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Abstract 
 

Asthma is one of the most common chronic diseases of the 21st century, affecting over 300 

million people worldwide 1. It is an inflammatory disorder of the airways that is a major 

public concern globally due to increasing prevalence and rates of mortality  2–5, and each 

year the disease is estimated to cause 250,000 premature deaths 1. 

There is an unmet need for the identification of phenotype-specific markers and 

accompanying molecular tools that facilitate the classification of asthma phenotypes/ 

endotypes. This study utilised a range of molecular techniques to characterise a well-

defined group of female adults with poorly controlled atopic asthma associated with a 

house dust mite (HDM) sensitivity and non-asthmatic subjects.  

Quantification and differential expression analysis of circulating messenger RNA (mRNA) 

and microRNA (miRNA) revealed significant alterations to circulating RNA expression in the 

asthmatic subjects compared to the control subjects that may influence systemic immune 

activity. Quantification of circulatory inflammatory proteins (IL-4, 5, 10, 13, 17A, eotaxin, 

GM-CSF, IFNy, MCP-1, RANTES, TARC, TNFα, total IgE) found an overall trend of increased 

inflammatory protein in the asthmatic subjects, although no individual protein was 

identified as being significantly increased in the asthmatic subjects. Quantification of the 

bacterial protein, endotoxin, was observed to be decreased in the asthmatic subjects. 

Comparison of the circulatory microbiome in atopic and non-atopic subjects revealed that 

atopic disease was associated with significant changes to the circulatory microbiome 

composition and function potential. Moreover, characterisation of the murine gut and 

airway microbiome in an experimental model of atopic asthma found that HDM-induced 

pulmonary inflammation significantly altered the composition and function potential of the 
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airway and gut microbiomes, thus demonstrating that atopic disease can actively induce 

changes to the microbiome. 

In conclusion, this study provides a valuable insight into the systemic changes that occur in 

HDM-associated asthma. A number of circulatory molecules were identified that were 

condition-specific and have biomarker potential, and clear changes in the atopic 

microbiome were detected. 
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Chapter 1: Introduction to Molecular Characterisation of Atopic 
Asthma 
 

1.1. Introduction to Asthma 
 

Asthma is an ancient disease that has been affecting humans for thousands of years. 

Current estimates by the World Health Organisation predict that over 300 million people 

worldwide are living with the disease 1, making it one of the most common chronic diseases 

globally. It is an inflammatory disorder of the airways that is a major public health concern 

due to increasing prevalence and rates of mortality 2–5,  and causing a global estimate of 

250,000 premature deaths each year 1.  

The disease can develop during childhood (early-onset) or in adulthood (late-onset) and is 

characterised by variable and recurrent symptoms of wheezing, coughing, and shortness of 

breath. Symptoms arise as a result of intermittent episodes of reversible airway obstruction 

due to airway hyperresponsiveness and structural changes to the airways, such as airway 

fibrosis, goblet cell hyperplasia, increased smooth muscle mass, and increased 

angiogenesis 6,7. 

 

1.2. The Causes of Asthma 
 

The causes of asthma are multi-factorial and development of the disease is thought to be 

consequence of a complex array of contributing influences, including genetic susceptibility, 

environmental factors, and immune status 6,8–12. 

Traditionally, asthma has been defined as being either atopic or non-atopic on the basis of 

the presumed causative factor, whereby atopic asthma is induced by an environmental 

antigen, whilst non-atopic asthma is due to an internal stimulus.  
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Following development, asthma is typically characterised by periods of disease stability 

interspersed with periods of exacerbation. Asthma exacerbation is defined as acute or 

subacute episodes of progressively worsening airway narrowing and lung function that 

present as shortness of breath, wheezing, and chest tightness 13. Airway narrowing 

associated with asthma exacerbations has been demonstrated to be the result of smooth 

muscle contraction, airway wall oedema, and excessive mucous production 13–15. Causative 

factors of acute asthma exacerbations, similar to asthma development, are multifactorial, 

and include viral infections, exposure to allergens (house dust mite, pollen, animal dander), 

occupational exposures (grains, cleaning agents, irritants, metals, woods), hormones 

(menstrual asthma), exercise, stress, and air pollutants13. 

 

1.3. Clinical Presentation of Asthma 
 

The first clinical descriptions of asthma appeared in medical literature around 2600 BCE 

16–18. Today asthma is a clinical term to describe a group of patients with broad general 

respiratory symptoms that are associated with reversible airway obstruction and airway 

hyperresponsiveness 19, and clinical presentation is highly heterogeneous 20. The disease 

can vary greatly in terms of onset (i.e. early-onset and late-onset) and response to current 

asthma treatments. It can present as a stable, chronic disease, but also present as acute 

asthma exacerbations that can be fatal 21. Symptoms may be mild or severe, and arise as 

a consequence of a range of pathogenic mechanisms and causative factors, such as 

immunoglobulin (Ig)E-mediated allergic responses, exposure to pollutants, exercise, 

stress, or airway infections 21.  

The variation in asthma presentation and cause has resulted in speculation into whether 

asthma is a single disease or a spectrum of related diseases with subtle but distinct 
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differences in aetiology and pathophysiology 22,23. This has led to asthma being separated 

into a number of phenotypes, which are then further subdivided into several endotypes 

20,22–25. 

 The asthma phenotypes and endotypes differ with regards to disease presentation in 

terms of cause, development, severity, and response to medication. Individuals with 

eosinophilic asthma, for example, have been reported to have a good therapeutic response 

to inhaled or oral corticosteroid therapy, whereas individuals with neutrophilic asthma 

have been found to respond poorly to this therapeutic approach. 

 

1.4. Asthma Phenotypes and Endotypes 
 

Currently asthma diagnostics involves assigning asthma cases to either the atopic 

phenotype or the non-atopic phenotype. First proposed over 70 years ago by Rackemann, 

the phenotypes are based on age of onset and presence or absence of an environmental 

trigger 26. Atopic asthma typically develops during early childhood and is associated with 

sensitisation to one or more airborne allergen, such as animal dander, pollen, mould, or 

house dust mite (HDM). In contrast non-atopic asthma is typically late-onset, shows no 

association with allergen sensitisation, and is thought to occur as a result of a yet 

unidentified intrinsic asthma trigger 27. Current theories regarding the intrinsic asthma 

trigger include the suggestion that non-atopic asthma is triggered by a microbial agent, as 

respiratory influenza-like illness has often been observed to precede the development of 

non-atopic asthma 27. Another theory is that non-atopic asthmatics are sensitive to an as 

yet unidentified allergen, and thus elude skin prick tests designed to detect sensitisation to 

known allergens 27. 
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An estimated 70-90% of asthmatic patients are estimated to suffer from atopic asthma 27,30, 

making it the most commonly diagnosed asthma phenotype. The disease belongs to a 

group of diseases known as the atopic diseases, which are all clinical manifestations of 

allergen sensitisation, and include atopic asthma, allergic rhinitis (hay fever), atopic 

dermatitis (eczema), and some food allergies 31.  

Allergen sensitisation occurs due to a failure to develop immune tolerance to one or more 

allergens present ubiquitously in the environment. Over time exposure to the allergen 

results in chronic localised allergic inflammation, and subsequent long-term changes to the 

structure and function of the organs affected. In atopic asthma, chronic allergic 

inflammation occurs in the airways as a consequence of inhalation of airborne allergens, 

such as pollen, animal dander, and HDM, and results in chronic airway inflammation, 

structural changes to the airways, known as airway remodelling, and intermittent episodes 

of reversible airway obstruction as a result of airway narrowing (Figure 1.1).   
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Figure 1. 1: Airway remodelling in asthma. Histological examination of airway vessels from 
asthmatic subjects (compared to control subjects have revealed significant remodelling in 
the asthmatic airways compared to control subjects (A – D). This is due to several structural 
changes in the airway vessels, including goblet cell hyperplasia, subepithelial fibrosis, 
smooth muscle hyperplasia and hypertrophy, and increased airway vascularity 
(angiogenesis). Images A and B depict cross-sections of the large airways stained with 
Movat’s pentachrome stain from a control subjects (A) and a subject with severe asthma 
(B). The epithelium in the asthmatic airway cross-section is observed to exhibit mucous 
hyperplasia and hypersecretion (blue staining). Additionally, the asthmatic cross-section 
exhibits significant basement membrane thickening and increased smooth muscle volume. 
Diagrams C and D are schematic representations of the structure of the large airways in 
control subjects (C) and asthmatic subjects (D). [Taken from Fahy, 2015 32] 
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As understanding of asthma has progressed, new atopic asthma endotypes have been 

proposed and characterised on the basis of associated immunological responses. Simpson 

et al (2006), for instance, identified four additional endotypes that are characterised by the 

degree of granulocytic populations present; these comprise of eosinophilic asthma, 

neutrophilic asthma, mixed granulocytic asthma, and paucigranulocytic (non-

inflammatory) asthma 28. Furthermore, subsequent work carried out by Woodruff et al 

(2009), has revealed two more endotypes, known as T helper (Th)2-high, in which 

asthmatic patients displayed high levels of Th2 lymphocytes and Th2-low, in which the Th2 

lymphocyte population size was indistinguishable to the healthy control subjects 29. 

 

1.5. The Atopic March 
 

Allergen sensitisation typically occurs during the first two years of life in genetically 

predisposed infants and can persist through a lifetime, with disease commonly first 

presenting as atopic dermatitis (0 – 2 years), followed by the development of asthma (> 5 

years) in approximately half of atopic dermatitis patients, and allergic rhinitis (> 8 years) in 

approximately two thirds of atopic dermatitis patients 33,34. The pattern of clinical 

manifestations presenting in atopic individuals is referred to as the atopic march. 

This results in atopic individuals frequently presenting with more than one clinical 

manifestation of atopic disease. A study carried at by Kapoor et al (2008), for instance, 

found that by the age of 3 years 66% of infants diagnosed with atopic dermatitis had 

developed one or more additional forms of atopic disease 35. 
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1.6. Atopic Asthma Pathogenic Mechanisms 
 

In the general population, inhalation of aeroallergens is relatively harmless, resulting in low 

grade immune responses that are characterised by the production of allergen-specific IgG1 

and IgG4, and the differentiation and proliferation of interferon gamma (IFNƴ) producing 

Th1 cells due to interleukin (IL)-12 secreting macrophages 36,37. In individuals genetically 

predisposed toward atopy, however, an exaggerated immune response may occur 

following exposure to one or more aeroallergen. The immune response that occurs is 

characterised by the production of allergen-specific IgE and a Th2-driven immune response 

involving the production of IL-4, IL-5, and IL-13 in the airways 38,39.  

The inflammatory responses associated with airborne allergens in atopic asthmatics are 

generally classified into four temporal phases; allergen sensitisation, which occurs in 

genetically predisposed individuals upon first exposure to the allergen, early-phase 

inflammation, which occurs within seconds to minutes of allergen exposure, late-phase 

inflammation, which occurs within several hours of allergen exposure, and chronic allergic 

inflammation, which persists in the asthmatic airways as a result of repeated exposure to 

the allergen. 

 

1.7. The Allergen Sensitisation Phase 
 

The sensitisation phase of IgE-mediated hypersensitivity is initiated upon first exposure to 

an airborne allergen, and generally occurs within minutes of allergen inhalation 31 . During 

this phase the immune system is primed against the allergen as a result of the generation 

of plasma and memory cells that produce allergen specific IgE and the induction of a Th2 

mediated immune response. 
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Allergen sensitisation typically occurs during early childhood following first exposure to the 

allergen. Upon entry into the airways the allergen induces an immune response as a 

consequence of interactions with the subepithelial mucosal layer. These interactions result 

in the activation of the epithelial and myeloid cells, the migration of dendritic cells to the 

draining lymph node and subsequent Th2 differentiation, and the recruitment of a range 

of immune cells to the airways. 

 

1.7.1. Activation of the Epithelial Cells 
 

Aeroallergens are recognised by the epithelial cells through pathogen recognition 

receptors (PRR’s), such as toll-like receptors (TLRs), C-type lectin receptors, and protease 

activated receptors (PARs) expressed on the epithelial cell surface 40. Recognition of the 

allergen results in the secretion of alarmins (also known as danger-associated molecular 

patterns molecules, DAMPs). Examples include uric acid and adenosine triphosphate; 

cytokines, such as IL-1α, IL-25, IL-33, granulocyte-macrophage colony-stimulating factor 

(GM-CSF), and thymic stromal lymphopoietin (TSLP); and chemokines, such as chemokine 

C-C motif ligand (CCL)2 (also referred to as monocyte chemoattractant protein 1, MCP-1), 

CCL3 (previously known as macrophage inflammatory protein 1-alpha, MIP-1α), and CCL20 

41. These proteins are designed to activate innate immune cells, such macrophages, type 2 

innate lymphoid (ILC2) cells, and pulmonary dendritic cells, and recruit immune cells to the 

airways. These functions have been demonstrated to an important role in allergen 

sensitisation and airway inflammation (Figure 1.2). 
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Figure 1.2: The role of epithelial-secreted cytokines in allergen sensitisation. The 
production of alarmins following epithelial activation have been demonstrated to play a 
number of important roles in allergen sensitisation. The secretion of TSLP, for example, has 
been demonstrated to activate immature dendritic cells present in the airways, causing the 
cells to migrate to the lymph nodes where they induce Th2 differentiation and expansion. 
The Th2 cells then enter the systemic circulatory system where they are recruited to the 
inflamed airways or they induce B cell recombinant class switching, resulting in the 
production of IgE. TSLP, along with IL-25 and IL-33, has also been demonstrated to induce 
migration of the allergen-specific IgE presenting mast cells and basophils, subsequently 
causing accumulation of allergen-primed cells within the airways that results in the rapid 
induction of an immune response following later re-exposure to the allergen. Additionally, 
IL-25 and IL-33 have also been found to induce production of IL-5 and IL-13 by the mast 
cells, basophils, and ILC2 cells, subsequently causing increased mucous production, 
accumulation of eosinophils, mast cells and basophils, and airway remodelling. 

[Taken from Fahy, 2015 32] 
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1.7.2. Activation of the Innate Immune Cells 
 

In addition to activating the epithelium cells, the HDM allergen also activates innate 

myeloid cells present in the subepithelial mucosal layer due to its ability to increase 

epithelium permeability and enter the subepithelial mucosal layer. 

Activation of airway myeloid cells (dendritic cells, macrophages, mast cells, eosinophils, 

basophils, and neutrophils) works similarly to allergen-induced activation of the epithelial 

cells, whereby allergen binding to PRRs, such as TLRs, retinoic acid-inducible gene 1 (RIG) 

receptors, Nod-like receptors, C-type lectin receptors, and mannose receptors upregulated 

on the cell surface of the lung myeloid cells. 

These germ-line encoded receptors have evolved to recognise components of microbial 

cells, known as pathogen-associated molecular patterns (PAMPs) 42. It is therefore 

speculated that allergens induce innate immune responses through mimicry of PAMPs, the 

presence of microbial structures within the allergen itself, and through the allergen’s ability 

to directly engage with the PRRs 43. 

Following activation of the myeloid cells, the cells produce a number of pro-inflammatory 

chemokines and cytokines that contribute towards airway inflammation. HDM-induced 

activation of alveolar macrophages, for example, has been demonstrated to increase 

production of IL-6, TNFA, and nitric oxide 44, whilst HDM-induced activation of mast cells 

has been found to induce the expression of IL-1β, IL-4, IL-6, IL-9, IL-13, and TNFA 45. 

It has also been speculated that HDM indirectly activates invariant natural killer T (iNKT) 

cells. Akbari et al (2003), for example, found that inhibition of iNKT cell activity led to the 

complete ablation of airway hyperreactivity in mice sensitised and challenged with the 

common laboratory allergen Ovalbumin (OVA) 46. This was associated with reduced levels 
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of OVA-specific IgE, IL-4 and IL-13, and a significant reduction in airway eosinophilia, a key 

factor in the effector phases of atopic asthma 46.  Moreover, the iNKT cells were found to 

play an essential role in Th2 priming against the OVA allergen 46. 

In response to these findings, Akbari and colleagues (2003) have proposed an intriguing 

novel mechanism of allergen sensitisation. In this proposed mechanism, the presence of 

aeroallergens in the mucosal layer results in exposure of self-glycolipids that are typically 

inaccessible to the airway immune cells. NKT cells present in the airways are thought to 

bind to the newly exposed glycolipids, resulting in activation of the cells and subsequent 

generation of IL-4 and IL-13 prior to dendritic cell-mediated Th0 priming in the draining 

lymph nodes. The NKT cells, therefore, are thought to be an important source of the 

exogenous IL-4 and IL-13 required to induce Th2 differentiation in the draining lymph 

nodes, and thus is essential for Th2 accumulation within the airways 46.  

 

1.7.3. T Helper 2 Priming and IgE Production 
 

Following initiation of the innate immune responses, HDM exposure in individuals 

genetically predisposed towards atopy also triggers a Th2-driven immune response. This is 

mediated by the dendritic cells 47–49, which possess cellular structures, called processes, 

that enable them to detect allergens present in the bronchial lumen in addition to the 

subepithelial mucosal layer.  

The airway dendritic cells are present in the basolateral layer of the epithelium, and 

constantly sample from the airway lumen by extending their processes between the 

epithelial cells and into the airway lumen.  Inhaled allergens may be detected by the 

dendritic cell processes in the airway lumen, or the allergen may translocate across the 
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epithelial layer and interact with dendritic cells present in the underlying submucosal layer 

50.  

Following detection of the allergen, dendritic cells internalise the allergen  through one of 

three mechanisms; macropinocytosis, phagocytosis, and receptor-mediated endocytosis 

51–53. Macropinocytosis involves passive allergen internalisation whereby internalisation 

occurs as a result of non-specific uptake of large amounts of fluid and solutes from the 

dendritic cell’s immediate environment. In contrast phagocytosis and receptor-mediated 

endocytosis involves active internalisation that occurs as a result of the allergen binding to 

dendritic cell surface receptors, resulting in activation of the cell and internalisation of the 

allergen (Figure 1.3) 51–53. 

Once internalised, the allergen is delivered to late endosomes and degraded into small 

peptides using cathepsin proteases 51. The allergen peptides are then processed and 

presented on the dendritic cell surface by major histocompatibility complex II (MHC II) 

molecules 47, 52,54.  
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Figure 1.3: Receptors involved in allergen recognition and internalisation by airway 
dendritic cells. The C-Type lectin receptors, such as mannose receptor (MR) and dendritic 
cell-specific intracellular adhesion molecule 3-bragging non-integrin (DC-SIGN) are 
primarily involved in recognition of glycol-allergens, such as pollen. The TLRs primarily 
recognise the HDM allergen Der p 2 and flagellin, a contaminate of HDM extracts. TLR4 is 
also capable of recognising the feline allergen Fel d1, the canine allergen Can f 6, and nickel. 
The high affinity IgE receptor (FcƐRI) recognises IgE-allergen complex and plays an 
important role in IgE-dependent allergen presentation. 

[Taken from Salazar & Ghaemmaghami, 2013 40] 

  

The activated dendritic cells then upregulate co-stimulatory molecules on the cell surface 

and migrate to the draining lymph nodes where they present the MHC II-bound allergen 

peptides to naïve T helper (Th0) cells 47,55. This stimulates the Th0 cells to become IL-4 

competent 32,47, and is dependent on the presence of exogenous IL-4 within the Th0 

microenvironment 56. 
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Following priming the IL-4 competent cells migrate from the paracortical area, which is 

primarily composed of T cells, into the secondary lymphoid follicle, which is predominately 

populated by B cells 57. In the secondary lymphoid follicle the IL-4 competent T cells either 

differentiate into T follicular helper (TFH) cells or they exit the draining lymph node to enter 

the blood circulation where they complete maturation (Figure 1.4) 32,58,59.  

 

 

Figure 1.4: Maturation of the T naïve cells into effector T cell subsets. Differentiation of T 
naïve cells into effector T cells subsets is dependent on cytokine stimulation. Th1 
differentiation requires IL-12 or IL-27 stimulation, Th2 differentiation is dependent on IL-2 
and IL-4, TGF-β triggers Treg differentiation, and Th17 differentiation is stimulated by IL-
23, TGF-β + IL-6, and IL-21. Following differentiation, the effector T cells produce cytokines 
that activate immune cells and inhibit differentiation of naïve T cells into other effector 
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subjects. The cytokines produced by the Th2 cells, for example, activate B cells, eosinophils, 
and mast cells, whilst the cytokines produced by the Treg cells (TGF-β, IL-10) inhibit Th1, 
Th2, and Th17 differentiation. Asthma is characterised by expansion of the Th2 subset and 
decreased differentiation of Tregs.  

[Taken from Andreev et al., 2012 60] 

 

The Th2 cells in conjunction with an exogenous source of IL-4 mediate isotype switching of 

the B cells present in the germinal centre of the lymphoid follicle 32, 56, 58,61, resulting in the 

production of allergen-specific IgE that exits the draining lymph node to enter the 

bloodstream 62 (Figure 1.5).  Once in circulation the IgE antibodies bind to either the high 

affinity IgE receptor (FcεRI) or the low affinity IgE receptor (FcεRII) (Figure 1.5). The FcεRI 

receptor is expressed on the cell surface of mast cells and basophils 63,64, and to a lesser 

extent, on the cell surface of antigen presenting cells, such as Langerhan  cells 65 and 

monocytes 66. The FcεRII receptor, however, is expressed on a range of innate and adaptive 

immune cells, including T lymphocytes, B cells, monocytes and macrophages, and 

eosinophils, and platelets 64.  

In atopic asthma, the migration and expansion of the mast cells within the airways results 

in localised accumulation of allergen-specific IgE within the submucosal layer as a 

consequence of allergen-specific IgE binding to the high affinity FcεRI receptors 

upregulated on the lung mast cells (Figure 1.5). This induces allergen hypersensitivity within 

the airways, thus priming the immune system against future allergen exposure. 
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Figure 1.5: Priming of the allergic response by allergens. Following allergen exposure IgE 
is produced and secreted by B cells. IgE binds to the FCƐRI receptor expressed on the cell 
surface of mast cells and antigen presenting cells (a). Allergen binding to IgE triggers mast 
cell degranulation, causing an allergic response (b). Allergen binding to antigen presenting 
cells causes the cells to present allergen peptides to Th2 cells (c). The allergen-activated 
Th2 cells secrete IL-4 (d), resulting in maintenance of the Th2 lineage and increased 
differentiation of Th0 cells into Th2 effector cells. The Th2 cells also secrete IL-13 and 
express the CD40 ligand, which together with IL-4 stimulate B cell class switching to IgE (e). 
The allergen activated mast cells further contribute to IgE class switching by secreting IL-4 
and IL-13 (f). IL-4, IL-13, and CD40 also increase the release of soluble CD23 (g). CD23 
further increases IgE synthesis and secretion by interacting with CD21. 

[Adapted from Gould and Sutton, 2008 67] 
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1.7.4. The Role of the Innate Cytokines in Airway inflammation 
 

The production of the innate cytokines by allergen stimulated epithelial cells (e.g. GM-CSF, 

TSLP, IL-25, and IL-33) and NKT cells (e.g. IL-4 and IL-13) are key mediators in Th2 

differentiation, and thus have essential roles in the pathogenic mechanisms of allergen 

sensitisation. 

The production of GM-CSF, TSLP, IL-25, and IL-33 by the epithelial cells, for instance, has 

been found by various authors to induce migration of monocytes, dendritic cells, mast cells, 

eosinophils, basophils, and Th2 cells, into the asthmatic airways 68–71. Moreover, these 

cytokines have also been found to enhance the proinflammatory potential of the recruited 

cells. GM-CSF, for example, has been shown to increase the survival, proliferation, and 

activation of various immune cells, including monocytes and macrophages 72, neutrophils 

73, eosinophils 74, and dendritic cells 75, whilst TSLP appears to be an important mediator of 

dendritic cell activation 76. 

Soumelis et al (2002), for example, demonstrated that the addition of TSLP to cultured 

dendritic cells resulted in cellular activation that was characterised by increased 

upregulation of human leukocyte antigen (HLA)-DR and the co-stimulatory molecules, 

cluster of differentiation (CD) 40, CD80, CD83, and CD86, compared to dendritic cells that 

were activated by the CD40 ligand, bacterial lipopolysaccharide (LPS), and the IL-7 cytokine, 

and thus resulted in elevated dendritic cell antigen presenting potential 76. Moreover, TSLP 

was observed to enhance dendritic cell survival and alter cellular activity, whereby the cells 

released the chemokines thymus and activation regulated chemokine (TARC) and 

macrophage derived protein (MDC), and induced Th0 cells to produce high levels of IL-5, 

IL-13, and tumour necrosis factor (TNF), moderate levels of IL-4, and decreased 

concentrations of the anti-inflammatory cytokine IL-10 and the Th1 cytokine IFNγ 76. This, 
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therefore, suggests that in vivo TSLP activated dendritic cells would drive a Th2 biased 

immune response following exposure to allergen, and thus are a critical component in the 

development of atopic asthma. 

In contrast to GM-CSF and TSLP, IL-33 has been revealed to be essential for granulocyte 

activity, in particular the mast cells and basophils. Kondo et al (2008), for example, found 

that exposure of cultured basophils to IL-33 resulted in increased generation of a number 

of cytokines (IL-4, IL-6, IL-9, IL-13, GM-CSF) and chemokines (RANTES/CCL5, MIP-1α/CCL3, 

MIP-1β/CCL4, and CCL2) that are associated with increased survival, activation, and 

migration of number of inflammatory cells and the occurrence of Th2 inflammation 77. 

Similarly, Allakhverdi and colleagues (2007) demonstrated that exposure of cultured mast 

cells to IL-33 led to a dose-dependent increase in the production and release of a range of 

proinflammatory cytokines and chemokines, such as IL-5, IL-6, IL-8, IL-10, IL-13, TNF, GM-

CSF, and CCL1 78. 

IL-33 has also been found to increase mast cell differentiation. Allakhverdi et al (2007), for 

instance, found that exposure of immature CD34+ to IL-33 resulted in elevated rates of 

cellular maturation of the progenitor cells into tryptase-producing mast cells 78. Moreover, 

IL-33 is likely to increase mast cell survival in the lungs as a consequence of the cytokines 

ability to increase mast cell expression of the anti-apoptotic factor BCLXL 79. 

 

1.8. The Effector Phase of IgE-mediated Hypersensitivity 
 

Following the generation of allergen specific IgE and the recruitment of inflammatory cells 

into the airways, the atopic individual becomes sensitised to the allergen. Upon subsequent 

exposure to the allergen, atopic disease will occur as a consequence of the initiation of the 

effector phase of hypersensitivity. This phase is composed of two stages; the early phase 
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reactions, which occur within minutes of allergen challenge and generally last around 30-

60 minutes, and the late phase reactions late-phase reaction, which generally develops 2-

6 hours later, and typically resolves within 1 to 2 days 31. 

 

1.8.1. The Early Phase of Allergic Inflammation in Atopic Asthma 
 

The early phase reactions occur almost immediately upon secondary allergen challenge 

following the development of allergen sensitivity and are the result of allergen binding to 

the allergen specific IgE that is generated during the previous sensitisation reactions. 

In atopic asthmatics, the majority of allergen specific IgE is localised within the airway 

epithelial layer as a result of IgE antibodies binding to FcεRI upregulated on mast cells 

localised within the airways. Upon adhesion to IgE, bivalent or multivalent allergens can 

bind to adjacent allergen-specific IgE receptors present on the cell surface, subsequently 

causing FcεRI aggregation as a result of IgE crosslinking 31. 

This triggers a complex sequence of intracellular signalling events that activates the mast 

cell and induces the release of a range of preformed mediators, including biogenic amines 

(histamine), serglycin proteoglycans (heparin and chondroitin sulphate), serine proteases 

(tryptases, chymases, and carboxypeptidases), and a number of other growth factors and 

cytokines that may be associated with the granule, such as TNFα and vascular endothelial 

growth factor A (VEGF),  into the airway lumen (known as mast cell degranulation) 31. 

Activation of the mast cells also induces the release of a number of lipid-derived mediators 

into the mast cell microenvironment (Figure 1.6). These mediators induce the breakdown 

of arachidonic acid by stimulating the cyclooxygenase and lipoxygenase pathways, resulting 
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in the release of a number of prostaglandins (PG), including PGD2 , leukotriene (LT) B4,, and 

cysteinyl leukotrienes, such as LTC4  31.  

The release of the preformed mast cell mediators results in the stimulation of the early 

phase reactions within minutes of mast cell degranulation 80. These reactions induce rapid 

airway obstruction and subsequent wheezing as a consequence of increased vascular 

permeability, bronchoconstriction, vasodilation, and mucous production, and are mediated 

by a range of mast cell products 80,81 (Figure 1.6). Moreover, they also contribute towards 

the late phase reactions by inducing the migration of inflammatory leukocytes into the 

airways. This is mediated by the secretion of TNF, which interacts with the endothelial cells 

to stimulate upregulation of adhesion molecules such as E-selectin, intracellular adhesion 

molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1),  on the cell surface 

80–82. This causes the release of a number of chemotactic mediators , such as , PGD2, IL-8, 

IL-16, lymphotaxin /XCLI, CCL2, CCL3, CCL4, CCL5, MIP-3α /CCL20, and C-X-C motif ligand 

(CXCL) 10 80–82. 
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Figure 1.6: Mast cell mediated early phase reactions. Following re-exposure to the 
allergen, the mast cells present in the subepithelial layer of the airways are activated as a 
consequence of allergen-IgE cross-linking on the mast cell surface. This results in the 
release of a range of preformed mediators and the subsequent induction of the early phase 
reactions. These reactions are primarily mediated by the mast cell autocoids, proteases, 
cytokines, and chemokines. The autocoids (histamine, PGD2, LTC2)  and proteases 
(chymase, tryptase) increase mucous production and contraction of the smooth muscle, 
resulting in airway obstruction and the occurrence of wheezing within minutes of mast cell 
degranulation. The autocoids also induce airway hyperreactivity in conjunction with the 
mast cell cytokines TNF and IL-8, the CCL2 chemokine, and VEGF, as a consequence of 
increased vasodilation, vascular permeability, and the influx of inflammatory cells. 
Moreover, the influx of leukocytes into the airways as a result of mast cell mediated 
leukocyte recruitment and activation leads to the development of the late phase reactions 
a number of hours following mast cell degranulation. 

[Taken from Galli & Tsai, 2012 80] 
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1.8.2. The Late Phase of Allergic Inflammation in Atopic Asthma 
 

In addition to the release of preformed products, allergen-induced IgE cross-linking also 

activates the mast cells to synthesise and secrete a number of chemokines (including; MCP-

1, RANTES, eotaxin, TARC, MDC, CXCL2, and CXCL10), cytokines and growth factors 

[including; IL-3, IL-4, IL-5, IL-8, IL-9, IL-13, IL-25, TNFα, transforming growth factor beta 

(TGFβ) 1, TSLP and GM-CSF], and free radicals (including; Nitric oxide, superoxide) 82. The 

release of these products augments the influx of Th2 cells, granulocytes (mainly eosinophils 

with lower numbers of neutrophils and basophils), and monocytes, into the airway 

submucosal layer, and results in a second round of activity within the airways, referred to 

as the late phase reactions. The late phase reactions occur 2-6 hours after allergen 

exposure and is characterised by airway narrowing and excess mucous production as a 

consequence of mast cell products and the activities of the recruited inflammatory cells 

(Figure 1.7) 31.  
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Figure 1.7: The late phase reactions in the effector phase of atopic asthma. The late phase 
reactions of the effector phase are mediated by granulocytes (mast cells, eosinophils, 
basophils, and neutrophils) that were recruited to the airways as a consequence of the 
early phase reactions. Upon entry into the airways the granulocytes undergo degranulation 
as a result of stimulation by pro-inflammatory cytokines release by the activated epithelial 
cells and the Th2 cells localised within the airways. The release of the granules into the 
airway environment induces a range of pathogenic mechanisms that contributes towards 
the occurrence of clinical disease. The eosinophils, for example, release eosinophilic basic 
proteins that induces epithelial apoptosis, subsequently resulting in increased epithelial 
permeability, and thus increasing the ability of the allergen to enter the submucosal layer. 
The cells also induce airway narrowing and bronchoconstriction. Neutrophils, release 
elastase, which causes epithelial fibrosis as a consequence of increased collagen 
deposition, whilst the release of cysteinyl leukotrienes (Cys-LTs), IL-13, and TNF, by the 
neutrophils, mast cells, eosinophils, basophils induces bronchoconstriction and subsequent 
airway hyperreactivity.    

[Taken from Galli et al., 2008 31] 

 



41 
 

1.8.3. The Role of the T Helper 2 Cells in the Late Phase Reactions 
 

Recruitment and activation of the Th2 cells is thought to be crucial for the development of 

the late phase reactions. This is primarily due to the functions of the Th2 cytokines IL-3, IL-

5, IL-9, and IL-13. 

The production of IL-13 by these cells, for instance, has been demonstrated to increase 

mucous production in the airways as a consequence of enhanced goblet cell metaplasia 83–

86, whilst IL-5 has been demonstrated to have a critical role in the occurrence of eosinophilia 

within the airways, with studies reporting that elevated IL-5 concentrations led to increased 

eosinophil survival 87, differentiation 88,89, proliferation 88–90, activation 88,91, chemotaxis 87, 

and adhesion to the airway endothelial cells 92.  

Moreover, IL-9, has been found to induce mast cell migration to the airway epithelium, and 

function synergistically with stem cell factor to induce mast cell growth and differentiation 

93, and IL-3 has been demonstrated to function synergistically with other proteins to induce 

various pro-inflammatory activities. Grouard et al (1997) 94, for example, found that IL-3 

functions synergistically with the CD40 ligands to enhance survival and activation of a 

subset of plasmacytoid dendritic cells that were later demonstrated by Rissoan and 

colleagues to induce Th2 polarisation 95. Furthermore, Ebner et al (2002) demonstrated 

that when co-cultured with IL-3 and IL-4 human monocytes differentiated into dendritic 

cells that secreted reduced levels of IL-12 96, an important cytokine in promoting Th1 

immune responses. Additionally, various authors have demonstrated that together with IL-

5, IL-6, and GM-CSF, IL-3 increases proliferation of the granulocytes (eosinophils, 

neutrophils, basophils) and monocytes 90,97–100. 
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1.9. Immune Mechanisms Associated with Chronic Airway Inflammation in 
Atopic Asthma 

 

Allergens typically associated with atopic asthma (grass pollen, animal dander, HDM) are 

ubiquitous in the environment, and thus repetitive and persistent exposure to the allergen 

following initial sensitisation is inevitable.  

Repetitive exposure to the allergen results in chronic inflammation within the airways. This 

leads to the permanent residence of  innate immune cells (eosinophils, basophils, mast 

cells, and neutrophils) and adaptive immune cells (Th2 cells and B cells), and the occurrence 

of airway remodelling as a result of inflammatory cell activity on the structural cells (Figure 

1.8).  

Over time this results in changes to the epithelium, including increased cytokine and 

chemokine secretion by the epithelial cells, upregulation of cell surface receptors,  areas of 

epithelial injury and repair, and extensive inflammation of the submucosa 31. A number of 

structural changes (known as airway remodelling) also occur that lead to increased 

thickening of the mucosal, epithelial, and smooth muscle layers of the airways. Examples 

of these structural changes include loss of ciliated cells,  goblet cell hyperplasia (increased 

numbers of goblet cells in the airway wall), airway fibrosis (increased deposition  of 

extracellular matrix proteins in the lamina reticularis by fibrocytes), hypertrophy of airway 

smooth muscle cells (increased size of muscle cells), hyperplasia of airway smooth muscle 

cells (increased number of muscle cells), increased airway vascularity (angiogenesis), and 

reduced cartilage integrity 31,101.  

The structural changes cause lumen narrowing of the asthmatic airways and are 

responsible for many of the breathing symptoms associated with asthma, including 

coughing, shortness of breath, and difficulty breathing. It also alters the behaviour of the 
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airway epithelial cells, causing increased production of chemokines and cytokines which 

further contribute to airway inflammation by inducing migration and activation of immune 

cells. 

 

Figure 1.8: Chronic inflammation and the occurrence of airway remodelling. Over time 
repetitive exposure to the aeroallergen results in permanent residence of a range of innate 
and adaptive immune cells, including basophils, eosinophils, mast cells, neutrophils, Th2 
cell, and B cells. This results in localised accumulation of a variety of cytokines, chemokines, 
and other growth factors within the airways that influence the activity of the structural 
cells. Production of IL-4 and IL-13 by the Th2 cells, mast cells, and basophils, for instance, 
results in activation of B cells within the airways, which subsequently leads to persistent 
IgE elevations within the airways. This causes chronic degranulation of the granulocytic 
cells, which results in the accumulation of a range of proteins within the airways that induce 
airway remodelling. The release of TGF-β, by the eosinophils and mast cells, for example, 
leads to increased deposition of collagen and fibronectin and subsequent epithelial fibrosis, 
whilst the production of IL-13 by various inflammatory cells has been found to induce 
goblet cell differentiation, subsequently resulting in goblet cell metaplasia and excess 
mucous production within the airways.  [Taken from Galli et al., 2008 31] 
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1.10. Diagnosis of Atopic Asthma and its Endotypes 
 

Standard diagnosis of atopic asthma relies on patient history of symptoms and confirmed 

expiratory airflow limitation to diagnosis the patient with asthma 102. Skin prick tests are 

then used to identify allergen sensitisation and confirm an atopic disease state 103. Asthma 

as a disease, however, is highly heterogeneous, and thus symptom presentation and lung 

function measurements may not always reflect the underlying airway inflammation 102. 

Furthermore, diagnostic tools for identifying the various asthma endotypes are limited, and 

currently rely on bronchoalveolar lavage (BAL) and bronchoscopy with bronchial biopsy as 

the optimum method for assessing airway inflammation and remodelling 102. The 

invasiveness of these techniques limits their usefulness in daily clinical practice and makes 

them unsuitable in the diagnosis of young children 102 . 

These limitations alongside an incomplete knowledge of the pathogenetic mechanisms 

behind the different asthma endotypes has restricted development and access to optimal 

asthma treatment protocols.  

Overall, an estimated 5 -10% of asthmatics fail to respond to conventional medications 104. 

Moreover, long-term use of conventional asthma treatments, such as inhaled β2 

adrenoreceptor 2 selective agonists (function as bronchodilators to reduce airway 

narrowing) and glucocorticoids (suppress airway inflammation), has been associated with 

a number of health concerns 105, including the stunting of growth in children 106, cataract 

development 107,108, osteoporosis 109,110, and cardiovascular events 111. 

 In order to improve diagnosis of the asthma phenotypes/ endotypes, an improved 

knowledge of the molecular mechanisms that underlie the various asthma phenotypes is 

required. Long-term, this may also reduce asthma mortality rates and improve quality of 
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life by facilitating the targeted use of conventional medications aligned to the individual 

asthmatic phenotypes, and development of new medications specifically designed to treat 

specific asthma phenotypes/ endotypes. 

Biomarkers have been proposed as a means of performing risk assessment before clinical 

diagnosis, to determine the disease stage and severity following asthma diagnosis, and as 

a means of monitoring responsiveness to treatment 112.   

Biomarkers are characteristics or biomolecules that can be objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or response 

to therapeutic treatment 113. In asthma, there are increasing numbers of potential 

biomarkers being identified in various clinical samples, including BAL fluid, sputum, exhaled 

air, saliva, urine, and peripheral blood (Figure 1.9).  
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Figure 1.9: Established asthma biomarkers available for clinical practise and promising 
biomarkers under investigation.  Investigations into asthma pathology have identified a 
number of possible asthma biomarkers from a range of clinical samples. Several of these 
biomarkers are available for use in the clinical setting (blue), and there are increasing 
numbers being investigated for potential use in asthma evaluation, diagnostics, and 
assessment of treatment response (green and yellow). 

Abbreviations: ECP, eosinophilic cationic protein; FeNO, fraction of exhaled nitric oxide; 
uLTE4, urinary leukotriene E4. 

[Taken from Vijverberg et al., 2013 114] 
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1.11. Identification of Peripheral Biomarkers in Asthma 
 

The majority of studies have focussed on identifying biomarkers from clinical samples taken 

from the airways (sputum, BAL fluid, lung tissue) in order to better characterise airway 

inflammation and remodelling. However, collection of these samples is invasive and not 

suitable for daily clinical activity. This has led to an increasing interest in the identification 

of biomarkers from more accessible clinical samples, such as blood, urine, and saliva. 

Thus far there have been three methods of identifying biomolecules that could function as 

biomarkers for asthma. These include genomic, epigenomic, and proteomic analysis.  

 

1.11.1. Transcriptomic Biomarkers of Asthma 
 

Transcriptomic analysis has typically been achieved using high and low-throughput 

sequencing techniques to enable quantification of messenger RNA (mRNA) present in 

clinical samples in order to identify genes that are up or down regulated in asthmatic 

subjects compared to non-asthmatic subjects. These studies have identified hundreds of 

potential genes that may function as biomarkers for asthma. These genes have typically 

been associated with biological pathways/ processes involved in airway remodelling, 

production of mucous, and shifting the immune response towards a Th2 biased phenotype 

112. In a study by Gemou-Engesaeth et al (1997), for example, increased levels of mRNA 

coding for Th2 cytokines (IL-2, IL-4, IL-5) and GM-CSF was observed in peripheral blood 

samples from asthmatic subjects compared to control subjects 115. 

Transcriptomic analysis has also been used to characterise the different asthma 

phenotypes and endotypes. A study by Kuo et al (2017), for example, identified three 

transcriptome-associated clusters (TACs) in a patient cohort of moderate-to-severe 
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asthmatics that defined one Th2-high eosinophilic asthma phenotype (TAC1) and two Th2-

low asthma phenotypes (TAC2, TAC3) 116. TAC1 was characterised by increased gene 

signatures for TH2 and ILC2 cells, and was identified in patients with severe asthma, high 

levels of sputum eosinophilia, severe airflow obstruction, and an oral corticosteroid 

dependency. In contrast TAC2 was characterised by IFN, TNFA, and inflammasome-

associated genes, and was identified in asthmatic patients with high sputum neutrophilia, 

serum C-reactive protein levels, and atopic dermatitis; and TAC3 was characterised by 

genes of metabolic pathways, ubiquitination, and mitochondrial function, and was 

detected in asthmatic subjects with moderate to high sputum eosinophilia. 

 Moreover, IL-5 and IL-17 expression in the blood has been found to positively correlate 

with disease severity 117,118. 

In addition to changes in gene expression, changes in gene coding sequences have also 

been identified as useful biomarkers of asthma. A single nucleotide polymorphism in the 

gene coding for the low-affinity IgE-receptor, FCER2, for example, has been associated with 

increased risk of asthma-related hospital visits, failure to respond to treatment, and the 

need for higher daily steroid dosages 119,120. Similarly, studies have identified variations in 

the stress induced phosphoprotein 1 (STIP1) and the T-box transcription factor 21 (TBX21) 

coding regions that are associated with improved lung function following treatment with 

corticosteroids 121,122.  

More recently, changes in micro RNA (miRNA) expression have also been detected in 

asthmatic subjects. 123–125. miRNA-181, for example, has been detected in decreased 

concentrations in asthmatic plasma samples 126, and decreased concentrations of the 

miRNA has been associated with increased sputum and bronchial submucosal eosinophilia 

126. In contrast, miRNA-1248 has been observed at increased levels in serum samples from 
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asthmatic subjects, and has been demonstrated to bind to the 3’ untranslated region of the 

IL-5 transcript, resulting in increased IL-5 expression 127. miRNA levels have also been 

shown to reflect immune state. miRNA-192, for example, has been shown to be present at 

significantly decreased levels in the blood of asthmatic subjects following allergen 

inhalation challenge compared to pre-challenge, suggesting that the immune responses 

associated with allergen sensitivity negatively influenced expression of the miRNA 128. 

 

1.11.2.  Protein Biomarkers of Asthma 
 

Proteomic approaches involve quantification and/ or characterisation of proteins in order 

to identify changes in protein expression and modification in asthmatic subjects compared 

to non-asthmatic subjects. Previous studies have identified a number of potential blood 

protein biomarkers that are associated with asthma. Increased sputum and circulatory 

levels of eosinophilic cationic protein, for instance, has been associated with asthma 

severity 129,130, whilst CCL-17 (also known as TARC), a chemokine involved in recruitment of 

Th2 cells, has been demonstrated to be increased in the blood of asthmatic children 131. 

Another protein showing strong potential for use as an asthma biomarker is periostin, a 

matricellular protein produced by bronchial epithelial cells activated by IL-13. In asthmatic 

subjects increased blood periostin concentrations have been observed in asthmatics with 

eosinophilic airway inflammation compared to asthmatics subjects with minimal 

eosinophilic airway inflammation 132, therefore suggesting that the protein could be used 

as an indicator of airway eosinophilia. Blood biomarkers could also be used to predict 

treatment response. Increased blood concentrations of the chitinase-like protein YKL-40, 

for example, have been observed to be increased in children with severe, therapy-resistant 

asthma compared to non-asthmatic children and children with well-controlled asthma 133. 
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The protein was also found to be positively correlated to blood neutrophil levels and degree 

of bronchial wall thickening 133, suggesting that it could also function as a biomarker of 

systemic inflammation and airway remodelling in asthmatic patients.  

 

1.12. Atopic Asthma and Sex Differences 
 

Atopic asthma prevalence during childhood is typically higher in males compared to 

females 134–137 . However, when the disease does develop in females it is more likely to 

persist into adulthood 138,139, be associated with additional atopic diseases, such as allergic 

rhinitis and atopic dermatitis 140,141, and increased susceptibility to asthma exacerbations 

140,142–144. Females are also more prone to developing severe asthma 139,145, suffer asthma 

control problems 140, and reduced quality of life 140 that is associated with higher asthma 

mortality rates 145,146. 

There is, therefore, a great need to identify biomarkers in the female asthmatic population 

suffering from poorly controlled asthma, in order to better diagnose, monitor, and treat 

this group of asthmatic patients. 

 

1.13. Atopic Asthma Prevalence 
 

Epidemiological studies have revealed that over the past 50 years asthma prevalence has 

been increasing at a rapid rate, particularly in regards to early onset, atopic asthma, 

occurring in westernised societies 147–151. More recent studies have suggested that asthma 

rates are now beginning to plateau out 149,152–154. However, an explanation for why rates of 

asthma have risen in the human population is still required in order to better understand 

the disease and develop mechanisms to reduce asthma prevalence in future generations. 
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The strongest explanation proposed thus far for the increasing incidence rates of atopic 

asthma is the ‘Hygiene hypothesis’, which proposes that reduced exposure to 

environmental microbes due to changes in human behaviour and lifestyle is altering the 

natural development of the human immune system during early childhood. 

 

1.14. Introduction to the Hygiene Hypothesis  
 

The hygiene hypothesis was first proposed by Strachan in 1989, who noted an inverse 

correlation between exposure to infectious agents and hay fever incidence in 17,000 British 

children born in 1958 155.  Strachan suggested that changes in human behaviour, such as 

declining family size, increased standards of personal hygiene, and better living standards, 

was resulting in decreased transmission of infection during early childhood, and that this 

loss of early childhood exposure to infectious agents was increasing the risk of developing 

atopic disease 155. 

The theory was further supported by observations that prior infection with the hepatitis A 

virus 156,157 , the Toxoplasma gondii protozoan parasite 157, the Helicobacter pylori  

bacterium 157, or the Mycobacterium tuberculosis bacterium 158, appeared to be protective 

against developing atopic asthma.  

The protective role of childhood infection against atopy was thought to be due to the 

important role microbial infections have in the natural development of the immune system 

and immune tolerance. 

As technology has advanced this hypothesis has evolved into the ‘Old friends’ and 

‘Biodiversity’ hypotheses, whereby reduced exposure to environmental microbes alters the 
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bacterial populations inhabiting the human body, making the individual more susceptible 

to atopic disease 159,160. 

These microbial populations, known as the human microbiota, are predominately 

composed of non-pathogenic bacterial species that have formed synergistic relationships 

over the course of evolution. These relationships play an essential role in good health, and 

the bacterial members of the human microbiome, particularly those residing in the gut, 

have been demonstrated to perform various functions important to human health (Figure 

1.10). 

 

 

 

 
Figure 1.10: Functions of the microbiota beneficial to human health. The human 
microbiota, in particular the gut microbiota, has been demonstrated to carry out functional 
activities beneficial to human health. These include the breakdown of food compounds 
161,162, the synthesis of essential vitamins 162,163, the development and training of the 
immune system 164–170, protection against pathogens through competitive colonisation 
169,171,172, protection against epithelial injury 173, and promotion of angiogenesis 174,175 and 
fat storage 176. The microbiota has also been found to modify the nervous system 177, 
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modulate bone-mass density 178–180, and metabolise therapeutic agents into their active 
compounds 181,182. 

[Taken from Laukens et al., 2016 183] 

 

1.15. The Human Microbiota 
 

The human microbiota is the collective term to describe the endogenous microbial 

populations that colonise almost every available epithelial surface present in the human 

body. These populations are composed of bacterial, viral, fungal, and protozoan species 

that form complex microbial communities that differ significantly between anatomical sites 

and display intraspecific and interspecific variation at the species and genus level, 

respectively 184,185 (Figure 1.11). Collectively the microbial cells making up the human 

microbiota are equivalent to the number of human cells, with current estimates predicting 

a 1:1 ratio of microbial to human cells in the human body 186,187. 
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Figure 1.11: The composition of the various microbial communities of the human 
microbiota. The composition of the human microbiota differs across the various habitats 
of the human body. These microbial populations are composed of bacterial, viral, and 
fungal species, and are dominated by the bacterial species. Intriguingly, despite studies 
demonstrating a high degree of variability at the species level, at the phylum level there is 
a low degree of variability across the body habitats, with the majority of the identified 
bacterial species belonging to just four phyla; the Actinobacteria, Bacteroidetes, 
Firmicutes, and Proteobacteria.    

[Taken from Marsland & Gollwitzer, 2014 188] 
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1.15.1. The Evolution of the Human Microbiota 
 

Vertebrates have been colonised with microbes for millions of years, and thus humans have 

always had a microbiota that has co-evolved with the human race. The human microbiota 

is predominately composed of bacterial species that have formed synergistic relationships 

with humans.  

The evolution of the microbiota appears to have been controlled by strong selective 

pressures, as shown by observations that whilst the mammalian microbiota displays a high 

degree of interspecies diversity (microbial diversity between different mammalian species) 

this is restricted to the lower taxonomic clades, with the majority of bacteria detected 

belonging to just four phyla – Actinobacteria, Bacteroidetes, Firmicutes, and 

Proteobacteria 189–194. 

Moreover, the microbial communities of free-living microbial communities have been 

found to differ significantly from the microbial communities observed in the vertebrate 

microbiota 184. This suggests that the microbiota has evolved to be specifically adapted to 

the vertebrate host. This is further supported by the observations that the human gut 

microbiota more closely resembles the gut microbiota of other primates compared to non-

primates 184, thus supporting the presence of shared evolutionary pathways resulting in 

similar microbial communities. 

 

1.15.2. Establishment of the Human Microbiota 
 

It is currently thought that the microbial communities making up the human microbiota are 

established upon birth whereupon the sterile neonate is exposed to a variety of microbes 

present in the immediate environment, such as the maternal vaginal and faecal microbiota 
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if it’s a vaginal birth or the skin microbiota of those present at the birth if it’s a caesarean 

delivery 195. However, it should be noted that there is emerging evidence suggesting that 

the foetus may be exposed to microbes in utero, as evidenced by detection of bacteria in 

the meconium (the neonates earliest faeces) 196–198, the amniotic fluid 199–202, umbilical cord 

blood 202–204, and placental205–207 and foetal membranes 208 

The initial communities making up the infant microbiota are relatively simple in 

composition and are homogenously distributed across the various body habitats. The 

pioneer species are initially dominated by facultative anaerobes, such as Staphylococci, 

Streptococci, Enterobacteria, and Enterococci species 190,209,210, as a consequence of oxygen 

availability in the neonatal habitats. Over time the metabolic activity of the pioneer species 

results in a reduction of oxygen, subsequently creating an environment that favours the 

growth  of obligate anaerobic bacteria , such as Bifidobacteria, Bacteroides, and Clostridium 

spp. 209,211,212, which the infant is exposed to through breast milk or formula milk 210,213–216.  

 

1.15.3. Maturation of the Human Microbiota 
 

During the first few years of life the microbiota is highly dynamic and composed of a series 

of temporary colonisers. As the infant develops its microbiota develops with it, evolving 

from a relatively simple and undifferentiated ecosystem to complex, differentiated 

microbial communities that possess a high degree of diversity 217,218.  

The successive colonisation pathways during infant development results in the formation 

of a stable microbiota by age three that closely resembles the composition of the adult 

microbiota 190,219–221. A number of early life factors have been found to influence the 

successive pathways and subsequent composition of the adult microbiota, including 

method and location  of delivery 195,221, diet 191,221–224, the presence of older siblings and/ 
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or pets in the household 155,225, and maternal prenatal and infant postnatal antibiotic usage 

226,227. 

 

1.15.4. The Role of the Human Microbiota in Immune development 
 

The foetal mucosal and systemic immune functions are significantly different compared to 

the adult immune system 228–231. The foetal immune system has evolved to promote 

intrauterine foetal-maternal coexistence rather than process potential pathogens 229,231,232. 

This phenotype is characterised by a naïve, Th2 bias, and following birth the neonatal 

immune system undergoes extensive postnatal development, switching from a Th2 biased 

system to a Th1 or Th17 phenotype capable of protecting the infant against potential 

pathogens 231. 

The human microbiota is thought to play an essential role in maturation of the infant 

immune system. This is evidenced in observations that early-life antibiotic usage, for 

instance in pre-term infants, is associated with immune impairment 233 and the occurrence 

of asthma, atopic dermatitis, multiple sclerosis, and irritable bowel disease 234–238. 

Furthermore, in experimental investigations using germ-free (GF) mice or mice colonised 

with a defined microbiota (gnotobiotic mice), loss of commensal microbiota has been 

demonstrated to be associated with significant immune defects, including decreased IgA, 

decreased intraepithelial lymphocytes, defects in lymphoid tissue development in the 

spleen, thymus, lymph node, and mucosal interface (gut-associated lymphoid tissue, GALT), 

and increased susceptibility to pathogens 164, 170, 231,239–241. 
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The postnatal period of development, therefore, represents a critical window of time 

whereby early-life microbial exposure has significant influence over morphological and 

functional development of the immune system 170.  

 

1.15.5. Changes to the Microbiota Composition 
 

In the past century, changes in human lifestyle, particularly in developed countries, are 

thought to be altering the natural development of the infant microbiota, and subsequent 

composition of the adult microbiota. In a study carried out by Yatsunenko et al (2012), for 

example, comparison of the gut microbiome (the combined genetic material of the gut 

microbiota) of individuals from three distinct populations [rural Malawi, the Amazonas of 

Venezuela (Amerindians), and US metropolitan areas] found that the gut microbiome of 

individuals from US metropolitan areas was markedly different from those from rural 

Venezuela and Malawi (Figure 1.12) 220. As all three populations differed significantly with 

regards to geographical location and environment, the observed disparity of the American 

gut microbiome is likely the result of differences in the American lifestyle rather than 

environment and/ or genetic variations. 
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Figure 1.12: Variations in the gut microbiome of children and adults living in Malawi, the 
Amazonas, and the United States. Examination of the similarity of microbial populations 
in the gut microbiome of  Malawian, Amerindian, and American children and adults 
revealed that in all three populations the gut microbiome of children under the age of three 
was highly divergent from the adult microbiome (A and B). After the age of three, however, 
the gut microbiome of the children closely resembled that of the adult one, as 
demonstrated by significantly lower UniFrac scores. Intriguingly, the gut microbiota of 
American children and adults were persistently different to the Malawian and Amerindian 
microbiome (A – C). In contrast the gut microbiome of Malawian and Amerindian were 
more similar to one another, particularly in the adults (B & C), thus indicating differences 
in American culture rather than environment was responsible for the divergent gut 
microbiome observed in American subjects. [Taken from Yatsunenko et al (2012) 220] 
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In Westernised societies, there are numerous factors that have arisen in the past century 

that have reduced exposure to microbes and explain the observed changes in the 

microbiome. These include reduced family sizes 155,164, increased use of caesarean sections 

193, 221,242,243 and formula milk 222,223, increased sanitisation 155,244 and urbanisation 159,245, 

increased consumption of processed foods 191,224, and antibiotic usage 226,227. 

Alterations in the natural maturation of the microbiota during early childhood is thought 

to be altering how the immune system matures in both developed and developing 

countries, and it is thought that changes in the human microbiota are responsible for the 

current asthma epidemic. In particular numerous studies have associated mode of delivery 

242,246, increased urbanisation  245,247–250, and the use of antibiotics 235,251–253 with increased 

risk of atopic sensitisation and asthma development. 

 

1.16. The Human Microbiota and Atopic Asthma 
 

It has been firmly established that there are significant changes in the gut and airway 

microbiomes of asthmatic individuals compared to non-asthmatics 242, 254, 263,255–262. These 

changes have typically been detected during early childhood, and it is thought that reduced 

exposure to environmental microorganisms during these critical developmental years is 

having an adverse impact on the development of the immune system, thus increasing the 

risk of childhood asthma. 

 

1.16.1. The Gut Microbiota and Asthma 
 

The composition of the gut microbiota matures during the first year of life, during which 

the maturing microbiota is thought to play a significant role in the maturation of the infant 
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immune system. Studies investigating whether dysbiosis of the gut microbiota contributes 

towards asthma development and pathology, therefore, typically investigate the gut 

microbiota during this vital developmental stage. 

During the neonatal stage of development (defined as the first 28 days of life) 

characterisation of the neonatal gut microbiome has provided strong evidence of a positive 

association between development of atopic disease during early childhood (before the age 

of 5 years) and dysbiosis of the gut microbiota 218, 242, 254,264–268. Overall, these studies have 

demonstrated that neonates that later develop atopic disease typically present with 

increased colonisation by Clostridia species 242, 264,269 and decreased colonisation by 

Bifidobacteria species 254, 264,268. Kalliomaki and colleagues (2001), for example, 

demonstrated that at 3 weeks of age, neonates who went on to develop atopy displayed 

reduced Bifidobacteria dominance and subsequent expansion of Lactobacillus, Enterococci, 

Clostridia, and Bacteroides 264. Additionally, work by Abrahamsson and colleagues (2012) 

has revealed that the diversity of bacteria residing in the neonate is reduced in infants who 

go on to develop atopic disease 267. 

Early colonisers, referred to as pioneer species, determine the ecosystem conditions of the 

various body habitats and thus influence the composition of the subsequent colonisers of 

the human microbiota following initial colonisation. Microbial dysbiosis during the 

neonatal developmental period, therefore, is likely to adversely affect maturation of the 

gut microbiota during the first year of life. Arrieta et al (2015), for example, characterised 

the gut microbiome in infants aged 3 months and again at 1 year of age 258. Changes in the 

gut microbiome of infants at risk of developing asthma at 3 months (decreased abundance 

of Lachnospira, Veillonella, Faecalibacterium, and Rothia) were found to persist up to the 

age of 1 year, whereby Lachnospira and Veillonella remained significantly decreased in the 
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atopic infants 258. Moreover, this was found to significantly alter the functional activity of 

the gut microbiota, as evidenced by significantly decreased levels of the short chain fatty 

acid (SCFA) acetate (a major product of the microbiota in the infant gut)  in the atopic 

infants 258.  

The findings of Arrieta and colleagues are further supported by work carried out by Durack 

et al (2018) and Stokholm et al (2018), who independently demonstrated delayed 

microbiota maturation in infants at risk of developing asthma 217,270. Durack et al (2018) 

reported a reduced rate of gut bacterial diversification during the first year of life, as 

evidenced by decreased gains in both community richness and evenness, whilst Stokholm 

et al (2018) reported significant differences in beta diversity and decreased abundance of 

bacterial genera thought to be determinants of a healthy gut microbiota (Faecalibacterium, 

Bifidobacterium, Roseburia, Alistipes, Lachnospira incertae sedis, Rumminococcus, and 

Dialister) in at risk infants. Intriguingly the observed changes by Stokholm et al (2018) were 

only apparent in infants born to asthmatic mothers (Figure 1.13), thus suggesting that 

microbial dysbiosis is a trigger for asthma development in genetically susceptible infants.  

 



63 
 

 

Figure 1.13: Diversity of the gut microbiome detected in 1-year old infants whom asthma 
was and was not developing. Analysis of microbial diversity in the gut microbiome of 1-
year old infants in whom asthma was and was not developing was performed using PCoA 
plots of weighted UniFrac distances. Comparison of the microbial diversity detected in the 
gut microbiome revealed that maternal asthmatic state significantly influenced microbial 
diversity, whereby only asthmatic infants with an asthmatic mother differed significantly 
compared to the non-asthmatic infants. This suggested that microbial dysbiosis was only 
associated with increased asthma risk in infants genetically predisposed towards the 
disease. 

[Taken from Stokholm et al., 2018 217] 

 

The observations of gut microbial dysbiosis during the first year of life is likely to result in 

the development of a microbiota lacking key commensal organisms required for optimal 

physiological and immune development, and subsequent maintenance of immune 

homeostasis. West et al (2015), for instance, demonstrated that at 1 week and 1 month 

old, neonates who later developed atopic disease displayed significantly reduced levels of 

Ruminococcaceae colonisation, and colonisation by Ruminococcaceae was found to be 

inversely associated with TLR2 induced IL-6 and TNFα levels 218. The neonates were also 

observed to exhibit a pattern of lower Proteobacteria colonisation (in particular 



64 
 

Enterobacteriaceae and Escherichia-Shigella), and that colonisation with these bacteria was 

inversely associated with TLR4-induced TNFα and IL-6 levels 218. 

Changes in immune maturation in the infants is likely to increase susceptibility to 

developing atopic diseases, thus providing a mechanism whereby gut microbiota dysbiosis 

contributes towards disease development. Furthermore, variations in immune maturation 

are likely to alter microbial tolerance and colonisation following introduction of solid foods 

to the diet at around 6 months, subsequently increasing the risk of persistent microbial 

dysbiosis in the gut.  

In support of this interpretation are a significant number of studies that have demonstrated 

atopic disease is associated with changes in the gut microbiome in both children and adults 

suffering from atopic disease 253,270–276. 

Candela et al (2012), for example, observed variations in the gut microbiome of children 

aged 2 – 14 years with clinical diagnoses of various atopic diseases (allergic rhinitis, atopic 

asthma, atopic dermatitis, and cow’s milk allergy) compared to non-atopic children 271. 

These observations were only detected at the lower taxonomic levels, as both atopic and 

non-atopic children display similar degrees of phylum diversity 271. Using a phylogenetic 

microarray platform, the authors determined that atopic children displayed a tendency 

towards reduced numbers of Akkermansia muciniphila, Faecalibacterium prausnitzii, 

Ruminococcus bromii et rel, and Clostridium cluster XIVa species, and expansion of 

Enterobacteriaceae, Veillonella parvula, and Fusobacteria species 271.  

Interestingly the gut microbiome did not differ significantly between the different atopic 

disease states, thus suggesting that microbial dysbiosis simply increases the risk of 

developing atopic disease and that other factors are responsible for determining the 

specific disease outcome. Following disease development, it is likely that changes in 
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microbiota contribute towards disease severity and/ or function as biomarkers for atopic 

disease. 

 

1.16.2. The Airway Microbiota and Asthma 
 

In addition to changes in the gut microbiota, recent studies have suggested that atopic 

disease is also associated with altered airway microbiota composition. These investigations 

are relatively recent compared to those carried out on the gut microbiota as it wasn’t until 

the development of next Generation sequencing that the airways have been shown to 

possess a microbiota 256,277–279. 

 Investigations into the airway microbiota have found that there is greater bacterial 

colonisation and diversity in the airways of asthmatic individuals compared to the airways 

of non-asthmatic, healthy controls 256, 277,280. This is characterised by expansion of the 

Proteobacteria (in particular pathogenic organisms, such as Haemophilus, Neisseria, 

Bordetella, Moraxella, and Shigella) and increased Streptococci 256, 277,280,281. 

Moreover, the association between atopic asthma and the airway microbiota appears to 

be dependent upon age of colonisation. Bisgaard and colleagues (2007), for instance, found 

that neonates that were highly colonised by Haemophilus influenzae, Moraxella catarrhalis, 

and  Streptococcus pneumonia during the first month of life displayed a greater incidence 

of recurrent wheeze that was associated with the development of asthma in later life 280. 

In contrast, infants who were colonised by the bacterial species at 12 months of age did 

not display an increased risk of asthma development 280, thus suggesting that colonisation 

must occur early in life to influence atopic sensitisation and subsequent asthma pathology.  
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Furthermore, neonatal colonisation of Haemophilus, Neisseria, and Streptococci was found 

by Dominguez-Bello et al (2010) to be associated with method of birth delivery, whereby 

increased abundance of Haemophilus, Neisseria, and Streptococci was associated with 

caesarean delivery, and increased Prevotella colonisation was associated with vaginal 

delivery 195 (Figure 1.14). This, therefore, suggests that the positive association between 

caesarean sections and atopic asthma may be the consequence of increased 

Proteobacteria species within the airways in infants born by caesarean section.  

 

 

Figure 1.14: Comparison of the neonatal homogeneous microbiome to the maternal 
microbiome. Characterisation of the homogenous neonatal microbiome and the maternal 
microbiome at various habitats (oral, skin, vaginal) revealed that the method of delivery 
had a significant impact on the diversity (A) and composition (B) of the neonate 
microbiome. Infants delivered vaginally had a similar microbiome to the maternal vaginal 
microbiome, whilst infants delivered by caesarean section displayed a similar microbiome 
to the maternal skin microbiome (A & B). Furthermore, a number of bacterial genera 
positively associated with the development of atopic disease in infants (Streptococcus, 
Haemophilus, Neisseria) were observed to be increased in the microbiome of infants 
delivered by caesarean section, thus suggesting a mechanism by which birth by caesarean 
section increases the risk of developing atopy. 

[Adapted from Dominguez-Bello et al (2010)195 ] 
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In addition to the association of asthma development, the airway microbiota composition 

has also been found to influence the severity of asthma disease 256,281. Huang et al (2011), 

for example, determined that there was a strong relationship between increased airway 

microbiota diversity and airway hyperresponsiveness, and that there were approximately 

100 different bacterial taxa that displayed a positive correlation between abundance and 

airway hyperresponsiveness  281. The taxa were predominately Proteobacteria, thus 

supporting the earlier findings by Bisgaard (2007)280  regarding the importance of 

Proteobacteria in asthma pathology.  

Furthermore, subsequent research carried out by Goleva and colleagues (2013) has 

suggested that the composition of the airway microbiota may also influence disease 

severity and treatment responses 255. In this study the authors characterised the airway 

microbiome using BAL samples from asthmatic subjects who were corticosteroid resistant 

(CR) and asthmatic subjects who were corticosteroid sensitive (CS). In comparison to the 

airway microbiome of non-asthmatics, the asthmatic subjects were found to display 

bacterial expansion at the phylum level, and that composition of these expansions varied 

between the CR and CS samples (Figure 1.15). In the CR subjects, increased expansion of 

the Actinobacteria and Proteobacteria phyla was observed, whilst in the CS samples only 

Proteobacteria expansion was detected (Figure 1.15). Moreover, the CR samples also 

displayed significant reduction in the Fusobacteria phylum, and the Prevotella and 

Veillonella genera, whilst the CS subjects were found to have reduced levels of Prevotella 

and Veillonella (Figure 1.15).  
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Figure 1.15: Changes in the composition of the airway microbiome in corticosteroid 
sensitive and corticosteroid resistant asthma compared to healthy control subjects. 
Characterisation of the airway microbiome revealed that asthma is associated with 
bacterial expansion at the phylum level. Corticosteroid sensitive (CS) asthma was 
associated with a significant expansion of the Proteobacteria phylum and decreased levels 
of Bacteroidetes (Prevotella) and Firmicutes (Veillonella) compared to the control subjects. 
In contrast, corticosteroid resistant (CR) asthma was associated with expansion of the 
Actinobacteria and Proteobacteria phyla and a significant decrease in bacteria belonging to 
the Bacteroidetes (Prevotella genera) Firmicutes (Veillonella) and Fusobacteria phyla 
compared to the control subjects.  

* = P < 0.05 and *** = P < 0.001 compared to normal controls. 

 [Taken from Goleva et al., 2011 255] 

 

 

The distinct microbial profiles of the CR and CS asthmatic subjects suggest that different 

asthma phenotypes have distinct airway microbiomes to one another, which could be 

useful in the diagnosis of the asthma phenotypes. These distinct microbial profiles may 

reflect different asthma pathogenic mechanisms present in the two groups that indirectly 

alter composition of the airway microbiota, or it may be that composition of the airway 
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microbiota influences susceptibility towards corticosteroid treatment. Additionally, it 

should also be noted that a study carried out by Huang et al (2014) found that 

corticosteroid treatment following an acute exacerbation in individuals with chronic 

obstructive pulmonary disease (COPD) resulted in Proteobacteria expansion in the airway 

microbiota 282, thus suggesting that treatment with corticosteroids can influence the 

asthmatic airway microbiota composition. 

 

1.16.3. The Microbiota and Asthma Pathogenesis 
 

The gut microbiota, particularly during the neonatal period, has been demonstrated to 

have an important role in allergen sensitisation and subsequent atopic disease 

development. The role of the gut microbiota in atopy has typically been investigated using 

GF murine studies, whereby mice are reared in sterile conditions and allergen sensitisation 

is induced through intranasal  or subcutaneous exposure 165,283–286. 

In the absence of microbial colonisation, the immune system fails to mature properly and 

is characterised by altered levels of immune cells (T cells, B cells) and increased total IgE 

concentrations 286–289, thus suggesting that the absence of a microbiota results in a 

predisposition towards atopic sensitisation. In support of this theory, Herbst and colleagues 

(2011) reported that there was elevated Th2 responses towards the OVA allergen in GF 

mice compared to specific pathogen free (SPF) mice and GF mice that were recolonised 

prior to allergen exposure 284. This was characterised by increased airway 

hyperresponsiveness, basophilia, goblet cell hyperplasia, perivascular and peribronchial 

inflammatory cell infiltration, IL-4 and IL-5 production, and elevated IgE serum levels  

(Figure 1.16) 284. Moreover, in the GF mice prior to allergen exposure there was reduced 

alveolar macrophages, IgA, and conventional dendritic cells present in the lungs compared 
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to SPF mice 284. Following allergen exposure, the GF mice were found to have fewer 

plasmacytoid and conventional dendritic cells in the lungs compared to the SPF mice, and 

the conventional dendritic cells that were detected were observed to have reduced activity 

and display a different phenotype compared to those observed in the SPF mice 284. This 

suggested that the immune system in the GF mice had not fully matured, and thus had 

maintained the neonatal Th2 bias. 

 

 

Figure 1.16: Histological examination of the airways in germ free mice and specific 
pathogen free mice before and after OVA allergen challenge. Examination of lung tissue 
in germ free (GF) and specific pathogen free (SPF) mice found that following allergen (OVA) 
sensitisation and challenge, GF mice exhibited increased inflammatory cell infiltration 
(perivascular and peribronchial) and increased goblet cell hyperplasia compared to SPF 
mice. The exaggerated inflammatory response in the GF mice suggested that the absence/ 
presence of commensal bacteria has a functional impact on allergen-induced inflammation. 

