
This work is protected by copyright and other intellectual property rights and 
duplication or sale of all or part is not permitted, except that material may be 
duplicated by you for research, private study, criticism/review or educational 

purposes. Electronic or print copies are for your own personal, non-
commercial use and shall not be passed to any other individual. No quotation 
may be published without proper acknowledgement. For any other use, or to 

quote extensively from the work, permission must be obtained from the 
copyright holder/s. 



PRIMARY AND SECONDARY IONIZATION PROCESSES 

IN MERCURY VAPOUR 

being a thesis on the electrical breakdown 
of nercury vapour under uniform field con­
ditions "Then the cathode is a mercury !,ool 

by 

G. D. N. OVERTON, B.A. 

and su~itted to the University 
of Keele in candidature for the 
Degree of Doctor of Philosophy . 

Department of Physics~ 
University of Keele. 

July, 1965. 



ACKNOllLEDGEMENTS 

I wish to express my thanks to : 

Professor D. J . Ingram, who provided laboratory facilities; 

Dr . D. E. Davies, for his helpful supervision; 

MY friends in the Electron Physics group ut Keele, for their 

valuable discussion; 

Mr . F. Rowerth and his stuff for their technical assistance . 



SYNOPSIS 

Because of the i nportant industrial applicRtions of nercury, 

!!lost 'mrk in the fielCi of' Llercury vapour discharges has been carried 

out Oil I!lercury Vfl.pOur arcs . The work described in this thesis is 

ccncerned i.,ith the fUndamental processes operative in oerc"..1ry vapour 

in the Townsend region of gas discharges, H'hen the cathode used is 

0, oercury pool. 

Apparatus has been developed with which it was possible to 

obtain data on breakdown potentials, primary ionization coefficients 

and formative time lags. Generalized secondary ionization coefficients 

,.,ere calcule.ted froo the breakdmm potentials and priI!lary ionization 

coefficients as a function of Rip. This curve i Q interpreted in the o 

light 0 ... " calculations I!lade of the nUI!lbers of excited atons in each 

of t he 'P' states per ion pair, and the application of Davidson ' s 

treatment of the tenpcral growth of ionization. 
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CHAPrER 1 

THE SPATIAL GROlfTH OF IONIZATION 

Introduction 

A large amount of work hus been concentrated on the high pressure 

high current mercury discharge, because of its engineering ~pplications . 

The low pressure , low current mercury discharge has by comparison been 

neglected. The work described in this thesis is confined to the study 

of mercury vapour in that part of gas discharge physics known as the 

'l'Ownsend or Controlled Discha.rge region, in which currents are in 

general li~ited to the range 10-12 to 10-6 amps in uniform applied 

fields . In this chapter, the basic physics of this type of discharge 

is presented, in order thc.t an adequate background can exist for the 

interpretaticn of the results in mercury vapour. 

1.1 The Production of Photo-electrons 

Consider an evacuated tube containing t"'0 plane pa.ra.llel 

electrodes . Ultra-violet light falls on coe electrode liberating 

photo-electrons . The variation in photo-electric current can be 

studied by altering step by step the potential applied ~etween the 

electrodes , from a large accelerating value to a suitable retarding 

value and plotting current voltage characteristics . Differentiation 

of this curve yields the energy distribution of the electrons . The 

~e of distribution obtained is shewn in fig. (1). The curve, 

unlike a. Haxwellian distribution, shews thc.t electrons e.re emitted 

l1ith ell energies from zero tc El. well defined maximum, given in 

terms of the critical potential, Vo ' by 
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eVo = ~mv2 
where e is the charge on the electron and m is its mass. In the 

presence of an accelerating field, the form of this distribution will 

be maintained at any intermediate distance between the electrodes, and 

the current ca.rried et 'My instant "Till be 

I = !!!:.Y. 
cl 

where N is the number of electrons, e is their charge, v the mean 

~locity and d the electrode separa.tion. 

1.2 The Interaction of Electrons with Gas Atoms 

1.2.1 Elastic Colli~ions 

If gas is now introduced into the system, the form of the energy 

distribution m~ be altered by the interaction of the electrons with 

the gas molecules . The sioplest type of interaction is an elastic 

collision, defined as an event in which total kinetic energy is con-

served. The fractional loss of energy by an electron ha.ving such a 

collision is given by 

where m is the mass of the electron and 1>1 is the mass of the a.tom. For 

most cascs this fractional loss of energy is small, e. g. for the case 

of an electron colliding with a mercury atom of mass 200 

It is to be expected , therefore, that the energy distribution of photo­

electrons traversing a gap under the influence of an applied field will 

not be changed in form to o:ny great extent by elastic cOllisions. 



Assuming tha.t the now of electrons takes from the field E an amount 

of energy enough to balance losses by elcstic collisions, that the 

electron current density is constant and the gas atoms are relatively 

at r est, Druyvesteyn and Penning aJ.) calculated the electron energy 

distribution function given by 

( ) _ e ~ -0 • 5 5 (~) 2 
P € - € e € 

-where € is the mean energy of the electrons calculated in this distri-

bution. Fig . (2) shews the distribution and the Mroavcllian for the 

same nean energy, €. Although the equation for thc Druyvesteyn 

distribution does net predict a maximum energy, it can be seen that the 

curve approaches the energy axis more quickly than the Mwcwellian, and 

the nU:lber of electrons with energies a few volts above the ionising 

potential is negligibly snaIl. The distribution may be .narkedly changed 

when inelastic collisions are incluQed. 

1.2.2 Inelastic Collisions 

An inelastic collision is defined as one in which the kinetic 

energy is not conserved; part of the energy going to raise the internal 

energy of the atoo . The probability of an inelastic collison is defined 

as the nuober of atoms that are excited or ionised per electron per 

centinetre of path length at a pressure of one millimetre at oOe. 

1.2.3 Excita.tion by Electrons 

Electrons with sufficient energy to excite an e.to!:l , viz; 

,.,here Wi is the excitation potential, can do so providing the angular 
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momentum ~r el octron and ctom with respect to the comm~n oontra of nASS 

of t.he eysten is conserv~d . Thorefore the change in angular momentum 

of the system, op, is equal to the change in the internal angular 

I!lOmentUL1 of the a.tom. op is given by 

where j = (l+s) . For example , in mercury, a transition of one of the 

electrons in the sixth shell (fig . (3 )), fron the ground state 6 18 0 

into 7180 (n=6 into n=7 ) is associated with oj = O. Therefore Op 

is zero und only head on collisions are effective . The nunber of such 

collisions is snall ~~d negligiblc probability of excitation is to be 

cxpected for electrons of 7 . 8geV, the critical energy corresponding to 

the.t transition . 

The transition 6180 to 71P1 or 8 1
Dh is associa.ted with oj equal 

to one or two and 6. 67eV and 8 .8eV respectively. In these cases 

excitation will result only if the atoo is hit in such a direction that 

Op has the required value. The excitation probability is zero at the 

excitation potential since a negligible nunber of electrons fulfill 

this condition , and becooes positive 11hen the electron energy is 

greeter than the ru.nillum energy necessa.ry because the electron can carry 

away the eXcess energy end nlso bala.nce the angular Ilomer~tutl . 

The probability of excitation to El certain energy level is 

called the 'excita.tion function' , defined as the nQ~bcr of electron-

atom collisions leading to e. transition divided by the total number 

of collisions . This fraction is generally of the order of 10-2 • 

- 4 -
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There are marked differences in slope and shape of the 

excitntion functions corresponding to differ~nt transitions. For 

atons "Ti th tl'iO valency electrons the function for singlet - singlet 

transitions rises rela.tively sl.)vTly reaching a broad mo.ximum. The 

function for singlet - triplet transitions reaches a sharp maxiaum 

just above the critical energy and then falls quickly away . Fig . 

(4) shews the excitation functions for the four 'P' states of mercury 

as calculated by Penny (1). The shape of these curves has considerable 

significence "men the importance of excited atoms to the breakdown 

process is considered. This point is ~plifieu in chapter five of 

this thesis. 

The diff~rence 1n shape of the ct~ves is due to the fact that in 

singlet - singlet transitions the total spin quantum n:~ber is unchanged. 

Thus befcre and after excitation the spin vectors of the two valency 

electrons oust be anti-l~rallel. For singlet - triplet transitions S 

goes froa zero tu one, viz. the spin vectors are reoriffi1tated to be 

parallel . For elements such as oercury with strong spin-orbit coupling 

this can be brought about by electron impa.ct. For elements with weak 

coupling like heliUI!l it can only occur "Then the itlPinging electron is 

ca.ptured by the ctoo and one valency electron is expelled . This 

electron exche.nge only occurs within a na.rrm'T energy rnnge, hence the 

corresponding excitation fm1ction for heliun has a sharper maxioum than 

for mercury . Such stringent conditions are not atta.ched to singlet -

singlet transitions anu ~he maximum is broad. 
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1 . 2.4 Ionisation by Electrons 

Thin con be considered 8.S on extreme form of excitation. The 

J,robabi1ity behaves in e. simil:lr manner to the probability of excite.tion, 

"7ith the maximum further removed from the .::riticcl potential than the 

critical potential for excitation. Compton end van Voorhis (2 ) 

measured the number of ions formed in a gas from a known electron 

current beam . This number, "Then recluced to the number of ions formed 

by one electron travelling one centimetre at a pressure of one 

millimetre nt ooC. is called the 'efficiency of ionisation' . The 

prob:!bility of ionisation , Qc fined in an analogous tlc.nner to the 

probability of excitation, is found by dividing the efficiency of 

ionisation by the nucber of collisions made or the number of mean 

free pa.ths . A diagrom of the ionisa.tion efficiency for I!lercury vapour 

as obtained by Bleakney (3 ) i s ohewn in fig . (5), end the probability 

of ionisation for various gases including mercury vapour is shewn in 

:fig . (6) . 

It can be seen that the probability of ionisation rises from 

zero at the ionisation potential to a t''Cc.Xllnum be.t'\oreen 100 and 400 

volts depending on the ges , after which it steadily decreases . For 

electrons with any particular energy the probability of i onisation 

generally increases with the atomic nuclber of the gas , i . e . with the 

number of electrons in the e.tom . 

1 . 3 The Townsend First Ionisation Coefficient 

The Q.uantities outlined a.1)ove are deternlined from experiments 

in which mono-energetic beaus of electrons are used. If ~vc n01l 
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return to the case where the S\-Tam of electrons shews an energy 

distribution, 0. fe,., electrons in the high enerey tail of the distri-

but ion only "Till have sufficient energy to cause ionisation. It is 

possible to define a coefficient analogous to the ionisation 

efficiency for this condition , as follows. 

The nean energy of the el ectrons will be determined by the 

Iatio E/p , where E is the field strength and P the gas pressure. If 

Ae is the electron Dean free path , eEAe is the average energy gained 

by an electron in a neM free path in the fi eld direction. 

proportional to El P and is the controlling factor in ionisation by 

collision. 

A photo-electron, of sufficient energy, moving through the gas 

in the direction of the field, will produce on average a ion pairs 

per centimetre of its pa.th in the clir cction of the field . Thus with 

n electrons et 0. distance x from the cathode there "Till be adx ion 
x 

pairs produced in a distance dx. Thus in noving 0. distance dx, 

there is an increase in the number of ion pairs an given by 

an = nx adx 

If the nmber of photo-electrons a:t the cathode (x=O) is no' and the 

electrode sepaEation is d cm., we have 

tu ~ = fd adx 
no 0 

In terms of current ! = , I 
o 

ad 
e 

where Io is the photo-electric current froo the cathode . Hence the 

logarithn of I/Io is :~ro~ 'Jrtional to the electrode separation if 

- 7 -



E/p is kept constant. The slope ef this curve is a oeasure of a, 

known as t he first Townsend ionisation coefficient (4). The above 

derivation assumes tho fi eld is mliform and that space charge effects 

are negligible . The currents involveu"r therefore ~oll t of the 

order of 10-13 to 10.8 
0l:1pS. ("'. 

After leuvinB the cathode, the ~hoto-electrens oust travel u 

certain distunce do hefore t he energy rustribution becomes steady and 

a constant neo.n energy is o.cquire corresponding t o the value of El P 

in t he gap . This equilib:-:ium is thought to be attain cl after the 

electron has l.lndere;cnc sOIlle el::..stic collisions (6) . The above 

equation must therefore be altered t o 

An cl.terIlv.tive coefficient to a. is the ionisa.tion produced by 

an electron felling through 0. pot~ntia.l difference of one volt. In 

this case the current may be written as 

~.,here Vo is Co correction factor corresponding to do' The coefficient 

n is related to C! by 

Cl 
n=E' 

If the !:lean energy of the electron sworn is mo.intaine<l constant t 

the fraction ef the number of collisions between electrons und gas 

atone lcacling to ionisation lTill rema.in unchanged if the gas density 

is altered. 
• • E Thus a is proport1onal to p for a glven lp, or 

- 8 -
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rJ.1? = f(E/p} 

1.4 The Evalu~tion of a./P as a function of E/P 

A typical plot of a./~ as ~ function of R/P 1S shcwn 1n fig. (7). 

The curve is char acterised by an elongated letter S shape, rising fron 

an e.sYBptote throush <:l. point of inflexion to un apparent saturation 

value . Lt very ImT E/p, the ~can energy of the electrons is low, s.o 

that the nUl:lber of cl )ct: 'ons in the hip;h energy teil of the uistri bu­

·tien is l CYj. Thu~3 a./p rises slowly at first . As E/p increases, the 

nunher of high energy electrons ,.;ith energies greater thf...r. '1i increaaes , 

but the rrobctility of ionisation decreases. The r ate of ionisation 

thus beccmes proportional to E/p before rising more slowly. In 

contrast, the quantity n hc.s a unifom shaDe, rising steeply at lm-r 

E/P, reaching a pec~ and then declining , fig. (8). 

n represents thp efficiency of ionisation relative to the 

applied field. At low E/p there is a high prof,orticn of energy lost 

to excitation rti:lative to ionisation, (\.nd Tl is therefore low. The 

ratio of excitation losses to ionisation 106:3es decreases as E/p 

increases, and n rises with ElF . As E/p increases fUrther the electrons 

gein energy "'hich is not lost to ionisation. as the proba.bility of 

ionisation Gccreases. The electrons carry aw~ this excess energy 

which is ultimately delivered to the anoce . n therefore aecreases at 

higher ElF. The electrons are no longer in equilibrium with the 

applied field, r.nd the e.verage electron enerGY chant es to higher 

values as the path length increases. The value of alp ~Till then be e 

function of electro(le sepc.rntion as ,-rcll as E/p. 

- 9 -



The peak of the n versus E/p curve represents the point of most 

efficient ionisation and fixes the mini.r.mmpoint on the Po.schen curve 

(see section 1.5). This value also corresponds with the Stoletow 

point on the alp versus Elp curve. 

There has not been a single functional relation derived that 

will fit the whole curve of alp as a fUnction of Elp for any ao.s. This 

is J.9,rgely because such functions oust take account of the energy 

dietribution foro prevalent in the gas. This distribution is likely 

to chan~c with Elp especially if the Ramsauer effect is appreciable. 

The way in which free paths vary with energy deter.nines the collision 

frequency ond hence the energy losses. These in turn will deteroine 

the shape of th~ high energy t ail . Any change in the distribution in 

high energy electrons will influence alP. 

To~msend (7) on a purely classical basis, was the first to 

attempt on evaluation of alP 0.3 a function of E/P . His treatment 

assumes an ionisation probability of unity for all electrons with energy 

greater than eVi' Thus only those electrons travelling a distance x 

in the field direction will ionise if 

> eEx = eV · 1 

The number of nean free paths exceeding x 16 given by the kinetic 

theory as 

f(x) = e-x/ ).. 

,,,here A is the nean free path. Therefore the nU!!lber of ionising 

mllisions per unit length, at is given by 

- 10 -



d(fx)/dx I: (1/>") e-x/>" = a 

If >.. ~s written as >"i/P and x is put equal to VilE, then wc have 

or 

::Jp = A e -BP / E 

vfuen plotted, this function starts at zero, rises to a point of inflex-

ion at B/2; and approaches A as E/P increases indefinit ely. This 

levelling is not always observed in practice. In terms of n the 

relation is 

n = ~ = ~ P -BP/E 
E E e 

At low E/P, n as predicted by the theory ~s small, then increases till 

E/P = B, giving the value of E/P at which the StoletcvT constant occurs 

and at which point n = A/B. Thereafter n declines vTith E/P . 

Although the shape of the curve is similar to the experimental 

curves, it is usually found that the predicted values of the constants 

A and B are too 10Y1. Since no account is taken of the energy distribu-

tion of the electrons, the randomisation of direction as a result of 

elastic collisions, and the variation of ionisation probability and free 

path with electron energy, the disagreement is not surprising . 

The value of Vi in the equation represents the energy an electron 

must have before ionisation occurs. This energy in fact rises from Vi 

and the probability of ionisation varies accordingly. Neglect of this 

fact tends to make the value of alp too high. The value of A assumed 

is also greater than that ",hich in fact occurs because of the random 

- 11 -
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electron motion. Thus Dore icnis~tion occurs per distance A in the 

direction of the fi~ld than 's assumed . This tends to nake the value 

of al p too lO"toT. The Ra::lsaucr effect can either incree,se or decrease 

alp depending on the variation of nean :!.'ree path with electron ener&'Y . ,. 
In sone cases , however , these errors cancel out. Thus fair agre~ent 

is found in certain gases over a 1inited ranGe of E/p . Fig. (9) 

she"w's n plot of loge~/:P as a function of (E/p) -l, f r r )'l Hyntt t 3 (8) 

results in hydrogen. It C<:Jl be seen that the curve is linear bctvTeen 

an El p of 50 <'..lld .. 160. 

By adjusting the consto.rfs A ~d B one can ada.pt Tonsend' s formula 

to fit cl~ost any section of the 0xperimen~al curves. Posin (9), for 

nitrogen, found four functional f~.ns for ~fferent ranges of E/p . 

They are 

(1) E,'P 20 ~ 38 

(2 ) E/ P 44 - 176 

(3) E/p 176 - 200 

~/P = 5.76 x 10-7 eO . 245 E/ p 

al P = 1.17 x 10-4 (E/p - 32 .2) 2 

alp = proportional to E/p, linear through 
point of inflexion 

(4) E/P 200 - 1000 (alP + 3.65)2 = 0.21 Elp 

.~ expression identical in form to that of Townsend ,.ras later 

derived by von Eneal and Stccnbeck (10), in , .. hieh A ::t 2aVi/x~ and 

B = 2X~Vi/Al where a is a constant, x is the average fraction of energy 

lost on collision, and Al is the mean free path at a pressure of one 

ni11inctre of Dcreury . A and B axe found to be of the right oagnitude, 

but no ~ccount was taken of the variation of x with electron energy . 

Attempts at calculating alp as a function of E/po for Ne where 
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the R~tsnuer effe~t i.s gmall. ygro %:1o.d~ by' Panning and Druyvol5-eyrl (11), 

but the only general theory co~parable in usefulness and application to 

the Townsend, von Engel-Steenbeck expression is that derived by Emeleus, 

Lunt and Heek (12). The theory evolves along kinetic theory lines. It 

is assuned that all electrons with energies greater than the ionising 

energy can ionise, nod the probability of such no event is Pi' If 

c ~ c. where c. is the velocity corresponding to the ionisation energy, 
~ ~ 

then p(c) represents the probability of an ionising event in 1 cm. of 

path at 1 mtl .Hg . Thus at a pressure p mm .lIg. an electron on average 

will create Pi(c)p.c new electrons per second. The probability of an 

electron having a velocity c is f(c)dc, where f(c) is the velocity 

distribution form existing at the value of E/p in question. Thus the o 

number of electrons created by electrons with velocity c is given by 

p.(c)p.c.f(c)dc. Thus the total nunber of electrons created per second, 
1. 

given by av, where v is the average drift velocity ill the field direct-

ion, is 

av = p f~ c,Pi(c).f(c)dc 
c· 1. 

Thus 

alP = plv f~ c.Pi(c).f(c)dc 
c· 1. 

The theory thus allows the insertion of the appropriate velocity dis­

tribution and the eA~erinentally dete~ined values of ionisation 

probabilities and electron drift velocities. 

Asst~ing a Maxwellian distribution, good agreement between 

experiment and theory "Tas found for the diatomic s ases air , Nz, and H
2

• 
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Agreenent was not so good for the extrene high and low values ot E/po' 

The agreenent was bad for argon. The Ramsauer effect in argon fluctuates 

in such u nanner as to give a distribution law with very few electrons 

in the high velocity tail, since inelastic iopacts do not occur until 

about 10 eV is reached. The diatomic gases can undergo inelastic 

collisions to vibrational end rotational states at low electron energies 

12sulting in a more even distribution of excited states "Thich tends to 

Jeduce the Ram~auer effect and produce a distribution of energies tnat 

is approximately Maxwellian . 

It can be seen that there is s great need for knowledge concern-

ing the energy distributions in different gases before the function 

derived br' Emeleus, Lunt and ~1eek can Lleet with any wide application. 

until th(;se data becone available, useful approxinations of alp over 

limited ranges of E/po can be made by adjusting the constants A and B 

of the Townsend relation to fore empirical expressions. 

1. 5 ]?:ee.kdown 

It was seen in section 1.4 that a plot of lOE!el/loas a function 

of d was linear in the initial stages, and that the current through 

the gap could be expressed as 

I = I ea (c1-do) 
o 

where a is the prioary ionisation coefficient given by the slope of the 

curve. As the electrode separation is increased further, however, the 

curve rises faster than linearly, indicating that some other processes 

producing ionisation are becooing important (fig. 10). As d increases 

to a value ds the current is limited only by the external circuit 
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components and is independent of 10 • Under this condition electrical 

breskdown of the system is said to have occurred. The equa.tion 

describing the spatial growth of ionisation is now modified to include 

gro~h at the higher values of d and is given by 

Q{d-do} 
1/1 = ____ e_~~-.--

o l-w/a{e (d-do)_l) 

where w/a is known as the generalised secondary ionisation coefficient 

and is a function of E/Po' 

When the current tends to rise to infinity. the condition can be 

represented by the denominator of the above eq~ation tending to zero. 

Thus the equation 

can be taken as the criterion for breakdown. In terIlR of the 

coefficient n the breakdown criterion is 

where 'Vb is the breakdown voltage and is defined as the minimum voltage 

required for an infinitely smnll current to flow between the electrodes 

without the nssistance of any external ae;ency. The breakdown voltage 

is mainly deterrrined by n and to a lesser extent by w/a. The term 

eTlVb in the above equation is much greater than unity o.nd hence the 

breakdown voltage can be represented by 

Since w/a varies little, especially at high E/po. as a first approxima­

tion Vb is inversely proportional to n. Thus an approxiQation to the 

curve of Vb as a function of E/po can be obtained by mirroring the 
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curve of n as a function of E/po about a horizontal axis. However, it 

is often simpler to ShOrT Vb as a fUnction of pd (gas concentr ation 

tines electrode separation). Since vb is a function of E/po' it is 

also a function of pd . Thus vb is not dependent on p and d separately 

but on t.heir product. This is Immffi as Paschen's l aw. A typical 

Paschen curve for air is shown in fiB ' (11) . 

AlthouBh for a given gas the shape of the Paschen curve is 

mainly deternined by the shape of the n versus E/po curve, the cathode 

has an importrult influence through the magnitude of its work-function 

and state of cleanliness, etc . Thus the ve.lue of w/a is of ioportance 

in comparing the breakdown voltages for different cathode materials. 

For instance, J.ow breakdown voltages are associated ,·rith cathodes of 

alkali or alka.line earth metals, for which w/a has hiGh values. 

This is illustrated in fig . (12) in which Pasch~n curves for argon 

with different c ~thode materials are plotted , and if! fig. (13 ) in 

which w/a for different cathode materials in argon is plotted as a 

function of E/po' 

1.6 possible Secondary Mechanisms 

As the prinary electrons traverse the space between the 

electrodes, they interact with the gas molecules producing excited atoms 

and positive ions "1hich must 'te the source of auy secondary ionisation 

ass1.l!!ling that field emission, thermionic emission, thermal ionisa.tion 

and auto-ionisa.tion are absent. Such assumptions ere justified when 

using a plane t para.llel, cold cathode systeI!l with Im'T current density. 

possible sources of secondary ionisation are therefore excited and 
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metastable ato~s. photons und positive ions , all or any of which may 

interact llith the Gas or co.thode . 

