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Abstract
Arc magmas typically show distinct geochemical and petrographical evidence indicating a com-
plex petrogenesis. The surface products represent a summation of the complex interplay of
geodynamic magma generation processes, varied differentiation histories, and crustal interac-
tion. Xenoliths, ‘foreign rocks’, are found in the deposits of most volcanoes worldwide, and
represent snapshots of individual events occuring during magmatic petrogenesis. Crustal xeno-
liths record the interaction between magma and the surrounding wall-rock, whilst plutonic
xenoliths record the magma generation and differentiation history. This work uses two case
study volcanoes: Merapi in the Indonesian Sunda Arc to focus on calc-silicate crustal xenoliths,
and Santorini in the central South Aegean Volcanic Arc to focus on plutonic xenoliths.
The calc-silicate xenoliths at Merapi record magma-carbonate interaction processes. Ther-

mobarometric calculations, fluid inclusion microthermometry and newly calibrated oxybarom-
etry based on Fe3+/ΣFe in clinopyroxene indicate xenolith formation conditions of ~510-910
± 45°C, < 100 MPa and at an oxygen fugacity between the NNO buffer and air. Halogen,
sulphur and copper-bearing minerals show magmatic brine infiltration and the early stages of
economic mineral deposition. Assessment of the timescales of xenolith formation and crustal
CO2 liberation demonstrates that magma-carbonate interaction could affect eruption intensity,
and at a larger scale, impact global carbon cycling.
The plutonic xenoliths at Santorini can be considered cumulates to the magmatic system.

Their whole-rock, melt inclusion and intercumulus glass chemistry shows they are representa-
tive of the entire liquid line of descent. Thermobarometry indicates they formed over a wide
temperature range between ~1100 to 750°C, at shallow to mid crustal depths (< 400 MPa)
from a partially differentiated deep crustal melt. These pressures are shallower than those
estimated for the East and West South Aegean Arc. Early melts extracted from the cumu-
lates produce liquids comparable to the volcanic whole-rocks, but some samples show extensive
post-cumulus crystallisation, and generation of evolved trapped liquids that may only interact
during cumulate remobilisation episodes.
Together, these case studies demonstrate that xenoliths are powerful tracers of individual

processes that define the complex geochemical signatures occuring at arc volcanoes. Although
xenoliths may not be present in all volcanic deposits of all volcanoes, the understanding gained
from studies such as this are applicable worldwide.
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Chapter 1

Introduction
Arc magmas typically show distinct geochemical and petrographical evidence indicating a com-

plex petrogenesis. The surface products represent a summation of the complex interplay of

geodynamic magma generation processes, varied differentiation histories, and crustal assimila-

tion. The formation of primitive arc magmas is generally regarded as being a result of partial

melting of the mantle wedge with a contribution from slab dehydration (e.g. McBirney, 1969;

Kushiro, 1990; Ulmer, 2001; Grove et al., 2006, 2012). Silicic magma generation is generally

now considered to be a deep crustal process involving fractionation and crustal partial melting,

modified by further shallow level evolution (Hildreth and Moorbath, 1988; Annen et al., 2006,

2015), with the geochemical trends influenced by ‘cryptic’ fractionation of phases such as am-

phibole and garnet at depth, which are not observed in the volcanic deposits (Cawthorn and

O’Hara, 1976; Foden and Green, 1992; Davidson et al., 2007; Alonso-Perez et al., 2009; Smith,

2014). These arc magmas additionally carry a geochemical signature requiring involvement with

continental crust (e.g. Arculus and Johnson, 1981; Pyle and Ivanovich, 1988; Thirlwall et al.,

1996; Davidson et al., 2005). Two general models of magmatic contamination are commonly

invoked: i) source contamination from the addition of subducted slab material to the mantle

wedge (e.g. Hildreth and Moorbath, 1988; Davidson et al., 1990; Ellam and Harmon, 1990;

Gertisser and Keller, 2003a; Debaille et al., 2006; Handley et al., 2011), and ii) crustal contam-

ination from assimilated crustal-derived material during magmatic ascent (e.g. DePaolo, 1981;

Thompson et al., 1984; Davidson, 1985; Thirlwall et al., 1996; Annen et al., 2006; Chadwick et

al., 2007).

Much of the published work about the petrogenesis of subduction magmas focuses on the

lava flows, pyroclastics and intrusions, and pay relatively little attention to xenoliths, although
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a near ubiquitous product of volcanic eruptions. Eruptive products generally preserve and

place constraints on pre-eruptive magmatic conditions, and store radiogenic isotope evidence

of mantle sources and geodynamics. Generally, little detailed evidence for the mechanisms of

wall-rock interaction and plutonic processes are preserved. Geochemical and isotopic studies

are commonly invoked using whole-rock xenolith compositions to give a general overview and

quantify overall crustal assimilation (e.g. DePaolo, 1981). The detailed study of xenoliths

however (e.g. Costa et al., 2002; Chadwick et al., 2007; Tollan et al., 2012, 2015; Stamper

et al., 2014; Jolis et al., 2015) can provide a unique insight and snapshot into the individual

deep and shallow level magmatic processes that collectively form the distinct geochemical and

petrological trends found in subduction settings.

The following section aims to highlight the role that detailed studies of xenoliths play in

elucidating the processes relevant to magma formation in subduction zone settings, primarily

focusing on two genetic classifications of xenoliths: crustal and cognate plutonic (cumulate),

with specific references to localities in the South Aegean and Sunda arcs. Crustal xenoliths give

insight into magma-crust interaction and the crustal structure of volcanic arcs, whilst cognate

plutonic xenoliths give insight into the formation, fractionation history and evolution of magma

during magmatic ascent from the mantle, and the subvolcanic crustal plumbing system through

which the magma passes through. The following section outlines the geological settings of the

two case study regions of the research project, and gives an overview of the value of studying

xenoliths to understand the magmatic and intra-crustal processes occurring within subduction

zones.
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CHAPTER 1. INTRODUCTION 3

1.1 Volcanic and Tectonic Setting of the Sunda Arc and
the South Aegean Volcanic Arc

1.1.1 South Aegean Active Volcanic Arc

The South Aegean Active Volcanic Arc (Hellenic Arc) is situated in the eastern Mediterranean

Sea, and is a result of the 50-60mm y-1 (Jackson, 1994) subduction of the African plate be-

neath the Aegean-Anatolian microplate, initiated ~13 Ma ago (Le Pichon and Angelier, 1979;

Angelier et al., 1982), with estimates extending to 16 Ma (Mercier et al., 1989) (Figures 1.1,

1.2). Volcanism began in the late Pliocene (Pe-Piper et al., 1983). The basement comprises late

Palaeozoic/Mesozoic metapelites, metacarbonates, metabasites, metasediments, and granitoid

intrusions of the Cycladic Crystalline Complex, overlying carboniferous pre-Alpine orthogneisses

(Schliestedt et al., 1987; Druitt et al., 1999; Forster and Lister, 1999; Kilias et al., 2013). The

arc is considered (Pe-Piper and Piper, 2005) as comprising three distinct groups: Pliocene typ-

ical calc-alkaline andesites to dacites in the western-central sector of the arc (Aegina, Methana,

Milos, early Santorini), mid to late Quaternary felsic products in the thinner, extended, central-

eastern region (Milos, Santorini, Nisyros), and minor Pliocene to mid Quaternary ‘marginal

rhyolites’ (Sousaki, Kos) restricted to the north-west and north-east margins of the arc respec-

tively (Figure 1.1). At least three of these centres are considered active (Methana, Santorini,

Nisyros), having had historic eruptions (Druitt et al., 1999). Volcanic products of the arc range

from basalt to rhyolite, chemically mildly tholeiitic to calc-alkaline with medium-high K con-

tents (Druitt et al., 1999). The three groups differ chemically; the variation is attributed to

‘classical subduction’ hydration melting of the mantle wedge and deep amphibole fractiona-

tion in the older western arc, a greater influence from an asthenospheric source in the younger

eastern arc, and mid-crustal anatexis forming the minor rhyolites (Pe-Piper and Piper, 2005).

Assimilation of crustal material is also observed across the arc, with Assimilation-Fractional

Crystallisation (AFC DePaolo, 1981) modelling indicating assimilation to fractionation ratios

of 0.1 to 0.2 throughout the arc (Pe-Piper and Piper, 2005).
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4 1.1. VOLCANIC AND TECTONIC SETTING OF THE
SUNDA ARC AND THE SOUTH AEGEAN VOLCANIC ARC

Figure 1.1: Tectonic setting of the South Aegean Volcanic Arc showing the three group-
ings of volcanic centres (modified after Pe-Piper and Piper, 2005).

Santorini is regarded as the most hazardous of the volcanic islands that comprise the South
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Aegean volcanic arc. It consists of the three islands of Thera, Therasia and Aspronisi which

mark the outline of a flooded caldera, and the Palaea Kameni and Nea Kameni islands situated

within a flooded caldera (Figure 1.2). Pre-volcanic basement outcrops at Athinios and Mount

Profitis Ilias on Thera, comprising blueschist-amphibolite grade meta-pelites, and crystalline

limestones, respectively (Davis and Bastas, 1978; Skarpelis and Liati, 1990; Kilias et al., 1998;

Druitt et al., 1999). Volcanic activity is strongly influenced by two NE-SW trending tectonic

lineaments (the Kameni and Columbus lines) and began ~650 ka ago at the Akrotiri peninsula,

producing amphibole-bearing silicic tuffs and lava flows (Druitt et al., 1999). Twelve major

plinian eruptions have occurred since ~360 Ka, occurring every ~20-30 ka, referred to as the

Thera Pyroclastic Formation, of which at least four have led to caldera collapse (Druitt et al.,

1989, 1999; Druitt and Francaviglia, 1992). Two cycles of mafic to silicic magma evolution

have been identified, each ending with significant caldera-forming eruptions: the Lower Pumice

2 and Minoan eruptions (Druitt et al., 1999). Interplinian activity has included subplinian

explosive activity, lava flows and extrusive edifice construction (Barton and Huijsmans, 1986;

Druitt et al., 1999; Vespa et al., 2006; Vaggelli et al., 2009). Chemically, the eruptive products

of Santorini range from low- to high-K basalt to rhyodacite, with rare rhyolite, with K2O

content increasing with evolution. Sr-Nd-Pb isotopic and trace element studies indicate varying

contamination of Santorini magma with upper Aegean continental crust, at least some of the

contamination having occurred in upper crustal reservoirs (Druitt et al., 1999 and references

therein). Magmatic differentiation occurs dominantly in mid to shallow level reservoirs, with

little evidence for deep fractionation (Cottrell et al., 1999; Druitt et al., 1999, 2016; Gertisser

et al., 2009; Cadoux et al., 2014; Andújar et al., 2015, 2016).

The most recent ‘Minoan’ plinian eruption (Bond and Sparks, 1976; Druitt et al., 1999;

Druitt, 2014), 14C dated ~1627-1600 BC (Friedrich et al., 2006), is regarded to have impor-

tant archaeological-environmental consequences (e.g. Luce, 1969; LaMoreaux, 1995; Pyle, 1997;

Bruins et al., 2008). The eruption volume has been considered to rival the 1815 eruption of

Tambora (Indonesia) (Sigurdsson et al., 2006), the largest known historical eruption, highlight-

ing the importance of research into this eruption and the Santorini volcanic system. Studies
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of this eruption have significance for modern day hazard assessments, notably recent diffusion

profile modelling work across plagioclase phenocrysts showing that the silica-rich recharge event

that triggered the Minoan eruption occurred very rapidly, within ~100 years before eruption, a

significantly shorter time period than the 18 kyr period between the Minoan and the previous

major caldera-forming eruption (Druitt et al., 2012). Much recent research interest at Santorini

has focused on the recent 2011 unrest which was not followed by an eruption (Parks et al., 2012;

Foumelis et al., 2013; Konstantinou et al., 2013; Gregg et al., 2013; Saltogianni et al., 2014;

Browning et al., 2015; Rizzo et al., 2015).

Xenoliths have been long identified throughout the Santorini volcanic succession, both cu-

mulates and calc-silicate assemblages (Fouqué, 1879; Lacroix, 1893, 1900, 1901; Kténas, 1927;

Reck, 1936; Nicholls, 1971a, 1971b; Barton and Huijsmans, 1986; Druitt et al., 1999; Mortazavi

and Sparks, 2004; Martin et al., 2006a, 2006b; Druitt, 2014), however, relatively little work

has been focused on them. Xenoliths have highlighted a high fO2 in recent lavas imposed by

calc-silicate mineral breakdown (Nicholls, 1971b), magma replenishment in recent lavas (Martin

et al., 2006b), crustal assimilation (Druitt et al., 1999), and potential cumulate remobilisation-

entrainment (Gertisser et al., 2009). These studies will be discussed in more detail in sections

1.4 and 1.3.

1.1.2 Sunda Arc

Volcanism across the Indonesian archipelago can be attributed to four principal subduction

systems: the Sunda, Sangihe, Halmahera and Banda arcs (Hamilton, 1979). The Sunda arc

extends 5600 km from the Andaman Islands in north-west Sumatra to the Banda arc in the east

(Hamilton, 1979; Newcomb and McCann, 1987), and is a result of northward subduction of the

Indo-Australian plate beneath the Eurasian plate at a rate of ~6cm yr-1 beneath Sumatra and

~7cm yr-1 beneath Java (Minster and Jordan, 1978; Hamilton, 1979; Jarrard, 1986; DeMets

et al., 1990; Tregoning et al., 1994) (Figure 1.3). The age of the subducting oceanic plate

varies between ~80 and 130 Ma from West to East Java respectively (Hamilton, 1979; Syracuse

and Abers, 2006). The basement in Central Java is thought of as a Cretaceous imbricated
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Figure 1.2: Stratigraphy and geological map of Santorini. Straigraphic column after
Druitt et al. (2016). Red eruptions in the stratigraphic column are dominantly silicic
eruptions, and blue are intermediate in composition. Black boxes are interplinian de-
posits and brown boxes are prominent lava or tuff successions in the interplinian deposits
(Vespa et al., 2006; Druitt et al., 2016).
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accretionary complex, known as the Lok Ulo Complex, which comprises ophiolitic and sedi-

mentary rocks, crystalline schists and gneisses (van Bemmelen, 1949; Wakita and Bambang,

1994; Smyth et al., 2005; Kadarusman et al., 2007). Most exposed basement rocks on Java

comprise Cenozoic volcanogenic turbidites and breccias, quartz-rich sandstones and limestone

(van Bemmelen, 1949; Hamilton, 1979; Smyth et al., 2005; Clements and Hall, 2007; Clements

et al., 2009).

The Sunda arc hosts numerous volcanoes, including Tambora, Kelut, Krakatau and Mer-

api. Of these, Merapi is considered one of Indonesia’s most dangerous (Gertisser et al., 2011).

Merapi, situated in Central Java, overlies an upper crust of 8 km (Genevraye and Samuel,

1972) to 11 km (Untung et al., 1978) thick sediments of the Kendeng basin; Cretaceous to Ter-

tiary reworked volcaniclastic sediments are overlain by shallow marine limestones and marls, all

of which overlie suspected Cretaceous arc/ophiolite basement material (van Bemmelen, 1949;

Smyth et al., 2005). Xenoliths of metamorphosed basement and plutonic material are abundant

in Merapi lavas (Kerinec, 1982; Clocchiatti et al., 1982; Camus et al., 2000; Gertisser and Keller,

2003a; Chadwick et al., 2007; Troll et al., 2012, 2013). Recent eruptive activity is dome growth,

with block-and-ash flows and associated ash fall, compositionally high-K basaltic-andesite in

a restricted range between ~51-57 wt.% SiO2 (Gertisser and Keller, 2003a, 2003b). Activity

is near continuous, with periods of dome growth frequently interrupted by gravitational or

explosive subplinian (VEI 1-4) dome collapse and associated pyroclastic density currents (An-

dreastuti et al., 2000; Camus et al., 2000; Newhall et al., 2000; Voight et al., 2000; Gertisser et

al., 2012; Surono et al., 2012; Komorowski et al., 2013).
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Figure 1.3: Sunda Arc map and location of Merapi. After Gertisser and Keller (2003a)

The recent 2010 eruption was the most explosive in over a century, killing over 400 peo-

ple (Gertisser et al., 2011; Surono et al., 2012), prompting a special edition of the Journal

of Volcanology and Geothermal Research (Vol. 261, 2013) dedicated to understanding the

processes behind this and the previous explosive eruption of 2006. Whole-rock isotopic ra-

tios indicate predominance of subducted continental material over crustal assimilation during

magma genesis (Gertisser and Keller, 2003a), however much recent work has highlighted the

role of crustal contamination, most notably the influence of carbonate assimilation on eruptive

dynamics (Chadwick et al., 2007; Troll et al., 2012; Deegan et al., 2010; Borisova et al., 2013).

Coupled with studies from Central Italy, the work on Merapi emphasises the role of carbonate

assimilation on adding to the CO2 budget and explosivity of volcanoes hosted within carbonate

substratum (e.g. Freda et al., 2008; Gaeta et al., 2009; Mollo et al., 2010b; Deegan et al., 2010;

Troll et al., 2013; Jolis et al., 2013, 2015). In the case of Merapi, the influence of assimilation of

crustal carbonate is thought to have caused an increase in eruptive intensity of the 2006 erup-

tion by a factor of 3 to 5 (Troll et al., 2012). This also potentially played a role in influencing

the explosivity of the 2010 eruption (Borisova et al., 2013), although this is contested (Costa

et al., 2013; Handley et al., 2018), highlighting the necessity of increasing our understanding of

magma-crust interaction in these carbonate hosted magmatic systems.
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1.2 Xenolith Formation and Assimilation dynamics

Xenoliths represent fragments of thermomechanically eroded magma chamber wall-rock, con-

duits, or surface material entrained in erupted materials during emplacement. This erosion

occurs via two end-member processes: (1) thermal erosion, in which melting (partial or com-

plete) causes disaggregation, and assimilation of country rock occurs due to magmatic heat

(Furlong and Myers, 1985; Kerr, 2001), and (2) mechanical erosion, in which country rock is

abrasively removed and entrained via brittle deformation, crack propagation, fragmentation

and/or magma-water interaction (Macedonio et al., 1994; Rubin, 1995; Valentine and Groves,

1996; Del Gaudio and Ventura, 2008). The types of crustal lithologies that can become en-

trained in magma is strongly dependent on the mechanical properties (tensile strength) of the

specific crustal lithologies and also that of the magma (strain rate, crystalinity-viscosity), and

therefore may not be representative of the substratum stratigraphy (Del Gaudio and Ventura,

2008). A basalt has higher potential to erode poor quality country rocks (such as volcaniclastic

rocks compared to gneisses) whilst a crystal-rich magma has a higher potential to fragment con-

duit walls, which for example at Salina, Italy, causes a strong bias towards volcanic xenoliths

over basement rocks (Del Gaudio and Ventura, 2008).

Once entrained, the host magma will generally be at a higher temperature than the solidus

of the xenolith, therefore causing melting and subsequent assimilation into the host magma.

Melting rates are rapid, with 0.1-2mm h-1 predicted for typical continental crustal lithologies,

faster for mafic and water saturated lithologies (Watson, 1982; McLeod and Sparks, 1998;

Shaw, 2000), and up to 17 mm h-1 for mafic-granulite lithologies in the lower crust (McLeod

and Sparks, 1998). The assimilation of carbonate lithologies in magmatic melts has been

shown experimentally to occur very rapidly, with carbonate lithologies within the experimental

capsules being fully assimilated within minutes (Deegan et al., 2010; Jolis et al., 2013). These

rapid rates suggest that xenoliths can only be preserved in rapidly chilled intrusion margins

and during rapid eruptions that do not allow time for complete xenolith melting (McLeod

and Sparks, 1998). Xenoliths that preserve evidence of partial melting are not uncommon

10
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(e.g. Grapes, 1986; Grove et al., 1988; Zanon and Nikogosian, 2004; Shaw, 2009; McGee et al.,

2015). Melts derived from xenoliths are generally not homogeneous in composition, as melting

commonly occurs via preferential disequilibrium melting of low temperature phases, and can

result in varied contamination of the host magma, sometimes within a single suite of xenoliths

(e.g. Watson, 1982; Grove et al., 1988; Peccerillo and Wu, 1992; Markl, 2005; Forni et al., 2015;

McGee et al., 2015).

Costa and Dungan (2005) modelled assimilation of partially disaggregated mafic cumulate

xenoliths and additionally propose that assimilation is rapid. They note that melting and as-

similation rates which are in the order of years to decades (Dungan, 2005), exceed the rate

of magma transport time through the crust, which is shorter than the repose period of arc

volcanoes (Costa and Dungan, 2005), adding support to theory of crustal partial melting and

assimilation influencing arc magmatic geochemical signatures. Partial disaggregation of xeno-

liths has been shown (McLeod and Sparks, 1998) to occur due to non-eutectic partial melting

of xenoliths, forming a mush layer on the xenolith surface that can disaggregate and efficiently

form xenocrysts. Disaggregation has been proposed (Clarke et al., 1998; Beard et al., 2005) as

a model for bulk assimilation, due to the large energy constraints needed for full dissolution

(Bowen, 1922; Beard et al., 2005; Glazner, 2007). Partial melting (aided by dehydration melt-

ing of hydrous phases) physically weakens the xenolith, causing mixing of xenolithic melt and

crystals into the host magma. Incongruent hydration crystallisation reactions (Beard et al.,

2004) then occur between phenocrysts and xenocrysts, forming amphiboles and micas, destroy-

ing previously preserved evidence for mixing (Beard et al., 2005). Unless recharge processes

buffer the magma at a constant thermal energy, the latent heat of fusion reduces the temper-

ature of the magma, driving crystallisation. The amount of crystallisation can be significant,

dramatically increasing the crystallinity and viscosity of the magma. This, coupled with the

decrease in thermal energy of the magma, self-limits the assimilation of further material to a

few tens of percent, suggesting that magma mixing may be a more significant mechanism for

large scale magmatic contamination than crustal assimilation (Glazner, 2007).

Xenoliths that evade full dissolution or disaggregation into the host magma commonly show

11



12 1.3. PLUTONIC XENOLITHS

evidence of thermal alteration and contact metamorphism, coined ‘pyrometamorphism’ when

occurring at very high (magmatic) temperatures in shallow, low pressure conditions, producing

‘sanidinite’ facies assemblages (Brauns, 1912a, 1912b; Tyrrell, 1926; Grapes, 2010). The core of

a 2 metre thick marble xenolith has been shown to reach near magmatic temperatures within

a few weeks (Lovering, 1937), and weeks to months for a 4 m diameter sphere or infinite

slab metabasaltic xenolith (Brandriss et al., 1996), implying the (pyro)metamorphic xenolithic

mineral assemblages can equal magmatic temperatures (Grapes, 2010). Specific examples of

thermally altered xenoliths will be discussed with their implications in the following sections.

Many numerical, geochemical and thermodynamical methods have been developed to aid

quantification and modelling of magmatic evolution processes, including the influence of assimi-

lation, such as linear least squares mass balance (Bryan et al., 1969; Stormer and Nicholls, 1978),

assimilation-fractional crystallisation (AFC DePaolo (1981); Aitcheson and Forrest (1994)],

MELTS thermodynamical software (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998; Gualda

et al., 2012), and Energy-Constrained Assimilation Fractional Crystallisation (EC-AFC Spera

and Bohrson (2001)]. EC-AFC is an advancement of the AFC model of DePaolo (1981) and

takes into account the thermodynamical energy constraints on partial melting and assimilation.

1.3 Plutonic xenoliths

This thesis considers plutonic xenoliths to be fragments of coarse grained igneous material co-

egenetic to the current magmatic system, generally considered cumulates (the instantaneous

solid material Morse, 1976) or complete crystallisation of a volume of magma (total solid com-

position, Morse, 1976). Plutonic mafic and ultramafic cumulate rocks are found in many arc

volcanic rocks (e.g. Arculus and Wills, 1980; Beard, 1986; Costa et al., 2002; Laiolo and Cigolini,

2006; Troll et al., 2013; Stamper et al., 2014), and preserve evidence of differentiation histories,

magmatic ascent, and crustal structure that cannot be directly observed in extrusive rocks.

Beard (1986) proposed a generalised classification of cumulate xenolith suites found in arcs:

Type 1 suites consisting primarily of olivine gabbro, subordinate olivine and clinopyroxene

rich ultramafic rocks, and olivine-free gabbronorite, type 2 suites lacking coexisting olivine and

12
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plagioclase, dominated by olivine-bearing ultramafic rocks and olivine-free gabbronorite, and

type 3 suites, where amphibole is a cumulus phase, comprising of hornblende olivine gabbro,

hornblende gabbro and amphibole-rich ultramafic rocks. Beard (1986) additionally highlighted

the association of calcic An85-100 plagioclase and moderately Fe-rich Fo60-80 olivine as being

distinctive of arc settings, attributed to higher water contents of arc magmas suppressing the

plagioclase solid solution (e.g. Arculus and Wills, 1980; Sisson and Grove, 1993; Müntener et

al., 2001; Tollan et al., 2012; Stamper et al., 2014).

The term ‘cumulate’ has provoked debate since the nomenclature was proposed by Wager et

al. (1960). Cumulate textures were originally attributed to density-controlled crystal settling,

an accumulation of crystals (Wager et al., 1960; Jackson, 1967). Work has since argued against

this (Bottinga and Weill, 1970; Campbell, 1978; McBirney and Noyes, 1979), favouring in-situ

crystallisation (Jackson, 1961; McBirney and Noyes, 1979) over crystal settling. Irvine (1982)

proposed that the original cumulate nomenclature is still valuable if the genetic connotation

is disregarded, and cumulates are simply to be regarded as igneous rocks comprising a frame-

work of touching mineral crystals, concentrated via fractional crystallisation. Processes such

as textural re-equilibration, recrystallisation, compaction and mineral reactions can affect the

cumulate pile after mineral precipitation (e.g. Sparks et al., 1985; Hunter, 1996; Holness et al.,

2005a), further emphasising that a detailed study of cumulate textures are required before any

genetic process for formation can be implied. This project will consider cumulates as proposed

by Irvine (1982) and Hunter (1996), as a textural description, with no implication of a genetic

process.

1.3.1 Fractionation History and Crustal Formation

The continental crust is considered to be formed of a felsic upper crust overlying a dominantly

mafic lower crust (Christensen and Mooney, 1995; Ducea et al., 2003; Rudnick and Gao, 2003);

a density contrast thought by early workers to influence melt stagnation and evolution via

neutral buoyancy (Herzberg et al., 1983; Ryan, 1987; Glazner and Ussler, 1988). Andesites and

dacites form a significant proportion of the products of convergent arc magmatism, however
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the processes that form compositionally intermediate bulk continental crust is widely debated

(e.g. Gill, 1981; Hildreth and Moorbath, 1988; Rudnick and Fountain, 1995; Annen et al., 2006;

Blatter et al., 2017; Klaver et al., 2018). Cumulates, and cognate plutonic xenoliths thereof, are

found in several arc settings (Beard, 1986) and have been long considered evidence for crystal

fractionation as a process for formation of more silicic melts in subduction settings (e.g. Stern,

1979), predominantly thought of as a shallow crustal process (e.g. Glazner, 1994). Recent work

(e.g. Annen et al., 2006, 2015; Jagoutz, 2014; Cashman et al., 2017) has proposed an alternative

model, in which differentiation occurs primarily in ‘deep crustal hot zones’, to explain the

lack of observed shallow level crustal mafic cumulates that should form contemporaneously

with voluminous silicic melts. This model proposes a succession of lower crustal emplaced

sills generating a hot zone where partial crystallisation and anatexis of crustal rocks produces

characteristic H2O-rich differentiated melts. These melts then ascend and can undergo multiple

stages of evolution at different stages throughout the crust (Cashman et al., 2017)

Cumulate xenoliths indicate an important role of fractionation of certain phases at depth,

specifically amphibole, in controlling the liquid line of descent and subsequently producing the

calc-alkaline differentiation trend and andesitic magmatic compositions characteristic of arcs.

Compared to the relative abundance in cumulate xenoliths in volcanic suites, amphibole is

found in lesser modal abundance in arc lavas (e.g. Arculus and Wills, 1980; Costa et al., 2002)

leading to hypotheses of fractionation of amphibole at depth (‘cryptic fractionation’) and the

‘amphibole sponge’, where these deep hydrous cumulates can create a potential water reservoir

(Davidson et al., 2007; Smith, 2014). Coupled with the xenolithic and exposed batholithic

cumulate evidence for deep amphibole fractionation, arc magmas commonly show rare earth

element patterns consistent with amphibole fractionation (increasing La/Yb and decreasing

Dy/Yb with evolution). The lower SiO2 concentration in amphibole compared to basalt allows

basaltic compositions to evolve to andesitic with fractionation of a lower crustal cumulate

assemblage of amphibole, clinopyroxene, plagiclase and olivine, or by mixing of basalt with a

fractionated silicic end member (Foden and Green, 1992; Davidson et al., 2007; Otamendi et al.,

2016; Klaver et al., 2018). This is in accordance with experimental studies showing amphibole
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as a crystallising phase in arc magmas, with stability favoured at higher pressures over garnet

with increased H2O content in the melt (e.g. Foden and Green, 1992; Sisson and Grove, 1993;

Alonso-Perez et al., 2009).

Detailed studies of cumulate xenoliths can highlight the role of amphibole fractionation in

arc magma generation. Amphibole itself can be used as a geothermobarometer, such as the

amphibole-plagioclase geothermometer of Holland and Blundy (1994) and amphibole geother-

mobarometers of Ridolfi and Renzulli (2012) and Putirka (2016). Hydrogen in plagioclase and

plagioclase-melt equilibria can indicate the water content of the melt (Housh and Luhr, 1991;

Putirka, 2008; Lange et al., 2009; Hamada et al., 2013; Waters and Lange, 2015) and many

clinopyroxene thermobarometers are known (e.g. Nimis, 1995, 1999; Nimis and Ulmer, 1998;

Putirka, 2008; Neave and Putirka, 2017). Geothermometric and geohygrometric calculations

applied to the amphibole-bearing xenoliths and cognate silicic host lavas at Akrotiri, Santorini

coupled with geochemistry and petrology indicate a multistage magma genesis for these early

deposits (Mortazavi and Sparks, 2004). Hydrous mantle derived partial melts stalled in the

lower crust and fractionated olivine, spinel and clinopyroxene, and late stage plagioclase and

amphibole to form cooler wet basaltic melts. Low Y, MREE and HREE in the silicic rocks

indicate amphibole fractionation in the lower crust played a major role in their genesis. Silicic

melts ascended and were later remobilised by wet mafic melts in the upper crust, evidenced by

mingling and quench textures in the xenoliths. Mass balance calculations using the gabbroic

xenoliths and lava compositions post-Akrotiri Santorini deposits indicate that crystal fraction-

ation in shallow chambers plays a more dominant role in the genesis of younger magmas at

Santorini (Druitt et al., 1999). The presence of and textural studies of amphibole-rich xeno-

liths at Merapi point to deep (>11 km, potentially 35 km) crystallisation and fractionation

of clinopyroxene, plagioclase and amphibole. These melts then rise to shallower levels and

experience magma mixing, fractionation and crustal assimilation (van der Zwan et al., 2013).

Chemically, the basaltic-andesite compositions erupted at Merapi have been attributed to am-

phibole fractionation (Chadwick et al., 2010). Amphibole fractionation is observed worldwide,

for example the Washington Cascades (Dessimoz et al., 2012), Tibet (Xu et al., 2015), Sunda
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arc (Foden and Green, 1992; Chadwick et al., 2010) Andes (Costa et al., 2002; Otamendi et

al., 2016), Aegean (Elburg et al., 2014; Klaver et al., 2017, 2018), and Japan (Tiepolo et al.,

2012). Xu et al. (2015) studied the intrusive gabbroic rocks of the Gangdese belt, Tibet and

highlighted the role of amphibole fractionation from geochemistry, outcrop and amphibole-rich

xenolith evidence, and additionally that amphibole fractionation may have driven magmatic

compositions towards adakite-like signatures (> 56 wt. % SiO2, high Sr/Y and La/Yb). This

supports previous workers proposing a fractionation dominated adakite petrogenesis over slab

derived partial melts (see review by Castillo, 2012)

The mechanism of amphibole fractionation has been studied using xenoliths, showing that

fractionation can occur as the result of cumulus-melt interaction at depth, not traditional crystal

precipitation and fractionation. Costa et al. (2002) showed that magmatic differentiation trends

observed and amphiboles with high-Cr2O3 concentration found in Andean gabbroic xenoliths are

not a result of early amphibole crystallisation, but later multistage reactions between melt and

olivine, Cr-spinel, pyroxenes or plagioclase, forming substantial quantities of and fractionation

of amphibole. A study of the cumulate xenoliths and lava phenocrysts from Savo volcano,

Solomon Islands (Smith, 2014), show clinopyroxene-hornblende reaction-replacement textures

in the xenoliths and trace element evidence of amphibole fractionation in the lavas, showing

‘cryptic’ decoupling of deep clinopyroxene-amphibole replacement-fractionation in the lower

crustal ‘hot zones’ and production of largely crystal-free andesitic melt. Otamendi et al. (2016)

further demonstrated the formation of amphibole via melt - olivine+plagioclase±orthopyroxene

cumulate reaction in the Famatinian Arc, Andes. The silica content of melts extracted from

these ‘hot zones’ are a function of the amount of amphibole formed, and form a silicic mixing

endmember for production of intermediate arc magmas (Klaver et al., 2018).

Plutonic xenoliths additionally give insight into shallow level differentiation processes. Pres-

sure estimates based on P-H2O ranges that cumulate xenolith plagioclase compositions observed

at St. Vincent (Lesser Antilles) would be in equilibrium with hornblende-hosted melt inclusions

indicate shallow level (170 MPa, <~ 7 km) differentiation (Tollan et al., 2012). A primitive

melt fractionating olivine + Cr spinel ± clinopyroxene produces hydrous Al2O3 and CaO-rich
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melts, which ascend into the lower crust. H2O saturation during ascent leads to precipitation

of plagioclase, resulting in the high An86-96 plagioclase and low Fo70-80 olivine characteristic of

arcs, followed by later precipitation of hornblende ± clinopyroxene after further cooling (Tollan

et al., 2012). Parental magma varies laterally in the Lesser Antilles arc, and is expressed in

plutonic xenoliths from Grenada, 140km south-west of St. Vincent. A higher melt H2O content

(~7 wt.%) is inferred due to later stage plagioclase saturation than observed at St. Vincent, and

small fluctuations in source chemistry and storage conditions impose distinct chemical and min-

eralogical variations within the xenolith suite (Stamper et al., 2014). Cumulates at Grenada

formed deeper than at St. Vincent (200-500 MPa, ~8-20 km), a result of thickened oceanic

lithosphere due to Grenada’s proximity to the South American continental margin (Stamper et

al., 2014).