[Adapted from Herbst et al., 2011 284] 

 

Subsequent work carried out by Olszak and colleagues (2012) found that GF mice displayed 

significantly greater allergic responses to the OVA allergen compared  to SPF mice 285. This 

was associated with an increased accumulation of invariant natural killer cells (iNKT) cells 
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in the lungs that was observed to induce enhanced eosinophilia, IgE production, and airway 

hyperreactivity 285. Moreover, the increase in iNKT cell accumulation within the lungs was 

found to be due to increased epithelial expression of the iNKT cell chemokine, CXCL16, as 

a consequence of hypermethylation of cxcl16. This, therefore, suggested that microbial 

colonisation modulates allergen-induced inflammation by influencing cellular activity as a 

result of epigenetic-mediated mechanisms.  

However, the ability of the endogenous microbes to suppress hypermethylation of cxcl16 

appeared to be restricted to the neonatal period of development. This was determined by 

the observation that when the GF mice were exposed to conventional SPF microbiota 

during the first 6 weeks of life, iNKT cell abundance and subsequent allergic asthma 

susceptibility significantly decreased, whilst when the GF mice were exposed to microbes 

as adults there was no change in  iNKT cell abundance 285. Moreover, the absence of the 

microbiota during the neonatal period appeared to have long-term consequences, 

whereby the levels of iNKT cells remained consistently high throughout life.   

This, therefore, supported the theory of a ‘critical window of opportunity’ whereby 

colonisation of microbes must occur to ensure proper development of the immune system.  

The importance of the microbiota during the neonatal period of development is likely due 

to microbial signals that are required for lymphoid development and maintenance of the 

gut, and thus changes in the microbiota could result in altered epithelial cell signalling 

cascades and subsequent dysregulation of the innate and adaptive immune response 290. 

This may result in the persistence of the neonatal Th2 bias, and consequently increased 

susceptibility towards allergic asthma. 

The mechanisms whereby the composition of the microbiota may influence asthma 

susceptibility have typically been examined through the inoculation of murine models with 
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specific bacteria, and examination of the consequences of inoculation. Through the use of 

such experimental models, a number of bacterial species have been identified that either 

protect against allergen sensitisation or increase the risk of sensitisation occurring (Table 

1.1). In humans these bacterial species have been detected at altered levels in asthmatic 

subjects compared to non-asthmatic subjects, thus suggesting that the immunological 

mechanisms detected in experimental models of asthma also apply to clinical disease. 

Bacteria associated with protection against atopic sensitisation and disease include the 

Bifidobacteria spp. and the Lactobacillus spp., and bacteria associated with increased risk 

of atopic sensitisation and disease development include Sphingomonadaceae, Clostridium 

difficile, and Chlamydiae pneumoniae (Table 1.1). 
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Table 1.1: Bacteria detected in the human microbiome that have been found to have 
beneficial or harmful functional properties that are associated with atopic disease 
pathology 

Organism Beneficial effects on the host References 

Bifidobacteria spp. 

 
- Increase T regulatory cells 

 
291,292 

- Increase IL-10 production 292 
- Decrease IL-2, IL-4, IL-6, IFNƴ, and TNFα production 291,292 
- Decrease serum IgE levels 291 
- Increase Th1 differentiation 292 
- Reduce inflammatory cell infiltration 291,292 
- Reduce mast cell degranulation 292 
- Reduce airway remodelling  292 
- Reduce T cell activity 

 
292 

Lactobacillus spp. 

 
- Decrease airway hyperresponsiveness 

 
292,293 

- Decrease lung resistance 292 
- Suppress airway remodelling 292 
- Decrease airway immune cell infiltration 292,293 
- Decrease peripheral eosinophil populations 293 
- Decrease IL-2, IL-4, IL-5,IL-6, IL-13, IL-17A, MCP-1, 

and TNF 
292–294 

- Increase IL-10, IL-12, and IL-18 production 294,295 
- Increase IgA production 294 
- Suppress mucosal mast cell degranulation 292 
- Suppress T cell activation 292 
- Decrease expression of TLR4 292 
- Increase Th1 differentiation 

 
295 

Organism Harmful effects on the host References 

Sphingomonadaceae 
spp. 

 
- Activate natural killer cells 

 
296–298 

Clostridium difficile 

 
- Increase permeability of the epithelial layer 

 
299,300 

- Macrophage activation 301 
- IL-8 production 

 
301 

Chlamydia 
pneumoniae 

 
- Increase epithelial cell adhesion molecules 

 
302 

- Increase production of IL-6 and IL-8 303–305 
- Promote smooth muscle proliferation 306 
- Increase IL-4 expression 307 
- Increase MUC5AC expression 308 
- Induce airway remodelling 302,306 
- Induce airway hyperresponsiveness 306,308 
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1.17. Introduction to the Circulatory Microbiome 
 

Whilst colonisation of the specific body sites that are in contact with the external 

environment (such as the gastrointestinal tract, skin, and respiratory tract) by 

microorganisms is both well-described and universally accepted, the existence of microbial 

populations in other “classically sterile” locations, including the blood, is a relatively new 

concept 309. 

Traditionally, the blood was thought to be a sterile environment during good health, and 

the presence of microbes within circulation was thought to only occur in cases of sepsis 310. 

The presence of bacteriostatic and bactericidal components within the blood creates a 

hostile environment unfavourable for bacterial growth and survival 309, and the majority of 

literature available has demonstrated that bacteraemia is typically short-lived and transient 

311. However, over the past few decades there has been mounting evidence to support the 

existence of a circulatory microbiota/ microbiome in mammals composed of transient and/ 

or permanent microbial colonisers and/ or microbial DNA translocated from other body 

sites.  

The possibility of a blood microbiota was first reported in an early study by Tedeshi et al 

(1969), who detected the presence of intraerythrocytic bacteria in clinically healthy human 

subjects 312. These early observations were followed by a number of studies that 

demonstrated the presence of bacteria or bacterial-like structures within the circulation in 

the absence of overt disease 313–319. Domingue and Schlegel 1977), for example, surveyed 

the blood from 60 healthy control subjects and observed bacteria resembling 

streptococcal, staphylococcal, and Gram positive filamentous forms in 7% of blood samples 

analysed 315. 
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Following the advent of culture-independent techniques for bacterial detection, in 

particular 16S ribosomal RNA (rRNA) sequencing techniques, interest in the circulatory 

microbiota/ microbiome has increased. Important research carried out by Nikkari et al 

(2001) 320 and McLaughlin et al (2002) 319, who independently used qPCR to identify 

bacterial DNA in the blood of healthy donors, has  led the way in providing the first in-depth 

characterisation of the circulatory microbiome. 

Since the early investigations there have been increasing reports demonstrating the 

presence of bacteria-specific DNA in human whole blood, plasma, buffy coat, and serum 

samples from healthy human subjects 310, 321, 330–339,322–329, and various other mammalian 

species, including arthropods (fleas, torsalos)340, rodents 341, Pikas340, cats 342, chickens 343, 

and cows 344. These investigations have primarily characterised the circulatory  microbiome 

through the use of amplification and sequencing of the bacterial 16S rRNA gene or whole 

genome sequencing. This, therefore, means that whilst they provide evidence of bacteria-

derived genetic material within the circulation, they do not provide evidence for the 

presence of a blood microbiota composed of viable organisms. 

Critical work carried out by Damgaard et al (2015), however, has demonstrated the 

possibility that the observed bacterial structures are viable organisms 345 . The authors 

found culturable bacteria in 62% of blood samples from human donors with no overt 

disease 345. These findings are further supported by the work of Panaiotov et al (2018) who 

demonstrated the presence culturable Actinobacteria, Bacteroidetes, Cyanobacteria, 

Firmicutes, Fusobacteria, and Proteobacteria in the blood of healthy individuals 333, and 

Schierwagen and colleagues (2019), who demonstrated the presence of culturable 

Staphylococcus and Acinetobacter in blood samples taken from patients with liver cirrhosis 

346.  
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1.17.1. Detection Techniques used to Characterise the Circulatory Microbiome 
 

Early characterisation of the blood microbiota utilised a range of classic microbiology 

techniques, including microbial culture, Gram staining, microscopy, sera reactivity, and 

metabolic assays 313, 315, 319,347. These techniques were reliant on the presence of viable 

bacteria, and typically required the bacteria to be cultured in growth media prior to 

analysis. 

However,  the majority of bacteria that make up the human microbiota cannot be cultured. 

The Human Microbiome Consortium (2012), for example, sampled 242 healthy adults from 

18 different anatomical sites, and demonstrated the presence of 5,177 microbial taxa using 

16S rRNA sequencing techniques. When culture techniques were applied, however,  only 

800 of the microbial taxa could be detected 348. 

The majority of investigations into the blood microbiota, therefore, rely on non-culture 

techniques in order to characterise the microbial populations present in the human 

circulatory system. These studies have been primarily facilitated by the invention of PCR 

and DNA sequencing techniques, and the discovery that ribosomal RNA sequences can be 

used for phylogeny 349.  

Since the first use of 16S rRNA pyrosequencing to successfully identify and characterise the 

bacterial populations present in environmental samples 350, 16S rRNA sequencing has been 

the technique of choice when investigating the circulatory  microbiome. 

This technique makes use of the bacterial 16S rRNA gene as a housekeeping genetic marker 

due to its expression in almost all known bacterial species, its absence in the human 

genome, the highly conserved nature of the gene, and its optimum size (1,500bp) 351. The 

gene encodes a component of the 30S small subunit of the bacterial ribosome and is 
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composed of 10 highly conserved regions and 9 hypervariable regions (Figure 1.17). The 

conserved regions provide primer binding sites, whilst the hypervariable regions provide 

species-specific nucleotide sequence signatures that can be used to identify the bacterial 

taxa/ species (Figure 1.17). In 16S rRNA sequencing, PCR is used to amplify one or more 

hypervariable regions of the 16S rRNA gene using primers designed to bind to the 

conserved regions adjacent to the hypervariable region of interest (Figure 1.17). Next 

generation sequencing  (e.g. Illumina sequencing, Ion torrent sequencing) is then typically 

performed to sequence the amplified hypervariable region. The sequenced DNA reads are 

then compared to known bacterial 16S rRNA sequences in order to identify operational 

taxonomic units (OTUs) that correspond to bacterial species/ bacterial group (taxa) 350. 

Sequencing of the 16S rRNA genes or fragments of the 16S rRNA gene has been proven to 

be an effective method of characterising the human microbiome without bias or need for 

cultivation 352, and thus is currently the method of choice for the detection of bacteria 

within the circulatory system. 

 Evidence of blood microbiota/ microbiome has also been provided indirectly through 

quantification of bacterial endotoxins and gut uremic toxins present in the blood 336,353–357. 
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Figure 1.17: Sequencing of the bacterial 16S rRNA gene. The bacterial 16S rRNA gene is a 
1,500 base pair long gene encoding the 30S small subunit of the bacterial ribosome. It is 
composed of 10 highly conserved regions (purple) and 9 hypervariable regions (teal) that 
contain species-specific nucleotide sequences. In microbiome investigations, primers are 
designed to bind to the conserved regions adjacent to the hypervariable region of interest 
(the target region). The forward primer typically contains an adapter and barcode to enable 
incorporation of the adapter and barcode to the end of the amplified target region 
nucleotide sequence. The target region is amplified using PCR and then sequenced using 
Next generation sequencing techniques. 

 

1.17.2. Origins of the Circulatory Microbiome 
 

Unlike previously characterised microbiota environments, where the environment is 

exposed to external bacteria, the circulatory system is an internal environment that in the 

absence of injury or surgical intervention, does not come into contact with the external 

environment. 

The blood does, however, circulate the body, where it functions as a medium that samples 

from virtually all body sites 358. The general consensus regarding the origins of the bacterial 

structures and DNA detected in the blood is that it is likely the result of atopobiosis; a 

process whereby microbial DNA and/ or viable microorganisms translocate into the  blood 

vessels from other microbial niches, such as the gut, oral cavities and airways, and enter 

the circulation 311,325. 

Target region 
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Atopobiosis may occur due to trauma (dental, surgical, or injury) or as a consequence of 

bacterial virulence attributes that enables the bacteria to invade the vascular system 311.  

In support of this explanation, characterisation of the microbial populations in the coronary 

artery tissues by Lehtiniemi et al (2005) identified known members of the oral microbiota 

present in the blood tissues 321. This suggested that bacteria had translocated from the oral 

cavities into the bloodstream, potentially as a result of damage caused by tooth brushing 

or by leakage across the mucosal surfaces 321. Furthermore, a number of studies have 

demonstrated a correlation between changes in the gut environment  and altered 

microbial populations detected in the blood 359–361. Additionally, in HIV/ AIDS patients, 

many of the bacteria detected in the circulation are known members of the gut microbiota, 

suggesting that a compromised immune system as a result of CD4+ lymphocytopenia 

enabled increased translocation of bacteria from the gut into the vascular system 362.  

These findings are supported by recent work carried out by Loohuis et al (2018), who found 

that when the circulatory microbiome was compared to the Human Microbiome datasets, 

the circulatory microbiome most closely resembled the gut and oral microbiomes 332. 

Similarly, when Li et al (2018) compared 16S rRNA reads amplified and sequenced from the 

blood of acute pancreatitis patients and healthy controls to the 16S rRNA gene dataset 

from the National Center for Biotechnology and Information (NCBI), an average of 87.0% 

of the circulatory microbiome taxa were identified as known commensal or pathogenic 

members of the gut microbiota 331. 

Another proposed explanation for the circulatory microbiome/ microbiota is that microbial 

contamination of the blood samples occurred during collection of the samples and/ or 

downstream experimental procedures.  
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However, when taking into account the increasing numbers of studies demonstrating 

significant changes in the composition of the circulatory microbiome in diseased states 

compared to heathy control subjects this argument seems unlikely. Moreover, examination 

of the bacterial taxa reported in circulatory microbiome studies reveal similar bacterial 

populations across the different studies, whereby Proteobacteria dominate, displaying 

relative abundance values typically ranging from 85% - 90%, and Firmicutes, 

Actinobacteria, and Bacteroidetes detected at a lesser extent, with relative abundance 

scores typically less than 10% 327, 331–333, 336, 338,339,360,361. This suggests the existence of a core 

circulatory microbiome profile.  

 

1.17.3. The Circulatory Microbiome and Human Disease 
 

Comparison of the circulatory microbiota/ microbiome in healthy and diseased states have 

detected significant differences in the blood. Scanning electron microscope analysis of 

whole blood, for example, has revealed that blood microbes lurk intracellularly and that 

different disease states are associated with different morphological types of microbes. 

Alzheimer’s disease, for example, has been associated with the detection of mostly coccus 

microbes, whilst Parkinson’s disease has been associated with both coccus and bacillus 

bacteria 326 . 

Furthermore, more recent studies that have utilised 16S rRNA sequencing techniques to 

characterise the circulatory microbiome, have identified a number of diseased states that 

display altered microbial populations in circulation compared to healthy control subjects 

310, 322, 360–365, 323, 329–332,337–339 (Figure 1.18). The majority of identified diseases directly alter 

the circulatory environment (cardiovascular disease, HIV, Type 2 diabetes mellitus, kidney 

disease,  liver disease, sepsis) (Figure 1.18), and thus it is unsurprising that they have been 
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linked to changes in the circulatory microbiome. Moreover, a number of the diseases 

identified are metabolic diseases (Type 2 diabetes mellitus, kidney disease, liver disease). 

This suggests that changes to the gut environment as a consequence of disease results in 

increased bacterial translocation into the circulatory vessels. 

Additionally, significant difference in the circulatory microbiome have been detected in the 

midtrimester serum of pregnant women who go on to have a spontaneous preterm birth 

compared to women who had a term birth 335. This has raised the possibility that changes 

in the circulatory microbiome could be used as a method of identifying women at risk for a 

spontaneous pre-term birth. 

322, 360,365   339   361,363,364   337   332   336,362  329   331   330  366  335   310,323 338 

 

Figure 1.18: Human disease that have been associated with changes in the circulatory 
microbiome. A literature search utilising Google scholar, PubMed, and ResearchGate was 
utilised to identify all published research demonstrating significant changes in the 
circulatory microbiome in diseased states compared to healthy control subjects. 
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1.17.4. Asthma and the Circulatory Microbiome 
 

To date there have been no publications regarding atopic disease and changes to the blood 

microbiome barring the published work generated from this thesis 367,368. However, as 

microbial dysbiosis in both the airways and the gut have been well described in atopic 

disease, and the circulatory microbiome is predicted to be derived from microbial 

translocation from other body habitats, such as the airways and gut, it is highly likely that 

the development of asthma would have a significant impact on the composition of the 

circulatory microbiome given that microbial dysbiosis is a well described feature of this 

disease. 

 

1.17.5. Potential Use of the Circulatory Microbiome in Clinical Diagnostics 
 

The association  of various diseased states with changes in the circulatory microbiome/ 

microbiota are likely to reflect microbial dysbiosis at distant body sites. Characterisation of 

the circulatory microbiome/ microbiota, therefore, offers potential opportunities for novel 

biomarker and therapeutic developments. 

 

1.17.6. The Importance of the Experimental Negative Control 
 

One of the biggest concerns with regards to microbiome research is that the highly sensitive 

techniques used to characterise the microbial populations present in environmental and 

clinical samples are susceptible to microbial contamination. Contaminating microbial DNA 

can compromise the integrity of the microbiome data generated from environmental/ 

clinical samples, distort the taxonomic distributions and frequencies of the detected 

microbes, and potentially contribute towards erroneous interpretations 369,370. 
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Samples with a low biomass (such as blood and mucosal samples) have been demonstrated 

to be particularly susceptible to the risk of contaminating microbial DNA 371, presumably as 

a result of the contaminating DNA dominating the low level of microbial DNA present in 

the samples. Investigations into the origins of the contaminating microbial DNA have 

identified the DNA extraction kits and laboratory reagents/ equipment as the predominant 

source of contaminating DNA 369,371–375. Efforts have been made to remove and/ or reduce 

contaminating microbial DNA from entering the microbiome pipeline during the DNA 

extraction and amplification steps. These include performing DNA extraction and 

amplification in sterile UV cabinets in order to reduce the risk of the samples/ reagents 

coming into contact with environmental microbes, using UV irradiation to mutate the 

contaminating DNA, and using restriction endonucleases to digest microbial DNA present 

in the laboratory reagents 370,371,376.  

These methods, however, have thus far not been proven to effectively eradicate 

contaminating microbial DNA from the microbiome pipeline 369,376. Furthermore, a number 

of the methods developed are technically complicated, and thus unsuitable for high-

throughput work that frequently involves large sample numbers 370. Moreover, the 

methods have been demonstrated to reduce PCR sensitivity, thus making them unsuitable 

for microbiome pipelines designed to characterise samples with low-biomass 370.  

Characterising experimental negative controls, consisting of ‘blank’ DNA extractions and 

subsequent PCR amplifications, whereby molecular biology grade water replaces the 

clinical sample during the DNA extraction process, is therefore essential as it enables 

identification of potential contaminating microbes 369, 371,377,378. Furthermore, comparison 

of the level of microbial DNA present in the negative controls compared to the clinical 

samples is important in determining the level of microbial DNA detected in the clinical 
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samples that can be attributed to contaminating microbial DNA 369, 371,377,378. This is 

particularly important when using low-biomass samples, where low level microbial 

contamination may be mistaken for a microbiome 369, 371,377. 

 

1.18. Experimental Models of Asthma 
 

Asthma is a disease that specifically affects humans and, with the exception of cats and 

horses who present diseased states similar to asthma (eosinophilic bronchitis and heaves, 

respectively), there is no known animal that naturally exhibits an asthma-like disease 

similar to the human disease 379. 

Experimental models of asthma, however, have been developed using a number of animal 

species, including Drosophila, mice, rats, guinea pigs, cats, dogs, pigs, primates, and horses 

380. Of the experimental animal models available for studying asthma, none thus far have 

been able to reproduce all the pathophysiological mechanisms and symptoms of the 

uniquely human disease. 

Of the animal models available, the murine experimental model is currently the most 

commonly used. This is in part due to the ease in which mice can be bred, maintained, and 

handled. Moreover, mice are easily sensitised to a number of antigens including OVA, HDM, 

cockroach antigens, Aspergillus fumigatus, and ragweed, and there are a wide array of 

specific reagents available for analysis of the cellular and humoral responses in allergen-

exposed mice 380,381. Furthermore, a comprehensive understanding of the murine genome 

has enabled the development of transgenic and/ or gene-knockout mice to better 

understand the pathophysiological mechanisms behind allergen-induced airway 

inflammation  380. 



85 
 

The induction of experimental asthma involves two phases; allergen sensitisation and 

allergen challenge. The sensitisation phase has traditionally involved sensitising the mice 

systemically to OVA in conjunction with an adjuvant, usually aluminium hydroxide, to prime 

the immune system to respond to the allergen in the desired way 381. Peripheral 

sensitisation is performed using the intraperitoneal, subcutaneous, or dermal routes, and 

then followed by OVA challenge 1-2 weeks later using aerosol, intranasal, or intratracheal 

instillation routes 381. 

More recently, however, efforts have been made to have the animal model more closely 

mimic the human disease. This has involved replacing the OVA allergen, with known human 

allergens, such as the HDM allergen, and using intranasal methods of allergen exposure to 

reflect the allergen entry route observed in human disease, inhalation.  

The HDMs are one of the most common allergens worldwide, with an estimated 50-85% of 

asthmatics diagnosed with a HDM allergy. Dermatophagoides pteronyssinus (European 

HDM) and Dermatophagoides farinae (American HDM) have both been demonstrated to 

produce allergenic proteins and contain bacterial and fungal proteins, such as LPS and β-

glucan 382. 

 In mice repeated administration of HDM results in a number of hallmark features of 

asthma, Th2-driven inflammation in the airways, eosinophilia, increased infiltration of 

neutrophils and lymphocytes, increased mucin production, increased muscle cell 

proliferation, and increased respiratory system resistance and elastance of the airway 

tissues 383. 
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1.19. The HDM Allergen and the Microbiome 
 

With regards to the effect asthma has on the microbiome, there is increasing evidence 

supporting the theory that the development of asthma can directly alter composition of 

the microbiome. This has been shown by a number of studies independently demonstrating 

that OVA- and HDM-induced experimental asthma results in significant changes to the 

murine gut microbiome 384–386 and lung microbiome 384,387,388.   

The observation that HDM sensitisation resulted in significant changes to the microbiome 

suggests that possibility that HDM sensitisation may influence the composition of the 

human microbiome. This may make the individual more susceptible to immune 

dysregulation and the development of atopic diseases. 

Remot et al (2017), for example, demonstrated that CNCM I 4970, a member of the 

Staphylococcus genus, was increased in the murine lung following HDM sensitisation, and 

induced secretion of a number of pro-inflammatory cytokines, including TSLP, IL-10, IL-17A, 

and IL-12p70 388. 

These investigations, however, have typically looked at microbial composition in either the 

murine gut microbiome or the murine lung microbiome. This, therefore, has prevented 

analysis on whether HDM-induced inflammatory responses in the lungs can simultaneously 

affect the microbiome at multiple body sites. 
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1.20. Aims and Objectives 
 

Asthma has been present in the human population for thousands of years. However, 

prevalence of the disease has rapidly increased in the last 50 years, and the disease is now 

one of the most common chronic diseases of the 21st century.  

As understanding of asthma increases the importance of being able to clearly distinguish 

between the different asthma phenotypes and endotypes is becoming more apparent. 

Increased understanding of the different aetiologies and pathologies will enable better 

diagnosis of the disease and offer novel therapeutic targets. 

Investigations into causative factors that explain the increased incidence rates observed 

worldwide have found that changes in human lifestyle is a major contributing factor. It is 

now widely accepted that the changes in human behaviour and environment that have 

occurred during the past century are having an adverse effect on the development, 

composition, and function of the human microbiota, and this in turn is making the human 

race more susceptible to atopic disease. Changes in the atopic microbiome have been 

described in depth with regards to the airway and gut environments. However, there is 

limited knowledge of how atopic disease affects novel human microbiomes, such as the 

circulatory microbiome. 

This thesis, therefore, aims to address the unmet need for the identification of phenotype-

specific markers of atopic asthma, to explore how atopic disease affects the circulatory 

microbiome, and to determine whether allergen-induced airway inflammation adversely 

alters the microbiome composition. To achieve this the following will be performed;  
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• Quantification and characterisation of messenger and micro RNA detected in 

human plasma samples from healthy control subjects and atopic asthmatic subjects 

with a HDM allergy. Differential expression analysis will be performed to identify 

significant changes in the asthmatic subjects compared to the control subjects, and 

functional analysis will be carried out to determine which biological processes are 

likely to be affected by the observed changes in messenger and micro RNA 

expression. 

• Quantification of inflammatory proteins in human plasma samples from healthy 

control subjects and atopic asthmatic subjects with a HDM allergy. This will include 

pro-inflammatory proteins with known functions in asthma pathogenesis (IL-4, 5, 

10, 13, 17A, eotaxin, GM-CSF, INFƴ, MCP-1, TARC, TNFα), total IgE (important in 

allergen sensitisation and reactivity), and endotoxin (a protein marker for Gram 

negative bacteria). 

• Development of a protocol for characterising the circulatory microbiome in healthy 

control subjects and atopic subjects. Following successful development, the 

protocol will be used to identify significant changes in bacterial diversity, 

abundance, and function potential in the atopic circulatory microbiome compared 

to the non-atopic, control circulatory microbiome. 

• Characterisation of the airway, gut, and circulatory microbiomes of mice sensitised 

and challenged to HDM allergen compared to HDM naïve mice. This will be achieved 

using murine BAL, faecal, and plasma samples, and statistical analyses will be 

applied to identify significant changes in the bacterial diversity, abundance, and 

function potential in the microbiomes of HDM-exposed mice compared to HDM-

naïve mice. 
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Chapter 2: General Methodology 

Much of the experimental methods utilised were specific to a given results chapter, and so 

will be described within the experimental chapters. Chapters 3-5 did, however, share 

several experimental protocols and statistical analysis techniques, and thus are presented 

below. 

 

2.1. Maintenance of Sterile Conditions during PCR set-up 

Preparation of the PCR reactions was performed in a sterile environment using an 

ultraviolet (UV) bench-top hood to reduce the risk of the PCR reagents and reaction tubes 

being exposed to microorganisms present in the immediate environment. UV germicidal 

irradiation was also performed by exposing the PCR workspace, pipettes, molecular biology 

grade water,  PCR tubes, and PCR master mix to short-wavelength UV for 30 minutes prior 

to use. 

In addition to maintaining sterile conditions and using UV germicidal irradiation, negative 

controls were utilised at every experimental procedure to monitor microbial 

contamination. This involved using UV-treated molecular grade biology water in 

replacement of human plasma, murine faeces, and murine BAL samples during DNA 

extraction using the QIAamp UCP mini pathogen kit (Qiagen), and in replacement of human 

and murine blood samples (plasma and serum) during the first PCR stage of the nested PCR 

protocol using the Phusion blood direct kit (Thermo Fisher Scientific). Once generated, the 

experimental negative control underwent all the downstream applications that the human 

and murine samples underwent. This included DNA purification using the MinElute 

purification protocol and bead-based purification, PCR, agarose gel electrophoresis, 
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amplicon purification and quantification, library preparation, and sequencing of the 16S 

rRNA reads. 

 
 
2.2. Visualisation of PCR Products using Gel Electrophoresis 

Analysis of the size and quantity of PCR product generated from end-point PCR 

amplification was assessed using agarose gel electrophoresis. This involved preparing a 1X 

Tris-acetate Ethylenediaminetetraacetic acid (EDTA) (TAE) buffer (40mM Tris, 20mM acetic 

acid, 1mM EDTA) from 50X TAE buffer by mixing 90ml of 50X TAE electrophoresis buffer 

(Thermo Fisher Scientific) with 410ml of distilled H2O (dH2O). A 2% agarose gel was then 

prepared by dissolving two 0.5g TopVision agarose tablets (Thermo Fisher Scientific) in 50ml 

of 1X TAE buffer. Once the tablets were fully dissolved in the buffer the agarose-buffer 

mixture was poured into the gel electrophoresis mould and the gel was left to set at room 

temperature for 20 minutes.  

Once the 2% agarose gel was fully set it was loaded into a gel electrophoresis tank 

containing the appropriate amount of 1X TAE buffer. 5µl of PCR products generated from 

Phusion blood direct PCR and Accuprime Pfx SuperMix PCR were then mixed with 1µl of 

purple 6x Gel loading dye (New England Biolabs). PCR products generated using the GoTaq 

Green master mix did not undergo the loading dye preparation step as the PCR reaction 

mixture contained a reaction buffer that increased sample density and provided both 

yellow and blue loading dyes. 6µl of each PCR product was then loaded into the gel along 

with 6µl of a 100 base pair (bp) DNA ladder (New England BioLabs), and the gel was run for 

approximately 1 hour at 85V using a Pharmacia LKB Multidrive XL power supply (A N 

Pharmacia Laboratories Pvt Ltd). The gel was post-stained in an ethidium bromide solution 

containing 60µl ethidium bromide (VWR Life Science) and 300ml 1X TAE buffer for 20 
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minutes. Excess staining solution was washed off using distilled water (dH2O) and the 

stained gel was viewed under UV light. 

 

2.3. Amplicon Purification 

Extracted and amplified microbial DNA was purified using either the MinElute Protocol or 

the AMPure XP PCR purification protocol. The MinElute protocol was applied following DNA 

extraction from the murine faecal and BAL samples, and after the first stage of end-point 

PCR during the nested PCR protocol. AMPure XP PCR purification was applied after the 

second stage of end-point PCR during the nested PCR protocol. The protocol was used to 

remove any DNA products below the predicted amplicon size, purify the DNA samples by 

removing any unused PCR reagents, and to concentrate the 16S rRNA amplicons by using a 

low elution buffer volume. 

DNA purification was also performed on the experimental negative controls in order to 

concentrate and purify any microbial DNA amplified from the negative control as a result 

of microbial contamination. This step was essential as it enabled successful sequencing of 

contaminating microbial DNA introduced during the DNA extraction and amplification 

steps. The generated sequencing data was then used to determine the level of 

contaminating microbial DNA that was likely introduced during the DNA extraction and 

amplification steps, and to identify any bacterial taxa that were likely detected as a result 

of contaminating microbial DNA. 
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2.3.1. MinElute DNA Purification Protocol  

Buffer PB was mixed with the PCR product at a 5:1 ratio, to enable binding of the double 

stranded PCR products to the MinElute membrane and removal of unused oligonucleotide 

primer. The PCR-PB mixture was mixed thoroughly by vortexing and then transferred to a 

sterile MinElute column and centrifuged for 1 minute at 13,000xg. The flow-through was 

discarded and the MinElute column was washed with buffer PE (750µl) and centrifuged for 

1 minute at 13,000xg to remove unused oligonucleotide primers and impurities (such as 

salts, unused polymerase, unincorporated nucleotides). The flow-through was discarded 

and the washing procedure was repeated twice more to ensure residual ethanol from the 

PE buffer was completely removed from the tubes. Following removal of flow-through from 

the third wash the columns were centrifuged at 13,000xg for 1 minute. The columns were 

then transferred to sterile 1.5ml Eppendorf tubes and 10µl of elution buffer (10mM Tris.Cl, 

pH 8.5) was applied to the centre of the column membrane. The columns were left to stand 

at room temperature for 1 minute and then centrifuged for 1 minute at 13,000xg to enable 

elution of the microbial DNA. The eluted DNA (approximately 8-9µl) was then placed in 

storage at -20oC. 

 
2.3.2. AMPure XP PCR Purification Protocol 

During the AMPure XP PCR purification protocol, the PCR amplicons were purified using 

solid-phase reversible immobilisation (SPRI) paramagnetic beads, and non-specific PCR 

products (such as primer dimers) were removed using left-side size selection (Figure 2.1). 

The PCR product was mixed with SPRI beads at a 0.8X ratio (i.e. for 15µl of PCR product 

used, 12µl of SPRI beads) to remove DNA fragments less than 200bp long. The PCR-SPRI 
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reaction mixture was thoroughly mixed by pipetting 10 times and then incubated at room 

temperature for 1 minute. The reaction tubes were then placed on a magnetic stand and 

the beads were allowed to settle to the magnet. Once the beads had fully settled to the 

magnet the supernatant was carefully removed so as not to disturb the bead pellet. With 

the reaction tubes still attached to the magnetic stand, ethanol (180µl, 85% non-denatured 

ethanol) was added to the reaction tubes, and the reaction tubes were incubated at room 

temperature for 30 seconds to remove impurities. The ethanol supernatant was then 

carefully removed, and the reaction tubes were removed from the magnetic stand. 20µl of 

UV-treated molecular biology grade water was then added to the reaction tubes and mixed 

with the beads by pipetting 10 times to resuspend the beads. The reaction tubes were 

incubated at room temperature for 1 minute to elute the purified PCR amplicons from the 

SPRI beads. Following the final incubation step the reaction tubes were placed on the 

magnetic stand and the SPRI beads were allowed to settle against the magnet. The 

supernatant containing the eluted amplicons was transferred to sterile 1.5ml Eppendorf 

tubes, and then placed in storage at -20oC.  

 

 

Figure 2.1: Schematic diagram of the AMPure XP PCR purification protocol 
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2.4. Analysis of the Microbiome 
 

2.4.1. Assignment of Sequenced Reads to Bacterial Operational Taxonomic Units 
 

To analyse the sequenced V4 16S rRNA data, Quantitative Insights Into Microbial Ecology 

(QIIME) software was applied using the Nephele 2.0 online platform [public web access: 

https://nephele.niaid.nih.gov/#cloud].  

Low-quality V4 reads (defined as having a Phred quality score less than 19.0) and chimeric 

sequences were removed from the Ion Torrent sequencing data using the Nephele 2.0 

QIIME 16S FASTQ single-end open reference pipeline (Nephele 2.0 software, Public web 

access: https://nephele.niaid.nih.gov/#cloud). The high-quality reads were then clustered 

in operational taxonomic units (OTUs) at a 99% similarity threshold using an open reference 

OTU picking strategy. This involved first running an initial closed-reference step, whereby 

the high-quality reads were clustered against the Silva 16S rRNA reference database (SILVA 

99 v132) 389,390. Sequences that failed to be assigned to an OTU using the Silva reference 

database were then clustered as de novo OTU on the basis of pairwise similarity among all 

V4 sequences present in the dataset 390. The procedure was repeated for the V4 reads 

generated from Illumina sequencing using the Nephele 2.0 QIIME 16S FASTQ paired-end 

open reference pipeline [Public web access: https://nephele.niaid.nih.gov/#cloud]. 

The Nephele 2.0 open reference pipelines were also used to assign the bacterial OTUs to 

bacterial taxa, to determine the metagenomic functional content of the detected 

microbiota using Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States (PICRUSt), and to perform the appropriate statistical analysis as 

described below 

https://nephele.niaid.nih.gov/#cloud
https://nephele.niaid.nih.gov/#cloud
https://nephele.niaid.nih.gov/#cloud
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2.4.2. Generation of a Rarefaction Curve 
 

Rarefaction curves were generated for each of the samples that underwent 16S rRNA 

sequencing in order to demonstrate the species richness of bacterial OTUs sequenced from 

the sample 391,392. Rarefaction was used in order to correct for OTU diversity bias due to 

unequal sample sequencing depths (differences in read numbers generated from the 

samples) by standardising the number of OTUs expected in the sample if the sample had 

the same number of reads as the sample with the smallest number of reads 391,392. 

Generation of rarefaction curves was performed using R software (see Supplementary 

Materials S1 for the R code used) and involved repeated random sub-sampling of the 

complete set of OTU reads and calculation of mean diversity. 

 

2.4.3. Comparison of Species Richness 
 

The overall species richness was determined by measuring the total number of observed 

OTUs detected in the samples using Nephele 2.0 QIIME 16S FASTQ paired-end open 

reference pipeline [Public web access: https://nephele.niaid.nih.gov/#cloud]. 

The appropriate statistical tests were then performed using R software (see Supplementary 

Materials S2 for R codes used) to determine if there was a statistically significant difference 

in species richness in the atopic samples compared to the non-atopic samples. 

 

2.4.4. Assignment of the Bacterial Operational Taxonomic Units to Bacterial Taxa 
 

The bacterial OTUs were assigned to bacterial taxa using the Nephele 2.0 open reference 

pipelines (single-end for the Ion torrent sequencing data, paired-end for the Illumina 

sequencing data). R software was then utilised to measure relative abundance of the 

https://nephele.niaid.nih.gov/#cloud
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detected bacterial taxa (see Supplementary Materials S3 for R codes used), and highly 

abundant taxa (taxa with a total relative abundance > 1.0%) were plotted as a relative 

abundance bar graph using R software (see Supplementary Materials S3 for R code used). 

 

2.4.5. Comparison of Alpha Diversity in the Microbiome of Atopic and Non-Atopic 
Control Subjects 

 

The Nephele 2.0 QIIME 16S FASTQ paired-end open reference pipeline was used to 

generate Shannon and Chao1 diversity indices from the 16S rRNA sequencing data [public 

web access: https://nephele.niaid.nih.gov/#cloud]. The diversity index scores were 

uploaded onto R and R software was used to generate alpha diversity boxplots and perform 

statistical analysis (See Supplementary materials S4 and S2 respectively for R codes used). 

With regards to statistical analysis, the Shapiro-Wilk test was performed first to determine 

if the alpha diversity dataset displayed gaussian distribution. If the dataset did not display 

gaussian distribution (P value < 0.05) a Wilcoxon rank sum test was performed to determine 

if the sample groups differed significantly with regards to alpha diversity. If the samples 

were found to exhibit a gaussian distribution (P value > 0.05) an F test was performed to 

determine if variances in the two sample groups was equal. If the two sample groups were 

found to have equal variance (P value > 0.05) an Unpaired T test was performed. If the two 

samples were found to have significantly different variance (P value < 0.05) a Welch’s two 

sample T test was carried out  

 

 

 

https://nephele.niaid.nih.gov/#cloud
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2.4.6. Comparison of Beta Diversity in the Microbiome of Atopic and Non-Atopic 
Control Subjects 

 

Comparison of the bacterial OTU profiles between pairs of individual samples was carried 

out by measuring beta diversity of the detected bacterial communities. This involved 

uploading the OTU table generated from the Nephele 2.0 QIIME 16S FASTQ paired-end 

open reference pipeline [Public web access: https://nephele.niaid.nih.gov/#cloud] onto R 

and calculating Bray-Curtis dissimilarity using the Vegan R package (See Supplementary 

Materials S9 for R codes used). The Bray-Curtis dissimilarity scores were then plotted using 

Principal coordinate analysis (PCoA) and the ggplots R package (See Supplementary 

Materials S5 for R codes used).  

 

2.4.7. Metagenomic Functional Analysis 
 

To determine metagenomic functional analysis of the detected microbiota the Nephele 2.0 

QIIME 16S FASTQ paired-end pipeline was utilised to generate OTU tables from the Illumina 

V4 16S rRNA sequencing using a closed reference OTU picking strategy and the GreenGenes 

99 database.  

PICRUSt software was then used to predict functional composition of the metagenome (the 

genetic material present in the samples, in this incidence the microbial 16S rRNA reads) 

using the OTU tables.  

PICRUSt analysis was performed using the online Galaxy version of PICRUSt developed by 

the Langille lab [Public web access: http://galaxy.morganlangille.com/]. The closed 

reference OTU tables generated using the GreenGene 99 reference genome database were 

uploaded onto Galaxy and first underwent normalisation by dividing the abundance of each 

https://nephele.niaid.nih.gov/#cloud
http://galaxy.morganlangille.com/
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detected OTU by its predicted 16S copy number 393. This was performed to account for 16S 

rRNA copy numbers varying greatly amongst the different known bacterial genomes 393. 

Gene family abundances were calculated for each bacterial taxon present in the 

GreenGene 99 annotated reference genome database. The normalised OTU abundances 

were then multiplied by the generated family abundances to determine the total gene 

family abundance present in each sample 393. The predicted gene family counts were then 

used to measure abundance of Kyto Encyclopaedia of Genes and Genomes (KEGG) 

pathways in the sample meta-genomes, thus enabling microbial activity of the detected 

microbiota to be inferred. 

 

2.5. Statistical Analysis 

Comparison of the atopic subjects compared to the non-atopic subjects was achieved using 

a variety of statistical analysis tests. With regards to total RNA counts (mRNA, miRNA, V4 

16S rRNA reads), protein levels (absorbance values, ng/ml, EU/ml), OTU counts, and alpha 

diversity index scores (Shannon, Chao1), a Shapiro-Wilk test was performed to determine 

whether the dataset exhibited a gaussian distribution. If the dataset did not display 

gaussian distribution (P value < 0.05) a Wilcoxon rank sum test was performed. For datasets 

that did exhibit a gaussian distribution  (P value > 0.05) an F test was performed to 

determine if variances in the two sample groups was equal. If the two sample groups were 

found to have equal variance (P value > 0.05) an Unpaired T test was performed. If the two 

sample groups were found to have significantly different variance (P value < 0.05) a Welch’s 

two sample T test was carried out (See Supplementary Materials S2).  

PERMANOVA analysis based on 999 permutations was also performed to determine if there 

was a significant association between atopic state and beta diversity of the bacterial 



99 
 

communities detected. This involved using the Adonis R function and the Vegan R package 

(See Supplementary Materials S5 for R codes used). 

To determine statistically significant differences in bacterial taxa and predicted microbiome 

function, linear discriminant analysis effect size (LEfSe) analysis was applied to the relative 

abundance tables generated from R software. This involved uploading the relative 

abundance tables to the online Galaxy workflow framework developed by the 

Huttenhower group 394 [public web access: http://huttenhower.sph.harvard.edu/galaxy/]. 

The default settings were applied (the α value for the factorial Kruskal-Wallis sum-rank test 

was 0.05 and the threshold value used on the logarithmic discriminate analysis score for 

discriminate features was 2.0) and analysis involved the following steps . 

The non-parametric factorial Kruskal-Wallis sum-rank test was applied to the relative 

abundance data in order to detect features with significant differential abundance in the 

two sample groups. A set of pairwise tests among subclasses using the unpaired Wilcoxon 

rank-sum test were then carried out to assess whether the detected differences in relative 

abundance were consistent with respect to biological behaviour. Linear discriminant 

analysis (LDA) was then performed to predict the effect of each differentially abundant 

bacterial taxa identified. The KEGG pathway abundance scores were then converted into 

abundance percentages and LEfSe analysis using the default settings was applied to 

determine differential microbial activity in the atopic state compared to the non-atopic 

control state. 

 

 

 

 

 

http://huttenhower.sph.harvard.edu/galaxy/
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Chapter 3: Characterisation of Atopic Asthma at the Molecular level 
 

3.1. Introduction 
 

The complex nature of asthma pathogenesis and presentation has resulted in the disease 

being separated into a number of phenotypes, which are then further sub-divided into 

several endotypes 20,22–25. The asthma phenotypes and endotypes differ with regards to 

disease presentation in terms of cause, development, severity, and response to 

medication. 

Diagnostic tools for identifying the various asthma phenotypes and endotypes currently 

rely on bronchoalveolar lavage and bronchoscopy with bronchial biopsy as the optimum 

method for assessing airway inflammation and remodelling 102. The invasiveness of these 

techniques limits their usefulness in daily clinical practice and makes them unsuitable in 

diagnosing young children 102. 

These limitations alongside an incomplete knowledge of the pathogenetic mechanisms 

behind the different asthma phenotypes/ endotypes has restricted development and 

access to optimal asthma treatment protocols. 

Biomarkers have been proposed as a means of performing risk assessment before clinical 

diagnosis, to determine the disease stage and severity following diagnosis, and as a means 

of monitoring responsiveness to treatment 112.   

In asthma, there are increasing numbers of potential biomarkers being identified in various 

clinical samples, including BAL fluid, sputum, exhaled air, saliva, urine, and peripheral 

blood. The majority of studies have focussed on identifying biomarkers from clinical 

samples taken from the airways (sputum, BAL fluid, lung tissue). However, collection of 

these samples is invasive and not suitable for daily clinical activity. This had led to an 
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increasing interest in the identification of biomarkers from more accessible samples, such 

as blood and urine. 

The identification of peripheral blood biomarkers is of particular interest. In asthma the 

inflamed airway tissue releases chemoattractants and cytokines into the bloodstream in 

order to recruit activated immune cells from the peripheral blood vessels. Analysis of the 

blood, therefore, can be used as an indirect indicator of disease state by assessing the 

dynamic process of immune cells entering and leaving the circulatory system 114. 

 

3.1.1. Aims of the Chapter 
 

The focus of this investigation was to analyse blood samples from a small, but well-defined 

cohort of female subjects with poorly controlled atopic asthma associated with a HDM 

allergy, in order to identify potential biomarkers present in the blood. 

This was achieved by performing a comprehensive molecular characterisation of circulating 

mRNA, miRNA and protein-based biomarkers of the immune response, using a range of 

molecular tools. 

Circulating mRNA and miRNA were sequenced and quantified, and differential expression 

analysis was performed on the two RNA populations to determine how gene expression 

and regulation varied in the asthmatic subjects compared to the non-asthmatic control 

subjects. Additionally a number of inflammatory proteins (IL-4, IL-5, IL-10, IL-13, IL-17A, 

eotaxin, GM-CSF, IFNƴ, MCP-1, RANTES, TARC, TNFα, total IgE, and endotoxin) were 

quantified to determine whether the protein profiles differed significantly in the asthmatic 

subjects compared to the control subjects.   
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3.2. Methods 
 

3.2.1. Sample Collection 
 

Female atopic asthmatic individuals (n = 5) with physician diagnosed HDM allergy were 

recruited to the study through Sera Laboratories Limited. The asthma subjects were from 

Florida, US, and were selected on the basis that they had developed atopic asthma during 

early childhood and that their condition had persisted into adulthood and remained 

“poorly controlled”. A full list of recruitment criteria is presented in (Table 3.1). An 

additional five non-asthmatic healthy subjects that were age and gender matched to the 

asthmatic subjects were recruited as control subjects. 

Whole blood was drawn, following alcohol cleansing of the skin surface, into EDTA 

containing tubes and stored on ice prior to centrifugation at 1000×g to obtain the plasma 

component. All samples were analysed anonymously and written informed consent to 

utilise the samples for the research was obtained. 

The Independent Investigational Review Board Inc. ethically approved sample collection by 

Sera Laboratories Limited from human donors giving informed written consent. 

Furthermore, ethical approval from Keele University Ethical Review Panel 3 for the study 

was obtained. All methods were performed in accordance with relevant guidelines and 

regulations.  
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Table 3. 1: A full list of the donor population characteristics required for the human atopic 
asthma study 

 

Patient Criteria 

• Have a BMI < 30 

• Be a non-smoker 

• Diagnosed with atopic asthma during childhood 

• Have severe/ poorly controlled asthma 

• Must not be on any oral steroid treatment 

• Allergic to house dust mite 
 

 

3.2.2. Asthma Control Questionnaire 
 

Following sample collection, the asthmatic subjects were asked to complete an Asthma 

Control Questionnaire (ACQ). The ACQ is a standardised asthma control questionnaire 

devised by Juniper and colleagues (1999) to determine how well controlled the asthmatics 

condition was at the time of sample collection 395. The questionnaire involves six questions 

that are designed to assess how well-controlled the disease is by assessing the asthmatic 

subject’s quality of life (i.e. how the disease affected the subjects sleep patterns and ability 

to carry out everyday activities), how often the subject experiences respiratory symptoms 

(i.e. shortness of breath, wheezing), and how often the subject uses short-acting 

bronchodilator’s during the course of the week. A copy of the ACQ can be located in the 

Supplementary Materials (Supplementary materials, Table S1). 

For each question the asthmatic subjects were requested to give a score between 0 – 6, 

and subjects that scored a total value greater than 10.0 were classified as having poorly 

controlled asthma 396 and were deemed suitable for the study. 
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3.2.3. Total RNA Extraction, Library Preparation, and Next Generation Sequencing 
 

1.5ml of the human plasma samples were submitted to the Beijing Genomics Institute 

where the samples underwent total RNA extraction and sequencing. The following steps 

were performed by the Beijing Genomics Institute; total RNA was extracted from 500µl of 

human plasma using a miRNeasy Serum/ Plasma kit (Qiagen). The quantity and quality of 

the RNA extracts was determined using the QuBit fluorimeter (Invitrogen) and BioAnalyzer 

(Agilent). mRNA sequencing libraries were generated from the human plasma samples 

using the SMARTer Universal Low Input RNA kit (Takara Bio). The libraries were then 

sequenced using Illumina HiSeq 2000 with a paired-end 90 nucleotide read metric. miRNA 

sequencing libraries were prepared using the TruSeq small RNA library kit (Illumina), and 

sequencing was performed using the Illumina HiSeq 2000 platform. 

 

3.2.4. Alignment of mRNA to the Human Genome and Differential Expression 
Analysis 

 

The mRNA FASTQ files were analysed using the online data analysis platform Galaxy [public 

web access: http://usegalaxy.org]. The FASTQ files were uploaded onto Galaxy and the 

FASTQ Groomer package was applied to convert the data to the Sanger encoding format 

(Sanger and Illumina 1.8). A quality control step was then performed using FastQC to 

confirm the sequencing data from each plasma sample was of sufficient quality to allow for 

valid analysis of mRNA present in the samples.  

Trimming was then performed on the sequencing data to remove the sequencing adapters 

and low-quality reads using the Trim Galore package. Reads with a Phred-like quality score 

greater than 30 were retained for further downstream analysis. 

http://usegalaxy.org/
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The Tuxedo protocol 397 was applied to the trimmed reads to map the reads to the Human 

Genome build hg19 reference genome, to assemble and quantify individual transcripts, and 

to conduct statistical analysis to determine differential gene expression between the 

control and asthma samples at the time point at which the sample was taken (Figure 3.1).  
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Figure 3.1: Identification significant differential gene expression in the asthmatic subjects 
compared to non-asthmatic subjects using the Galaxy Tuxedo Protocol. Sequenced RNA 
data generated from plasma samples from asthmatic subjects (n = 5) and non-asthmatic 
control subjects (n = 5) was uploaded onto Galaxy. Following adaptor trimming and quality 
control assessment, the Tuxedo protocol was performed to determine the presence of 
significant differential gene expression (as determined by a Q value < 0.05, and a log fold 
change > 2.0) in the asthmatic subjects compared to the control subjects. The RNA reads 
were first mapped to the human hg19 reference genome using TopHat. Cufflinks was then 
used to generate a transcriptome assembly from the alignment files generated by TopHat. 
The transcriptome assemblies were then merged together using the CuffMerge package, 
and gene expression levels and statistical significance was determined using the CuffDiff 
package. 

[Adapted from Trapnell et al., 2012 397] 

 

Highly expressed genes, as determined by a mean LOG2 Fragments Per Kilobase of 

transcript per Million mapped (FPKM) score > 7.0, were then plotted as a heatmap using R 

software (See Supplementary Materials S6 for R codes used). Similarity of gene expression 

profiles was determined using Euclidean distance (See Supplementary Materials S6 for R 

codes used), PCA, and PERMANOVA (See Supplementary Materials S5 for R codes used). 

 

3.2.5. Alignment of miRNA to the Human Genome and Differential Expression 
Analysis 

 

The sRNAtoolbox 398 was utilised to map the sequenced miRNA reads to the miRbase 

Version 21; a public repository of miRNA hairpin precursor (mir’s) and mature miRNA 

(miR’s) sequences and annotations 399 [public web access: http://mirbase.org/]. Following 

assignment of the miRNA reads to known human miRNA sequences, differential miRNA 

expression analysis was performed using edgeR for R 400. 

Total miRNA expression was then plotted as a heatmap using R software (See 

Supplementary Materials S6 for R codes used). Similarity of sample miRNA expression 

http://mirbase.org/
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profiles was determined using Euclidean distance cluster analysis (See Supplementary 

Materials S6 for R codes used), PCA, and PERMANOVA (See Supplementary Materials S5 

for R codes used). 

 

3.2.6. RNA Functional Analysis 
 

Following identification of differential mRNA and miRNA levels in the plasma samples from 

the asthmatic subjects compared to the control subjects, RNA functional analysis was 

performed. This involved using a number of software programmes to determine the 

biological significance of altered mRNA and miRNA expression in the asthmatic subjects. 

This included determining which upstream regulators are likely responsible for the 

observed changes in gene expression in the asthmatic subjects, which downstream 

pathways are likely to be affected by changes in gene expression, which genes are likely to 

be effected by changes in miRNA expression, and which biological functions are likely to be 

affected by changes in mRNA and miRNA expression. 

 

3.2.7. Analysis of the Biological Significance of Differentially Expressed Genes in the 
Asthmatic Population 

 

The likely impact of individual differentially expressed genes on asthma pathogenesis was 

analysed by comparing the differentially expressed genes to a recently released database 

of genes associated with asthma pathology (AllerGAtlas, 2018 401)[public web access: 

http://biokb.ncpsb.org/AlleRGatlas/]. A literature search was then utilised to determine 

the effects of the identified genes on asthma pathology and immune function. 

 

http://biokb.ncpsb.org/AlleRGatlas/
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3.2.8. Analysis of the Biological Significance of Differentially Expressed miRNA in 
the Asthmatic Population 

 

Functional analysis was performed on the differentially expressed miRNA using the online 

software suite DIANA-miRPath v3.0 402 to determine the key regulatory roles of the 

differentially expressed miRNA [public web access: http://snf-

515788.vm.okeanos.grnet.gr/]. Biological pathways likely to be affected by the altered 

miRNA levels were then identified using in silco predicted targets from TargetScan v6.2, a 

prediction tool that utilises miRNA seed sequences to determine target genes of the 

miRNA. 

 

3.2.9. Analysis of the Combined Effect of Differentially Expressed mRNA and miRNA 
in the Asthmatic Population 

 

The combined effects of differential gene and miRNA expression on known biological 

processes was explored using Ingenuity Pathway analysis (IPA) software 403. Causal 

inference analysis was applied to determine upstream regulator activity that may explain 

the pattern of differential expression observed in the asthmatic subjects. This involved the 

generation of an enrichment score (Fisher’s exact test P value) and a Z score to determine 

the possible upstream biological causes of the differential gene expression 403. The 

enrichment score measured the overlap of observed and predicted regulated gene sets, 

whilst the Z score assessed the match of observed and predicted up/ downstream patterns 

403.  Putative regulators that scored an overlap P value < 0.05 were deemed statistically 

significant, and the Z scores were used to determine the activity of the putative regulators 

(an upstream regulator with a Z score greater than 2.0 was considered activated in the 

asthmatic subjects, whilst an upstream regulator with a Z score less than -2.0 was 

considered deactivated).  

http://snf-515788.vm.okeanos.grnet.gr/
http://snf-515788.vm.okeanos.grnet.gr/
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Causal inference analysis was also used to predict the downstream effects of the 

differentially expressed genes and miRNA could have on biological processes and functions 

in the asthmatic subjects. 

 

3.2.10. Qualitative Analysis of Circulatory Inflammatory Protein Levels 
 

Plasma levels of interleukin IL-4, IL-5, IL-10, IL-13, IL-17A, IFNy, TARC, Eotaxin, GM-CSF, 

MCP-1, RANTES, and TNFα, was determined using two qualitative enzyme-linked 

immunosorbent assays (ELISA) custom designed for this study. Two multi-analyte sandwich 

ELISAs (Qiagen) were used, and analysis of the inflammatory proteins was achieved using 

the recommended Multi-Analyte ELISArray kit protocol (Qiagen). Statistical analysis was 

performed by carrying out a Shapiro-Wilk normality test and a Wilcoxon rank sum test using 

R software Version 3.5.0.  

The layout of each plate is shown in the Supplementary materials (Supplementary 

materials, Figure S1). 

 

3.2.11. Quantitative Analysis of Circulatory Total IgE Concentrations 
 

The concentration of total IgE was determined using sandwich ELISA (Genesis Diagnostics 

Ltd). The ELISA was performed in duplicate using the recommended protocol, and 

absorbance was measured at 450nm using an ELX800 absorbance reader (BioTek). The 

aborbance scores were log10 transformed  and the standard curve was interpolated using 

the Sigmoidal 4PL (4 parameter logistic) curve  to determine total IgE concentration in 

International units per millilitre (IU/ml) using GraphPad Prism. Total IgE concentration in 

IU/ml in the plasma samples was determined using the standard curve and the values were 
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multiplied by 5 to account for the 1:5 dilution factor used. The IU/ml values were then 

converted into nano gram per ml (ng/ ml) values by multiplying each IU/ml value by 2.4. 

Statistical analysis was then performed using a Shapiro-Wilk normality test and an Unpaired 

T test using R software Version 3.5.0. 

 

3.2.12. Quantitative Analysis of Circulatory Endotoxin Concentrations 
 

Circulating bacterial endotoxin concentration was measured using a PierceTM Limulus 

Amebocyte Lysate (LAL) Chromogenic Endotoxin quantitative kit (Thermo Fisher Scientific). 

The assay was performed in triplicate using the recommended protocol, and absorbance 

was measured at 450nm using an ELX800 Absorbance reader (BioTek). The absorbance 

scores were log10 transformed  and the standard curve was interpolated using the 

Sigmoidal 4PL (4 parameter logistic) curve  to determine endotoxin concentration in 

endotoxin units per millilitre (EU/ml) using GraphPad Prism. Endotoxin concentration in 

EU/ml in the plasma samples was determined using the standard curve and the values were 

multiplied by 50 to account for the 1:50 dilution factor used. Statistical analysis was 

performed by carrying out a Shapiro-Wilk normality test and an unpaired T test using R 

software Version 3.5.0. 
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3.3. Results 
 

3.3.1. Characterisation of the Atopic Asthmatic Subjects 
 

Five female asthmatic subjects were recruited in accordance with the inclusion criteria 

detailed in Table 3.1. The mean age of the asthmatic subjects was 39.6 + 11.7 years, and all 

had been clinically diagnosed with a HDM allergy and atopic asthma during early childhood 

(mean age of asthma onset = 6.2 ± 3.2 years) (Table 3.2)(See also Supplementary Materials 

Table S2). At the time of sample collection, the asthmatic subjects were on prophylactic 

therapy to minimise the occurrence of disease symptoms (Table 3.2). These treatments 

included one or more bronchodilator medication (Dulera, Albuterol, Symbicort), that were 

prescribed to all asthmatic subjects, and one or more anti-inflammatory drugs (Qvar, 

Zyrtec,), that were prescribed to two of the asthmatic subjects (Table 3.2)(See also 

Supplementary Materials Table S2). 

 Asthma severity was determined using the internationally recognised ACQ questionnaire 

395,404, and all five asthmatic subjects scored a total > 10.0 (mean total score = 10.8 ± 0.75) 

(Table 3.2, see also Supplemental Materials Table S3  for greater detail). Additionally, three 

of the asthmatic subjects were clinically diagnosed with other atopic diseases, including 

allergic rhinitis, allergic dermatitis, and nasal polyps (Table 3.2). Overall, however, the 

individuals were regarded as healthy, as defined by a BMI below 30, and were non (never) 

smokers (Table 3.3). 

Five non-asthmatic females with a mean BMI of 24.3 + 2.1 were recruited to the study as 

healthy controls. The control subjects had never smoked and had a mean age of 39.4 ± 10.3 

years (Table 3.3). Two of the controls, Control_2 and Control_3, reported self-diagnosed 
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dermatitis, although neither had received diagnosis by a physician for this condition (Table 

3.3). 

 

Table 3. 2: Asthma presentation and disease characterisation in the asthmatic cohort at 
the time of sample collection. Five asthmatic subjects with HDM sensitisation and a clinical 
diagnosis of atopic asthma made during early childhood were recruited through Sera 
Laboratories Limited. At the time of sample collection, the asthmatic subjects completed 
an ACQ to determine asthma severity and control at the time of sample collection. 

 

Patient Diagnosis Allergy 
Age of Diagnosis 

(years) 
ACQ Total 

score 
Medications 

Asthma_1 
Atopic 

Asthma 
Dust mite 7 12 

Dulera, 
Albuterol 

Asthma_2 
Atopic 

Asthma 
Dust mite 4 11 

Dulera, 
Albuterol 

Asthma_3 
Atopic 

Asthma 
Dust mite 12 11 

Symbicort, 
Zyrtec, 

Albuterol 

Asthma_4 
Atopic 

Asthma 
Dust mite 5 10 Albuterol, Qvar 

Asthma_5 
Atopic 

Asthma 
Dust mite 3 10 Albuterol 
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Table 3.3: Characterisation of the asthmatic and non-asthmatic subjects at the time of sample collection. Five asthmatic subjects and five non-
asthmatic control subjects were recruited from Florida, USA, through Sera Laboratories Limited. All subjects were female and classed as healthy (BMI 
< 30.0).  

 

Sample Age (years) Sex BMI (kg/m2) Smoking History Other chronic conditions 

Asthmatic subjects 

Asthma_1 52 F 27.8 Never smoked Allergic rhinitis, nasal polyps 

Asthma_2 36 F 27.3 Never smoked Allergic rhinitis, polycystic ovary 

Asthma_3 42 F 23.3 Never smoked None 

Asthma_4 19 F 21.5 Never smoked Allergic rhinitis, allergic dermatitis 

Asthma_5 49 F 22.3 Never smoked None 

Non-Asthmatic subjects 

Control_1 49 F 26.4 Never smoked None 

Control_2 23 F 21 Never smoked Allergic dermatitis 

Control_3 44 F 26.4 Never smoked Allergic dermatitis 

Control_4 49 F 24.9 Never smoked None 

Control_5 32 F 22.7 Never smoked None 
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3.3.2. mRNA detected in the Plasma Samples 
 

A total of 439,448,931 high-quality mRNA reads were isolated and sequenced from the 

human plasma samples. This included 237,918,933 mRNA reads from the non-asthmatic 

control samples (average number of reads per sample = 47,583,786.60; range = 44,833,552 

– 51,955,898) and 201,529,998 mRNA reads from the asthma samples (average number of 

reads per sample = 40,305,999.60; range = 20,495,443 – 52,900,114)(Figure 3.2). Statistical 

analysis of the read counts found that there was no significant difference in the number of 

mRNA reads detected in the asthmatic subjects compared to the control subjects (P value 

= 0.5476, Wilcoxon rank sum test). 

 

 
 

Figure 3.2: Total number of mRNA reads isolated and sequenced from the human plasma 
samples. Total RNA was extracted from 500µl of human plasma from non-asthmatic 
control subjects (n = 5) and asthmatic subjects (n = 5) using the Qiagen serum and plasma 
miRNeasy kit.  mRNA sequencing libraries were prepared using the SMARTer Universal Low 
Input RNA kit and sequenced using Illumina HiSeq 2000. 
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3.3.3. Differential Gene Expression detected in the Asthmatic Subjects compared to 
the Control Subjects 

 

Expression of a total of 14,226 genes was detected through assessment of the circulating 

transcriptome. mRNA reads generated from Asthma_2 failed to map satisfactorily to the 

hg19 reference genome and subsequently the sample was excluded from further mRNA 

downstream analysis due to concerns it would induce bias.  

Statistical analysis revealed that 287 genes were differentially expressed in the asthmatic 

subjects compared to the control subjects (as defined by a Q < 0.05 and a Log fold change 

> 2.0). Within the asthmatic subjects, 90 genes showed significantly increased expression, 

and 197 genes displayed significantly decreased expression compared to the control 

subjects. Genes that displayed the highest degree of differential expression are listed in 

Table 3.4. A full list of the differentially expressed genes can be viewed in the 

Supplementary Materials (Supplementary Materials, Table S4). 
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Table 3.4: A list of genes that displayed the highest degree of differential expression in 
the asthmatic subjects compared to the control subjects. The Tuxedo protocol was used 
to determine differential gene expression in asthmatic subjects (n = 4) compared to control 
subjects (n = 5). A total of 287 genes were found to be differentially expressed in the 
asthmatic subjects compared to the control subjects. Genes with the highest degree of 
differential expression are shown below. Where genes are expressed in a condition-specific 
manner, Log2 fold change is replaced with “Control Only” or “Asthma Only” as appropriate. 
Quantity of the gene is shown as FPKM reads. 

 

Gene Control Mean Asthma Mean Fold Change (log2) Q Value 

Downregulated Genes 

DOHH 972.908 0.000 Control Only 0.0030 

PTRH2 87.791 0.000 Control Only 0.0030 

C15orf41 79.198 0.000 Control Only 0.0030 

HIST1H3I 30.233 0.000 Control Only 0.0030 

HOXC10 26.492 0.000 Control Only 0.0030 

TSPYL5 18.952 0.000 Control Only 0.0030 

NFXL1 17.842 0.000 Control Only 0.0030 

RAB3IL1 15.123 0.000 Control Only 0.0030 

LINC00085 15.023 0.000 Control Only 0.0030 

ARV1 14.064 0.000 Control Only 0.0030 

Upregulated Genes 

HIST1H3C 0.000 90.578 Asthma Only 0.0030 

HDAC9 0.732 52.163 6.156 0.0052 

PRAM1 0.000 3.057 Asthma Only 0.0052 

PML 0.948 178.238 7.554 0.0072 

RAB6B 0.000 8.903 Asthma Only 0.0072 

NRP1 0.924 18.895 4.354 0.0108 

CD93 0.000 14.337 Asthma Only 0.0108 

GPR56 1.870 98.538 5.720 0.0126 

MR1 1.076 17.892 4.055 0.0180 

TOP1MT 0.345 59.034 7.421 0.0180 

 

To determine whether the asthmatic subjects had a distinct gene expression profile 

compared to the control subjects, genes that displayed robust levels of expression (the top 

150 most highly expressed genes as determined by a mean Log2 FPKM score > 7.0) were 
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plotted as a heatmap and unsupervised cluster analysis was performed using Euclidean 

distance (Figure 3.3). 

Cluster analysis revealed that Control_4 had a relatively unique mRNA profile compared to 

the other subjects under investigation. For the remaining subjects, two clusters formed. 

Cluster one contained the control subjects Control_5 and Control_2; and Cluster two was 

made up of Asthma_1, Asthma_5, Asthma_3, Control_1, Asthma_4, and Control_3. Of note 

was Asthma_4, whose RNA profile more closely resembled the control subjects than the 

asthmatic subjects in Cluster two. 
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Figure 3. 3: Heatmap showing highly expressed genes in asthmatic subjects compared to 
control subjects. Analysis was performed by sequencing mRNA isolated from plasma 
samples from asthmatic subjects (n = 4) and non-asthmatic control subjects (n = 5) , and 
mapping the sequenced mRNA reads the human hg19 genome reference using Galaxy. 
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Gene expression was determined by quantification of circulatory mRNA detected in the 
plasma samples and is expressed as log2 normalised FPKM reads. Highly expressed genes 
(LOG2 FPKM score > 7.0) were plotted. Cluster analysis (Euclidean distance) informs the X 
and Y-axis dendrograms. 

 

3.3.4. Diversity of Gene Expression detected in the Asthmatic Subjects compared to 
the Control Subjects 

 

The diversity of genes being expressed in the asthmatic subjects compared to the control 

subjects was assessed by performing PCA on the log2 FPKM values of all 14,226 genes with 

detectable levels of expression (Figure 3.4). There was some degree of separation of the 

control and asthmatic subjects on the basis of PC2 scores. Of note was the observation that 

in the asthmatic subjects PC2 score was negatively correlated to asthma severity, 

Asthma_1, for instance had the highest ACQ score and the lowest PC2 score, whereas 

Asthma_5 and Asthma_4 had the lowest ACQ scores and the highest PC2 scores that were 

most similar to the control subject PC2 scores. 

Statistical analysis of gene expression diversity in the control and asthma plasma samples, 

however, revealed that there was no significant difference in the diversity of genes being 

expressed in the asthmatic subjects compared to the control subjects (P value = 0.427, 

PERMANOVA).  

Analysis of the effect of age and BMI on gene expression revealed that whilst age had no 

impact of gene expression diversity (P value = 0.965, PERMANOVA) (Figure 3.5.A), BMI had 

a significant impact on diversity of gene expression (P value = 0.0210, PERMANOVA) (Figure 

3.5.B). BMI ranged from 21.0 to 27.8 across the experimental test subjects (Table 3.3). 

When the plasma samples were grouped into BMI < 25 and BMI > 25, samples from subjects 

with a BMI greater than 25 displayed significant separation from the samples from subjects 
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with a BMI less than 25 (Figure 3.5.B). However, since the purpose of this experiment was 

to assess the effects of asthma on RNA populations, there was not an even distribution of 

subjects with a BMI greater/ less than 25 as analysis of the effects of BMI was not the 

primarily goal of this study. Further investigation, therefore, would be required to 

determine whether the observed effect of BMI on gene expression diversity is a significant 

finding. 

 

 

 

Figure 3. 4: Principal component analysis of circulatory gene expression profiles detected 
in asthmatic and control subjects. PCA was performed on the gene population dataset 
generated from the asthma (n = 4) and control (n = 5) plasma samples using quantitative 
mRNA FPKM reads that had been normalised using log2. The PCA was performed using 
Euclidean distance and R software. Each data point represents the gene expression profile 
of a plasma sample and the distance between two plotted points is proportional to the 
degree of similarity between the two expression profiles. 

 

P value =  0.427 
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Figure 3. 5: Principal component analysis of circulatory gene expression profiles detected in the asthmatic and control subjects on the basis of age 
and BMI. PCA was performed on the gene population dataset generated from the asthma (n = 4) and control (n = 5) plasma samples using quantitative 
mRNA FPKM reads that had been normalised using log2. The PCA was performed using Euclidean distance and R software. Each data point represents 
the gene expression profile of a plasma sample and the distance between two plotted points is proportional to the degree of similarity between the 
two expression profiles. Comparison of gene expression profiles was assessed using age (A) and BMI (B) as the variable.

A B 

P value =  0.965 P value =  0.029 
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3.3.5. miRNA detected in the Plasma Samples 
 

A total of 120,305,814 high-quality miRNA reads were isolated and sequenced from the 

plasma samples. This included 56,752,743 reads from the non-asthmatic control samples 

(average = 11,350,548.60; range = 10,506,135 – 12,905,879) and 63,553,071 reads (average 

= 12,710,614.20; range = 10,276,765 – 16,812,591) from the asthmatic samples (Figure 

3.6). Statistical analysis of the read count values revealed there was no significant 

difference in total miRNA detected in the asthmatic subjects compared to the control 

subjects (P value = 0.5476, Wilcoxon rank sum test). Of interest was the high number of 

miRNAs detected in Asthma_2. This sample displayed significantly lower mRNA counts, 

which may be explained by the high level of miRNAs observed. 

 

Figure 3. 6: Total number of miRNA reads isolated and sequenced from the human plasma 
samples. Total RNA was extracted from 500µl of human plasma from non-asthmatic 
control subjects (n = 5) and asthmatic subjects (n = 5) using the Qiagen serum and plasma 
miRNeasy kit. miRNA sequencing libraries were prepared using the TruSeq small RNA 
library kit and sequenced using the Illumina HiSeq 2000 platform. 
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3.3.6. Differential miRNA Expression detected in the Asthmatic Subjects compared 
to the Control Subjects 

 

Using miRanalyzer 398  and edgeR 400, 165 known miRNAs were detected in the plasma 

samples (average number of miRNAs detected per sample = 163.80; range = 158 – 165), 

which was consistent with previously reported studies on circulatory miRNA populations 

405–409.  To determine whether the asthmatic subjects had distinct miRNA profiles compared 

to the control subjects, total miRNA was plotted as a heatmap, and unsupervised clustering 

was performed using Euclidean distance (Figure 3.7). Cluster analysis revealed the presence 

of two clusters with regards to the circulatory miRNA populations. Cluster one was 

composed of Control_4, Control_2, Asthma_5, and Asthma_3; and Cluster two was made 

up of Asthma_1, Asthma_2, Control_5, Control_3, Control_1, and Asthma_4. Within each 

cluster two sub-clusters formed, and each sub-cluster was comprised of either control or 

asthmatic subjects. Of interest was the observation that the asthmatic subjects not 

diagnosed with additional atopic diseases (Asthma_3 and Asthma_5; see table 3.3) 

clustered together, and the asthmatic subjects diagnosed with additional atopic diseases 

(Asthma_1 and Asthma_2; see Table 3.3) clustered together (Figure 3.7). Furthermore, 

similar to the results obtained for mRNA population analysis, Asthma_4 again clustered 

more closely with the control subjects rather than the remaining asthmatic subjects. 
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Figure 3.7: A Heatmap showing expression levels of circulatory miRNA in asthmatic 
subjects compared to control subjects. Analysis was performed by sequencing miRNA 
isolated from plasma samples from asthmatic subjects (n = 5) and non-asthmatic control 
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subjects (n = 5) , and mapping the sequenced miRNA reads the human miRbase Version 21 
using sRNAtoolbox. miRNA expression was determined by quantification of circulatory 
miRNA detected in the plasma samples and is expressed as log2 normalised Counts per 
Million mapped (CPM) reads. All miRNAs that were detected in the plasma samples are 
plotted, and cluster analysis (Euclidean distance) informs the X and Y-axis dendrograms. 

