA cellular scaffolds in Static/OM resulted in the highest mean DNA 

concentration on day 21 compared to all other culture conditions and media (p ≤ 0.0001 for 

each).  

For the 2C cellular scaffolds, mean DNA concentrations increased when cultured in static 

condition for both culture media (p ≤ 0.0001) over time and differed between culture 

media (p ≤ 0.0001). There was significant interaction between time, culture condition and 

media (p ≤ 0.0001), suggesting that the increase/decrease in DNA concentrations over time 

differed between culture conditions and media.  

Comparing the culture conditions, 2C cellular scaffolds revealed significantly higher mean 

DNA concentrations when cultured in static condition over time (p ≤ 0.0001 for each). 

While, when these scaffolds were cultured in dynamic condition both OM and PM, mean 

DNA concentrations reached the peak on day 14 and dropped afterwards on day 21 (p ≤ 

0.0001 for each).  

When comparing scaffolds in different culture media, cells cultured on 2C scaffolds in 

Static/PM resulted in higher DNA concentrations as compared to Static/OM at each time-

point (p ≤ 0.0001 for each).  At 7 days, no significant differences were detected when the 

scaffolds when exposed in dynamic condition for both OM and PM (p = 0.8380).  
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However, culturing these scaffolds in Dynamic/OM showed significantly higher mean 

DNA concentrations than those in Dynamic/PM on day 14 and day 21 (p ≤ 0.0001 for 

each).  

Mean DNA concentrations for 2C cellular scaffolds in static condition for both OM and 

PM increased as culture progressed (p ≤ 0.0001 for each). When these scaffolds were 

cultured in dynamic condition regardless of culture media used, mean DNA concentrations 

increased until 14 days and eventually decreased on day 21 (p ≤ 0.0001 for each). 

Overall, 2C cellular scaffolds in Static/PM exhibited the highest mean DNA concentrations 

compared to all other tested culture condition and media (Static/OM, Dynamic/OM and 

Dynamic/PM) (p ≤ 0.0001 for each) at each time-point. 

Growing cells on 4C scaffolds resulted in the same trend and interactions between time, 

culture condition and media as 2C scaffolds (p ≤ 0.0001 for each). Mean DNA 

concentrations increased when cultured in static condition for both culture media (p ≤ 

0.0001) over time and differed between culture media (p ≤ 0.0001). There was significant 

interaction between time, culture condition and media (p ≤ 0.0001), suggesting that the 

increase/decrease in DNA concentrations over time differed between culture conditions 

and media. 

Comparing the culture conditions, significantly higher mean DNA concentrations were 

obtained when 4C cellular scaffolds were cultured in static compared to dynamic for both 

OM and PM (p ≤ 0.0001 for each) at either time-point. For instance, when cultured in PM, 

4C cellular scaffolds in static showed significantly higher DNA concentration compared to 

dynamic on day 14 (p = 0.0004).  
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When comparing between OM and PM in static condition, higher mean DNA 

concentrations were obtained when 4C cellular scaffolds were cultured in Static/PM at day 

7 (p ≤ 0.0001), day 14 (p = 0.0003), and day 21 (p ≤ 0.0001). Culturing these scaffolds in 

dynamic condition resulted in higher mean DNA concentrations in OM than PM on day 7 

(p ≤ 0.0001) and day 21 (p = 0.0005). However, mean DNA concentrations were found to 

be significantly higher for Dynamic/PM as compared to Dynamic/OM (p ≤ 0.0001) on day 

14.  

Over time, 4C cellular scaffolds revealed gradual increased in mean DNA concentrations 

when cultured in Static/PM (p ≤ 0.0001 for each). While, those in Static/OM showed 

increased in DNA concentration till day 14 (p ≤ 0.0001), but no significant differences 

were observed on day 21 (p = 0.9998). In dynamic condition, mean DNA concentrations 

reached maximum at day 14 and significantly declined on day 21 (p ≤ 0.0001 for each) for 

both OM and PM.  

Overall, 4C cellular scaffolds in Static/PM exhibited the highest mean DNA concentrations 

compared to all other tested culture condition and media (p ≤ 0.0001 for each) over the 

culture period.  

Similar trends were obtained by culturing hMSCs on mesh scaffolds as compared to 2C 

and 4C scaffolds. Comparing the culture conditions, significantly higher mean DNA 

concentrations were obtained when mesh cellular scaffolds were cultured in static 

compared to dynamic in PM (p ≤ 0.0001 for each) at either time-point. However, no 

significant differences were detected when these scaffolds were cultured in Static/OM and 

Dynamic/OM at day 7 (p = 0.4619) and day 21 (p = 0.6123); only on day 14 higher DNA 

concentration was obtained in Dynamic/OM compared to Static/OM (p ≤ 0.0001).  
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When comparing the culture media, culturing cells on mesh scaffolds in Static/PM resulted 

in higher mean DNA concentrations compared to Static/OM (p ≤ 0.0001) at either time-

point.  Under dynamic condition, those cultured in OM showed significantly higher DNA 

concentration than PM (p ≤ 0.0001) over the culture period. Over the 21 days, cells 

cultured on mesh scaffolds in static condition for both OM and PM showed gradual 

increases (p ≤ 0.0001 for each). Similar to 2C and 4C cellular scaffolds, culturing cells on 

mesh scaffolds independently of culture media reached the highest DNA concentration on 

day 14 and ultimately dropped on day 21 (p ≤ 0.0001for each).  

Overall, the highest mean DNA concentration was presented by mesh cellular scaffolds in 

Static/PM (p ≤ 0.0001 for each) compared to all other culture condition and media.  
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Fig. 5.10: The amount of DNA of hMSCs growing on (a) HA; (b) 2C; (c) 4C and (d) mesh 
scaffolds under different culture conditions. Error bars represent means ± SD for n=3. (ns  
≥ 0.05; *p  ≤  0.05, **p ≤  0.01, ***p ≤  0.001, ****p ≤  0.0001). 
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The amounts of DNA released by the hMSCs cultured on HA, 2C, 4C and mesh scaffolds 

under different culture conditions were evaluated after 21 days as shown in Fig. 5.11. The 

aim here is to determine which scaffold design and under which culture condition/medium 

composition could encourage the fastest cell proliferation.     

After 21 days, mean DNA concentrations were significantly higher for static condition 

both OM and PM for the entire tested scaffold designs (p ≤ 0.05) and differed between 

scaffold designs (p ≤ 0.0001). There was significant interaction between culture 

condition/media and scaffold designs (p ≤ 0.05), suggesting for all tested scaffold designs, 

significantly higher mean DNA concentrations were obtained in static condition (p ≤ 

0.0001). Culturing the 3DP hybrid scaffolds in dynamic condition for both OM and PM 

resulted in significantly lower DNA concentrations compared to static condition, 

particularly in Dynamic/PM (p ≤ 0.0001 for each). 

Comparing to the control (HA cellular scaffolds), all 3DP hybrid scaffolds showed 

significantly higher DNA concentrations regardless of the culture condition/media (p ≤ 

0.0001 for each).  

When comparing the 3DP hybrid scaffold designs, the highest mean DNA concentrations 

were observed on 4C scaffolds in static for both OM and PM as compared to 2C and mesh 

scaffolds (p ≤ 0.0001 for each). When cells were cultured in Static/PM, significantly 

higher mean DNA concentration was obtained on 2C scaffolds compared to mesh (p = 

0.0064). No significant differences were observed when cells were cultured on 4C and 

mesh scaffolds in Dynamic/OM (p = 0.6283). In Dynamic/PM, culturing cells on 4C 

scaffolds resulted in the highest mean DNA concentration, while; the lowest mean DNA 

concentration was obtained by culturing on mesh scaffolds (p ≤ 0.0001 for each).  
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Overall, 4C scaffolds in Static/PM revealed the highest mean DNA concentrations 

compared to all other investigated groups (scaffolds designs and culture condition/ media) 

on day 21 (p ≤ 0.0001 for each). 

 

Fig. 5.11: Comparison of the amount of DNA associated with hMSCs after 21 days 
cultured on HA, 2C, 4C and mesh scaffolds in different culture conditions. In static 
conditions, 4C scaffolds revealed the highest DNA contents for both OM and PM 
compared to other scaffold designs (p ≤ 0.0001). No significant differences were found in 
the DNA contents when 4C and mesh scaffolds were cultured in Dynamic/OM (p =0.6283). 
DNA content was statistically lower when 2C scaffolds were cultured in Dynamic/OM 
compared to 4C scaffolds (p =0.0020). In Dynamic/PM, 4C scaffolds showed the highest 
DNA contents (p ≤ 0.0001). DNA contents remained the lowest for the HA scaffolds under 
all culture conditions. (ns ≥ 0.05; *p ≤  0.05, **p ≤  0.01, ***p ≤  0.001, ****p ≤  0.0001). 
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5.2.4.3. Total protein production 

For HA cellular scaffolds (Fig. 5.12 a), mean total protein produced concentrations 

increased when cultured in static condition (p ≤ 0.0001), however, decreased in dynamic 

condition (p ≤ 0.05) for both culture media (OM and PM) over time and differed between 

cultured conditions and media (p ≤ 0.05). There was significant interaction between time, 

culture condition and media (p ≤ 0.05), suggesting that the increase/decrease in mean total 

protein over time differed between culture conditions and media.  

Comparing the culture conditions, HA cellular scaffolds in static showed significant 

increased in mean total protein when cultured in both OM and PM over time (p ≤ 0.0001 

for each). While, culturing these scaffolds in dynamic condition independent of culture 

media used, significantly reduced the mean total protein over culture period (p ≤ 0.0001).  

When comparing scaffolds in different culture media, no significant differences were 

observed when these scaffolds were cultured in Dynamic/OM and Dynamic/PM on day 7 

(p = 0.4485) and day 14 (p = 0.1922). Mean DNA concentration was significantly lower 

when cultured in Dynamic/PM relative to Dynamic/OM on day 21 (p = 0.0045). In static 

condition, culturing HA cellular scaffolds in Static/OM resulted in higher mean total 

protein than those in Static/PM at either time-point (p ≤ 0.0001 for each).  

Over time, mean total protein for HA cellular scaffolds in static condition for both OM and 

PM increased as culture progressed (p ≤ 0.0001 for each). When cultured in Dynamic/OM, 

cells produced significantly increased mean total protein up to day 14 (p = 0.0260), but no 

significant differences were observed on day 21 (p = 0.9915). HA cellular scaffolds 

cultured in Dynamic/PM showed no significant differences in the mean total protein on 

day 14 (p = 0.9915) and day 21 (p = 0.1221).  
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Overall, culturing HA cellular scaffolds in Static/OM produced the highest mean total 

protein on day 21 compared to all other culture conditions and media (p ≤ 0.0001 for 

each).  

For the 2C cellular scaffolds (Fig. 5.12 b), mean total protein increased over time for all 

tested culture conditions and media (p ≤ 0.0001) and differed between culture conditions 

and media (p ≤ 0.0001). There was a significant interaction between time, culture 

condition and media (p ≤ 0.0001) suggesting that the increase in mean total protein over 

time differed between culture condition and media.  

Comparing the culture conditions, 2C cellular scaffolds cultured in Static/OM were found 

to be significantly higher than Dynamic/OM on day 7 (p = 0.0013) but the former were 

significantly lower than the later on day 14 and day 21 (p ≤ 0.0001 for each). While, cells 

cultured on 2C in PM showed significantly higher mean total protein produced in static 

compared to dynamic at either time-point (p ≤ 0.0001 for each). 

When comparing scaffolds in different culture media, cells cultured on 2C scaffolds in OM 

regardless in static or dynamic conditions produced significantly higher mean total protein 

compared to those in PM (p ≤ 0.0001 for each) at each time-point.  

Mean total protein for 2C cellular scaffolds cultured in static and dynamic condition 

independent of the culture media gradually increased (p ≤ 0.0001 for each) as culture 

progressed.  

Overall, culturing 2C cellular scaffolds in Dynamic/OM produced the highest mean total 

protein on day 14 and day 21 (p ≤ 0.0001 for each) compared to all other culture 

conditions and media. While, those in Dynamic/PM remained the lowest throughout the 

culture period (p ≤ 0.0001 for each) compared to all other culture conditions and media. 
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For the 4C cellular scaffolds (Fig. 5.12 c), mean total protein increased over time for all 

tested culture conditions and media (p ≤ 0.0001) and differed between culture conditions 

and media (p ≤ 0.0001). There was a significant interaction between time, culture 

condition and media (p ≤ 0.0001) suggesting that the increase in mean total protein over 

time differed between culture condition and media.  

Comparing the culture conditions, 4C cellular scaffolds in Dynamic/OM always revealed 

significantly higher mean total protein compared to Static/OM. For instance, 4C cellular 

scaffolds cultured in Dynamic/OM were found to be significantly higher than Static/OM (p 

= 0.0001) on day 21. While, when cells were cultured on 4C scaffolds in PM, static 

condition exhibited significantly higher mean total protein than dynamic condition at all 

time-points (p ≤ 0.0001 for each). 

When comparing scaffolds in different culture media, cells cultured on 4C scaffolds in OM 

regardless in static or dynamic conditions produced significantly higher mean total protein 

compared to those in PM (p ≤ 0.0001 for each) at each time-point. The highest mean total 

protein produced when 4C cellular scaffolds were cultured in Dynamic/OM, while, 

culturing in Dynamic/PM resulted in the lowest mean total protein at each time-point (p ≤ 

0.0001 for each). 

Mean total protein for 4C cellular scaffolds cultured in static and dynamic condition 

independent of the culture media gradually increased (p ≤ 0.0001 for each) over time. 

Overall, culturing 4C cellular scaffolds in Dynamic/OM produced the highest mean total 

protein on all time-points (p ≤ 0.0001 for each) compared to all other culture conditions 

and media.  
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For the mesh cellular scaffolds (Fig. 5.12 d), mean total protein increased over time for all 

tested culture conditions and media (p ≤ 0.0001) and differed between culture conditions 

and media (p ≤ 0.0001). There was a significant interaction between time, culture 

condition and media (p ≤ 0.0001) suggesting that the increase in mean total protein over 

time differed between culture condition and media.  

Comparing the culture conditions, mesh cellular scaffolds cultured in Static/OM were 

found to be significantly higher than Dynamic/OM on day 7 (p = 0.0718) but the former 

were significantly lower than the later on day 14 and day 21 (p ≤ 0.0001 for each). While, 

cells cultured on mesh scaffolds in PM showed significantly higher mean total protein 

produced in static compared to dynamic at either time-point (p ≤ 0.0001 for each). 

When comparing scaffolds in different culture media, cells cultured on mesh scaffolds in 

OM regardless in static or dynamic conditions produced significantly higher mean total 

protein compared to those in PM (p ≤ 0.0001 for each) at each time-point.  

Mean total proteins for mesh cellular scaffolds cultured in static (both OM and PM) and 

Dynamic/OM steady increased (p ≤ 0.0001 for each) as culture progressed. However, 

mean total protein produced by mesh cellular scaffolds in Dynamic/PM showed a 

significant decreased on day 21 (p ≤ 0.0001).  

Overall, culturing mesh cellular scaffolds in Dynamic/OM produced the highest mean total 

protein on day 14 and day 21 (p ≤ 0.0001 for each) compared to all other culture 

conditions and media. While, those in Dynamic/PM remained the lowest throughout the 

culture period (p ≤ 0.0001 for each) compared to all other culture conditions and media. 
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 Fig. 5.12: The levels of total protein produced by hMSCs cultured on (a) HA; (b) 2C; (c) 
4C and (d) mesh scaffolds under different culture conditions. Error bars represent 
means  ± SD for n=3. (ns ≥ 0.05, *p  ≤  0.05, **p ≤  0.01, ***p ≤  0.001, ****p ≤  0.0001). 
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The mean total protein produced by the hMSCs cultured on HA, 2C, 4C and mesh 

scaffolds under different culture conditions were evaluated after 21 days as shown in Fig. 

5.13.  

Mean total proteins were significantly higher when cultured in OM than PM both in static 

and dynamic conditions for all the tested scaffold designs (p ≤ 0.05) and differed between 

scaffold designs (p ≤ 0.0001). There was significant interaction between culture 

condition/media and scaffold designs (p ≤ 0.05), suggesting for all the tested scaffold 

designs, significantly higher mean total proteins were obtained in OM (p ≤ 0.0001). 

Comparing to the control (HA cellular scaffolds), all 3DP hybrid scaffolds showed 

significantly higher mean total proteins regardless of the culture condition/media (p ≤ 

0.0001 for each). No significant differences were observed by culturing HA scaffolds in 

dynamic condition both in OM and PM (p = 0.9643).  

When compared between the 3DP hybrid scaffold designs, cells on 4C scaffolds revealed 

the highest mean total proteins in static for both OM and PM and Dynamic/OM as 

compared to 2C and mesh scaffolds (p ≤ 0.0001 for each). However, no significant 

differences were observed between 2C and 4C scaffolds when cultured in Dynamic/PM (p 

= 0.8652). Among the 3DP hybrid scaffolds, cells cultured on mesh scaffolds produced the 

lowest mean total proteins compared to 2C and 4C scaffolds in all culture condition/media 

(p ≤ 0.0001 for each). Culturing hMSCs on 4C scaffolds showed the highest mean total 

protein when cultured in Dynamic/OM than Static/OM (p = 0.0004). 

Overall, 4C scaffolds in Dynamic/OM revealed the highest mean total proteins compared 

to all other investigated groups (scaffolds designs and culture condition/ media) on day 21 

(p ≤ 0.0001 for each). 
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Fig. 5.13: Comparison of the levels of total protein produced by hMSCs after 21 days 
cultured on HA, 2C, 4C and mesh scaffolds in different culture conditions (ns ≥ 0.05, *p ≤ 
0.05, **p  ≤  0.01, ***p ≤  0.001, ****p ≤  0.0001). 
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media (p ≤ 0.05), suggesting that the increase/decrease in %LDH activity over time 

differed between culture conditions and media.  

