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ABSTRACT 

An investigation was undertaken on the volcanic and volcaniclastic 

rocks forming the Fishguard Volcanic Group of Lower Ordovician age, 

which crop out in the Strumble Head - Fishguard area of Southwest Dyfed 

(North Pembrokeshire). 

The nature of the lavas and volcaniclastic rocks suggests that this 

episode of vulcanicity was entirely subaqueous in aspect. 

It is shown that a variety of magma types were available for 

penecontemporaneous extrusion and intrusion at a high level. The form 

assumed by the extrusions depends primarily upon magma composition, 

which also largely determines magma viscosity. In addition these 

factors, plus the eruption depth, have also governed the development of 

volcaniclastic and pyroclastic debris. Basic magma was erupted 

quietly, and resulted in a thick lava pile with only a limited 

production of volcaniclastic and pyroclastic material. Similarily 

acidic magma also appears to have been erupted quietly in this area, 

although as a result of its viscosity it produced thick flows and 

domes, and abundant related autobreccias and collapse breccias. 

From an examination of whole-rock major and trace element analyses 

of a representative suite of rocks it is demonstrated that the intrusions 

and extrusions, which have tholeiitic characteristics, are comagmatic 

and that the majority of the igneous rocks examined are related to 

each other by a process of high-level crystal fractionation. 

The rocks of the area suffered low-grade regional metamorphism 
during the Caledonian Orogeny, indicated by the presence of 



pumpellyite and prehnite within the meta-basites. 

In spite of this alteration, clinopyroxene remains as a 

metastable, relict phase within the meta-basites. From a microprobe 

study of the composition of these clinopyroxenes, it is clearly 

demonstrated that the rocks have tholeiitic affinities in addition 

to the fact that the composition of clinopyroxene within igneous 

systems is dependant upon cooling history. 
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CHAPTER 1. INTRODUCTION 

I. I. AIMS OF THIS THESIS 

The initial aim of this work was to study aspects of Ordovician 

vulcanicity in S. W. Wales and particularly to concentrate on one suite of 

volcanics from which a detailed picture of the local volcanic history 

could be deciphered. After a reconnaissance of the various volcanic 

horizons in S. W. Wales, the Fishguard Volcanic Group of North 

Pembrokeshire was chosen for a more detailed study, in view of the good 

coastal exposures and the variety of rock types (see Fig. 1 and Table 1). 

Primarily, three key features were investigated, namely: 

(i) the nature of the volcanism, as deduced from the volcanic 

and volcaniclastic rocks identified within the chosen area; 

(ii) the petrology of the rocks, along with evidence for 

relationships between the various rock types; and 

(iii) the geochemical characteristics of the magma or magmas 

responsible for this volcanic episode. 

It was hoped that this investigation would help to solve the 

relationship between the various volcanic and high-level intrusive rocks 

present in the surrounding regions. 

As work progressed, other beneficial lines of inquiry emerged. 
It was found, for example, that the clinopyroxenes within the basalts and 

dolerites of the Strumble Head Volcanic Formation (see Table 1) were 

unaltered. Their composition was investigated by use of the electron 

microprobe in the hope that they would assist in unravelling the 



FIG. 1. Simplified geological map of S. W. Wales. The outlined area 

represents area of detailed investigation in this thesis. 
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characteristics of their parental magma. However, a far more 

illuminating picture emerged, illustrating the relationship between 

phase chemistry and physical conditions prevalent during crystallization. 

Similarly, the identification of pumpellyite - and prehnite - 

bearing basalts led to a thorough investigation of the phase, 

assemblages in the basic igneous rocks of the North Pembrokeshire region, 

in particular those of the Fishguard Volcanic Group. As a result, it is 

possible to suggest for this area the grade of metamorphism attained 

during the Caledonian Orogeny. 

1.2. GENERAL GEOLOGY OF THE LOWER PALAEOZOIC ROCKS OF SOUTHWEST WALES 

The Lower Palaeozoic sequence in S. W. Wales is a succession of 

marine sediments which, within the Lower Ordovician and Lower Silurian 

contain contemporaneous volcanic and volcaniclastic rocks, intruded by 

co-magmatic high-level sheets. This sequence was folded about E-W to 

ENE-WSW trending axes during the Caledonian Orogeny (George, 1970) 

(Fig. 1). The Lower Palaeozoic sequence overlies a late Precambrian 

basement comprising volcanic rocks (the Pebidian Complex), intruded by 

rocks of a plutonic aspect (the Dimetian Complex) which in North 

Pembrokeshire (the region north of St. Brides Bay and north of 

Haverfordwest - see Fig. 1) is exposed in: (i) the St. David's area 

in the core of the St. David's anticline (Hicks, 1884; Green, 1908; 

Williams, 1934); and (ii) the Trefgane, Roch and Haycastle area, in the 

core of the Haycastle anticline (Thomas-and Cox, 1924). With the 
4 

exception of these areas, the North Pembrokeshire region is composed 

almost exclusively of Cambrian and Ordovician strata and associated igneous 

rocks (Fig. 1). 
t 

Rocks of Cambrian age are well exposed on the southern flank of the 
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St. David's anticline along the north coast of St. Bride's Bay, from 

Porth Clais to Newgale (Fig. 2) (Cox et al., 1930a and b; Stead and 

Williams, 1971), with the maximum development (approximately 1500m) 

in the St. David's area. The Lower Cambrian Caerfai Series begins with 

a coarse basal conglomerate which is succeeded by green and purple 

sandstones. These pass upwards into sandy mudstones of the Solva Series 

(Middle Cambrian) which in turn are superseded by the Menevian Series 

(Middle Cambrian) of flags and shales. The Upper Cambrian is represented 

by the Lower Lingula Flags. Further exposures of Cambrian strata occur 

along the north flank of the St. David's anticline and also along the 

flanks of the Naycastle anticline. Good coastal exposures are also found 

along the North Pembrokeshire coast (Cox, 1915 and 1930), particularly in 

the Aber Mawr area (Fig. 1) where they are invaded by a number of thick 

basic sheets of Ordovician age - the gabbros and dolerites of Roach (1969)- 

as for example the Llech Dafad Intrusion (GR 882356). A distinctive 

feature of the Cambrian succession in North Pembrokeshire is the apparent 

lack of volcanic rocks, although some pre-Ordovician igneous activity is 

reflected in the presence of 'hornblende diorite-porphyrites' in the 

Cambrian succession along the southern flanks of the St. David's anticline 

(Fig. 2) (Cox et al., 1930a). Ordovician rocks are best exposed along the 

north coast of Pembrokeshire, where, in the Abereiddy Bay area, the type 

locality of the Llanvirn occurs. While observed contacts between Cambrian 

and Ordovician strata are frequently faulted there are two possible 

localities in North Pembrokeshire, one at the northern end of Ramsey 

Island (Pringle, 1930; Cox et al., 1930b) and the other at Trwynhwrddyn 

(GR 732273), in Whitesand Bay (Cox et al., 1930b; Jones, 1940; 

Evans, 1948; Owen et al., 1971; Bevins and Roach, personal observations) 

(Fig. 2), where possible undisturbed contacts may be observed. In both 



FIG. 2. Geological map of the St. David's district, from 

Cox et al. (1930). 
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localities the boundary may be a slight disconformity between Lower 

Lingula Flags and Lower Arenig. At Trwynhwrddyn the basal Arenig is 

possibly represented by a thin sequence of volcaniclastic sandstones 

and siltstones which may be the lateral equivalent of the Trefgarne 

Volcanic Group, also thought to be of Lower Arenig age (Thomas 

and Cox, 1924). 

The Lower Arenig strata are predominantly sandstones and sandy 

shales forming the Ogof Hen Formation (Bates, 1969; Bassett, 1972). 

These pass upwards into dark grey and black cleaved mudstones, the 

Upper Arenig Tetragraptus Shales (Cox, 1915). These pass conformably 

into similar dark cleaved mudstones of Lower Llanvirn age (D. bifidus 

Shales). This boundary, which is biostratigraphic. and marked by the 

incoming of Didymograptus bifidus was mapped out at Llanvirn-y-fran 

farm, the type locality. The beginning of the D. bifidus zone (Lower 

Llanvirn) is also marked by volcanic and volcaniclastic rocks, such as 

those forming the Abercastle Ashes (Cox, 1915) and the Sealyham Volcanic 

Group of the south Prescelly Hills region (Cox, 1915; Cox and Thomas, 

1924; Evans, 1945; Bevins and Roach, in press). 

The thickest development of volcanic rocks in North Pembrokeshire 

is the Fishguard Volcanic Group, which also occurs within the D. bifidus 

zone (Cox, 1930; Thomas, 1951; Thomas and Thomas, 1956). Volcanics 

of this group are best developed in Pen Caer, to the northwest of 
Fishguard (Figs. 1 and 3). Laterally they can be traced eastwards to 

Newport (Fig. 4) (Reed, 1895; Davies, 1936) and thence into the Prescelly 

Hills (Evans, 1945). Deposition of dark muds continued during Upper 

Llanvirn times to give the D. murchisoni Shales. In the Abereiddy Bay 

area the boundary with the Lower Llanvirn D. bifidus Shales is marked by 



FIG. 3. Geological map of the Strumble Head-Fishguard region, 

from Thomas and Thomas (1956). 
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FIG. 4. Geological map of the country between Fishguard and 
Newport (from Reed, 1895). 
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a distinctive volcanogenic deposit - the Murchisoni Ash (Cox, 1915). 

A thick development of Lower Ordovician volcanic and volcanistic 

rocks is present on Ramsey Island (Fig. 2) (Pringle, 1930), although the 

precise age of these deposits is, as yet, uncertain (Bevins and Roach, in 

press). 

Sediments of Llandeilo age are recognized within the overturned 

synclinal structure at Abereiddy Bay (Fig. 2), as well as in the tract of 

country between Fishguard and Newport (Fig. 4) (Reed, 1895; Davies, 1936; 

Thomas and Thomas, 1956). They are represented once more by dark shales, 

although at the top of the succession in Abereiddy Bay, a thin limestone, 

the Castell Limestone, is present (Waltham, 1971). The Caradocian strata 

have a similar distribution to the Llandeilo rocks, occurring in the fold 

at Abereiddy Bay and also to the north and east of Dinas (Myers, 1950; 

Bassett, 1972; James, 1975). However, in the latter region turbiditic 

sandstones become dominant in the upper part of the succession. 

Ashgillian sediments are not recognized in North Pembrokeshire and are 

only encountered further to the northeast, in the Llangranog district 

(Anketell, 1963). 

Basic and intermediate intrusions are common in North Pembrokeshire 

(Fig. 5) and have been described by Elsden (1905,1908); Cox (1915); 

Cox et al. (1930a); Evans, (1945); Roach (1969) and Bevins and Roach 

(in press). They invade Cambrian, Arenig, and Llanvirn strata (up to the 

D. bifidus shales) although none are known to exist in Llandeilo or 

Caradocian sediments. This, together with other evidence (see Chapter 2), 

suggests the contemporaneous nature of Ordovician intrusive and extrusive 

activity. The intrusive sheets are clearly folded with the sediments and 

thus are at least pre-deformation in age. This is substantiated by spots 



FIG. 5. Sketch map of the North Pembrokeshire district, showing 

the approximate distribution of igneous rocks (from 

Roach, 1969). 
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within contact metamorphosed sediments which are flattened within the 

cleavage planes (Roach, 1969; and author's own observations). 

Petrological and geochemical evidence from the 'one-pyroxene' gabbros 

and dolerites (the 'gabbros and dolerites' of Roach, 1969), persuasively 

demonstrate a co-magmatic relationship with the lavas of the Fishguard 

Volcanic-Group. Further evidence from the Pen Caer region shows that 

the sheets were commonly intruded into wet sediments associated with the 

volcanics of the Fishguard-Volcanic Group. 

1.3. AREA CHOSEN FOR STUDY 

After a reconnaissance survey of the various Lower Palaeozoic 

volcanic horizons of North Pembrokeshire it was decided to focus attention 

on the Fishguard Volcanic Group in the Pen Caer region (see Fig. 1). 

Although surveyed by the Geological Survey during preparation of the 1" 

Geological Sheet no. 40 (which was published in 1845 and revised in 1857) 

no description of this area appeared as no memoir was ever published. 

Thus, the first detailed account of the area was that of Cowper Reed, in 

1895 (see Fig. 4). This work recognized the existence of three or four 

groups of acid volcanic lavas, but unfortunately failed to recognize that 

the thick pile of basic rocks of-the Pen Caer region was largely extrusive 

in character, instead suggesting the presence of a large 'laccolite'. 

Reed also allocated the volcanics to the Upper Llandeilo and Bala Series. 

Elsden (1905) briefly described the petrology of a number of the basic 

intrusive sheets between St. David's Head and Strumble Head. He drew a 

distinction between the fine grained basaltic rocks of the north coast of 

Strumble Head and the intrusive sheets and commenting on the basaltic rocks 

of the north coast he stated (Elsden, op. cit. p. 582) 'it is amygdaloidal 

or vesicular and often it closely simulates a true surface-flow'. The 

recognition of extrusive rocks in this area had to wait until Professor 
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A. H. Cox investigated the rocks of the North Pembrokeshire coast. 

In 1913, Cox and Jones reported the presence of pillow Javas in the 

Lower Palaeozoic sequences of North and South Wales. Further work by 

Cox resulted in considerable modifications in the stratigraphy of this 

coastline, including the recognition of the fact that the Fishguard 

volcanics were Llanvirnian in age. Cox (1930) forwarded a tripartite 

division for the volcanic group, namely the lower rhyolites, the-pillow 

lavas and the upper"rhyolites. 

Little work appears to have been undertaken subsequently until 

Thomas (1951) and Thomas and Thomas (1956) made a thorough investigation 

of the volcanics of the'Pen Caer peninsula. They retained a tripartite 

division, but named the divisions the Lower Rhyolite Division, the 

Pillow Lava Division and the Upper Rhyolite Division. A map was produced 

by these two workers (Fig. 3) which showed a greater variation of rock 

types within the rhyolitic divisions than had been previously recognized. 

1.4. METHOD OFAPPROACH 

1.4.1. MAPPING 

Due to the lack of inland exposure, mapping of this area is difficult 

and any map'produced remains highly subjective. However, excellent coastal 

sections provide good exposures in the volcanic rocks from Porth Maen 

Melyn to Lower Fishguard (see Fig. 3), which enabled a detailed 

investigation of this section to be made. Local detailed maps were 

provided for such areas as Porth Maen Melyn and the Penanglas area 

(Fig. 3) whilst a more generalized map of the coastline was made in order 

to'obtain thickness estimates of the formations. Six inch sheets 

SM 84 SE, SM 83 NE, SM 94 SW, SM 93 NW, and SM 93 NE (incorporating part 
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of SM 94 SE) cover the area in question. All grid references are given 

to six or eight figures, and are prefixed by SM, unless otherwise stated. 

1.4.2. PETROLOGICAL INVESTIGATIONS 

A petrological investigation of the components of the Fishguard 

Volcanic Group was made by examination of over 300 thin sections, 

prepared by the technical staff in the Department of Geology, University 

of Keele. This permitted major rock types to be examined thoroughly and 

allowed geochemical characteristics identified within these rocks to be 

related to the presence or absence of particular mineral phases. 

1.4.3. GEOCHEMICAL INVESTIGATIONS 

Geochemical investigations were conducted on both macro and micro 

scales. On the macro scale, a representative suite of igneous rocks and 

a small number of volcaniclastic rocks from the Fishguard Volcanic Group 

were collected and analysed for major and trace elements. These analyses 

were performed almost wholly by X-ray fluorescence techniques, although 

limited wet chemical methods were also employed. On a micro-scale, the 

chemistry of both primary and secondary mineral phases present within the 

basic rocks was examined by the utilization of electron microprobe 

facilities at the University of Manchester. Full details of this work 

appear in Appendix 1. 

1.5. STRATIGRAPHY 

The stratigraphy used in this thesis differs from that of Cox (1930) 

and Thomas and Thomas (1956). It is based on field observations made 

during this study. Table 1 outlines the revised stratigraphy and compares 

it with previous works. 
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1.6. STRUCTURE 

The Lower Palaeozoic rocks of Wales suffered deformation and 

metamorphism during the Caledonian Orogeny. In the Fishguard area, 

the rocks were folded into open anticlines and synclines, with axial 

planes striking approximately eastnortheast - westsouthwest, as in the 

Goodwick Syncline and the Llanwnda Anticline (Thomas and Thomas, 1956) 

(Fig. 3). Within the incompetent strata of the area, a strong, steeply 

dipping penetrative cleavage was developed. This strikes at 

approximately 0600 and is thus nearly parallel to the limbs of the 

major folds. In the highly competent rocks, for example the volcanic 

horizons, a penetrative foliation is not usually developed, although 

locally the stress has been taken'up along discrete zones of'high strain. 

Such zones may be identified within the rhyolites at Penfathach 

(GR 941405) and also within the basic lava pile of the Strumble Head 

Volcanic Formation, for example"at Carregwastad Point (GR 927405) and 

Porth Sychan (GR 907408). At the latter locality flattened pillows are 

seen, adjacent to undeformed pillows and the zone of flattening can be 

clearly identified (Figs. 6 and 7). The deformation in these rocks is 

clearly inhomogenous in character. Between these extremes of rock 

competencies,, are rocks showing a poorly defined penetrative cleavage or 

a fracture-type cleavage. Where present, clasts are generally flattened. 

The deformation history of the Lower Palaeozoic rocks of this area 

is no doubt quite complex. Evidence at Porth Maen Melyn (GR 888392) 

shows the existence of a sub-horizontal crenulation cleavage which deforms 

the strong slatey cleavage. Elsewhere, late cross-folds and kink bands 

have been observed. 



FIGS. 6 and 7. Pillows showing evidence of flattening during 

Caledonian deformation. Porth Sychan (GR 907408). 

Diameter of lens cap in Fig. 6 is 57mm. Length of 

hammer handle in Fig. 7 is 54cm. 
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The rocks of this area suffered low-grade, prehnite-pumpellyite 

facies metamorphism during the Caledonian Orogeny (see Chapter 7) and 

this is considered to have occurred almost synchronous with the 

deformation outlined above (Bevins, 1978). 
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CHAPTER 2. DESCRIPTION OF THE IGNEOUS ROCKS 

OF THE FISHGUARD VOLCANIC GROUP 

2.1. INTRODUCTION 

As mentioned in Chapter 1, the three formations of the Fishguard 

Volcanic Group show a variety of igneous and volcaniclastic rocks. This 

chapter will deal with the igneous rocks whilst the volcaniclastics will 

be described in Chapter 3. 

Magmas of basic, intermediate and acid compositions are all present 

and occur as extrusive lavas and high-level, comagmatic, intrusive sheets. 

Nearly all of the intrusive bodies form concordant sheets, with dyke-like 

forms being rare. As the composition of a magma largely controls its 

viscosity and hence its surface or sub-surface expression, the igneous 

rocks will be described under three subdivisions, namely: (i) basic; 

(ii) intermediate; and (iii) acid. Rocks were attributed to the 

various subdivisions following field, petrological and geochemical 

investigations. 

2.2. BASIC IGNEOUS ROCKS 

Basic igneous rocks occur within the Fishguard Volcanic Group both 

as lava flows and intrusive sheets. The flows form the Strumble Head 

Volcanic Formation whilst the sheets invade this pile and the underlying 

sediments. In Chapter 5, on a geochemical basis, these sheets are shown 

to be a co-magmatic intrusive suite and hence they will be described in 

this chapter, along with the rocks of the Fishguard Volcanic Group. 

2.2.1. BASIC LAVA FLOWS 

2.2.1.1. CHARACTER AND EXTENT 

Basaltic flows are almost entirely limited in occurrence to the 
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Strumble Head Volcanic Formation. The boundaries of this Formation, 

shown in Figure 8, are broadly similar to those of the Pillow Lava 

Division of Thomas and Thomas (1956) (Fig. 3). In detail, however, 

certain differences are apparent: 

1. The lower contact of the Strumble Head Volcanic Formation 

at Porth Maen Melyn, where this Formation overlies the Porth 

Maen Melyn Volcanic Formation (which is approximately equivalent 

to the Lower Rhyolite Division of Thomas and Thomas (op. cit. ), 

can be traced westwards from Porth Maen Melyn, towards Pen Brush 

(Figs. 8 and64); 

2. There is no field evidence for an E-W trending fault 

constituting the southern boundary of the Strumble Head Volcanic 

Formation north of Llanwnda and reaching the east side of the Pen 

Caer peninsula at Pwll-hir (see Fig. 3); and 

3. The acid and basic volcanic and volcaniclastic rocks east 

of Strumble Head and including the intraformational Strumble Head 

Series of Thomas and Thomas (Fig. 3) are here tentatively assigned 

to the Goodwick Volcanic Formation. 

It can be seen that the maximum development occurs in the west of this 

area, with a thinning to the east and south. However, a considerable 

offshore extension of Lower Palaeozoic rocks has been identified 

(Dobson et al., 1973), much of which to the north and west of the 

Fishguard area is possibly composed of rocks belonging to the Fishguard 

Volcanic Group. From exposures in the Pen Caer region, only an 

approximation of true thickness can be obtained and not until more is 

known about the nature of the submarine extensions will a better estimate 
be possible. 