 

Statistical analysis revealed that 13 miRNAs displayed significant increased expression  

[defined as having a false rate of discovery (FDR)-adjusted P value < 0.05 and a log fold 

change > 2.0] in the asthmatic subjects compared to the control subjects (Figure 3.8). 

Cluster analysis of the significantly expressed miRNAs using Euclidian distance revealed 

that with regards to expression of the significantly differentially expressed miRNAs, the 

control and asthma subjects formed two distinct clusters. Asthma_4 was the exception, 

and clustered with the control subjects rather than the remaining asthmatic subjects. 
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B      

miRNA Control Log2 
Mean 

Asthma Log2 
Mean 

Log Fold 
Change 

P 
Value 

FDR P 
Value 

hsa-miR-326 2.1264 7.1121 4.7496 0.0008 0.0337 

hsa-miR-369-5p 0.7449 5.0816 5.1778 0.0007 0.0337 

hsa-miR-6772-3p 0.2589 4.6294 7.1583 0.0002 0.0337 

hsa-miR-3928-3p 0.6837 4.9272 4.6020 0.0005 0.0337 

hsa-miR-148a-3p 2.9770 7.1062 3.5864 0.0021 0.0369 

hsa-miR-151a-3p 13.2692 15.1776 4.0379 0.0022 0.0369 

hsa-miR-24-3p 14.5123 17.3715 3.3452 0.0016 0.0369 

hsa-miR-1468-5p 9.4299 11.0648 4.0795 0.0018 0.0369 

hsa-miR-493-3p 2.1441 7.3314 4.3598 0.0022 0.0369 

hsa-miR-548e-3p 1.4292 5.7366 4.1425 0.0019 0.0369 

hsa-miR-382-5p 9.4403 11.9116 3.8968 0.0027 0.0375 

hsa-miR-654-5p 2.9741 8.6871 4.4341 0.0026 0.0375 

hsa-miR-744-5p 9.2020 11.8328 2.7522 0.0037 0.0470 
 

Figure 3.8: Differential levels of circulatory miRNA in asthmatic subjects compared to 
control subjects. Analysis was performed by sequencing and mapping miRNA reads 
isolated from non-asthmatic control plasma samples (n = 5) and asthmatic plasma samples 
(n = 5) using sRNAtoolbox. (A) miRNA expression was determined by quantification of 
circulatory miRNA detected in the plasma samples and is expressed as log2 normalised CPM 
reads. Differential expression was determined using the edgeR program (Bioconductor 
software), and significant expression was defined as having a log fold change greater than 
2.0 and an FDR-adjusted P value < 0.05. Cluster analysis (Euclidean distance) informs the X 

A 
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and Y-axis dendrograms. (B) Statistical analysis of the miRNA reads detected at significantly 
increased levels in the asthmatic subjects compared to the control subjects. 

 

3.3.7. Diversity of miRNA detected in the Asthmatic Subjects compared to the 
Control Subjects 

 

The diversity of circulatory miRNA populations in the asthmatic subjects was compared to 

the control subjects by carrying out PCA on the log2 CPM values of all miRNAs with 

detectable levels of expression in the plasma samples (Figure 3.9). The PCA plot comprising 

of the first two principal components, which collectively explained the majority of total 

variance in the miRNA populations (69.34%), revealed that overall the asthmatic subjects 

clustered separately from the control subjects (Figure 3.9). Separation of the two subject 

groups was due to differences in PC2 scores, whereby the asthmatic subjects had positive 

PC2 scores and the control subjects had negative PC2 scores (Figure 3.9). Moreover, PC1 

scores appeared to reflect the absence/ presence of additional atopic diseases in the 

asthmatic subjects, whereby subjects diagnosed with additional atopic diseases 

(Asthma_1, Asthma_2, and Asthma_4) had negative PC1 values, and asthmatic subjects 

that did not suffer from additional atopic diseases (Asthma_3 and Asthma_5) scored 

positive PC1 values. However, as this study was a preliminary investigation with a small 

sample size, further investigation would be required to confirm this finding. 

Additionally, the circulatory miRNA profile detected in the Asthma_4 sample was observed 

to be more similar to the control subjects than the remaining asthmatic subjects. This was 

particularly apparent with regards to the PC2 scores, whereby Asthma_4, like the control 

subjects, displayed a negative PC2 score, whilst the remaining asthmatic subjects displayed 

positive PC2 scores.  
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Statistical analysis of Euclidean distance detected in the plasma samples revealed that 

miRNA expression diversity was significantly altered in the asthmatic subjects compared to 

the control subjects (P value = 0.0440, PERMANOVA). PERMANOVA analysis was also 

applied to determine whether age or BMI had a significant impact on miRNA profile 

diversity and in both instances the variable had no impact on miRNA expression diversity 

(P value > 0.05, data not shown). 

 

 

 

Figure 3.9: Principal component analysis of circulatory miRNA profiles detected in 
asthmatic and control subjects. PCA was performed on the miRNA population dataset 
generated from the asthma (n = 5) and control (n = 5) plasma samples. This was achieved 
by measuring Euclidean distance using log2 normalised miRNA CPM read numbers that had 
been generated from the asthma and control samples. Each data point represents the gene 
expression profile of a plasma sample and the distance between two plotted points is 
proportional to the degree of similarity between the two expression profiles.  
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3.3.8. RNA Functional Analysis 
 

3.3.9. Biological Significance of Differential Gene Expression in the Asthmatic 
Subjects 

 

To determine whether the observed differential gene expression observed in the plasma 

samples of asthmatic subjects could be linked to asthma pathology, the differentially 

expressed genes identified were compared to a recently released database of genes 

associated with asthma pathology – AllerGAtlas 1.0 401 [public web access:    

http://biokb.ncpsb.org/AlleRGatlas/index.php/Home/Browse/]. 

Of the 287 genes that displayed significant differential expression in the asthmatic subjects, 

10 genes were identified in the asthma database. These genes included CD46, fibronectin 

1 (FN1), glutathione S-transferase  alpha 1 (GSTA1), interleukin 7 receptor (IL7R), galectin 

3 (LGALS3), myeloperoxidase (MPO), neurotensin (NTS), phosphodiesterase 4A (PDE4A), 

TLR1, and vitamin D receptor (VDR). 5 of the genes were upregulated in the asthmatic 

subjects (GSTA1, MPO, NTS, TLR1, and VDR) and 5 were downregulated in the asthmatic 

subjects (CD46, FN1, IL7R, LGAL3, and PDE4A) (Table 3.5). Moreover, gene expression was 

predominately condition specific. Of the upregulated genes, NTS, TLR1, and MPO mRNA 

was only detectable in the asthma samples, whilst in the downregulated genes, IL7R and 

PDE4R mRNA was only observed in the control samples (see Supplementary Materials, 

Table S4). 

 

 

 

http://biokb.ncpsb.org/AlleRGatlas/index.php/Home/Browse/
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Table 3.5: Genes with significant differential expression in the asthmatic subjects 
compared to control subjects that are associated with asthma pathology. Differential 
gene expression was determined using the Tuxedo protocol (Galaxy software) on log2 
normalised mRNA FPKM reads sequenced from plasma samples from asthma subjects (n = 
4) and control subjects (n = 5). Gene function with regards to asthma pathology was 
determined using the asthma database AllerGAtlas, 2018 401 and a general literature search 
using the relevant search engines. 

 

Gene Expression in Asthma 
subjects Function Reference 

CD46 Downregulated 

Differentiation of IL-10 producing regulatory T 
cell type 1 cells 

Differentiation of Th1 cells 
Inhibition of HDM allergenic activity 

410,411 
 

412,413 
414 

FN1 Downregulated 
Development of pulmonary fibrosis 

Airway smooth muscle proliferation, survival, 
and contraction 

415,416 
417–419 

 
GSTA1 Upregulated Protection against oxidative stress 420,421 

IL7R Downregulated 

Marker for Treg activation 
T cell development and survival 

B cell development 
Eosinophil survival 

422 
423–427 
423,428 

429 

LGALS3 Downregulated 
Inhibition of IL-5 expression 

Inhibition of eosinophil and T cell infiltration 
Negative regulation of Th17 polarization 

430 
430 
431 

MPO Upregulated Initiation of lipid peroxidation 432 

NTS Upregulated Mast cell degranulation 433,434 

PDE4A Downregulated 

Production of CD4+ T cell cytokines  
(IL-2, IL-4, IL-5, IFNƴ) 
Production of TNFα 

Production of leukotriene B4 
Production of eotaxin 

Airway goblet cell hyperplasia 

435–437 
 

435 
435 
437 
437 

TLR1 Upregulated Antimicrobial activity 438–440 

VDR Upregulated 

Development of airway inflammation and 
hyperresponsiveness 

Eosinophilia 
Inhibits IgE production 

441 
 

441 
441,442 
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3.3.10. Biological Significance of Differentially Expressed miRNA in the Asthmatic 
Subjects 

 

miRNAs are known regulators of gene expression, typically with regards to gene silencing 

443–445. To determine how differential miRNA expression in the asthmatic subjects may have 

altered gene expression, Gene Ontology (GO) analysis was performed using DIANA-

miRPath V3.0 to determine the genes and biological pathways likely to be affected by the 

differentially expressed miRNA. 

In total, the differentially expressed miRNAs were found to target 1,831 genes, of which, 

25 genes exhibited differential expression in the asthmatic subjects. (Table 3.6). As 

expected, the majority of these genes were significantly downregulated in the asthmatic 

subjects (21/28 genes), and 10 genes were found to show no expression at all in the 

asthmatic subjects (Table 3.6). With regards to the 7 genes significantly upregulated in the 

asthmatic subjects, 3 displayed unique expression to the asthmatic subjects (SH2D1B, 

SYNDIG1L, UBXN10), and expression of these genes were undetected in the control 

subjects (Table 3.6). 
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Table 3 6: Genes targeted by the differentially expressed miRNAs that displayed 
significant differential expression in the asthmatic subjects compared to the control 
subjects. mRNA expression was determined by quantification of circulatory mRNA 
detected in the plasma samples of asthmatic subjects (n = 4) and control subjects (n = 5) 
and is expressed as log2 normalised FPKM reads. Significant differential expression in the 
asthmatic subjects was defined as having a log fold change greater than 2.0 and an FDR-
adjusted P value < 0.05. Identification of the gene as a target of differentially expressed 
miRNA was determined using TargetScan v6.2.  

Gene Control 
Mean 

Asthma  
Mean 

Fold Change 
(log2) 

Expression 
 State 

P 
Value 

Q 
Value 

ADAMTS18 4.844 0.000 -inf Downregulated 0.000 0.003 

ANKRD11 20.860 0.481 -5.439 Downregulated 0.000 0.007 

ASPH 15.551 2.130 -2.868 Downregulated 0.001 0.034 

B4GALT5 11.155 0.320 -5.122 Downregulated 0.002 0.041 

BRI3BP 5.777 0.000 -inf Downregulated 0.000 0.003 

CHMP1A 898.053 10.776 -6.381 Downregulated 0.000 0.013 

CSF2RB 6.862 0.000 -inf Downregulated 0.000 0.003 

ELOF1 806.425 17.862 -5.497 Downregulated 0.000 0.018 

GDF7 1.192 0.000 -inf Downregulated 0.000 0.003 

KIF26A 10.373 0.190 -5.772 Downregulated 0.001 0.038 

MXRA7 9.572 152.388 3.993 Upregulated 0.001 0.020 

NCAN 12.170 0.000 -inf Downregulated 0.000 0.005 

NRP1 0.924 18.895 4.354 Upregulated 0.000 0.011 

PMM2 129.114 2.491 -5.696 Downregulated 0.002 0.041 

PSMD9 192.358 1.203 -7.321 Downregulated 0.001 0.019 

PTS 9.203 0.000 -inf Downregulated 0.001 0.029 

RAB3IL1 15.123 0.000 -inf Downregulated 0.000 0.003 

SH2D1B 0.000 2.288 inf Upregulated 0.001 0.038 

SSTR1 1.882 0.000 -inf Downregulated 0.000 0.003 

ST3GAL4 37.716 0.729 -5.693 Downregulated 0.001 0.020 

SYNDIG1L 0.000 4.403 inf Upregulated 0.000 0.003 

TOP1MT 0.345 59.034 7.421 Upregulated 0.000 0.018 

TRIOBP 182.005 1.406 -7.016 Downregulated 0.001 0.039 

UBXN10 0.000 17.007 inf Upregulated 0.000 0.003 

VDR 1.116 24.331 4.447 Upregulated 0.002 0.043 

WDR87 6.160 0.000 -inf Downregulated 0.001 0.019 

ZNF710 132.550 0.805 -7.363 Downregulated 0.002 0.046 

ZNRF2 18.166 0.000 -inf Downregulated 0.002 0.047 
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Analysis of biological pathways likely to be affected by significant differential expression of 

the miRNAs identified 50 pathways likely to be altered in the asthmatic subjects as a 

consequence of significantly altered miRNA levels. The top 15 biological pathways 

identified are shown in Table 3.7.  

 

Table 3.7: The top 15 biological pathways that were predicted to be altered in the 
asthmatic subjects as a result of differential miRNA expression. Functional analysis was 
performed on the differentially expressed miRNA detected in the asthmatic subjects (n = 
4) compared to the control subjects (n = 5) in order to identify biological pathways likely to 
be altered in the asthmatic subjects. Functional analysis was achieved using DIANA-
miRPath v3.0 and the 15 biological pathways most likely to be altered in the asthmatic 
subjects are presented. 

 

GO Category P Value # Genes # miRNAs 

Organelle (GO:0043226) 1.18E-33 936 13 

Ion binding (GO:0043167)  2.90E-23 599 13 
Cellular nitrogen compound metabolic process 
(GO:0034641)  3.20E-15 445 13 

Biosynthetic process (GO:0009058)  3.13E-11 381 13 
Small molecule metabolic process (GO:0044281)  1.84E-07 226 12 
Neurotrophin TRK receptor signalling pathway 
(GO:0048011)  4.10E-07 35 8 

Protein binding transcription factor activity (GO:0000988)  1.41E-06 62 11 
Molecular function (GO:0003674)  1.52E-06 1554 13 
Cytoskeletal protein binding (GO:0008092) 2.38E-06 92 12 

Blood coagulation (GO:0007596)  2.74E-06 55 10 
Gene expression (GO:0010467)  3.41E-06 61 10 

Cellular protein modification process (GO:0006464) 1.19E-05 214 13 
Synaptic transmission (GO:0007268) 4.93E-05 53 10 
Fc-epsilon receptor signalling pathway (GO:0038095)  5.15E-05 22 8 

Cellular component (GO:0005575)  5.40E-05 1562 13 
 
 
 
 

 

http://snf-515788.vm.okeanos.grnet.gr/index.php?r=mirpath/categorylinks&category=GO:0010467
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3.3.11. Combined Effect of Differential Gene Expression and miRNA Expression in 
the Asthmatic Subjects 

 

To determine the combined biological significance of differential gene expression and 

regulation in the asthmatic subjects, causal inference analysis using IPA software was 

carried out to identify the likely upstream regulators responsible for the differential mRNA 

and miRNA expression.  

In total, 246 upstream gene regulators had a P value of overlap < 0.05; indicating that the 

regulators had altered functional activity in the asthmatic subjects compared to the control 

subjects on the basis of differential mRNA and miRNA expression. Of these regulators, 7 

had Z scores greater than 2.0, thus enabling their activity in the asthmatic subjects to be 

predicted. 2 upstream regulators were predicted to have significantly increased activity in 

the asthmatic subjects (P value overlap < 0.05; Z score > 2.0), and 5 regulators were 

predicted to have significantly decreased activity in the asthmatic subjects (P value of 

overlap < 0.05; Z score < -2.0) (Table 3.8). 
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Table 3.8: Upstream gene regulators with predicted significantly altered activity in the asthmatic subjects compared to the control subjects. Causal 
inference analysis was used to predict upstream regulators that have significantly altered activity in the asthmatic subjects (n = 4) compared to the 
control subjects (n = 5) (defined as having a P value of overlap < 0.05 and a Z score greater than 2.0). Activated upstream regulators are defined as 
having a Z score > 2.0, and inhibited upstream regulators are defined as having a Z score < -2.0. Target molecules activated = genes present in the RNA 
dataset that are activated by the upstream regulator; target molecules inhibited = genes present in the RNA dataset that are inhibited by the upstream 
regulator; target molecules affected = genes present in the RNA dataset whose activity is known to be altered by the upstream regulator but there is 
insufficient evidence to prove this is activation or inhibition. 

 

Upstream 
Regulator Molecule type Activity state Z score P value of 

overlap 
# Target molecules 

activated 
# Target molecules 

inhibited 
# Target molecules 

affected 
Sirolimus Chemical drug Activated 2.75 0.0107 12 1 0 

GFI1 Transcription 
regulator Activated 2.00 0.0077 4 0 1 

EIF4E Transcription 
regulator Inhibited -2.00 0.0074 0 4 2 

Mycophenolic acid Chemical drug Inhibited -2.00 0.0211 0 4 0 

Streptozocin Chemical drug Inhibited -2.16 0.0492 0 5 1 

SOX4 Transcription 
regulator Inhibited -2.24 0.0770 0 5 0 

SYVN1 Transporter Inhibited -2.45 0.0069 0 6 0 
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Causal inference analysis using IPA was also used to predict the downstream consequences 

of the observed differential mRNA and miRNA expression in the asthmatic subjects. The 

downstream effects of the differential expression were primarily assessed by examination 

of the predicted canonical pathways and biological functions impacted. 

14 canonical pathways were predicted to have significantly altered biological activity (P 

value < 0.05) within the asthmatic subjects compared to the control subjects (Table 3.9). 

Several of the canonical pathways predicted to have altered activity in the asthmatic 

subjects influence immune activity, including lymphocyte and B cell activity, phagosome 

maturation, signalling in rheumatoid arthritis, B cell development, and Nur77 signalling in 

lymphocytes. 
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Table 3.9: Canonical pathways predicted to have significantly altered activity in the asthmatic subjects. IPA software was used to predict downstream 
canonical signalling pathways likely to be affected by changes in gene expression and regulation in the asthmatic subjects (n = 4) compared to the control 
subjects (n = 5). Molecules with increased gene expression are genes that had significantly increased numbers of mRNA reads in the asthma plasma samples, 
and molecules with decreased gene expression are genes that had significantly decreased numbers of mRNA reads in the asthma plasma samples.  

 

Canonical Pathway P Value Molecules with increased gene 
expression 

Molecules with decreased gene 
expression 

Altered T Cell and B Cell Signalling in Rheumatoid 
Arthritis 0.0053 SLAMF1,TLR1,HLA-DQA1,TNFRSF13C HLA-DRB5 

B Cell Development 0.0092 HLA-DQA1 IL7R, HLA-DRB5 

Antigen Presentation Pathway 0.0116 HLA-DQA1, MR1 HLA-DRB5 

Melatonin Degradation III 0.0124 MPO - 

TNFR1 Signalling 0.0241 - TRADD, IKBKB, PAK4 

Acute Myeloid Leukemia Signalling 0.0287 PML CSF2RB, CEBPA, IDH3B 

Tetrahydrobiopterin Biosynthesis I 0.0368 - PTS 

Hypusine Biosynthesis 0.0368 - DOHH 

Tetrahydrobiopterin Biosynthesis II 0.0368 - PTS 

Nur77 Signalling in T Lymphocytes 0.0369 HDAC9, HLA-DQA1 HLA-DRB5 

Phagosome Maturation 0.0375 MPO, GOSR2 CTSL, CTSG, HLA-DRB5 

Catecholamine Biosynthesis 0.0487 - PNMT 

Mitotic Roles of Polo-Like Kinase 0.0488 STAG2 ANAPC4, PPP2R5C 

Type I Diabetes Mellitus Signalling 0.0496 HLA-DQA1 TRADD, IKBKB, HLA-DRB5 
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With regards to biological functions likely to be impacted by changes in the observed mRNA 

and miRNA expression patterns in the asthmatic subjects, a number of pathways were 

predicted to have altered activity within the asthmatic cohort (Table 3.10). 

Significantly altered activity was defined as having  a P value < 0.05 and a Z score greater 

than 2.0, with negative Z scores representing predicted decreased activity, and positive Z 

scores representing predicted increased activity. In total 10 biological functions had 

predicted significantly altered activity within the asthmatic subjects, of which 2 were 

predicted to have increased activity, and 8 were predicted to have decreased activity (Table 

3.10). 

 

Table 3.10: Biological functions predicted to have significantly altered activity in the 
asthmatic subjects compared to control subjects. Causal inference using IPA software was 
used to predict biological functions likely to have altered activity in the asthmatic subjects 
(n = 4) compared to the control subjects (n = 5). This was determined through analysis of 
genes and miRNA that had altered expression in the asthmatic subjects, to predict which 
biological functions would likely be altered. Biological functions predicted to be 
significantly altered in the asthmatic subjects were defined as having a P value < 0.05 and 
a Z score greater than 2.0. Biological functions with predicted increased activity were 
defined as having a Z score > 2.0, and biological functions with predicted decreased activity 
were defined as having a Z score < -2.0. 

 

Biological Functions P Value Activation State Z score 

Binding of endothelial cells 9.75E-03 Decreased -2.123 

Binding of leukocytes 1.73E-03 Decreased -2.062 

Cell transformation 1.32E-03 Decreased -3.228 

Differentiation of fibroblast cell lines 4.44E-03 Decreased -2.184 

Immune response of leukocytes 6.79E-04 Decreased -2.031 

Interaction of endothelial cells 3.55E-03 Decreased -2.346 

Killing of natural killer cells 5.44E-03 Decreased -2.63 

Proliferation of hepatocytes 6.53E-03 Increased 2.177 

Tumorigenesis of tissue 4.94E-04 Increased 2.215 

Viral infection  1.34E-02 Decreased -2.099 
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3.3.12. Characterisation of Circulatory Inflammatory Protein Levels 
 

To determine the immune status of the asthmatic patients at the time of sample collection, 

characterisation of various chemokines and cytokines associated with asthma pathology 

was performed.  

A total of 10 out of the 12 inflammatory proteins under investigation were detected in the 

plasma samples (see Supplementary Materials, Table S5). Overall the asthmatic subjects 

were found to have elevated levels of inflammatory proteins compared to the controls, as 

determined by increased absorbance scores for all inflammatory proteins examined (See 

Supplementary Materials, Table S5). This was particularly apparent for chemokines TARC 

(P value = 0.0952), GM-CSF (P value = 0.1111), and IFNƴ (P value = 0.1945) (Figure 3.10). 

However, it should be noted that no statistically significant increases were detected for any 

of the individual proteins. This was likely due to the asthmatic subjects having a greater 

level of diversity with regards to inflammatory protein levels compared to the control 

subjects (Figure 3.10; see also Supplementary Materials, Table S5).  
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Protein Control Mean (S.D) Asthma Mean (S.D) P Value 

GM-CSF 0.200 (0.09) 0.721 (0.52) 0.1111 

IFNƴ 0.019 (0.03) 0.810 (1.53) 0.1945 

TARC 0.310 (0.26) 1.294 (1.05) 0.0952 

 

Figure 3.10: Levels of circulatory inflammatory proteins in asthmatic and control subjects. 
Qualitative ELISAs were performed on plasma samples from asthmatic subjects (n = 5) and 
control subjects (n = 5). Inflammatory protein levels were determined by measuring 
absorbance at 450nm, and statistical analysis using Wilcoxon rank sum test with continuity 
correction. (A) Levels of GM-CSF detected in plasma samples from asthmatic (n = 5) and 
control subjects (n = 5). (B). Levels of IFNƴ detected in plasma samples from asthmatic (n = 
5) and control subjects (n = 5). (C). Levels of TARC detected in plasma samples from 
asthmatic (n = 5) and control subjects (n = 5). 

Abbreviations: S.D, standard deviation 
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3.3.13. Quantification of Circulatory Total IgE Concentrations 
 

Total IgE was detected in 50% of plasma samples under investigation (three control 

subjects and two asthmatic subjects) (Figure 3.11, see also Supplementary Materials, Table 

S6). For the purpose of statistical analysis, samples with undetectable levels of IgE were 

given an IgE concentration value of 0. Comparison between the asthmatic and control 

samples revealed no significant difference in IgE concentration (P value = 0.7012, Wilcoxon 

rank sum test with continuity correction).   

 

 

Protein Control Mean (S.D) Asthma Mean (S.D) P Value 

IgE 384.56 (185.13) 2707.04 (308.86) 0.7012 

 

Figure 3.11: Circulatory total IgE concentration detected in asthmatic subjects compared 
to control subjects. Total IgE concentrations were measured in plasma samples from 
asthma subjects (n = 4) and control subjects (n = 5) using a sandwich ELISA. Absorbance 
was measured at 450nm and converted into protein concentration using a standard curve. 
(A). Concentration of total IgE protein detected in the asthmatic subjects (n = 4) compared 
to the control subjects (n = 5). (B). Statistical analysis of total IgE detected in the asthmatic 
subjects (n =  4) compared to the control subjects (n = 5) using a Wilcoxon rank sum test 
with continuity correction. 
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3.3.14. Quantification of Circulatory Endotoxin Concentrations 
 

Endotoxin protein was detected in all plasma samples investigated, and overall the 

asthmatic subjects exhibited decreased levels of the protein in the blood (P value = 0.0650, 

Unpaired t test) (Figure 3.12, see also Supplementary Materials, Table S7).  

Within the asthma cohort, subjects diagnosed with additional atopic diseases (i.e. allergic 

rhinitis, allergic dermatitis) displayed lower endotoxin concentrations compared to the 

asthmatic subjects that were not diagnosed with additional atopic diseases (see 

Supplementary Materials, Table S7). Within the control cohort, subjects with previously 

reported atopic dermatitis displayed circulatory endotoxin concentrations similar (i.e. 

lower than those subjects reporting no atopic conditions) to those observed in the asthma 

cohort (see Supplementary Materials, Table S7).  

Whilst the observed decrease in circulatory endotoxin levels was non-significant, it was 

predicted that with  a larger cohort of asthmatic subjects, endotoxin levels would be 

detected at significantly reduced levels.  

 

 

 

 

 

 

 

 



143 
 

 

 

 

Protein Control Mean (S.D) Asthma Mean (S.D) P Value 

Endotoxin 3.12 (0.10) 3.00 (0.05) 0.0650 

 

Figure 3.12: Circulatory endotoxin concentrations detected in asthmatic subjects 
compared to control subjects. Circulatory endotoxin concentrations were measured in 
plasma samples from asthmatic subjects (n = 5) and non-asthmatic control subjects using 
a PierceTM Limulus Amebocyte Lysate (LAL) assay. Absorbance was measured at 450nm and 
converted into protein concentration using a standard curve. (A) Concentration of 
endotoxin protein detected in the asthmatic subjects (n = 5) compared to the control 
subjects (n = 5). (B) Statistical analysis of endotoxin detected in the asthmatic subjects 
compared to the control subjects using a Wilcoxon rank sum test with continuity 
correction. 
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3.4. Discussion 
 

This study aimed to characterise a small, yet specific, population of female adult asthma 

patients who had developed atopic asthma during childhood that was associated with a 

HDM allergy. A range of molecular techniques were applied to quantify circulating 

inflammatory proteins and determine gene expression, regulation, and predicted activity 

in an asthmatic cohort compared to a non-asthmatic control cohort. These investigations 

were carried out to increase understanding of a specific asthma phenotype, to begin to 

explore the molecular mechanisms responsible, and to identify potential biomarkers 

associated with the asthma phenotype. 

 

3.4.1. Transcriptomic Characterisation of the Asthma Phenotype 
 

Analysis of the diversity of RNA expression in the asthmatic subjects revealed that the 

asthmatic subjects exhibited RNA profiles distinct from the control RNA profiles; this was 

particularly apparent in the miRNA analysis. When combined with differential expression 

analyses, asthma severity was found to influence gene expression, whilst miRNA expression 

appeared to be influenced by the presence of additional atopic diseases. 

Investigation of differentially expressed mRNAs using the AllerGAtlas asthma gene 

database found that 10 genes had been previously found to influence asthma 

pathogenesis. These genes have been demonstrated to influence a number of key 

components of asthma pathology, including airway remodelling, eosinophil and T cell 

migration, production of Th2 cytokines (IL-4, IL-5, and IL-13), mast cell degranulation, IgE 

production, and airway hyperresponsiveness. Moreover, several of the downregulated 

genes (CD46, IL7R), have been found to have roles in T regulatory (Treg) cell differentiation 
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and activation. These cells are important regulators of T cell activity, and thus 

downregulation of CD46 and IL7R suggests loss of control of T cell activity in the asthmatic 

subjects. It was further observed that several of the genes detected at altered levels in the 

asthmatic subjects have antimicrobial activity, thus suggesting that immune dysregulation 

was influencing how the asthmatic immune system responds to microbes. 

It was intriguing to note that Asthma_4 displayed similar mRNA and miRNA profiles to the 

control subjects. This asthmatic subject was the youngest member of the asthma cohort, 

with an age of 19 years, and the subject had been suffering from asthma for just 14 years 

compared to the mean length of 38 years that the other asthmatic subjects had been living 

with the disease. It is tempting to speculate that asthmatic mRNA profiles become more 

divergent from control profiles as the disease progresses, however the sample size of this 

study restricted further analysis of this. Moreover, at the time of sample collection 

Asthma_4 was suffering from the highest number of atopic diseases from the atopic triad 

(atopic asthma, atopic dermatitis, and allergic rhinitis). It is possible that the presence of 

atopic dermatitis and allergic rhinitis would augment the observed changes in the RNA 

profile which could explain why this individual differed to the other asthmatic subjects. 

That said, it was surprising that the individual displayed increased similarity to the control 

subjects, and thus further study is warranted to determine whether age, the presence of 

additional atopic diseases, or variations in the medication taken were responsible for the 

variation observed.  

Sequencing and differential expression analysis identified 13 miRNAs that displayed 

significant increased expression in the asthmatic subjects compared to the control subjects. 

Many of the identified miRNAs have been previously associated with elements of asthma 

pathology and other atopic conditions. miR-148, for example, has been identified as a 
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candidate biomarker for asthma and allergic rhinitis 408,  whilst miR-382 has been proposed 

as a biomarker of asthma and COPD 446. Furthermore, miR-548 has been observed to be 

dysregulated in asthma bronchial epithelial cells 447 and miR-744 has been found to be 

elevated in a murine model of chronic asthma 448. miR’s 151a and 24 have been implicated 

in the pathogenesis of atopic dermatitis 449  and the regulation of allergic inflammation 450, 

respectively. miR-326 has been reported to regulate the profibrotic functions of TGF-β in 

pulmonary fibrosis 451. 

The upregulated miRNAs were found to regulate the expression of 1,831 genes. This finding 

was reflected in the mRNA data, whereby the asthmatic subjects displayed significant gene 

expression downregulation compared to the control subjects. With regards to asthma 

pathology, changes in miRNA expression was predicted to significantly affect IgE signalling 

(Fc-epsilon receptor signalling pathway). IgE is known to be crucial in allergen sensitisation 

and subsequent atopic disease, and thus it is predicted that the observed miRNA profiles 

in the asthmatic subjects would have an important role in the initial development of 

asthma and subsequent HDM-induced asthma exacerbations. It would, therefore, be 

interesting to determine if what was observed in miRNA profiles of adult asthmatics also 

occurs in asthmatic children and/ or children with an increased risk of developing asthma. 

Moreover, as there are distinct differences in  asthma prevalence and severity between the 

two sexes, it would be beneficial to determine if similar miRNA profiles are present in male 

asthmatics. 

 

3.4.2. Biological Significance of the Asthmatic RNA Profiles 
 

When functional analysis was performed to determine the combined effects of altered 

mRNA and miRNA expression in the asthmatic subjects, a number of immune functions 
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were predicted to have significantly altered activity. With regards to upstream regulators 

predicted to have altered activity in the asthmatic subjects, the activated state of GFI1 was 

of interest. GFI1 encodes a transcription factor that has been observed to have a role in the 

differentiation and maintenance of ILC2 cells 452. These cells are potent producers of IL-5 

and IL-13, and have been demonstrated to be activated by epithelial cells (IL-25, IL-33, TSLP) 

and mast cells (LTD4, PGD2, LXA4), and play a critical role in the pathogenic features of 

experimental asthma in mice 453–459  and clinical disease in humans 460–464.  

Furthermore, GFI1 activity has also been shown to be induced by T cell activation and IL-4/ 

Stat6 signalling465,  and is known to enhance Th2 expansion 465. Increased activity of the 

transcription regulator, therefore, suggests increased IL-4 signalling in the asthmatic 

subjects and the presence of a positive feedback loop whereby increased levels of IL-4 in 

asthmatic subjects results in activation of the GFI1 transcription regulator, subsequently 

causing increased IL-4-producing Th2 populations, resulting in further activation of the GFI1 

regulator. 

Evidence of increased Th2 expansion and activity in the asthmatic cohort was further 

supported by the prediction of significant inhibition of the upstream regulator SOX4 in the 

asthmatic cohort. This transcription factor has been observed to suppress Th2 

differentiation 466, and thus its inhibition would likely result in increased expansion of the 

Th2 populations in the asthmatic subjects.  

When the predicted downstream effects of altered mRNA and miRNA expression were 

analysed, similar findings of predicted immune dysregulation were observed. A number of 

canonical pathways involved in B and T cell activity, including signalling in rheumatoid 

arthritis, B cell development, and Nur77 signalling in T lymphocytes, were predicted to be 

significantly affected by the differential expression of mRNA and miRNA in the asthmatic 
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cohort. It is interesting to note that the canonical pathways involved in rheumatoid arthritis 

and Type 1 diabetes were identified, as both diseases have been found to display co-

occurrence with asthma 467,468. It is tempting to speculate that the presence of similar/ 

shared underlying immune pathologies in the three diseases. 

Unsurprisingly, a number of biological functions were predicted to be altered as a 

consequence of changed upstream activity and altered canonical signalling. Of relevance 

to asthma pathology was the observation of predicted decreased leukocyte binding, 

differentiation of fibroblast lines, and immune responses of leukocytes. 

The predicted changes to leukocyte activity was of particular interest. However, at this level 

of analysis, the downstream effects on biological function of the different classes of 

leukocytes was not determined, and thus further study would be required to ascertain 

which class of leukocytes would likely have altered activity in the asthmatic subjects 

compared to the control subjects as a result of changes to mRNA and miRNA expression. 

Study of the specific leukocyte affected in the asthma subjects would be crucial, as 

inhibition of the Th1 or Treg lymphocytes would likely enhance asthma pathophysiology, 

whereas inhibition of the Th2 and Th17 lymphocyte classes would likely alleviate asthma 

pathophysiology. 

It was also of interest to observe the predicted decrease in killing of natural killer cells. This 

cell population has been previously identified as having a critical role in immune defence 

against viruses and bacteria 469–472. In particular, viral infections have been long 

characterised to exacerbate asthma  473–476, and asthmatics have been observed to be 

deficient in type I IFN production 477–479, which likely influences natural killer cell activity. 

Moreover, in a murine model, natural killer cell activity was found to be decreased during 

a Th2 response 480. This suggests that in asthmatic subjects there is reduced natural killer 
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cell activity, resulting in the known associations with asthma and respiratory infections. 

Moreover, this may also partially explain the changes in the airway microbiome that are 

observed in asthmatic populations. 

 

3.4.3. Protein Characterisation of the Asthma Phenotype 
 

At the protein level there were no significant differences detected in the asthmatic subjects 

compared to the control subjects. However, there were several interesting observations, 

and it is predicted that with a larger cohort of subjects, observed differences in the 

asthmatic subjects compared to the control subjects would be more significant 

Firstly, the range of inflammatory protein levels detected within the asthmatic cohort was 

noticeably higher than the range observed in the control subjects. This was explained by 

the presence of two distinct clusters in the asthmatic cohort; Cluster one was composed of 

subjects Asthma_2 and Asthma_4, and was characterised by high inflammatory protein 

levels; and Cluster two was made up of Asthma_1, Asthma_3, and Asthma_5, and was 

characterised by lower levels of circulatory inflammatory proteins that were similar to 

those observed in the control subjects. This level of variability observed in the asthma 

cohort is reflective of the heterogenous nature of asthma pathology and suggests the 

possibility of asthma sub-phenotypes within the asthma cohort studied. 

Of interest was the levels of IL-17A observed. This cytokine, whilst not significantly 

increased in the asthmatic subjects (P value = 0.4130, Wilcoxon rank sum test), was found 

to be present at higher levels in the asthmatic subjects who suffered additional atopic 

diseases (Asthma_1, Asthma_2, and Asthma_4) and the two control subjects who had self-

reported atopic dermatitis (Control_2 and Control_3). This finding is reflective of previous 

studies that have detected increased levels of IL-17 associated with asthma severity 481–485, 
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the Th2 immune response 486,487, and atopic dermatitis 486–488. Moreover, increased levels 

of IL-17A in asthmatic subjects has been associated with treatment response 484. The 

association of IL-17A with the various asthma phenotypes, therefore, warrants further 

investigation. 

Measurement of circulatory total IgE concentrations revealed that IgE was only detectable 

in half the plasma samples investigated (3 control subjects and 2 asthmatic subjects). The 

low detection rate of IgE was not unexpected given its short half-life (approximately two 

days) and low concentration within the blood 64. There was no significant difference in IgE 

levels in the asthmatic subjects compared to the control subjects. This was likely due to the 

small number of samples with detectable levels of IgE. However, it was observed that IgE 

was detected in the asthma subjects belonging to the proposed Cluster one (Asthma_2 and 

Asthma_4). This provides further support to the theory that within the asthmatic subjects 

there were two sub-phenotypes present with differing levels of circulatory inflammatory 

proteins. 

Endotoxin protein was detected in all the plasma samples. The protein is a bacterial cell 

surface protein produced by Gram negative bacteria, and thus the detection of the protein 

provided evidence of translocation of bacterial cells and/ or bacterial protein into the 

circulatory vessels. 

In contrast to the inflammatory protein and IgE results, measurement of bacterial 

endotoxin revealed decreased levels of the microbial protein present in the asthmatic 

subjects compared to the control subjects (P value = 0.0650, Unpaired t test). Moreover, 

there appeared to be an inverse correlation between circulatory endotoxin levels and the 

presence of additional atopic diseases. This was a particularly interesting finding as 

exposure to endotoxin during early childhood has been previously found to be protective 
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against the development of childhood asthma 489–493. This association is thought to 

specifically affect the sensitisation stage of atopic asthma. In rats, for example, Tulic et al 

demonstrated that the protective effects of endotoxin only occurred when the rats were 

exposed to endotoxin prior to OVA sensitisation 494. 

As this study involved a cohort of adult asthmatics, the observed decrease in endotoxin 

levels in the asthmatic subjects suggests that the association between reduced endotoxin 

levels and asthma persists into adulthood and the chronic, life-long form of the disease.  

In mice, exposure to endotoxin prior to HDM sensitisation and challenge has been 

demonstrated to be protective against development of experimental asthma as a result of 

reduced Th2 cytokine production (IL-5 and IL-13), reduced levels of GM-CSF and CCL20 in 

the lungs, reduced levels of IgE in the lungs, and reduced recruitment of inflammatory cells 

(dendritic cells, eosinophils, lymphocytes) 250. Moreover, when the study was replicated in 

humans through the use of an in vitro model, whereby normal human bronchial endothelial 

cells were exposed to endotoxin prior to HDM exposure, endotoxin exposure suppressed 

HDM-induced production of IL-1α and GM-CSF 250. 

Additionally, endotoxin has been demonstrated to be a potent inducer of IFNƴ 489,495 and 

IL-12 496; two type 1 cytokines that have been demonstrated to promote Th1 differentiation 

whilst suppressing Th2 differentiation and activity 497–499. It is, therefore, speculated that 

exposure to endotoxin during childhood is important in shifting the naïve, Th2-dominant, 

neonatal immune system towards a more balanced Th1-Th2 immune system; and that by 

regulating the Th1/Th2 balance endotoxin is protective against HDM sensitisation. In older 

children and adults, endotoxin is likely protective against HDM challenge by suppressing 

the endothelial cells reactivity towards the HDM allergen, and reduced levels of the protein 

is likely to result in increased bronchial reactivity towards the allergen.  
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In addition to reduced exposure to endotoxin in the environment, reduced levels of 

endotoxin in the asthmatic subjects may also be due to the constant state of increased 

immune activity in the asthmatic subjects. IL-17A, for example,  was increased in the 

asthmatic subjects and has previously been demonstrated to be positively associated with 

expression of anti-microbial peptides 500,501. Endotoxin is an inflammatory protein present 

in the outer membrane of Gram negative bacteria, and thus reduced levels of the protein 

may represent reduced microbial populations present in the asthmatic subjects due to 

increased concentrations of circulatory anti-microbial peptides as a result of increased IL-

17A activity. This interpretation is was further supported by genomic characterisation of 

the asthmatic subjects, which revealed increased expression of MPO and TLR1 in the 

asthmatic subjects compared to the control subjects. Both genes encode proteins involved 

in antimicrobial activity (Myeloperoxidase and Toll-like receptor 1, respectively), and thus 

upregulation of these genes has the potential to influence microbiome composition.  

 

3.4.4. Identification of Peripheral  Biomarkers 
 

Asthma is increasingly being recognised as a clinical umbrella term to describe a chronic 

respiratory disorder caused by a variety of disease phenotypes and endotypes. The disease 

is highly heterogeneous and current diagnostic tools are increasingly being recognised as 

insufficient tools in the correct identification of the asthma phenotypes/ endotypes. 

Biomarkers have been proposed as a means of performing risk assessment before clinical 

diagnosis, to determine the disease stage and severity following asthma diagnosis, and as 

a means of monitoring responsiveness to treatment 112.  The majority of studies 

investigating potential asthma biomarkers have focused on clinical samples taken from the 

airways. However, the techniques used to obtain these samples are invasive and not 
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suitable for daily clinical activity. The collection of blood samples, however, is significantly 

less invasive and easily obtained in the clinical setting.  

This study aimed to identify potential asthma biomarkers present in blood samples. With 

regards to RNA biomarkers, there was a significant number of mRNAs and miRNAs that 

were present at significantly altered levels in the asthmatic subjects compared to the 

control subjects.  

A total of 287 genes were found to exhibit significant differential expression in the 

asthmatic subjects compared to the control subjects. The high number of genes identified 

made it difficult to determine which genes would be useful blood biomarkers of asthma, 

and thus further study involving a larger asthma cohort would be required to determine if 

the identified genes would remain statistically significant in a larger asthmatic population.  

Analysis of the identified genes did, however, detect a number of genes that showed 

promise as potential blood biomarkers of asthma. These genes included 10 genes listed on 

the AllerGAtlas database of genes associated with asthma pathogenesis (CD46, FN1, 

GSTA1, IL7R, LGALS3, MPO, NTS, PDE4A, TLR1, VDR) and a number of genes that were 

uniquely detected in the asthma blood samples (including HIST1H3C, PRAM1, RAB6B and 

CD93). CD93 was of particular interest as elevated levels of soluble CD93 protein have been 

previously reported in the serum of asthmatics during acute asthma exacerbations 502 and 

in the serum of steroid-naïve asthmatic patients 503 503. 

With regards to miRNA profiles, the asthmatic subjects exhibited overall increased miRNA 

expression , with 13 miRNAs detected at significantly increased levels in the asthmatic 

subjects compared to the control subjects. Increased total miRNA levels may, therefore, 

function as a blood biomarker of asthma. With regards to specific miRNA biomarkers, 

several of the significantly increased miRNAs showed promise. miRNA-148 408 and miRNA-
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382446, for example, have been previously identified as potential blood biomarkers for 

asthma, whilst miR-548448, miR-744448, and miR-24 450 have demonstrated to contribute 

towards asthma pathology .  

As for potential protein blood biomarkers GM-CSF, IFNƴ, TARC, and endotoxin showed the 

most promise. However, as levels of these proteins were not quite present at significantly 

altered levels in the blood of asthmatics compared to the control subjects, further 

investigation would be required to determine their usefulness as biomarkers. 

 

3.4.5. Chapter Summary  
 

In summary the occurrence of atopic asthma associated with HDM sensitisation in a cohort 

of adult females was found to have a significant impact on the levels of circulating mRNA 

and miRNA. RNA functional analysis revealed a number of biological pathways involved in 

immune activity are likely to be significantly altered in the asthmatic subjects. Further 

support of immune dysregulation in the asthmatic subjects was provided by inflammatory 

protein analysis, whereby the asthmatic subjects were found to exhibit of overall increased 

trend in levels of circulatory, pro-inflammatory proteins. RNA analysis also revealed that 

the asthmatic subjects likely have altered microbial defence activity compared to the 

control subjects, which likely explains the observed decreased levels of endotoxin detected 

in the asthmatic plasma samples. 

With regard to blood biomarker identification a number of RNAs and proteins showed 

promise as potential use as asthma biomarkers. A larger study, however, would be required 

to determine the validity of the identified RNAs and proteins as potential biomarkers as 

this study was a preliminary investigation.
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Chapter 4: Characterisation of the Circulatory Microbiome in Atopic 
Asthma 
 

4.1. Introduction 
 

Changes in the asthma microbiome have been well described for both the airways and the 

gut 242, 254, 263,255–262. Alterations to the asthma microbiomes have been detected both in 

early infancy and in later life, and microbial dysbiosis in the asthmatic microbiome has been 

associated with asthma development, severity, and treatment responsivity. This suggests 

that characterisation of the microbiome could be used in asthma diagnosis, analysis of 

disease severity and treatment response, and identification of infants at risk of disease 

development. 

However, collection of the samples typically used to characterise the airway and gut 

microbiome (BAL fluid and faecal samples, respectively) is not practical for daily clinical 

practice. Faecal sample collection, for example, has been linked to low patient compliance 

rates 504, whilst the collection of BAL samples is invasive and associated with ethical 

concerns with regards to sample collection from young children 102,505. 

In contrast, blood samples are relatively simple to collect in the clinical setting. 

Characterisation of the circulatory microbiome in asthmatic subjects compared to control 

subjects would, therefore, be of benefit as it would enable the identification of circulatory 

microbial biomarkers that could be used in asthma diagnosis and assessment.  

However, whilst colonisation of various body sites that are in contact with the external 

environment (such as the gastrointestinal tract, skin, and respiratory tract) by 

microorganisms is both well-described and universally accepted, the existence of microbial 
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populations in other “classically sterile” locations, such as the blood, is a relatively new 

concept 309. 

Traditionally, the blood was thought to be a sterile environment during good health, and 

the presence of microbes within circulation was thought to only occur during cases of sepsis 

310. However, over the past few decades there has been mounting evidence to support the 

existence of a circulatory microbiota/ microbiome in mammals. 

Investigations into the circulatory microbiota/ microbiome have primarily focussed on 

characterising the circulatory microbiome using the culture-independent technique of 

amplifying and sequencing the bacterial 16S rRNA gene. These studies are increasingly 

demonstrating the presence of bacterial DNA in whole blood 310, 323, 327–329, 331–334,338, plasma 

324, 327, 330, 336, 358,506, buffy coat 327,339, serum 335, 363, 366,507, red blood cells 327, peripheral 

leukocytes 322,337 and neutrophils 331, and coronary tissue 321 samples from healthy human 

donors and various other mammalian species 340–344. 

The blood circulates the body, where it functions as a medium the samples from virtually 

all body sites 358. The general consensus regarding the origins of the bacterial structures 

and DNA detected in the blood is that it is likely the result of atopobiosis, a process whereby 

microbial DNA and/ or viable microorganisms translocate from other microbial niches, such 

as the gastrointestinal tract, oral cavities, and airways, and enter the circulation 311,325. 

Another proposed explanation for the microbial structures and DNA detected in blood 

samples is that microbial contamination occurs during sample collection and/ or during 

downstream experimental procedures. However, this explanation seems less likely given 

the increasing numbers of investigations successfully characterising a circulatory 

microbiota/ microbiome. Moreover, across the different studies similar bacterial 
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populations are being reported, and significant changes in the circulatory microbiota/ 

microbiome are being reported in diseased states. 

The association of the various diseased states with changes in the circulatory microbiota/ 

microbiome is likely to reflect microbial dysbiosis at distant body sites. Characterisation of 

the circulatory microbiota/ microbiome, therefore, offers the potential opportunities for 

novel biomarker and therapeutic development. 

 

4.1.1. Aims of the Chapter 
 

The aim of this investigation was to continue the work described in Chapter 3 by 

investigating potential microbial biomarkers of atopic asthma.  

This was achieved by developing a reliable and efficient 16S rRNA sequencing protocol that 

enabled successful characterisation of the circulatory microbiome in the previously 

described cohort of female asthmatic and control subjects. Statistical analysis was 

performed to compare differences in bacterial diversity, abundance, and function in the 

asthmatic circulatory microbiome, and bacterial culture techniques were applied to 

determine the presence of viable bacteria in the plasma samples.  
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4.2. Methods 
 

4.2.1. Sample Collection 
 

Characterisation of the circulatory microbiome was performed on plasma samples taken 

from the asthmatic and control subjects described in Chapter 3. In brief, 5  atopic asthmatic 

subjects with physician diagnosed HDM allergy were recruited to the study through Sera 

Laboratories Limited. Asthma subjects were selected on the basis that they had developed 

atopic asthma during early childhood and that their condition had continued into 

adulthood and was classed as “poorly controlled”. An additional 5 non-asthmatic healthy 

subjects that were age and gender matched to the asthmatic subjects were recruited as 

control subjects. 

Whole blood was drawn, following alcohol cleansing of the skin surface, into EDTA 

containing tubes and stored on ice prior to centrifugation at 1000×g to obtain the plasma 

component.  

 

4.2.2. Extraction of bacterial DNA from the Human Plasma Samples 
 

Bacterial DNA was extracted from the human plasma samples using the QIAamp UCP Mini 

Pathogen kit (Qiagen). The bacterial cells present in the plasma samples were lysed by 

transferring 200µl of plasma sample and 100µl ATL lysis buffer into sterile pathogen lysis 

tubes. The tubes were vortexed horizontally at 13,000xg for 10 minutes and then 

centrifuged for 5 seconds at 8,000xg.  

The  supernatant (200µl) was transferred into sterile 2ml Eppendorf tubes and proteinase 

K (20µl) was added to denature any proteins present in the plasma samples. Following a 

10-minute incubation at 56oC, buffer APL2 (100µl) was added and the lysate were vortexed 
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for 30 seconds. The tubes were then incubated at 70oC for 10 minutes. Ethanol (150µl) was 

added and the lysate mixture was mixed thoroughly by vortexing for 30 seconds. The lysate 

mixture was then transferred to QIAamp UCP Mini Columns and centrifuged for 1 minute 

at 8,000xg.  

The filtrate was discarded and the QIAamp UCP Mini Columns were transferred to new 2ml 

collection tubes. The columns were then washed through the addition of APW1 (300µl) and 

centrifugation at 8,000xg for 1 minute. The columns were transferred to new collection 

tubes and washed with APW2 buffer (375µl). The tubes were centrifuged at full speed 

(13,000xg) for 3 minutes and transferred to new collection tubes and centrifuged at full 

speed for 1 minute. The collection tubes were then incubated at 56oC for 3 minutes to 

enable evaporation of any residual ethanol/ buffer solution present in the columns. The 

columns were transferred to sterile 1.5ml elution tubes and elution buffer (20µl) was added 

the centre of the QIAamp UCP mini column membranes and the tubes were incubated at 

room temperature for 1 minute. The tubes were then centrifuged at full-speed for 1 minute 

to elute then DNA, and the eluted DNA was placed in storage at -20oC. 

An experimental negative control was generated, whereby human plasma was replaced 

with UV-treated molecular biology grade water. The negative control underwent all the 

same DNA extraction steps as the human plasma samples and was generated to test for 

bacterial DNA contamination that may occur due to bacteria/ bacterial DNA present in the 

immediate environment and/ or present in the laboratory reagents 
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4.2.3. Development of a Protocol for PCR amplification of the V3-V4 region of the 
bacterial 16S rRNA gene in Human Plasma Samples 

 

Amplification and sequencing of the bacterial 16S rRNA gene was initially performed using 

oligonucleotide primers that target the hypervariable regions 3 and 4 (V3-V4 region). 

Amplification of the V3-V4 region was performed on microbial DNA extracted from the 

human plasma samples using QIAamp UCP Mini Pathogen kit (Qiagen),  followed by end-

point PCR using oligonucleotide primers that target the V3-V4 region of the 16S rRNA gene 

(V3-V4 primers) (Table 4.1). These primers had previously been designed by Herlemann  

and colleagues (2011)508 and confirmed as providing a good representation of bacterial 

diversity down to the genus level by Klindworth et al (2013) 509. 

 

Table 4.1: Molecular properties of the primers used to amplify the V3-V4 region of the 
bacterial 16S rRNA gene. 

Primer Sequence 
(5’ - > 3’) 

Concentration 
[pmol/µl] 

Melting 
temperature (oC) 

GC Content 
(%) 

V3-V4 Fwd CCTACGGGNGGC
WGCAG (17) 10.0 61.2 73.5 

V3-V4 Rev GACTACHVGGGT
ATCTAATCC (21) 10.0 57.9 47.6 

 

Gradient PCR using the GoTaq Green master mix (Promega) and Escherichia coli DNA 

(25ng/µl) was performed to determine the optimum V3-V4 annealing temperature. The 

PCR reactions were performed using the recommended protocol and the following 

annealing temperatures; 54oC, 55oC, 56oC, 57oC, 59oC, and 61oC. 

 End-point PCR using the optimum V3-V4 primer annealing temperature and the GoTaq 

Green master mix protocol was performed on microbial DNA extracted from the plasma 

samples. The protocol was unsuccessful and so  V3-V4 amplification was performed directly 
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on the plasma samples using a Phusion blood direct PCR kit (Thermo Fisher Scientific) and 

the recommended protocol. The PCR reaction was performed using 5% plasma and 20% 

plasma to determine the optimum plasma concentration required. The protocol was 

successful at amplifying the V3-V4 region. However, when the protocol was performed 

using modified V3-V4 primers (mV3-V4) primers designed to generate V3-V4 amplicons 

containing the required ion torrent sequencing motifs, the protocol was unsuccessful. This 

led to the development of a nested PCR protocol. Different lengths of first and second stage 

nested PCR cycles were performed to determine the optimum number of PCR cycles 

required to successfully amplify the V3-V4 region and attach Ion torrent sequencing motifs 

to the V3-V4 amplicons. 

Attachment of the Ion torrent sequencing motifs was essential as it enabled the sequenced 

V3-V4 reads to be demultiplexed (separated into individual sample sequencing files) on the 

basis of the barcode sequence. For instance, when amplifying the V3-V4 region in the 

plasma sample from Control_1 a modified V3-V4 (mV3-V4) Fwd primer with a barcode 

(BC)1 was used, whilst for Control_2 a mV3-V4 Fwd primer with a BC2 barcode attached 

was used (Figure 4.1). Following sequencing, sequenced reads with a BC1 nucleotide 

sequence were placed in one data file, whilst V3-V4 sequenced reads with a BC2 nucleotide 

sequence were placed in a second data file, thus enabling microbial profiling of the 

individual plasma samples (Figure 4.1). 

In addition to attaching a unique barcode sequence to the V3-V4 reads generated from the 

different plasma samples, an Ion A-adapter (5’-CCATCTCATCCCTGCGTGTCTCCGACTCAG-3’) 

and key sequence  (TCAG) were attached to the V3-V4 amplicons using the forward primer 

(Figure 4.1, see also Supplementary Materials, Table S8), and a truncated P1 adapter (TrP1; 

5’-CCTCTCTATGGGCAGTCGGTGATGACTACHCGGGTATCTAATCC-3’) was attached to the V3-
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V4 amplicons using the reverse primer. This enabled generation of V3-V4 amplicons with 

the required motifs for the amplicons to be sequenced uni-directionally using an Ion torrent 

personal genome (PGM) system (Thermo fisher Scientific) 510. 

 

A.     

Primer Sequence (5’ - > 3’) Concentration 
[pmol/µl] 

Melting 
temperature (oC) 

GC Content 
(%) 

mV3-V4 Fwd 
BC1 

CCATCTCATCCCTGCGT
GTCTCCGACTCAGCTA
AGGTAACCCTACGGG
NGGCWGCAG(57) 

10.0 82.7 60.6 

mV3-V4 Fwd 
BC2 

CCATCTCATCCCTGCGT
GTCTCCGACTCAGTAA
GGAGAACCCTACGGG
NGGCWGCAG (57) 

10.0 58.3 50.0 

 

 

 

Figure 4.1: Attachment of a barcode and adapter to the V3-V4 amplicons during end-
point PCR amplification of the V3-V4 region of the bacterial 16S rRNA gene. (A) Molecular 
properties of the V3-V4 forward primer containing the Ion-A adaptor, the sequencing key, 
and either barcode BC1 or BC2 attached. Yellow nucleotides = A-adapter, Blue nucleotides 
= BC1, green nucleotides = BC2, orange nucleotides = V3-V4 forward primer sequence, and 
bold text indicates the location of the sequencing key. (B) A schematic diagram of the use 
of barcoded primers in the amplification and sequencing of the V3-V4 region of the 16S 
rRNA gene using two plasma samples. (B1) Amplification of the V3-V4 beads with 
sequencing barcode and adaptor added. (B2) Attachment of the V3-V4 amplicons to the 
sequencing bead using the sequencing adaptor. (B3) Generation of individual sample 
sequencing data. 

 

B. 

1 2 3 
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4.2.4. Nested PCR Amplification of the V3-V4 region of the bacterial 16S rRNA gene 
in Human Plasma Samples 

 

Following successful development of a nested PCR protocol for amplifying the V3-V4 region 

of the bacterial 16S rRNA gene, the protocol was applied to the human plasma samples. 

This involved first amplifying the V3-V4 region in triplicate using the optimised Phusion 

blood direct PCR protocol and 5% human blood (Table 4.2).  

 

Table 4.2: First stage of Nested PCR amplification of the V3-V4 region of the bacterial 16S 
rRNA gene human plasm samples. The first stage of nested PCR amplification of the V3-V4 
region of the 16S rRNA gene from 5% human plasma involved amplifying the V3-V4 region 
using a Phusion blood direct PCR protocol.(A) The reagents used in the Phusion blood direct 
PCR protocol. (B)  The cycling parameters used in the Phusion blood direct PCR protocol. 

 

A.  

Reagent Volume (µl) 

2X Phusion blood PCR buffer 10.0 

Phusion blood II DNA polymerase 0.4 

V3-V4 Fwd primer 1.5 

V3-V4 Rev primer 1.5 

UV-treated molecular biology grade water 5.6 

Human Plasma 1.0 

 

 

B    

Cycle Step Temperature (oC) Time Cycles 

Initialisation 98 5 minutes 1 

Denaturation 98 1 second  

Annealing  55 5 seconds 35 

Extension 73 15 seconds  

Final Extension 73 1 minute 1 
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Following confirmation of successful amplification of the V3-V4 region using gel 

electrophoresis the V3-V4 amplicons underwent DNA purification using the MinElute 

protocol (see Chapter 2, sections 2.1-2.3 for protocols). A second stage of PCR was then 

performed on the purified V3-V4 amplicons using the mV3-V4 primers and the GoTaq 

Green master mix protocol (Table 4.3). This was carried out in order to attach the Ion 

torrent sequencing motifs (the Ion A and TrP1 adaptors, a sequencing key, and a unique 

barcode nucleotide sequence) onto the purified V3-V4 amplicons.  

 

Table 4.3: Second stage nested PCR protocol used to attach the Ion torrent sequencing 
barcode and adaptors to purified V3-V4 amplicons generated from human plasma 
samples. Following purification of V3-V4 amplicons generated from plasma samples 
second stage nested PCR was performed to attach Ion torrent sequencing motifs onto the 
V3-V4 amplicons. This was performed using a Green master mix PCR protocol and V3-V4 
primers modified to contain the Ion torrent sequencing motifs. (A) The reagents used in 
the Green master mix end-point PCR protocol, (B) The cycling parameters used in the Green 
master mix end-point PCR protocol. 

A.  

Reagent Volume (µl) 

GoTaq Green Master mix 12.5 

mV3-V4 (BC1 – BC10) Fwd primer 2.0 

mV3-V4 Rev (TrP1) primer 2.0 

UV-treated molecular biology grade water 6.5 

Purified V3-V4 amplicons 1.5 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Initial denaturation 95 2 minutes 1 

Denaturation 95 30 seconds  

Annealing  55 30 seconds 7 

Extension 68 45 seconds  

Final Extension 68 7 minutes 1 
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In order to monitor the possible introduction of contaminating microbial DNA an 

experimental negative control was generated during the first stage of nested PCR, whereby 

UV-treated molecular biology grade water replaced human plasma during the PCR set-up. 

PCR products generated from the experimental negative control then underwent all the 

same downstream procedures as the PCR products generated from the human plasma 

samples (gel electrophoresis, V3-V4 amplicon purification, second stage nested PCR, Ion 

torrent sequencing). 

 

4.2.5. Amplification of the V4 region of the 16S rRNA gene 
 

In addition to sequencing the V3-V4 region of the bacterial 16S rRNA gene, the V4 region 

of the bacterial 16S rRNA gene was also amplified and sequenced using oligonucleotide 

primers that target the hypervariable V4 region of the 16S rRNA gene (V4 primers) (Table 

4.4). 

 

Table 4.4: Molecular properties of the primers used to amplify the V4 region of the 16S 
rRNA gene. 

 

 

 

Amplification of the V4 region of the 16S rRNA gene was performed on the human plasma 

samples using the nested PCR protocol initially developed for amplification and sequencing 

of the V3-V4 region of the bacterial 16S rRNA gene. Direct amplification of the V4 region 

Primer Sequence (5’ - > 3’) Concentration 
[pmol/µl] 

Melting 
temperature (oC) 

GC Content 
(%) 

V4_Fwd 
GTGCCAGCMGCCGCGGT
AA (19) 10.0 64.2 71.1 

V4_Rev 
GGACTACHVGGGTWTCT
AAT (20) 10.0 55.2 45.0 
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was first performed in triplicate on the human plasma samples using the optimised Phusion 

blood direct PCR protocol (Table 4.2) and the V4 primers. 

Following confirmation of successful amplification of the V4 region using gel 

electrophoresis, the V4 amplicons generated from the triplicate PCR’s were combined and 

purified using the MinElute PCR purification kit (see Chapter 2, sections 2.1 and 2.2.1 for a 

full description of the methods used). Second stage nested PCR was then performed on the 

purified V4 amplicons in order to attach the Ion torrent sequencing motifs and the Illumina 

sequencing motifs onto the amplicons, as described in the below sections. 

An experimental negative control was generated to enable monitoring of possible bacterial 

DNA contamination during the experimental procedures. This involved replacing human 

plasma with UV-treated molecular biology grade water during the first stage of nested PCR 

amplification of the V4 region. PCR product generated from the negative controls then 

underwent all the downstream procedures as the V4 amplicons generated from the human 

plasma samples (gel electrophoresis, V4 amplicon purification, second stage nested PCR, 

Ion torrent sequencing). 

 

4.2.6. Preparation of the V4 amplicons for Ion Torrent Sequencing 
 

To prepare the V4 amplicons for ion torrent sequencing, a second round of PCR was 

performed on the purified amplicons in order to attach the ion torrent sequencing motifs. 

In order to attach the sequencing motifs, the V4 primers were modified to contain the ion 

torrent sequencing motifs. 10 different modified forward V4 16S Amp primers were 

developed that all contained the A1 adaptor, the ion sequencing key, and a unique barcode. 
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A modified reverse V4 primer was also developed to contain the TrP1 adaptor 

(Supplementary Materials, Table S9). 

7 cycles of PCR were then performed on the purified V4 amplicons using the modified V4 

(mV4) primers (a different modified forward primer was used for each sample) and an 

Accuprime Pfx SuperMix (Thermo Fisher Scientific) end-point PCR  protocol (Table 4.5). 

 

Table 4.5: Second stage nested PCR protocol used to attach the Ion torrent sequencing 
barcode and adaptors to purified V4 amplicons generated from human plasma samples. 
Following purification of V4 amplicons generated from plasma samples second stage 
nested PCR was performed to attach Ion torrent sequencing motifs onto the V4 amplicons. 
This was performed using an Accuprime PCR protocol and V4 primers modified to contain 
the Ion torrent sequencing motifs. (A) The reagents used in the Accuprime end-point PCR 
protocol, (B) The cycling parameters used in the Accuprime end-point PCR protocol. 

 

A.  

Reagent Volume (µl) 

Accuprime Pfx SuperMix 22.5 

mV4 (BC1 – BC10) Fwd primer 0.5 

mV4 Rev primer 0.5 

Purified V4 amplicons 1.5 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Initial denaturation 95 2 minutes 1 

Denaturation 95 30 seconds  

Annealing  55 30 seconds 7 

Extension 68 45 seconds  

Final Extension 68 7 minutes 1 
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4.2.7. Preparation of the V4 amplicons for Illumina Sequencing  
 

In addition to being sequenced using Ion torrent sequencing technology, the V4 amplicons 

also underwent Illumina MiSeq sequencing. This involved generating V4 amplicons from 

the human plasma samples that contained the Illumina Nextera Transposase (XT) adapters 

required for Illumina sequencing (Table 4.6). 

Table 4.6: Molecular properties of the 515F/806R oligonucleotide primers used to 
incorporate the Illumina Nextera transposase adapters. Following successful amplification 
of the V4 region of the 16S rRNA gene the Illumina XT adapters were attached to the V4 
amplicons using PCR and V4 16S Amp primers (blue) modified to  contain the XT adapter 
(purple). 

 

Primer Sequence (5’ - > 3’) Concentration 
[pmol/µl] 

Melting 
temperature (oC) 

GC Content 
(%) 

515F 
TCGTCGGCAGCGTCAGATG
TGTATAAGAGACAGGTGCC
AGCMGCCGCGGTAA (52) 

10.0 64.2 71.1 

806R 
GTCTCGTGGGCTCGGAGAT
GTGTATAAGAGACAGGGAC
TACHVGGGTWTCTAAT (54) 

10.0 55.2 45.0 

 

In order to generate V4 amplicons containing the Illumina sequencing motifs the nested 

PCR protocol developed for amplification of the V3-V4 amplicons was utilised and adapted. 

The first stage of nested PCR was performed to amplify the V4 region the optimised Phusion 

blood direct protocol (see Table 4.2). 

Successful amplification was determined using gel electrophoresis (see Chapter 2, section 

2.1 for a full description), and amplicons from successful triplicate reactions were combined 

and purified using the MinElute PCR purification kit (Qiagen) (See Chapter 2, section 2.2.1 

for a full description). 
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A further 7 cycles of PCR were performed on the amplicons to incorporate the Illumina XT 

adapters in preparation for Illumina sequencing. This involved using a AccuPrime Pfx 

SuperMix PCR protocol and the primer pair 515F and 806R V4 primers developed by 

Caporaso et al (2011)511 and optimised by Parada et al (2016)512 (Table 4.7). 

 

Table 4.7: Second stage nested PCR protocol used to attach Illumina sequencing motifs 
to purified V4 amplicons generated from human plasma samples. Following purification 
of V4 amplicons generated from plasma samples, second stage nested PCR was performed 
to attach Illumina XT sequencing motifs onto the V4 amplicons. This was performed using 
an Accuprime PCR protocol and V4 primers modified to contain the Ion torrent sequencing 
motifs. (A) The reagents used in the Accuprime end-point PCR protocol. (B) The cycling 
parameters used in the Accuprime end-point PCR protocol. 

 

A.  

Reagent Volume (µl) 

Accuprime Pfx SuperMix 22.5 

515F primer 0.5 

806R primer 0.5 

Purified V4 amplicons 1.5 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Initial denaturation 95 2 minutes 1 

Denaturation 95 15 seconds  

Annealing  55 30 seconds 7 

Extension 68 25 seconds  

Final Extension 68 10 minutes 1 
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4.2.8. Sequencing of the V3-V4 amplicons and the V4 16S rRNA amplicons using Ion 
Torrent Sequencing Technology 

 

Following successful generation of the V3-V4 amplicons and V4 amplicons containing the 

ion torrent sequencing motifs from human plasma, ion torrent sequencing was carried out. 

The amplicon concentrations were first quantified using a Qubit 3.0 double stranded DNA 

(dsDNA) high-sensitivity (HS) assay (Thermo fisher Scientific) and then diluted to a 100pM 

concentration. The diluted amplicons were then sequenced using the Ion PGM™ Hi-Q™ 

protocol. 

 

4.2.9. Quantification of amplicon concentration using Qubit dsDNA High-Sensitivity 
Assay 

 

The Qubit® working solution was first prepared by diluting the Qubit® dsDNA HS Reagent 

1:200 in Qubit® dsDNA HS buffer. Two DNA standards, S1 (0 ng/µl in TE buffer) and S2 

(10ng/µl in TE buffer) were prepared by transferring 190µl of working solution to a sterile 

500µl PCR tubes and adding 10µl of each Qubit® standard to the appropriate tube. The 

standards were then mixed with the working solution by vortexing 2-3 seconds. Individual 

sample tubes were then generated containing 1µl of the purified amplicons generated from 

each plasma sample and 199µl of working solution. The sample assay tubes were mixed by 

vortexing 2-3 seconds, and then left to incubate at room temperature for 2 minutes. 

The S1 tube was then loaded into the Qubit® 3.0 Fluorometer sample chamber and the 

dsDNA HS assay type was selected. The assay was calibrated by first reading S1 and then 

loading and reading the S2 assay tube. Following calibration, the individual sample tubes 

were loaded into the sample chamber and the concentration of dsDNA was measured. 
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Following quantification of the purified amplicons, the amplicons were diluted to 100pM 

and sequenced using an ion torrent PGM machine following the recommended Ion PGM™ 

Hi-Q™ protocol (Thermo fisher Scientific). 

 

4.2.10. Generation of Template Positive Ion Sphere Particles  
 

Enriched, template-positive Ion PGM™ Hi-Q Ion Sphere ™ Particles (ISPs) with 400bp 

average insert libraries were generated from the diluted V3-V4/ V4 amplicon samples. This 

involved using the PGM: Ion PCM™ Hi-Q™ OT2 KIT- 400 kit (Thermo fisher Scientific) and 

the Ion OneTouch™ 2 instrument (Thermo fisher Scientific) to prepare template-positive 

ISPs containing the V3-V4/V4 amplicons.  

An amplicon library was first generated by transferring 5µl of each 100pM amplicon sample 

into a fresh Eppendorf tube to generate a 100pM library containing amplicons generated 

from all the plasma samples. The library was then diluted by mixing 6.5µl of amplicon 

library with 18.5µl of nuclease free water.  The Ion PGM™ Hi-Q ISPs were then prepared by 

vortexing at maximum speed for 1 minute, centrifuging for 2 seconds, and pipetting up and 

down 20 times to resuspend the particles.  