1.6 . 1 The action of excited o.to:ns and resulting radiat.ion 

Bec!1use of the exponential growtll of current across the gap , 

the vast tll:l.jority of excit s.tiolls '.md ionisations occur in the r .<".-110n 

clooe to the anode . Tlle life- time of an ato~ ~xcited ~o a resonance 

10701 i s ::1bout 10-8 '-'cc . Return to the ground stc .. te is therefore 

pract. ically .i. r:.nt:m·cc.r_e~.'u.c n.THl there is little or no cha...'"l.ce of the.: 

c.t o~'l c1iffusing to the cathode and Co.Ul:>.i..~c the Ch",,,,,,, ; nn th · I' i; v~ ,,':'.! 

elee.. tron. Collisiens bet"Tcen excited atOl:lS and those in the sround 

state ce.nnct leed to ionisn.tion in pure gases. since the ionisa.tion 

energy is Grcater than t.he excitation energy . The process may be 

ioportant in g~.S nixtures , lThure the excita.tion potentia.l of one atom 

. hl' ",l'oI' th9Il the · ionisetion potential of the other . 18 l, ! 
'1'he process 

me.y be :ya.rt icularly inport.f1.nt 1-1hen the don is excited to a metnstab1e 

level. 'rhe process is y...nmm ne the Penning effect ano. Pennine and 

Addink (13) have shown that soe.ll ~.!:lounts of arson in neon can ~l.ff'ect 

the breru<doVTn vo1tages . 

'i'Jhe~1 t,vo ey.citet1 atoms collide one of the::n can 'beCO!le ionised, 

~'ovi tled the SU!!l of their excit!ttion energies is greater than the 

i onisation enerr:..f . The process is nost efficient when the excita.tion 

energicfl are about talf the ionisation energy and when the excited 

atoUs 0.1'0 ill large concentration . 

Metast [~ble o.tO:!':lS hlwo 0. relatively long life, about 10- 1 sec . 

3l1d n.t 9. pressure of lmo . Hg . a netnstable aton ]'lay have o.s DallY as 
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108 collisions . There is thus oople opportuni t:r for the vohtrlG deatruc-

tiun of l'Jeta3tablcG the raisincs t.o normal excited states "iith the 

oubsequcnt emission of t:. photon by collisions ,vith electrons or a.bsorp-

tion of qUi1ntn or collis ion ",ith other ate-m..,. The el1er~ r elationshi p 

mus'~ be 

The l ont; life of U lJ.ctas-';nble aton allow the p00s~.bility of diffusi ':m 

to t he c ~;;'(.hoc.c ,.,i th t.he subsequent C01.SS1.on of on electron, providing 

Em > 04>. The coefficient for this process , Ym' can be shown to depend 

on t he elect rdie g Cc,'!lc+,rJ of the syste:'!l . Tho meta,stnbles formed near 

the anodc viII DJ.I diff use to it since t.he ir concentration ut the anode 

is zero and the concentrdion gradient is large . r,['hi s Et;lane that the 

f r a.ction of metr:.ztablus t'tOYlng towards the cathode i s :l function c·f the 

e1ectrod() scp;).!'a.tion o.y i decrE:ases rapidly towards the Mode . AssUI:1ing 

infinitely plane pcr t.i.lle1 clectroci8s, l'jcwton (14) ho.s shown that 

Y ::: const. (H I 1
1
) 

n uc 

where 1'1 is thc DUon free p:>.th of ncta.stnble3 Doving in a go.s of llormal 

s.to;ns. Thus Y f.u1s c.s d increases even if the cathode is e.sSUI:1cd to 
H 

be of infinite diameter. ~'1ith electrodes of finite dimensions Y is o 

likely to be reduced further by diffuBlon of tlctastables from the 

discharge volu."'le . 

Th.;) light q,uanta. produced in c. gas discharge arc of two nain 

types: resonance rc.diction , resulting fror.1 the uecay at normal excited 

e.toos or uetc.stc..ble c.tons that have been raised to som(;; higher cxcitc:d 
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state, and non-resonance r c.diat5 on or col1.i!:lion :i nducod r n,(lin:ti on, the 

res'llt of Do colli s i on ~lhich sufficiently perturbs the Detastab1e atoIl 

to give rise to rndiat ion by breaking the sel ection rules. The 

resultant photon can then co.uSG eDission of o.n el ectron at the cathode 

by the photo-electric nffect, El. process deDonst~ated to be of importance 

in the broakdovffi of heli uo by Llcwellyn-J one~ et nl (15). 

When photons collide ,,,ith atoms they produce r esults analoGous to 

those c~uscd by electrons of equivalent energy . Thus photono are able 

t o excite an ato~ when they have the r equired exci+.ation energy , and an 

etoD ill the ground state can only b e i onised by n photon of frequency 

\I if 

vhere Vi is the ionisetion pot ential and h i s Plank's constant . The 

process is most efficient '-Then hv=eVi ,,,hen the photon Bives up the 

"Thole of its energy . In a pure ges photons enitted by excited atons 

will ha:.,e energies l ess than eVi and photoionisation can only occur by 

e. cumulative process . Rous e and Giddings (16) have shown that ~ercury 

Tapour i s ionised by its resonance r adi ation by the transition 

3p -+ IS ( Fig . 3). The enerGY associated with the transition is only 
1 0 

4.86 eV , as conpared with Vi=10 . 4 eV . The ionsio.ti on process is 

probably 

Hg + h\l + Hg(6 3P
1

) 

JIg ( 63p 1) + Hg( 63p 0 )net ast able 

The second step is a. colli sion bet ween 8.11 excited aton and (\ metastab1c 

atOl!l reRulting in a molecule "nth potential energy of about 9.6 eV e 
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Together with the heet of dissociation, l~ eV, this is sufficient t o 

i onise the !)olccule: . 

In gaseou3 nixtur~s , r-hot o-ionisc.tion can be: i opor to.nt when t he 

r esonance r adiation of onc t ype of Cl.ton has ener gy s r eat er than or equal 

t o t he ionsiution ener gy of th~ second t ype . The process has been used 

by Loeb and 1·1eelc (IT) and Reathor (18) t o expl ain the st r eaner 

nechanisn . 

The inport~ce of photo-ionisation i s a gas cau only be 

appreciable wher e hieh densities of excited lmd met ast abI e at oms occur. 

Photo-el ectric ~mission at the cat hode i s likely to be of great er 

> i nportance wher e the energy hv !:lust be such that hv :;: e ct> where cct> i s 

t he work functj on of th0 ce.thode surface . Resonance phot ons pr oduced 

nc~.r the anode can roach the cathode unsc atter ed (<5 process) or 

alternat ely ooy be hindered in the:ir ::1otion through the gas by r epeat ed 

enission and absorpt ion by gr ound stat e atons. Thi s inpriso~ent of 

r adiation r:w.y r esu.lt in a considerable clelSV' in the arri'val of t he 

photons ut t he cathode . The dal RY will d~pend on the cross-section 

f ..::, I' absorption and t he life-tine of t he ·particu1.e.1' r esonance stat e . 

1.G.2 Se condalX i onisetion due to positive ions 

For ~i cl nst ic collision between a positive i on and a neutral gl~ 

utom, the ener gy l oss can be writt en as 

'\-There rl is the nass of the positive ion MU M 1.8 the tla5 S of the gas 

aton e Since n =: ~~ 
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2m2 
E' ~ --- E~ = ~ E~ 

1 402 '" ... 

Thus a positive ion loses half its energy in elastic collisions 

~..rith gas atons and at all but very low gas densities, where E/po is 

very high, will not gain ouch energy froo the applied field. The 

energy of the ions will , therefore, not be very ouch greater than the 

thermal energies of the neutral atoms . Thus the probability of an 

jnelastic collision resulting in excitation or ionisation will be 

extremely small. The probability of charge transfer, though great at 

101'; kinetic energies t will result in neutra.1 atoms with velocities 

little different frao the nomal thernal distribution . The efficiencies 

of positive ions and the neutrc..1 atotlB resulting from charge transfer, 

as ionising agents, will be very low and they nay, therefore, be 

neglecten. 

pOBitive ions can, however, liberate electrons from metal 

surfaces. The phenomenon has been exanined by Oliphant (19) and by 

Oliphant and Moon (20) and by Massey (21). It has been shown that the 

efficiency of the process depended on the ionisation potential of the 

atorl and the 'twrk function of the surface; the efficiency increasing 

as the former increased and the latter decreased. The oechaniso 

involved nay be two-fold, depending on the energy of the ions. The 

incidence of high energy positive ions on a cathode has been considered 

by Kapitz~ (22) to cause a transfer of kinetic enerBY of the ion to 

thel~al energy of electrons resulting in thermionic eoission from the 

ca.thode. The enereY distribution of electrons produced by positive 
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ions as deternined by Oliphant and Moon is such as would be expected if 

the process .... Tere themionic. 

\fucn the c:nerg~es of the ions are of thE: order of theroal 

energies, as in Townsend discharges,another nechanisn becones important. 

A.Tl ion approa.ching the cathode l~ay becone an excited atO::l by the trans-

port of an electron froD the cathode to the ion, noving bet,.,een states 

of e~ual ener gy . The transition is most probable when 

eCP = E· - E 
~ a 

where ecp is the work function of the cathode , a.nd Ei and Ea are the 

energies of ~o:n anu. atoIl r espectively. If the excited a.too collides 

.... Tith the cathode before radiation occurs , the atoLl nay give up its 

potentiel energy to a netallic electron , which Day be ejected in a 

second kinc.. For this to occur Ei > 
collision of t he 2 ecjl . 

An ion of sufficient velocity nay penetrate the potential 

bo.rrier before ce..pturing an electron by resonance transition. The 

excited atom can then give up its energy to a second electrun , glv~ng a 

nOrI!l[l.l unexcited aton and 8.11 electron . For this to occur, the energy 

relation :lUSt be 

Ef = Ei - e<p 

"There Ef is the energy at the top Feroi-level. 

1.7 Conclusion 

From the above discussion of the posrible secondary processes in 

Townsencl clischarse, it can be seen that secondary ionisation phenomena 

occurring in the gas depend on high concentrations of excited atons. 
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Since th~ probability of excitation for nust gases is 8~all , about 10-2 

(23), then such processes only become inportant at high pressures, 

about 760 nm .Hg . The oore important processes are likely to involve 

er.ri.ssion fron the cathode . A decisicn as to the r el ative il!lportance 

of these processes cannot be obtained fron the current gro,~h curves , 

since each process leads to an equation of t~e sane analytic fom as 

the general Townscnd formula (2~ ) . w/~ being a composite coefficient 

depending on which conbination of secondary processes is prevalent. 

Studies of the tenporal growth of current to breakdown can solve 

this proble~ . For instance , if electron eoission fr~ the cathode 

" . t " . d 5 due to positive lons lS opera lve, the delay tlme W+ ~ 10- Bee, 

lfhere d is the gap s eparation ant: W+ the ion dI'ift velocity. 

Sinilarly if the incidence of unscattered photons is dominont then 

the delay time is of the order d/H ~ 10-6 sec . where W is the - -
electron dri~t velocity . Likewise Detastable atons involve a delay 

tine d2/ D ~ 10-3 sec . where D is the diffusion coefficient for meta-

stables. The temporal growth of ionsiation will be studied in the 

next chapter . 
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CHAP'l'ER 2 

TIlE TEHPOF.AL GR01rrH OF IONISATION 

2 . 1 Introduction 

There are t ... ro approaches "too the temporal growth of ionisation in 

a Townsend discharge . The aprroach of Hernbcck (25) and V~rney (26)~ 

and of Molnar (27) is ained at the direct lleasurement of the secondary 

coefficient as a result of th~ action of positive ions and metastabl~s 

fit the cathode. The second ap~p()ach, which is presented in its nost 

ccnplete forn by Davidson (28) ains at the interpretation of fornative 

time lags in terns of ratios of the different cocffici nts . 

2 . 2 The Approach of Varney 

Hornbeck's initial purpose 1vfl S to eValuate y. , the number of 
1 

electrons liberated at the cathode per incident positive ion . His 

e..nalys is, hm-lever, would not a11m-1 Y i to be evaluat(!d v1i th any 

precision . Varney usecl similar apparatus to deternine Yi to that 

(>..t:lployed by Horn"teck . A die.gratl of the apparatus is shmm in fig. (14) . 

A flash of light of duration about 10-7 seconds, produced froD 

on alr spe.rlt- (5ap is focus sed on the cathode of a discharee tube . The 

resulting photo-electrons are accelerated by the applied field, which 

is less th9.I1 that required for breakdov.'ll . The positive ions produced 

by the interaction of prinary electrons with gas molecules drift to the 

cathode and there liberate secondary electrons . An oacilloocope lS used 

to display the current which consists of an electron ruld a positive lon 

com~onent t as a function of time . A typical trace is shewn in fig . (15). 
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Varney shewed that the electr on conponcnt i _ and the positiv 

ion cooponent i + "Tere given by the fol lowing r elations, 

i = noe:V+ ( (ad 1) aV+(l+Yi)t) (2.1 ) y. e - e - :!. d 

_ noe:V+ (Yiead _ l)c~aV+(l+Yi)t ad 
~+ 

+ E...- ) (2.2) -- l+Yi d l+Y· 
~ 

if 0 ~ t ~ d/V+, where d is the electrode separation , V+ the positive 

ion drift velocity, e: is the electronic charge. no the n~ber of 

electrons liberated by the flash, and a is the first Townsend ionisation 

coeff~cient. The total current ~, given by 

is therefore equal to 

i :: i + i 
+ 

The appearance of a horizontal oscilloscope trace 

neafiS that the current is constant with tine, 6in~e d and V+ are constant. 

Thus the tine dependent term in equ~tion (2.3) vanishes if the co-

efficient of the t ern is zero , viz; 

er 
( ad/( cd }) ~ y. = e e-l 

~ 

Thus if a and dare knewn, Yi can be f ound. 

2.3 The Approach of Holnar 

(2.4) 

A TO'NIlsend discharge ,.,as stil'lulated by photo- electrons generated 
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by a shuttered light bean f ocus sed on the cathode of a gas fillec. tube . 

The transient character ef th~ resulting current betITeen the electrodes 

was observed .. ,ith an oscilloscope . The current, fi~ . (16 ), ,ms COD-

posed of a cooponent closely in step with the stimulating light pulse , 

and Il component which lagged by tht;;: order of a uillisecond. This 

conponent was a.ttributed t o the action of Betastable atoos . 1'he 

fast cooponent includes the prioal"~r el ectron curl" nt wnplifi cl by 

ionisation and enission due t o ion and phuton effects , which r eaches 

~ steady state after about 10 nicro-secondu . Froo the cnalysis of 

such t:;.~aces thL! fra.cti on of emission due t o net ast a.bles , ions and 

photons could be obtained . The ex eri lent was thus oore comprehensive' 

than that uesir.;,11cc by Hornbeck and Varncy , in which only y. , the con-
1 

tribution dU0 to positive ions, could be est aJlish ,d . 

l'. diac;ran of the c.pparntus is sho .. m in Fig . (17). '1'he actual 

current rl8aSUrCne t was l::ade by enploying 1:1 null tlethoJu . By oeans of 

u partially reflecting oirror , s C),'le of the light was dir~ctcd into a 

vacuUI:l photo-tube, which then ecnerated a. current pulse exactly in 

step with the pnlu:J.ary current in the Tmmsend tube . This current 

fle,,'ed through two r esistor- capacitor combinations, PI Cl and R2C2 , by 

means of "hieh e. volt age pulse coulc. be formed siJailar in shape and 

size to the Tmffisend current but oppositc! in sign . The fast COl!lpOnent 

of the Townsend current could. usually be; matched closely with an RC 

coobination having a tine constant of 0.1 t o 30 lIlilliseconds . When 

t hese conponents we re adjusted t o e. best fit to the Townsend current 

there reoained a component negative in ruoplitude ruld internediate in 
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tiDe constant. The anplitude of this cooponent was measured by the 

decrease necessary in the fast cOtlponent t o bring the current trace 

up to the base tine . 

Molnar shoucd that w/a (designa.ted y) was given by 

= f { + Qr f y + ~ f V + f f } 
Y esc Vi (i7 rk r a. nk D I!lr rk' Vr 

J. J. 

-..... here V., V ,v represent the nunber of el ectrons liber ated a.t the 
l. r rl 

cathode per ion, per photon and per Detestable r espectively, and 

Q
i

, a
r

, am l'epresent the nU!luer of ions, photons and met ast abl es pro-

duced per cn . per electron; f is the fraction of el ectrons liberated esc 

at the cathode uhich enter the discharge strean; f rk , fok are the 

fractions of photons amd metnstables generatcc in the gas which reach 

the cathode ; for is the fraction of Deto.stables generated in the gas 

which are converted to ro.diating atoms ; f rk , is the fraction of photons 

froD these at ons which reach the cathode . 

The fast conponent of the current is given by the Townsend 

equation with the Y coeffici ent given by Vf ast ' where 

(2.6) 

and the t otal current is described by the Townsend quation ,cith 

where 

Yslow = f esc (Cln. f _l.- Vn + Cln f f k' Y ) 
WA nr r r Ql Qi 
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Molno.r made detailed tine constant studi s of the slow conponent of the 

cur~ent. He neasured the tine constnnt of the slow component Tl , the 

aop1itude of the fast cOwponent if' the slow conponent, i , and the 
sI 

intermediate, is ' conponent for various applied voltages. Tl was shown 
2 

to be related to the tine constant of decay of netastnb1es, t l , by 

(2.8 ) 

Ll is related to the diffusion constant of the metastable Urn. and the 

probability of vo1uue destruction per second in the gas. G, by the 

relation 
1 1T2D - = m + G 
t -

1 d2 

Plots of l/t l against 1T 2 / d2 therefore yield straight lines with slope 

% and intercept G. The technique thus allows the eValuation of Dm. 

This was deternined for argon t neon and xenon . 

A radiation conversion process was used to ~easure the r elative 

anount of electron enission produced by a net astable drifting to the 

cathode coupared with a photon of the sace energy. ~fO experi~ental 

arrD~getlents were employed. In the first. external radia.tion fron a 

line source was focus sed so as to go through a snaIl re~ion between the 

lectrodes either nee.r the anode, in the niddle or nenr the cathode. 

In the second arrangement e ring-shaped discharge tube was placed around 

the discharge volume. The radiation lIas difficult to focus but better 

conversion \TaS obtained. Only the experiments using the first arrange­

oents will be described here . 
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The discharge through the tuuc was no.intained steady, and the 

siQ~ light pulsed. The current wus found to rise i QDcdiately on appli­

cation of the sicle light ana then to decrease slovTly. When the side 

light was cut off the current dropped suddp.nly and then returned s lowly 

to its steady state value. The side licht had two ffects: that of 

increasing the nuober of photons striking the cathode , and that of 

decreasinG the netast nbl e density in the region through which the light 

was passing . 

The sucld.en incre ase in current when the light was s,titchecl on 

~as due to the increase in the incidence of photons at the c ~thode . 

The 5101-1 /1ccrease was caused by t he d.i Dinution of the nunbcr of net a­

stables availa.'ule to diffuse to t he cathocle . The net reduction of 

current 'Vrith the light on showed tha:t photons wer e l es.3 effective than 

rJetastablcs in producing electron liberation at t he cathoc1e . 

The tiDe constant of the slow component was rileaaure<l with end 

v1i thout the side light t and t 1 conputed for the two cases . Now 

{~2/d2 ) Dm inclu1es the contribution of diffusion losses to 1/t1 , ~ld G 

the effect of volune destruction . Hi th the light off, G includes only 

-the nOrr.lel volume loss, Gc. \-Tith the light on G also includes the 

VOllu:le loss caused by ra.diati on, Gs • Therefore, the difference i n 

1/"(1 for the tw'O cases gives a measure of Gs • The quantities 

~2Dm/d2 anc. Gc w,ld Gs e.re also , to a first a.pproximation , 11 neasurc of 

the rate at '\~hich the neto.stables are destroyed at thu electrodes , in 

the gas by collision and in the gas by radiation. It is assumed that 

half of the photons relea.sed by either type of volunu destruction will 

- 29 -



"rill go to the cathode . 'rhus the quanti ties 

Gs /2 - (2.10) 
(n2Dm/d2)+Gc 

re~ .re3ent t l l".:' f ractions of the excitatiun .:.ne r gy of the metELstabJ.~s 

the !'ate ()f c.l.r:i."i val of mtato.stables reI:lains unchane,;cd but the rate of 

G +G 
p..rri vo.l of photons chonr:es su\lc1en ly· b:r the facto.£' c S Then, 

Gc 
lJ'(,~duoJ.ly ~ 0. Il C-!W steady-state in set up for .. ,hich tl c frtl.ctional 

~e,;I:'rierfl of energy o.r e given by the above cxprcosion, ~):cept tho.t G c 

Th me!J.f'Ul'E;ment of Yr/Ym. lS made ·':6ing the Ol!lplitude 01 th u:iovr 

m!l.l'.9onent. either in..""'lec1iatcly the light is turned all or usin~ the yaluc of 

this cOl:;.ronent after the new cquilibriUr.l haE.l been ol)tui lCt1 · Holna r 

eoployc <i the former method. . 

r:1;c qua.nti~iee 1T2))~/d2.~ G p,:'!rl. G . r e estnblis ea frc ,m t iD!C 
8 

C (l .at '-Ht studies. The I!laV'li ";ude of the slow· compcnent just. before t.he 

;J irlt;;: light i n turned on , s ~ end its Valll(': ,just afte ~Te.rdfJ . S+09, i. 

ncasur.Jd. Both s end. s+os "rill be directly propor~iol1al to the ~lectron 

rurrents leavinG the cathode due t o the combino.tion of mctastc.bles ant'!. 

photons froe convcrt eil ::lE:tastablcs striking the cathodu , i .e. 

(2.11) 

There fore, 
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(2.12) 

All the quantities on the right hand sic1e are measurabl e and Y /Ym 

can be evaluated directly, t o en accuracy of abuut t20% , the main 

source of error being the electrical noise incluced in the Townsend 

current by t he operation, in close proxi nity, of the light source . The 

a.ve r tge vc.lue of Y / y was 0.40 for tantuluo, 0.08 for molybdenum and 
r t1 

0.10 for a bariuo oxide cathode . 

a. '\Tas clet emined by a trial und error method . A value of a. 
~ 1 

was a.ssumed anJ. t o;:ether with the r atio of i+/io t aken for diff e r ent 

values of electrode separation, d , at constant E/po' a+ was computed 

from t he Townsend e~uation. The value s of a. which nnde Q conste.nt 
1 + 

"ri th cl "Ter e accept ed as t he ' best t values . Vcl.ue s of Y and Y + "Ter e 

conputC(l froo ilio and i/io data, and Y s obtained f ro!!. the relat ion 

Y=Yf+Ys ' 

Molne.r was further able to shov] that the follmoJ'i ng relation held : 

(2 .13.) 

,.rhere H i s a function of Qi , a and Qi Qo ' Thus if the right hand side 

of the expres sien l :3 plotted as a function of Gd2 /rr2n then a straight m 

line with slope anYrfesc w1d an intercept of QoYof esc r esults. Thus 

if f is known, a Y can be det cmined . 
esc 0 n 

The quantity f ,in the expression for Y, is evaluat ed by oakin~ csc u 

deta.iled oeasurenents of the current at Imf volt ages , emd wa.s detemined 
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-8 
as 2.56 x 10 o.!".lpS, the value observed f or an E/po of 400 in the 

r egi on of 8 to 14 volts. The fracti on of this value at 14 volts for 

other values of E/po 'VTCl.S assuuec. t o be a neasure of f • esc 

Holnar was t hus able to ncasure fesct o.i' Y+' "t's' (lhlYm and 

The qu~~tities 0. ana 0. co\ud not be measured , and were taken 
r.l r 

fron Kruithoff (29), ~.,ho evaluated the ratio ( Cl +(l )/0.. as a function o r J. 

of E/ po for the r are gases . Y
D 

vn.lues were then calcul<',t c{i fron Cln 

and 0."" Y 1." o y was then conpute1 froo the ratio Y / y . Finally, 
~~ r r ~ 

(a l a.)f k Y 'VTas conputcc1 , o.ssuoing f k=0.4 (the gr ounc1s f("'·r this 
r J. r r r 

assuopt ion are not made clear), fron which Y i could be computed fron Y + 

d f The values of y. and Y were accurate to about 20% anu were 
rul ese· 1 I:l 

i'clmd to be similar J.n o.gnitude . 