1.3.2 Remobilisation

The generation of generally aphyric silicic melts in the absence of abundant erupted andesite

has received attention in the recent literature, and a crystal mush extraction model has been

proposed (Bachmann and Bergantz, 2004; Hildreth, 2004) as an alternative to evolution dom-

inated by assimilation and fractional crystallisation. This model proposes that intermediate

composition magmas evolve and crystallise, producing rhyolitic interstitial melts within a form-

ing crystal mush. At around 50% crystallinity the crystal mush-liquid system starts behaving

as a solid framework, impeding convection and turnover (Marsh, 1981, 1988a; Vigneresse et al.,

1996). At these intermediate crystallinities, aphyric rhyolitic melt can escape the interstitial

porosity (such as assisted by a viscosity decrease in the presence of volatiles: e.g. Sisson and

Bacon, 1999; Pistone et al., 2015) and accumulate above the crystal mush, where it can eventu-

ally erupt. This model has been shown to not fit all rhyolitic volcanic suites (e.g. Streck, 2014).

Petrological and geochemical evidence from both lavas and xenoliths from many regions world-

wide have recently highlighted the role of cumulate melting and remobilisation as an important

process in silicic melt generation (Macdonald et al., 2008; Deering et al., 2011; Pamukcu et al.,

2013; Bachmann et al., 2014; Ellis et al., 2014; Sliwinski et al., 2015; Wolff et al., 2015). The
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majority of these studies are focused on large zoned continental ignimbrites, but this process has

also been identified in arc setting from xenolithic and enclave evidence. Cumulate fragments

in the rhyolites from Lipari show resorption of low-temperature phases (biotite and sanidine),

reacted Fo-rich olivine, and strong Sr and Ba enrichment in plagioclase, interpreted as evidence

for mafic recharge into the crystal mush (Forni et al., 2015). Approximately ~60% fractionation

from intermediate compositions leaves a cumulate mush, which is partially resorbed following

mafic injection. Melts then locally enriched in K, Sr, and Ba recrystalise to form Sr-Ba enriched

plagioclase and impose a high K2O concentration on the enclaves (Forni et al., 2015). Similar

cumulates found in the rhyolites from Vulcano lead Forni et al. (2015) to propose cumulate

remobilisation may be common process across the Aeolian Islands. At a larger, arc wide scale,

cumulate remobilisation has been identified in a few studies as influencing the chemical char-

acteristics of arc magmas, in particular the assimilation of the amphibole-rich cumulates in

the lower arc crust (formation of such cumulates is discussed in the previous section). Partial

assimilation and recycling of the plutonic roots of the Tatara-San Pedro complex, Andes, is

proposed to explain the variable isotopic and trace element signatures, and the presence of

cumulate microxenoliths within the lavas that are inconsistent with assimilation of continental

crust (Dungan and Davidson, 2004). Davidson et al. (2007) propose that amphibole-bearing

cumulate recycling may act as a ‘sponge’, allowing large amounts of fluid to be liberated, en-

hancing crustal melting, and metal solute transport enabling the formation of ore deposits.

Other examples of cumulate recycling and remobilisation affecting the arc magmatic evolution

are found in Japan (Tiepolo et al., 2012), and Papua New Guinea (Zhang et al., 2015).

1.3.3 Textural History and Post-Cumulus Processes

Detailed studies of textures and dihedral angles at clinopyroxene-clinopyroxene-plagioclase grain

boundaries can give insights into the late stage evolution and thermal history of cumulates.

Crystallisation of the residual pore material can lie between two distinguishable end-members:

impingement (crystal face growth) and textural equilibrium (minimisation of internal energies)

(Holness et al., 2005a). Recognition of these textures have been used on the cumulates of
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the Rum Layered Intrusion to distinguish between units formed by crystal accumulation, units

intruded by picritic sills, and replenishment events (Holness et al., 2005b, 2007), and with

the mafic enclaves in the Kameni lavas of Santorini to recognise texturally the role of H2O

in replenishment eruption dynamics (Holness et al., 2005b), and high permeability in near

solidified crystal mushes (Holness et al., 2007).

Crystal size distribution (CSD) analysis uses the profiles of density distributions of binned

crystal size populations to infer crystallisation histories, including nucleation and growth rates,

kinetic processes and physical processes such as fractionation, accumulation and mixing (Marsh,

1988b, 1998; Higgins, 2000, 2006). Application of CSD theory to the mafic enclaves in the

Kameni lavas of Santorini elicited the reconstruction of the magmatic system beneath Santorini

during 1925 and 1950, evidence for which is not preserved in the lavas (Martin et al., 2006a).

Filter pressed (interstitial liquid release by pressure) andesitic liquids derived from a crystal

mush replenished the chamber several times, and some of these liquids entrained and recycled

older crystal populations.

Crystallisation of magma produces boundary layers of varying crystallinity. At 25-50 %

crystallinity, the mush stage, residual melt can escape, producing silica-rich melts (Marsh,

1996). At the critical crystallinity of ~50% crystals (Marsh, 1981, 1988a, 1996; Vigneresse et

al., 1996), it locks up and melt is unable to escape. In the absence of remobilisation, this can

continue to crystallise in an essentially closed system. These trapped melt pockets will exhibit

extreme post-cumulus fractional crystallisation and incompatible element enrichment influenc-

ing the mineral compositions (e.g. Bédard, 1994; Bernstein, 2006; Borghini and Rampone, 2007;

Krause et al., 2007). This melt can also re-equilibrate with the cumulus mineral phases, making

reconstruction of original magmatic mineral compositions more difficult (Barnes, 1986; Bédard,

1994). Reconstruction can also be complicated when the system is not a closed system, such

as during remobilisation, or in the presence of an infiltrative fluid flux that can modifying the

cumulate chemistry (Borghini and Rampone, 2007). This highlights the complexity of cumulate

processes and care that must be taken when studying these rocks.
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1.3.4 Plutonic Xenoliths Summary

Plutonic xenoliths preserve detailed information regarding the processes responsible for the

petrogenesis of primitive magmas and subsequent silicic magma generation in arc systems.

The role of high water contents and amphibole fractionation on influencing the distinctive

arc magma compositions has been demonstrated. Geothermobarometry of common cumulus

phases is a powerful tool for placing constraints on magmatic conditions during magma genesis.

Infiltration into and remobilisation of the cumulate pile has recently been demonstrated to

have an important role in the generation of silicic magmas. Textural studies can further help

constrain the processes occurring within the cumulate pile of magmatic systems.

1.4 Crustal xenoliths

Crustal xenoliths are fragments of country rock entrained in magmatic flow. They can com-

prise any crustal lithology, and in this thesis we consider crustal xenoliths to be dominantly

comprising upper crustal sedimentary lithologies. These lithologies are often overprinted with

a thermal metamorphic assemblage which can preserve evidence for many magmatic processes,

discussed in this section.

1.4.1 Carbonate: Skarns and Assimilation

Several notable volcanic systems lie within carbonate substratum, for example Merapi in In-

donesia (e.g. van Bemmelen, 1949; Allard, 1983; Chadwick et al., 2007; Troll et al., 2012),

Vesuvius, Etna and the Alban Hills in Italy (e.g. Scacchi, 1887; Zambonini, 1910; Rittmann,

1933; Clocchiatti et al., 1986; Michaud, 1995; Fulignati et al., 2004; Gaeta et al., 2009; Jolis

et al., 2015), Popocatépetl in Mexico (e.g. Goff et al., 2001), Nisyros in Greece (Spandler et

al., 2012), Lascar in Chile (Matthews et al., 1996) and Yellowstone in the USA (e.g. Werner

and Brantley, 2003). The role of carbonate assimilation in producing pronounced geochemical

trends, adding to the global CO2 budget, and influencing eruptive explosivity via volatile exso-

lution has received a large amount of attention within the past decade, and will be discussed

in this section.
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Metamorphic reactions

Metamorphism of carbonate country rock or a xenolith by magma produces a characteristic

Ca-Fe-Mg-rich calc-silicate metamorphic phase assemblage. These ‘skarn’ rocks can be clas-

sified by metasomatic reactions within the carbonate wall-rock (exoskarn) or rocks formed by

melt-carbonate wall-rock interaction processes such as diffusion and carbonate assimilation (en-

doskarn). Phase assemblages and zoning produced during thermal metamorphism vary based

on the carbonate protolith composition, extent of Mg, Al and alkali diffusion and/or infiltra-

tion from the magma to form mono/multimineralic zones (Thompson, 1959; Korzhiniskii, 1970;

Kerrick, 1977), metamorphic P-T conditions, and XCO2 of the fluid (e.g. Figure 1.4). Examples

of mineral phases found in skarns at magmatic temperatures are shown in Figure 1.5.

Figure 1.4: Fluid composition (CO2 - H2O) influence on reaction temperature (after
Greenwood, 1967).
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Figure 1.5: Calc-silicate phases found in metamorphosed carbonate sediments (after
Grapes, 2010)

H2O is significantly more soluble than CO2 in magma (Burnham, 1979; Holloway and Blank,

1994; Botcharnikov et al., 2005), therefore any additional CO2 release from decarbonation

reactions will not be incorporated into the magma, and instead will increase the XCO2 of the fluid

phase, influencing the phase assemblages formed. For example, the temperature of wollastonite

formation is strongly controlled by the XCO2 during the decarbonation reaction: calcite + quartz

-> wollastonite + carbon dioxide (Figure 1.4). The partial pressure of CO2 formed during the

decarbonation reaction being usually higher than that of the magmatic fluid, coupled with rapid

degassing and volume loss from CO2 release, generally inhibits magmatic H2O infiltration and

retrograde assemblage formation. However, a lag between volatile loss and compaction, or H2O
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infiltration through cracks can form retrograde assemblages in calc-silicate skarns and xenoliths

(Grapes, 2010).

Evidence and Mechanisms for Magma-carbonate Interaction

Xenoliths of thermally metamorphosed carbonate and skarns are commonly found at volcanoes

such as Merapi (e.g. Clocchiatti et al., 1982; Camus et al., 2000; Chadwick et al., 2007) and

Vesuvius (e.g. Scacchi, 1887; Zambonini, 1910; Fulignati et al., 2004; Jolis et al., 2015) giv-

ing clear indication of subvolcanic magma-crust interaction. Studies of volcanic degassing at

Popacatépetl (Goff et al., 2001) volcano have indicated large short-duration bursts of 32000t

day-1 CO2 attributed to assimilation of limestone. Isotopic gas studies at Etna (Chiodini et al.,

2011) have indicated systematic increase of δ13C, possibly a result of carbonate assimilation.

Isotopic gas studies at Merapi have indicated carbonate interaction (Allard, 1983). During the

2006 eruption, Troll et al. (2012) showed an increase in δ13CCO2 from an average baseline -4.1

± 0.3%0, attributed to subducted sediment and mantle wedge derived CO2, to -2.4 ± 0.2%0,

consistent with considerable crustal CO2 input.

Petrographically and geochemically, there is abundant evidence for carbonate interaction in

carbonate-hosted volcanic systems. Elevated δ18O ratios in clinopyroxene from the Alban Hills

with variably enriched in calcium Tschermak components are attributed to crustal interaction

(Dallai et al., 2004; Mollo and Vona, 2014). Ca-Tschermak (‘fassaite’) (CaAlAlSiO6), Ca-

Fe-Tschermak (‘esseneite’) (CaFe3+AlSiO6), and Ca-Ti-Tschermak (CaTiAl2O6) clinopyroxene

are not naturally occurring end-members, and compositions with a significant Ca-Tschermak

component are generally restricted to meteorites (e.g. Mason, 1974; Kimura et al., 2009; Ma

et al., 2009), high pressure metamorphic rocks (e.g. Lovering and White, 1969; Macgregor and

Carter, 1970; Thompson, 1974), and skarns (e.g. Tilley and Harwood, 1931; Tilley and Vincent,

1938; Baker and Black, 1980; Pascal et al., 2005). High pressure clinopyroxenes tend to have

elevated Na content due to increasing jadeite substitution with pressure (e.g. Irving, 1974;

Thompson, 1974; Upton et al., 2001), whilst the concentration of REE-Th-Zr-Y in carbonate-

related clinopyroxenes is elevated with increasing AlIV concentration (Blundy and Dalton, 2000;
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Hill et al., 2000; Dallai et al., 2004; Francis and Minarik, 2008), aiding identification of skarn

vs. high pressure genesis. Ca-Fe3+-Ti-Al clinopyroxene formation is highly dependent on fO2.

CO2 fluxing from carbonate breakdown and the subsequent XCO2 increase elevates the fO2 of

the magma (e.g. CO2fluid + 2FeOmelt = COfluid + Fe2O3melt) (Wenzel et al., 2002; Simakin

et al., 2012; Spandler et al., 2012), increasing the Fe3+ content of precipitated clinopyroxene,

promoting increased AlIV substitution into the tetrahedral site, and additional Ti incorporation

to balance charge imbalances (Carbonin et al., 1991; Mollo and Vona, 2014).

Whole-rock 87Sr/86Sr ratios have been shown at Vesuvius and the Alban Hills to be ineffective

at identifying magma-carbonate interaction, as the 87Sr/86Sr ratios of the carbonate platform are

almost identical to those of the lavas (e.g. Vollmer, 1975; Gilg et al., 2001; Gaeta et al., 2006). In-

situ mineral analyses however, are often more insightful. Isotopic analyses of zoned plagioclase

phenocrysts from lavas and calc-silicate xenoliths at Merapi show notably elevated An mol% and

87Sr/86Sr ratios in the crystal cores, requiring a Ca-rich, low Mg-Fe melt. This is strong evidence

for carbonate interaction, which is masked in whole rock studies (Chadwick et al., 2007). Later

experimental studies (Deegan et al., 2010) reproduced the results of Chadwick et al. (2007),

confirming this interpretation. Carbonate assimilation is further supported by elevated δ18O

values in feldspar and clinopyroxene phenocrysts, attributed to a carbonate component (Troll

et al., 2013; Deegan et al., 2016b). Although calc-silicate xenoliths in the 2010 Merapi eruption

deposits are very minor by volume (« 0.1 vol%; Erdmann et al., 2016), evidence for carbonate

interaction is shown by An94-97 plagioclase cores, whole rock (87Sr/86Sr 0.70571–0.70598) and

anorthite core (6.5‰ δ18O) isotopic enrichment (Borisova et al., 2013; Troll et al., 2013), CO2-

rich groundmass glass (higher than reasonably soluble in the melt), and carbonate grains in the

volcanic ash (Genareau et al., 2015).

Mg-rich skarn xenoliths with very low CaO (<0.3 wt.%) in the Loko-Dovyren intrusion (Rus-

sia) were shown to be the residue of dolomite partial melts (Wenzel et al., 2002). Assimilation

of the released Ca-rich melts and resultant increased aCaO and/or reduced aSiO2 in the melt

changed the phase relations, precipitating CaO-rich (<=1.67 wt % CaO) Fo99-98 cumulus olivine

and CaTs clinopyroxene. High fO2 from metamorphic CO2 liberation caused precipitation of
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very Mg-rich olivine and Cr-poor spinel around the xenoliths. The Hortavær intrusion, Norway

(Barnes et al., 2005), records carbonate interaction through the abundance of Ca-rich minerals,

calcite with a non-magmatic δ13C signature in textural equilibrium with igneous silicates, ab-

sence of olivine and low whole rock Sc contents suggesting liquidus clinopyroxene over olivine

(cf. Tilley, 1952), and strong evolution towards alkaline silica-undersaturated compositions.

Daly (1910) was first to propose that addition of CaO from carbonate dissolution will

promote precipitation of Ca-bearing phases, notably Ca-pyroxene, which fractionation of said

phases could lead to considerable desilication of the melt and alkali enrichment. Early work-

ers proposed this process in Italy to occur at Vesuvius (Rittmann, 1933), and recent work at

the ultra-potassic silica-undersaturated Alban Hills volcanic district, Italy (Trigila, 1995) has

shown validity to this hypothesis. Carbonate xenoliths have been long identified at Alban

Hills (e.g. Fornaseri and Turi, 1969), along with ultramafic xenoliths with high-MgO high-CaO

olivine (Federico et al., 1994), and high fO2 conditions during xenolith crystallisation (Gaeta

et al., 2000), all indicating magma-carbonate interaction. Gaeta et al. (2006) proposed that

clinopyroxene fractionation has a strong influence on the liquid line of descent, supported by

later experimental studies (Iacono-Marziano et al., 2007, 2008; Freda et al., 2008; Mollo et al.,

2010b). Addition of CaO to the melt from carbonate breakdown increases the stability field of

clinopyroxene on the liquidus over olivine, precipitation of which consumes silica and desilicates

the melt more strongly than can be attributed solely to a dilution effect.

Detailed analysis of xenoliths from the Alban Hills and Vesuvius (Gaeta et al., 2009; Di

Rocco et al., 2012; Jolis et al., 2015), and additional experimental work (Mollo et al., 2010b),

have shed light on the mechanism of carbonate reaction. Three types of xenoliths attributed

to carbonate interaction are identified at the Alban Hills (Gaeta et al., 2009; Di Rocco et

al., 2012): ~Fo90 olivine-bearing cumulates precipitated at CaO-bearing rock-magma interface,

Ca-Tschermak clinopyroxene-bearing endoskarns precipitated due to carbonate assimilation,

and exoskarns formed as a result of carbonate wall rock thermo-metamorphism. The cumulates

comprise dominantly clinopyroxene with partially resorbed disequilibrium high-Ca (0.4-0.87 wt.

%) olivine. They are characterized by relatively high CaO content in the interstitial glass, the

25



26 1.4. CRUSTAL XENOLITHS

presence of calcite, and high δ18O values in clinopyroxene and olivine (6.2 to 8.4 ‰ for both).

The skarns contain calcite as inclusions within minerals or as interstitial crystals, CaO enriched

interstitial glass, CaO enriched olivine and Ca-Tschermak clinopyroxene, and show high δ18O

in clinopyroxene and olivine (Di Rocco et al., 2012). Magmatic contamination occurs via the

simultaneous dissolution and assimilation of both solid crustal material (carbonate wall rock

and exoskarn recycling), and CaO-rich partial crustal melts (Gaeta et al., 2009; Di Rocco et

al., 2012; Jolis et al., 2015) (Figure 1.6) in the reaction (accounting for the strong fO2 influence

on phase composition identified by Mollo and Vona (2014)):
calcite

2CaCO3 +
magma

2Al2O3 + TiO2 +
clinopyroxene

CaFeSi2O6 + Mg2Si2O6=
clinopyroxene

CaAlAlSiO6 + CaFeAlSiO6 + CaTiAlSiO6 +
olivine

Mg2SiO4 +
fluid

2CO2

Figure 1.6: Skarn formation beneath the Alban Hills (after Di Rocco et al., 2012).
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Formation of CaO-rich melts and cumulate endoskarns is not specific to alkaline magmas,

and is also observed for example in the Ioko-Dovyren intrusion, Russia. Here, calcite melt mixed

with mafic magmas to form a dunite cumulate with olivine containing up to 1.67 wt% CaO

(Wenzel et al., 2002). Clinopyroxenite xenoliths and associated lavas from the Kanafià Synthem,

Nisyros (Aegean Arc, Greece) show elevated Sr, MREE/HREE and MgO/Fe2O3 compared to

the other eruptive products, and the xenoliths have been interpreted (Spandler et al., 2012)

as having a non-mantle nor cumulate origin, instead resembling the Ca-Tschermak endoskarns

described from the Alban Hills. The xenoliths are in disequilibrium with the host magma

and comprise Ca-Tschermak pyroxene. Desilication is not observed at Nisyros, and excluding

Sr enrichment, carbonate assimilation here has resulted in little noticeable change in the melt

composition, attributed to the more evolved basaltic-andesitic initial composition of the Kanafià

Synthem magma compared to that of the Alban Hills (Spandler et al., 2012). Spandler et al.

(2012) suggest that unrecognised carbonate assimilation may be more common in arc magmas,

with consequences for incorrect modelling of CO2 fluxes in arc systems, in addition to the

increased partitioning of REE and other trace elements into aluminous clinopyroxene (Blundy

and Dalton, 2000; Hill et al., 2000; Dallai et al., 2004; Francis and Minarik, 2008) leading to

erroneous interpretations of trace element ratios in arc magma genesis. Carbonate xenoliths

and skarns have been identified in the deposits of Santorini (Druitt et al., 1999; Druitt, 2014),

and crustal assimilation has been demonstrated isotopically (Druitt et al., 1999; Zellmer et al.,

2000, 2005; Elburg et al., 2014), however any influence of carbonate assimilation specifically

on the magmatic system has not yet been fully quantified. Calc-silicate mineral assemblages

in xenoliths found in the historic lavas of Santorini have been attributed to considerable fO2

increase from thermal breakdown of carbonates, high enough to stabilise anhydrite (Nicholls,

1971b).

Skarn xenoliths have been used in a few studies to reconstruct the skarn environment and

metasomatic fluid composition beneath volcanoes. Vesuvius skarn xenoliths are shown to pre-

serve the full prograde metamorphic to magmatic endoskarn transitional processes and reactions
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occurring during several eruptions, including evidence for multiple types of immiscible metaso-

matic fluids (Del Moro et al., 2001; Gilg et al., 2001; Fulignati et al., 2000, 2001, 2004, 2005). A

similar approach has been applied at Lascar volcano, Andes, to reconstruct the skarn environ-

ment and additionally isotopically identify the basement protolith formation from the regional

geology (Matthews et al., 1996).

CO2 Liberation and Implications

The generalised carbonate breakdown reaction (CaCO3→CaO + CO2) suggests that carbonate

breakdown adds to the volatile budget of the magmatic system, and due to the low solubility

of CO2 in silicate melts (Holloway and Blank, 1994; Botcharnikov et al., 2005), will often form

a fluid phase. CO2 is present as a magmatic fluid, and determining the source of CO2 released

is important. Volcanoes emitting crustal CO2 can be identified by elevated CO2/S, δ13C, and

3He/4He in emitted gases (Troll et al., 2012, 2013; Lee et al., 2013; Aiuppa et al., 2017; Mason

et al., 2017), and mineral chemical evidence such as elevated oxygen isotopes in mineral phases

discussed previously (Dallai et al., 2004; Borisova et al., 2013). Carbonate assimilation and

decarbonation reactions have been shown experimentally to occur very rapidly, in the order of

hours to days (Deegan et al., 2010; Jolis et al., 2013), indicating that the effects of carbonate

interaction may have consequences for eruption dynamics and triggering. Deegan et al. (2010),

Troll et al. (2012) and Carr et al. (2018) suggest that the 2006 Yogyakarta earthquake may

have fractured the crustal limestone beneath Merapi, increasing the surface area in contact

with magma and thus promoting decarbonation, enhancing the intensity of the 2006 eruptive

activity, and/or CO2 release may have lubricated fault planes (e.g. Miller et al., 2004), triggering

the earthquake in a positive feedback loop. CO2 liberation is also suggested to have influenced

the paroxysmal 2010 eruption (Borisova et al., 2013), however the main trigger is attributed

to influx of a deeper, hotter, more volatile-rich magma (Surono et al., 2012; Costa et al.,

2013; Jousset et al., 2013; Preece et al., 2014). Estimates of crustal CO2 addition at Vesuvius

suggest that crustal CO2 addition outweighs magmatic CO2 by greater than factor of 7 in the

Pompeii and Pollena eruptions, and may have been an eruption trigger (Jolis et al., 2015). Some
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examples of explosive mafic eruptions have additionally been attributed to decarbonation. For

example, the Pozzolane Rosse eruption at the Alban Hills is attributed to a high fluid XCO2

and depressurisation driving leucite crystallisation, which increased the magmatic viscosity and

volatile pressurisation, ultimately leading to an explosive eruption (Freda et al., 2011).

The rate of breakdown and influence on the outgassing and/or overpressuring of the sys-

tem caused by carbonate assimilation is dependent on the liberated CO2 being permitted to

migrate from the reaction site (Barnes et al., 2005, 2009; Mollo et al., 2012, 2013; Heap et

al., 2013; Blythe et al., 2015). Inhibition of CO2 migration in a closed system decarbonation

reaction favours the reactants, ultimately causing the decarbonation reaction to stop at any

pressure/temperature (Mollo et al., 2013). Thermal fracturing however is considered to drive

initially closed systems to open system within time, allowing decarbonation to proceed and

chemically weaken the host rock (for example calcite to weaker portlandite in metasomatic

skarns), promoting volcanic edifice instability (Mollo et al., 2012, 2013). Melt viscosity has also

been experimentally shown to exert a control on exsolved CO2 migration, therefore influencing

assimilation rates and eruption dynamics. High viscosity melt experiments (simulating Merapi-

type melts) are shown to inhibit CO2 migration and cause localised volatile over-pressurisation

(explosivity) compared to lower viscosity runs, which allow CO2 to migrate freely, allowing

decarbonation and assimilation reactions to occur unhindered which may drive sustained CO2

driven eruptions (Blythe et al., 2015).

Any crustal CO2 liberated has implications for CO2 cycling, which is often generally con-

sidered to be derived from subducted sediment source contamination and mantle sources. This

additional reservoir of CO2 has received attention recently as it may dwarf the CO2 released

from source contamination (Aiuppa et al., 2017; Mason et al., 2017). This has implications for

the present day CO2 budget, and also past climatic periods, where increased temperatures have

been attributed to increased marine carbonate production, increased volcanism, and therefore

increased crustal CO2 release (Carter and Dasgupta, 2016, 2018; Mason et al., 2017; Chu et al.,

2019).
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1.4.2 Non-Carbonate Crustal Assimilation

Assimilation of crustal material and anatectic melts is a common process in arc volcanic systems.

Isotopic studies and modelling (e.g. DePaolo, 1981) of the Aeolian arc volcanic rocks has shown

that crustal assimilation occurs across the arc to varying extents (Ellam and Harmon, 1990;

Peccerillo and Wu, 1992; Clocchiatti et al., 1994; Del Moro et al., 1998; Calanchi et al., 2002;

Santo et al., 2004; Peccerillo et al., 2013). Positive 87Sr/86Sr and δ18O‰ correlations with SiO2

are shown for many islands (Ellam and Harmon, 1990), with contamination having increased

δ18O values as high as +8.5, but having a lesser effect on Sr ratios. Decreasing 87Sr/86Sr with

SiO2 at Alicudi is interpreted as contamination occurring most readily in the deeper hotter

basaltic systems (Peccerillo and Wu, 1992; Peccerillo et al., 2004), and has been less clearly

identified at Filicudi (Santo and Peccerillo, 2008; Lucchi et al., 2013). Crustal assimilation

is also identified isotopically through the South Aegean volcanic arc (Francalanci et al., 1995;

Druitt et al., 1999; Buettner et al., 2005), Sunda arc (Gasparon and Varne, 1998; Dempsey, 2013;

Handley et al., 2014; Jeffery et al., 2013) and in many other worldwide arcs (e.g. Hildreth and

Moorbath, 1988; Thirlwall et al., 1996). These studies commonly use the isotopic compositions

of crustal xenoliths as model contaminants, or in fewer cases an average crustal composition

(e.g. Francalanci et al., 1995).

Anatexis Recorded in Crustal Xenoliths

High-silica xenoliths are found across the Aeolian arc in the mafic lavas. These xenoliths are

interpreted as restites from high degrees of partial melting of the Calabro-Peloritano metamor-

phic basement on the basis of (1) consisting almost exclusively of quartz, (2) containing glassy

intergranular films, (3) the scarcity of quartzite lithologies in the basement, and (4) having

incompatible trace elements an order of magnitude lower than the basement lithologies (Hon-

norez and Keller, 1968; Peccerillo and Wu, 1992; Renzulli et al., 2001; Vaggelli et al., 2003;

Zanon et al., 2003; Bonelli et al., 2004; Frezzotti et al., 2004; Zanon and Nikogosian, 2004).

Potassic melt inclusions within these xenoliths (Frezzotti et al., 2004; Zanon and Nikogosian,
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2004) are considered as crustal partial melts and potential contaminant liquids that may influ-

ence the potassic character of the Aeolian Arc. Incompatible trace element concentrations in

these inclusions however preclude contamination by these liquids as the cause of calc-alkaline

to potassic magmatism observed across the arc. Quartzite xenoliths are also found at Etna,

indicating assimilation of crustal partial melts that may influence the magmatic composition

(Mollo et al., 2017).

The island of Lipari hosts unusual cordierite-bearing lavas, comprising up to 20-30%metapelitic

and gabbroic xenoliths (Bergeat, 1910; Honnorez and Keller, 1968; Barker, 1987; Di Martino

et al., 2011). Study of the lavas and metapelitic xenoliths (Di Martino et al., 2011) indicate

that lower crustal dehydration-melting of the metasedimentary country rock results in contam-

ination by anatectic melt assimilation, and formation of cordierite by the following peritectic

reactions:

(1) Biotite + Aluminosilicate + Quartz + Albite = Garnet + Cordierite + K-feldspar + Melt

(2) Biotite + Garnet + Quartz = Orthopyroxene + Cordierite + K-feldspar + Melt

In addition to the high-silica quartz xenoliths and cordierite-bearing lavas, the presence of

buchites (partial to almost exclusively glass, with high-temperature low-pressure phase assem-

blages) (Salvioli-Mariani et al., 2005; Del Moro et al., 2011) and incipient melting textures in

high grade cordierite-anorthoclase hornfels (Renzulli et al., 2003; Harlov et al., 2006) at Strom-

boli show further evidence that crustal melting and assimilation is prevalent in the Aeolian arc.

Assimilation of crustal melts has also be demonstrated worldwide at arcs (e.g. Beard et al.,

1993; Ducea and Saleeby, 1998), and may be difficult to recognise due to their melting and

assimilation dynamics (Burchardt et al., 2016).

Crustal Structure, Barometry and Magmatic Ascent

Fluid inclusion studies of xenoliths (e.g. Roedder, 1984; Hansteen and Klügel, 2008) have been

used successfully to infer magma ponding depths and ascent paths from the mantle, and have

also been used in many other studies (e.g. Hildner et al., 2012; Levresse et al., 2016) to comple-

ment mineral equilibration thermobarometry (e.g. Putirka, 2008). The density of the trapped
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fluid directly relates to the trapping (and/or re-equilibration) temperature and pressure, fol-

lowing an isochore during ascent and decompression, assuming no volumetric re-equilibration

(Bodnar, 2003) occurs. An estimate of the minimum trapping pressure can be derived if an

independent estimate of temperature (for example from melt inclusion rehomogenisation or

mineral equilibration thermobarometry) is provided. Re-equilibration and resetting of fluid in-

clusion densities can be incomplete within a sample, varying with residence time, mineralogy,

inclusion size, and fluid composition (Bodnar, 2003), potentially providing evidence for several

short-lived ponding depths (e.g. Hansteen et al., 1998; Zanon et al., 2003). Fluid inclusion

studies from quartz-rich xenoliths across the Aeolian Islands (Clocchiatti et al., 1994; Frezzotti

et al., 2003; Vaggelli et al., 2003; Zanon et al., 2003; Bonelli et al., 2004; Zanon and Nikogosian,

2004; Di Martino et al., 2010) consistently show a bimodal density distribution, showing a fairly

high ascent speed between two distinct magma ponding regions at ~25-12km and ~6-1km, where

anatexis and xenolith formation mainly occurs in the deeper reservoirs, and magmatic evolution

mainly occurring in the shallower reservoirs. Generation of lower crustal felsic anatectic melts

is interpreted at Lipari to create density barriers which inhibit ascent of mafic magmas, and

additionally generate the unusual cordierite bearing lavas (Di Martino et al., 2010, 2010, 2011).

Although this thesis defines crustal xenoliths as sedimentary upper crustal lithologies, the

crust contains almost all lithologies, therefore crustal xenoliths can include for example older ig-

neous material. In this broader definition, crustal xenoliths have been used to place constraints

on crustal growth processes and the composition of the lower crust at other arcs worldwide.

Hornblende dominant crustal xenoliths from the northern Andes have metamorphic assem-

blages characteristic of lower crustal origin, with an oceanic basalt character, and lack chemical

characteristics indicative of cumulate or restite origin, indicating crustal growth by subduction-

accretion and dehydration, potentially melting, of this material to form more refractory rocks

(Hickey-Vargas et al., 1995; Weber et al., 2002). Mafic and ultramafic xenoliths from the Taupo

Volcanic Zone, New Zealand, show mantle derived magmatic underplating of the lower crust,

and a lower crust formed of cumulate and restite lithologies (Price et al., 2015). As discussed

in the previous plutonic xenolith section, xenoliths collected from across the Lesser Antilles arc
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exhibit along arc variations (e.g. Arculus and Wills, 1980; Tollan et al., 2012; Stamper et al.,

2014; Cooper et al., 2016; Melekhova et al., 2017; Camejo-Harry et al., 2018), and have helped

compliment geophysical studies reconstruct the along arc crustal structure (Melekhova et al.,

2019). These studies have also helped reconstruct lateral variations in magmatic differentiation,

with implications worldwide for deep amphibole fraction, which is discussed in the next section.

Crustal Xenoliths Summary

Studies of crustal xenoliths have been shown to provide a powerful tool for understanding

magma-crust interactions and contamination. The role of carbonate assimilation in influencing

shallow level magmatic differentiation and eruption dynamics has been demonstrated at sev-

eral volcanic systems. Mineral equilibria and fluid inclusion geothermobarometry has placed

constraints on the P-T conditions these interactions have occurred. Isotopic studies have demon-

strated that crustal contamination is a widespread process occurring in arc systems and is not

always simple to identify, and additionally distinguish from source contamination. Crustal

anatexis is shown to be a process for magma contamination in some arc volcanoes.

1.5 Rationale and Thesis Outline

This thesis investigates the petrogenesis of xenoliths at volcanic arcs, and the implications

these petrogenetic processes have on the host magmatic systems. This work focuses on both

crustal xenoliths, their metamorphic history and assimilation into the host magma, and plutonic

xenoliths, their intensive variables and their role in magma genesis. Crustal xenoliths are

investigated using Merapi volcano in Indonesia as the case study system due to ubiquitous

calc-silicate crustal xenoliths in the deposits, and the hazard it poses to the neighbouring city

of Yogyakarta. Plutonic xenoliths are investigated using Santorini volcano in Greece as the

case study system, due to the excellent outcrop exposure, well constrained stratigraphy, and

abundant plutonic xenoliths spanning the stratigraphy.

Aim: Use crustal and cognate plutonic xenoliths to place constraints and develop models for

the complex magmatic and intra-crustal processes occurring within subduction zones, utilising
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case studies from the Aegean and Sunda volcanic arcs.