Comparing the culture conditions, HA cellular scaffolds in static culture showed 

significant increase in mean %LDH activity in both OM and PM over time (p ≤ 0.05 for 

each). While, exposing these scaffolds in dynamic condition independently of used culture 

media, significantly reduced mean %LDH activity was detected as culture progressed (p ≤ 

0.0001). Culturing hMSCs on HA scaffolds in dynamic condition regardless of the culture 

media resulted in significantly higher mean %LDH activity compared to static at each 

time-point (p ≤ 0.0001 for each). For instance, Dynamic/OM showed significantly higher 

mean %LDH activity than Static/OM (p = 0.0141) on day 21 and Dynamic/PM also 

resulted in higher mean %LDH activity compared to Static/PM (p = 0.0006) on day 21.  

When comparing different culture media, HA cellular scaffolds cultured in Static/PM 

showed significantly higher mean %LDH activity than those in Static/OM (p ≤ 0.0001) at 

day 7. No significant differences were observed when these scaffolds were cultured in 

Static/OM and Static/PM at day 14 (p = 0.9979) and day 21 (p = 0.9816). Similar trends 

were observed in dynamic condition, where Dynamic/PM showed significantly higher 

mean %LDH activity than those in Dynamic/OM (p ≤ 0.0001) at day 7. No significant 

differences were observed when these scaffolds were cultured in Dynamic/OM and 

Dynamic/PM at day 14 (p = 0.9929) and day 21 (p = 0.5318).  

Over time, mean %LDH activity for HA cellular scaffolds in static condition for both OM 

and PM increased as culture progressed (p ≤ 0.0001 for each). While, decreasing trend of 

mean %LDH activity were observed when these scaffolds were cultured in dynamic 

condition regardless of culture media used (p ≤ 0.0001 for each). 
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Overall, culturing HA cellular scaffolds in Dynamic/PM resulted in the highest mean 

%LDH activity on day 7 compared to all other culture conditions and media (p ≤ 0.0001 

for each).  

For the 2C cellular scaffolds (Fig. 5.14 b), mean %LDH activity increased when cultured 

in PM for both static and dynamic conditions (p ≤ 0.0001) over time and differed between 

culture conditions (p ≤ 0.0001). Culturing these scaffolds in OM showed no significant 

differences for both static (p = 0.1946) and dynamic (p = 0.0120) conditions on day 21. 

There was significant interaction between time, culture condition and media (p ≤ 0.05), 

suggesting that the increase in %LDH activity over time differed between culture 

conditions and media.  

Comparing the culture conditions, 2C cellular scaffolds revealed significantly higher 

means %LDH activity when cultured in dynamic condition than static in OM and PM on 

day 7 (p ≤ 0.0001). No significant differences were observed in Static/OM and 

Dynamic/OM (p = 0.4543) on day 14. The mean %LDH activity was significantly 

increased in Dynamic/OM compared to Static/OM (p = 0.0472) on day 21. 2C cellular 

scaffolds cultured in Dynamic/PM showed significantly higher mean %LDH activity than 

those in Static/PM at each time-point (p ≤ 0.0001 for each).  

When comparing scaffolds in different culture media, cells cultured on 2C scaffolds in PM 

exhibited significantly higher mean %LDH activity than OM for both static and dynamic 

conditions at either time-point (p ≤ 0.0001 for each). 

Mean %LDH activity for 2C cellular scaffolds in static condition for both OM and PM and 

Dynamic/PM increased as culture progressed (p ≤ 0.0001 for each). When these scaffolds 
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were cultured in Dynamic/OM, no significant differences were observed on day 14  (p = 

0.9034), but the mean %LDH activity was significantly increased on day 21 (p = 0.0120).  

Overall, 2C cellular scaffolds in Dynamic/PM exhibited the highest mean %LDH activity 

compared to all other tested culture condition and media (p ≤ 0.0001 for each) at each 

time-point. 

Cells cultured on 4C scaffolds (Fig. 5.14 c) resulted in the same trend and interactions 

between time, culture condition and media as 2C scaffolds (p ≤ 0.05 for each). Mean 

%LDH activity increased when cultured in static condition for both culture media (p ≤ 0.05 

for each) over time and differed between culture media (p ≤ 0.05). There was significant 

interaction between time, culture condition and media (p ≤ 0.0001), suggesting that the 

increase in %LDH activity over time differed between culture conditions and media. 

Comparing the culture conditions, 4C cellular scaffolds revealed significantly higher 

means %LDH activity when cultured in dynamic condition than static in OM and PM on 

day 7 (p ≤ 0.0001 for each). The mean %LDH activity was significantly increased in 

Dynamic/OM compared to Static/OM (p = 0.0241) on day 14. No significant differences 

were observed in Static/OM and Dynamic/OM (p = 0.9998) on day 21. 4C cellular 

scaffolds cultured in Dynamic/PM showed significantly higher mean %LDH activity than 

those in Static/PM at each time-point (p ≤ 0.0001 for each).  

When comparing scaffolds in different culture media, cells cultured on 4C scaffolds in PM 

exhibited significantly higher mean %LDH activity than OM in dynamic conditions at 

either time-point (p ≤ 0.0001 for each). In static conditions, significantly higher mean 

%LDH activity was obtained in Static/PM compared to Static/OM on day 7 (p = 0.0002), 

day 14 (p ≤ 0.0001) and day 21 (p ≤ 0.0001).  
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As culture progressed, mean %LDH activity for 4C cellular scaffolds in Dynamic/PM 

increased over time (p ≤ 0.0001 for each). When these scaffolds were cultured in 

Dynamic/OM, no significant differences were observed on day 14  (p = 0.9964) and day 21 

(p = 0.6266). Means %LDH activity in Static/OM was significantly increased on day 14 (p 

= 0.0002) and day 21 (p ≤ 0.0001). When these scaffolds were cultured in Static/PM, 

means %LDH activity gradually increased on day 14 (p ≤ 0.0001) and day 21(p = 0.0004). 

Overall, 4C cellular scaffolds in Dynamic/PM exhibited the highest mean %LDH activity 

compared to all other tested culture condition and media (p ≤ 0.0001 for each) at each 

time-point. 

For the mesh cellular scaffolds (Fig. 5.14 d), mean %LDH activity showed no significant 

differences in OM for both culture conditions (p ≥ 0.05) and no differences between 

culture conditions (p ≥ 0.05). There was no significant interaction between time, culture 

condition and media (p ≥ 0.05) suggesting that over time, there was no effect in culture 

condition when mesh scaffolds were cultured in OM.  Linear increases were observed 

when these scaffolds were cultured in Static/PM and Dynamic/PM (p ≤ 0.0001 for each) as 

culture progressed.  

Comparing the culture conditions, mesh cellular scaffolds revealed significantly higher 

means %LDH activity when cultured in dynamic condition than static in PM at either time-

point (p ≤ 0.0001 for each). No significant differences were observed in Static/OM and 

Dynamic/OM on day 7 (p = 0.3280, day 14 (p = 0.0883) and day 21 (p = 0.1584).  

When comparing scaffolds in different culture media, cells cultured on mesh scaffolds in 

Static/OM and Static/PM showed no significant differences on day 7 (p = 0.5043). As 

culture progressed, scaffolds in Static/PM exhibited significantly higher mean %LDH 
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activity than Static/OM on day 14 (p = 0.0079) and day 21 (p ≤ 0.0001). In dynamic 

condition, significantly higher mean %LDH activity was obtained in Dynamic/PM 

compared to Dynamic/OM at each time-point (p ≤ 0.0001 for each). 

As culture progressed, no significant differences were observed in the mean %LDH 

activity of mesh scaffolds cultured in Static/OM on day 14 (p = 0.2012) and day 21 (p = 

0.4469). Culturing these scaffolds in Dynamic/OM showed no significant differences on 

day 14 (p = 0.0871) and day 21 (p = 0.6182). When cultured in Static/PM and 

Dynamic/PM, mean %LDH activity significantly increased over time (p ≤ 0.0001 for 

each). 

Overall, culturing mesh scaffolds in Dynamic/PM resulted in the highest mean %LDH 

activity compared to all other tested culture condition and media (p ≤ 0.0001 for each) over 

the culture period. 
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 Fig. 5.14: The percentages of LDH activity of hMSCs cultured on (a) HA; (b) 2C; (c) 4C 
and (d) mesh scaffolds under different culture conditions. Error bars represent means  ± 
SD for n=3. (ns ≥ 0.05, *p ≤ 0.05, **p  ≤  0.01, ***p  ≤   0.001, ****p ≤  0.0001). 
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The %LDH activity of all the investigated scaffolds after 21 days cultured in different 

conditions is demonstrated in Fig. 5.15.  

After 21 days, the highest mean %LDH activity were obtained in Dynamic/PM for all the 

tested scaffold designs (p ≤ 0.0001) and differed between scaffold designs (p ≤ 0.0001). 

There was significant interaction between culture condition/media and scaffold designs (p 

≤ 0.05), suggesting for all tested scaffold designs, significantly higher means %LDH 

activity were obtained in PM (p ≤ 0.0001).  

Comparing to the control (HA cellular scaffolds), all 3DP hybrid scaffolds showed 

significantly lower %LDH activity regardless of the culture condition/media (p ≤ 0.0001 

for each).  

When comparing the 3DP hybrid scaffold designs, no significant differences in the mean 

%LDH activity were detected when 2C, 4C and mesh cellular scaffolds were cultured in 

static condition regardless of the culture media (p ≤ 0.0001 for each). When cultured in 

Dynamic/OM, 4C scaffolds showed significantly lower mean %LDH activity compared to 

2C (p ≤ 0.0001) and mesh scaffolds (p = 0.0008). Similar trend was observed in 

Dynamic/PM where significantly lower %LDH activity was obtained on 4C scaffolds than 

2C and mesh scaffolds (p ≤ 0.0001 for each). Culturing the 3DP hybrid scaffolds in PM for 

both static and dynamic condition resulted in higher mean %LDH activity. For instance, 

2C, 4C and mesh cellular scaffolds showed significantly higher means %LDH activity in 

Static/PM compared to Static/OM at p = 0.0036, p = 0.0416 and p = 0.0022, respectively.  

Overall, HA cellular scaffolds showed the highest mean %LDH activity compared to all 

other investigated groups (scaffolds designs and culture condition/ media) on day 21 (p ≤ 

0.0001 for each). 
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Fig. 5.15: The percentages of LDH activity on HA, 2C, 4C and mesh scaffolds in different 
culture conditions after 21 days. This graph demonstrates the comparison of the 
percentage of lactate dehydrogenase activity (%LDH activity) of hMSCs after 21 days 
cultured on HA, 2C, 4C and mesh scaffolds in different culture conditions (ns ≥ 0.05, *p ≤ 
0.05, **p  ≤  0.01, ***p ≤  0.001, ****p ≤  0.0001). 
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5.2.4.5. Cell phenotypic expression 

Alkaline phosphatase (ALP) staining was used to qualitatively identify the osteoblastic 

phenotype expression. A positive ALP stain appeared red. All scaffolds stained for ALP at 

day 0 showed the absence of stains as shown in Fig. 5.16.  

 

Fig. 5.16: ALP staining for all scaffold designs at day 0. Scale bar = 1mm. 

The HA scaffolds demonstrated less growth over the culture periods as indicated by a 

reduced staining pattern. Images of the alkaline phosphatase (ALP) stains are represented 

in Fig. 5.17. Even after 21 days cultured in OM, low levels of stain were observed for both 

culture conditions. 

 

Fig. 5.17: ALP staining of the HA scaffolds after 7, 14 and 21 days under static and 
dynamic conditions in both OM and PM. Red scale bar = 1mm 
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After 14 days in OM, more positive stains across the scaffolds were observed on the 2C 

scaffolds for both culture conditions (Fig. 5.18). A small area of the scaffolds was faintly 

stained for ALP expression for 2C scaffolds in Static/PM after 21 days in culture. 

However, no stains were observed on the 2C scaffolds culture in Dynamic/PM over time.  

 

Fig. 5.18: ALP staining of the 2C scaffolds after 7, 14 and 21 days under static and 
dynamic conditions in both OM and PM. More localized stains were observed on 2C 
cellular scaffolds cultured in OM compared to PM for both static and dynamic conditions.  
Red scale bar = 1mm. 
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The ALP expressions of 4C cellular scaffolds (Fig. 5.19) was greater across the scaffolds 

after 21 days when they were cultured in the osteogenic media for both conditions. 

Scaffolds cultured in Static/PM exhibited pale ALP expressions and absolutely no stains 

were observed on Dynamic/PM at all time-points.  

 

Fig. 5.19: ALP staining of the 4C scaffolds after 7, 14 and 21 days under static and 
dynamic conditions in both OM and PM. Positive stains were observed when hMSCs 
cultured on 4C scaffolds in OM under both static and dynamic conditions. Almost 
negligible stain was observed on 4C cellular scaffolds under Dynamic/PM at all time-
points. Red scale bar = 1mm. 
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No ALP expressions were obtained after 7 days in culture for all conditions. Similar to the 

2C and 4C cellular scaffolds, more positive stain was observed when the mesh scaffolds 

were cultured in osteogenic media for both static and rotary bioreactor particularly after 21 

days. ALP stain on Static/OM-cultured scaffolds was observed purely on the scaffold 

surface, whereas scaffolds cultured in Dynamic/OM were more homogenously stained 

across the scaffold and its pores (Fig. 5.20).  

 

 

Fig. 5.20: ALP staining of the mesh scaffolds after 7, 14 and 21 days under static and 
dynamic conditions in both OM and PM. Red scale bar = 1mm. 
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In summary, no positive ALP stains were observed on the HA scaffolds for all culture 

conditions after 21 days. While, positive ALP stains were obtained from the 3DP hybrid 

scaffolds in particular with the presence of OM. Differences were seen between the three 

scaffolds designs. In Static/OM, the 4C cellular scaffolds showed the most homogenous 

ALP expression across the entire scaffolds as compared to the 2C and the mesh scaffolds. 

When the cellular scaffolds were exposed to the dynamic condition in the rotary 

bioreactor, ALP expression of the 4C and mesh scaffolds seems the higher compared to the 

2C scaffold. Localized ALP expressions were observed on 2C scaffolds in both culture 

conditions in OM after 21 days.  

 Fig. 5.21: ALP staining for different scaffold designs after 21 days cultured under static 
and dynamic conditions in OM and PM. Red scale bar = 1mm. 
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5.2.4.6. Early osteogenic differentiation 

The Alkaline Phosphatase (ALP) enzyme activity was determined using a fluorescence 

assay, where metabolism of a phosphate-based substrate permits the release of a 

fluorescent marker. Therefore, higher enzyme activity is associated with an increased level 

of fluorescence from a sample. Because the ALP activity will ultimately be related to the 

number of cells, ALP/DNA can be a useful metric for relative comparison of different 

samples.  

For HA cellular scaffolds (Fig. 5.22 a), mean ALP activity increased when cultured in 

static condition (p ≤ 0.0001) in OM and PM, however, showed no significant differences in 

dynamic condition (p ≤ 0.0001) for both culture media over time and differed between 

cultured conditions and media (p ≤ 0.05). There was significant interaction between time, 

culture media (p ≤ 0.05) in static condition, suggesting that the increase in mean ALP 

activity over time differed between culture conditions and media. However, there was no 

significant interaction between time, culture condition and media (p ≥ 0.05) in dynamic 

condition. 

Comparing the culture conditions, culturing hMSCs on HA scaffolds in static condition 

regardless of the culture media resulted in significantly higher mean ALP activity 

compared to dynamic at each time-point (p ≤ 0.0001 for each).   

When comparing different culture media, no significant differences were observed when 

HA cellular scaffolds were cultured in Dynamic/OM and Dynamic/PM (p ≥ 0.05 for each) 

at each time-points. In static conditions, scaffolds cultured in OM showed higher mean 

ALP activity compared to those in PM at day 7 (p = 0.0118), day 14 (p = 0.0170), and day 

21 (p ≤ 0.0001).  
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Over time, no significant differences were observed in the ALP activity for all culture 

conditions and media. For instance, HA cellular scaffolds showed no significant 

differences in Static/OM on day 14 (p = 0.9926) and day 21 (p = 0.4646).  

Overall, culturing HA cellular scaffolds in Static/OM resulted in the highest mean ALP 

activity on day 21 compared to all other culture conditions and media (p ≤ 0.0001 for 

each).  

For the 2C cellular scaffolds (Fig. 5.22 b), mean ALP activity showed a bell-shaped trend 

for all the tested culture condition and media (p ≤ 0.05) over time and differed between 

culture condition and media (p ≤ 0.05). There were significant interactions between time, 

culture condition and media (p ≤ 0.0001), suggesting that the increase/decrease in ALP 

activity over time differed between culture conditions and media.  

Comparing the culture conditions, 2C cellular scaffolds presented significantly higher 

mean ALP activity when cultured in dynamic condition compared to static over time (p ≤ 

0.05 for each). For instance, 2C cellular scaffolds exhibited significantly higher ALP 

activity when cultured in Dynamic/OM than Static/OM on day 7 (p = 0.037). When these 

scaffolds were cultured in PM, significantly lower means ALP activity were obtained in 

static compared to dynamic on day 7 (p = 0.0003), day 144 (p = 0.0020) and day 21(p ≤ 

0.0001).  

When comparing scaffolds in different culture media, significantly higher level of means 

ALP activity were detected when these scaffolds were cultured in OM compared to PM for 

both static and dynamic condition at each time-point (p ≤ 0.0001 for each).  

Regardless of culture condition and media, all 2C cellular scaffolds showed significant 

dropped in mean ALP activity on day 21 after reaching the peak on day 14 (p ≤ 0.05 for 
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each). For instance, when cultured in Dynamic/OM, mean ALP activity was significantly 

increased and reached the maximum on day 14 (p ≤ 0.0001) and eventually dropped on 

day 21 (p = 0.0005). 

Overall, 2C cellular scaffolds cultured in Dynamic/ OM showed the highest mean ALP 

activity compared to all other tested culture condition and media (p ≤ 0.05 for each) at each 

time-point. 