2.4 The Ap}Jroacl'! of Davidson . For.!lative Tirae Lags 

The totel tine tak .. n between the ap:;:.)lication :'01' 0. pot.t:.:ntia.l 

difference greater than or equal to thc breakdown potential, and 

breakd01-ID is known as the total tine l eg , t. The tine , t , which s 

el~~ses between the application of the volt asc and the appearance of an 

initiatory electron is called the statistical time 1£113 , since the 

appearance of such electrons is statistically distributed . After the 

appearance of such an electron the time , t f , taken for the gap to 

break rlmm, is called the fornative tine lng . Thus 

t = t + t
f s 

In practice , the stat istice.l tine l ae can be elininc.ten by 

krac1lat ing the cathode with ultra-violet light, thus ensuring an ade­

quate supply of initial electrons at cl1 tines . The tote..l tine l ag can 
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then be oquated with the foruntive tine lag . 

The fometi vc tiDe leg at any gi vell E/I:'o Hill he rela.ted to the 

speed. of the verious scconclnry processes . Hence a study of fornati vc time 

tiDe lagn ~hould nake it possible to estinate the r elative ioportance of 

the tliffcrent processes . The uethod is that of assunine; va] ues for tIlt; 

coefficient of each process as a fraction of w/ a and using these to 

calculate e theorcticl".J. curve of fOl'oa.ti ve ti::le Ing against per cent 

overvoltl\[;<':. These curves can then be conpf'.rcd 'l-1ith thol3e obtflined by 

expel~irtent • 'lr!>ical experimental curves for hydrogen , where only two 

processes are I'oso i ble, those of positive ion action unl'.. photon action 

..... t the cuthoC .. e , ar c; shown in fi ·~ . (18). 

'rhe origino..l theory by Davi ·.son (30;, gave an exact solution to 

the pro~len of ionisetion gro1~h involving the prioary, a, process and 

the action of positi vc ions, (y proeess) anJ unde1 ye:! photons , (15 

process ) at the cathoQe . The later theory ( 20 ) f:,iven 1:.>010"11 to.kes into 

e.ccount the aC'cioIl at tie cat.hode of netastab1e atot!s, (t:: process) t'\ ... l1d 

scattere(: resonance radic.tion (° 3 l,rocess) . 

The sca.ttereJ radia.tion process is treat cc. as a. ~liffusion procoss . 

Photons enittcc. by atoos which hc.ve been excited by the electron current 

nay 'be strongly :lbsorbed by ground state atons MC. after a tlean time 

interval, 't', re-enittecl with scattcrine. They thus proceed t.o the 

ca.thode by e process of Jiffusion <lue to repented sc!:".tterin~. Since 

netastablc e.tons are uncharged, their ::lotion is entircl~r du~ to di "'fu­

sion all(".. ;o.a,y reach the cathode by this process if not destroyec. in the 

(';as ~rith the libero.tion of an active photon. 
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The foroulae employed to represent the diffusion of repeatedly 

scettered photons resenble the formulae which r epresent the diffusion 

of metastabIe atoDs and al vantage is taken of this fact. The two cases 

~'Tere referred to as cases (b ) and (a ) respectively . 

To investigate the spatial and tenporal growth produced by 

processes depending on diffusion , it is assumed thut initially the only 

process operating is of this type. It is further assuned, both in 

mse (a ) and case (b ) , that the internal destruction produces no active 

photons capable of reaching the cathode either directly or by diffusion . 

The treo.tnent was then generalisen to include the case vlhere all 

possible seconuary processes ure acting simultaneously . 

Two pllIDe pa.ra.llel electrodes, of separation d, vTith the cathode 

(x=O) beinG exposed to a constant r adiation producing a photo-electric 

current I , are considered . o 
At tiDe z~ro the potential difference of 

the ple.tes is increased to a value V above the break.dmffi potential Vs 

And maintain~~ . ~ regien of the gas at distance x from the cathode is 

then considered, and the diffusion equation which the active part"cles 

satisfy is Givon as 

(2.14 ) 

where n(x ,t ) is the spatial density of the active particles , j (x , t ) 

is their current density in the x direction, a the first Townsend 

ionisation coeffident , a1, the number of active particles generated 

by an electron moving unit distance ia the x direction, w the electron 

drift velocity, I l tl the fraction of active particles in any region 
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which are destroyed per unit tine by colliEion with ground state atoms 

ancl i the electron current ctensity at the cathode. i and n are 

assumed BO snaIl as to jlmtify neglect of quantities proportional to 

their product (e .g. the destruction of netastable ato:Cls by electrons ). 

The current density, J, is related to the diffusion coefficient by 

j = -D au/dx 

As D is taken to be constant in space, -aj(x,t)/dx becomes 

Da~n(x,t)ax2. Thus the diffusion equation becones 

ft- (x,t) = D. a2
n (x,t) + a

1 
i eax(t-x/w ) 

dX2 - • 

n(x,t) 
1'1 

(2.15) 

The diffusion coefficient D is defined differently for cases (a) and (b). 

In case (u), D=Dm which is an ordinary atomic or molecular diffusion 

1 -coefficient and is given approximately as 3 R-m v "There ~ is the mean 

free path of the metastables and v their mean kinetic velocity. In case 

(b), J):.=Dp ",hich is given approximately by 

Dp = ; R-pf. + (R.p/C ~l-F) (2.16) 

when the current density of bound photons is neglected . F is the 

fraction of the original momentum r etained by the photons on re-

ex:Ussion fron the bound stute. R.p is the collision mean free path of the 

photons, l' the mean tine for which a photon remains bound and c/~p the 

fraction of free photons which becOrle absorbed per unit time. Since 

the current of photons is not accurately l~onochrooatic and since the 

absorption of photons is a resonance phenomenon, any spati~l 
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variation in their frequency distribution will be accol'!lpnnied by n 

spatial variation in t p and hence in Dp ' Thus it is not certain on 

insertinG D!) i nto the diffusion equat ion that 'un accurate equation i s 
L 

obtained with Dp conntcnt in space and til:le. Thus the diffusion equation 

",ith constant D nay not <1!lply to truPDed radiation with the SflZ!le accuracy 

as it do~s to netastable atons . 

Davidson next considers the boundary conditions of the diffusion 

cquo.ticn . Assu.''lin t hat the fract ion, g , of the number, U, of active 

particles striking the cathode per unit time destroyed in so doing is 

not great r than 1/5 the r esultinG aSyIJI!letry lon the directional distri-

bution of the active particles near the cathode can be ignored . Thus 

for g < 1/5, Davidon ~-lrit e s, in case (0.), 

N = a nv and D( tln/tlx) = g . Lnv 

that is n :;: htln/tlx at x=O, "There 

If G is the fraction of a.cti vc J:larticles destroyed on striking the anode, 

then 

n = -H.tln/ax at x=d (2.18) 

4 
H :-; "3 R.rl/G 

At the cathode a fraction of the active particles destroyed, G
1

, 
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will cause the en ission of an electron . If ther e is an externally nain-

tailled electron current density at the cathode , 1 0 , then 

i = I + S lD( -m/ax) 
- 0 

at x=O 

Consider ation is nm., given to case (b). The D In the l ast 

equation must be repl aced by 

D= ~ ~ 2/(T+ (1;/c)) (I-F) 

und N by 

N = a nc/{(cT/~) + I} 

Thus a.t x=O. it can be written that 

In the expr essions for n (equations 2.17 and 2.18) h nm" be cooe s 

h = ~ / (l-F) g 
3 

and H = ~ /(l-F) G 
3 

(2.19) 

If n and i. are constant in tine , a steady sta.te is attained and the 

diffusion equation can be written as 

(2.20) 

1vith the boundary conditions as defined above, that is 

n = han/ax at x=0 

n = - H an/ax at x=d 

The equation is integrated to give 
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. IT ~_. -0 = l / {l -

providing g ['.nd G are l arge enough to oake h=H=O 

x = g a 1 l' )J ::: l/~ 

When )ld (but not ad) is n s~all fraction , the r atio i_/lo becomes 

. IT 
l. "'0 

(2 . 21) 

(2.22) 

After considering the steady stat e Davidson turns his attention 

to the probler.l of current growth in tine . The gas is assuned to be free 

from active particles and electrons up to the time , t=O , at which the 

externally genernteu cathode current 10 is established . Concerning the 

quantities n (x , t ) und i J t ) the following conditions ar e e;iven as 

sufficient to deter!!line these quantities at all tlOCS 

( i ) at t < 0 , n(x , t) = i (t ) = 0 -
(ii ) nt t > 0 , i_ (t ) = le + gID an (x.t )/ax ut x=O (2.23 ) 

(Hi ) at t > 0 , u(O,t ) = n( d, t ) = ° 
(iv ) at t 

> ° the differential diffusion equation holds 
throughout the gas 

The folbw~nG contour integrals ere glven as a solution t o this 

equation satiSfYing the above four conditions . 

( - 2Zd ( ~-Z)d ) zx) dZ + e - e e , (2.24 ) 
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where 1jJ = CL-D( Z 2_~ 2 ) h~ 

e = ~ + {2XZe(1jJ-Z)d_(2XZ+~)e-2Zd } 

~ = {Z+1jJ}{(Z-1jJ)F-X} 

F = 1 

(2. 26) 

(2.27) 

(2. 28) 

(2. 29) 

The 11urpose of introducing the synbol F 'VThich in the pr esent case i s 

unity is explained later. 

It is further shown that at all positive tines i_/Io 1S the r eal 

r art of 

A + L 2>..(>..2_y/l')(1_e-2 >..d )eD(>..2- 11 2)t 

(>.. 2_11 2 ) (ae/az)>" 
(2.30) 

where A is given by the right hand ::lide of equation (2.21) and is shown 

to be given by 

if volune destruction can be necclcted . The sUDDution cxtends over all 

values ef >.. of Z (other than e or 11) which satisfY e(z)=o and which lie 

on the positive r eal or positive i naginary axes or in the quadrant 

bounded by then. The character of A, all valucs of Hhich lic on the 

flXCS t de?cnds on the sign of the quantity. A. At l e.r 6e tines and A 

positive a steady stnte is established and the ratio r educes t o A. If 

A is negative , the case when the breakdown potential is exceeded, one of 

the valucs of A is r ea.1 and greater than \J and thus contributes t o the 

current A t ero which increases ex::!onentie.lly with time . 

- 39 -



The treatnent can be generalized to include the secondary action 

at the cathode of positive ions and uns cattered photons . To the 

boundary condition (ii) in (2 . 23) is added the integral expr essions 

which represent these secondary actions, viz. 

at t > 0, 
d 

l. = 10 + g lD an(x,t)/ax + y I+(O,t)+o I i_c -\.1Xdx 
o 

"There II i s en absorption coefficient. To satisfy these !lodifi ed 

(2 . 32) 

boundary conditions, the quantity F , which i'TaS previously t aken (l.e 

unity, has to be r eplaced by 

F = I - (o/w)( ewd_l) - (aY/$) (c$d_l ) (2.33) 

(2 .34) 

cnd 

The expression 

i_ = l/{l _ X (ead_l )} 
10 a 

represents the condition of a nomal pre-breakdlnm Townsend discharge 

and can be replaced by 

(2 . 36) 

ThuS the conplete solution Ct:"::l be written as 

If there is negligible volue.e J.oss of the diffusing particles, 
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~ = 1/ID"C
1

, can be negl ected since Ihl is zero. If the time lag is 

d ' the s~c order as the transit tine of the diffusing particles , w_ cun 

be coneidcre~ infinite. Therefore , the expression i (t-x/w ) in the - -
original (uffusion equation C&1 be replaced by i_(O,t). ~ and ~ Day now 

be r epl aced by a since 

Th'e cc;nplcte nodified solution then becomes 

(2. 30 ) 

where 

A is given the r ee.l value satisfying e(z)=o. i. e . 

( 
, ) - 2Zd (a-Z)d ( )( ) (a •• Z) (a+Z )F+X c +2).Ze - (}+Z a-Z F+X = 0 (2.40) 

"There F = 1 - (y+6/a)( e
Ctd 

-1) (2.41) 

Thus by applying the above fornulae to pa.rt icular gases the rate 

of current 3rowth due to the sinult~~eous action of neta.sta.ble ~toms. 

trapped radiation, undelayed photons and positive ionc at the cathode 

can be calculated when the va.rious coefficientG ar e known. The celcu-

lated rate of growth me.y then be c0!aparcd with that L".easured experim n­

tally . Values of et corresponding to different per cent overvoltages arc 

substituted and t calculc.ted. The results are then conveniently plotted 

as fornative tine l ags aginast 6V% overvoltage. 
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CH.t-\PTER 3 

PHEVIOUS \fOTIK 

3.1 Intro(l.uc~ioll 

Llcw0llyn~.Jones end. Go.llovay (31) &.nd. Grigorovici (32) carried 

out vork on breakdown potentials in tlercury vapour using alien ItlE'1.a..l 

elcctrod0s. 'The first ncasuremcnts of ionisation coefficients wer0 mac.e 

by Bado.rcu and BratE'f'cu (33~ in 191+4 , and !!lore recently by Smith (34) 

in this lc.boro.tory. T~e experiments and results of the E:.hove will l)e 

discussed in this chnpt~r . 

3.2 The iY(.,rk of Llewe:.lyn-Joncs and Galloway 

These experiments .Tere confined to the measurement of breakdown 

potentialS in mercury ytl.pour . The apparc.tuB "sed vas of aimple design, 

consisting of t '0 polished natal electrodes . 3.8 mo . in diameter, onc 

of nickel r.nu the othe:J" of 'Staybrieht ' st(:cl, both 1 mm. thiclt, with 

beyelled edges to reduce field distortion in th~Be ree-ions, enclosed 

in 0. glnss envelope. A fixed clectroc.c sepa.rc.tion of 2.5 t!m. was 

used . The ratio of electrode separation t n electX' Je diameter 'Was 

1/15 t so that the f iele! 'betm:cn the electrodes could be assumed uniform. 

A diagram ()f the appr:.ratu6 is flhown in fig. (19). 

o 
The electrodos were deCe.ssed at 750 C in vecu\lr.l before being 

sea.le.d in the tube . \fucn the tube ,\;TO.5 cooplctc it WnF.l l.'1!.dnt a.incu. at 

J~OOoC whilst being evacuated by 0. diffusion pump • . There is no nention 

of the ultif.l!ttc pressure reached or of how end in what conuition the 

mercury ,-raB introduced into the tube. 

Th~ vapour pressure Of the nercury was raiseu. l>y heating the tube 
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in an electric furnace, the temperature of the "apour b eing indicated 

by n mercury the~ometer placed as near as possible to the electrodes . 

Initial experincnts showed that the Paschen curves token while 

tile t emperature of the tube was rising did not coincide ,dth those 

obtained "rhile the temperature of the tube was fa.lling. The diffe r nce 

was attributed to a temperature lag between thArmomet er r eading and 

the actual t emperat'.lI'e of the tube . It 1<10.8 assumed that the temperature 

Jag was the SaDe ;.11en the tube was being heatec. 8 .S when it was being 

cooled , so that for any given sparking potential the corresponding 

teoverature for the vapour was obtained by t aking the ~ean of the two 

t emper atures recorded during the heating nnd cooling . A less 

ambiguous procedure would have been to change the temperature by 

800.11 amounts ~lc"ing at each change sufficient tine for the raercury 

to r each a steady t emper ature before mea.suring the breakdown potential. 

It "TaS obs er'red that the miniouo sparking pot ential was about 

80 v lts lO"Tcr when tho tc:1pcraturc was rising than ,.,hen it was fall­

ing . The difference was e.ttribut ed to the condensation of oercuJ.'Y on 

the e l ectrodes , presuoably due to the t er' perature lag between the outer 

and inner pe.rts of the tube . If the t eL.1perature of the walls was 

slightly gr eat er th~~ that of the el ectrodes , mercury would be 

expected to condense on the latter. If the reverse condition was 

operative , L e . when the tube was being cooled. then the el ectrodes 

would be expected to be free fron nercury. Smith (34) has criticised 

this interpretation seyine that any sudden change in cathode surface 

due to cundensation of mercury would result in a change of slope of 
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the Peschen curve . However. it can be seen that condensation would 

occ'lr only at the point 'Y'hen the walls of the tube were wamer than 

the electro<1(:s , i. e . at the onset of the experinent, before the 

I:lcaSUl"cucnts wer e t aken. 

The results obtained are shown in Fig. (20). The miniouc spark-

ing potential with a mercury-covered nickel bond a mercury-covered st el 

cathode was found to be 305 volts in both cases. The values fer the 

clean surfaces were found to be 400 volts for the nickel cathode a~d 

380 volts for the staybright steel cathod. The results were r epro­

ducible to 3% for several different tubes. The difference was 

attributed to the difference in vlOrk function of the t,fO metals . 

The el ectric ft~nace coployed to r aise th vapour pressure is 

not described i~ full. Teopcrature gradi ents would aJ~ost certainly 

exist to an appreciabl e c>.."tent i f the fume.cc lTere a sinple box with 

heating elements en the inside . These , together i·iit~l the doubtful 

cxperi~ental procedure for detcrnining vapour t ~_ peratures, could lead 

to serious err ors in pressure neasureoent. The 1'1Ork was, however . 

useful in that it '<TaS established that mercury vapour has the sane 

~eneral sparkins char acteristics as the true gases • 
.> 

3.3 The work of Grif;orovici 

Gri[5orovici's neasureoents were conf ined to the hreakdown 

potentials in nercury vapour, with the object of deducing conclusions 

as to the phenomcm taking place on sparking in the Bas and at the 

electrodes . 

1\ die.gran of the apparatus i s shmm in fig . (21). 'l'he el ectr odes 
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consisteu of thin netal foils of platinuo, aluninium wld iron , Dounted 

on an iron base , the whole being held in position by iron stays . The 

iron basescontaine~ heating coils so that condensed mercury could be 

removed by evaporation if necessary . The mercury , .. as contained in Co 

snaIl side-am of the main tub~ containing the electrodes, while 

another side-arm led via a valve to the pUl.1ping syst n . The valve '\'Tas 

so designed that it could be operated fro:1 outside the surrouneling 

electric furnace. 

The mercury was introduced to the tube after distillation under 

vacu~ . The heating coils were outgc.ssed uy heating to white he t and 

the tube by heating in an electric oven to about 400
0

C. The electrodes 

were heated by passing tUl abnormal glow discharge in mercury vapour and 

the escaped 3nse;:3 vTere puoped off . The platinum and alUllliniun cathodes 

could not be subjected to this treatment since the surface was affected 

by the discharge . An iupurity content of 0 .01% could not be avoided 

because the valve allowed sone gas to lcruc back fron thc punps . The 

high excitation potential for sone of the states for nitrogen could 

thus havc influenced the discharge . 

The temperatures were neo.sured by ca.librated ncrcury in glass 

therLloneters placed on the sides of the tube where nercury was condens­

ing . There is no description in Grigorovici ' s paper as to how the 

tenperature of the vapour '\'las flaintained, but the fact that condensat ion 

was occurring on the tube 'Halls implies that teoperature gradients '\o1ere 

present , which would nake the accurate deteroination of vapour pressure 

eli ffi cult . 
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Breakdown potentials ",ere r.leasured lTith three different cathodes. 

The: uinimum sparking potentials obtained were 565 volts for n platinum 

cathodt.~ , 437 volts for an iron cathode, 390 volts for an al'1..lPllnium 

cathode , and. for n mcrcury pool catilode us~d in El. secun(l tube (fie . 

(21b »), ~95 volts. 

It 'JaB noticed that af'ter running a dische.rge for some time using 

an iron cathode the sparkin~ potentia.l was lowered until it was 3 to 10 

volts higher t han for a pure mercury cathode . The lO'tT._ring was attri bu­

'I:.cd to the fornation of :! nercury layer on the cathode, sir ~e on heating 

thl,J cathode thc', potential r .turned to its fomer value . Tht:! other tyro 

oeto.ls , platinU:;:l cnd aluninito, chosen because of the~r 1l:l.1"ge diffeX't:!nce 

in work ~uncticn , (about 1.5 volts ), g~ve different r esult s . The 

surfac~s 0f the c ~ cathodes took on 0. spongy stL"-lcturc, f. r esult attribu­

ted to the incidence of singly ch(.;.r gGd mercury ions . The nercury 1.as 

fOllnd difficult to rC!:love , indicating the.t SOlle fom ef str~"\g binding 

existed betwecn I!lercury nnd c!;'.thode . Grigorovici na3 suggest cc't tl·.,t 

thio may sil.'l.ply be due to the increul:1ed l'.bRo-rptivc power of the 

irregular surface . A sinilar effect , but t o a ~esser extent, was 

observed. with the iron cathode . The n ininun. brealtdo,m potentials f or 

the IllcI'cury-cover ed ca.thode "Tere 300 volts for iron , 245 volts for 

alut1iniuP and 200 volts for platinun. The ~ercury layer wao invisible 

t o the naked eye but could be detected vrl th a. laicroscope . ' Further 

e>--perili'lcnts i ndic!1tctl tha.t the u iniIl1lli br~akdown potential s '\Tere 

dc:p13ndent on the thickness of the f'il=. , such that the thicker the fi m 

the 10\.,e1' the winiwUlZl brc!lkdotm :pot ential. It is well-knmtn that ioThen El. 
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filt, is sufficiently thick it takes on the properties of the netal of 

whi~h it is conposed. Llewellyn-Jones and Davies ( 35 ) revealed that a 

decrease in the work function of a surface when a thin filr!l of el ectro-

positive metal was deposited on one of lower electro-positivity r e sulted 

in a lowering of the sparking potential. Mercury occupi es a l ower 

position in the electro-chenical series than iron but lies above 

allll!liniU!.:J. and platinum. The change in brealtdown potential can therefore 

be eXiiLained on this basis. 

From the value of ~in' the n inimum energy r equired to form 

an ~.ron pair, given by Langmuir and J ones ( 36 ) for mercury vapour, 

Grigorovici calculated the second Townsend coefficient . The value 

given for 11. was 38 eV , tOvhich Grigorovici added 15% t o give 
DJ.n 

n. = lt4 cV as an upper lini t. If the energy which is spent by an 
"OJ.n 

electron in the fi eld for the production of an ion pair is known then 

~om the r elation 

Vs. = Tlmin 2n (1 + 1) run y 

y can be calculated . The values of y obtained for Vs. and n. are 
r.l~n mln 

shown in the following table r eproduced from Grigorovici's paper. 
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Cathode y% <!> Vi-2~ Ta Material 

Pt 3.2><10-4 5.5 -0.6 4073 

Fe 4.8><10- 3 4.5 ·d.4 2723 

Al 1.5 x lO-2 3.0 +4.4 2273 

HS 1.2xlO-1 4.5 +1.4 630 

+ 
Comparisons of the excess energy of the Hg ion (Vi-2~) and the 

boiling point of the cathode,Ta , with the value of y, led Grigorovici 

to thn conclusion that the boiling point of the cathode was the more 

significant factor. The kinetic energy of the ions is therefore assumed 

to be responsib:c for electron enission from the cathode. the mechanism 

being that sugGe ... ted by Kapi tza (21) in ,,,hich intense :tocal heating is 

produced resulting in thermionic emission. By plottin6 y as a function 

of Ts ' which is proportional to the critical temperature, a Stlooth curve 

was obtained, fig. (22). nle slightly high point corresponding to an 

aluminium cathode is explained by assuming that in this case, where 

(Vi-2~ ) :::: 1 • • 4 eV, the potential energy of the iO~ll'lay play some part. 

The J,lcssible effects of metaztable and photC'n action at the c'lthode 6,:':"e 

igllored , Le. y is not considered to be a. conposite parameter. At the 

values of E/p in question (~500), this assumption may 'be valid. Evidence 

vtill be given in Chapter 6 to the effect that at values of E/p less than 

500 V/noES. meta.stable rold photon effects become the doninant factors in 

electron liberation. 