An amplification solution containing nuclease free water (25µl), Ion PGM™ Hi-Q™ enzyme 

mix (50µl), diluted amplicon library (25µl), and Ion PGM™ Hi-Q™ ISPs (100µl), was prepared 

and vortexed at maximum speed for 5 seconds. The amplicon solution was then loaded 

immediately into the sample port of the Ion OneTouch™ reaction filter. 1.7ml of Ion 

OneTouch™ reaction oil was loaded into the filter and the OneTouch™ machine was run 

using the PGM™ Hi-Q™ OT2 kit – 400. 
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Following completion of the OneTouch 2 run, the Ion OneTouch ™ recovery tubes were 

removed from the machine, and all but 100µl of recovery solution was removed from each 

tube. The ISP pellet present in each tube was resuspended in the remaining recovery 

solution, and 500µl of Ion OneTouch™ wash solution was added to each recovery tube. The 

recovery tube solution was then pipetted up and down to fully disperse the ISPs, and the 

solution from each recovery tube was transferred into a 1.5ml Eppendorf tube. The ISPs 

were then centrifuged for 2.5 minutes at 13,000xg, and then all but 100µl of wash solution 

was removed from the Eppendorf tube.  

 

4.2.11. Enrichment of the Template-Positive Ion Sphere Particles 
 

The template-positive ISPs were then enriched using the Ion OneTouch™ Enrichment 

system (ES) (Thermo fisher Scientific) and the recommended protocol. 

The Ion OneTouch™ ES melt-off solution was first prepared by mixing Tween® solution 

(280µl) with 1M NaOH (40µl). Dynabeads® MyOne™ Streptavidin C1 (Dyna) beads were 

then vortexed for 30 seconds to resuspend the beads. 13µl of Dyna beads were transferred 

to a fresh 1.5ml Eppendorf tube, and the Eppendorf tube was placed on a magnet for 2 

minutes. The Dyna bead supernatant was removed, and the Dyna bead pellet was 

resuspended in 130µl of MyOne™ Beads wash solution.  

Once the OneTouch 2™ ES reagents had been prepared, they were loaded into an 8-well 

strip in the below layout (Figure 4.2), and the strip of 8 wells was loaded onto the 

OneTouch™ 2 ES tray. 10µl of neutralisation solution was transferred into a fresh 0.2ml PCR 

tube, and the tube was loaded into the tube holder at the base of OneTouch™ tip loader. 

A new tip was attached to the tip loader and then the OneTouch™ 2 ES program was run. 
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Figure 4.2: A schematic diagram showing the order and volume of OneTouch™ 2 ES 
reagents loaded into the OneTouch™ ES following reagent preparation. 

 

4.2.12. Quality Control Testing of the Template Positive Ion Sphere Particles 
 

Quality control testing was then performed to determine the percentage of templated ISPs 

generated from the amplicon samples. This was achieved using the Qubit 3.0 Ion sphere  

quality control protocol. 

The Ion sphere quality control Alexa fluor 488 and Alexa fluor 647 calibration standards 

were thawed, vortexed for 1 minute, and then centrifuged for 30 seconds at 13,000xg. 

200µl of each standard was transferred into individual Qubit assay tubes and then 

centrifuged briefly at 13,000xg.  The Ion Sphere protocol was selected on the Qubit 3.0 

fluorometer and the raw fluorescence values were measured for each of the standards. 

19µl of annealing buffer and 1µl of ion probes (green-fluorescent Alexa Fluor 488 dye-

labelled oligonucleotides and red-fluorescent Alexa Fluor 647 dye-labelled oligonucleotide) 

was then mixed with 2.0µl of the enriched, template-positive ISP library. The ISP library was 

then heated to 95oC for 3 minutes and 37oC for 2 minutes. Unbound ion probes were then 

removed by washing the ISP library 3 times using the following protocol. 200µl of Quality 

control wash buffer was added to the ISP library and the mixture was vortexed briefly and 

100µl 
ISP Sample 

130µl 
Dyna Beads 

300µl 
Wash Solution 

300µl 
Melt-off solution 
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then centrifuged for 1.5 minutes at 13,000xg. The supernatant was removed, and the 

washing procedure was repeated twice more.  

After the final wash, 190µl of the Quality control wash buffer was added to the ISP library 

and mixed by pipetting up and down 5 times. The sample was then transferred to a fresh 

Qubit assay tube and sample fluorescence emission of each dye conjugate was measured. 

All ISPs bind to the Alexa Fluor 488 oligonucleotide, and thus measurement of the Alexa 

Fluor 488 conjugate measured total ISPs present in the sample. In contrast, only template-

positive ISPs bind to the Alexa Fluor 647 labelled oligonucleotides, and thus the percentage 

of template-positive ISPs could be determined from the ratio of the Alexa Fluor 647 dye 

signal to the Alexa Fluor 488 dye signal. 

 

4.2.13. Sequencing of the Ion Sphere Particle Templates 
 

Following confirmation of successful attachment of the amplicons to the ISPs beads, the 

attached amplicon templates were sequenced using the recommended Ion PGM™ Hi-Q™ 

protocol and  the Ion PGM system (Thermo fisher Scientific). 

A sequencing plan was generated using the ion torrent browser. The Ion PGM™ Sequencer 

was then cleaned and initialised using the recommended protocol. Following successful 

initialisation of the sequencer, the enriched, template-positive ISPs were mixed with 5µl of 

control ISPs and centrifuged for 2 minutes at 13,000xg. The supernatant was removed, and 

the ISP pellet was mixed with 12µl of Sequencing Primer to a total volume of 27µl 

(Annealing buffer was added if required to ensure the total volume was 27µl). The pellet 

was then disrupted by pipetting up and down 20 times, and ISP-Sequencing Primer samples 

were heated to 95oC for 2 minutes and then 37oC for 2 minutes using a thermal cycler. 
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A Chip check was then performed on a new Ion  314™ Chip v2  following the recommended 

Thermo fisher protocol to ensure the sequencing chip was functioning correctly. The ISP-

Sequencing primer samples were removed from the thermocycler and 3µl of Ion PGM™ Hi-

Q™ Sequencing Polymerase was added to the samples. The samples were pipetted up and 

down 20 times to ensure thorough mixing, and then incubated for 5 minutes at room 

temperature.  

Following Chip calibration, the chip was removed from the Ion PGM™ Sequencer and as 

much liquid as possible was removed from the chip’s loading port. The chip was then 

centrifuged upside-down for 5 seconds to ensure the chip was completely emptied of 

liquid. 10µl of the prepared ISPs was then loaded into the chip, and the chip was 

centrifuged for 30 seconds whilst pointing in, and then centrifuged for a further 30 seconds 

whilst pointing out. The loaded ISPs were then slowly pipetted out and back into the chip. 

As much liquid as possible was then removed from the chip using a pipette and centrifuge. 

The chip was then loaded into the sequencer and the sequencing run was initiated.  

 

4.2.14. Sequencing of the V4 16S amplicons using Illumina Sequencing Technology 
 

The XT-V4 amplicons were submitted to the Earlham Institute where they were purified 

and quantified. In brief, the Nextera DNA library kit was used to tagment the V4 amplicons 

(cleave the double stranded V4 DNA to generate universal single stranded DNA overhangs)  

and attach the Illumina index 1 (i7) and index 2 (i5) adapters to the V4 amplicons. The V4-

adapter amplicons were then purified, quantified, barcoded, multiplexed (the individual 

sample V4 libraries were pooled together), and sequenced using the Illumina MiSeq system 

with a 250 bp-end read metric. 
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4.2.15. Alignment of the Sequenced V4 reads to known Bacterial Genomes 
 

Following successful sequencing of the V4 amplicons using ion torrent sequencing 

technology, the sequenced data was uploaded to the web-based platform Galaxy [Public 

web access: https://galaxyproject.org/]. Galaxy software was used to demultiplex the 

sequencing data using the barcode splitter tool and remove the 5’ adaptor and barcode 

sequence using the FASTQ Trimmer tool.  

The FASTQ trimmed sequencing data was then uploaded to Nephele 2.0 to undergo 

microbiome analysis [Public web access: https://nephele.niaid.nih.gov/#cloud]. The 

Nephele 2.0 QIIME 16S FASTQ single-end open reference pipeline was used to remove low-

quality reads (defined as having a Phred quality score less than 19.0) and chimeric 

sequences. The high-quality trimmed V4 reads were then aligned to bacterial OTUs with a 

99% similarity threshold using the Silva database (see Chapter 2, section 2.4.1 for more 

detail). 

With regards to the V4 reads generated using Illumina sequencing technology, the trimmed 

and demultiplexed sequencing data was uploaded to Nephele 2.0 [Public web access: 

https://nephele.niaid.nih.gov/#cloud].The Nephele 2.0 QIIME 16S FASTQ paired-end open 

reference pipeline was used to remove low-quality V4 reads (defined as having a Phred 

quality score less than 19.0) and chimeric sequences. The high-quality V4 reads were then 

aligned to bacterial OTUs with a 99% similarity threshold using the Silva database (see 

Chapter 2, section 2.4.1 for more detail). 

4.2.16. Comparison of the Asthmatic Microbiome to the Control Microbiome 
 

The species richness of the identified bacterial OTUs were first assessed by generating a 

rarefaction curve in order to compare species richness from the different blood samples 

https://galaxyproject.org/
https://nephele.niaid.nih.gov/#cloud
https://nephele.niaid.nih.gov/#cloud
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using R software (see Chapter 2, section 2.4.2 for additional detail). Statistical analysis was 

then performed on the total number of OTUs detected in the asthmatic samples compared 

to the control samples to determine whether species richness differed in the asthmatic 

circulatory microbiome compared to the control microbiome (see Chapter 2, section 2.4.3). 

The identified bacterial OTUs were then assigned to bacterial taxa and the relative 

abundance of the bacterial taxa present in the blood samples was calculated using R 

software (See Chapter 2, section 2.3.2 for additional detail). The relative abundance values 

of high-abundant bacterial taxa (taxa with a relative abundance greater than 1%) were then 

plotted (see Chapter 2, section 2.4.4). 

Alpha diversity indices for the blood samples were measured using the Nephele 2.0 QIIME 

16S FASTQ paired-end open reference pipeline to calculate Shannon and Chao1 diversity 

[Public web access: https://nephele.niaid.nih.gov/#cloud]. R software was then used to 

plot alpha diversity as a boxplot and perform the appropriate statistical tests to determine 

if the asthma samples differed significantly to the control samples with regards to alpha 

diversity of the circulatory microbiome (see Chapter 2, section 2.4.5). 

Comparison of the bacterial OTU profiles between pairs of individual plasma samples was 

also carried out by measuring beta diversity of the detected bacterial communities. This 

involved calculating Bray-Curtis dissimilarity and plotting a PCoA graph using Bray-Curtis 

dissimilarity and R software (See Chapter 2, section 2.4.6 for additional information). 

PERMANOVA analysis was also performed to determine if there was a significant 

association between asthma and beta diversity of the circulatory microbiome (See Chapter 

2, section 2.4.6 for additional information). 

LEfSe analysis was then applied to the relative abundance data to determine bacterial taxa 

significantly associated with either the asthma or control microbiome. This was performed 

https://nephele.niaid.nih.gov/#cloud
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using the relative abundance tables of all bacterial taxa detected in the plasma samples 

and the online Galaxy workflow framework 394  with the default settings applied [Public 

web access: http://huttenhower.sph.harvard.edu/galaxy/] (See Chapter 2, Section 2.4.3. 

for additional information). 

 

4.2.17. Prediction of Metagenome Function Content 
 

To predict microbial activity of the detected microbiome PICRUSt analysis was performed 

using the online Galaxy platform. An OTU table was generated from the V4 16S rRNA 

sequencing data using Nephele 2.0 software with a closed reference OTU picking strategy 

and the GreenGenes 99 database. The OTU table was uploaded to Galaxy, normalised, and 

functional predictions were performed to determine KEGG ortholog  abundances present 

in the plasma samples (See Chapter 2, section 2.4.5 for additional information). 

The level 1, 2, and 3 KEGG ortholog counts were converted into abundance percentages, 

and R software was used to plot the abundance of highly abundant level 3 KEGG orthologs 

(defined as having a predicted total abundance greater than 1% in the plasma samples 

metagenome)(See Supplementary Materials S7 for R codes used). LEfSe analysis was then 

performed on the level 1,2, and 3 KEGG orthologs to determine differential KEGG ortholog 

abundance present in the asthma plasma samples compared to the control samples. 

Abundance of KEGG orthologs that displayed significant differential abundance were 

plotted as boxplots using R software (see Supplementary Materials S4 for R codes used). 

4.2.18. Culturing of Plasma Samples on Selective Growth Media 
 

10 14ml falcon tubes containing 10ml of brain heart infusion broth was inoculated with 

human plasma (250µl). A negative experimental control and a positive experimental 

http://huttenhower.sph.harvard.edu/galaxy/
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control were generated by replacing human plasma with UV-treated molecular biology 

grade water for a negative control and Pseudomonas bacterial colonies for the positive 

control. 

The inoculated nutrient broths were incubated at 37oC for 5 days.  After 5 days of 

incubation the nutrient broths were removed from the incubator and immediately 

streaked onto Columbia Blood agar (Biomerieux), Cystine Lactose Electrolyte Deficient 

(CLED) medium (Biomerieux), and Anaerobe Recovery and Isolation agar (A.R.I.A) plates 

(Biomerieux) using sterile 20µl loops. Streaking of the agar plates involved placing the 

sterile loop at the bottom of the Eppendorf and slowly bringing the loop to the surface of 

the broth to ensure bacteria present in the different layers of the broth were collected onto 

the loop. The inoculated loop was then streaked onto the agar plates and then disposed in 

1% Virkon. A negative control was generated for the Columbia Blood agar, CLED medium, 

and A.R.I.A plates using the UV-treated molecular biology grade water inoculated nutrient 

broth, and a positive control was generated using the Pseudomonas inoculated nutrient 

broth. For each sample/ control streaking of the agar plates was carried out in duplicate to 

ensure reliability of the experiment. 

Inoculation of the nutrient broths and agar plates was carried out in a Category II UV hood 

to ensure sterile conditions. The pipette tips used to inoculate the nutrient broths were 

filter tips, and all equipment used in both stages of inoculation was exposed to UV for 30 

minutes beforehand to ensure that any bacteria potential present on the equipment were 

killed.  

Following inoculation, the Columbia Blood agar plates and CLED medium plates were 

incubated at 37oC for 72 hrs. At 24 hrs, 48 hrs, and 72 hrs the plates were assessed for 

bacterial growth. After 72 hrs individual colonies were selected from each of the plates 
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where bacterial growth had occurred and suspended in 50µl of UV-treated molecular 

biology grade water. The suspended colonies were then placed in storage at -20oC. 

The A.R.I.A plates were placed in a 2.5L anaerobic chamber (Sigma-Aldrich) along with a 

AnaeroGenTM 2.5L chamber sachet (Thermo fisher Scientific). The anaerobic chamber was 

then incubated at 37oC for 120 hrs. After 120 hrs the anaerobic chamber was removed from 

the incubator, and the A.R.I.A. plates were removed from the anaerobic chamber. The 

plates were assessed for bacterial growth, and where growth had occurred three individual 

colonies were selected from each of the plates and suspended in 50µl of UV-treated 

molecular grade biology. The suspended colonies were then placed in storage at -20oC. 

 

4.2.19.  Amplification of the 16S rRNA gene from the Bacterial Colonies  
 

To identify the bacterial colonies cultured from the human plasma samples Sanger 

sequencing was performed on the suspended colonies. 

This involved performing PCR on the suspended colonies in order to amplify the bacterial 

16S rRNA gene. Thermal lysis was first carried out the extract DNA from the suspended 

bacterial colonies. This was achieved by heating the suspended bacteria to 98oC for 7 

minutes using a thermocycler. The tubes were then centrifuged for 10 minutes at 8,000xg. 

PCR was then performed on the supernatant using oligonucleotide primers designed to 

amplify the whole 16S rRNA gene (Table 4.8) and a GoTaq Green master mix PCR protocol 

(Table 4.9). PCR was performed in 25µl reactions containing 12.5µl GoTaq Green master 

mix, 2.0µl of each forward and reverse Total 16S Amp oligonucleotides (10µM), 6.5µl UV-

treated molecular biology grade water, and 2.0µl of suspended bacteria. Gel 
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electrophoresis was then carried out to confirm successful amplification of the 16S rRNA 

gene. 

 

Table 4.8: Molecular properties of the primers used to amplify the total 16S rRNA gene 

Primer Sequence (5’ - > 3’) Concentration 
[pmol/µl] 

Melting 
temperature (oC) 

GC Content 
(%) 

Total 16S rRNA 
Forward Primer 

AGAGTTTGATYMTGGC
TCAG (20) 10.0 55.3 45 

Total 16S rRNA 
Reverse Primer 

ACGGYTACCTTGTTACG
ACCT (21) 10.0 58.3 50 

 

 

Table 4.9: PCR cycling parameters used when amplifying the total 16S rRNA gene using 
the GoTaq Green master mix protocol. 

 

Cycle Step Temperature (oC) Time Cycles 

Initial Denaturation: 95.0 5 minutes 1 

Denaturation 95.0 30 seconds  

Annealing 55.0 30 seconds 35 

Extension 73.0 45 seconds  

Final Extension: 73.0 5 minutes 1 
 

 

For some of the selected bacterial colonies, 16S rRNA amplification using the GoTaq Green 

master mix PCR protocol did not generate sufficient 16S rRNA DNA required for Sanger 

sequencing.  A second protocol using a Phusion Blood Direct PCR protocol, was thus devised 

to generate 16S rRNA DNA from the bacterial colonies which failed to display successful 

16S rRNA amplification using the GoTaq Green master mix PCR protocol. In brief, 1.0µl of 

extracted bacterial DNA from each of the suspended bacterial colonies was mixed with 

10.0µl of 2X Phusion Blood PCR Buffer, 6.6µl of UV-treated molecular biology grade water, 

1.0µl of each forward and reverse Total 16S Amp oligonucleotide (10µM), and 0.4µl of 



182 
 

Phusion Blood II DNA Polymerase, and 35 cycles of PCR was carried out (Table 4.10). Gel 

electrophoresis was then carried out to confirm successful amplification of the 16S rRNA 

gene. 

 

Table 4. 10: PCR cycling parameters used when amplifying the total 16S rRNA gene using 
the Phusion Blood Direct protocol. 

Cycle Step Temperature (oC) Time Cycles 

Initial Denaturation: 98.0 5 minutes 1 

Denaturation 98.0 16 seconds  

Annealing 55.0 20 seconds 35 

Extension 72.0 45 seconds  

Final Extension: 72.0 7 minutes 1 
 

 

4.2.20. Sanger Sequencing of total 16S rRNA amplicons amplified from Human 
Plasma Samples 

 

Following confirmation of successful amplification of the 16S rRNA gene from DNA 

extracted from cultured bacterial colonies, the 16S amplicons were submitted to Genewiz 

for Sanger sequencing. The sequenced data was then analysed for sufficient read coverage 

and quality using SnapGene Viewer. The most abundant read sequences were then 

uploaded to the NCBI nucleotide blast server to determine that likely identity of the 

bacterial colonies the 16S rRNA gene was amplified and sequenced from [Public web 

access: https://blast.ncbi.nlm.nih.gov/Blast.cgi].  

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.3. Results 
 

4.3.1. Development of a Protocol for Amplifying Regions of the Bacterial 16S rRNA 
Gene from Human Blood Samples 

 

Characterisation of the microbiome present in human plasma samples was initially 

performed by amplifying and sequencing the V3-V4 region of the bacterial 16S rRNA gene.  

A protocol for amplifying the V3-V4 region of the bacterial 16S rRNA gene from human 

plasma samples was successfully developed. Gradient PCR was used to determine that the 

optimum annealing temperature for the V3-V4 primers was 55oC (see Supplementary 

Materials, Figure S2). End-point PCR and gel electrophoresis revealed that V3-V4 

amplification was only successful when PCR was performed directly on the human plasma 

samples rather than microbial DNA extracted from the plasma samples (see Supplementary 

Materials, Figures S3 and S4).  

Analysis of different plasma concentrations revealed that a 5% plasma concentration was 

optimum for PCR amplification of the V3-V4 region (see Supplementary Materials, Figure 

S4). This finding was unsurprising given that human plasma samples are known to contain 

PCR inhibitors 513,514, and it highlights the importance of adapting the PCR protocol for the 

clinical sample under investigation. 

Following successful development of an end-point PCR protocol for amplifying the V3-V4 

region of the 16S rRNA gene, the protocol was utilised to generate V3-V4 amplicons that 

contained ion torrent sequencing motifs. This involved carrying out an end-point PCR 

protocol using V3-V4 primers that had been modified to contain the ion torrent sequencing 

motifs. Analysis of the PCR products using gel electrophoresis revealed that V3-V4 
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amplification using the modified primers and end-point PCR was unsuccessful (see 

Supplementary Materials, Figure S5). 

A nested PCR protocol was, therefore, developed in order to generate V3-V4 amplicons 

containing the sequencing motifs from the human plasma samples. Using E.coli DNA, it was 

determined that initial amplification of the V3-V4 region using 30 PCR cycles followed by 

10 cycles of PCR to attach the sequencing motifs was optimum for the generation of V3-V4 

amplicons containing the required sequencing motifs (see Supplementary Materials, Figure 

S6). 

 

4.3.2. Amplification of the V3-V4 region of the 16S rRNA gene using Nested PCR  
 

Following successful development of a nested PCR protocol, the protocol was applied to 

the human plasma samples. Analysis of the nested PCR end-product using gel 

electrophoresis revealed that the ion torrent sequencing motifs had been successfully 

added to the V3-V4 amplicons as evidenced by the increased size of the V3-V4 amplicon 

bands (Figure 4.3). Analysis of the experimental negative controls generated from first 

stage and second stage PCR revealed no V3-V4 amplification present in the negative 

controls (Supplementary Materials, Figure S7). This demonstrated that the detected 

bacterial DNA was not the consequence of environmental and/ or reagent contamination 

and thus supported the presence of a circulatory microbiome. 
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Figure 4.3: Generation of V3-V4 amplicons containing the ion torrent sequencing motifs 
from human plasma samples using nested PCR. Plasma samples from asthmatic subjects 
(n = 5, A lanes) and control subjects (n = 5, B lanes) first underwent 35 cycles of end-point 
PCR using the optimised GoTaq Green master mix PCR protocol and V3-V4 primers in order 
to amplify the V3-V4 region of the bacterial 16S rRNA gene. The V3-V4 amplicons were then 
purified using the MinElute protocol and the underwent an additional 7 cycles of end-point 
PCR using the optimised GoTaq Green master mix PCR protocol and the modified V3-V4 
primers in order to attach the ion torrent sequencing motifs to the V3-V4 amplicons. The 
V3-V4 amplicons were then purified using the SPRI bead protocol.  

Abbreviations: bp, number of nucleotide base pairs 

 

4.3.3. Quantification of the Ion Torrent V3-V4 amplicons  
 

Following confirmation of successful amplification of V3-V4 amplicons containing the ion 

torrent sequencing motifs, and removal of primer dimers, the concentration of V3-V4 

amplicons was quantified using a Qubit 3.0 HS dsDNA quantification protocol (Table 4.11). 

Quantification of the V3-V4 amplicons demonstrated low levels of bacterial DNA present in 

all the plasma samples investigated and enabled accurate dilution of the amplicons to the 

required 100pM concentration for ion torrent sequencing using the Ion PGM™ Hi-Q™ 

protocol. 

500bp ------  

 Ladder      A1          A2        A3          A4         A5        C1          C2         C3          C4          C5  
                            Asthma                                                        Control   
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Table 4.11: Quantification of V3-V4 reads containing the ion torrent sequencing motif 
generated from human plasma samples. The V3-V4 region of the bacterial 16S gene was 
amplified from plasma samples from asthmatic subjects (n = 5) and non-asthmatic control 
subjects (n = 5) using a nested PCR protocol that enabled attachment of ion torrent 
sequencing motifs to the amplified V3-V4 amplicons. Following the final purification stage, 
the V3-V4 amplicons containing the sequencing motifs were quantified using a Qubit 3.0 
HS dsDNA quantification protocol. 

 

Sample DNA Concentration (ng/µl) 

Control_1 (C1) 3.28 

Control_2 (C2) 4.22 

Control_3 (C3) 3.96 

Control_4 (C4) 3.90 

Control_5 (C5) 4.02 

Asthma_1 (A1) 2.06 

Asthma_2 (A2) 3.46 

Asthma_3 (A3) 4.16 

Asthma_4 (A4) 1.68 

Asthma_1 (A5) 3.60 
 

 

4.3.4. Sequencing of the V3-V4 amplicons using Ion Torrent Sequencing Technology 
 

Evaluation of the percentage of V3-V4-positive ISPs revealed that generation and 

enrichment of V3-V3 positive ISPs had been successful, with 21% of the total ISPs being V3-

V4 positive (Table 4.12). 
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Table 4.12: Quantification of the number of enriched V3-V4-positive Ion Sphere ™ 
Particles generated from the V3-V4 amplicon library. V3-V4-Positive Ion Sphere particles 
(ISPs) were generated from the V3-V4 amplicon library using OneTouch 2 Ion torrent 
technology. Quality control testing using a Qubit 3.0 Ion sphere assay was performed to 
determine the percentage of ISPs that were V3-V4 positive. This was achieved by first 
calibrating the assay using two Alexa Fluor standards (A), and then measuring the ISP 
sample fluorescence of the Alexa Fluor 488 conjugate dye and the Alexa Fluor 647 
conjugate dye (B). 

 

A   

Calibration Standard RFU Calibration Factor 

Alexa Fluor 488 Calibration Standard 33643.9 
0.46 

Alexa Fluor 488 Calibration Standard 66714.75 

 

 

Sequencing of the V3-V4 amplicons using ion torrent sequencing technology generated a 

total of 415,945 V3-V4 reads from the human plasma samples, of which 52% were classed 

as useable reads. Analysis of the mean length of the V3-V4 reads revealed that the 

sequenced reads were significantly truncated, with a mean length of just 77bp.  

 

4.3.5. Amplification of the V4 region of the 16S rRNA gene from Human Plasma 
Samples using Nested PCR 

 

Following sequencing of the V3-V4 amplicons using ion torrent sequencing the generated 

reads were observed to be significantly truncated. Decreased length of the V3-V4 reads 

would likely result in decreased accuracy when assigning the reads to known bacterial 

B     

Sample 
Raw RFU Value Background RFU Conversion 

factor 
Percent 

templated ISPs AF 488 AF 647 AF 488 AF 647 
V3-V4 ISP 
library 1264.7 362.7 43.8 10.3 1.58 21.0 
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OTUs, subsequently reducing the ability to accurately characterise the circulatory 

microbiome in asthmatic and control subjects.  

A nested PCR protocol was therefore designed to amplify the V4 region of the 16S rRNA. 

Amplification of the V4 region has been demonstrated to be a reliable and accurate means 

of characterising the human microbiome in previous studies 220, 335, 352,515, and it was 

predicted that a reduced amplicon size would reduce the risk of amplicon truncation 

occurring during ion torrent sequencing  . 

Gradient PCR was first performed to determine the optimum annealing temperature of the 

V4 primers. Following confirmation that 55oC was the optimum annealing temperature (see 

Supplementary Materials, Figure S8), the nested PCR protocol developed using the V3-V4 

primers was performed on the human plasma samples using primers designed to amplify 

just the V4 region of the 16S rRNA gene. 

Analysis of the nested PCR end-products using gel electrophoresis demonstrated the 

generation of V4 amplicons containing the ion torrent sequencing motifs from human 

plasma samples, as evidenced by the detection of DNA bands approximately 350bp (Figure 

4.4). However, with the exception of the Control_5 plasma sample (Figure 4.4, lane C5), 

attachment of the sequencing motifs appeared to be only partially successful, as evidenced 

by the detection of a second DNA band approximately 290bp (Figure 4.4). The V4 amplicons 

with the sequencing motifs attached are approximately 355bp, with the sequencing motifs 

amounting to 60bp of the amplicon’s total length A1 adaptor = 26bp, key = 4bp, barcode = 

10, TrP1 adaptor = 20). The presence of DNA bands at 290bp, therefore, indicates the 

presence of V4 amplicons that do not have the sequencing motif attached (355 – 60 = 

295bp). 
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Figure 4.4: Generation of V4 amplicons containing the ion torrent sequencing motifs from 
human plasma samples from asthmatic subjects and non-asthmatic control subjects 
using nested PCR. Plasma samples from asthmatic subjects (n = 5, A lanes) and control 
subjects (n = 5, C lanes) first underwent 35 cycles of end-point PCR using the optimised 
Phusion blood direct PCR protocol and the V4 primers in order to amplify the V4 region of 
the bacterial 16S rRNA gene. The V4 amplicons were then purified using the MinElute 
protocol and the underwent an additional 7 cycles of end-point PCR using the Accuprime 
PCR protocol and the modified V4 primers in order to attach the ion torrent sequencing 
motifs to the V4 amplicons. The V4 amplicons were then purified using the SPRI bead 
protocol. 

Abbreviations: PC, positive control; NC, Negative Control 

 

Nested PCR was also performed on the plasma samples in order to generate a V4 amplicon 

library suitable for Illumina sequencing. Analysis of the nested PCR end-products using gel 

electrophoresis demonstrated the generation of V4 amplicons containing the Illumina 

sequencing motifs from human plasma samples, as evidenced by the detection of DNA 

bands approximately 350bp (Figure 4.5). However, attachment of the sequencing motifs 

appeared to be only partially successful, as evidenced by the detection of a second DNA 

band approximately 290bp (Figure 4.5). The Illumina sequencing motifs account for 67bp 

of the amplicon’s total length (the i7 adaptor = 33bp and the i5 = 34bp). The detection of 

 Ladder   A1      A2       A3        A4       A5       C1       C2        C3        C4        C5        PC        NC   
                             Asthma                                               Control   

400bp ----
  300bp ----
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DNA bands at 290bp, therefore, indicates the presence of V4 amplicons that do not contain 

the sequencing motif attached (350 – 67 = 283bp). 

 

 

 
Figure 4.5: Generation of V4 amplicons containing the Illumina sequencing motifs from 
human plasma samples from asthmatic subjects and non-asthmatic control subjects 
using nested PCR. Plasma samples from asthmatic subjects (n = 5, A lanes) and control 
subjects (n = 5, C lanes) first underwent 35 cycles of end-point PCR using the optimised 
Phusion blood direct PCR protocol and the V4 primers in order to amplify the V4 region of 
the bacterial 16S rRNA gene. The V4 amplicons were then purified using the MinElute 
protocol and the underwent an additional 7 cycles of end-point PCR using the Accuprime 
PCR protocol and the 515F/806R primers in order to attach the Illumina sequencing motifs 
to the V4 amplicons.  

 

4.3.6. Quantification of the Ion torrent V4 amplicons 
 

Following confirmation of successful amplification of the V4 region containing the ion 

torrent sequencing motifs, the amplicons were purified, and the primer dimers generated 

from the PCR reactions were removed using the SPRI beads protocol (Chapter 2, section 

2.2.2). The V4 amplicon concentrations were then determined using the Qubit 3.0 HS DNA 

 Ladder   A1       A2       A3        A4      A5       C1       C2        C3       C4       C5        PC        NC   
                               Asthma                                              Control   

400bp -----
  300bp -----
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quantification protocol. Quantification of the V4 amplicons demonstrated low levels of 

bacterial DNA present in all the plasma samples investigated (Table 4.13). 

Comparison of the V4 amplicons concentrations (Table 4.13) and the V3-V4 amplicon 

concentrations (Table 4.11) revealed that amplification of the V4 region of the 16S rRNA 

gene generated significantly more amplicons compared to the number of amplicons 

generated when the V3-V4 region was amplified (P value = 0.0259, Unpaired t test). 

Furthermore, comparison of the V4 amplicon concentrations generated for the plasma 

samples from asthmatic samples was significantly higher compared to the V4 amplicon 

concentration generated from the control subjects (P value = 0.0034, Welch’s two sample 

t test). This suggested that the asthmatic subjects had increased bacterial load in the blood 

compared to the control subjects. 

Table 4. 13: Quantification of V4 amplicons containing the Ion torrent sequencing motifs 
generated from human plasma samples. The V4 region of the bacterial 16S rRNA gene was 
amplified from plasma samples from asthmatic subjects (n = 5) and non-asthmatic control 
subjects (n = 5) using a nested PCR protocol that enabled attachment of ion torrent 
sequencing motifs to the amplified V3-V4 amplicons. Following the final purification stage, 
the V4 amplicons containing the sequencing motifs were quantified using a Qubit 3.0 HS 
DNA quantification protocol. 

 

Sample DNA Concentration (ng/µl) 

Control_1 (C1) 3.82 

Control_2 (C2) 3.60 

Control_3 (C3) 3.36 

Control_4 (C4) 3.66 

Control_5 (C5) 3.50 

Asthma_1 (A1) 5.22 

Asthma_2 (A2) 6.14 

Asthma_3 (A3) 5.48 

Asthma_4 (A4) 4.34 

Asthma_1 (A5) 5.92 

Negative Control 0.98 
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4.3.7. Quantification of the Illumina V4 amplicons 
 

Following submission of the V4 amplicons for Illumina sequencing (Earlham Institute, 

Illumina MiSeq system) the V4 amplicons were quantified twice during library preparation; 

once following arrival of the amplicons to the Earlham Institute and again following 

attachment of the Illumina adapters (i7 and i5) using the Nextera DNA library kit (Table 

4.14). 

Quantification of the V4 amplicon libraries revealed good amplification of the V4 region of 

the bacterial 16S rRNA gene in all plasma samples analysed (Table 4.14). Comparison of the 

V4-XT amplicons compared to the V4 amplicons containing the ion torrent sequencing 

motifs found that the V4-XT primers produced increased amplicon concentrations 

compared to the modified V4 16S primers used when generating amplicons with the ion 

torrent sequencing motif.  

Comparison of the V4 library concentrations from plasma samples from asthma subjects 

compared to control subjects revealed no significant difference in library concentration (P 

value = 0.8385, Unpaired t test). The experimental negative control was found to contain 

DNA despite gel electrophoresis showing it to be PCR negative. However, following addition 

of the Illumina adapters the DNA concentration for the negative control significantly 

decreased, suggesting that the majority of DNA detected in negative control V4-XT 

amplicon library was not from V4 amplicons, but rather another source of DNA. 
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Table 4.14: Quantification of V4 amplicons containing the Illumina sequencing motifs 
generated from human plasma samples. The V4 region of the bacterial 16S rRNA gene was 
amplified from asthma plasma samples (n = 5) and non-asthmatic control plasma samples 
(n = 5) using a nested PCR protocol that enabled attachment of the Illumina sequencing 
motifs to the V4 amplicons. Following purification, quantification was carried out after the 
second stage of PCR, where the XT adapters were attached to the amplicons, and then 
again following the attachment of the Illumina i5 and i7 adapters using a Qubit HS dsDNA 
quantification protocol. 

 

Sample 
Library Concentration (ng/µl) 

V4-XT Amplicon library V4-i7/i5 Amplicon library 

Control_1 11.8 1.076 

Control_2 15.8 1.480 

Control_3 21.2 1.509 

Control_4 24.2 1.191 

Control_5 30.4 1.571 

Asthma_1 14.5 1.416 

Asthma_2 21.4 1.725 

Asthma_3 24.4 1.620 

Asthma_4 26.1 1.827 

Asthma_5 21.0 1.843 

Negative Control 10.6 0.448 
 

 

4.3.8. Sequencing of the V4 amplicons using Ion Torrent Sequencing Technology  
 

Sequencing of the V4 amplicons using ion torrent sequencing technology generated a total 

of 1,506,835 reads from the human plasma samples (Figure 4.6). Following removal of the 

5’ adaptor sequence the total number of reads was reduced to 1,336,137, indicating that 

170,698 sequenced reads did not contain the V4 amplicon sequence (Figure 4.6).  

A total of 716,589 trimmed reads were generated from the control plasma samples 

(average = 143,317.80, range = 84,152 – 317,912) and 619,548 trimmed reads were 

generated from the asthma samples (average = 154,887.00, range = 132,742 – 210,090) 
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(Figure 4.6). One of the Asthma sequencing files, Asthma_5, was unable to be trimmed and 

thus was removed from further downstream analysis. 

Following quality control analysis and alignment of the trimmed V4 reads to bacterial OTUs 

with a 99% similarity threshold, a total of 122,620 V4 reads were aligned to 940 bacterial 

OTUs. The number trimmed V4 reads that were aligned to bacterial OTUs was just 9.18% 

of the total number of trimmed V4 reads generated from the plasma samples, and for the 

majority of plasma samples, less than 10,000 trimmed V4 reads were aligned to bacterial 

OTUs (Figure 4.6). 

Analysis of the number of OTUs detected in the individual plasma samples was highly 

variable, and in the majority of samples, less than 250 OTUs were detected (Figure 4.6). 

Statistical analysis of the number of OTU-aligning reads sequenced from each sample and 

the number of OTUs detected in each sample revealed no significant differences in the 

asthmatic and control samples (Wilcoxon rank sum test and Unpaired t test, P value = 

0.2857 and 0.5351, respectively). 
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B 

Sample Number of raw 
reads 

Number of 
trimmed Reads 

Number of OTU-
aligned Reads 

Number of OTUs 
detected 

Control_1 102,920 101,618 4,276 82 

Control_2 120,130 118,523 10,797 205 

Control_3 84,152 82,357 1,247 96 

Control_4 102,975 101,886 7,849 156 

Control_5 317,912 312,205 32,421 408 

Asthma_1 142,855 140,020 7,170 221 

Asthma_2 138,731 136,696 6,800 225 

Asthma_3 212,344 210,090 48,198 445 

Asthma_4 133,537 132,742 3,862 105 

Asthma_5 151,279 - - - 

 
Figure 4.6: Quantification of bacterial V4 reads sequenced from human plasma samples 
using ion torrent sequencing. Ion torrent sequencing was used to sequence bacterial V4 
amplicons generated from plasma samples from asthmatic subjects (n = 5) and control 
subjects (n = 5). Following successful sequencing of the V4 amplicons, Galaxy software was 
used to demultiplex the sequencing data using the barcode splitter tool and remove the 5’ 
adaptor and barcode sequence using the FASTQ Trimmer tool. Nephele 2.0 was used 
remove low-quality reads and chimeric sequences, and to align the high-quality V4 reads 
to bacterial operational taxonomic units (OTUs). (A) A rarefaction curve showing the level 

A
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of OTU species richness detected in the plasma samples. (B) Quantification of the V4 reads 
generated from the plasma samples using ion torrent sequencing and the total number of 
bacterial OTUs the reads align to with a 99% similarity threshold. 

 

 

4.3.9. Taxonomic Classification of the OTUs detected in the Human Plasma Samples 
using Ion Torrent Sequencing Technology 

 

The OTUs detected in the human plasma samples using ion torrent sequencing could be 

classified into 9 bacterial phyla and 103 bacterial genera, the majority of which were 

detected at low abundance (defined as contributing less than 1% of bacterial DNA 

generated from the plasma samples). At the phylum level the circulatory microbiome was 

dominated by the Proteobacteria phylum (85.53% of bacterial DNA sequenced from the 

control samples, and 59.21% of bacterial DNA sequenced from the asthma samples), and 

to a lesser extent, the Firmicutes  (5.44%, 36.34%), Actinobacteria (7.42%, 2.73%), and 

Bacteroidetes phyla (0.20%, 1.50%) (Figure 4.7.A). 

At the genus level, 19 bacterial genera were detected at high abundant levels (relative 

abundance greater than 1%). The detected genera were predominately members of the 

Proteobacteria phylum and included; Serratia (26.94%, 0.69%), Pseudomonas (13.18%, 

9.74%), Achromobacter (15.17%, 7.51%), Escherichia-Shigella (5.41%, 13.22%), 

Sphingomonas (7.46%, 3.09%), Acinetobacter (5.32%, 4.06%), Rhodobacter (0.00%, 6.08%), 

Halomonas (3.33%, 1.35%), Stenotrophomonas (1.08%, 3.31%), Enhydrobacter (1.93%, 

0.97%), and Haemophilus (1.45%, 0.00%) (Figure 4.7.B). A number of bacterial genera 

belonging to the Firmicutes and Actinobacteria phyla were also detected at high abundance 

levels in the plasma samples. These included the Firmicutes Staphylococcus (2.52%, 

23.19%), Streptococcus (1.78%, 6.57%), Mogibacterium (0.00%, 5.27%), Clostridium sensu 

stricto 1 (0.00%, 1.99%), and Bacillus (0.01%, 2.22%); and the Actinobacteria members 
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Corynebacterium 1 (3.88%, 1.07%), Propionibacterium (1.10%, 1.07%), and Micrococcus 

(1.19%, 0.19%) (Figure 4.7.B). 

 

 

Figure 4.7: Relative abundance of bacteria detected in the human circulatory microbiome 
using Ion torrent sequencing. Bacterial composition determined using QIIME 16S FASTQ 
Single end analysis on sequenced V4 reads generated from plasma samples taken from 
asthmatic subjects (n = 4; mean number of reads = 11,318) and control subjects (n = 5; 
mean number of reads per sample = 16,508). Taxa with a relative abundance > 1% were 
plotted, and low abundance taxa (< 1.0%) were grouped and plotted as Taxa < 1% 
abundance. (A) Relative abundance of bacteria detected at the phylum level. (B) Relative 
abundance of bacteria detected at the genus level. 

A 

B 
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The low level of sequenced V4 reads that could be assigned to bacterial OTUs meant that 

the characterisation of the circulatory microbiome using ion torrent sequencing techniques 

was unlikely to be a true representation of the bacterial populations present in the plasma 

samples. The decision, therefore, was made to do no further downstream statistical 

analysis using the ion torrent sequencing data. 

 

4.3.10. Sequencing of the V4 amplicons using Illumina Sequencing Technology 
 

A total of 928,569 V4 16S rRNA reads were generated from the human plasma samples 

using Illumina sequencing. Following removal of low-quality reads and chimeric sequences, 

26.61% of the V4 reads (247,064 reads) generated from the plasma samples could be 

aligned to 1,128 bacterial OTUs with a 99% certainty. This included an average of 22,337.60 

high-quality reads generated from the control samples that aligned to 787 OTUs (range = 

199 – 395 OTUs per sample), and an average of  27,075.20 reads generated from the 

asthma samples that aligned to a total of 907 bacterial OTUs (range = 277 – 399 OTUs per 

sample) (Figure 4.8)(see also Supplementary Materials, Table S10). 

Comparison of the OTUs detected in the individual plasma samples revealed a shared core 

circulatory microbiome composed of 566 OTUs. An additional 221 OTUs were uniquely 

detected in the control samples, and 341 OTUs were uniquely detected in the asthma 

samples. Examination of the rarefaction curve revealed potential differences in the number 

of OTUs detected in the asthma samples compared to the control samples. However, 

statistical analysis revealed that there were no significant differences between the control 

and asthmatic samples with regards to number of high-quality V4 reads generated and the 

number of OTUs detected (Unpaired t test, P values = 0.4140 and 0.3288, respectively). 
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With regards to the experimental negative control, a total of 57,239 V4 reads were 

generated during the amplification and sequencing process. None of the reads, however, 

passed the stringent quality control and chimeric sequence removal stage of analysis, and 

thus the detection of bacterial DNA in the negative control is unlikely to impact 

downstream characterisation and analysis of the human circulatory microbiome. 
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Figure 4.8: Quantification of bacterial V4 reads sequenced from human plasma samples 
using Illumina sequencing. Illumina sequencing was used to sequence bacterial V4 
amplicons generated from plasma samples from asthmatic subjects (n = 5) and control 
subjects (n = 5). Following successful sequencing of the V4 amplicons Nephele 2.0 was used 
remove low-quality reads and chimeric sequences, and to align the high-quality V4 reads 
to bacterial operational taxonomic units (OTUs). (A) A rarefaction curve showing the level 
of species richness of OTUs detected in the plasma samples. (B) Quantification of the V4 
reads generated from asthma plasma samples (n = 5) and control samples (n = 5), and the 
total number of bacterial OTUs the reads align to with a 99% similarity threshold. 

 

B     

Group Number of 
Samples 

Mean number 
of raw reads 

Mean number of 
high-quality reads 

Total number of 
bacterial OTUs 

Control 5 89,711.40 22,337.60 787 

Asthma 5 96,002.40 27,075.20 907 

Negative Control 1 57,239.00 0.00 NA 

A 
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4.3.11. Taxonomic Classification of the OTUs detected in the Human Plasma Samples 
using Illumina Sequencing Technology 

 

The OTUs detected in the human plasma samples could be classified into 12 phyla and 133 

bacterial genera, the majority of which were detected at low abundance (defined as 

contributing less than 1% of bacterial DNA generated from the plasma samples). At the 

phylum level the human circulatory microbiome was found to be predominately composed 

of bacteria belonging to the Proteobacteria phylum (87.79% of bacterial DNA sequenced 

from the non-asthmatic plasma samples, and 80.79% of bacterial DNA sequenced from the 

asthma plasma samples), and to a lesser extent Actinobacteria (7.82%, 7.26%), Firmicutes 

(3.53%, 9.21%), and Bacteroidetes (0.22%, 2.22%) (Figure 4.9.A). 

At the genus level  the majority of bacterial genera identified were detected at low 

abundance levels, with 113 genera having a relative abundance score of less than 0.5%. In 

the control samples 89/133 bacterial genera were detected, of which 14 had a relative 

abundance greater than 0.5%, whilst in the asthmatic plasma samples 115 bacterial genera 

were detected, of which 20 had a relative abundance greater than 0.5%. 

A total of 11 bacterial genera had a relative abundance score greater than 1.0% and were 

defined as high-abundant taxa. High-abundant genera were predominately members of the 

Gammaproteobacteria class of bacteria and included Achromobacter  (51.05% of bacterial 

DNA sequenced from the control samples, and 45.71% of bacterial DNA sequenced from 

the asthma samples), Pseudomonas (7.53%, 12.95%), Serratia (11.71%, 0.93%), 

Acinetobacter (2.83%, 3.79%), Halomonas (3.44%, 2.11%), Stenotrophomonas (0.44%, 

2.72%),  and Enhydrobacter (0.89%, 1.20%).  (Figure 4.9.B). Additional highly abundant 

genera that did not belong to the Gammaproteobacteria class included the 

Alphaproteobacteria member Sphingomonas (5.12%, 3.87%), the Firmicutes genus 
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Staphylococcus (2,82%, 5.55%), and the Actinobacteria genera Corynebacterium 1 (5.54%, 

3.20%) and Micrococcus (1.05%, 1.47%) (Figure 4.9.B). 

There was also a number of high abundant genera detected that were condition specific. 

These included Shewanella (1.00%, 0.58%), which was present at high abundance levels in 

the control samples, and Raoultella (0.11%, 1.49%), Streptococcus (0.32%, 1.52%), and 

Bergeyella (0.00%, 1.18%), which were present at high abundance levels in the asthma 

samples (Figure 4.9.B). 
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Figure 4.9: Relative abundance of bacteria detected in the human circulatory 
microbiome. Bacterial composition determined using QIIME 16S FASTQ paired end analysis 
on sequenced V4 reads generated from plasma samples taken from asthmatic subjects (n 
= 5, mean number of reads = 27,075.20) and control subjects (n = 5; mean number of reads 
per sample = 22,337.60). Taxa with a relative abundance > 1% were plotted, and low 
abundance taxa (< 1.0%) were grouped and plotted as Taxa < 1% abundance. (A) Relative 
abundance of bacteria detected at the phylum level. (B) Relative abundance of bacteria 
detected at the genus level. 

 

A 

B 
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4.3.12. Bacterial Alpha Diversity in the Asthmatic Circulatory Microbiome compared 
to the Control Microbiome 

 

Alpha diversity was determined by calculating the Shannon diversity index and Chao1 

diversity index for each plasma sample (see Supplementary Materials, Table S11). The 

diversity indices generated from the asthma and control samples were then compared to 

determine whether the asthma circulatory microbiome differed significantly to the control 

microbiomes with regards to bacterial diversity (Figure 4.10). 

Comparison between the asthma and control subjects revealed that overall the asthmatic 

subjects scored higher Shannon and Chao1 index scores compared to the control subjects, 

although these values were not statistically significant (Figure 4.10, see also Supplementary 

Materials, Table S11). This was particularly apparent for Shannon diversity (P value =  

0.0965, Unpaired t test)(Figure 4.10. A & C). Intriguingly, one of the asthma subjects, 

Asthma_3,  displayed a level of Shannon diversity more similar to the level of diversity 

detected in the control subjects than the remaining asthmatic subjects (see Supplementary 

Materials. Table S11). This subject was diagnosed with asthma relatively late in childhood 

(age 12 years, see Supplementary Materials S11), and so it is possible that the age of 

asthma onset may influence the level of microbial diversity present in the blood. This is 

further supported by the high levels of alpha diversity detected in the circulatory 

microbiome of Asthma_5, an asthmatic subject who was diagnosed with asthma early on 

in childhood (age 3 years)(see Supplementary Materials, Table S2). 
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Alpha Diversity Control Mean (S.D) Asthma Mean (S.D) P Value 

Shannon 2.48 (0.31) 3.01 (0.47) 0.0965 

Chao1 367.29 (80.07) 385.10 (70.91) 0.7477 
 

Figure 4.10: Comparison of alpha diversity in the asthmatic circulatory microbiome 
compared to the control microbiome. Alpha diversity was measured using rarefied OTU 
tables generated from 16S rRNA sequencing data generated from plasma samples collected 
from asthmatic subjects (n = 5) and control subjects (n = 5). Shannon diversity index scores 
were generated from OTU tables in order to measure the richness and evenness of 
bacterial taxa present in the plasma samples. Chao1 index scores were measured to 
determine the predicted number of bacterial taxa present in the plasma samples by 
extrapolating out the number of rare organisms that may not have been detected due to 
under-sampling. (A). Shannon diversity in the asthma circulatory microbiome compared to 
the control circulatory microbiome. (B). Chao1 diversity in the asthma circulatory 
microbiome compared to the control circulatory microbiome. (C). Statistical analysis of 
alpha diversity detected in the asthmatic subjects compared to the control subjects using 
Unpaired t tests. 

 

 

                                                                                                                                             

A B 

C 
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4.3.13. Bacterial Beta Diversity in the Asthmatic Circulatory Microbiome compared 
to the Control Microbiome 

 

Beta diversity of the circulatory microbiome detected in the asthmatic and non-asthmatic 

subjects was measured to determine how similar individual circulatory microbiomes were 

to one another, and whether the presence of a chronic respiratory disorder (asthma) 

influenced the diversity of bacterial populations present in the circulatory microbiome. 

Beta diversity was measured by calculating Bray-Curtis dissimilarity to determine 

compositional dissimilarity between the plasma samples that was based on both the 

presence/ absence of bacterial OTUs and OTU abundance, and PERMANOVA analysis was 

carried out to determine if the asthmatic circulatory microbiomes differed significantly to 

the control circulatory microbiomes in terms of OTU composition.  

Plotting of Bray-Curtis dissimilarity using PCoA revealed that the circulatory microbiomes 

did not cluster on the basis of disease state (Figure 4.11). This was further supported by 

PERMANOVA analysis which detected no significant differences in the asthmatic circulatory 

microbiomes compared to the control circulatory microbiomes (P value = 0.539). However, 

there did appear to be clustering of the samples on the basis of PCoA1, whereby the 

circulatory microbiome of subjects Asthma_1, Asthma_2, Asthma_5, and Control_2 had 

positive PCoA1 scores and clustered more closely, and the circulatory microbiome from 

subjects Asthma_3, Asthma_4, Control_1, Control_3, and Control_4 had negative PCoA1 

scores and clustered more closely (Figure 4.11). This clustering is likely the result of an 

unknown variable, though it is interesting to note that the majority of subjects with a 

positive PCoA score were negative for circulatory IgE protein (Asthma_5, Control_2, and 

Control_5), whilst the majority of subjects with a negative PCoA score were positive for IgE 

circulatory protein (Asthma_4, Control_1, Control_3, Control_4)(See Supplementary 
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Materials, Table S6). However, as this was a small sample group, further investigation 

would be required to determine the significance of this observation. 

 

 

 

Figure 4.11: Comparison of beta diversity in the asthmatic circulatory microbiome 
compared to the control microbiome. PCoA was performed on OTU tables generated from 
16S rRNA sequencing data from the asthma plasma samples (n = 5) and control samples (n 
= 5). Quantitative compositional dissimilarity between each of the samples was measured 
using Bray-Curtis dissimilarity, and a PCoA graph was plotted. Each dot represents an 
individual sample, and the microbiomes of samples that appear more closely together are 
more similar. Statistical analysis using PERMANOVA revealed no significant differences in 
the plasma samples. 

 

 

 

 

P value = 0.539 
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4.3.14. Differential  Bacterial Abundance in the Asthmatic Circulatory Microbiome 
compared to the Control Microbiome 

 

 Statistical analysis of the circulatory microbiome composition at the phylum level revealed 

atopic asthma was associated with a significant increase in Firmicutes (P value = 0.0146, 

Unpaired t test), and concomitant decrease in Proteobacteria (P value = 0.0715, Unpaired 

t test). Additionally, whilst not significantly increased overall in the atopic subjects (P value 

= 0.6905, Wilcoxon rank sum test), Bacteroidetes were found to be increased in the 

asthmatic subjects who were not taking anti-inflammatory medication at the time of 

sample collection (asthma subjects 1, 2, and 5), whilst those on the medication (asthma 

subjects 3 and 4) displayed similar Bacteroidetes abundance to the control subjects.  

LEfSe analysis was performed on the bacterial taxa relative abundance scores to identify 

biologically significant changes in bacterial composition at all taxonomic levels in the 

asthmatic subjects compared to the control subjects. 

Analysis of the bacterial composition of the circulatory microbiome using LEfSe revealed 

that 6 bacterial taxa were significantly enriched in the asthmatic subjects compared to the 

non-asthmatic control subjects. Overall, taxa found to be enriched in the asthmatic 

circulatory microbiome were high-abundant taxa (had a relative abundance > 1.0%) and 

included the Firmicutes phylum, the Bacilli and Xanthomonadales classes, the 

Xanthomonadaceae family, and the Stenotrophomonas genus (Figure 4.12). Additionally, 

the low-abundant Kocuria genus was also observed to be enriched in the asthmatic subjects 

compared to the control subjects, and detection of the genus appeared to be condition 

specific, with detection of the genus observed in just one of the control subjects at low 

levels (relative abundance = 0.009%) (Figure 4.12). 
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Figure 4.12: Significant changes in bacterial taxa relative abundance in the circulatory 
microbiome of atopic asthmatic subjects compared to control subjects. LEfSe analysis was 
performed on the bacterial relative abundance data to determine the presence of bacterial 
taxa with statistically significant changes in taxa abundance in the asthmatic subjects (n = 
5) compared to the control subjects (n = 5) (defined as having a LDA effect size > 2.0 and a 
p value < 0.05). (A) A taxonomic cladogram highlighting the statistically and biologically 
consistent differences between the asthmatic circulatory microbiome compared to the 
control circulatory microbiome. Differences are presented in the colour of the most 
abundant sample group (red represents taxa significantly enriched in the asthmatic 
subjects, green represents taxa significantly enriched in the non-asthmatic subjects,  and 
yellow representing non-significant taxa). The circle diameter is proportional to the taxon’s 
abundance in the circulatory microbiome. (B) Relative abundance of the differentially 
abundant bacterial taxa. (C) Histogram of the LDA scores generated for the differentially 
abundant taxa present in the asthmatic subjects compared to the control subjects. 

Abbreviations: p_ = phylum; c_ = class; o_ = order; f_ = family; g_ = genus 
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4.3.14. Prediction of the Plasma Metagenome Function Content 
 

Prediction of the functional capacities of the plasma bacterial community characterised 

from the V4 16S rRNA sequencing data identified a total of 273 level 3 KEGG pathways 

belonging to the level 1 KEGG categories Cellular processes (total number of KEGG 

pathways identified = 11), Environmental information (13), Genetic information (27), 

Human diseases (31), Metabolism (142), Organismal systems (22), and Unclassified (27). 

The majority of level 3 KEGG pathways detected scored abundance values of less than 1%. 

21 KEGG pathways, however, had total abundance scores greater than 1% (Figure 4.13). 

These high-abundant KEGG pathways included 1 member of the Cellular processes category 

(Bacterial motility, total abundance = 1.72%), 4 members of the Environmental information 

processing category [ABC transporters (5.85%), Secretion systems (1.66%), Transporters 

(7.69%), and Two-component system (2.55%)], 4 members of the Genetic information 

processing category [Chromosome (1.14%), DNA repair and recombination proteins 

(1.86%), Transcription factors (1.69%), and Ribosome (1.22%)], 8 members of the 

Metabolism category [Amino acid related enzymes (1.06%), Arginine and proline 

metabolism (1.27%), Valine, leucine, and isoleucine degradation (1.21%), Butanoate 

metabolism (1.43%), Propanoate metabolism (1.18%), Pyruvate metabolism (1.06%), 

Oxidative phosphorylation (1.15%), Peptidases (1.33%), and Purine metabolism (1.48%)], 

and 3 members of the Unclassified category [Other ion-coupled transporters (1.32%), 

Function unknown (1.64%), and General function prediction only (3.19%)] (Figure 4.13) 
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Figure 4.13: Functional analysis of the plasma circulatory microbiome. PICRUSt software 
was used to predict functional content of the plasma metagenome based on the V4 16S 
rRNA sequencing data generated from control subjects (n = 5) and asthmatic subjects (n = 
5). High activity level 3 KEGG pathways (as determined by a predicted abundance of greater 
than 1% of the total serum sample metagenome) are plotted and KEGG pathways with an 
abundance less than 1% are grouped together and plotted as other. 

 

Analysis of level 1 and level 2 KEGG pathway orthologs using LEfSe revealed that there were 

no significant differences in inferred microbial functions of the bacterial populations 

detected in the asthma plasma samples compared to the control samples at the KEGG 

levels 1 and 2. Analysis at KEGG level 3, however, revealed that bacterial functional 

pathways related to energy metabolism were significantly reduced in the asthmatic 

subjects compared to the control subjects (P value = 0.0472 , LDA effect size = 2.28) (Figure 

4.14). 
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KEGG 
Pathway 

Control Mean 
Abundance (SD) 

Asthma Mean 
Abundance (SD) 

Log2 Fold 
Change 

LDA effect 
size P Value 

Energy 
Metabolism 0.85 (0.03) 0.81 (0.02) - 0.07 2.28 0.0472 

 

 

Figure 4.14: Comparison of energy metabolism abundance in the asthma circulatory 
microbiome compared to the control microbiome. PICRUSt was used to predict functional 
potential of the control and asthma circulatory microbiome using the V4 16S rRNA 
sequencing data. LEfSe analysis was used to identify differential bacterial functions present 
in the asthma circulatory microbiome (n = 5) compared to the control microbiome (n = 5), 
and energy metabolism was identified as being significantly decreased in the asthma 
circulatory microbiome compared to the control microbiome. (A) Abundance of energy 
metabolism detected in the asthma circulatory microbiome compared to the non-atopic 
control microbiome. (B) Statistical analysis of energy abundance detected in the asthma 
circulatory microbiome compared to the control microbiome (n = 5). 

 

 

 

 

A 
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4.3.15. Bacterial Growth Cultures and Identification of Viable Bacteria 
 

Analysis of the growth agar plates streaked with nutrient broth inoculated with the plasma 

samples revealed that viable bacteria were present in 78% of plasma samples assayed (7/9 

samples; 4 control samples and 3 asthma samples)( Figure 4.15) , whilst all negative control 

plates had no growth as expected (Figure 4.15). Comparison of the growth conditions found 

that bacterial growth was more successful using aerobic conditions compared to anaerobic 

conditions (Figure 4.15). Analysis of the two growth agar plates used for aerobic conditions 

revealed similar success rates with regards to bacterial growth. 

Appearance of the bacterial colonies on the agar plates indicated that the cultures were 

mono-culture and the lack of over-growth of the bacteria suggested that the viable bacteria 

were present at low levels in the plasma samples. 
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Figure 4.15: Bacterial growth on selective media streaked with nutrient broth inoculated 
with human plasma samples. Viable bacterial cells present in the human plasma samples 
were revived by inoculating the plasma samples into brain infusion nutrient broth. After a 
5 day incubation period, the inoculated broths were streaked onto selective agar media 
and the streaked plates were incubated for 72 hrs in aerobic conditions (Columbia blood 
agar, CLED Medium agar) and 120 hrs in anaerobic conditions (A.R.I.A agar). 
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Amplification of the total 16S rRNA gene from the cultured bacterial cell was successful for 

all bacterial colonies, with the exception of the bacterial colonies selected from the 

Asthma_2 CLED and A.R.I.A plates and the Asthma_5 CLED plates (Supplementary 

Materials, Table S12). A gel representing successful amplification of the total 16S rRNA gene 

from bacterial DNA extracted from the cultured bacteria is shown below. Samples 

represented in the gel are DNA extractions from bacterial colonies from Columbia blood 

agar plates and CLED agar plates streaked with nutrient broth inoculated with plasma from 

the Control_3 subject (Figure 4.16). 
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Figure 4.16: Amplification of total 16S rRNA gene from DNA extracted from bacterial 

colonies cultured from human plasma. 3 bacterial colonies were selected from each 

growth agar plate positive for bacterial growth. DNA was extracted from the bacterial 

colonies using thermal lysis and then underwent 35 cycles of end-point PCR using 

oligonucleotide primers designed to amplify the 16S rRNA gene. 

Abbreviations: C3, Control_3; A, agar plate replicate 1; B, agar plate replicate 2 

 

Following successful amplification of the total 16S rRNA gene from DNA extracted from the 

cultured bacteria colonies, the 16S rRNA amplicons were submitted to Genewiz to undergo 

sanger sequencing. 

Analysis of the sequenced 16S rRNA amplicons using NCBI nucleotide blast revealed that 

bacteria isolated from the anaerobic plates (A.R.I.A) belonged solely to the facultatively 

anaerobic Staphylococcus genus (Table 4.15.A). In contrast, the bacteria isolated from the 

aerobic plates (Columbia blood agar and CLED plated) were more diverse and belonged to 

the following genera; Staphylococcus, Micrococcus, Kocuria, Corynebacterium, and 

Propionibacterium (Table 4.15.B). 

 

Ladder  C3     C3      C3      C3      C3      C3     C3      C3      C3      C3     C3      C3      PC       NC 
              1A     2A      3A      1B      2B     3B      1A     2A      3A     1B     2B      3B 

Columbia                                                    CLED 

1500bp --
- 



218 
 

Table 4.15: Identification of bacterial colonies grown on selective media streaked with nutrient broth inoculated with human plasma samples. PCR 
amplification of the total 16S rRNA gene was carried out and the 16S rRNA amplicons were  sequenced using Sanger sequencing. The sequencing data 
was inputted into the NCBI database to determine identification of the bacterial colonies. (A) Identification of bacterial colonies grown in aerobic 
conditions. (B) Identification of bacterial colonies grown in anaerobic conditions.  

Abbreviation used: NA, not applicable – used when colonies were grown but amplification of the whole 16S rRNA gene was unsuccessful; NS, no 
signification similarity found. 

 

A Control Samples Asthma Samples 
 Contol_1 Control_2 Control_3 Control_4 Asthma_3 Asthma_4 Asthma_5 

A.
R.

I.A
 A

ga
r 

NA NA Staphylococcus 
epidermidis 

Staphylococcus hominis 
subsp. novobiosepticus NA NA Staphylococcus epidermidis 

NA NA Staphylococcus 
epidermidis 

Staphylococcus hominis 
strain SubaKolSh24 NA NA Staphylococcus epidermidis 

NA NA Staphylococcus 
epidermidis Staphylococcus hominis NA NA Staphylococcus epidermidis 

strain L3 

NA NA Staphylococcus 
epidermidis Staphylococcus hominis NA NA Staphylococcus epidermidis 

strain BQER2-01 

NA NA 
Staphylococcus 

epidermidis strain LLP-
16 

Staphylococcus sp. NA NA Uncultured bacterium clone 
nbu588e11c1 

NA NA Staphylococcus 
epidermidis Staphylococcus sp. NA NA Staphylococcus sp. Strain 

S14 
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 Control Samples Asthma Samples 
 Contol_1 Control_2 Control_3 Control_4 Asthma_2 Asthma_4 Asthma_5 

Co
lu

m
bi

a 
Bl

oo
d 

Ag
ar

 

Kocuria 
rhizophilia 

Micrococcus 
luteus 

Staphylococcus 
hominis 

Staphylococcus 
hominis 

Staphylococcus 
hominis NA Staphylococcus sp. 

Kocuria 
rhizophilia Micrococcus Staphylococcus 

hominis 
Staphylococcus 

epidermidis 
Staphylococcus 

hominis NA Staphylococcus 
epidermidis 

Kocuria 
rhizophilia 

Micrococcus 
yunnanensis 

Staphylococcus 
epidermidis 

Staphylococcus sp. 
CS21 

Staphylococcus 
hominis NA Staphylococcus 

epidermidis 

Kocuria sp. Micrococcus 
yunnanensis Staphylococcus Staphylococcus sp. 

CS21 
Staphylococcus 

hominis NA 
Uncultured 

bacterium clone 
ncd2456a03c1 

Kocuria 
rhizophilia Micrococcus Staphylococcus sp. Staphylococcus sp. 

CS21 
Staphylococcus 

hominis NA 
Uncultured 

bacterium partial 
16S rRNA gene 

Kocuria 
rhizophilia Micrococcus Staphylococcus 

epidermidis 
Staphylococcus 

hominis 
Staphylococcus 

hominis NA Staphylococcus 
epidermidis 

CL
ED

 A
ga

r 

NA Micrococcus 
luteus Staphylococcus Staphylococcus 

hominis NA Corynebacterium 
mucifaciens NA 

NA Micrococcus Staphylococcus 
hominis 

Uncultured 
bacterium clone 

ncd539a09c1 
NA Corynebacterium 

mucifaciens NA 

NA Micrococcus NS Staphylococcus sp. 
CS21 NA Corynebacterium 

mucifaciens NA 

NA Micrococcus Cutibacterium 
acnes 

Staphylococcus 
hominis NA Corynebacterium 

mucifaciens NA 

NA Micrococcus NS Staphylococcus sp. 
CS21 NA Corynebacterium 

mucifaciens NA 

NA Micrococcus NS Staphylococcus sp. NA Corynebacterium 
mucifaciens NA 

 

B
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4.3.16. Likely Origins of the Circulatory Microbiome 
 

Whilst evidence of a circulatory microbiome is steadily increasing, it is not yet known 

whether the detected bacteria are exploiting a viable ecological niche or are simply 

transient residents of the blood vessels 516.  

Atopobiosis, whereby bacteria translocate into the circulation from their usual place of 

habitation (classical niches, such as the gastrointestinal tract, the oral tract, and the skin), 

has been proposed as an explanation for the presence of a circulatory microbiome.  

The V4 16S rRNA data generated from the human plasma samples, therefore, was 

compared to the gastrointestinal tract, oral cavity, and skin microbiome data made 

available by the Human Microbiome Project (HMP). Comparison was achieved using 

Nephele 1.0 software and involved combining the human plasma 16S rRNA data with the 

HMP data, calculating weighted UniFrac distances, and performing PCoA.  

The circulatory microbiome of the control and asthmatic subjects was found to cluster 

more closely with the oral cavity and skin HMP data than it did with the gastrointestinal 

tract HMP data (Figure 4.17). This suggested that if the detected circulatory microbiome 

was the consequence of atopobiosis, it was more likely to have resulted from translocation 

of bacteria from the oral and skin niches than due to translocation from the gastrointestinal 

tract. 
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Figure 4.17: Principal coordinate analysis of weighted unifrac distances between the V4 
16S rRNA data generated from human plasma samples and the Human Microbiome 
Project Gut, Oral Cavity, and Skin data. PCoA was performed on OTU tables generated 
from V4 16S rRNA sequencing data generated from the human plasma samples and 16S 
rRNA sequencing  data generated from the Human Microbiome Project (HMP) on the 
human gut, oral cavity, and skin microbiome. Quantitative phylogenetic distances between 
each of the samples was measured using a weighted UniFrac distance, and the weighted 
UniFrac distances were plotted as a PCoA graph to show beta diversity with the plasma 
samples from control subjects (n = 5, data plots = blue) and asthmatic subjects (n = 5, data 
plots = red) compared to beta diversity present in the HMP gut microbiome, oral cavity 
microbiome, and skin microbiome. Each data point represents a single sample, and the 
distance between data points is representative of how similar the sample microbiomes are 
to one another.  
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4.4. Discussion 
 

4.4.1. Development of Research Techniques 
 

The human blood is thought to be sterile and despite increasing evidence of a circulatory 

microbiome it is still a controversial subject. Recent re-analysis of pleomorphic bacteria 

detected using electron microscope, for instance, have suggested that the supposed 

bacterial structures identified in the early circulatory microbiota studies are actually host 

derived structures 516–518. This has highlighted the importance of developing stringent 

experimental procedures and the use of experimental negative controls. 

This study aimed to develop a stringent experimental protocol to facilitate characterisation 

of the circulatory microbiome in asthmatic subjects and non-asthmatic control subjects. 

A nested PCR protocol was successfully developed  to enable successful generation of  16S 

rRNA V3-V4 and V4 amplicons containing sequencing adaptors for Ion torrent sequencing 

and Illumina sequencing. Comparison of sequenced V3-V4 reads and V4 reads generated 

from Ion torrent sequencing revealed that sequencing the V4 region was optimum over 

sequencing the V3-V4 region, presumably due to the decreased size of the V4 region 

compared to the V3-V4 region. When the success rates of sequencing the V4 region using 

Ion torrent technology and Illumina sequencing were assessed, Illumina sequencing using 

the MiSeq protocol was found to be optimum over the use of the ion torrent sequencing 

using the Ion PGM™ Hi-Q™ protocol. This perhaps was not surprising as analysis of previous 

circulatory microbiome studies found that the majority of the studies that utilised 16S 

sequencing techniques to characterise the circulatory microbiome used Illumina MiSeq 

protocols 327, 329, 333–339,365. 
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Analysis of the experimental negative control revealed that no high-quality V3-V4/ V4 reads 

were generated from the sample. This demonstrated that the strict sterile conditions 

maintained during generation of the 16S rRNA reads were sufficient to inhibit bacterial 

contamination from the immediate environment and/ or laboratory reagents. However, as 

the blood samples were acquired from a company (Sera Laboratories Limited) rather than 

collected from the subjects directly, it is unknown if sufficient sterile procedures were used 

during sample collection and handling prior to their delivery. 

 

4.4.2. Detection of a Human Circulatory Microbiome 
 

The circulatory microbiome was successfully characterised for all plasma samples under 

investigation using Nephele 2.0 to align the sequenced V4 reads to bacterial OTUs. 

Statistical analysis using R software and LEfSe analysis was carried out to determine 

significant differences in bacterial diversity and abundance in the asthmatic circulatory 

microbiome compared to the control microbiome. 

Alignment of the sequenced V4 16S rRNA reads revealed that the human circulatory 

microbiome was predominately composed of bacterial RNA belonging to the 

Proteobacteria phylum (total relative abundance = 83.9%, control = 90.0%, and Asthma = 

80.3%), and to a lesser extent the Actinobacteria (7.5%, 6.0%, 7.5%), Firmicutes (6.6%, 

3.0%, 9.0%), and Bacteroidetes (1.2%, 0.2%, 2.2%) phyla. These findings mirror previous 

investigations into the circulatory microbiome 323, 327, 332,361, and thus further support the 

notion of a core circulatory microbiome predominated by four key phyla. 