FIG. 8. Sketch map of the Pen Caer district, showing the 

approximate extent of the Strumble Head Volcanic 

Formation (shaded area). 
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The lava pile is largely composed of pillowed lavas (Fig. 9 ) with 

massive lava flows of minor importance. The beds generally dip in a 

northerly direction, although the amount of dip is very variable. 

However, the pile is considerably thickened by the massive basic sheets 

which were intruded contemporaneous with the extrusive activity. Clearly, 

it is difficult in some cases to decide which of the massive sheets 

represent truly extrusive lava flows and which are high-level intrusives. 

When only the pillowed flows are considered, an approximate minimum 

thickness for the lava pile of the Strumble Head Volcanic Formation of 

800 metres is obtained. If the massive sheets are included, then the pile 

is approximately 1600 metres thick. In the Lower Fishguard Harbour area, 

the pile thins to about 5 metres on the west side of the Harbour whilst 

pillowed lava is not seen at all on the eastern side (Thomas and Thomas, 

1956). However, this absence may be due to faulting, as basic pillowed 

lava is seen once more a short distance to the east, at Carn Gelli 

(GR 982375). Still further east, between Dinas and Newport, and also in 

the Prescelly Hills, extrusive basaltic magma is not seen at all within 

the Fishguard Volcanic Group and basic magma is confined to high-level, 

concordant sheets (Evans, 1945; Bevins and Roach, in press). 

Individual pillowed units (the upper and lower boundaries of a 

pillowed unit are defined by the presence of sedimentary horizons within 

the lava pile) are generally discernable and range in thickness from a 

few metres to units 200 metres or more thick. However, it is not certain 

whether these represent the accumulations from single or multiple 

eruption episodes. The massive flows are generally structureless, whilst 

the pillowed flows exhibit a wide variety of structures and will thus be 

described in more detail. 



FIG. 9. Well developed pillows within the Strumble Head Volcanic 

Formation, north of Porth Maen Melyn (GR 888393). 

FIG. 10. Large pillows exposed in cliffs north of Carnfathach 

(GR 938405). Scale shown by rucksack, at base of cliff. 
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Pillow size varies greatly, ranging from very small 'globules', 

less than 5cm in diameter, to large bodies over 3m in diameter. It 

has been suggested by various workers (for example Schmincke and 

Staudigel, 1976) that pillow size may be correlated with chemical 

composition; the more silica-rich the lava, the larger the pillow. 

In the Fishguard Volcanic Group, some of the largest pillows are found 

at Trwyn Llwyd (GR 905410) and also belowCarnfathach (at GR 938405), 

as illustrated in Figures 22 and 9 respectively. A chemical analysis 

shows that the pillows from the Trwyn Llwyd area are of andesitic 

composition (see sample SBR11, Appendix 1). However, the basalts 

themselves, which form the majority of the pile, show widely varying 

sizes and it is considered here that many other factors, such as rate 

of lava effusion and eruption temperature, also control pillow size, 

and that the composition of the lava is probably of minor importance. 

The pillows are circular to ovate in cross-section and elongate to 

cylindrical normal to this section. The pillows exhibit a great variety 

of forms, but commonly show a 'Y' shaped base and a convex upper surface. 

The 'Y' shaped base is generally assumed to represent a primary structure 

formed when the overlying pillow was still plastic enough to mold itself 

into the gap between the underlying pillows (see Figs. lla-b and 9 ). 

These are the 'pedunculate' type pillows of Vuagnat (1976). Many pillows 

of the Strumble Head Volcanic Formation are of this type, although all 

the other forms described by Vuagnat (op. cit. ), for example "bun", 

"balloon", or "bean" shaped, may also be recognized. Generally, little 

or no sediment or hyaloclastite is found between the pillows (Fig. 12). 

This suggests a rate of effusion rapid enough to cover pillows by 

further lava almost immediate upon their formation, with no time either 

for desquamation of the pillow to produce an inter-pillow hyaloclastite 



FIG. Ila and b. Two views of pillows from the area to the east of Maen 

Jaspis (GR 93834045), illustrating fit between 

adjacent pillows. 





FIG. 12. Pillowed lava from the Porth Maen Melyn area (GR 888393), 

showing the lack of inter-pillow material. 

FIG. 13. A thin sedimentary parting within the Strumble Head Volcanic 

Formation, on the east side of Porth Sychan (GR 90804095). 
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or for the accumulation of sediment. Thin sedimentary intercalations 

are found in places and no doubt represent temporary cessations in 

extrusive activity. It is difficult usually to trace these thin 

sedimentary partings laterally and they probably represent accumulations 

in local basins on the uneven volcanic surface. Figure 13 shows one 

such thin sedimentary parting on the east side of Porthsychan (GR 908409). 

As can be seen, the sediment has accumulated over an uneven surface of 

pillows and draped the pillows, mimicking the original surface. 

The pillows show evidence of the former presence of a glassy margin 

which has altered to produce a chloritic crust. Very occasionally this 

has spalled off and provided material to produce inter-pillow 

hyaloclastites composed of altered glass set within cryptocrystalline 

silica and small amounts of sediment. 

Vesiculation is ubiquitous throughout the lava pile. Moore (1965) 

suggested that the vesicularility and bulk density of submarine basalts 

show a systematic change with the depth of emplacement of the lava. 

Samples from deep waters have higher specific gravity and contain fewer 

and smaller vesicles. This principal has been applied by various workers 

in attempting to infer approximate depths of emplacement (as opposed to 

depths of eruption) of ancient volcanic assemblages. One of these studies 

(Jones, 1969) attempted to suggest depths of emplacement for the pillow 

lavas of the Strumble Head Volcanic Formation. Jones (op. cit. ) concluded 

that depths in the range 0-2000m (i. e. neritic-bathyal rather than 

abyssal) were originally present, with a shallowing of water depth during 

the development of the pile. However, attempts to reproduce these results 

in the present study were unsuccessful. Jones (op. cit. Fig. 4) showed 

that vesicle diameters range from 0.5 to 2mm and increase in size with 
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stratigraphic height. however, samples collected during this study 

appear to contradict these observations. A large basaltic pillow 

collected from close to the base of the pile (GR 885394), to the north 

of Porth Maen Melyn, shows vesicles of average diameter 2-3cm, whilst 

a sample collected from Carn Melyn, approximately half-way up the pile 

(GR 892408) has vesicles of a similar size. Vesicles with similar 

diameter size are also found within pillows from the uppermost flows of 

the pile, and no simple gradation appears to be present. The picture 

is further complicated by the presence of macro- and microvesicles 

which may, in fact, reflect a more complicated picture of vesicle 

development than envisaged by Jones (1969), producing variables which 

render the method in question inapplicable (see below). Other problems 

with this method are also commonly encountered, which are difficult to 

overcome. Firstly, ancient volcanic rocks are commonly deformed and 

circular or near circular vesicles are strained. Clearly, therefore, 

measurement of these deformed vesicles must be avoided. In the Strumble 

Head Volcanic Formation, this problem is easily overcome as the lavas 

generally form competent masses, with generally only a low degree of 

strain. Secondly, the assumption of a primary magmatic volatile content 

leads to further constraints because in ancient and generally even in 

modern volcanic rocks, this cannot be estimated. Water and other volatile 

constituents are highly variable in content and accordingly the degree of 

vesiculation may vary. A similar argument has been put forward by Schminke 

and Staudigel (1976). They described flows which may have erupted on land 

and subsequently flowed into water. Clearly, it is possible for degassing 

to occur on land and produce a submarine flow completely lacking in 

vesicles. Typical illustrations of vesiculated lavaflows and pillowed 

flows show the development of a vesiculated upper surface or crust. 
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However, in the case of the pillow lavas of the Fishguard Volcanic Group, 

the picture is more complex, suggesting a complicated history and 

requiring further explanation. 

A complete gradation in vesicle size is commonly seen within 

individual pillows of the Fishguard Volcanic Group and certain pillows 

exhibit a zoned vesicle distribution. Other pillows, in contrast show 

only either a vesiculated outer margin or a vesiculated core. Figure 14 

shows a pillow which possesses abundant vesicles and in which a certain 

distribution of vesicles is present. Relatively small vesicles, 

infilled with chlorite and calcite, occur throughout, whilst the larger, 

more irregular vesicles, which generally contain only calcite, appear to 

be absent from the outermost 6cm or so of the pillow. Pipe vesicles, 

infilled with chlorite, are found within the outermost lcm. A two-stage 

development of the vesicles is thought possible. The smaller vesicles, 

which are pervasively developed throughout the pillow, along with the 

pipe vesicles, possibly represent the initial vesiculation of the magma, 

which is related to the emplacement of the liquid on to the sea-floor. 

As crystallization proceeded, the system closed and the volatile 

constituents became increasingly concentrated in the melt, until the point 

was reached where vapour pressure exceeded the sum of load pressure and 

surface tension, at which point vesiculation occurred resulting in the 

larger, more irregular vesicles. This process is known as retrograde 

boiling and can readily explain the presence of vesiculated cores of 

pillows. A zoned vesicle distribution may possibly be produced by 

successive episodes of retrograde boiling. 

Certain vesicles within lavas of the Fishguard Volcanic Group bear 

a resemblance to segregation vesicles which have been previously 



FIG. 14. Cut section of a pillow from the Strumble Head Volcanic 

Formation, illustrating a variation within the pillow of 

vesicle size, infilling, and distribution. The section 

is from pillow rim (uppermost) to pillow core (lowermost). 
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described by many workers. Smith (1967) ascribed the infilling of early 

formed vesicles by residual liquid as a result of lava moving into 

progressively deeper water. However, this is not considered necessary 

as 'segregation' vesicles in the lavas of the Fishguard Volcanic Group 

do not appear to have resulted from such a history. They appear different 

in many ways to previous descriptions of segregation vesicles, in 

particular due to the presence of purple-coloured (Ti-rich), dendritic 

clinopyroxene lining or filling these vesicles. Baragar et al. (1977) 

recently described so-called segregation vesicles in basalts from 

Site 335 on the Mid-Atlantic Ridge, which similarily contain Ti-rich 

clinopyroxenes. Surrounding the vesicles in the lavas of the Fishguard 

Volcanic Group, up to a distance of lmm, the rock is usually dominated 

by dendritic, Ti-rich clinopyroxenes, of similar composition to those 

within the vesicles., This suggests that as vesiculation occurred, liquid 

entered the vesicles and a Ti-rich clinopyroxene crystallized. In the 

liquid surrounding the vesicle, chilling due to the removal of heat during 

vesiculation may have caused crystallization. Thus it appears that in no 

way may the liquid be described as residual. This is discussed below in 

more detail (S. 2.2.1.2. ). 

Radial cracks are a common feature of the Fishguard pillows (Fig. 15 

as indeed they are of pillows from many other regions. They are generally 

attributed to a volume reduction upon crystallization. 

Within the lower part of the pillow-lava pile, epidote veins and 

lenses are occasionally found, for example north of Porth Maen Melyn 

(GR 886394), illustrated in Figures 16 and 17. The lenses represent 

infilled cavities within the pillow and commonly also contain quartz. 

These cavities have been used by various workers (for example Waters, 



FIG. 15. Close-up of pillows from the Strumble Head Volcanic Formation. 

The pillow on the right shows a radial joint system, whilst 

a part of the centre pillow has been removed to reveal a 

sinuous flow tube. Diameter of lens cap 57mm. 





FIGS. 16 and 17. Quartz- and epidote-infilled cavities within basic 

pillows at Porth Maen Melyn. 





19 

1960; Furnes, 1974) to show way-up in deformed pillow-lava sequences, 

as well as flow direction. The latter is determined by the relationship 

between the supposedly flat floor of the filled cavity and the base of 

the pillow (see Furnes, op. cit. p. 37). In the cavities examined here, 

no conclusive evidence was found for flow direction. 

Despite the fact that pillow lava sequences have been recognized 

and described many times, the actual three-dimensional shape and origin 

of pillows is still largely a matter of controversy and only in recent 

years have pillowed flows actually been observed in the process of 

formation. The greatest controversy concerns whether pillows represent 

discrete, isolated sacs or merely protruberances on cylindrical, 

interconnected flow tubes. Work advocating the cylindrical, 

interconnected tube theory includes that of Jones (1968), Moore et al. 

(1971) and Vuagnat (1976), whilst Snyder and Fraser (1963), Johnson (1969) 

and Macdonald (1972) all favour discrete pillow 'sacs'. Attempts to 

collect discrete pillows from the Strumble Head Volcanic Formation were 

unsuccessful due to the fact that all pillows sampled had connections of 

one type or another to other pillows. Rounded masses of lava which had 

evidence of being discrete entities (i. e. completely surrounded by 

vestiges of a former glassy crust) were not found. However, only in a 

few places were cylinder-like forms observed. Examples of these forms 

are illustrated in Figures 18 to 22. Figure 15 shows a pillow which has 

been partly removed by hand and reveals a sinuous flow tube disappearing 

into the flow. As mentioned above, significant light has been shed on 

this problem in recent years by submarine investigations. These include 

scuba diving expeditions, as well as examinations by manned submersibles. 

Moore et al. (1971) investigated the submarine extension of the 1381 A. D. 

lava flow of Mount Etna, Sicily. They showed that elongate pillows 



FIGS. 18 to 22. Pillowed lava from the Strumble Head Volcanic 

Formation, showing the development of a tube-like form. 

FIG. 18. Carn Melyn (GR 887406). 

FIG. 19. Pwll Arian (GR 884403). 





FIG. 20. Carn Melyn (GR 887406). 
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FIGS. 21 and 22. Trwyn Llwyd (GR 905400). 
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developed on steep submarine slopes, where extension caused thinning 

of the chilled glassy crust. Arculus (1973) studied the 1329 A. D. 

lava flow also from Mount Etna and reached similar conclusions, namely 

that a 'foreset'arrangement of cylinder-like flows was produced where 

the flow draped over a steep slope. All the pillowed flows studied 

by Moore et al. (1973) off the island of Hawaii were composed of 

interconnected, digitated, cylindrical lobes. From the various accounts, 

it is noticeable that a process of accumulation of discrete, isolate 

sacs at the base of a steep slope is not described. Such as a process, 

until recently, was believed by many workers, to be responsible for the 

development of pillow lava piles. Moore (1975) described in more detail 

the growth and development of pillowed lavas, as witnessed off the 

southeast coast of Hawaii. He noted that extension of the flow occurs 

when liquid lava issues from a crack in the consolidated lava crust. 

These cracks possess a variety of shapes and allow new lava to spread in 

any direction. This would account for the accumulation of a confused mass 

of interconnected flow lobes. Moore (op. cit. ) also described surface 

ridges developed on pillowed lava. He identified two major types in 

flows from Kilauea, Hawaii, namely longitudinal corrugations and 

transverse cracks. The latter features he termed 'fault slivers'. It is 

thought that the surface features illustrated in Figures 23 and 24 

from the Strumble Head Volcanic Formation represent the structures 

described by Moore-. 

The majority of evidence, therefore, would appear to suggest that 

pillowed lava piles generally represent the accumulation of a series of 

interconnected sinuous flow lobes or tubes. Such a conclusion is reached 

here for the origin of the basaltic pillow lavas of the Strumble Head 

Volcanic Formation and was similarily reached by Bevins and Roach (in 

press) for the pillow structures in the rhyodacite flow of the Porth Maen 



FIGS. 23 and 24. Small-scale structures in pillowed lava from 

Pwll Arian (GR 884403). 
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Melyn Volcanic Formation (see below) and also by Vuagnat (1976) for 

pillowed lava sequences of the Western Alps. 

Associated with the pillowed lavas of the Strumble Head Volcanic 

Formation are a number of massive, concordant sheets, some of which 

possess well developed columnar jointing. Three possible origins exist 

for these sheets and it is considered that each of these may have been 

in operation. Firstly, they may represent high-level intrusive sheets 

which intruded the developing lava pile contemporaneous with continued 

extrusive volcanic activity. A second possibility is that they 

represent intrusions of magma which reached the top of the volcanic pile, 

but invaded wet sediment. Whilst a third possibility is that they 

represent submarine lava flows. In many cases conclusive evidence of the 

genesis of these sheets was lacking. A similar problem regarding manner 

of emplacement of massive 'greenstones' was identified by Furnes (1974) 

within Lower Palaeozoic metavolcanics in the Solund area, Norway. 

In the Fishguard volcanics, evidence for all of the above processes may 

be found. Certain sheets clearly show the disturbance of sediment both 

above and below the sheet, suggesting that it intruded into wet sediments. 

This is seen by the fact that well developed flame structures are found, 

along with detached lobes of basic lava within the sediment (Fig. 25). 

In contrast, local lenses of massive lava, such as are found on the 

southeast side of Aber Gwladus (GR 924406), no doubt represent surface 

flows. Lastly, thicker, coarse-grained sheets, possessing thin, fine- 

grained marginal zones, probably represent massive, intrusive sheets which 

invaded the pillow lava pile. In other cases, there appears to be a 

gradation from pillow lava through fine-grained massive lava to coarse- 

grained, well-jointed dolerite. This may represent a thick flow which 

locally developed a pillowed form. Clearly, the possibilities are numerous, 



FIG. 25. Irregular, lobate contact between dark shales and intrusive, 

basic magma (light grey). Penanglas (GR 94864045). 
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but what is evident, and is illustrated in Figure 26, is that the 

massive sheets are found predominantly in the upper part of the 

volcanic pile, whilst pillowed lavas form the lower part. It appears, 

therefore, that initially the volcanic activity was predominantly 

extrusive in character whilst subsequent to the development of a thick 

pile, there was a greater tendancy for intrusive activity to prevail. 

Within the uppermost few metres of the Strumble Head Volcanic 

Formation, in the area around Carnfathach (GR 403938), the basic lavas 

are noticeably lighter in colour than elsewhere and contain large, 

ovate siliceous nodules. Two chemical analyses of lavas from this 

horizon (SB13 and SB52, Appendix 1) show high silica contents and it is 

thought likely that these lavas have been affected, after eruption, by 

the ensuing episode of rhyolitic vulcanicity. A dolerite intrusion, 

which occurs at the junction between the acid and basic rocks, contains 

nodules and veins of jasper and thus similarily appears to have been 

affected by the rhyolitic vulcanicity. 

2.2.1.2. PETROGRAPHY 

The lava flows of basic composition display a wide variety of 

textures which can generally be correlated with the cooling history which 

the particular lava suffered. The lavas were erupted entirely within a 

subaqueous environment and consequently show evidence of a quenched 

history. Such quench textures have recently been well documented fron 

young lava flows of the present ocean floors (e. g. Muir and Tilley, 1964; 

Bryan, 1972). 

As the Fishguard basic lavas were erupted subaqueously, pillowed 

lava flows are common. Within individual pillows, a zoned textural 

arrangement is discernible, as well as a marked variation in the modal 



FIG. 26. Sketch map of the west coast of Pen Caer, showing the 

relative proportions of massive, intrusive sheets (shaded 

black) to extrusive, pillowed lava (unshaded) within the 

Strumble Head Volcanic Formation. 'V' ornamentation 

represents rocks of the Porth Maen Melyn Volcanic Formation. 



N 

CARREG ONEN 
41 

BAY 

40- 

50Q M 
v 

v -- 
v 

89 



23 

proportions of the phases present (see Figs. 27 and 28). The presence 

of these zones has important effects upon the geochemistry of the 

pillows (see Chapter 5). 

The rims of the pillows commonly show a thin layer (approximately 

2mm thick) of chlorite. This is thought to represent the outer glassy 

crust of the pillow which has subsequently recrystallized. Small, 

variolite-like structures composed of sphene are scattered throughout 

the chlorite, and probably crystallized as a result of the lack of 

available sites for Ca and Ti within the chlorite structure (note the 

analyses of chlorite in Appendix 2 are virtually free of any Ca or Ti). 

In some instances this former glassy rind is not present and may have 

spalled off at an early stage in the pillows history. In these cases, 

chlorite is generally present between the pillows, forming a 

meta-hyaloclastite. 

Inwards, towards the centre of the pillow, the glassy crust is 

replaced by a zone in which plagioclase is the chief mineral component 

occurring in spherulitic, bow-tie or sheaf-like aggregates (Figs. 28b, 29 

and 30). In these forms, the crystals have extremely high length to 

breadth ratios. Phenocrysts of plagioclase and/or clinopyroxene may be 

present. When they do occur, plagioclase phenocrysts tend to show stout 

tabular crystals which pass laterally into the spherulitic forms. 

Commonly these phenocrysts can be seen to have acted as nucleii for 

subsequent groundmass crystals. Clinopyroxene phenocrysts or 

microphenocrysts are generally subhedral to euhedral and are colourless 

augites. 

The centres of pillows are marked by an increase in the proportion 

of clinopyroxene. It appears typically as dendritic, purple-coloured, 



FIG. 27. Cut surface of a pillow lava from the Strumble Head 

Volcanic Formation, showing various zones, emphasized 

by a colour variation across the pillow (see Fig. 28). 



*4, 
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FIGS. 28a to f. Six photomicrographs representing complete rim to 

core coverage of the pillow illustrated in Fig. 27. 