Santorini - Magmatic differentiation and cumulus processes

1) Determine P-T-X-fO2 conditions of magmatic cumulate formation, and utilise these to

place constraints on the plumbing system depths, and the role of cumulate formation and

magma differentiation processes during the evolution of Santorini magmas.

2) Assess the role of cumulus and post-cumulus processes recorded in the plutonic xenoliths

using trace element geochemistry.

3) Combine major element, trace element and oxygen isotope data to develop a model for

the evolution of the plumbing system and magma differentiation at Santorini.

Merapi – Shallow Crustal Assimilation Processes

4) Determine the reactions occurring within the Merapi calc-silicate xenoliths and evaluate

their relevance for volatile release, element transfer, and compositional effects on the host

magma.

5) Determine P-T-X-fO2 conditions of xenolith formation and evaluate this in context with

the host magmatic system.

6) Develop a model of magma-crust interaction at Merapi and implications for these processes

occuring at other carbonate-hosted volcanoes.

These aims and objectives are fulfilled in the thesis chapters outlined below:

Chapter 1 provides the general introduction to the thesis, background, literature review and

the rationale.

Chapter 2 presents a detailed petrological study of the plutonic xenoliths found at San-

torini. This chapter aims to determine the pressure and temperature conditions of cumulate

processes occurring, and use these to establish magma differentiation depths. The second aim

is to evaluate the cumulate, post-cumulus and melt separation processes during the magmatic

differentiation. This chapter is in preparation for submission for publication.
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Chapter 3 presents a detailed petrological study of the calc-silicate xenoliths collected in

the 1994 to 2010 deposits of Merapi. This chapter aims to constrain the intensive variables of

xenolith petrogenesis, and use these in turn to constrain these parameters for the magmatic

system. The chapter then aims to evaluate the effects of carbonate assimilation at Merapi on

the magmatic system. This chapter has been submitted for publication and is under review at

the Journal of Petrology.

Chapter 4 presents a detailed petrological and oxygen isotope study of the different textural

types of calcite present in the Merapi calc-silicate xenoliths discussed in Chapter 3. This chapter

aims to identify the processes occurring during metamorphism of wall-rock limestone into calc-

silicate assemblages, and quantify the CO2 release into the atmosphere from decarbonation

reactions. This chapter has been published in Nature Scientific Reports: Whitley, S., Gertisser,

R., Halama, R., Preece, K., Troll, V.R. and Deegan, F.M., 2019. Crustal CO 2 contribution

to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas. Scientific

Reports, 9(1), p.8803. https://doi.org/10.1038/s41598-019-44929-2

Chapter 5 is a synthesis and discussion of the work presented in this thesis and places it in

a wider context. This chapter concludes with the main conclusions of the thesis.

The thesis concludes with appendices and all geochemical data collected as an online sup-

plement to the thesis.
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Chapter 2

Plutonic xenoliths from
Santorini, Greece: Magmatic

differentiation and post-cumulus
processes

This chapter is in preparation for submission and publication, in collaboration with the project

supervisors Ralf Gertisser and Ralf Halama, Thor Hansteen and Matthias Frische (GEOMAR)

and Torsten Venneman (University of Lausanne). This chapter was written by myself with input

from Gertisser and Halama. Hansteen and Frische provided analytical time and assistance with

LA-ICP-MS analysis, and Venneman provided oxygen isotope analyses.
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2.1 Introduction

Arc magmas typically show distinct geochemical and petrographical evidence indicating a com-

plex petrogenesis. The magmas represent a summation of the interplay of magma generation

processes, magmatic differentiation during ascent and crustal assimilation. Much of the pub-

lished work about the petrogenesis of arc magmas focuses on the extrusive rocks, and pays

relatively little attention to plutonic xenoliths, although these are found in the deposits of

many volcanoes (e.g. Arculus and Wills, 1980; Beard, 1986; Druitt et al., 1999; Stamper et

al., 2014; Cooper et al., 2016; Klaver et al., 2017; Yanagida et al., 2018). Eruptive prod-

ucts generally preserve and place constraints on pre-eruptive magmatic conditions and record

geochemical and isotopic evidence of magma source composition and differentiation, whilst plu-

tonic cumulate xenoliths can additionally provide a direct insight into the early differentiation

history and individual deep and shallow level magmatic processes that collectively determine

the distinct geochemical and petrological trends found in subduction settings. These plutonic

xenolith studies have focused on reactive melt flow in the lower crust and its role in amphibole

fractionation (Costa et al., 2002; Cooper et al., 2016; Klaver et al., 2017), cumulate oxygen

isotopic equilibration conditions (Tollan et al., 2012), polybaric differentiation of cumulus and

phenocryst phases (Stamper et al., 2014; Klaver et al., 2017), and magma differentiation trends

(Druitt et al., 1999; Stamper et al., 2014).

This study focuses on the plutonic xenoliths found at Santorini volcano in the South Aegean

Volcanic Arc (Greece) to elucidate the role of crystal mush and cumulus processes on the mag-

matic evolution of Santorini, which is difficult to constrain using volcanic deposits alone. San-

torini is notable for several significant explosive eruptions, and a well-constrained stratigraphy

to study these eruptions (Druitt et al., 1999). Many deposits contain abundant plutonic xeno-

liths. These range from microcumulate fragments at thin section scale to fist-sized nodules.

Santorini is characterised by early (pre-530 ka) hydrous amphibole bearing magma, and mod-

ern (post-530 ka) magmatic differentiation dominated by an almost entirely anhydrous phase

assemblage and trace element geochemistry (Nicholls, 1971c; Huijsmans et al., 1988; Dietrich et
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al., 1998; Druitt et al., 1999, 2019; Elburg et al., 2014), in contrast to many arc volcanoes that

show phenocryst or geochemical evidence for pervasive amphibole fractionation during their

petrogenesis (e.g. Davidson et al., 2007). Recent petrological work at Santorini has focused on

constraining pre-eruptive magmatic conditions derived from experimental petrology (Cottrell

et al., 1999; Cadoux et al., 2014; Andújar et al., 2015, 2016), volatile solubility (Druitt et al.,

2016) and diffusion modelling (Druitt et al., 2012; Fabbro et al., 2018; Flaherty et al., 2018) of

the eruptive products, which forms the framework for this study. Previous studies of the plu-

tonic xenoliths by Druitt et al. (1999) and Michaud et al. (2000) have estimated temperatures

of cumulus phase formation and later re-equilibration temperatures, and highlighted the role of

shallow crustal magma differentiation in andesite/dacite genesis. In this study we use mineral

chemistry, in situ LA-ICP-MS trace element data for minerals, melt inclusions and intersti-

tial glasses coupled with oxygen isotopes of mineral separates to place constraints on pressure

and temperature conditions of plutonic xenolith formation, post-cumulus processes, the plumb-

ing system at Santorini, and magmatic differentiation processes at Santorini. The plutonic

xenoliths record crystallisation, and therefore magma differentiation at Santorini, dominantly

at shallow crustal depths (< 350 MPa). Oxygen isotopes show that only limited amounts of

crystal assimilation occurred during magma genesis and differentiation. LA-ICP-MS analyses

show that while the major element chemistry of the xenolith minerals are generally comparable

to the volcanic phenocrysts, strong incompatible element enrichment in some samples record

crystallisation or equilibration with trapped intercumulus melts. This produces volumetrically

small uneruptable melts with up to 82 wt% SiO2, and mineral phases (K-feldspar, quartz) that

are rare to absent in the volcanic record. These melts may mix with the magmatic system

during cumulate remobilisation periods, evidenced by mush fragments in the deposits of some

eruptions.

2.2 Geological Setting

Santorini is located in the South Aegean Volcanic Arc approximately 120 km north of Crete. The

South Aegean Volcanic Arc is situated in the eastern Mediterranean Sea, and is a result of the
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50-60 mm y-1 (Jackson, 1994) subduction of the African plate beneath the Aegean Anatolian

microplate, initiated ~13-16 Ma ago (Le Pichon and Angelier, 1979; Angelier et al., 1982;

Mercier et al., 1989; Papazachos, 2019; Francalanci and Zellmer, 2019; Vougioukalakis et al.,

2019). Volcanism commenced in the late Pliocene (Pe-Piper et al., 1983).

Santorini consists of the three islands Thera, Therasia and Aspronisi, which mark the out-

line of a flooded caldera. The post-caldera Palaea Kameni and Nea Kameni islands are situ-

ated within this caldera (Figure 2.1). Pre-volcanic Triassic to Palaeocene basement outcrops

at Athinios and Mount Profitis Ilias on Thera, comprising blueschist to amphibolite facies

metapelites and crystalline limestones (Davis and Bastas, 1978; Skarpelis and Liati, 1990; Kil-

ias et al., 1998; Druitt et al., 1999). Volcanic activity is strongly influenced by two NE-SW

trending tectonic lineaments (the Kameni and Columbos lines) (Druitt et al., 1999; Klaver et

al., 2016; Nomikou et al., 2019) and the earliest preserved volcanic activity commenced ~650 ka

ago at the Akrotiri peninsula, producing amphibole-bearing silicic tuffs and lava flows (Dietrich

et al., 1998; Davis et al., 1998; Druitt et al., 1999; Mortazavi and Sparks, 2004). This is followed

by eruption of magmas bearing dominantly anhydrous phases, starting with the Peristeria vol-

cano (530-430 ka) (Figure 2.1). Twelve major plinian eruptions have occurred since ~360 ka,

occurring every ~20-40 ky, forming the Thera Pyroclastic Formation (Druitt et al., 1989, 1999).

Two cycles of mafic to silicic magma evolution have been identified in the post 360 ka deposits,

each ending with large magnitude caldera forming eruptions: the 172 ka Lower Pumice 2 and

3.6 ka Minoan eruptions (e.g. Druitt et al., 1999; Gertisser et al., 2009; Druitt, 2014). Another

caldera existed at around 67 ka and an additional caldera collapse occurred at 22 ka (Druitt

et al., 1999).Interplinian activity included strombolian and subplinian explosive activity, lava

flows and extrusive edifice construction (e.g. Barton and Huijsmans, 1986; Huijsmans and Bar-

ton, 1989; Edwards, 1994; Druitt et al., 1999; Vespa et al., 2006; Vaggelli et al., 2009; Fabbro

et al., 2013; Karátson et al., 2018). Chemically, the eruptive products of Santorini range from

low- to high-K basalt to rhyodacite, transitional tholeiitic to calc-alkaline (Huijsmans et al.,

1988; Druitt et al., 1999). Sr-Nd-Pb isotopic and trace element studies indicate varying (~10%)
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contamination of Santorini magma with upper Aegean continental crust during fractional crys-

tallisation, with at least some of the contamination having occurred in upper crustal reservoirs

(Druitt et al., 1999 and references therein). Phase equilibria (Cadoux et al., 2014; Andújar

et al., 2015, 2016) and fluid saturation studies (Druitt et al., 2016) have shown differentiation

of parental basalts (50 wt% SiO2, 7 wt% MgO, 1-4 wt% H2O) to andesite at ~400 MPa (~16

km depth), and to silicic compositions around 200-400 MPa (~8-16 km), before storage and

eruption from reservoirs at shallow depths of a few km. Xenoliths have been long identified

throughout the Santorini volcanic succession, including basement fragments, plutonic cumu-

lates, and calc-silicate assemblages metamorphosed by their host magma (e.g. Fouqué, 1879;

Lacroix, 1900; Nicholls, 1971b; Barton and Huijsmans, 1986; Druitt et al., 1999; Druitt, 2014).

Amphibole-bearing mafic inclusions from the early Akrotiri centre have been covered in Mor-

tazavi and Sparks (2004), highlighting different magmatic conditions during the petrogenesis of

early Santorini magmas.
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Figure 2.1: Stratigraphy and geological map of Santorini (after Druitt et al., 2016).
Red eruptions in the stratigraphic column are dominantly silicic eruptions, and blue are
intermediate in composition. Black boxes are interplinian deposits and brown boxes are
prominent lava or tuff successions in the interplinian deposits (Vespa et al., 2006; Druitt
et al., 2016). See Table 2.2 for details of eruptions sampled.
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2.3 Methods

2.3.1 Analytical Methods

Electron Microprobe

Major element concentrations in minerals, and major element, chlorine and sulphur concen-

trations in interstitial glasses and melt inclusions were determined with a JXA 8900 electron

microprobe at the University of Kiel, Germany. Silicate and oxide minerals were analysed

with a 2 µm micrometre beam diameter, 15 kV accelerating voltage and 15 nA beam current.

Glasses were measured with a 5 micrometre defocused beam at 15 kV accelerating voltage and

a 12 nA beam current. Na was measured first to minimise Na-loss. Measurement times were

15 s peak and 7 s background, excluding S, Cl, and P, which were measured for 60 s peak

and 30 s background. Natural mineral standards (topaz, rutile, baryte, tugtupite, fayalite,

forsterite, mica, anorthite, wollastonite, apatite, tephroit) were used for calibration and Smith-

sonian basaltic glass A-99, forsterite 83 (USNM 2566), plagioclase (USNM 115900), garnet RV2

(USNM 87375), and obsidian ASTIMEX Block SPGLASS7 were used as secondary within-run

standards to assess accuracy and precision. Relative accuracy and precision are smaller than

5% for major elements and 10% for minor elements. A CITZAF matrix correction was applied.

All Mg# values are calculated assuming all Fe as Fe2+ using Mg# = Mg
Mg+F etotal

. Fe3+ was

estimated for clinopyroxene from stoichiometry using Droop (1987). Components for clinopy-

roxene thermobarometry were calculated following Putirka et al. (1996).

LA-ICP-MS

Trace elements in minerals and glass were analysed at the GEOMAR Helmholtz Centre for

Ocean Research Kiel using a Nu Instruments ATTOM HR-ICP-MS connected to a Coherent

Lambda Physics GEOLAS pro 193 nm excimer laser ablation system. Measurements were made

using a 5 mJ/cm2 energy density for 300 pulses at a laser repetition rate of 10 Hz with a 44 µm

spot diameter for silicate minerals and a 24 µm spot diameter for glasses, and a 50s flush time.

Measurements were made on the same polished sections used for EMPA to provide a robust
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internal standard using the sum of 29Si and 43Ca for normalisation. Calibration was undertaken

on a NIST 610 reference glass and repeat measurements of basaltic glasses USGS BCR-2G and

USGS BHVO-2G as secondary standards were carried out throughout each analytical session

to check accuracy and precision. Measurements were made in blocks of 8 to minimise the

effects of drift. Full details of the instrument setup is provided in Fietzke and Frische (2016).

Measurement errors are shown in Table 2.1

Eu
Eu∗ is calculated as Eu

Eu∗ = EuN√
SmN ∗Gdn

(Taylor and McLennan, 1985)

Whole-rock Geochemistry

Samples were powdered at Keele University after washing and removal of surface altered mate-

rial, using a jaw crusher followed by an agate mill. Whole rock analyses were carried out for 8

samples at Acmelabs, Canada by XRF. Due to sample size constraints, whole-rock compositions

for an additional 8 samples were determined by point counting (1000-2000 points). Averaged

mineral and glass chemistry was used with the phase volumes counted, corrected for varying

mineral and glass densities using mineral densities from Deer et al. (1997). The bulk composi-

tions were obtained using the Rock-Maker spreadsheet (Büttner, 2012), which generates bulk

whole rock compositions from phase volumes and densities. All calculated compositions are

presented in the appendix online spreadsheet.
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Table 2.1: Relative standard deviation (RSE) and percentage offset from reference
standard values for the LA-ICP-MS sessions.

Isotope
Standard
(BCR-2G) Average SD RSD% Offset%

Standard
(BHVO-2G) Average SD RSD% Offset%

n=19
7Li 9.00 10.17 0.90 8.81 13.02 4.80 4.66 0.61 13.18 -2.99
45Sc 33.00 34.82 0.58 1.67 5.53 32.00 32.36 0.93 2.89 1.13
49Ti 13500.00 14099.81 235.97 1.67 4.44 16300.00 16658.00 385.41 2.31 2.20
51V 416.00 468.16 5.79 1.24 12.54 317.00 347.10 4.85 1.40 9.49
53Cr 18.00 16.63 1.29 7.75 -7.61 280.00 312.08 7.91 2.53 11.46
55Mn 1520.00 1702.13 24.66 1.45 11.98 1317.83 1436.08 18.98 1.32 8.97
59Co 37.00 41.18 0.45 1.10 11.30 45.00 49.28 0.82 1.67 9.50
61Ni 13.00 24.06 7.17 29.78 85.11 119.00 142.79 19.97 13.98 19.99
65Cu 21.00 19.11 1.53 7.99 -8.98 127.00 141.57 3.45 2.44 11.47
66Zn 127.00 174.62 9.27 5.31 37.49 103.00 135.52 8.22 6.07 31.58
85Rb 46.90 52.87 1.07 2.02 12.74 9.11 10.15 0.41 4.07 11.46
86Sr 340.00 360.21 8.25 2.29 5.94 396.00 411.12 10.52 2.56 3.82
88Sr 340.00 358.76 5.82 1.62 5.52 396.00 408.41 8.22 2.01 3.13
89Y 37.00 34.95 0.93 2.67 -5.55 26.00 24.83 0.78 3.16 -4.48
90Zr 184.00 188.27 3.51 1.86 2.32 172.00 168.37 4.13 2.45 -2.11
93Nb 12.60 12.50 0.36 2.86 -0.76 18.10 18.09 0.46 2.53 -0.07
133Cs 1.10 1.26 0.13 10.63 14.26 0.10 0.13 0.05 40.23 33.94
137Ba 677.00 721.73 18.76 2.60 6.61 131.00 137.41 5.25 3.82 4.90
139La 24.90 26.12 0.52 1.99 4.91 15.25 15.47 0.66 4.28 1.43
140Ce 52.90 54.79 0.95 1.73 3.58 37.84 37.90 1.11 2.93 0.15
141Pr 6.70 6.77 0.20 2.94 1.08 5.35 5.25 0.17 3.30 -1.79
146Nd 28.70 29.13 1.04 3.58 1.50 24.39 24.43 1.04 4.25 0.16
147Sm 6.58 6.84 0.42 6.21 3.91 6.03 6.33 0.50 7.85 4.91
153Eu 1.96 2.02 0.13 6.30 3.23 2.07 2.07 0.12 5.79 0.09
157Gd 6.75 6.88 0.39 5.67 1.98 6.23 6.32 0.38 6.06 1.42
159Tb 1.07 1.03 0.07 6.76 -4.03 0.92 0.90 0.06 7.13 -2.44
163Dy 6.41 6.59 0.49 7.48 2.76 5.30 5.47 0.39 7.11 3.24
165Ho 1.28 1.31 0.09 6.83 2.10 0.98 0.97 0.10 10.18 -0.74
166Er 3.88 3.73 0.25 6.63 -3.99 2.55 2.55 0.20 7.71 0.20
169Tm 0.54 0.51 0.06 11.24 -4.82 0.33 0.32 0.05 14.64 -2.02
172Yb 3.38 3.52 0.29 8.21 4.10 1.96 2.09 0.29 14.00 6.73
175Lu 0.50 0.51 0.05 9.72 2.09 0.27 0.28 0.03 12.21 2.07
178Hf 4.90 5.15 0.32 6.20 5.08 4.36 4.54 0.27 6.01 4.12
181Ta 0.74 0.71 0.08 11.30 -3.75 1.14 1.10 0.08 7.05 -3.74
208Pb 11.00 11.73 0.39 3.34 6.64 1.60 2.02 0.15 7.39 26.18
232Th 5.70 6.17 0.14 2.27 8.23 1.22 1.23 0.05 3.93 1.19
238U 1.69 1.84 0.08 4.56 8.85 0.40 0.45 0.03 5.93 10.80
Average 5.58 6.74 6.66 5.55

Mineral Oxygen Isotopes

Minerals were picked from sieved grain size fractions (125 and 63 micron) of powered rocks

at Keele University, using magnetic separation to remove minerals with magnetite inclusions.

Minerals were then washed in acid. Oxygen isotope analyses were carried out by the Isotope

Laboratory of the University of Lausanne using a CO2-laser extraction line and fluorination

linked to a MAT 253 and Nu-Instruments Perspective mass spectrometer (detailed in Lacroix

and Vennemann, 2015). The measurement uncertainty on the Ls-1 quartz standard (accepted

value of 18.1 ‰) is 0.1-0.16 ‰.

2.3.2 Post Entrapment Crystallisation (PEC)

Melt inclusion compositions can be modified by post entrapment processes such as diffusive

equilibration and crystallisation on the melt-crystal interface (e.g. Danyushevsky et al., 2000).
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Melt inclusion major element data have been corrected for post entrapment crystallisation using

the methodologies outlined in the appendix. As is common in plutonic material, many samples

contain melt inclusions that show clear textural evidence for post-entrapment modification,

such as significant dusting and crystallisation within the inclusion, which varies strongly with

host phase and sample. Only melt inclusions with a clear glassy appearance were selected for

analysis.

2.3.3 Thermobarometry

Several mineral-only and mineral-melt thermobarometers were applied to the xenoliths to place

constraints on the temperature and pressure of xenolith formation. As the intercumulus liquids

found within the xenoliths are often too felsic to be in equilibrium with the coexisting minerals,

and some xenoliths may not be cogenetic with the eruptions they are found within, several

mineral melt equilibria models were used to determine a range of plausible equilibrium liquids

from known Santorini liquid compositions. An extensive database of Santorini whole rock,

melt inclusion and groundmass glass analyses from the literature (n=1226) and this study

(n=118) were paired with each mineral phase and plausible pairs were filtered via equilibrium

tests (c.f. Winpenny and Maclennan, 2011; Neave et al., 2013; Neave and Putirka, 2017;

equilibrium tests of Putirka, 1999, 2008; Mollo et al., 2013). Clinopyroxene, orthopyroxene

and plagioclase were paired with plausible liquids using this method and thermobarometers

were solved iteratively; barometers are paired to thermometers. Appendix A.2 contains a

detailed assessment of the equilibrium tests, effect of iterative calculations and applicability of

the thermobarometers to Santorini compositions. A new plagioclase liquid equilibrium test is

derived from a large experimental dataset including Santorini experiments (Cadoux et al., 2014;

Andújar et al., 2015, 2016) based on XSi
liquid (Appendix A.2.2) and is used here instead the two

temperature bracketed test of Putirka (2008).

ln(KDAb−An
P lagioclase−Liquid) ± 0.4541 = 1.26954 − 5.38702XSi

liquid

Olivine-melt thermometry was conducted both using equations 21 and 22 of Putirka 2008

on post entrapment crystallisation corrected (PETROLOG: Danyushevsky and Plechov, 2011)

(Appendix A.1) melt inclusion compositions and paired with equilibrium melts as described

above. A pressure of 300 MPa is assumed based on thermobarometry and literature pressure

estimates. Changing this pressure results in an insignificant 5°C variation per 100 MPa. Ther-

mobarometric results are presented here as the mean and one standard deviation of the model

output. As the thermobarometric models require a H2O estimate, the H2O is estimated from a

46



CHAPTER 2. PLUTONIC XENOLITHS FROM SANTORINI, GREECE: MAG-
MATIC DIFFERENTIATION AND POST-CUMULUS PROCESSES

47

linear regression of H2O vs SiO2, as outlined in Appendix A.2.

2.3.4 Trace Element Partition Coefficients

Partition coefficients for mineral-melt calculations were calculated from the following sources:

plagioclase (Bédard, 2006), clinopyroxene (Bédard, 2014), and orthopyroxene (Bédard, 2007).

These models use regressions through extensive experimental databases and observed natural

partitioning values to calculate partition coefficients based on mineral and/or melt variables

(Figure A.11). These were chosen over the lattice strain model (Blundy and Wood, 1994)

and recent models built upon this (e.g. Hill et al., 2011; Sun and Liang, 2012; Sun et al.,

2017) as the Bédard models are calibrated over a wider range of mineral compositions, melt

compositions and temperature, applicable for the large variations seen within the xenoliths.

For example, the Sun and Liang (2012) model is calibrated with up to 57 wt% SiO2, whilst the

Bédard (2014) calibration dataset extends to >75 wt% SiO2. Clinopyroxene compositions in

the gabbronorites for example indicate equilibration with evolved melts with up to 70 wt% SiO2
(see discussion). For clinopyroxene rare earth element partition coefficients, nearest neighbour

parameterisations were used based on an initial calculation of LnD Sm, as recommended by

Bédard (2014). Each neighbour element is predicted with an R2 > 0.95 from this initial partition

coefficient. Plagioclase partition coefficient calculation results take the form RTlnD, therefore

temperature is estimated using plagioclase molar An content (Druitt et al., 2012; Fabbro et

al., 2018), consistent with our temperatures calculated from plagioclase-melt thermobarometry

using the equation from Druitt et al. (2012):

T (K) = 1128 + 200XAn − 0.4
0.4

2.4 Results

2.4.1 Xenolith Petrography

Xenoliths are found in abundance in many of the eruptive units (Figure 2.2. Figure 2.3. 18

plutonic xenoliths have been chosen for detailed study, in addition to extra data collected from

some of the other volcanic components at Santorini for comparison (Table 2.2, see Table A.1 for

the full sample list) covering the range of lithologies observed, prioritising sample freshness. 144

thin sections from the full stratigraphy show five dominant lithologies based on the classifica-

tion of Streckeisen (1974): troctolite (glomerocrysts), olivine gabbro, gabbro, gabbronorite and
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diorite (Figures 2.4, 2.5, 2.6). The xenoliths are classified as diorite instead of gabbro or gab-

bronorite when the composition of the feldspar cores are dominantly less than An50. Santorini

magmas are characteristically amphibole free post 530 ka (Druitt et al., 1999), therefore the

name diorite is purely based on feldspar composition (Streckeisen, 1974), and does not imply a

dominance of amphibole over clinopyroxene as the main ferromagnesian mafic mineral phase.

The plutonic xenolith mineralogy primarily comprises clinopyroxene and plagioclase, with

olivine and orthopyroxene occurring within the more primitive and evolved xenoliths, respec-

tively (Figure 2.4). Texturally many xenoliths have a cumulate texture of generally interlocking

euhedral to subhedral cumulus crystals of plagioclase and clinopyroxene, with compositionally

more evolved mineral contents including graphic intergrowth of orthoclase and quartz, trace

amphibole and additionally residual glass in the interstitial areas (Figures 2.5, 2.6). Amphibole

is very rarely observed in the Santorini post-Akrotiri early centres (< 530 ka), and is almost

exclusively found as a replacement phase in the xenoliths replacing clinopyroxene crystal rims

and fractures, occurring together with replacement biotite, Fe-Ti oxides (magnetite, ilmenite)

and rutile. The studied samples appear texturally homogeneous, with conspicuous layering of

plagioclase occurring only in one gabbroic sample from the Lower Pumice 2 eruption (SAN 9-1-

5, Figure 2.6A). Cumulus crystal sizes reach up to several millimetres. There is a large variety

of textures, from partially equilibrated samples with triple junctions, ophitic samples (2.6B) to

samples with strongly zoned mineral phases and distinct crystal size bimodality. As there is

no clear relationship between xenolith type and stratigraphy, and as they may not necessarily

be cogenetic to the eruption they are from (see discussion), the rock types will be discussed by

lithology in the following section.
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Figure 2.2: Gabbro xenolith in the deposits of Cape Therma 3
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Figure 2.3: Hand specimen photos of the Santorini xenoliths. See Table 2.2 for details
of classification and eruption.
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Table 2.2: Eruptions and samples analysed in this study. P.R. Pumice is the phenocryst-
rich pumice found in the Minoan Eruption. See Table A.1 for the full sample list.

Eruption Sample Type
Nea Kameni SAN 11-2-1-6 Gabbro
Nea Kameni SAN 11-2-1-6 Host Lava
Nea Kameni SAN 5-2-1u Troctolite
Nea Kameni SAN 5-2-1u Host Lava
Minoan 1-2-3 P.R. Pumice
Minoan 1-2 Mafic Bleb
Minoan 2-1 Pumice
Minoan SAN 4-4c Gabbro
Minoan SAN 9-3-2 Gabbronorite
Cape Riva SAN 12-1-5 Gabbronorite
Cape Riva SAN 5-3-4 (3) Diorite
Upper Scoria 2 SAN 12-1-8-2 Diorite
Upper Scoria 2 SAN 14-1-1-3 Gabbronorite
Upper Scoria 1 SAN 12-2-2 Gabbronorite
Middle Pumice SAN 6-5-2-1 Olivine Gabbro
Middle Pumice SAN 6-5-3 Diorite
Middle Pumice SAN 9-2-2 Gabbro
Lower Pumice 2 20 Pumice
Lower Pumice 2 24D Olivine Gabbro
Lower Pumice 2 28D Diorite
Lower Pumice 2 SAN 9-1-1-3 Gabbronorite
Lower Pumice 2 SAN 9-1-8-3 Gabbro
Lower Pumice 1 SAN 6-4-2 Gabbro
Cape Therma 3 SAN 6-3-1 Gabbro

An: 51 − 90

An: 84 − 91

An: 50 − 76

An: 6 − 62

An: 1 − 52

An: 1 − 90

An: 2 − 81

An: 4 − 78

(no EMPA data)

An 87 − 92

28D
Diorite

SAN 6−5−3
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SAN 4−4c
Gabbro

SAN 9−1−5
Gabbro

SAN 9−1−8−3
Gabbro
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Gabbro
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Figure 2.4: Modal mineralogy of representative xenoliths. Alteration products are gen-
erally biotite/amphibole (Bt,Amph) replacing clinopyroxene. Texturally, the majority of
hydrous phases in the samples are a result of secondary alteration. Anorthite number
includes rims and intercumulus. Glass in the olivine gabbros contains microlites of
plagioclase, clinopyroxene, olivine and amphibole. The intercumulus assemblage in the
gabbro and gabbronorites is generally quartz ± orthoclase ± glass
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Figure 2.5: Petrography of the xenoliths. A) Troctolitic glomerocryst assemblage with
clinopyroxene-rich rim at the lava contact. Sample SAN 5-2-1U from Nea Kameni. B)
Olivine gabbro with intercumulus glass. Sample 24D from Lower Pumice 2. C) Mafic
glass-bearing gabbro with patchy zoned plagioclase. Sample SAN 9-1-8-3 from Lower
Pumice 2. D) Intermediate holocrystalline gabbro. Sample SAN 9-2-2 from the Middle
Pumice. E) Coarse grained gabbronorite. Sample SAN 14-1-3-3 from Upper Scoriae 2.
F) Fine grained diorite with acicular pyroxene crystals. Sample SAN 6-5-3 from the
Middle Pumice. Many gabbronorite samples are texturally indistinguishable from this
sample. A), B) and D), E) are thin section microphotographs in cross-polarized and
plane polarized light, respectively; C) and F) are back-scattered electron images.
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Troctolite Glomerocrysts

Centimetre-sized angular troctolitic glomerocrysts are found in some of the lavas sampled ex-

situ on Nea Kameni (Figure 2.5A). Although not strictly xenoliths, they are discussed in this

thesis as they contain information about the plumbing and mush system at Santorini. They

comprise small (~300 µm) rounded olivine grains (<25 vol%, Figure 2.4) enclosed in large

millimetre sized weakly zoned plagioclase crystals. The plagioclase are often surrounded by a

rim of clinopyroxenes and/or glass lacking the devitrified microlitic texture of the lavas at the

lava contact, and this glass infiltrates the fragments. Strained plagioclase twins are present.

These samples are similar to the gabbroic and troctolitic cumulate glomerocrysts previously

described by Martin (2006a, 2007).

Olivine Gabbro

Olivine-gabbro cumulates in hand specimen are up to a centimetre in size, coarse grained and

rounded, found rarely in the deposits of Lower Pumice 2 and Middle Pumice. They comprise up

to 2 mm sized cumulus crystal assemblage of olivine (5-10 vol%), clinopyroxene and plagioclase,

with abundant intercumulus glass, plagioclase and clinopyroxene microlites, and trace intercu-

mulus amphibole (Figures 2.4, 2.5B). IInfrequent micrometre sized magnetite is restricted to

clinopyroxene and olivine grain-glass boundaries, excluding sample 27D (Lower Pumice 2) in

which they occur up to 500 microns in size, spread throughout the sample. Crystal forms are

generally euhedral to subhedral, however, sample 25D-2 from the Lower Pumice 2 eruption

shows partial equilibration and grain boundary triple junctions. Plagioclase texturally appears

to be the first crystallising phase, followed by clinopyroxene and olivine, especially evident

in the ophitic sample 21D (Figure 2.6B). Plagioclase has different textural forms: unzoned

phenocrysts, very weakly oscillatory zoned, and crystals with strongly resorbed cores (Figure

2.6C) containing glass, clinopyroxene and magnetite microlites. Rare plagioclase crystals ex-

hibiting these textures have been described in the pyroclastics of the Lower Pumice 2 eruption

as antecrysts from these cumulates (Gertisser et al., 2009). Sample 29D shows some defor-

mation of the plagioclase twin planes. In contrast to the more common gabbroic lithologies,

olivine gabbro samples show relatively good preservation and freshness. Olivine exhibits par-

tial iddingsitisation on the rims and along fractures. All cumulus crystals show a distinct few

micrometre thick overgrowth rim at contacts with the interstitial glass. Melt inclusions are

exceptionally abundant within clinopyroxene and plagioclase in several samples, however de-

pending on the sample and host phase, these melt inclusions often contain numerous daughter
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crystals and/or alteration, showing evidence of significant post-entrapment modification (Ap-

pendix A.1). Olivine-hosted melt inclusions are rarer but show less evidence of modification.

Gabbro

The gabbros hand specimens range in size from centimetre sized pieces to fist sized blocks,

in rounded to sub-angular pieces. They comprise dominantly coarse-grained (up to 2 mm)

clinopyroxene and plagioclase with minor interstitial glass, Fe-Ti oxides and apatite (Figure

2.5C, D). The clinopyroxenes are commonly unzoned, however some samples show irregular

zoning and a sharp rim. Plagioclase is strongly zoned, with a distinct contact between a core,

and a more gradual mantle to rim profile. The cores can be patchy, and on rare occasions more

sodic than the mantle and rims. The intercumulus assemblage comprises dominantly plagioclase

± quartz ± orthoclase, with rare intercumulus glass. This glass is most common in sample SAN

9-1-8-3, which lacks the more evolved quartz and orthoclase interstitial assemblage common in

other gabbro samples. Clinopyroxene is commonly rimmed or fully replaced by actinolite and

biotite, with minor titanite, ilmenite and rutile. Fe-Ti oxides commonly exhibit exsolution

lamellae of ilmenite in titanomagnetite. Only one gabbro sample has any preferred textural

orientation, sample SAN 9-1-5 from the Lower Pumice 2 eruption which exhibits preferential

plagioclase orientation.