At the genus level the circulatory microbiome was predominated by the genus 

Achromobacter, which accounted for 51.1% and 45.7% of the total bacteria detected in the 

control and asthma subjects, respectively. To a lesser extent, the blood samples also 
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comprised of a number of bacterial genera that have previously been detected in the 

circulatory microbiome. These included Pseudomonas 324,345 (7.5%, 13.0%), Serratia 331, 

339,519  (11.7%, 0.9%), Sphingomonas 327,361 (5.1%, 3.9%), Staphylococcus 336, 338,366 (5.5%, 

2.8%), Corynebacterium 324,327 (3.2%, 2.8%), Acinetobacter 327, 331,366 (2.8%, 3.8%%), and 

Stenotrophomonas 327, 335,339 (0.4%, 2.7%), and the detection of these genera across the 

different circulatory microbiome studies provides further evidence of a shared circulatory 

microbiome core. 

Whilst the majority of genera detected at high levels have been previously described in the 

blood, the predominance of Achromobacter warrants further consideration. It is interesting 

to note that the Achromobacter genus has been detected at high levels in the lower 

respiratory tract of healthy mice 520, humans (HMP airway dataset), and in various 

respiratory conditions 521,522. Furthermore, no Achromobacter was detected in the 

experimental negative control, thus indicating that presence of the bacterial genus was not 

the result of bacterial contamination. It is, therefore, speculated that Achromobacter was 

detected in the circulatory microbiome as a result of translocation from the airways 

 

4.4.3. Comparison of Bacterial diversity in the Asthmatic Circulatory Microbiome 
compared to the Healthy Controls 

 

To determine whether atopic asthma significantly influences the bacterial composition of 

the detected circulatory microbiome, alpha diversity, beta diversity, and bacterial taxa 

relative abundance scores generated from the asthma and control plasma samples were 

compared. 

Alpha diversity was determined by calculating the Shannon and Chao1 indices for each 

plasma sample. Comparison between the asthma and control cohort revealed that the 
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asthmatic subjects scored higher Shannon and Chao1 index scores compared to the control 

subjects, thus suggesting that asthma is associated with increased bacterial diversity. This 

was particularly apparent for the Shannon diversity scores (P value = 0.0710, Unpaired t 

test). Intriguingly, one of the asthma samples, belonging to the asthma_3 subject, displayed 

a Shannon diversity score more similar to the control subjects than the asthmatic subjects. 

This subject developed asthma relatively late in childhood (age 12 years), and so it is 

possible that the age of asthma onset may influence the level of microbial diversity present 

in the blood. This theory is further supported by the observation of high levels of alpha 

diversity present in the blood of Asthma_5, an asthmatic subject who was diagnosed with 

asthma early on in childhood (3 years of age). 

Increased bacterial diversity has also been observed in the asthmatic airways compared to 

healthy controls 256,281. This is likely the consequence of the immune dysregulation that 

typically occurs in the asthmatic lung and suggests that immune activity in the airways 

influences bacterial diversity in the airways, and subsequent diversity of bacteria capable 

of translocation into the blood vessels. However, it is also possible that immune 

dysregulation in the airways and blood as a result of atopic asthma has an adverse effect 

on the immune system’s ability to detect and control colonisation of bacteria in these body 

habitats. This would explain the increased trend in bacterial diversity in the asthmatic 

circulatory microbiome compared to the control microbiome. 

With regards to beta diversity, PCoA analysis found that beta diversity was principally the 

consequence of PCoA1 variation (36.0%). Comparison of the control and asthmatic samples 

revealed no significant clustering of the asthmatic subjects compared to the control 

subjects, as determined by analysis of the PCoA graph and PERMANOVA analysis. Of 

interest was the observation of circulatory IgE protein levels appeared to correlate with 
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PCoA1 score, thus suggesting that this variable may influence the circulatory microbiome 

of the subjects. However, as this was a preliminary investigation into the circulatory 

microbiome, only a small sample set was utilised. Further investigations with a larger 

sample size, therefore, would be required to determine whether circulatory IgE protein 

levels significantly influences diversity of the circulatory microbiome. 

 

4.4.4. Differential Relative Abundance of Bacterial Populations detected in the 
Circulatory Microbiome 

 

Microbial characterisation of the circulatory microbiome from asthmatic subjects 

compared to non-asthmatic healthy controls revealed increased levels of Firmicutes and 

decreased levels of Proteobacteria in the asthma plasma samples. This finding was 

associated with the identification of several additional bacterial taxa displaying significantly 

altered levels in the asthmatic state compared to the control state. Significant changes in 

relative abundance were predominately detected in high-abundant taxa, and included 

increased levels of the Firmicutes phylum, the Bacilli class, the Xanthomonadales order, the 

Xanthomonadaceae family, and the Stenotrophomonas and Kocuria genera.  

The observed decrease in circulating Proteobacteria rRNA in the asthmatic state is likely to 

be indicative of reduced Proteobacteria carriage within the asthmatic state at a distant 

microbiome niche (e.g. the gastrointestinal tract, airways, and/or oral cavity). This may 

explain the decreased levels of endotoxin detected in the asthmatic subjects (Chapter 3, 

section 3.4.8), given that endotoxin-producing Gram negative bacteria dominate the 

Proteobacteria phylum.  

Decreased Proteobacteria have been detected in the gut microbiota of atopic infants 267, 

suggesting that Proteobacteria colonisation may confer protective properties against 



228 
 

development of atopic disease. Furthermore, urban living has been found to negatively 

correlate to the abundance of Proteobacteria present in the skin microbiome 249, thus 

suggesting that the positive correlation between increased urbanisation and asthma 

prevalence may be in part due to decreased Proteobacteria colonisation. In the airways of 

asthmatics, however, Proteobacteria are typically increased 256,261,262 and have been 

positively associated with disease severity 259 and corticosteroid resistance 255. This 

suggests that members of the phylum can be both protective and harmful with regards to 

atopic disease, and the protective/ harmful effects of the phylum may be dependent on 

the microbiome environment.  

The observation of increased levels of Firmicutes in the asthmatic subjects was of particular 

interest as expansion of his phylum has been associated with severe asthma 261. 

Furthermore, increased levels of Firmicutes in the asthmatic subjects was  found to be 

primarily due to increased levels of Staphylococcus and Streptococcus genera, both of 

which have been associated with the development of asthma during early childhood 260, 

280,523,524. The observation of increased levels of these genera in adults suffering from 

asthma, therefore, suggests that changes in the circulatory microbiome that occur during 

childhood, either as precursor of asthma development and/ or due to the development of 

asthma, persist into adulthood. 

The  asthmatic subjects were also found to have increased levels of Bacteroidetes, and this 

appeared to be dependent on medication status, with those taking anti-inflammatory 

medications having lower levels of circulating Bacteroidetes compared to asthmatic 

subjects who were not taking anti-inflammatory medications. This finding suggested that 

asthma medication may influence composition of the circulatory microbiome. However, as 

this study was a preliminary investigation involving a small cohort of asthmatic subjects, 
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further research would be required to determine the effects of anti-inflammatory 

medication on the asthmatic circulatory microbiome. 

As the blood circulates the body where it functions as a medium that samples from virtually 

all body sites 358,  it was not possible to determine the microbial niche from which the 

detected bacteria originated from. However, this study hypothesises that changes in the 

circulatory microbiome are reflective of dysbiosis at distant sites with well-characterised 

microbial communities (e.g. the gut, oral cavity, and skin), and have significant biomarker 

potential. 

In support of this interpretation, studies investigating the asthmatic airway microbiome 

have observed reduced Firmicutes in the asthmatic airways compared to healthy control 

subjects 256,525. It is, therefore, possible that the increased levels of Firmicutes RNA 

observed in the blood in this study is a consequence of increased translocation of these 

bacteria and/ or their DNA from the airways into the blood compared to the control 

subjects. 

Additionally, the observed changes to the circulatory microbiome were reflective of a 

previous study investigating the oral microbiome, whereby Firmicutes, Stenotrophomonas, 

and Lactobacillus were found to be increased in asthmatic subjects compared to the control 

subjects. This suggests that the bacterial DNA detected in the blood may have originated 

from the oral cavities, and that the changes in the circulatory microbiome in the asthmatic 

subjects in reflective of microbial dysbiosis occurring in the asthmatic oral cavities. 

 

 

 



230 
 

4.4.5. Predicted Functional Activity of the Circulatory Microbiome  
 

The observed changes in bacterial relative abundance in the circulatory microbiome of the 

asthmatic subjects compared to the control subjects were predicted to decrease energy 

metabolism in the asthmatic subjects.  

Decreased energy metabolism in the asthmatic subjects was of interest due to the essential 

role the gut microbiome has in host energy metabolism 161,526–528. In the human 

gastrointestinal (GI) tract simple sugars (i.e. glucose) and disaccharides (i.e. lactose) are 

absorbed into the blood by the host 527,529. The human GI tract, however, is unable to digest 

dietary carbohydrates (i.e. fibre), and subsequently dietary carbohydrates pass through the 

GI tract undigested and are instead fermented by members of the gut microbiota in the 

cecum and large intestine 527. Bacterial fermentation is carried out by anaerobic bacteria 

(primarily members of the Firmicutes and Bacteroidetes phyla, the dominant phyla in the 

gut microbiome), and results in the production of multiple metabolites, of which short 

chain fatty acids (SCFAs; a waste product of bacterial fermentation) are the major group 

527,530,531. 

The identification of energy metabolism being significantly reduced in the asthmatic 

subjects is indicative of reduced relative abundance of energy-metabolising bacteria 

present in the plasma of the asthmatic subjects. This could be reflective of microbial 

dysbiosis in the gut of the asthmatic subjects that is associated with reduced energy-

metabolising potential of the gut microbiome. 

Reduced microbial energy metabolism in the asthmatic subjects, could be indicative of 

reduced fibre consumption and a subsequent decrease in SCFA production. This 

interpretation is supported by epidemiological studies that have demonstrated that 

asthmatic subjects consume less fibre and exhibit reduced levels of SCFAs compared to 
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control subjects 532–534. Moreover, SCFAs have been demonstrated to inhibit histone 

deacetylase 535–537. RNA analysis of the asthmatic subjects in Chapter 3 found that 

expression of histone deacetylase 9 (HDAC9) was significantly decreased in the asthmatic 

subjects (See Supplementary Materials, Table S4). The HDACs have been demonstrated to 

be regulate the immune responses 538 and the administration of HDAC inhibitors has been 

found to suppress inflammation 539–541. In asthmatic subjects reduced production of SCFAs 

would likely result in decreased regulation of HDAC activity, subsequently resulting in 

increased inflammation. This is further supported by the observations that SCFAs are 

protective against asthma in murine experimental models 542,543. 

Additionally, SCFAs have been demonstrated to be protective against metabolic diseases, 

such as obesity and diabetes 544–548. Both these diseases have been found to be comorbid 

with asthma 549–554, and thus reduced SCFA production may explain why these diseases 

often present together. 

However, reduced energy metabolism potential in the asthmatic microbiome could suggest 

altered translocation of bacteria into circulation in the asthmatic subjects compared to the 

control subjects. For instance, it may be indicative of increased bacterial translocation from 

other body habitats in the asthmatic subjects, or it may demonstrate reduced bacterial 

translocation from the gut of the asthmatic subjects compared to the control subjects. 

Further investigations, therefore, would be required to determine where the microbial 

populations originated from in order to fully assess the significance of reduced energy 

metabolism in the asthmatic subjects. 
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4.4.6. The Detection of Viable Bacteria in Human Plasma Samples 
 

The presence of viable, proliferating bacteria was detected in 78% of plasma samples 

assayed (7/9 plasma samples, 4 control plasma samples and 3 asthma samples), whilst all 

negative control plates were negative for bacterial growth as expected. These results were 

consistent with previous studies investigating the presence of viable organisms present in 

the blood, whereby 2-100% of blood samples were found to be positive for viable bacterial 

cells 203, 315, 333, 346,555.   In contrast to  previous investigations, however, was that aerobic 

growth was observed for all culture-positive samples, but anaerobic growth was  only 

observed for four of the culture-positive plasma samples. This was an unexpected finding 

as previous investigations have demonstrated that bacterial growth from blood cultures is 

predominately achieved using anaerobic conditions 203,345 .  

Following identification of the cultured bacteria using Sanger sequencing, aerobic cultures 

included the following genera; Corynebacterium, Kocuria, Micrococcus, and 

Staphylococcus. In contrast, bacteria isolated from the anaerobic cultures were less 

variable and included members of the Staphylococcus genus only. The identified bacteria 

were all represented in the 16S rRNA data, and with the exception of Kocuria, all bacteria 

identified displayed some of the highest total relative abundance scores in the 16S rRNA 

sequencing results; Corynebacterium (4.2%), Kocuria (0.2%), Micrococcus (1.3%), and 

Staphylococcus (4.3%). 

The skin microbiome is dominated by members of the Corynebacterium, Micrococcus, and 

Staphylococcus genera, the proportions of which vary markedly between individuals 556–558. 

Furthermore, several studies have reported the presence of the Kocuria genus on the skin 

of humans and other mammals 559–561. This, therefore, suggests that the organisms 

detected through the microbial culture experiments most likely originate from the skin. The 



233 
 

organisms may have translocated into the blood vessels following wounding of the skin 

prior to sample collection or are the result of bacterial contamination of the blood sample. 

Whilst transient bacteraemia due to breaching of the skin barrier is an accepted 

occurrence, it is thought that such organisms would be rapidly targeted and removed from 

circulation by the immune system 562,563. It is, therefore, more likely that the viable 

organisms detected in the plasma samples were the result of venepuncture contamination, 

whereby organisms from the skin were drawn into the vacutainer during blood collection.  

 However, it has also been proposed that bacteria exist in the blood in a dormant state that 

goes undetected by the immune system 326,333. It is, therefore, also possible that pre-growth 

in brain heart infusion broth prior to plating revived bacteria present in the dormant state 

in the plasma samples. 

 

4.4.7. Likely Origins of the Circulatory Microbiome 
 

PCoA analysis was also used to compare the circulatory microbiome to well established 

Human HMP microbiomes (the gut, oral cavities, and skin) to determine how similar the 

circulatory microbiome was to other, well-established microbiomes. These particular 

microbiome environments were selected as it is the gut, oral cavities, and skin that are 

frequently proposed as the original location of the circulatory microbiome bacteria prior to 

translocation into the blood vessels. 

When PCoA analysis was performed on the circulatory microbiome and various other 

microbiome niches within the human body, the circulatory microbiome data points were 

observed to cluster more closely in the PCoA space with the oral cavity and skin HMP 

microbiome data than it did with the gastrointestinal tract HMP data. This suggested that 

the circulatory microbiome community was more likely to be the result of translocation 



234 
 

from the oral cavity and/ or skin microbiome than from translocation of organisms that 

traditionally colonise the gastrointestinal tract. 

Translocation from the oral cavity is likely to result as a consequence of daily activities, 

including chewing, tooth brushing, flossing311,564–566, and periodontal procedures567. 

Furthermore, of the different oral environments, the circulatory microbiome most closely 

resembled the subgingival plaque and supragingival plaque, thus providing further support 

for the theory that the circulatory microbiome derives from microbial translocation as a 

result of dental care (tooth brushing). 

However, it is also important to take into consideration sources of bacterial contamination 

that may occur during blood sample collection. Venepuncture, the process by which the 

majority of blood samples are collected, is recognised as a cause of transient bacteraemia 

568,569, and despite the use of preventative measures, such as alcohol cleansing of the skin 

prior to breaking the surface, there remains the possibility that organisms may enter the 

blood sample from the skin via this route.  In support of this entry route, was the 

observation that when the circulatory microbiome was compared to different skin 

environments, it displayed the highest degree of similarity with the antecubital fossa 

microbiome, an area on the arm where blood is most commonly drawn from when 

collecting blood samples. 

The observed lack of similarity between the gut microbiome and the circulatory 

microbiome is supported by two studies by Lelouvier et al (2016)361 and Qian et al (2018)337, 

who independently characterised both the faecal and circulatory microbiome of healthy 

controls and patients suffering from liver fibrosis and Parkinson’s, respectively, and found 

that composition of the circulatory microbiome was largely different to that observed for 
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the gut microbiome. This suggested that it is unlikely that bacteria detected in the blood 

originate from the gut as a result of bacterial translocation across the intestinal barrier.  

 

4.4.8. Chapter Summary  
 

In summary a protocol for amplifying and sequencing the V4 region of the bacterial 16S 

rRNA gene from plasma samples was successfully developed. The bacterial populations 

present in the plasma samples were found to be predominately Proteobacteria, and to a 

lesser extent, Actinobacteria, Firmicutes, and Bacteroidetes, and reflected the findings of 

previous investigations into the circulatory microbiome. Moreover, no high-quality V4 

sequences were generated from the experimental negative control, demonstrating that 

the detected microbial DNA originated from the human plasma samples and not as a result 

of microbial contamination from the immediate environment and/ or laboratory reagents. 

Comparison of the asthma circulatory microbiome to the control microbiome revealed a 

number of significant differences in the asthma circulatory microbiome. This included 

increased alpha diversity of the asthmatic microbiome compared to the control 

microbiome, an increased ratio of Firmicutes to Proteobacteria, the detection of several 

bacterial taxa displaying differential relative abundance and decreased metabolic potential 

of the asthmatic microbiome compared to the control microbiome. 

Altered circulatory microbiome composition in the asthmatic subjects is likely due to 

microbial dysbiosis at previously described body sites (airways, gut) influencing microbial 

translocation into the bloodstream. This is likely due to decreased permeability of the 

epithelial barrier and immune dysregulation in the asthmatic subjects changing how the 

asthmatic immune system responds to microbe
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Chapter 5: Characterisation of the Circulatory Microbiome in 
Different Atopic Populations 
 

5.1. Introduction 
 

Atopic asthma is a disease phenotype of atopy, whereby sensitisation to one or more 

allergen results in production of allergen-specific IgE and Th2-driven inflammation. Other 

clinical manifestations of atopy include atopic dermatitis (eczema), a skin disease 

characterised by chronic cutaneous inflammation as a result of hyperreactivity to one or 

more environmental allergen, and allergic rhinitis (hayfever), an inflammatory disorder of 

the nasal mucosa due to sensitivity to one more environmental allergen. 

Atopic sensitisation typically occurs during the first two years of life in genetically 

predisposed infants and can persist through a lifetime, with disease typically first 

presenting as atopic dermatitis (0 – 2 years), followed by the development of asthma (> 5 

years) in approximately half of atopic dermatitis patients, and allergic rhinitis (> 8 years) in 

approximately two thirds of atopic dermatitis patients 33,34. The pattern of clinical 

manifestations presenting in atopic individuals is referred to as the atopic march. 

This results in atopic individuals frequently presenting with more than one clinical 

manifestation of atopic disease. A study carried at by Kapoor et al (2008), for instance, 

found that by the age of 3 years 66% of infants diagnosed with atopic dermatitis had 

developed one or more additional forms of atopic disease 35. 

Asthma and allergic rhinitis are two atopic manifestations that share similar prevalence, 

pathophysiology, and treatment approaches. Both frequently coexist within the same 

patient, with approximately 20-50% of allergic rhinitis patients also presenting with asthma 

570–572, and over 80% of asthmatic patients also presenting with allergic rhinitis 570,571,573–575. 
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Allergic rhinitis has been associated with the development of asthma 577–581 and asthma 

severity 582. Furthermore, bronchial hyperresponsiveness in the absence of asthma is 

relatively common in subjects with allergic rhinitis 583,584, whilst in asthmatics eosinophilic 

infiltration of the nasal mucosa has been observed in the absence of allergic rhinitis 585, and 

both diseases are typically treated with corticosteroids.  

These similarities and overlap in pathogenesis of asthma and allergic rhinitis has led to the 

‘united airway disease hypothesis’ being proposed, whereby it is speculated that the upper 

and lower airway diseases are both manifestations of a single inflammatory process 586,587. 

Prevalence of both diseases has been increasing, and thus it is highly likely that the two 

diseases share the same environmental factor(s) responsible for the increasing prevalence 

rates. 

 

5.1.1. Aims of the Chapter 
 

The aim of this study was to expand the knowledge of the circulatory microbiome in atopic 

disease, by characterising the circulatory microbiome of subjects with asthma, allergic 

rhinitis, or both asthma and allergic rhinitis (hyper-allergic) compared to non-atopic healthy 

controls. This was achieved using the V4 rRNA amplification and sequencing techniques 

developed in Chapter 4, and the study predominately focussed on identifying bacterial taxa 

that could be used as circulatory biomarkers for asthma, allergic rhinitis, or hyper-allergic. 
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5.2. Methods 
 

5.2.1. Sample Collection 
 

To examine the effects of atopic disease on the circulatory microbiome, 25 historic serum 

samples were acquired as a result of a collaboration with Professor Debbie Jarvis of the 

National Lung and Heart Institute. Professor Jarvis kindly donated serum samples from 4 

asthmatic subjects, 7 allergic rhinitis subjects, 3 hyper-allergic subjects (diagnosed with 

both asthma and allergic rhinitis), and 11 healthy control subjects, as part of a preliminary 

investigation into whether a circulatory microbiome could be characterised using historic 

serum samples.  

 

5.2.2. Extraction and Amplification of the V4 region of the Bacterial 16S rRNA Gene 
 

Extraction and amplification of the V4 region of the bacterial 16S rRNA gene was performed 

using the optimised nested PCR protocol developed in Chapter 4. 

In brief, direct amplification was performed on the human serum samples using the V4 

primers and the Phusion blood direct PCR kit (Thermo Fisher Scientific) (Table 5.1). An 

experimental negative control was generated, whereby serum was replaced with UV-

treated molecular biology grade water, and sterile conditions during PCR set-up were 

maintained (see Chapter 2, section 2.1 for full details). 
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Table 5.1: PCR Amplification of the V4 region of the 16S rRNA gene in historic serum 
samples. The optimised Phusion blood direct protocol developed in Chapter 4 was utilised 
to amplify the V4 region of the bacterial 16S rRNA gene in 25% human serum sample. (A) 
The reagents used in the Phusion blood direct end-point PCR protocol. (B)  The cycling 
parameters used in the Phusion blood direct end-point PCR protocol. 

 

A.  

Reagent Volume (µl) 

UV-treated molecular biology grade water 2.6 

2X Phusion blood PCR buffer 10.0 

V4 Fwd primer (10µM) 1.0 

V4 Rev primer (10µM) 1.0 

Phusion blood II DNA polymerase 0.4 

Serum 5.0 

 

 

Gel electrophoresis was then carried out to confirm successful amplification of the V4 

region, and the MinElute purification protocol was carried out to purify the V4 amplicons 

ready for the second nested PCR step. Full descriptions of the two methods can be found 

in the general methods chapter (sections 2.2 & 2.3.1). Attachment of the Illumina XT 

adaptor was performed on the purified V4 amplicons using a second PCR step involving the 

V4 primer pair 515F and 806R  and an Accuprime Pfx supermix mastermix (Thermo Fisher 

Scientific) (Table 5.2). 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Lysis of cells 98 5 minutes 1 

Denaturation 98 1 second  

Annealing  53 5 seconds 35 

Extension 72 15 seconds  

Final Extension 72 7 minute 1 
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Table 5.2: Attachment of Illumina sequencing motifs onto V4 16S rRNA amplicons 
generated from historic serum samples using PCR. Following confirmation of successful 
V4 16S rRNA amplification, Accuprime PCR was performed on the V4 amplicons generated 
from the serum samples to attach Illumina XT adaptors onto the amplicons. (A) The 
reagents used in the Accuprime end-point PCR protocol. (B)  The cycling parameters used 
in the Accuprime end-point PCR protocol. 

 

A.  

Reagent Volume (µl) 

Accuprime master mix 22.5µl 

515F primer (10µM) 0.5µl 

806R primer (10µM) 0.5µl 

Purified V4 amplicons 1.5µl 
 

 

5.2.3. Sequencing of the XT-V4 amplicons 
 

Following confirmation of successful attachment of the XT adaptors using gel 

electrophoresis (Chapter 2, section 2.2). The XT-V4 amplicons were then purified using 

AMPure XP PCR purification protocol (Chapter 2, section 2.3.2) and then submitted to the 

Centre for Genomic Research at the University of Liverpool to undergo Illumina sequencing. 

At the centre the XT-V4 amplicons were barcoded using the Nextera DNA library kit, and 

then multiplexed and sequenced using the Illumina MiSeq system with a  250bp paired-end 

read metric. 

B.    

Cycle Step Temperature (oC) Time Cycles 

Lysis of cells 95 5 minutes 1 

Denaturation 95 15 second  

Annealing  55 30 seconds 7 

Extension 68 25 seconds  

Final Extension 68 7 minutes 1 
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5.2.4. Alignment of the V4 Amplicons to known Bacterial Genomes 
 

Following successful sequencing of the V4 amplicons using Illumina sequencing technology, 

the trimmed and demultiplexed sequencing data was uploaded to Nephele 2.0 [Public web 

access: https://nephele.niaid.nih.gov/#cloud]. The Nephele 2.0 QIIME 16S FASTQ paired-

end open reference pipeline was used to remove low-quality V4 reads (defined as having a 

Phred quality score less than 19.0), remove chimeric sequences, and align the V4 reads  to 

bacterial OTUs with a 99% similarity threshold using the Silva database. 

 

5.2.5. Comparison of the Atopic Microbiome compared to the Control  Microbiome 
 

The phylogenetic diversity of the bacterial OTUs detected in the serum samples was first 

analysed by generating a rarefaction curve using R software (see Chapter 2, section 2.4.2 

for additional detail). 

Nephele 2.0 software was then used to assign the bacterial OTUs to bacterial taxa, and R 

software was used to measure the relative abundance of the bacterial taxa detected in the 

serum samples (See Chapter 3, section 2.3.2 for additional detail). The relative abundance 

values of high-abundant bacterial phyla and genera (taxa with a relative abundance greater 

than 1%) were plotted (see Chapter 2.4.2). 

Alpha diversity of the bacterial populations detected in the serum samples was measured 

using the Nephele 2.0 QIIME 16S FASTQ paired-end open reference pipeline to calculate 

Shannon and Chao1 diversity indices [Public web access: 

https://nephele.niaid.nih.gov/#cloud]. R software was then used to plot alpha diversity as 

a boxplot and perform the appropriate statistical tests to determine if the atopic 

https://nephele.niaid.nih.gov/#cloud
https://nephele.niaid.nih.gov/#cloud
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microbiomes differed significantly to the control microbiome in terms of alpha diversity 

(see Chapter 2, section 2.4.4). 

Beta diversity was also measured using the OTU table generated from the Nephele 2.0 

QIIME 16S FASTQ paired-end open reference pipeline. This involved measuring Bray Curtis 

dissimilarity and plotting PCoA graphs using R software (See Chapter 2, section 2.4.6 for 

additional information). PERMANOVA analysis was then performed to determine if there 

were any significant differences between the atopic and control microbiomes. 

LEfSe analysis was then applied to the relative abundance data to determine bacterial taxa 

significantly associated with the atopic microbiomes compared to the control microbiome. 

This was performed using the default settings of the online Galaxy workflow framework 394 

on the relative abundance tables of all bacterial taxa detected in the serum samples [Public 

web access: http://huttenhower.sph.harvard.edu/galaxy/] (See Chapter 2, Section 2.4.3. 

for additional information). 

 

5.2.6. Prediction of the Serum Metagenome Functional Content 
 

To determine how differential bacterial abundance in the atopic subjects altered microbial 

activity in the atopic microbiome PICRUSt analysis was performed using the online Galaxy 

platform. An OTU table was first generated from the V4 16S rRNA sequencing data using 

Nephele 2.0 software with a closed reference OTU picking strategy and the GreenGenes 99 

database. The OTU table was then uploaded to Galaxy, normalised, and functional 

predictions based on the bacterial OTUs detected in the serum samples was performed to 

determine KEGG ortholog abundance present in the samples (See Chapter 2, section 2.4.5 

for additional information). 

http://huttenhower.sph.harvard.edu/galaxy/
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The level 1 – 3 KEGG ortholog counts were converted into abundance percentage values, 

and R software was used to plot the abundance of high-abundant level 3 KEGG pathways 

detected in the serum samples (defined as having a predicted total abundance greater than 

1% in the serum samples). LEfSe analysis was then performed on the level 1,2, and 3 KEGG 

orthologs to determine differential KEGG ortholog abundance present in the atopic serum 

compared to the control serum. 

     

5.2.7. Culturing of Serum Samples on Selective Growth Media 
 

To determine whether there were viable bacterial cells present in the serum samples, the 

blood sample culture method developed in Chapter 4 was carried out using the serum 

samples. In brief, 250µl of serum was inoculated into 10ml of brain heart infusion broth. 

Negative and positive experimental controls were generated by inoculating 10ml of brain 

heart infusion broth with UV-treated molecular biology grade water and Pseudomonas 

bacterial colonies respectively.  

The inoculated broths were incubated at 37oC for 5 days. After the incubation period the 

inoculated broths were removed from the incubator and immediately streaked onto 

Columbia Blood agar (Biomerieux), CLED medium (Biomerieux), and A.R.I.A plates 

(Biomerieux) using sterile 20µl loops. This was performed in duplicate for each sample/ 

control and sterile conditions were maintained throughout. The streaked Columbia Blood 

agar plates and CLED agar plates were incubated at 37oC for 72 hrs. At 24 hrs, 48 hrs, and 

72 hrs, the plates were assessed for bacterial growth.  

The A.R.I.A plates were placed in a 2.5L anaerobic chamber (Sigma-Aldrich) and incubated 

at 37oC for 120hrs. After 120hrs the plates were removed from the anaerobic chamber and 

assessed for bacterial growth. 
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5.3. Results 
 

5.3.1. Amplification of the V4 region of the 16S rRNA gene from Bacterial DNA 
present in Human Serum Samples 

 

Nested PCR was performed on the serum samples to generate a V4 amplicon library 

suitable for Illumina MiSeq Sequencing. 

Analysis of the nested PCR end-products using gel electrophoresis revealed that the 

protocol had successfully generated V4 amplicons containing the Illumina XT adapters from 

all serum samples under investigation. This was evident in the observation of a single band 

of approximately 355bp in length. A number of samples, however, displayed a faint band 

at approximately 290bp (Figure 5.1). The V4 amplicons alone are approximately 290bp in 

length, whilst the V4-XT amplicons are approximately 355bp in length (V4 amplicon = 

290bp, the forward XT adaptor sequence = 33bp, and the reverse XT adaptor sequence = 

34bp). The detection of faint bands representing DNA approximately 290bp long, 

therefore, indicates the presence of V4 amplicons that do not have the XT adaptor 

sequences attached. 

Analysis of the experimental negative control was as expected, with no amplification of the 

V4 region observed. This indicated that the sterile conditions utilised had successfully 

prevented bacterial DNA being introduced to the PCR reactions from the immediate 

environment and/ or PCR reagents (Figure 5.1, NC). 
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Figure 5.1: Direct amplification of the V4 region of the bacterial 16S rRNA gene from 
human serum samples. Amplification of the V4 region of the 16S rRNA gene was achieved 
by performing nested PCR on serum samples from control subjects (n = 11, C lanes), 
asthmatic subjects (n = 4, A lanes), allergic rhinitis subjects (n = 7, AR lanes), and hyper-
allergic subjects (n = 3, AAR lanes). The first stage involved 35 cycles of PCR, the V4 primers 
and a Phusion blood direct protocol. The V4 amplicons were purified using the MinElute 
protocol, and second stage PCR was performed using 7 cycles of PCR, the V4 primer pair 
515F and 806R, and an Accuprime protocol. The V4-XT amplicons then underwent a final 
clean-up using SPRI beads at a 0.8X ratio of PCR product to beads. 

Abbreviations: L, 100bp ladder; C, control samples; A, Asthma samples;  AR, Allergic Rhinitis 
samples; AAR, hyper-allergic samples; PC, E.coli positive control; NC, UV dH2O negative 
control. 

 

5.3.2. Sequencing of the V4 16S rRNA reads generated from Human Serum 
Samples 

 

The total number of V4 16S rRNA reads generated from the serum samples was 2,580,704. 

Following removal of low quality reads and chimeric sequences, an average of 84,124.09 

high-quality reads were generated from the control samples (range = 59,431 – 128,000), 

70,735.75 from the asthma samples (range = 58,396 – 94,415), 84,104.86 from the allergic 

rhinitis samples (range = 61,979 – 112,915), and 90,654.33 from the hyper-allergic samples 

L      C11    C10   AAR1   AR2     A3     AR6     C7        C6      AR4     C9     AR1 

L        C5      AR2     A2       C2     AR1     A4       C4       C1     AR7    AR5    A1    NC 

  L      AAR     C8       C3     PC     NC 
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(range = 68,123 – 109,027) (Figure 5.2, see also Supplementary materials, Table S13). 

Statistical analysis of the number of high-quality V4 16S rRNA reads generated from the 

different sample groups using a Pairwise t test found no significant differences in the 

number of V4 reads generated from each group, thus suggesting similar bacterial loads in 

the different sample groups (data not shown). 

A total of 12,098 OTUs with a 99% similarity threshold were detected in the serum samples. 

This included a total of 7,601 different OTUs detected in the control subjects (range = 738 

– 2,206 per sample), 2,878 OTUs detected in the asthmatic subjects (range = 751 – 1,323 

per sample), 7,369 OTUs detected in the allergic rhinitis subjects (range = 1,241 – 2,757 per 

sample), and 2,856 OTUs detected in the hyper-allergic subjects (range = 1,084 – 1,447 per 

sample)(Figure 5.2 see also Supplementary materials, Table S13). 

Comparison of the atopic samples to the control samples revealed a shared core circulatory 

microbiome composed of 780 OTUs that were present in all four sample groups. An 

additional 2,719 OTUs were uniquely detected in the control subjects, 441 OTUs were only 

detected in the asthmatic subjects, 2,723 in the allergic rhinitis subjects, and 449 were 

unique to the hyper-allergic subjects.  

Analysis of the experimental negative control revealed that although the negative control 

was negative for V4 amplification when examined using gel electrophoresis, a small amount 

of V4 amplification was achieved. A total of 204 high-quality V4 reads were generated from 

the negative control, which aligned to 93 OTUs (Figure 5.2 see also Supplementary 

Materials, Table S23). However, compared to the serum samples, the number of V4 reads 

generated from the negative control was significantly lower, suggesting that the detection 

of bacterial DNA in the negative control is unlikely to affect microbiome analysis of the 

serum samples. 
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Analysis of the rarefaction curve suggested that the number of OTUs detected in the 

asthma and allergic rhinitis subjects differed significantly, as demonstrated by noticeably 

higher numbers of OTUs detected in the allergic rhinitis samples compared to the asthmatic 

samples (Figure 5.2). Statistical analysis using a Pairwise t test further supported this 

interpretation, whereby the only close to significant difference in number of OTUs was 

between the asthmatic and allergic rhinitis subjects (P value = 0.0600, Pairwise t test). 

Intriguingly, the number of OTUs detected in the hyper-allergic samples was similar to the 

number detected in the asthma samples (Figure 5.2), suggesting that asthma was 

associated with decreased numbers of bacterial OTUs present in the blood vessels. 
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B     

Group Number of 
Samples 

Mean number of 
raw reads 

Mean number of 
high-quality reads 

Total number of 
bacterial OTUs 

Control 11 108,294.73 84,124.09 7,601 

Asthma 4 90,334.50 70,735.75 2,878 

Allergic Rhinitis 7 102,954.14 84,104.86 7,369 

Hyper-Allergic 3 116,420.33 90,654.33 2,856 

Negative Control 1 402.00 204.00 93 
 

 

Figure 5.2: Quantification of bacterial V4 reads sequenced from human serum samples 
using Illumina sequencing. Illumina sequencing was used to sequence bacterial V4 
amplicons generated from serum samples from control subjects (n = 11), asthmatic 
subjects (n = 4), allergic rhinitis subjects (n = 7), hyper-allergic rhinitis (n = 3). Following 
successful sequencing of the V4 amplicons Nephele 2.0 was used remove low-quality reads 
and chimeric sequences, and to align the high-quality V4 reads to bacterial operational 
taxonomic units (OTUs). (A) A rarefaction curve showing the level of phylogenetic diversity 
of OTUs detected in the serum samples. (B) Quantification of the V4 reads generated from 
the control serum samples, asthmatic serum samples, allergic rhinitis serum samples, and 
hyper-allergic, and the total number of bacterial OTUs the reads align to with a 99% 
similarity threshold. 

 

A 
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5.3.3. Taxonomic Classification of the detected OTUs 
 

The detected OTUs were classified into 19 phyla and 348 genera. At the phylum level, the 

detected bacterial taxa were predominately Proteobacteria, representing a total of 50.50% 

of the detected bacteria, and to a lesser extent Firmicutes (23.75%), Actinobacteria 

(16.11%), Cyanobacteria (4.68%), and Bacteroidetes (3.74%) (Figure 5.3.A).  

Analysis at the genus level revealed that the circulatory microbiome was predominately 

composed of 13 bacterial genera displayed an average relative abundance greater than 1%. 

These genera included, Pseudomonas (total relative abundance = 24.30%), Staphylococcus 

(12.24%), Corynebacterium 1 (8.25%), Serratia (5.83%), Streptococcus (4.67%), 

Mycobacterium (3.75%), Gossypium arboreum (3.30%), Acinetobacter (2.53%), uncultured 

Bacteroidales S24-7 group bacterium (2.34%), Haemophilus (1.90%), Aquabacterium 

(1.86%), Anoxybacterium (1.86%), and Propionibacterium (1.60%) (Figure 5.3.B). An 

additional 14 genera had a mean relative abundance greater than 1% in one or more of the 

sample groups but did not have a total relative abundance score greater than 1% overall 

(Figure 5.3.B). 

Analysis of the experimental negative control revealed that the negative control contained 

a similar bacterial population at both the phylum and genus level to the bacterial 

populations detected in the serum samples. However, the sample contained significantly 

less microbial DNA compared to the serum samples, and thus it is unlikely that the 

detection of low-level bacterial contamination will have a significant impact on 

downstream analysis of the serum microbiome. 
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Figure 5.3: Composition of the bacterial circulatory microbiome in control and atopic 
subjects. Bacterial composition was determined using QIIME FASTQ paired-end analysis on 
sequenced 16S rRNA (V4 region) reads generated from human serum samples taken from 
control subjects (CS, n = 11, mean number of reads = 88,169), asthmatic subjects (AA, n= 4, 
mean number of reads = 73,966), allergic rhinitis subjects (AR, n = 7, mean number of reads 
= 91,502) and hyper-allergic subjects (AA + AR, n = 3, mean number of reads = 99,329), and 
an experimental negative control (NC, n = 1, number of reads = 204). Taxa with a relative 
abundance > 1 were plotted, and low-abundant taxa (< 1.0%) were grouped and plotted as 
Taxa < 1% abundance.  

A 

B 
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5.3.4. Alpha Diversity of the Circulatory Microbiome in Atopic Populations 
 

Alpha diversity was calculated to determine whether the mean species diversity present in 

the circulatory microbiome of atopic subjects was significantly different to the level of 

diversity present in non-atopic subjects. Alpha diversity was determined by measuring the 

richness and evenness of bacterial taxa present in the serum samples (Shannon diversity). 

The predicted number of bacterial taxa present in the serum samples was also calculated 

by extrapolating out the number of rare organisms that likely went undetected due to 

under-sampling (Chao1 diversity).  

The mean Shannon and Chao1 diversity indices were first calculated for the control and 

atopic circulatory microbiomes. Statistical analysis was performed and there were no 

significant differences detected in the alpha diversity of the atopic circulatory microbiome 

compared to the control microbiome (Shannon diversity, P value = 0.6150, Unpaired t test 

; Chao1 diversity, P value = 0.6475, Wilcoxon rank sum test).  

The mean Shannon and diversity indices for the different atopic populations (asthma, 

allergic rhinitis, hyper-allergic) were then determined (Figure 5.4 and 5.5, respectively). 

Statistical analysis using a one-way ANOVA test revealed that the sample group had no 

significant impact on Shannon diversity indices  (P value = 0.1520, ANOVA test) (Figure 5.4), 

but did have a significant impact on Chao1 diversity indices (P value = 0.0218, ANOVA test) 

(Figure 5.5). 

Additional statistical analysis on the alpha diversity indices were performed using Pairwise 

t tests to determine whether the different atopic sample groups differed significantly. As 

expected, the pairwise t test performed on the Shannon diversity scores revealed no 

significant differences in Shannon diversity, thus confirming the results of the one-way 

ANOVA test (Figure 5.4) 
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In contrast, analysis of the Chao1 diversity scores using the Pairwise t test revealed that the 

asthmatic subjects Chao1 diversity scores were significantly lower compared to Chao1 

diversity observed in the allergic rhinitis subjects (P value = 0.0210, Pairwise t test) (Figure 

5.5). Additionally, when the allergic rhinitis subjects were compared to the control subjects, 

the allergic rhinitis subjects displayed a close to significant increase in Chao1 diversity 

compared to the control subjects (P value = 0.0950, Pairwise t test), whilst the asthmatic 

subjects displayed a close to significant decrease in Chao1 diversity compared to the 

control subjects (P value = 0.1810, Pairwise t test) (Figure 5.5). This suggests that allergic 

rhinitis increases bacterial diversity in the circulatory microbiome, whilst asthma decreases 

diversity. 
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B 

 Pairwise T test 
Group Control (CS) Asthma (AA) Allergic Rhinitis (AR) 

Asthma (AA) 0.31 - - 
Allergic Rhinitis (AR) 0.31 0.17 - 
Hyper-allergic (AA + AR) 0.75 0.56 0.31 

 

 

Figure 5.4: Comparison of Shannon diversity detected in the circulatory microbiome of 
atopic subjects compared to control subjects. Alpha diversity was measured using rarefied 
OTU tables generated from 16S rRNA sequencing data from serum samples collected from 
asthmatic subjects (AA, n = 4), allergic rhinitis subjects (AR, n = 7), hyper-allergic subjects 
(AA + AR, n = 3), and non-atopic control subjects (CS, n = 11). Shannon diversity index scores 
were generated from the OTU tables in order to measure the richness and evenness of 
bacterial taxa present in the serum samples. (A) Shannon diversity detected in the 
circulatory microbiome of control subjects compared to the level of diversity detected in 
different atopic populations. (B) Statistical analysis of the Shannon diversity scores 
detected in the serum samples using a Pairwise t test.  
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B 

 Pairwise T test 
Group Control (CS) Asthma (AA) Allergic Rhinitis (AR) 

Asthma (AA) 0.181 - - 
Allergic Rhinitis (AR) 0.095 0.021 - 
Hyper-allergic (AA + AR) 0.761 0.409 0.141 

 

 

Figure 5.5: Comparison of Chao1 diversity detected in the circulatory microbiome of 
atopic subjects compared to control subjects. Alpha diversity was measured using rarefied 
OTU tables generated from 16S rRNA sequencing data from serum samples collected from 
asthmatic subjects (AA, n = 4), allergic rhinitis subjects (AR, n = 7), hyper-allergic subjects 
(AA + AR, n = 3), and non-atopic control subjects (CS, n = 11). Chao1 diversity scores were 
generated from the OTU tables in order to determine the predicted number of bacterial 
taxa present in the serum samples by extrapolating out the number of rare organisms that 
may not have been detected in the serum samples due to under-sampling. (A) Chao1 
diversity detected in the circulatory microbiome of control subjects compared to the level 
of diversity detected in different atopic populations. (B) Statistical analysis of the Chao1 
diversity scores detected in the serum samples using a Pairwise t test. 

 

 

A 
* 
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5.3.5. Beta Diversity of the Circulatory microbiome in Atopic Populations 
 

In addition to measuring alpha diversity, beta diversity was also measured to determine 

how similar the individual circulatory microbiomes were to one another, and whether the 

presence of atopic disease significantly altered the composition of the circulatory 

microbiome. This was achieved by measuring Bray Curtis dissimilarity using the V4 16S 

rRNA sequencing data generated from the serum samples. PCoA analysis was then 

performed to determine whether the serum samples clustered on the basis of atopic 

disease, and PERMANOVA was carried out to determine if any observed clustering was 

statistically significant. 

Overall analysis of the PCoA plot revealed no distinct clustering of the circulatory 

microbiomes (Figure 5.6). Comparison of the different atopic diseases, however, found that 

of the four subject groups under investigation (Control, Asthma, Allergic rhinitis, Hyper-

Allergic), the allergic rhinitis microbiomes appeared more similar to one another compared 

to the microbiomes of members of the other subject groups (Figure 5.6). This suggests the 

possibility that the circulatory microbiome of the control subjects, asthma subjects, and 

hyper-allergic subjects, is due to non-specific bacterial translocation, resulting in a high 

level of inter-variation, whereas translocation in allergic rhinitis subjects may be more 

specific, thus reducing the level of variability in the circulatory microbiome of these 

subjects. 

Interpretation of the PCoA plot was supported by PERMANOVA, whereby comparison of all 

the samples, and comparison of the control serum samples against the different atopic 

diseases, revealed no statistically significant differences in the circulatory microbiomes 

(Figure 5.6). Moreover, analysis of the control samples to the allergic rhinitis samples 

generated the lowest P value, thus providing further support that allergic rhinitis had the 
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greatest effect on composition of the circulatory microbiome (Figure 5.6). However, the 

allergic rhinitis subject group was the largest group of the three atopic disease groups 

under investigation, and thus changes in the circulatory microbiome of this subject group 

may be more apparent compared to the remaining two disease groups due to increased 

sample numbers. 

 

 

Figure 5.6: Comparison of beta diversity of the bacterial populations detected in the 
circulatory microbiome of atopic subjects compared to a control subjects. Beta diversity 
of the bacterial populations detected in serum samples from control subjects (n = 11), 
asthmatic subjects (n = 4), allergic rhinitis subjects (n = 7), and hyper-allergic subjects (n = 
3) was determined by measuring quantitative phylogenetic distances between each of the 
serum samples. This was achieved by measuring Bray Curtis dissimilarity from a normalised 
OTU table generated from the 16S rRNA sequencing data obtained from the serum 
samples. PCoA analysis was performed. Each data point represents an individual serum 
sample, and the distance between datapoints is representative of the similarity between 
samples. Statistical analysis using PERMANOVA revealed no significant differences in the 
serum samples (A), in the asthma samples compared to the control samples (B), in the 
allergic rhinitis samples compared to the control samples (C), or in the hyper-allergic 
samples compared to the control samples (D).  
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A 

C 

B 

D 

P value = 0.425 
P value = 0.848 

P value = 0.107 P value = 0.478 
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5.3.6. Differential Bacterial Abundance in the Atopic Subjects compared to the 
Control Subjects 

 

The   circulatory microbiome detected in the atopic  subjects was first compared to the 

circulatory microbiome detected in the non-atopic control subjects to determine whether 

atopic disease was associated with  changes in the circulatory microbiome. 

Comparison of the control and atopic subjects was achieved by performing LEfSe analysis  

on the bacterial taxa relative abundance values. A total of 20 bacterial taxa were detected 

at significantly altered levels in the atopic circulatory microbiome compared to the control 

circulatory microbiome (P value < 0.05, LDA effect size > 2.0) (Figure 5.7). The majority of 

bacterial taxa detected at significantly altered levels were low abundant (relative 

abundance < 1.0%), and included  7 bacterial taxa that were enriched in the atopic subjects 

compared to the control subjects, and 13 taxa that were significantly decreased in the 

atopic subjects compared to the control subjects (Figure 5.7). Of note was the observation 

that the high-abundant taxa displaying significant differential abundance were typically 

detected in both the control and atopic subjects, whereas the low-abundant taxa displaying 

differential abundance were generally condition specific (Figure 5.7.C). 

Bacterial taxa significantly increased in the atopic subjects included the Rickettsiales order, 

the Clostridiales Family XI, and the Aerococcus, Camellia sinensis var sinensis, and Roseburia 

genera (Figure 5.7). Of interest was the observation that, with the exception of the 

Clostridiales Family XI and the Roseburia genus, the bacterial taxa significantly increased in 

the atopic subjects were not detected in the controls subjects (Figure 5.7.C), suggesting 

that in the absence of atopic disease these bacterial taxa are not typically present in the 

circulatory microbiome. 
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Similarly, to the enriched taxa, the majority of bacterial taxa observed to be significantly 

decreased in the atopic subjects were condition specific, and only detected in the control 

subjects. These taxa included the Nannocystaceae family, and the Blastococcus, 

Gardnerella, Nannocystis, Azospira, and Pseudoxanthomonas genera. Additionally, the 

Flavobacteriales and Micrococcales orders, the Flavobacteriia class, the  Flavobacteriaceae 

family, and the Cloacibacterium and Porphyromonas genera, were also detected at 

increased levels in the control subjects, although these taxa were also present in the atopic 

subjects (Figure 5.7). 

Overall, the results revealed the presence of significant changes in the circulatory 

microbiome in an atopic population compared to a non-atopic control population. The next 

step, therefore, was to determine whether the different atopic populations were 

associated with distinct changes to the circulatory microbiome. 
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Figure 5.7: Significant changes in bacterial taxa relative abundance in the circulatory 
microbiome of atopic subjects compared to control subjects. LEfSe analysis was 
performed on the bacterial relative abundance data from atopic subjects (n = 14) and non-
atopic control subjects (n = 11) to determine the presence of bacterial taxa with statistically 
significant changes in taxa abundance in the atopic subjects compared to the control 
subjects (defined as having a LDA effect size > 2.0 and a P value < 0.05). (A) A taxonomic 
cladogram highlighting the statistically and biologically consistent differences between the 
atopic circulatory microbiome compared to the control circulatory microbiome. 
Differences are presented in the colour of the most abundant sample group (red represents 
taxa significantly enriched in the asthmatic subjects, green represents taxa significantly 
enriched in the control subjects,  and yellow representing non-significant taxa). The circle 
diameter is proportional to the taxon’s abundance in the circulatory microbiome. (B) 
Histogram of the LDA scores generated for the differentially abundant taxa present in the 
atopic subjects compared to the control subjects. (C) Relative abundance of the 
differentially abundant bacterial taxa. 

 

 

Analysis of the bacterial populations present in the asthmatic circulatory microbiome 

compared to the non-atopic control circulatory microbiome revealed that 20 bacterial taxa 

significantly differed in relative abundance in the asthmatic subjects compared to the 

control subjects (P value < 0.05, LDA effect size > 2.0) (Figure 5.8). This included 12 taxa 

that were had significantly increased abundance in the asthmatic circulatory microbiome, 

and 8 that had significantly decreased abundance compared to the levels detected in the 

control subjects.  

Bacterial taxa significantly decreased in the asthmatic subjects belonged to the 

Negativicutes class, the Micrococcales order, and the Nocardioidaceae and 

Porphyromonadaceae families. In contrast, the bacterial taxa significantly increased in the 

asthmatic subjects belonged to the Chlamydiae phylum, the Anemone flaccida order, and 

the Rickettsiales Incertae Sedis family. Additionally, there were also a number of bacterial 

genera significantly increased in the asthmatic subjects, including Turicella, Aerococcus, 

and Blautia (Figure 5.8). 
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Overall, the majority of taxa that were detected at significantly altered levels in the 

asthmatic subjects were defined as low-abundant taxa (had a relative abundance < 1.0%), 

and were condition specific, whereby the bacterial taxa was only present at detectable 

levels in just the control samples or just the asthmatic samples (Figure 5.8.D). The 

Micrococcales order and Turicella genus were the exception. These bacterial taxa were 

detected at high abundance levels (relative abundance > 1.0%) and were observed in both 

the control subjects and the asthmatic subjects (Figure 5.8.C). Micrococcales were 

significantly decreased in the asthmatic subjects compared to the control subjects, whilst 

Turicella were significantly enriched in the asthmatic subjects (Figure 5.8.C).  
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Figure 5.8: Significant changes in bacterial taxa relative abundance in the circulatory 
microbiome of asthmatic subjects compared to control subjects. LEfSe analysis was 
performed on the bacterial relative abundance data from asthma subjects (AA; N = 4) and 
control subjects (CS; n = 11) to determine the presence of bacterial taxa with statistically 
significant changes in taxa abundance in the asthmatic subjects compared to the control 
subjects (defined as having a LDA effect size > 2.0 and a P value < 0.05). (A) A taxonomic 
cladogram highlighting the statistically and biologically consistent differences between the 
asthmatic circulatory microbiome compared to the control microbiome. Differences are 
presented in the colour of the most abundant sample group (red represents taxa 
significantly enriched in the asthmatic subjects, green represents taxa significantly enriched 
in the control subjects,  and yellow representing non-significant taxa). The circle diameter 
is proportional to the taxon’s abundance in the circulatory microbiome. (B) Histogram of 
the LDA scores generated for the differentially abundant taxa present in the asthmatic 
subjects compared to the non-asthmatic subjects. (C) Relative abundance of high-abundant 
bacterial taxa displaying differential abundance. (D) Relative abundance of low-abundant 
bacterial taxa displaying differential abundance. 

 

Comparison of the circulatory microbiome of allergic rhinitis subjects compared to non-

atopic controls using LEfSe analysis identified 29 bacterial taxa that significantly differed 

between the two groups (defined as having a P value < 0.05 and a LDA effect size > 2.0) 

(Figure 5.9). In total, 28 bacterial taxa were significantly increased in the allergic rhinitis 

subjects, and one taxon, the Lachnospiraceae NK4A136 group genus, was significantly 

decreased in the allergic rhinitis subjects compared to the controls (Figure 5.9). 5 bacterial 

taxa had mean relative abundance scores less than 0.004% (range = 0.000516 – 0.003093) 

and were not included in further evaluation as changes in bacterial populations at such low 

levels is unlikely to have significant impact on the overall composition of the circulatory 

microbiome. These taxa included the Camellia sinesis var. sinesis order, family, and genus, 

the Mitochondria family, and the Tetrasphaera genus; and detection of the taxa was only 

observed in the allergic rhinitis subjects. 

The remaining 23 taxa enriched in the allergic rhinitis circulatory microbiome were 

predominately members of the Actinobacteria phylum (the Acidmicrobiia class; the 
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Acidimicrobiales order; the Intrasporangiaceae and Solirubrobacteraceae families; and the 

Arthrobacter, Ornithinibacter, and Solirubrobacter genera) and the Proteobacteria phylum 

(the Rhodospirillales and Rickettsiales orders; the Acetobacteraceae and 

Hyphomicrobiaceae families, and the Devosia, Oryza sativa Indica Group, and 

Psychrobacter genera)(Figure 5.9). Additionally the Fusobacteria phylum and a number of 

its members (Fusobacteriia, Fusobacteriales, Fusobacteriaceae, and Fusobacterium) were 

enriched in the allergic rhinitis circulatory microbiome along with two genera of the 

Bacteroidetes phylum (Bergeyella and Prevotella 7), and two members of the Firmicutes 

phylum (Family XI of the Clostridiales order and the Aerococcus genus)(Figure 5.9). 

Of the bacterial taxa identified, 2 taxa were classed as high-abundant (the Family XI of the 

Clostridiales order and the Lachnospiraceae NK4A136 group genus) (Figure 5.9.C). The 

remaining 27 taxa were low abundant, with mean relative abundance values less than 0.4% 

(Figure 5.9.D).  
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Figure 5.9: Significant changes in bacterial taxa relative abundance in the circulatory 
microbiome of allergic rhinitis subjects compared to control subjects. LEfSe analysis was 
performed on the bacterial relative abundance data from allergic rhinitis subjects (AR; n = 
7) and control subjects (CS; n = 11) to determine the presence of bacterial taxa with 
statistically significant changes in taxa abundance in the allergic rhinitis subjects compared 
to the control subjects (defined as having a LDA effect size > 2.0 and a P value < 0.05). (A) 
A taxonomic cladogram highlighting the statistically and biologically consistent differences 
between the allergic rhinitis circulatory microbiome compared to the control circulatory 
microbiome. Differences are presented in the colour of the most abundant sample group 
(red represents taxa significantly enriched in the allergic rhinitis subjects, green represents 
taxa significantly enriched in the control subjects,  and yellow representing non-significant 
taxa). The circle diameter is proportional to the taxon’s abundance in the circulatory 
microbiome. (B) Histogram of the LDA scores generated for the differentially abundant taxa 
present in the allergic rhinitis subjects compared to the non-asthmatic subjects. (C) Relative 
abundance of high-abundant bacterial taxa displaying differential abundance. (D) Relative 
abundance of low-abundant bacterial taxa displaying differential abundance. 

 

Comparison of the bacterial taxa present in the circulatory microbiome of the hyper-allergic 

subjects compared to non-atopic controls revealed that 15 bacterial taxa were present at 

significantly different levels between the two subject groups. This included 10 taxa that 

were decreased in the hyper-allergic subjects, and 5 bacterial taxa that were enriched in 

the hyper-allergic subjects (Figure 5.10). With the exception of the Escherichia-Shigella, the 

identified bacteria were classed as high-abundant taxa (present in the circulatory 

microbiome at levels greater than 1%), and were typically condition specific, whereby if the 

taxa was detected in the hyper-allergic subjects it displayed little to none detection in the 

control subjects and if it was detected in the control subjects it showed little to none 

abundance in the hyper-allergic subjects (Figure 5.10.C).  

The majority of bacterial taxa detected in the hyper-allergic subjects compared to the 

control subjects belonged to either the Flavobacteriia class, or the Camellia sinensis var 

sinensis, Micrococcales, and Enterobacteriales orders (Figure 5.10). Taxa belonging to the 

Camellia sinesis var sinesis order were increased in the hyper-allergic subjects, whilst taxa 
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belonging the Flavobacteriia class, Micrococcales order, and Enterobacteriales order, were 

decreased in the hyper-allergic subjects (Figure 5.10). Additionally, the Prevotellaceae UCG-

001 and Veillonella genera were increased in the hyper-allergic subjects, whilst the 

Enhydrobacter genus was decreased in the hyper-allergic subjects (Figure 5.10). 
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Figure 5.10: Significant changes in bacterial taxa relative abundance in the circulatory 
microbiome of hyper-allergic subjects compared to control subjects. LEfSe analysis was 
performed on the bacterial relative abundance data from hyper-allergic subjects (AA_AR; 
n = 3) and control subjects (CS; n = 11) to determine the presence of bacterial taxa with 
statistically significant changes in taxa abundance in the hyper-allergic subjects compared 
to the control subjects (defined as having a LDA effect size > 2.0 and a P value < 0.05). (A) 
A taxonomic cladogram highlighting the statistically and biologically consistent differences 
between the asthmatic and allergic rhinitis circulatory microbiome compared to the control 
circulatory microbiome. Differences are presented in the colour of the most abundant 
sample group (red represents taxa significantly enriched in the subjects with asthma and 
allergic rhinitis, green represents taxa significantly enriched in the control subjects, and 
yellow representing non-significant taxa). The circle diameter is proportional to the taxon’s 
abundance in the circulatory microbiome. (B) Histogram of the LDA scores generated for 
the differentially abundant taxa present in the hyper-allergic subjects compared to the 
control subjects. (C) Relative abundance of the differentially abundant bacterial taxa. 
 

 

5.3.7. Prediction of the Serum Metagenome Functional Content 
 

PICRUSt analysis was performed on the V4 16S rRNA sequencing data generated from the 

serum samples to determine the functional capacity of the bacterial communities detected 

in the samples. LEfSe analysis was then carried out on the KEGG pathway 1 – 3 levels 

identified to establish whether bacterial activities are significantly altered in the atopic 

subjects compared to the control subjects, as a consequence of differential bacterial 

abundance. 

A total of 301 level 3 KEGG pathways were found to be encoded by the bacterial members 

detected in the serum samples. This included 18 pathways belonging to the level 1 Cellular 

processes category, 22 Environmental information processing pathways, 24 Genetic 

information processing pathways, 35 Human diseases pathways, 137 Metabolism 

pathways, 40 Organismal systems pathways, and 25 Unclassified pathways. 
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 The majority of detected pathways had a total predicted abundance of less than 1%. 24 

level 3 KEGG pathways were detected at high abundance in the serum metagenome (as 

defined by a predicted abundance of greater than 1%), and included 2 Genetic information 

processing members, 2 Human diseases’ members, 11 Metabolism members, 6 Organismal 

systems’ members, and 3 Unclassified members (Figure 5.11). 

 

 

 

Figure 5.11: Functional analysis of the serum circulatory microbiome. PICRUSt software 
was used to predict functional content of the serum metagenome based on the V4 16S 
rRNA sequencing data generated from control subjects (CS, n =11), allergic rhinitis subjects 
(AR, n = 7), asthmatic subjects (AA, n = 3), and hyper-allergic subjects (AA.AR, n = 3). High 
activity level 3 KEGG pathways (as determined by a predicted abundance of greater than 
1% of the total serum sample metagenome) are plotted and KEGG pathways with an 
abundance less than 1% are grouped together and plotted as other. 

 

Statistical analysis of the KEGG pathways detected in the atopic subjects compared to the 

control subjects revealed no significant changes in microbial activity in the atopic subjects. 

Further analysis found that there were also no statistically significant differences in 
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predicted microbial activity in the asthmatic subjects and allergic rhinitis subjects 

compared to the control subjects. Analysis of the KEGG pathways detected in the hyper-

allergic subjects compared to the control subjects, however, revealed several significant 

changes to microbial activity in the hyper-allergic subjects compared to the control 

subjects. 

Of the 41 level 2 KEGG functional categories, Cell growth and Death was found to be 

significantly increased in the hyper-allergic subjects compared to the control subjects 

(0.51% v 0.46%, P value = 0.0158, LDA effect size = 2.85). With regards to the 301 detected 

level 3 KEGG pathways detected, 8 were found to display significantly altered abundance 

in the hyper-allergic subjects compared to the control subjects, as determined by a P value 

of less than 0.05% (see Supplementary Materials, Table S14). Of the 8 level 3 KEGG 

pathways, 6 were predicted to be biologically significant, as defined by an LDA effect size 

of 2.0 or greater (see Supplementary Materials, Table S14). These included 4 pathways that 

displayed increased abundance in the hyper-allergic subjects [Flavonoid biosynthesis 

(0.14% v 0.11%, P value = 0.0102, LDA effect size = 2.15), Retinol metabolism (0.27% v 

0.23%, P value = 0.0102, LDA effect size = 2.24), Dioxin degradation (1.26% v 1.17%, P value 

= 0.01281, LDA effect size = 2.71), and Toluene degradation (0.18% v 0.14%, P value = 

0.0240, LDA effect size = 2.35)] and two pathways that were observed to be decreased in 

the hyper-allergic subjects compared to the control subjects [Thiamine metabolism (3.1E-

04 v 4.1E-07, P value = 0.0347, LDA effect size = 2.10) and Peroxisome proliferator-activated 

receptor (PPAR) signalling (0 v 8.04E-05, P value = 0.0316, LDA effect size = 2.17)](Figure 

5.12).
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Figure 5.12: Comparison of microbial activity in hyper-allergic subjects compared to 
heathy controls. PICRUSt was used to predict functional potential of the bacterial 
communities detected in hyper-allergic subjects (n = 3) compared to healthy controls (n = 
11) using V4 16S rRNA sequencing data. LEfSe analysis was used to identify differential 
bacterial functions present in the hyper-allergic subjects compared to the control subjects. 
Flavonoid biosynthesis (A), Retinol metabolism (B), Dioxin degradation (C), Toluene 
degradation (D) KEGG pathways were observed to be significantly increased in the hyper-
allergic subjects compared to the control subjects (P value < 0.05, LDA effect size > 2.0). 
Thiamine metabolism (E) and PPAR Signalling (F) were observed to be significantly 
decreased in the hyper-allergic subjects compared to the healthy controls (P value < 0.05, 
LDA effect size < -2.0). 

 

5.3.8. Analysis of Viable Bacterial Cells in the Serum Samples 
 

Bacterial growth was negative for all agar plates streaked with nutrient broth inoculated 

with human serum, thus indicating a lack of viable bacterial cells present in the human 

serum samples. 
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5.4. Discussion 
 

Changes to the circulatory microbiome have not previously been studied in relation to 

atopic disease. In Chapter 4 a circulatory microbiome was successfully characterised using 

plasma samples from subjects with atopic asthma and healthy control subjects. The 

detected microbial populations were predicted to have translocated into the blood from 

other body sites, and changes in the circulatory microbiome of the asthmatic subjects was 

thought to be the result of microbial dysbiosis at the distant body sites. 

Changes in the microbiome of atopic subjects compared to non-atopic control subjects are 

well described for a number of body sites, including the airways, gastrointestinal tract, and 

skin. However, what is not known is how microbial dysbiosis at the distant body sites affects 

translocation into the blood, and whether atopic disease manifesting at different body sites 

(the lungs and nasal passages for asthma and allergic rhinitis, respectively) influences 

microbial translocation into the blood. 

This study, therefore, aimed to compare the circulatory microbiome of different atopic 

manifestations (asthma, allergic rhinitis, hyper-allergic) to determine whether allergen-

induced inflammatory responses at different body sites influenced composition of the 

circulatory microbiome differently. 

 

5.4.1. Characterisation of the Serum Circulatory Microbiome 
 

Characterisation of the microbial populations present in serum samples from atopic and 

control subjects revealed that the circulatory microbiome was predominately composed of 

three key phyla; Proteobacteria, Firmicutes, and Actinobacteria, and to a lesser extent, 

Bacteroidetes and Cyanobacteria.  
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With regards to the experimental negative control, at both the phylum and the genus level 

the negative control displayed similar bacterial composition to the serum samples. The 

bacterial DNA detected in the negative control, however, was significantly lower compared 

to the serum samples. This, therefore, suggests that whilst it was likely that there was some 

contaminating microbial DNA present in the samples prior to sequencing, the 

contaminating DNA was just a small proportion of the microbial DNA detected in the serum 

samples and unlikely to affect the overall findings of the study.  

The identification of bacterial DNA in the negative control highlights the importance of 

sequencing and characterising the experimental negative control, regardless of whether 

the sample is PCR positive or negative. 

 

5.4.2. Comparison of the Serum Circulatory Microbiome compared to the Plasma 
Circulatory Microbiome 

 

Characterisation of the serum circulatory microbiome at the phylum level revealed similar 

bacterial populations to that observed in the plasma circulatory microbiome (as described 

in Chapter 4). The circulatory microbiome detected in the plasma and serum samples was 

dominated by Proteobacteria, and to a lesser extent, Firmicutes, Actinobacteria, and 

Bacteroidetes, and a number of bacterial genera were detected at high levels in both 

sample types (Acinetobacter, Corynebacterium 1, Haemophilus, Halomonas, 

Propionibacterium, Pseudomonas, Serratia, Sphingomonas, Staphylococcus, and 

Streptococcus). These findings mirror the observations of previous investigations into the 

circulatory microbiome 323, 327, 332, 339,361, and thus provides further evidence of a core 

circulatory microbiome that may be less transient than previously thought. However, it may 

also be that the bacterial genera are more efficient at translocation into the blood or are 
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more likely to be blood contaminants, entering the blood sample during the venepuncture 

procedure at time of sample collection and/ or existing as contaminants of laboratory 

reagents. 

 

5.4.3. Comparison of the Significant Changes in Different Atopic Diseases 
 

The number of V4 16S rRNA reads generated from the serum samples were similar across 

the atopic phenotypes, and comparable to the number of reads generated from the healthy 

controls. Analysis of the diversity of bacterial taxa detected in the samples revealed that 

allergic rhinitis was associated with increased alpha diversity whilst asthma was associated 

with decreased alpha diversity present in the circulatory microbiome compared to the 

control subjects.  

This was an unexpected find as characterisation of plasma samples in Chapter 4 had 

demonstrated increased bacterial diversity in the asthmatic subjects compared to the 

control subjects. As the two studies varied in geographical location of the atopic subjects, 

age of sample, type of sample, and sequencing protocol, it is possible that one or more of 

these factors influenced the level of bacterial diversity detected in the asthma samples. 

Further investigations, therefore, would be required to determine the effects of asthma on 

bacterial diversity in the circulatory microbiome. 

Statistical analysis of the alpha diversity detected in the serum samples of the atopic 

subjects revealed that there were significant differences in the level of alpha diversity 

detected in the asthmatic subjects compared to the allergic rhinitis subjects. This indicates 

that allergen-induced inflammation in the nasal passages and lungs influences diversity of 

the circulatory microbiome differently, and thus provides further support for the theory 
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that the circulatory microbiome is composed of bacterial populations/ microbial DNA that 

have translocated from distant body sites.  

With regards to beta diversity, there were no significant clustering of atopic and control 

microbiomes. However, of the atopic groups investigated, allergic rhinitis displayed the 

greatest level of dissimilarity to the control samples. This provided further support to the 

interpretation that allergic rhinitis had the greatest impact on bacterial diversity in the 

circulatory microbiome, however, the allergic rhinitis group was the largest of the atopic 

groups, and so it may be that the increased number of samples in this group makes 

differences in the atopic population compared to the control population more apparent. 

Therefore, this preliminary study has demonstrated the possibility of significant differences 

in the circulatory microbiome compared to the control subjects, but a larger study with a 

more equal distribution of atopic population sample groups would be required to confirm 

this. 

 

5.4.4. Microbial dysbiosis associated with Atopic Disease 
 

This study identified several bacterial taxa that exhibited significant differential abundance 

in the atopic subjects compared to the control subjects. A number of these bacterial taxa 

have also been detected at significant differential abundance at other body sites in atopic 

subjects. 

Of the bacterial taxa identified as having increased relative abundance in the atopic 

circulatory microbiome Clostridiales have been detected at increased levels in the gut 

microbiome of asthmatic adults 274,  Fusobacterium has been observed to be increased in 

the airway microbiome of asthmatic subjects 588,589, Chlamydiae pneumoniae has been 

detected at increased frequency in the asthmatic nasopharynx 590, Blautia has been 
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observed to be significantly increased in both the asthmatic airways 263 and the gut 270,276, 

Prevotella has been detected at increased levels in the asthmatic airway microbiome 256 

and nasal microbiome of patients with exacerbated asthma 589, and Veillonella has been 

found to be increased in the gut microbiome of atopic children 271 and asthmatic adults 

with fixed airway obstruction 274. 

With regards to bacterial taxa detected at significantly reduced levels in the atopic 

circulatory microbiome Rothia (a member of the Micrococcales order) has been observed 

at decreased levels in the gut microbiome of atopic infants 258 and undetectable in the gut 

microbiome of asthmatic children 253, Porphyromonas has been detected at significantly 

decreased levels in the airway microbiome of neutrophilic asthmatics 591, Dialister (a 

member of the Veilloneaceae family) have been observed at reduced levels in the gut 

microbiome of atopic infants 217, and decreased levels of Enterobacteriaceae-derived 

extracellular vesicle have been detected in urine samples from children diagnosed with 

asthma or allergic rhinitis 275. 

However, the observed changes in the atopic circulatory microbiome do not always mimic 

changes in the microbiome at other body sites in the atopic subject, and reports of bacterial 

taxa associated with atopic disease are variable. Fusobacteria and Prevotella, for example, 

have been detected at both increased and decreased levels in the asthmatic airways 255,256, 

261, 277, 588,589,592, whilst Clostridiales spp. and Veillonella have been detected at both 

increased and decreased abundance in the atopic gut microbiome 258, 264, 271,272, 274,593,594 

Variation across the different studies appeared to be due to the temporal nature of 

bacterial association with atopic disease. Veillonella, for example, has been consistently 

detected at reduced levels in the gut microbiome of infants in the process of developing 

atopy 258,593,594, but is detected at increased levels in the gut microbiome of atopic children 
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271 and asthmatic adults 274. Similarly, Clostridiales have been detected in at decreased 

levels in gut microbiome of atopic infants 264  but at increased levels in the gut microbiome 

of asthmatic children and adults 274. 

 

5.4.5. Microbial dysbiosis Associated with Disease Phenotype 
 

Several investigations into the atopic microbiome have identified significant differences 

between subjects suffering from different disease phenotypes. Sverrild et al (2017), for 

example, observed that there was a significant increase in Rothia species in the airway 

microbiome of eosinophil-low asthmatic patients compared to eosinophil-high asthmatic 

patients and non-atopic control subjects 263. Additionally, Blautia was detected at increased 

levels in the airway microbiome of eosinophil-high subjects compared to eosinophil-low 

and control subjects 263, thus suggesting that the eosinophil-high and eosinophil-low 

asthma phenotypes had distinct patterns of microbial dysbiosis. 