Note the textural variation from rim (uppermost) 

through to core (lowermost). PPL. x60. 





FIGS. 29a to c. Photomicrographs of plagioclase forms within pillows 

of the Strumble Head Volcanic Formation. Note 

spherulitic texture, as well as tabular crystals 

passing laterally (and with optical continuity) into 

spherulitic areas. All XP. 

Scales: a) x220. 

b) x170. 

c) x170. 





FIGS. 30a to b. Spherulitic plagioclase within pillowed lava of the 

Strumble Head Volcanic Formation. PPL. 

a) x100. 

b) x175. 
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titaniferous augite, which commonly nucleated on plagioclase feldspar 

crystals (Figs. 28f and 31). The latter tend to show a more ordered 

crystal form within the cores of pillows, with lower length to breadth 

ratios. However, belt-buckle and swallow-tail crystals testify to the 

skeletal nature of these crystals (Figs. He -f and 32). 

Occasionally, the rock is dominated by a felted mass of tabular 

plagioclase crystals, with a fluidal texture. The flow lines can be 

observed bending around vesicles and also phenocrysts. Certain flows, 

for example, sample SB31, show the presence of spherulitic intergrowths 

of colourless clinopyroxene and plagioclase feldspar (Fig. 33). 

In these flows it is considered that simultaneous crystallization of 

these two phases occurred. Samples SB30 and SB34 show the presence of 

abundant'clinopyroxene far in excess of the modal proportion typical for 

the lavas of this area. It commonly forms large, skeletal crystals and 

displays evidence'of crystallizing before the feldspars. 

Vesiculation is a common feature of the basic lavas of the Strumble 

Head Volcanic Formation and many of the vesicles are partially or 

completely infilled, as briefly outlined earlier (S. 2.2.1.1. ). Thus they 

appear similar in certain ways to the 'segregation vesicles' described by 

Smith (1967). However, certain evidence offers contrast with the vesicles 

described by Smith (op. cit. ). The vesicles within the basic lavas at 

Fishguard are infilled and commonly surrounded by purple-coloured 

titaniferous clinopyroxene, along with chlorite (which is considered to 

be after glass) (Fig. 34). Plagioclase feldspar is noticeably absent 

from the vesicles and from areas surrounding the vesicles which are 

dominated by clinopyroxene. Analysis of the clinopyroxene crystals from 

within the vesicles and surrounding the vesicles shows little difference 

in composition. It is thus thöught likely that at the time of vesiculation, 

the melt was almost entirely crystal-free and that as a result of 

4 



FIGS. 31a to b. Dendritic clinopyroxene (dark), associated with 

tabular, skeletal plagioclase feldspar. Strumble 

Head Volcanic Formation. PPL. 

a) x280. 

b)'' x280. t.. 





FIG. 32. Skeletal plagioclase feldspar within basic lava of the 

Strumble Head Volcanic Formation. PPL. x200. 

'A 





FIG. 33. Curved, clinopyroxene microphenocryst in basic pillowed lava, 

Strumble Head Volcanic Formation. PPL. x280. 





FIGS. 34a and b. Clinopyroxene infilling vesicles within basic lavas 

of the Strumble Head Volcanic Formation. PPL. 

a) x140. 

b) x70. 
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vesiculation, the liquid crystallized predominantly Ti-rich clinopyroxene, 

the remainder crystallizing as glass (now chlorite). Some of the liquid 

appears to have flowed into the cavities produced. Thus, infilling of 

the vesicles was at an early stage and not at a late stage as suggested 

by Smith (op. cit. ). 

In other samples investigated a similar history may be discerned 

surrounding pipe-vesicles. For example, in sample YPP10, from Y Penrhyn, 

dendritic Ti-rich clinopyroxene infills or lines the pipe-vesicles (Figs. 35a 

and 6 ). Surrounding these vesicles, the rock is dominated by dendritic, 

Ti-rich clinopyroxene or large, skeletal, Ti-rich clinopyroxene crystals, 

which show high length to breadth ratios (Figs. 36a and 6 ). End sections 

of crystals demonstrate their hollow nature, as well as the fact that they 

are commonly composed of bundles of branching crystals, which, in three 

dimensions, have a tree-like aspect (Figs. 37 and 38). The matrix, in 

between the branches, is presently chlorite and is considered to have been 

glass originally. These crystals no doubt grew within a liquid which was 

free of other crystals which would have interfered with their development. 

Other areas show rosette-type radiating clusters of Ti-rich clinopyroxene 

crystals, or fan-shaped aggregates, once again intimately associated with 

chlorite. 

The development of these peculiar textures appears intimately 

associated with the process of vesiculation and it is possible to speculate 

a tentative history. All the cases described above show a predominance 

of clinopyroxene which displays dendritic or skeletal forms. Such forms 

are typical of liquids which have suffered relatively rapid cooling. 

As vesiculation is an endothermic process, heat will be removed from the 

zone immediately surrounding the vesicles. Such a zone may also be 



FIGS. 35a and b. Pipe vesicles in basic lava from the Strumble Head 

Volcanic Formation. Note the development of abundant 

clinopyroxene in the area immediately surrounding the 

pipe vesicle. PPL. 

a) x2.5. 

b) x12. 
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FIGS. 36a and b. Clinopyroxene-rich domain surrounding pipe vesicles 

within basic lava of the Strumble Head Volcanic 

Formation. PPL. 

a) x200. 

b) x250. 
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FIG. 37. Branching, tree-like clinopyroxene within dolerite from 

Carn Fathach (GR 938405). XP. x16. 

FIG. 38. Elongate, branched clinopyroxene from intrusive sheet 

within Strumble Head Volcanic Formation, south of 

Strumble Head (from GR 88894070). PPL. x200. 
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expected to be rich in gases, including water vapour. Thus rapid 

cooling would result in crystallization and this may be dominated by 

clinopyroxene due to the high water vapour pressure developed locally. 

High PH2O is known to suppress the crystallization of plagioclase. 

The Ti-rich nature of the clinopyroxenes is similarily related to 

cooling rate, as described later (Chapter 4). A certain amount of this 

cooled liquid may have entered the vesicle immediately after vesiculation, 

partially infilling the vesicle. 

2.2.2. BASIC INTRUSIVE ROCKS 

2.2.2.1. FORM AND EXTENT 

Basic rocks are found intruding the lavas, the volcaniclastics and 

the thin sedimentary intercalations of the Fishguard Volcanic Group. 

They also invade other sediments which underlie this pile, whilst at Pen 

Anglas (GR 950405) an intrusive sheet cuts sediments which overlie the 

volcanic rocks of the Goodwick Volcanic Formation. It is thought that 

this intrusive sheet represents one of the last events of this volcanic 

episode. Intrusions which invade the older sediments presently produce 

prominent east-west ridges, such as Y Garn-Garn Fechan, on Pen Caer 

(see Fig. 5). 

The intrusions are almost exclusively of concordant attitude, being 

locally discordant where a change of stratigraphic horizon is encountered. 

A dyke-like form, however, is assumed by one intrusive sheet on the north 

coast of Porth Maen Melyn (GR 884393) (see Fig. 64). Elsden (1905, p. 582) 

recorded the presence of fine-grained dykes on Garn Folch (GR 910392) 

but these were not observed during this study. Columnar jointing is 

generally well developed and is finely displayed on Ynys Onen (GR 890412) 

and at Penanglas (Fig. 8). The basic rocks forming the intrusions are 

usually dark green in colour and weather to produce a rusty-brown crust. 
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On fresh surfaces both plagioclase and dark-green clinopyroxene can be 

readily identified and an oxide phase may also be discerned when present 

in sufficient abundance. The plagioclase is generally discoloured to a 

light green colour, reflecting its state of alteration. Alteration veins 

are very rarely seen, although in places the rock is fine-grained and 

considerable recrystallization has occurred. An ophitic texture may be 

identified in many of the larger intrusions, with large clinopyroxene 

plates up to 4cm across. Xenoliths are noticeably rare, although where 

intrusions have invaded wet sediments large clasts are sometimes 

incorporated. Vesiculated margins to the sheets are commonly developed 

and take the form of pipe vesicles. These reach 10cm in length and 

are oriented perpendicular to the flow direction (Fig. 39 ). A second 

type of vesicle, which is seen at Penrhyn (GR 913408), is parallel to 

the margin of the sheet (Fig. 40 ). These vesicles are found some 50cm 

from the margin of the body, whilst the outermost zone, which represents 

the chilled contact, has normal pipe vesicles. It is thought that this 

second variety of vesicle, here called longitudinal vesicles, record the 

movement of lava within the intrusion after the outer zone had solidified. 

Intrusive sheets within the volcanic pile of the Fishguard Volcanic 

Group commonly intrude into thin sedimentary horizons. The disruption 

of these sediments suggests that they were unconsolidated at the time of 

emplacement and the intrusion probably took place very close to the surface 

of the pile. In other cases, however, the sheets appear to have invaded 

along the sediment partings, due to their weaker nature in comparison with 

the surrounding competent volcanic rocks. All the field evidence suggests, 

however, that the intrusive sheets are of a contemporaneous nature with 

the volcanic rocks of the area, a feature which is important in obtaining 

an understanding of the igneous history of the North Pembrokeshire area. 



FIG. 39. Pipe vesicles developed at the margin of an intrusive sheet. 

North coast of Pen Caer. 

FIG. 40. Elongate 'longitudinal' vesicles developed parallel to the 

margin of an intrusive sheet. North of Penrhyn (GR 91254085). 
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Combined with geochemical and petrographical evidence, this suggests 

that the 'Llanwnda-type' gabbros and dolerites of Elsden (1905) and 

Roach (1969), which outcrop in the area between Traeth Llyfn in the 

west and the Prescelly Hills in the east, are directly related to the 

lavas and intrusive sheets of the Fishguard Volcanic Group (Bevins and 

Roach, in press) and, as a result, their period of intrusion is 

uniquely timed. They appear to invade rocks ranging in age from the 

Cambrian (e. g. the Llech Dafad intrusion, see Fig. 5) to the D. bifidus 

zone of the Llanvirn Series. In comparison, the noritic gabbro and 

dioritic intrusions of Carn Llidi - St. David's Head and Pen Biri and 

Carnedd Lleithr (Roach, 1969) (Fig. 5), which appear petrographically 

and geochemically distinct from the 'Llanwnda-type' intrusions, do not 

appear to invade sediments younger than of Arenig age and consequently 

may be temporally, as well as magmatically, distinct. 

The intrusive sheets are comparatively thick bodies, of the order 

of up to 200 metres or so. Contacts are rarely observed but the sediments 

of the surrounding country rock are commonly spotted, as seen for example 

in the quarry on the northwest side of Carngelli (GR 922381). Further 

evidence for the pre-deformation intrusion of the sheets is provided by 

the presence of spots deformed within the cleavage planes. 

Rapid textural variations in the gabbroic and doleritic rocks can 

be identified. The Llanwnda gabbroic intrusion (Fig. 5) clearly 
demonstrates these variations and it appears possible that this body may 
in fact be composed of a number of separate intrusive sheets. Within the 

body, a preferred crystal orientation is present, producing a layering 

effect which is parallel to the upper and lower surfaces (Fig. 41). 
Within the layers, clinopyroxenes and plagioclase feldspars have a sub- 



FIG. 41. Preferred crystal orientation of plagioclase and 

clinopyroxene within the Llanwnda Gabbro. XP. x12. 

FIG. 42. Clinopyroxene within dolerite from the Fishguard area. XP. 

x120. 
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parallel alignment which producesan igneous foliation. However sections 

normal to the top and base of the body show only a random orientation 

of crystals and thus this texture may have resulted from local crystal 

accumulation. 

Pegmatitic facies are rarely developed. On Garngilfach 

(GR 910391), however, plagioclase feldspar and clinopyroxene crystals 

reach 2 cm in length in local patches. 

2.2.2.2. PETROGRAPHY 

The basic intrusive rocks of the Fishguard area possess a large 

number of mineral phases and display a wide variety of textures. The 

mineral assemblages are made up of both primary and secondary phases 

and accordingly the primary igneous textures are modified to varying 

degrees. Although it is commonly difficult to decide whether certain 

", massive sheets of basic magma within the Strumble Head Volcanic 

Formation are extrusive or intrusive, this section will describe the 
textures and petrography of the phaneritic rocks, whilst the aphanitic 
rocks and (meta-) hyaline rocks are described elsewhere (section 

2.2.1.2. ). 

., Clinopyroxene is the only abundant primary mineral present within 

these rocks (Fig. 42) and occurs as a metastable relict phase, not having 

recrystallized during the Caledonian low-grade metamorphic episode. 

Minor amounts of apatite occur in a number of the more differentiated 

intrusives (e. g. sample SB55) and this is also considered to be a relict 

primary phase (Fig. 43). From a consideration of petrographical and 
10 

geochemical evidence, it would appear that plagioclase feldspar (probably 

labradorite) was also a primary crystallizing phase, along with accessory 
f 

( 



FIG. 43. Euhedral apatite crystals associated with chlorite in 

dolerite from Treseissylit (GR 8923513). PPL. x220. 

FIG. 44. Ophitic texture in dolerite from Garn Fawr (GR 900439). 

XP. X50. 
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amounts of an iron-titanium ore phase. Olivine may possibly have been 

present in very minor amounts in some of the least differentiated 

magmas. However, due to subsequent alteration, these phases have been 

altered. Quartz, present in a number of samples may be of either 

primary or secondary origin. However, it is considered more likely to 

be secondary. 

A variety of secondary minerals were produced at various intervals 

in the history of the Fishguard Volcanic Group (e. g. during sea-water 

alteration, low-grade metamorphism etc. ). These include chlorite, calcite, 

epidote, sphene, prehnite, pumpellyite, actinolite, stilpnomelane, 

hornblende, and brown amphibole. 

The coarse-grained intrusive rocks are generally holocrystalline, 

although chlorite-epidote aggregates in certain gabbroic intrusions (Fig. 

49) are here interpreted as altered glass and hence these rocks were 

originally hypocrystalline. Clinopyroxene and plagioclase predominate in 

the gabbros, producing an hypidiomorphic-granular texture (for example 

in samples SB57 and SB55) (see App. 3) although where a tabular habit 

is present, the texture may be described as panidiomorphic granular 

(e. g. in LG65). Textures in the Y Garn and Llech Dafad intrusions are 

sub-ophitic to ophitic with large, chemically homogeneous clinopyroxene 

crystals incorporating altered plagioclase feldspars (Figs. 44 to 46). 

These large clinopyroxenes reach up to 4cm in diameter. Marginal 

replacement of clinopyroxene by hornblende has occurred within the Llech 

Dafad intrusion (Fig. 47). 

In the medium- to fine-grained intrusive rocks the texture is 

usually intergranular, that is laths of plagioclase with interstitial 



FIG. 45. Ophitic texture in dolerite from Llech Dafad (GR 882356). 

Minor chlorite is present, replacing the clinopyroxene 

in marginal area. PPL. x50. 

FIG. 46. Ophitic texture in dolerite from Y Garn (GR 916390). 

XP. x5.5. 
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FIG. 47. Clinopyroxene (left) showing marginal replacement by blue- 

green hornblende (right) Llech Dafad Intrusion 

(GR 882356). PPL. x200. 

FIG. 48. Fine-grained area between stout clinopyroxene and plagioclase 

feldspar crystals from the Llanwnda Intrusion. (GR 933392). 

PPL. x220. 
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clinopyroxene. In some cases, however, the texture becomes intersertal 

where chlorite and other secondary phases after glass are present 

between the feldspar crystals. 

Certain intrusive rocks exhibit a bimodal distribution of crystal 

size, for example sample LG6 from the Llanwnda Intrusion (Fig. 48). 

Large tabular or equant plagioclase and clinopyroxene crystals are 

separated by a fine-grained groundmass, in which dendritic, spherulitic, 

and skeletal plagioclase crystals predominate. These groundmass crystals 

clearly record crystallization conditions different from those 

responsible for the larger crystals. This may be caused by a rapid 

temperature drop after the larger crystals had formed, or alternatively 

it is possible that other factors, such as nucleation rate, modified the 

size and character of the crystals which formed. Other samples show 

interstitial chlorite or chlorite and epidote aggregates (Figs. 49a - b) 

separated by tabular plagioclase and clinopyroxene. Occasional apatite 

crystals occur within the chlorite. Various lines of evidence suggest 

that these interstitial patches represent altered glass. These 

interstitial areas would probably have contained the residual iron- 

enriched portion of the liquid. During rapid crystallization this would 

have produced an iron-rich glass and subsequent alteration of this would 

result in the formation of an iron-rich phase, such as chlorite. In 

addition, these residual fractions of the liquid might be expected to 

contain relatively high concentrations of incompatible elements such as 

phosphorous. This would result in the crystallization of apatite. 

Similar textures within gabbroic rocks have recently been described by 

Stoeser (1975), from Leg 30 of the Deep Sea Drilling Project. 

A number of intrusive sheets, particularly those invading the 

volcanic pile, possess clinopyroxenes which display a skeletal habit. 



FIGS. 49a and b. Subhedral to euhedral epidote associated with 

chlorite in dolerite from the Fishguard area. 

Small, rounded aggregates of sphene are abundant. 

PPL. 

a) x200. 

b) x200. 
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Generally, these crystals have high length to breadth ratios and 

sometimes show a branching form. Interstices and hollows within the 

crystals and crystal aggregates are commonly infilled with chlorite 

(Figs-50a and b ). Sample SB25 shows a very high proportion of 

clinopyroxene to plagioclase, although this does not appear to 

significantly modify the whole rock chemistry. 

Within single intrusions, a wide variety of textures are commonly 

displayed. This is particularly pronounced in the Llanwnda Intrusion, 

which also shows a variation in the modal proportions of the major 

mineral phases. Varying degrees of differentiation are possibly 

responsible for the variation in the modal proportions of the phases. 

Evidence for crystal accumulation is suggested by the presence of an 

igneous foliation (described above), along with the occurrence of 

granular aggregates of sub-rounded clinopyroxene crystals. These 

aggregates may also, however, be formed by synneusis. 

Ultramafic rocks are not seen in the Fishguard area and only one 

sample, collected from below Foel Trigarn, at GR SN 15783340, in the 

Prescelly Hills area, may in fact be classed as such. 

Clinopyroxene and plagioclase feldspar are the chief liquidus 

phases in these rocks, with accessory amounts of an iron-titanium ore 

and apatite. In more fractionated liquids the latter minerals increase 

in importance. The iron-titanium phase appears to have originally been 

ilmenite and thin exsolution lamellae of magnetite may be discerned, for 

example in specimen 502. Subsequently, however, the ilmenite has suffered 

alteration to sphene and/or leucoxene whilst the magnetite lamellae have 

remained unaltered, as illustrated in Figures5la and b. Apatite forms 

needles up to lmm in length and is commonly associated with chlorite 

(Fig. 43). 



FIGS. 50a and b. Branching and skeletal, coloured clinopyroxene within 

intrusive sheets from the lava pile of the Strumble 

Head Volcanic Formation. Areas between clinopyroxenes 

are generally chlorite-filled. PPL. 

a) x120. 

b) x120. 





FIGS. 51a and b. Altered ore in dolerites from the Fishguard area. 

Note the iron-rich lamellae surrounded by haloes of 

sphene. PPL. 

a) x100. 

b) x100. 
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Chlorite is the most ubiquitous of the secondary phases developed. 

It may be partly metamorphic in origin, although it may also have formed 

during initial sea-water alteration of volcanic glass. It is generally 

green to colourless, moderately pleochroic and shows anomalous blue, or 

rarely brown, interference colours. Microprobe analyses show these to 

be chiefly brunsvigites or pycnochlorites (see Chapter 4). Commonly 

chlorite is associated with epidote, an assemblage which, appears to be 

in equilibrium, as suggested by the faceted form of the epidote crystals. 

Plagioclase feldspar shows various alteration states. Usually the 

primary calcic plagioclase has been variably albitised, along with the 

development of other secondary phases. Sericitic mica forms small, 

felted masses of crystals, commonly completely pseudomorphing the 

original crystal. Crystal aggregates of pumpellyite are also present in 

many feldspars (Figs. 52a and b ), as described and illustrated by 

Bevins (1978). Prehnite may also occur in this form but more typically 

occurs in alteration veins, associated with pumpellyite (Figs. 53 and 54) 

or in interstitial areas, associated with chlorite. A characteristic 

feature of prehnite is the wavy or undulose extinction of bow-tie 

shaped or radiating crystal aggregates (Fig. 55). Small sphene 

spherules or granular aggregates are scattered throughout most of the 

intrusive rocks. Analysis of one such spherule (see Chapter 4) suggests 

that they may in fact be grothites (i. e. Al, Fe-rich sphenes). 

Generally clinopyroxene is unaltered, but in a number of intrusions 

secondary replacement is found. In the Llech Dafad intrusion this takes 

the form of marginal replacement of large ophitic clinopyroxene crystals 

by hornblende (see Fig. 47). Samples from the Llanwnda gabbro show the 

ubiquitous development of small, highly pleochroic, brown amphibole 

crystals developed within the clinopyroxene crystals. Occasionally 



FIGS. 52a and b. Pumpellyite within plagioclase feldspar crystals. 

a) from Strumble Head Volcanic Formation, b) from 

Garn Fawr intrusion. PPL. 

a) x250. 

b) x250. 
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FIG. 53. Radiating pumpellyite crystals within prehnite in alteration 

vein. Y Garn. PPL. x100. 