For the 4C cellular scaffolds (Fig. 5.22 c), mean ALP activity showed a bell-shaped trend 

for all the tested scaffolds in OM (p ≤ 0.05) over time and differed between culture 

condition and media (p ≤ 0.05). There were significant interactions between time, culture 

condition and media (p ≤ 0.05), suggesting that the increase/decrease in ALP activity over 

time differed between culture conditions and media. However, culturing 4C cellular 

scaffolds in PM showed no significant differences in mean ALP activity over time, but 

differed between culture conditions (p ≤ 0.05). 

Comparing the culture conditions, no significant differences were detected when 4C 

cellular scaffolds were cultured in Static/PM and Dynamic/PM on day 7 (p = 0.5510). 

Theses scaffolds then showed the lowest mean ALP activity when cultured in 

Dynamic/PM on day 14 and day 21 (p ≤ 0.0001 for each) compared to Static/PM. 

Culturing 4C cellular scaffolds in OM resulted in significantly higher mean ALP activity 

over time, with those in Dynamic/OM were found to be significantly higher compared to 

Static/OM at each time-point (p ≤ 0.0001 for each). 

When comparing scaffolds in different culture media, significantly higher level of means 

ALP activity were detected when these scaffolds were cultured in OM compared to PM for 

both static and dynamic condition at each time-point (p ≤ 0.0001 for each).  
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As culture progressed, mean ALP activity of the 4C cellular scaffolds cultured in OM 

increased and reached the peak on day 14 and finally dropped on day 21. For instance, 

when cultured in Static/OM, mean ALP activity showed significant increased on day 14 (p 

≤ 0.0001) and eventually dropped afterwards on day 21 (p = 0.0008). Similar trend was 

observed in Dynamic/OM, where mean ALP activity was significantly declined on day 21 

(p = 0.0091). No significant differences were observed in the mean ALP activity when 4C 

cellular scaffolds were cultured in Static/PM on day 14  (p = 0.1321) and day 21 (p = 

0.7875). Similar trend was observed for those in Dynamic/PM, where no significant 

differences were observed in the mean ALP activity on day 14  (p = 0.2510) and day 21 (p 

= 0.5392). 

Overall, 4C cellular scaffolds cultured in Dynamic/ OM showed the highest mean ALP 

activity compared to all other tested culture condition and media (p ≤ 0.0001 for each) at 

each time-point. 

Growing cells on the mesh cellular scaffolds resulted in the same trend and interaction 

between time, culture condition and media as 4C scaffolds (Fig. 5.22 d), where mean ALP 

activity showed a bell-shaped trend for all the tested scaffolds in OM (p ≤ 0.05) over time 

and differed between culture condition and media (p ≤ 0.05). There were significant 

interactions between time, culture condition and media (p ≤ 0.05), suggesting that the 

increase/decrease in ALP activity over time differed between culture conditions and media. 

However, culturing mesh cellular scaffolds in PM showed a fluctuating trend in dynamic 

condition (p ≤ 0.05) while, increasing pattern in static condition (p ≤ 0.05) over time.  

Comparing the culture conditions, no significant differences were detected when 4C 

cellular scaffolds were cultured in Static/PM and Dynamic/PM on day 14 (p = 0.8060) and 

day 21 (p = 0.2955) . Theses scaffolds then showed the lowest mean ALP activity when 
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cultured in Dynamic/PM on day 14 and day 21 (p ≤ 0.0001 for each) compared to 

Static/PM. Culturing 4C cellular scaffolds in OM resulted in significantly higher mean 

ALP activity over time, with those in Dynamic/OM were found to be significantly higher 

compared to Static/OM at each time-point (p ≤ 0.0001 for each). 

When comparing scaffolds in different culture media, significantly higher level of means 

ALP activity were detected when these scaffolds were cultured in OM compared to PM for 

both static and dynamic condition at each time-point (p ≤ 0.0001 for each).  

Over time, the mean ALP activity for scaffolds cultured in Static/PM showed significant 

increased on day 14 (p = 0.0290), but no significant differences were observed on day 21(p 

= 0.9952). When cultured in Dynamic/PM, mean ALP activity was significantly dropped 

on day 14 (p = 0.0086), but increased again on day 21 (p = 0.0003). When cultured in OM, 

4C cellular scaffolds cultured in dynamic condition reached maximum on day 14 and 

significantly dropped on day 21 (p ≤ 0.0001 for each). Similar trend was obtained for 

Static/OM, where maximum mean ALP activity was attained on day 14 (p ≤ 0.0001) and 

significantly lower mean ALP activity was showed on day 21 (p = 0.0002). 

Overall, the highest mean ALP activity was obtained when mesh cellular scaffolds were 

cultured in Dynamic/OM compared to all other tested culture condition and media (p ≤ 

0.0001 for each) at each time-point. 
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Fig. 5.22: The levels of ALP activity of hMSCs growing on (a) HA; (b) 2C; (c) 4C and (d) 
mesh scaffolds under different culture conditions. Error bars represent means ± SD for 
n=3. (ns ≥ 0.05, *p ≤ 0.05, **p  ≤  0.01, ***p  ≤   0.001, ****p ≤  0.0001). 
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The mean ALP activity of hMSCs cultured on HA, 2C, 4C and mesh scaffolds under 

different culture conditions were evaluated after 21 days as shown in Fig. 5.23. The aim 

here is to determine which scaffold design and under which culture condition/medium 

composition could encourage the fastest osteogenic differentiation.      

Mean ALP activity was significantly higher when cultured in OM than PM both in static 

and dynamic conditions for all the tested scaffold designs (p ≤ 0.0001) and differed 

between scaffold designs (p ≤ 0.0001). There was significant interaction between culture 

condition/media and scaffold designs (p ≤ 0.05), suggesting for all the tested scaffold 

designs, significantly higher means ALP activity were obtained in OM (p ≤ 0.0001). 

Comparing to the control (HA cellular scaffolds), all 3DP hybrid scaffolds showed 

significantly higher mean ALP activity regardless of the culture condition/media (p ≤ 

0.0001 for each). No significant differences were observed by culturing HA scaffolds in 

dynamic condition both in OM and PM (p = 0.9699).  

When compared between the 3DP hybrid scaffold designs, cells on 4C scaffolds revealed 

the highest mean ALP activity in OM for both static and dynamic conditions as compared 

to 2C and mesh scaffolds (p ≤ 0.0001 for each). In Static/OM, no significant differences 

were detected in the mean ALP activity of 2C and mesh scaffolds (p = 0.9917). Similar 

trend was obtained by culturing 2C and mesh scaffolds in Static/PM, where no significant 

differences were observed (p = 0.9210). 4C cellular scaffolds showed significantly higher 

mean ALP activity compared to 2C (p = 0.045) when cultured in Static/PM. While, cells 

cultured on mesh scaffolds exhibited significantly lower mean ALP activity compared to 

4C scaffolds (p = 0.0003). When cultured in Dynamic/OM, no significant differences were 

shown by 2C and mesh scaffolds (p = 0.7464). 4C scaffolds demonstrated significantly 

higher mean ALP activity compared to 2C and mesh scaffolds (p ≤ 0.0001 for each) in 
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Dynamic/OM. However, when 4C scaffolds were cultured in Dynamic/PM, significantly 

lower mean ALP activity was obtained as compared to 2C (p ≤ 0.0001) and mesh scaffolds 

(p = 0.0002). Between 2C and mesh scaffolds, no significant differences were detected 

when cultured in Dynamic/PM (p = 0.7464). 

Overall, 4C scaffolds in Dynamic/OM revealed the highest ALP activity compared to all 

other investigated groups (scaffolds designs and culture condition/ media) on day 21 (p ≤ 

0.0001 for each). 

 

 

 

 

Fig. 5.23: The comparison of the levels of ALP activity of hMSCs after 21 days cultured on 
HA, 2C, 4C and mesh scaffolds in different culture conditions. (ns ≥ 0.05, *p ≤ 0.05, **p  ≤  
0.01, ***p  ≤   0.001, ****p ≤  0.0001). 
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5.2.4.7. Micro-computed tomography analysis 

Micro-computed tomography (Micro-CT) analysis was used to evaluate the formation of 

the mineralized matrix on different scaffold designs. Prior to cell seeding, all scaffolds 

were scanned at different thresholds (HA scaffolds: 50/1000 and 3DP hybrid scaffolds: 

42/1000) as demonstrated in Appendix (Fig. A5).  The cellular scaffolds were scanned at 

two density thresholds (HA scaffolds: 60/1000 and 120/1000; 3DP hybrid scaffolds: 

55/1000 and 120/1000), firstly to determine the total volume and connectivity density of 

each scaffold and secondly at a higher threshold to estimate the mineralized portion formed 

on all scaffold designs after 7, 14 and 21 days cultured under different culture conditions. 

Typical Micro-CT density maps of the whole area and cross-sections of the cellular 

scaffolds are demonstrated in Fig. 5.24-5.27. The colour density bar shown in the images 

represented different density values, where lower density area is designated with minimum 

value while higher density is denoted by the maximum value. Higher density represents 

mineralized areas, lower density represents non-mineralized areas.  

The density maps obtained from Micro-CT analysis of the HA cellular scaffolds showed 

that no mineralized matrix was found in any culture conditions. As demonstrated in Fig. 

5.24, the majority of the scanned images were only the scaffold (denoted by green areas). 

However, a small area of the scaffold appeared red at higher threshold values particularly 

after 21 days.  

The 2C cellular scaffolds showed mineralized matrix formed after 21 days cultured in 

Static/OM as demonstrated in Fig. 5.25. Only a small portion of mineralized matrix was 

seen on the surface of these cellular scaffolds. 

Evidence of the formations of mineralized matrix was shown when hMSCs were cultured 

on 4C hybrid scaffolds particularly in OM. Denser areas were found on 4C cellular 
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scaffolds as early as 14 days in Static/OM and Dynamic/OM. After 21 days in 

Dynamic/OM, channels on the 4C cellular scaffolds were partially filled with the 

mineralized matrix as can be clearly seen in the cross-section image shown in Fig. 5.26. 

The denser area of the cellular scaffolds under Static/OM was only found on the surface of 

the scaffolds. Almost negligible mineralized portion was detected by growing hMSCs on 

4C cellular scaffolds in PM for both culture conditions even after 21 days.  

Similar to 2C cellular scaffolds, a very limited portion of mineralized matrix formed on the 

mesh scaffolds under all culture conditions (Fig. 5.27). For instance, a small portion of 

mineralized matrix was detected on the cellular scaffolds cultured in Dynamic/OM after 21 

days. However, the denser area was only found on the surface of the scaffold.  
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 Fig. 5.24: Density maps of HA cellular scaffolds in different culture conditions after 7, 14 
and 21 days obtained from Micro-CT analysis. No mineralized matrix was found in any 
culture conditions even after 21 days when hMSCs were cultured on HA scaffolds 
(control). (*=Whole area; #= cross-section of the scaffolds). Black scale bar = 1 mm. 
Colour density bar = 3.5 (min)-5.0 (max)/cm. 
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Fig. 5.25: Density maps of 2C cellular scaffolds in different culture conditions after 7, 14 
and 21 days obtained from Micro-CT analysis. Small amount of mineralized matrix was 
found after 21 days culture in Static/OM, where hMSCs started to form mineralized matrix 
on the surface of the scaffolds. (*=Whole area; #= cross-section of the scaffolds). Black 
scale bar = 1 mm. Colour density bar = 3.5 (min)-5.0 (max)/cm. 
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 Fig. 5.26: Density maps of 4C cellular scaffolds in different culture conditions after 7, 14 
and 21 days obtained from Micro-CT analysis. hMSCs were able to form mineralized 
matrix on 4C scaffolds as early as 14 days in osteogenic media for both conditions and 
these amounts increased over time. (*=Whole area; #= cross-section of the scaffolds). 
Black scale bar = 1 mm. Colour density bar = 3.5 (min)-5.0 (max)/cm. 
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 Fig. 5.27: Density maps of mesh cellular scaffolds in different culture conditions after 7, 
14 and 21 days obtained from Micro-CT analysis. Only a small portion of mineralized 
matrix was found on mesh cellular scaffolds culture in Dynamic/OM after 21 days. 
(*=Whole area; #= cross-section of the scaffolds). Black scale bar = 1 mm. Colour density 
bar = 3.5 (min)-5.0 (max)/cm. 
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By comparing the four scaffold designs, it is clearly seen that higher portion of the denser 

area, which was assumed as the mineralized matrix was exhibited by 4C cellular scaffolds 

in osteogenic media for both culture conditions. In fact, more mineralized matrix was 

detected as the 4C cellular scaffolds were cultured in the dynamic environment as 

demonstrated in Fig. 5.28.  

 

Fig. 5.28: Density maps of HA, 2C, 4C and mesh scaffolds after 21 days in different 
culture conditions. This figure demonstrated the comparisons of the formation of 
mineralized matrix (designated by red dense area) by hMSCs on different scaffolds designs 
under different culture conditions. It was more apparent that more dense areas were 
associated with 4C scaffolds in OM for both culture static and dynamic conditions 
compared to other scaffold designs.  
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Quantitative Micro-CT analysis was then performed to determine the changes in the total 

volumes and percentages of mineralization formed on the cellular scaffolds. Table 5.3 

represented the total volume of the dry scaffolds (before seeding) for all scaffold designs. 

It is apparent that HA scaffolds exhibited the lowest amount of total volume as compared 

to the 3DP hybrid scaffolds. 

Table 5.3: Total volume of the dry scaffolds (before seeding) obtained from Micro-CT 
analysis. 

 Overall, the total volumes of all the cellular scaffolds increased in all culture conditions 

over 21 days as demonstrated in Table 5.4. Despite, 4C cellular scaffolds in all culture 

conditions exhibited the highest increase in the total volumes as compared to other scaffold 

designs except mesh scaffolds in Dynamic/OM. All cellular scaffolds cultured in 

osteogenic media revealed higher total volume than in proliferation media for both static 

and dynamic conditions. This become more apparent when the cellular scaffolds were 

cultured in the dynamic environment. For instance, mesh cellular scaffolds were found to 

have the highest total volume when cultured in Dynamic/OM.  

Results suggested that the highest percentage of mineralization was obtained when hMSCs 

were cultured on 4C hybrid scaffolds in Dynamic/OM. On the other hand, HA cellular 

scaffolds exhibited the lowest percentage of mineralization as compared to the 3DP hybrid 

scaffolds under all culture conditions after 21 days. These results are consistent with the 

density maps shown earlier (Fig. 5.28).  
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Table: 5.4: The total volumes and percentages of mineralization of the cellular scaffolds 
under different culture conditions after 21 days.  

 

 

 

The values in bracket exemplified the increased in the amount of total volume of the 
cellular scaffolds relative to their dry scaffolds (before seeding). The represented values 
are the mean, n= 2. 

 

Note: The values in bracket represent the increase of total volume of the cellular scaffolds 
relative to their dry scaffolds (before seeding). The represented values are the mean, n= 2. 

 

Growing hMSCs on 3DP hybrid scaffolds in OM under microgravity environment have 

increased the percentages of mineralization as compared to the static culture condition. 

However, contradictory effects were seen when these cellular scaffolds were cultured in 

Dynamic/PM where the percentages of mineralization was about 75% lower compared to 

those in Dynamic/OM condition.  
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The overall performances of each scaffold in different culture conditions are summarized 

in Table 5.5. Relative to the HA cellular scaffolds, all the 3DP hybrid cellular scaffolds 

performed better in producing mineralized matrix. Results suggested that scaffold designs 

with different nature of materials and pore/channel size have great impacts on the cells 

behaviour particularly when cultured under microgravity simulation. This difference has 

resulted in different cell responses between these two scaffolds, where 4C cellular 

scaffolds exhibited the highest scores in all culture conditions relative to 2C cellular 

scaffolds. On the other hand, HA cellular scaffolds showed the lowest scores regardless of 

the culture conditions.  

Culture condition does play an important role in determining the cell proliferation and 

differentiation. It was observed that cellular scaffolds cultured in osteogenic media under 

both conditions revealed higher scores in the overall performances than those cultured in 

proliferation media. However, variations in scaffold performance were observed when 

comparing static versus dynamic culture conditions. For instance, 4C cellular scaffolds 

showed the best overall performances in osteogenic medium under dynamic culture 

condition compared to static. However, while in proliferation media, higher scores were 

achieved by culturing 4C cellular scaffolds in static rather than in microgravity 

environment.  
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Table 5.5: Summary of the overall performances for HA, 2C, 4C and mesh scaffolds under 
different culture conditions.  

 

 

 

in 

In  

 Note: Scores are given from scale 1-4 in ascending order of performances. (1 = <25% of 
best, 2 =25 to 50% of best, 3 = 50-75% of best, 4 = >75% best). 
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5.3.  Discussion 

5.3.1. The effect of seeding efficiency on establishing a 3D culture 

Cell seeding of scaffolds involves the distribution of a cell suspension across the surface of 

a scaffold and potentially growth within the pores (Martin et al. 2004). Thus, seeding 

efficiency is the first step in establishing a 3D culture and this might be a determining 

factor for the development of tissue formation (Vunjak-Novakovic et al. 1998). The 

distribution of tissue, which subsequently forms within engineered construct, is highly 

associated to the initial distribution of the cells within the scaffold after seeding (Freed et 

al. 1998; Ishaug-Riley et al. 1998; Kim et al. 1998; Holy et al. 2000). Therefore, it has 

been highlighted that homogenous cell seeding can be considered as the beginning to 

uniform tissue formation. However, even for a small scaffold (e.g. 2 mm X 10 mm as have 

been used in this study), it is a critical challenge to distribute a high density of cells 

efficiently and homogenously throughout the entire scaffold. Thus, it is important to firstly 

optimize the cell seeding method on the 3DP hybrid and HA scaffolds in order to obtain 

the maximum amount of mineralized matrix formed by placing the cellular scaffolds in 

different culture conditions.  