Fron the value of y calculated from the relation 
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1 V = n(l + -) y 

Grisorovici calculated a/p = f(E/p), assucing y constant with E/p , Jlll 

assuoption that is in contradiction to his postulate that y was prim­

arily the result of the kinetic enerGY of the HS+ i on , El contrndiction 

which he recognises. alp is calculated from the rclll.tion wbere V/pd E/p. 

The result is shown in rig . (23). The values of alp are noted to be 

high compared to those 01 the rare Gases, u result attributed to the 

low ionisation ?otential and SI!lall electron 1. ean free path. It io 

recoBJliscd that the uncertainty of the absolute vnlucs of V, and thc 

assUl!lption rcgarding y probably nakes alp too hi5h, with 0. r :...xitnum 

error of 15%. However, as will b G shown la.ter, the vo.lUI.::/3 of alp 

cD.lculated by Grigorovici show rC::1a.rka.ble lI.greenent with experinent up 

to an E/p of 500 volts/QI;1.mm.Hg. 

3 . 4 The work of Bcdereu r~d Brntescu 

The aim of this work wes to deternine alp ~o e function of E/p 

by measurinc pre-brer"kdown currents, it and plotting lObei ea a function 

of electrodc separation, d. A diaGraLl of the appo.rctus used io shown 

in fig. (24). 

The nain discharge chonber was of tDuroo ' glass nnd was spherical 

in shape with a lonG side-o.m containing a nercury reservoir. This 

side-o.ro wns maintained at 20° to 70
0

C, below the tlain discharge 

chaober to 6void condensation of ncrcury on the electrodes . The 

te!lpcra.ture tti4:ference ",as achieved by ::>plittins t h. electric furnace 

intv two compartncnts, one contoinin6 the resor.,oir end the other the 
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oa~n discharge chanber. The electrodes were nounted on gloss tubes set 

cen"jrnlly in the oa.in choober. The tube supporting the anode contain d 

a quartz window through \-I·hich ultra-violet light could be transmitt ed 

through soull holes in the Mode on to the cathode to provide an initia.l 

photo-electric current. The cathode wa.s attached to a screw nechanism 

which could be opE:rated from outoide the oven, so altering the electrode 

scpara.tion . A fourth sidc-a~ led via a valv t o the pumping syateo. 

The e).t'. c.roncs used were of iron with ROg011ski prof'iles to reduce fi eld 

distortion . 

The I!lercury flaS distilled thrice in vaCUUll before being distilled 

into the eA~eriI!lental tube. In order to reduce oxides present the tube 

was punped Md then flushed with hydrogen at atnospheric pressure , and 

baked at 4oooc. for several days. The ultioate press~re r eached was 

10-5 ou. RS . After isolation fran the pumping systen the pressure 

reached 10-4 no. Rg . in 24 hours but did not increase above this valu • 

At one mu. Hg . of vapour pressure, therefore, the impurity concentration 

was about 0.01% und the values of alp measured could h~ve been influenced 

by the high concentration of nitrogen. Temperat·ures were oeasured by 

mercury in Glass thernooeters and the pressure (reduced to oOe.) was 

calculated fron the tempera.tures of both conpartments. This experioental 

arrangenent , des isned to keep nercury off the electrodes, probably 

produced disturbed themal conditions. It \-10uld therefore ta;ve been 

difficult to eauge the press~re between the electrodes accurately . 

Thernal non-equilibriuo also ioplies that tenperatur eradients were 

present, another factor conplicatinc:: pressure oeasurencnt . 
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Several graphs of 1013ei = f( d) were plotta:d and vo.luoe of alp 

obtained froo the slopes. It was found that even with the ultra-violet 

radia.tion mdtched off considerable current wcs flowing, presunably 

around the \1;llls of the tube. To allow for this, current oeasur nents 

,.,ere token with the radiation on and with it off. l'he gas current "TaB 

then taken as the difference in the two readings. A curve of 

a/po = f(E/po) was then pffiotted for a range of E/po fro~ 150 to 1400 

volts/cm .mm . Hg . A curve of n (=E/a) as a function of E/po "ms 0.160 plott d . 

n1ese results are shmrn in fig . (25). The values of a/po obtained were 

of the SQ.J.."1e order as thBse calculated by Grigorovici ond the minimuo 

value of nllr..S 43.8 eV occurring et on E/po of 445, in [;OOU. agreeocnt 

with the value cstioated by Grisorovici . 

Fron their curve of a/po as a function of E/po Badareu and 

Bro.tescu calculated the constants of the Townsend relation 

as A = 26.1 nod B = 414 . These values for the constants apply over 

the r ange of E/p between 200 and 1200 voltS/CD.mo.H~ . A further 

discussion of these constants will be [;i ven in the finaJ. chapter of 

this thesis. 

Assuning that the en rgy distribu.tion of electrons was narrow. 

Badareu and Bratescu related a/po to the ionisation efficiencies of 

smith (31) and Arnot (38). This enabled then to relate E/po to 

electron energy . Thus et all E/po of 200 the Dean electron energy is 

quoted as 13.5 eV , the avcrnee between the values of Soith and Arnot . 
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Knowing the electron energy e.no. using exci to.tion :functions, nssUl!ling o.n 

excitation potentiel of 7 volts ( r efer ence is not given ) the authors 

calcula~c that at en E/ p of 200 , or a mean electron energy of 13.5 cV, 
o 

there ,.,ill be an o.vercge of 3. 6 (value of a/po a.t 1 mrl . pressure at oOe . ) 

ionisat ions and 17 excitations . Thus for every ion pair produced th.re 

are Ol'l aver nge ).j. .7 cxc:i ted "toms. assuming only I')ne excit cn state . !,'o:r 

an E/p of 1000, with a./p = 17.2, the vo.lue of the oee.n electron energy 

is 33 €V nd 9 4 6 exciting collisions are on averase calculated to occur. 

The method of calculation unfortunat ely is not given, neither is the 

source of the excitatio!. function, and thus it is not possible to chC:lck 

the calculations. An a.lternativc nethod of arriving eat the nunber of 

exci t at ions per ionisation is one first sU13gest ed by Snith ( 34) in 

which use is nade of the values of n = E/a. 'which represents, at a given 

E/p, the energy an electron oust gain fron the fieltl befor e ionisation 

takes place . The enerGY required to ionise , Vi, is in the. case of 

Bercury 10.4 volts . The amotmt of energy (n-lo . 4) Dust then have been 

absorbed in elastic end exciting collisions. The fractional enerGY loss 

on an elastic collision between an el ectron and mercury o.ton, Ott is 

very sr:lall since 

and, therefore , losses to excitations only need be considered. Knowing 

E/P as a function of electron energy , use con nC1lv be made of the exci ta­

tion functiono . These were made available by Penney (1) in 1932 for the 

four P states of nercury . For a c~ven electron energy the ratios of the 
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propc.bilities of exci to.tion gl. ve the ratios of the nur.lbers of F.l.tOo.s in 

eo.cr state. Multiplying the ratios by the energies of the states, SUl!l-

o.ing, a~d equ~ting to the energy value (n-lo.4) at the value of E/p 

equiva.lent to the electron energy in question allows the nUl:lber of atoms 

in each state per ion pair produced to be calcu!o.ted for that value of 

E/p Snith (34) uade s~e use of this oethod assuo.ing only two 6t~tea 

were inportant, and Dore detailed use is nude in the final chapter of 

this the -·is . It is surprising , however, that Bo.dareu did not nalce use 

of n in this way, pcrticularly as Penney ' s exciteticn functions had 

heen a.vailable for sonc years . The secondary coefficients , for an l.ron 

cathode, were detelnined from GriGorovici's neasure~ents of breakdown 

potentiols, using the relation 

1 V = , log (1 + -) 
y 

Three values of y were also obtuined iron the upcurving parts of the 

log i versus d curves . The values calculated by the two methods wer~ 
e 

found to be in Good aGreeoent . The values of y as a function of E/po 

are shewn in fig . (26). 

Bct1'TCen the range of 800 to 1400 for E/P 0 the secondary co-

efficient '>TaS found to be constf'..nt, l eading the authors to the conclusion 

that the potentie.l enerQ' of the i on "ras the Dore inportont factor in 

eleetron liber a.tion. At lover "c.lues of E/P(): the hi [_;her vnlues of y 

were attributed to a combination of the phot0-electric effect and the 

potential energy of the ion . The role of metastable atoms in electron 

liberation ~ms considered nesligible compared to that of the other 
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elementary processes, the reason eiven being that the high temperatures 

involved fcvour the creation of normal excited states r ather than neta-

stable states . In a second paper Bratescu (39) cites the two resonance 

'P' states as tIle most inportant. Any metastables pro<luced are con-

sidered to have negligible probability of reaching the cathode, their 

destruction being achieved in the voluoe. with the resultant photon 

having a photo-electric effect at the cathode. Thus at values of 

E/po < 800 the principal secondary process is thought to be a photo­

electric action und at values of E/po > 800 the principal secondary 

processes Ilrc thought to be a combination of photon effects and the 

singly charGed positive ion, acting by virtue of its potential energy. 

The currents used by Badareu and Bratescu lay between 10-9 and 

10-5 amps. Although space charge effects are thought to become important 

at 10.5 aops (5) the use of such currents would not effect the values of 

air) since the larse currents would be confined to the u!)curving part of 

the log i versus d curves. The lack of 0...'1 analysis to correct for 
e 

secondary effects also would not affect their values of alp since the 

seconda.ry coefficients determined are e.bout 10-4 • The main criticis;:l of 

their ,mrk lies in the poor vacuUIl t echniques where the residual air 

pressure co\ud not be reduced below 2.4 x 10-4 torr. thus introducing 0. 

possible PenninB effect and in the design of the electric furna.ce which 

probc.bly introduced non-cquilibriutl conditions end consequent diffi­

culty in c..eterninins the vapour pressure . Further, !:.lthough the 

apparatus '1O.s flushed vi th hydrogen and baked o.t 400
0 c, no effort was 

I:lnde to outgas the bulk iron electrodes,either by Eddy-current heating 
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or by passing a glow discharge. The probable out-gassing of these 

electrodes under the experi:1ental conclitions would increase the impurity 

content . 

3.5 The experi~ent of Snith 

The ain of this work was the nensurement of a/po cs a function of 

E/ po by measuring pre-brcakdOY,Tll currents as 0. function of el ectrode 

separation. A cliagran of the appara.tus used in shown in fig . (27) . 

~~ e electrode systen consisted of a nercury pool and a glass 

anode . The anode, 4 co . in dianeter , was surrounded by a glass guo.rd­

ring, naking the total "ianetcr of the anode assembly 6 CD . Both anode 

nnd guard ring were ground snooth and coated with gr aphite on the undGr­

sides t o give conducting surfaces . Electrical connectiens to these 

surfaces "rcre nac1e by tungsten seals . 

The ano~e assenbly was connccte1 to a glass flout in a subsidia~J 

chanber. This subsidiury chru:lber was connecte<'i t o an extilrnal mercury 

reservoir surroundeu by a heating coil, so that by heat ing the mercury 

the vapour pressure in the reservoir was incrc~~sed , forcing l!lerCUrJ" into 

the float chanber and consequently raising the anode ' as senbly . 

A graphite ring ",as paintcll on the inside of the discharge 

chm~ber in oreer to by-pass currents travelling between anode and 

cathode alonG the walls of the tul~c . Ultra-violet raG.i ution "Tas ac1mi ttcd 

through a qUQ.rtz windo"T arranged so that radiation struck the cathode 

at glancinG incidence . 

The apparatus 1'1as baked for 24 hours at 450°C. while being pumped 

by a diffusion punp ana a rotary pump arranged in series . The oercury 
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oLipo as a function of E/po in Meroury Vapour. (Smith) 
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was twice distilled under vacuum before be~ng admitted to the tube, 

which by the use of ion-gauge techniques had previously been evacuated 

to an ultimate pressare of 10-7 mm . Eg . 

The type of oven used was developed in conjunction with the 

present author and will be described more fully in Chapter 4. Basically 

it consisted of a massive iron chamber in whi~h the experiment ..... l tube 

was placE::d, heated by eiemento placed on the inner 1'1alls of an outer 

cham-ber ·-hich completely enclosed the iron box . Temperatures were 

measured by thermocouples and a maximum di fference in t emperature of 

laC . could be detected hetween any two extreme points (1 metre) in the 

inner enclosure . 

Using currents bet\wen 10-7 and 10-11 amps Smith obtained values 

of a/po as a function of E/po for a range of 80 < E/ po < 2500 volts/ 

cm.rom .Hg . His results, together with those of Badareu and Bratescu are 

shown In fig. (28). The curve shows a levelling at high E/po' a result 

"rhieh is to be expected from theoretical considerations. The detection 

of this levelling is attributed to the applice:"ion of the Da.vies-Milne 

(40) analysis, which corrects for secondary effects. This point will be 

discussed further in chapter 6 in relation to the pre3ent results. 

The curve crosses that of Badareu and Bratescu at an E/po of 480 

volts/cm.mm.Hg. The point at which the curves cross is the Stoletow 

point. The corresponding Stoletow constant, which is the minimum value 

of n = E/a is quoted as 44 volts, which agrees with that of Grigorovici 

and of Badareu and Bratescu. Smith attributes the crossing of the two 

curves to errors in pressure measurement on the part of Badareu and 
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BrateS-:1.1. An error of 3:t in temperature m"asurement ,",ould result in the 

obst.rved 20% error in pressure ,.hieh would explain the difference . The 

error in tempcrature measurement is thou6ht to be a r esult of temperature 

gradients occurring as a result of non-thermal equilibrium conditions. 

':'hifj explanation becomes more clear ,.-i.lon plots of n (which is a function 

of E/p only ) against E/p are con~idered . 
o 

'i'he value of the const ants of the Townsend equation relating 

a/Po to E/po were obtained by plottine 10810 alp as a function of E/po ' 

The equation was found valid ovcr a range of 250 < Elf) < 1800 volts 

1
- - 500 1 

a/po = 30 exp _ E/ po 

Following the idea of Badl;l-reu and Bratescu Smith cOI!ll'ared his 

valucs of a./po \.ith the ionisation cfficiencies of Bl eakney (3) and 

showed there was reasonl1ble agreCmC!lt. bat'.veen thc two sets of results. 

These are shown in fig . ( 29) . It ".'as considered significant that both 

curves l evel off at approximately the same value, in the ca.se of 

B};eakney ' s results 25 en .-1nnn . Hg .-l aud in Smith's case 24 cm . -1I!ll!l . p.g . -l . 

Further , by fitting the two curve s to give a reasonable agrcement over 

the maxi.num range of E/po t Smith concluded that the mean e l e ctron energy , 

f; , in volts W(lS :celated t o ~/r by o 
~ 

e; = (E/po)'" 

The fact that the maximum value of a/po obtained was less than the value 

for the icnisation efficiency of Bleakney is surprisins . It would be 

cxpected that the a / po of a Townsend discharge vould be greater than the 
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corresponding ionisation efficiency in the experjmcnt where mono-

energetic beams are considered be cause of the electrons in the high 

energy tail of the distribution function with energies above that corre-

ar.ondin~ te the mean enerGY, E/po' in question. 

It )Till b~ noticed that the best fit between thu curves of 

a./po = f(E/po) and the ionisation efficiency enr '/e i ", ",M~i.'"!ed at high 

E/ro 1 i. e . at values greo:t e r than that at the Stol<=!to~T constant . It 

will be rCLl\~mbered that at values of E/po greater than this value, the 

coefficient n=a./E dccreo.ses i.e. the electron::; no longer completely 

dissi~)ate their enclgy "uy collisi.ons in the gas , but deliver a large 

part OT their energy to the anode . Under these conditions the electrons 

ar e no longer iu c,!uilibrium with the field and the drift velocity and 

mr incl'e.asc "ith distence from the cnthode. C:lert;>.1 Thus, at values of 

E/P greater than the St.oletow point , a./po no longer has D.. precise 
o 

meaning, sinc<=! the mc: an energy, B/POt no longcr has 0. precise meaning . 

Thus the comparison on ionisa.tion efficiency with a./pot ill order to 

r ela.te E/po vith electron enerBY, should be cCJnfine d to vo..lues of r. /Po 

which do not exceed the Sto~etow point 'by any great amount . If this is 

clone with Smith ' s values of a / po the relation between ElriO and electron 

energy £ is found to be linear and is Given by 

where k i 3 0. dimensional constant of the order of unity. This :point is 

discussed furth~r in relation to the present results in Chcptcr 6. 

Us:.ng the method outlined in the discussion of the work of Bo.dareu and 
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Seoondary Ionization Coeffioients as a funotion of E/P 
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Bratescu, Smith calculated the number of excitations per ionisation at 

the E/po corresponding to nmin. Assuming that the two resonance levels 

of energy It .8 eV and 6 .7 eV to be the only ones of importance, the 

ratio of exciting to ionising collisions was found to be 6:1. 

Using his • .. alues of a / po and of sparking potentials, curves of 

the second coefficient , w/ a, as a function of E/ po' were obtained for 

"three different electrode spacings . The three curves sh0''' the SaI!lC 

trends "rith a high peak at low values of E/ po , which io attributed to 

photon action at the cathode. Increased loss of photons from the 

discharge volume is ~iven as an explanation of the displacement of the 

cur.ves alonG the wla. axis . Using a graphite cathode it "Tas found that 

the vE'.lues of w/ a were much l ower than those obtained for a mercury 

cathode, fig . (30 ). This is accounted for by the hiGher work function 

of graphite. The increase in w/ a at higher values of E/ro is ascribed 

to the emi ssion of secondary electrons due to the incidence of doubly 

charged li.lcrcury i ons on the cathode surface . lt is thought that the 

large potential energy, 30 eV. rather than the kinetic energy of the 

ion, is the more i mportant factor . The ion would be expected to occur 

at a value of E/ po of about 900 volts cm.-1rnn. Hg .-l if the electron 
, 

energy were equivalent to ( E/po ) ~ . This is where the curve begins to 

rise again . However , Kovar (41) when determining the mobility of mercury 

i ons in ~ercury vapour, was unable to detect Hg++ although his range of 

E/Po extended as far as 1500 volts / cm .mm.Hg . The only fast ion detected, 

with a mobility of approximately twice that of the singly charged ion. 
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+ was HS
2 

' which could not be detected above an E/po of about 100 

-1 -1 .. volts CD. oo . Hg . • However, an alternat~ve explanat~on of the 

++ increase in w/ a at high E/ p to that of the ion Hg must be found . This 

point will be discussed further in Chapter 6. 

By plotting breakdown potentials as a function of pod, Paschen 

curves "1ere obtained f or different gap distances, d. It was found that 

the minit'lUI!l sparkillg potential could be r elated to the ratio of diD 

whe~c D " 9 the electrode diameter , by the expression 

Vs. - 282 + 20(d/D) 
I!Un 

to an accuracy of 1 vol~ . Such a r el at ionship cannot be determined 

unless the lofOrk function, and hence the emissive properties of the 

cathode surface , renain constant. It therefore appears that a mercury 

pool will prc-"idt. such a surface under low current conc1i tions • 

3.6 Conclusion 

It can be seen from the above review that knowledge of the el ec-

trical properties of nercury vapour is inco.cplet e . Values of the primary 

end secondary coefficients have been established to an order of magnitud 

and t he general behaviour of mercury vapour unde:!:" controlled discharg 

conditions is established as being very similar to that of the rare 

gases . Further measurements are required of the first ionisation 

cocffici Emt in an atterapt to resolve the discrepo.ncy between the results 

of Badareu and Bratescu and Smith . The interpretat ion of the curve 

w/a = f(E/p) is in doubt, and temporal studies of the growth of ionisa-

tion are r equired to facilit ate the ~olution of this problem, 
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The work of Llewel lyn-Jones and Galloway and of Grisorovici has 

shovm that with the use of bulk netal electrodes , surface effects boeamo 

iDportant to the discharge , either through analgo.nntion or condensation . 

Smith nas demonstrated that a tlcrcury pool uill provide El. clean, 

reproducible surface of constunt .Tcrk function suitable for use a.s a 

cathode under thG sas discharge conditions concerned. Such a. cathode 

is used in the cxpcrinents described in this thesis . 
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CHi\PTER 4 

APP ArillTUS 

4.1 Va<.:uun Syst.en 

.lI. line c'l,i e.gr en of the Va.CUllil oysteu used to process the first 

two eXIlcri'l:!ental tnbes is shown in fi g . (31). The system, apart frotl 

the rotary punp Has r .. ade 01' Pyrex glass emU. nount ed on 0. Dexion fra1'l~'! . 

'!'hc syst(~m ..,me divided into two :pnrt s by an asbestos bo~rd . 

Those cO::1poncnts Dounted below the board nade up the nai!l plrlping 

syst e~.! , those parts above t he board t.he !:J.O.nifold ~.nd experim(:ni.:tl tul:..(!s . 

'jhe purp,osc of t he 1:.' :)ard , ;:.1S to !:'.ct as a S11pport for an electric furnace 

ur3 ed to balw the nanifold and tul',"'s in or"er to assist in outg!l.6sin!£ 

then . 

The ptll'lping systeo consisted of a rot o.lt p',m!> in series with 0. 

UvO stage ncrcury diff~bion punp , s~p~ro.ted fr~l the latt~r by a vessel 

containing phosphorous pentoxidc, includ<;:d to protect the rotary pUllp 

froo ~oisture . Th~ diffusion D~lP in turn was connected to ~,liquid 

air trap in order t o condense My ncrcury vapour on the high va.cuun 

side and llrevent it r eaching the llnnifold . 

There W("l't! two grease t aps , It and G. The fu.'1ction of A lms to 

isola.te t he rotary pur:1P froo the rest of the systcu ; thc:t of G to l(~t 

the rotary punp up t o ntDcsph~ric pressure after isolaticu . No Grease 

taps lVt!'.'e pl'c sent on the high Vo.CUUIl side of the pu.":'lpinS systc:,.l . 

The r.I':.IIlifoFt consisted of three (:'istillat ion tuben , DI , D2 , D3! 

connected t ot;;ether in series and separated froIl each other hy constric­

tions Cl and C2 ' The constriction C3 scparated theso tubes froD the 
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nain am of the nonifold , !1. This am was joined to t he puops via a 

constriction , C , and three pi gstail breakers BIt B2and B3• The 

breaker B4 servec to isolate the experinentol tube T fro~ the distilla­

tion tubes . The tube 'illS connected to the main crn of thc nanif'old by 

a constriction Cs. Iron rods, conpletely surrounded by Blass, were 

placed at E and. F in order that the breakers n i e;ht l)e snashed when 

required . 

A PenninG gauge 11o.S constructed and L'lount ed on the ncrcury fr ee 

mde of the liquid air trap in order t hat the pressure could be measured 

while t he mmifold was being baked . A Bayard-Alpert typ~ gauge ,o/'as a l so 

constructccl and nounted between the expermenta l tube , T, and t he 

breaker B
4

• When the constr iction Cs was closed , it served both as 0. 

measuring and a .I.1uoping tlevice . 

The vacuun systcn "Tas r.J.odified for use llith the third and fourth 

experinental tubes . A diagr~ of the modified systen is shewn in fig . 

( 32 ). The breakers B1 , B2 , 8...11d B3 "Were dispensed uith. The distillation 

tubes were pumped separately from the experimental tube by a second 

diffusion pUDp . The experioental tubes wer e connect ed via constrictions 

Cs and C4 t o t he oris i nal uiffusion p~p . The ion gauge was r.J.ounted 

bet'tteen Cs 3Ild Cl. ' so that it could punp the tube after the closure of 

C
4

• This arra.'1geElent 'tillS found to give a better pumping speed, and 

greatly s implfied glass blmtine probler.J.s . 

4.2 The First Experimental Tube 

The electrode system of the first experimental tube , fig . ( 33 ) , 
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consil'ted of a mercury pool cathode and a ljlaos f1nocle and guard-ring. 