FIG. 54. Pumpellyite associated with chlorite and prehnite in dolerite 

from the Fishguard area. PPL. x100. 

FIG. 55. Prehnite aggregate in dolerite, showing radiating, undulose 

extinction. Garn Fawr. XP. x75. 
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chlorite or pumpellyite is seen replacing clinopyroxene (Figs. 56 and 57). 

Stilpnomelane is found locally within the intrusive rocks. It occurs 

in scattered foliae, composed of strongly coloured, highly pleochroic 

crystals. The pleochroic scheme is dark brown to colourless, 

suggesting a ferristilpnomelane variety. Calcite, although not as 

abundant as in the extrusive rocks, is also present in many of the 

intrusive rocks. Scapolite, identified by Elsden (1905) was not 

recognized during the course of this study. 

The mineralogy and phase chemistry of the basic igneous rocks are 

described in more detail in Chapter 4. 

2.3. INTERMEDIATE IGNEOUS ROCKS 

In this study rocks of intermediate composition are classed as 

those possessing between 52% and 66% Si02. Although a mineralogical 

classification would be more desirable than a chemical classification, 

this is impractical in view of the altered state of the primary phases, 

particularily plagioclase feldspar. 

Within the intermediate rocks of the Fishguard Volcanic Group, two 

main groups may be discerned. Firstly, a few thin lava flows and 

intrusive sheets of the Strumble Head Volcanic Formation possess 

comparatively high silica contents. These are samples belonging to magma 

group two (see Chapter 5) and are basaltic andesites and andesites. 

In the field, they are indistinguishable from the more basic lavas 

(magma group one) and, as such, have been included in the previous section. 

The second group of samples fall close to the intermediate-acid boundary, 

with Si02 contents in the region of 65%-67% Si02 (magma group three). 

These rocks occur both as extrusives and intrusives and may accordingly 

be termed dacites or rhyodacites and quartz-diorites, tonalites or 



FIG. 56. Marginal replacement of clinopyroxene by hornblende. 

Llech Dafad Intrusion. PPL. x125. 

FIG. 57. Replacement of clinopyroxene by pumpellyite in a dolerite 

from the Fishguard area. PPL. x400. 
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granodiorites respectively. The extrusive lavas form a part of the 

Porth Maen Melyn Volcanic Formation, whilst the intrusions form the 

masses of Garn Fawr and Penbwchdy (Fig. 83). A small number of thin, 

quartz-diorite or tonalite sheets, such as that which invades the dark 

shales in the eastern cliffs of Porth Maen Melyn (Fig. 63), may also 

belong to this suite, although no chemical analyses of these sheets 

have been attempted in view of their state of alteration. 

2.3.1. LAVA FLOWS OF INTERMEDIATE COMPOSITION 

2.3.1.1. DESCRIPTION OF THE PORTH MAEN MELYN LAVA FLOW 

Lava of dacite/rhyodacite composition forms the upper part of the 

Porth Maen Melyn Volcanic Formation and is exposed as a single unit 

some 40m thick which represents one episode of extrusive volcanic activity. 

The flow does, however, display morphological variations and these are 

described separately below. Although one of these forms may be more 

strictly described in the volcaniclastic section, it is described here 

for continuity. 

(i) Massive Lava. 

For the most part, the flow is massive and structureless. This 

form may be observed at the eastern and western extremities of the 

exposed section (see Fig. 59). The lava varies in colour from grey to 

dark green and is cryptocrystalline in aspect. A perlitic texture is 

readily observed in hand specimen, with individual perlites reaching 

5cm in diameter (Fig. 58). This indicates that subsequent hydration and 

recrystallization has affected the lava, which was originally glassy in 

parts. A complete section through this flow may be observed at 



FIG. 58. Perlitic texture in massive, rhyodacite lava from the 

Porth Maen Melyn Volcanic Formation. 

FIG. 59. Contact between volcaniclastic siltstones (right) and 

overlying massive, rhyodacite lava (left) at Porth Maen 

Melyn. Note that the junction is slightly irregular in 

nature. 
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GR 888394. The base of the flow is undulatory and it appears that the 

flow covered the underlying crystal-lithic volcaniclastic sandstones 

and siltstones before they were lithified (Fig. 59). As a result, the 

flow loaded into the underlying sediments and poorly formed flame 

structures were developed. In the centre of the unit, flow banding 

may be discerned, as illustrated in Figure 60. Little or no vesiculation 

appears to have occurred. Small quartz spherulites, up to 5cm in 

diameter, are present throughout the lava and are considered to be of 

secondary origin. Within the uppermost 5m, the lava is brecciated. 

Angular lava fragments are set within a fine grained matrix and this 

probably represents an autobreccia (Fig. 61). The contact of the flow 

with the overlying basic pillow lavas of the Strumble Head Volcanic 

Formation is marked by a thin horizon of hyaloclastite. Grey rhyodacite 

lava blocks are incorporated in a chlorite matrix (Figs. 62a and b) 

suggesting that the earliest basic magma mixed with blocks of the 

underlying flow (possibly loose blocks on the flows upper surface). 

In the extreme west of the exposed section (GR 882396) further 

outcrops of massive lava are present. The upper contact with the basic 

pillow lavas reveals the presence of a number of dip faults in this area. 

A basic sheet cuts through the lava and in view of the irregular, lobate 

contacts between the two rock types (Figs. 63a and b) it is thought that 

intrusion followed very shortly after extrusion of the lava flow. This 

reveals a pattern repeated throughout the development of the Fishguard 

Volcanic Group; that of the simultaneous availability of magmas of 

contrasting composition. 



FIG. 60. Flow banding within rhyodacite lava of the Porth Maen Melyn 

Volcanic Formation. 

FIG. 61. Rhyodacite lava fragments within rhyodacite lava at the top 

of the flow of the Porth Maen Melyn Volcanic Formation. 





FIGS. 62a and b. Thin zone of hyaloclastite containing angular, 

rhyodacite blocks at the junction between the 

Porth Maen Melyn and Strumble Head Volcanic 

Formations. 





FIGS. 63a and b. Irregular contacts between dolerite (dark grey) and 

rhyodacite (light grey), southeast of Pen Brush 

(GR 88253949). 
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(ii) Lava tubes and pillows. 

Some 400m from the northeast corner of Porth Maen Melyn (Fig. 64) 

the rhyodacite lava flow contains flow tubes and cylinder-like pillows 

(GR 88453933). Unfortunately, due to the inaccessible nature of the 

cliff, the transition from massive lava to pillowed lava with tubes 

cannot be directly observed. The cylinders appear to plunge 

approximately southwards at a moderate angle and range in diameter from 

0.5 to 3 metres. They vary considerably in form, particularly along 

their axes, with numerous constrictions and protruberances. Figures 65a 

and b illustrate typical tubeforms. The longest cylinder-like tube 

observed has a length of approximately 10m. Where no matrix occurs 

between the tubes, drape structures may be preserved. The lava forming 

the tubes is a massive, irregularly-jointed dacite or rhyodacite which 

is grey to purple in colour, identical to the massive lava described 

above. A peculiar vein-network is commonly developed in the margins 

of many tubes (Fig. 66). Although their origin is not certain, it is 

thought that they were produced during the initial fracturing of the 

lavas upon cooling. 

In the area where flow tubes are developed, the top of the flow 

is represented by a white, micro-crystalline lava which possesses a 

particularly well-developed perlitic texture. 

At the top of this section, the junction with the overlying basic 

pillows is marked by a thin (60cm) pelitic horizon, which has been 

invaded by a thick columnar-jointed intrusive sheet. Traced laterally, 

the contact is seen to be somewhat undulating, striking approximately east- 

west and dipping gently northwards. It can be clearly picked out due to 



FIG. 64. Geological sketch map of the area north of Porth Maen Melyn 
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FIGS. 65a and b. Lava tubes within rhyodacite lava, north side of 

Porth Maen Melyn (GR 88503933). 
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FIG. 66. Vein-network in marginal part of flow tube. North side of 

Porth Maen Melyn (GR 88503933). 
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the colour contrast between the weathered surfaces of the basic and 

intermediate lavas, particularly when observed from the south side of 

Porth Maen Melyn (Fig. 67). 

(iii) Isolated-pillow breccia. 

A traverse eastwards from the exposures of lava tubes and pillows, 

described above, reveals a gradation into isolated, discrete and 

unbroken pillows, set within a clastic matrix. Rocks possessing these 

characteristics were termed isolated-pillow breccias by Carlisle (1963). 

Although they would be more correctly described in Section 3.3., they 

will be dealt with here for continuity. 

The pillows form spheroidal to discoidal shaped bodies, up to 2m 

in diameter (Figs. 68 and 69). Some, however, assume an ovate shape due 

to slight flattening during Caledonian deformation (Fig. 70). 

Generally they are larger than the basic pillows of the Strumble Head 

Volcanic Formation, one of a number of contrasts that the rhyodacite 

pillows show when compared with the overlying basic pillows. The lava, 

as elsewhere within the flow, is grey-green to purple and microcrystalline. 

An irregular, concentric joint system is present in a number of pillows 

(Fig. 69b), contrasting with the typical radial joint patterns of the basic 

pillows (Fig. 15). At the margins of some pillows white, subrounded 

alteration patches are present. On close examination, they are found to 

possess dark green, chlorite cores which are microcrystalline and contain 

traces of a perlitic cracking (Fig. 71). Material occurring between the 

pillows, and forming the matrix of this breccia, is present in variable 

quantities, amounting to about 50% of the total rock volume in certain 

areas. This variation can be seen in Figure 72. The inter-pillow 

material contains two main components which are readily distinguishable 



FIG. 67. View across Porth Maen Melyn, looking northwards. Junction 

between the Porth Maen Melyn Volcanic Formation and the 

Strumble Head Volcanic Formation may be seen in the cliffs 

opposite. 
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FIG. 68. Isolated rhyodacite pillows within isolated-pillow breccia 

of the Porth Maen Melyn Volcanic Formation (GR 88533934). 
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FIGS. 69a and b. Discrete pillows in isolated-pillow breccia of the 

Porth Maen Melyn Volcanic Formation. Note concentric 

joint pattern in Fig. 69b (GR 88533934). 





FIG. 70. Rhyodacite pillow in isolated-pillow breccia at GR 88533934. 

Foliation in the matrix of the breccia is deformed around the 

pillows which are slightly flattened due to the effects of 

Caledonian deformation. 





FIG. 71. Margin of rhyodacite pillow, showing the development of 

white, sub-rounded patches. The matrix, composed essentially 

of phengitic mica and quartz, possesses a steeply-dipping 

planar foliation. GR 88533934. 

FIG. 72. View eastwards from above locality, showing the abundant 

matrix of the isolated-pillow breccia in this area. 
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in Figure 73; namely dark brown, angular, micaceous fragments set 

within fine-grained quartz-rich areas, which take the form of a series 

of veins. Occasional white spheroids are seen weathered out on exposed 

surfaces. These are similar to the white, sub-rounded patches present 

within the pillow margins and suggests that the matrix was derived 

from fragmented pillow material. This contention is supported by the 

transitional junction between the lava and matrix which may be observed 

in pressure shadow regions at the top and bottom of the pillows (Fig. 74). 

The effects of deformation were stronger in the rock matrix than in the 

pillows themselves, and as a result an irregular schistose foliation, 

formed by the parallel alignment of micaflakes, occurs within the matrix. 

The general strike orientation of this foliation is east-northeast, 

dipping steeply south-southeast, although it is deflected in the 

neighbourhood of the more competent pillows (Fig. 70). Slickensided 

surfaces are common within the matrix. 

2.3.1.2. PETROGRAPHICAL DESCRIPTION OF THE PORTH MAEN MELYN FLOW 

(i) Rhyodacite lava (massive and pillowed). 

From petrographical evidence, it can be demonstrated that the 

Porth Maen Melyn rhyodacite flow was initially partly glassy and partly 

crystalline in character. The glassy areas have subsequently suffered 

hydration and recrystallization and a perlitic texture is well developed. 

Plagioclase phenocrysts were contained within the liquid lava and show 

evidence of magmatic corrosion. Glomeroporphyritic clusters, as 

illustrated in Figure 75, are occasionally developed. The plagioclase 

is generally altered, with crystals of sericitic mica incorporated within 

them. Extinction angle determinations suggest that the feldspar is highly 

sodic, probably albite, but it is not determinable whether this 



FIG. 73. Isolated-pillow breccia matrix, showing two components; 

the dark mica fragments and the lighter quartzo-feldspathic 

areas. 

FIG. 74. Margin of rhyodacite pillow, showing the gradual transition 

from lava to isolated-pillow breccia in a pressure-shadow 

region. 
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FIG. 75. Glomeroporphyritic cluster of plagioclase feldspar (now 

altered) in rhyodacite lava from the Porth Maen Melyn 

Volcanic Formation. PPL. x25. 

FIG. 76. Perlitic texture in metasomatized rhyodacite from the 

Porth Maen Melyn Volcanic Formation. Outlines of fractures 

emphasized by sphene. PPL. x100. 
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composition is primary or secondary, although it is almost certainly 

the latter. These 'phenocrysts' are considered to be truly intratelluric, 

in contrast to the large crystals present within some of the basic pillows 

which appear to have resulted from changing physical conditions, during 

monotonic cooling and as such are not the direct result of two distinct 

stages of crystallization. This view is enforced both by the evidence 

of magmatic corrosion and the lack of spherulitic overgrowths, as 

commonly displayed by crystals which developed during one continuous 

growth period. 

A glassy groundmass was present in areas where flow tubes and 

isolated-pillow breccias developed. Subsequent recrystallization led to 

the development of a microscopic intergrowth of crystals, showing a 

variety of forms. X-ray diffraction examination of this groundmass 

revealed both quartz and albite, with minor potassic feldspar. As such, 

the flow is probably dacitic to rhyodacitic in character, although the 

term rhyodacite was adopted by Bevins and Roach (in press), after a 

consideration of both mineralogy and whole-rock geochemistry. 

Unfortunately, the altered state of the rocks in question negates the 

use of a truly reliable mineralogical classification. Small, granular 

sphene aggregates occur disseminated throughout the rock, as do small, 

skeletal crystals of ore. Thin, irregular quartz, calcite, and epidote 

veins traverse the lava. 

In thin section, the white, microcrystalline lava which occurs at 

the top of the lava pile, is seen to possess occasional, rounded 

pseudomorphs after feldspar, within a fine grained groundmass. These 

are similar to the phenocrysts in the main part of the rhyodacite lava. 

A perlitic texture is well developed and is emphasized by small sphene 
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granules which nucleated along the cracks (Fig. 76). An x-ray diffraction 

trace of the groundmass of this rock reveals the presence of significant 

amounts of K-feldspar and quartz, with only minor albite. 

It is thought that this part of the flow has suffered extensive 

potassic metasomatism (see analysis REB414, Appendix 1). Further 

evidence of local metasomatic potassic enrichment is provided by the 

potash-rich spherules which occur within the marginal areas of the 

isolated pillows (see analysis 175S, Appendix 1), as well as the highly- 

potassic nature of the matrix of the isolated-pillow breccias (see 

analysis of phengitic mica, Appendix 2). It is possible to suggest an 

age for this alteration and this results in an approximate age limit for 

the formation of the isolated-pillow breccia. It appears that the 

alteration occurred prior to deposition of the overlying basic lavas, 

as no evidence of potassic alteration is seen within the latter rocks. 

At this stage, sea-water was able to penetrate through the rocks 

particularly utilising channelways such as inter-tube areas. As a 

result, the inter-tube areas, along with the marginal parts of the tubes 

or flow lobes themselves suffered extensive metasomatism. Clearly, the 

isolated-pillow breccia, according to this model, was generated at an 

early stage. 

Those parts of the flow which had a primary crystalline character 

show a variety of crystal morphologies. Large, skeletal feldspars reach 

up to 3mm in length and are commonly overgrown by spherulitic feldspars 

which are in optical continuity. These appear to represent the products 

of rapid crystallization and similar textures have been reproduced by 

Lofgren (1974) during rapid cooling experiments. The remainder of the 

crystalline groundmass is composed of plagioclase showing a dendritic 



FIG. 77. Dendritic growth in groundmass of rhyodacite lava from 

Porth Maen Melyn. x150. 

FIG. 78. Flow aligned feldspars in rhyodacite lava from Porth Maen 

Melyn. x80. 
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growth pattern (Fig. 77). Occasionally, small crystallites may be 

identified. Evidence for a primary mafic phase is rare, although 

sample 330 contains chlorite pseudomorphs up to lmm in length, 

probably after clinopyroxene. Skeletal ore is sometimes present in 

an unaltered state, although the abundance of secondary (probably 

metamorphic) sphene suggests that much of the ore has been replaced. 

The character of the spheroidal structures in the pillow margins is 

described below. 

Certain other interesting textural features are revealed by thin 

section examination of these rocks. Firstly, specimen 408, which was 

originally hemicrystalline in character, possesses a well-developed 

perlitic texture. In places, this can be seen cutting through primary 

plagioclase crystals, showing that a perlitic texture may form in rocks 

which were partially crystalline in aspect. Similar to other examples, 

sphene granules within the cracks highlight this perlitic texture. A 

flow foliation is defined by the parallel alignment of feldspar crystals 

in a number of specimens from this flow (Fig. 78). 

(ii) Isolated-pillow breccia. 

Pillows within the isolated-pillow breccia are composed of 

rhyodacite lava and show identical petrographical characteristics to the 

rhyodacite lava of the main part of the flow. The matrix is composed of 

two distinct components: (i) brown micaceous fragments, set within; 

(ii) a network of siliceous veins (Fig. 73). 

The mica is moderately birefringent and possesses a brown colour, 

locally intense and weakly pleochroic. This presumably reflects the 

moderate iron content of the mica (see analysis of mica in Appendix 2). 
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The potassium content is also moderately high in this mica and as such 

it falls between the end members of the muscovite-celadonite series. 

An x-ray diffraction analysis suggests that it is a 2P1 type polymorph 

and is phengite. This agrees with the chemical data. Titanium and 

calcium are high for typical mica structures, but this is thought to 

be due to the presence of abundant small sphene granules, scattered 

throughout the mica (see Fig. 79). Unfortunately, it was not possible 

to separate these from the mica. The origin of this mica is thought 

to be related to the alteration of rhyodacitic lava fragments, a 

contention supported by the presence, within the mica, of rounded, 

altered plagioclase phenocrysts, similar to those occurring within the 

lava. The marginal zones of the mica fragments show colloform leucoxene 

and sphene (Fig. 80). These patterns are similar to iron-oxide zones 

developed around basaltic hyaloclastite fragments, as described by 

Bonatti (1970), Jackobsson (1972), and Furnes (1975). Consequently, they 

may have formed in a similar manner to that described by the above 

authors, that is by the interaction between glass and sea-water. 

The white, globular to sub-rounded structures present within the 

marginal parts of pillows and within the matrix of the isolated-pillow 

breccias are composed in part of small, circular, quartz spherules (Fig. 81). 

The potash-rich character of these structures (analysis 175s, Appendix 1), 

however, suggests that a potassic feldspar is also present. These 

spherulitic aggregates commonly surround a dark green, cryptocrystalline 

chloritic core. A perlitic fracture system, emphasised by sphene granules, 

is present within the spherules, although it is largely obliterated by 

the chlorite possibly suggesting a late-stage origin for the chlorite 
(Fig. 82). The history and chemical development of these spherules is 

clearly complex. 



FIG. 79. Spherical sphene granules within phengitic mica. From the 

isolated-pillow breccia within the Porth Maen Melyn 

Volcanic Formation. PPL. x20. 

FIG. 80. Zoned margins to phengitic mica fragments. Isolated-pillow 

breccia, Porth Maen Melyn. PPL. xlO. 
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FIG. 81. Photomicrograph of a globular to sub-rounded body within the 

isolated-pillow breccia at Porth Maen Melyn. The dark core is 

chloritic, and is surrounded by small quartzo-feldspathic 

spherules. PPL. x12. 

FIG. 82. Close-up of a part of Fig. 31, showing the perlitic texture 

overprinted by chlorite. PPL. x25. 
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The mica fragments are enclosed within a siliceous matrix, which 

assumes a vein-like aspect. The veins are between 0.1 and 2.0cm 

thick but vary rapidly in both thickness and orientation. In places, 

this matrix is dark, with a dusty appearance caused by the presence 

of abundant, microgranular sphene and leucoxene aggregates. Rare 

plagioclase microphenocrysts are present and are similar to those of 

the massive rhyodacite lava. Pyrite aggregates occur sporadically 

throughout. Some of the silica of these vein-like areas may have been 

released from the glass fragments during their alteration to phengite. 

(iii) Interpretation of the Porth Maen Melyn lava flow. 

The Porth Maen Melyn rhyodacite lava flow is considered to be 

unique in the Lower Palaeozoic volcanic sequences of Wales and indeed is 

a rare geological phenomenon when considered in a wider context. 