 In this study, it was found that placing a small volume of cell suspension (20 µL) directly 

onto the scaffold resulted in higher percentage of cells adhered to the scaffold compared to 

higher volume of cell suspension (40 µL). This result is in agreement with the study 

reported by Jones & Cartmell (2006) where a higher proportion of cell adhesion was 

obtained when small volume of cell suspension was seeded directly onto the gelatine 

scaffolds compared to larger volume suspension. Using small volume cell suspension 

allows the cell to retain on the surface of the 3DP hybrid scaffolds and in the porous 

structure of the HA scaffolds. While, larger volume of cell suspension could easily flow 
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through the channels/pores of the scaffolds and cells would then rather adhere to the well 

plate than to the scaffolds. Thus, smaller volume suspension was found to be better on a 

small scaffold in order to avoid overflowing of the cell suspension around the scaffold, 

which could lead to the loss of cells that should attached to the scaffolds. 

The percentages of cell attachment was found to be higher on 3DP hybrid scaffolds as 

compared to the HA scaffolds. This showed that the coating materials used to fabricate the 

3DP hybrid scaffolds were more suitable for cell attachment than pure HA scaffolds. This 

proved the role of collagen as one of the elements in the coating materials. The presence of 

collagen on the 3DP hybrid scaffolds has effectively contributed towards better support for 

cell attachment (Gelse et al. 2003; Wahl & Czernuszka 2006; Liu et al. 2008). While, pure 

HA scaffolds needed longer pre-wetting time with higher concentration of serum (20% 

FBS) before seeding compared to the 3DP hybrid scaffolds. This was to create a thin layer 

of protein on the surface as to provide better cell attachment.  

To further improve the seeding efficiency, scaffolds were seeded with hMSCs on different 

culture substrates. The first was a commercially available 24-well cell culture plate; a 

hydrophobic surface denoted as non-coated well plates. The second substrate was the same 

type of plate coated with 1 w/v% of Pluronic F-127, denoted as coated well plates. 

Pluronic F-127 has been used as biological coating in particular to prevent cells adherent to 

the culture well plate (Dang et al. 2002). Pluronic F-127 is a polypropylene oxide-

polyethylene oxide (PPO-PEO) tri-block copolymer with two hydrophilic ethylene oxide 

chains and a hydrophobic propylene oxide chain in the middle, which provides Pluronic F-

127 with very flexible molecular chains and high capacity to hydration (Wanka et al. 1994; 

Deegan et al. 2014). Studies have shown that coating substrates with Pluronic F-127 

reduces protein and hence cell adhesion, which prevents seeded cells from adhering to the 
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substrate (Freij-Larsson et al. 1996; Nejadnik et al. 2008). The results obtained shows that 

hMSCs seeded on all scaffold designs in the coated well plates resulted in higher 

percentages of cell attachment compared to the non-coated well plates. This finding 

highlighted the beneficial use of Pluronic F-127 in improving seeding efficiency. 

Seeding method is another crucial key towards efficient seeding. The distribution of cells 

on each scaffold seeded by one-sided and two-sided method was analysed using MTT 

stains. It was found that cells were more homogenously spread over the entire scaffolds 

when hMSCs were seeded on the scaffolds by the two ways method. The use of two ways 

seeding method is indirectly helping the cells to migrate faster throughout the entire 

scaffolds. While, the one way seeding method requires longer time for the cells to migrate 

and infiltrate from one side of the scaffold to the other. This explains the rationale of 

previous studies reported in the literature for using two-sided seeding method in culturing 

cells on 3D scaffolds (Leukers et al. 2005; Song et al. 2008).  

Thus, three main parameters improving cell seeding efficiency were established in this 

study: (1) small volume suspension, (2) using coated well plates during cell seeding and 

(3) seed cells by the two-sided method. 

 

 

 

 



Results and discussion Chapter 5 
 

!
Page  

!
! !
 

252 

5.3.2. The impact of rotating speed on cell survival 

Rotary bioreactor was used in this study to investigate the impact of a microgravity 

environment on cells fate upon cultured on different scaffold designs. The aims of using 

this type of bioreactor were to minimize shear force and maximize the fluid flow 

throughout the scaffolds to provide enhanced mass transfer across large scaffolds for bone 

TE (El Haj & Cartmell 2010; Rauh et al. 2011). In this study, two different speeds (20 and 

40 rpm) were used for our initial optimization using all scaffold designs.  

Slower rotational speed (20 rpm) was found to exhibit better cell attachment and viability 

on all scaffold designs. This speed allowed the scaffolds to be in continuous state of free 

fall in the culture vessel. While, increasing the speed to 40 rpm caused the scaffolds to 

collide with each other and collide with the wall of the vessels. Consequently, more cells 

detached from the scaffolds over time. This explains why more viable cells were found on 

the scaffolds cultured at slower speed of 20 rpm than 40 rpm. For this reason, the typical 

speed used for the rotary bioreactor system falls in the range of 3-18 rpm as demonstrated 

in many studies (Qiu et al. 2001; Song et al. 2006; Bucaro et al. 2007; Song et al. 2008; 

Araujo et al. 2010). For instance, Song et al. (2008) used two different speeds, 5 and 10 

rpm. The first speed was used to expand the rat osteoblast cells isolated from cranium (3 

days old) on suspension microcarrier system. These expanded cells were then seeded on 

3D human bio-derived bone scaffolds (BDBS) and cultured again in the rotary bioreactor 

(at speed of 10 rpm) and some were placed in spinner flask (at speed of 25 rpm). The 

results demonstrated that after 3 weeks show that more collagen fibres mineralized nodules 

and new osteoid tissue formed as the scaffolds were cultured in the rotary bioreactor 

compared to those in spinner flasks.  
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However, the speed used in this study was relatively high as compared to those reported in 

the literature. The coating materials deposited on the 3DP scaffolds has considerably 

increased the total density of the scaffolds making them heavier so higher speeds were 

needed to keep the scaffolds from falling to the bottom of the flask and being exposed to 

high levels of shear. As a result, higher rotational speed was required in order to maintain 

the scaffolds in the free fall state. It was observed that when scaffolds were cultured below 

20 rpm (results not shown in this study), due to gravity sedimentation at one side of the 

vessel occurred and the scaffolds potentially experienced high shear stress as the vessels 

were rotated. It was then considered that the cellular scaffolds suffered from friction 

between each other, as they were settling at one side of the vessel at slower rotation speed. 

Thus, in this study, the rotating speed of the bioreactor was kept constant at 20 rpm for 

culturing the four scaffold designs. These conditions were selected in order to avoid the 

collision of the scaffolds with the bioreactor walls and to facilitate the mass transfer 

(Araujo et al. 2010). 
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5.3.3. The fate of hMSCs cultured on several structural and functional designs of 

3DP hybrid scaffolds under different culture conditions  

This study investigated the behaviour of hMSCs cultured on different scaffold designs in 

simulated microgravity. The final aim of this study was to select the best scaffold design, 

which could enhance bone formation in vitro. The vascular network within matured bone 

could be likened to channels, through which nutrients can be supplied to cells and tissues. 

In order to re-create this vascular network, millimetre-size channels (diameter = 1.5 mm) 

were created on the 2C and 4C scaffolds. These channels were designed with the aim to 

facilitate the dispersion of hMSCs throughout the scaffolds and encourage nutrient 

exchange in order to promote differentiation particularly under dynamic culture conditions. 

Apart from the channel scaffolds, mesh scaffolds were also fabricated using the same 

technique with different structural design as shown in Table 5.1.  

Pure sintered HA scaffolds was used as the experimental controls. The HA scaffold is 

commercially available and has been investigated for its clinical relevance (clinical data 

not shown due to confidentiality) thus was assumed as the “ golden standard” in this study. 

The in house fabricated 3DP hybrid scaffolds were compared to the pure HA scaffolds in 

order to select the best scaffold that serves as the optimum structural and functional design 

for potential BTE applications. To do so, a rotary bioreactor was used to create the 

dynamic effect based on microgravity simulation.  

The live/dead stain indicated that 3DP hybrid scaffolds allow greater cell attachment than 

the pure HA scaffolds during the seeding period. It takes only 24 hours for the cells to 

properly attach to the former scaffolds while the later scaffold requires at least 72 hours. 

Collagen is known to be an adhesion protein, which favours cell attachment and 

proliferation (Bisson et al. 2002; Becker et al. 2002; Ma et al. 2005). The results obtained 
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in this study are consistent with Chen et al. (2008) who cultured SaOS-2 osteosarcoma cell 

line on PLLA with apatite and apatite/collagen composite coating. This study found that 

the presence of collagen assisted cell attachment and proliferation when it was combined 

with apatite crystals. Suh et al. (2001) discovered that the grafted type I collagen provided 

a favourable matrix for cell attachment and growth. Thus, the present of collagen on 3DP 

hybrid scaffolds allowed easier and faster cell attachment compared to pure HA scaffolds.  

Cells seeded on HA scaffolds were able to survive only in static condition and were found 

to be completely detached once cultured in the rotary bioreactor. Culturing scaffolds in 

OM and PM does make the differences for the 3DP hybrid scaffolds in particular under 

microgravity simulation. For instance, after 21 days in OM, cells started forming 

aggregates/bone-like nodules on 4C cellular scaffolds, which indicates the early sign of 

osteogenic differentiation.  

Quantification of DNA for experimental groups demonstrated a gradual increase when all 

scaffolds were cultured under static conditions in PM over time, which indicated that the 

cells were actively proliferating, increasing cell numbers and therefore increasing the 

amount of DNA. However, when exposed to microgravity in PM, lower DNA contents 

were obtained compared to other culture conditions. Without osteogenic supplements, 

proliferation media can only help in cells expansion to achieve into higher cell number 

(Jung et al. 2012; Rupani et al. 2012 ). Thus, as culture progress, these scaffolds with 

greater cell density than the surrounding medium started to sediment to the side of the 

vessel and experienced repeated frictions with the vessel wall (Goldstein et al. 2001; 

Sikavitsas et al. 2002). As a result, some cells detached from the scaffolds and were 

floating in the culture media. For instance, when HA scaffolds were cultured in dynamic 

compared to static condition, majority of the cells had detached from the scaffolds at an 
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early stage of culture, thus resulted in negligible amount of DNA detected at every time-

points. hMSCs is known to be an anchorage-dependent cells, thus, they need a substrate to 

attach and survive in culture (Jung et al. 2012; Chen et al. 2013). It is assumed that when 

the hMSCs were in suspension state, the detached cells were floating in the continuously 

rotating culture media, which has eventually cause cell death. This explained why we 

obtained lower DNA contents and higher percentage of LDH activity for scaffolds cultured 

under dynamic flow in PM. Whereas, cells in osteogenic media for both culture conditions 

seem to survive better than those in PM. The presences of dexamethasone, β-

glycerolphosphate and ascorbic acid in OM, has driven the cells towards osteoblastic 

differentiation over time (Birmingham et al. 2012; Langenbach & Handschel 2013). It is 

believed that better cell adhesion was provided since more ECM being produced as the 

cells undergoes differentiation. As a result, less cells detached from the scaffolds cultured 

in Dynamic/OM compared to Dynamic/PM, which was represented by the low %LDH 

activity. 

Over time, more proteinaceous materials were produced particularly when hMSCs started 

to differentiate into osteogenic lineage. This is observed when the cellular scaffolds were 

cultured in OM and more apparently in Dynamic/OM. It has been reported that an early 

stage of osteogenic differentiation is the expression of collagen type I matrix onto which 

the mineral is deposited (Quarles et al. 1992). While, in final stage from day 14 to 28 high 

expression of osteocalcin and osteopontin usually obtained. This is followed by the 

deposition of calcium and phosphate (Huang et al. 2007; Hoemann et al. 2009). However, 

in this work the total protein produced by the cellular scaffolds were not analysed in details 

to classify the different types of bone-synthesized proteins.  
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Lactate dehydrogenase (LDH) assay was performed in order to quantify the percentage of 

cytotoxicity in the culture medium as to predict the phenomena happening in Dynamic/PM 

culture condition. Lactate is mainly produced from glucose metabolism. Glutamine can 

also excrete small amount of lactate. The concentration of lactate depends on the glucose 

concentration, cellular activity and bioreactor operation. Higher shear induced by the 

bioreactor resulted in higher concentration of lactate in the culture medium (Ozturk et al. 

1992; Schneider et al. 1996). The presence of lactate is then likely to impede cell growth 

and metabolism and decrease the productivity (Cruz et al. 2000). This is due to the changes 

in the osmolarity of the media where lactate attributed to media acidification (Eagle, 1973). 

Consequently, growth may be restricted by lactate even at constant pH. This phenomenon 

resulted in down-regulation of cell activity and total protein production of the cellular 

scaffolds in Dynamic/PM culture condition. The LDH assay also confirmed that high 

percentage of cytotoxicity detected at early culture of hMSCs on HA scaffolds under 

dynamic condition in both culture media. The trend obtained for HA cellular scaffolds was 

reciprocal to the 3DP cellular scaffolds, where the percentage of cytotoxicity decreased as 

the culture progress. This is because majority of the cells were already detached from the 

early culture (7 days), consequently a lower cell density remained as the culture 

progressed. 

With regards to the onset of mineralization, the levels of ALP/DNA of hMSCs cultured on 

all 3DP hybrid scaffolds in Dynamic/OM relatively dropped at 21 days. This reciprocal 

relationship between cell proliferation and osteoblast phenotype development is consistent 

with the model of the relationship between growth and differentiation of osteoblast 

development sequence proposed by Stein et al. (1990) and Aubin et al. (2006). The 

differentiation of hMSCs in vitro can be divided into three stages; (1) peak in number of 

cells (usually designated by increased in amount of DNA), (2) early cell differentiation 
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(shows peak levels of ALP expression) and (3) down-regulation of ALP expression 

(Huang et al. 2007). This trend can be clearly seen for 4C scaffolds cultured in 

Dynamic/OM.  

hMSCs cultured on 3DP hybrid scaffolds exhibited the typical bell-shaped trend of the 

ALP activity. In consistency to the ALP expression, 4C cellular scaffolds in osteogenic 

media for both culture conditions showed the highest levels of ALP activity after 14 days. 

This indicates that 4C scaffold is the most favourable substrate for hMSCs cultured in 

microgravity simulation, as cells were able to proliferate and differentiate the fastest in this 

condition. On the other hand, HA scaffolds showed almost negligible amount of ALP 

expression when cultured under microgravity simulation in both culture media. This is due 

to the cell detachment from the scaffolds at early stage of culture. As culture progresses, 

hMSCs started to differentiate into osteogenic lineage with cells become alkaline 

phosphatase (ALP) positive histochemically in particular for the 3DP hybrid scaffolds 

under dynamic condition in osteogenic media after 14 days of culture, i.e. 4C in 

Dynamic/OM. ALP histochemical analysis is considered as one of the earliest phenotypic 

markers of the osteoblastic lineage, which indicates the onset of mineralization (Lian & 

Stein 1995). Back in middle 1990s, a study conducted by Stein et al. (1996) found that 

osteoblast differentiation involve a multistep series of events modulated by an integrated 

cascade of gene expression that initially supports proliferation, differentiation and 

mineralization of the bone extracellular matrix. This study also proposed that the onset of 

matrix production begins at 14 days in culture.  

Micro-CT analysis is an effective tool to monitor the mineralized matrix formation within 

3D tissue-engineered constructs in vitro and in vivo (Cartmell et al. 2004; Henstock et al. 

2013; Reinwald et al. 2015). In this study, Micro-CT analysis was used to further detect if 
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any mineralization formed on the cellular scaffolds after the exposure to different culture 

conditions. Micro-CT analysis revealed the formation of denser area on 4C cellular 

scaffolds in OM after 21 days. The density maps of the whole and cross-sectional area of 

4C scaffolds in Dynamic/OM showed the most coverage with denser area compared to 

other investigated scaffolds. Correlating these results with the formation of bone-like 

nodules observed in live/dead staining and positive ALP expression, these denser areas can 

be assumed as mineralized matrix formation. A denser mineralized layer at the surface of 

cellular constructs is a common observation in tissue engineering (Ishaug-Riley et al. 1998; 

Cartmell et al. 2004; Hagenmüller et al. 2007). Quantitative Micro-CT analysis supported 

this observation, where 4C scaffolds in OM exhibited huge increments in the total volume 

and highest percentages of mineralization compared to other scaffold designs in different 

culture conditions.  

Based from the results obtained, the finding supports our hypothesis made in this study 

where the combination of dynamic flow and OM is assumed to promote better bone 

formation compared to other culture conditions. Our second hypothesis is also accepted as 

the 3DP hybrid scaffolds performed better in enhancing the bone formation in vitro than 

the HA scaffolds in all culture conditions over 21 days. However, based from our findings, 

the null hypothesis is then rejected since scaffold designs were found to have significant 

effects in enhancing bone formation in vitro particularly when cultured under dynamic 

condition. This study also underlines a number of critical parameters in creating 3D 

scaffolds for bone tissue engineering applications. Chemical composition, channel/pore 

size, structural designs and culture conditions all work hand-in-hand to create a functional 

scaffold. An ideal 3D scaffold should be able to recreate the natural extracellular matrix of 

bone. In order to do so, a scaffold must have an appropriate 3D architecture enhancing 
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initial cell attachment and subsequently migration into the matrix (Hutmacher et al. 2004; 

Jones et al. 2010).  

The results obtained in this study demonstrated that the 3DP hybrid scaffold are better 

compared to the pure HA in all culture conditions. HA alone is insufficient to enhance cell 

attachment and induce osteogenic differentiation particularly in dynamic condition even 

with the help of biochemical cues from the osteogenic media. Native bone tissue is 

comprised of two core components; the first of which is the mineralized inorganic phase 

consisting mainly of calcium phosphate with multiple ionic substitutions, and the second is 

the non-mineralized organic phase, which is predominantly collagen type I (Weiner & 

Wagner, 1998; Best et al. 2008; Hannink & Arts, 2011). Therefore, natural bone is more 

accurately referred as carbonated hydroxyapatite to as carbonate ions are the most 

abundant rather than solely hydroxyapatite (Spence et al. 2008). It is believed that there 

was lack of cell recognition when cells were cultured on HA scaffolds although it is known 

to be osteoconductive materials. This might also explain the weak bonding between cells 

and HA scaffolds in dynamic culture. The 3DP hybrid scaffolds were built up from the 

combination of both osteoconductive and osteoinductive materials, in which, multi-

substituted HA and collagen type I are the major components of the coating materials. 