Gabbronorite

Gabbronorite hand specimens are up to 5 cm in size, and rounded to sub-angular pieces. They

comprise clinopyroxene, orthopyroxene, strongly zoned plagioclase, Fe-Ti oxides, trace amphi-

bole, apatite and interstitial glass in finer-grained (~<0.5 mm crystals) and coarse grained

varieties (<2 mm crystal sizes) (Figure 2.5E, F). In finer-grained xenoliths the pyroxenes show

acicular needle-like habits, changing from clinopyroxene to orthopyroxene along their length,

but lacking clear exsolution lamellae. Fe-Ti oxides and apatite are present in both coarse and

fine grained textural types. Rare olivine with two-pyroxene-bearing reaction rims are found

in two samples (<1 vol%). Plagioclase often has a distinct weakly zoned core and more pro-

nounced zonation towards the rims. Clinopyroxene and orthopyroxene are commonly unzoned

and have a distinct rim at the contact with the plagioclase, orthoclase and rare glass inter-

stitial assemblage. Fe-Ti oxides often show exsolution lamellae, and alteration of pyroxene to

amphibole and biotite is common in both textural types.
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Figure 2.6: Additional xenolith textures from the Lower Pumice 2 eruption. Plane
polarised light photographs. A) Layering of plagioclase in sample SAN 9-1-5. B) Ophitic
texture in olivine gabbro sample 23D. C) Corroded plagioclase with glass filled cores in
sample 27D.
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Diorite

Diorites comprise clinopyroxene, strongly zoned plagioclase, orthopyroxene in some samples,

Fe-Ti oxides, trace amphibole and interstitial glass (Figure 2.5F). They are texturally very

similar to some of the more evolved gabbro and gabbronorite samples, additionally containing

an interstitial assemblage of albite-rich plagioclase, orthoclase and rare interstitial glass.

Pumice, Mafic Blebs and Phenocryst-rich Pumice

In addition to the dominantly gabbroic plutonic xenoliths, we made limited analyses on other

components of the Santorini eruptive products to compare to the xenolith mineral compositions.

Detailed descriptions of these are found in the respective papers referenced below. The eruptions

of Lower Pumice 2 and the Minoan contain abundant cauliform mafic ‘blebs’ interpreted to be

quenched intruding mafic magmas (Gertisser et al., 2009; Druitt et al., 2012), of which we

analysed one Minoan sample to supplement the Lower Pumice 2 bleb dataset of Gertisser et

al. (2009). Analyses were made from one pumice clast each from the Lower Pumice 2 and

the Minoan eruptions. Finally, analyses were made from a single phenocryst-rich pumice (P.R.

Pumice) clast from the Minoan eruption (Druitt et al., 2012) to compare to our xenolith sample

from the same eruption. These phenocryst-rich pumice clasts are interpretted to be derived from

an intrusion geochemically distinct to the post-530 ka magma series at Santorini (Druitt et al.,

1999; Druitt, 2014).

2.4.2 Mineral Chemistry

Olivine

Troctolitic glomerocryst olivine in sample SAN 5-2-1u is the most primitive and least altered

in our study, with Fo77-84 and CaO = 0.14-0.21 wt% (Figure 2.7, Table 2.3). These are more

evolved than compositions reported by Martin et al. (2006a) for their Nea Kameni cumulate

fragments (Fo85-93). In the olivine gabbros each sample contains compositionally homogeneous

olivine, with <2 mol% Fo variation per sample (Fo74-78 CaO = 0.16-0.23 wt%), except for

small intercumulus olivines in the glass (Fo65-75 CaO = 0.19-0.43 wt%). Gabbronorite olivine

is significantly less primitive Fo47-69 CaO = 0.01-0.23 wt% and always surrounded by a rim of

clinopyroxene or orthopyroxene. The samples with Fo < 60 are from sample SAN 12-1-5, which

only contains this olivine composition. CaO is weakly correlated with Fo content. Transition

metals are the only dominant detectable trace elements present (Co 202-206 ppm, Zn 137-175
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ppm, Ni 442-608 ppm, Cu 2.6-4.1 ppm). REE concentrations are very low (
∑
REE 0.07 ppm)

with a weak relative enrichment in HREE, and LREE typically below the detection limit.
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Figure 2.7: Olivine chemistry. Isothermal contours of CaO vs Fo calculated from
Shejwalkar and Coogan (2013). Although used outside the model calibration range for
olivines with Fo less than 70, the contoured temperatures are consistent with the 960
to 796°C temperatures estimated from mineral-melt thermometry (see thermobarometry
section in the discussion). Literature data (light grey) from Druitt (1983), Cabato
(2007), Gertisser et al. (2009), Druitt et al. (2016)

Clinopyroxene

Crystal core Mg# generally decreases from the olivine gabbros (Mg# 76-86), through gab-

bros (Mg# 60-82), diorites (Mg# 68-71) to gabbronorite (Mg# 55-80) (Figure 2.8, Table 2.4).

Clinopyroxene in the rim around the troctolitic glomerocryst and as small crystals within has

Mg# 58-72, much lower than the olivine Fo79-84, and generally overlapping the Mg# of the

clinopyroxenes in the host lava within this sample (Mg# 70-82). Clinopyroxene crystals across

the xenoliths are commonly unzoned, with some samples exhibiting a fine 5-15 µm rim with a

lower Mg# in contact with the intercumulus assemblage. Olivine gabbro clinopyroxenes have

little compositional variation within samples (<4 mol% Mg#) but exhibit the distinct sharp

Fe-rich rim (Mg# 64-73) at the contact with intercumulus glass, and Fe-rich microlites within

the glass (Mg# 59-65). Clinopyroxene within the gabbros, gabbronorites and diorites shows a

wider compositional variation within samples and the crystals within some samples show patchy
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Table 2.3: Average olivine major element and trace element compositions

Troctolite σ Olivine Gabbro σ Gabbronorite σ Bleb σ

n 23 19 18 5
SiO2 39.35 0.81 38.96 0.48 36.05 1.35 38.19 0.47
TiO2 0.02 0.03 0.02 0.03 0.01 0.02 0.03 0.04
Al2O3 0.03 0.01 0.06 0.09 0.03 0.01 0.02 0.01
Cr2O3 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01
FeO 16.72 1.68 22.92 2.85 33.94 5.90 24.37 1.53
MnO 0.29 0.04 0.42 0.07 0.66 0.12 0.45 0.05
MgO 42.28 1.23 38.10 2.67 29.23 4.49 36.65 1.20
CaO 0.19 0.02 0.22 0.06 0.13 0.06 0.15 0.01
Total 98.89 2.54 100.74 0.48 100.06 0.64 99.91 0.68

Cations based on 4 oxygens
Si 1.029 0.104 1.034 0.116 0.995 0.013 1.407 0.227
Ti 0.000 0.001 0.000 0.001 0.000 0.000 0.001 0.001
Al 0.001 0.000 0.002 0.003 0.001 0.000 0.001 0.000
Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Fe 0.366 0.057 0.508 0.075 0.788 0.160 0.747 0.105
Mn 0.006 0.001 0.009 0.002 0.015 0.003 0.014 0.002
Mg 1.648 0.166 1.509 0.211 1.199 0.153 2.015 0.345
Ca 0.005 0.001 0.006 0.002 0.004 0.002 0.006 0.001

Endmembers (mol)
Fo 0.82 0.02 0.75 0.04 0.60 0.08 0.73 0.02

LA-ICP-MS trace elements (ppm)
Li 2.47 0.54
Sc 7.08 0.34
Ti 49.09 10.43
V 6.30 0.43
Cr 14.25 12.28
Co 203.91 2.22
Ni 512.91 74.25
Cu 3.39 0.62
Zn 156.49 21.31

zonation unrelated to growth zones. Clinopyroxene inclusions within feldspars in the gabbros

have a relatively low Mg# (Mg# 65-67) with respect to the overall population. Al2O3 concen-

trations in clinopyroxene are higher and fall into a more restricted range in the olivine gabbros

(core 2.7-3.8 wt%, rim and intercumulus: 5.1-7.8 wt%) than in the gabbros and gabbronorites

(<3.8wt%, with the majority below 2.5wt%). Fe3+/
∑
Fe calculated from stoichiometry (Droop,

1987) falls predominantly below 0.3, but reaching a maximum of 0.64, with no correlation with

Mg#. Olivine gabbros have an overall higher Fe3+/
∑
Fe than the gabbronorites and diorites,

with gabbros covering the entire range. Clinopyroxene compositions generally overlap compo-

sitions of phenocrysts from the explosive deposits, but some gabbro, diorite and gabbronorite

samples distinctly fall away with low Al, Ti and Mn concentrations (Figure 2.8). These com-

positions do not match any of the experimentally produced clinopyroxenes from Cadoux et al.
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(2014) or Andujar (2015, 2016) on Santorini liquid compositions, but however overlap the com-

positions of many hydrothermally altered clinopyroxenes in the literature (Manning and Bird,

1986; Rose and Bird, 1994; Good et al., 1997; Martinez-Serrano, 2002; Marks et al., 2010). In

contrast to the low Ti-Al cluster, diorite samples SAN 6-5-3 and SAN 12-1-8-2 have elevated

TiO2 and AlIV relative to the volcanic field.

Clinopyroxene REE profiles are generally curved with moderate MREE and HREE enrich-

ment relative to the LREE ((La/Sm)N = 0.21-0.75, (Gd/Lu)N = 0.94-2.17, Figure 2.9 ,Table

2.5). Overall REE enrichment generally correlates with the xenolith type, with olivine gabbros

showing up to 10x enrichment relative to chondrite, and gabbronorite clinopyroxene showing

up to 500x enrichment. Five samples do not follow these profiles, and exhibit flatter or negative

profiles with high La/Yb = 0.99-3.45 (Figure 2.9B,C). Some of these samples additionally fall

into the low Ti-Al major element group (Figure 2.8). These profiles exhibit a similar negative

slope and slight LREE enrichment to the few amphibole analyses made (Figure 2.9B). There

is no clear correlation between REE profile slope and clinopyroxene major element composi-

tion (Ti, AlIV, Mg#, Na), indicating crystal major element chemistry is not controlling these

anomalous slopes. Multiple analyses from the same sample having similar profiles indicates

inclusions are likely not the cause either. Most xenolith samples show a negative Eu anomaly

that correlates with differentiation indices such as decreasing Mg# and increasing La (Figure

2.9D), but show no correlation with some other incompatible trace elements (e.g. Zr).

Clinopyroxene incompatible trace elements concentrations also show a large variation across

samples, generally correlated to rock type (Figure 2.10). Similarly to the REE, profiles are

generally correlated to rock type and increase/decrease with how evolved the xenolith is. Pb

and Li have negative anomalies in olivine gabbros, through flat in gabbros to positive anomalies

in gabbronorites and diorites.
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Figure 2.8: Xenolith clinopyroxene chemistry. Grey fields show the general trend of
published volcanic clinopyroxene compositions. A) TiO2 versus Mg#. B) AlIV vs Mg#.
Xenolith clinopyroxene broadly follow the volcanic trend. Notably a low Ti-Al cluster
forms at intermediate Mg# compositions. Diorite samples show the inverse of this, and
show increasing TiO2-AlIV at near constant Mg#. Interstitial and microlite samples
with increasing TiO2-AlIV at low Mg# can be attributed to rapid element uptake during
rapid cooling (Mollo et al., 2010a). Literature data from Druitt (1983), Huijsmans
(1985), Barton and Huijsmans (1986), Cottrell et al. (1999), Cabato (2007), Gertisser
et al. (2009), Vaggelli et al. (2009), Panienka (2012), Cadoux et al. (2014), Andújar
et al. (2015) and Druitt et al. (2016)
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Figure 2.9: Clinopyroxene trace elements. Normalisation values from Palme et al.
(2014). A) Rare earth element (REE) profiles. The black dashed line represents the
composition of a clinopyroxene crystallising from the final stage of closed system crys-
tallisation of a mafic cumulate (see discussion). B) REE profiles for samples with
anomalous profiles. A black line showing the average REE compositions of xenolith am-
phibole (typically secondary alteration) is included for comparison. These clinopyroxene
have a slight enrichment in LREE and MREE compared to HREE similar to the amphi-
bole profile. C) La/Yb vs Mg# showing the normal clinopyroxene slopes (below the line)
compared to anomalous slopes. Sample SAN 9-3-2 is highlighted in orange, representing
a non-cogenetic Minoan eruption xenolith (see discussion and Druitt, 2014). D) La
vs Eu anomaly showing a good correlation, excluding two outlier points, indicating a
strong role in fractional crystallisation influencing clinopyroxene REE enrichment (see
discussion).
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Table 2.4: Average clinopyroxene major element compositions. Fe3+ estimated using
Droop (1987).

Troctolite σ Olivine Gabbro σ Gabbro σ Diorite σ Gabbronorite σ P.R. Pumice σ Pumice σ Bleb σ

n 3 17 95 42 53 5 16 12
SiO2 48.60 2.20 50.38 2.46 51.70 1.32 50.76 1.68 52.13 1.30 52.50 0.29 51.32 1.54 51.99 0.66
TiO2 1.54 0.78 0.88 0.55 0.42 0.27 0.67 0.40 0.32 0.24 0.31 0.12 0.56 0.26 0.46 0.13
Al2O3 4.79 1.43 4.06 1.66 1.62 0.95 2.06 1.19 1.21 0.94 1.28 0.41 2.54 1.38 1.88 0.55
Cr2O3 0.01 0.02 0.08 0.11 0.02 0.03 0.01 0.01 0.01 0.02 0.00 0.00 0.02 0.04 0.01 0.01
FeO 10.74 1.56 8.43 3.16 9.77 1.54 10.27 0.96 10.84 2.34 10.01 1.11 8.74 1.21 8.96 0.54
MnO 0.30 0.04 0.22 0.06 0.32 0.13 0.38 0.14 0.43 0.11 0.49 0.15 0.35 0.12 0.39 0.09
MgO 12.36 2.25 14.62 1.19 14.20 1.07 13.49 0.92 13.70 1.25 13.97 0.60 14.61 0.70 14.94 0.55
CaO 21.17 0.81 21.18 1.41 20.51 1.97 20.70 1.88 20.42 1.38 20.77 0.25 20.91 0.55 20.52 0.55
Na2O 0.42 0.16 0.30 0.05 0.46 0.31 0.42 0.15 0.37 0.11 0.30 0.05 0.34 0.05 0.29 0.04
Total 99.92 0.24 100.15 0.69 99.03 1.07 98.76 1.09 99.43 1.04 99.65 0.36 99.40 0.64 99.43 0.45

Cations based on 6 oxygens, 4 cations
Si 1.824 0.068 1.862 0.073 1.943 0.035 1.920 0.047 1.963 0.038 1.968 0.014 1.915 0.053 1.940 0.020
Ti 0.044 0.022 0.025 0.016 0.012 0.008 0.019 0.012 0.009 0.007 0.009 0.004 0.016 0.007 0.013 0.004
AlIV 0.176 0.068 0.138 0.073 0.057 0.034 0.080 0.047 0.038 0.037 0.032 0.014 0.085 0.053 0.060 0.020
AlVI 0.036 0.003 0.048 0.024 0.015 0.016 0.014 0.012 0.016 0.011 0.024 0.005 0.027 0.013 0.023 0.007
Cr 0.000 0.001 0.002 0.003 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000
Fe2+ 0.254 0.020 0.193 0.045 0.256 0.056 0.266 0.038 0.311 0.081 0.300 0.039 0.222 0.062 0.247 0.022
Fe3+ 0.083 0.038 0.069 0.079 0.052 0.027 0.060 0.027 0.031 0.025 0.013 0.013 0.051 0.037 0.033 0.013
Mn 0.010 0.001 0.007 0.002 0.010 0.004 0.012 0.005 0.014 0.004 0.016 0.005 0.011 0.004 0.012 0.003
Mg 0.691 0.121 0.805 0.059 0.796 0.061 0.761 0.052 0.768 0.063 0.781 0.030 0.813 0.034 0.831 0.028
Ca 0.852 0.039 0.838 0.048 0.826 0.073 0.839 0.071 0.823 0.050 0.834 0.007 0.836 0.019 0.820 0.023
Na 0.031 0.012 0.021 0.004 0.033 0.023 0.031 0.011 0.027 0.008 0.022 0.004 0.024 0.004 0.021 0.003

Endmembers (mol)
Mg# 0.67 0.08 0.76 0.08 0.72 0.04 0.70 0.03 0.69 0.06 0.71 0.03 0.75 0.03 0.75 0.02
Wo 0.45 0.03 0.44 0.03 0.43 0.04 0.43 0.03 0.42 0.03 0.43 0.00 0.43 0.01 0.42 0.01
En 0.36 0.06 0.42 0.03 0.41 0.03 0.39 0.03 0.39 0.03 0.40 0.02 0.42 0.02 0.43 0.01
Fs 0.18 0.03 0.14 0.05 0.16 0.03 0.17 0.02 0.18 0.04 0.17 0.02 0.15 0.02 0.15 0.01
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Table 2.5: Average clinopyroxene trace element compositions.

Olivine Gabbro σ Gabbro σ Diorite σ Gabbronorite σ

n 7 21 22 24
ppm
Li 0.89 0.18 14.74 10.01 13.59 12.03 14.60 10.11
Sc 121.66 14.92 134.60 34.69 129.40 47.60 171.42 47.64
V 364.04 39.60 284.33 115.08 255.08 121.75 373.50 78.00
Cr 735.84 769.16 120.16 182.74 14.12 18.84 86.82 135.06
Co 40.38 3.45 36.41 13.87 31.37 8.64 40.02 18.56
Ni 82.36 19.77 35.15 29.39 18.84 23.71 28.93 28.82
Cu 1.46 0.24 1.73 1.23 0.99 0.86 1.68 1.28
Zn 33.00 8.41 68.86 33.11 71.15 27.84 75.54 32.66
Rb 0.00 0.00 0.95 2.48 0.18 0.38 1.15 1.64
Sr 16.07 1.24 9.76 3.75 15.46 6.33 10.11 3.95
Y 13.34 2.56 49.26 36.03 48.46 23.80 135.36 170.08
Zr 13.26 3.58 35.68 16.40 49.08 18.34 29.49 13.28
Nb 0.00 0.00 0.08 0.11 0.10 0.22 0.13 0.20
Cs 0.00 0.00 0.10 0.15 0.03 0.03 0.06 0.10
Ba 0.15 0.17 1.14 1.21 0.70 0.89 1.88 2.31
La 0.57 0.14 4.47 4.73 4.58 4.35 7.76 9.27
Ce 2.34 0.54 17.92 19.41 16.02 11.99 33.55 41.84
Pr 0.48 0.13 3.15 3.29 2.79 1.55 6.42 8.08
Nd 3.28 0.82 16.82 16.54 15.54 7.94 35.89 43.00
Sm 1.46 0.33 5.94 5.20 5.52 2.45 14.04 16.98
Eu 0.46 0.09 0.77 0.39 1.19 0.65 1.09 0.54
Gd 2.25 0.44 7.61 5.99 7.74 3.84 19.00 22.45
Tb 0.38 0.07 1.31 1.03 1.34 0.67 3.49 4.31
Dy 2.51 0.55 9.11 6.99 9.14 4.70 24.63 30.63
Ho 0.55 0.08 1.90 1.40 1.95 1.01 5.26 6.50
Er 1.51 0.26 5.54 4.02 5.66 2.83 15.67 19.55
Tm 0.20 0.04 0.80 0.55 0.77 0.38 2.20 2.77
Yb 1.27 0.29 5.52 3.30 5.41 2.50 14.44 18.39
Lu 0.20 0.06 0.93 0.48 0.83 0.37 2.12 2.64
Hf 0.69 0.23 1.78 0.87 2.46 0.91 1.60 0.69
Ta 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02
Pb 0.04 0.03 0.54 0.56 0.47 0.54 0.62 0.90
Th 0.02 0.01 0.31 0.32 0.17 0.13 0.39 0.76
U 0.00 0.00 0.07 0.06 0.07 0.17 0.08 0.08
Eu* 0.78 0.11 0.45 0.19 0.54 0.14 0.44 0.25

Orthopyroxene

Mg# ranges between 46-76, and crystals commonly have a rim of Mg# = 46-55 (Table 2.6).

Al2O3 concentrations are <3.5 wt%, with the bulk of orthopyroxenes containing <2 wt%, in-

creasing with Mg#. Excluding three outliers reaching 9 mol%, Wo content ranges from 1.3 to 4.6

mol%. As with the clinopyroxenes, most samples fall within the range of eruptive compositions

found in the literature, however two gabbronorite samples plot distinctly away, having high

Ti-low Mg# (SAN 12-1-5) and low Ti-high Mg# populations (SAN 9-1-1-3) (Figure 2.11A).

REE concentrations are low (
∑
REE = 4.94-28.85 ppm, Table 2.7) and profiles show a steep
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enrichment of MREE and HREE relative to chondrite ((La/Yb)N = 0.003-0.259, Figure 2.11B)

with varying negative Eu anomalies (0.08-0.87) that have no systematic correlation with Mg#.
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Figure 2.11: Orthopyroxene chemistry. A) Major element chemistry. TiO2 vs Mg#
showing a wide spread of data compared to literature volcanic data. B) REE profiles.
Literature data (light grey) from Druitt (1983), Huijsmans (1985), Cabato (2007), Ger-
tisser et al. (2009), Panienka (2012) and Druitt et al. (2016)
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Table 2.6: Average orthopyroxene major element compositions.

Gabbro σ Diorite σ Gabbronorite σ P.R. Pumice σ Pumice σ Bleb
n 6 30 73 8 10 1
SiO2 53.42 1.05 52.14 0.93 52.37 1.29 53.70 0.32 52.73 1.18 53.28
TiO2 0.26 0.28 0.36 0.12 0.24 0.12 0.24 0.08 0.21 0.08 0.40
Al2O3 1.26 1.07 1.12 0.50 0.76 0.51 1.14 0.29 0.92 0.49 1.18
Cr2O3 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00
FeO 18.09 1.73 21.52 3.55 23.33 4.06 19.19 0.88 22.06 4.49 17.95
MnO 0.59 0.10 0.95 0.42 0.78 0.23 0.61 0.05 1.03 0.46 0.66
MgO 24.27 1.57 21.13 2.69 20.54 3.06 23.45 0.55 21.17 3.30 23.90
CaO 1.58 0.99 1.71 0.27 1.60 0.56 1.34 0.12 1.40 0.09 1.41
Na2O 0.14 0.25 0.04 0.02 0.04 0.02 0.04 0.02 0.03 0.02 0.02
Total 99.70 0.36 98.98 0.62 99.68 0.60 99.72 0.39 99.56 0.61 98.81

Cations based on 6 oxygens, 4 cations
Si 1.961 0.037 1.969 0.023 1.975 0.025 1.984 0.009 1.982 0.017 1.978
Ti 0.007 0.008 0.010 0.003 0.007 0.003 0.007 0.002 0.006 0.002 0.011
AlIV 0.039 0.037 0.031 0.023 0.025 0.025 0.016 0.009 0.018 0.017 0.022
AlVI 0.017 0.018 0.019 0.015 0.013 0.014 0.033 0.007 0.023 0.013 0.030
Cr 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
Fe2+ 0.528 0.066 0.671 0.132 0.721 0.144 0.593 0.028 0.694 0.155 0.557
Fe3+ 0.028 0.032 0.011 0.016 0.018 0.022 0.000 0.000 0.002 0.003 0.000
Mn 0.018 0.003 0.031 0.014 0.025 0.008 0.019 0.001 0.033 0.015 0.021
Mg 1.328 0.081 1.187 0.132 1.152 0.151 1.292 0.028 1.183 0.159 1.323
Ca 0.062 0.039 0.069 0.011 0.065 0.023 0.053 0.005 0.056 0.004 0.056
Na 0.010 0.017 0.003 0.001 0.003 0.002 0.003 0.001 0.002 0.002 0.001

Endmembers (mol)
Mg# 0.71 0.03 0.64 0.07 0.61 0.08 0.69 0.01 0.63 0.08 0.70
Wo 0.03 0.02 0.04 0.01 0.03 0.01 0.03 0.00 0.03 0.00 0.03
En 0.68 0.03 0.60 0.07 0.58 0.08 0.66 0.01 0.60 0.08 0.68
Fs 0.29 0.03 0.36 0.07 0.39 0.07 0.31 0.01 0.37 0.08 0.30

Feldspar

Feldspar, dominantly zoned plagioclase, is present in every sample. A bimodal distribution

of feldspar compositions is observed in the literature dataset (An93-70,An65-30) and this is also

observed in the xenolith dataset (Figure 2.12A-B, Table 2.8). The troctolitic glomerocrysts

and olivine gabbros show the least zonation, containing weakly oscillatory zoned plagioclase

with An93-86 in the troctolitic glomerocrysts and An91-84 in the olivine gabbros, with <5% An

variation within samples regardless of crystal texture (sieve or homogeneous). These are within

the range of An95-85 identified in the Nea Kameni cumulate xenoliths of Martin et al. (2006a).

Feldspar has a higher An than the coexisting olivine (Fo78-74), as is commonly observed in arcs

(e.g. Arculus and Wills, 1980; Sisson and Grove, 1993; Tollan et al., 2012). Although the

interiors of the plagioclase crystals in the olivine gabbro are essentially unzoned, they possess

a very distinct sharp rim of An65-62 in contact with the interstitial glass. Plagioclase within

the gabbros, diorites and gabbronorites is significantly more variable, with cores and mantle

covering the range An90-25, and commonly very strong normal zoning to An1Ab99Or6 at the

rims in contact with the intercumulus assemblage, occasionally rimmed by K-feldspar with up

to 58 mol% orthoclase. K-feldspar is also found as a graphic intercumulus assemblage with up

to 79 mol% orthoclase. FeO concentrations reach 1.32 wt% in interstitial or microlite feldspar,
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Table 2.7: Average orthopyroxene trace element compositions

Gabbro Diorite σ Gabbronorite σ

n 1 6 7
ppm
Li 3.16 16.45 3.64 12.26 6.31
Sc 54.42 66.28 5.05 55.77 5.04
V 75.66 66.93 15.37 100.91 30.53
Cr 0.82 0.42 0.59 13.50 32.07
Co 72.07 48.24 2.33 88.65 6.06
Ni 0.00 3.31 8.12 34.10 29.30
Cu 1.55 1.24 0.34 0.78 1.09
Zn 306.22 274.73 30.24 298.07 67.34
Rb 0.00 0.33 0.64 0.06 0.11
Sr 2.68 0.57 0.63 0.26 0.45
Y 10.21 11.04 2.07 15.18 10.99
Zr 4.67 5.60 1.20 3.82 1.07
Nb 0.20 0.00 0.00 0.00 0.00
Cs 0.06 0.07 0.12 0.01 0.01
Ba 0.69 0.66 1.11 0.12 0.13
La 0.04 0.07 0.05 0.20 0.36
Ce 0.16 0.30 0.19 0.58 0.83
Pr 0.03 0.06 0.03 0.10 0.11
Nd 0.32 0.40 0.16 0.61 0.42
Sm 0.25 0.31 0.07 0.43 0.31
Eu 0.03 0.10 0.03 0.06 0.03
Gd 0.77 0.75 0.24 0.81 0.51
Tb 0.15 0.16 0.05 0.22 0.14
Dy 1.42 1.50 0.39 2.03 1.39
Ho 0.40 0.42 0.06 0.56 0.41
Er 1.37 1.65 0.28 2.20 1.64
Tm 0.31 0.30 0.08 0.40 0.32
Yb 2.00 2.28 0.39 3.36 2.47
Lu 0.42 0.40 0.06 0.61 0.42
Hf 0.25 0.30 0.12 0.15 0.05
Ta 0.00 0.01 0.01 0.00 0.00
Pb 0.84 0.38 0.56 0.06 0.11
Th 0.00 0.03 0.04 0.05 0.10
U 0.00 0.00 0.00 0.02 0.02
Eu* 0.22 0.64 0.15 0.42 0.25

however the majority of analyses are less than 1 wt%, and FeO is weakly positively correlated

to An content, generally overlapping published phenocryst data. Plagioclase zoning can be

weakly oscillatory, distinctly patchy or radially diffuse across the crystal. The crystal cores

commonly comprise a high An zone with a strong resorption texture. However, some gabbro

and gabbronorite samples have cores with lower An contents than the normal zoned mantle to

rim zones (Figure 2.12C).

Ba and Sr are weakly inversely correlated with An content. REE concentrations are

low
∑
REE 0.42-31.35 ppm and show a LREE enrichment compared to MREE and HREE
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Figure 2.12: Feldspar compositions. A) Ternary feldspar compositions. B) An vs FeO
plot. C) Selected core to rim traverses for xenolith types that show strong compositional
zoning of feldspars. Fields show the general trend of literature volcanic feldspar, high-
lighting the bimodal distribution of compositions. Literature data from Druitt (1983),
Cabato (2007), Panienka (2012), Druitt et al. (2012) and Druitt et al. (2016)
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((La/Yb)N 5-114) with a strong positive Eu anomaly inversely correlated to An mole fraction

(Table 2.9). Crystal rims show up to two times enrichment in incompatible elements relative

to cores (Figure 2.13).

Amphibole and Biotite

Amphiboles are classified using the classification scheme of Hawthorne et al. (2012) using the

classification spreadsheet of Locock (2014). Amphibole microlites within the olivine gabbro

intercumulus glass are magnesio-ferri-hornblende. Primary intercumulus amphibole within the

gabbronorite are magnesio-ferri-hornblende and pargasite. Phenocryst-rich pumices are found

in the Minoan eruption contain primary Ti-rich pargasite (see also Druitt et al., 1999; Druitt,

2014). Actinolite is the dominant amphibole form, found as a secondary replacement phase.

Xenolith amphibole, whether primary or replacing, predominantly has lower AlIV (< 1.4) than

the microlite amphibole found in Lower Pumice 2 (Gertisser et al., 2009) or Akrotiri phenocrysts

(Mortazavi and Sparks, 2004) (Figure 2.14). REE slopes for a limited number of amphibole

analyses (n=5) are generally negative, with La/YbN between 0.91 to 1.89. Biotite is present

as a replacement phase replacing clinopyroxene, with Mg# between 0.49 and 0.77, and Al2O3
between 9.34 and 14.18 wt%.

0
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0.4 0.6 0.8
An

La

core
mid
rim

Olivine Gabbro
Gabbro
Diorite
Gabbronorite

Figure 2.13: Xenolith feldspar La vs An (mol) showing core to rim incompatible trace
element enrichment. Literature pumice data in grey from Santo (2005), Druitt et al.
(2012) and Fabbro et al. (2018).
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Table 2.8: Feldspar major element compositions.

Troctolite σ Olivine Gabbro σ Gabbro σ Diorite σ Gabbronorite σ P.R. Pumice σ Pumice σ Bleb σ

n 26 25 168 109 147 1 3 4
SiO2 47.61 4.35 47.68 2.92 55.45 6.11 59.97 4.85 56.87 6.21 46.83 51.71 5.82 51.32 5.91
TiO2 0.02 0.05 0.05 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.10 0.03 0.03 0.04 0.03
Al2O3 32.89 3.38 33.81 2.39 27.76 4.50 24.32 3.50 26.10 4.62 33.27 29.63 3.95 30.26 3.95
FeO 0.63 0.19 0.71 0.22 0.47 0.24 0.39 0.14 0.42 0.19 0.98 0.67 0.30 0.77 0.15
MgO 0.02 0.05 0.13 0.03 0.01 0.04 0.01 0.05 0.00 0.00 0.04 0.06 0.03 0.08 0.02
CaO 16.98 3.59 16.73 2.36 10.12 5.12 6.36 3.93 8.88 5.34 17.26 13.17 4.78 14.02 4.44
Na2O 2.03 2.05 2.03 1.33 5.12 2.43 7.53 1.72 5.44 2.16 1.85 4.14 2.91 3.75 2.52
K2O 0.06 0.12 0.04 0.05 1.57 3.88 1.35 2.22 1.97 3.61 0.02 0.18 0.15 0.14 0.16
Total 100.27 0.82 101.04 0.36 100.50 0.69 99.93 1.72 99.68 0.95 100.53 99.69 0.77 100.49 0.11

Cations based on 8 oxygens
Si 2.185 0.181 2.171 0.125 2.501 0.253 2.690 0.194 2.579 0.262 2.152 2.363 0.236 2.331 0.233
Ti 0.001 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.001 0.001 0.001
Al 1.781 0.193 1.814 0.134 1.479 0.252 1.288 0.194 1.398 0.258 1.802 1.599 0.230 1.624 0.231
Fe 0.024 0.007 0.027 0.008 0.018 0.009 0.015 0.005 0.016 0.007 0.038 0.026 0.012 0.029 0.006
Mg 0.002 0.003 0.001 0.003 0.000 0.003 0.000 0.004 0.000 0.000 0.003 0.004 0.002 0.005 0.001
Ca 0.837 0.181 0.816 0.117 0.492 0.253 0.307 0.191 0.434 0.264 0.850 0.647 0.240 0.685 0.223
Na 0.180 0.178 0.179 0.117 0.445 0.205 0.654 0.144 0.476 0.184 0.165 0.365 0.252 0.329 0.215
K 0.004 0.007 0.002 0.003 0.091 0.225 0.077 0.127 0.114 0.211 0.001 0.010 0.009 0.008 0.009

Endmembers (mol)
An 0.82 0.18 0.82 0.12 0.48 0.25 0.30 0.19 0.42 0.26 0.84 0.64 0.24 0.67 0.22
Ab 0.18 0.17 0.18 0.12 0.43 0.19 0.63 0.13 0.46 0.18 0.16 0.35 0.24 0.32 0.21
Or 0.00 0.01 0.00 0.00 0.09 0.22 0.07 0.12 0.11 0.21 0.00 0.01 0.01 0.01 0.01
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Table 2.9: Average feldspar trace element compositions

Olivine Gabbro σ Gabbro σ Diorite σ Gabbronorite σ

n 6 10 11 10
ppm
Li 1.70 0.99 4.86 6.24 12.13 9.02 6.56 5.52
Sc 0.45 0.20 0.41 0.34 0.46 0.26 0.46 0.50
Ti 84.53 20.86 198.95 85.34 241.61 62.66 191.40 68.14
V 1.81 0.47 1.33 0.67 0.60 0.45 2.01 1.23
Cr 0.00 0.00 1.09 1.01 0.13 0.39 0.36 0.71
Mn 36.47 4.69 41.54 15.65 30.35 11.72 41.69 12.14
Co 0.37 0.26 0.43 0.29 0.35 0.25 0.22 0.27
Ni 5.27 12.90 5.74 10.64 8.99 14.61 12.23 18.63
Cu 1.88 0.94 0.37 0.90 0.21 0.42 1.28 1.65
Zn 2.29 0.29 6.89 2.79 6.78 2.32 7.01 3.19
Rb 0.20 0.23 0.69 0.65 0.85 0.60 1.06 1.79
Sr 322.58 13.80 436.73 92.15 481.61 72.45 386.61 74.93
Y 0.07 0.12 0.49 0.32 0.31 0.29 0.58 0.41
Zr 0.06 0.15 0.11 0.24 0.08 0.17 0.16 0.20
Nb 0.05 0.08 0.06 0.10 0.05 0.10 0.09 0.12
Cs 0.03 0.04 0.00 0.00 0.02 0.06 0.09 0.11
Ba 11.69 3.53 107.03 67.66 173.86 165.15 73.33 52.36
La 0.31 0.17 3.24 1.88 3.84 2.89 2.11 1.28
Ce 0.56 0.28 5.09 2.73 5.42 3.41 3.18 1.86
Pr 0.07 0.04 0.49 0.27 0.48 0.25 0.30 0.17
Nd 0.21 0.12 1.82 0.91 1.60 0.72 1.13 0.51
Sm 0.05 0.06 0.29 0.18 0.30 0.20 0.16 0.13
Eu 0.12 0.10 0.85 0.48 1.21 0.86 0.71 0.63
Gd 0.00 0.00 0.23 0.16 0.18 0.21 0.07 0.12
Tb 0.03 0.04 0.03 0.02 0.01 0.02 0.02 0.03
Dy 0.04 0.04 0.13 0.06 0.07 0.09 0.10 0.09
Ho 0.01 0.01 0.02 0.02 0.01 0.02 0.04 0.06
Er 0.05 0.10 0.06 0.04 0.04 0.06 0.07 0.13
Tm 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.04
Yb 0.02 0.04 0.06 0.07 0.03 0.04 0.03 0.07
Lu 0.01 0.02 0.03 0.03 0.01 0.01 0.01 0.02
Hf 0.01 0.01 0.01 0.02 0.01 0.02 0.00 0.00
Ta 0.01 0.02 0.01 0.04 0.03 0.05 0.00 0.00
Pb 0.29 0.16 3.18 2.21 2.52 1.36 2.60 2.04
Th 0.01 0.02 0.02 0.03 0.02 0.02 0.01 0.02
U 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02
Eu* 9.71 6.53 19.73 19.79 17.80 16.03
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Figure 2.14: Amphibole compositions in the xenoliths and published volcanic data. Lit-
erature data are pre-530 ka Akrotiri amphiboles from Mortazavi and Sparks (2004), and
phenocryst + post-entrapment melt inclusion amphiboles from Lower Pumice 2 (Ger-
tisser et al., 2009). There is clear compositional difference between Akrotiri amphibole
and the potentially related phenocryst-rich pumice (Druitt et al., 2012) and the xeno-
lith amphibole, even when not related to sample alteration, e.g. intercumulus microlite
amphibole in the olivine gabbros.