Although basic pillow lavas are relatively common and have been 

identified and described many times, pillow forms in rocks of acid to 

intermediate composition, as identified here, are rare features. 

Salterley (1941a and b) described rhyolitic pillow lavas in the 

Precambrian of Ontario, whilst more recently, Lipple (1972) has 

documented silica-rich pillow lavas from Western Australia. However, 

such accounts are not common. The Porth Maen Melyn section exhibits a 

variety of forms within one single flow, the origin for which will be 

described below. 

As described previously, the Porth Maen Melyn flow represents a 

40m thick, partly glassy, rhyodacite lava flow which extruded on to the 

seafloor and flowed over unconsolidated crystal-lithic volcaniclastic 

sandstones and siltstones. Local variations within this flow were 

produced and these resulted in the generation of elongate lava tubes and 
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pillows along with the development of isolated-pillow breccias. 

The cylinder-like tubes possess a moderate southward plunge and it is 

considered that this resulted from extension of the flow, caused by the 

lava flowing over a submarine slope. Moore et al. (1971) and Arculus 

(1973) described the submarine continuations of the 1381 A. D. and 

1329 A. D. Mount Etna lava flows, where elongate tube-like forms and 

'pillows' were produced as the basaltic lava flow draped over steep 

submarine slopes. This resulted in a thinning of the glassy crust, 

with extension allowing budding and the formation of new flow tubes. 

A similar mechanism is envisaged for the production of the rhyodacite 

tubes and pillows at Porth Maen Melyn. Generally, however, pillows are 

not developed in acidic lava flows, due to the high viscosity of such 

magmas. It is clear that factors capable of lowering the viscosity must 

have been in operation. Bevins and Roach (in press) concluded that a 

combination of the fast effusion rate of a hot magma which was poor or 

lacking in phenocrysts may have produced a magma of sufficient fluidity 

to develop tube and pillow-like forms at a point where the lava flowed 

down a submarine slope. The lack of evidence for extensive vesiculation 

may also be important in that volatile-rich magmas are generally more 

fluid than gas-poor magmas. Pichler (1965) stressed that acidic magmas 

generally produce explosive eruptions. However, where these are not 

recognized, the magma may be capable of producing a lava flow of 

comparative fluidity. Lipple (op. cit. ) gave no suggestions to account 

for the mode of formation of the Soansville silica-rich pillows, but 

clearly chemical and textural similarities between lavas and the Porth 

Maen Melyn flow exist. 

Laterally, this zone of flow-tubes and pillows can be traced into 

an area where isolated-pillow breccias are developed. These are composed 
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of rounded, discrete, unbroken pillows, set within a matrix of angular, 

micaceous fragments which are surrounded by a siliceous cement. The 

mica fragments are considered to be pseudomorphs after rhyodacitic 

glass. These fragments were probably produced as a result of the 

desquamation of the hot magma, in contact with the relatively cold sea- 

water. As such, these inter-pillow areas of the isolated pillow breccias 

constitute a variety of hyaloclastite. Acid hyaloclastites are not 

common, although Pichler (1965) described such rocks from the Western 

Ponza Islands in the Tyrrhenian Sea. He stated that acid hyaloclastites 

may form either due to the auto-brecciation of the outer part of 

developing flows or domes or as a result of the rapid chilling and 

shattering of hot lava in contact with sea-water. Both processes probably 

operate simultaneously and "are an example of convergency" (Pichler, op. 

cit., p. 306). He also stated that acid hyaloclastites, besides their 

chemical differences, differ from basic hyaloclastites in that, due to 

their high viscosity, they do not occur associated with pillows. The 

example described here contradicts this statement. He suggested that 

highly explosive eruptions destroy the chances of formation of acid 

hyaloclastites, whilst quiet eruptions allow significant quantities of 

hyaloclastites to develop. The lack of evidence for an explosive episode 

during the eruption of the Porth Maen Melyn rhyodacitic lava flow appears 

to confirm the contention of Pichler. However, the isolated-pillow 

breccia developed only locally and conditions for extensive desquamation 

were not widespread. A site suitable for such a process to occur 

effectively is at the flow front. If abundant magma was continually 

available, then significant areas of hot magma could be exposed to the 

chilling effects of the cold sea. Thus, flow tubes would suffer marginal 

shattering, a process which would be arrested either by the shattered lava 
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fragments forming an insulating carapace to the still-liquid interior, 

or by the cooling and consolidation of the whole flow. The concentric 

joint pattern, seen in a number of pillows, may also have developed at 

this time. 

As stated above, it appears that extensive metasomatic activity 

has affected these rocks, producing the K-rich spherules, as well as the 

phengitic mica within the matrix. Although no direct analogies to these 

rocks have been documented, many workers have noticed considerable 

increases in K20 in oceanic basalts and hyaloclastites during sea-water 

alteration processes. Bonatti (1970) reported that during hydration of 

basaltic glass dredged from the Southeast Pacific depletion of Ca, Mg, 

Na and Mn occurred, whilst, in contrast, both Fe and K were considerably 

enriched. Moore (1966) also recorded considerable enrichment in potassium 

within palagonitized basaltic glass from Muana Kea, Hawaii and he 

attributed this to alkali transfer. Other cases of potassium enrichment 

in basaltic lavas by sea-water have been reported by Frey et al. (1974), 

Hart (1969) and Hart (1973). Although in the Porth Maen Melyn case the 

primary material is of a different composition, it is considered possible 

that the alteration effects may have been of a similar nature. 

Thus, it is apparent that the rhyodacite lava flow of Porth Maen 

Melyn shows a variety of morphological and chemical features. For the 

most part, the flow appears to have been massive, with an irregular base 

and a rubbly, autobrecciated top. Locally, however, possibly due to the 

presence of a submarine escarpment, the lava flow produced elongate flow 

tubes and pillow-like forms, as it extended downslope. Exposure of hot 

magma on the slope and at the flow front allowed desquamation to occur and 

resulted in the generation of isolated-pillow breccias. 
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2.3.2. INTRUSIONS OF INTERMEDIATE COMPOSITION 

In the area to the south of Porth Maen Melyn, a number of large 

intrusive sheets invade the Arenig and Llanvirn sediments (Fig. 83). 

The rocks constituting these sheets are light grey in colour, due to 

a predominance of plagioclase feldspar (up to 70% modal proportion). 

The largest of these sheets is Penbwchdy, where the intrusion forms the 

steep sea cliffs from Carn Ogof (GR 888379) to Penbwchdy (GR 876374). 

A second sheet occurs further north, in the Garn Fawr - Garn Fechan area 

(Fig. 1). Although this is seen at the surface as two distinct outcrops, 

separated by dolerite, the exact relationships are unclear and it is 

thought that the two outcrops of intermediate rock are linked at depth. 

Good columnar jointing is particularly well developed in these latter 

outcrops. 

A minor intrusive sheet, also light grey in colour, and composed 

predominantly of plagioclase feldspar, is present in the cove at Forth 

Maen Melyn. This sheet invades dark, unfossiliferous shales, which are 

probably Llanvirn in age (Fig. 64). 

2.3.2.1. INTRUSIVE SHEET AT PORTH MAEN MELYN 

This minor intrusion shows evidence of having been eniplaced into 

wet sediments and it probably represents one of the earliest volcanic 

events in the history of the Fishguard Volcanic Group. The upper and 

lower contacts of the sheet are irregular and large flames of sediment 

inject into the body. Detached, baked xenoliths of sediment are present 

within the sheet. A thin, chilled zone surrounds the intrusion for a 

distance of approximately 5cm. 



FIG. 83. Sketch map illustrating the distribution of magma of an 

intermediate composition in the western area of Pen Caer. 
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In thin section, it can be seen that the sheet is composed almost 

entirely of plagioclase feldspar which has been variably altered. As 

a result there is abundant calcite present (Fig. 84). Andesine is 

locally preserved and crystals commonly show evidence of compositional 

zoning. Skeletal ore is scattered throughout the rock and in many cases 

shows evidence of alteration to sphene. An iron-rich mica is also 

sparsely present. 

Due to the pervasive carbonation, a chemical analysis of this rock 

was not attempted. It is thought, however, that since it was intruded 

whilst the sediments were wet, it may represent an intrusive phase 

approximately equivalent to the overlying rhyodacite lava flow of the 

Porth Maen Melyn Volcanic Formation. Petrographically, the two magmas 

are similar with the exception of grain size. 

2.3.2.2. THE GARN FAWR - GARN FECHAN INTRUSIVE SHEET 

This east-west trending sheet forms the crags of Garn Fawr and 

Garn Fechan. On Garn Fechan, dolerite occurs on the north side of the 

crags, but its relationship with the rocks described here cannot be 

discerned due to the lack of exposure. 

These rocks were first described by Cowper-Reed (1895) who identified 

the presence of 'tachylitic' rocks. He described two varieties of 

tachylite, one possessing long, chain-like crystallites set within a 

finely crystalline groundmass and the second containing only a fine-grained 

groundmass, devoid of the crystallites. Both of these varieties were 

recognized during the present study. 



FIG. 84. Plagioclase feldspar, ore and calcite within a thin intrusive 

sheet at Porth Maen Melyn (GR 88893922). PPL. x125. 

FIG. 85. Biotite crystals in fine-grained, feldspar rich groundmass. 

Microdiorite from Garn Fawr. x200. 
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The groundmass is composed predominantly of plagioclase feldspar 

and some quartz with rare biotite, elongate, chain-like clinopyroxene 

and secondary chlorite and sphene (Figs. 85 and 88). Occasional 

tabular plagioclase microphenocrysts, up to 3mm in length, occur, as 

for example in sample RD260, and extinction angle measurements show 

these to be of an albitic composition. The groundmass feldspars show 

a considerable variation in size and form. Elongate and tabular 

crystals, up to 2mm in length, are present as euhedral crystals with a 

length to breadth ratio of up to 20 : 1. Dendritic forms (Fig. 87) are 

also common. More rarely, they are equant. Most of the crystals are 

hollow and show typical 'belt-buckle' structures (Fig. 86). Commonly, 

the tabular crystals of the groundmass and the microphenocrysts pass 

laterally into other crystal forms. In sample RD260, for example, the 

tabular crystals of the groundmass are overgrown by a dendritic form 

with which they are in optical continuity. In sample RD256, however, 

the tabular crystals are encompassed by spherulitic plagioclase, once 

again in optical continuity. Accessory amounts of apatite and zircon 

are also present. 

Due to the secondary alteration and variability in modal 

proportions of the phases present, it is difficult to give these rocks 

a petrographic name. It is felt, however, that all of the intrusions 

described in this section fall within the fields of tonalites or diorites 

(or micro-tonalites and micro-diorites), which are locally granophyric. 

The crystal textures described are similar to those produced during 

experiments on lunar and terrestrial rocks by such workers as Lofgren, Donalds 

Usselman. It is possible to reproduce these textures during cooling 

experiments either by monotonic cooling or isothermal cooling. In the 



FIG. 86. Skeletal, hollow plagioclase microphenocrysts within 

microtonalite. Garn Fawr. PPL. x200. 

FIG. 87. Dendritic plagioclase feldspar. Locality as above. 

XP. x200. 





FIGS. 88a and b. Elongate and dendritic clinopyroxene (now altered to 

chlorite). From micro-tonalite, Garn Fawr-Garn 

Fechan Intrusion. PPL. 

a) X100. 

b) X85. 
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former experiments, charges are cooled at a controlled rate to 

approximately solidus temperatures and then quenched, whilst in the 

latter experiments the charge is rapidly cooled (at up to rates of 

2500°/hr. ) to a crystallization isotherm, which is then maintained for 

a given time before final quenching. Thus, the textures present 

within the Garnfechan - Garn Fawr intrusion may have been produced 

either by a rapid cooling or by suffering a large amount of undercooling. 

The uniformity of the textures across such a thick sheet suggest 

that the magma could possibly have been intruded at a relatively low 

temperature, after which rapid nucleation occurred, producing the 

textures described above. Donaldson et al. (1975) reproduced chain-like 

olivines and pyroxenes at cooling rates of 100°c/hr. to 380°c/hr. and 

also at supercooled temperatures in the range 80°c to 150°c. Although 

these were obtained by melting lunar olivine basalt, the method of 

producing the textures within the Garn Fawr intrusion is no doubt related 

to one, or possibly both, of the above processes. Lofgren (1974, Plates 

3c and 3d) illustrates textures identical with those described above. 

These were produced by suddenly induced large drops in temperature during 

cooling. It is therefore possible that rapid nucleation occurred due to 

a drop in temperature below the liquidus temperature, followed by a 

steady decline in temperature. The plagioclase microphenocrysts probably 

represent intratelluric crystals and therefore crystallized under 

different conditions from the main body of the rock. 

The elongate, needle-like clinopyroxene crystals were first 

described by Cowper-Reed (1895), who compared them with crystallites from 

Arran pitchstones and from the Weiselberg pitchstone, figured by 

Rosenbusch (1885,1887). In some cases, the crystals have been replaced 
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by chlorite but the overall structure is still present. The length to 

breadth ratio of these crystals is of the order of 50 :1 and they are 

clearly dendritic, with secondary or tertiary branches (Fig. 88). 

Elongate, chain-like clinopyroxenes and dendritic pyroxenes have also 

been reproduced experimentally and result frone the rapid cooling or 

supercooling of magmatic liquids. 

Biotite, identified in sample RD254, is seen to be in reaction 

relationship with chlorite. Although it is not clear exactly which way 

the reaction is proceeding, it is thought likely that the biotite is a 

relict igneous phase showing partial replacement by chlorite. 

2.3.2.3. PENBWCHDY INTRUSIVE SHEET 

The headland of Penbwchdy is composed of a large intrusive sheet 

which invades arenaceous sediments of Arenig age. The rock is 

holocrystalline, with a coarse, equigranular texture, locally 

granophyric. Although not described in any of the early literature 

(e. g. Cowper-Reed, 1895; Elsden, 1905 etc. ), Roach (1969) differentiated 

this body from the surrounding basic intrusions. This sheet, along with 

the Garn Fawr - Garn Fechan Intrusion, was termed 'granophyric' by 

Roach (op. cit. ). 

The rock is slightly porphyritic, with plagioclase phenocrysts up 

to 2mm in length set within in a groundmass composed of plagioclase 

feldspar, quartz and quartz/feldspar intergrowths. The plagioclase of 

the phenocrysts is albitic, although this may not reflect the primary 

composition. Chlorite is abundant throughout, as is another secondary 

phase which has moderate birefringence and weak green to colourless 

pleochroism (possibly stilpnomelane). These phases occasionally are seen 

to be pseudomorphing a primary mafic phase (probably clinopyroxene). 
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Minor sphene and epidote are also present, along with haematite which 

replaces a primary ore phase, probably magnetite. Apatite and 

zircon occur in accessory amounts. 

2.3.2.4. INTRUSIVE SHEET OF GARN LLWYD (GR 920408) 

A thin, light-coloured, discordant, intrusive sheet cuts the 

basic lavas on the headland of Carn Llwyd, close to the summit of 

the small knoll on the headland. The rock is composed of equant, 

strongly zoned, plagioclase crystals, set within a dusty groundmass of 

spherulitic and dendritic plagioclase and minor quartz. Sphene is 

scattered throughout the rock but pseudomorphs after an original mafic 

phase are noticeably absent. Petrographically, the rock appears to be 

similar to the intermediate rocks described above and hence is included 

here. However, if it is of similar composition it testifies to the 

presence of magmas of intermediate composition during or after the 

eruption of thick basic lava pile of the Strumble Head Volcanic 

Formation. 

2.3.3. RELATIONSHIPS BETWEEN THE LAVAS AND INTRUSIVE SHEETS OF 

INTERMEDIATE COMPOSITION 

The lavas and intrusions described above all have petrographic 

similarities, although grain sizes and other textural features are 

slightly variable. Their major feature is the high modal proportion 

of plagioclase feldspar and a corresponding lack of mafic constituents. 

In an attempt to determine whether the various sheets and flows 

were a part of the same magmatic suite, a number of chemical analyses 

were determined and combined with unpublished analyses provided by 
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Dr. R. A. Roach. As previously stated, no attempt was made to analyse 

the composition of the thin, intrusive sheet at Porth Maen Melyn in 

view of its highly carbonated nature. However, analyses of the Porth 

Maen Melyn lava flow, the Garn Fawr - Garn Fechan sheet and the 

Penbwchdy sheet were determined and these are to be found in Appendix 1. 

Examination of these analyses reveals certain similarities. The slight 

variations within the major element results may be analytical, due to 

the fact that the analyses were made in two laboratories. However, the 

trace element results reported were all determined by the author by 

x-ray fluorescence techniques at the University of Keele. A close 

similarity in the concentrations of some of the so-called 'immobile 

elements' within the lavas and intrusive rocks may be seen (for example, 

the Y and Zr contents). It is thus suggested that the various intrusive 

sheets belong to the same magmatic suite as the extrusive flow of 

Porth Maen Melyn. This, once again, emphasises the contemporaneous 

nature of the intrusive and extrusive activity in this area during Early 

Ordovician times. 

2.4. ACID IGNEOUS ROCKS 

Acid igneous rocks form a significant volume of the Fishguard 

Volcanic Group in the Strumble Head - Fishguard area. When traced 

eastwards, into the Newport - Prescelly Hills area, it appears that their 

importance may be even greater (Reed, 1895; Davies, 1936; Thomas and 

Thomas, 1956). This may principally be due to an increase in the amount 

of acidic volcaniclastic material in that region (Evans, 1945; Bevins 

and Roach, in press). However, this region was not surveyed in detail 

during the present study. 
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The acidic rocks of the Strumble Head - Newport area were 

initially described by Reed (1895), who identified both lava flows 

and associated volcaniclastic rocks. Cox (1930) briefly described 

the acidic volcanic rocks of the Strumble Head region whilst they 

were described some years later, in greater detail, by Thomas and 

Thomas (1956). In contrast with the basic and intermediate magmas, 

high-level intrusive sheets of acidic composition were not recognized 

in this area and the magma appears to have been, for the most part, 

extruded on to the sea-floor to produce thick lava flows and domes. 

This situation offers contrast to that of North Wales, where thick, 

acidic, intrusive sheets have been described by a number of workers, 

for example, Davies (1958), Bromley (1965) and Rast (1969). 

Chemically, the acidic lava flows can be clearly distinguished 

from the intermediate lava flow at Porth Maen Melyn (see Appendix 1), 

whilst they can also be readily distinguished in the field by a number 

of morphological differences, which are described in detail below. 

Rhyolitic lavas are found associated with autoclastic rocks of a 

number of localities on the Pen Caer peninsula. The most extensive 

outcrops occur within the Goodwick Volcanic Formation, in the vicinity 

of Goodwick Harbour Village (GR 948390), particularly along the road 

section from Goodwick, and the Warren area (GR 950401), at the eastern 

end of the Peninsula. Other, less extensive flows are found within the 

Porth Maen Melyn Volcanic Formation, in the neighbourhood of Caer-Lem 

Farm (GR 903395), Carngelli (GR 923379) and also at the base of the 

succession at Porth Maen Melyn (Fig-64 ). Unfortunately the lack of 

inland exposure in the Fishguard region commonly negates the inter- 

pretation and possible correlation of many of these lava sequences. 



FIG. 89. Geological sketch map of the area north of Goodwick. 
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Consequently exposures in coastal regions are most useful and the 

exposures on the Warren, Y Penrhyn and Penfathach (Fig. 89) are the 

most illustrative in interpreting the nature of this episode of acidic 

volcanicity. 

2.4.1. FIELD CHARACTERISTICS OF THE RHYOLITIC LAVAS 

The rhyolitic lavas form hard, white-weathering rocks of a flinty 

nature. When freshly exposed they are dark bluish-grey in colour, 

occasionally showing a conchoidal fracture. They commonly possess a 

speckled aspect, due to large spherulites scattered throughout the rock. 

In most flows a porphyritic texture is developed, with feldspar 

phenocrysts discernible in hand specimen. Textural variations are 

common, however, even on a very local scale. Flow banding is one of the 

most ubiquitous features present (Fig. 90). The orientation of 

this banding varies rapidly and no discernible flow patterns were 

recognized. Laminar flow foliations are rapidly replaced laterally by 

flow folds. On Penfathach (GR 941406) and Y Penrhyn (GR 944405) (Fig-89) 

the flow foliation trends approximately east-west, with variable dip 

directions. Along north-south exposures, such as the cliffs on the 

west coast of Y Penrhyn, the variable direction is seen to be related 

to large scale folding, the amplitude of the folds being in excess of 

10m (see Fig. 92). However, folds of all amplitudes, down to only a few 

centimetres, are superimposed upon these larger folds (Figs. 93 and 94). 

Large blocks, up to 6cm in diameter and totally devoid of any igneous 

foliation, are occasionally observed in the flow banded lava and are 

considered to represent blocks of lava which had solidified at an 

earlier stage, suffered brecciation and subsequently been incorporated 

into the flow. 



FIG. 90. Flow banding in rhyolite frone Penfathach. 

FIG. 91. Perlitic texture in rhyolite from Penfathach. 
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FIGS. 92a and b. Large scale flow folding in rhyolitic lava on the 

west coast of Y Penrhyn. 