These scaffolds resemble closely the compositions of natural bone. Thus, they are more 

likely to behave in similar way to bone as compared to monolithic scaffolds (Rodrigues et 

al. 2003; Wahl & Czernuszka 2006). In addition, the presence of multi-substituted HA 

powders has influenced the cellular responses of the hMSCs on the 3DP hybrid scaffolds. 

It is known that multi-substituted HA powders can provide better bioactivity by raising its 

solubility compared to pure HA (Palard et al. 2008; Sprio et al. 2008). 
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Pore and channel size is another key factor in affecting cell response. Channel size plays 

an important role in cell migration and diffusion of nutrients/waste products (Jones et al. 

2010). For bone tissue engineering purposes, pore size that is well accepted should be in 

the range of 200-900 µm (Maquet & Jerome, 1997; Burg et al. 2000; Yang et al. 2001). 

However, Holy et al. (2000) proposed that in order to achieve successful bone 

reconstruction, the 3D substrate should have a macroporous structure with pore sizes 

ranging from 1.2-2.0 mm to facilitate cell, tissue and blood vessel ingrowth throughout the 

scaffolds by having high surface to volume ratio. This study demonstrated the relationship 

between scaffold pore size and cells activity within tissue engineering constructs. Smaller 

pore sizes, as shown on HA scaffolds prevented cellular penetration and extracellular 

matrix production (Salgado et al. 2004). While, larger pore sizes were seen to improve the 

overall performances of the hMSCs cultured on 3DP hybrid scaffolds particularly under 

dynamic environment. It is believed that the presence of larger pores might have allowed 

for homogenous fluid flow in the bioreactor hence, minimizing shear and turbulences 

around the scaffold peripheries, which facilitate cell penetration and migration throughout 

the entire scaffolds. Among the 3DP hybrid scaffolds, 4C scaffolds was considered as the 

best scaffold design under the here investigated culture conditions. Indeed, mesh scaffolds 

possess higher SA: V ratio as compared to 2C and 4C scaffolds since they have the highest 

porosity, which is important for cell penetration. However, cells are subjected to excessive 

fluid shear particularly when they were exposed in dynamic culture. As a result, cells 

adhered on the struts of the mesh scaffolds were washed off. In this case, channel 

scaffolds, which have relatively smaller SA: V ratio (as shown in Table 5.1), offered some 

shelter for the cells from excessive fluid shear and at the same time still permit suitable 

nutrient flow. Therefore, the key finding in this study emphasized that scaffold design 

should balance the SA: V ratio. At this stage of study, it can be concluded that 4C scaffolds 



Results and discussion Chapter 5 
 

!
Page  

!
! !
 

262 

is the most promising scaffold design as compared to 2C and mesh scaffolds. This is 

because 4C scaffolds possess a SA: V ratio, which lies between 2C and mesh scaffolds and 

provides suitable surface area for cell attachment and porosity to allow mass transfer.  

This study also highlighted the impact of rotary bioreactor in bone formation in vitro. 

Conflict results have been reported in the literature. Some authors reported that 

microgravity has a negative influence on the behaviour of osteoblast by decreasing the cell 

viability (Sarkar et al. 2000; Sarkar et al. 2000; Rucci et al. 2003). Other authors found 

positive outcomes of microgravity on osteoblast development. Previous study has shown 

that culturing MG63 osteosarcoma cells on biomimetic calcium phosphate-coated poly 

(caprolactone) nano fibre meshes (BCP-NMs) and poly (caprolactone) nanofibre meshes 

(PCL-NMs) in rotary bioreactor at 16 rpm for two weeks showed higher levels of protein 

production and ECM genes for BCP-NMs constructs in dynamic compared to static 

condition (Araujo et al. 2010). Other than rotary bioreactor, different kinds of bioreactor 

have been used to enhance bone development. For instance, cyclic hydrostatic pressure has 

been shown to promotes bone growth and mineralization of foetal chick femur model and 

play an important role in regulating bone development and remodelling in vivo (Henstock 

et al. 2013). From the result obtained thus far, we believed that the enhancement of bone 

growth in vitro is not solely dependent on the culture condition but may be related to other 

properties of the structure that support cell growth during culture particularly the scaffold 

designs and materials as well as culture medium, which have great impacts on the stem 

cells fate. Ideally, the coating materials assembly deposited on each 3DP scaffolds should 

be consistent for each particular layer as this could directly affect the cell attachment and 

cell activity. Therefore, it is beneficial to stain each deposition layer on the 3DP hybrid 

scaffolds with Alizarin Red (AR) and Sirius Red (SR) followed by de-staining as to 

quantify the amount of calcium and collagen type I deposited on each layer. This will 
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function as quality control for the fabrication of 3DP hybrid scaffolds and will enhance the 

overall scaffold performance in vitro aiding in the selection of the best scaffold design for 

BTE application.  

5.4. Conclusion 

The structural design of the scaffolds has a pronounced impact on the behaviour of hMSCs 

in vitro. In addition, the combination of dynamic culture condition based on microgravity 

simulation and different culture media also plays important role in determining cells fate. 

Overall the utilization of the in-house fabricated 3DP hybrid scaffolds as cell culture 

substrates resulted in enhanced cell proliferation and differentiation compared to the 

control scaffold in all culture conditions. In addition, 4C hybrid scaffolds showed best 

performance among the scaffold designs investigated. Furthermore, the comparison of 

different culture conditions (static versus dynamic, OM versus PM) resulted in the 

identification of overall best culture conditions for this study, namely 4C Dynamic/OM. 

Here, hMSCs were able to produce the highest levels of proteins, DNA content and 

mineralization. This study determined that by creating a milimeter-size aligned channels 

on the scaffold structure aiming to resemble a vascular structure has greatly facilitated the 

cell migration, proliferation and differentiation under dynamic environment in osteogenic 

media. However, further studies should be performed to improve the vascularization of the 

entire scaffolds in particular the 4C hybrid scaffolds. Hopefully, the presence of a vascular 

network within the scaffolds would then augment and facilitate the osteogenesis of hMSCs 

on these in-house fabricated 3DP hybrid scaffolds.  
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6.1. Introduction 

Bone is a complex tissue, interpenetrated with a highly vascularized network in the human 

body (Duttenhoefer et al. 2013; Salgado et al. 2004). In large bone defects not only is the 

bone tissue damaged, but the surrounding vascular network is often markedly disrupted as 

well, which can consequently affect the repair response of the tissue (Johnson et al. 2011). 

During bone regeneration, new capillaries derived from the pre-existing surrounding blood 

vessels, invade the site through angiogenesis (Carano & Filvaroff 2003). Typically, areas 

with the highest level of vascularization resulted in rapid healing rates (Deleu & Trueta 

1965; Novosel et al. 2011).  

No doubt, various kinds of constructs have been fabricated by several advanced techniques 

such as biomimetic, electrospinning and rapid prototyping, but none have provided full 

clinical benefit in tissue engineering (TE). In bone TE, multiple cell types with new 

biomaterials have been combined to promote repair. Common approaches in bone tissue 

engineering include culturing osteogenic cells on a scaffold in vitro, i.e. culturing murine 

fibroblastic cells on hydroxyapatite scaffolds (Leukers et al. 2005) and human bone 

marrow-derived mesenchymal stem cells (hMSCs) on β-Tricalcium Phosphate (β-TCP) 

scaffolds (Hasegawa et al. 2010). It has been established that a key to the development of 

bone tissue does not rely solely on the use of osteoprogenitor cells, but also the inclusion 

of a functional vascular network. This is an essential pre-requisite for the survival and 

integration of the constructs to the host tissue. A lack of blood supply remains to be one of 

the major limitations in bone tissue engineering. Inadequate vascularization was attributed 

to be the cause of cell death in the constructs as a result of limited nutrients supply, 

hypoxia and accumulation of waste products, toxic and non-functional substances greatly 
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affects the remodelling process followed by total failure of the constructs biologically 

(Kanczler & Oreffo 2008; Grellier et al. 2009; Aguirre et al. 2010).  

Several approaches for improving the vascularization of the tissue-engineered constructs 

have been described (Moon & West 2008). Improvements to scaffold design, in particular 

the pore size and interconnectivity or by combining the gene and cellular therapies are key 

strategies. For example, transfecting cells to over-express key angiogenic growth factors 

such as vascular endothelial growth factor (VEGF) as to deliver specific biological factors 

that could direct the recruitment of endothelial cells (ECs) progenitors and their 

differentiation has been proposed by Jabbarzadeh et al. (2008). The in vivo evaluation on 

transfected adipose-derived stromal cells (ADSCs) with adenovirus encording the cDNA 

of VEGF combined with ECs on 3D poly (lactide-co-glycolide), PLGA sintered 

microsphere scaffold showed that this combination resulted in formation of vascular 

network within the PLGA scaffolds after 21 days implantation in SCID mice (Jabbarzadeh 

et al. 2008).  Other strategies include in vivo pre-vascularization of implants using vascular 

pedicles as well as creating pre-vascularized three-dimensional (3D) tissue constructs in 

vitro using a co-culture system of vascular ECs and bone cells or mesenchymal stem cells 

(MSCs) primarily spheroid co-culture model and hydrogel materials (Rouwkema et al. 

2006; Unger et al. 2007). This involved less complex processes compared to constructing 

vascular networks in 3D porous scaffolds, as hydrogels provide an environment that is 

manipulated by vascular forming cells (Au et al. 2008; Chen et al. 2009; Laschke et al. 

2009; Allen et al. 2010; Lee & Niklason 2010; Melero-Martin et al. 2010). In addition, 

cells are directly incorporated into the hydrogel before gelation and hence distributed 

throughout. However, gel-like materials are well known for its poor mechanical properties 

thus, with less applicable for load-bearing bone defects.  
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A key element in engineering vascularized bone tissue is to rapidly creating functional 

blood vessels within the constructs to supply cells with nutrients and oxygen as well as to 

remove the waste products (Rouwkema et al. 2006). Various different co-culture 

conditions have been investigated. However, the culture medium and the cell ratio remain 

a debating issue among researchers. For instance, McFadden et al. (2013) demonstrated 

that a ratio of 4:1, HUVECs:hMSCs in complete endothelial growth media (EM) increased 

vascularization within the 3D porous scaffolds, as the main aim was to create a vascular 

construct. Kaigler et al. (2005) investigated the effect of various cell ratio (1:1-10:1) of 

hMSCs:HUVECs co-cultured in proliferation media, PM: EM on osteogenesis and found 

highest ALP activity in the ratio of 1:1. Interesting cell behaviours in different culture 

media were discovered by Rouwkema et al. (2006) where, hMSCs was found to have 

highest proliferation rate in mix media, while HUVECs proliferate well in EM and exhibit 

intermediate result in mix media; the optimal CD31 staining in the 50:50 of co-culture 

systems in mix media. Apart from these debating issues, cell-seeding technique is a major 

concern. Most of the studies described in literature were based on immediate simultaneous 

seeding of HUVECs and hMSCs (Rouwkema et al. 2006; Rao et al. 2012; Gershovich et 

al. 2013). According to McFadden et al. (2013) who made a comparison between 

immediate co-culture and delayed addition of hMSCs to HUVECs network, whereas the 

former resulted in cellular regression and limited vascular formation. It was reported that 

delayed addition of hMSCs after 3 days of post-HUVECs seeding showed a well-

developed vessel-like structure 3 days later. The rationale with this approach was to 

replicate the event that occurs in vivo, whereby HUVECs form the initial vascular 

structures followed by recruitment of perivascular cells in order to maintain and stabilize 

the newly formed vessel (McFadden et al. 2013). For this study, the cell ratio and culture 

medium of 1:1, HUVECs:hMSCs and EM:OM were chosen based on the literature.  
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The crosstalk between HUVECs and hMSCs in the co-cultures system is known to produce 

specific growth factors, which influence the differentiation of hMSCs and the formation of 

vessel-like structure by HUVECs assembly. The mechanism involved in the crosstalk 

between HUVECs and hMSCs is illustrated in Fig. 6.1 which was modified from the 

literature (Kanczler & Oreffo 2008; Grellier et al. 2009). 

 
Fig. 6.1: Illustration depicting the mechanism involved in the crosstalk between HUVECs 
and hMSCs co-culture system. HUVECs produced PDGF and BMP signals. PDGF play a 
significant role in blood vessel formation. BMP is important to induce the formation of 
bone. hMSCs secrete high levels of VEGF production. In the cell-cell interaction between 
HUVECs and hMSCs co-culture, VEGF has a central role in osteo-endothelial 
communication. VEGF is crucial diffusible factors in the maintenance and stabilization of 
the new blood vessels. Adapted from Kanczler & Oreffo 2008; Grellier et al. 2009. 

The common growth factors produced by endothelial cells include PDGF, Bone 

Morphogenic Protein (BMP) and Insulin Growth Factor (IGF), which affect the migration, 

proliferation and differentiation of osteoprogenitor cells such as hMSCs and osteoblasts. 
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On the other hand, hMSCs produced high levels of VEGF. This growth factor plays an 

important role in the survival and proliferation of HUVECs and further development of the 

premature vessel structure. In this study, we focussed on the quantification of PDGF and 

VEGF production, as these are the two most important pro-angiogenic growth factors. 

The main aim of this study was to investigate the potential for in vitro pre-vascularization 

of bone TE constructs. The design of the scaffolds features large pores, which aim to 

promote vascular channels integrating the bone scaffold. The model used in this study 

employed a co-culture model consisting of HUVECs and hMSCs. The scaffolds were 

designed as a cylindrical disk with four channels in the middle fabricated by Fused 

Deposition Modelling method. In our previous study, the four channels (4C) scaffold 

revealed the highest percentage of mineralization in OM for a culture period of 21 days 

both in static and dynamic culture as compared to two channel (2C), mesh and 

hydroxyapatite (HA) scaffolds. The concept is to take the best design for induction of 

osteogenesis and add HUVECs to the channels to promote vascularization. HUVECs were 

embedded in a Matrigel solution and seeded directly into the channels aiming to create a 

vessel-like network throughout the scaffolds. Matrigel was used to facilitate HUVECs 

growth and promote proliferation. This study aims to provide insight into the crosstalk 

between the HUVECs and hMSCs within the 4C scaffolds by means of the early 

osteogenic and angiogenic expression as well as the secretion of the pro-angiogenic growth 

factors in particular Vascular Endothelial Growth Factor (VEGF) and Platelet Derived 

Growth Factor (PDGF). 
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6.2. Results 

6.2.1. Imaging labelled cells on the 3DP hybrid scaffolds 

After optimizing the 3DP hybrid scaffolds in the previous chapter, it was concluded that 

4C scaffold showed the best overall performances as compared to HA, 2C- and mesh 

scaffolds. hMSCs cultured on 4C scaffolds in the presence of osteogenic media (OM) 

showed enhanced migration, proliferation and differentiation into osteogenic lineage, as 

well as increased mineralization. Thus, 4C scaffolds were chosen for this study to create a 

pre-vascularized bone construct in vitro by introducing a co-culture model of HUVECs 

and hMSCs.  

To observe the distribution of the cells throughout the 4C scaffold by hMSCs alone, 

HUVECs alone and HUVECs: hMSCs co-cultured, samples were imaged using confocal 

laser scanning microscopy (CLSM). The cells were fluorescently labelled with blue and 

red dyes for hMSCs and HUVECs, respectively, which enabled observations of cells with 

time in culture. The CLSM images (Fig. 6.2) shows that both cell types remained viable 

and increased in cell number over the entire scaffolds throughout culture. The same 

observation was obtained for the controls. 
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 Fig. 6.2: CLSM images showing the fluorescent labelling of the hMSCs (labelled blue) and 
HUVECs (labelled red) on 4C scaffolds on different samples after day 3 and 10 post 
hMSCs addition; (a-b) hMSCs alone, (c-d) HUVECs alone and (e-f) hMSCs: HUVECs co-
culture model. Scale bar = 500 µm.  
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To further characterize the events happening in the channel, the channels were imaged at 

higher magnification using CLSM. It was observed that, after 3 days post-hMSCs addition, 

HUVECs formed aggregate-like structures in the channels. hMSCs on the other hand 

remained at the periphery of the channels. After 10 days in culture, HUVECs spread out 

and started to organize themselves throughout the channels as shown in Fig. 6.3 (b). 

HUVECs in the channels also migrated to the surface and towards the hMSCs especially 

the cells close to the periphery of the channels. In addition, a small number of hMSCs 

migrated into the channels.  

 Fig. 6.3: Cell morphology of the co-culture system in the channel of the 4C scaffolds after 
3 and 10 days post-hMSCs addition. HUVECs were distributed in the entire channels after 
10 days post hMSCs addition. Scale bar = 250 µm. 
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6.2.2. Immunocytochemistry staining 

In order to observe the expression of pro-osteogenic and angiogenic markers RUNX-2 and 

CD31 were investigated   as the early osteogenic and angiogenic marker, respectively.   

The RUNX-2 expression (labelled by the green fluorescent dye) of hMSCs alone, 

HUVECs alone and co-culture model are represented in Fig. 6.4. For hMSCs controls, a 

very small amount of RUNX-2 was expressed as early as 3 days after seeding and 

increased over time with enhanced fluorescence intensity. Highest level of the relative 

intensity for the green signals was detected on the hMSCs alone after 10 days in culture. 

The co-culture samples showed a similar trend to the hMSCs controls. This indicated that a 

low level of RUNX-2 expression occurred during the early stage of culture. The expression 

of RUNX-2 was significantly greater after 10 days of hMSCs addition to the pre-seeded 

cellular scaffolds as shown in Fig. 6.4 (h). The co-culture model shows only about half the 

levels of relative intensity of hMSCs alone (control). Over time, the relative intensity of 

the co-culture model (both green and blue) increased to about double the levels of their 

initial relative intensity (after 3 days post-hMSCs addition). This indicates highest levels of 

RUNX-2 expression obtained when more hMSCs found on the scaffolds.  