In another study both Rothia and Porphyromonas were found to be significantly reduced 

in the airway microbiome in patients with neutrophilic asthma compared to the levels 

observed in patients with eosinophilic asthma and paucigranulocytic asthma.   

Blautia was increased in the circulatory microbiome of the asthmatic subjects in this study, 

whilst Rothia and Porphyromonas were decreased in the asthmatic circulatory microbiome. 

This, therefore, suggests that microbial dysbiosis in the blood reflects microbial dysbiosis 

present in the asthmatic airways, and thus characterisation of these genera may function 

as microbial biomarkers of asthma that have the potential to aid in asthma diagnosis and 

in the identification of the different asthma phenotypes. 
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5.4.6. Microbial dysbiosis associated with Atopic Disease Severity 
 

In  addition to the being associated with the development/ occurrence of atopic disease, a 

number of the bacterial taxa detected at significantly altered levels in the atopic circulatory 

microbiomes have been associated with disease severity. 

Prevotella, for example, was detected at significantly increased levels in the circulatory 

microbiome of the allergic rhinitis and hyper-allergic subjects and has been observed to be 

decreased in the oropharynx in asthmatic subjects with uncontrolled disease compared to 

subjects with mild disease 595. This suggests that the bacteria may have a protective role 

against the development of severe, treatment-unresponsive, disease, and thus increased 

translocation of the bacteria into the bloodstream is likely to influence atopic disease 

severity, potentially making the individual more susceptible to severe, treatment-

unresponsive disease. Microbial dysbiosis, however, may also be a consequence of the 

disease itself, and the different abundance observed in the two disease states may simply 

be reflective of disease severity. 

Several of the bacterial taxa detected at significantly altered levels in the atopic subjects 

have been associated with acute episodes of asthma (exacerbated asthma).  Prevotella and 

Escherichia-Shigella, for example, have been observed at significantly increased levels in 

nasal and gut microbiome, respectively, of patients with exacerbated asthma compared to 

patients with non-exacerbated asthma, whilst Dialister (a member of the Veilloneaceae 

family increased in the serum of the asthmatic subjects) has been found to be significantly 

decreased in the nasal microbiome of non-exacerbated asthma compared to exacerbated 

asthma 589.   

In another study Veillonella and Eschierichia-Shigella  were both observed to be 

significantly increased in the gut microbiome of asthmatics with irreversible airway 
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obstruction compared to asthmatic subjects with no airway obstruction detected, and 

Lachnospiraceae  was found to be significantly decreased in the gut microbiome of 

asthmatics with irreversible airway obstruction compared to asthmatic subjects with no 

airway obstruction detected 274. This suggests that Lachnospiraceae colonisation may be 

protective against the long-term effects of  the chronic airway inflammation associated 

with asthma. However, it may also suggest that the pathology associated with irreversible 

airway obstruction results in a gut environment less well suited for Lachnospiraceae 

survival. 

Additionally, several of the bacterial taxa detected at significantly differential abundance 

in the circulatory microbiome of atopic subjects have been associated with IgE responses 

in asthmatic subjects 274. Veillonellaceae, for example, has been demonstrated to be 

enriched in the gut microbiome of asthmatic subjects that exhibit high-IgE responses to the 

HDM allergen 274, whilst Clostridiales and Lachnospiraceae are reported to be enriched in 

the gut microbiome of asthmatics that exhibit low IgE responses to HDM 274. This suggests 

that some bacterial taxa may confer protection against allergic disease by suppressing the 

IgE response to common allergens. In the circulatory microbiome of the atopic subjects, 

Clostridiales, Lachnospiraceae, and Veillonellaceae were detected at significant differential 

abundance in the atopic subjects, thus suggesting that the bacterial taxa may function as 

circulatory microbial biomarkers of IgE responsivity. 

Another interesting observation was the observed increase in Chlamydiae in the asthmatic 

circulatory microbiome. Infection with C. pneumoniae has been associated by increased 

rates of lung function decline in asthmatic subjects 596–598, and persistent and/ or recurrent 

infection  is thought to promote the development of chronic airflow obstruction 598. The 

observed increase in Chlamydiae in the circulatory microbiome of the asthmatic subjects 
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suggest that the asthmatic subjects have increased Chlamydiae colonisation, and thus may 

be more susceptible towards developing chronic airway obstruction. 

 

5.4.7. Loss of Beneficial Bacteria and Atopic Pathogenesis 
 

The changes in the circulatory bacterial populations detected in the atopic subjects is likely 

to be reflective of microbial dysbiosis at other body sites. Changes in the bacterial 

populations may simply be a passive reflection of the altered immune status in atopic 

subjects, or they may actively contribute to disease development, severity, or response to 

treatment. 

In support of microbial dysbiosis actively contributing towards atopy is an interesting study 

carried out by Arrieta et al (2015) who demonstrated that transferal of the gut microbiota 

of an atopic infant to adult GF mice enhanced the atopic response to the OVA allergen 

following sensitisation 258. The adult offspring from the mice colonised with the atopic gut 

microbiota exhibited a severe lung inflammatory response to the OVA allergen that was 

characterised by increased airway infiltration of neutrophils, eosinophils, macrophages, 

and lymphocytes 258. The atopic microbiota was characterised by low levels of 

Faecalibacterium spp., Lachnospira spp., Veillonella spp., and Rothia spp., and reduced 

levels of the bacterial species was predicted to actively cause the enhanced lung 

inflammation observed in the mice as inoculation of the bacteria to the GF mice 

ameliorated OVA-induced airway inflammation in their adult progeny 258. 

The association with the atopic microbiota and atopic disease was thought to be due to 

loss of beneficial activities carried out by Faecalibacterium sp., Lachnospira sp., Veillonella 

sp., and Rothia sp. In the infant the atopic microbiota was derived from, the authors 
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observed reduced LPS biosynthesis and decreased production of acetate (a SCFA) at 3 

months of age 258. 

Decreased levels of LPS was thought to be a direct consequence of reduced Veillonella 

colonisation. Furthermore, decreased LPS in the infant gut was predicted to have a 

significant impact on the maturation of the infant immune system and susceptibility 

towards atopic disease, as LPS has been demonstrated to promote the Th1 arm of the 

immune system by inducing the proliferation of IL-12-producing dendritic cells 599. 

This interpretation is supported by the observation that LPS exposure is inversely 

correlated with the development of asthma and the demonstration that reduced LPS 

exposure in neonatal mice as the result of caesarean birth inhibited the development of 

immune tolerance in the neonatal mice 600. 

In the circulatory microbiome, the asthmatic subjects displayed significantly decreased 

levels of Veillonellaceae, suggesting that the asthmatic subjects would display reduced Th1 

activity as a result of decreased LPS-induced stimulus. 

With regards to the observed decreased levels of acetate, SCFAs have been demonstrated 

to be anti-inflammatory 601–603, promote gut homeostasis 604, maintain the integrity of the 

epithelial barrier 605,606, and promote Treg differentiation and proliferation 607–609. 

Moreover, SCFAs have been found to be protective against murine atopic disease 542, and 

reduced fibre consumption in the diet has been associated with atopic disease532,533. 

Reduced ability of the gut microbiota to produce SCFAs, therefore, likely actively 

contributes towards disease susceptibility. 

In the circulatory microbiome several SCFA-producing bacterial taxa were detected at 

reduced levels in the atopic subjects compared to the control subjects. These bacterial taxa 
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included Lachnospiraceae and Veillonella, and their decreased levels in the atopic 

circulatory microbiome suggests that the atopic subjects would exhibit reduced SCFA 

production. This would likely reduce the number of Tregs in the subjects, thus contributing 

towards the atopic inflammatory responses by removing one of the key immune modulator 

mechanisms required to maintain Th1/ Th2 immune homeostasis.  

The asthmatic subjects in this study also displayed reduced levels of Porphyromonas, a 

bacterial genus that has been demonstrated to be protective against allergen sensitivity 

and subsequent airway inflammation. In a study carried out by Card and colleagues (2010), 

establishment of a subcutaneous infection with Porphyromonas gingivalis prior to allergen 

sensitisation in mice resulted in a significant reduction in infiltration of inflammatory cells 

and production of Th2 cytokines (IL-4, IL-5, and IL-13) in the airways of mice sensitised to 

the OVA allergen 610.  

Amelioration of the inflammatory response, however, was not observed when 

subcutaneous infection of the bacterium was induced after allergen sensitisation 610, thus 

indicating that colonisation of the bacterium was important in preventing the development 

of allergen sensitisation, but not in controlling the inflammatory responses once disease 

had developed. Protection against allergen sensitisation may be due to the ability of the 

bacterium’s ability to degrade pro-inflammatory proteins (IL-1β, IL-4, IL-5, IL-6, IL-8, IL-12) 

611–614, downregulate Th17 differentiation 615, and upregulate Treg differentiation 615. 

 

5.4.8. Expansion of Harmful Bacteria and Atopic Pathogenesis 
 

In addition to loss of beneficial bacteria, expansion of harmful bacteria was detected in the 

circulatory microbiome of the atopic subjects. Fusobacterium, for example, was found to 

be significantly enriched in the serum samples from subjects with allergic rhinitis. This 
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bacterial genus has been demonstrated to directly induce the production of MUC5AC, a 

core protein of mucin, by bronchial cells at both the protein and mRNA level 616. Nasal 

epithelial cells have been demonstrated to produce MUC5AC upon stimulation by IL-13 617, 

and mucous hypersecretion is a common feature of atopic disease. Increased 

Fusobacterium detected in the allergic rhinitis subjects, therefore, is likely to contribute 

towards disease by enhancing mucous production in the nasal passages.  

Prevotella was another bacterial taxon enriched in the atopic subjects that has been 

demonstrated to display immunomodulation activities relevant to atopic disease. The 

bacteria have been shown to activate dendritic cells in a TLR2-dependent manner, resulting 

in the production of Th17-polarising cytokines (IL-1β, IL-6, and IL-23). Prevotella have also 

been demonstrated to stimulate epithelial cells to produce IL-6, IL-8, and CCL20, resulting 

in neutrophil recruitment (IL-8) and activation of Th17 cells (IL-6).  

Whilst a Th1/ Th2 imbalance has been well documented in atopic pathogenesis, there is 

increasing evidence that Th17 immunity is also a contributing factor in atopic pathogenesis 

481,618–621. Th17 cytokines have also been found to increase production of MUC5AC 622, 

stimulate goblet cell metaplasia 623, and increased proliferation and migration of the airway 

smooth muscle cells 624,625. Increased Prevotella colonisation, therefore, is likely to actively 

contribute towards disease pathology in a Th17-dependent manner. 

Furthermore, Blautia, a bacterial genus typically thought to be a beneficial microbe due to 

its ability to produce SCFAs, may also contribute towards atopic pathogenesis. The bacterial 

genus was observed to be increased in the asthmatic circulatory microbiome, and 

expansion of this bacterial genus in other microbiome sites (airways, gut) has previously 

been associated with increased risk of asthma development 270, chronic asthma 263,276, and 

asthma severity 263. This association may be due to the bacteria’s ability to induce 
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proliferation of mucosal invariant T cells 626, a cell type that has been found to be involved 

in asthma pathogenesis 627. Additionally, Blautia has been found to suppress the 

production of IFNƴ and the Th1 immune response 628, and thus increased abundance of the 

bacteria would likely contribute towards a Th2-biased immune system. 

 

5.4.9. Microbial dysbiosis and Treatment Responsivity 
 

In addition to contributing towards immune mechanisms involved in atopic pathogenesis, 

changes in the microbiome may also contribute towards disease responsiveness to 

treatment. In a study by Goleva et al (2013), for example, resistance to corticosteroid 

treatment was associated with a significant expansion of the Actinobacteria and 

Fusobacteria phyla in the airway microbiome of asthmatic subjects 255. There was a 

significant increase in Fusobacteria, specifically the Fusobacterium genus, observed in the 

circulatory microbiome of subjects with allergic rhinitis in this study. This, therefore, 

suggests that possibility that the allergic rhinitis subjects would be resistant to 

corticosteroid treatment, and that the circulatory microbiome may function as a biomarker 

of disease responsiveness. 

 

5.4.10. Microbial Dysbiosis a consequence of Atopic Pathogenesis 
 

The development of atopy typically occurs during infancy, the same developmental period 

that changes in the microbiome are first detected in atopy susceptible individuals. It is, 

therefore, difficult to determine which comes first; allergen sensitisation or microbial 

dysbiosis. Although microbial dysbiosis and specific bacterial taxa have been associated 

with atopy, it is possible that their altered abundance in the atopic microbiota is simply a 

consequence of altered immune state in the atopic individuals. 
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In a study carried out by Rivas et al (2013), for example, the induction of OVA-sensitisation 

in mice resulted in a number of significant changes to bacterial taxa detected in the murine 

gut microbiome, including a decrease in Lachnospiraceae and expansion of 

Porphyromonadaceae and Rikenellaceae species 629. Interestingly, the induction of oral 

tolerance using Treg therapy inhibited microbial dysbiosis, thus suggesting that the 

observed microbial dysbiosis in allergen-sensitive mice was associated with atopic immune 

responses. 

Microbial dysbiosis in allergen-sensitive individuals may be a consequence of impaired 

immune responses to bacteria. In a study carried out by Habibzay et al (2012), for example, 

the HDM-exposed lung of mice was found to exhibit impaired immune responses to 

bacteria, characterised by upregulation of TLR2-negative regulators, impeded recruitment 

of neutrophils, and subsequent bacterial invasion and bacteraemia 630. Furthermore, in GF 

and gnotobiotic mice that exhibited a Th2 biased immune system, global impairment of the 

immune function has been demonstrated to increase bacterial translocation 231,631. As 

enhanced Th2 activity is a key feature of atopic disease, it is likely that atopic subjects would 

also exhibit increased bacterial translocation, subsequently altering the composition of the 

circulatory microbiome.  

Impaired immune responses to bacteria are also likely present in clinical atopy, as 

evidenced by increased infection with bacterial pathogens (Chlamydia pneumoniae, 

Haemophilus influenzae, Moraxella catarralis, Mycoplasma pneumoniae, Streptococcus 

pneumoniae) 280,632–636 and respiratory viruses 632,637,638 in asthmatic subjects, and the 

observations that antibiotics can improve clinical presentation 639–641.  
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Furthermore, recent work carried out by Dzidic and colleagues (2017), has demonstrated 

infants with atopic symptoms during the first 7 years of life displayed significantly lower 

proportions of IgA-coated gut bacteria at 12 months of age 642. 

IgA is the primary mediator of humoral mucosal immunity, and it is thought to be an 

important neutralising antibody that preserves mucosal barrier integrity 642,643. IgA is also 

thought to promote growth of commensal organisms by facilitating adhesion and/ or 

nutrient utilisation within the mucous layer 644, and IgA deficiency has been associated with 

expansion of pro-inflammatory bacterial species in the gut microbiota 645. Innate receptor 

signalling in T cells is thought to regulate IgA specificity 646, and thus it is likely that altered 

T cell activity in atopic subjects influence IgA specificity. IgA has been detected at 

significantly reduced levels in atopic children 647, and thus reduced IgA levels with altered 

IgA-binding activity is likely to alter the ratio of pro- and anti-inflammatory bacterial species 

in the atopic microbiota. 

Impaired immune responses to bacteria and viruses would likely alter the composition of 

the human microbiota, enabling the expansion of some microbial members at the cost of 

others. Moreover, expansion of particular bacterial groups will often alter the environment 

and/ or result in the production of metabolites that enable optimal growth conditions for 

other microbes. Aerococcus viridans, for example, has been demonstrated to secrete a 

protease that cleaves hemagglutinin, a pre-requisite for effective Influenzae A viral 

replication and infectivity 648. Asthma has frequently been associated with increased risk 

for respiratory viral infections, and it is interesting to note that Aerococcus was significantly 

increased in the atopic circulatory microbiome. It is, therefore, possible to speculate that 

microbial dysbiosis in the atopic microbiota could directly enhance susceptibility towards 

respiratory viral infections by creating a more hospitable environment for viral replication. 
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In turn increased viral infection could enhance growth and pathogenesis of bacterial 

pathogens by impairing mucosal clearance, enabling increased bacterial adhesion to 

epithelial cells, and reducing the integrity of the epithelial layer, thus enabling bacterial 

translocation 649. 

Furthermore, clinical presentation itself may influence the microbiome. Hypersecretion of 

mucous, for example, increases the availability of mucin proteins in the airways and nasal 

passages of atopic individuals, which selectively encourages the growth of mucin-degrading 

bacteria. In support of this is the observation of increased mucin-degrading bacteria in the 

circulatory microbiome of atopic subjects in this study (Prevotella, Veillonella, and 

Fusobacterium 650).  

Additionally, it should also be noted that the use of corticosteroids has been demonstrated 

to significantly alter the atopic microbiome 588,651. In a study by Denner et al (2016), for 

example, the relative abundance of Proteobacteria and Pseudomonas was significantly 

increased and the relative abundance of Bacteroidetes, Fusobacteria, Prevotella, and 

Veillonella were significantly decreased in the airway microbiome of asthmatics being 

treated with corticosteroids compared to asthmatic subjects not undergoing corticosteroid 

treatment 651. This suggests that possibility that corticosteroids may influence the 

microbiome, and that some of the observed changes in the circulatory microbiome are 

reflective of asthma treatment rather than asthma pathogenesis. This interpretation is 

further supported by more recent work carried out by Durack et al (2017), who 

demonstrated that treatment with inhaled corticosteroids resulted in a significant 

alterations in the relative abundance of a number of bacterial taxa including a significant 

decrease in Dialister 588. However, as corticosteroids are typically used to control asthma 

and reduce the risk of asthma exacerbations, the differences in airway microbiome in 
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asthmatics who are treated with corticosteroids compared to those who don’t require 

treatment may also be reflective of asthma severity. 

 

5.4.11. Changes in Microbial Activity in the Atopic Circulatory Microbiome 
 

In addition to identifying changes in the relative abundance of bacterial taxa in the atopic 

circulatory microbiome compared to the control, and how they relate to disease 

development, severity, and pathogenesis, changes in predicted microbial activity of the 

atopic circulatory microbiome were also assessed. 

Comparison of the bacterial populations detected in the atopic subjects compared to the 

control subjects using PICRUSt analysis revealed that changes in the circulatory microbiome 

of hyper-allergic subjects resulted in significant changes in microbial activity in the hyper-

allergic subjects compared to the control subjects. Flavonoid synthesis, retinol metabolism, 

dioxin  degradation and toluene degradation activity were predicted to be increased in the 

hyper-allergic circulatory microbiome, whilst thiamine metabolism and PPAR signalling was 

predicted to be decreased in the hyper-allergic subjects. As the circulatory microbiome is 

predicted to be reflective of microbial dysbiosis at other body sites, it is likely that the 

identified changes in microbial activity are also present elsewhere in the body, most likely 

the nasal passages and lungs of the atopic subjects. 

Increased retinol metabolism was of interest as it suggested that there were increased 

levels of retinoids in the hyper-allergic subjects, resulting in expansion of bacterial 

populations capable of metabolising retinoids. This observation supports the ‘Hygiene 

hypothesis’, as previous studies have demonstrated that a lack of certain childhood 

infection causes retinoids to accumulate in the lungs 652,653. Furthermore, retinol 

concentrations have been negatively correlated with the development of atopic disease 
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654–656 and asthma severity 657, and epigenetic investigations have demonstrated that B cells 

from subjects with HDM-associated atopic diseases have increased retinol metabolism 

activity 658.  

The positive association between increased retinol metabolism and atopic disease is likely 

due to the biological activities of retinoic acid, a  major metabolite of retinol metabolism. 

The vitamin D receptor/ retinoic acid receptor, for example, has previously been 

demonstrated to display increased activity in atopic subjects compared to control subjects 

658, and expression of the vitamin D receptor and retinoic acid receptor was found to be 

increased in the plasma samples of the asthmatic subjects described in Chapter 4. 

Increased levels of retinoic acid has been demonstrated to induce eosinophilia, promote 

the accumulation of mucin 659, increase IL-4 and IL-5 expression (Th2 cytokines) 660, 

decrease expression of IL-2, IL-12, TNFα, and IFNƴ (a Th1-like cytokine profile)660,661, 

promote the development of Th2 cells 662, stimulate B cell proliferation and maturation 663–

667, and increase primary and memory antibody responses 668–670. Additionally, retinoic acid 

has been found to promote IgA class switch recombination, and thus altered retinol 

metabolism in atopic subjects may contribute towards to the observed changes in IgA levels 

and activity in atopic subjects. 

However, retinoic acid has also been found to promote Treg differentiation 671–674, inhibit 

Th17 differentiation 672,673, inhibit IL-4-induced IgE class switch recombination 675,676, inhibit 

granulocyte development 677,678, and inhibit the production of GM-CSF 677. As these 

activities are typically associated with protection against atopic disease further study is 

required to resolve the conflicting data regarding the role retinoic acid plays in atopic 

disease.  
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The observed increased in toluene and dioxin metabolism in the hyper-allergic subjects was 

also of interest, as both chemical compounds have been associated with asthma 

development. Toluene is a leading cause of occupational asthma 679–681, whilst dioxin is 

found in cigarette smoke and prenatal exposure to the chemical has been associated with 

increased risk of atopic disease 682–684.  

In contrast to retinol and its metabolites, toluene, and dioxin, the consumption of 

flavonoids has been demonstrated to be protective against atopic disease 685–687. It was, 

therefore, unexpected to report increased flavonoid synthesis in the hyper-allergic subjects 

compared to the control subjects. This group of plant secondary metabolites are acquired 

through diet and have been demonstrated to possess immune-modulating activities and 

anti-atopic properties. In the OVA-induce murine model of asthma, for example, 

administration of flavonoids supressed OVA-induced bronchoconstriction and airway 

hyperresponsiveness 688–697; reduced airway inflammation 690–692, 694–696,698,699 and airway 

remodelling 696, pulmonary oxidative stress 696,  goblet cell hyperplasia and mucous 

production 691,692, 694,697,698, eosinophilia 691,692, 694, 696–698,700–702, eosinophil peroxidase 

activity, IgE levels 688–690,696–698, IL-6, IL-17 and IL-33 levels 692, 697,701, Th2 cytokine production 

(IL-4, IL-5, IL-13) 688,689, 700, 690–695, 697,699, and the Th2-predominant transcriptional factor, 

GATA-3 691, 693,699; and caused an increase in IFNƴ and the Th1 transcription factor T-bet 688, 

690, 693, 695,699.  It is possible that increased flavonoid-synthesising potential in the circulatory 

system is representative of increased translocation of flavonoid-synthesising bacteria from 

the airways and gut, and subsequent decreased abundance of these bacteria and the 

beneficial properties provided by the flavonoids in the airways and gut of the atopic 

subjects 
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With regards to the microbial activities predicted to be decreased in the hyper-allergic 

subjects, daily consumption of thiamine (also known as vitamin B1) has been observed to 

be significantly decreased in asthmatic subjects compared to non-asthmatic subjects 703. 

However, in children increased thiamine consumption has been associated with the 

development of allergic rhinitis 704, thus suggesting that the association between thiamine 

consumption and development of atopic disease may differ between the different atopic 

diseases. In a murine experimental model of chronic inflammation, administration of 

thiamine was associated with reduced TNFα and IL-6 in the inflamed tissue, thus 

demonstrating anti-inflammatory properties of thiamine. Furthermore, treatment with 

benfotiamine, a lipid-soluble derivative of thiamine, has been shown to suppress 

endotoxin-induced inflammation, decrease production  of nitric oxidise synthase, 

cyclooxygenase-2 (COX-2). TNFα, and IL-6, and increased production of IL-10 705,706. 

PPARƴ expression is increased in the submucosa, smooth muscle layer, and epithelium of 

asthmatic subjects, 707,  and OVA-induced asthma has been demonstrated to increase 

PPARƴ levels in the murine airways  708. In OVA-sensitised mice administration of PPARƴ 

has been observed to decrease allergen-induced eosinophil and lymphocyte influx into the 

airways 709 and expression of Th2 cytokines (IL-4, IL-5, and IL-13), and in PPARƴ-deficient 

mice, airway hyperresponsiveness, airway inflammation, eosinophilia, IgE production, 

GATA-3 expression  is increased following OVA-sensitisation 710. 

This suggests that PPARƴ signalling is protective against asthma pathogenesis, an 

interpretation supported by in vitro studies, whereby induced activation of PPARƴ in human 

airway smooth muscle cells resulted in anti-inflammatory effects similar to those observed 

with steroid treatment 711. 
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The observed decrease in PPARƴ signalling in the circulatory microbiome of hyper-allergic 

subjects suggests decreased PPARƴ signalling in these subjects, and subsequent loss of the 

protective effects PPARƴ provides against atopic disease. However, predicted abundance 

of the downregulated level 3 KEGG pathways (thiamine metabolism and PPARƴ signalling) 

was less than 0.002% of total microbial activity, and thus further investigation would be 

required to validate the potential role of decreased thiamine metabolism and PPARƴ 

signalling activity in atopic disease pathogenesis.  

 

5.4.12. Chapter Summary 
 

In conclusion the circulatory microbiome was successfully characterised in serum samples 

from control subjects, asthmatic subjects, allergic rhinitis subjects, and hyper-allergic 

subjects. Characterisation of the bacterial populations present in the circulatory 

microbiome revealed that the circulatory microbiome consisted of similar bacterial taxa to 

that observed in the circulatory microbiome in Chapter 4 and in previous circulatory 

microbiome studies. 

Comparison of the circulatory microbiome in atopic and non-atopic subjects revealed 

significant differences in the atopic microbiome compared to the control microbiome. 

Asthma was associated with decreased bacterial diversity, whilst allergic rhinitis was 

associated with increased bacterial diversity. Furthermore, individual analysis of the 

different atopic disease groups found that bacterial taxa present in significantly altered 

levels in the atopic circulatory microbiome was dependent on disease state, and in the 

hyper-allergic subjects, changes in bacterial relative abundance had a significant impact on 

the microbiome functional potential. 
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This indicated that atopic disease present at different body sites (the airways in asthma, 

the nasal mucosa in allergic rhinitis) influences composition of the circulatory microbiome. 

This is likely due to loss of epithelial barrier integrity in the airways/ nasal passages altering 

bacterial translocation from these sites in the circulatory system.  Furthermore, it is likely 

that immune activity as a consequence of atopic disease alters the environment of the 

airways and nasal passages, subsequently altering bacterial colonisation in these 

environments. This is turn further alters bacterial translocation into the blood. 

Furthermore, several of the bacterial taxa identified as having significant differential 

abundance in the circulatory microbiome have been previously found to display significant 

differential abundance in the gut and airways of atopic subjects. This suggests that the 

observed changes in the circulatory microbiome reflected microbial dysbiosis of the gut 

and airway microbiota. Characterisation of the circulatory microbiome, therefore, could be 

used to identify microbial dysbiosis in atopic subjects, and altered abundance of specific 

bacterial taxa could be used as circulatory biomarkers for atopic disease. However, as this 

study is the first known study to investigate the circulatory microbiome in different atopic 

populations, further research would be required to validate the use of the circulatory 

microbiome as a potential source of microbial biomarkers for atopic disease. 
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Chapter 6: Characterisation of the Murine Microbiome following 

exposure to the House Dust Mite allergen 

 

6.1. Introduction 
 

The human microbiota has been demonstrated to be an important determinant in health 

and disease. The different human body sites have been demonstrated to harbour distinct 

bacterial populations that are important in maintaining homeostasis of the body site. The 

factors that influence composition and stability of these microbial populations, however, 

have yet to be fully elucidated. 

In asthma and the other atopic diseases, microbial dysbiosis of the airways, skin, and 

gastrointestinal tract have been observed 242, 254, 263,255–262, and various early-life factors 

have been positively associated with disease development, including mode of delivery 

242,246, increased urbanisation 245,247–250, and the use of antibiotics 235, 251–253,266.  

Whether early-life microbial dysbiosis triggered by early-life factors causes atopic disease 

or is simply the consequence of atopic disease in genetically predisposed individuals has 

yet to be determined.  

The development of atopy typically occurs during infancy; the same developmental period 

that the neonatal immune system matures, and the microbiome is established. Due to this 

overlap it is difficult to determine which comes first, an impaired immune system which 

alters microbial colonisation, or altered microbial colonisation which adversely affects 

maturation of the immune system.  

One method of determining whether the inflammatory responses associated with allergen 

sensitisation adversely affect composition of the microbiota in atopic individuals is to use 
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in vivo experimental models of asthma.  Of the available models available, the murine 

experimental model is the most commonly used. This is in part due to the ease in which 

mice can be bred, maintained, and handled. Moreover, repeated allergen exposure in mice 

results in many of the hallmark features of atopic asthma, including Th2-driven 

inflammation in the airways, eosinophilia, increased infiltration of neutrophils and 

lymphocytes, increased mucin production, increased muscle cell proliferation, and 

increased respiratory system resistance and elastance of the airway tissues 41, 381–383,712. 

The HDM allergen is increasingly being used in the murine experimental model of asthma 

in order to better mimic the uniquely human disease. This is one of the most common 

human allergens, with an estimated 50-85% of asthmatics being diagnosed with a  HDM 

allergy.  

With regards to the effect asthma has on the microbiota, there is increasing evidence 

supporting the theory that the development of asthma can directly alter composition of 

the microbiota. This has been shown by a number of studies independently demonstrating 

that OVA- and HDM-induced experimental asthma results in significant changes to the 

murine gut microbiome 384–386 and airway microbiome 384,387,388.   

The observation that HDM sensitisation and challenge results in significant changes to the 

microbiome suggests that possibility that HDM sensitisation may also influence the 

composition of the human microbiota. This may make the individual more susceptible to 

immune dysregulation and the development of atopic diseases. 

These investigations, however, have typically looked at microbial composition in either the 

murine gut microbiome or the murine lung microbiome. This, therefore, has prevented 

analysis on whether HDM-induced inflammatory responses in the lungs can simultaneously 

affect the microbiota at multiple body sites. 
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6.1.1.  Chapter Aims 
 

The purpose of this study, therefore, was to examine the effects of pulmonary exposure to 

the common HDM allergen on microbial populations in the exposed host. This was achieved 

by examining the bacterial composition of the murine microbiome at various body sites 

(the airways using BAL samples, the gut using faecal samples, and the circulatory system 

using plasma samples) in mice exposed to the HDM allergen and HDM-naïve mice. 
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6.2. Methods 
  

6.2.1. Murine HDM Exposure Model 
 

The murine HDM exposure model was designed and carried out by Dr Martin Leonard and 

his team at Public Health England as part of a larger study looking into the effects of cerium 

dioxide nanoparticles on respiratory inflammatory responses in experimental allergic 

asthma 383. The experimental procedure Martin and his team used is described below. 

Female BALB/c mice aged between 6 and 8 weeks (obtained from Envigo, UK) were 

anaesthetised with 5% isoflurane in oxygen using a precision vaporizer and intranasally 

instilled with HDM (1.25mg protein/ kg; Greer Laboratories, Lenoir, cat # XPB82D3A25), as 

described in Figure 6.1. Instillation of an equivalent dosing volume of phosphate buffered 

saline (PBS) was performed as a control procedure. Following the treatment procedure, the 

mice were euthanized using an overdose of 0.1ml sodium pentobarbital (200µl/ ml) by 

intraperitoneal injection and exsanguinated by cardiac puncture.  

 

 

Figure 6.1: Experimental protocol for intranasal administration of HDM. 7 BALB/c mice 
were exposed to HDM over the course of a three-week exposure protocol involving 9 
individual instillations of house dust mite (HDM) (1.25mg protein/ kg) on the days 
indicated. An additional 7 BALB/c mice were exposed to equivalent doses of PBS and 
functioned as the experiment controls. Sacrifice and collection of tissue samples was 
carried out on the day indicated following completion of the experimental protocol. 
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6.2.2. Sample Collection 
 

Blood samples were collected into EDTA coated tubes and plasma was isolated by 

centrifugation at 1500xg for 15 minutes at 4oC. BAL fluid was collected by exposing and 

cannulating the trachea and then lavaging the lungs with 500µl of ice-cold sterile PBS. The 

lungs were gently aspirated, and the process repeated a further 2 times to generate 1.5ml 

of BAL fluid in total. Fresh faecal pellets were collected shortly before mouse sacrifice. The 

plasma, BAL, and faecal samples were then stored at -80oC prior to DNA extraction. 

 

6.2.3. Extraction of Microbial DNA from the Murine BAL and Faecal Samples 
 

Total bacterial genomic DNA was extracted from 40µl of BAL fluid and 8mg of faeces using 

the PowerSoil® DNA isolation kit (Mobio) as per the manufacturers recommended protocol. 

The BAL/ faecal samples were added to the kit PowerBead Tubes and mixed by vortexing. 

Solution C1 (60µl) was added to the tubes and the tubes were vortexed briefly. The tubes 

were then loaded onto a horizontal vortexer (MoBio) and vortexed at maximum speed for 

10 minutes. The tubes were then centrifuged for 30 seconds at 10,000xg, and following 

centrifugation the supernatant was transferred to sterile 2ml collection tubes. Solution C2 

(250µl) was added to the collection tubes and the tubes were vortexed for 5 seconds and 

incubated at 4oC for 5 minutes. Following incubation, the collection tubes were centrifuged 

for 1 minute at 10,000xg. 750µl of the supernatant was transferred to sterile 2ml collection 

tubes and 1.2ml of solution C4 was added to the collection tubes. The tubes were vortexed 

for 5 seconds and then 675µl of the solution was added onto a spin filter and centrifuged 

for 1 minute at 10,000xg. The flow-through was discarded and an additional 675µl of the 

solution was added to the spin filter. The spin filters were centrifuged at 10,000xg for 1 
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minute and the flow-through was discarded. The remaining solution was then added to the 

spin filter and centrifuged at 10,000xg for 1 minute. Solution C5 (500µl) was added to the 

spin filters and the filters were then centrifuged for 30 seconds at 10,000xg. The flow-

through was discarded and the filters were centrifuged for an additional minute at 

10,000xg. The spin filters were then transferred to sterile 2ml collection tubes and solution 

C6 (100µl) was added to the centre of the filter membrane. The filters were centrifuged for 

30 seconds at 10,000xg in order to elute the DNA. The filters were removed, and the eluted 

DNA samples were placed in storage (-20oC). 

All DNA extractions were accompanied by a “kit control”, whereby the BAL/ faecal sample 

was replaced with UV-treated molecular biology grade water. The “kit control”served to 

characterise any reagent or environmentally introduced contamination throughout the 

entire experimental procedure.  

 

6.2.4. Direct amplification of the V4 region of the 16S rRNA gene from Murine 
Plasma Samples 

 

PCR amplification of the V4 region of the 16S rRNA gene was performed directly on the 

murine plasma samples using the optimised Phusion blood direct PCR protocol developed 

in Chapter 4 (Table 6.1). 
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Table 6.1: Amplification of the V4 region of the 16S rRNA gene from microbial DNA 

present in murine plasma samples using an optimised Phusion blood direct protocol. An 

optimised Phusion blood direct PCR protocol was used to amplify the V4 region of the 16S 

rRNA gene from bacterial DNA present in 5% murine plasma samples. (A) The reagents used 

in the Phusion blood direct PCR protocol. (B) The cycling parameters used in the Phusion 

blood direct PCR protocol. 

A.  

Reagent Volume (µl) 

UV-treated molecular biology grade water 6.6 

2X Phusion blood PCR buffer 10.0 

V4 Fwd primer 1.0 

V4 Rev primer 1.0 

Phusion blood II DNA polymerase 0.4 

Murine Plasma 1.0 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Lysis of cells 98 5 minutes 1 

Denaturation 98 1 second  

Annealing  55 5 seconds 35 

Extension 72 15 seconds  

Final Extension 72 1 minute 1 

 

Successful amplification of the V4 region from the murine plasma samples was determined 

using gel electrophoresis (as described in Chapter 2, section 2.2), and experimental 

negative controls were generated to monitor possible bacterial contamination. This was 

achieved by replacing murine plasma with UV-treated molecular biology grade water, and 

sterile conditions were utilised during PCR set-up to minimise the risk of bacterial 

contamination (as described in Chapter 2, section 2.1). 
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Amplification of the V4 region of the 16S rRNA gene using the optimised Phusion blood 

direct PCR protocol was unsuccessful. Amplification of the V4 region from microbial DNA 

present in the murine plasma samples were, therefore, attempted using a second kit - a 

SureDirect blood PCR kit (Agilent technologies) following the recommended kit protocol 

(Table 6.2).  

 

Table 6.2: Amplification of the V4 region of the 16S rRNA gene from microbial DNA 

present in murine plasma samples using a SureDirect Blood PCR protocol. A SureDirect 

blood PCR protocol was used to amplify the V4 region of the 16S rRNA gene from bacterial 

DNA present in 20% murine plasma samples. (A) The reagents used in the SureDirect blood 

PCR protocol. (B) The cycling parameters used in the SureDirect Blood PCR protocol. 

 

A.  

Reagent Volume (µl) 

SureDirect blood PCR 2X master mix 12.5 

V4 Fwd primer 1.0 

V4 Rev primer 1.0 

UV-treated molecular biology grade water 5.5 

Murine Plasma 5.0 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Lysis of cells 90 5 minutes 1 

Denaturation 95 30 seconds  

Annealing  55 30 seconds 35 

Extension 72 1 minute  

Final Extension 72 5 minutes 1 
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6.2.5. Amplification of the V4 region of the 16S rRNA gene from Microbial DNA 
isolated from the Murine BAL and Faecal Samples 

 

Amplification of the V4 region from microbial DNA extracted from the murine faecal and 

BAL samples was performed using an Accuprime Pfx SuperMix (Thermo fisher Scientific) 

protocol and the V4 515F/806R oligonucleotide primers (Table 6.3). The same PCR protocol 

was performed on microbial DNA extracted from the murine BAL and faecal samples. 

However, due to reduced levels of microbial DNA present in the BAL samples, 38 PCR cycles 

were required for successful amplification of the V4 region from DNA extracted from the 

BAL samples, whereas only 30 PCR cycles were required for successful amplification of 

microbial DNA extracted from the faecal samples (Table 6.3). Successful amplification of 

the V4 region of the 16S rRNA gene was confirmed using gel electrophoresis as described 

in Chapter 2, section 2.2 

Sterile conditions (as described in Chapter 2, section 2.1) were maintained throughout the 

experimental procedure in order to reduce the risk of microbial contamination. 

Additionally, PCR amplification of the 16S rRNA V4 region was also performed on microbial 

DNA extracted from the BAL and faecal DNA extraction “kit controls”, and amplification of 

the “kit controls” served as experimental negative controls for the BAL and faecal samples. 
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Table 6.3: PCR Amplification of the V4 region of the 16S rRNA gene from microbial DNA 

extracted from murine BAL and faecal samples. An Accuprime PCR protocol was used to 

amplify the V4 region of the 16S rRNA gene from bacterial DNA extracted from the murine 

BAL and faecal samples. (A) The reagents used in the Accuprime PCR protocol. (B) The 

cycling parameters used in the Accuprime PCR protocol.  

A.  

Reagent Volume (µl) 

Accuprime master mix 22.5 

515F (10µM) 0.5 

806R (10µM) 0.5 

Microbial DNA 1.5 

 

B.    

Cycle Step Temperature (oC) Time Cycles 

Lysis of cells 95 2 minutes 1 

Denaturation 95 20 seconds  

Annealing  55 15 seconds 30/38 

Extension 68 5 minute  

Final Extension 68 5 minutes 1 

 

 

6.2.6. Sequencing of the V4 amplicons using Illumina Sequencing Technology 
 

The XT-V4 amplicons generated from the murine BAL and faecal samples were submitted 

to the Earlham Institute to undergo library preparation. In brief, the Nextera DNA library 

kit was used to tagment the V4 amplicons (cleave the double stranded V4 DNA to generate 

universal single stranded DNA overhangs)  and attach the Illumina i7 and i5 adapters to the 

V4 amplicons. The V4-adapter amplicons were then purified, quantified, barcoded, 

multiplexed (the individual sample V4 libraries were pooled together), and sequenced 

using the Illumina MiSeq system with a 250 base paired-end read metric. 
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6.2.7.  Alignment of the V4 amplicons to known Bacterial Genomes 
 

Following successful sequencing of the V4 amplicons using Illumina sequencing technology, 

the trimmed and demultiplexed sequencing data was uploaded to Nephele 2.0 [Public web 

access: https://nephele.niaid.nih.gov/#cloud]. The Nephele 2.0 QIIME 16S FASTQ paired-

end open reference pipeline was used to remove low-quality V4 reads (defined as having a 

Phred quality score less than 19.0), remove chimeric sequences, and align the V4 reads to 

bacterial OTUs with a 99% similarity threshold using the Silva database (see Chapter 2, 

section 2.4.1 for additional detail). 

 

6.2.8. Comparison of the HDM-exposed Microbiome to the HDM-naïve 
Microbiome 

 

The phylogenetic diversity of the bacterial populations detected in the murine BAL and 

faecal samples were first assessed by generating a rarefaction curve using R software (see 

Chapter 2, section 2.4.2 for additional detail). 

Alpha diversity indices (Shannon and Chao1) were measured using the Nephele 2.0 QIIME 

16S FASTQ paired-end open reference pipeline [Public web access: 

https://nephele.niaid.nih.gov/#cloud]. The diversity indices were then uploaded to R 

software where alpha diversity boxplots were generated and statistical analysis was 

performed (see Chapter 2, section 2.4.5). 

Beta diversity was also determined using the OTU tables generated from the Nephele 2.0 

QIIME 16S FASTQ paired-end open reference pipeline. This involved measuring Bray Curtis 

dissimilarity and plotting PCoA graphs using R software (See Chapter 2, section 2.4.6 for 

additional information). PERMANOVA analysis using 999 permutations was then 

performed to determine whether the bacterial populations present in the HDM-exposed 

https://nephele.niaid.nih.gov/#cloud
https://nephele.niaid.nih.gov/#cloud
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mice differed significantly to the bacterial populations detected in the HDM-naïve mice (see 

Chapter 2, section 2.4.6). 

The bacterial OTUs were then assigned to bacterial taxa and the relative abundance of the 

bacterial taxa present in the murine samples was determined using R software (See Chapter 

2, section 2.4.4 for additional detail). R was then used to plot the relative abundance of 

highly abundant bacterial phyla and genera (taxa with a relative abundance greater than 

1%) (See Chapter 2.4.4). 

LEfSe analysis was applied to the relative abundance data to determine bacterial taxa 

significantly associated with the HDM-exposed and HDM-naïve microbiome. This was 

performed on the relative abundance tables of all bacterial taxa detected in the murine 

samples using the online Galaxy workflow framework 394 set to the default settings [Public 

web access: http://huttenhower.sph.harvard.edu/galaxy/](See Chapter 2, Section 2.4.7. 

for additional information). 

 

6.2.9. Prediction of the Murine Microbiome Metagenome Function Content 
 

To predict the microbial activity of the bacterial populations detected in the murine 

microbiome PICRUSt analysis was performed using the online Galaxy platform. OTU tables 

were generated from the V4 16S rRNA sequencing data using Nephele 2.0 software with a 

closed reference OTU picking strategy and the GreenGenes 99 database. The OTU tables 

was uploaded to Galaxy, normalised, and functional predictions were performed to 

determine KEGG ortholog  abundances present in the murine samples (See Chapter 2, 

section 2.4.8 for additional information). 

http://huttenhower.sph.harvard.edu/galaxy/
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The level 1, 2, and 3 KEGG ortholog counts were converted into abundance percentages, 

and R software was used to plot the abundance of high-abundant level 3 KEGG pathways 

detected in the murine samples (defined as having a predicted total abundance greater 

than 1% in the murine samples). LEfSe analysis was then performed on the level 1,2, and 3 

KEGG orthologs to determine differential KEGG ortholog abundance present in the HDM-

exposed mice compared to the HDM-naïve mice. 

Abundance of KEGG orthologs that displayed significant differential abundance were 

plotted as boxplots using R software (see Supplementary Materials S4 for R codes used).
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6.3. Results 
 

6.3.1. Amplification of the V4 region of the 16S rRNA gene from Microbial DNA 
present in Murine Plasma Samples 

 

Direct amplification of the V4 region of the bacterial 16S rRNA gene was unsuccessful in 

the murine plasma samples using both the optimised Phusion blood direct PCR protocol 

and the SureDirect blood PCR protocol. Analysis of the positive control was successful for 

both protocols however, thus indicating that failure to amplify the V4 region was due to 

insufficient microbial DNA present in the samples. Example gels of both PCR protocols are 

shown in the Supplementary  Materials (Figure S9). 

 

6.3.2. Amplification of the V4 region of the 16S rRNA gene from Microbial DNA 
isolated from Murine BAL Samples 

 

Analysis of the end-point PCR reaction using gel electrophoresis revealed that the V4 region 

of the bacterial 16S rRNA gene had been successfully amplified from microbial DNA 

extracted from murine BAL samples, as demonstrated by the detection of DNA bands of 

approximately 350bp in length (Figure 6.2). Faint banding at approximately 200bp revealed 

that a small amount of non-specific DNA amplification had occurred. 

Amplification of the V4 region from bacterial DNA isolated from HDM-naive sample 2 was 

observed to be noticeably weaker compared to the other samples (Figure 6.2, 2A lane). 

However, subsequent attempts to increase V4 amplification from this sample resulted in 

similar results to the one shown below and thus it was deemed that extraction of bacterial 

DNA from this sample was not as successful, perhaps due to error during the extraction 

process or due to an initial lack of bacterial DNA present in the BAL sample. 
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Analysis of the experimental negative control (Figure 6.2, NC lane) revealed that as 

expected the sample was PCR negative, and that no amplification of the V4 region of the 

bacterial 16S rRNA gene had been achieved. This indicated that no environmental and/ or 

reagent bacterial contamination had been introduced to the samples during the PCR 

experimental procedure, and that completely sterile conditions had been achieved. 

 

 

Figure 6.2: Amplification of the V4 region of the bacterial 16S rRNA gene from microbial 
DNA extracted from murine BAL samples. Amplification of the V4 region of the 16S rRNA 
gene was performed on microbial DNA extracted from BAL samples from control mice 
(HDM-naïve, n = 7) and mice exposed to the HDM allergen (HDM-exposed, n = 7). 
Amplification was achieved using 38 cycles of end-point PCR using the XT-tagged 
515F/806R primer pair and the Accuprime master mix. 

 

6.3.3. Amplification of the V4 region of the 16S rRNA gene from Microbial DNA 
isolated from Murine Faecal Samples 

 

Amplification of the V4 region of the 16S rRNA gene from microbial DNA isolated from the 

faecal samples was successful. Initial examination of the V4 bands using gel electrophoresis 

found that amplified V4 DNA was the expected length, with bands approximately 350bp 

observed on the gel (290bp for the V4 amplicon, 33bp for the Illumina forward XT adaptor, 

Ladder  1A      2A      3A     4A     5A     6A      7A      1B      2B      3B     4B      5B      6B      7B     PC     NC 
                                      HDM-naive                                                  HDM-exposed  

400bp -- 
300bp -- 



311 
 

and 34bp for the Illumina reverse XT adaptor) (Figure 6.3). The thickness of the V4 bands 

indicated that a high degree of amplification was achieved, demonstrating that high 

concentrations of bacterial DNA were present in the samples (Figure 6.3), as you would 

expect from this sample type. 

Amplification of the V4 region from microbial DNA isolated from HDM-naïve sample 3 was 

observed to be noticeably weaker compared to the other samples (Figure 6.3, 3A lane). 

However, subsequent attempts to increase V4 amplification from this sample resulted in 

similar results to the one shown below and thus it was deemed isolation of bacterial DNA 

from this sample was not as successful, perhaps due to error during the extraction process 

or due to an initial lack of bacterial DNA present in the faecal sample. 

Analysis of the experimental negative control (Figure 6.3, NC lane) found that the sample 

was PCR negative, and that no amplification of the V4 region of the bacterial 16S rRNA gene 

had been achieved. This indicated that no environmental and/ or reagent bacterial 

contamination was introduced to the samples during the PCR experimental procedure, and 

that completely sterile conditions had been achieved.  
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Figure 6.3: Amplification of the V4 region of the bacterial 16S rRNA gene from microbial 
DNA extracted from murine faecal samples. Amplification of the V4 region of the 16S rRNA 
gene was performed on microbial DNA extracted from faecal samples from control mice( 
HDM-naïve, n = 7) and mice exposed to the HDM allergen (HDM-exposed, n = 7). 
Amplification was achieved using 30 cycles of end-point PCR using the 515F/806R primer 
pair and the Accuprime master mix. 

 

6.3.4. Sequencing of the V4 16S rRNA reads generated from Murine BAL Samples 
 

Following removal of low-quality reads (defined as having a Phred quality score < 19) and 

chimeric sequences, a total of 616,365 high-quality V4 16S rRNA reads were generated 

from the BAL samples. This included 304,118 high-quality reads generated from the HDM-

naïve BAL samples (average per sample = 43,445.43, range = 12,528 – 61,602) and 312,247 

high-quality reads generated from the HDM-exposed BAL samples (average per sample = 

44, 606.71, range = 29,733 – 51,627) (Figure 6.4, see also Supplementary Materials, Table 

S15). 

As predicted from the gel electrophoresis results, Control 2 generated noticeable less V4 

16S rRNA reads compared to the remaining samples (Figure 6.4, see also Supplementary 

400bp -- 

Ladder  1A     2A     3A      4A     5A      6A      7A     1B     2B      3B      4B     5B     6B      7B     PC      NC 
                                      HDM-naive                                                 HDM-exposed  

300bp -- 
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Materials, Table S15). However, the number of V4 16S rRNA reads to pass quality control 

for the sample (18,220 reads) was sufficient to enable characterisation of the microbial 

populations present in the sample.  

Statistical testing found that there were no significant differences in the number of high-

quality reads generated from the HDM-exposed samples compared to the HDM-naïve 

samples (P value = 0.8491, Unpaired t test). 

Following read alignment to the Silva database, a total of 4,227 OTUs with a 99% similarity 

threshold were detected in the BAL samples. This included a total of 2,805 OTUs detected 

in the HDM-naïve samples (range = 640 – 1,352 per sample) and 3,310 OTUs detected in 

the HDM-exposed samples (range = 640 – 1,335)(Figure 6.4)(Supplementary Materials, 

Table S15). Examination of the rarefaction curve indicated no differences in number of 

OTUs detected in the HDM-exposed BAL samples compared to the HDM-naïve samples 

(Figure 6.4); an interpretation which was supported by statistical analysis of the number of 

OTUs detected in the HDM-exposed samples compared to the HDM-naïve samples (P value 

= 0.8981, Wilcoxon rank sum test with continuity correction). 

Comparison of the OTUs detected in the HDM-exposed BAL samples compared to the HDM-

naïve samples revealed a shared core BAL microbiome made up of 1,888 OTUs, an 

additional 917 OTUs were detected in the HDM-naïve samples alone, and 1,422 OTUs were 

unique to the HDM-exposed samples. 

Analysis of the experimental negative control found that a single high quality V4 16S rRNA 

read was generated from the sample (Figure 6.5, see also Supplementary Materials, Table 

S15).  
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B     

Group Number of 
Samples 

Mean number 
of raw reads 

Mean number of 
high-quality reads 

Total number of 
bacterial OTUs 

HDM-naive 7 111,277.00 43,445.43 2,805 

HDM-exposed 7 130,752.71 44,606.71 3,310 

Negative Control 1 115,138.00 1.000 1 
 

Figure 6.4: Quantification of bacterial V4 reads sequenced murine BAL samples using 
Illumina sequencing. Illumina sequencing was used to sequence bacterial V4 amplicons 
generated from murine BAL samples from HDM-naïve mice (n = 7) and HDM-exposed mice 
(n = 7). Following successful sequencing of the V4 amplicons Nephele 2.0 was used remove 
low-quality reads and chimeric sequences, and to align the high-quality V4 reads to 
bacterial operational taxonomic units (OTUs). (A) A rarefaction curve showing the level of 
phylogenetic diversity of the OTUs detected in the murine BAL samples. (B) Quantification 
of the V4 reads generated from HDM-naïve BAL samples and HDM-exposed BAL samples, 
and the total number of bacterial OTUs the reads align to with a 99% similarity threshold. 

6.3.5. Sequencing of the V4 16S rRNA reads generated from Murine Faecal Samples 
 

Following removal of low-quality reads and chimeric sequences, a total of 1,321,241 high-

quality V4 16S rRNA reads were generated from the murine faecal samples. This included 

A 
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680,103 high-quality reads generated from the HDM-naïve faecal samples (average per 

sample = 97,157.57, range = 74,906 – 126,585) and 641,138 high-quality reads generated 

from the HDM-exposed faecal samples (average per sample = 91,591.14, range = 77,140 – 

103,248) (Figure 6.5, see also Supplementary Materials, Table S16).  

Statistical testing found that there were no significant differences in the number of high-

quality V4 reads generated from the HDM-exposed samples compared to the HDM-naïve 

samples (P value = 0.5197, Unpaired t test).  

Following read alignment to the Silva database, a total of 8,068 different OTUs were 

detected in the faecal samples. This included a total of 6,727 detected in the HDM-naïve 

samples (range = 1,240 – 3,230) and 6,443 in the HDM-exposed samples (range = 2,382 – 

2,692) (Figure 6.5, see also Supplementary Materials, Table S16). 

Comparison of the OTUs detected in murine faecal samples revealed a shared core faecal 

microbiome made up of 5,102 OTUs, an additional 1,341 OTUs were detected in the HDM-

naïve samples alone, and 1,625 OTUs were unique to the HDM-exposed samples. Analysis 

of the number of OTUs detected in the HDM-exposed faecal samples compared to the 

HDM-naïve samples revealed no statistical difference (P value = 0.9015, Wilcoxon rank sum 

test). Evaluation of the rarefaction curve found that the lack of statistical differences with 

regards to the number of OTUs detected was likely due to the increased level of diversity 

in the number of OTUs detected in the HDM-naïve faecal samples compared to the HDM-

exposed faecal samples (Figure 6.5.A). 

With regards to the experimental negative control, 28,232 high-quality V4 16S rRNA reads 

were generated from the experimental negative control (Figure 6.5, see also 

Supplementary Materials, Table S16). Following read alignment 218 OTUs were detected 

in the control sample, the majority of which had a read count of less than 10. A total of 140 
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of the bacterial OTUs detected in the negative control were also detected in the murine 

faecal samples. However, the majority of OTUs detected in both the experimental negative 

control and the murine faecal samples were detected in low levels in the negative control, 

with 89% of OTUs being represented by less than 100 reads in the negative control. With 

regards to OTUs detected at high levels in the experimental control (represented by > 100 

reads), only one OTU was of concern, being detected at similar levels in both the murine 

faecal samples and experimental negative control. This was OTU HW066314.1.1472, and 

taxonomic assignment revealed that the OTU represented a member of the Ruminococcus 

1 genus.  

 

 

 

B     

A 
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Group Number of 
Samples 

Mean number 
of raw reads 

Mean number of 
high-quality reads 

Total number of 
bacterial OTUs 

HDM-naive 7 108,945.14 97,157.57 6,727 

HDM-exposed 7 100,784.86 91,591.14 6,443 

Negative Control 1 36,394 28,232 218 
 

Figure 6.5: Quantification of bacterial V4 reads sequenced from murine faecal samples 
using Illumina sequencing. Illumina sequencing was used to sequence bacterial V4 
amplicons generated from faecal samples from HDM-naive (n = 7) and HDM-exposed mice 
(n = 7). Following successful sequencing of the V4 amplicons Nephele 2.0 was used remove 
low-quality reads and chimeric sequences, and to align the high-quality V4 reads to 
bacterial operational taxonomic units (OTUs). (A) A rarefaction curve showing the level of 
phylogenetic diversity of OTUs detected in the faecal samples. (B) Quantification of the V4 
reads generated from murine HDM-naïve samples and HDM-exposed faecal samples, and 
the total number of bacterial OTUs the reads align to with a 99% similarity threshold. 

 

 

 

6.3.6. Taxonomic Classification of the OTUs detected in the Murine BAL Samples 
 

The OTUs identified in the murine BAL samples were classified into 21 phyla and 361 

bacterial genera, the majority of which represented less than 1% of bacterial DNA 

sequenced from the samples (81% of phyla and 96% of genera). At the phylum level the 

murine BAL microbiome was dominated by four key phyla; Proteobacteria (45.44% of HDM-

naïve DNA, and 43.49% of HDM-exposed DNA), Firmicutes (24.29%, 22.27%), Bacteroidetes 

(21.74%, 20.42%), and Actinobacteria (7.37%, 9.93%) (Figure 6.6.A). 

At the genus level 14 genera were detected at high abundance (defined as representing > 

1.0% of the total bacterial DNA) in the BAL samples. High-abundant genera included 

Serratia 20.52% of HDM-naïve DNA, and 22.07% of HDM-exposed DNA), Pseudomonas 

(19.75%, 11.95%), uncultured Bacteroidales S24-7 group bacterium (10.19%, 9.28%), 

Corynebacterium 1 (6.44%, 6.31%), Lachnospiraceae NK4A136 group (6.10%, 6.14%), 
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Alistipes (5.63%, 4.81%), uncultured Lachnospiraceae (3.67%, 2.03%), Bacteroides (2.79%, 

2.77%), Staphylococcus (1,98%, 1.72%), Ruminococcaceae UCG-014 (1.89%, 1.65%), 

Achromobacter (0.82%, 2.51%), Streptococcus (1.24%, 1.88%), Escherichia-Shigella (1.10%, 

1.18%), and Anaerococcus (1.24%, 0.79%) (Figure 6.6.B). Additionally, Prevotellaceae UCG-

001 was detected at high abundance levels in the HDM-naïve samples (1.21%, 0.17%), and 

Lachnospiraceae UCG-001 (0.42%, 1.12%) and Odoribacter (0.42%, 1.08%) were detected 

at high abundance in the HDM-exposed samples (Figure 6.6.B). 

The single high-quality V4 read detected in the negative control was classified as belonging 

to the Gemella genus of the Firmicutes phylum, and due to the singular nature of the read 

it was deemed highly unlikely that detection of bacterial DNA present in the negative 

control would impact the downstream analysis of the murine BAL microbiome. 
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Figure 6.6: Composition of the bacterial gut microbiome in mice exposed to the HDM 
allergen compared to HDM-naïve mice. Bacterial composition determined using QIIME 
FASTQ paired end analysis on sequenced 16S rRNA (V4 region) reads generated from BAL 
samples taken from HDM-naive mice (n = 7; mean number of reads = 43,445), HDM-
exposed mice (n = 7, mean number of reads = 44,606), and an experimental negative 
control (n = 1, number of reads = 1). Taxa with a relative abundance > 1% were plotted, and 
low-abundant taxa (< 1.0%) were grouped and plotted as Taxa < 1% abundance. (A) Relative 
abundance of bacteria detected at the phylum level, (B) Relative abundance of bacteria 
detected at the genus level. 
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6.3.7. Taxonomic Classification of the OTUs detected in the Murine Faecal Samples 
 

The OTUs detected in the murine faecal samples were classified into 12 bacterial phyla and 

177 genera, the majority of which represented less than 1% of bacterial DNA amplified from 

the samples (9/12 phyla and 163/ 177 genera). At the phylum level the detected bacterial 

taxa were predominately Bacteroidetes (61.59% of HDM-naïve DNA, 61.89% of HDM-

exposed DNA) and Firmicutes (33.27%, 35.59%) (Figure 6.7.A). A number of Proteobacteria 

(1.67%, 0.74%) were also detected (Figure 6.7.A). 

Analysis at the genus level found that the faecal microbiome was dominated by uncultured 

Bacteroidales S24-7 group bacterium, which represented 34.35% of total bacterial DNA 

(35.22% in HDM-naïve samples and 33.48% in HDM-exposed samples) (Figure 6.7.B). 

Several other bacterial genera were detected at high abundance (defined as having a total 

relative abundance > 1.0%) in the murine faecal samples. These included Alistipes (9.04%, 

9.46%), Lachnospiraceae NK4A136 group (7.40%, 10.63%), Bacteroides (6.33%, 6.57%), 

Odoribacter (4.20%, 5.96%), Prevotellaceae UCG-001 (4.67%, 5.14%), uncultured 

Lachnospiraceae (4.62%, 4.80%), Ruminococcaceae UCG-014 (4.08%, 2.46%), 

Lachnospiraceae UCG-001 (1.60%, 4.11%), Lactobacillus (3.48%, 2.18%), Rikenellaceae RC9 

gut group (2.26%, 1.47%), Ruminocococcus 1 (1.05%, 1.40%), Roseburia (1.00%, 1.39%), 

and Ruminiclostridium (0.91%, 1.21%) (Figure 6.8.B). Additionally, Candidatus 

Saccharimonas, uncultured Ruminococcaceae and Ruminiclostridium 9 were present in the 

HDM-naïve samples at high abundant levels (1.32%, 1.22%, and 1.08%, respectively) (Figure 

6.7.B). 

Taxonomic assignment of the OTUs detected in the murine faeces experimental negative 

control found that the murine faeces experimental negative control OTUs could be 

classified into 5 phyla and 32 genera. At the phylum level the majority of detected bacterial 
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taxa belonged to the Proteobacteria phyla (98.01%), and to a lesser extent Firmicutes 

(1.62%) (Figure 6.7.A). At the genus level, 6 high-abundant bacterial genera were detected, 

these included Serratia (73.15%), Pseudomonas (12.35%), Ralstonia (6.21%), Escherichia-

Shigella (4.55%), Stenotrophomonas (1.67%), and Ruminococcus 1 (1.45%) (Figure 6.7.B). 

With the exception of Ruminococcus 1, the bacterial genera detected in the experimental 

control were detected at low levels in the murine faecal samples (less than 0.3% of total 

bacterial DNA generated from the faecal samples), and thus the presence of bacteria in the 

experimental control was unlikely to impact downstream analysis of the murine gut 

microbiome. 



322 
 

 

 
Figure 6.7: Composition of the bacterial gut microbiome in mice exposed to the HDM 
allergen compared to HDM-naïve mice. Bacterial composition determined using QIIME 
FASTQ paired end analysis on sequenced 16S rRNA (V4 region) samples generated from 
murine faecal samples taken from HDM-naïve mice (n = 7; mean number of reads = 97,158), 
HDM-exposed mice (n = 7; mean number of reads = 91,591), and an experimental negative 
control (n = 1; number of reads = 28,232). Taxa with a relative abundance > 1 were plotted, 
and low-abundant taxa (< 1.0%) were grouped and plotted as Taxa < 1% abundance. (A) 
Relative abundance of  bacteria detected at the phylum taxonomic level. (B) Relative 
abundance of  bacteria detected at the genus taxonomic level. 
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6.3.8. Changes in Bacterial Diversity in the Microbiome of mice exposed to the 
HDM allergen compared to HDM-naïve mice  

 

To determine whether exposure to the HDM allergen had a significant impact on bacterial 

diversity in the murine airway and gut microbiome, alpha and beta diversity was measured 

Comparison of alpha diversity of the BAL samples revealed that in mice exposed to HDM 

there was a slight increase in bacterial diversity when both Shannon and Chao1 diversity 

was measured (Figure 6.8). However, when statistical tests were applied the observed 

increase in bacterial diversity in the HDM-exposed mice compared to the HDM-naïve mice 

was found to be non-significant (Figure 6.8.C). 
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Figure 6.8: Comparison of alpha diversity in the airway microbiome of HDM-exposed 
mice compared to HDM-naïve mice. Alpha diversity was measured using rarefied OTU 
tables generated from 16S rRNA sequencing data obtained from BAL samples collected 
from HDM-exposed mice (n = 7) and HDM-naïve mice (n =7). Shannon diversity index scores 
were generated from OTU tables in order to measure the richness and evenness of 
bacterial taxa present in the BAL samples. Chao1 index scores were measured to determine 
the predicted number of bacterial taxa present in the BAL samples by extrapolating out the 
number of rare organisms that may not have been detected due to under-sampling. (A) 
Comparison of Shannon index scores generated from HDM-naïve BAL samples and HDM-
exposed BAL samples. (B) Chao1 index scores generated from HDM-naïve BAL samples and 
HDM-exposed BAL samples. (C) Statistical analysis of alpha diversity detected in the murine 
airway microbiome of HDM-naïve mice and HDM-exposed mice. 

 

 

Alpha Diversity HDM-naive   
Mean (S.D) 

HDM-exposed 
 Mean (S.D) P Value 

Shannon 4.11 (0.19) 4.32 (0.50) 0.6200 

Chao1 1033.35 (172.43) 1103.05 (171.60) 0.4962 

A B 

C 
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Comparison of the alpha diversity detected in the faecal samples of mice exposed to the 

HDM allergen compared to the HDM naïve mice revealed no significant changes in alpha 

diversity (Figure 6.9). This indicated that pulmonary inflammation in the airways as a result 

of HDM exposure had no significant impact on the diversity of bacteria residing in the 

murine gut. 

 

 

Figure 6.9: Comparison of alpha diversity in the gut microbiome of HDM-exposed mice 
compared to HDM-naïve mice. Alpha diversity was measured using rarefied OTU tables 
generated from 16S rRNA sequencing data from murine faecal samples collected from 
HDM-naïve mice (n = 7) and HDM-exposed mice (n = 7). Shannon diversity index scores 
were generated from the OTU tables in order to measure the richness and evenness of 
bacterial taxa present in the sample. Chao1 index scores were measured to determine the 
predicted number of bacterial taxa present in the samples by extrapolating out the number 
of rare organisms that may not have been detected due to under-sampling. (A) Comparison 
of Shannon index scores generated from HDM-naïve faecal samples and HDM-exposed 
faecal samples. (B) Chao1 index scores generated from HDM-naïve faecal samples and 

Alpha Diversity HDM-naïve 
 Mean (S.D) 

HDM-exposed 
 Mean (S.D) P Value 

Shannon 5.36 (0.18) 5.26 (0.10) 0.3829 

Chao1 3443.26 (710.27) 3781.58 (179.02) 0.5350 

A B 

C 
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HDM-exposed faecal samples. (C) Statistical analysis of alpha diversity detected in the 
murine gut microbiome of HDM-naïve mice and HDM-exposed mice.  

 

Beta diversity of the microbial populations detected in the murine BAL and faecal samples 

was measured to determine how similar the airway and gut microbiomes were to one 

another. Beta diversity was determined by measuring Bray-Curtis dissimilarity using the 

16S rRNA sequencing data generated from the murine BAL and faecal samples. PCoA 

analysis was then performed to determine how similar the microbial composition of the 

samples was to one another, and PERMANOVA analysis was carried out to determine 

whether the observed differences in beta diversity were statistically significant.  

Comparison of the murine airway and gut microbiome found that the gut and airway 

environments have distinct bacterial populations from one another (Figure 6.10). Analysis 

of the two environments found that the level of inter-variation (variation between samples 

from the same environment) within the BAL samples was increased compared to the level 

of inter-variation observed within the faecal samples (Figure 6.10). 

Statistical analysis of beta diversity detected in samples taken from the murine airways 

(BAL samples) and gastrointestinal tract (faecal samples) revealed that body habitat of the 

microbiome significantly influenced microbial diversity (P value = 0.0010, PERMANOVA). 

Statistical analysis also revealed that exposure to the HDM allergen had a significant impact 

on the overall beta diversity of the bacterial populations detected in the murine airways 

and gastrointestinal tract (P value = 0.004, PERMANOVA). This was primarily due to 

significant differences in beta diversity of the microbial populations detected in the gut 

microbiome of mice exposed to the HDM allergen (P value = 0.0090, PERMANOVA) as 

opposed to changes in the diversity of the microbial populations detected in the airways of 

the HDM-exposed mice (P value = 0.896, PERMANOVA)(Figure 6.10). 
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Figure 6.10: Comparison of beta diversity of the bacterial populations detected in the 
murine airway and gut microbiomes. Beta diversity of the bacterial populations detected 
in murine BAL samples (n = 14) and murine faecal samples (n = 14) was determined by 
measuring quantitative phylogenetic distances between each of the murine samples. This 
was achieved by measuring Bray Curtis dissimilarity from a normalised OTU table generated 
from the 16S rRNA sequencing data obtained from the murine samples. PCoA analysis was 
performed, and statistically significant differences in beta diversity was assessed using 
PERMANOVA. (A) Comparison of beta diversity present in the bacterial populations 
detected in the murine BAL and faecal samples revealed that the murine airway and 
gastrointestinal tract microbiomes were significantly different (P value = 0.0010, 

A 

B C 

P = 0.0010 

P = 0.0090 P = 0.8960 
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PERMANOVA). Comparison of the murine BAL samples revealed that HDM exposure did 
not influence composition of the airway microbiome (P value = 0.8960, PERMANOVA) (B), 
whilst comparison of the murine faecal samples found that HDM exposure significantly 
altered composition of the murine gut microbiome (P value = 0.0080, PERMANOVA) (C). 

 

 

6.3.9. Significant changes to Bacterial Relative Abundance in the Murine Airway 
Microbiome 

 

Analysis of the bacterial taxa detected in the murine BAL samples detected a number of 

low-abundant bacterial taxa (relative abundance < 0.5%) that were significantly decreased 

in the airways of mice exposed to the HDM allergen. These changes included a complete 

loss of members of the Fusobacteria phylum in the HDM-exposed mice, resulting in a 

statistically significant reduction in bacteria belonging to the Fusobacteriia class, 

Fusobacteriales order, Fusobacteriaceae family, and Fusobacterium genus (Figure 6.11), 

and a significant reduction in the Bacillus genus of the Firmicutes phylum in the airways of 

HDM-exposed mice (Figure 6.11). 
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Figure 6.11: Significant changes in bacterial taxa relative abundance in the murine airway 
microbiome of mice exposed to the HDM allergen compared to HDM naïve mice. LEfSe 
analysis was performed on the bacterial relative abundance data to determine the 
presence of differentially abundant bacterial taxa in the HDM-exposed mice (n = 7) 
compared to the HDM-naïve mice (n = 7) (defined as having a LDA effect size > 2.0 and a P 
value < 0.05). (A) A taxonomic cladogram highlighting the statistically and biologically 
consistent differences between the HDM-exposed airway microbiome compared to the 
HDM-naïve microbiome. Differences are presented in the colour of the most abundant 
sample group (red represents taxa significantly enriched in the HDM-naïve mice and yellow 
representing non-significant taxa). The circle diameter is proportional to the taxon’s 
abundance in the murine airway microbiome. (B) Relative abundance of the differentially 
abundant bacterial taxa. (C) Histogram of the LDA scores generated for the differentially 
abundant taxa present in the HDM-exposed mice compared to the HDM-naïve mice.  
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6.3.10. Significant Changes to Bacterial Relative Abundance in the Murine Gut 
Microbiome 

 

Analysis of bacterial composition in the murine gut microbiome using LEfSe analysis found 

that 18 bacterial taxa were present in significantly altered levels in the HDM-exposed mice 

compared to the HDM-naïve mice (as defined by a log10 LDA score > 2.0 and a P value < 

0.05) (Figure 6.12). In total 13 taxa were significantly decreased in the HDM-exposed mice 

compared to the HDM-naïve mice, and 5 taxa were significantly increased in the HDM-

exposed mice compared to the HDM-naïve mice (Figure 6.12). Bacterial taxa identified as 

being differentially abundant in the HDM-exposed mice were predominately low-abundant 

taxa (relative abundance < 0.05%), with the exception being Lachnospiraceae, which had a 

relative abundance of 1.59% in the HDM-naïve mice and a relative abundance of 4.10% in 

the HDM-exposed mice (Figure 6.12.C). Bacterial taxa significantly increased in the HDM-

exposed mice were predominately members of the Clostridiales order (Defluviitalaceae, 

[Eubacterium]nodatum group, Family XIII, and Defluviiraleaceae), and also included the 

Lachnospiraceae UCG-001 genus. In contrast, bacterial taxa significantly decreased in the 

HDM-exposed mice were predominately members of the Actinobacteria and 

Saccharibacteria phylum, and the Streptococcaceae family (Figure 6.12). 