Fe-Ti Oxides

Both magnetite and ilmenite are present across the xenoliths, but not always coexisting. Ev-

idence of exsolution of ilmenite lamellae is common and additionally secondary alteration in

some samples is shown by red oxidised rims. Compositions lie on the spinel-magnetite exchange

vector (Figure 2.15A). TiO2 in magnetite ranges from 0.03 to 17 wt% (Figure 2.15B). Cr2O3 is

predominantly less than 0.2 wt%, with one analysis reaching 1.4 wt%.
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Figure 2.15: Fe-Ti oxide chemistry.

2.4.3 Whole-Rock and Glass Chemistry

Xenolith whole rock compositions (calculated from point counting and measured) broadly fol-

low the liquid line of descent for Santorini, with a few that fall off the trend for various elements

(Figure 2.16). SiO2 concentrations range from 46 to 65 wt%. The olivine gabbros and interme-

diate glass-bearing gabbro are mafic (SiO2 46-49 wt%) whilst the gabbros and gabbronorites

are dominantly intermediate, both spanning a range from 52 to 65 wt% SiO2. The high TiO2
in the most SiO2 poor xenolith (SAN 9-1-8-3) is due to a large modal (7.4 vol%) proportion

of titanomagnetite. A low K2O diverging trend is formed from samples almost entirely com-

posed of clinopyroxene and plagioclase, similar to three gabbroic xenoliths analysed in Druitt

et al. (1999). Six olivine gabbro and gabbro xenoliths have systematically ~3-5 wt% lower FeO
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concentrations than the liquid line of descent, but gabbronorites and diorites sit on the trend.

Four gabbro xenoliths have Na2O concentrations up to 3 wt% higher than equivalent SiO2 lava

whole rocks, lying at an extension of an inflection in Na2O in the literature data and xenolith

glass analyses.

Melt inclusion and interstitial glass analyses from the xenoliths (44-82 wt% SiO2) overlap

almost the entire compositional range of published whole rock, melt inclusion and glass analyses

for the Santorini deposits (40-79 wt% SiO2)(see 2.16 for data references), with only melt inclu-

sions from gabbroic inclusions at Nea Kameni (Michaud et al., 2000) extending to lower SiO2
(Table 2.10, 2.11). Xenolith glass compositions extend to higher SiO2 concentrations however,

reaching 82 wt% SiO2 in the intercumulus glass and in melt inclusions in the gabbronorites.

Some deviations from the eruptive liquid line of descent are observed. Intermediate glass com-

positions found in the olivine gabbros show an enrichment in FeO at lower SiO2 concentrations

and enrichment in TiO2, MnO and P2O5.

Sulphur and chlorine concentrations negatively and positively correlate with SiO2 respec-

tively (<LOD to 641 ppm S, 810-6050 ppm Cl), generally falling within values from the ex-

trusives from the literature (see Figure 2.16 for references). A few andesitic to dacitic glass

and melt inclusions have up to 2000 ppm enrichment in chlorine relative to equivalent SiO2
literature lava glass and melt inclusion analyses.

Concentrations of trace elements including the REEs in melt inclusions and intercumulus

glass from the olivine gabbros and a glass-rich gabbro (SAN 9-1-8-3, LP2 eruption) fall within

almost the entire range of literature whole-rock analyses (Figure 2.17). The data presented

are not corrected for PEC. Melt inclusions have distinctly lower REE concentrations than

intercumulus glasses. Intercumulus glass and melt inclusions were too small in the gabbronorites

for reliable analysis, but it is expected these would have strong enrichments in trace elements,

based on their high SiO2 and strong mineral trace element concentrations (Figure 2.9A). REE

profile slopes (La/LuN = 0.99-5.18) become more negative due to a relative LREE enrichment

over HREE in more felsic glass compositions, a feature additionally noted by Elburg et al.

(2014). Trace element data show profiles that are more primative than the bulk of the literature

dataset (Figure 2.9B).
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Figure 2.16: Whole rock, interstitial glass and melt inclusion compositional data for
xenoliths and extrusives from the literature (GEOROC accessed 2017; Druitt, 1983;
Druitt et al., 1999; Michaud et al., 2000; Gertisser et al., 2009 unpublished; Bailey
et al., 2009; Panienka, 2012; Fabbro et al., 2013; Elburg et al., 2014; Simmons et
al., 2017). Field of pre-530 ka volcanic deposits (Akrotiri) shown on Ba/Zr plot (see
discussion). Melt inclusion data comprise olivine, plagioclase and clinopyroxene hosted
inclusions, and compositions shown are corrected for post entrapment modification, as
discussed in Appendix A.1. All major element values are normalised to 100 wt% volatile
free.
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Figure 2.17: Glass and melt inclusion trace and REE data. The light grey lines are
literature data for the volcanic deposits from GEOROC (accessed 2017), Druitt et al.
(1999), Bailey et al. (2009), Panienka (2012), Fabbro et al. (2013), Elburg et al.
(2014) and Simmons et al. (2017). Normalisation values from Palme et al. (2014).
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Table 2.10: Average melt inclusion compositions of PEC corrected inclusions. See
supplementary data for individual raw data and corrected analyses

Troctolite σ Olivine Gabbro σ Gabbro σ Diorite σ Gabbronorite σ

n 3 28 13 2 13
SiO2 47.24 1.05 51.36 1.76 59.69 1.60 74.73 7.14 75.10 2.45
TiO2 0.96 0.13 0.98 0.27 1.09 0.21 0.20 0.14 0.08 0.05
Al2O3 18.95 0.50 16.63 0.87 14.62 0.48 13.07 4.92 12.66 2.39
Cr2O3 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
FeO 10.26 0.24 8.73 1.46 7.50 0.96 0.44 0.00 1.24 0.27
MnO 0.08 0.02 0.19 0.04 0.24 0.03 0.02 0.03 0.04 0.03
MgO 6.48 0.28 4.38 0.73 2.73 0.55 0.33 0.30 0.32 0.07
CaO 11.99 0.16 8.95 0.74 5.44 1.00 2.05 0.45 0.99 0.24
Na2O 3.44 0.28 2.78 0.38 3.84 0.76 3.29 1.43 3.49 1.33
K2O 0.28 0.02 0.77 0.24 2.09 0.47 4.92 0.39 4.17 0.76
P2O5 0.17 0.01 0.18 0.05 0.28 0.06 0.03 0.01 0.03 0.02
Cl 0.10 0.01 0.12 0.02 0.25 0.06 0.43 0.25 0.25 0.06
SO3 0.03 0.01 0.10 0.02 0.05 0.03 0.00 0.00 0.00 0.01
Total 99.85 1.83 94.96 0.63 97.53 1.10 99.08 0.16 98.12 1.04

LA-ICP-MS trace elements (ppm)
Li 11.95 2.10
Sc 28.01 6.33
V 330.23 56.03
Cr 7.46 3.81
Co 22.36 7.34
Ni 37.18
Cu 53.60 37.09
Zn 104.11 25.42
Rb 17.80 6.87
Sr 209.79 26.35
Y 23.07 5.49
Zr 71.49 16.04
Nb 2.47 0.92
Cs 0.52 0.27
Ba 136.73 48.86
La 7.26 2.50
Ce 16.85 5.58
Pr 2.33 0.75
Nd 9.25 3.06
Sm 3.07 0.78
Eu 1.14 0.23
Gd 3.60 1.14
Tb 0.59 0.17
Dy 3.96 1.37
Ho 0.91 0.34
Er 2.95 0.86
Tm 0.35 0.12
Yb 2.28 0.72
Lu 0.52 0.15
Hf 1.80 0.26
Ta 0.29 0.16
Pb 5.44 1.72
Th 2.36 1.17
U 0.77 0.40
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Table 2.11: Average glass compositions

Olivine Gabbro σ Gabbro σ

n 19 4
SiO2 61.76 2.01 59.21 1.06
TiO2 1.25 0.31 1.35 0.15
Al2O3 15.18 0.84 13.81 0.62
Cr2O3 0.01 0.01 0.01 0.01
FeO 7.10 1.84 9.31 0.66
MnO 0.21 0.04 0.27 0.02
MgO 1.53 0.53 2.25 0.19
CaO 4.53 0.95 4.75 0.09
Na2O 3.99 0.73 3.29 0.31
K2O 1.88 0.27 2.12 0.13
P2O5 0.35 0.05 0.56 0.02
Cl 0.22 0.08 0.18 0.02
SO3 0.03 0.02 0.05 0.00
Total 97.79 1.32 96.94 1.44

LA-ICP-MS trace elements (ppm)
Li 13.13 3.71 13.35 8.13
Sc 22.52 0.94 24.56 0.42
V 257.11 46.99 138.56 2.21
Cr 3.55 3.81 2.65
Co 25.84 0.84 15.95 0.17
Ni
Cu 81.11 1.94 39.06 20.04
Zn 172.06 15.15 167.23 8.23
Rb 35.29 0.80 60.23 0.38
Sr 169.04 7.67 169.44 4.92
Y 38.36 0.42 61.04 1.09
Zr 136.22 1.76 280.25 3.91
Nb 5.46 0.89 18.57 0.23
Cs 1.44 0.10 1.97 0.17
Ba 231.06 4.25 423.85 1.79
La 15.32 0.29 35.11 0.41
Ce 35.86 0.05 74.23 0.83
Pr 4.30 0.23 9.14 0.30
Nd 20.88 1.08 41.08 0.72
Sm 4.95 0.07 9.46 0.26
Eu 2.12 0.37 2.29 0.11
Gd 6.35 1.20 9.57 0.13
Tb 1.10 0.28 1.76 0.29
Dy 6.27 0.21 10.58 1.19
Ho 1.51 0.19 2.11 0.08
Er 4.74 0.47 6.05 0.01
Tm 0.69 0.03 0.86 0.09
Yb 4.63 0.81 6.31 0.18
Lu 0.69 0.05 0.93 0.33
Hf 3.90 0.73 7.45 0.07
Ta 0.39 0.04 1.26 0.37
Pb 11.58 0.68 17.45 1.12
Th 5.20 0.22 12.61 0.18
U 1.78 0.04 3.68 0.08
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2.4.4 Oxygen Isotopes

Oxygen isotope analyses were made on the freshest samples from the most abundant rock

types with sufficient sample material (olivine gabbro, gabbro and gabbronorite) (Figure 2.18A,

Table 2.12). In olivine gabbros, plagioclase (n=3) has a δ18O of +6.3 to +6.4 ‰ (SMOW),

clinopyroxene (n=3) between +5.9 to +6.0 ‰, and olivine (n=2) between +5.4 to +5.6 ‰.

In gabbro, plagioclase (n=2) ranges between +6.6 and +7.2 ‰ and clinopyroxene (n=1) is

+5.9 ‰. In gabbronorite, plagioclase (n=2) ranges between 6.4 and 6.5 ‰ and the pyroxenes

(undifferentiated due to similar oxygen isotope fraction factors: Δcpx-opx < 0.1 Kyser et al., 1981;

Zheng, 1993) (n=2) are +5.9 to +6.1 ‰. The xenolith plagioclase compositions fall within the

range of plagioclase analysed by Druitt et al. (1999) (δ18O = +5.7 to +7.5 ‰, Figure 2.18A).

The δ18O composition of melts in equilibrium with the xenolith mineral phases were calcu-

lated assuming the following fractionation factors: Δol-melt = -0.7, Δplag-melt = 0.2, and Δpyx-melt
= -0.3 (Kyser et al., 1981; Kalamarides, 1986; Harris et al., 2004). These calculated melts range

between 6.1 and 7.0 ‰. These values are higher than typical MORB basalts (~5.7 ± 0.3 Ito et

al., 1987; Harmon and Hoefs, 1995).

Oxygen isotope thermometry (Figure 2.18B) is discussed in section 2.5.4.

Table 2.12: Oxygen isotope compositions of the xenolith mineral phases. Gabbronorite
pyroxnes are undifferentiationed ortho and clinopyroxenes. All other pyroxenes are
clinopyroxene. All units are δ.

Sample Rock Type Plag Olv Px
SAN 9-1-8-2 Olivine Gabbro 6.3 5.6 6.0
SAN 9-1-8-1 Olivine Gabbro 6.3 5.4 5.9
SAN 14-1-3-3 Gabbronorite 6.4 6.0
SAN 12-1-5 Gabbronorite 6.5 5.9
SAN 9-2-2 Gabbro 6.6 5.9
SAN 6-3-1 Gabbro 7.2
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Figure 2.18: Oxygen isotopic compositions of xenolith mineral phases. (A) δ18O compo-
sitions of the xenolith mineral phases, volcanic plagioclase and Aegean basement. The
volcanic plagioclase points are pumice plagioclase phenocrysts from Druitt et al. (1999).
The fields are lava plagioclase phenocrysts from Wyers (1987). Aegean basement litholo-
gies from Matthews and Schliestedt (1984), McGrath et al. (2017), Putlitz et al. (2000),
Bröcker et al. (1993) that may be considered potential contaminants of Santorini mag-
mas. Calculated δ18O of melts in equilibrium with the mineral phases are shown (see text
for more detail) for comparison with typical MORB compositions (Ito et al., 1987). The
xenolith rock types are coloured as in panel B. Symbols are used to highlight calculated
melts from analyses, and are not the same as in panel B. (B) δ18O of xenolith pyroxene
or olivine against coexisting plagioclase to assess mineral equilibration temperatures.
Solid lines show isotherms of equilibrium pyroxene-plagioclase fractionation, and dashed
lines show equilibrium isotherms of olivine-plagioclase fractionation. Circle symbols are
pyroxene-plagioclase pairs and square symbols are olivine-plagioclase pairs. The cross
indicates typical analytical uncertainty.
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2.5 Discussion

In the following discussion we will focus on variations between the geochemistry of the xenoliths

and the volcanic rocks to understand magma differentiation processes at Santorini. This is

combined with thermobarometry and oxygen isotopes to understand the intensive variables of

magma differentiation, and this is compared to other Aegean volcanic systems.

2.5.1 Comparison between the Plutonic Xenoliths and Santorini Vol-
canic Deposits

Major element whole-rock, melt inclusion and glass analyses from the xenoliths overlap almost

the entire compositional range of Santorini volcanic deposits for all major elements, gener-

ally following the well defined liquid line of descent (Figure 2.16). Many xenolith whole-rock

analyses fall off the liquid line of descent, indicating a subtractive assemblage/cumulate origin

(e.g. Morse, 1976; Cooper et al., 2016; Melekhova et al., 2017). The olivine gabbros and troc-

tolitic glomerocrysts plot at generally lower SiO2 (46-49 wt%) than the liquid line of descent

(>50 wt%), and are therefore considered to be the crystal fractionates that drive magmatic

differentiation until ~58 wt% SiO2 (Figure 2.16). The abundance of vesicular glass within these

xenoliths indicate super-solidus conditions, and therefore these xenoliths are likely fragments

of an entrained crystal mush (e.g. Hermes and Cornell, 1981; Passmore et al., 2012; Cooper

et al., 2016). At 58 wt% SiO2 Ti-magnetite joins the liquidus, recorded in cumulate gabbro

sample SAN 9-1-8-3 by elevated TiO2 and low SiO2 concentrations compared to the liquid line

of descent. Xenoliths with high Na2O (> 6.5 wt%) between 59 and 65 wt% SiO2 record the

Na-rich plagioclase assemblage that drives inflection and differentiation to low Na2O contents

at greater than 68 wt% SiO2 (Figure 2.16). The xenolith samples that overlap the liquid line of

descent (2 gabbronorite, 2 diorite, 1 gabbro), in contrast to those previously discussed, can also

be considered cumulates based on their texture, and the Mg-rich nature of xenolith orthopy-

roxene, which cannot be formed from in situ crystallisation of a typical orthopyroxene-bearing

andesitic to dacitic Santorini magma (Druitt et al., 1999).

Two distinct melt compositions have been identified at Santorini: pre-530 ka melts charac-

terised by low Zr and high Ba that formed the Akrotiri volcanic deposits, and the post-530 ka

melts, characterised by high Zr and low Ba. Xenoliths that contain the low Zr, high Ba signa-

ture of the Akrotiri volcanic deposits are found in the deposits of the 3.6 ka Minoan eruption

(“hornblende diorites” of Druitt, 2014), attributed to entrainment of fragments of an intrusion

compositionally distinct to modern erupted magmas (Druitt et al., 1999; Druitt, 2014). To test
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if any of the xenoliths from this study are derived from magmas different from their post-530

ka parental deposits we compared the Ba/Zr against SiO2 (Figure 2.16) of whole rock and glass

analyses, and Ba against Zr of whole rock, glass and calculated melts in equilibrium with the

mineral phases in the xenoliths (Figure 2.19). Sample SAN 9-3-2 from the Minoan deposit

in this study falls within the field of low Zr, high Ba Akrotiri volcanic deposits, following the

xenoliths of Druitt (2014). The remaining samples overlap the post-530 ka literature data, or lie

below due to their cumulate origin (Figure 2.19). This additionally includes gabbro sample SAN

4-4c, also from the Minoan eruption, which does not exhibit the Akrotiri geochemical signature,

suggesting it may be cogenetic to the Minoan eruption. Although propagated uncertainty is

substantial due to poorly constrained partition coefficients for Ba and Zr (~30% relative Bé-

dard, 2006, 2007, 2014), melts in equilibrium with a small subset of crystals exhibiting a high

Ba and low Zr character are found as individual crystals in some samples. These isolated high

Ba clinopyroxene crystals in the non-Minoan samples may tentatively represent xenocrysts in-

herited from the older Akrotiri volcanic deposits. The whole-rock plutonic xenolith dataset of

Druitt et al. (1999) shows two xenoliths from the Cape Therma 3 eruption containing a high

Ba, low Zr character that is possibly derived from older material, supporting that pre-530 ka

material may exist in eruptions other than the Minoan. Dominantly however, the xenoliths in

this study represent material derived from the post-530 ka magmas.

2.5.2 The Role of Intercumulus Melts in Crystallisation and Re-
equilibration

The diverse range of glass and melt inclusion compositions (47-82 wt% SiO2) within the xeno-

liths record trapping of melts encompassing almost the entire magmatic history of Santorini

(Figure 2.16). These compositions however do not always closely overlap the liquid line of

descent at Santorini, and this variation between whole rock, melt inclusion and intercumulus

glasses within individual samples raises the question whether the intercumulus melts represent

eruptable Santorini melts, or closed system fractionated uneruptable melts?

82



CHAPTER 2. PLUTONIC XENOLITHS FROM SANTORINI, GREECE: MAG-
MATIC DIFFERENTIATION AND POST-CUMULUS PROCESSES

83

0

250

500

750

1000

0 100 200 300 400 500
Calculated liquid Zr (ppm)

C
al

cu
la

te
d 

liq
ui

d 
B

a 
(p

pm
) Analysis Type

cpx
fsp
opx
Whole Rock

This Study
Olivine Gabbro
Gabbro
Diorite
Gabbronorite

Figure 2.19: Ba vs Zr plot highlighting the geochemical difference between the early
Akrotiri volcanic deposits (orange field and points within) and later <530 ka volcanic
deposits (grey points). Literature data sources as in Figure 2.17. Melts calculated in
equilibrium with xenolith clinopyroxene, orthopyroxene and plagioclase are shown (par-
tition coefficients from Bédard, 2006, 2007, 2014), as well as xenolith whole rock data.
Orange points represent melts in equilibrium with the Minoan gabbronorite (hornblende-
diorite of Druitt, 2014). Equilibrium melt calculations introduce an uncertainty of ~30%,
as indicated by the error bars.

Mafic and intermediate (<65 wt% SiO2) xenolith intercumulus glass compositions fall out-

side of the literature volcanic defined liquid line of descent for many elements such as Al2O3,

FeO, TiO2, and P2O5 (Figure 2.16), suggesting these may represent trapped intercumulus melts

not expressed by the volcanic products. Although the increase in P2O5 could be explained by

analysing boundary layer glasses, that are enriched in slow diffusing incompatible elements like

P2O5 (Baker, 2008), these glasses define trends of continued fractionation that do not exhibit

the inflection caused by Fe-Ti oxide and apatite saturation at ~55 wt% and 60 wt% SiO2 re-

spectively. They instead follow a trend produced by continued fractionation of plagioclase,

with olivine and clinopyroxene, lowering the melt Al2O3 to slightly lower than the liquid line

of descent. These samples are dominantly from the Lower Pumice 2 eruption. Interestingly,

in contrast, Lower Pumice 2 mafic scoria interstitial glass and melt inclusion data from Ger-

tisser et al. (2009) show the opposite trend, with compositions that contain significantly higher

Al2O3 concentrations (Figure 2.16 circled Al2O3 data) than the liquid line of descent. Although

post-entrapment crystallisation will increase the Al2O3 concentrations of melt inclusions hosted

in ferro-magnesian minerals (Figure A.1), it is not thought these high Al2O3 inclusions in mafic
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scoria (Gertisser et al., 2009) are a result of this as they are overlapped by two interstitial glass

analyses in their study, and two corrected clinopyroxene hosted inclusions in this study. This

tentatively suggests that the low Al2O3 melts in the cumulates may somehow be linked to the

high Al2O3 melts in the mafic scoria, and this decoupling is unique to the Lower Pumice 2

eruption, or the cumulates evolve on a different path to the mafic magma. High Al2O3 may

indicate a process supressing plagioclase saturation in the mafic intruding magma, but this is

outside the scope of this discussion.

The intercumulus glasses are usually more silicic than the melt inclusions within the same

samples, and are often out of equilibrium with the ferro-magnesian phases, based on mineral-

melt partition coefficients (e.g. KDcpx−melt
F e−Mg = 0.23 − 0.28 ± 0.06 Bédard, 2010; Putirka, 2008)

(Figure 2.20). This is additionally shown by regressing the Santorini liquid line of descent

Fe/Mg values against SiO2 (R2 = 0.75), and using KDcpx−melt
F e−Mg = 0.23 − 0.28 ± 0.06 to estimate

the SiO2 of melts that would be in equilibrium with clinopyroxene. The maximum melt SiO2 in

equilibrium with xenolith clinopyroxene is ~70 ± 3 wt% SiO2, lower than the values of up to 82

wt% SiO2 in the interstitial glasses. This indicates continued fractional crystallisation within

the cumulate.

The effects of continuing fractional crystallisation can be evaluated using clinopyroxene trace

element compositions and the calculated melts in equilibrium with the clinopyroxenes. The

equilibrium calculated melt trace element profiles (Figure 2.21) generally overlap volcanic whole-

rock concentrations, and the range of melt inclusion and interstitial glass compositions from

the olivine gabbros (Figure 2.17), indicating the bulk of clinopyroxene crystallisation is from a

mafic to intermediate melt. For those rocks, there is little evidence for significantly prolonged

fractional crystallisation recorded in the clinopyroxene trace element chemistry alone, although

this may be sampling bias from mostly crystal core analyses. For example, gabbronorite SAN

12-2-2 show the progressive enrichment of trace element concentrations in clinopyroxene with

increasing crystallisation of the intercumulus melt (Figure 2.21B) over a range of Mg# from

79 to 56. Trace element enrichment correlated with declining Mg# indicates the enrichment is

controlled by fractional crystallisation of the intercumulus melt. Plagioclase is the dominant

intercumulus mineral phase, and it is often strongly normal zoned to albite (Figure 2.12C). The

role of feldspar and fractional crystallisation on enriching the trace element concentrations is

clearly reflected in the Eu anomaly in clinopyroxene, which is strongly correlated to enrichment

in REEs such as La (Figure 2.9D). Gabbronorite SAN 9-1-1-3 has a restricted Mg# range

between 76 and 72, yet the highest trace element enrichment of any xenolith and the largest
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Eu anomaly (Figures 2.9, 2.21B). This indicates clinopyroxene crystallisation occured after

significant feldspar fractionation, perhaps under different P-T-fO2-H2O conditions to the other

xenoliths, suppressing early clinopyroxene fractionation.

This in situ trapped interstitial melt crystallisation, or post-cumulus crystallisation, has

been recognised in layered intrusions and plutons to significantly influence the chemistry, in-

cluding increasing incompatible trace element concentrations, of minerals that crystallise from

or reequilibrate with these late stage melts (e.g. Barnes, 1986; Bédard, 1994; Borghini and

Rampone, 2007). To test if the clinopyroxene REE compositions and equilibrium melts can

be produced from closed system fractional crystallisation of a Santorini melt we modelled the

REE concentrations during equilibrium crystallisation of a Santorini basalt (Bailey et al., 2009

sample MVD-T 00-10) over 3 steps (c.f. Borghini and Rampone, 2007). The bulk partition

coefficient (D) was estimated as 0.05 for the entire crystallisation, approximating a fractionating

assemblage comprising plagioclase and pyroxenes (Bédard, 2006, 2007, 2014; Sun and Liang,

2012; Sun et al., 2017), and a bulk D of 0.5 for Eu, based on the high modal proportion of

plagioclase and large Eu anomalies in the xenolith mineral phases. 0.05 was chosen for each ele-

ment partition coefficient because although DREE decreases with ionic radius in the pyroxenes

(Bédard, 2006, 2014; Sun and Liang, 2012), it increases in plagioclase (Bédard, 2007; Sun et al.,

2017), essentially cancelling out the differences. For example, increasing the bulk D by 0.01 for

each step from La to Lu produces strongly negative profile slopes,not observed in the xenolith

clinopyroxene (Figure 2.9). This simplified model does not account for the weak amphibole

fractionation signature in the more evolved REE profiles at Santorini (discussed below) and a

changing mineral assemblage during differentiation (olivine in most primitive stages, Fe-Ti ox-

ides and apatite later), however as a first order estimation, complete equilibrium closed system

crystallisation of a mafic cumulate comprising plagioclase and pyroxenes and a trapped inter-

cumulus melt can produce the full range of clinopyroxene REE compositions (Figure 2.9A) and

equilibrium melts (Figure 2.21) observed in the xenoliths. The final fractionating assemblage

in most gabbros, diorites and gabbronorites is extremely albite-rich plagioclase, with sometimes

K-feldspar and quartz. Pyroxenes are not stable in this final evolved melt, and are last stable

in melts with a maximum of ~70 wt% SiO2, as discussed above. This clinopyroxene-absent as-

semblage would push the bulk D of the fractionating final assemblage to lower values (Bédard,

2006, 2014; Sun et al., 2017), resulting in even stronger enrichment in incompatible elements in

the intercumulus melts. For example, a small change from D = 0.05 to 0.04 over the final 25%

of crystallisation increases calculated melt La concentration from 1475 ppm to 1844 ppm, which

85



86 2.5. DISCUSSION

further supports in situ fractional crystallisation as a process driving trace element enrichment.

An alternate explanation for the highly enriched clinopyroxene trace element compositions

is re-equilibration with the crystallising intercumulus melt. This ‘trapped liquid shift’ (Barnes,

1986) drives ferromagnesian mineral compositions to iron enrichment and lower Mg# values,

and diffusive homogenisation of these mineral phases. As both crystallisation from a trace

element enriched melt and reequilibration with this melt will ultimately produce a similar end

result of trace element enriched mineral phases, it is difficult to establish the the exact process

occuring. Re-equilibration is apparent however in some gabbronorite samples that contain

rare olivine. This olivine (Fo47-69) has a reaction rim and Fo values that lower than mafic

equilibrium olivine gabbro and troctolitic glomerocrysts values (Fo74-84) and lava phenocrysts

(Fo68-93, Figure 2.7). Temperature estimated from Ca in olivine (Shejwalkar and Coogan, 2013,

Figure 2.7) and mineral-melt thermometry (Figure 2.24) show re-equilibration at temperatures

as low as ~800°C, either with the intercumulus melt or with the cumulus clinopyroxene and

orthopyroxene in the same samples. Whichever the process, equilibration is incomplete in

these samples, evidenced by the reaction rims around the olivine. REE diffusion is slow in

clinopyroxene (Van Orman et al., 2001), so although the major element chemistry may have

been influenced by equilibration with the crystallising intercumulus melt, clinopyroxene should

retain REE zonation from post-cumulus overgrowth crystallisation. This is shown in sample

SAN 12-2-2 (Figure 2.21B), demonstrating enrichment of clinopyroxene rims relative to cores

due to trapped melt crystallisation and subsequent REE enrichment.

In summary, many xenoliths show evidence that the trapped intercumulus melts may not be

the direct melts that when extracted produce the Santorini liquid line of descent. Extraction of

melts at earlier stages of cumulate evolution may be able to produce compositions comparable to

the erupted Santorini magma (c.f. Flaherty et al., 2018), shown by melt inclusion compositions

across the xenolith types generally overlapping the liquid line of descent. Further cooling and

crystallisation from this point would cause the cumulate mush to eventually reach the critical

crystallinity of ~50%, where rheological lock-up occurs (Marsh, 1981, 1988a, 1996; Vigneresse

et al., 1996) and melts cannot be extracted. rhyoliteMELTS (version 1.2; Gualda et al., 2012;

Ghiorso, 2016) modelling of a Santorini Lower Pumice 2 rhyodacite (Cadoux et al., 2014) at 200

MPa indicates this lock-up occurs at around 750°C (Figure 2.22), consistent with thermometry

of plagioclase crystal rims and intercumulus crystals in the gabbronorites (see thermobarometry

below). Further fractionation from this point in the Santorini xenoliths can continue in a

closed system, producing unique xenolith intercumulus melt and mineral compositions in some
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samples. Recharge of mafic magma into silicic mush (e.g. Andújar et al., 2016) would result in

stagnation of the mafic magma due to the density and rheological contrast, causing it to cool,

crystallise and reach volatile saturation. Release of these volatiles into the silicic mush enables

efficient heat transfer and remobilisation of the silicic mush (Huber et al., 2010), enabling

the evolved intercumulus melts and/or cumulus crystals to mix with the main magma body.

Evidence of cumulate remobilisation processes is shown for example by the presence of the

troctolitic glomerocrysts in the Nea Kameni lavas, and the Lower Pumice 2 pumice containing

the corroded core plagioclase found in the olivine gabbros (see Gertisser et al., 2009). This may

also produce in part some of the mixed melt compositions shown on the liquid line of descent

(Figure 2.16). Recognition and quantification of the extent of mixing with these trapped melts,

or antemelts, is difficult (e.g. Bragagni et al., 2014) and requires further study.
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Figure 2.20: Evaluation of equilibrium between ferromagnesian minerals and intercum-
ulus melt.
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Figure 2.21: Calculated melts in equilibrium with xenolith clinopyroxene compared to
literature volcanic whole-rocks (light grey). A) Average calculated melts in equilibrium
with xenolith clinopyroxene in each sample. See the text for discussion on the choice of
partition coefficients. B) Two selected samples that show either a wide range of REE
concentrations (SAN 12-2-2) or highly enriched compositions (SAN 9-1-1-3)
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Figure 2.22: RhyoliteMELTS (version 1.2; Gualda et al., 2012; Ghiorso, 2016) mod-
elling of three compositions of Santorini magmas: Basalt (Balos lava, Andújar et al.,
2015), Andesite (Upper Scoria 2, Andújar et al., 2016) and rhyodacite (Lower Pumice
2, Cadoux et al., 2014), showing the temperatures a crystal mush would reach the rhe-
ological lock-up crystallinity of ~50% (Marsh, 1981). All models were run at 200 MPa
and at the QFM oxygen fugacity buffer.

2.5.3 Evidence for Cogenetic and Non-cogenetic Xenoliths

Mineral compositions across the plutonic xenoliths generally overlap those of the volcanic de-

posits (Figures 2.7, 2.8, 2.11, 2.12), but also extend to lower values values in key compositional

parameters (An in plagioclase, Mg# in pyroxenes, Fo in olivine) that demonstrate significant

magmatic differentiation. There is insufficient published mineral chemical data on an eruption

by eruption basis to conclusively test if the xenoliths are cogenetic to the deposits they are

found in (Appendix Figures A.12, A.13), but the presence of glass in some xenoliths indicates

super-solidus conditions and entrainment of crystal mush (e.g. Hermes and Cornell, 1981; Pass-

more et al., 2012; Cooper et al., 2016), and therefore at least some xenoliths are likely to be

cogenetic. The Lower Pumice 2 eruption has a wide variety of xenoliths, and a comparison

between volcanic and xenolith materials is possible using chemical data from minerals in the

pumice deposits (Gertisser et al., 2009).