In order to obtain a three-dimensional observation of the events happening in the channels, 

the samples were scanned layer-by-layer through the channels to a depth of 2 mm. Results 

demonstrated that the HUVEC cells were distributed throughout the channels and 

demonstrated an absent for RUNX-2 expression at all time-points. This is confirmed 

quantitatively as no green fluorescent signal was detected from HUVECs alone.  
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Fig. 6.4: Immunostaining of the RUNX-2 expression on the surface of the scaffolds after 3 
and 10 days post-hMSCs addition and their relative fluorescence intensity, respectively; 
(a-c) hMSCs alone, (d-f) HUVECs alone and (g-i) hMSCs: HUVECs co-culture model. 
*Fluorescent labelled of green, blue and red designated for RUNX-2 expression, hMSCs 
and HUVECs, respectively. hMSCs alone and co-culture system showed positive stains of 
RUNX-2  expression indicating early osteogenic differentiation occurred as early as 10 
days. Absent of stained was detected in HUVECs alone as expected. Relative fluorescence 
intensity obtained from IMARIS software demonstrated that hMSCs on the surface of the 
scaffolds started to differentiate into osteoblastic lineage over time with the increased of 
the relative intensity. The results also showed that HUVECs migrated and proliferated to 
the surface after 10 days post-hMSCs addition as more fluorescence detected for both 
HUVECs alone and co-culture model. Scale bar = 250 µm. 
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Human-specific CD31 antibody was used to test in vitro vessel formation within the 4C 

scaffolds. In the hMSCs alone group, no expression of CD31 was observed at all time-

point, as represented in Fig. 6.5 (a-c). A low level of cells was detected in the channels 

especially after 10 days post-hMSCs addition although hMSCs were initially seeded only 

on the surface of the scaffolds. After 6 days post-HUVEC seeding, HUVECs alone showed 

positive staining for CD31. Cell number increased and was more distributed compared to 3 

days post-HUVECs seeding as shown earlier in Fig. 6.3. After 10 days in culture, 

HUVECs alone demonstrated relatively higher CD31 expression than those after 6 days 

post-HUVEC seeding. The staining was also found to be more homogenous throughout the 

channels rather that localized staining as seen at early stage of culture. However, no proper 

vascular network was observed at this time-point.  

To confirm whether the interaction between HUVECs and hMSCs in the co-culture model 

resulted in the formation of newly developed vascular networks, the channels of the co-

culture samples were imaged. It was observed that in the co-culture model, HUVECs 

expressed CD31 and that its expression increased over time. However, the expression of 

CD31 in the co-culture model was more localized as compared to HUVECs alone group. 

Again, no vessel networks were detected after 10 days post-hMSCs addition. Typically, 

HUVEC takes about 10 days to form a 3D well-developed vessel-like network in the co-

culture model (Rouwkema et al. 2006; McFadden et al. 2013). Unfortunately, this trend 

was not seen in this work as no vessel-like network was formed at the time-points 

investigated.  
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Fig. 6.5: Immunostaining of the CD31 expression in the channel of the scaffolds after 3 
and 10 days post-hMSCs addition and their relative fluorescence intensity, respectively; 
(a-c) hMSCs alone, (d-f) HUVECs alone and (g-i) hMSCs: HUVECs co-culture model. 
*Fluorescent labelled of green, blue and red designated for CD31 expression, hMSCs and 
HUVECs, respectively. Both HUVECs alone and co-culture model expressed CD31 after 3 
days post-hMSCs addition. IMARIS only detected the relative intensity of the blue 
fluorescence from the hMSCs alone, which indicates the cells migrated into the channels 
over time. Increasing trends of relative intensity of the red and green fluorescence were 
obtained for both HUVECs alone and co-culture model. Relative intensity of blue 
fluorescence was also detected in the co-culture system. Scale bar= 250µm. 
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6.2.3. Quantification of secretion of pro-angiogenic growth factors  

The secretion of pro-angiogenic signalling molecules, PDGF and VEGF into the cell 

culture media by hMSCs alone, HUVECs alone and co-culture model were quantified 

using ELISA and the results are represented in Fig. 6.6. The release of both signal proteins 

is critically essential in the vessel formation and stabilization. The results can also be used 

to draw a comparison between monoculture (hMSCs alone and HUVECs alone) and co-

culture model.  

The levels of PDGF-BB differed between culture groups (p ≤ 0.0001) at each time-points. 

There were different interactions between time and the secretion of PDGF-BB depending 

on the culture groups, where HUVECs alone group demonstrated linear increases over the 

culture period (p ≤ 0.0001). When hMSC and HUVEC were co-cultured, the levels of 

PDGF-BB decreased with increasing cultivation period (p ≤ 0.0001). 

Comparing the culture groups, HUVECs alone released the highest levels of mean PDGF-

BB compared to hMSCs alone and co-culture groups at either time-point (p ≤ 0.0001 for 

each). For the co-culture group the levels of PDGF-BB decreased at day 3 post-hMSCs 

additions to the pre-seeded cellular scaffolds (p ≤ 0.0001) and eventually diminished, 

where no significant differences were observed at day 10 (p= 0.9787). hMSCs alone 

showed no significant differences in the secretion of PDGF-BB on day 10 (p = 0.9999) . 

Overall, HUVECs alone group released the highest PDGF-BB on day 10 compared to 

hMSCs alone and co-culture groups (p ≤ 0.0001 for each).  
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Mean VEGF released increased over time for both hMSCs alone and co-culture groups (p 

≤ 0.0001) and differed between the culture groups (p ≤ 0.0001). There was a significant 

interaction between time and VEGF released (p ≤ 0.0001), suggesting that the increase in 

VEGF released over time differed between culture groups.  

Among the culture groups, hMSCs released significantly higher levels of mean VEGF at 

day 3 (p ≤ 0.0001) and day 10 (p ≤ 0.0001) compared to HUVECs alone and co-culture. 

No significant differences were observed in the production of VEGF in the HUVECs alone 

group at day 3 (p= 0.7278) and day 10 (p= 0.9999). The co-culture group demonstrated 

similar trends compared to the hMSCs monoculture. Before the addition of hMSCs, post-

HUVECs seeded scaffolds produced as negligible level of VEGF as the HUVECs alone (p 

= 0.5370). The levels of VEGF increased drastically with the addition of hMSCs after 3 

days post-HUVECs seeding. The co-culture group continues to secrete more VEGF over 

the culture period (p ≤ 0.0001 for each).  

Overall, hMSCs alone secreted relatively higher levels of VEGF as compared to the co-

culture l and HUVEcs alone groups at day 3 and day 10 (p ≤ 0.0001 for each).  
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(a) 

 

 

 

 

 

 

 

 

(b) 

Fig. 6.6: The level of (a) PDGF-BB and (b) VEGF produced by hMSCs alone, HUVECs 
alone and co-culture model after day 3 HUVECs seeding only, day 6 and 10 post-hMSCs 
additions. PDGF-BB production was increased from day 3 to 10 for HUVECs alone group 
(p ≤ 0.0001) while co-culture model demonstrated declined in PDGF-BB production post- 
hMSCs addition and no longer detectable afterwards. hMSCs alone showed almost 
negligible PDGF-BB production at any time-points.  In the co-culture model, significant 
increase of VEGF production at day 3 and 10 post-hMSCs addition (p ≤ 0.0001) was 
observed. Similar trend was observed for hMSCs alone group, which showed significant 
inclined in VEGF production from day 3 to day 10 (p ≤ 0.0001).  
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6.3. Discussion 

To date, tissue engineering strategies for bone have yet to deliver fully functional clinical 

approaches. The development of a vascular network surrounding the constructs is 

insufficient, resulting in cell death and tissue necrosis, as there are limited nutrients and 

oxygen supply to the cells within the constructs (Novosel et al. 2011; Ma et al. 2011). 

Thus, providing sufficient blood supply in the initial phase after implantation is crucial for 

success of bone constructs (Grellier et al. 2009). Recent findings have suggested that one 

of the effective solutions to overcome this limitation is pre-vascularization. In this study, 

the aim was to undertake the proof of concept work to closely mimic the bone structure by 

using a 3DP hybrid scaffold with pre-determined channel size and co-culture of HUVECs 

and hMSCs. Four channels (4C) scaffolds with each individual channel diameter of 1.5 

mm were selected from previous criteria (as described in Chapter 5) in order to create the 

pre-vascularized bone construct. From the literature, it is suggested that delayed addition 

of hMSCs to pre-seeded HUVECs scaffolds is the optimum condition to create a pre-

vascularized constructs (McFadden et al. 2013). According to McFadden and co-workers 

(2013), delayed addition of hMSCs after 3 days of post-HUVECs seeding was reported to 

enhance vessel formation within the scaffolds, with increased, cell migration and 

distribution and structural organization evident. The rationale behind this is the formation 

of vascular structure occurred in spatio-temporal pattern. The initial stage of vessel 

formation requires endothelial cells assembly followed by maturation and stabilization 

recruitment of perivascular cells, i.e. the secretion of growth factors such as VEGF which 

is crucial in the maintenance and stabilization of the new blood vessels (Grellier et al. 

2009). Therefore, delayed hMSCs seeding pronounced a better method to closely replicate 

the in vivo process as it is widely agreed that vascularization occurs before osteogenesis 

take place during both embryonic development and bone healing for an adult (Roux et al. 
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2015). Thus, the balance in growth conditions between osteogenic and angiogenic cues are 

one of the challenges in developing vascularized bone constructs.  

However, in this study, the vascular networks have not yet been found after 10 days co-

culture. This is due to the relatively low cell density seeded on the scaffolds. Thus, culture 

period of 10 days after hMSCs addition as suggested by McFadden and co-workers (2013) 

seems insufficient for this work. McFadden et al. (2013) demonstrated that high cell 

number (5 X 105/scaffold) and cell ratio of 4:1 (HUVECs: hMSCs) cultured in OM 

successfully induced the formation of vessel-like structure after 10 days post-hMSCs 

seeding (McFadden et al. 2013). Since the formation of vascular networks depends on 

space and time, the low cell density used in this study may require a longer culture period 

for the cells to migrate, proliferate and assemble to form vessel-like structure before the 

addition of hMSCs to the co-culture system. It is possible that, in this study, HUVECs 

were still proliferating with only minimal communication between the neighbouring cells, 

as there is more area to fill. It is also possible that the addition of hMSCs to the system 

might interfere with the natural process of vessel formation as the physically larger hMSCs 

may impede the self-assembly of HUVEC networks, thus hindering adequate formation of 

these early vascular structure (Jain 2003; Chen et al. 2007).  

Positive stains for RUNX-2 and CD31 in the co-culture system indicated the expression of 

early osteogenic and angiogenic markers. RUNX-2 is the most specific transcription factor 

in early osteoblastic differentiation of hMSCs (Kanczler & Oreffo 2008; Rupani et al. 

2012). In both conditions, hMSCs alone and HUVECs: hMSCs co-culture model, RUNX-2 

markers were expressed, which indicates that the hMSCs started to differentiate towards 

osteoblastic lineage. It was observed that HUVECs alone demonstrates higher expression 

of CD31 compared to the co-culture system. This clearly highlights that HUVECs were 
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able to achieve cell-cell contact and maintain phenotype before hMSCs were added to the 

culture. According to the literature, endothelial cells of all origins are able to form tube-

like structures in vitro when grown in appropriate ECM components such as Matrigel or 

collagen type I. Matrigel is a tumor basement membrane matrix extract enriched with 

laminin. During angiogenesis, the proliferating and migrating ECs are eventually 

organized into newly formed capillary structures (Grant et al. 1985; Madri et al. 1988). 

Unfortunately, in this study the vessel-like structure was not formed at these time-points. It 

is believed that embedding HUVECs in the Matrigel might have restricted the cell 

proliferation and activity. To overcome this problem in the future, a further study on the 

use of Matrigel in culturing HUVECs in 3D structure should be conducted. For instance, 

instead of embedding HUVECs in the Matrigel, the cells should be cultured on the top 

layer of the Matrigel, applying the common method for Matrigel angiogenic assay. This 

could possibly promote cell survival, proliferation, migration and formation of new vessel-

like structure. 

In addition, there are difficulties with imaging the vessel-like structures using confocal 

microscopy, which may cause issue with the detection of the vessel-like structures even 

using higher magnification. This is because the newly formed vessels are relatively small 

and the confocal microscope might not be able to provide sufficient 

resolution/magnification to detect smaller structures. Two-photon fluorescence light 

microscopy was recently used to detect the vascular-like structure in particular for a thick 

three-dimensional constructs as suggested in the literature (McFadden et al. 2013). 

Although, confocal and two-photon microscopy techniques are very much alike, two-

photon microscopy has a number of advantages. Firstly, the excitation wavelength of two-

photon is twice as high/powerful as one-photon excitation. Secondly, two-photon 

microscopy is predominantly suited for imaging thick specimens. This is because the near 
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infrared light used in two-photon excitation has orders of magnitude less absorption in 

biological specimens than UV or blue/green light. Finally, two-photon microscopy requires 

no pinhole aperture and minimizes the signal loss. Unlike two-photon microscopy, 

confocal requires the use of emission pinhole aperture to eliminate out of focus light. 

However, scattering of the fluorescent photons inside thick specimens is unavoidable. The 

divergence of the resultant path causes a significant loss of these photons at the confocal 

pinhole (So 2002).  

Platelet-derived growth factor (PDGF) family members and vascular endothelial growth 

factor (VEGF) are the most essential pro-angiogenic growth factors and are closely related 

(Rouwkema et al. 2006; Rouwkema et al. 2008; Novosel et al. 2011). PDGF-BB is a 

critical factor produced by HUVECs and is principally involved in the recruitment and 

migration of perivascular cells to the site of vessel assembly (Ball et al. 2007). Results 

revealed that HUVECs alone continued to release PDGF up to day 10 in culture and in an 

attempt to recruit perivascular cells to stabilize neo-vascular structures. HUVECs require 

time to release PDGF before hMSCs addition, thus allowing for superior, more functional 

formation of vessel-like structure. This has then a knock-on effect on vessel-like structure 

migration into the scaffold and mitigates vessel regression (Carmeliet & Conway 2001; 

Chen et al. 2007; Lee & Niklason 2010).  

On the other hand, hMSCs primarily released VEGF in order to influence vessel assembly 

(Kanczler & Oreffo 2008; Rouwkema et al. 2008). The co-culture model shows increased 

expression of VEGF at day 6 post-addition of hMSCs at day 3. Concurrently, PDGF 

production was diminished once the hMSCs were added to the system. These data are 

consistent with the literature. Similar phenomenon was observed by Lee & Niklason 

(2010), whereby PDGF was only released by the rat aortic endothelial cells (RAECs) 
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cultured alone; however, no PDGF was released in the co-culture of RAECs and rat 

hMSCs alone. The availability of this chemotactic agent to the newly added hMSCs may 

be the reason that enhanced vessel formation occurs and faster recruitment may be 

permitted to the site of the vessel wall assembly followed by incorporation of the vessel 

wall (Jain 2003; Merfeld-Clauss et al. 2010). Once the hMSCs localize to the site of the 

HUVEC vessels, they can then stabilize this structure explaining the cessation of the 

PDGF production in the co-culture system. As for this study, two primary reasons 

HUVECs have not yet formed the vascular network is due to low cell density and 

insufficient PDGF secretion. This is because the production of VEGF by the hMSCs has 

inhibited the production of PDGF by the HUVECs once hMSCs were added to the pre-

seeded HUVECs scaffolds. Even for the monoculture system, HUVECs alone was still 

producing PDGF and no vessel-like structure seems to form at these time-points. Our data 

highlights the important of spatio-temporal relationship between these two growth factors 

and their respective influences on both cell types. It has been reported in literature that the 

size of the new vessels was affected by the spatial delivery of VEGF, but depended 

primarily on the presence of PDGF. In addition, vessel maturation increased over time, and 

was enhanced by the delivery of PDGF (Chen et al. 2007). Controlled delivery of both 

growth factors is important in the formation, stabilization and maturation of the vessel 

within the scaffolds. To author knowledge, vessel formation and maturation is time-

dependent and to date no exact time has been reported in the literature as this varies on 

several parameters, i.e. cell ratio, culture medium, culture period, seeding technique and 

culture substrate materials (i.e. soft-gel, spheroid or scaffolds).  
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6.4. Conclusions 

The concept for pre-vascularization of engineered bone construct can be tested by co-

culture in defined regions of the channel scaffolds. The co-culture model shows that both 

HUVECs and hMSCs were able to proliferate throughout the scaffolds despite the low 

density of cells seeded. The quantification of the relative fluorescence intensity provides a 

better understanding of the cell-cell interaction. Both osteogenic and angiogenic markers 

were positively expressed by the co-culture model. Further work should include the use of 

higher cell densities, which may result in a higher production of PDGF and VEGF in the 

co-culture model compared to monoculture systems leading potentially to a successful pre-

vascularized bone construct. However, results highlight the need to optimize the co-culture 

model within the 3DP scaffolds. Seeding technique, cell density, cell ratio, total cell 

number, culture medium and culture period require further optimization. 
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7.1. General Discussion 

Bone tissue engineering (BTE) is a vast diverse field, which provides new concepts for 

bone regeneration. There are a number of new strategies based on this concept including 

cell-based therapies, scaffold-based therapies and various examples of combinations of 

both therapies with the aim to guide cells to form functional tissue (Burg et al. 2000; 

Hutmacher et al. 2004; Meijer et al. 2007). A range of materials has been used in BTE 

mainly for making scaffolds, including natural and synthetic polymers, bioglass and a 

number of calcium phosphate-based bioceramics such as hydroxyapatite (HA) and 

tricalcium phosphate (TCP) (Rose et al. 2004). Besides bioceramics, synthetic polymers 

such as poly (lactic acid) (PLA) and poly (lactic-co-glycolic acid) (PLGA) have been 

widely used as architectural supports for cells since these polymers are known to be 

biodegradable, biocompatible, mechanically durable and capable of being formed into 

desired shapes (Rezwan et al. 2006). Many different scaffolds have been fabricated using 

numerous materials and techniques; but none has actually met the clinical needs.  