The diameter of the cathode end that of the anode and guard-ring taken 

together~ lTure approximately equal, measuring about 6 cm. The anode ancl 

guard-rine were made by melting Cluss rod in a carbon mould. Both 

el ectrodes ye r e then ground smooth using successively finer grades of 

carborundum pmlder . Finally, a thin layer of graphite was sprayed on 

the smooth surfaces to re~der them conducting . Electrical contact to 

these s~ faces was made through tungsten rods embedded in the elctrodes 

and fine nickel wire attached to tungsten seals in the walls of the tube . 

The anode and mard-riL5 were connected mechanically by joining the glass 

surrounds of the tungsten rods together by means of thin glass rods. 

Joined to the IJ.tter HaS a second glass rod "Thich passed upwards 

immediat£ly nbov~ the centre of the anode , through the inner of two con­

centrically placed glas s tubes . The u.pper edge of the outer tube ~-las 

sloped and serrated, so that the glass rod, on emerging from the inner 

tube, could be bent over end held in one of the notches , thus being held 

in position . The glass tubes in turn were fixed by glass rods to "\.he 

roof of the discharge chamber . Thus, by selectLlg different notches to 

hold the central glass rcd~ the height of the anode uss mbly above the 

mercury pool could be altered. A metal rod enclosed in glass ",as 

included so that a magnet could be used to select the appropriate notch . 

The mercury pool itself rested in the base of the discharge chamber. 

The amount of mercury 'YTaS sufficient to brine; the surface lev 1 above 

the curvature of the base , so that measurements of the electrode 

separation l1ere not complicated by refraction effects . The electrical 
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connection to the pool "'8S through a tungsten seal in the base of the 

tubE; • 

Po e;raphite ring was painted on the inside of the discharge 

chamber , in order t o intercept currents tr~velling nlono the walls of 

the tube . Connection t o the ring was made by ni ckel wire joined to a 

tungsten seal in the "Tall of the tube and a connection was then made to 

the appr opriate side of t 11e electrometer. to. quartz wi ndow wa.s j oined to 

tht3 tUb<. through e graded seal and positioned at such an angl e that 

ultra-violet radiation transmitteu through it ifOuld strike the cnthode 

at almost gr azing inciC::;nce ancl provide an efficient source of photo·· 

electrons . 

The main body of the discharge chnmber ,,,as mede by sealing to-

gether two glass envelopes . Thi s obviated the need fOl' tungsten-gl ase 

pinches normally used to seal such envelopes nnd reduced the amount of 

foreign metal in the tube . A thermocuupl e was ntrappcd to the outer 

,,,all of the bese of the discharge chamber so that the temper ature of the 

pool could b e netcrmined . 

The tube "TaS connected to t he distillatioil apparatus vi o. 0. bren.ker 

anc a len~~h of narrow bore tubing which could easily be collapsed o.fter 

the mercury hed been distilled into the tube . A tube of wider bor e 

containing a constriction served ns 0. pumping arm . The experimental 

tllbe could be removed from the manifol d after sealing the constriction . 

4. 3 The seccnd experimental tube 

The first experimental t ube suffered fron the disadvantage that 
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the inter-electrode distance could not be varied when the tube was in 

position in the furnace. All measurements had to be token at constant 

electrode separation, the pressure being the vexiable parameter. Since 

sufficient time had to be allmrcd for the t~perature to reach a steady 

level~ a :Jingle Paschen curve often took as long as a week to complete, 

re did a curve to evaluate n. (The process used to determine these 

results will be described in the next chapter). Accordingly , a second 

tl1he '1(- built to incorporate the device used by Smith (3 )~ ) to vary the 

electrode separation. A aiagram of the tube is shown in fig . (31d. 

Experioents wit~ the first experimental tube indicated that 

appreciable current S "Tere flow'ing on the walls of the tube. as not iced 

by Badareu and Bratescu and by Smith. These currents may have influ­

enced the distribution of the field. In order to approximate more 

closely to the original conditions on which Townsend's theory of the 

spa.tial growth of current were based , it was decided that the "Tu.lls of 

t:le main discharge chaober should be as far away as possible from the 

electrode systc~. This could have been achieved by blowing out tbe 

,.,alls of Q. Slass envel ope ef the type uscll ill t!le construction of the 

:fi.rst tube. Hm.,cver, no such envelopes could be obtained. Eventunlly 

it was decided to use a 500 c.c. Pyrex boilinG flask for the main body 

of the tube . The neck of the flask unfortunately lioited the total 

diaceter of the anode plus 5u~rd-rinG t o 4.5 cn . These were made in 

exactly the saoe way as the electrodes which were used in the first 

tube. 

The anode and guard-ring were joined to a glass rod \olhich in 
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turn was fixed to a flat glass annulus. This annulus floated on I:lercury 

contained in a subsidiary chaober in the oain ionisation discharge tube. 

A length of narrow bore glass tubing liruted the subsidiary chamber to 

a mercury reservoir external to the main discharge chamber. A heating 

coil was pass d around this reservoir so that on passing electricity 

through the coil the vapour pressure of the mercury in the reservoir 

was increased, so forcing mercury along the aoall bore tubinB into the 

aubsidi :"'"Y chamber, and raising the annulus and anode assenbly . 

The cercury formin£ the cathode was contained in a conical cup 

attached to the base of the discharge chaober by an internal seal whence 

it was joined to n second nercury reservoir by a lenb~h of snall bore 

tubing. This reservoir was also surrounded by a heating coil so that 

rine adjustccnts to the cathode level could be achieved if so desired. 

A wall current guard-ring llaS fomed during the distillation process 

by allowing nercury to overflow froo the full cathode and accumulate at 

th~ base of the cathode support. Electrical connection to the pool so 

fomed was by the usual method of a tungsten s'eal. 

In order to allow for excessive depletion of the cathode by 

evaporation , 0. length of small bore glass tubing ,·ras placec1 between the 

wall electrode and the cathode r eservoir via a glass bulb , B. Mercury 

evaporated, fron the cathode would eventUally cond nse in the pool forming 

the wall electrode . This could then be returned to the cathode by 

rotatina the whole tube about the point 0, thus first filling the bulb 

B, then, on lowering the tube back to its original position, the cercury 
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could then flow frco the bulb to cathode and r eservoir. 

The above mechanisD also served the additional purpose of keeping 

the cathode surface ·clean and. free from small particles of graphite 

removed fron the other electrodes . A small number of such particles was 

observed on the surface of the cathode of the first experimental tube. 

fin exanination of Smith's cathode revealed the p:t'esence of gra.phite there 

also . 

F ';h reservoirs were placecl on the same side of the tube so that 

rotation of the tube always resulted in a flow of nercury away from the 

tube into the reservoir.:. This prevented netcury fron spilline; froo the 

subsidiary chaober into the oain i onisation chatlber. The reservoirs 

were supportea by tubes containing sealed constrictions, the tubes 

beine jcined to a wide side arm attached to the nain chaober . This side 

am was teroinated by a flat plain glass window, facilitating the 

observation and neasurenent of electrode separation. Such a window was 

a Lecessity because of the distorting effect of the wall curvature . 

A snaller side am was r.ttached to the chamber at right angles 

to the viewing am. A 'luart~ v,indow was attached t o this am via a 

graded seal and an internal seal. The tube containing thE.; quartz 

windOW was dre.lm out to f oro a tube of narrower bore , enabling a narrow 

beaD of ultra-violet radiation to be directed at grazing incidence at 

approxiuatcly the centre of the cathode, and also preventing obstruction 

of the light by the anoie . 

The expc~h,cntcl tube was connected to the nanifold ~n a sinilar 
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way -Go the first tube. 

4.4 The third ~xperinental tube 

This tube was built to a similar plan as the second tube , t he 

tlain difference being that electrodes of dianet er 6 CI!l. were used 

instec.d of thos e of 4.5 cm. The use of larger electrodes was !iladc 

pos~ ible by having the main body of the tube bu~ It by a prefessional 

gl ass-blower . 

4, 5 !!:.f~_r:'ourth experincntal ~ 

~le method enploycld to raise the anode assenbly in the s econd 

and t.hird tubes, altho .... gh it enabled the el ectrode separation to be 

varied when the tubes were in situ, was only suit~ble for measurements 

of o. / Po where the separation Wa S not required to be constant for any 

great lel1gth of ",iI!le. Tenporal studies, however, require the electrode 

separation to renain constant for indefinite periods. Accordingly 

another nethod of chanGing the electrode separation ,.,as devised . 

A diaGran of the co Jpletc tube is ShOiffi in fi g . (35). The anode 

cnd guard-rine , total diaT1eter 6 cm., "Tere nade in the SOlle way as the 

electrodes fornerly described, with the graphite undersurface replaced 

by platinu:n, which, it "TaS found, had better adhesive properties. The 

anode and guard-ring were joined by thin glass rod . To this was 

connect~d another rod in a :;;>lane nornal to the anode assembly. Thi s 

ro~ passed throuch n close-fittinG tube and was joined at its other 

end to El. glass tube completely surrounding a length of iron rod. The 

close-fitting tube, which served to nnintnin the anode assembly in the 
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correct plane, l1D.S widened at the end furthest froo the electrodes nnd 

joi~ed to 0. tube surrounding the tube containing the iron rod. The 

tube wes joined to the n ain body of the discha.rge chamber by an internal 

seal . 

'l'he tube l1D.S sufficiently long to allow considerc,ble vertica.l 

nDVemeIlt of the iron rod and electrode u.sseI:lb:i.y . This novement "''as 

achieved by activating 0. coil, e, placed around the tube. The coil was 

wound c- glass tubing and the wire was gl ass covered to maintain insu­

lation at the high tenpe:'J.turcsof operation. 

A rectangular f~nne of ~lasB rod was hinged at a point n little 

above that at which the guide tube was widened. This was achieved by 

joining a short. length of tubing to the guide tube in Cl horizontal 

pla.ne, and t hreo ding through it a rod which wo. s then 1:''2nt on either 

s ide . The ends of the rod wore then bent and joined in a further 

length of short tubing, ~nking a second hinge in 0. horizontal plane. 

'1'0 this short tubinc was joined , in a vertical plune t 0. further Piece 

of tubing which was later sliced ~n half longitudinally. This wa~ 

alloweu to rest en the rod supporting the anode assenbly and thus 

act ed as a brake, preventing vertical novement of the anode , when a 

load was applied. This was achieved by ~ounting 0. horizontal lever on 

the second hinge . This lever consisted of f1 glass ro(1.. , joined to the 

hinge, with 0. small glass peg sealed norna.l to its surface. A glass 

tube, ,,,ith an appropriate notch c.t one cnd, was slipped over and 

hooked on to this rod. To the other end of the tube vTaS sealed a rod 
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to which vas attached a tube completely enclosing a length of iron rod 

The weight and position of the rod were such that sufficient frictional 

force was exerted between the brake and rod supporting anode to 

prevent movement when contact was made. The frictional force was 

increased by roughening rOd and brake with coarse carborundum pO'.vder. 

The point of the peg and notch system in the lcyer was to facilitate 

construction of the tube, the main body of the lever being hooked on 

after t •. anode assembly had been fixed in position . A coil, C2 • could 

be used to lift the brake from the rod. 

The cathode, as In the second and third tubes, was contained in 

a glass support fixed by an internal seo.l in the base of the discharf; 

chrunber. A wall guard-ring was formed at the base of the chamber du.J."ing 

the distillation process. This electrode w~s connected to the cathode 

(though electrically separate) vi a the rsservoir. B. This 'Tas surrounded 

by a heating coil so that mercury could be distilled from the wall 

elactrode to the cathode thus maintaining the required cQ.thode level. 

This level i-TG.S proud of the edge of the containinG cup by about 2 mm . 

This method of maintaining the correct amount of mercury in the cathode 

1{as simple and convenient as no mechanical disturbance of the tube was 

required and the level could be restored without coolin~ and removing 

the electric furnace . 

A wider diameter (~") queJtz window was attached to the discharge 

chamber at such an angle that radiation of the cathode at grazing 

incidence by ultra-violet radiation could be aChieveu . A ,,,ide diometer 

tube was us ed so that if necessary the radiation from an air spark-sap 
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could be focussed on the cathode. For steady state experiments an 

ordinary high pressure mercury lamp ,ms used as a source of radiation, 

collimation being achieved by an appropriately machined. cylinder of 

aluminiUIl, 1!1ount~d over the quartz tube. 

Electricru. contacts were made by tungsten seals and nickel t.ape , 

which "18.5 surrounded by l en(!ths of glass tubing t o minimioc contact with 

the chamber "Talls . Observations of electrode separation were made 

through . plain glas s windo'l-T. 

4.6 The Electric Furnace 

Previous worker~ in the field of low pressure discharges in 

mercury vapour have used air furnaces with apparent satisfaction. They 

have the advante.ge over oil baths in that there is no mechanical vii .­

tion to disturb +he mercury surface , and that convectiun currents do not 

introduce difficulties in measuring electrode separations to the same 

extent . An air oven was therefore decided on and was develcped in con­

jUiction with Smith (34). 

Preliminary experiments were carried O1.:t ,,,i th a furnace condst­

ing of an iron box approximately 1 t )( 6" )( 6" and with a thickness of 

plate of e.bout a" . A flanged plate of the same material served as a 

lid. IIcles were drilled in this lid and thermocouples mount_d in it in 

such 0. 'lay that when the lid wa.s in place the tips of the thermocouples 

et various points of different height along the length of the box. A 

thermocouple was mounted in ~ tube which passed along the centre of the 

box. The position of the thermoaouple could then be altered by the 

manipulation of the tube from outside the oven . Thus assembled, the box 
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was mounted inside another in such a way that a free flmr or air all 

round the box was possible . This outer container was fitted with 

electric elements on two of its faces . It was hoped that the high 

conductivity of the iron would produce six faces all at the swne 

temperature, thus reducing temperature gradients within the ~nner box . 

It m\s found that no appreciable d5.t'ference in the thermoc:lUplc r eadings 

occurred if the temper atl:.:t'e was increased slowly . 

Onc the strength of this result, an improved and larger furnace 

was cohstructed on ·the same principles, fig . (36). In this case the 

inner enclosure consis-;"ed of a cube of side 2'3" and was constructed 

from ~ " thick steel plate. The base was detachable, and by the use of 

a winch the main body of the enclosure could be lifted clear provia. .•• g 

ec.sy aCcess to t~e experimental tube. The base plate Wo.s mounted clear 

of the underside of the outer container, allowing air to circulate 

freely . The outer container ,·TaS a cube of side 4' made frol!l hard 

a~bestos und lined on its outer faces with polished aluoinium sheet to 

reduce heat losses. It was tlade on the se.me plrm as the internal 

enclosure so that by use of 0. ,rinch it <:~uld be raised clear of its 

base exposing the inner iron box . The amount of air space between the 

inner faces of the outer box and the outer faces of the inner box ,ms 

about 6" ell round . 'vindmvs 2" in dilmeter were drilled in the centre 

of each l atero.l face of each container. These \Tere necessary for the 

illur!lination and inspection of the electrode space, and also to allow 

the irradiation of the cathode by ultra-violet light. 

The heating systerl consisted of twelve five hundred watt elernents 
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mounted ti-1O to each of the inner faces of the outer box, providing a 

totol power of 6 kilmmtts . The elen~nts were :lounted obliquely across 

each face to assist the even distribution of hent. The heaters were 

connected to the mains through three eight amp Variac transformers 

ganged together so that they could be operated si~ultnneously . The 

transformers enabled the te~pernture of the furnace t o be adjusted to 

any desired value up to a neximUI!1 of 200
o

C. Four calibrated thermo­

couples vere used t o test the furnace f or temperature gradients. These 

Here mounted a.t different parts and at different heiBhts inside the inner 

box. The naxmuo difference in t emper ature tha.t could be detected 
() 

between the extrenes of the furnace wc.s 1 C. This oeant that the vc.ria_ 

tion in temperature in the centre, in the reBion of the ionisation 

o 
chamber, wus about 0'1 C. 

Leads to the thermocuuples and to the various electrical connec-

tions to the experimental tubes were taken out through the base of the 

:fl1rDo.ce through glass tubes and attached to coaxio.l sockets on 0. panel 

fixed t o the main frame. In the case of the anode and ccthode l eado the 

glOSS tubin~ was encased in copper conduit piping and fixed rigidly in 

position. This reduced vibration and the production of stlaJ..l charges by 

friction and o.lso provided an efficient electrostatic screen . Both these 

conditions are essential for the oeasurenent of currents of the order of 

~_O-ll ronps . 

The large thernal capacity of the inner iron enclosure ensured 

that small changes in pm-Ter supply produced neGligible fluctuations in 

tempero.ture unless the change was maintained for long periods of time. 
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Furtheroore, the large overall mass, about 10 cwt., ensured aloost 

pefect oechnnical stability . 

4.7 The voltage source 

The D. C. voltages were obtained from a bank of dry cells connected 

1n series through a chain of 500 ka resistors . These resistors were 

wired to a double bank selector s'\oTitch, S, (fig . ( 37), enabling various 

voltages to be tapped. 

1. ~50 k12 'Tire-wound potentioI!leter , R, '\-TaS connected across the 

output of the s,,,itch . Tht:! centre term.na.l of this potentiooeter '-1a8 

used os the high tenslou output, enabling the voltage to be varied by 

less than 0.1 volts . 

Th0 output voltage was Le~~ured by applying it across a chain Jf 

calibratell resist l.nces, each of the order of a negoho. This chain "18S 

wired in series "rith a calibra.ted wire-wound 15 kn resistor, R , ctl<l 
1 

the voltage drop across this resistor neasured with a potcntiometer . 

Tht:! multiplication of this voltage by the appropriate fv.ctor gave the 

value of the output voltage . 

The apparatus described above was used in the measurement of 

breakdown potentia.ls, first ionisation coefficients and foroati vc tiI!le-

lags . The techniques used in ol)taining these measurcnents w'ill be 

described in the following chepter . 
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CHAPTER 5 

EXPERIMENTAL PROCEDURE 

5.1 The pr~~ction of high vacuum ~~d distillation of mercury 

The nethod of evacuating the experinental tubes was basica11~r the 

same iu all cases. All grease and dust particles were removed frou the 

glassware before it was assenbled by washine it thoroughly, first in 

nitric c.cid~ -then in distilled ,mter. As each sta.ge was assembled it 

wa.s t e.:. (; ~c. for leaks by pumping v:ith the rotary purp and usinS a high 

frequency t ester. Once it was established that the systeo was fr~c of 

leaks large enough t.o be detected by this method the r:lercury diffusion 

pumps were switched on, liquid nitrogen added to the liquid air tran~ 

to condense any mercury vapour and the systen pumped down until the 

nicro-acoeter of the Penning gauge showed no defle~tion . The pressure 

on the high vacuU!!l side of the punps lms then taken to be a.bout 10- 6 

torr. 

The netal parts of the Bayard-Alpert eauges were out gassed by 

siuultaneously heating the filaments to red heat by passing a l urge 

current through then, and heating the grid to roughly the same te~pera-

ture by neans of nu eddy current heater. The whole nanifold was then 

baked at 4800 C. overnight in an electric furnace. In the third and 

fourth experinental tubes, where comoercial Bayard-l!lpert gauges of 

Kodial were used, the naxinuo bake-out tenpcratures were linited to 

450°C. Above this terJperature the gauges began to soften . After baking 

the Bayard-Alpert gauGes were again treated as previously d.escribed and 

the constriction, C4 (figs. 31, 32) closed. nle nanifold then being 
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cO::lpletely isolated fro!'). the puops, the Bayard-Alpert 6auge was used to 

indicate the pressure in the nenifold . For the first few attenpts the 

l3auge indicated that the systC!;l was not leak-·free . One of the breakers, 

B ••• B • "ms then opened, the l.;)ak found and the ,.,hole procedure repeated 
1 3 

until th~ gauge, after sho,",ing 0. snall initial rise in pressure , prob-

a.bly fr~ a slight outgnssing of the system, tihowed a steaqy decrease 

in pressure . This indicated that the system was leak-free and that 

the gaufP was acting as a pump. Another of the breakers was then opened, 

the gauge again outgassed IDd the system baked continuously at the 

oaxioun possible temperature for 120 hours . 

The experimental tubes could then be isolated fr~ the manifold by 

slowly collapsins the constrictilJn on the pUl1ping am (C 5) ' thus al~w­

ins thp. gas to be released by the heat to be punped uwcy . 

In the co.se of the third and. fourth experimentel tubes . where 

the distillation a.pparatus was punped continuously. t:le Bn.yar 'l-Alpert 

Gauge was used to test and puop the experimental tubes alone . The 

constriction , C4' was replaced after each test . TIle tubes were p~~ed 

for about three weeks by the gauge, thc ultimate pressure being between 

-7 - 8 10 and 10 torr . 

VThile the gauge .. las pUI!lping, the distillation of the ~ercury was 

begun . 99 . 9% pure mcrcu~J was adLutted tc the first distillation tube 

.)y breaking the fine tip of the capillary tube suboerged in the mercury 

and drawins the nercury into the tube under the action of the vacutO . 

The purpose of the capillary tubing '-TaS to reduce the speed and violenct! 

of the entry of the I!lercury into the first distillation tubc and so 
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prevent the apparatus fron shattering. When sufficient mercury had been 

adoitted the capillary tube was softened and sealed at a point just 

beneath that at which it was drawn out. Distillation fron the first to 

the second tubes was then begun. Tt.is was achieved by means of an 

electric he~ting coil surrounding the tube, in series with the variable 

resistance. The resist~~ce enabled the selec~ion of convenient distilla­

tion rates. Heating braids were also used vThen the distillation ra.te 

"TaS too slow. 

\Jhen 1.l1)out three q'larters of the mercury had been distilled the 

constriction, Cl' weB c10sed and the distillation from the second tube 

effected in the s~e way as from the first tube. Aeain , after about 

three quarters 0f the mercury hel been evaporcted the constriction, r 2, 

was cl::lse<l. 

Since it was probable tha.t the distillatior. of the mercury was 

effective in outgass ing the nercury , the glass between the t~ird dis-

ti l.le,t ion tube and the experinental tube was heated by a 3as flame to 

drive off eny absorbed. gas on the walls of the tubing. The mercury in 

in third tube vIas then heat e:1. . the intention beir..s that the valour, act­

ing as 0. puop, would drive at least some of the gas lioerated through 

the constriction, C3 • After this had progressed for some time, the 

constriction, C3 • was closed o.nd the Bayard-Alpert gauge renoved fron 

~be exper~ental tube by collapsing the narrow tubinG that attached it 

to the latter, or . as in the case of the third and fourth tubes , the 

constriction, Cs' This was to prevent the nercury atons frow dislodging 

gas from the walls of the gauGe on opening the breaker , B4 • This breaker 
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'\',as then s!!lashed by means of the Class encased iron rou, and the final 

distillation of the mercur~r into the experimental tubes completed. The 

tubes were then removed aft er sealing the tube through which the mercury 

had been admitted . In the case of the third and fourth experimentA.l 

tubes, the distillation tubes wer e made progressively smaller so that 

the ,rolume abov~ the surface of the mercury i1. the third distillation 

tube was slilall compared to the volume of the experim nt a.l tube . The 

volumes ~u ffered by approximately a factor of 20. Any r esidual air at 

-6 a pressure of 10 nm . oe~~ury in the final diotillation tube would not 

then increase the r es i(!ual air pre::;sure i n the experiocntal tube by an 

appreciable aoount . 

After thc tube s had been "'cl1oved fron the oanifold, they were 

oounted on a tripod t able with adjustable supports. Th~ tubes wer e then 

positioned in the inner enclosure of the furnace in such a 'iay that the 

electrodes were above the centre of the base plate anJ on a J .. wel with 

the windOWS of the enclosures . After the electrical connections had 

been made the elect-rodes 'iere checked for paral.~eli6m by measuring the 

inte r-electrode spacing betw<:en the diametric ~xtremes in two directions 

at right angles by Deans of a ca.thetometer . Parallelisn "ras achieved 

by tilting the cathode surface in the desired direction by adjusting the 

a:;;>propri9.te supports of the tripod. The enclosures wer e then lOlier ed 

:.nto position and the variacs set to give the required oper ating 

temrerature • 

5.2 The measurenent of breakdown potentials 

The circuit used in the deternination of breakdown potentials is 
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shown in fig. (38). The breakdown potential was taken as the potential 

jus'" sufficient to !!laintain the discharge without external radiation. 