Clinopyroxene chemistry from the Lower Pumice 2 xenoliths and volcanic deposits (Gertisser

et al., 2009) are shown in Figure 2.23. The clinopyroxene of the olivine gabbros composition-

ally overlap the quenched blebs of intruding mafic magma found within the Lower Pumice 2

rhyodacitic pumice, suggesting they are cogenetic. Plagioclase with resorbtion textures and
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melt-infiltrated cores are present in the olivine gabbro xenoliths, and antecrysts of these are

also found in the pumice, indicating they are cogenetic (Figure 2.6C, also Figure 4c of Ger-

tisser et al., 2009). The gabbro xenolith clinopyroxene overlaps the chemistry of clinopyroxene

found within the pumice, and similarly the presence of xenolith glass indicates sampling of a

cogenetically crystallising cumulate.

The diorite and gabbronorite samples plot below the expected compositional trend between

the pumice and pumice groundmass, and plot within the low Ti-Al clinopyroxene compositional

group observed in xenoliths sampled from many eruptions (Figure 2.8). This compositional

group is not matched by any experimental clinopyroxenes synthesised from Santorini composi-

tions (Cadoux et al., 2014; Andújar et al., 2015, 2016). Instead, they are best matched by major

element compositions (Al2O3, TiO2, CaO, Figure 2.23) of some hydrothermally altered clinopy-

roxenes (Manning and Bird, 1986; Rose and Bird, 1994; Good et al., 1997; Martinez-Serrano,

2002; Marks et al., 2010), suggesting low Ti and Al as a way to identify hydrothermally al-

tered clinopyroxenes. Hydrothermal alteration is pervasive in many xenoliths and although the

freshest samples were chosen for analysis, alteration may have modified the crystal chemistry

without changing the pyroxenes fully to amphibole (Figure 2.9B, C). Not every sample with

evidence of alteration has anomalous chemistry however, and some samples with low Ti-Al have

clinopyroxene REE profiles consistent with unaltered samples. In the case of Lower Pumice 2,

the presence of fresh glass-bearing olivine gabbros and gabbros with chemistry that match the

volcanic deposits, and altered gabbronorites and diorites within the same deposit indicate that

the gabbronorites and diorites may be entrained fragments of previously altered cumulates from

a previous eruption or intrusion (c.f. Druitt et al., 1999), whilst the olivine gabbro and gabbros

are samples from a crystallising Lower Pumice 2 crystal mush. This has implications for work

that is based on interpreting individual eruptions, as this indicates that not only a percentage of

the lithic cargo in the eruptions may be derived from earlier non-cogenetic material, individual

crystals could become entrained from older cumulate and mixed into the magmatic system.

Identification of low Ti-Al clinopyroxenes only serves to highlight crystals derived from altered

older material, which may not always be the case. Relict mineral cores are a common feature

in the Santorini volcanic deposits, and detailed studies (e.g. Fabbro et al., 2018) are required

to assess their provenance.

90



CHAPTER 2. PLUTONIC XENOLITHS FROM SANTORINI, GREECE: MAG-
MATIC DIFFERENTIATION AND POST-CUMULUS PROCESSES

91

Bleb Groundmass

Pumice Groundmass

Rims

0

2

4

6

8

0.4 0.5 0.6 0.7 0.8
Mg#

A
l 2

O
3

This Study
Olivine Gabbro
Gabbro
Diorite
Gabbronorite
Pumice

Published Data
Bleb
Hydrothermally
 altered cpx
Pumice

Bleb Groundmass

Pumice Groundmass

Rims

0

1

2

3

4

0.4 0.5 0.6 0.7 0.8
Mg#

T
iO

2

This Study
Olivine Gabbro
Gabbro
Diorite
Gabbronorite
Pumice

Published Data
Bleb
Hydrothermally
 altered cpx
Pumice

Figure 2.23: Comparison of Lower Pumice 2 phenocryst and xenolith clinopyroxene
compositions. Published and unpublished volcanic data from Gertisser et al. (2009),
Cadoux et al. (2014) and Druitt et al. (2016). Hydrothermal clinopyroxene compo-
sitions from Manning and Bird (1986), Rose and Bird (1994), Good et al. (1997),
Martinez-Serrano (2002) and Marks et al. (2010).

2.5.4 Xenolith Intensive Variables and Magma Plumbing.

To place constraints on the formation conditions of the xenoliths, we utilised thermobarometric

models (as outlined in the methods and Appendix A.2) and comparison between xenolith miner-

als and experimental data (Cadoux et al., 2014; Andújar et al., 2015, 2016). Olivine, plagioclase,
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orthopyroxene and clinopyroxene thermobarometric models indicate the entire xenolith suite is

formed at pressures approximately <350 MPa (±~100 MPa model uncertainty), corresponding

to depths of approximately <11 km when assuming a Santorini crustal density of 2640 kg m–3

(Konstantinou, 2010) (Figure 2.24). The pressure estimates cover a range of pressures from 0

to 350 MPa, and it is difficult to differentiate rock types based on pressures due to relatively

large model errors. Olivine gabbro mineral cores record pressures of less than 200 ± 100 MPa,

whilst the other lithologies span the full pressure range. Temperature and pressure estimates

are generally positively correlated. Some clinopyroxene rim analyses produce higher pressure

estimates than the cores. We believe these to be spurious results caused by rapid element

uptake during cooling (Mollo et al., 2010a) and therefore are not shown.

There is no accurate barometer for the troctolitic glomerocryst sample (c.f. Putirka, 2008),

however, clinopyroxene in the rim around the sample and interstitial within produce pressures

of 250 ± 100 MPa. Based on the estimated temperature of 936 ± 55°C and their occurrence as a

reaction rim around the xenolith or texturally infiltrate crystals, we interpret these as estimates

of a later stage reservoir, and not that of the pressure of original formation of the troctolitic

cumulates.

Temperature estimates range from 1124 ± 55°C for plagioclase crystallisation in the troc-

tolitic glomerocryst to 731 ± 33°C for rim and intercumulus plagioclase in the gabbronorites.

Individual samples can record 200°C variation between mineral core and rim/intercumulus tem-

peratures. The olivine gabbros and troctolitic glomerocryst record the highest temperatures,

and the gabbros, gabbronorites and diorites generally overlap at lower temperature ranges.

There are temperature variations between thermometric results based on the different mineral

phases. Plagioclase temperatures record crystallisation throughout the entire differentiation

history, consistent with petrography and major element geochemistry, from 1124 to 731°C.

Clinopyroxene crystallises over the 1063 to 893°C temperature range, orthopyroxene between

1015 and 871°C. Olivine crystallises between 1105 and 1010°C, and is found as texturally par-

tially re-equilibrated rare xenocrysts in gabbronorites, recording temperatures between 960 and

796°C. These lower re-equilibration temperatures estimated from mineral-melt thermometry are

additionally consistent with Ca-in-olivine thermometry (Shejwalkar and Coogan, 2013, Figure

2.7), although using the model outside its calibration range (1170 to 1322°C c.f. Melekhova et

al., 2017; Camejo-Harry et al., 2018).
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Temperatures estimated from oxygen isotope fractionation (Zheng, 1993) between the xeno-

lith mineral phases is in broad agreement with the mineral-melt derived temperatures (Fig-

ure 2.18), indicating oxygen isotope equilibration at magmatic temperatures. Olivine gabbro

temperatures range between 935 and 1304°C (Ol-plag, cpx-plag), gabbronorite temperatures

between 805 and 1184°C (px-plag), and 899°C (cpx-plag) for the gabbro. Gabbronorite sample

SAN 14-1-1-3 however has a calculated plagioclase-pyroxene temperature of 1309°C, which is

higher than predicted from mineral-melt thermometry and expected from the relatively evolved

mineral compositions. This indicates disequilibrium between the plagioclase and pyroxenes in

the sample. Although potential accidental incorporation of albite-rich rim and intercumulus

plagioclase would result in higher estimated temperatures (Zheng, 1993), this alone cannot

produce such high calculated temperatures, and disequilibria is required.

A comparison between measured mineral compositions and compositions produced exper-

imentally under controlled P-T conditions are useful to evaluate the results of the thermo-

barometric calculations and constrain crystallisation conditions. Comparisons of the mineral

chemistry of the olivine gabbro mineral assemblage to experimental data of Andújar et al.

(2015) match the 200-400 MPa 1040°C experiments, consistent with the mineral-melt thermo-

barometry above. Andújar et al. (2016) found that Santorini melt FeO/MgO is controlled

by the depth of crystallisation, and found this parameter can be used as a geobarometer. A

comparison beween olivine gabbro and gabbro glass and melt inclusion FeO/MgO vs SiO2
compositions to the experimental data of Andújar et al. (2015) and Andújar et al. (2016)

additionally indicates 200-400 MPa formation pressures. Gabbronorite melt inclusions match

experimental melts produced in experiments at 100-200 MPa experiments. The mineral assem-

blage olivine, plagioclase, clinopyroxene and orthopyroxene found in three gabbronorite samples

are matched by 400 MPa experiments, however the olivines in these gabbronorite xenoliths is

likely xenolithic due to presence of reaction rims.
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Figure 2.24: Thermobarometry of the Santorini xenoliths. As discussed in the Appendix
A.2, some models have been corrected to account for systematic overestimation at low
pressure. Model uncertainty bars are 1 standard deviation of the mean pressure or
temperature calculated, which is generally less than the model uncertainty (c.f. Putirka,
2008). (a) the results from thermometric models that lack a reliable paired barometric
equation. A pressure of 200 MPa is assumed. Temperatures vary <10°C/100 MPa,
which is insignificant in the 0 to 350 MPa range estimated from barometric models. (b)
the results from Putirka (2008) equations clinopyroxene 31, 33 and 32b, orthopyroxene
29a and 29b, and the Neave and Putirka (2017) clinopyroxene barometer. Pressures
estimated from crystal rims are not shown due to anomalously high (>600 MPa) and
low < -200 MPa) estimates. These anomalous pressures may be due to disequilibria
in the crystal rims from fast cooling, which promotes uptake of certain elements such
as Al and Ti (Mollo et al., 2010a). Additionally pressure estimates from the low Ti-
Al clinopyroxene/orthopyroxene samples are not shown due to the negative pressures
estimated. Temperature estimates from Fe-Ti oxides are from 2.25.

The olivine gabbro xenoliths generally lack Fe-Ti oxides, excluding micrometre sized crys-

tals of magnetite attached to the crystal rims at the contact with the intercumulus glass for

estimating oxygen fugacity and temperature using two-oxide models. However, fO2 can be esti-

mated using the clinopyroxene-plagioclase-melt oxybarometer of France et al. (2010). We have

not used the France et al. (2010) model on more evolved lithologies as the interstitial glasses

are not in equilibrium with the clinopyroxene (see intercumulus glass discussion above, Figure

2.20). Pairings of mineral cores with melt inclusions, and rims with intercumulus glass in the

olivine gabbros and the glass-rich gabbro SAN 9-1-8-3 give a range of values between NNO+1

to NNO+1.9 (1σ uncertainty on individual estimates is 0.7-2.28, 1σ uncertainty per sample
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is ±0.5) with no significant difference between core-melt inclusion and rim-intercumulus glass.

These estimates are close to the experimental estimates (NNO+1) for Upper Scoria 1 andesitic

magma (Andújar et al., 2016) and two oxide estimates for rhyodacitic magma (~NNO + 0.5

Cottrell et al., 1999), although higher than previously determined for mafic magmas from two

oxide oxybarometry and experimental constraints (~QFM Gertisser et al., 2009; Andújar et al.,

2015). Oxygen fugacity estimates for gabbros and gabbronorites based on two oxide oxybarom-

etry (ILMAT Lepage, 2003) indicate conditions of NNO -1 to +2 (Figure 2.25). Temperatures

range from 903°C to 605°C. The lower values in this range of temperatures, combined with the

high estimated oxygen fugacities, are likely a combination of both subsolidus storage of the

xenoliths and/or hydrothermal alteration of some of the xenoliths.
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Figure 2.25: Temperatures and oxygen fugacity estimated from coexisting magnetite and
ilmenite pairs. Light grey literature values are Kameni dacite and diorite nodule values
from Druitt (2014), Lower Pumice 2 pumice and mafic bleb values from Gertisser et al.
(2009), pumice values from Cadoux et al. (2014) (Lower Pumice 1, Lower Pumice 2,
Cape Riva, Minoan), and Minoan pumice values from Panienka (2012).

Water contents estimated from plagioclase-melt hygrometry (Putirka, 2008) range between

2 to 7 wt%. The lowest water contents are estimated for the troctolite crystal clot sample with

2 wt% H2O, Olivine gabbro water contents are 2.4 (crystal core) to 4.4 wt% (microlites), gabbro

3.5 to 5.9 wt%, gabbronorite 3.1 to 6.9 wt% and diorite 4.7 to 7 wt%. These are comparable

to the measured values from mafic to felsic volcanic products at Santorini (Panienka, 2012;

Cadoux et al., 2014; Druitt et al., 2016).
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Implications for the Santorini Plumbing System from Plutonic Xenoliths

Pressures estimated from mineral-melt thermobarometry and comparison with experimental

mineral and glass compositions indicate formation at pressures less than 400 MPa for the entire

xenolith suite analysed, over a temperature range from 1124 to 749°C (excluding Fe-Ti oxide

temperatures) at a fO2 of ~NNO -1 to +2 and 2 to 7 wt% H2O. This shows a dominant role

of upper to mid crustal magmatic differentiation. A weak trend of decreasing pressure with

increasing magmatic evolution and decreasing temperature can be noted overall and within indi-

vidual model results, however large uncertainty with condensed phase barometry and variation

between different barometric models preclude more precise interpretation. Overlap between

cumulate mineral compositions and volcanic phenocrysts indicate both form at shallow to mid

crystal depths from already partially differentiated mantle melts. These results are however in

agreement with previous work (Druitt et al., 2016 and references within) indicating significant

differentiation of mafic melts at Santorini occurs in the mid to upper crust. The weak shal-

lowing trend is consistent with experimental work (Andújar et al., 2015, 2016) and core-to-rim

pressure decreases in Minoan phenocrysts showing deeper (~320 MPa) magma generation and

later shallow temporary (100-200 MPa) storage depth (Cottrell et al., 1999; Druitt et al., 2016).

Ultramafic cumulates from the lower crust related to the parental mantle-derived melts have

not yet been found at Santorini.

2.5.5 Volatile Behaviour: Inferences from Plutonic Xenoliths

The S and Cl concentrations in the xenolith melt inclusion and glasses (Figure 2.16) closely

follow the trends defined by the literature data from basalt to rhyolitic compositions, with S

decreasing and Cl increasing with increasing SiO2. Pyrrhotite, although present in Santorini

magmas (Gertisser et al., 2009; Cadoux et al., 2014; Druitt et al., 2016), is not present in large

enough quantities in the magma (« 1 vol%) to affect the melt S concentrations significantly

(Druitt et al., 2016). Pyrrhotite has additionally not been observed in the xenoliths. It follows

that removal of S from the xenolith cumulate melts occurs instead via open system exsolution

into a free vapour phase, as demonstrated for melt inclusions and glasses trapped in the volcanic

deposits (Michaud et al., 2000; Gertisser et al., 2009; Cadoux et al., 2014; Druitt et al., 2016).

Cl behaves incompatibly during differentiation at Santorini (Figure 2.16), and the few plutonic

xenolith samples that show enrichment in Cl compared to the literature volcanic values may be

a result of intercumulus melt crystallisation, which enriches this melt in incompatible elements,

discussed previously.
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2.5.6 Crustal Contamination Contraints from the Plutonic Xeno-
liths

The range of oxygen isotopic compositions in both the xenoliths (this study) and volcanic de-

posits (Wyers, 1987; Druitt et al., 1999), and their calculated equilibrium melts (xenolith: δ18O

= 6.1-7.0 ‰, volcanic deposits 5.5-7.3 ‰) generally exceed that expected from crystallisation

from an uncontaminated mantle-derived magma (~5.7 ± 0.3 Ito et al., 1987; Harmon and Hoefs,

1995, Figure 2.18). Closed system differentiation of a MORB composition to silicic compositions

(75 wt%) would increase the δ18O by only <~ 0.5 ‰ (Eiler, 2001; Bindeman, 2008). The range

of xenolith whole-rock and trapped glass major element chemistry (Figure 2.16) show that the

xenoliths are formed throughout the differentiation history of Santorini magmas, and therefore

much of the xenolith oxygen isotope variability can be explained by fractional crystallisation

(c.f. Druitt et al., 1999). Higher values of melts with up to δ18O = 7.0 ‰ require small amounts

of crustal assimilation. Taking a mean value of the potential contaminent basement lithologies

in Figure 2.18 as 11.2 ‰ requires 10-20% crustal contamination to produce the elevated δ18O

melts in the xenoliths. This is consistent with the results from radiogenic isotopic systems for

the volcanic deposits by Druitt et al. (1999).

2.5.7 Comparison with Aegean Plutonic Xenoliths

Plutonic xenoliths are not exclusive to Santorini, and are additionally present at Nisyros (Di

Paola, 1974; Klaver et al., 2017, 2018), situated towards the eastern end of the South Aegean

Volcanic Arc. The xenolith suite at Nisyros has a richer variety of cumulates than Santorini,

containing gabbros and olivine gabbros from upper crustal reservoirs, similar to Santorini,

and additional deep crustal cumulates such as hornblende-wehrlites. Deep crustal amphibole-

bearing cumulates are additionally characteristic of many other worldwide arcs, such as the

Lesser Antilles (Arculus and Wills, 1980; Tollan et al., 2012; Stamper et al., 2014; Cooper et

al., 2016; Camejo-Harry et al., 2018), Andes (Costa et al., 2002), Japan (Tiepolo et al., 2012)

and Solomon Islands (Smith, 2014). Primary amphibole is rare however at Santorini, only

found as microlites within the olivine gabbro glass and rare intercumulus crystals in the more

evolved xenoliths (c.f. Druitt et al., 1999), showing limited amphibole stability in shallow, lower

temperature intermediate Santorini melts. Pressures estimated from these amphiboles are 90

to 250 MPa (using Ridolfi and Renzulli, 2012; Putirka, 2016), consistent with the upper to

mid-crustal pressures estimated from clinopyroxene barometry, also consistent with rare am-

phibole in the Lower Pumice 2 eruption (430 MPa estimated in Gertisser et al., 2009; P=~200
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MPa when using Ridolfi and Renzulli, 2012). Post-Akrotiri magmas at Santorini (< 530 ka)

are characteristically amphibole free, and they do not show clear geochemical tracers of am-

phibole fractionation (Davidson et al., 2007), such as low to near constant Y or decreasing

Dy/Yb during differentiation (Elburg et al., 2014) (Figure 2.26). Plutonic xenolith whole-rock

compositions, glasses, melt inclusions and mineral chemistry additionally follow the amphibole-

free differentiation trend, consistent with their anhydrous mineral assemblage. Gabbronorite

sample SAN 9-3-2 (Minoan eruption) falls within the amphibole-bearing differentiation trend,

consistent with previous discussion showing it to be a xenolith derived from earlier high Ba, low

Zr Akrotiri volcanic deposits or an unerupted intrusion compositionally similar to the Akrotiri

deposits (Druitt et al., 1999; Druitt, 2014). The late stage intercumulus amphibole in the xeno-

liths has a limited effect on the geochemical signature of Santorini magmas, and reflected in

the weak inflection in Figure 2.26 to flatter profiles (c.f. Elburg et al., 2014). The differing role

of amphibole in the geochemical signatures at Santorini compared to Nisyros (and additionally

Methana in the western arc segment) can be related to the differing depths of primitive mag-

matic differentiation (< 400 MPa at Santorini, both ~200 MPa and > 500 MPa at Nisyros),

and the composition of the source magmas (Druitt et al., 1999; Elburg et al., 2014; Andújar et

al., 2015; Klaver et al., 2017, 2018).

2.6 Conclusions

Plutonic xenoliths collected from across the stratigraphy of Santorini are troctolite, olivine

gabbro, gabbro, diorite and gabbronorites. Texturally and chemically they can be considered

cumulates to the volcanic succession. Mineral chemistry generally overlaps that of the volcanic

phenocrysts but also extends to differentiation indices that demonstrate a higher degree of dif-

ferentiation (low Fo, An, Mg#) in the intercumulus. Oxygen isotopes show a small influence

of crustal assimilation during magmatic differentiation (<20%). Significant mineral trace el-

ement enrichment is observed in some samples, related to post-cumulus crystallisation of or

equilibration with trapped intercumulus melts. Cumulate remobilisation processes may cause

these cumulus crystals and trapped melts to mix into the magmatic system. Thermobarom-

etry shows the entire xenolith suite is formed over a wide temperature range between ~1100

to 750°C, at shallow to mid crustal depths (< 400 MPa) from a partially differentiated deep

crustal primitive mantle melt. This shallow magma differentiation at Santorini inhibits signifi-

cant amphibole fractionation, in contrast to Nisyros and Methana to the east and west of the

South Aegean Volcanic Arc respectively. Although plutonic xenoliths may not be common in
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all volcanic deposits of all volcanoes, the understanding of the processes occuring during arc

magma petrogenesis and cumulate mush generation gained from studying them is applicable

worldwide, and warrants further study.
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Figure 2.26: Geochemical tracers of amphibole fractionation applied to Santorini plu-
tonic xenoliths. A) Y vs SiO2 variation at Santorini. Xenolith melt inclusion and
intercumulus glass (upwards triangles, coloured by Dy/Yb) and whole rock (downwards
triangles) for comparison with literature volcanic data. The influence of amphibole (flat
Y with differentiation, decreasing Dy/Yb) is only clear at Akrotiri and at >65 wt%
SiO2later. B) Calculated melt Y in equilibrium with clinopyroxene and orthopyroxene
against Mg# as a differentiation index. A similar trend to the Y vs SiO2 is shown, with
increasing Y until an inflection at higher differentiation (lower Mg#). Uncertainty in Y
equilibrium melt calculations are ~30% and ~ 50% for cpx and opx relative respectively
(Bédard, 2007, 2014).
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Chapter 3

Magmatic and metasomatic
effects of magma-carbonate
interaction recorded in

calc-silicate xenoliths from
Merapi volcano (Indonesia)

This chapter has completed first revision for publication at the Journal of Petrology. The

work was reviewed positively by Massimo D’Antonio and Anastassia Borisova. This work

is in collaboration with the PhD supervisors Ralf Halama and Ralf Gertisser, Katie Preece

(University of Swansea), Valentin Troll and Frances Deegan (Uppsala University). The samples

were collected by Gertisser, Preece, and Troll. Electron microprobe data was collected myself

with an additional dataset provided by Deegan. This manuscript was written by myself with

input from all authors at various stages.

101



102 3.1. INTRODUCTION

3.1 Introduction

Calc-silicate (skarn) xenoliths are found within the deposits of many hazardous arc volcanoes

worldwide, including Popocatépetl (e.g. Goff et al., 2001), Vesuvius (e.g. Fulignati et al., 2001),

Merapi (e.g. Chadwick et al., 2007), Colli Albani (e.g. Di Rocco et al., 2012) and Nisyros

(Spandler et al., 2012). Formed as a result of interaction between crustal carbonate and the

host magmatic system, these xenoliths preserve evidence of complex reaction processes that can

have profound impact on the host magmatic system, including altering magmatic differentiation

paths (e.g. Iacono-Marziano et al., 2008), influencing eruptive dynamics (e.g. Freda et al., 2011;

Troll et al., 2012; Carr et al., 2018), and liberating large volumes of crustal CO2 into the

atmosphere (e.g. Mason et al., 2017).

Much of the knowledge about crustal magma-carbonate interaction processes is derived

from diverse approaches. Isotope mass balance calculations (e.g. Troll et al., 2012, 2013; Jolis

et al., 2015) have shown that large volumes of crustal carbonate, up to 30%, are incorporated

into some volcanic systems, and in situ stable isotopes have demonstrated decarbonation is

highly efficient in magmatic systems (Whitley et al., 2019, Chapter 4). Experimental magma-

carbonate studies (e.g. Iacono-Marziano et al., 2008; Deegan et al., 2010; Jolis et al., 2013;

Blythe et al., 2015; Carter and Dasgupta, 2016) have further demonstrated how magmatic

melt differentiation paths are modified towards silica undersaturation in mafic melts, and that

magma-carbonate interaction may be extremely rapid (syn-magmatic), operating on the order of

minutes to hours. Moreover, detailed petrographical and geochemical studies of the individual

xenoliths have provided insights into the architecture of subvolcanic skarn contact aureoles

(Matthews et al., 1996; Fulignati et al., 2004), the depth of magma-carbonate interaction from

fluid inclusions (Clocchiatti et al., 1982), xenocryst incorporation into the magma and skarn

recycling (Chadwick et al., 2007; Jolis et al., 2015), changes in magmatic redox conditions and

phase equilibria (Wenzel et al., 2002), and the economic metallogenic potential of magmatic

fluids that interact with the country rock (Fulignati et al., 2013).

In this study we present a detailed analysis of the petrography, mineralogy and geochemistry

of calc-silicate xenoliths from the 1994-2010 eruptions of Merapi volcano, Indonesia. We demon-

strate that these xenoliths represent fragments of either complete replacement of carbonate

wall rock to calc-silicate mineral assemblages around the magma reservoir margins, or are tran-

sient fragments of entrained carbonate which is caught in the process of being metamorphosed

within the magma itself. The xenoliths record evidence of interaction with a magmatic-derived

halogen-bearing fluid that produced exotic halogen-bearing mineral phases, whilst enriching
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the xenoliths in economically important metals such as copper and iron, and by analogy the

more extensive skarn system below Merapi. We also show that traditional mineral-melt thermo-

barometry and fluid inclusion analysis can be applied to some of the xenoliths, and we present a

new calibration of a single clinopyroxene crystal oxybarometer to determine intensive variables

(T, P, fO2) during xenolith formation.

3.2 Geological Background

Merapi is the most active of Indonesia’s volcanoes, and is considered one of the Sunda arc’s

most dangerous (Gertisser et al., 2011, 2012). Activity is near continuous, with periods of

dome growth frequently interrupted by gravitational dome collapse and associated pyroclastic

density current emission (Andreastuti et al., 2000; Camus et al., 2000; Newhall et al., 2000;

Voight et al., 2000; Gertisser et al., 2012). Larger explosive vulcanian and subplinian eruptions

occur at longer ~100 year time-scales, such as the 2010 VEI 4 eruption which killed close to

400 people (Surono et al., 2012). Compositionally, the erupted material is medium to high-K

basalt to basaltic andesite with a restricted range of ~49 to 58 wt% SiO2 (Gertisser and Keller,

2003a, 2003b). Early work at Merapi suggested a significant subducted sediment contamination

component to the Merapi magmas (Gertisser and Keller, 2003b), while subsequent work also

highlighted an influence from crustal carbonate on magma genesis (e.g. Chadwick et al., 2007;

Troll et al., 2013; Aiuppa et al., 2017). Merapi overlies an upper crust of 8 to 11 km thick

sediments of the Kendeng basin, where Cretaceous to Cenozoic volcaniclastic sediments are

overlain by shallow marine limestones and marls, all of which overlie inferred Cretaceous arc

and ophiolite basement rocks (van Bemmelen, 1949; Smyth et al., 2005). Fragments of the

sedimentary basement are frequently found as thermally metamorphosed xenoliths within the

eruptive deposits (Brouwer, 1928; Clocchiatti et al., 1982; Camus et al., 2000; Gertisser and

Keller, 2003b; Chadwick et al., 2007; Troll et al., 2012, 2013). These xenoliths testify to

prevalent magma-carbonate interaction [Chadwick et al. (2007); Troll et al. (2013); Whitley

et al. (2019); Chapter 4], a process that is ongoing and occurs at rapid syn-magmatic eruptive

timescales (Deegan et al., 2010, 2011; Troll et al., 2012; Reagan et al., 2017). Radiogenic

(87Sr/86Sr) and stable (δ13C, δ18O) isotope analysis of bulk xenoliths and mineral separates of

calc-silicate mineral phases (wollastonite, diopside, calcite), have been used to demonstrate up

to 30% crustal carbonate assimilation during the genesis of Merapi magmas [Chadwick et al.

(2007); Troll et al. (2013); Whitley et al. (2019); Chapter 4]. Liberation of large volumes of

crustal CO2 during syn-magmatic activity has additionally been linked to enhancing eruptive
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explosivity at Merapi (e.g. Troll et al., 2012, 2013; Borisova et al., 2013; Carr et al., 2018).

The available evidence thus indicates that magma-carbonate interaction at Merapi may have

wide-ranging implications for the magmatic evolution and volcanic hazard potential at Merapi.

3.3 Methods

3.3.1 Scanning Electron Microscopy and Raman Spectroscopy

Scanning electron microscopy was undertaken at Keele University, UK using a Hitachi TM3000

scanning electron microscope with an EDS attachment. The EDS was used to aid sample

exploration due to the relatively high uncertainty (1-2 wt% on major elements), and therefore

analyses presented in this work are from the electron microprobe. A rare unknown mineral found

in sample MX1, compositionally similar to wadalite, was analysed with Raman spectroscopy at

Keele University using a confocal Thermo Scientific DXR Raman spectrometer with a 532 nm

laser, a 50x objective, and a standard 30 µm uncovered polished thin section.

3.3.2 Microthermometry

Microthermometry was carried out at Keele University using a Linkam THMS600 freezing-

heating stage. Thermocouples were calibrated at –56.6°C, 0.0°C and +374.1°C using synthetic

fluid inclusions provided by Linkam. The precision of temperature measurements at -56.6°C

is ±0.1°C, and ±2°C at 374.1°C. Measurements were made on ~100 µm thick double polished

wafer fragments.

3.3.3 Electron Microprobe Analysis

Major element concentrations in minerals, and major element, chlorine and sulphur concentra-

tions in groundmass glasses and melt inclusions were determined with a JXA 8900R Electron

Probe Microanalyser at the University of Kiel, Germany. Silicate and oxide minerals were

analysed with a 15 kV accelerating voltage, a 15 nA beam current and a 2 µm beam diameter.

Calcite was measured with a 7 µm beam diameter at 15 kV accelerating voltage and a 10 nA

beam current. Glasses were measured with a 5 µm beam at 15 kV accelerating voltage and a

12 nA beam current. Measurement times were 15 s at the peak and 7 s on the background,

excluding S, Cl, P which were measured for 30 s at the peak and 10s on the background. Ex-

tended counting times of 30 s peak and 10 s background for Fe, Mg and Mn, and 60 s peak
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and 30 s background for Ba and Sr were applied during calcite analyses. Na was measured first

to minimise alkali migration. Natural mineral standards (topaz, rutile, baryte, tugtupite, fay-

alite, forsterite, mica, anorthite, wollastonite, apatite, tephroit) were used for calibration and

Smithsonian basaltic glass A-99, forsterite 83 USNM2566, plagioclase USNM115900, garnet

RV2 USNM 87375, and obsidian ASTIMEX Block SPGLASS7 were used as secondary within

run standards to assess accuracy and precision, presented in the supplementary spreadsheet.

This chapter additionally includes microprobe data from Dr. Ralf Gertisser (initial ex-

ploratory dataset, see Gertisser, 2001 for methods) and Dr. Frances Deegan (Uppsala University,

see Deegan et al., 2010 for methods and samples analysed).

All Mg# values were calculated assuming all Fe as Fe2+ using Mg# = 100 Mg
Mg+F etotal

.

Ternary clinopyroxene components are calculated assuming all Fe as Fe2+ e.g. Fs = 100 F etotal

Mg+F etotal+Ca .

Fe3+ was estimated for clinopyroxene from stoichiometry using Droop (1987). AlIV was calcu-

lated as 2-Si, and any remaining Al was allocated as AlVI. Components for clinopyroxene

thermobarometry were calculated using Putirka et al. (1996). Garnet end member mole frac-

tions and Fe3+ were estimated using the Arai (2010) R script implementation of the Muhling

and Griffin (1991) calculation scheme, which provides a more accurate Fe3+ estimate for gar-

net than Droop (1987). Melilite mole fractions were calculated considering 4 end members by

firstly allocating Na to the Na-melilite end member, and then the remaining cations, minus the

Al required for Na-melilite, were allocated between gehlenite, åkermanite and Fe-åkermanite.

These mole fractions were calculated as follows (abbreviations as in Table 3.2):

Na-Mel = Na
Na+Ca−1

Geh = (1 −Na-Mel) ·
Al−2Na

2
Al−2Na

2 +F e+Mg

Ak = (1 −Na-Mel) · Mg
Al−2Na

2 +F e+Mg

Fe-Ak = (1 −Na-Mel) · F e
Al−2Na

2 +F e+Mg

3.3.4 Whole-rock Geochemistry

Due to the small size of most xenoliths combined with the textural and mineralogical uniqueness

of each sample, whole-rock compositions and compositions of individual zones for six represen-

tative xenoliths were determined by point counting (1000-2000 points). Averaged mineral and

glass chemistry was used with the phase volumes counted, corrected for varying mineral and

glass densities using mineral densities from Deer et al. (1997). The bulk compositions were

obtained using the Rock-Maker spreadsheet (Büttner, 2012), which generates bulk whole rock

compositions from phase volumes and densities. All calculated compositions are presented in
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the appendix online spreadsheet.

3.3.5 Thermodynamic Modelling

Theriak-Domino software (build date 3-1-2012, de Capitani and Petrakakis, 2010) was used for

thermodynamic modelling, using calculated whole-rock compositions (see above) in the system

Si-Al-Fe-Mg-Ca-C for samples MX99-5s and MX99-3s. The database used (Holland and Powell,

1998, version 5.5) lacks solid solution models that include the CaTs component in clinopyroxene,

and mixing between gehlenite and åkermanite. Therefore, ideal mixing was assumed for these

two solid solutions (Charlu et al., 1981; Povoden et al., 2002). Implementing a CaTs-Di-Hd ideal

mixing model for clinopyroxene over the default database model however has little effect on the

calculated phase boundaries of the system. For example, this clinopyroxene model produce only

a ~20°C variation in melilite-garnet phase boundaries, which is relevant to the xenoliths.