Therefore, this study aims to fabricate novel 3DP hybrid scaffolds to enhance bone 

formation in vitro. In order to achieve the research goal, this study was divided into four 

main phases which includes the production of newly develop multi-substituted HA 

powders and development of novel coating materials assembly followed by fabrication of 

3DP hybrid scaffolds. The cell behaviour on 3DP hybrid scaffolds was then investigated, 

i.e. hMSCs cultured on several structural and functional scaffold designs in different 

culture conditions (static versus dynamic and OM versus PM). The primary aim of this 

thesis was to fabricate a functional scaffold design that could bring us a step closer to the 

clinical needs particularly for osteoarthritis cases. The final phase of this study undertake 

the proof of concept work to closely mimic the bone structure by introducing the co-
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culture model of HUVECs/hMSCs into the best scaffold design as to create pre-

vascularized scaffolds, which could benefit both osteogenesis and angiogenesis during 

repair. 

For many years, synthetic HA has been used as bone substitute material in medical 

applications due to its osteoconductive properties, similarity in the composition to the 

mineral phase of bone and in conjunction with their FDA approval for clinical use 

(Ducheyne & Qiu 1999). However, the use of HA as a biomedical material has been 

hindered as synthetic HA is slower to resorb than the endogenous form and may possibly 

remain at the site of implantation for many years (Bohner 2000; Brydone et al. 2010). The 

difference in composition makes biological apatites different to synthetic HA; thus it is 

more accurately referred to as multi-substituted HA (Sprio et al. 2008; Spence et al. 2008; 

Landi et al. 2010). 

The function of the ionic substitutions in the HA lattice on biological responses has been 

documented in the literature for both in vitro and in vivo. The presence of B-type CHA has 

been shown to cause a decrease in crystallinity and increase in solubility both in vitro and 

in vivo (Landi et al. 2003; Murugan & Ramakrishna 2006; Shepherd et al. 2012). In vivo 

tests using an ovine model demonstrated that more dissolution was observed from the 

CHA, at the bone implant interface and within the implant, when compared to pure HA 

(Porter et al. 2005). In addition, the presence of carbonate may also play an important role 

in metabolic activity where a higher carbonate leads to a higher metabolic activity. For 

example, tissues containing higher carbonate content like bone and dentin are known to be 

more bioactive than enamel, which is a nearly inert tissue due to relatively low carbonate 

content (Landi et al. 2010). 
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 Besides carbonate, silicon (Si) also plays an essential role of for normal bone and cartilage 

growth and development (Carlisle 1970; Schwarz & Milne 1972; Carlisle 1979). Si content 

varies widely dependant on the bone age and site. It has been reported that Si up to 0.5wt% 

was localized in the active calcification sites of the young mice and rats and the value 

varies in concentration for the enamel of young humans (1.3-504 µg/g) (Carlisle 1970; 

Healy 1998). Studies have shown the benefits of delivering controlled levels of Si to a 

wound healing site in order to promote bone repair (Hing et al. 2006). Si plays an 

important role in bone and cartilage systems as it influences cartilage synthesis and the 

integration of the ECM as well as the bio-mineralization process (Gibson et al. 1999; Landi 

et al. 2010). However, there is still a discrepancy on the effect of Si-HA on biological 

responses, which has been reported in the literature. This is mainly because Si substitution 

into HA lattice is known to have a dose-dependent effect on the proliferation, 

differentiation and collagen synthesis of osteoblast, with a direct influence on the 

remodelling process and osteoclast development and resorption activities (Pietak et al. 

2007). For instance, Landi et al. (2010) found that higher silicon content (≥ 0.8wt%) 

incorporated in the HA structure resulted in higher cell death in vitro. Literature has 

suggested that this is due to higher ion release as powders with high silicon content have 

higher solubility (Lin et al. 2006; Ni et al. 2007); the same trend was observed in this 

study. Our study has highlighted that the incorporation of carbonate and silicon ions in the 

HA lattice in controlled amounts plays an important role in improving the cell response. 

However, very limited studies on the benefits of simultaneous ionic substitutions into HA 

lattice (mainly in nanopowders forms) on human osteogenic cells have been demonstrated 

in the literature. This study not only aims to produce a novel biomedical material but 

hopefully the findings would be beneficial to other groups manufacturing materials for 

bone TE. 



Discussion Chapter 7 
 

!
Page 290 

!
! !
 

In this study, different degrees of the newly developed substituted HA nanopowders have 

been successfully produced by a nanoemulsion method. Two groups of multi-substituted 

HA (SiCHA) nanopowders have been produced, namely SiCHA-1 and SiCHA-2 besides a 

single substitution (either carbonate or Si) nanopowders, i.e. CHA and SiHA. Among the 

powders produced, SiCHA-2 was chosen as the ideal biomedical material since it provided 

the most favourable growth environment for hMSCs in vitro compared to the other 

investigated powders. The distinct cell responses observed can be explained by the 

differences in the powder formulations. This evidence was observed when hMSCs were 

seeded on SiCHA-1 and SiCHA-2. hMSCs in direct contact with SiCHA-2 showed the 

fastest cell proliferation and production of proteinaceous materials. This can be explained 

by having the closest compositions of carbonate and silicon ions substituted HA lattice 

relative to natural bone. hMSCs cultured on SiCHA-2 show statistically higher cell 

responses (i.e. DNA content, protein production, metabolic activity) compared to SiCHA-1 

(p ≤ 0.0001). In contrast, SiCHA-1 show the worst cell responses compared to the single 

substituted CHA and SiHA nanopowders. The use of high Si concentration in SiCHA-1 

produced powders, which contain silicon as the major substitution with limited carbonate 

incorporated in the HA structure. This behaviour gives evidence of the competition arising 

between these two ions for the occupation of the same crystallographic site of phosphate 

group (Sprio et al. 2008). Having too high Si concentration in the HA lattice, have no toxic 

effect found in this study, but SiCHA-1 hinder the proliferation of hMSCs. This finding 

highlights the importance of controlled amounts of ionic substitutions in the HA structure 

as they can be the determining factor in the cell responses. To date, no such study has been 

published using the same production route according to the author’s knowledge.  

 



Discussion Chapter 7 
 

!
Page 291 

!
! !
 

The substituted HA powders can be used in several different ways, i.e. powder forms, 

compact sintered discs, coating materials and composite scaffolds (Gross et al. 1998; 

Murugan & Ramakrishna 2006; Habibovic et al. 2010; Shepherd et al. 2012; Rodrigues et 

al. 2013). In this study, a novel coating materials assembly for Polyelectrolyte Multilayers 

(PEMs) technique has been established using multi-substituted HA nanopowders, 

hyaluronan, collagen type I and EDC/NHS on 2D PLA films prior to 3DP hybrid scaffolds 

fabrication. In nature, the biological world is built up by precise self-assembly of bio-

macromolecules. This has inspired the researchers to explore an engineered scaffold via 

macromolecules self-assembly (Kim & Bruening 2003; Huang et al. 2012). PEMs have 

been used to modify the polymer surface and re-create the ECM environment on 

biopolymer surface (Mhanna et al. 2011; Mathews et al. 2012). In this study, the 

combinations of osteoconductive (SiCHA nanopowders) and osteoinductive  (collagen 

type I) materials as the polyelectrolytes resulted in positive outcome with 5-bilayers (BL) 

depositions of the innovative coating materials serving as the most favourable milieu for 

hMSCs attachment and activity. This coating materials assembly resembles the 

composition of natural bone which contains mainly CHA and many natural ECM-like 

macromolecules such as hyaluronan and collagen type I (Zhao et al. 2014). No researchers 

have ever reported on the same coating materials assembly as used in this study based on 

author’s knowledge. This coating technique was firstly developed by Decher (1997) and 

has been used in many applications such as biosensors, separation or dialysis membranes, 

and surface modification of various different materials due to its simplicity and versatility. 

Among other coating materials used in TE applications were poly (L-lysine)/alginate, 

hyaluronic/collagen type I and chitosan/hydroxyapatite (Detzel et al. 2011).  

As well as material type, the design of scaffolds is important to facilitate cell and tissue 

growth. Factors governing scaffold design are complex and involve considerations on the 
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architecture design, pore/channel size and morphology, surface properties, mechanical 

durability and most importantly biological influence (Hutmacher 2000). One common 

problem encountered in scaffold-based TE is the rapid formation of tissue on the outer 

edge of the scaffolds while the tissue in the inner part of the scaffold undergoes necrosis. 

(Rose et al. 2004; Silva et al. 2006). A common approach to overcome this problem is by 

altering the culture conditions with the use of sophisticated bioreactors such as perfusion or 

rotary bioreactors. This will help to provide effective nutrients and oxygen supply as well 

as waste removal; nutrients are able to reach the cells in the centre of the scaffolds, which 

improves cell survival (El Haj & Cartmell 2010; Yeatts & Fisher 2011). Although, these 

bioreactors have shown successful outcomes and are increasingly used in tissue 

engineering in vitro, this field is still emerging in order to ensure that the host tissue can 

penetrate through the entire scaffold as to guarantee satisfactory integration of the scaffold 

(Stevens et al. 2005).   

Alternative approach to address this issue is to incorporate a design within the scaffold, 

which will improve nutrient and oxygen supply to the inner part or core of the scaffold. 

This approach has potential benefits both in vitro and in vivo culture conditions. In order to 

achieve this goal, recent studies have incorporated aligned channels on a solid material 

(Hollister et al. 2002; Lin et al. 2003; Silva et al. 2006). This design of scaffolds has been 

fabricated using several techniques such as modified slip casting, phase separation and 

rapid prototyping (RP) (Taboas et al. 2003; Rose et al. 2004; Wilson et al. 2004; Silva et 

al. 2006). In this study, Fused Deposition Modelling, which is one of RP techniques, was 

used to fabricate the 3DP PLA scaffolds with aligned channels. This technique was chosen 

as it has been used for fabricating complex shaped scaffolds. The intended size of the 

aligned scaffolds can be easily designed using a CAD system and allows in precisely 

creating the predetermined forms and internal structure. In addition, it is highly 
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reproducible and can be customized to the patient needs in the future (Hutmacher 2000; 

Hollister 2005; Sobral et al. 2011). Previous studies have reported the positive influence of 

incorporating design within the scaffolds on cell and tissue ingrowth. This is thought to 

improve nutrients and cell transfer to the core of the scaffold, both in vitro and in vivo (Ma 

& Zhang 2001; Hollister et al. 2002; Gabriel et al. 2002; Rose et al. 2004; Silva et al. 

2006).  

From a scaffold-based TE point of view, improved tissue formation in 3D is closely may 

be related to the initial cell adhesion on the scaffolds. The cell growth in a scaffold is 

largely dependent on the scaffold architecture typically the pore/channel size and their 

orientation (Galban & Locke, 1999; Sobral et al. 2011). In general, the higher the porosity 

of a scaffold, the higher its surface area to volume ratio, which could allows better cell 

attachment and migration throughout the entire scaffolds (Salgado et al. 2004). However, 

in this study we found that mesh scaffolds having too large pore size (i.e. 500 µm) with 

struts perpendicular to each other resulted in less support is available for the cells to attach 

to the scaffold. In addition, most cells found at the bottom of the scaffolds as cells were 

easily slides down. This is the major issue encountered in this study when hMSCs were 

seeded on the mesh scaffolds. To address this problem, the cell culture well plates were 

coated with Pluronic F-127 beforehand to create non-adhesive regions as suggested in the 

literature (Dang et al. 2002; Deegan et al. 2014). This method is very simple, uses 

commercially available reagents and is generally applicable to substrates including tissue 

culture plastic (TCP) surface with unlimited geometric constrains. The results obtained in 

this study have demonstrated that better cell attachment was obtained when the cells were 

seeded on the 3DP hybrid scaffolds using pluronic coated cell culture well plates.  
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It is also possible to coat the culture plate using ethylene glycol-functionalized alkanethiols 

as this polymer resists protein adsorption and cell adhesion. The disadvantage of ethylene 

glycol-functionalized alkanethiols is that it is not commercially available (Tan et al. 2004; 

Aydin et al. 2011). The use of suspension culture plates would be another potential option 

in the future. It is believed it would be better to use suspension culture plates rather than 

ordinary TCP, which has been plasma treated. The well in the suspension plate has a layer 

of hydrogel that is hydrophilic and neutrally charged. This will inhibit cell attachment, as 

the proteins and other biomolecules are passively adhering to the surface through 

hydrophobic and ionic interactions.  

The combination of osteoconductive and osteoinductive materials on the 3DP hybrid 

scaffolds have a significant impact on the cell response as compared to the pure HA 

scaffold. The presence of collagen type I plays an important role as an adhesion protein, 

which favours cells attachment and proliferation (Bisson et al. 2002; Becker et al. 2002; 

Ma et al. 2005). Thus, cells adhered to the 3DP hybrid scaffolds are deemed to have 

stronger bonding compared to the pure HA scaffolds. It is assumed that the HA scaffolds 

were sintered at high temperature, resulting in a highly crystalline structure with small pore 

sizes that affected the protein adsorption. This decreased cell adhesion and detachment 

strength (Gariboldi & Best 2015). Consequently, the weakly bonded cells were easily 

detached from HA scaffolds once exposed to microgravity simulation. Although the HA 

scaffolds have good interconnectivity and are highly porous, the HA scaffolds have the 

smallest pores (200-300 µm) compared to the 3DP hybrid scaffolds and majority of the 

pores were blind-ended. It has been demonstrated in the literature that blind-ended porosity 

decreased cell penetration into HA scaffolds core when compared to open porous scaffolds 

with aligned channels both in vitro and in vivo, suggesting tortuosity and closed pores 

reduced cell penetration (Silva et al. 2006). Besides, blind-ended structure also prevent 
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cellular infiltration and ECM production of the inner core of the HA scaffolds (Salgado et 

al. 2004). However, HA cellular scaffolds in static conditions were able to attach, migrate 

and proliferate over time as typically found in the literature (Li et al. 2012) . It is believed 

that culturing HA cellular scaffolds in the rotary bioreactor exposed the weak bonded cells 

to high shear stress induced by the collision with the vessel wall, as the rotational speed 

was kept constant at 20 rpm. Numerous studies of particles dynamics in a rotating 

bioreactor have demonstrated that the density difference between the microcarrier and the 

culture medium resulted in an increase in shear stress on the microcarrier. For instance, 

ceramic materials, which in general have high density, would experience a high shear 

stress, affecting cell attachment and causing cell damage. In addition, denser microcarrier 

tend to bounce off from the walls of the vessel, thereby causing a detrimental effect on the 

cell viability (Gao et al. 1997; Qiu et al. 1998).  

Commercial HA scaffolds used in this study appeared pale blue instead of white (which is 

the typical appearance of pure HA) (Leukers et al. 2005). It is assumed that there were 

some impurities in the structure or material of the scaffolds. Upon culture, it is believed 

that these impurities might have reacted with the cells and resulted in negative impact on 

the overall cell responses. In order to ensure the HA scaffolds are free from any impurities, 

it would be beneficial to characterize the scaffolds (i.e. the actual composition, crystallinity 

and surface roughness) before further studies could be performed in the future.  

A principal concern of the in vitro 2D cell culture is that cells tend to grow in a monolayer 

even when cultured on 3D biodegradable scaffolds. Cells cultured in static condition are 

not allowed to pile on top of one another, but are forced into flat layers, which do not 

accurately replicate the in vivo model (Sheyn et al. 2010). Tissues or organs are cellular 3D 

well-organized structures with sophisticated cell-cell and cell-matrix interactions and 
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intricate transport dynamics for nutrients and cells (Antoni et al. 2015). The effect of 3D 

culture on collagen-sponge network in bone has been demonstrated by Masi et al. (1992) 

who discovered that it was able to induce osteocalcin synthesis even in the absence of 

vitamin D in the human osteoblast-like SaOS-2 cells whereas, osteocalcin was not 

expressed by these cells when they were cultured on collagen type I coated dishes (Masi et 

al. 1992).  

Moreover, high density, 3D in vitro growth of mammalian cells is challenging owing to the 

nutrients diffusion and lack of oxygenation in the classic in vitro cell culture (Granet et al. 

1998). Thus, a dynamic cell culture system is required to engineer a 3D pattern of growth 

and differentiation as well as closely mimic the in vivo environment (Martin et al. 2004; 

Rauh et al. 2011). To overcome this problem, a rotary bioreactor seems a promising 

dynamic culture system as it was designed to reduce the shear stress as compared to 

perfusion system (El Haj & Cartmell 2010). Studies have shown that the use of the rotating 

bioreactor increases the protein production in comparison to perfusion or static conditions 

after 28 days (Pound et al. 2006). The 3D dynamic flow environment induced by the 

microgravity simulation from the rotary bioreactor was reported to affect the bone cell 

distribution in 3D cultures even at early stage of culture (4 and 7 days) enhancing 

osteoblastic phenotypic expression and mineralized matrix synthesis within tissue-

engineered constructs. This is believed to be due to the improvement in mass transport 

between the cells seeded within the scaffolds and the culture media (Yu et al. 2004). For 

this reason, the rotary bioreactor was selected as to address the fundamental issues facing 

bone remodelling and formation, in particular, regarding the effect of dynamic flow in a 

3D environment on bone cell biology and bone formation in vitro (Granet et al. 1998; Song 

et al. 2006). 
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This study provides important basic information to elucidate the effect of dynamic flow on 

hMSCs proliferation, osteoblast phenotype development and generation of early stage of 

mineralized matrix on different scaffold designs. Interesting findings were obtained when 

the 3DP hybrid scaffolds were cultured in the rotary bioreactor in different culture 

medium, namely the OM and PM. Regardless of the scaffold designs, cell seeded scaffolds 

under dynamic flow in PM demonstrated the least cell growth compared to the other 

growth environment e.g. Dynamic flow in OM and Static in OM and PM. As culture 

progressed, the cell seeded scaffold in PM continuously expanded and increased in cell 

number with the enhancement following addition of serum into the media. Without any 

osteogenic supplements, hMSCs proliferate to higher cell numbers without differentiation 

occuring (Jung et al. 2012). Over time, cell seeded scaffolds with greater cell density than 

the surrounding medium suffer repeated impacts with the bioreactor wall, imposing a 

mixture of non-quantifiable mechanical disruptions to cultured cells. These repeated 

collisions have a detrimental effect by limiting the cell density and mineralized matrix 

synthesis during cultivation in the rotary bioreactor (Goldstein et al. 2001; Sikavitsas et al. 