FIGS. 93a and b. Small scale flow folding in rhyolite from Y Penrhyn. 





FIGS. 94a and b. Small scale flow folding in rhyolitic lava from 

Maen Jaspis area (GR 93864048). 
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The flow foliation is produced by alternating light and dark 

facies of the silicic rock. Such banding occurs in the rhyolitic lava 

flows of Lipari (Roach, pers. comm. ), where it appears to be controlled 

by varying degrees of vesiculation. However, in view of the absence 

of recognizable vesicles within the rhyolites of the Fishguard area, 

it is considered that this is unlikely to be responsible for the 

banding in this case. Thomas and Thomas (1956) attributed the banding 

in the Fishguard rhyolites to variations in the original water content 

of the respective bands, which subsequently resulted in a variation of 

textures during recrystallization. Hughes and Malpas (1971) suggested 

that flow banding on such a scale may be produced by differential 

recrystallization. In certain samples of the rhyolites from the Fishguard 

Volcanic Group, the banding is accentuated by the modal proportion of 

clay within the layers. 

A perlitic texture is seen at certain horizons within the flows 

and is particularly well developed on Penfathach (Fig. 91). 

The perlites reach 10cm in diameter and produce a nodular surface upon 

weathering (the nodular rhyolites of Thomas and Thomas, op. cit. ). It 

is evident that many flows were initially glassy and would originally 

have been obsidian flows. In other parts, the flows were hemicrystalline, 

as shown by the presence of plagioclase feldspar phenocrysts. All the 

glass has subsequently suffered recrystallization to quartz/feldspar 

intergrowths. 

Certain areas of rhyolitic rocks within the Fishguard area are 
devoid of flow banding or a perlitic texture and consequently are flinty, 

structureless rocks, whose origin is difficult to ascertain directly. 
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However, these areas may be traced laterally into rocks which show 

the textures and structures described above and thus it is possible 

to suggest that these rocks also represent lava flows. In other 

cases, where no such lateral extrapolation is possible, the origin 

of the rocks remains uncertain. 

Generally, these rhyolitic rocks were resistant to deformation 

and show little evidence of Caledonian deformation. However, 

deformation was inhomogeneous in North Pembrokeshire and within the 

belts of competent rocks, the deformation was frequently concentrated 

along discrete zones. Such a zone of high strain may be identified 

on Penfathach. Here the rock appears to possess a very strong planar 

fabric and is green in colour. The presence of this foliation has 

seriously weakened the rocks resistance to erosion and consequently, 

due to the influence of marine erosion, is weathered out, to produce 

distinct gulleys. 

An integral part of the acidic volcanic pile are breccias 

composed of angular rhyolitic fragments, set within a fine-grained 

crystalline groundmass. All cases are identified from areas where 

occasional blocks of rhyolite occur within lava, to areaswhere breccias 

are predominant, but contain thin partings of lava (for example in the 

neighbourhood of Crincoed Point, GR 952403). However, flow banded lava 

is generally completely surrounded by breccia. The interpretation of 

these breccias and their relationship to the lavas will be described 

more fully in section 3.4. 
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2.4.2. PETROGRAPHY OF THE ACID LAVAS 

The lavas are generally porphyritic in character, plagioclase 

feldspar being the prominent phenocryst phase. Commonly, the 

feldspar is albite or oligoclase, although occasionally it is orthoclase. 

however, as outlined, below, it is thought likely that there has been 

considerable movement of Na and K during a period of hydration and 

associated alkali metasomatism. This accounts for the high contents 

of K20 (9.00 in SA8) and Na20 (9.39 in SA9) which are locally observed 

and also possibly resulted in the pseudomorphing of the primary 

phenocrystic phase. Hughes and Malpas (1971) described similar effects 

in acidic lavas of late Pre-Cambrian age from Newfoundland. In rocks 

with more typical contents of the alkalis from the Fishguard area, the 

phenocryst phase is albite or oligoclase and for this reason it is 

thought likely that this approximates to the original composition of the 

phenocrysts. In certain samples, such as SP47, a flow-banded lava from 

Y Penrhyn, quartz phenocrysts also occur. It commonly shows a faceted 

form, although embayments are also typically present. Figure 95 

illustrates the above textures in a lava block from a breccia exposed to 

the southeast of Caer-lem Farm (GR 903395). When present, the feldspar 

phenocrysts are commonly in glomeroporphyritic clusters and in these 

cases the crystals may reach lmm in length (Fig. 96). In other cases 

the feldspars are aligned parallel to the flow banding, producing a 

fluidal texture. A peculiar texture is produced by the intergrowth of 

quartz and feldspar (either plagioclase or alkali-feldspar), as 

illustrated in Figure 97. This texture was termed 'micropoikilitic' 

by Reed (1895). In these aggregates, quartz forms the host and encloses 

or partly encloses the feldspars. The significance of this texture is 



FIG. 95. Quartz crystal in breccia from Caer-Lem Farm. Note a 

faceted form to the left and irregular, slightly 

embayed form to the right. XPL. x100. 

FIG. 96. Glomeroporphyritic plagioclase feldspar in a rhyolitic 

lava from the Fishguard area. XP. x125. 





FIG. 97. Micropoikilitic intergrowth of quartz and feldspar. 

Rhyolite lava from Y Penrhyn. XP. x150. 

FIG. 98. Snowflake texture in rhyolitic lava from Caer Lens Farm 

area. XP. x175. 
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described in section 3.3. Rarely, pseudomorphs after a 

ferromagnesian mineral may be identified, as for example in sample 271, 

a rhyolite from Carn Fran (GR 978377), to the east of Fishguard, where 

chlorite occurs, probably replacing biotite. Biotite, of probable 

primary origin, is present within sample SP47. Apatite occurs in a 

number of samples, such as sample 350, a flow banded rhyolite from Carn 

Ffoi (GR 048379), near Newport. Both apatite and zircon were reported 

by Thomas and Thomas (1956) to be present in accessory amounts, 

although the latter has not been identified with certainty during the 

present study. A tetragonal mineral with high relief was identified 

in a number of samples, but the birefringence was anomalously low for 

zircon. An identification of this phase, however, was not possible due 

to the very low concentration. 

The phenocryst phases described above typically occur in a fine- 

grained groundmass of quartz and feldspar. An x-ray diffraction 

investigation of this groundmass suggests that the feldspar is 

predominantly an alkali feldspar. Some of the lavas show a complex 

intergrowth of quartz and alkali feldspar, resulting in optically 

continuous patches up to 0.2mm in diameter (Fig. 98). These textures 

are similar to those reported by Anderson (1969) and Torske (1975). 

In experiments performed by Lofgren (1970) acidic glasses were 

devitrified by hydrothermal alkali-rich fluids. This suggests that 

certain of the Fishguard rhyolites were probably glassy in character, 

a contention further supported by the presence of the well-developed 

perlitic textures described above. It is, however, to be expected that 

these flows were originally glassy in view of the fact that they were 

erupted in a submarine environment, where rapid cooling is likely to have 

occurred. 
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From theoretical considerations and field evidence, it is possible 

to suggest a timing for the hydration, devitrification and alteration 

of the lavas. Rhyolitic lava clasts in breccias from outcrops near 

Caer-lem Farm (e. g. sample 98) show a variety of devritrification 

textures, including a snowflake texture in certain clasts (Fig. 98). 

The fact that these different textures are found in neighbouring clasts 

within the same breccia suggests that they formed very early in the 

history of the lava. Different parts of flows may have suffered a 

different alteration history prior to brecciation. Subsequently the 

lava flow was brecciated and clasts from different parts of the flow 

or flows were admixed. Lofgren (1970) showed that devitrification is 

promoted by hydration, particularly if the solution is rich in Na or 

K. The reason considered to be responsible for this is that OH breaks 

the bridging bands in the Si-O-Si network and as a result the glass is 

expanded, producing a perlitic texture. Individual Si04 tetrahedra are 

produced as a result of the breaking of the bridging bonds, thus 

enabling network modifers (particularly Na and K) to pass through the 

more open system. Reorientation of the Si04 tetrahedra and 

incorporation of Na and K result in the crystallization of quartz and 

feldspar. At this stage, phenocryst phases may also be altered (Hughes 

and Malpas, 1971). The resultant composition of the feldspar appears 

to be dominated by the composition of the fluid passing through the 

rock (Lofgren, op. cit. p. 558). If the fluid is Na rich, the feldspar 

produced is a soda feldspar, whilst if the fluid is K rich, then a 

potash-rich feldspar crystallizes. It is probable, therefore, that the 

present alkali composition in the Fishguard rhyolites in no way 

resembles the original concentrations; a fact reported by Noble (1967) 

for most devitrified acid glasses. 
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It would appear, therefore, that hydration and devitrification 

occurred at an early stage in the history of the rhyolites of the 

Fishguard Volcanic Group. In some cases the circulating fluid was 

extremely rich in Na and/or K, producing an increase in either or 

both of those elements in the rhyolite and promoting recrystallization. 

This results in Na20 and K20 whole rock concentrations and phase 

assemblages (probably including phenocrysts also) different from those 

which occurred initially. These observations appear to agree with 

those of Torske (1975) in his suggestion that the snowflake textures 

in the Ordovician rhyolitic lavas of Stord, Western Norway, probably 

formed very shortly after extrusion of the lava. 

Epidote and sericite were also produced during alteration of the 

lavas. Epidote, along with quartz, is seen in veins in sample SA1l, 

whilst in other lavas, it forms stout, anhedral crystals. A peculiar 

form commonly assumed by epidote in these lavas is in spongy aggregates 

composed of small, rounded crystals, producing a 'pseudo-poikilitic' 

texture. Sericite is common in most rocks, typically present as an 

alteration product of phenocrystic plagioclase. In sample SP47, however, 

it occurs as small crystals, scattered throughout the groundmass of 

certain layers and accentuates the flow banding. 
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CHAPTER 3. DESCRIPTION OF THE VOLCANICLASTIC ROCKS 

OF THE FISHGUARD VOLCANIC GROUP 

3.1. INTRODUCTION 

This chapter describes the volcaniclastic rocks occurring within 

the Fishguard Volcanic Group. Volcanicastic is used in the sense of 

Fisher (1961) and as such includes all the rocks of pyroclastic and 

autoclastic origin, along with those deposits derived from subaqueous 

ashflows, composed of reworked volcanically-derived material. 

Volcaniclastic rocks form an important, though volumetrically 

minor, component of the Fishguard Volcanic Group in the study area, 

although it appears that they probably become more significant in the 

ground to the east, between Fishguard and Newport (Reed, 1895; 

Davies, 1936; Bevins and Roach, in press). However, the volcaniclastic 

rocks are important in respect that they enable a more complete picture 

regarding the nature of the volcanism to be envisaged. These rocks will 

be described here on a compositional basis, that is on the nature of the 

magma from which they were directly, or indirectly, derived. This results 

in a reversal of relative volumes between basic and acidic rocks when 

compared with the lavas. Basic magma forms much of the Fishguard 

Volcanic Group, but, as already shown in the previous chapter, it was 

quietly erupted in relatively fluid flows or intruded as high-level sheets. 

As a result, only minor amounts of basic, volcaniclastic debris were 

produced. In contrast, the more viscous, acidic magmas produced a 

limited amount of rhyolitic lava with the production of comparatively 

large amounts of associated volcaniclastic material. 
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3.2. VOLCANICLASTIC ROCKS OF BASIC COMPOSITION 

Volcaniclastic rocks of basic composition are comparatively 

rare when compared with the large amounts of basic lava erupted. 

Where present, they occur chiefly as hyaloclastites or isolated- 

and broken-pillow breccias. A number of occurrences of these rocks 

will be described below. Thomas and Thomas (1956) noted the presence 

of spilitic breccias and agglomerates, but a different terminology to 

that of Thomas and Thomas will be used here. 

3.2.1. HYALOCLASTITES 

Hyaloclastites, that is rocks formed of broken, glassy* fragments, 

are found at a number of localities within both the Strumble Head 

Volcanic Formation and the Goodwick Volcanic Formation. They reach 

their maximum development in the latter formation, which is 

predominantly composed of acidic lavas and associated volcaniclastic 

rocks. Two principal types of hyaloclastite are identified, namely 

rocks composed of vesiculated, glassy fragments and those composed of 

non-vesiculated, glassy fragments. The two varieties recognized from 

the Fishguard Volcanic Group correspond with the hyalotuffs and 

hyaloclastites of Honnorez and Kirst (1975). These authors attempted to 

distinguish between the two rock types which, although both composed 

predominantly of glass fragments, possess different geneses. The term 

'hyaloclastite' was first adopted by Rittmann (1958), to replace 

'palagonitic tuff' in describing the accumulations resulting from the 

disintegration of glassy rinds of pillows. However, it was later 

realised that more than one kind of 'hyaloclastite' exists. Honnorez 

(1961) drew attention to accumulations of hyaloclastites in which no 

* Although glass is not seen in the rocks of the Fishguard Volcanic 
Group, chlorite or quartz is interpreted as pseudormorphing glass in 
many rocks and these will be termed 'glassy'. 
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pillowed masses of lava were to be found. These are thought to be 

generated as a result of the granulation of glass, produced when the 

liquid lava is rapidly quenched when it comes into contact with cold 

sea-water. Such 'hyaloclastites' have been described by Nayudu (1962) 

and Carlisle (1963). A further type of hyaloclastite identified is 

produced as a result of the explosive interaction between basaltic 

magma and water, such as described by Tazieff (1968 and 1972), from the 

Afar region. Tazieff (1972) reviewed the mechanisms for hyaloclastite 

generation and concluded that the majority of hyaloclastites are 

produced as a result of the explosion of trapped, super-heated steam. 

This fractures the rock and so provides more hot surfaces for the 

process to continue, which does so until the rock has been thoroughly 

granulated. Volcaniclastic rocks of this nature have also been 

described from the shallow submarine eruptions of Capelhinos (1957-8) 

and Surtsey (1963-4). Honnorez and Kirst (1975) stress, however, that 

the term 'hyaloclastite' should be reserved for the vitric accumulations 

produced from pillow lavas, or as a result of the direct granulation of 

lava in contact with sea-water. Other vitroclastic rocks of the type 

described above, they suggest, should be termed 'hyalotuffs'. Although 

this classification is somewhat difficult to apply in the field, it has 

merits when basic, vitroclastic rocks are examined petrographically and 

consequently it will be used in this study. As can be seen below, both 

true hyaloclastites as well as hyalotuffs occur within the Fishguard 

Volcanic Group. 

3.2.1.1. HYALOCLASTITES 

Hyaloclastites, produced as a result of desquamation of the glassy 

selvedges of pillows (Rittmann, 1958 and 1960), are poorly developed 
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within the Fishguard Volcanic Group. However, hyaloclastites not 

associated with pillows, and therefore presumably produced due to 

the thermal shattering of the magma as it came into contact with 

the cold sea-water, are found at a number of localities. To the 

south of Porth Maen Melyn, a small faulted outcrop of the Strumble 

Head Volcanic Group contains basaltic pillowed lavas, as well as 

minor hyaloclastites. The glassy fragments are up to lcm in diameter 

and have suffered alteration. Secondary mineral assemblages 

replacing the glass are variable, but include chlorite, chlorite- 

quartz, chlorite-quartz-epidote, chlorite-quartz-epidote-prehnite and 

chlorite-prehnite. Sphene is ubiquitous in these assemblages. These 

minerals are set in a fine-grained, recrystallized groundmass of 

chlorite, sphene, quartz and epidote. Thin, colloform zones surround 

the fragments and appear to be composed of nearly isotopic chlorite 

and sphene. Zoned rims around palagonitized glass fragments have been 

described from the ocean floor and Bonatti (1970) showed such zones to 

be composed of iron hydroxides. Consequently, iron concentrations in 

these zones are higher than in the original, unaltered glass. In the 

Porth Maen Melyn case the fragments appear to be largely non-vesicular 

and they may be described as angular and equant in shape. This is 

clearly illustrated in Figure 99, which shows a loose block of 

hyaloclastite from the cliff top to the north of Porth Maen Melyn. 

Another example of a basic hyaloclastite was identified to the east 

of Aber Gwaldus (GR 92454058) (see Fig. 100) and occurs between the 

pillows of the flow. This interpillow breccia is a hyaloclastite in 

the true sense of Rittmann (1958), in that it represents an 

accumulation of glassy fragments which spalled off from the developing 

pillows. Once again, angular, glassy fragments are enclosed within a 



FIG. 99. Loose block of basic hyaloclastite. Note the angular outline 

of the glass (now chlorite) fragments. North of Porth Maen 

Melyn. 





FIG. 100. Glassy fragments with a perlitic texture in 

hyaloclastite from Gwaldus (GR 92454058). 

PPL. x18. 

FIG. 101. Vesiculated basic glass in hyalotuff from 

Trwyn Llwyd (GR 909410). PPL. x12.5. 
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fine-grained, recrystallized groundmass. A strong perlitic texture 

testifies to the former glassy nature of these fragments (Fig. 100) 

with the perlites emphasized by the presence of abundant, small 

sphene granules. In the cliff section at Lower Fishguard Harbour, 

a thinned sequence of the Strumble Head Volcanic Formation contains 

a horizon of basic volcaniclastic rocks, of which some are 

hyaloclastites and others hyalotuffs. In all of the examples 

described above, the fragments are essentially non-vesicular and the 

outlines of the glassy fragments are angular. These shapes result 

from the granulation of the rapidly chilled magma when it came into 

contact with cold sea-water. 

3.2.1.2. HYALOTUFFS (IN THE SENSE OF HONNOREZ AND KIRST, 1975) 

Hyalotuffs are scarcely developed within the Strumble Head 

Volcanic Formation. Highly vesiculated glass shards and fragments are 

found at Trwyn Llwyd (GR 909410) (see Fig-101) where they are 

associated with whole and broken pillows and intercalated muddy 

sediments. In the Lower Fishguard Harbour area, both hyalotuffs and 

hyaloclastites occur, although intense secondary carbonation largely 

obliterates the primary textures of the hyalotuffs (the calcareous 

agglomerate or breccia of Thomas and Thomas, 1956, Fig. 6). 

The thickest and most spectacular development of hyalotuffs occurs 

within the predominantly acidic Goodwick Volcanic Formation. A thick 

deposit (>60m) of hyalotuffs is exposed in the bay at Porth Maen 

(GR 942405) (Fig-102) and again a little further to the west, at Ogof 

Mati (GR 941405), although in the latter area the outcrop is 

inaccessible. In the bay at Porth Maen, the hyalotuffs generally dip 



FIG. 102. Geological sketch map of the area north of Goodwick. 
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northeastwards, with dips becoming north-northeast further to the 

east. The sequence is made up of a large number of thin layers which 

show a variation in grain size. Figure 103 shows a number of these 

thin layers in a specimen collected from Porth Maen. The coarse layers 

are composed of dark green chloritic fragments, the size of which are 

usually in the range 0.5 to 1.5cm. The fragments have been 

tectonically flattened in a direction oblique to the layering (see Fig. 

103. However, it is thought that originally they were most probably 

equant in shape, with an outline which was cuspate, dictated by the 

presence of vesicle walls. These concavities may be distinguished on 

polished surfaces of blocks. In thin section the cellular and tabular 

form of the vesicles may be discerned, although boundaries between the 

grains have largely been obliterated. The coarse layers vary in 

thickness from a few cms or less, up to 3-4m. The fine-grained layers 

are laterally continuous and contain very thin laminae of coarser 

grained material. These fine-grained layers are generally thinner than 

the main coarse layers, of the order of 5-6cm. Coarsening upward 

cycles (Fig. 104) are commonly developed within the sequence. Large, 

acidic blocks, up to 20cm across, are scattered throughout and are 

overlapped by the thinly laminated, finer layers. Several layers rich 

in these blocks may be discerned. Small scale structures, such as soft- 

sediment faults, are common, although no current-generated structures 

appear to be present. Well-formed cubes of pyrite, up to 2cm across, 

occur regularily throughout. 

In thin section, altered plagioclase microphenocrysts, now replaced 

by sericite, occur within the former glassy fragments. The groundmass 

appears to be composed predominantly of smaller, chloritic fragments, 



FIG. 103. Cut block of bedded hyalotuffs, Porth Maen. 

(GR 942405). Length of specimen approximately 10cm. 
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FIGS. 104a and b. Bedded hyalotuffs from Porth Maen, showing 

coarsening upward cycles, as well as evidence 

for soft sediment deformation. 
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again showing tubed or cellular vesicles, surrounded and sometimes 

replaced by spherulitic quartz. The entire sequence appears 

therefore to be comprised of glassy, angular, vesiculated lava 

fragments of varying sizes. 