 Of particular interest was the expansion of the highly abundant Lachnospiraceae UCG-001 

genus, and the detection of the Defluviitaleaceae family and Defluviitaleaceae_UCG-011 

genus, which were absent in the HDM-naïve mice (Figure 6.12).  
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Figure 6.12: Significant changes in bacterial taxa relative abundance in the gut 
microbiome of mice exposed to the HDM allergen compared to HDM naïve mice. LEfSe 
analysis was performed on the bacterial relative abundance data to determine the 
presence of differentially abundant bacterial taxa in the HDM-exposed mice (n = 7) 
compared to the HDM-naïve mice (n = 7) (defined as having a LDA effect size > 2.0 and a P 
value < 0.05). (A) A taxonomic cladogram highlighting the statistically and biologically 
consistent differences between the HDM-exposed gut microbiome compared to the HDM-
naïve gut microbiome. Differences are presented in the colour of the most abundant 
sample group (red represents taxa significantly enriched in the HDM-naïve mice, green 
represents taxa significantly enriched in the HDM-exposed mice,  and yellow representing 
non-significant taxa). The circle diameter is proportional to the taxon’s abundance in the 
murine gut microbiome. (B) Histogram of the LDA scores generated for the differentially 
abundant taxa present in the HDM-exposed mice compared to the HDM-naïve mice. (C) 
Relative abundance of the differentially abundant bacterial taxa. 
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6.3.11. Prediction of Microbial Activity of the Murine Airway Microbiome 
 

PICRUSt analysis detected a total of 284 level 3 KEGG pathways encoded by the bacterial 

members of the murine airway microbiome. The majority of detected pathways had a total 

predicted abundance of less than 1% in the BAL samples (262/ 284 KEGG pathways), and 

included 19 Cellular processes, 16 Environmental information processing, 27 Genetic 

information processing, 31 Human diseases, 142 Metabolism, 22 Organismal systems, and 

27 Unclassified pathways. Microbial functions present at high levels in the airway 

microbiome (as determined by a predicted KEGG pathway abundance greater than 1%) are 

shown below (Figure 6.13). Comparison on the detected KEGG pathways at levels 1 – 3 

using LEfSe analysis revealed no significant changes in microbial activity in the airways of 

the mice exposed to the HDM allergen compared to HDM-naïve mice (data not shown). 

 

Figure 6.13: Microbial functions of the murine airway microbiome. PICRUSt analysis was 
used to predict the functional capacity of the V4 16S rRNA metagenome present in BAL 
samples from HDM-naïve mice (HDM – mice, n = 7) and HDM-exposed mice (HDM + mice, n 
= 7). High activity level 3 KEGG pathways (as determined by a predicted total abundance 
greater than 1%) are plotted and KEGG pathways with an abundance less than 1% are 
grouped together and plotted as other. 
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6.3.12. Prediction of Microbial Activity of the Murine Gut Microbiome 
 

PICRUSt analysis of the V4 16S rRNA sequencing data generated from the murine faecal 

samples revealed that the bacterial members of the murine gut microbiome encoded a 

predicted 268  level 3 KEGG pathways. The majority of these pathways had a total 

abundance of less than 1%, and included 11 Cellular processes, 12 Environmental 

information processing, 26 Genetic information processing, 31 Human diseases, 141 

Metabolism, 20 Organismal systems, and 27 Unclassified pathways. 

Microbial functions predicted to be present at high levels in the gut microbiome (as 

determined by a predicted KEGG pathway abundance greater than 1%) are shown below 

(Figure 6.14). Comparison on the detected KEGG pathways at levels 1 – 3 using LEfSe 

analysis revealed that two of the 40 detected level 2 KEGG functional categories were 

significantly altered in the HDM-exposed mice compared to the HDM-naïve mice. These 

included increased Enzyme families (2.30% v 2.28%, P value = 0.0253, LDA effect size = 2.42) 

and decreased Unclassified Genetic Information processing (2.48% v 2.52%, P value = 

0.0040, LDA effect size = 2.58). 

With regards to the 268 level 3 detected KEGG pathways, 28 displayed significant 

differential abundance, as determined by a P value of less than 0.05 (see Supplementary 

Materials, Table S17). Of the 28 pathways, 7 were deemed to be of biological significance, 

as determined by an LDA effect size of 2.0 or greater. These included 4 pathways that were 

significantly increased in the HDM-exposed mice [Starch and sucrose metabolism (1.06% v 

1.01%, P value = 0.0476), Galactose metabolism (0.89% v 0.85%, P value = 0.0350), Pentose 

and glucuronate interconversions (0.57% v 0.53%, P value = 0.0181), and Sphingolipid 

metabolism (0.37% v 0.34%, P value = 0.0476)] and 3 pathways that were significantly 

decreased in the HDM-exposed mice [Recombination and repair proteins (0.61% v 0.63%, 
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P value = 0.0350), Propanoate metabolism (0.42% v 0.44%, P value = 0.0181), and Pyruvate 

metabolism (0.99% v 1.01%, P value = 0.0088)] (Figure 6.15 A - G). 

 

 

Figure 6.14: Microbial functions of the murine gut microbiome. PICRUSt analysis was used 
to predict the functional capacity of the V4 16S rRNA metagenome present in faecal 
samples from HDM-naïve mice (HDM –  mice, n = 7) and HDM-exposed mice (HDM + mice, n 
= 7). High activity level 3 KEGG pathways (as determined by a predicted total abundance 
greater than 1%) are plotted and KEGG pathways with an abundance less than 1% are 
grouped together and plotted as other. 
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Figure 6.15: Comparison of microbial activity in the gut microbiome of mice exposed to 
the HDM allergen compared to HDM naïve mice. PICRUSt was used to predict functional 
potential of the gut microbiome in HDM-naïve mice (n = 7) and HDM-exposed mice (n = 7) 
using V4 16S rRNA sequencing data. LEfSe analysis was used to identify differential bacterial 
functions present in the HDM-exposed gut microbiome compared to the HDM-naïve gut 
microbiota. Replication, recombination and repair proteins (A), Propanoate metabolism 
(B), and Pyruvate metabolism (C), KEGG pathways were observed to be significantly 
decreased in the HDM-exposed gut microbiota compared to the HDM-naïve gut 
microbiota. Starch and sugar metabolism (D), Galactose metabolism (E), Pentose and 
glucuronate interconversions (F), and Sphingolipd metabolism (G), were observed to be 
significantly increased in the gut microbiome of HDM-exposed mice compared to the HDM-
naïve mice. Significantly altered activity is defined as the KEGG pathway having a P value < 
0.05 and an LDA effect size score > 2.0. 
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6.4. Discussion 
 

6.4.1. Atopic HDM Sensitisation and Composition of the Murine Microbiome 
 

It has been firmly established that there are significant changes in the gut and airway 

microbiomes of asthmatic individuals compared to non-asthmatics 242, 254, 263,255–262. These 

changes are frequently detected during the microbiota developmental stage of early 

childhood, and it is thought that reduced exposure to environmental microorganisms 

during these critical developmental years is having an adverse impact on the maturation of 

the immune system, thus increasing the risk of atopic sensitisation and childhood asthma.  

Atopic asthma is frequently associated with sensitisation to the common HDM allergen 713–

717. Exposure to the HDM allergen in HDM-sensitive individuals results in acute allergic 

responses within the airways, which are thought to exacerbate asthma.  

This study aimed to determine whether pulmonary exposure to the HDM allergen, and the 

subsequent inflammatory responses associated with HDM-sensitisation, can alter the 

bacterial composition of the microbiome. 

Investigation into the effect of pulmonary HDM-exposure on the microbiome was achieved 

using a murine experimental model of HDM-sensitisation, whereby female BALB/c mice 

were exposed and sensitised to the HDM allergen using 9 intranasal instillations of the 

allergen. Plasma, BAL, and faecal samples were taken, and the circulatory, airway, and gut 

microbiome was determined using 16S rRNA sequencing techniques. A circulatory 

microbiome went undetected in the mice, but the murine airway and gut microbiomes 

were characterised, and significant changes were detected in both microbiomes as a result 

of HDM exposure. 
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6.4.2. Characterisation of the Murine Circulatory Microbiome 
 

Analysis of the murine plasma samples using PCR amplification of the V4 region of the 

bacterial 16S rRNA gene failed to detect microbial DNA in the samples. This was not 

unexpected as murine blood samples have been previously demonstrated to degrade more 

rapidly than human blood samples 718. A study carried out Makley et al (2010) found that 

murine packed red blood cells exhibited increased lactate levels, more severe acidosis,  and 

haemolysed earlier and more rapidly, compared to human packed red blood cells 718.  

Moreover, previous investigations have also shown that foreign DNA is rapidly cleared from 

the murine circulatory system.  Kawabata and colleagues, for example, demonstrated that 

circular DNA intravenously injected into mice is swiftly degraded, with a half-life of 

approximately 10 minutes 719. Furthermore, in addition to efficient degradation 

mechanisms, the murine circulation system has also been observed to remove the majority 

of free DNA from circulation and into the liver within 30 minutes of intravenous 

administration 720. 

A study by Sze et al (2014), did however, successfully characterise the murine circulatory 

microbiome by sequencing the V1-V3 hypervariable region of the bacterial 16S rRNA gene 

from whole blood samples 341. As whole blood has been demonstrated to contain more 

bacterial DNA than plasma samples 327, it is likely that the success of the study was partly 

due to the use of whole blood rather than blood fractions. It would, therefore, be beneficial 

to try repeating this study using whole blood samples and plasma samples taken from mice 

exposed to the HDM allergen to determine if the lack of successful amplification in this 

study was due to the use of plasma samples rather than whole blood. 
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6.4.3. Characterisation of the Murine Airway and Gut Microbiomes 
 

The murine airway microbiome was found to be dominated by four key phyla, 

Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria; whilst the murine gut 

microbiome was predominately composed of two key phyla; Bacteroidetes and Firmicutes. 

These results are consistent with previous studies that characterised the murine airway 

721,722 and gut microbiomes 723,724, and suggest that regardless of the murine strain and 

animal housing facilities, composition of the murine airway and gut microbiomes at the 

phylum level is relatively consistent. Comparison of the two microbiomes revealed that the 

airway and gut environments are composed of distinctly different microbial populations, 

as is evident in other higher organisms 188,725–728.  

At the phylum level the murine airway and gut microbiome shared similar microbial profiles 

to those previously observed in the human airway microbiome 255,256, 277,278,281 and gut 

microbiome 192,729–732. However, at the lower taxonomic levels, such as the genus, the 

murine airway and gut microbiome bacterial profiles displayed reduced similarity to the 

human airway and gut microbiome. These results reflect previous investigations into the 

murine and human microbiome, which demonstrated that at the high taxonomic levels 

human and mice have similar bacterial profiles within the microbiome, whilst at the lower 

taxonomic levels there is reduced similarity in bacterial profiles 730,733. Ley et al (2005), for 

instance, found that examination of the bacterial genera revealed that 85% of bacterial 

genera detected in the murine gut microbiome are not observed in the human gut 

microbiome 730. Differences in microbial communities at the lower taxonomic levels are not 

unexpected given that laboratory mice are typically housed in clean facilities, are fed a 

standardised diet of chow, and differ from humans anatomically and genetically 733.  
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6.4.4. HDM-induced changes to the Bacterial Composition of the Murine 
Microbiome 

 

Comparison of the HDM-exposed and HDM-naïve airway and gut microbiomes found that 

bacterial beta diversity was significantly altered in the gut microbiome of mice exposed to 

the HDM allergen compared to HDM-naïve mice. Furthermore, in both the gut and airway 

microbiome there were a number of significant changes in the relative abundance of 

bacterial populations detected in the HDM-exposed mice compared to the HDM-naïve 

mice. These included a complete loss of Fusobacteria members in the airways, a significant 

reduction of Bacillus spp. in the airways, introduction of novel Defluviitaleaceae UCG-001 

spp. into the gut, a significant increase in Lachnospiraceae UCG-001, Clostridiales Family 

XIII, and Eubacterium nodatum group in the gut, a significant reduction in Enterorhabdus 

spp., Candidatus Saccharimonas, and Streptococcus spp. in the gut, and a complete loss of 

Eubacterium ruminantium spp. in the gut of mice exposed to the allergen. 

The majority of bacterial taxa identified as having significantly altered abundance in the 

HDM-exposed murine microbiome have been previously identified in the murine gut and 

airway microbiomes 235, 341, 734–743, 384, 744, 385–387, 520, 629,721,722. Fusobacterium spp. and 

Eubacterium ruminantium spp., were the exceptions, as these bacteria are more commonly 

associated with the human microbiome 745–749.  

A number of the identified bacterial taxa been previously associated with atopic disease. 

Eubacterium nodatum group spp. and Lachnospiraceae spp., for example, have been 

observed to be increased in the gut of mice with induced atopic asthma 385, whilst 

Candidatus Saccharibacteria, Streptococcus, and Bacillus spp. have been observed to be 

protective against allergen sensitisation and atopic disease 385,750,751. 
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Furthermore, several of identified bacterial taxa were also detected at significantly 

differential levels in the human circulatory microbiome in the atopic subjects described in 

Chapter 5. The Clostridiales XI family displayed overall increased abundance in the human 

atopic subjects, whilst the Clostridiales XIII family was observed to be significantly increased 

in abundance in the gut microbiome of the HDM-exposed mice. Fusobacteria were 

significantly depleted in the airways of HDM-exposed mice and significantly enriched in the 

circulatory microbiome of human allergic rhinitis subjects. Furthermore, the 

Lachnospiraceae NK4A131 group was found to be significantly decreased in the circulatory 

microbiome of the allergic rhinitis subjects, and Lachnospiaceae UCG-001 were increased 

in the gut microbiome of mice exposed to the HDM allergen.  

Intriguingly, all three bacterial taxa detected as displaying significant differential 

abundance in the circulatory microbiome of human atopic subjects and in the airways and 

gut of mice exposed to the HDM allergen (Fusobacteria, Clostridiales, and Lachnospiraceae) 

have been previously associated with atopic disease. This suggests that short-term HDM 

sensitivity in mice had similar effects on the murine microbiome to that observed in chronic 

atopic disease in humans, and that the inflammatory responses involved in allergen 

sensitisation directly alter the microbiome composition. This is likely to result in the loss of 

beneficial members of the microbiome, and subsequently may lead to the expansion of 

bacterial taxa harmful to human health. 

 

6.4.5. Loss of beneficial bacterial Taxa as a result of HDM Exposure 
 

In the HDM-exposed murine microbiome, a number of bacterial taxa detected at 

significantly reduced abundance have been previously associated with protection against 
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asthma. This suggested that HDM sensitisation in the mice resulted in a loss of bacterial 

taxa protective against atopic disease. 

Protective microbes significantly reduced in the HDM-exposed mice included Bacillus, 

which were significantly reduced in the HDM-exposed murine airways, and Streptococcus 

and Eubacterium ruminantium group spp., which were significantly reduced HDM-exposed 

murine gut. 

Intranasal administration of Bacillus licheniformis spores prior to OVA allergen sensitisation 

and challenge in mice by Vogel et al (2008), for example, was demonstrated to decrease 

eosinophilia and mucous-producing goblet cells in mice sensitised and challenged with the 

OVA allergen. Moreover, in vitro work by the authors revealed that B. licheniformis bacteria 

activated dendritic cells, resulting in a Th1 cytokine expression profile characterised by 

increased IL-12 production and the upregulation of IFNƴ 751. Th1 polarisation was also 

observed in a in vivo model of spore exposure, whereby spore administration resulted in 

neutrophil infiltration and Th1-inflammation 751. 

Loss of IL-12 signalling has been demonstrated to result in increased Th2 polarisation. 

Decreased levels of Bacillus in the murine airways, therefore, is likely to influence the Th1/ 

Th2 ratio, resulting in increased Th2 polarisation and decreased Th1 polarisation. This 

would actively contribute towards Th2-driven pulmonary inflammation induced by the 

HDM allergen  by enhancing the number of Th2 cells present in the murine airways. 

Furthermore, the ability of B. licheniformis to induce Th1 polarisation suggests that 

exposure to the bacterium would be particularly important during the early years of 

immune development, when the infant immune system shifts towards a Th1 polarised 

system, and colonisation by Bacillus members is likely to protect against allergen 

sensitisation and development of atopic disease. 
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In support of this interpretation is the observation that B. licheniformis is commonly found 

in animal sheds and mattress dust 751. Exposure to livestock has been demonstrated to be 

protective against asthma development in young children 248,250. It is likely that the negative 

association between farm exposure and asthma development may partly be due to 

increased Bacillus colonisation in young children that have increased contact with livestock. 

Similarly, exposure to Streptococcus pneumoniae (a member of the Streptococcus genus 

that was decreased in the gut microbiome of HDM-exposed mice) in mice has been shown 

to reduce Th2 cytokine production, goblet cell hyperplasia, eosinophilia, antibody 

responses, airway hyperresponsiveness, and IgE production following allergen sensitisation 

and challenge 750,752,753. 

The effects of S. pneumoniae on allergic disease appears to be dependent on timing of 

exposure to the bacterium. Preston and colleagues, for instance, demonstrated that when 

mice were treated with S. pneumoniae before OVA sensitisation and challenge, the 

bacterium induced a significant increase in the production of the Th1 cytokine IFNƴ. 

However, when the bacterium was administered during or after OVA sensitisation and 

challenge, the mice exhibited a significant reduction in IL-5 and IL-13 production 752. This 

suggests that S. pneumoniae protects against allergen sensitisation and attenuates allergic 

disease when administered to allergen-sensitive individuals. Subsequent work by Preston 

and colleagues demonstrated that the attenuating effects of S. pneumoniae on atopic 

asthma in mice was a result of the bacteria’s ability to induce Treg expansion 750. However, 

it should be noted that 39% and 91% of class I and II bacteriocins in the HMP metagenomic 

dataset have been found to match Streptococcus genomes 754. This suggests that 

Streptococcus species encode the majority of bacteriocins in the human microbiome, and 

as bacteriocins kill or inhibit the growth of other bacteria 755,756, it is likely that changes in 
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Streptococcus abundance would have a significant impact on microbiome composition and 

subsequent effects on the immune system.  

In this study, Streptococcus was decreased following allergen sensitisation and challenge, 

and thus the research carried out by Preston et al suggest that this would actively 

contribute towards to HDM-induced pulmonary inflammation by increasing IL-5 and IL-13 

production. Moreover, it is predicted that reduced Streptococcus in the murine gut would 

lead to reduced levels of bacteriocins in the gut, subsequently resulting in expansion of 

other bacterial taxa. 

In humans, Streptococcus spp. have traditionally been associated with respiratory 

infections, but increasingly the bacterial genus is being recognised as a member of the 

human gut microbiome 757, skin microbiome 758, and oral microbiome 726. Decreased 

abundance of Streptococcus has been observed in the gut microbiome of asthmatic 

subjects 274. Furthermore, Streptococcal vaccination of asthmatic children has been 

demonstrated to reduce the incidence of acute asthma exacerbations 759, whilst S. 

pneumoniae vaccination in elderly asthmatic patients has been shown to reduce the 

frequency and severity of asthma exacerbations 760, thus suggesting colonisation with the 

bacterial genus is protective against atopic disease. 

However, colonisation with Streptococcus spp. has also been associated with increased risk 

of atopic disease 260, 280,761,762 and disease severity 763. Variances in clinical studies and 

murine asthma studies, however, may be explained by the effect corticosteroids have on 

the human microbiota. Zhang et al (2013), for example, demonstrated that children who 

regularly used inhaled corticosteroids to treat their asthma had increased oropharyngeal 

colonisation of S. pneumoniae 764.  As corticosteroid usage is typically increased with 
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asthma severity, the positive association between Streptococcus and severe asthma may 

simply be due to increased corticosteroid usage. 

In addition to reduction of Bacillus and Streptococcus spp., mice exposed to the HDM 

allergen suffered complete loss of the Eubacterium ruminantium group spp. in the gut 

microbiome. Whilst not typically associated with the murine gut microbiome, bacterial 

members of this  genus are likely to protect against atopic asthma due to their ability to 

produce SCFAs 765,766.  

SCFAs have been observed to induce Treg cell differentiation 608 and homoeostasis 767, and 

thus are important in the regulation of the immune system. This suggests that airway 

inflammation as a result of HDM exposure reduces SCFA production in the gut, which 

subsequently induces further immune dysregulation as a consequence of reduced Treg 

differentiation and activity.  

The association between SCFA production and asthma is further supported by in vivo 

studies. In mice, for example, increased fibre (a dietary nutrient that is fermented into SCFA 

by anaerobic microbes in the gut) intake is associated with protection against atopic 

asthma 542,543. Moreover, in patients with severe asthma, reduced fibre consumption has 

been associated with reduced lung function and increased airway eosinophilia533, thus 

demonstrating that changes in the gut influences the airway environment. 

 

6.4.6. Expansion of Bacterial Taxa Protective against Atopy in the HDM-exposed 
Gut Microbiome 

 

Not all of the observed changes in the murine gut microbiome were associated with loss of 

beneficial taxa. Clostridiales Family XIII and Lachnospiraceae UCG-001, for example, were 

both observed to be significantly increased in the gut microbiome of HDM-exposed mice, 
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and have both been demonstrated to promote expansion of Treg cells (a cell type 

associated with protection against atopic disease) 768,769. Furthermore, Clostridiales have 

also been demonstrated to regulate accumulation of iNKT cells 770  (a cell type associated 

with asthma pathogenesis), and inoculation with the bacterial taxa during early life has 

been found to confer protection against systemic IgE responses in adult mice 769. 

Collectively, this suggests that expansion of Clostridiales and Lachnospiaceae  in the gut of 

HDM-exposed mice would be beneficial against atopic disease, thus suggesting that HDM-

induced changes in the microbiome may not always be harmful to the host. 

 

6.4.7. HDM-induced Changes to the Microbial Activity of the Murine Microbiome 
 

The observed changes in microbiome composition were found to significantly alter the 

microbial activity of the gut microbiome in mice exposed to the HDM allergen. Of particular 

interest was the predicted increase in galactose and sphingolipid metabolism and decrease 

in propanoate metabolism in the HDM-exposed gut microbiome compared to the HDM-

naïve gut microbiome.  

Galactose has been observed to be decreased in the airways of murine models of 

experimental asthma 771,772. Moreover, in an OVA-induced murine model of asthma, 

galactose levels were negatively associated with macrophage, eosinophil, lymphocyte, and 

neutrophil recruitment to the airways, and arabinogalactan, a downstream product of 

galactose and arabinose, is protective against allergen sensitisation, airway inflammation, 

and airway hyperresponsiveness 773. Loss of galactose as a result of increased microbial 

consumption of galactose, therefore, is likely to increase susceptibility towards asthma. 

Sphingolipid metabolites, such as ceramide and S1P, have been demonstrated to be potent 

bioactive messengers involved in cell differentiation, proliferation, apoptosis, activation, 
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and migration 774, and there is increasing evidence suggesting a role for S1P in asthma 

pathogenesis. In asthmatic subjects, S1P has been demonstrated to be significantly 

increased in the airways and plasma of asthmatic patients following antigen challenge 

775,776, and the metabolite has been demonstrated to trigger airway hyperresponsiveness 

776–780, induce smooth muscle contraction and cell growth 774,775,781,782, stimulate migration 

of eosinophils 775,783, B cells 784,785, mast cells 774, neutrophils 786, and T lymphocytes 785,787, 

activate mast cells 774,788,789, and increase proinflammatory cytokine production (IL-4, IL-6, 

IL-8, IL-13, IL-17) 775, 779,780, 783,786, airway mucous production, and IgE levels 780. Increased 

abundance of sphingolipid metabolising bacteria in the gut, therefore, would likely 

contribute to a number of key mechanisms involved in asthma pathology.  

Decreased metabolism of propanoate by the HDM-exposed gut microbiome was indicative 

of reduced levels of SCFA in the HDM-exposed gut. Reduced levels of propionate producers 

have been detected in children at risk of developing asthma 258, and propionate has been 

demonstrated to be protective against atopic disease, primarily due to the compounds 

ability to induce Treg cell differentiation 542, 607,608,790,791. The results of this study, therefore, 

suggest that HDM exposure and the resultant inflammatory responses observed in 

genetically disposed individuals reduce the levels of propanoate in the gut, resulting in 

decreased Treg differentiation and increased susceptibility to atopic diseases. 

 

6.4.8. The Lung-Gut Axis influences changes to the Murine Microbiome 
 

The majority of changes to the murine microbiome following pulmonary exposure to the 

HDM allergen were detected in the gut microbiome rather than the airway microbiome. 

This suggests that an allergic immune responses localised in the murine airways altered the 

composition of the bacterial populations present in the murine gut. This interpretation is 
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supported by a number of studies, whereby induction of airway allergic disease using the 

HDM or OVA allergen resulted in significant changes to the murine gut microbiome 341,384–

386. Moreover, despite these studies using different allergens, similar changes were 

observed across the different investigations and in this one. These similarities included the 

observation of significant increases in the relative abundance of Eubacterium nodatum, 

Lachnospiraceae spp., and members of the Clostridiales order in the gut microbiome of 

mice exposed to the HDM/ OVA allergen compared to control mice 341,384–386. This suggests 

that the inflammatory responses associated with sensitisation to different allergens have 

similar effects on the murine microbiome. 

Moreover, in a murine study examining the influence of food allergy on the murine gut 

microbiome, it was observed that allergic disease susceptibility could be induced in 

allergen-naïve mice by reconstituting the gut microbiome in GF mice using faecal samples 

taken from allergen sensitised mice 629. This suggests that allergen-induced changes to the 

gut microbiome can actively contribute towards disease development and pathogenesis.  

Microbial changes in the airways may also alter microbial populations present in the gut. A 

study carried out by Sze et al (2014), for instance, demonstrated that instillations of LPS, a 

bacterial endotoxin protein expressed on the cell-surface of Gram negative bacteria, into 

the murine lungs caused a number of significant changes to the murine gut and circulatory 

microbiome 341. These changes were associated with a significant increase in total bacterial 

load in the gut and circulatory microbiomes, and a non-significant decrease in total 

bacterial load was observed in the airway microbiome of mice exposed to LPS 341. Reduction 

in total bacterial count in the airways was associated with decreased levels of 

Phyllobacteriaceae; a bacterial taxa that was observed to be increased in the circulatory 

microbiome following LPS exposure 341. This suggested that changes in the airway 



350 
 

environment as a result of exposure to LPS resulted in increased translocation of bacteria 

from the airways and into the circulatory vessels. 

LPS induces acute inflammatory responses, and collectively this study provides evidence of 

a lung-gut axis, whereby airway inflammation alters the bi-directional crosstalk between 

the lung and gut environment. This is thought to alter the gut environment, resulting in 

changes in the microbial populations residing in the gut 386. Changes to the gut microbial 

population can promote or suppress inflammatory responses depending on which 

microbes are lost/ gained, and result in a range of diseases affecting various body systems, 

including the nervous system (depression792,793, bipolar 794), circulatory system 

(cardiovascular disease 795,796), and respiratory system (asthma 257, cystic fibrosis 797).  

Further evidence of a lung-gut axis is in the form of numerous studies which have 

demonstrated the comorbidity of chronic lung diseases, such as COPD and asthma, and 

gastrointestinal diseases, such as irritable bowel disease 798–802 and functional dyspepsia 

802, and gastrointestinal symptoms , such as vomiting, diarrhoea, and abdominal pain 803,804. 

Moreover, none of the identified bacterial taxa were detected in the experimental negative 

controls, thus indicating that changes in bacterial composition were due to pulmonary 

exposure to the HDM allergen rather than as a consequence of experimental error. 

 

6.4.9. Suitability of the Experimental Murine Model in studying Atopic Asthma 
 

Asthma is a human disease, and thus despite the development of experimental asthma in 

various laboratory animals, including the murine model, there has yet to be an in vivo 

model that perfectly mimics this uniquely human disease.  
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The murine model of asthma is the most commonly used in vivo model of investigating 

factors that influence the composition of the microbiome, such as the effects of diet, age, 

antibiotic use, disease state. However, mice differ from humans significantly in terms of 

anatomy, genetics, and microbiome composition. Moreover, the shortened lifespan and 

laboratory environment means that mice are exposed to fewer environmental microbes 

compared to humans. Additionally, the lack of life events that induce microbial dysbiosis in 

the murine lifespan means that the murine microbiome is less likely to undergo the 

temporal shifts in composition that the human microbiome may undergo over a lifetime. 

However, despite these differences the murine model remains the most advantageous of 

animal models for microbiome/ microbiota studies . Moreover, it is a well-established 

model for investigating allergen-induced airway hypersensitivity 380,381,805, thus making this 

model the most optimum for investigating how the HDM allergen influences the 

composition of the microbiome. 

 

6.4.10. Chapter Summary 
 

In summary, this study has demonstrated that exposure to the HDM allergen alters the 

airway and gut microbiota in mice. It is postulated that in humans, pulmonary HDM 

exposure and subsequent allergic responses alters the lung environment and composition 

of the airway microbiota. This then changes the lung-gut signals, resulting in changes to the 

composition of the gut microbiota. These changes may in turn make the individual more 

susceptible to developing atopic diseases, such as atopic asthma, and explain the common 

occurrence gastrointestinal disorders observed in asthmatic individuals.
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Chapter 7: Conclusions and Future Work 
 

7.1. Summary of Research Findings 
 

Asthma is one of the most common chronic diseases of the 21st century, affecting over 300 

million people worldwide 1, and placing considerable strain on healthcare systems globally. 

Variations in clinical presentation and pathogenesis has resulted in speculation into 

whether asthma is a single disease or spectrum of related airway diseases with subtle but 

distinct differences in aetiology and pathophysiology 22,23. This had led to the disease being 

separated into a number of phenotypes which are further subdivided into a number of 

endotypes 20,22–25. The different asthma phenotypes and endotypes have been 

demonstrated to differ in disease presentation, in terms of cause, development, severity, 

and response to medication. 

Standard diagnosis of asthma relies on patient history of symptoms and confirmed 

expiratory airflow limitation, and diagnosis of the atopic asthma phenotype is determined 

by the use of skin pricks tests in order to identify allergen sensitisation asthma 102,103. 

However, asthma as a disease is highly heterogenous, and thus symptom presentation and 

lung function measurements may not always reflect the underlying airway inflammation. 

Furthermore, current methods for diagnosing the asthma endotypes are limited, invasive, 

and unsuitable for daily clinical practise. 

In addition to issues with assessing disease state and identifying the asthma endotypes, the 

medications currently available for asthma treatment (bronchodilators and anti-

inflammatory’s) have been developed as universal treatments for asthma, and thus do not 

take into account the subtle differences in pathology between the different asthma 

endotypes. This is likely affecting the efficiency of the currently available asthma 
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treatments, and overall an estimated 5-10% of asthmatics fail to respond to conventional 

asthma medications. In order to improve asthma diagnostic protocols and treatments, 

increased understanding of the endotype pathologies, is required. 

The first aim of this study, therefore, was to analyse plasma samples from a small, but well-

defined cohort of female subjects with poorly controlled atopic asthma associated with 

HDM sensitivity, in order to improve understanding of the molecular mechanisms behind 

the asthma endotype and to identify potential biomarkers present in the blood. This was 

achieved by performing a comprehensive molecular characterisation of circulating mRNA, 

miRNA, and protein-based markers of the immune response. 

 

7.1.1. Characterisation of Atopic Asthma at the Molecular Level 
 

Overall, the mRNA and miRNA profiles in the asthmatic subjects were found to be 

significantly altered compared to the control subjects, as determined by cluster analysis 

and the detection of significant changes in gene expression and miRNA levels. Of note, was 

the observation that asthma severity appeared to influence gene expression, whilst miRNA 

expression appeared to be influenced by the presence of additional atopic diseases. Of the 

289 genes displaying significant differential expression in the asthmatic subjects, 10 genes 

have been previously identified as potential asthma biomarkers, whilst many of the 13 

miRNAs that displayed significant differential expression in the asthmatic subjects have 

been previously associated with various features of asthma pathogenesis. This, therefore, 

validated the identified mRNA and miRNA as potential circulatory biomarkers of the asthma 

endotype, and suggested the possibility that a blood test aimed at quantifying known 

asthma biomarkers could be used as a future diagnostic tool for the asthma endotype. 
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In addition to identifying a number of potential circulatory RNA biomarkers, functional 

analysis performed on the sequenced RNA detected a number of immune functions with 

predicted altered activity in the asthmatic subjects compared to the control subjects. This 

increased understanding of the pathogenic mechanisms of the asthma endotype, 

subsequently identifying potential novel therapeutic targets for the endotype.  

With regards to the protein investigations, there was an overall increase in inflammatory 

proteins in the asthmatic subjects compared to the control subjects, but no significant 

differences in the levels of individual proteins detected. However, it was intriguing to note 

that the asthmatic subjects appeared to cluster into two distinct groups; high-inflammatory 

protein levels and low-inflammatory protein levels, thus suggesting the possibility that the 

endotype could be further subcategorised on the basis of circulatory inflammation. The co-

occurrence of additional atopic diseases appeared to influence circulatory inflammation, 

this was particularly apparent for IL-17A, which was observed to be increased in asthmatic 

subjects diagnosed with additional atopic diseases and the two control subjects who self-

identified as having atopic dermatitis. Investigation into circulatory inflammation in 

asthmatic subjects, therefore, warrants further attention.  

Additionally, the proteomic investigation found that the endotoxin microbial protein was 

decreased in the asthmatic subjects compared to the control subjects. This was of interest 

as bacterial endotoxin has previously been demonstrated to be protective against asthma 

development and pathogenesis 250. Furthermore, several of the observed changes in the 

asthmatic RNA and inflammatory protein profiles were identified as being antimicrobial, 

and thus changes in the immune state of the asthmatic subjects was predicted to be 

influencing the bacterial populations present in the asthmatic circulatory microbiome. 
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7.1.2. Characterisation of the Circulatory Microbiome in Atopic Asthma 
 

Microbial dysbiosis in the asthmatic airways and gut has been well described. Alterations 

to the human microbiome due to changes to the environment, diet, and microbial exposure 

that have occurred in the past century are thought to be contributing to increased 

prevalence of asthma. However, to date there have been no published characterisations of 

the asthmatic circulatory microbiome, barring the published work of this study. The second 

aim of this study, therefore, was to characterise the circulatory microbiome in the 

asthmatic and control subjects. 

Using the plasma samples from the 5 atopic asthmatic subjects and 5 healthy control 

subjects, a 16S rRNA sequencing technique was successfully developed to enable 

characterisation of the circulatory microbiome in the 10 subjects. Characterisation of the 

circulatory microbiome was comparable to other studies investigating the circulatory 

microbiome 323, 327, 332,361, thus supporting the notion of a core circulatory microbiome 

dominated by members of the Proteobacteria, and to a lesser extent, the Actinobacteria, 

Firmicutes, and Bacteroidetes phyla. 

 Comparison of the asthmatic circulatory microbiome to the control microbiome revealed 

that atopic asthma did not significantly alter the diversity of bacteria detected in the plasma 

samples. However, analysis of the relative abundance of detected bacteria demonstrated 

that atopic asthma was associated with an increased ratio of Firmicutes to Proteobacteria, 

and significantly increased abundance of the Firmicutes phylum, Bacilli class, the 

Xanthomonadales order, the Xanthomonadaceae family, and the Stenotrophomonas and 

Kocuria genera, in the circulatory microbiome compared to the control microbiome. 

The reduced abundance of Proteobacteria detected in the asthmatic subjects likely explains 

the decreased concentration of circulatory endotoxin detected in the asthmatic subjects as 
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the Proteobacteria phylum is predominately composed of endotoxin-producing Gram 

negative bacteria. Additionally, the phylum contains a variety of known human pathogens, 

and thus reduced levels of these bacteria in the asthmatic subjects may be the 

consequence of increased antimicrobial production in the asthmatic subjects, as evidenced 

in the RNA and pro-inflammatory data. 

It was also interesting to note the observed increase in Firmicutes in the asthmatic subjects, 

as increased levels of Firmicutes have also been detected in the airways of asthmatic 

diagnosed with severe asthma 261. This suggests that severe asthma may be characterised 

by increased Firmicutes abundance, and that increased circulatory levels of Firmicutes may 

serve as a microbial biomarker of severe asthma. However, as this study only characterised 

the circulatory microbiome of subjects with severe asthma, a larger study involving 

multiple asthma severity levels would be required to investigate this further. 

Changes to the bacterial circulatory microbiome was predicted to significantly decrease 

energy metabolism potential of the asthma microbiome compared to the control 

microbiome. This suggested the possibility of reduced SCFA production in the asthmatic 

subjects. However, as SCFA production typically occurs in the cecum and large intestine, 

and comparison of the circulatory microbiome found no similarity with the HMP gut 

microbiome, further analysis of the origins of the detected bacteria would be required to 

determine the significance of these findings. 

Analysis of the viability of the bacteria detected found that the plasma samples contained 

viable bacteria. Identification of these organisms, however, demonstrated that the 

detected bacteria are known members of the skin microbiome, thus suggesting that the 

detected organisms were contaminating bacteria from the skin of the study subjects and/ 

or the individuals who handled the blood samples prior to the culture work. This 
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interpretation was supported by comparison of the samples to the HMP microbiomes, 

whereby the circulatory microbiomes were found to be most similar to the HMP oral cavity 

and skin microbiota. However, as no experimental negative control was generated during 

sample collection it was not possible to identify contaminating bacteria introduced to the 

samples during sample collection. 

Previous investigations into the asthma microbiome have demonstrated that the different 

asthma endotypes are associated with distinct changes to the bacterial populations making 

up the airway and gut microbiome  242, 254, 263,255–262. In the asthmatic cohort, a number of 

the asthmatic subjects suffered from additional atopic diseases (i.e. allergic rhinitis, atopic 

dermatitis), and this may have influenced the composition of the circulatory microbiome. 

The third aim of this study, therefore, was to determine whether different atopic diseases 

are associated with distinct changes to the circulatory microbiome. 

 

7.1.3. Characterisation of the Circulatory Microbiome in different Atopic Disease 
States 

 

The method of detecting the human circulatory microbiome developed using the human 

plasma samples was applied to serum samples from 4 asthmatic subjects, 7 allergic rhinitis 

subjects, 3 hyper-allergic subjects (diagnosed with both asthma and allergic rhinitis), and 

11 healthy control subjects, that were kindly donated by Professor Jarvis of the National 

Lung and Heart Institute as part of a preliminary investigation into whether the circulatory 

microbiome could be characterised from historic serum samples. 

A circulatory microbiome was successfully characterised from all the serum samples, and 

was found to be predominately composed of Proteobacteria, Firmicutes, and 

Actinobacteria, and to a lesser extent Bacteroidetes and Cyanobacteria. These observations 
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were similar to the circulatory microbiome characterised from the plasma samples (as 

described in Chapter 4) and reflect the results of previous investigations into the circulatory 

microbiome, thus providing further support for the theory of a core circulatory 

microbiome. 

The increasing evidence of a core circulatory microbiome suggests that the microbiome 

may be less transient than previously thought. However, it may be that the detected 

bacteria are simply more efficient at translocation into the blood, are better adapted to 

surviving in the circulatory system, and/ or are more likely to be blood contaminants, 

entering the blood sample upon sample collection, and/ or existing as laboratory 

contaminants. Further investigation, therefore, would be required to determine the most 

likely origins of the bacteria detected in the blood samples. 

Comparison of the circulatory microbiome detected in the different sample groups 

revealed allergic rhinitis was associated with increased bacterial alpha diversity in the 

circulatory microbiome, whilst asthma was associated with decreased bacterial diversity, 

and the hyper-allergic state displayed similar diversity to the control subjects. This revealed 

that the different atopic states influenced diversity of the bacterial populations present in 

the circulatory system differently. This interpretation was further supported by the 

detection of differentially abundant bacterial taxa in the atopic subjects, whereby 

differentially abundant taxa were predominately specific to the atopic disease state. 

Members of the Prevotellaceae family, for example, were only significantly increased in 

subjects with allergic rhinitis (the allergic rhinitis subjects and the hyper-allergic subjects), 

whereas the Micrococcales order was only significantly decreased in subjects with asthma 

(the asthmatic subjects and the hyper-allergic subjects). 
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A number of the observed changes in bacterial abundance in the atopic subjects have 

previously been associated with atopic disease state in both the airway and gut 

microbiome. This suggests that changes in the circulatory microbiome reflect microbial 

dysbiosis present in the atopic airways and gut. Furthermore, several of the differentially 

abundant bacterial taxa have been associated with disease development, phenotype, 

pathogenesis, and treatment sensitivity. The circulatory microbiome could, therefore, 

represent a reservoir of novel biomarkers that could be used in the identification of at-risk 

infants, diagnosis of atopic disease, classification of disease phenotype and severity, and 

determining treatment responsivity.  

Changes in the circulatory microbiome was also predicted to significantly alter microbial 

activity in the hyper-allergic subjects. This was of interest, as it suggested the co-occurrence 

of multiple atopic diseases in the individual augmented the effect atopic disease on 

predicted circulatory microbiome functional activity. This contrasted with the results of 

alpha diversity analysis, whereby the effects asthma and allergic rhinitis had on bacterial 

diversity counteracted one another, resulting in the hyper-allergic subjects  displaying a 

bacterial diversity similar to the control subjects. 

The results of predicted functional activity of the circulatory microbiome were similar to 

the results of predicted functional activity in the circulatory microbiome (as described in 

Chapter 4), whereby the functional activities predicted to be altered in the hyper-allergic 

subjects were predominately metabolic activities (retinol metabolism, toluene 

degradation, dioxin degradation, Flavonoid biosynthesis, thiamine metabolism). 

Additionally, whilst no level 3 KEGG pathways displayed significantly altered abundance in 

the asthmatic serum samples that were biologically significant (as defined by an LDA score 

greater than 2.0), 2 metabolic KEGG pathways did display significant P values, thus 
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providing further support that the asthma microbiome is associated with changes in 

metabolic potential. This was a particularly intriguing find as obesity and diabetes have 

been previously demonstrated to be comorbidities of asthma. This research suggests the 

possibility that changes in the microbiome associated with atopic disease may alter 

metabolic potential of the human microbiome, subsequently making atopic individuals 

more susceptible to developing metabolic syndromes, such as obesity and diabetes.  

The bacterial activities identified as being differentially abundant in the hyper-allergic 

subjects have been previously associated with atopic disease and pathogenesis. Changes in 

the circulatory microbiome functional potential, therefore, likely reflects altered bacterial 

activity present at other body sites within the hyper-allergic subjects. This altered activity 

may contribute towards atopic pathogenesis,  or it may reflect changes in the bacterial 

abundance as a consequence of changes to the microbiome environment. 

In the hyper-allergic subjects, for instance, increased abundance of retinol metabolising 

bacteria likely actively contributes towards atopic pathogenesis through production of 

retinoic acid, a retinol metabolite that has been demonstrated to enhance several 

pathogenic features of atopic disease. In contrast, the observed increase in toluene and 

dioxin metabolising capabilities of the hyper-allergic microbiome may simply reflect the 

associated risk between toluene and dioxin environmental exposure and atopic disease. 

Increased inhalation of these compounds would create internal body habitats where the 

ability to degrade the compounds serves as a beneficial trait, enabling bacteria capable of 

metabolising the compounds to out compete other members of the human microbiota, 

thus explaining their increased abundance in atopic subjects. 

However, it can also be argued that changes in the circulatory microbiome functional 

potential is a reflection of the changes in human lifestyle that have occurred in the past 
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century. For instance, decreased exposure to respiratory infections as a consequence of 

increased sanitation and development of antibiotics may cause retinoids to accumulate in 

the lungs, this in turn would encourage growth of bacteria with retinol metabolising 

activity. Furthermore, changes in the human diet, moving away from a natural food 

products high in vitamins and fibres towards a diet containing more processed foods high 

in sugar and fat 806,807, are likely to result in reduced consumption of key nutrients and 

vitamins, such as thiamine, thus removing the beneficial adaptation of thiamine 

metabolising, and subsequently resulting in decreased growth of thiamine metabolising 

bacteria. 

Analysis of the viability of the bacteria detected in the human serum samples found that 

there were no viable bacteria present in the samples. The serum samples were donated 

from a collection of historic serum samples and thus had been stored at -80oC for 

significantly longer than the plasma samples investigated in Chapter 4. This, therefore, 

suggests that long-term storage of blood samples may influence viability of bacterial cells 

present in the samples, subsequently making it more difficult to resuscitate the bacteria 

from their dormant state 333. However, it may also support the theory that the detected 

circulatory microbiome is predominately composed of bacterial DNA that has translocated 

from other body sites, and that the viable bacteria detected in the human plasma samples 

were the result of contaminating bacterial cells from the skin microbiota. Further 

investigations using blood samples stored for different lengths of time, therefore, would 

be beneficial in order to determine the effects of long-term storage on the circulatory 

microbiota. 
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7.1.4. Characterisation of the Murine Microbiome following exposure to the HDM 
allergen 

 

One theory about the atopic microbiome is that an altered immune system associated with 

persistent airway inflammation in atopic subjects causes the observed changes in the 

bacterial populations. The final aim of this study, therefore, was to examine changes in the 

atopic microbiome following HDM-induced pulmonary inflammation in a murine model. 

This was achieved by examining the murine airway, gut, and circulatory microbiome of mice 

with HDM-induced pulmonary inflammation (HDM-exposed mice) and control mice (HDM-

naïve mice) using murine BAL, faeces, and plasma samples kindly donated by Dr Martin 

Leonard from Public Health England. 

Analysis of the murine plasma samples using the circulatory microbiome detection protocol 

developed in Chapter 4 was unsuccessful at detecting a murine circulatory microbiome. 

This demonstrated that the protocol developed for human blood samples was not 

applicable to murine blood samples. Therefore, in order to assess the effects HDM-induced 

pulmonary inflammation has on the murine circulatory microbiome a new protocol would 

need to be developed that is tailored to murine blood.  

Analysis of the murine BAL and faecal samples, however, was successful, and provided 

evidence that HDM-induced pulmonary inflammation significantly alters both the murine 

airway and gut microbiomes. Characterisation of the airway and gut microbiomes revealed 

that the two microbiomes shared similar microbial profiles to those previously observed in 

the human airway 255,256, 277,278,281 and gut microbiomes 192,729–732, thus providing further 

support that the murine experimental model is currently the most optimum in vivo model 

for examining allergen induced changes to the microbiome. 
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Comparison of the HDM-exposed and HDM-naïve microbiomes found that bacterial beta 

diversity was significantly altered in the gut microbiome of mice following HDM-induced 

pulmonary exposure compared to HDM-naïve mice. Furthermore, in both the airway and 

gut microbiome a number of significant changes in bacterial relative abundance were 

detected in the HDM-exposed mice compared to the HDM-naïve mice. Several of the 

bacterial taxa displaying significant differential abundance have been previously associated 

with atopic disease, in particular many of the bacteria displaying significant decreased 

abundance in the HDM-exposed mice have been demonstrated to be protective against 

atopic disease.  

These observations were further supported by the results of PICRUSt analysis, whereby the 

HDM-exposed gut microbiome displayed changes in predicted microbial activity that would 

likely augment atopic pathogenesis. Galactose levels, for example have been negatively 

associated with macrophage, eosinophil, lymphocyte, and neutrophil recruitment to the 

airways, and thus the observed increase in galactose metabolism potential in the murine 

gut microbiome following HDM exposure would likely remove the protective role galactose 

has in atopic disease. Furthermore, increased sphingolipid metabolism in the murine gut 

would cause an increase in pro-inflammatory metabolites (S1P), and thus actively 

contribute to allergen-induced inflammation and atopic disease pathogenesis. 

It was also intriguing to note that SCFA (propanoate) metabolism was predicted to be 

decreased in the gut of HDM-exposed mice as it suggested HDM-induced pulmonary 

exposure resulted in a decrease of SCFA production in the gut, a known feature of atopic 

disease.  

The majority of changes to the murine microbiome following HDM-induced pulmonary 

inflammation were detected in the murine gut microbiome. This suggested that allergen-
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induced immune responses localised in the airways altered the composition of bacterial 

populations present in the gut, thus providing additional evidence for a lung-gut axis, 

whereby airway inflammation alters the bi-directional crosstalk between the lung and gut 

environment.  

 

7.2. Research Limitations associated with the Study 
 

Overall this study achieved the main aims and objectives made at the start of the project. 

However, there were a number of research limitations  associated with the study. 

Firstly, with regards to the plasma samples used in Chapter’s 3 and 4, two of the control 

subjects had self-diagnosed atopic dermatitis. Although this was not clinician diagnosed 

and comparison of the RNA, protein, and microbiome characterisation results found no  

increased similarity of these two control subjects with the asthmatic subjects, atopic 

dermatitis is still a member of the atopic triad and so the presence of these two sample 

may of made differences in the control and asthmatic samples less apparent.  

Another research limitation associated with the plasma was the limited sample volume 

which restricted the amount of analysis that could be performed on the samples. This 

meant that rather than do individual quantitative ELISAs in order to measure circulatory 

inflammatory proteins, qualitative ELISAs that required less sample volume were used 

instead. This likely influenced the accuracy of determining the protein levels in the control 

and asthmatic samples, and if more sensitive, quantitative kits had been used instead, this 

may have enabled more significant changes in the asthmatic inflammatory protein profile 

to be detected. Limited sample volume also resulted in IgE quantification not being 

performed on the Asthma_1 sample due to insufficient sample. It’s possible that IgE protein 

would have been present in the sample, and that detection of IgE in the sample would have 
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resulted in the detection of significantly increased IgE levels in the asthmatic samples 

compared to the control samples. 

With regards to the human circulatory microbiome work, there were several research 

limitations associated with this aspect of the study. Firstly, the blood samples were 

collected at a single time point. The circulatory microbiome is predicted to be a highly 

dynamic, transient population of bacteria that have translocated into the bloodstream 

from elsewhere in the body. A single time point analysis of the circulatory microbiome is, 

therefore, unlikely to give an accurate characterisation of the circulatory microbiome. 

Furthermore, atopic disease exhibits high levels of temporal heterogenicity, and thus a 

characterisation of the circulatory microbiome at a single time-point is unlikely to 

demonstrate the full effects that atopic diseases exhibit on the circulatory microbiome.  

In addition to limitations associated with sample collection, a number of experimental 

design limitations were also present in the study. Firstly, the only DNA kit to successfully 

generate microbial 16S rRNA DNA from the blood samples was the Phusion Blood direct 

kit. This kit, unlike the traditional DNA extraction kits, requires a significantly smaller 

volume of blood sample (1 – 5µl). Considering the average human adult has 4.5 – 5.5 litres 

of blood in circulation, there is a risk that the microbiome characterised was not a true 

reflection of the circulatory microbiome as a whole. Another possible limitation with the 

experimental design was the use of just three nutrient agars during the bacteria viability 

experiments. These experiments were performed at the end of the study, and thus time 

constraints limited the incubation times and number of different agars that could be used. 

It is, therefore, possible that viable bacteria went undetected as viable bacteria present in 

the samples may not have been suited for the growth conditions provided in the 
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experiment, thus reducing the diversity and/ or amount of bacterial growth detected from 

the samples.  

With regards to the human serum samples, the samples were part of a preliminary 

investigation to determine whether a circulatory microbiome could be successfully 

characterised using historic serum samples. This meant that the number of samples kindly 

donated were limited and did not contain equal numbers of the different atopic diseases. 

This likely will have influenced statistical analysis of the circulatory microbiome, making 

differences between the different atopic diseases and control subjects less apparent. 

Furthermore, the samples had been placed in long-term storage and this may have caused 

degradation of the microbial DNA present in the samples which would have adversely 

influenced characterisation of the circulatory microbiome. A recent study carried out by 

Salzmann et al (2019), for example, observed increased RNA degradation and decreased 

bacterial diversity in clinical samples (blood, menstrual blood, saliva, semen, skin, and 

vaginal secretion) that had been stored for 2 – 9 months compared to fresh samples 808. 

With respect to the murine experimental study, the major limiting factor was use of the 

experimental negative control. The negative experimental control was introduced to the 

study at the DNA extraction stage of the investigations, whereby UV-treated biology grade 

molecular water was used to replace the murine sample during the extraction process. 

However, it is possible that bacterial contamination occurred upstream of this process, for 

instance microbial cells and/ or DNA may have been present in the HDM extract, in the PBS 

solution used to administer  the HDM extract and control procedure, or on the surfaces of 

the equipment used to administer the HDM-PBS/ PBS treatment to the mice. This may have 

introduced foreign bacteria to the murine microbiota prior to sample collection, which in 

turn may have altered the bacterial populations present in the murine microbiota, 
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subsequently distorting downstream characterisation of the murine microbiome. 

Additionally, if there were microbes/ microbial DNA in the HDM extracts, this may have 

resulted in false positives with regards to significant changes in the murine microbiome 

attributed to the HDM-induced pulmonary inflammation.  

Another limitation associated with the murine study was the failure to successfully amplify 

and characterise microbial DNA from the murine plasma samples. This meant that the 

effects of HDM-induced pulmonary inflammation on the circulatory microbiome could not 

be assessed.  Moreover, direct comparisons between microbial dysbiosis in the airways and 

gut and changes in the circulatory microbiome could not performed, and thus evaluation 

of the effects of microbial dysbiosis at other body sites on the circulatory microbiome could 

not be carried out. However, it should be noted that to date only one murine study has 

successfully characterised a murine circulatory microbiome, and thus this limitation was 

only a minor concern. 

 

7.3. Future Work 
 

This study increased understanding of the inflammatory mechanisms involved in a HDM-

associated atopic asthma endotype, and identified a number of RNA, protein, and microbial 

biomarkers that could be used in the diagnosis of the asthma endotype and other atopic 

diseases. This knowledge and understanding could be further expanded upon through a 

series of additional studies. 

Firstly, the experimental work presented in Chapters 3-5 could be repeated using a larger 

cohort of atopic and control subjects to determine whether the RNA biomarkers identified 

would remain significant in a larger cohort of subjects, thus increasing the validity of the 

proposed circulatory RNA biomarkers. Furthermore, a number of the inflammatory 



368 
 

proteins investigated in this study were close to be significant, and a repeat examination of 

the inflammatory proteins in a larger cohort would be valuable in determining whether the 

observed changes in the atopic asthmatic subjects were significant, and thus increasing 

their potential as asthma biomarkers.  

Repeating the experiment with a large cohort would also enable a number of 

improvements to be applied to the experimental protocol and procedures. Ideally, this 

second cohort of subjects would be obtained through a clinical collaborator as this would 

enable greater control over the procedures used to collect the samples. This would help 

eliminate the concerns that microbial contamination occurred during sample collection.  

Furthermore, there was a concern that long-term storage of the samples had degraded 

protein and/ or microbial DNA present in the samples, and that had impacted the results 

of the protein and microbial investigation. As the protocols for analysing the protein and 

microbial profiles were optimised in this study, analysis of samples from a larger cohort of 

subjects would be performed more efficiently and timely, and thus eliminate the concerns 

that long-term storage had influenced the results of the study. Moreover, it would be 

beneficial to establish whether long-term storage influences RNA, protein, and microbial 

analysis of blood samples, and thus a long-term aim of this second study could be to 

investigate the effects of storage on the identification of circulatory biomarkers and the 

characterisation of the circulatory microbiome. This could be achieved by aliquoting the 

blood samples and placing them in storage. RNA, protein, and microbial analysis of the 

blood aliquots could then be carried out every three months over the course of several of 

years to determine whether increased storage time influences RNA, protein, and microbial 

analysis of the samples. 
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Another concern of this study was that characterisation of the single blood donation would 

not be sufficient to accurately characterised the circulatory microbiome and the effects 

atopic disease has on the circulatory microbiome. This concern could be resolved by 

carrying out a long-term study on a group of clearly defined asthmatic subjects and an 

appropriately matched group of control subjects. This would involve taking blood samples 

on a monthly basis to determine whether the  circulatory microbiome is as temporally 

divergent as predicted, or whether the microbial populations are more stable than 

previously thought. Investigations into the circulatory microbiome have typically involved 

single blood donations and so this study would be of particular benefit to microbiome 

research.  

Additionally, it would also be useful to take blood samples during periods of stable disease, 

during periods of acute asthma exacerbations, and following an acute exacerbation, to 

determine whether disease severity influences the composition of the circulatory 

microbiome. 

Moreover, repeating the study using a larger cohort would enable new research questions 

to be introduced to the study. Firstly, this study specifically characterised a female cohort 

of asthmatic subjects, and as disease presentation has been observed to differ between 

the two sexes, it would be of interest to determine if sex of the subjects influenced the 

identification of RNA, protein, and microbial biomarkers in the asthmatic subjects. 

Repeating the experiments with a larger cohort containing both males and females, would 

enable the effects of subject sex on asthma pathogenesis and biomarker identification to 

be evaluated.  

Furthermore, the results of Chapter 5 suggested that the different atopic diseases affect 

the circulatory microbiome differently, and therefore, it would also be beneficial to include 
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equal numbers of subjects diagnosed with the different atopic diseases in the larger cohort 

in order to further assess whether the different atopic diseases are associated with disease 

specific circulatory biomarkers. Moreover, as this study focussed on examining differences 

between atopic subjects with asthma and allergic rhinitis, it would be useful to include 

subjects with atopic dermatitis in future work to enable evaluation of the full atopic triad.  

Additionally, the results of RNA analysis suggested that as disease progresses, the 

asthmatic circulatory RNA profile becomes more divergent to that of non-asthmatic 

subjects. This was demonstrated by the RNA profile of Asthma_4, an asthmatic subject that 

displayed the least divergent RNA profile from the control profile and had been living with 

the disease for a significantly shorter time period compared to the remaining asthmatic 

subjects. It would, therefore, be interesting to include different age categories in a future 

cohort of asthmatic subjects to explore the possibility that over time asthmatics display 

increasing changes in the circulatory RNA profile compared to control subjects in the same 

age bracket.  

Moreover, a number of lifestyle and environmental factors have been demonstrated to 

influence composition of the gut and airway microbiomes in human populations. It is likely 

that these lifestyle and environmental factors also indirectly influence the composition of 

the circulatory microbiome by altering microbial translocation into the bloodstream. As this 

study was a preliminary investigation to determine if a circulatory microbiome could be 

detected and characterised from plasma and serum samples, possible lifestyle and 

environmental factors were not taken into account. This could be addressed in future 

investigations by having control and atopic subjects fill out a lifestyle and environment 

questionnaire involving questions regarding the subjects diet (vegetarian v omnivore, 
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dietary restrictions, fibre intake), home life (pet ownership, number of co-habitants/ 

children, exercise), and environment (rural living v urban living, job environment). 

Furthermore, it is currently thought that the blood microbiome arises as a consequence of 

microbial translocation into the blood vessels from other body sites. However, in both 

human studies presented in this thesis, only blood samples were taken from the donors, 

and thus direct comparisons of the composition of the microbiome present in the different 

body sites was not performed. In future studies it would be useful to take samples from 

different body sites from the same donors in order to do direct comparisons of the 

microbiome at different body sites in order to better predict the likely origin of the blood 

microbiome. 

Additionally, this study focused on identifying circulatory biomarkers in adults with pre-

existing disease. The potential RNA, protein, and microbial biomarkers identified in the 

blood, therefore, may not be applicable to atopic individuals who have yet to develop 

atopic disease manifestations. It would, therefore, be useful to repeat the study using 

blood samples taken from infants who are genetically pre-disposed to atopic disease to 

determine if circulatory biomarkers could be used to predict the risk of developing disease 

during early childhood. 

Following validation of the identified biomarkers using a larger cohort of asthmatic 

subjects, the role the potential circulatory biomarkers play in atopic pathogenesis could be 

explored using in vivo models of atopic disease. With regards to possible RNA and protein 

biomarkers, genetically modified mice designed to exhibit overexpression and/ or 

suppressed expression of the RNA/ protein of interest could be used to evaluate the effect 

of increased/ suppressed expression of the RNA/ protein of interest has on HDM-induced 

asthma.  
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Similarly, murine models of HDM-induced asthma could be used to further explore the 

relationship between the microbiome and atopic disease. For instance, in Chapter 6 it was 

successfully demonstrated that HDM-induced pulmonary inflammation resulted in 

significant changes to the murine microbiome, in particular the murine gut microbiome. A 

number of the bacterial taxa found to be decreased in the HDM-exposed mice have been 

previously identified as being protective against asthma pathogenesis. It would, therefore, 

be intriguing to investigate how the microbial dysbiosis observed in the HDM-exposed mice 

could influence development of atopic disease. One method of exploring this would be to 

repeat the murine study present in Chapter 6, and then inoculate neonatal germ-free mice 

with faeces from either the HDM-exposed of the HDM-naïve mice. The inoculated germ-

free mice could then be used to explore the effects of HDM-induced microbial dysbiosis in 

two parts. Firstly, in humans initial HDM exposure and development of atopic disease 

typically occurs during early childhood. It would, therefore, be useful to determine how 

HDM-induced microbial dysbiosis influences in the developing immune system using the 

inoculated germ-free mice. For instance, do the germ-free neonatal mice inoculated with 

faeces from the HDM-exposed mice exhibit a prolonged Th2 bias? Do they display reduced 

Treg differentiation? Increased susceptibility to respiratory infections?  

The second part of the study would be to sensitise and challenge the inoculated mice to 

the HDM allergen in order to determine whether mice inoculated with the HDM-exposed 

faeces have increased susceptibility to HDM-induced airway inflammation.  

An important question raised by this study and other circulatory microbiome studies 

relates to the origin of the circulatory microbiome; whether the blood functions as another 

niche for microbial growth or whether the circulatory microbiome is a characterisation of 

bacteria and/ or microbial DNA that have translocated from other body sites. Are changes 
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in the circulatory microbiome a result of microbial dysbiosis in the blood or a reflection of 

microbial dysbiosis occurring elsewhere in the body, affecting the number and types of 

bacterial translocation into the circulatory system. 

Origins of the circulatory microbiome could be examined by inoculating mice with 

transgenic microorganisms and characterising the location of the transgenic 

microorganisms after a set period of time. This could be achieved by transforming bacteria 

with green fluorescent protein (GFP) 809,810. This protein is a cell-surface protein, and thus 

epifluorescence microscopy could be used to detect the presence of microbial cells in the 

sample  809–811, whilst microbial DNA extraction of the sample and PCR amplification of the 

gfp gene insert could be used to detect DNA derived from the transformed bacteria 811,812.  

To determine the likely origin of the circulatory microbiota/ microbiome the transformed 

bacteria could be inoculated into different body sites of the mice, for example, the airways, 

epidermal tissue, and gut. After a set period of time samples from the different habitats 

(i.e. blood for the circulation, BAL for the airways, faeces for the gut) could then be 

examined using epifluorescence microscopy and PCR amplification of the GFP gene in order 

to identify the location of the transformed microbial cells and their DNA. Tagging of both 

the microbial cell and the microbial DNA would be of value as examination of blood samples 

using microscopy would prove that the transformed cells had translocated into the blood, 

whilst the use of PCR amplification of the GFP gene would prove the transformed DNA had 

translocated into the blood. Initial inoculation site would then demonstrate where the 

transformed cells had originated from prior to detection in the blood. 

This study would be useful as it would enable identification of the most likely origin of the 

circulatory microbiome and would also help establish whether the circulatory microbiome 

is composed of translocating bacterial cells and/ or bacterial DNA. Additionally, the use of 
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transgenic microbes would mean that the microbes could be inoculated into mice with a 

pre-existing microbiome, and so better mimic host-microbiome interactions. 

Alternatively, translocation of bacteria could be investigated by colonising GF mice with 

known bacterial cultures and then performing 16S rRNA sequencing on samples taken from 

different body habitats to determine which environments the known bacteria translocate 

to following inoculation.  

However, in this study the murine circulatory microbiome went undetected, and so a 

technique would need to be developed to enable successful characterisation of the murine 

circulatory microbiome. A study carried out by Sze et al (2014) successfully characterised 

the murine circulatory microbiome using whole blood samples and targeting the V1-V3 

hypervariable region of the 16S rRNA gene. This study used murine plasma samples and 

targeted the V4 region of the 16S rRNA gene. This technique, whilst successful at 

characterising the human circulatory microbiome may not be optimum for characterising 

the murine circulatory microbiome. Therefore, in order to successfully develop a technique 

for characterising the murine circulatory microbiome, different blood fractions (whole 

blood, plasma, serum, and buffy coat) would need to be analysed as the microbial DNA 

present in murine plasma samples may be too low for successful detection and 

amplification. Furthermore, it would also be beneficial to use primers targeting different 

regions of the microbial 16S rRNA gene in order to determine which primer set it best suited 

for amplifying microbial DNA from murine blood samples.  
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Supplementary Materials 
 

S1: R code utilised to generate a rarefaction curve from OTU tables 

 

psdata <- data 

sample_sums(psdata) 

set.seed(42) # Command used to specify the initial value of R’s random number generator 

 

calculate_rarefaction_curves <- function(psdata, measures, depths) { 

  require('plyr') # ldply 

  require('reshape2') # melt 

  

 estimate_rarified_richness <- function(psdata, measures, depth) { 

    if(max(sample_sums(psdata)) < depth) return() 

    psdata <- prune_samples(sample_sums(psdata) >= depth, psdata) 

     

    rarified_psdata <- rarefy_even_depth(psdata, depth, verbose = FALSE) 

     

    alpha_diversity <- estimate_richness(rarified_psdata, measures = measures) 

     

    # as.matrix forces the use of melt.array, which includes the Sample names (rownames) 

    molten_alpha_diversity <- melt(as.matrix(alpha_diversity), varnames = c('Sample', 'Measure'), 
value.name = 'Alpha_diversity') 

     

    molten_alpha_diversity }  # Commands estimate expected species richness in random 
subsamples of size sample from the community 

   

  names(depths) <- depths # this enables automatic addition of the Depth to the output by ldply 

  rarefaction_curve_data <- ldply(depths, estimate_rarified_richness, psdata = psdata, measures = 
measures, .id = 'Depth', .progress = ifelse(interactive(), 'text', 'none')) 

   

  # convert Depth from factor to numeric 
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  rarefaction_curve_data$Depth <- 
as.numeric(levels(rarefaction_curve_data$Depth))[rarefaction_curve_data$Depth] 

   rarefaction_curve_data} 

 

rarefaction_curve_data <- calculate_rarefaction_curves(psdata, c('Observed'), rep(c(1, 10, 100, 
1000,10000,20000,30000,40000,50000,60000,70000,80000,90000,100000,110000, 

                                                                                    
120000,130000,140000,150000,160000,170000,180000,190000,200000,210000,220000, 

                                                                                    
230000,240000,250000,260000,270000,280000,290000,300000), each = 10)) 

summary(rarefaction_curve_data) # Command calculates expected species richness of a given 
sample size in terms of read number 

 

rarefaction_curve_data_summary <- ddply(rarefaction_curve_data, c('Depth', 'Sample', 
'Measure'), summarise, Alpha_diversity_mean = mean(Alpha_diversity), Alpha_diversity_sd = 
sd(Alpha_diversity)) # Command calculates mean species richness and standard deviation 

 

rarefaction_curve_data_summary_verbose <- merge(rarefaction_curve_data_summary, 
data.frame(sample_data(psdata)), by.x = 'Sample', by.y = 'row.names') 

 

data = rarefaction_curve_data_summary_verbose 

 

write.table(data, file="rarefaction_curve_data_summary_verbose.txt",sep = "\t") 

write.table(rarefaction_curve_data, file="rarefaction_curve_data_summary_verbose.txt",sep = 
"\t") 

 

jpeg(file = "Rarefraction curve.jpeg") 

jpeg("Rarefraction curve.jpeg", height = 8*300, width = 12*300, res = 400, pointsize = 10) 

 

p = ggplot(                   # Commands plot rarefaction curve and format the graph 

  data, 

  mapping = aes( 

    x = Depth, # Command assigns X data (read numbers) 

    y = Alpha_diversity_mean, # Command assigns Y data (estimated species richness) 

    ymin = Alpha_diversity_mean - Alpha_diversity_sd, 
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    ymax = Alpha_diversity_mean + Alpha_diversity_sd, 

    colour = TreatmentGroup, 

    group = X.SampleID 

  ) 

) + geom_line(                  # Command assigns graph as a line graph 

) + geom_pointrange() 

+ facet_wrap(scales = 'free_y') 

p 

p = p + scale_colour_manual(labels = c("Group1","Group2","Negative Control"), 

                            values=c("#2ECC71","#A569BD","#E74C3C")) # Sets legend order and colour 

p = p + scale_y_continuous(expression(paste("Number of Observed OTUs"))) # Sets Y axis label 

p = p + scale_x_continuous(expression(paste("Number of reads"))) # Sets X axis label 

p = p + theme(axis.text = element_text(size = 15), axis.title=element_text(size = 15)) 

p = p + theme(legend.text = element_text(size = 14)) 

p = p + theme(legend.title = element_text(size = 14)) 

p 

dev.off() 

 

 

S2: R codes used to perform statistical analysis on data 

 

shapiro.test(data$Chao1) # Shapiro-wilk test 

wilcox.test(Chao1 ~ Group, data, paired = F) # Wilcoxon rank sum test 

var.test(Variable ~ Group, data, alternative = “two.sided”) # F test 

t.test(Variable ~ Group, data, var.equal = T, paired = F) # Unpaired T test 

t.test(Variable ~ Group, data, var.equal = F, paired = F) # Welch two sample T test 

res.aov <- aov(Chao1 ~ Group, data = data) # One-way ANOVA test 

summary(res.aov) 

pairwise.t.test(data$Chao1, data$Group, p.adjust.method = "BH") # Pairwise T test 
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S3: R code utilised for calculating relative abundance of the bacterial taxa identified in 
the samples 

 

# Generate a relative abundance table using phyloseq data 

y1 <- tax_glom(data, taxrank = 'Phylum') # agglomerate taxa 

y2 <- transform_sample_counts(y1,function(x) ({x/sum(x)*100})) #get abundance in % 

y3 <- psmelt(y2) # create dataframe from phyloseq object 

write.table(y3, file="Sample-otus-Phylum.txt",sep = "\t")# Command generates relative 
abundance table 

data <- read.table("Sample-otus-Phylum.txt", header = T) 

 

These steps were repeated for each bacterial taxa level (Phylum, class, order, family, genus) 

and relative abundance of the bacterial taxa present in the different sample groups was 

determined using the below commands. 

y1 <- tax_glom(data, taxrank='Phylum') # agglomerate taxa 

(y2 = merge_samples(y1, "TreatmentGroup")) # Command used to merge relative abundance of 
samples from the sample group together 

y3 <- transform_sample_counts(y2,function(x) ({x/sum(x)*100})) # Command used to generate 
relative abundance values 

y4 <- psmelt(y3)  

write.table(y4, file="TreatmentGroup-otus-Phylum.txt",sep = "\t") # Command used to generate a 
txt file of the bacteria taxa relative abundance values for each sample 

 

The generated relative abundance tables were then used to produce relative abundance 

graphs highlighting the highly abundant bacterial taxa (bacterial taxa with relative 

abundance > 1.0%) and functional activity of the microbiome with a predicted abundance 

greater than 1%. An example showing how the phylum relative abundance graph was 

generated for the human plasma samples (Chapter 4, Figure 4.9.A). 

data <- read.table("TreatmentGroup-otus-Phylum.txt", header = T) 
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data$Phylum<- as.character(data$Phylum) #convert to character 

data$Phylum[data$Abundance < 1.00 ] <- "Phyla < 1% abundance   # Command used to group 
taxa with an abundance of less than 1.0% together 

data$Phylum <- factor(data$Phylum, levels = 
c("Actinobacteria","Bacteroidetes","Cyanobacteria","Firmicutes","Proteobacteria","Phyla < 1% 
abundance             # Command used to order the phyla on the figure legend                                                               
" 

jpeg(file = "Relative Abundance Graph.jpeg") 

jpeg("Relative Abundance Graph.jpeg", height = 7*300, width = 15*300, res = 400, pointsize = 10) 

p = ggplot(data, aes(x=TreatmentGroup, y=Abundance, fill=Phylum)) 

p = p + geom_bar(aes(), stat="identity", position="stack") + 
scale_fill_manual(values=c("#660000","LEMONCHIFFON","#008080","#512E5F","LAVENDER")) + 
theme(legend.position="right") + scale_x_discrete(limits = c("Group1","Group2"),labels = 
c("Group1","Group2"),drop=F) # Command used to assign colours and set format of the graph 

p = p + scale_y_continuous(expression(paste("Relative Abundance (%)"))) # Command used to 
label Y axis 

p = p + theme(axis.text = element_text(size = 15), axis.title=element_text(size = 15)) # Commands 
used to assign axis label sizes and legend position 

p = p + theme(axis.title.x = element_blank()) 

p = p + theme(legend.text = element_text(size = 14)) 

p = p + theme(legend.title = element_text(size = 14)) 

p = p + theme(legend.position="right") + guides(fill=guide_legend(ncol =1)) 

p = p + theme(legend.text = element_text(face = "italic")) 

p 

dev.off() 

 

S4: R code utilised in the generation of boxplots 

 

jpeg(file = "Boxplot1.jpeg") 

jpeg("Boxplot1.jpeg", res = 300, height = 5*300, width = 6*300, pointsize =13) 

p = ggboxplot(data, x = "Group", y = "Variable", 

              color = "Group", palette = c("#00AFBB", "#E7B800", "#FC4E07","#A569BD", "#2ECC71"), 

              order = c("Group1","Group2"), 

              MARGIN = 5, 

              ylab = "Variable", xlab = "Group")+ 
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  geom_point(aes(color=Group), size = 2.5) # Commands used to assign colours and set format of 
the graph  

p = p + theme(legend.position="right") 

p = p + theme(axis.text = element_text(size = 12), axis.title=element_text(size = 13)) 

p = p + theme(legend.text = element_text(size = 12)) 

p = p + theme(legend.title = element_text(size = 13)) 

p 

dev.off() 

 

S5: R codes used to perform PCoA and PCA Analysis  

 

## Codes used to perform principal coordination analysis (PCoA) using Bray Curtis dissimilarity 

data 

tdata <- transform_sample_counts(data, function(x){x/sum(x)}) # Transformation by conversion 
into      relative abundance 

library("ggplot2") 

library("vegan") 

library("ggrepel") 

ordu = ordinate(data, "PCoA", "bray") # Measurement of Bray-Curtis dissimilarity 

 

## Generation of a Bray-Curtis Dissimilarity PCoA graph 

jpeg(file = "Bray Curtis PCoA.jpeg") 

jpeg("Bray Curtis PCoA.jpeg", height = 10*300, width = 12*300, res = 400, pointsize = 12) 

p = plot_ordination(data,ordu, color="TreatmentGroup") # Generation of  PCoA graph 

p = p + geom_point(size=4) # Command determine size of data point 

p = p + geom_label_repel(aes(label = X.SampleID), 

                         color = "black", 

                         box.padding   = 0.35,  

                         point.padding = 0.8, 

                         segment.color = 'grey50') # Commands add sample labels to the graph 

p = p + scale_colour_manual(labels = c("Group1","Group2"), 

                            values=c("#00AFBB","#E7B800")) # Commands add group names and colour to the 
legend 
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p = p + theme(axis.text=element_text(size=14), # Sets the axis label sizes 

              axis.title = element_text(size = 14))  

p = p + theme(legend.text=element_text(size = 14),legend.title=element_text(size=14)) # Sets the 
legend label sizes 

p 

dev.off() 

 

## Codes used to perform principal component analysis (PCA)  using Bray Curtis dissimilarity  

library("gplots") 

library("ggplot2") 

library("RColorBrewer") 

library("ggfortify") 

library("ggrepel") 

library("vegan") 

 

Sig.mRNA <- read.table("LOG2 RNA Read Counts", header = T) 

data.env <- read.table("data.env.txt", header = T) 

data$Group <- ordered(data$Group, levels = c("Control","Asthma")) # Command sets order of 
legend 

df <- data[c(5:14230)] # Command generates a data frame from the data 

jpeg(file = "All mRNA log2 FPKM PCA with Group.jpeg") 

jpeg("All mRNA log2 FPKM PCA with Group.jpeg", height = 7*300, width = 9*300, res = 400, 
pointsize = 10) 

theme_set(theme_bw()) # Command sets graph background 

p = autoplot(prcomp(df), data = data, colour = "Group",size = 4, key = T, key.size = 14) # Command 
generates a PCA graph using bray Curtis dissimilarity 

p = p + geom_label_repel(aes(label = ID), # Commands format the graph 

                         color = "black", 

                         box.padding   = 0.35,  

                         point.padding = 0.9, 

                         segment.color = 'grey50') 

p = p + scale_colour_manual(labels = c("< 25","> 25 "), 

                            values=c("#00AFBB","#E7B800")) 
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p = p + theme(axis.text=element_text(size=14), # Sets the axis label sizes 

              axis.title = element_text(size = 14)) 

p = p + theme(legend.text=element_text(size = 14),legend.title=element_text(size=14)) 

p 

dev.off() 

## PERMANOVA analysis using the Adonis Function 

data_bray <- phyloseq::distance(tdata, method = "bray") 

braycurtis=as.matrix(data_bray) # Command used to convert bray Curtis results into matrix 

write.table(braycurtis, "BrayCurtis_even.txt",row.names=TRUE,col.names=TRUE,sep="\t", 
quote=FALSE)    # Download Bray Curtis matrix as a txt file 

sampledf <- data.frame(sample_data(data)) 

adonis(data_bray ~ TreatmentGroup, data = sampledf) # PERMANOVA analysis 
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Table S1: Asthma Quality Questionnaire (ACQ) completed by the asthmatic subjects 
following sample collection 

 

 

Question Score 

 

1 

 

On average, during the past week, 

how often were you woken by your 

asthma during the night 

0 Never 

1 Hardly ever 

2 A few times 

3 Several times 

4 Many times 

5 A great many time  

6 Unable to sleep because of asthma 

 

2 

 

On average, during the past week, 

how bad were your asthma symptoms 

when you woke in the morning 

0 No symptoms 

1 Very mild symptoms 

2 Mild symptoms 

3 Moderate symptoms 

4 Quite severe symptoms 

5 Severe symptoms  

6 Very severe symptoms 

 

3 
In general, during the past week, how 

limited were you in your activities 

because of your asthma 

0 Not limited at all 

1 Very slightly limited 

2 Slightly limited 

3 Moderately limited 

4 Very limited 

5 Extremely limited 

6 Totally limited 
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4 

 

In general, during the past week, how 

much shortness of breath did you 

experience because of your asthma 

0 None 

1 A very little 

2 A little 

3 A moderate amount 

4 Quite a lot 

5  Great deal 

6 A very great deal 

 

5 

 

In general, during the past week, how 

much of the time did you wheeze 

0 Not at all 

1 Hardly any of the time 

2 A little of the time 

3 A moderate amount of the time 

4 A lot of the time 

5 Most of the time 

6 All the time 

 

6 

 

On average, during the past week, 

how many puffs/ inhalations of 

short-acting bronchodilator (e.g. 