3.4 Petrography

Calc-silicate xenoliths (n=33) collected from the 1994 to 2010 eruption deposits at Merapi can be

subdivided into three distinct groups (magmatic skarn n=25, exoskarn n=5 and buchite n=3) on

the basis of their dominant mineralogy, modal zonation, and the presence of glass. 12 xenoliths

that best represent the three groups, and which highlight the mineralogical and textural variety

of the xenoliths were chosen for detailed study (see Table 3.1) and Appendix Table B.1 for

full sample list). The xenoliths are generally centimetre to tens of centimetre in size, and

texturally complex variations in mineralogy and zonation can be seen at hand specimen scale

(Figure 3.1). Contacts with host basaltic-andesite are vesicular, and texturally the xenoliths can

often be seen mingling with the host lava. Magmatic skarn xenoliths are commonly layered with

reaction rims parallel to the host basaltic andesite up to a few centimeters thick, whilst exoskarn

xenoliths often exhibit sharper contacts. No magmatic skarn-exoskarn contacts are found in

the samples, presumably due to different formation processes and mechanical properties, similar

to that observed by other workers on skarn xenoliths (e.g. Matthews et al., 1996; Fulignati et

al., 2004; Gaeta et al., 2009). The detailed petrography of the xenolith types are discussed

below. Volcaniclastic and metasedimentary xenoliths are additionally present at Merapi but

not discussed in this paper (see Chadwick et al., 2007). A summary of the mineral phases

identified in this study and their formulas are presented in Table 3.2.
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Table 3.1: Merapi xenolith sample list and data collected. Samples MXCS and MXCS-1
and data from these were provided by Frances Deegan. Samples with - as a type are not
calc-silicate

Sample Type
SEM
study EMPA

LA-ICP-MS
(calcites)

SIMS O-C isotopes
(calcites) Microthermometry Raman

CS-1 Magmatic
Skarn

CS-2 Magmatic
Skarn

X X

CS 3 Magmatic
Skarn

CS-4 -
CS-5 Magmatic

Skarn
CS-6 Magmatic

Skarn
CS-7 Magmatic

Skarn
CS-8 Magmatic

Skarn
CS-9 Magmatic

Skarn
X

CS-10 Buchite
CS-11 Exoskarn X X X X
CS-12 -
CS-13 -
CS 14 Buchite X
CS-15 -
CS-16 Magmatic

Skarn
X X

CS-17 Magmatic
Skarn

X

CS-18 Magmatic
Skarn

CS-19 Magmatic
Skarn

X

MX-1 Magmatic
Skarn

X X X

MX-2 - X
MX-3 Magmatic

Skarn
X X X X

MX-4 Magmatic
Skarn

MX-5 Magmatic
Skarn

X X X

MX-6 Exoskarn
MX99-3s Exoskarn B X X
MX99-4s Magmatic

Skarn
X X X

MX99-5s Exoskarn X X
M13-24G Magmatic

Skarn
X

M13-
24G1

Magmatic
Skarn

X X

M13-04C Buchite X
M13-30 Magmatic

Skarn
M13-10 Magmatic

Skarn
X

M11-34 Magmatic
Skarn

M13-02 Exoskarn X X X
MXCS Exoskarn X
MXCS-1 Magmatic

Skarn
X
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Table 3.2: Mineral phases identified within the Merapi calc-silicate xenoliths in this
study, and abbreviations used throughout the text. The minerals are ordered as they
appear within this manuscript.

Mineral Abbreviation Formula Mag Exo A Exo B
Rock-forming and their endmembers
Plagioclase Pl (Ca,Na)(Al,Si)4O8 M M m
–Anorthite An CaAl2Si2O8 M M m
Clinopyroxene Cpx Ca(Fe,Mg)Si2O6 M
–Calcium Tschermak’s Pyroxene CaTs CaAlAlSiO6 m M M
–Esseneite (Clinopyroxene) Ess CaMgSi2 m M M
Wollastonite Wo M M m
–Ferrobustamite Bst CaFeSi2 m m
Garnet Grt m M M
–Andradite Adr CaFe3+AlSiO6 m M m
–Grossular Grs CaSiO3 m M M
–Schorlomite Sch Ca(Fe2+,Ca,Mn2+)Si2O6 m
Melilite Ca3(Fe3+,Al,Ti)2Si3O12
–Åkermanite Åk Ca3Fe3+2Si3O12 m m M
–Fe-Åkermanite Fe-Åk Ca3Al2Si3O12 m m M
–Gehlenite Gh Ca3Ti2Si3O12 m m M
–Na-Melilite Na-Mel

Sulphur and Halogen-bearing
Pyrrhotite Po Ca2FeSi2O7 m m
Anhydrite Anh Ca2Al2SiO7 m m
Cubanite Cu CaNaAl2SiO7 m
Cuspidine Cusp m m
Spurrite Spu Fe1-xS (x=0-0.2) m
Larnite Lrn CaSO4 m
Fluorite Fl CuFe2S3 m
Apatite Ap Ca4Si2O7(F,OH)2 m
Ellestadite El Ca5Si2O8CO3 m m
Baryte Ba Ca2SiO4 m
Cotunnite Cot CaF2 m
Wadalite† Wad Ca5(PO4)3(OH,F,Cl) m

Oxides, Other Silicates, and Accessory Minerals
Magnetite Mgt BaSO4 M m
Ilmenite Ilm PbCl2 m
Hematite Hm Ca12Al10Si4O32Cl6 m
Perovskite Psk m
Ca-Zr-Ti oxide CaZrTi Fe2+Fe3+2O4 m
Titanite Ttn FeTiO3 m m
Spinel Sp Fe2O3 M
Monazite Mo CaTiO3 m
Xenotime Xe Ca-Zr-Ti m
Calcite Cal CaTiSiO4 m M
Cebollite† Ce (Fe,Mg)Al2O4 m
Chromite Chr (Ce,La)PO4 m
Quartz Qtz YPO4 M m

Mag: Magmatic skarn. Exo A: Exoskarn type A. Exo B: Exoskarn type B
M: Major rock forming mineral. m: Minor to accessory (<1 vol%) mineral
† Identification Uncertain
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3.4.1 Magmatic Skarn xenoliths

The most abundant calc-silicate xenolith type (n=25) is the one we term ‘magmatic skarn’ (c.f.

Fulignati et al., 2004) based on the abundance of Ca-enriched magmatic glass, melt inclusions

in the newly formed calc-silicate skarn minerals, and pronounced reaction zones at contacts

with the host lava. Attempting to explain the variety of xenoliths in this group, the magmatic

skarn xenoliths are subdivided into a series of idealised mineralogical/textural zones, such as a

series of reaction zones and a core zone (Figures 3.2, 3.3). The lava contact (R1) is represented

by a zone of coarse (100-300 μm) pale green clinopyroxene and a concentration of magnetite

(Figure 3.3A). This is followed by a finer grained (up to 100 µm) zone (R2) of plagioclase +

clinopyroxene ± glass (Figure 3.3A), with rare amphibole also present in sample MX1. This

zone grades into a zone of coarse dark green/yellow pleochroic clinopyroxene (R3) separating R2

from a zone of vesicular glass (R4) (Figure 3.3A-B). The glass zone typically contains strongly

irregularly Fe-Mg zoned (see mineral chemistry), colourless to deep green/yellow pleochroic

diopsidic clinopyroxene crystals (Figure 3.3B). These clinopyroxene crystals are similar to those

of zone R3, and often appear to be incorporated from zone R3. Plagioclase and wollastonite

microlites are additionally present within the glass. Sample MX5 has comparatively large quartz

and plagioclase crystals (~100 µm) within the glass zone, and sample MX3 shows this zone to

be almost fully crystallised to quartz and plagioclase, with scarce melt inclusions within the

quartz crystals. The xenolith core (Figure 3.3C) has a sharp contact to decussate wollastonite,

but occasionally the core is a mixture of wollastonite, clinopyroxene, and accessory garnet.

Additionally, glass is often present within the core of these xenoliths. At glass-wollastonite

contacts, a thin rim of semi-dendritic ferrobustamite often forms. The samples have a vesicular

texture across all zones.

The described zonation is idealised, and variations naturally occur. Samples MX1 and

M13-10, for instance show no glass zone (R4) separating the wollastonite-dominant core from

R3 and R2. In this case, a pale yellow clinopyroxene and garnet zone formed instead of the

coarse clinopyroxene of zone R3, which we call R3b (Figures 3.2, 3.3D). This clinopyroxene is

optically and chemically distinct (CaTs: CaAlAlSiO6 rich, see section Mineral Chemistry) from

any others in the Merapi magmatic skarn xenoliths. In sample MX1, one half of the xenolith

shows the common zonation (with glass zone R4 present), whilst the other half has no glass and

instead has the zone R3b CaTs clinopyroxene and garnet zone (Figure 3.2). Rare patches of

garnet are found interstitial to wollastonite in the MX1 core, and also together with wollastonite

and CaTs clinopyroxene in sample CS16.
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Accessory phases are generally restricted to the xenolith cores, and include calcite, titanite,

chromite, gehlenite, a wadalite-like Si-Al-Fe-Ca-O-Cl mineral, perovskite, a Ca-Zr-Ti-O mineral,

cotunnite, sulphates (anhydrite and baryte) and sulphides (pyrrhotite and cubanite)(Table 3.2).

Titanite is also present within the glass in zone R4 and ilmenite is exclusively found in sample

MX3 in zone R2. Calcite is present as four distinct textural types: 1) globular crystals within

the glass R4 zone, 2) interstitial to wollastonite in the cores, 3) inclusions in wollastonite and

garnet, and 4) a melt-like infiltrative texture containing rare Cl-F rich phases such as fluorite,

cuspidine and the wadalite-like mineral within regions where the calcite pools (Figure 3.4A-B).

These calcites are discussed in detail in Whitley et al. (2019) and Chapter 4.

Many crystals contain significant quantities of melt inclusions (Figure 3.4C-G), exceeding 80

in a single 600 µm long wollastonite crystal. Melt inclusions are also present in clinopyroxene

of zones R3-4, plagioclase in zone R4 and titanite within the xenolith cores. The inclusions are

most commonly glassy and have a single shrinkage bubble, but, in rare cases they can contain

daughter crystals and multiple bubbles. The daughter crystals are found either in the glass or

in the bubble, and are most commonly Fe-bearing phases (pyrrhotite, cubanite, magnetite) and

occasionally apatite. Vapour-rich CO2 fluid inclusions are also common in wollastonite (Figure

B.2).
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Figure 3.1: Hand specimen photos of the Merapi xenoliths. CS2 (xenolith to bottom
right) and MX99-4s (xenolith centered): magmatic skarn xenoliths. MX99-5s: exoskarn
type A xenolith. Note the lack of layering at the lava (left) and xenolith (right) contact.
MX99-3s: exoskarn type B xenolith. Note the lack of layering at the lava (top left) and
xenolith (bottom right) contact. CS11: exoskarn xenolith. Small piece of host basaltic
andesite in the top right.
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Figure 3.2: Zoning in sample MX1 (thin section) and idealised diagram for zoning
patterns in the magmatic skarn xenoliths. Highlighted zones (a) and (d) correspond to
the respective panels in Figure 3.3. See Table 3.2 for all mineral abbreviations used.
Gls: interstitial Ca-rich glass.
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Figure 3.3: Examples of the respective zones in magmatic skarn xenoliths. A) Host
lava contact and zones R1 to R4. Note the progressive darkening of the clinopyroxene
colour due to changing composition to iron enrichment. Sample MX1. B) Normally
zoned diopside-hedenbergite clinopyroxene within glass dominant zone R4. Also present
are plagioclase microlites and wollastonite. Sample CS2. C) Wollastonite-dominant
xenolith core with vesicles and accessory calcite. Sample MX5. D) Zone R3b, showing
garnet + CaTs clinopyroxene formation where there is no glass zone R4 between the
core and zone R2. Sample MX1. See Table 3.2 for mineral abbreviations.
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Figure 3.4: Magmatic skarn accessory minerals and melt inclusions. All images are
from sample MX1, apart from panels E and G, which are from sample CS16. A-B)
Accessory gehlenite, fluorite, calcite and the wadalite-like mineral in the xenolith core.
C-G) Examples of wollastonite, clinopyroxene and plagioclase-hosted melt inclusions,
showing variable abundance and textural forms. Abbreviations as in Table 3.2
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3.4.2 Exoskarn Xenoliths

Exoskarn xenoliths are distinct from the magmatic skarn xenoliths by having a different min-

eralogy, lacking mineralogical zonation, and by almost entirely lacking glass. On the basis of

their mineral assemblages resembling typical high temperature skarns worldwide (e.g. Mein-

ert, 1992), and the lack of glass, which indicates formation by subsolidus reactions, we classify

these xenoliths as exoskarns (c.f. Fulignati et al., 2004, see also discussion). These xenoliths

comprise two distinct skarn mineral assemblages (A and B), often with a rim of clinopyroxene

and plagioclase at the host lava contact. The most common assemblage (A) is wollastonite

+ garnet + plagioclase ± CaTs clinopyroxene ± quartz ± calcite with a granoblastic texture

(Figure 3.5A). Some clinopyroxenes and garnets exhibit weak patchy zonation. Accessory S, Cl,

and F-bearing phases such as cuspidine, ellestadite, anhydrite and pyrrhotite are additionally

present, and also unidentified Ca-Al-Si-Cl-F minerals that are distinct from the wadalite-like

mineral in the magmatic skarn xenoliths. No hydrous phases that can often occur in skarns,

such as epidote and vesuvianite (c.f. Meinert, 1992), have been identified in this study, al-

though epidote and prehnite have been identified in earlier descriptions of Merapi xenoliths

(Kerinec, 1982; Camus et al., 2000). Garnet often contains inclusions of plagioclase and wollas-

tonite. Calcite is present as either rare inclusions within garnet crystals or as large mm-sized

crystals, surrounded by complex reaction rims that contain larnite, spurrite, and Ca-Si-rich

S-Cl-F-bearing phases including fluorite, cuspidine, ellestadite, anhydrite, and many additional

unidentified phases (Ca-Si-O, Ca-Al-Si-O, Ca-Al-Si-P-O Table 3.9, Figure 3.5B). Xenotime and

monazite form accessory inclusions within these calcites.

The second assemblage (B), only found in one sample (MX99-3s), comprises gehlenite

+ grossular garnet + CaTs clinopyroxene + spinel + wollastonite + plagioclase, with trace

amounts of ellestadite (Figure 3.5C). This sample shows evidence for disequilibrium, such as

patchy compositional zoning of garnets, and spinel with rims of gehlenite followed by an outer

rim of CaTs clinopyroxene. Patches of localised equilibrium are shown by granular ~120° triple

junctions in the gehlenite-dominant areas of the sample.
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Figure 3.5: Typical textures in exoskarn xenoliths. A) CaTs-cpx + Wo + An + Grs in
exoskarn type A xenolith MX99-5s. B) Large residual calcite crystals in exoskarn type A
xenolith CS11. Expanded image shows the complex decarbonation textures and reactions
occurring influenced by a F-rich fluid. A Ca-Si-O phase is present with low analytical
totals (~65 wt%). C) Exoskarn B xenolith MX99-3s shows a unique assemblage of
spinel, gehlenite, CaTs-cpx, grossular, with accessory wollastonite and anorthite. Spinel
is rimmed by gehlenite followed by CaTs-cpx. For mineral abbreviations, see Table 3.2.

3.4.3 Buchite

These rare xenoliths (samples M13-04C, CS14, CS10) contain abundant (>70 vol%) quartz (or

SiO2 polymorphs) with interstitial glass around the crystal borders, and minor small interstitial

clinopyroxene, plagioclase and wollastonite (Appendix Figure B.1). Patches of clinopyroxene-

rich glass are present, similar to zone R4 of the magmatic skarn xenoliths. We have classified

these samples as buchites (pyrometamorphic glass-rich rocks), following the classification by
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Matthews et al. (1996) of texturally similar xenoliths at Lascar volcano, Chile. Similar quartz-

rich, partially melted xenoliths have also been described at the Aeolian islands (e.g. Frezzotti et

al., 2004; Zanon and Nikogosian, 2004; Del Moro et al., 2011), Etna (Mollo et al., 2017) and the

Central Apennines [Melluso2003]. Although the quartz-rich assemblage could be derived from

a volcaniclastic protolith, the presence of wollastonite suggests a carbonate or marl component.

The rounded shape of the quartz crystals, separated by interstitial glass, indicates that partial

melting has occurred. The dissolution of quartz xenocrysts in arc magmas was observed in

products of the 1991 Pinatubo eruption, where highly silicic glass (~80-85 wt.% SiO2) formed

in reaction zones around the xenocrysts, pointing to possible compositional modifications of

the melt, at least on a micrometre scale (Borisova et al., 2014). However, the buchite xenoliths

have not been studied in detail and are briefly mentioned for completeness, and thus will not

be discussed further.

3.5 Results

3.5.1 Whole-Rock Major Element Chemistry

Calculated major element compositions of individual zones in magmatic xenoliths are com-

pared for two selected samples to evaluate chemical changes (Figure 3.6). There are distinct

differences between the zones and some systematic variations from the lava contact towards the

xenolith cores point to a progressive change from magmatic to calcic compositions (Figure 3.6A,

Appendix Figures B.3, B.4) (c.f. Troll et al., 2012). CaO contents are lowest in the lavas and

highest in the xenolith cores, whereas Al2O3 contents show exactly the opposite behaviour. One

xenolith (sample MX-1) shows a systematic increase in CaO from the contact towards the core,

except for glass zone R4 that creates a distinct anomaly in the element profiles, having higher

SiO2 and lower CaO than the adjacent zones. FeO is relatively enriched in zone R1, decreasing

towards the core, whereas SiO2 is lowest in this zone. MgO shows only limited variation and

has the lowest contents in the innermost zone (R4) and in the core.

In terms of whole rock major element composition (Figure 3.6B), magmatic skarn xenoliths

fall within the range of xenoliths analysed by Chadwick et al. (2007) (which we believe classify

as magmatic skarn xenoliths in our grouping), forming diverging trends from basaltic-andesite

compositions. Magmatic skarn xenoliths have lower Al2O3 contents than lavas (<16 wt%),

while exoskarn xenoliths display Al2O3 contents comparable to lava values (18 to 25 wt%),

although at a much lower SiO2 content (33 to 45 wt%). All xenoliths have much higher CaO
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than the lavas, up to 36 wt%, but lower TiO2 and K2O contents. FeO and MgO span the

range of lava values, with FeO up to 10.0 wt%, and MgO up to 6.6 wt%. Exoskarn xenoliths

generally plot distinct from magmatic skarn xenoliths when considered with the Chadwick et

al. (2007) data (Figure 3.6B). For instance, the exoskarn xenoliths have low SiO2, TiO2 and

FeO, relative to the magmatic skarn xenoliths, but form a linear trend of decreasing TiO2 and

FeO with increasing SiO2.
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Figure 3.6: Xenolith whole-rock geochemistry (calculated from mineral modes and min-
eral chemistry, corrected for mineral densities using data from Deer et al. (1997) and
the Rock-Maker spreadsheet (Büttner, 2012)). A) Profiles through the distinct zones of
two magmatic xenoliths. B) Calculated whole-rock compositions of bulk xenoliths com-
pared to published lava and xenolith data. Published lava data from Gertisser (2001),
Gertisser et al. (2012), Nadeau et al. (2013b), Borisova et al. (2013), Costa et
al. (2013), Innocenti et al. (2013), Preece et al. (2014) and the GEOROC database
(http://georoc.mpch-mainz.gwdg.de/georoc/). Published Merapi calc-silicate xeno-
liths from Chadwick et al. (2007)

3.5.2 Mineral Chemistry

Feldspar

Feldspar compositions in the Merapi calc-silicate xenoliths are entirely plagioclase, but spanning

a wide compositional range (An46-100, Table 3.3). In magmatic skarn xenoliths, anorthite content
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progressively increases towards the xenolith cores (Figure 3.7A). Zoning is relatively insignificant

compared to the differences between zones. Magmatic skarn xenolith plagioclase comprises

both microlites (An46-59) within the interstitial glass in zone R4, and interstitial plagioclase in

the high-An cores (An73-100). Where analyses of the host lava attached to the xenolith were

possible (An29-81), plagioclase in zones R2 and R4 overlap magmatic plagioclase compositions,

including the previously published data (Gertisser, 2001; Preece, 2014; Erdmann et al., 2016).

In An-FeO space, xenolith core plagioclase compositions generally fall within and extend the

high FeO-An compositional ellipse of Merapi xenolith plagioclase from Chadwick et al. (2007)

(Figure 3.7B). Plagioclase microlites within the zone R4 glass have strong FeO enrichment

(up to 1.7 wt% FeO), as is observed with the strong FeO enrichment of both clinopyroxene

and ferrobustamite overgrowths on wollastonite within this glass zone (see below). Exoskarn

plagioclase is essentially pure anorthite, with lower anorthite contents restricted to the lava

contact. FeO concentrations in exoskarn anorthite are characteristically lower than those of

magmatic plagioclase and the majority of the magmatic skarn plagioclase data.

Table 3.3: Average plagioclase compositions for the zones in the magmatic skarn xeno-
liths and the exoskarn xenoliths. All analyses normalised to 8 oxygens. Lava analyses are
where the xenolith section had a small rind of lava still attached. Analyses are reported
as the mean and one standard deviation. Plagioclase components: An = anorthite, Ab
= albite, Or = orthoclase.

Host Lava σ R2 σ R4 σ Core σ Exo A σ Exo B σ

n 8 49 27 76 63 7
SiO2 53.61 4.03 48.91 4.42 52.91 4.28 45.21 2.80 44.43 3.50 42.51 0.51
TiO2 0.02 0.03 0.01 0.02 0.04 0.08 0.01 0.02 0.02 0.03
Al2O3 28.10 2.94 31.73 3.31 28.68 3.00 33.98 2.03 34.90 2.48 36.55 0.37
FeO 0.72 0.34 0.58 0.16 0.94 0.33 0.65 0.22 0.33 0.33 0.24 0.02
MgO 0.06 0.07 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.02
CaO 11.12 3.28 15.05 3.72 12.25 2.99 17.82 2.18 19.09 2.63 20.17 0.26
Na2O 5.06 1.70 3.01 2.12 4.25 1.65 1.34 1.23 0.78 1.45 0.08 0.03
K2O 0.68 0.52 0.23 0.20 0.53 0.44 0.10 0.14 0.07 0.17 0.02 0.01
Total 99.47 0.64 99.56 0.87 99.76 1.20 99.12 1.09 99.75 1.01 99.56 1.06

Cations based on 8 oxygens
Si 2.449 0.166 2.252 0.188 2.416 0.168 2.108 0.113 2.063 0.138 1.983 0.009
Ti 0.001 0.001 0.000 0.001 0.001 0.002 0.000 0.001 0.001 0.001 0.000 0.000
Al 1.515 0.168 1.724 0.191 1.546 0.178 1.869 0.118 1.912 0.146 2.009 0.009
Fe 0.028 0.013 0.022 0.006 0.036 0.013 0.025 0.009 0.013 0.013 0.009 0.001
Mg 0.004 0.005 0.001 0.001 0.001 0.002 0.000 0.001 0.001 0.001 0.000 0.000
Ca 0.546 0.165 0.744 0.189 0.601 0.154 0.891 0.114 0.951 0.135 1.008 0.006
Na 0.448 0.147 0.267 0.188 0.375 0.143 0.120 0.109 0.069 0.126 0.007 0.003
K 0.039 0.030 0.013 0.012 0.030 0.025 0.006 0.008 0.004 0.010 0.001 0.000

Endmembers (mol%)
An 52.9 16.2 72.8 19.1 59.8 15.5 87.6 11.1 92.9 13.1 99.2 0.3
Ab 43.3 14.0 25.9 18.1 37.2 14.1 11.8 10.7 6.7 12.2 0.7 0.3
Or 3.8 2.9 1.3 1.1 3.1 2.7 0.6 0.8 0.4 0.9 0.1 0.0
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Figure 3.7: Merapi xenolith and magmatic feldspar compositions. A) Anorthite con-
tent histograms showing (left) published data from Merapi lavas (grey), enclaves (dark
blue) and plutonic xenoliths (green) for comparison with xenolith and host lava feldspar
data (right, key below). B) An vs FeO plot showing the different xenolith plagioclase
compositions compared to Merapi lava plagioclase. Ellipse of xenolith and xenocryst
plagioclase compositions from Chadwick et al. (2007). Notably, plagioclase from zones
R1 and R2 overlaps with the lava compositions, although they are formed from magma-
carbonate interaction. Published lava feldspar data from Gertisser (2001), Preece (2014)
and Erdmann et al. (2016). Enclave and plutonic xenolith data from Chadwick et al.
(2013).

120



CHAPTER 3. MAGMATIC AND METASOMATIC EFFECTS OF MAGMA-
CARBONATE INTERACTION RECORDED IN CALC-SILICATE XENOLITHS
FROM MERAPI VOLCANO (INDONESIA)

121

Clinopyroxene

Clinopyroxene compositions range from quadrilateral diopside-hedenbergite (Di-Hd) (Mori-

moto, 1988) to high-Al diopside. These high Al clinopyroxenes are enriched both in es-

seneite (CaFe3+AlSiO6) and Calcium-Tschermak’s (CaTs: CaAlAlSiO6) components (Table

3.4), demonstrated by the strong correlation between Fe3+ and AlIV (R2=0.88, Figure 3.8A),

and AlIV with AlVI (R2=0.81, not shown) across all analysed crystals. Incorporation of AlIV

is accommodated by a strong reduction of Si in the tetrahedral site. These clinopyroxenes

are commonly generalised as fassaite [Ca(Mg,Fe3+,Al)(Si,Al)2O6] where AlIV > 0.25; Deer et

al. (1997)]. As this is not a formal name (Morimoto, 1988) and the clinopyroxenes show an

enrichment in the CaTs component, we refer to these clinopyroxenes as CaTs-clinopyroxene in

this manuscript.

In magmatic skarn xenoliths, the clinopyroxene compositions are generally comparable to

Merapi magmatic clinopyroxenes in zone R1 (Figure 3.8A-C), and progressively become more

Ca/wollastonite-rich until sitting along the diopside-hedenbergite (Di-Hd) join (Wo50) in zones

R3, R4 and in the core (Figure 3.8C). There is a sharp compositional change at zone R4 and

within the core, where the clinopyroxenes closely follow the Di-Hd join and progressively become

more Hd-rich (Figure 3.8C). Xenolith core clinopyroxenes can also be enriched in Al2O3 (up

to 11.57 wt%, corresponding to 18 mol% CaTs), bringing compositions above the DiHd join in

the traditional clinopyroxene composition ternary diagrams, although this is uncommon and

only observed in sample CS16. These Al-rich clinopyroxenes are strongly zoned, from this Al-

rich core to weakly oscillatory Di-Hd zoned mantle and rim zones (Figure 3.8E). Commonly

however, magmatic skarn xenolith clinopyroxene zonation is restricted to the Di-Hd join (Figure

3.8C), with patchy, highly irregular resorption surfaces (Figure 3.8F). Titanium is correlated

well with AlIV across the magmatic skarn xenolith zones, excluding zone 3b, where CaTs-rich

clinopyroxenes form with low Ti, comparable to the compositionally distinct exoskarn xenolith

clinopyroxene (Figure 3.8B).

Exoskarn clinopyroxenes are highly Al enriched (Figure 3.8A, B, D), containing up to 22.3

wt% Al2O3, approaching the highest natural terrestrial values known to the authors (24.0

wt% in gehlenite-rich skarns from the Carpathians, Romania; Pascal et al., 2005). Fe3+/
∑
Fe

(calculated following Droop, 1987) approaches unity (Figure 3.8A). Clinopyroxene compositions

at the exoskarn xenolith rim overlap magmatic compositions, but then immediately jump to

highly Al-rich compositions, usually lacking the gradual progression observed in the magmatic

skarn xenoliths (Figure 3.8A-C).
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Table 3.4: Average clinopyroxene compositions for each zone in the magmatic skarn
xenoliths and exoskarns. Average compositions across all samples for wollastonite and
ferrobustamite are additionally shown, as there is very little compositional variability
for the pyroxenoids. Fe3+ calculated using Droop (1987). Analyses are reported as the
mean and one standard deviation. Clinopyroxene components: Wo = wollastonite, En
= enstatite, Fs = ferrosilite

Clinopyroxene Bustamite Wollastonite
Host Lava σ R1 σ R2 σ R3 σ R3b σ R4 σ Core σ Exo A σ Exo B σ All σ All σ

n 7 19 43 44 18 71 112 40 18 16 94
SiO2 51.13 0.72 50.11 1.54 50.37 0.94 49.89 1.41 40.89 0.46 49.83 1.70 46.26 1.94 43.24 2.67 40.52 1.87 49.81 0.52 50.70 0.69
TiO2 0.50 0.11 0.49 0.10 0.45 0.16 0.42 0.10 0.57 0.10 0.37 0.23 0.67 0.27 0.53 0.36 0.36 0.27 0.06 0.04 0.04 0.05
Al2O3 2.63 0.43 2.71 1.56 2.09 0.64 2.37 0.59 14.64 0.40 2.08 0.96 5.76 2.89 13.93 5.95 18.19 1.97 0.02 0.02 0.07 0.08
Cr2O3 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01
FeO 8.85 0.12 12.38 5.99 10.62 1.85 12.58 2.84 8.58 0.47 13.46 4.14 11.26 3.03 7.96 6.72 5.65 1.15 10.81 0.97 1.31 0.80
MnO 0.56 0.11 0.57 0.19 0.55 0.11 0.48 0.10 0.32 0.02 0.50 0.16 0.21 0.10 0.24 0.32 0.08 0.03 1.13 0.19 0.37 0.16
MgO 14.43 0.43 11.38 4.68 11.74 1.77 10.82 2.83 9.07 0.52 9.45 2.73 9.66 1.41 8.59 2.25 9.57 1.12 0.70 0.22 0.22 0.08
CaO 21.20 0.66 22.06 1.27 22.62 0.68 22.72 1.12 25.18 0.17 23.90 0.77 23.76 0.70 25.04 0.84 25.88 0.47 38.08 1.48 47.09 0.92
Na2O 0.43 0.04 0.34 0.12 0.41 0.08 0.38 0.07 0.02 0.02 0.29 0.14 0.33 0.15 0.07 0.07 0.04 0.02 0.04 0.03 0.02 0.02
Total 99.75 0.50 100.08 0.81 98.87 0.71 99.67 0.82 99.28 0.64 99.93 0.60 97.92 0.70 99.62 1.24 100.31 0.81 100.80 1.40 99.93 0.88

Cations based on 6 oxygens, 4 cations
Si 1.901 0.021 1.895 0.059 1.918 0.028 1.898 0.024 1.535 0.013 1.906 0.040 1.786 0.086 1.624 0.136 1.485 0.065 1.956 0.038 1.967 0.025
Ti 0.014 0.003 0.014 0.003 0.013 0.005 0.012 0.003 0.016 0.003 0.011 0.006 0.019 0.008 0.015 0.011 0.010 0.008 0.002 0.001 0.001 0.001
AlIV 0.099 0.021 0.105 0.059 0.082 0.028 0.102 0.024 0.465 0.013 0.094 0.040 0.214 0.086 0.376 0.136 0.515 0.065 0.044 0.038 0.033 0.025
AlVI 0.018 0.013 0.018 0.021 0.013 0.009 0.006 0.008 0.183 0.013 0.007 0.018 0.047 0.047 0.238 0.117 0.271 0.036 0.000 0.000 0.000 0.000
Cr 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Fe2+ 0.190 0.032 0.309 0.241 0.264 0.071 0.300 0.087 0.019 0.022 0.339 0.122 0.212 0.106 0.138 0.230 0.000 0.002 0.269 0.076 0.010 0.018
Fe3+ 0.086 0.033 0.088 0.060 0.075 0.031 0.102 0.024 0.251 0.014 0.094 0.041 0.153 0.038 0.117 0.051 0.173 0.037 0.086 0.075 0.033 0.023
Mn 0.017 0.004 0.018 0.007 0.018 0.004 0.015 0.003 0.010 0.001 0.016 0.005 0.007 0.003 0.008 0.011 0.002 0.001 0.038 0.006 0.012 0.005
Mg 0.800 0.021 0.635 0.255 0.665 0.092 0.611 0.148 0.507 0.027 0.536 0.143 0.555 0.072 0.478 0.118 0.523 0.058 0.041 0.013 0.013 0.005
Ca 0.844 0.028 0.895 0.064 0.923 0.037 0.927 0.060 1.013 0.006 0.980 0.022 0.982 0.014 1.006 0.016 1.017 0.008 1.601 0.043 1.957 0.033
Na 0.031 0.003 0.024 0.009 0.030 0.006 0.028 0.005 0.002 0.001 0.022 0.010 0.025 0.012 0.005 0.005 0.003 0.001 0.003 0.002 0.002 0.001

Endmembers (mol%)
Mg# 74.4 0.6 60.6 22.7 66.1 7.3 59.8 11.3 65.3 2.5 55.3 14.2 60.7 9.9 68.3 21.5 75.0 5.8 10.4 3.0 27.5 14.1
Wo 43.6 1.2 46.0 3.3 47.5 1.9 47.4 3.0 56.3 0.6 49.8 0.8 51.5 1.7 57.9 3.9 59.3 1.3 78.7 1.5 96.7 1.5
En 41.3 1.1 32.7 13.1 34.2 4.7 31.3 7.6 28.2 1.4 27.3 7.1 29.1 4.1 27.8 7.8 30.4 2.9 2.0 0.6 0.6 0.2
Fs 15.1 0.3 21.3 10.8 18.3 3.2 21.3 4.8 15.5 0.9 22.9 7.1 19.4 5.3 14.3 11.4 10.3 2.3 19.3 1.5 2.7 1.4
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Pyroxenoids

Wollastonite, present in all xenoliths, ranges from essentially pure CaSiO3 to 5 mol% FeSiO3
with < 1.5 mol% MnSiO3 (Figure 3.9A). Wollastonite compositions from 17 to 21 mol% FeSiO3
are attributed to the ferrobustamite member of the wollastonite group rather than iron-rich

wollastonite, as bustamite is the stable crystal structure above ~12 mol% FeSiO3 (Rutstein,

1971; Rutstein and White, 1971). The ferrobustamite crystals are found as overgrowth crystals

on wollastonite in the glass-bearing magmatic skarn xenoliths, in rare inclusions in wollastonite

in magmatic skarn xenoliths, and in accessory phases in the calcite reaction rims in large calcite-

bearing exoskarn xenoliths.

Garnet

Garnet is found predominantly in the exoskarn xenoliths as a main rock forming mineral,

with magmatic skarn xenolith garnet restricted to small interstitial patches in the cores or in

zone R3b (Figures 3.2,3.3B). Garnet compositions across all xenolith types closely follow the

grossular-andradite join, with only schorlomite (Ca3Ti2SiFe3+2O12) being a notable additional

component (Figure 3.9B), increasing with andradite content (Sch0-76). Pyrope and almandine

end members combined are < 6 mol%.