The current flowing under these conditions was observed to be 10-6 amps , 

measured by a micro-3l:lI:leter • In the case C"f the first and second 

experimental tubes the breakdown potentials were taken by varying the 

vapou.r pressure for the different electrode separations , the result s be­

ing plotted in the fern of Peschen curves . The temperature of the 

vapour, -ta..1.cen as that of the cathode , wa.s determined by a calibrat ed 

copper-constantan theroocouple strapped to the walls of the tube adjacent 

to the cathode. No nC.:'':Iurc::lcnts were taken until i dentical r eadings 

1:letween this thermocouple and the others measuring the air t emperature 

of the furnace '(ere ol:lservcd. ':his condition !!leant that there was no 

tenpere.tnre diff~rence between the inside and outside uf the experimenta.l 

tubes. Prelininary experi~ents had shown that. even aft er the air 

temperll.ture had become steady t considerable differences in t. ':!nper a.ture 

between the a.ir and cathode existed often for periods of up to one hour . 

vlhen it was cE:rtain that the t el!lperatu~e neasured was that I)f 

the mercury, the electrode ueparation was I!leasurad with a cathetol!leter 

and the breakdown potential taken. This uns don.e by increasing the 

voltage by sI!lall smounts until the Dicro-~~eter showed the r equired 

de flection. The pressure , reduced to the vapour pre s sur e at OOC. t was 

then determined frOD a graph of pressure and therDal e .o . f . plotted from 

the tatle s in the Handbook of Chemistry and Physics. The ncasurenent of 

breakdmm potentials was facilitr.t ed by the irradiation of the cathode 

by ultro,...violet liBht fron a high J?ressure mercury source. Soith ( 34) 
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has d.enonstrated the sui ta.bility of such a lanp 1;0 tbese experioents . 

The radiation '\-,as trasnitted frc~ the exterior of the furnace to the 

quartz w~ndow through glass tubing of progressively narrower bore which 

acted as a wave Guide and concentrated the radia.tion on the cathode . 

The I'l0wer to t he oven "TaS then increased to give a soall increase in 

teoperature end the process repeated . In the CllS 3 of the fourth 

expcriJ:'.enta1 tube, a leng:h of octal pipe with polished interior surface 

wos uoeJ as 0. "uuve guide' since it was found to have better truns:oi t-

ting properties. 

In the case of tIle second and third experirlento.1 tubes , Paschen 

curves were obtained by oeasurius the breakdown potentials for different 

electrode separutions at a given r ressure . Sufficient current was 

passed tl.l'ough t:.e coils surrounding the reservoirs to raise the level 

of the anode by an appropric.te onount. When it we s clec.r that the 

electrode was stationary, the breakdown potential and elcctn.>dc sepa.r­

ation were neasured . The curr cntihrough the coil wa s then increased 

slightly to produce c. s!ls.ll chane;e in electrode separ ation, and tht: 

process repeated. Identical precautions were taKen as to the deter~ina­

tion of vapo~r pressure as those exercised when using the first and 

fourth tubes . It ivaS found. that the heat developed by the va.rious 

coils used in tubes 2, 3 und 4 hed 8. neeligib1e effer.t on the air 

temperature of the fUrnace . 

A sufficient numuer of CUl'ves could be taken idth the third 

experimenta.1 tube to enable curves at given electrode separations to 

be extracte d . These could then be conpared with the results fron the 
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other tubes. 

5.3 ~ measurement of first ionis at i on coefficients 

The circuit us ed in the determination of first ionisation co-

effi cieut s for all experi mento.l tubes is shmffi in fig. (39) . In th~ 

case of tube 1, i t was f ound that t he furnace acted as an excellont 

el ectro-static screen when earthed , but with l ater tubes the a."lode l ead 

in the oven. had to be screened to clioinate pick-up from t he various 

coilo. 

'l'he high pressure mercury l amp used as 0. source of ultra-violet 

light wus tested over a period of severo.l days . It was found that 

constant photo- electric currents could be obtained over this l ength of 

time, ±ndicat ing that the cathod0 did not suffer fron photo- el ectric 

fatigue and that the output from the l amp was invariant . Using 'wave­

guides ' a.s explained above photo-electric currents of the order of 

10-11 ~ps were obtained with all tubes . 

using tube 1, values of the coefficient n=a /E 1iere obtained by 

plotting 108ei as a function of voltage f or different values of E/po' 

The pOlTer to the furnace was regulated to give a convenient operating 

pressure . When agreenent between the reading of the thernocoupl e at 

the tube end those measuring air t eoper ature had been reeched the 

pressure end electrode separation were l!leo.sured. These ,.ror e then used 

~o calculate the voltage required to give a chosen E/po' This was then 

applied by setting the potentiOl!letcr to the required value and increas­

ing the voltage until no deflection was observed on the galvanometer of 

the instrument. Althoush a wall electr0de was included in the tube , 
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appreciable currents flowed ,,,hen the ultra.-viole+ ra.dia.tion was inter­

cepted by ~ Dctal shutter . At low values of E/po' these currents were 

of the sone order of uagni tude as the gas current. 'rhe gns current was 

taken as the difference between the current measured with and without 

the rcviiution . The cill'rents '\-Tere measured in terms of the at'bitr~.ry 

unit s of the Vibron electrweter. 

Using the second, t.hil-d and fourth eX]?erimenta.l tubes , values of 

tre. coe:fici.ent a "7ere obtained by neasuring the slopes of the semi-lo8 

plots of current , ~, agaiust electrode separation, d, for different 

V'aluec; of Eho • The pi dssure 1ms LlO.intc.ined a.t a constant valu , the 

electrode separation being increas(;!d by appropria.te OJ:ncunt s . The v:llue 

of the pressure and electrode suparation were used to calculate the 

necess~ry volt ae;.' to give the required E/ po . This was applied by uBing 

the potentioneter as describecl. pr eviously. The gas current ,,,as again 

taken as t.he difference between the current flowing with auc'i '\orithout 

tt .. e ultra-violet radiation . In general , in order to neasure currents 

of the required order of magnitude at high E/po' soaller pressures were 

necessary than those used at low'er ve.lues of E/po . This limitation, 

imposed by t!le conditions of the experinent, will be discussed further 

in relation to the results obtained, in Chapter 6. 

5.4 The neasurement of fomative tine-lags 

Using the second experimental tube prelicinary measuretlents of 

foroative time-lags were taken and plotted as a function of E/po. The 

tube waB unsatisfactory in that adequate control of the electrode 

separaticn ~ould not be maintained . All the useful neasurcments of 
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formative ti~e-Iags were taken with tube 4, in which the ele~trode 

separation could be maintained at a given value 5ndefinitely . 

The overvoltages were limited to a maximum of about 3% so that 

E/p" could bp taken as sens ibly constant . The mA..xim~ increase in 

The statistical t~me-~ag W~::; 

eliminated by supplying initial electrons provided by the irradietion 

of t he cat hode by ult ra~violet light. 

Using a generator p,iving a rcctanBular pulse to tri6ger the time 

ba.se of an oscilloscope , initial experiments were performed on the 

1I!oasurement of t he time-bterval between the application of the pulse 

and the beginning of tl'p fall of the voltage applied to the sap . Thl;!se 

attempts were unfruitful because it ,,,as not possible to obtain a signal 

genera.tor which could givl..~ puls<?3 of sufficient length to produce break­

dmm. A reore s iIY'pl e circuit was constructed, f i g . (40), wher eby the 

times t a...lcen for the current to grow from zero to the desired value, 

10-6 amps, from the instant of application of t he pulse CO\~.t~ be 

mel.l.sured directly. The pulse i n this case consisteo. of the output 

volt~gc from a bank of dry batteries . The pulse was applied by meen !:l of 

6. mercury svTitch 1~ith a rise time of the ordel' o~ a micro-second, which 

enabled pulses of any r equired length to be applied to the gap. The 

time tak0rl for the gap to break dmID and the magnitude of the current 

flowing ,.ere meD.sure~. by a Tektronix Type 545A oscilloscope , the probes 

of which were conncct~d a~ross the megohm r esistance, R, in the 

cathode circuit. The voltage drop across the resistance ,-ras used to 

trigger the time base of the oscilloscope. '.rhe resistance also serve d 

to limit the current flowing in the circuit. 
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After the pressure and electrode separation haa. been oeasured • 
the breakdown potential (that required to produce a current of one 

micro-eop ) was neasured with both nicro-nmueter and oscilloscope . The 

values obtained by these t'110 ~ethods were ~.dentical., and for lOoter 

oeasureuents the oscilloscope only was used. The height of the pulse, 

equal to the breakdown potential plus the required percentage of this 

aoount, vas controlled by giving the appropriate setting to the 

potentionet e r and increasing the volt age output until no defl ection on 

the galvMoneter of the :.llstrUI'lent '"TaB observed. 'The oercury s'IITitch 

. -6 
was then closed, an1 t~~ tUle taken for 10 oops to build up in the 

circui t oeasured. Several t:leasurcnents of the formative tine-lag "Tere 

taken for a given percent overv'Jltagc and the average t a.ken . The gap 

distance uas the'1 altered. to 6i vc 0. different value of E/po and the 

process repeated . The results of these ~eo.surenent6, together ~nth 

those on breakdown pctentials and firs t ionisation c0efficie~ts are 

p:-esented and discussed in the follmring chapter. 
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CHAPTER 6 

DISCUSSION OF THE RESULTS 

6.1 Breakdown Potentials 

Preliminary measurements of breakdown potcntials as a runction 

of the product Pod were taken for different electrode separations 

during the rise and fall of temperature. Similar displacements of 

the tyro curves along the pod axis to those found by Llewellyn-Jones 

and GallovTay (31) and Smith (34) were observed. In order to obtain 

more accurate results measurements w'ere subsequently taken only a.fter 

the theroocouple on the tube gave the same thermal c .m.f. as those in 

the surrounding air . The results obtained in this way with the first 

tube arc shown in fig . (41). 

It can bE: s een from the curves that Paschen' s law ,ms not 

strictly obeyed. For any given value of pod over the range plotted 

the brccitdown potential was lower for smaller electrode separations. 

The divergence from Paschen' s law "TaS more pronoUI,ced at the minimum. 

A reduction in electrode separation of 1.34 ems . dropped the minimum 

breakdown potential by 6 volts . Calculations of the generalised 

secondary coefficient from these curves, using the sparking criterion , 

should, therefore . show noticeable differences with electrode 

separation. This will be discussed further in the section on 

secondary coefficients. 

A similar deviation from Pa.schen ' s la.w was observed by Smith, 

a reduction in electrode separation of 1.39 ems. produced a drop in 
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the ninimUIn breakdown potential of 9 volts . However~ the rCO\l ' T.~ 

obtained for the el ectrode separation of 0 . 4 cms. end 0. 099 cms . "Tere 

surprising . There was no change in ninimum breakdown potential (277 

volts ) on de creasing the separation through the differ ence of 0 . 3 ems. 

Smith had shown that the minimum breakdown potential should t end. t o 

282 volto at very small electrode separations . Since the breru~down 

potential could be determined to within half a. volt the difference of 

~ volts was hard to explain on the basis of eX:l.1erimenta.l error . Close 

examination of the cathode surface , however, r evealed the pr sence of 

f ew minute grains , probably of graphite, floating on the surface of the 

cathode . The particles cou~d have been diblodged eith r from the anode 

assembly or frcp the wall electrode pa.inted on the inner surface of the 

experimental tube . Assuoing a diameter of the: order of 10-3 ems. with 

a voltage of 277 end en electrode separation of 0 .099 ems . the field 

applied to the particles would be of the order of lOG volt s / cm . which 

may be just sufficient to produce field omission . Such a nechanism 

would be independent of pressure and would explain the l evel nature of 

the Paschen curve on the right hand side of the minimu."!l. In ef fe ct a 

gas discha.rge device was produced ~Tith a breakdown potential independent 

of pressure . Such a device Day have industrial applications . 

1~c Paschen curves obtained with the second experioent al tube 

are shoml in fig . (42 ). These curves "Tere obtained by keeping the 

pressure constant while the electrode separation was vari ed. Unfor­

tunately, the n~1ber of curves and the range of pod ov~r which the 

range of breokdmV!l potential,S could be neasured Wt:l.S r estricted by the 
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fact that the ninimuo electrodo sP.Ilo.!'A.tion 1vas t! Im. 'l'l:ll tl ~il:.lit.:::d "the 

choice of pressure required to give the vaJ.ue of p d at the ninimum . o 

Deviations from Paschen's law were again apparent. For any given 

value of PoG. the brea...~down potential ",as ImTer for higher values of p . 

The curv~ V :::: f(pd) has the same sha.pe as the curve V = f ( d) '\oTher A 
A 

is t l1e n OM free path of electrons. At lmmr pres Rures ~ is snall er 

becalA.se A is l ar ger . Hence that ,.,ill be f ewer (:ollisions l:I.nd hi e;he r 

vol'tage3 ·, ... ·ill be required to produce breakdown . This w'ould xpl ain th _ 

displaccnent of the curv ~s along the voltage axis. 

Paschen .1rves -:-btained with the third ~d fourth tubes a r e shown 

~n fig . (43) and fig. (44) respectively. The curves obtained with tn. 

third tube for the three electrode separatlons 1.73 cre ., 1.0 cm. and 

0.48 cm. w'ere e:-tracted fron several curves token by Yf'..ryiuS the 

electrode separation for a given preosure . The "urve s obteined 1-rith 

the fourth tube were taken in 0. similar manner t o that used ,.,ith the 

first experirllmta.l tube . 

It can be s een that as with the first tube , deviations from 

Paschen t S law occur in both cases at the ninlna , viz . bet"Tecn the 

range for pod of 0.3 and 1.6 torr.cm. A a .crease in elect~ode 

separation agcin reduces the ~niuun breakdown potential . With tube 3 

a reduction of electrode separation fron 1. 78 to 0.48 cn. lO\'Ters the 

breakdmm potential by 7.5 volts and with tube 4 a reduct ion in el ectrode 

separation fron 1.4 to 0.4 era . lowers the breakdo\,nl potential by about 

5 volts. outside this range of p d one curve describes the variation o 

of the breakdoym potential, Vs' with pod irre spective of the valu of 
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the elect rode separation . The fact that the deviat. i Cl) . More pronounced 

a.t the rrininUIl, is naintained at higher value s of p d in the case of o 

tube 1 and in the ca.se of Soith ha s to be explained. In both the s p. 

tubes i~>l __ e lectrode geonetry wus identical and the electrodes had 

little clearance froo the \-ralls of the tube:3. The third end fourth 

tubes hed electrodes of the sane diaoeter ap tube 1 but the clearance 

of these froL1 the tube walls was greatly inproved. 'I'hese fa.cts sUBsest 

that in sone lvfW the proxinity of the tube uall "Taa affecting the 

discharge . McCa.llUl!l and Klatz01-r (40), workins in ar gon, neon and 

heliuo, demonst -'ated that the breakdo\-m potential depenciea on the 

ra.t io D: d and to some extent on the distauce between the 'mlls of th 

t 11ce and the electrodes . The efi ct of tl..;) proximity of the walls was 

fOillld to be i nportant in those cases where the diff\lsion r ate of 

electrons was great . The effect was investigated by ~eaauring the 

photo-electric curren"ts bet\-rcen the electrodes . It was found that a 

51:1all current of electrons to the wall of the tube occurred . It wa.s 

proposed that the proportion of electrons lost in this nanner would be 

Gr enter for an apparatus of which the value of D:d is small then f or onc 

in 't'1'11ich the r atio is large, and consequently it \-,ould be expect.ed tha.t 

the breakdown potential woul~ be greater in the f ormer apparatus 

although the value of pd is the S8I.le . The effect of the l at ernl 

dit'fu:3sion of electrons is to negatively ehr...re;e t he I1:l ('.ss wulls. 'l1\is 

ney e.ffcct the unifomity of the field and also co.uue l oss of posit Ive 

ions on cont l:'.ct with the 6lass , an increase in potentinl being 

r eQuired t.o coopensate for the loss. It should be r e.":1cnbcrcd thc.t t~h 
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pot.ential of the tube wall would be slightly posit) ':0 ilith resp~ct to 

the c:atho<lc since t he wall elect rodes "'ere maintFdnod at a110UE:: potential . 

'l'his would have the effect of increasing the l ateral diffus ion 0 

elect r onB. However, in a l:1Crcury discharge it is to be expected the,t; 

th:. metar:rt.o.blc ato!ls M d photons ",ill be to some extent i nportant to 

the breekdmm necne.ni sll . Collision of octastables l'1ith the "ralls nay 

res·u.lt in the production of' 0. photon or in simple r flect ion . The 

probalJility of 'volULlc destruction of !letastf'.bles on reflection iofO'uld ·h~. 

small er the 60aller the YoluI!le and the probD.1ili ty of contact in. th th 

cathode gr~e.ter . Thus the sme.ller the electrode separation the 

lo,,,or t he breakdown potential expected if this r.:e chanisn were oper1:l.t : .ve . 

Thp. fact that ut high pod , for any pod the oreakdmm pot ntio.ls (l.l'e 

lower in in tube 1 and that of SDith than the potentinls found "nth 

tubes 3 :md If , suggests that r eflection may be operat: I/e and may be 

1:10re inportant than lateral electron diffusion . 

In tubes 3 and 4 the Pas chen cur~s suggest thd the sinilo.rity 

principle is obeyed except for the range of pod between 0 . 3 and 1.6 

torr . cD. How'ever, since the rate of change of V with 1) d is zero at 
S "'0 

the miniuUlll any influence of electrode geol'!l~try on the brcal~down 

potent ia.l due to the loss of active particles should be nost noticeable 

at this v~~ue . The next section deals in oor e detail vath this r e giun 

of the Paschcn curve . 

6.2 !pe niniwum breakdmm potential 

HcCallUf.l and Klatzm-r pointed out. the ir.'lporto.nce of to.k.ing into 

consideration the r atio D: d in tlOnat onic gases when cO!:1::.:'aring breakdown 
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pr)"i)entials obtained w'ith different appsrat,.ls . S ith, using the results 

of one t ube with an electrode diamete r of 2.5 cms . and another ,.,ith 

dianetc)" 6 cos . showed t hat the r:lini!l~ breakdown potential cou] d be 

relatec.l Cly the equation 

Tc.us, as d t ends to zero, Vs t ends to 282 volts. '1'11e "[)"resent r esult s 

do n0t fi t thi s expression ~o the neurest volt, but are oft n 2 or 3 

vol ts Gut . The pr esent equat ion relating Vs to D: :1 is 

..... t ( 1 ) = 285 + 29 (-Dd ) + 0.5 volts 
V s VO "1.; 9 

'rhe L'eason for this discrepancy be l'ot1es ap;'3.r emt \-Then th.e oinimum 

breakdown potent i o.l, Vs, is plot ted as a function of d o.1.on . S '~ch f.\ 

plot is shmm i n fig . (45). 

The r esult s obt ' .':'ncd with tub:;s 1 and 4, and thORO of Sni th lTith 

0. tube of the sane electrode dianc;)ter, S cns ., shm., tha.t a linea.r 

rele.tionship exists bet l-Teen the ninimUI!l bl· akdolm Ilotcntie.l and 

cl ectl'ode separ ation given by 

Vs = 285 + 5d + 0.5 .The r e d is in r.lillim treE:. 

Tl:c r esults obtained by Smith with a tube containing an anode of 

smal ler diameter, 2 . 5 cos ., and a cathode of about 6 cus . iOLletcr shol'1 

a steeper relationship , which, ,.,hen extrapolated, intercepts the \'oltage 

axis at about 282 volts. However. the minir.lUm breakdown voltages at the 

snallest e lectrode separations indicate that in fact this curve io 

bending to give an intercept of 285, in agreement with the results 
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obtained froo the previously mentioned tubes . 

The results froo the third experirlente,l tube asa.in indicate a 

linear re1a.tionship between Vs and d, with a slope of 5d as found with 

the other tubes of the same electrode diameter . However, the intercept 

is n.0 longer at 285 volts but a t 287. For a given electrode separation 

the T'. inioum breakdown pot.ential is 2 volts higher than l)reviously 

obtained ",ith electrodes of the sane di8I!leter. The vacuuo end mercury 

puri fying techniques 1.,erc similar to those us ed in the manufacture of 

the other tubes and the ultimate pressure, no higher than 10- 7 mm.Hg . 

1U1S the s e.oe . n'" e higher voltages could not be due to any difference 

in these techniques . It wes noticed, hO'Yrever, that when the constri c-

tion C was 1.Jeing closed when makino tube 3, gas was evolved in 

sufficient quantities to raise the pressure by an order of rlagnit1.'.cte . 

Although the constriction was not finally scaled unti7. t his gas had been 

pumped away by the Baynrd-Alpert gauge and t he prcss'"J.r u had -returned t o 

its initial lower value , quantities of gas may have been ndsorbed on 

the ,.,alls of the tube . It seems possible tha.t some of this gas , a 

fair proportion of which would be oxygen, would desorb under experimental 

conditions and rest on the cathode . Soith ~as shown ~hat an air impurity 

-4 . . 
"fith a partial r>ressure of 10 mm . Rg . was sufflclcnt to r aise the break-

down potential by 40 volts. It is well known that thc adsor ption of 

gas on to 11 cathode can oarkedly cho.nge t he breakdown cho.racteristics . 

A thin l~er of oxygen 'vTOuld effectively raise thc work f unction and 

expl ain the increase in the breakdown potent ials . To produce a cha.nge 

in breakdown potential of tuo volts t the change in 'vTork f unction "ould 
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not necessarily have to l)e very great . Gozna. (4.3) has sho;m that with 

cop?er surfaces an i ncrease in work function of 1/ 50 volt is sufficient 

to re.i ae the breakdown potenticl by 1 volt . Any misgiYings that this 

impurity content, though s~all, would effect the gaseous ionisation 

process ~le re dispelled when the values of al p obtnined w'ith this t..ube 

we r e reproduced with the fourth tube, where 'the ri se in !,"lr e s sure durine 

the oealing of the constriction Cs was not oeserved, c-..nd an ultirntl.te 

-8 
e siu·vc 2. p~f;)s s'"lre of not gr euter then 10 torr was attc.in n.. 

Vlhen V . is r ldted as c. functi on of the r at io d : ]) two distinct 
Slll~n 

curVP.S emerge, fig. (1' ':\ ). Curve (1) r epr esents the r esult. :=l taken ,.,it.h 

tube s 'with electrode dicmeter of 6 cm. and curve ( 2 ) thos e taken by 

Smith with un onode diI!laeter of 2.5 CI!ls . Ideally, if Vs i s I:l. function 

uf d : D e.lone thrse two curves should be coir.cident. l~OYTever ~ the 

geometry us ed by Smith in this tube '\Vas poor and 101Ould not r esult ~n 

uniform field conditions . Direct comparison is therefore r.d justifie d 

in this cc.se . 

'r'he values of the I1ini~um breakdown potentialR obt a.ined with t he 

seeond experi mental tube cannot be compared dir2ctly 1Tith those 

obt ained by keeping the electrode separa.ti n constant and varying the 

pressure since an insufficient number of curves was obtained at con­

stant P and variable cl for curves at constant d and variable p to be 

extracted . However , the ~iniI!lum values of 286, 288 and 292 volt s f all 

y,Tj.thin the range obtained with other tubes . lJ.'he value of 295 volts 

as obtained by Grigorovici also flllls within this range . The close 

agreement between the results is remarkable on consideration of the 
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wide divergences that ha.ve been demonstrated to occur wy Llcwollyn-

.;Tones and Galloway and by Grigorovici when o.lien metals are used us 

cathodes. Such agreement indicates that by using a pr operly prepar ed 

mercury :pool cathodc Go surface of constant work function can be 

obtained. This condition is only likely to hold fOr low current 

discharges . llhen arc discharges are involved the possible evo.poration 

of anode matcrio.l and conseq'.:ent contamination of the cathode will 

alter the 0ischarge cho.rn.cteristics. 