2002). In addition, some of the hMSCs were detached from the scaffolds and resulted in 

suspended cells present in the media. Being an anchorage-dependent cells, hMSCs need a 

substrate to attach and survive (Jung et al. 2012; Chen et al. 2013). It is assumed that when 

the detached cells were in suspension, they were floating and eventually undergoes cell 

death. This may explain why we obtain higher percentage of LDH activity for cell seeded 

scaffolds under dynamic flow with PM.  

This trend was less severe when 3DP hybrid cellular scaffolds were cultured in OM than 

PM. With the presences of dexamethasone, β-glycerolphosphate and ascorbic acid in OM, 

cells were able to differentiate towards osteogenic lineage (Birmingham et al. 2012; 

Langenbach & Handschel 2013). Once the cells started to differentiate, the rate of 



Discussion Chapter 7 
 

!
Page 298 

!
! !
 

proliferation is slowed down concurrently following the model of the reciprocal 

relationship between proliferation and differentiation during osteoblast development as 

proposed by Lian & Stein (1992). As differentiation progressed, more ECM is produced by 

the hMSCs. This is thought to provide a better cell adhesion to the cell seeded scaffolds 

and help in cell survival. Consequently, less cells detached from the scaffolds, which 

resulted in fewer cell death represented by lower percentage of LDH activity. In this study, 

cell seeded scaffolds under dynamic flow in OM showed positive outcomes. The pre-

designed aligned channels on the 3DP hybrid scaffolds (2C and 4C scaffolds) have allowed 

the culture medium to be distributed throughout the scaffolds while the vessels were 

rotating. This has facilitated the transport of nutrients and waste removal as well as oxygen 

supply to the cell seeded scaffolds. As a result, more bone-like nodules and early-

mineralized matrix formed when the 3DP hybrid scaffolds were cultured under dynamic 

flow in OM. The combinations of the pre-designed aligned channels on the 3DP hybrid 

scaffolds, OM and dynamic culture condition have greatly enhanced the overall cell 

responses. This finding was found to be contradictory to the study by Sikavitsas et al. 

(2002), who found that after 21 days of culturing rat MSCs on 75: 25 PLGA biodegradable 

scaffolds in OM, in spinner flask bioreactor and in static culture conditions, scaffolds 

showed higher ALP activity, osteocalcin secretions and calcium depositions compared to 

those cultured in the rotary bioreactor. The discrepancy in the results can be easily 

explained by the obvious difference in the rotational speed used. In this study, 20 rpm was 

selected as the optimum speed in order to minimize the shear stress while maintaining the 

cellular scaffolds free floating in the vessels. A higher speed of 30 rpm was used by 

Sikavitsas et al. (2002) and this has caused detrimental effect on the cellular scaffolds. 

Here we highlighted three important fundamental findings discovered in this study, which 
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controlled the cells behaviour under dynamic flow in a 3D environment; (1) scaffold 

designs, (2) culture medium and (3) rotational speed applied.  

The ultimate goal of BTE is to create a living scaffold that could survive after 

implantation, where this engraftment sought a rapid formation of a stable and functional 

vascular network (Unger et al. 2010; Ma et al. 2011; Gershovich et al. 2013). During in 

vitro culture, nutrients can be supplied to the larger tissue-engineered scaffolds using the 

advanced technology of bioreactors and pre-designed aligned channel scaffolds as 

demonstrated in this study. However, after implantation cells can only survive with a 

limited distance of about 100-200 µm (the diffusion limit of oxygen) from the next 

capillary network for the supply of nutrients and oxygen and for the removal of waste 

products (Rouwkema et al. 2008).  

One approach to create pre-vascularized tissue-engineered scaffold, which involves the 

paracrine communication between endothelial cells (i.e. HUVECs) and hMSCs 

(Rouwkema et al. 2006; Gershovich et al. 2013; Dahlin et al. 2014). The main aim of this 

study was to develop a proof of concept study that could closely replicate the bone 

structure by directly filling in the aligned channels with HUVECs and covering the surface 

with hMSCs. The cellular crosstalk between the major pro-angiogenic cells (HUVECs) 

and the perivascular cells (hMSCs) could result in the establishment of functional 

vasculature that can mature and   stabilized (McFadden et al. 2013). To obtain a well-

organized vascular network within the 3DP hybrid cellular scaffolds, the cell ratio of 1:1 

mix of HUVECs: hMSCs was chosen based on previous studies (Rouwkema et al. 2006; 

Gershovich et al. 2013). However, there is discrepancy in the optimum culture medium 

(i.e. EM, OM and mix of both two) used for this particular system. Rouwkema et al. (2006) 

discovered interesting cell behaviour in different culture media where, hMSCs was found 
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to have highest proliferation rate in mix media, while HUVECs proliferate well in EM and 

exhibit intermediate result in mix media. With regard to this finding, mix media of EM and 

OM with 1:1 ratio was used in this study.  

Besides cell ratio and culture medium, the seeding technique is another important 

parameter. Most studies directly seeded both cells simultaneously, which not accurately 

imitate in vivo occurrences (Gershovich et al. 2013; Dahlin et al. 2014). According to 

McFadden et al. (2013) the in vivo phenomena can be replicated by the delayed addition of 

hMSCs to the HUVECs seeded scaffolds; the seeding technique was adapted in this work 

with some modification. According to the literature, the most important pro-angiogenic 

growth factors for this co-culture system are VEGF and PDGF expressions as the secretion 

of both growth factors would influence the vessel assembly and mineralization as a whole 

(Ball et al. 2007; Kaigler et al. 2010). Typically, HUVECs would take roughly about 10 

days to develop a proper vasculature in the co-culture system (Rouwkema et al. 2006; 

McFadden et al. 2013). However, no vasculature was evident in this study, which may 

result from a lower cell density as compared to those in the literature. For instance, with 

high cell ratio (4:1) and total cells (5 X 105) on a scaffold, McFadden et al. (2013) has 

shown the detection of optimal vessel formation even as early as 6 days of hMSCs post-

implantation. Despite the low cell density used, cells used in this co-culture model were 

still able to secrete both pro-angiogenic factors. It is thought that the addition of hMSCs to 

the pre-seeded HUVECs scaffolds was probably too early which impede the proliferated 

HUVECs to form a stable vessel assembly. Another possible reason why vessel formation 

could not be seen in this study is due to the imaging technique used. Alternatively, two-

photon fluorescence light microscopy was recently used to detect the newly small vessel 

formation in particular for a thick three-dimensional scaffold as suggested in the literature 

(McFadden et al. 2013).  
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7.2. Concluding Remarks  

Overall, this thesis has investigated the potential application of 3DP hybrid scaffolds for 

enhanced bone formation. The first phase of the study involved the production of a range 

of newly developed multi-substituted HA nanopowders using nanoemulsion method 

followed by heat treatment (calcination). Among the various different compositions of 

powders produced, good hMSCs behaviour was found on direct contact with SiCHA-2 

nanopowders, which consists of 3.98 wt% carbonate and 0.45 wt% silicon substituting the 

HA lattice. SiCHA-2 was chosen as the ideal powder formulation as these powders closely 

mimic the composition of bone mineral. Thus, SiCHA-2 was suitable for next phase in the 

development of a novel 3DP hybrid scaffold for BTE applications. The optimum SiCHA 

nanopowder was then used as a major component in the innovative coating materials 

assembly for Polyelectrolyte Multilayers (PEMs) technique, which was established in the 

second phase of this study. Five bilayers (5-BL) coating was chosen as the finest 

deposition cycles as they provide the highest surface roughness and homogenous 

distribution of coating materials, which offered the best milieu for the hMSCs adhesion, 

growth and proliferation. 

Fused Deposition Modelling is a useful technique in making different structural and 

functional designs of 3D scaffolds with precise aligned channels and pores. The coating 

materials assembly established was then adapted for the fabrication of 3DP hybrid 

scaffolds in the third phase of this study. Dynamic flow has effectively facilitated the mass 

transport to pass through the entire scaffolds and enhance the overall cell responses on the 

3DP hybrid scaffolds in OM. The biochemical cues in OM have encouraged rapid cell 

differentiation and produced a stronger matrix between the cells and scaffolds. While, the 

lack of biochemical cues in PM allowed the fluid flow induced from the rotary bioreactor 
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to be easily washed off the cells on the scaffolds as they experienced higher shear stress by 

colliding with the vessel walls. Finally, this study has provided a proof of concept of co-

culture system to closely resemble the bone structure. The positive indications given by the 

expression of both pro-angiogenic markers show that the concept applied may be capable 

of supporting vessel formation in vitro. However, more experiments should be done in the 

future to optimize the co-culture parameters for this particular scaffold design as to create a 

pre-vascularized 3DP hybrid scaffold that could be beneficial help for osteoarthritis cases 

in particular. 

7.3. Future Work 

To address the aims of this study, the production of 3DP hybrid scaffolds enhancing bone 

formation, a thorough understanding of the background materials specifically related to 

bone tissue engineering is required. Therefore, studying the properties of natural human 

bone or bone similar in composition (sheep or bovine bone) should be performed to 

provide an understanding of the composition and structure of the natural bone and to be 

used as “gold-standard” for future studies.  

In this work, the 3DP hybrid scaffolds were fabricated manually by PEMs assembly 

technique. For large-scale production in the future, an automatic coating system using the 

same coating materials assembly would be helpful to maintain the high level of quality 

control and consistency between batches and to be more time efficient.  

In order to fabricate large scale of 3DP hybrid scaffolds, multi-substituted HA 

nanopowders needs to be produced at large scale. The application of these powders is not 

limited to coating materials; they can also be used to fabricate a 3D scaffold using other 

technique, i.e. 3D printing, selective laser sintering or laminated object manufacturing 

(Seitz et al. 2005). The fabricated ceramic scaffolds could potentially be used as an 
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experimental control to this study. Alternatively, to ideally compare the performances of 

the 3DP hybrid scaffolds, a control scaffold should have the same structure and functional 

design. A commercial HA powder could be used as the osteoconductive materials 

(replacing the in house SiCHA nanopowders) to coat the 3DP scaffolds in exactly the same 

manner as the 3DP hybrid scaffolds produced in this study.  

Besides the materials properties, the structural design of a scaffold also plays an important 

role in determining the stem cells fate. For instance, altering the orientation of the struts 

across the mesh scaffold could maximize the cell attachment on the scaffold. Instead of 

having the struts perpendicular to each other, some researchers have designed the scaffolds 

with inclined layers of 45°. This design shows enhance cell attachment because the cells 

are hindered from sliding down of the structure (Leukers et al. 2005). There are other 

several 3DP technical parameters that could be optimized to obtain better cell attachment 

on the scaffolds such as the layer thickness, window size and pore/channel size (Silva et al. 

2006; Asadi-Eydivand et al. 2016). Further work, including qPCR would help to quantify 

the differentiation state of hMSCs seeded on different scaffold designs and allow the 

investigation of further osteogenic and chondrogenic markers. In the future, it would be 

interesting as well to investigate the impacts of dynamic flow on the 3DP hybrid scaffolds 

using different bioreactor such as perfusion system. Animal model testing would also be a 

very interesting future direction. Since the fabricated scaffold is made of biodegradable 

materials, it is also essential to investigate the degradation rate and mechanical properties 

of the scaffolds over longer cultivation time (3-6 months). The degradation rate of the 3DP 

hybrid scaffolds could be easily determined by measuring the weight loss of the scaffolds) 

or by checking the changes in the molecular weight and Polydispersity Index (PDI) using 

Gel Permeation Chromatography (GPC) analysis. It is also crucial to investigate 

mechanical properties of the scaffold such as compression strength as well as the 
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mechanical compatibility of the scaffolds with cells particularly the stiffness as it is an 

important cue for the stem cell fate.  

In order to successfully create pre-vascularized scaffolds using the same concept applied in 

this study, more detailed optimizations on the cell ratio, culture medium, seeding technique 

and culture period should be performed. In the future, it would be interesting to further 

investigate the co-culture system not only in vitro and but also in vivo. As an alternative to 

animal model, Chick Embryo Chorioallantoic Membrane (CAM) can be used to study the 

impact of angiogenesis in stimulating rapid bone mineralization. CAM assay is probably 

the most widely used in vivo assay for studying angiogenesis as it is relatively simple and 

inexpensive, suitable for large-scale screening (Staton et al. 2004). The in-house fabricated 

3DP hybrid scaffolds could also potentially be used for osteochondral defects. Thus, it 

would be beneficial to study the crosstalk between chondrogenic and osteogenic cells on 

the 3DP hybrid scaffolds in the future.  
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Characterization of human bone marrow-derived mesenchymal stem cells aspirate 

(Cell Source: Lonza, United States; Donor: 24-years old male) 

Based on the guidelines from the International Society of Cellular Therapy, human bone 

marrow- derived mesenchymal stem cells (hMSCs) can be defined based on the following 

three criteria:  

1. hMSCs must be able to adhere to plastic surface under standard tissue culture 

conditions 

2. hMSCs should be able to differentiate into the tri-lineage of osteogenic, 

chondrogenic and adipogenic when expanded in their specific culture medium (as 

shown in Table 2.3) 

3. hMSCs must express certain cluster of differentiation surface markers, including 

CD73, CD90 andCD105, and lack of the expression of markers such as CD14, 

CD34, CD45, CD19 and HLA-DR. 

hMSCs used in this study were adherent to the tissue culture plastic (TCP) as shown in Fig. 

A1. The cells were also tested for their multilineage potential by culturing them for 21 

days in relevant differentiation media followed by histological staining (as described in 

section 2.2.5.2.). Cells cultured in proliferation media acted as the experimental control. 

Cells grown in osteogenic media showed positive stain in Alizarin Red for calcium 

deposition designated by the bright red nodules; cells in chondrogenic media shows the 

stained for sulphated glysaminoglycans with Alcian Blue and cells in adipogenic were 

stained positive by the Oil Red O indicating the lipid droplets formation. Cells cultured in 

proliferation media demonstrated the absent of stains for all histological staining 

performed. Results are presented in Fig. A2.  
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Fluorescent images of hMSCs stained by CD73, CD90, CD105, negative (CD14, CD34, 

CD45, CD19 and HLA-DR) and isotypes (IgG 1 and IgG 2a) are represented in Fig. A3. 

The nuclei stained with DAPI (4, 6-Diamidino-2-Phenylindole) appeared blue. Positive 

stains were only observed for surface markers of CD73, CD90 and CD105, while absent of 

stains were observed for the hematopoietic markers including CD14, CD34, CD45, CD19 

and HLA-DR as well as the isotype control antibodies including IgG 1 and IgG 2a. This 

was also confirmed by the flow cytometry analysis.  

Flow cytometry data showing the intensity of the fluorophore tagged isotypes, positive and 

negative CD markers are represented in Fig. A4. Isotype controls showed very low 

intensity of staining (shaded black). Cells stained by CD73, CD90 and CD105 

demonstrated strong fluorescence intensity (shaded red) with the entire population was 

shifted to the higher value, indicating positive staining. On the other hand, negative 

staining was obtained for CD14, CD34, CD45, CD19 and HLA-DR, which were 

demonstrated by low fluorescence intensity. From the characterizations performed, it is 

confirmed that the cells used in this study are bone marrow-derived mesenchymal stem 

cells and referred as hMSCs throughout the study in this thesis.  
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Fig. A1: hMSCs adhere to the tissue culture plastic. Images of hMSCs at (a) lower 
(4X) and (b) higher (10X) magnification. hMSCs at passage three (P3) remained the 
spindle fibroblast like appearance after 14 days in culture. 

 

 

 

(a) 

(b) 
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Fig. A2: Multi-lineage differentiation of hMSCs after 21days in culture. Cells were cultured in proliferation and relevant differentiation media 
namely, Osteogenic, Chondrogenic and Adipogenic media and were histologically stained with Alizarin Red, Alcian Blue and Oil Red O, 
respectively. Scale Bar = 200 µm.  
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Fig. A3: hMSC staining for CD markers. Immunostaining characterization of the expression profile of typical hMSCs surface markers (CD73, 
CD90 and CD105) and demonstrating the lack of hematopoietic markers. Isotype represents the IgG 1 and IgG 2a, and negative is the CD14, 
CD19, CD34 and CD45 and HLA-DR.  

Negative Isotype CD105 CD90 CD73 
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 Fig. A4: Quantification of hMSC CD markers. Results demonstrated typical profile of hMSCs surface markers (CD73, CD90 and CD105) 
and lacking of hematopoietic markers (CD14, CD34, CD45, CD19 and HLA-DR using flow cytometry. (Re-printed with permission from J.C. 
Price). 
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Fig. A5: X-Ray Micro-CT of different structural designs of dry scaffolds (before seeding). HA scaffolds is denser in nature and was scanned at 
higher density threshold compared to the hybrid scaffolds which was fabricated by Fused Deposition Modelling technique using poly (lactic 
acid) based scaffolds coated with 5BL of SiCHA in hyaluronan/ SiCHA in Collagen type I and EDC/NHS coupling agent. Dry HA scaffold was 
scanned at threshold (50/1000), designated as T50. 3DP hybrid scaffolds were scanned at threshold (42/ 1000), designated as T42. Scale bar= 
5mm. 
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