This accumulation of hyalotuffs is considered to result from the 

explosive shattering of basaltic glass which formed as a result of the 

rapid chilling of magma coming into contact with cold sea-water, and 

is similar to the 'hyaloclastite' deposits described by Cristofilini 

et al. (1973) from the Iblean Highlands, Sicily. The magma was no 

doubt vesiculating immediately prior to the formation of a glass. It 

is clearly possible that shattering resulted from both tempering of 

the glass as well as from the explosive effect of super-heated steam 

trapped within the vesicles. Both processes are thought to have 

operated during the Capelinhos eruption (see Honnorez and Kirst, 1975, 

p. 458). In the Porth Maen case, it appears that as the material 

settled through a column of water, the smaller fragments became water- 

logged more quickly than the larger fragments and so sank earlier, thus 

producing the coarsening-upward sequences seen. The thin, finely 

laminated layers may represent the finest dust which later settled out 

of suspension. Clearly, water depths at this time were shallower than 

approximately 500 metres (the depth of the critical confining pressure 

for oceanic tholeiites, below which no extensive vesiculation will 

occur, /Moore, 1970 7). It is not known, however, whether the vent 

was at, or close to sea-level, such as in the case of the Capelinhos and 

Surtsey eruptions, or whether it was submerged at all times, possibly 

at considerable depths. The lack of evidence for current action or 

reworking suggests that considerable water depths may in fact have been 
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present at all tines. As such, these deposits could represent debris 

accumulating in and around the vicinity of a submarine vent, perhaps 

resulting in the development of a tuff-ring. In view of the thickness 

exposed, the accumulation was probably both continuous and rapid, 

without the intervention of volcanicity of another character, or 

cessation, during which time sediments may have accumulated. 

The only other example of true hyalotuffs recognized within the 

area, as mentioned above, occurs in the cliff section at Lower 

Fishguard Harbour. Here, the glassy material is associated with 

abundant debris of block size, as is common in 'hyaloclastite' 

accumulations on submarine cones. However, intense carbonation has 

overprinted most of the primary features. In sample 255, however, it 

may be seen that the fragments are extensively vesiculated. Thin 

sections reveal that the vesicles are drawn out and infilled with 

chlorite and calcite. This elongation is probably the result of 

deformation during the Caledonian Orogeny. Unfortunately, the 

deformation present negates the use of the quantitative classification 

proposed by Honnorez and Kirst (1975). 

3.2.2. PILLOW BRECCIAS 

The term pillow breccia was first used by Henderson (1953) in 

describing an occurrence of broken, basic pillow lavas in the 

Precambrian, at Yellowknife, in Canada. The term was later extended by 

Carlisle (1963), who defined isolated-pillow breccia and broken-pillow 

breccia, in describing rocks from Quadra Island, British Columbia. 

More recently, Furnes (1972) has described isolated- and broken-pillow 

breccias of Ordovician age from Solund, in West Norway. 
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Although the terms isolated-pillow breccia and broken-pillow 

breccia describe essentially different volcaniclastic rocks, it is 

not easy to categorize certain units from the Fishguard Volcanic 

Group, as they contain both discrete whole pillows, as well as broken- 

pillows. Consequently, the term pillow breccia will be applied to 

these units. A 15 metre thick unit at Carn Melyn (GR 887406) 

affords the best example of such a pillow breccia (Fig. 105). 

The unit, which dips northeastwards at approximately 40°, has an 

overall bedded aspect but lacks internal stratification. It overlies 

pillowed lava (Fig. 106), but in turn is overlain by a massive lava 

flow. Such a sequence is identical to that described by Carlisle 

(op. cit. p. 51) from Quadra Island. Within the pillow breccia both 

isolated pillows as well as broken pillows occur in a fine-grained, 

siliceous matrix. The size of the fragments is highly variable, 

reaching a maximum diameter of 50cm. Figurel07 illustrates the typical 

size and form of whole pillows, set within the siliceous tuffaceous 

matrix. These pillows possess a dark, fine-grained rim and a lighter, 

crystalline core and are commonly vesiculated. The broken pillow 

fragments assume a variety of shapes, but generally they are almost 

triangular, with the arcuate-shaped edge showing well-developed vesicles. 

Thus they appear to represent fragmented pillows, which have broken 

along radial cracks. Such radial cracks are present in many of the 

pillows of the Strumble Head Volcanic Formation (see S. 2.2.1.1. ). 

An overall coarsening upwards in fragment size, coupled with a 

decrease in the proportion of matrix, is seen within the Carn Melyn 

pillow breccia. Figure 108 illustrates the nature of the pillow breccia 

close to the base and shows both angular and rounded fragments. 

Figure 109 shows the nature of the upper part of the unit and the 

increased proportion of fragments can be discerned. The fragments within 



FIG. 105. Pillow breccia unit, Carn Melyn (GR 887406). 
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FIG. 106. Exposure of junction between pillow breccia (above) and 

pillow lava (below). Carn Melyn (GR 887406). 

FIG. 107. Whole pillows within pillow breccia. Carn Melyn (GR 887406). 





FIG. 108. Nature of pillow breccia unit of Carn Melyn near to the 

base. Note the presence of both angular and rounded 

fragments (GR 887406). 

FIG. 109. Nature of Carn Melyn pillow breccia unit at the top, 

illustrating the increased proportion of fragments 

(GR 887406). 
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this upper part of the unit also appear to be predominantly angular 

in shape, with only a limited number of rounded pillows present. 

Carlisle (op. cit. ) reported a transition from predominantly isolated- 

pillow breccia passing upwards into broken-pillow breccia. 

A petrographical examination of the matrix reveals glass fragments 

averaging 5mm in diameter, which have been replaced by chlorite and 

epidote. These are set within a fine-grained groundmass. Both the 

fragments and the groundmass show evidence of partial replacement by 

silica with small spherulites of quartz pseudomorphing the original 

textures. Minor pumpellyite is also present. 

Many of the features described above appear similar to those 

described by Carlisle (op. cit. ) from Quadra Island and by Furnes (op. 

cit. ) from the Solund area. Carlisle, in attempting to account for the 

genesis of broken-pillow breccias, suggested that they may represent 

debris deposited from submarine slumps, which were derived from thick 

accumulations of incoherent steam-laden pillows. This mechanism is also 

envisaged for the Carn Melyn pillow breccia and, as such, the unit is 

not of a pyroclastic origin. A reworking of pre-existing pillows and 

talus from pillowed lava probably occurred during the downslope 

movement of the mass flow, resulting in the generation of the broken 

pillows. Small glass shards and spalled material from broken pillows 

formed the matrix. Unfortunately, due to the lack of inland exposure, 

along with the presence of dip-slip faults, this unit cannot be traced 

laterally and thus estimations regarding the extent and the distance of 

the mass flow from its source cannot be made. 

A second pillow breccia containing both broken and unbroken 

pillows, up to im in diameter, and enclosed within a vitroclastic matrix 

crops out on the north coast of Pen Caer, at Trwyn Llwyd (GR 920408). 



FIGS. 110 and 111. Vitroclastic matrix of pillow breccia from 

Trwyn Llwyd. PPL. 

110. x12.5. 

111. x12.5. 
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This unit is considerably thinner than the Carn Melyn breccia and also 

contains blocks of sediment. Upwards it grades into fine-grained 

sediments. The matrix of this breccia is also noticeably different 

from both the Carn Melyn breccia and the breccias from Quadra Island. 

As illustrated in FiguresilO and 111, the glassy fragments of the matrix 

are extensively vesiculated and this has resulted in their 

disintegration, producing shard-like fragments, with cupate outlines. 

In contrast, therefore, the matrix of this particular breccia appears 

to be pyroclastic in origin; a fact which is important when considering 

the genesis of the breccia. The explosive vesiculation of the liquid 

lava, as it came into contact with the cold sea-water, may have produced 

a vapour-rich flow, incorporating both the chilled vesiculated glass 

fragments, 'pillows' of chilled lava, as well as the sediment of the 

substrate. The flow would no doubt be very short-lived. 

A true broken-pillow breccia occurs at Carregwastad Point 

(GR 927406) (Fig. 112). In the eastern part of this headland, the 

breccia is in fault contact with the overlying pillow lavas but when 

traced westwards, the contact is normal and irregular, but generally dips 

northwards at approximately 200 (Fig. 112). In this area, the unit is 

comparatively thin, being of the order of 3 metres, whereas in the east 

the unit is thicker, possibly due to repetition by the fault. 

Everywhere at the base the contact is gradational into pillow lavas. 

The fragments of this breccia are variable in size, as shown in Figures113 

and 114. The majority are angular fragments of vesiculated, basaltic 

lava, with only a limited number showing a pillowed form (Fig. 115). 

This breccia appears to result from the in-situ brecciation of the 

surrounding lava and thus may represent the autobrecciated upper surface 

of a lava flow or possible talus debris from a flow. The sharp, 



FIG. 112. Junction between broken-pillow breccia (below) and pillow 

lavas (upper). Carregwastad Point (GR 927406). 





FIGS. 113 and 114. Broken-pillow breccia of Carregwastad Point 

(GR 927406). 





FIG. 115. Broken-pillow breccia. Carregwastad Point (GR 927406). 
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irregular upper contact represents the junction with the overlying flow. 

Other thin occurrences of pillow breccia were recognized on the 

east coast of Pen Globo (GR 917408) and on the west coast of Aber 

Gwladus (GR 924406). In the latter area, large, vesiculated, basic 

fragments, up to 10cm in diameter are present (Figs. 116 and 117). 

These are generally sub-rounded, resembling small pillow-like bodies 

and are enclosed within a matrix composed of stretched and flattened 

vesiculated glass fragments, the latter reaching lcm in length. Between 

these glass fragments is abundant shard like debris, no doubt derived 

from the disintegration of other glass fragments. Occasional altered 

plagioclase phenocrysts can also be discerned. The unit appears to 

have a bedded form and probably represents material which has been 

locally reworked. 

3.3. VOLCANICLASTIC ROCKS OF INTERMEDIATE COMPOSITION 

Rocks of intermediate composition are not abundant within the 

Fishguard Volcanic Group and, where seen, generally form high-level 

intrusive sheets. Lavas of an intermediate character are only locally 

developed. Certain horizons within the Strumble Head Volcanic 

Formation are composed of pillow lavas of andesitic composition, but no 

attendant volcaniclastic rocks are present. Within the Porth Maen Melyn 

Volcanic Formation, however, a thick rhyodacite/dacite lava flow shows 

the development of elongate lava flow tubes and locally pillowed forms 

are developed, with isolated-pillow breccias. These are described more 

fully in Chapter 2 and also by Bevins and Roach (in press). 

3.4. VOLCANICLASTIC ROCKS OF ACIDIC COMPOSITION 

Volcaniclastic rocks derived from magmas of acidic composition are 

identified at a number of horizons within the Fishguard Volcanic Group 



FIGS. 116 and 117. Pillow breccia from Aber Gwladus (GR 924406). 

Basic lava fragments are enclosed within a 

vitroclastic matrix. 
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and they reach their maximum development in the Goodwick Volcanic 

Formation, in the vicinity of Anglas Bay, to the north of Goodwick 

(Fig. l18). Other exposures of acidic volcaniclastic rocks occur at 

Porth Maen Melyn, at Caer-Lem Farm, and also in the cliff section 

exposed in Lower Fishguard Harbour (although the latter will not be 

described in any detail; see, however, Thomas and Thomas, 1956, 

Figs. 6 and 7). Very few of the volcaniclastic rocks described here 

are pyroclastic in origin, although pyroclastic rocks appear to be 

more important in the ground to the east of Fishguard, towards Newport 

(Davies, 1936; Bevins and Roach, in press). 

The rhyolites (described in Section 2.4. ) show little evidence 

of vesiculation and accordingly it is assumed that, for the most part, 

the acidic volcanism of this area was essentially non-explosive in 

nature. The volcaniclastic rocks developed were, therefore, generated 

as a result of autobrecciation and the subsequent reworking of this 

autobrecciated debris. These two categories will be dealt with 

separately below, although it is realized that an exact distinction is 

commonly difficult and transitions from one to the other occur. 

3.4.1. RHYOLITIC AUTOBRECCIAS 

As outlined in Section 2.4., rhyolitic lavas are found at a 

number of localities in the Fishguard region. In the area investigated, 

these lavas are best developed in the vicinity of Anglas Bay (Fig. 118), 

near Caer-Lem Farm, in the vicinity of Carngelli and at Goodwick 

Harbour Village (Fig. 3 ). At each of these localities coarse, poorly 

sorted, monolithic lava breccias are found. Reed (1895) suggested that 

these represent agglomerates derived from explosions within the vents 

which were the source of the rhyolites; an origin re-enforced by Thomas 

and Thomas (1956). 



FIG. 118. Simplified geological map of northeast Pen Caer. 
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The breccias are composed almost entirely of rhyolitic lava 

fragments which reach a maximum diameter of about 50cm. The fragments 

are angular in outline and, in places, a fit between adjacent fragments 

can be discerned. At Y Penrhyn (Fig. 118) and the Warren (GR 951402) 

the junction between rhyolitic lava and rhyolitic breccia can be 

clearly observed. This junction is seen to be transitional in 

character and in adjacent fragments flow banding is sub-parallel 

(Fig. 119). Thus, the junction is not sharp but one observes a 

gradation from lava into breccia. This, quite obviously, does not 

correspond with the picture envisaged by Reed or Thomas and Thomas, and 

another model must be suggested. Occasional sedimentary clasts are 

identified within the breccias at Caer-Lem, as indeed they are within 

the associated rhyolitic lavas. These represent the only accidental 

material within the breccias. The clasts are set within a siliceous 

matrix and differential weathering usually results in the fragments 

weathering inwards. 

The uniform character of the fragments, along with the lack of 

evidence for vesiculation and the presence of gradational junctions 

with the rhyolitic lavas, all suggest that the breccias are the result 

of autobrecciation of these Javas. The rhyolitic lavas of the Fishguard 

Volcanic Group appear to be of local development and in the Fishguard - 

Strumble Head area, there are four important occurrences (outlined above). 

At each of these localities, the flows, when traced laterally, pass into 

breccias. These local lava flows are here considered to have been thick 

flows or, more probably, dome-like structures. If this is the case then 

the breccias are thought to represent a type of crumble-breccia (in the 

sense of MacDonald, 1972), produced during growth of such domes. 

Similar breccias were described, for example, from the domes of Santorini 



FIG. 119. Rhyolitic autobreccia from Y Penrhyn (GR 945406), with 

fragments of flow banded rhyolite showing a parallel 

alignement of flow banding. 

FIG. 120. Thin rhyolitic lava flow within thick sequence of rhyolitic 

breccias south of Crincoed Point (GR 952401). 
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by Fouque (1879). Evidence is presented below showing that the domes 

appear to have been surface features, developed on the submarine floor, 

and thus offer contrast to the intrusive rhyolite domes of North Wales, 

as described, for example, by Roberts (1967). Where submarine lava 

domes have emerged above sea-level their surfaces have commonly been 

covered by a mass of rubble, as for example McCulloch Peak, in the 

Bogoslof Islands (Jaggar, 1908) and the submarine dome of the Sangi 

Islands, described by Winchmann (1921). It is considered likely, 

however, that once such a dome is established, later magma rising up 

may intrude the dome and its carapace of crumble breccia and thus, 

although the dome is a surface feature, part of its development may be 

by endogenous growth. This would explain the presence of thin, flow 

banded sheets within certain areas of the breccias in the Fishguard 

area, for example, the thin lavas exposed on the coast to the south of 

Crincoed Point (GR 952401), illustrated in Figure 120. 

Horikoshi (1969) described a series of dacitic domes associated 

with Kuroko-type ore bodies from the Kosaka district of Japan. 

Intimately associated with the domes are breccias composed entirely of 

angular, dacitic fragments. These, Horikoshi suggested, were generated 

by violent phreatomagmatic explosions as the dacitic magma rose to the 

surface and came into contact with the relatively cold sea-water. He 

states (op. cit. p. 337) that three cases are possible: 

(i) the lava produces a dome which formed on the seafloor 

after extrusion of the magma; 

(ii) the magma intruded the still wet sediments close to the 

surface and partly extruded onto the seafloor; or 

(iii) the magma intruded the wet sediments, but did not extrude 

onto the seafloor. 
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These are illustrated in Figurel2l, after Horikoshi (1969, Fig. 19) 

and he concludes that a number of the above forms were assumed during 

the production of the nine domes identified within the Kosaka 

Formation. However, it is difficult to discriminate between breccias 

produced by steam explosions in the manner envisaged by Horikoshi and 

those produced by autobrecciation due to internal expansion. Clearly, 

the possibility exists that both mechanisms could operate 

simultaneously, producing breccias of a complex origin. Further 

discussions on the models of Horikoshi are to be found below (S. 3.4.2. ). 

In the description of the breccias, Horikoshi (op. cit. p. 336) 

describes a cyclic grading, produced as a result of fall through a 

column of water, following the explosive activity. Such a grading is 

not seen within the Fishguard breccias; instead they are poorly sorted. 

In the Kosaka breccias sharp contacts with surrounding lithologies are 

seen, in contrast with the gradational boundaries between rhyolitic lavas 

and breccias of the Fishguard examples. For these reasons, it is thought 

that the breccias of the Fishguard Volcanic Group were probably produced 

by autobrecciation, as a result of expansion within the developing domes, 

contrasting with the picture, described earlier, of Reed (1895) and 

Thomas and Thomas (1956). 

Further evidence against the vent source for these breccias may be 

obtained by examining other vent breccias. Vents and pipes in which 

agglomeratic material is present offer many contrasts. A lamination is 

commonly developed within the matrix material of such pyroclastic rocks 

and welding may even be present (as in the Glas Eilean Vent, 

Ardnamurchan). In addition, the material in these vents and pipes is 

distinctly heterolithic, with rhyolitic debris, basement rocks (which in 



FIG. 121. Three possible mechanisms of breccia production due to 

phreatomagmatic explosions. After Horikoshi (1969, Fig. 19). 
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the case of those vents on the Isle of Mull is Moinian psammite), 

in addition to much of the near-surface lithologies through which the 

pipe reached the surface (commonly Mesozoic sediments in the case of 

vents on the Isle of Mull). It would, in fact, be difficult to 

imagine in the Fishguard examples such explosive activity in a 

submarine environment without the incorporation of much of the adjacent 

sedimentary material, which undoubtedly was still largely 

unconsolidated at the time of volcanicity. 

The breccias show a variable petrography, depending upon which 

lava dome they are associated. The breccias of Crincoed Point 

(GR 952401) are composed entirely of angular fragments of rhyolite, up 

to 10cm in diameter. These rhyolitic lava fragments are uniform in 

nature and possess crystals of quartz and feldspar along with 

micropoikilitic intergrowths of quartz and felspar, set within a 

microcrystalline groundmass. The junction between fragments is not 

always readily discernible microscopically, although occasionally it may 

be identified due to the presence of calcite within the groundmass (e. g. 

sample 247). In contrast, breccias from exposures near Caer-Lem Farm 

(Fig. 3 ), show a variety of constituents. They are predominantly 

rhyolitic lava fragments with a well developed snowflake texture, 

identical to the lavas exposed a short distance to the southeast. 

In addition, however, certain fragments are of a lava type not exposed 

at this locality. This lava is porphyritic, with large, turbid 

plagioclase feldspars and rounded, embayed quartz crystals. The 

plagioclase crystals contain abundant apatite needles, up to 0.5mm in 

length. Apatite is also readily developed within the groundmass. 

Small, euhedral crystals, showing high relief and moderate birefringence 

are also present, although the exact identification of these crystals is 

hampered by their scarcity. 
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3.4.2. OTHER VOLCANICLASTIC ROCKS OF THE FISHGUARD VOLCANIC GROUP 

Acidic volcaniclastic rocks, other than the rhyolitic lava 

breccias described above, occur within both the Porth Maen Melyn and 

the Goodwick Volcanic Formations. They are not common, however, within 

the Strumble Head Volcanic Formation. The volcaniclastics of the 

Porth Maen Melyn Volcanic Formation will be described first. 

The lowermost member of the Porth Maen Melyn Volcanic Formation is 

a 15 metre thick, cryptocrystalline, acidic unit of a rhyolitic nature 

(Fig. 122). The rock shows a peculiar recrystallization texture which 

produces elliptical or spherical 'pseudonodules' (Fig. 123). These 

'pseudonodules' are characterized by the development of a snowflake 

texture. They are relatively coarse, crystalline areas and are 

separated by finely crystalline, quartzo-feldspathic areas, 

characteristically associated with feldspar and quartz phenocrysts and 

secondary epidote (Fig. 125). The development of this texture has 

completely overprinted any primary textures which may have been present. 

however, it is considered likely that the rocks were glassy in nature 

and possibly devoid of any such primary textures. In places the 

secondary recrystallization texture gives the appearance of a 

sedimentary origin for these rocks, whilst in other areas the more 

concentric 'pseudonodules' are reminiscent of accretionary lapilli. 

However, when compared with other devitrified volcanic rocks of the 

Fishguard area, the secondary origin for the textures in the rocks of 

this member is evident. Snowflake textures similar to those described 

above are seen within rhyolitic lavas and rhyolitic breccia clasts from 

the area around Caer-Lem Farm. The presence of occasional, small 

microphenocrysts, along with the suggestion that the rocks were once 

glassy in nature, implies that this member probably represents a 



FIG. 122. Simplified geological map of the Porth Maen Melyn area. 
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FIG. 123. Recrystallization textures ('pseudonodules') within 

rhyolitic lava of the Porth Maen Melyn Volcanic Formation 

(GR 88813932). 

FIG. 124. Breccia from Porth Maen Melyn Volcanic Formation, composed 

predominantly of acidic lava fragments (GR 88803932). 