6.3 FiEst Ionisation coefficients 

-12 -8 Using currents betiTcen 10 and 10 amps, values of alp as a 

function of E/Po were obtained with all experimental tubes . In the 

case of the fir~t tube the method consisted of plotting lOBel as a 

function of volts.ge for different values of E/ po by varying the pressure 

and keeping the electrode separation constant. Some of the curves are 

shown in fig. (41). In this way values of n=a/E "Tere obtaine: d for a 

"' 1 -1 
range of E/P

o 
from 100 to 300 volts en. I!lIil .Hg . • Pursuit of oeasure-

I!lent beyond this ranBe 1ms prevented by a break occurring inside the 

tube in the electrical lead to the electro-stati~ guard-ring . A few 

measurenents ,vere taken with the electra-static guard-ring floating, in 

the hope that some indication might be given as to the actual importance 

of the guarcl .• ring in the discharge. It was found that the values of 

a l p for a given E/po were about 6% higher with the guard-ring floating. 

At the electrode sepa:-ation used the ratio of D:c. was about 2 , 't-,hich 

meant that some field distortion was probably present, e.pparcmtly 

increasing the values of a/po 

?1~ -
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ValueD of a/p as a function of E/po w·..!re obtair..ed with tubes 2, 

3 and 4 by plotting curves of logei as a function of electrode separa-

tion, d, for a given Bfpo . A typical curve is shown in fig . (40). 

Although the second tube allowed measurements to be taken over 

e. greate1" range of E/po than uas poss i ble with the first tube the ro.nge 

was limited to a maximum of 800 volts cm . -1 I!ll!i . He; . -1 by the small e lec-

trode diameter and large minimum electrode separation ,.,hich restricted 

the possible range of electrode separation . These facts also limiteQ 

-I;he range of pressure, very low pressure being required at high E/"o • - 0 

The use of larger electrodes in the later tubes enabled measurements 

to be extended over n much greater range . 

'l'he curves of a/po as a function of E/po obtained with the s econd 9 

third and fourth tube s together with those of Badareu and Bratescu and 

SIDi th are shown in fi g . (49). The re:3ults obta.ined with the first tuba 

were few and er : omitted from the graph for the sa~e of clarity . These 

results are listed in Appendix (1) . It is convenient to discuss the 

present results in relation to those of Smith first . 

It can be seen that the present results from ull tubes arc 

practically coincident with those of Smith up to a value fer Efpo of 

_1 -1 
about 480 volts cm . mm . Hg . , hhe value of the Stoletow constant . 

Above this point the v::llues obtained with the second experimental tube 

lie w-ell belmr those of Smith and approach those obtained by Badareu 

and Bratescu. rfuc results obtained with the t~lird experimental tube 
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are coincident wi \..11 t,lloOE: 01· Smith up to about en E/po of 1000 

-1 -1 . / volts cm. nm . Hg . • Above th~s value of E Po the tl/O sets of r esults 

. tl 1 11' ff / 4 - 1 - 1 diverge~ the values of Sml 1 eve lng 0 at an E Po of 2 cm. !!l!Il .Hg . 

end thos e obtained ,·rith the third experimental tube appearing to level 

-1 -1 a.t about 27 cm. mm . lIg . • The levelling is to be expected from the 

sha::?e of the probability of ionisation curve, which shows a maximum 

of ,about 100 volts electron energy. That the levelling '"ns observed 

in Smith 9 s case "TaS attributed to the application of the Davies~Milne 

analysis for the correct:i.0n of seconda.ry effects . This a.'1alysis ha.s 

been fou-"l.d to be effective in hydrogen (4'~ ) where the values of the 

second ionisation coefficient are high, of the order of 10-2• The 

values for this coefficient in mercury vapour are small , of the order 

of 10 .. 4 • It would therefore be eXTlected that the corr2ction factor 

would be small. Hhen the Davies-Hilne n.nalysis was applied to the 

present results it was found tha.t the correction fac'\:or '\Tas itegligible. 

-1 -1 
At an E/ po of 2,400 volts cm. mm.Hg. correction wa.s less than 

-1 -1 
0.1 cm. mm. Hg . The ana.lysis v70uld be expected 'to be most effe"ti ve 

at 1mf values of E/po iThere w/ ':l reaches ita. mrud:num value . The correc­

tion is found to be ncg1iglbe here also. It seems· UIl:i.ikcly, therefol'~ I 

that the analysis of lOl3l;!i versus d curves can account for the levellinso 

the experimental error , about 5%, proba.bly being greater than the 

correction factor . 

The fact that the curves are coincident at lm~ E/ po o .. nd diverge 

only at high E/Po offers a clue as to a possible explanation of th~ 
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divergence . At va.lues of E/po greater than that which makes rr a/E a 

mOJci~um the electrons no longer reach equ{libriwn with the applied 

fi eld. The electrons gain more energy from the field than can be 

dissipated in collisions and the excess enerGY is ult,imat ely delivered 

to the ~~ode. Thus the concept of a mean electron energy no longer 

a.pp:i.5,es because the average electron ener gy ond consequently the 

e l ec'i;]'on dr~,::t velocity will vary with distance from t he cathode . 

Thus bcca'-.:"..e there is uncertainty in the meaning of E/ po' alp has 

1.i tt-le meaning at these r.::.gh values of E/ po . Under conditions of 

f airly low E and high ~ , however, electrons can r ench t .r.mina.l energy 

after travelling a distance , do, which is generally taken to be about 

1 '4 .. ) 
- t .) • (l 

At hig.'1 values of E/po ~ do cannot bE: att ained and the use of 

low pr'esrmres ca'1 only agsravate the situation . At th",se high ve.lucs 

of E/po Smith used pressures ~ 0.1 ~ 0 . 2 torr. The el ectron mean free 

path at this pr~ssure is 0.05 cm. as calculat ed. from kineti~ theory . 

Assuming Smith's relation 

the probability of ionisation ~s calculat ed as 0. 2, i . c . onc in every 

fi ve m.f . p . ' s results in ionisation, or an ionisatl.un occurs on a:'II t: J.· ..... ge 

~very 2.5 mm., a distance equival ent to about half the elvctrodc 

seFeration. At pressures of 0.5 t orr, those used in the pr esent 

invest i gat i on, the ionisation distance corresponds to about one-

twent i eth of the eectrodc separation. Thus although equilibrium at 

high E/ po (values of E/po greater than that given by the Stol tow 
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constant} is not attained in either case, the vulues determined by 

Smith represent a greater diversion from the ideal equilibrium condition 

then tl:P. present results . An explrulation of the higher values of alp 

as determined with tube 3 in terms of the Penning effect is eliminated 

since the results obtained at these high values of E/p o with tube 4, 

in which the residual air pressure at no time during pr ocessing r ose 

above 10- 8t orr, show excellent agreement . This effect would, in any 

case , be e~~ected to be most noticeable at low E/po wher e the densit y 

of metastables is likely ~o be greatest . Furtheroore , measur~!~nt s 

with the third tube using low pressur~u6ed by Smith r _sulted in valu s 

of a/ po showing good agreement with those of Smith. For exampl e , at on 

-1 ~l I E/po of 2000 volts cm . mm.Hg . the value of a Po obteined by Smith is 

-1 - 1 cm. mm .Hg . • At the SmIle value of F/po and \rit~ f.L presr:;'\".l'e of 

-1 - 1 
0 . 2 torr the value obtained with the third tube is 23 . 2 cm. IDI!l .Hg . 

8 -1-1 
The value of all-o ot an E/ po of 1 00 volts cm. nun .Hg . . is 6iven by 

_ 1 -1 . . 
Smith as 23 . 2 cm. mm . Hg . Detcrm1na~10ns carried out with the third 

experimental tube at this value of E/Po for a r ange of pressures showed 

an increase in a / po with incre~sing pressure, ae shown in the t able 

below. 
Po torr a/ po 

0 . 20 23 . 5 
0 . 26 21+ . 2 
0 . 31 25 .1 
0 . 50 25 . 6 

This trend is to be expected under non-equilibrium conditions, wher e an 

" 
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incree.se in pressure 'Ivill result in Greater dissipation of electron 

energy in the gas and consequently greater ioni sation. If t he use of 

higher pressure with the third and fourth tubes h a.d been possibl e it is 

probable that even higher values of Cl/PO would have been obtained.) It 

is l j,kely that for all pra.ctical purposes a maximum value of Cl / PO for a 

gi ven E/ po will be attained "Then the closest possible approach to 

equilibrium is reached. The determination of thi s value would 

ne cessitat. e the use of electrodes gr eater in diameter than those used 

in the present investiga.tioni. 

The divergence ('If the curve o./po :: f (E/ po ) as determined with the 

second experimental tube can be explained in a similar manner to the 

above. The comparatively small diameter of the electrodes together 

with the l e.r ge ninimur.:l electrode separ ation ne cessitat ed the use of loioT 

pressures (~ 0.15 torr) at values of E/po from 600 to 800 volts 

-1 -1 cm. DIn .Rg . 

The shape of the curve obt ained ly Badareu and Bratescu, howeve~ t 

cannot be expleined on this basis since the pressures used rang d from 

1.26 torr to 3.18 torr and it :.:3 therefore likel~' that 0. closer 

approximation to equilibriUI!l conditions at hi~h Eh . W.lB obtained ~~r 

them than lms obt a ined either by Scith or by the present invest i gator . 

A possible explana.tion forthe discrepancy was suggested by Smith when 

the curves of n=E/o. as a function of E/po are considered. Fig . ( ;0) 

showS n .plotted as a function of E/po' 

The minimum value of n given by the Stoleto"\oJ' constant r epr esents 

the oiniI!lUJ:l anount of elect= ~rsy needed to produce an ion pair in 



the gos concerned. The values of n at the minimun are 43.8 eV as 

detprmined by Badareu and Bratescu and 44.5 eV as determined by Smith 

flnd the present author . The a.greenent is well within experimental error. 

since the coefficient n is independent of pressure it would be expected , 

providing the current neasurenents bed been determined a.ccurately, that 

the r.ri.nimuo values of n would be the same. HOlTever, if some consistent 

error in the pressure measurements occurred the curves would be expected 

to ahmT sane displllcenent along the E/po axis . It can be seen froJ:l 

fig . (5 0) that the maxiLl1..rll difference for any two values of E/po betvT en 

t he present curves with tha.t of Smith and that of Bo.dareu and Bra.tescu, 

for a. given value of El p, is a.bout 20% which represent s a difference of 

20% in pressure neusurements , corresponding to a difference in teoper~_ 

o ture of 3 c. 
Such a large error in temperature measurement is not likely to 

have occurred in any of the experinents . The nore probable cause is an 

actual difference in temperature resulting from temperature gradients. 

A constant check for temperature gradients was naintained in the present 

ca.se and in the case of Snith. The maximum difference in temperature 

tha.t could be detected across the extrenities of t :le furnace (tU 1 op.trc ) 

o 
in both the a.bove cases was 1 C. There is no mention in th ir pa.per 

that sicila.r precautions were taken by Badareu and Bratescu. The 

position of the electric elements in the furnace is not described but 

it seems most likely tha.t these were mounted on the inner faces of the 

compartment, in which case temperature gradients arc almost certain to 

have been present . The probability of this ''I'ould be increa.sed by the 
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practise of nsintaining a naxinun difference of 700 C between the two 

conpartnents (see fig . (24)) . The heat losses through the ",alls would 

then be unequal. It therefore seens likely that temperature gradient ~' 

across the tube of Badareu and Bratescu were present on a larger scale 

than those occtU'l'iw i n the present deteminations and those of 5Ildth. 

Errors due to SUC!l gradients , together with r. probable experiIilenta.l 

error of 5% would explain the relative positions of the curves . 

The range of validity of the Townsend equation l'clatiu~ a / po 

to E/ po Has investigated by plotting 10geCl/ po as a. function of ( E /Po )-~ 

The curve is shmm in fig . (51). The line departs froo linearity at 

- 1 - 1 
an E/ po of about 250 volts co . tl!l . Hg . • '.rhe value of the constant, 

r f_presenting the saturation value of alp, obtained froo the int<:lI'­A, 
-1 -1 

cept on the lOgr;a/p ax~s i s 29 .1, about 2 co . nn . Hg . higher thun 

that found in practice . The value is in good agreenent wi th t.hat 

quote.d by SI:lith uf 30 and in reasonable aereeoent vith that ()f Badar u 

and Bratescu, "Tliich ~ms 26 .1 . The them etical value, given by 

A = L is 36 .5. The low value of A is in accordance with the general 
>'P 

tl'cnd for the experimental val,-~s to be less than the theoretica l onef' . 

The value of the constant , B, is 500 in the present. I.! ddt.. and ~n tue c:!qe 

of Smith and 411 in that of Badareu and Bratescu . The value of 

B = v· . A where V· is the ion~sation potential, as predicted by the 
~ ~ 

theory is about 370 . The high values of B compared to the theoretical 

value is surprising in that all values of this constant determined 

experimentally are in general lower than the theoretical value. 

The equation relating a/p to E/ po for mercury vapour can 
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therefore be written as 

alp = 29.1 
500 

exp o - E/p 

8 -1-1 
for the range 250 to 1 00 volts cm. mm .Hg. As explained in Chapter 2 

Badareu and Bratescu attempted to determine the m~an el ectron energy 

in volts of the electron avalanche for certain values of E/ po' by 

comparing a/po with the ionisation efficiency. This process was 

:'epeated by Smith, whu ob La) ned the relation ~ = (B/po) ~ • However 0 

this r elat ion was obtained by a process of curve fitting such that 

maximum agreement was obtaine: between the two curves. This occurred 

when values of a l p a~ high E/po were aligneQ with the ionisat ion 

effiC'iency at high electron energy. The agreement at low E/ po wa~ 

{r ' :. 2~l )\" POOl' . J,G ·' ;7 
However, for the reasons given in Chapter 2 and for 

those given in the discussion above in which the pl'esent and Smith t s 

values of a/po e~e compared, the concept of a. mean electron energy, 

or E/p , has little meaning at values a~ove that given by the Stoletow 
o 

point . Comparison of a/po with the ionisation efficiencies should 

therefore be confined to values taken at values of E/po below the 

StoletovT point. If this is done the relations bct"mcn mC'!an (> 1 ect.ron 

energy , E, and E/po is found to be linear wld is given by 

where k is a dimensional constant Qf the order of unity. 

6 4 The second To,msend ionisation coefficient 
• 

, . / (ad ) Using the breakdown crlterlon w a e -1 = 1, values of the 

reneralir:ied secondary coefficient w la were obtained from Puschen curves 
Q 
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and ',slues of the primary ionisation coefficient. ThE) method of 

calculation is not very accurate, since a small error in ad can produce 

a large error in the value of w/a because of the exponential factor. 

The method nevertheless remains useful for showing the important trends . 

The resultd obtained from tube 1 are sho,m in fig . (5~) and 

thoee from tubes 3 and 4 in fi g. (53). The curves in fig . (52 ), 

showing values of w/a over a range of E/ po from 100 t o 800 volts 

cm.- 1mm•Hg . -1 'lere obtained from the Paschen curves for the two 

] argest electrode separations taken 'lith tube 1, together with values 

of alp obtained with tllbe 2. Values of w/ a over a range of E/po 

-1 -1 .. 
from 100 to 1500 volts cm. mm.Hg. .were obt~ned wlth tubes 3 and 

4 frJm the Peschen curves and alp measurements taken with each tube. 

The displa~ement of the curves in fig. (5::1) along the ")/ a oxis for 

different electrodes separations is n r eflection ~f the deviat ion 

from po.schen's 190'1 obtained with tube 1. A similo.r displacement 

of w/a for different electrode separations wa.s observed by Smith, whose 

Peschen curves showed the same general features as those obtained with 

tube 1. The displacement obse't ved uith the r esults calcula.ted from the 

po.schen curves obtained with the fourth experiment ,~ .L 'tube is con1.lrJ r' 

to the region of E/po around that giving the minimum of the Paschen 

curve. Reasons for the various displo.cements of the Pnschen curves 

have been offered in the section dealing with breakdown potentia.ls . 

The features of both sets of curves bear a close r esemblance to 

those obt ained by Smith, both in order of magnitude and general sha.pe . 

The most important of these features is the a.ppearance of la.rge peaks 
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in the region of an E/po of 200 volts cm.-~.Hg.-l. Using an iron 

cat~ode with a work function of 4.5 eV, similar to a mercury cathode of 

work function of about 4.5 eV, Badareu and Bratescu found a gen rol 

increase in w/ a dmm to an E/po of about 150 volts cm. -lnun•Ug • -1 t but 

were una~le to draw the curve for values of E/ po belo~ this value . 

Since at lovT E/p the ratio of exciting to ionising collisions is 
o 

lar'~ : the increase in w/a at low E/po is most likely to be the r esult 

of the contribution of t he increased numbers of photons and metastable 

ato~s produced. The stet-es of greatest importance "rill be the four P 

• 
states of the mercury ~tam . Badareu and Bratescu and Smith conside r ed 

that the two resonance levels ~ 2 3p 1 and 21p 1 states'¥crc probably the 

mos-, active . 

If it is assumed tha.t the mean electron energy is Given by the 

f'o rmul a 

then the peaks in the secondary coefficient curves occur at an energy 

of about 11 volts. This is in ,approximate agreetlent uith the enc:t:'BY 

found by Penney (1) for which the probability of excitation for the 

four p states in nercury are a IilaxiI!lum. The exci~'.ation potentials are 

given in the table below: 

2 3p Met ast able 4.66 volts 
0 

2 3p Resonance 4.86 volts 
1 

2 3p 
2 

Met astable 5.43 volts 

21p Resonance 6.67 volts 
1 

- lc4 -



NUMbER ~, OF ATGM S IN ~r\CH O~ 

T~E P STATES OF MERCURY PER ION F>AIR. 
NO. 

8 

6t----

4 

2~--

600 800 

-I 
E/~ VOLTS (.,..,:' ~1W\..Hj 

fig. 54. 



Because of its small probab ility of excitation and because of its low 

energy conpared to the work function of the mercury surface, the 3p 
o 

metasteble level is not likely to contribute very much to the secondary 

coefficient. The most efficient state in this respect is likely to be 

first of all the lp 1 resonance state because of its hiGh energy and 

high probability of excitation. It should also be of increasing 

relati ve inportance D,t high values of E/po. The 3p 2 llletastable state 

and the 3Pl resonance state are likely to be the next most efficient 

source 0 '" secondary elect;:'ons. 

As explained in Chapte~ 2 the numbers of excited atoms produced 

per ion pair can be calculated froD the curve of n =E/ Cl as a function 

of E/p providi~g that E/po is known as a function of electron energy 
o 

and the ex~itati~n functions for the various states ar~ available . 

Using the present valUes, of n as a fllilction of E/po and aseuming that 

the mean el ectrc.n energy in volts is given by 

penney's curves of the probability of excitation to each of the four 

p states have been used to calculate the relative 4"Hllbers of atom!!' ;'1. 

each state per ~on pair for values of E/po between 75 and 1000 volts 

-1 -1 cm. mm .Hg. The curves are sh01m i n fig. (5 4). 

The most striking feature of the curves is the dominance of 

atoms in the Ipl resonance level. Atoms in the 3P2 and 3Pl levels 

become important below an E/po of 250 volts cn.-1mm.Hg.-1 Atoms in the 

3p 0 level a.re fe'l'1 in nUl'aber and since the energy difference ( eV-2~ ) is 
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is about 0.16 (.There Q is the work function of the cAthode) unl I;S they 

are extreoely efficient in liberating electrons , they are not likely to 

be ioportont to the secondary process . An interesting featur is 'the 

sharp rise in the n~ber of atons in the 3P2 metastable l evel, and the 

3Pl reso~ance level and the decline of atoms in th~ 3P2 resonance lev 1 

-1 -1 
at on E/po of about 150 volts cn . ~l . Hg . • It seeus reasonable to 

correlate this f eature of an increase in total nombcr of excited states 

at low values of E/Po with the Daximuo observed in the plots of w/a 0.8 

a fUnction of E/Po ' It :.6 i mportant to note that the number of atoms 

in the netaste.ble 3p 2 1.evel increases above that for any ether state 

at low E/po ' The irlportance of this state vill be discussed further in 

the 3ection on foroative tine l ags . 

The curv~s in fig . (54 ) indicate that secondary effects due t o 

t E/ f b 6 -1-1 
metcstables should cease a. an Po 0 a out 00 volts cm . mo .Hg . 

A ninirn.lI:l is obHerved to occur in the curves of w/a. as a fu.'1~tion of 

E/ Po at an 
-1 -1 

E/po of a.bout 700 volts cm. I!lD .Hg . in the curves 

obtained with the 3rd and 4th tubes . The value of w/a at this pojnt i s 

nbout 12 x 10-4 • Thereafter tne curve shows a gentle rise until at an 

- 1 -1 
E/Po of 1500 volts cm . rln . Hg . , w/a re c.ches e. VD .1lC of about 15 x ll ,-4. 

The minimuo ve.1ue of w/a obtained .Tith the first tube and that obtained 

by Smith are about 12 x 10-4 but this occurs at an E/ po of about 500 

volts co . -lnn•Hg • -1 in the first ca.se , and at about 800 volts co. -l~. 

Hg .-1 in Soith ' S Case . Thereafter the curves rise more steeply thnn l.S 

observed with the results fr~ the third and fourth tUbes . 

The rise in w/a at ~alues of E/po greater than 800 VOlts 
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cm.-1mm.Hg.- 1 was attributed by Smith to the action of the HS '++ ion at 

the cathode by a virtue of its potential energy . The ionisation 

potential for this ion is 30 eV and assuming that E = (E/Po ) ~ this ion 

would be expected to appear at values of E/po above 900 volts cm.-1mm . 
, ' 

-1 Hg . However, the work of Kovar (41) on the mobilities of merclU7 

ions in a Townsend discharge failed to r eveal the presence of the 

Hg.++ ion even up to values of E/ po of 1500 volts cm .-Imm .Hg .- I • The 

art + H + , 
only other ion detected ap from Hg . was g2 Wh1Ch occurred at low 

E/ po ' It seeos unlikely, therefore, that Hg .++ will be i mportant in 

the range of E/po cons: dered. 

It should be reoeobered that the values of w/a are calculA.t i.:l'I, 

by il,sertins th~ appropriate coefficients in the expression 

w/a is therE.,lore sensiti'le to the valt;.c of ad which is 

, b Ci d t::1ven Y ~ . ") • 
~~ n 

LO'tv values of a/Po therefore tend to nake 'JJ / a l arger . 

The large increa3e in w/a at high E/po as founc by Soith can be 

exple..ined when it is remember ed that th{; magnitude of u/Po at high 

E/P is too low because of the departure from equilibrium conditions . 
D 

The present values of a /po et high E/ po r epresent l ess of 0. depnrture 

from equilibrium conditions and the values of w/a E", high E/ po p rob:lb 1: , 

approxioate mere closely to the true values of w/a which should be 

lower than those obtc.ined. The early rise in w/a ns detercined frOI!l 

the Peschen curves froo the first tube can also be explained in this 

oanner since the values of a/po used were obtained with the second tube . 

Through the necessary use of low pressures these values of a/po have 

been shOwn to be too low at high E/po · 
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It therefore seems highly probable that the slope of the cur ve of w/ a 

as a function of E/po at high E/po should be zero. This implies that 

the Ip, resonance radiation is of negligible importance and t ha.t . 
seconda.~ emission is entirely due to the singly char ged ion Hg+o a.ctina 

by virtue of its potential energy . Assuming the va.lue of w/ a at an E/ p o 

of 800 to represent the contribution of Hg+ to w/ a the r el ative percent 

contributions of the four P sta.tes and the singly charged ion are 

presented i n the following table 

Ta.ble 6 .1 

E/Po 150 175 200 250 3(<- 350 

Yp % 40 66 67 63 56 48 

y. % 60 34 33 37 44 52 
:Lon 

6. 5 Formative Time La~s -

400 450 500 550 600 650 

40 33 25 14 10 0 

60 67 75 86 90 100 

Pr".:ll i.minary measurements 'fere attempted with the second xp ri-

mental tube . Tr~sc were unsatisfactory because of the di fficulty of 

maintaining the el ectrode separation at a given va.lue . The r esults 

merely indicated breakdown times of the order of milliseconds . A more 

t'1orough study lTas carried out with the a.id of tube four over a range 

-1 -1 of E/Po from 200 to 500 volts cm. IllI!l.Hg . • The e"Cr ,..iJl1cnt"~. Cl''''ves 

are given in figs . 55a to 55d. 