Ventolin/ Bricanyl) have you used 

each day 

0 None 

1 1-2 puffs/ inhalations most days 

2 3-4 puffs/ inhalations most days 

3 5-8 puffs/ inhalations most days 

4 9-12 puffs/ inhalations most days 

5 13-16 puffs/ inhalations most days 

6 More than 16 puffs/ inhalations most days 
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S6: R code utilised for plotting expression profiles as a heatmap and performing 
Euclidean cluster analysis 

 

RNA read counts generated from the sequenced RNA data was transformed to a LOG2 scale 

using the log2 (x) + 1 formula, and the transformed data was then uploaded to R. RNA  

expression was plotted as a heatmap and unsupervised clustering analysis was performed 

using Euclidean distance. The R codes used to generate the RNA heatmaps and perform 

Euclidean distance are shown below. 

# Set file directory 

setwd("FolderName") 

library("gplots") 

library("ggplot2") 

library("RColorBrewer") 

library("ggfortify") 

hmcol = colorRampPalette(brewer.pal(9, "GnBu"))(100) # Command used to assign colour palette  

data <- read.table("ExpressionData.txt", header = T) 

data <- as.matrix(data) Command used to convert data into a matrix 

jpeg(file = " ExpressionData Heatmap.jpeg") 

jpeg("ExpressionData Heatmap.jpeg", height = 25*300, width = 18*300, res = 400, pointsize = 8) 

heatmap.2(data,lhei = c(2,10),cexCol=2.5, cexRow=1.0, srtCol=45, 

          col = hmcol, margins=c(10,10), keysize = 1.0, key.par=list(mgp=c(0.5,0.5,0))) # Command 
used to generate the heatmap 

dev.off() 
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Figure S1: Plate layout of the multi-analyte sandwich ELISAs used to analysis the 
inflammatory protein levels present in plasma samples from asthmatic subjects (n = 5) 
and non-asthmatic subjects (n = 5). (A) = plate 1, (B) = plate 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: NC = Negative control, A = Asthmatic, B = Non-asthmatic, PC = Positive 
control, B = blank 
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Table S2: Characterisation of the Atopic Asthma cohort at the time of sample collection 

 

Characteristic Asthma_1 Asthma_2 Asthma_3 Asthma_4 Asthma_5 

Current age 52 36 42 19 49 

Ethnicity Hispanic Hispanic Caucasian Caucasian Hispanic  

BMI 27.8 27.3 23.3 21.5 22.3 

Age of diagnosis 7 4 12 5 3 

Asthma Diagnosis Allergic Asthma Allergic Asthma Allergic Asthma Allergic Asthma Allergic Asthma 

Years with disease 45 32 30 14 46 

ACQ Score      

Total 12 11 11 10 10 

Mean  2.0 1.8 1.8 1.7 1.7 

Pulmonary test score 65 61 70 78 68 

Allergy House dust mite House dust mite House dust mite House dust mite House dust mite 

Other allergic conditions 
Allergic Rhinitis, Nasal 

Polyps 
Allergic Rhinitis, 
Polycystic Ovary 

None 
Allergic Rhinitis, 

Allergic Dermatitis 
none 

Medications  Dulera, Albuterol  Dulera, Albuterol 
Symbicort, Zyrtec, 

Albuterol  
Albuterol, Qvar Albuterol 

Collection Time 9:50am 9:20am 12:10pm 10:30am 10:55am 
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Table S3: Results of the ACQ taken at the time of sample collection by the asthmatic 
subjects. 

 

 

Question Asthma_1 Asthma_2 Asthma_3 Asthma_4 Asthma_5 
1 2.00 0.00 1.00 1.00 2.00 
2 2.00 2.00 3.00 3.00 1.00 
3 3.00 3.00 2.00 2.00 2.00 
4 3.00 3.00 2.00 2.00 2.00 
5 1.00 1.00 2.00 1.00 2.00 
6 1.00 2.00 1.00 1.00 1.00 

Total 12.00 11.00 11.00 10.00 10.00 
Mean 2.00 1.83 1.83 1.67 1.67 
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Table S4: Genes with significant differential expression in asthmatic subjects compared to control subjects. Analysis was performed by sequencing 
mRNA isolated from the plasma samples from asthmatic subjects (n = 4) and control subjects (n = 5) and mapping the sequenced mRNA to the hg19 
human reference genome using the Tuxedo protocol (Galaxy software). Differential expression was carried out using CuffDiff (Galaxy software) and 
genes with a log2 fold change greater than 2.0 and a Q value < 0.05 were determined to have significant differential expression. 

 

Gene Control Mean Asthma Mean Fold Change (log2) Expression State P Value Q Value 

HLA-DQA1 0.000 38.842 inf Upregulated 0.00005 0.00298 

IRF2 231.862 1.902 -6.930 Downregulated 0.00185 0.04613 

VDR 1.116 24.331 4.447 Upregulated 0.00160 0.04272 

ABCF2 14.191 0.361 -5.295 Downregulated 0.00060 0.02165 

ACY3 13.545 0.000 -inf Downregulated 0.00005 0.00298 

ADAMTS18 4.844 0.000 -inf Downregulated 0.00005 0.00298 

ADHFE1 0.000 4.406 inf Upregulated 0.00020 0.00929 

AGTPBP1 2641.030 10.935 -7.916 Downregulated 0.00075 0.02582 

AIP 170.828 2.390 -6.159 Downregulated 0.00185 0.04613 

AKAP12 29.436 0.805 -5.193 Downregulated 0.00170 0.04401 

ALX4 9.654 0.000 -inf Downregulated 0.00005 0.00298 

ALYREF 33.614 0.682 -5.623 Downregulated 0.00175 0.04479 

ANAPC4 64.985 1.635 -5.313 Downregulated 0.00200 0.04810 
ANKHD1,ANKHD1-
EIF4EBP3,EIF4EBP3 33.139 0.914 -5.181 Downregulated 0.00020 0.00929 

ANKRD11 20.860 0.481 -5.439 Downregulated 0.00015 0.00716 
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ANKRD62P1-PARP4P3 17.465 0.000 -inf Downregulated 0.00005 0.00298 

ANO2 6.010 0.000 -inf Downregulated 0.00005 0.00298 

ARMC3 0.000 3.276 inf Upregulated 0.00005 0.00298 

ARV1 14.064 0.000 -inf Downregulated 0.00005 0.00298 

ASCC3 9.033 0.512 -4.140 Downregulated 0.00185 0.04613 

ASPH 15.551 2.130 -2.868 Downregulated 0.00110 0.03391 

B4GALT5 11.155 0.320 -5.122 Downregulated 0.00150 0.04086 

BPI 0.000 2.220 inf Upregulated 0.00005 0.00298 

BRI3BP 5.777 0.000 -inf Downregulated 0.00005 0.00298 

C10orf58 1100.390 1.238 -9.796 Downregulated 0.00025 0.01080 

C15orf2 9.280 0.000 -inf Downregulated 0.00005 0.00298 

C15orf41 79.198 0.000 -inf Downregulated 0.00005 0.00298 

C16orf96 1.309 0.000 -inf Downregulated 0.00005 0.00298 
C17orf76-AS1, 
SNORD49B 1093.040 33.304 -5.036 Downregulated 0.00005 0.00298 

C19orf12 13.613 0.199 -6.099 Downregulated 0.00175 0.04479 

C20orf123 0.000 2.205 inf Upregulated 0.00010 0.00522 

C4orf48 3.294 0.000 -inf Downregulated 0.00120 0.03585 

CABP5 5.295 122.071 4.527 Upregulated 0.00170 0.04401 

CAPRIN1 393.033 10.253 -5.261 Downregulated 0.00195 0.04757 

CCDC75 5.791 0.000 -inf Downregulated 0.00010 0.00522 

CCDC85A 25.252 0.000 -inf Downregulated 0.00005 0.00298 
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CCDC85B 209.821 1.874 -6.807 Downregulated 0.00100 0.03169 

CD300A 71.466 0.000 -inf Downregulated 0.00005 0.00298 

CD46 154.097 5.320 -4.856 Downregulated 0.00080 0.02686 

CD93 0.000 14.337 inf Upregulated 0.00025 0.01080 

CDCP2 2.395 0.000 -inf Downregulated 0.00010 0.00522 

CDH5 14.345 0.000 -inf Downregulated 0.00005 0.00298 

CEBPA 2.311 0.000 -inf Downregulated 0.00015 0.00716 

CHD1L 363.845 7.689 -5.564 Downregulated 0.00090 0.02935 

CHMP1A 898.053 10.776 -6.381 Downregulated 0.00030 0.01256 

CKM 0.000 3.703 inf Upregulated 0.00005 0.00298 

CLTB 10.977 241.021 4.457 Upregulated 0.00170 0.04401 

CNTNAP3B 68.421 0.000 -inf Downregulated 0.00005 0.00298 

CSF2RB 6.862 0.000 -inf Downregulated 0.00005 0.00298 

CTSG 9.812 0.000 -inf Downregulated 0.00005 0.00298 

CTSL1 69.228 0.578 -6.904 Downregulated 0.00080 0.02686 

CUL3 25.084 0.317 -6.306 Downregulated 0.00050 0.01905 

CYB5RL 9.320 0.000 -inf Downregulated 0.00005 0.00298 

DCTN1 25.808 1.606 -4.006 Downregulated 0.00105 0.03297 

DCUN1D2 6.927 0.000 -inf Downregulated 0.00005 0.00298 

DOHH 972.908 0.000 -inf Downregulated 0.00005 0.00298 

DVL3 3.473 0.166 -4.386 Downregulated 0.00165 0.04354 

EBF2 0.000 65.140 inf Upregulated 0.00030 0.01256 
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EID2B 0.000 4.005 inf Upregulated 0.00005 0.00298 

EIF4G1 17.787 1.883 -3.240 Downregulated 0.00145 0.04014 

ELOF1 806.425 17.862 -5.497 Downregulated 0.00045 0.01795 

EMILIN2 0.000 1.118 inf Upregulated 0.00005 0.00298 

ENOPH1 128.094 0.503 -7.992 Downregulated 0.00205 0.04896 

F3 136.603 7.235 -4.239 Downregulated 0.00055 0.02038 

FAM131C 5.971 0.000 -inf Downregulated 0.00005 0.00298 

FAM183B 9.249 0.000 -inf Downregulated 0.00005 0.00298 

FAM26F 16.122 0.000 -inf Downregulated 0.00005 0.00298 

FAM43A 12.355 0.000 -inf Downregulated 0.00005 0.00298 

FBXL19 87.814 0.891 -6.624 Downregulated 0.00075 0.02582 

FBXO40 16.855 0.000 -inf Downregulated 0.00005 0.00298 

FETUB 0.000 11.749 inf Upregulated 0.00005 0.00298 

FGF20 3.360 0.000 -inf Downregulated 0.00005 0.00298 

FGFBP2 5.330 0.000 -inf Downregulated 0.00005 0.00298 

FN1 240.158 33.387 -2.847 Downregulated 0.00005 0.00298 

FUS 101.743 5.786 -4.136 Downregulated 0.00110 0.03391 

GABPB2 10.661 0.000 -inf Downregulated 0.00005 0.00298 

GBP4 0.000 12.908 inf Upregulated 0.00005 0.00298 

GDF7 1.192 0.000 -inf Downregulated 0.00005 0.00298 

GOLGA6L10 5.225 0.000 -inf Downregulated 0.00005 0.00298 

GOSR2 5.227 97.586 4.223 Upregulated 0.00200 0.04810 
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GPC2 12.575 0.000 -inf Downregulated 0.00005 0.00298 

GPIHBP1 7.789 0.000 -inf Downregulated 0.00005 0.00298 

GPR108 8.489 0.440 -4.270 Downregulated 0.00140 0.03940 

GPR141 915.003 0.000 -inf Downregulated 0.00015 0.00716 

GPR56 1.870 98.538 5.720 Upregulated 0.00030 0.01256 

GRB10 1.378 56.460 5.357 Upregulated 0.00050 0.01905 

GRK6 107.048 2.212 -5.597 Downregulated 0.00025 0.01080 

GSTA1 0.000 25.588 inf Upregulated 0.00005 0.00298 

HBG2 0.000 8.800 inf Upregulated 0.00010 0.00522 

HBM 0.000 7.921 inf Upregulated 0.00050 0.01905 

HDAC9 0.732 52.163 6.156 Upregulated 0.00010 0.00522 

HERC2P3 2.274 0.000 -inf Downregulated 0.00005 0.00298 

HINT2 0.000 2.969 inf Upregulated 0.00015 0.00716 

HIST1H2AB 0.000 15.171 inf Upregulated 0.00025 0.01080 

HIST1H2BI 251.282 0.000 -inf Downregulated 0.00045 0.01795 

HIST1H3C 0.000 90.578 inf Upregulated 0.00005 0.00298 

HIST1H3E 40.247 0.000 -inf Downregulated 0.00005 0.00298 

HIST1H3G 1807.630 8.413 -7.747 Downregulated 0.00120 0.03585 

HIST1H3I 30.233 0.000 -inf Downregulated 0.00005 0.00298 

HIST1H4D 2636.810 0.000 -inf Downregulated 0.00005 0.00298 

HIST2H2AC 6.239 791.766 6.988 Upregulated 0.00115 0.03482 

HIST3H2A 0.000 13.295 inf Upregulated 0.00005 0.00298 
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HLA-DRB5 6.090 0.000 -inf Downregulated 0.00005 0.00298 

HOTTIP 0.000 28.228 inf Upregulated 0.00005 0.00298 

HOXB4 6.126 0.000 -inf Downregulated 0.00005 0.00298 

HOXC10 26.492 0.000 -inf Downregulated 0.00005 0.00298 

HRC 7.677 0.000 -inf Downregulated 0.00005 0.00298 

HSH2D 56.243 2.553 -4.461 Downregulated 0.00190 0.04686 

HSP90AB3P 169.495 1.844 -6.523 Downregulated 0.00155 0.04172 

HUNK 1.107 0.000 -inf Downregulated 0.00005 0.00298 

IBSP 8.864 0.000 -inf Downregulated 0.00005 0.00298 

IDH3B 121.794 0.585 -7.701 Downregulated 0.00070 0.02460 

IKBKB 33.299 1.090 -4.933 Downregulated 0.00060 0.02165 

IL4I1,NUP62 95.850 0.298 -8.329 Downregulated 0.00130 0.03752 

IL7R 95.028 0.000 -inf Downregulated 0.00005 0.00298 

IMPDH1 10.814 212.562 4.297 Upregulated 0.00090 0.02935 

INSIG1 136.506 6.802 -4.327 Downregulated 0.00100 0.03169 

IPO9 7.624 0.078 -6.603 Downregulated 0.00075 0.02582 

ITPKA 0.000 1.834 inf Upregulated 0.00005 0.00298 

JAM2 0.000 21.097 inf Upregulated 0.00005 0.00298 

JMJD7,JMJD7-PLA2G4B,PLA2G4B 44.147 0.457 -6.593 Downregulated 0.00160 0.04272 

KDM4DL 0.000 1.543 inf Upregulated 0.00020 0.00929 

KIAA1211 0.000 10.449 inf Upregulated 0.00005 0.00298 

KIF26A 10.373 0.190 -5.772 Downregulated 0.00130 0.03752 
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KLHL20 4464.310 5.416 -9.687 Downregulated 0.00185 0.04613 

KLRF1 0.000 275.313 inf Upregulated 0.00025 0.01080 

KRT9 2.070 0.000 -inf Downregulated 0.00010 0.00522 

LDHA 441.515 18.485 -4.578 Downregulated 0.00165 0.04354 

LGALS3 171.195 6.683 -4.679 Downregulated 0.00055 0.02038 

LILRA1 11.122 0.000 -inf Downregulated 0.00005 0.00298 

LINC00085 15.023 0.000 -inf Downregulated 0.00005 0.00298 

LMO4 35.311 0.000 -inf Downregulated 0.00060 0.02165 

LOC100128239 2.695 0.000 -inf Downregulated 0.00005 0.00298 

LOC100499405 9.059 0.000 -inf Downregulated 0.00005 0.00298 

LOC100507003 0.000 6.794 inf Upregulated 0.00005 0.00298 

LOC100507632 0.000 2.664 inf Upregulated 0.00010 0.00522 

LOC399829 0.000 0.973 inf Upregulated 0.00005 0.00298 

LOC401127 5.410 0.000 -inf Downregulated 0.00005 0.00298 

LOC653653 0.000 30.071 inf Upregulated 0.00005 0.00298 

LOC730102 10.840 0.000 -inf Downregulated 0.00005 0.00298 

LRRD1 9.763 0.000 -inf Downregulated 0.00010 0.00522 

MAP7 5.385 0.266 -4.337 Downregulated 0.00010 0.00522 

MBD1 77.878 0.423 -7.526 Downregulated 0.00005 0.00298 

MCM3 30.359 0.287 -6.726 Downregulated 0.00025 0.01080 

MEG8 51.071 0.000 -inf Downregulated 0.00005 0.00298 

MIOX 1.539 0.000 -inf Downregulated 0.00005 0.00298 
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MPO 0.000 112.127 inf Upregulated 0.00080 0.02686 

MPRIP 14.371 0.415 -5.113 Downregulated 0.00100 0.03169 

MR1 1.076 17.892 4.055 Upregulated 0.00045 0.01795 

MRPL54 6482.840 11.728 -9.111 Downregulated 0.00150 0.04086 

MSH2 310.346 3.435 -6.498 Downregulated 0.00050 0.01905 

MXRA7 9.572 152.388 3.993 Upregulated 0.00055 0.02038 

NADSYN1 437.838 4.649 -6.557 Downregulated 0.00060 0.02165 

NCAN 12.170 0.000 -inf Downregulated 0.00010 0.00522 

NCF1C 307.061 4.567 -6.071 Downregulated 0.00110 0.03391 

NCOA3 0.627 11.227 4.162 Upregulated 0.00165 0.04354 

NDUFB6 23.863 0.000 -inf Downregulated 0.00210 0.04962 

NEK9 554.031 6.601 -6.391 Downregulated 0.00210 0.04962 

NFXL1 17.842 0.000 -inf Downregulated 0.00005 0.00298 

NHLRC4 0.000 170.224 inf Upregulated 0.00065 0.02320 

NID2 0.000 14.749 inf Upregulated 0.00005 0.00298 

NINJ2 0.000 7.068 inf Upregulated 0.00005 0.00298 

NKAPL 11.110 0.000 -inf Downregulated 0.00005 0.00298 

NLRP6 0.000 0.859 inf Upregulated 0.00005 0.00298 

NPEPL1,STX16 126.825 9.626 -3.720 Downregulated 0.00150 0.04086 

NRP1 0.924 18.895 4.354 Upregulated 0.00025 0.01080 

NTS 0.000 13.790 inf Upregulated 0.00010 0.00522 

OAS2 391.459 5.096 -6.263 Downregulated 0.00050 0.01905 
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OLFM2 21.307 0.000 -inf Downregulated 0.00025 0.01080 

PAK4 821.348 1.104 -9.540 Downregulated 0.00140 0.03940 

PDE12 47.472 1.767 -4.748 Downregulated 0.00195 0.04757 

PDE4A 2.362 0.000 -inf Downregulated 0.00005 0.00298 

PDGFRL 0.000 148.208 inf Upregulated 0.00055 0.02038 

PDK2 200.007 2.440 -6.357 Downregulated 0.00130 0.03752 

PDLIM5 5997.300 84.169 -6.155 Downregulated 0.00005 0.00298 

PFDN5 4816.400 36.216 -7.055 Downregulated 0.00035 0.01447 

PIEZO2 4.184 0.000 -inf Downregulated 0.00005 0.00298 

PKHD1L1 0.000 27.920 inf Upregulated 0.00015 0.00716 

PLEKHG1 175.393 1.897 -6.530 Downregulated 0.00170 0.04401 

PLEKHG5,TNFRSF25 13.896 1.553 -3.161 Downregulated 0.00090 0.02935 

PML 0.948 178.238 7.554 Upregulated 0.00015 0.00716 

PMM2 129.114 2.491 -5.696 Downregulated 0.00150 0.04086 

PNMA2 16.276 0.000 -inf Downregulated 0.00005 0.00298 

PNMT 4.372 0.000 -inf Downregulated 0.00005 0.00298 

PNPLA6 35.573 0.369 -6.590 Downregulated 0.00060 0.02165 

POLRMT 9.458 0.362 -4.709 Downregulated 0.00180 0.04589 

PPEF2 0.000 18.094 inf Upregulated 0.00005 0.00298 

PPM1N 0.000 2.658 inf Upregulated 0.00005 0.00298 

PPP1CA 2049.790 7.976 -8.006 Downregulated 0.00130 0.03752 

PPP1R3G 14.955 0.000 -inf Downregulated 0.00005 0.00298 
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PPP2R5C 75.785 1.356 -5.805 Downregulated 0.00115 0.03482 

PRAM1 0.000 3.057 inf Upregulated 0.00010 0.00522 

PRKAA1 97.106 1.686 -5.848 Downregulated 0.00095 0.03054 

PROCA1 7.468 0.000 -inf Downregulated 0.00005 0.00298 

PROL1 27.613 0.000 -inf Downregulated 0.00005 0.00298 

PROSC 3.610 98.071 4.764 Upregulated 0.00140 0.03940 

PRR12 213.417 0.500 -8.737 Downregulated 0.00145 0.04014 

PSMB11 4.891 0.000 -inf Downregulated 0.00005 0.00298 

PSMD9 192.358 1.203 -7.321 Downregulated 0.00050 0.01905 

PTPN23 0.217 6.742 4.957 Upregulated 0.00115 0.03482 

PTRH2 87.791 0.000 -inf Downregulated 0.00005 0.00298 

PTS 9.203 0.000 -inf Downregulated 0.00090 0.02935 

QSOX1 7.572 0.559 -3.759 Downregulated 0.00105 0.03297 

RAB18 2.691 143.960 5.741 Upregulated 0.00125 0.03718 

RAB3IL1 15.123 0.000 -inf Downregulated 0.00005 0.00298 

RAB6B 0.000 8.903 inf Upregulated 0.00015 0.00716 

RAD18 0.000 2.923 inf Upregulated 0.00010 0.00522 

RASGEF1B 0.000 2.803 inf Upregulated 0.00045 0.01795 

RBM10 11.800 0.117 -6.661 Downregulated 0.00015 0.00716 

RBM14,RBM14-RBM4,RBM4 3.409 169.880 5.639 Upregulated 0.00120 0.03585 

RBM39 8.851 152.169 4.104 Upregulated 0.00185 0.04613 

RCSD1 143.939 2.570 -5.808 Downregulated 0.00070 0.02460 
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RFNG 67.423 0.354 -7.572 Downregulated 0.00155 0.04172 

RNF149 138.204 5.887 -4.553 Downregulated 0.00145 0.04014 

ROCK1P1 0.000 9.263 inf Upregulated 0.00020 0.00929 

RPL34 1861.930 30.282 -5.942 Downregulated 0.00050 0.01905 

RPLP0P2 2.238 0.000 -inf Downregulated 0.00005 0.00298 

RPS5 29863.900 4240.630 -2.816 Downregulated 0.00065 0.02320 

RRN3P1 0.000 10.745 inf Upregulated 0.00010 0.00522 

SDF2L1 226.184 8.697 -4.701 Downregulated 0.00210 0.04962 

SEMA3G 7.036 0.000 -inf Downregulated 0.00005 0.00298 

SENP1 77.983 0.995 -6.293 Downregulated 0.00200 0.04810 

SH2D1B 0.000 2.288 inf Upregulated 0.00130 0.03752 

SHANK3 258.046 1.171 -7.784 Downregulated 0.00200 0.04810 

SHC1 303.850 4.551 -6.061 Downregulated 0.00015 0.00716 

SKIL 3.563 249.498 6.130 Upregulated 0.00195 0.04757 

SLAMF1 0.000 24.432 inf Upregulated 0.00005 0.00298 

SLC2A3 2562.680 4.505 -9.152 Downregulated 0.00145 0.04014 

SLC39A13 37.080 0.191 -7.604 Downregulated 0.00135 0.03863 

SLC41A2 0.000 5.460 inf Upregulated 0.00030 0.01256 

SLC43A2 599.190 0.988 -9.244 Downregulated 0.00095 0.03054 

SLCO4C1 0.000 26.102 inf Upregulated 0.00005 0.00298 

SMTN 1.082 14.755 3.770 Upregulated 0.00130 0.03752 

SOX18 0.000 3.099 inf Upregulated 0.00015 0.00716 
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SPC24 175.741 0.000 -inf Downregulated 0.00015 0.00716 

SPSB3 223.945 8.420 -4.733 Downregulated 0.00175 0.04479 

SSTR1 1.882 0.000 -inf Downregulated 0.00005 0.00298 

ST3GAL4 37.716 0.729 -5.693 Downregulated 0.00055 0.02038 

ST8SIA2 1.933 0.000 -inf Downregulated 0.00005 0.00298 

ST8SIA3 7.920 0.000 -inf Downregulated 0.00005 0.00298 

STAG2 1.245 76.678 5.944 Upregulated 0.00090 0.02935 

STRN4 1.017 102.211 6.651 Upregulated 0.00070 0.02460 

STYX 417.178 5.409 -6.269 Downregulated 0.00080 0.02686 

SUV420H2 2.512 0.000 -inf Downregulated 0.00005 0.00298 

SYNDIG1L 0.000 4.403 inf Upregulated 0.00005 0.00298 

TAOK2 15.067 0.143 -6.724 Downregulated 0.00135 0.03863 

TARSL2 3.768 0.000 -inf Downregulated 0.00005 0.00298 

TBX15 8.606 0.000 -inf Downregulated 0.00005 0.00298 

TCP11L2 363.919 5.852 -5.959 Downregulated 0.00045 0.01795 

TEKT2 2.951 0.000 -inf Downregulated 0.00005 0.00298 

TIGIT 0.000 9.419 inf Upregulated 0.00005 0.00298 

TIMELESS 60.806 0.981 -5.954 Downregulated 0.00085 0.02840 

TLR1 0.000 104.195 inf Upregulated 0.00035 0.01447 

TMC1 6.108 0.000 -inf Downregulated 0.00005 0.00298 

TMCC1 15.401 0.239 -6.012 Downregulated 0.00025 0.01080 

TMEM151A 0.000 3.256 inf Upregulated 0.00005 0.00298 
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TMSB15A 0.000 34.918 inf Upregulated 0.00015 0.00716 

TNFRSF13C 0.000 12.753 inf Upregulated 0.00010 0.00522 

TOMM22 772.966 23.982 -5.010 Downregulated 0.00115 0.03482 

TOP1MT 0.345 59.034 7.421 Upregulated 0.00045 0.01795 

TPRKB 0.000 29.862 inf Upregulated 0.00025 0.01080 

TRADD 215.120 0.796 -8.078 Downregulated 0.00075 0.02582 

TRAPPC6A 12.585 0.000 -inf Downregulated 0.00005 0.00298 

TRIOBP 182.005 1.406 -7.016 Downregulated 0.00140 0.03940 

TRNT1 0.000 21.922 inf Upregulated 0.00005 0.00298 

TSPYL5 18.952 0.000 -inf Downregulated 0.00005 0.00298 

TTBK1 1.242 0.000 -inf Downregulated 0.00005 0.00298 

TXK 4.016 0.000 -inf Downregulated 0.00005 0.00298 

UBE2G1 2341.680 15.789 -7.212 Downregulated 0.00130 0.03752 

UBE2NL 0.000 4.499 inf Upregulated 0.00080 0.02686 

UBXN10 0.000 17.007 inf Upregulated 0.00005 0.00298 

UNC13C 0.000 3.907 inf Upregulated 0.00005 0.00298 

UQCRB 0.896 104.973 6.873 Upregulated 0.00155 0.04172 

VPS13C 9.573 0.383 -4.643 Downregulated 0.00205 0.04896 

VPS8 58.873 2.528 -4.542 Downregulated 0.00030 0.01256 

WDR87 6.160 0.000 -inf Downregulated 0.00050 0.01905 

YPEL4 0.000 97.024 inf Upregulated 0.00025 0.01080 

ZCCHC12 14.713 0.000 -inf Downregulated 0.00005 0.00298 
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ZFAND6 33.113 877.521 4.728 Upregulated 0.00190 0.04686 

ZIC1 3.528 0.000 -inf Downregulated 0.00005 0.00298 

ZNF101 0.000 2.617 inf Upregulated 0.00095 0.03054 

ZNF335 18.312 0.105 -7.452 Downregulated 0.00110 0.03391 

ZNF584 10.635 0.000 -inf Downregulated 0.00005 0.00298 

ZNF710 132.550 0.805 -7.363 Downregulated 0.00185 0.04613 

ZNF876P 0.000 56.823 inf Upregulated 0.00010 0.00522 

ZNRF2 18.166 0.000 -inf Downregulated 0.00190 0.04686 

ZSWIM3 4.348 0.000 -inf Downregulated 0.00170 0.04401 
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Table S5: Levels of circulatory inflammatory proteins in asthmatic and control subjects. Analysis performed on plasma samples from asthmatic 
subjects (n = 5) and control subjects (n = 5) using qualitative ELISA. BLD = below level of detection; ALD = above level of detection.  

 

 Protein level (OD at 450 nm) 
 IL-4 IL-5 IL-10 IL-17A Eotaxin GM-CSF IFNy MCP-1 TARC TNFA 
Control_1 0.001 BLD 0.008 0.032 0.210 0.217 BLD BLD 0.178 0.133 

Control_2 0.016 BLD 0.003 0.168 0.146 0.165 0.011 BLD 0.165 0.038 

Control_3 0.046 0.075 0.036 0.372 1.142 0.232 0.086 0.143 0.796 0.237 

Control_4 0.013 0.003 0.006 0.084 0.270 0.333 BLD BLD 0.357 0.051 

Control_5 0.019 0.004 0.008 0.004 0.215 0.054 BLD BLD 0.055 0.042 

Asthma_1 0.022 0.008 0.009 0.356 0.454 0.187 BLD BLD 0.268 0.063 

Asthma_2 0.202 0.055 0.164 ALD 1.423 ALD 3.877 0.617 2.614 0.619 

Asthma_3 0.002 BLD 0.005 0.094 0.137 0.538 0.011 BLD 0.404 0.071 

Asthma_4 0.269 0.020 0.043 1.858 0.529 1.582 0.142 0.035 2.516 0.212 

Asthma_5 0.019 0.005 0.014 0.068 0.207 0.576 0.019 BLD 0.670 0.085 

Control Mean 0.019 0.027 0.012 0.132 0.397 0.200 0.049 0.143 0.310 0.010 

Asthma Mean 0.102 0.027 0.047 0.594 0.550 0.720 1.012 0.326 1.294 0.210 

Fold Change 5.530 0.988 3.853 4.513 1.387 3.607 20.871 2.280 4.173 2.101 

P Value 0.249 0.398 0.209 0.413 0.841 0.111 0.195 0.607 0.095 0.310 
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Table S6: Total circulatory IgE concentrations in asthmatic and control subjects. Total IgE concentrations present in asthma plasma samples (n = 4) 
and control plasma samples (n = 5) were measured in duplicate using sandwich ELISA (Genesis Diagnostics Ltd) and determined using a Sigmoidal 4 
parameter curve. Test was repeated for Asthma_5, and so standard absorbance values for the second test are shown in blue.   

 

 Sample Absorbance (450nm) Duplicates 
Average 

absorbance 
(450nm) 

Average 
absorbance - 

blank 

Concentration 
(IU/ml) 

Concentration 
 (ng/ ml) 

St
an

da
rd

s (
IU

/m
l) 0 0.259/ 0.181 0.254/ 0.256 0.257/0.219 0.000/ 0.000 NA NA 

50 0.405/ 0.380 0.405/0.382 0.405/ 0.381 0.149/ 0.163 NA NA 

150 0.810/ 0.682 0.787/ 0.665 0.799/ 0.674 0.542/0.455 NA NA 

375 1.536/1.317 1.609/ 1.285 1.573/ 1.301 1.316/ 1.083 NA NA 

1250 2.758/ 1.631 2.819/ 2.534 2.789/ 2.083 2.532/ 1.864 NA NA 

Positive Control 0.538/ 0.526 0.542/ 0.500 0.540/ 0.513 0.284/ 0.295 NA NA 

Pl
as

m
a 

Sa
m

pl
es

 

Control_1 0.315 0.324 0.320 0.063 121.275 291.060 

Control_2 0.187 0.198 0.193 -0.064 NA NA 

Control_3 0.419 0.417 0.418 0.162 267.955 643.092 

Control_4 0.304 0.301 0.303 0.046 91.465 219.516 

Control_5 0.190 0.207 0.199 -0.058 NA NA 

Asthma_2 1.187 1.176 1.182 0.925 1256.625 3015.900 

Asthma_3 0.162 0.182 0.172 -0.085 NA NA 

Asthma_4 0.965 1.021 0.993 0.737 999.240 2398.176 

Asthma_5 0.244 0.233 0.2385 0.020 NA NA 
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Table S7: Circulatory endotoxin concentrations present in asthmatic and control subjects. Endotoxin concentrations present in plasma samples from 
asthmatic subjects (n = 5) and control subjects (n = 5) were measured in triplicate a PierceTM Limulus Amebocyte Lysate (LAL) Chromogenic Endotoxin 
quantitative kit (Thermo fisher Scientific) and determined using a Sigmoidal 4 parameter curve. 

 

 Sample Absorbance (450nm) Triplicates Average absorbance 
(450nm) 

Average absorbance 
- blank 

Concentration 
(EU/ml) 

St
an

da
rd

s (
EU

/m
l) 0.00 0.289 0.273 0.271 0.278 0.000 NA 

0.10 0.529 0.560 0.574 0.554 0.277 NA 

0.25 1.238 1.310 1.360 1.303 1.025 NA 

0.50 1.987 1.827 1.889 1.901 1.623 NA 

1.00 2.099 2.015 1.906 2.007 1.729 NA 

Pl
as

m
a 

Sa
m

pl
es

 

Control_1 0.324 0.321 0.332 0.326 0.048 3.100 

Control_2 0.335 0.325 0.322 0.327 0.050 3.100 

Control_3 0.315 0.320 0.297 0.311 0.033 3.000 

Control_4 1.034 0.377 0.362 0.370 0.092 3.300 

Control_5 0.363 0.285 0.297 0.315 0.037 3.100 

Asthma_1 0.303 0.315 0.301 0.306 0.029 3.000 

Asthma_2 0.296 0.309 0.307 0.304 0.026 3.000 

Asthma_3 0.320 0.321 0.328 0.323 0.045 3.050 

Asthma_4 0.308 0.279 0.286 0.291 0.013 2.900 
 Asthma_5 0.325 0.319 0.321 0.322 0.044 3.050 
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Table S8: Molecular properties of the V3-V4 16S Amp oligonucleotide primers with the Ion torrent sequencing motifs incorporated. The V3-V4 16S 
Amp oligonucleotide primers were modified to contain the ion torrent sequencing motifs in order to attach the motifs to V3-V4 amplicons generated 
from human plasma samples. The truncated TrP1 adaptor (green) was attached to the reverse V3-V4 16S primer, and the A1 adaptor (orange), 
sequencing key (red), and barcode (blue) motifs were attached to the forward V3-V4 16S Amp primer. 

 

 

Primer Corresponding 
plasma sample 

Sequence  
(5’ - > 3’) 

Concentration 
[pmol/µl] Melting temperature (oC) GC Content 

(%) 

mV3-V4 Rev 
Trp1 NA CCTCTCTATGGGCAGTCGGTGATGACTACH

VGGGTATCTAATCC (44) 10.0 76.0 52.3 

mV3-V4 Fwd 
BC1 Asthma_1 CCATCTCATCCCTGCGTGTCTCCGACTCAGC

TAAGGTAACCCTACGGGNGGCWGCAG(57) 10.0 82.7 60.5 

mV3-V4 Fwd 
BC2 Asthma_2 

CCATCTCATCCCTGCGTGTCTCCGACTCAGT
AAGGAGAACCCTACGGGNGGCWGCAG 

(57) 
10.0 82.7 60.5 

mV3-V4 Fwd 
BC3 Asthma_3 

CCATCTCATCCCTGCGTGTCTCCGACTCAGA
AGAGGATTCCCTACGGGNGGCWGCAG 

(57) 
10.0 82.7 60.5 

mV3-V4 Fwd 
BC4 Asthma_4 

CCATCTCATCCCTGCGTGTCTCCGACTCAGT
ACCAAGATCCCTACGGGNGGCWGCAG 

(57) 
10.0 82.7 60.5 

mV3-V4 Fwd 
BC5 Asthma_5 

CCATCTCATCCCTGCGTGTCTCCGACTCAGC
AGAAGGAACCCTACGGGNGGCWGCAG 

(57) 
10.0 83.4 62.3 
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mV3-V4 Fwd 
BC6 Control_1 CCATCTCATCCCTGCGTGTCTCCGACTCAGC

TGCAAGTTCCCTACGGGNGGCWGCAG (57) 10.0 83.4 62.3 

mV3-V4 Fwd 
BC7 Control_2 CCATCTCATCCCTGCGTGTCTCCGACTCAGT

TCGTGATTCCCTACGGGNGGCWGCAG (57) 10.0 83.4 62.3 

mV3-V4 Fwd 
BC8 Control_3 CCATCTCATCCCTGCGTGTCTCCGACTCAGT

TCCGATAACCCTACGGGNGGCWGCAG (57) 10.0 83.4 62.3 

mV3-V4 Fwd 
BC9 Control_4 

CCATCTCATCCCTGCGTGTCTCCGACTCAGT
GAGCGGAACCCTACGGGNGGCWGCAG  

(57) 
10.0 83.4 62.3 

mV3-V4 Fwd 
BC10 Control_5 

CCATCTCATCCCTGCGTGTCTCCGACTCAGC
TGACCGAACCCTACGGGNGGCWGCAG  

(57) 
10.0 84.2  

64.0 
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Table S9: Molecular properties of the V4 16S Amp oligonucleotide primers with the Ion torrent sequencing motifs incorporated. The V4 16S 
oligonucleotide primers were modified to contain the ion torrent sequencing motifs in order to attach the motifs to V4 amplicons generated from human 
plasma samples. The truncated TrP1 adaptor (green) was attached to the reverse V4 16S Amp primer, and the A1 adaptor (orange), sequencing key (red), 
and barcode (blue) motifs were attached to the forward V4 16S primer. 

 

 

Primer 
Corresponding 
plasma sample 

Sequence  
(5’ - > 3’) 

Concentration 
[pmol/µl] 

Melting temperature (oC) 
GC Content 

(%) 

mV4 Rev Trp1 NA 
CCTCTCTATGGGCAGTCGGTGATGGACT

ACHVGGGTWTCTAAT (43) 
10.0 75.2 51.2 

mV4 Fwd BC1 Asthma_1 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GCTAAGGTAACGTGCCAGCMGCCGCG
GTAA (59) 

10.0 83.0 60.2 

mV4 Fwd BC2 Asthma_2 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GTAAGGAGAACGTGCCAGCMGCCGCG
GTAA (59) 

10.0 83.0 60.2 

mV4 Fwd BC3 Asthma_3 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GAAGAGGATTCGTGCCAGCMGCCGCG
GTAA (59) 

10.0 83.0 60.2 

mV4 Fwd BC4 Asthma_4 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GTACCAAGATCGTGCCAGCMGCCGCGG
TAA (59) 

10.0 83.0 60.2 

mV4 Fwd BC5 Asthma_5 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GCAGAAGGAACGTGCCAGCMGCCGCG
GTAA (59) 

10.0 83.6 61.9 
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mV4 Fwd BC6 Control_1 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GCTGCAAGTTCGTGCCAGCMGCCGCGG
TAA (59) 

10.0 83.6 61.9 

mV4 Fwd BC7 Control_2 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GTTCGTGATTCGTGCCAGCMGCCGCGG
TAA (59) 

10.0 83.0 60.2 

mV4 Fwd BC8 Control_3 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GTTCCGATAACGTGCCAGCMGCCGCGG
TAA (59) 

10.0 83.0 60.2 

mV4 Fwd BC9 Control_4 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GTGAGCGGAACGTGCCAGCMGCCGCG
GTAA (59) 

10.0 84.3 63.6 

mV4 Fwd BC10 Control_5 
CCATCTCATCCCTGCGTGTCTCCGACTCA
GCTGACCGAACGTGCCAGCMGCCGCG
GTAA (59) 

10.0 84.3 63.6 
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S7: R code utilised to generate a KEGG Orthologue Abundance Graph 

 

data <- read.table("KEGG Orthologue Abundance values.txt", header = T) 

library("RColorBrewer") 

library("ggplot2") 

library("vegan") 

library("scales") 

library("grid") 

library("reshape2") 

library("dplyr") 

theme_set(theme_bw()) # Command used to set graph background colour 

data$KEGG_Pathway <- factor(data$KEGG_Pathway, levels = c("KEGG Orthologues”)) # Command 
used t set order of the legend 

# Generate jpeg file 

jpeg(file = "KEGG Orthologue Abundance graph.jpeg") 

jpeg("KEGG Orthologue Abundance graph.jpeg", height = 15*300, width = 25*300, res = 400, 
pointsize = 15) 

# Plot 

p = ggplot(data, aes(x=Species, y=Count, fill=KEGG_Pathway)) # Commands used to generate and 
format a relative abundance graph 

p = p + geom_bar(aes(), stat="identity", position="stack") 

p = p + scale_fill_manual(values=c("Colours”)) 

p = p + scale_y_continuous(expression(paste("Abundance (%)"))) # Sets Y axis lavel 

p = p + theme(axis.text = element_text(size = 20), axis.title=element_text(size = 20)) 

p = p + theme(axis.title.x = element_blank()) 

p = p + theme(legend.text = element_text(size = 18)) 

p = p + theme(legend.title = element_text(size = 18)) 

p = p + theme(axis.text.x=element_text(angle=45,hjust=1)) 

p = p + theme(legend.position="right") + guides(fill=guide_legend(ncol =1)) # Formats legend 
position 

p = p + theme(plot.margin=unit(c(1,1,1,1),"cm")) 

p 

dev.off () 
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Figure S2: Gradient PCR amplification of the V3-V4 region of the 16S rRNA gene using 
Escherichia coli DNA. End-point PCR was performed on Escherichia coli DNA (25ng/µl) using 
the optimised GoTaq Green master mix PCR protocol and the V3-V4 oligonucleotide primers. 
PCR was performed in 35 cycles and utilised a range of annealing temperatures above and 
below the mean melting temperature of the V3-V4 oligonucleotide primers to determine 
the optimum primer annealing temperature. 55oC was determined to be the optimum 
annealing temperature, as demonstrated by the increased thickness and brightness of the 
DNA band generated by the 55oC PCR products. 

 

 

 

 

 

 

 

 

 

  Ladder      54oC       54oC       55oC      55oC         56oC       56oC        57oC 

    500bp -------  

Ladder      57oC          59oC         59oC          61oC       61oC           NC     

  500bp ---------
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Figure S3: Amplification of the V3-V4 region of the bacterial 16S rRNA gene from 
microbial DNA extracted from the human plasma samples. Microbial DNA was extracted 
from plasma samples from asthmatic subjects (n = 5, A lanes) and control subjects (n = 5, C 
lanes) using the QIAamp UCP Mini Pathogen kit. The extracted microbial DNA was purified 
and the V3-V4 region of the bacterial 16S rRNA gene was amplified using 35 cycles (A) and 
38 cycles (B) of end-point PCR using an optimised GoTaq Green master mix PCR protocol. 

 

 
 
 

 

 

 

 

Ladder A1     A2      A3      A4      A5     C1      C2        C3     C4       C5     PC     NC1     NC2 
Asthma                                       Control   

A 

Ladder         A1    A2     A3    A4     A5     C1     C2   C3       C4      C5            PC    NC1 NC2 
Asthma                                  Control   

B 

500bp -----  

500bp -----  
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Figure S4: End-point PCR amplification of the V3-V4 region of the bacterial 16S rRNA gene 
performed directly on human plasma samples. 35 cycles of end-point PCR amplification 
was performed directly on plasma samples from asthmatic subjects (n = 5, A lanes) and 
control subjects (n = 5, C lanes) in 20µl Phusion blood direct PCR  using a 5% plasma 
concentration (A) and a 20% plasma concentration (B). Comparison of V3-V4 amplification 
generated using 5% human plasma compared to 20% human plasma revealed that 5% 
plasma was optimum, as demonstrated by increased band width and brightness of the 5% 
PCR products compared to the 20% PCR products. 

 

 

 
 

 

 

Ladder   A1       A2      A3       A4       A5       C1      C2        C3       C4       C5        NC 
Asthma                                             Control   

Ladder  A1       A2       A3       A4       A5       C1       C2        C3       C4       C5        NC 
Asthma                                        Control   

B 

A 

500bp -----  

500bp -----  
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Figure S5: Generation of V3-V4 16S rRNA amplicons containing the ion torrent sequencing 
motifs from human plasma samples using end-point PCR. Amplification of the V3-V4 
region  of the bacterial 16S rRNA gene was performed directly on plasma samples from 
asthmatic subjects (n = 5, A lanes) and control subjects (n = 5, C lanes) using 35 cycles of the 
optimised Phusion blood direct PCR protocol and V3-V4 primers  modified to contain Ion 
torrent sequencing motifs. For each plasma sample, a different V3-V4 forward primer that 
contained a unique barcode sequence was utilised in the PCR, and a complementary 
negative control (NC lanes) was generated for each sample to test for environmental and/ 
or reagent bacterial contamination. 

 

 

 

 

Abbreviations: BC, barcoded V3-V4 16S oligonucleotide primer used 

 

 

Ladder   C1       NC      C2       NC       C3       NC      C4       NC       C5       NC 
                                      BC1              BC1           BC2             BC2              BC3             BC3           BC4      BC4     BC5             BC5 

500bp -------  

Ladder   A1      NC     A2      NC      A3       NC      A4      NC      A5      NC 
                                      BC1            BC1         BC2          BC2            BC3              BC3            BC4     BC4    BC5          BC5 

500bp -------  
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Figure S6: Nested PCR amplification of the V3-V4 region of the bacterial 16S rRNA gene 
using Escherichia coli DNA at varying concentrations. DNA samples containing varying 
concentrations of E.coli DNA (ranging from 0.025ng/µl – 25.0ng/µl) first underwent 25 (A) 
or 30 (B) cycles of PCR using the optimised GoTaq Green master mix PCR protocol in order 
to amplify the V3-V4 region of the 16S rRNA gene. The PCR products were purified and then 
underwent a further 5 or 10 cycles of PCR (A & B) using the optimised GoTaq Green master 
mix PCR protocol and the modified V3-V4 primers. The first stage of PCR was designed to 
amplify the V3-V4 region whilst the second stage was designed to attach the Ion torrent 
sequencing motifs onto the V3-V4 amplicons. 

 

 

Abbreviations: NC1, negative control generated from 5 cycles of second stage PCR; NC2, 
negative control generated from 10 cycles of second stage PCR; NC3, negative control 
generated from first stage PCR; NC4, negative control generated from second stage PCR. 

 

 

 

 

Ladder   25.0        2.5       0.25     0.025    25.0       2.5       0.25    0.025     NC1       NC2 
[E. coli]     

25 cycles + 5 cycles 25 cycles + 10 cycles 

500bp ------  

A 

Ladde 0.025 0.25  2.5   25.0          NC1  NC2         0.025  0.25  2.5   25.0         NC3  NC4 
[E. coli]  

30 cycles + 5 cycles 30 cycles + 10 cycles 

500bp ------  

B 
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Figure S7: Generation of V3-V4 amplicons containing the ion torrent sequencing motifs 
from human plasma samples from asthmatic subjects and non-asthmatic control subjects 
using nested PCR. Plasma samples from asthmatic subjects (n = 5, A lanes) and control 
subjects (n = 5, C lanes) first underwent 35 cycles of end-point PCR using the optimised 
GoTaq Green master mix PCR protocol and V3-V4 16S Amp oligonucleotides in order to 
amplify the V3-V4 region of the bacterial 16S rRNA gene. The V3-V4 amplicons were then 
purified using the MinElute protocol and the underwent an additional 7 cycles of end-point 
PCR using the optimised GoTaq Green master mix PCR protocol and the modified V3-V4 
primers in order to attach the ion torrent sequencing motifs to the V3-V4 amplicons. 

 

 

 
 
 

 

 

 

 

Ladder    A1         NC        A2         NC         A3          NC         A4        NC         A5          NC 
                                          BC1                    BC1                BC2                   BC2                   BC3                       BC3                    BC4        BC4           BC5                      BC5 

Ladder     C1        NC       C2        NC       C3         NC        C4        NC       C5        NC 
                                             BC1                 BC1              BC2               BC2              BC3                   BC3               BC4        BC4     BC5               BC5 

500bp -----
  

500bp -----
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Figure S8: Gradient PCR amplification of the V4 region of the 16S rRNA gene using 
Escherichia coli DNA. End-point PCR was performed on E.coli DNA (25ng/µl) using a GoTaq 
Green master mix PCR protocol and the V4 16S rRNA primers. PCR was performed in 35 
cycles and a range of annealing temperatures above and below the mean annealing 
temperature of the V4 primers were utilised. 55oC was found to be the optimum annealing 
temperature for the V4 primers, as demonstrated by increased band thickness and 
brightness of the 55oC PCR products. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ladder           55      55      56       56     58      58      60        60      62      62      64      64     NC 
  (OC) 

500bp -----
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Table S10: The number of V4 reads generated from human plasma samples following 
amplification of the V4 region of the 16S rRNA bacterial gene and Illumina sequencing of 
the V4 amplicons. Following successful generation of V4 amplicons containing Illumina 
sequencing motifs from plasma samples from asthmatic subjects (n = 5) and control subjects 
(n = 5), the V4 amplicons were sequenced using Illumina MiSeq sequencing. Low-quality V4 
reads were then removed using Nephele 2.0 technology. 

 

 

Sample Number of raw V4 
reads 

Number of high-
quality V4 reads 

Number of OTUs 
detected 

Control_1 71,007 20,367 221 

Control_2 100,419 34,243 311 

Control_3 92603 19,680 243 

Control_4 88,650 10,929 199 

Control_5 95,878 26,469 395 

Asthma_1 94,162 36,136 364 

Asthma_2 104,464 19,459 278 

Asthma_3 110,121 35,213 277 

Asthma_4 72,524 17,155 280 

Asthma_5 98,741 27,413 399 

Negative Control 57,239 0 - 
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Table S11: Alpha diversity of the blood microbiome detected in plasma samples from 
asthma subjects compared to plasma samples from control subjects.  Alpha diversity was 
measured using rarefied OTU tables generated from 16S rRNA sequencing data generated 
from plasma samples collected from asthmatic subjects (n = 5) and control subjects (n =5). 
Shannon diversity index scores were generated from OTU tables in order to measure the 
richness and evenness of bacterial taxa present in the plasma samples. Chao1 index scores 
were measured to determine the predicted number of bacterial taxa present in the plasma 
samples by extrapolating out the number of rare organisms that may not have been 
detected due to under-sampling. 

 

 

Sample Shannon Diversity Index Chao1 Diversity Index 

Control_1 2.144 252.577 

Control_2 2.874 332.875 

Control_3 2.244 492.000 

Control_4 2.320 349.000 

Control_5 2.824 409.977 

Asthma_1 3.042 317.763 

Asthma_2 3.018 359.097 

Asthma_3 2.233 399.071 

Asthma_4 3.038 333.700 

Asthma_5 3.727 515.849 
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Table S12. End-point PCR amplification of the 16S rRNA gene from bacterial DNA 
extracted from cultured bacterial colonies generated from human plasma samples. DNA 
was extracted from bacterial colonies cultured from asthma plasma samples (n = 4) and 
control plasma samples (n = 4) using thermal lysis. The 16S rRNA gene was then amplified 
using oligonucleotide primers that target the 16S rRNA gene and two PCR protocols; the 
GoTaq Green master mix protocol and the Phusion blood direct protocol. 

 

Sample GoTaq Green master mix 
Protocol 

Phusion Blood Direct 
Protocol 

Control Subjects 

Control_1 

Columbia Blood agar  Y Y 

CLED Medium  NA* NA 

A.G.I.R agar NA NA 

Control_2 

Columbia Blood agar  Y Y 

CLED Medium  Y Y 

A.G.I.R agar NA NA 

Control_3 

Columbia Blood agar  Y Y 

CLED Medium  N Y 

A.G.I.R agar N Y 

Control_4 

Columbia Blood agar  Y Y 

CLED Medium  N Y 

A.G.I.R agar N Y 

Control_5 

Columbia Blood agar  NA NA 

CLED Medium  NA NA 

A.G.I.R agar NA NA 

Asthmatic Subjects 

Asthma_2 

Columbia Blood agar  Y NA 

CLED Medium  N N 

A.G.I.R agar N N 

Asthma_3 

Columbia Blood agar  NA NA 

CLED Medium  NA NA 
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A.G.I.R agar NA NA 

Asthma_4 

Columbia Blood agar  NA NA 

CLED Medium  Y NA 

A.G.I.R agar NA NA 

Asthma_5 

Columbia Blood agar  Y Y 

CLED Medium  N N 

A.G.I.R agar N Y 

 

*NA = when bacterial colonies were not isolated from the agar plates, and thus 16S 
amplification was not performed, Y = successful amplification of the 16S rRNA gene, N = 
unsuccessful amplification of the 16S rRNA gene. 
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Table S13: The number of V4 reads generated from human serum samples following 
amplification of the V4 region of the 16S rRNA bacterial gene and Illumina sequencing of 
the V4 amplicons. Following successful generation of V4 amplicons containing Illumina 
sequencing motifs from serum samples from control subjects (n = 11), asthmatic subjects (n 
= 4), allergic rhinitis subjects (n = 7) and hyper-allergic subjects (n = 3), the V4 amplicons 
were sequenced using Illumina MiSeq sequencing. Low-quality reads and chimeric 
sequences were then removed using Nephele 2.0 technology and the remaining reads 
aligned to bacterial operational taxonomic units at a 99% similarity threshold. 

 

Sample Number of 
raw reads 

Length of 
trimmed Reads 

(bp) 

Number of 
OTU-aligned 

Reads 

Number of 
detected OTUs 

Control_1 81,169 251 64,201 799 

Control_2 88,591 251 77,231 1,173 

Control_3 124,460 251 87,748 1,270 

Control_4 96,530 251 60,310 738 

Control_5 145,011 251 124,383 2,206 

Control_6 116,807 251 74,420 1,611 

Control_7 109,751 251 77,140 1,215 

Control_8 120,101 251 101,703 1,487 

Control_9 149,188 251 128,000 1,235 

Control_10 91,167 251 70,798 1,165 

Control_11 68,467 251 59,431 1,064 

Asthma_1 106,678 251 94,415 1,323 

Asthma_2 76,773 251 58,557 810 

Asthma_3 77,430 251 58,396 877 

Asthma_4 100,457 251 71,575 751 

Allergic rhinitis_1 71,991 251 61,979 1,334 

Allergic rhinitis_2 122,505 251 80,559 1,241 

Allergic rhinitis_3 85,857 251 71,728 1,665 

Allergic rhinitis_4 122,733 251 102,874 2,757 

Allergic rhinitis_5 87,148 251 70,729 1,332 

Allergic rhinitis_6 129,170 251 112,915 1,478 

Allergic rhinitis_7 101,275 251 87,950 1,903 

Hyper-Allergic_1 134,085 251 94,813 1,126 

Hyper-Allergic_2 89,560 251 68,123 1,084 

Hyper-Allergic_3 125,616 251 109,027 1,447 

Negative Control 402 251 204 93 
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Table S14: Microbial functions predicted to be significantly altered in the circulatory 
microbiome of hyper-allergic subjects compared to the circulatory microbiome of non-
atopic subjects. PICRUSt analysis was performed on the 16S rRNA sequencing data 
generated from serum samples taken from hyper-allergic subjects (AA_AR, N = 3) and 
control subjects (CS, n = 11) to determine whether changes in the microbial populations 
present in the atopic circulatory microbiome significantly altered overall functional activity 
of the microbiome. Abundance of KEGG pathways at levels 1 – 3 was determined, and LEfSe 
analysis was performed to identify KEGG pathways with significantly altered abundance in 
the hyper-allergic serum compared to the control circulatory microbiome. Biologically 
significant altered KEGG abundance is defined as having a P value < 0.05 and an LDA effect 
size > 2.0.  

 

 

Function 
Highest group 

abundance average 
(log %) 

Group with 
highest average 

abundance 

LDA Effect 
Size P Value 

C: Cytoskeleton proteins 0.84 NA NA 0.0465 

M: Thiamine metabolism 0.49 CS 2.10 0.0348 
O: PPAR signalling pathway 0.00 CS 2.17 0.0316 
M: Toluene degradation 3.26 AA.AR 2.35 0.0240 
E: MAPK signaling pathway 
- yeast 2.19 NA NA 0.0240 

M: Dioxin degradation 4.10 AA.AR 2.71 0.0158 

M: Flavonoid biosynthesis 3.14 AA.AR 2.15 0.0102 

M: Retinol metabolism 3.43 AA.AR 2.24 0.0102 
 

Abbreviations: C, Cellular process level 1 KEGG category; M, Metabolism level 1 KEGG 
category; O, Organismal systems level 1 KEGG category; E, Environmental processing 
information level 1 KEGG category; NA, defines level 3 KEGG pathways with a significant P 
value but an LDA effect size < 2.0 
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Figure S9: Direct PCR amplification of the V4 region of the 16S rRNA gene from microbial 
DNA present in murine plasma samples. End-point PCR amplification of the V4 region of 
the 16S rRNA gene was performed directly on plasma samples from control mice (HDM-
naïve, n = 7) and mice exposed to the HDM allergen (HDM-exposed, n = 7). PCR was 
performed using an optimised Phusion blood direct protocol (A) and a SureDirect blood PCR 
protocol (B).  
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Table S15: The number of V4 reads generated from murine BAL samples following 
amplification of the V4 region of the 16S rRNA bacterial gene and Illumina sequencing of 
the V4 amplicons. Following successful generation of V4 amplicons containing Illumina 
sequencing motifs from BAL samples from HDM-exposed (n = 7) and HDM-naive mice (n = 
7), the V4 amplicons were sequenced using Illumina MiSeq sequencing. Low-quality reads 
and chimeric sequences were then removed using Nephele 2.0 technology and the 
remaining reads aligned to bacterial operational taxonomic units at a 99% similarity 
threshold. 

 

 

Sample Number of raw 
reads 

Length of 
trimmed Reads 

(bp) 

Number of 
OTU-aligned 

Reads 

Number of 
detected OTUs 

HDM_naive_1 121,929 251 61,602 1,352 

HDM_naive_2 107,247 251 18,220 659 

HDM_naive_3 12,528 251 44,324 943 

HDM_naive_4 95,756 251 37,165 678 

HDM_naive_5 160,559 251 53,504 838 

HDM_naive_6 128,582 251 39,652 640 

HDM_naive_7 152,338 251 49,651 866 

HDM_exposed_1 146,968 251 46,875 838 

HDM_exposed_2 159,630 251 50,509 898 

HDM_exposed_3 113,019 251 29,733 640 

HDM_exposed_4 122,465 251 40,246 924 

HDM_exposed_5 119,791 251 46,509 830 

HDM_exposed_6 109,828 251 46,748 795 

HDM_exposed_7 143,568 251 51,627 1,335 

Negative Control 115,138 251 1 1 
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Table S16: The number of V4 reads generated from murine faecal samples following 
amplification of the V4 region of the 16S rRNA bacterial gene and Illumina sequencing of 
the V4 amplicons. Following successful generation of V4 amplicons containing Illumina 
sequencing motifs from faecal samples from HDM-exposed (n = 7) and HDM-naive mice (n 
= 7), the V4 amplicons were sequenced using Illumina MiSeq sequencing. Low-quality reads 
and chimeric sequences were then removed using Nephele 2.0 technology and the 
remaining reads aligned to bacterial operational taxonomic units at a 99% similarity 
threshold. 

 

 

Sample Number of raw 
reads 

Length of 
trimmed Reads 

(bp) 

Number of 
OTU-aligned 

Reads 

Number of 
detected OTUs 

HDM_naive_1 129,666 251 118,165 3,230 

HDM_naive_2 107,196 251 98,296 2,681 

HDM_naive_3 101,094 251 74,906 1,240 

HDM_naive_4 90,422 251 82,920 2,264 

HDM_naive_5 107,400 251 97,882 2,516 

HDM_naive_6 137,847 251 126,585 2,831 

HDM_naive_7 88,991 251 81,349 2,227 

HDM_exposed_1 85,236 251 77,140 2,405 

HDM_exposed_2 86,423 251 77,591 2,382 

HDM_exposed_3 98,404 251 88,901 2,502 

HDM_exposed_4 112,536 251 103,248 2,461 

HDM_exposed_5 107,948 251 99,668 2,691 

HDM_exposed_6 104,199 251 93,940 2,692 

HDM_exposed_7 110,748 251 100,650 2,544 

Negative Control 36,394 251 28,232 218 
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Table S17: Microbial functions predicted to be significantly altered in the gut microbiome 
of mice exposed to the HDM allergen compared to HDM-naïve mice. PICRUSt analysis was 
performed on the 16S rRNA sequencing data generated from faecal samples taken from 
HDM-exposed mice (n = 7) and HDM-naïve mice (n = 7) to determine whether changes in 
the microbial populations present in the gut microbiome of mice exposed to the HDM 
allergen significantly altered overall functional activity of the microbiome. Abundance of 
KEGG pathways at levels 1 – 3 was determined, and LEfSe analysis was performed to identify 
KEGG pathways with significantly altered abundance in the gut microbiome of HDM-exposed 
mice compared to HDM-naïve mice. Biologically significant altered KEGG abundance is 
defined as having a P value < 0.05 and an LDA effect size > 2.0.  

 

 

Function 
Highest group 

abundance 
average (log %) 

Group with 
highest average 

abundance 

LDA 
Effect 
Size 

P Value 

M: Starch and sucrose 
metabolism 4.02 HDM+ 2.41 0.0476 

M: Galactose metabolism 3.95 HDM+ 2.31 0.0350 
M: Pentose and glucuronate 
interconversions 3.76 HDM+ 2.30 0.0181 

M: Sphingolipid metabolism 3.57 HDM+ 2.18 0.0476 
U: Replication, recombination 
and repair proteins 3.80 HDM- 2.07 0.0350 

M: Propanoate metabolism 3.65 HDM- 2.05 0.0181 

M: Pyruvate metabolism 4.00 HDM- 2.02 0.0088 

M: Geraniol degradation 2.70 NA NA 0.0476 

D: African trypanosomiasis 1.14 NA NA 0.0350 

G: Sulfur relay system 3.22 NA NA 0.0350 

M: Butanoate metabolism 3.80 NA NA 0.0350 

M: Tetracycline biosynthesis 2.91 NA NA 0.0350 

U: Carbohydrate metabolism 3.19 NA NA 0.0350 

G: Non-homologous end joining 1.42 NA NA 0.0350 

M: Gluconeogenesis 4.03 NA NA 0.0253 

C: Meiosis - yeast 1.40 NA NA 0.0253 
M: Biosynthesis of siderophore 
group non-ribosomal peptides 2.20 NA NA 0.0253 

M: Nitrotoluene degradation 2.54 NA NA 0.0253 

M: Selenocompound metabolism 3.55 NA NA 0.0253 

G: Basal transcription factors 1.05 NA NA 0.0181 
M: Various types of N glycan 
biosynthesis 1.08 NA NA 0.0181 

M: Fatty acid metabolism 3.32 NA NA 0.0127 
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M: Valine, leucine and isoleucine 
degradation 3.42 NA NA 0.0127 

M: Glycerophospholipid 
metabolism 3.73 NA NA 0.0127 

U: Nucleotide metabolism 2.73 NA NA 0.0088 
U: Metabolism of cofactors and 
vitamins 2.86 NA NA 0.0088 

M: Phosphonate and phosphinate 
metabolism 2.84 NA NA 0.0060 

M: Lysine degradation 3.12 NA NA 0.0040 
 

Abbreviations: M, Metabolism level 1 KEGG category; U, Unclassified level 1 KEGG category; 
D, Human disease level 1 KEGG category; G, Genetic information processing level 1 KEGG 
category, C, Cellular process level 1 KEGG category; NA, defines level 3 KEGG pathways with 
a significant P value but an LDA effect size < 2.0. 
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