FIGS. 125a and b. 'Pseudonodules' in altered rhyolite from 

Porth Maen Melyn Volcanic Formation. 

a) XP. x12.5. 

b) PPL. x12.5. 
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recrystallized glassy lava flow. Small sedimentary clasts are sometimes 

present, as they are within the lavas around Caer-Lem Farm. Further 

evidence for an igneous origin for this member may be drawn from the 

geochemistry of the rocks. A whole-rock analysis of a sample of this 

member was determined and is listed in Appendix 1 (sample SA5). As can 

be seen, it shows a similar geochemistry to the rhyolitic lavas of the 

Pen Caer region and it is therefore considered that the rocks comprising 

this member are recrystallized, glassy rhyolitic lavas. Parkinson (1897) 

and Evans (1945) both illustrate similar textures to those described 

here in rocks from the Prescelly Hills and also consider that the rocks 

represent glassy lavas which have subsequently recrystallized. 

Overlying this lowermost member of the Porth Maen Melyn Volcanic 

Formation is a 25m thick, graded volcaniclastic breccia (Fig. 122). 

The actual contact between the rhyolitic member described above and this 

graded breccia is not clearly exposed, but it appears irregular. The 

lowermost 10 metres of this graded member is a very coarse breccia with 

fragments up to 50cm in diameter, although the majority are in the range 

10-30cm. Acidic lava fragments predominate (Figs. 124 and 126). 

These are generally composed of fine-grained rhyolitic lava, sometimes 

showing a perlitic texture. However, near to the base of this member a 

high proportion of basaltic and doleritic fragments are present (Figs. 127a 

and 6 ), along with occasional deformed, fine-grained, sedimentary clasts. 

Little or no sorting is present at this level. Above the lowermost 10 

metres an overall reduction in the number of clasts is seen and the 

member passes from a clast supported breccia to a matrix supported 

breccia. The fragments within the breccia are chiefly of rhyolitic lava, 

whilst the matrix contains small rhyolitic and crystal fragments. 

Upwards, the breccia passes into a coarse volcaniclastic sandstone some 

2 metres in thickness. This principally contains the same material as 



FIG. 126. Breccia from the Porth Maen Melyn Volcanic Formation, 

illustrating the angular nature of the fragments 

(GR 88803932). 





FIGS. 127a and b. Sub-rounded to angular basic fragments within 

breccia of Porth Maen Melyn Volcanic Formation 

(GR 88803932). 





FIG. 128. Components of breccia from Porth Maen Melyn, showing 

basic fragment (lower centre), rhyolite clasts (left, 

upper and lower) and abundant crystal debris, particularly 

quartz, in the matrix. PPL. x6. 
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the breccias, althcush crystal debris is more abundant. This coarse 

sandstone is replaced upwards by 9 metres of fine-grained volcaniclastic 

sandstone and siltstone. A sharp contact is observed between these beds 

and the overlying rhyodacite lava flow. As illustrated in Figure 59 

this junction is slightly undulatory and it appears that the rhyodacite 

flow loaded down into the volcaniclastic sediments. Poorly 

developed flame structures may also be seen. 

The breccias are composed of a number of components (Fig. 128). 

Rhyolitic fragments predominate and show a variety of textures, 

including well-developed perlites and a snowflake texture. Most of the 

fragments are angular, although a few possess a sub-rounded outline. 

Basic fragments are rarer. The crystals present are chiefly of broken, 

angular feldspar and rounded, embayed quartz. The feldspars commonly 

contain well-formed crystals of apatite. Sometimes these are hollow and 

contain fluid inclusions, whilst those which are not hollow are 

generally chemically zoned. The fragments are similar in many aspects to 

those within the rhyolitic lava breccias exposed around Caer-Lem Farm, 

described above (S. 3.4.1. ). 

A number of possible origins exist for this volcaniclastic member. 

Its graded appearance suggests that, unlike the breccias described above 

(S. 3.4.1. ), transportation and subsequent deposition of the components 

has occurred. Horikoshi (1969) described two rock-units from the 

Kosaka district of Japan which bear resemblances with the member 

described here. The first of these rock-units, the Uwamuki Tuff Breccia, 

was deposited from a very dense, gravity-driven, flow of volcanic debris. 

The second unit, the Motoyama Volcanic Breccia, was produced during a 

single steam explosion which resulted from the interaction of hot rising 

magma and relatively cold sea-water. Jaggar (1908) similarily described 
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the production of breccias on the Bogoslof Island, Alaska, due to the 

penetration of sea-water into the fractured domes, resulting in 

vapourization and explosive disintegration. 

The products of these two processes are broadly similar, that is 

poorly sorted, rhyolitic breccias (with fragments up to 50cm), with a 

crude bedding and showing a fining upwards in fragment size. In the 

Porth Maen Melyn breccia, the presence of basic blocks is problematical. 

If the breccia results from the thermal shattering of the rising 

rhyolitic magma, then the surrounding strata may also have been 

shattered and become incorporated with the rhyolitic fragments. Fall 

of this material through a column of water may result in the crude 

grading seen. 

Alternatively, it is possible that the breccia represents the 

deposit from a coarse debris flow which was gravity generated. The 

submarine environment is ideal for the generation of such debris flows. 

If, as a result of instabilities in the local environment, submarine 

slides were generated, the incorporation of a small amount of sea-water 

into this slide would transform it into a highly mobile debris flow. 

This would move along by internal shear, with the larger blocks being 

transported by a mixture of interstitial fluid and fine sediment (see 

Hampton, 1972). Continued flow would result in a region of reverse 

shear at the front of the flow and material would be eroded from the 

front of the flow and thrown up into suspension above. This turbid 

cloud would settle out to produce a fine-grained deposit, overlying a 

crudely bedded, poorly sorted deposit. As a result of the reverse shear 

action, the lowermost 1 to 2m are commonly finer-grained than the main 

part of such units. This process is diagramatically illustrated in 

Figure 129. 



I 

FIG. 129. Possible mechanism for the generation of debris flows and 

the subsequent formation of deposits similar to that at 

Porth Maen Melyn. 

1. Movement of debris due to instabilities. 

2. Incorporation of water, transforming the. slide to. 

a debris flow. 

3. Turbulent cloud of finer material produced above 

debris flow. Also incorporation of underlying 

sediment, particularly if it is unlithified. 

4. Freezing of debris flow and settling out of finer 

cloud above. 
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Further evidence for the origin of'this member from a subaqueous 

debris flow is provided by the lack'of evidence for extensive 

vesiculation`within the rhyolitic lavas, which might be expected if 

the breccias resulted from steam explosions. As mentioned earlier, 

transitional junctions between rhyolitic lavas and autobreccias are 

seen in places. These would almost certainly have been destroyed if 

explosive activity had occurred. In addition, Tazieff (1971), in 

discussion of Horikoshi's model of steam explosions, states that steam 

explosions do not occur in a massive body of lava emplaced below sea- 

level. Only where prior fragmentation of the rock by magmatic 

explosions (i. e. vesiculation) has occurred do steam explosions take 

place. Clearly, the lack of. evidence for vesiculation within the 

rhyolitic lavas and rhyolitic breccias of the Fishguard area suggests 

that steam explosions were not responsible for the origin of these 

breccias. In addition, the absence of vitric material in this member 

similarily negates the possibility of extensive vesiculation. 

Due to lack of'inland exposures, volcaniclastic rocks of the 

Porth Maen Melyn Volcanic'Formation cannot be traced over the Pen Caer 

region. However; in the Fishguard area, a number of outcrops provide 

sufficient' evidence to illustrate the nature of 'volcaniclastic horizons 

in this area. On'the east and west sides of Lower Fishguard Harbour the 

'porphyritic rhyolitic ash' of Thomas and Thomas (1956, Figs. 6 and 7) 

crops out. It is composed essentially of crystal fragments along with 

a small'amount of lithic'and'vitric debris, set within a siliceous 

matrix. The crystals appear to be'predominantly tabular feldspars, up 

to 2mm in length and green'in colour due to alteration, along with 
broken, quartz crystals. The lithic fragments are of both rhyolitic 
lava and fine-grained mudstone. On the western side of the harbour the 



85 

basal contact of this unit with the underlying sediments is clearly 

exposed. The junction is highly irregular, with flames of sediment 

injecting upwards into the volcaniclastics. This, together with 

presence of incorporated mudstone clasts, suggests that this unit 

may also represent the deposit of a subaqueous ash flow, similar to 

that described by Fiske (1963) and Fiske and Matsuda (1964). 

In contrast with the Porth Maen Melyn Volcanic Formation, the 

Goodwick Volcanic Formation displays a wide variety of acidic 

volcaniclastic rocks. One of the most important horizons is exposed 

on the eastern side of Anglas Bay (Fig. 118), and may be traced 

across the headland of Penanglas southeastwards towards Crincoed 

Point. The apparent thinning in this direction is probably due to 

slight down-cutting by the adjacent basic intrusive sheet. This 

member, which is some 60m thick, graded add poorly bedded, is composed 

of grey volcaniclastic sandstones and breccias which contain abundant 

lithic fragments (Fig. 130). It displays a gradual fining upwards, 

with the upper 10m or so composed of fine volcaniclastic siltstones. 

The base of this member is coarse and rubbly and it overlies the 

autobreccias of the underlying rhyolitic dome. Although silicified, 

the lowermost 3 to 5m appear to be composed largely of fragments 

similar to those of the underlying rhyolitic autobreccias. The nature 

of the fragments within this member is very variable, with angular 

rhyolitic lava fragments, dark grey volcaniclastic fragments and 

occasional fragments of basic lava. The size of these fragments 

averages 5-6cm, although the larger volcaniclastic fragments reach 
30cm in length. The latter are generally elongate and commonly possess 

a peculiar cuspate outline. They give the appearance of having been in 
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a semi-consolidated condition prior to erosion, transportation and 

subsequent deposition within the deposit described here. The matrix 

which supports these fragments is fine-grained, light grey and 

contains considerable crystal debris. 

Thin section examination of the volcaniclastic fragments within 

this deposit reveals that they are composed essentially of similar 

components to those occurring within the matrix of the deposit itself. 

Both contain quartz and feldspar crystals, as well as micropoikilitic 

intergrowths of these two phases, set within a siliceous matrix. 

These are typical phenocryst components of the rhyolitic lavas, and it 

is suggested that this volcaniclastic deposit was derived from the 

autobrecciated rhyolitic lavas of a contemporaneous dome. The nature 

of their derivation, however, is somewhat problematical. The deposit 

must have been derived from a debris flow which had considerable 

erosive and transportation potential. In addition, a mechanism must 

be suggested which was responsible for the separation of the crystals 

from the rhyolitic lava. It is unlikely that separation occurred at 

an early stage, such as by ejection of crystals from a vent during 

explosive activity, as no evidence of such explosive activity is 

recorded. This offers marked contrast with the crystal rich ash-flow 

deposits described by Horikoshi (1969), Fiske (1963) and Fiske and 

Matsuda (1964). At present, however, it is not possible to suggest a 

mechanism capable of separating the crystals from the liquid lava. 

This member is of considerable importance in the reconstruction 

of a theoretical model for the nature of rhyolitic volcanicity in the 

Fishguard area. As the rhyolitic domes and their autobrecciated 



FIG. 130. Volcaniclastic rocks at Penanglas, showing the presence 

of included lithic clasts. 
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carapaces are actually covered by these volcaniclastic rocks, it 

suggests that the domes represented surface features, that is they 

were extrusive in nature. As a result, the autobrecciated carapace 

of loose material provided debris for reworking, resulting in the 

production of certain volcaniclastic deposits within the area. 
W 

Further to the west, volcaniclastic rocks are exposed in the 

area between Pwll yr Aren (GR 898413) and Pwlluog (GR 904412), and 

along the west side of Porthsychan-(GR 905408). The relationship of 

the beds between these two areas is complicated by the presence of 

dip-slip faults. From petrographical considerations, it is thought 

that they probably represent deposits of a similar origin, both in 

source of material and mechanism of deposition. The most continuous 

and well-exposed section extends from Pwll yr Aren eastwards to 

Carreg Gibi. This section exposes some 15-20m of well bedded, 

volcaniclastic rocks with bedding striking approximately east-southeast, 

dipping northeast at about 400-500 (Figs. 131 and 132). The basal 

beds are coarse but give rise upwards to volcanic sandstones and 

siltstones. The coarse beds contain blocks of both basic and acidic 

volcanic rocks, as well as clasts of sediments and volcaniclastics. 

The basic blocks are generally angular pillow fragments, although a 

number are distinctly rounded in outline (Fig. 133) resembling small 

pillows. Angular, white weathering rhyolitic blocks, up to 6cm in 

diameter, form the acidic component. Wispy, cuspate, dark grey, 
lithic casts are also predominant (Fig. 134) and are similar in nature 

to the dark grey clasts present within the thick volcaniclastic 

member at Penanglas. Occasionally, fine-grained sediment occurs as 



FIG. 131. Bedded, acid volcaniclastic rocks at Pwll yr Aren (GR 898413). 

FIG. 132. Bedded, acidic volcaniclastic rocks at Carreg Gibi (GR 904412). 
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FIG. 133. Rounded basic igneous fragment with coarse volcaniclastic 

rock, above Pwll yr Aren. 

FIG. 134. Cuspate, volcaniclastic fragments within volcaniclastic 

horizon, above Pwll yr Aren. 
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thin, flattened clasts which were clearly unlithified at the time of 

their incorporation. Other clasts retain a planar banding and are 

thought to have been compacted and probably lithified prior to 

incorporation. Locally, the underlying sediments have been disturbed 

and it appears that this member represents a further example of a 

debris flow deposit. 

Thin section examination confirms that the volcaniclastic fragments 

contain the same components as present within the Penanglas member; 

that is quartz, plagioclase and minor orthoclase feldspar crystals, 

as well as micropoikilitic intergrowths of quartz and feldspar. 

However, in this rock they are set within a chloritized groundmass. 

Prehnite occurs throughout and commonly replaces the sedimentary and 

crystal fragments. Vesiculated basic glass fragments are 

pseudomorphed by chlorite. 

The overlying finer beds, the volcaniclastic sandstones and 

siltstones mentioned above, were termed 'adinoles and spilosites' 

by Thomas and Thomas (1956). These rocks show an alternation in grain 

size although fining upward sequences are occasionally observed. 

Ripple-drift cross-lamination and load structures are locally present. 

These represent some of the few sedimentary structures identified 

within the rocks of the Fishguard Volcanic Group of this area. Within 

the finer beds small, rounded spherulites, approximately 5mm in 

diameter are developed (Fig. 135) and are formed due to recrystallization 

of the fine-grained, siliceous groundmass. No evidence of the 

introduction of sodium into these rocks from the adjacent Pen Caer 

doleritic intrusion as suggested by Thomas and Thomas (1956) was found 

during the present study. 



FIG. 135. Spherulitic recrystallization structures in fine-grained, 

acidic volcaniclastic rock, east of Pwll yr Aren. 
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Volcariclastic rocks of a similar nature to those described 

above are exposed at Porth Sychan (GR 905408), the 'feldspar sands' 

of Thomas and Thomas (1956). Once again, a coarse base is present, 

containing both acid and basic lava fragments and volcaniclastic 

clasts. Above this, however, the beds are fine and appear to be 

well bedded, as well as showing locally intense folding about E-W 

axes. The finer beds are grey-brown in colour and contain abundant 

crystal material which is easily distinguishable in hand specimen. 

In thin section, this is seen to be composed predominantly of 

plagioclase feldspar and rounded, embayed quartz crystals, with minor 

amounts of zircon, set within a fine-grained, siliceous and partly 

sericitized groundmass. 

It is deduced that these volcaniclastic rocks are composed of 

sand-sized and silt-sized material derived from the neighbouring 

rhyolitic lavas and were deposited from gravity- or possibly turbidity- 

driven currents. If this interpretation is correct, then other thin, 

siliceous horizons containing sparse crystal debris and identified 

from other horizons in adjacent areas of North Pembrokeshire may 

represent the fine-grained, distal equivalents of such flows. Units 

of this kind have been identified, for example, at Trwyn Castel, north 

of Abereiddy Bay, between Fisnguard and St. David's Head. 

Possible lateral equivalents of the beds described above are 

present in the bay at Porth Maen, occurring immediately below the 

bedded hyalotuffs which were described in section 3.2.1.2. Here 

bedded, volcaniclastic rocks (Fig. 136) form a unit some 60m thick. 

Poor exposure limits inland extrapolation, but rocks of a similar 

nature are also exposed in the Goodwick Harbour area and at Pwll-hir 
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(GR 952396). These rocks have a very distinctive character, with 

dark, elongate, wispy clasts set within a light green siliceous 

matrix (Fig. 137). Thin section examination shows three varieties 

of fragments, namely: 

(i) elongate, glassy, vesiculated fragments of a basic 

composition containing occasional glomeroporphyritic clusters 

of plagioclase feldspar crystals; 

(ii) fragments of volcaniclastic rocks similar in nature 

to those from Pen Anglas and Carreg Gibi; and 

(iii) acidic lava fragments. 

Many fragments appear elongated and are sub-parallel, producing a 

banding which parallels the bedding. No simple fining upwards is seen, 

although certain horizons are distinctly finer, with other horizons 

containing abundant fragmental material (see Figs. 138a and 138b). 

One of the rare occurrences of pyroclastic rocks of acidic 

composition within the Fishguard Volcanic Group of this area crops 

out at the northern end of the section exposed along the west side of 

Lower Fishguard Harbour whilst along strike, it may be seen exposed 

in a new road cutting at Manorwen (GR 938368). In the cliff section 

at Lower Fishguard Harbour it is seen outcropping from Lampit Mawr 

towards Saddle Point. These beds conformably overlie the basaltic 

pillow lavas and hyaloclastites of the much thinned Strumble Head 

Volcanic Formation, although the upper contact of the beds, with dark 

pelitic sediments of possible Llandeilo age (Thomas and Thomas, 1956), 

appears to be faulted. The unit, some 20-30m thick, shows a gradual 



FIG. 137. Elongate, dark, wispy fragments within a volcaniclastic 

rock from Goodwick Harbour Quarry. 
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FIG. 138a and b. Coarser horizons in volcaniclastic rocks from the 

Goodwick Harbour area. Angular clasts are chiefly 

of rhyolitic lava. 





FIG. 139. Tubular pumice in subaqueous ash-flow tuff from Lower 

Fishguard Harbour. PPL. x120. 

FIG. 140. Cuspate glass shards in subaqueous ash-flow tuff exposed 

in road-cutting at Manorwen. PPL. x400. 
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firing upwards. At the base, lithic fragments, both acidic lava and 

sedimentary clasts, up to 5cm in diameter, are associated with crystal 

and glassy debris. Both quartz and feldspar crystals are present and 

commonly show an angular outline. The glassy volcanic debris is 

composed of tubular pumiceous fragments (Fig. 139) as well as 

cuspate or irregular fragments showing well formed vesicles (Fig. 140). 

These fragments are set within a fine-grained, recrystallized 

groundmass. Upwards the size of the lithic clasts decreases and 

sedimentary clasts disappear, but, in contrast, the amount and size of 

pumiceous and vitric fragments increases. A reverse grading of 

pumiceous material in subaqueous deposits is common and is considered 

to be due to the buoyancy of pumice. During the settling out of 

debris within a column of water, pumiceous material tends to be found 

associated with the finer fraction. The origin of the unit under 

consideration here is not clear, although it is suggested that it 

represents the deposits of a subaqueous ash-flow and the fact that 

none of the vesicles show collapse structures suggests that it was 

cold at the time of its emplacement. The presence of a coarse base 

containing mudstone clasts supports the contention that the unit 

represents an ash-flow, similar to others identified in the area. 

The presence of abundant vitric material in the unit described 

above and also within the lowermost volcaniclastic unit exposed at 

Lower Fishguard suggests that debris from explosive eruptions may 

be important in the ground to the east of Fishguard. In this context, 

it is important to consider that the nature of material within the 

acidic volcaniclastic units changes across the Goodwick Syncline. 
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It appears likely that the units on either side of the syncline had 

different source provenances, and the amount of shortening due to 

the fold may be considerable. 

Within the Strumble Head Volcanic Formation, thin, bedded, 

siliceous horizons are occasionally seen, for example north of Carn 

Melyn (at GR 88904064) and also near Carn Helen (at GR 93334054). 

They are composed principally of recrystallized quartz and feldspar 

aggregates, although rarely shardic and pumiceous clasts are 

observed. It is possible that these represent fall accumulations 

from distant eruptions. 

In conclusion, it is apparent that many of the acidic 

volcaniclastic horizons of the Strumble Head-Fishguard area contain 

significant quantities of sedimentary material, particularily in the 

basal parts of these deposits, in addition to the volcanically-derived 

material. This testifies to the fact that these horizons resulted 

from deposition from gravity-driven flows, such as debris flows, 

which were capable of eroding and incorporating the partly-lithified 

or unlithified substrate. Naturally the flows were cold and derived 

from the unconsolidated carapaces of the rhyolitic flows or domes. 

The examples described here may thus represent a variety of ash-flow 

whose importance has hitherto been largely unrecognized. 
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