A few conclusions can be drawn directly from the experimental 

curves . In the first pIece , the times obta.ined (of the order of milli-

seconds ) suggest that a 5lm-l process of a diffusive nature is activ • 

If positive ions were active alone , times of the order of 10-4 seconds 

would be expected . An undelayed photon proces s would give times of th 
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the order of 10- 7 to 10- 6 seconds . Furthermore, a plot of the formative 

time lag against E/ po for a given percent overvoltagc indicates tho. at 

-1 -1 values of E/po above 170 volts cn. mm.Hg. the brea.kdmm process is 

becoming progressively f aster . Fig . (56 ) shows such a curv for 0.25% 

ove;rvoltuge . The time l egs decrease from 50 milliseconds at an E/p 
( 

- ' -I . . of 170 volts CD . -mm.Hg . to twelve m~ll~secunds at an E/po of 400 volts 

cc.-1mm . Hg.-1• The speeding up of the breakdown process i s most likely 

due to the decrease in population density of slow components, as indi, 

cated in fig . (54 ) with the corresponding increase in the i mportance of 

positive ions . The most plau~~ble process~s are then (a ) the action of 

delayed r esonance radiation , (b ) collision ~nduced radiation from I:l~~a­

stabJ ,;)s t ~Cl. (c) Jlihe de Sill'''tcti on .. of metastables at the cathode , all of 

which may t .ake place "Ili th the additional f.ction of posj ti ve ions . 

The; : :prisoru:J.cnt of resonance r~diation may r esult in considerable 

delay in the arr.L \Till of photons at the cathode from t~leir pla~e of pro­

duction near the anode . The magnitude of the delay is det 'rmined by th 

number of successive emissions and absorptions per unit time and on the 

life-time of the resonance statc) . The greater the nUI!lber of a.bsorptions 

and the longer the photon is trapped in the atom th·~ g:-eUI" E"r w 11 e t!:e 

delay . Reference to fig . (54 ) will show that the photon of most impor­

tanCe:! will be that corresponding to the transition IPl to ISO' "Irith 0. 

wave-length of l8490 A, because of its large numbers and high n rgy . 

However , \folfsohn (46 ) has determined the life-time of this state to b 

1.3 x 10- 9 sec . , so that unless very large absorption t akes pl ace , the 

delay i s not likely to be considerable . Unfortunately, a.bsorption 
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coet'ficients for this particular state do not appear to be avuilo.hlc. 

Absorption coefficients in general appear to range fro~ 1 cm.- 1 to anout 

2000 cm.- 1 at at~ospherie pressure. Ass~ing an upper limit of 

2000 en. -1 for the al::errpt i on coefficient, the diffusion coefficient as 

cclculateCl from the formula given by Da.vidson is of the ord r of 

7 2 -1" -6 5 x 10 co. sec . , y~elding t~me laas of about 10 6 conds, at an 

-1 -1 
E/po of 250 volts cm. lnO. Hg . • Thus the tioes cale~~ted differ litt1 

from those Axpeeted if an undc1o.yed photon process were f'l.cting and ar~ 

anout throe ordero of ~agr,::'t:.lde faster than the observed ti~(;:) lags . If 

the 3p 1 to IS 0 transi ti"'n is considered the calcCJ ,~-;tod time le. s a.r 

still an order of magni'~ude too fast . 

The next ::?rocess tu be considered is that of collision induced 

radiation p::'oducctl. by the dost::uction of oetastab1es. ~o metustablc 

state involv~u is ~ost likely to be th~ 3P
2 

state because of th rela­

tively large nuntars produced per ion pair at low E/po ' At tr.c pressures 

used (rvl torr) the mean free path of 0. mercury meto.stable atotl is a out 

5 x 10-3 cm. For an 'electrode spearation of 1 cm., an atom trav~ll~ng 

n0~"Eally from anode to cathode ~.ril1 on average ma.:ce 2 x 104 collisions 

with normal gas atona l Couillette (47) has conc1ud( ~ that thore is q 

dissipative process in which one collision in 1300 with llonnal mercury 

atoms results in the oercury metastable losing its excitation energy . 

Under the present experinentnl conditions it therefore scens that the 

I!letastable mercury atom '-Till ha.ve mple opportunity of losing its exci­

tation energy in this manner , resulting in complete volume destruction . 

The p06sibili ty of metastable action a.t the ca.thode is there for minim 1 
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at these pressures. This conclusion was t ested by comparing the experi-

mental tine la~s with others c~puted from Davidson's theory as given 

in Chaptcr 2. The evaluation of A and the calculation of the fOrIDativ 

time lag are laborious and a computer was used to facilitate the pr ocess. 

The method of calculation is given in Appendix (3). 

The first case assuned was that of the conbined action of tlct a-

stables and positive ions at the cathode . Since a one hundred per cent 

positive ion action was not expected, the calculE~tions wer e perforI!lcd 

for 0%, 20%, 50% and 80% pooitivc ion contribution to w/a. All th cam-

/ 
-1-1 binations proved too slow. kt an E Po of 250 volts cm. mm.Hg . , net~ 

stable action alone yielded time-lags approximately 200 times too SJ'eat. 

wher_as an assunpt ion of 80% positive ion action yielded time l ags 

approxiontely 3 tines too gr~~t. 

Calc · ~ations were now perforned assucing the ~ ~nbination of the 

volume destruct:on of the tlctastables and positive ion actio~ at the 

cathode. The calculations were performed for four differ ent over­

voltagcs and for three different assumed life-times of the nct astable 

• - 3 - '3 -If 
~tate, ~Z. 5 x 10 sec., 10 sec ., and 5 x 10 sec . D~a on th 

l~fe-tine of the nercury netustable state do not av~ear ~o C avuilabl e 

and it was hoped. that the above three values would COVElr the pos; ,:'1>le 

range . Calculations were performed for three values of E/po' viz. 

-1 -1 / 250, 358 and 391 volts en . x:un .Hg. • At an E Po of 250, the t ime l ae; 

was cclculated for 0%, 20%, 50% and 80% positive ion action f or the 

three assumed life-times. In all cases where Yi' the positive i on 

contribution, 'TUS assumed zero , the calculated time l a s wer e too gr eat. 
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-3 For a. lif'e tine of' 5 ')( ~o sec •• the time lags wer two orders of 

magnitude too great . For a life-time of 0. millisecond the time lags 

were an order of oagnitude too great , Md for a life-time of 5 x 10-
11 

sec ., they were o.pproxinately twice the experimental values . Fairly 

close agreement with the experinental values was obtained wh n it was 

assuoed that the life ti~e was one millisecond and y equal to 80% of 

w/ a, and ,,,hen the life-tine was 5 x 10- 4 sec. and y was 50% of w/ a. 

Both sets of tine lags were slightly shorter th£ll. the experimental on s . 

When the life-time was aSSUIi.!~ft to be 5 x 10- 4 sec ., and y equal to BO% 

of w/ a, the calculated tines w\·~re approximt:.tely half thos of the 

experioental ones. 'lhese facts are aumr.larided 'n the fo ' lOl-Ti ~ t~h~ ~ . 

Table 6.2 

E/Po = 250 

6V% .46 .67 .85 1.0 y'fo t[.c;c . 

t exp •m• sec. 15.0 11.0 8.0 7.0 

tca1c.m.sec. 12.0 10.0 B.o 6.5 80 10-3 

tc/i.lc. lh. sec. 12.0 9.5 7.5 6.0 50 5><-10 .. 4 

tcalc.m.sec. 6.0 5.0 I 4.0 3.0 80 5)(.10- 11 

At an B/P
o 

of 250 volts cm.-1mm.Hg.-1 a 40% positive ion contribution 

would be expected from previous considerations, Table 6.1. 

At an E/po of 358 the calculations were carried out for 20%, 40%. 

55% and 80% positive ion contribution. Very good agreemont between 

theory and experiment was obtained for a positive ion contribution of 

55% and a life-time of 5 x 10-
4 

sec. A positive ion contribution of 
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about 55% would be expected froo tabl e 6 .1. The r sults ar ounonrie d 

in the follolving table : 

Table 6 . 3 

6V% . 49 . 77 1.13 1.54 

a 4.452 4. 464 4 . 488 4 . 512 

t (n . sec ) 7 . 25 
CXIl · 

4. 96 3 . 40 2 . 40 

t (n . sec) 6 . 0 4. 97 3 . 84 3 . 0 
I"Ce.lC . 

614 . :) 731 . 6 993 . 7 1307 . 9 

y=55% l,l / a==22 x lO-
4 

po=0 .6torr d=l 4cn . E/ po=358 t=5><10-4 aec . 

-1 -1 
At an E/po of 391 volts cn . nn. Hg . similar calculations 

were carricd out for positive ion contributions of 2C% , 40% , 60% Md 

80% . Again, [';ood agreenent between theory and expe ... i:.lcnt ,me obta.ined 

1"hen the life ti~e of the netastable statE: W8.!:S 8.sBUI!lcd to b · 5 >< 10-4 

sec . fOl a positive ion contribution of 60% to w/a . A cont~~bution of 

60% is to be expected from table 6 .1. The result.s ar e presented in 

table 6 . 4 : 

Table 6.h 

I llV% . 53 .81 1.15 J. . 54 

a 5 . 279 5 . 298 5 . 320 5.345 

t (m. sec ) 
exp o 

6 . 0 4 . 28 3 . 20 2 . 40 

t 1 Cn . sec ) 5 .0 3 .72 3 . 01 2 . 38 ca c . 

" 776 . 4 986 . 5 1260 . 3 1638 . 0 

_4 6 
w/ a=20x lO Po=O . 3torr d=1 . 2cm. 
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In conclusion, agreenent as to the aoount of positiv ion con­

tribution to w/a hes been obtained between that cnlculated fron consid-

eration of the sFatial growth of ionisation in oercury va.pour. and th t 

obtained frorl the application of Davidson's analysis to the tempor 

growth of ionisat.i.on, "Then the assuoption i s oade that the life tin 0 

• _4 
the metastable state lS 5 x 10 sec. It 18 of interest to note that 

the life t~e of the netastaole state claculated fram Couillett ' s 

conclusion that the net astable is destroycd on ~wera.se after 1300 

collisions with nomal gas a.tons at the pressures used in this inv sti­

gation is of the order of 5 x 10-4 sec. It would appenr that the con­

tribution to w/a a.ttributed to the 'P' states in table 6.1 is ontirely 

due to the volU!:lc destruction of the net astable 3p 2. stat e , and that tl 

secondary process in ::tercury vapour with a rlercury pool cathode is a 

conbination of the voluoe destruction of the 3p 2 -.vastal)le atoo and 

positive ion action at the cathode, the relative per~entag a of which 

orc presented in table 6.1. 

6.6 Suwnary of conclusions and suggestions for future "Tork 

Deviations fron Po.scl:ens ] 6.:i in merCUI"'1 va.pour rave been observed 

pa.rticularly at the l1linimtltl of the curve . Since the r ate of c:ho.ng of 

breakdown pot~ntia.l V with the product pod is zero at the minimul!l voJ.ue 

of the breakdown potential, any influence of electrode geon try on V due 

to loss of a.ctive particles should be moat noticeable at this valuo. The 

results obtained of the oillinun brcokdovn potential as a. function of 

electrode separation CM be suru:w.risod in a linear r elo.tionship Si ven y 

Vo = 285 + 5d 
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This equation is valid to +0.5 v over the range consid red (0.4 to 

2.20 cm.). 

It would appear that the minimum breakdown potentiul for a 

mercury cathode in oercury vapour under uniform fi eld conditions 

(i.e. as d tends to zero) is (285 +0.1) volts for all the t'l~bes us d in 

this investigation. In order to compare res~lts f or tubes of diff rinG 

electrode diameter, D, the ratio d:D should be t aken into considerat ion. 

The equation most likely to apply in this case is 

Vm = 285 + 29(d/D) + 0.5v 

The close agreement obtained with different tubes for the minimum 

breakdown potential gives a strong indication that a prope.dy prepar d 

mercury pool cathode will provide a surface of constant worlt function 

for low curre~t discharges. 

The measurements of first ionisation coefficients ~grce with 

those ob'~ained by Smith up to a value of E/po of 1000 volts cm. -1mm. Hg .-1 

where the divergence from equilibrium conditions is not appr eciable . 

It is thought that the present results represent a closer approximation 

to ~quilibrium than those of Smith who used very low vapour pressures 

at 11igh E/Po' Comparison of a/po at low E/po with the ionisation 

efficiency curves of Bleakney yield a relation bct'feen the mean cl ctron 

energy, ~, in volts and E/po given by 

where k is a dimensional constant of the order of unity. This quation 

bas made possible the calculation of the nUI!1ber of atoms in each of th 
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'p' states for every ion pair created over a range of E/po from 175 to 

-1 -1 800 volts cm. mm.llg . • 

The curves of the generalised secondary coefficient obtaine 

from first ioniza.tion coefficients and brenltdo'\'ffi potcntia1tl sho,. the 

same trend as th~~e obt ained by Smith. Calculations of the r el at ive 

popu.la.tions of a.toms in the 'pt stat.es per ic':l pair and the pplication 

of Davidson' 5 analysis suggest that the secondary process opt.r ti vc in 

this investigation is a conbination of the action of collision induced 

radiation and positive ions, up to an E/po of 600 "Jolts cm. - 1mm . Hg . - 1 

Above this value, l4~ere calculations show no meta.sanblc atoms should 

be produced , the secondary coefficient is thought to be entirely lue 

to positive ion action at the cathode , the singly charged ion ncting 

by virtue of its potential energy . 

In vieiV of the very close agree~en" obta.inpr1 for a/po t\s a. f'ullC_ 

tion of "". / Po below an E/po corresponding to t he Stol.to" point twecm 

the four present tubes and that of Smith, no further effort i s r equir d 

to cv~~uate this coefficient in this range of B/po' The technique 

developed could be profitably ext<'mded to the determination of th<.:s 

coefficients in other metallic vapours, notably cae6i~. Howp,ver . in 

order that use can be made of the theory of Emeleus Lunt and Meek 

relating a/po to E/ po' data on electron drift velocities and 1 ctron 

energy distributions need to be obtained. !,1cCutchen ()~8) has obtained 

data on electron drift velocities up to an E/p of three volts 

cm .-1mm . Hg .-1• Such Deasuremcnts need to be extonded over n r atcr 

range of E/p. PreliLlinary investigationG into the electron nergy 
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distrilution in nercury vapour have been cade by the present author 

using a r etarding probe technique. A schenatic disgran of the appara.tus 

is shown in fig . (57). The electrodes were of nickel and had bevell d 

edges to r e duce fi eld distortion. A central region of the Mode W G 

perforated "7ith 200 holes 0.015" in diameter. A plane probe was 

situatcdmmcdiately behind the anode at !\ distance l ess thnn an electr on 

meon free path as calcUlated from kinetic theory. Thi s distancll ' r.lS 

chosen so that the energy distribution prevalent in the Townscnd g p 

would not be appreciably modi fed by collisions taki~e place in the 

region between anode and probe. The probe consisted of graphite paint d 

on :J. glass substrate. To ensure that no currents flowed bctvreen pro 

and anode along the gless supports the probe was completely a~rround d 

by a graphite euard ring pf'..inted on the same substra.te and naint ain d t 

prohe potential. The guord ring was extended tr shi.eld the tungst n 

seru. in the tube 1-Tall cOI'l..nnecting the probe to the .xternnl circuit . 

A oaxinun prc-breakdown current was caused to flow in the Townsenu gap 

and tr~ current to the probe neasured for different ne3ative biases 

applied to the probe . 

The nUI:!ber of' electrons in front of' the anode with enol'e ie:' 

between cV and e (V+dV) noroal to the anode can be represented by 

F(V)dV per unit area . The nunber passing in unit tine through an m'ea 

A will be N=F(V)dV. A.c, where c is the velocity, e iven by ( 2 ' V/D) ~ . 

The current, eN, is therefore given by 

eN = F(V)dV . e .A.( 2eV/n ) ~ 
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This current is due to electrons ~~th enefgies between eV and 

e (V+dV) and will be r educed if a ~e~ative bias ia applied t o the prob • 

If El. bias Vb is appll.ed then the current is given 'by 

i = f~ e.A. ( 2eV/O)~.F(V)dV 
Vb 

There fore 

di/dV = e.A.(2e/O ) ~ .F(V) ~ 

A gr aphical differentiation of the current volt age characteristic to 

the probe should yield the energy distribution l:!ultipliod by V ~ . Such 

a. curve obtained in oercury vapuur is shown in fi • (50 ). The maxirlum 

negative bias applied was -16 volts for fear of fi ld penetration an 

the consequent collection of positive ions. The distribution shows 

l arge nuober of electrons with low ener gies and f m'1 with energi<:!s 

between 4 cnd 1 volts. Most of the inportant excit3tion potentiols of 

mercury f all in this range . De~opulation of el ectrons witn cn~rai a in 

this range will occur as a result of inel astic collision3 and the low 

energy population will increase as a consequence . A similar cxplanat "on 

8p~lies to the distribution above 10 volts, the l oss in this caso 

goinG to ionisation . 

Unfortunately a short occurred betwe~n probe and anode probably 

due to the distortion of the eJlode as the tenperaturc of th oven 

increased , thus prevent ins the taking of further oeasuroocn~s . In oru r 

to prevent this type of difficulty ari sinl) it would he better t o p rform 

the experinent in the nolecular gases which are generally assumed t o 

have a Haxwellian distribution, and the pressure of which CM bo chon ed 
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,.,i t houi.. altering the tenperature. The t echnique could be imprcvc 'by 

usinG a. single hol~ in the anode and empl oyins e. differential pumping 

l:1ethod . This .Tould increase the electron mean free path between anode 

and probe enabling the probe to be further r emoved fro:1 the onodc thus 

r e ducinG the do.nge~ of field penetr at ion. The probe haD a nuc'be r of 

advantages over the Dore conventional type of probe . Solid objects e.r 

not inserted into the discharge r egion and no current is t o.k~n from this 

resion. It is aot dependent for its node of operation on the cond'tion 

of charge equality and the production of a sheath . It can there:!'ore 'b 

used in high field low current discharges . 

The present i.westigation into the tCl1pora.l growth of ionisc.tion 

into mercury vapour needs to be extended. To confirm conclu ions 

r eached froI!l the applica:t;ioll of Davidson t s uno.lys i s . it is sUBS et d 

that this approach be supported by that of Molm!.!' . Using this 

techniq" e the secondary coefficients due ,to positive ions cnd Incta.sta. le 

atOLlS can be evaluated experimenta.lly. 'rhe method al so allO"\'lB the 

experirlental deternination of such useful data. as the la ta.st a.ble 

uiffusion coe fficient t the time constont of decay of l!letnstabl sand th 

amount of volune destruction of metastabl es . Tube 4 could be U6 for 

such aI'. experiment , as it was desicned with tl is possibility in _ ind . 

Most of the necessary data. f or 0. satisfactory interpretation of th 

To"mscnd dischar ge in mercury vapour using a nercury pool cathod coul 

then be obtained under constant experimental conditions . Fin u.ly» the:! 

t echniques developed to obtain data in mercury vapour can be xtendod to 

other metals with et cOllvenient Ilelting point, notably ceasi UIn . 
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APPENDIX 1 

PRIMllRY IONIZATION COEFFICIENTS 

/ -1 a,:po cn. :r.l!1.Hg. 

0.46 
1.00 
1.60 
2.1'r 
2.99 
3.a8 
l~. 70 

-1 a /po cm. . run.Hg . 

0. 50 
1.50 
2.90 
4 . 30 
5 .80 
7.25 
8.70 

10.00 
11.50 
12.10 
13.00 
13.15 
14.1~5 
15.00 
15.50 

TUBE 1 

TUBE 2 

E/po V / cr.l .mo.Hg . 

100 
125 
150 
175 
200 
225 
250 

E/ PO V/cm.t.lIll .H/3 . 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 
800 



TUBE 3 

(values for E/ po above 800 are dependent on pr essur 

-1 
a /po cn . rJIn. Hg. 

0.21 
0.73 
3.04 
5.62 
8. 56 

10.92 
13 .74 
1)·~. 77 
16 .7c 
17 . 83 
18 . 50 
20 .08 
20. 30 
22 . 77 
23 .05 
23.30 
23 .60 
24 .60 
25 . 66 
26 10 
26 . 00 
26 .60 
26 .1 ~O 
27 .00 

-1 a /po eLl . nlI!l . Hg . 

3. 04 
10. 90 
18 . 55 
23 . 70 
25 . 50 

TUBE 4 

E/ po V /cn . Il.~ .Hg . 

100 
200 
300 
400 
500 
60e 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 
1900 
2000 
210C 
2200 
2300 
2400 

E/po V/cm.mm .II • 

200 
500 

1000 
1500 
2000 



APPENDIX 2 

DAVIES-MILNE ANALYSIS 

Three sinultaneous current grm·rth equatiolls of the form 

are truten for three values of the electroce separation d and corr spon­

aing values of current; i~ at n given E/po.wln, i o and do crul th n ~ 

elioinated, producing 

By using Newton's method of successive approximation a volu of a 

bE.: obtained to Wl;Y- required accuracy, by est:', m~LlB 0. value 01' n and. 

flubsti t .. ting this in the expression 

f(a) 
n' = et - "f"iT(i) 

\-There a' is a closer approxir.'lation to the trUl: value of a, PJ'ld 1" (a) 

is the first derivative of f(n). 



w~ere 

APPENDIX Si 

METHOD OF CALCULATING THE FORMATIVE TIME tAG FOR THE 
CASE QIt' A COMBINATIOll OF MI<:TAST,;.\BLE AND POSITIVE ION 

I!:}<'FECTS AT THE CATHODE -
Davidson gives the simplified currcllt growth equati.on as 

i (o,t}/Io = 1 d 
- l_w/a(ea -1) 

+ 2(A 2-d2 }(1-exp(-2Ad})expDA 2t 
A(ae/aA) 

is given the r~al value satisfying 8(A)=O, i.e. 

where F = 1-(y+6ja)(expad-1), (unity if y and 6/a not important) 

and X is given by 

X = (a2d.w/a.(expad-l)}/( expau-ad-l ) 

Values of a are calcualted for small percent overvoltages and 

(1) 

(3) 

e(A):O is solved for each value of at for each Value of y assumed. This 

is most conveniently done by plotting e(A) against (A). ae/OA can th n 

be evaluated and substituted in equat.ion (1). t can then b co.lcul t do 

knowing the diffu&ion coefficient D. This w~s calcUlated from the , 
relation (2C2) ~ j31TVS~2' lrhere C is the !lean velocity of the atom, \I the 

number of atons per c.c. and 512 the average diametel" of th normal and 

mcta~tab1e atone This was obtEined from Coui1lett e's value for th 

metastable mercury atom, being 4.5 x 10-0 cm. iJo,t) is given l)y 

i(t)/ead , and 10 lTas measured as 3 x 10-11 amps. When t is calculo.t cd. 

it is plotted as a function of overvoltage. 



3ii 

. . th :to i-(ott) . The equnt10n relut10g e ra 10 I to the formatlve ti~e l ag , t . 
o 

vThcn the combination of collision ind.uced readiation and ositivc iOll 

action at the cetho~e is assumed, is given by Davidson ns 

i (o,t )/I = A - BeAt 
- 0 

where 
I 

A = rror • 
I 

B = - X F' P,) , an 

F(A) = I -
(cllld_l ) ay(e9d_l) 

(l+h) <> 

-A/w, and 1:. = 1:. +.! 
"T w+ w_ 

A is given the value which makes F(A) zero. If A is 8.10.11 

(A <lOOO ) the equation for F( A)=O can be solved explicitly for At Bince 

1P and 9 reduce to a . f~ternatively F(A) can be ~lotted ~~ inst A, d 

the zero valu~ found. This is d.one for each valu of \l corresponding to 

a given overvoltege, and for each cOObination of 0 and a , s inc 0 i s 

given by 6/axa. WIlen A is determined for 0. given set of co ffici cnts 

tl.e time lo.g can be found, e.fter differentia.ting F( A) to f ind B. 

The values of positiv. ion dr.i.ft velocity "'+ were t aken fL , 

Kovar (41 ), and the electron d-rift velocity, w _, ca.lculatod from the 

relation E = (h) E/po + 6. The values of a and w/a wcr(~ those 

deternined in the present investigation. 
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