Magmatic skarn xenolith garnets exhibit a wide compositional range (Grs0-66Adr24-75Sch0-76).

In zone R3b, these garnets are compositionally distinct (Grs60-66Adr31-37Sch1-2) from intersti-

tial garnets within the wollastonite core (Grs0-66Adr24-75Sch1-76). The interstitial garnets, in

close spatial association with calcite, cuspidine, gehlenite and a wadalite-like phase (see be-

low), have inclusions of this wadalite-like phase, possibly a result of similarities between the

crystal structure between hydrogarnet and wadalite-mayenite (e.g. Glasser, 1995; Grew et al.,

Figure 3.8 (following page): Clinopyroxene compositions. A) Fe3+/Fetotal versus AlIV
plot showing a good correlation (R2=0.88). The fassaitic boundary (AlIV > 0.25) is
from Deer et al. (1997). B) Ti versus AlIV plot. Exoskarn clinopyroxene plot distinct
from magmatic skarn clinopyroxenes. Zone 3b plots with the exoskarn data, showing a
metamorphic character to this zone. C) Ternary Wo-En-Fs components for magmatic
skarn clinopyroxene. Two partial ternary diagrams shown for clarity, with ternary
location shown on inset figure. Clinopyroxenes in zones 1 to 3 progressively become
more Wo-rich, diverging from magmatic compositions. The remaining zones follow the
Di-Hd join or plot above due to the large amount of Al. D) Partial ternary Wo-En-Fs
components for exoskarn clinopyroxenes. E) Al and Mg# traverse along a magmatic
skarn clinopyroxene (sample CS16). Al and Mg-rich cores progressively grade to low
Al-high Fe compositions. F) Al and Mg# traverse in magmatic skarn clinopyroxene
from sample CS2. These crystals do not have an Al-rich core, and compositions instead
follow the Di-Hd join. Published data sources as in Figure 3.7 and additionally Deegan
et al. (2016b).
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2013). Garnets with 76 mol% schorlomite [Ca3.0(Ti1.5Fe2+0.1Fe3+0.2Mg0.1)(Si1.8Al0.6Fe3+0.6)O12]

are found as rims around titanite, in close association with perovskite. Ti gradients are found

across rare wadalite-like phase-bearing garnet crystals (Sch3-21).

Exoskarn xenolith garnets have a more restricted compositional range, limited to higher

grossular contents (Grs73-97Adr3-24Sch0-2, Table 3.5). The highest grossular contents, up to

Grs97 are found exclusively within exoskarn A type xenoliths, around residual calcite crystals

and their spurrite ± larnite-rich reaction rims. One garnet analysis from this reaction rim

matches hydrogarnet/katoite (42.8% Katoite) when assuming 10.5 wt% water to bring the

analytical total to 100 wt% (Ca2.9Al2.0Fe0.2Si1.6O6.7OH4.6).

Table 3.5: Average garnet compositions for the zones in the magmatic skarn xenoliths
and the exoskarn xenoliths. Abbreviations as in Table 3.2. Additional garnet abbrevi-
ations: Prp - pyrope, Alm - almandine, Sp - spessartite, Uv - uvarovite. See Methods
section for end-member calculation details. Fe3+ calculated using Arai (2010). Analyses
are reported as the mean and one standard deviation.

R3b σ Core σ Exo A σ Exo B σ

n 10 65 47 10
SiO2 38.27 0.23 35.01 2.93 39.27 0.55 38.94 0.30
TiO2 0.76 0.24 3.45 3.73 0.23 0.20 0.29 0.19
Al2O3 14.24 0.50 9.64 3.16 20.37 1.68 18.88 1.02
Cr2O3 0.02 0.03 0.01 0.02 0.01 0.02
FeO 10.14 0.49 15.25 3.60 3.26 1.88 4.66 1.11
MnO 0.47 0.05 0.26 0.09 0.72 0.68 0.15 0.03
MgO 0.57 0.04 0.49 0.19 0.42 0.17 0.74 0.10
CaO 35.13 0.26 33.75 0.78 35.86 0.78 36.68 0.54
Total 99.59 0.29 97.86 0.98 100.23 0.92 100.35 0.65

Cations based on 12 oxygens, 8 cations
Si 2.972 0.013 2.831 0.196 2.966 0.026 2.944 0.032
Ti 0.044 0.014 0.214 0.243 0.013 0.012 0.016 0.011
Al 1.304 0.043 0.913 0.281 1.813 0.139 1.681 0.077
Cr 0.000 0.000 0.001 0.002 0.000 0.001 0.001 0.001
Fe2+ 0.007 0.017 0.042 0.042 0.013 0.024 0.000 0.000
Fe3+ 0.652 0.038 0.995 0.247 0.194 0.120 0.295 0.073
Mn 0.031 0.003 0.018 0.007 0.046 0.043 0.010 0.002
Mg 0.066 0.004 0.059 0.023 0.047 0.019 0.083 0.011
Ca 2.923 0.023 2.926 0.039 2.902 0.064 2.970 0.024

Endmembers (mol%)
Grs 64.3 1.7 37.5 17.2 87.7 6.6 83.9 4.0
Adr 33.5 1.9 52.0 14.4 9.6 6.4 15.1 3.7
Sch 1.4 0.6 9.3 12.7 0.4 0.4 0.7 0.4
Alm 0.0 0.2 0.2 0.5 0.4 0.7 0.0 0.0
Prp 0.7 0.8 0.8 0.9 0.7 0.8 0.3 0.6
Sp 0.1 0.4 0.1 0.3 1.2 1.7 0.0 0.0
Uv 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
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Melilite

Melilite is only found in non-trace quantities in exoskarn assemblage B xenoliths. Melilite

compositions are gehlenite-rich, closely following the gehlenite-åkermanite join, with < 8 mol%

Na-melilite and < 10 mol% Fe-åkermanite (Gh43-91Ak2-45Na-Mel0-8) (Figure 3.9C, Table 3.6).

In exoskarn type B xenoliths, melilite has three textural forms: surrounding spinel, intergrown

with CaTs-clinopyroxene, and locally texturally equilibrated with 120° grain boundaries (Figure

3.5C). Melilite in association with spinel is richer in gehlenite (Gh68-83) than the clinopyroxene

intergrowths (Gh57-58) and well equilibrated types (Gh47-50).
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Figure 3.9: Additional rock-forming mineral compositions. A) Wollastonite and ferro-
bustamite. B) Garnet. C) Melilite. Note the different ternary scales for each plot.
Arrows indicate truncated scales. Mineral abbreviations as in Table 3.2.
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Table 3.6: Average melilite compositions for the magmatic skarn xenolith core and the
exoskarn xenoliths. All analyses are normalised to 7 oxygens. See Methods section for
details about the calculation of mole fractions of end-member compositions. Analyses
are reported as the mean and one standard deviation.

Core σ Exo A σ Exo B σ

n 4 7 26
SiO2 24.72 0.43 25.29 1.80 29.06 3.01
TiO2 0.01 0.02 0.01 0.02 0.01 0.02
Al2O3 29.87 0.47 28.92 2.03 25.09 4.37
Cr2O3 0.02 0.01 0.02 0.01 0.01 0.01
FeO 2.66 0.07 1.87 0.97 0.93 0.18
MnO 0.10 0.02 0.35 0.24 0.05 0.03
MgO 0.69 0.03 1.22 1.05 3.74 1.43
CaO 39.56 0.16 40.60 0.43 40.56 0.95
Na2O 0.54 0.10 0.13 0.12 0.52 0.21
Total 98.17 0.88 98.55 0.93 99.99 1.09

Cations based on 8 oxygens
Si 1.165 0.013 1.186 0.074 1.331 0.136
Ti 0.000 0.001 0.000 0.001 0.000 0.001
Al 1.659 0.012 1.600 0.120 1.354 0.237
Cr 0.001 0.000 0.001 0.001 0.000 0.000
Fe 0.105 0.002 0.074 0.038 0.036 0.007
Mn 0.004 0.001 0.014 0.010 0.002 0.001
Mg 0.048 0.002 0.085 0.072 0.255 0.097
Ca 1.998 0.021 2.042 0.032 1.990 0.036
Na 0.049 0.009 0.012 0.011 0.046 0.018

Endmembers (mol%)
Gh 79.7 0.7 82.3 7.1 65.2 12.5
Åk 4.9 0.2 8.9 7.6 26.6 10.5
Fe Åk 10.7 0.2 7.7 3.9 3.7 0.7
Na Mel 4.7 0.8 1.1 1.1 4.5 1.8

Sulphur and Halogen-bearing Phases

Pyrrhotite is found in both magmatic and exoskarn xenoliths, often touching or rimmed by

anhydrite. In magmatic skarn xenoliths, pyrrhotite is found in zone R2, as accessory inclusions

in wollastonite and CaTs-clinopyroxene, and as rare inclusions in melt inclusions in the core.

Fe/S ranges from 83 to 85%, and Cu concentrations range from 0.06 to 0.59 wt%. Pyrrhotite

is sometimes found with near stoichiometric cubanite (Table 3.7). The associated anhydrite is

pure, with < 0.04 wt% BaO and < 0.1 wt% SrO.
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Table 3.7: Cu-bearing mineral compositions. Cubanite has only been found in magmatic
skarn xenoliths, whilst pyrrhotite is found across all xenolith types, with little chemical
variation between xenolith types. Analyses are reported as the mean and one standard
deviation.

Po Cub
n 10 5
Fe 58.44 0.49 38.70 1.12
S 39.83 0.24 35.08 0.67
Co 0.20 0.02 0.12 0.03
Ni 0.48 0.11 0.06 0.05
Cu 0.30 0.17 24.26 1.51
Zn 0.03 0.02 0.09 0.05
Total 99.28 0.6 98.30 0.57

Sulphurs 1 3

Fe 0.842 0.007 1.899 0.036
Co 0.003 0.000 0.005 0.001
Ni 0.007 0.002 0.003 0.002
Cu 0.004 0.002 1.048 0.082
Zn 0.000 0.000 0.004 0.002
Total 0.856 0.007 2.959 0.072

Fe/S 0.84 0.01

Cuspidine is found as crystals within calcite (magmatic skarn xenoliths) or forming within

the reaction rim around calcite (exoskarn xenoliths) associated with stoichiometric spurrite ±

larnite and an unidentified Ca-Si-Al-O phase. Fluorine a.p.f.u. approach the ideal 2 (1.937-

2.035) indicating negligible OH (Table 3.8). Fluorite is a fine grained (<20 μm) accessory phase

replacing calcite in both xenolith types, and evidently nucleated at crystal borders or forming

fine halos around vesicles in calcite.

Apatite is found in magmatic skarn xenolith zone R4, and contains 0.7 to 0.8 wt% Cl and

no detectable SO3. Ellestadite is found as an accessory phase in exoskarn xenoliths with 7.2 to

10.0 wt% SO3 and 0.7 to 1.2 wt% Cl (Table 3.8. F was not analysed with EMPA, however ~2

wt% F was identified using SEM-EDS, indicating that OH is minimal. Stoichiometric ellesta-

dite (undetectable P2O5) with ~1.9 wt% Cl was determined with SEM-EDS coexisting with

anhydrite in sample M13-02, within the reaction rim around large remnant calcite crystals.

Qualitative EDS analyses have identified trace quantities of small (<5 µm) baryte crystals

in both magmatic and exoskarn xenoliths, and additionally a crystal of cotunnite (PbCl2) is

present in the magmatic skarn xenoliths.

There are unidentified Cl-bearing minerals, which tentatively may be new minerals. Skarn
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Table 3.8: Selected analyses of halogen and sulphur-bearing minerals. Wad-1, Wad-2 are
the wadalite-like phase, found in sample MX1. The last two columns are the unknown
volatile-bearing minerals in samples CS11 and MXCS-b respectively. SEM-EDS analysis
shows the presence of Cl and F in these latter two minerals. Normalisation cations for
the unknown volatile-bearing minerals are chosen to produce plausible formula units, and
are not to represent any currently known minerals. Analyses are reported as the mean
with one standard deviation.

Cuspidine Ellestadite Wad Wad CS11 CaAlSi M-XCS b CaAlSi
All σ All σ Core σ Core σ Exo A σ Exo A σ

n 5 4 11 2 2 2
SiO2 32.70 0.42 8.37 1.27 17.63 0.41 24.98 1.99 26.70 0.05 23.33 0.44
TiO2 0.19 0.15 0.02 0.03 0.38 0.17 0.56 0.29 0.00 0.00 0.01 0.02
Al2O3 0.02 0.01 0.03 0.02 23.85 1.05 19.59 0.98 14.47 0.42 12.98 0.02
Cr2O3 0.02 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00
FeO 0.14 0.08 0.08 0.03 5.63 1.21 6.26 2.60 1.52 0.37 0.71 0.15
MnO 0.08 0.02 0.03 0.01 0.18 0.05 0.24 0.15 0.26 0.10 0.07 0.06
MgO 0.07 0.07 0.05 0.02 0.60 0.08 0.43 0.09 0.24 0.01 0.01 0.01
CaO 60.20 0.24 54.16 1.19 40.18 0.43 39.67 3.09 52.48 0.13 56.23 0.26
Na2O 0.02 0.02 0.01 0.02 0.17 0.16 0.09 0.04 0.00 0.00 0.01 0.02
K2O 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.01
P2O5 0.00 0.00 24.03 3.25 0.13 0.13 0.13 0.18 0.04 0.02
SO3 0.00 0.00 8.12 1.42 0.01 0.01 0.00 0.00 0.02 0.01
Cl 0.01 0.00 1.04 0.22 12.91 0.17 8.87 2.74 2.12 0.00
F 10.26 0.14 0.02 0.02 0.00 4.90 0.00
Total 103.70 0.40 95.94 0.81 101.69 0.56 100.85 2.08 95.67 0.12 100.61 0.10
O=(F2,Cl2) -4.32 0.06 -0.23 0.05 -2.92 0.04 -2.00 0.62 0.00 0.00 -2.54 0.00
Total 99.38 0.44 95.71 0.78 98.77 0.53 98.85 1.46 95.67 0.12 98.07 0.10

Cations based on x cations
Cations 6 6 8 8 26 26 26 26 9 9 16 16
Si 2.002 0.009 0.701 0.106 4.753 0.092 6.168 0.277 2.337 0.006 4.042 0.058
Ti 0.009 0.007 0.002 0.002 0.078 0.034 0.103 0.051 0.000 0.000 0.001 0.002
Al 0.001 0.001 0.003 0.002 7.578 0.297 5.713 0.484 1.493 0.037 2.649 0.009
Cr 0.001 0.001 0.000 0.000 0.003 0.003 0.001 0.001 0.000 0.000 0.000 0.000
Fe 0.007 0.004 0.006 0.002 1.270 0.277 1.285 0.493 0.112 0.028 0.103 0.022
Mn 0.004 0.001 0.002 0.001 0.042 0.012 0.050 0.030 0.019 0.008 0.011 0.008
Mg 0.007 0.006 0.007 0.003 0.240 0.032 0.159 0.039 0.031 0.001 0.002 0.002
Ca 3.949 0.026 4.858 0.102 11.610 0.160 10.524 1.187 4.923 0.008 10.436 0.096
Na 0.002 0.002 0.001 0.003 0.087 0.083 0.045 0.022 0.000 0.000 0.004 0.005
K 0.001 0.001 0.000 0.000 0.002 0.003 0.007 0.000 0.000 0.000 0.002 0.002
P 0.000 0.000 1.704 0.230 0.031 0.029 0.027 0.038 0.000 0.000 0.006 0.003
S 0.000 0.000 0.510 0.089 0.001 0.003 0.000 0.000 0.000 0.000 0.002 0.001
Cl 0.001 0.000 0.147 0.031 5.903 0.087 3.735 1.277 0.000 0.000 0.622 0.003
F 1.986 0.044 0.000 0.000 0.006 0.011 0.000 0.000 0.000 0.000 2.684 0.012

xenoliths, such as those from the Upper Chegem caldera, Russia, can be host to numerous

new minerals (e.g. Galuskin et al., 2013), and this may additionally be the case at Merapi. A

wadalite-like Ca-Al-Fe-Si-Cl mineral compositionally similar to the wadalite-eltyubyuite mayen-

ite solid solution (when normalised to 26 cations) is found in association with calcite, cuspidine,

garnet and gehlenite in magmatic skarn xenolith MX1 (Table 3.8). These crystals however have

compositions with Si a.p.f.u. 4.6-5.5 (Table 3.8, higher than the ideal Si 4, and lack sufficient

Mg to balance this increase in Si in wadalite (c.f. Galuskin et al., 2015). Raman spectra of this

phase are included as Appendix Figure B.5.

A Ca-Al-Si-Cl-F mineral is found in exoskarn xenoliths CS11 and M-XCS in the rim around

areas where larnite and spurrite have replaced calcite. Concentrations of Cl and F in this
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mineral have only been determined by SEM-EDS, and as it contains 10 wt% more CaO than

the wadalite-like mineral, and lower volatile contents (~7 wt%) we believe it to be a different

mineral (Table 3.8.

Oxides, Other Silicates, and Accessory Minerals

The dominant Fe-Ti oxide in the magmatic skarn xenoliths is magnetite, with 0.3 to 11.5 wt%

TiO2. Magnetite within the xenolith cores is distinct (<0.3 wt% TiO2) from magnetite in the

other zones (8.9-11.5 wt% TiO2). Ilmenite is present in zone R2 of one xenolith. Qualitative

EDS analysis has identified micrometre sized chromite in the xenolith cores. Hematite is the

dominant oxide found in the exoskarn xenoliths, with rare magnetite present as well. Per-

ovskite is found as a 50 µm vermicular cluster intergrown with wollastonite and plagioclase

in one magmatic skarn xenolith (sample MX1) and is essentially stoichiometric CaTiO3. A

Ca-Zr-Ti-O mineral (calzirtite?) is found in the same magmatic skarn xenolith. Titanite across

all xenolith types contains 1.04 to 2.51 wt% Al2O3 and 0.73 to 2.86 wt% FeO. An unidentified

Ca-Al-Si-P mineral is found in exoskarn A samples CS11 and MXCS, approximating the for-

mula Si3.1Ti0.1Al2.9Ca3.0P0.9O16 when assuming 16 oxygens. Xenotime and monazite are very

rare calcite inclusions in exoskarn A xenoliths. Spinel (Sp83-89Her11-17) is found exclusively in

the gehlenite-garnet-CaTs clinopyroxene-spinel exoskarn B xenolith (MX99-3s). These mineral

analyses are given in Table 3.9.

Transition metal alloys occur as trace <5 µm inclusions in wollastonite and garnet crystals

in the magmatic skarn xenoliths. Data for a ~2 µm CuZn alloy approximates tongxinite Cu2Zn.

There is a small chance these may be contamination from the grinding plate, although plausible

for this mineral to occur in pyrrhotite and cubanite-bearing xenoliths, therefore is not discussed

further. A Cu-Zn-Pb phase has additionally been identified.

3.5.3 Glass Chemistry

Melt inclusions and interstitial glass are almost entirely restricted to magmatic skarn xenoliths,

with melt inclusions and glass only found in the exoskarn xenoliths within the clinopyroxene-

rich reaction rim at the host lava contact. Xenolith interstitial (zones R1, R2, R4 and core)

and melt inclusion (zones R1, R3, R4 and core) glass compositions show strong deviation from

lava groundmass glass and melt inclusion compositions, and also show compositional differences

between zones (Figure 3.10, Table 3.10). Melt inclusions are compositionally more diverse than

the interstitial glass. CaO concentrations in intersitital glass and melt inclusions from zone R1
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Table 3.9: Average analyses of oxides and other silicate minerals found in the Merapi
xenoliths. Analyses are reported as the mean with one standard deviation.

CaSiAlP ox-hem σ ox-ilm ox-mag σ psk σ sp σ ttn σ

n 1 4 1 27 3 8 8
SiO2 33.30 0.31 0.15 5.92 0.14 0.10 1.13 0.83 0.01 0.01 30.91 1.13
TiO2 1.19 0.15 0.20 43.22 9.91 5.16 54.75 0.63 0.01 0.01 36.28 2.33
Al2O3 26.28 0.59 1.14 1.10 2.66 1.15 0.43 0.16 66.59 0.58 1.70 0.51
Cr2O3 0.00 0.02 0.02 0.19 0.18 0.20 0.01 0.01 0.10 0.07 0.03 0.03
FeO 0.28 86.61 2.79 42.16 78.73 4.81 0.80 0.15 8.48 1.41 1.31 0.70
MnO 0.00 0.13 0.14 0.87 0.89 0.30 0.04 0.03 0.38 0.08 0.08 0.07
MgO 0.00 0.35 0.58 1.54 1.78 0.55 0.01 0.01 22.69 0.77 0.12 0.29
CaO 29.53 0.47 0.19 1.74 0.17 0.21 40.71 0.47 0.01 0.00 28.13 1.04
Na2O 0.46 0.06 0.04 0.40 0.05 0.05 0.02 0.02 0.00 0.00 0.02 0.01
Total 102.40 88.70 1.67 97.37 94.51 1.37 97.92 0.45 98.27 0.68 98.66 2.18

Cations based on x oxygens
Oxygens 16 3 3 3 4 4 3 3 4 4 5 5
Si 3.098 0.006 0.005 0.146 0.005 0.004 0.026 0.019 0.000 0.000 1.010 0.034
Ti 0.083 0.001 0.001 0.802 0.280 0.153 0.944 0.008 0.000 0.000 0.892 0.053
Al 2.881 0.001 0.001 0.032 0.117 0.048 0.012 0.004 1.965 0.012 0.065 0.019
Cr 0.000 0.000 0.000 0.004 0.005 0.006 0.000 0.000 0.002 0.001 0.001 0.001
Fe2+ 0.000 0.000 0.000 0.774 1.145 0.181 0.000 0.000 0.145 0.023 0.002 0.007
Fe3+ 0.022 1.478 0.985 0.095 1.311 0.288 0.015 0.003 0.033 0.013 0.033 0.022
Mn 0.000 0.001 0.001 0.018 0.028 0.009 0.001 0.000 0.008 0.002 0.002 0.002
Mg 0.000 0.002 0.002 0.057 0.098 0.029 0.000 0.000 0.847 0.024 0.006 0.014
Ca 2.943 0.009 0.007 0.046 0.006 0.008 1.000 0.014 0.000 0.000 0.985 0.033
Na 0.083 0.003 0.002 0.019 0.003 0.004 0.001 0.001 0.000 0.000 0.001 0.001

and some R2 analyses overlap lava glass CaO values (0.2 to 3.8 wt%). CaO concentrations in

the interstitial glass (0.9-6.5 wt%) and in melt inclusions (0.5-11.3 wt%) within the xenolith

zones R3, R4 and the core are elevated by up to ~4 wt% in the interstitial glasses in relation

to magmatic values and by up to 10 wt% in the melt inclusions. These glasses, especially the

melt inclusions, are also characterised by low Al2O3 and K2O relative to lava glasses (Figure

3.10), and smaller variations from the lavas are observed in all other major and minor elements.

Al2O3 concentrations are up to 5 wt% lower than in the lavas, and up to 2 wt% lower in K2O.

Xenolith glass volatile concentrations are broadly comparable to the lava glasses, with only a few

analyses exceeding that of the lavas. Sulphur exceeds lava groundmass concentrations in some

zone R1 and zone R4 analyses, containing up to 510 ppm sulphur. Chlorine is typically within

lava groundmass glass concentrations, and only exceeds lava glass values in plagioclase-hosted

melt inclusions in sample CS16 and interstitial glasses in MX99-4s. The few analyses for F (0

to 1110 ppm) show that concentrations are within lava values (0 to 2637 ppm). Although the

melt inclusion analyses for MX1 show negligible F, localised patches of cuspidine and fluorite

have been observed.
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Figure 3.10: Interstitial and melt inclusion glass compositions. All values are normalised
to 100 wt% volatile free. Published data for whole rock, glass and melt inclusions at
Merapi shown for comparison. Published data from Gertisser (2001), Schwarzkopf et
al. (2001), Gertisser et al. (2012), Nadeau et al. (2013b), Borisova et al. (2013),
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B.6 for the major element oxides not shown in this figure.
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Table 3.10: Average interstitial glass and melt inclusion compositions for the zones in
the magmatic skarn xenoliths. Analyses are reported as the mean with one standard
deviation.

Intersitital Glass Melt Inclusion
Host Lava σ R1 σ R2 σ R4 σ Core σ R1 σ R4 σ

n 15 11 15 48 12 12 70
SiO2 70.45 3.36 69.02 2.54 71.07 2.76 73.23 2.21 73.32 1.78 63.99 3.03 67.38 3.72
TiO2 0.42 0.11 0.37 0.10 0.31 0.14 0.35 0.13 0.32 0.09 0.44 0.05 0.40 0.19
Al2O3 13.75 1.83 13.29 0.95 13.47 1.17 12.00 0.88 12.60 0.38 17.55 0.82 13.33 1.97
Cr2O3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.01
FeO 2.59 0.79 3.03 0.15 2.52 0.28 2.22 0.46 2.22 0.56 2.55 0.56 2.84 1.31
MnO 0.12 0.08 0.13 0.05 0.10 0.04 0.07 0.03 0.05 0.03 0.13 0.04 0.09 0.06
MgO 0.40 0.57 0.12 0.09 0.12 0.12 0.06 0.06 0.07 0.04 0.33 0.22 0.35 0.90
CaO 1.05 1.04 4.71 1.79 2.49 1.29 3.04 1.15 2.26 0.97 2.44 0.52 5.87 3.47
Na2O 3.89 1.15 3.41 0.46 3.59 0.46 3.22 0.37 3.32 0.53 4.01 0.90 3.43 0.74
K2O 5.28 0.72 4.20 0.52 4.71 0.80 4.51 0.56 4.92 0.50 3.82 1.03 4.00 0.99
P2O5 0.12 0.12 0.08 0.05 0.07 0.08 0.09 0.36 0.04 0.02 0.23 0.08 0.08 0.04
SO3 0.01 0.01 0.06 0.03 0.01 0.01 0.02 0.02 0.00 0.01 0.11 0.05 0.03 0.03
Cl 0.21 0.16 0.27 0.03 0.26 0.03 0.29 0.07 0.28 0.04 0.29 0.02 0.34 0.11
Total 98.26 1.38 98.63 0.83 98.73 1.56 99.09 0.92 99.39 1.12 95.53 3.48 98.14 1.97

3.5.4 Fluid Inclusions

Fluid inclusions in the magmatic skarn xenoliths (n=28) are two phase vapour-rich inclusions

in wollastonite. The dominant fluid composition is CO2, confirmed by instantaneous melting

at -57.3 to -56.1°C. The slight deviation from ideal melting at -56.6°C indicates the presence

of a small percentage other dissolved gases such as SO2, N2, which are not thought to have a

significant effect on pressure estimates (Frezzotti et al., 2002). No H2O is observed either as

ice or clathrate. Homogenisation is to the vapour phase at 12.9 to 29.9°C. These temperatures

correspond to densities of 0.15 to 0.35 g/cm3, indicating trapping pressures of 33 to 92 MPa,

when assuming a formation temperature of 850°C (see discussion), utilising the Hansteen and

Klügel (2008) spreadsheet implementation of Sterner and Pitzer (1994) and Span and Wagner

(1996) density and equation of state models. An extreme temperature estimate increase to

1200°C only increases pressure estimates by ~30 MPa. No inclusions for barometry with re-

solvable homogenisation were found in the exoskarn xenoliths, but CO2 melting was observed

in some inclusions.

3.6 Discussion

In this section we discuss the processes during formation of the xenoliths, and the pressure,

temperature and fO2 conditions that can be determined from the recorded mineral assem-

blages. We also discuss the implications for the magmatic system at Merapi, such as magmatic
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contamination by xenolith phases, metal transport and the CO2 output by decarbonation reac-

tions. Accurate determination of temperature in the magmatic skarn xenoliths requires accurate

estimates of the melt composition during xenolith formation; therefore we first discuss the im-

plications for any modification of melt inclusion compositions.

3.6.1 Post-entrapment Modification of Melt Inclusions

The abundance of melt inclusions in the magmatic skarn xenoliths allows for constraining the

original composition of the melt present during xenolith formation, and potentially application

of thermobarometric models (discussed below). Post-entrapment modification of melt inclusion

compositions however is a well-documented phenomenon, occurring via diffusive exchange of

elements, crystallisation of a host mineral boundary layer, or from crystallisation of daughter

crystals (e.g. Nakamura and Shimakita, 1998; Danyushevsky et al., 2000; Nielsen, 2011). There-

fore, assessment of these effects is required before interpreting the inclusion compositions. Melt

inclusions are found within clinopyroxene, plagioclase and wollastonite hosts in the magmatic

skarn xenoliths, all of which have no universally accepted way to back-calculate the original

composition. The interstitial glass within the xenoliths provides a first order constraint on

the original melt composition, showing that it is strongly elevated in CaO compared to lava

glass compositions (Figure 3.10). We have not attempted correction of our melt inclusions,

and consider the wollastonite-hosted melt inclusions to be the best estimates of melt CaO

concentrations for the following reasons.

Examples of correcting for inclusion modification in clinopyroxene hosts include adding the

host clinopyroxene to the inclusion (e.g. Bali et al., 2018) until Fe-Mg partitioning between the

inclusion and clinopyroxene (KDcpx−MI
F e−Mg ) approaches the widely accepted equilibrium value

of 0.28 ± 0.08 (Putirka, 2008), and adding calculated equilibrium clinopyroxene back to the

melt inclusion until the calculated clinopyroxene has the same Mg# as the host (e.g. Preece

et al., 2014). A compilation of magma-carbonate (both limestone and dolomite) interaction

experimental data shows that KDcpx−melt
F e−Mg in carbonate-contaminated systems may strongly

diverge from the magmatic-derived 0.28 ± 0.08 (Putirka, 2008) (Figure 3.11A), suggesting that

KDcpx−melt
F e−Mg is redox-sensitive (see oxybarometry discussion below) and an Fe-Mg partitioning

equilibrium-based correction is not appropriate.

The difference between observed and predicted clinopyroxene diopside-hedenbergite (DiHd)

components (ΔDiHd: Putirka, 1999, 2008; Mollo et al., 2013; Neave and Putirka, 2017) is more

accurate at predicting equilibrium (Figure 3.11B), with 68% of magma-carbonate experimental

134



CHAPTER 3. MAGMATIC AND METASOMATIC EFFECTS OF MAGMA-
CARBONATE INTERACTION RECORDED IN CALC-SILICATE XENOLITHS
FROM MERAPI VOLCANO (INDONESIA)

135

equilibrium clinopyroxene-melt pairs predicted to fall within model error (± 0.07 Mollo et al.,

2013). Applied to the Merapi xenoliths, clinopyroxene-hosted melt inclusions within zones R3

and R4 have irregular embayed forms, suggesting some sidewall crystal growth, and ΔDiHd

values > 0.07, indicating some potential modification of trapped melt compositions. Melt

inclusion-clinopyroxene pairs from zones R1 and R2 have ΔDiHd values from 0 to 0.14, with

an average of 0.05, indicating some may represent unmodified melt values. These compositions

overlap lava glass compositions, consistent with their proximity to the lava contact, indicating

a magmatic character.

An example of plagioclase-hosted melt inclusion correction is regressing the magmatic liquid

line of descent in TiO2-Al2O3 space, and adding plagioclase back until the inclusions lie on

the liquid line of descent (Bali et al., 2018). This cannot be applied here as our measured

xenolith melt inclusion compositions, evidenced by elevated CaO in xenolith interstitial glass

compositions, are contaminated and are not closed system magmatic values (see below), and

therefore cannot be assumed to lie on a regression line through the magmatic liquid line of

descent. Moreover, a micron thick rim of Ab-rich plagioclase is observed around the inclusion

walls (Figure 3.4E, G) and suggests some modification of plagioclase inclusion compositions

occurred as well.

Wollastonite-hosted melt inclusions are generally well formed and equant with a single

shrinkage bubble, and lack textural evidence of sidewall crystallisation and modification (Fig-

ure 3.4D). Although Fe and Mn are weakly compatible in wollastonite, traverses from inclusion

contact to 20 µm into the crystal do not show any resolvable chemical gradients that would

indicate diffusion and melt inclusion alteration. Therefore, wollastonite-hosted inclusions are

likely the best inclusions to represent original compositions.

The effect of post-entrapment crystallisation of a melt inclusion can be tested graphically.

Fractionation vectors in Figure 3.10 show the effect of 10% subtraction (crystallisation) of

clinopyroxene, plagioclase and wollastonite on glass compositions. Taking the fractionation

vectors for the CaO vs SiO2 plot, Figure 3.10 shows that that any post-entrapment crystalli-

sation of the respective host phase would lower the CaO concentration of the trapped melt,

therefore our analyses must reflect minimum original CaO estimates, regardless of inclusion

sidewall crystallisation. Melt inclusion compositions instead follow the vector for addition of

calcite to the published melt compositions. Where the Cal addition vector is not followed per-

fectly, such as for Al2O3, increasing CaO of the melt may have triggered precipitation of other

mineral phases, such as An-rich plagioclase (present in the xenolith glass), causing the data to
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Figure 3.11: A) Box plots of KDcpx−melt
F e−Mg values from carbonate assimilation experi-

ments. Black circles represent outliers calculated as 1.5 x interquartile range from the
third quartile. Experiments with carbonate added have a general increase in KDcpx−melt

F e−Mg

values. Experiments by Carter and Dasgupta (2016) and Carter and Dasgupta (2018)
use more evolved andesite and dacite compositions, compared to the remaining basaltic
experiments, which were less affected by carbonate interaction. The extremely high values
from Mollo and Vona (2014) are likely the result of very high experimental fO2 conditions
(up to air), which would strongly affect Fe2+/Fe3+ partitioning between clinopyroxene and
melt. B) Comparison between measured clinopyroxene DiHd components and predicted
ones, using the iterative approach of Neave and Putirka (2017). Light grey data are
calculated from clinopyroxenes in the Library of Experimental Phase Relations database.
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follow a Cal+Fsp vector. A decrease in K2O is likely just a dilution effect, not removal of K2O in

any significant proportion in any mineral phases, as no K2O-rich minerals are found at Merapi

or in the xenoliths. As the current methods of correcting for post entrapment crystallisation

are not suitable for these compositions, no attempt has been made to account for the effects

of melt inclusion modification. Additionally, these compositions overlap the compositions of

Ca-contaminated interstitial glasses, and high CaO is present regardless of the host mineral

phase. This shows that although post-entrapment modification may have occurred, the very

high CaO values may reasonably represent minimum estimates of original melt compositions.

3.6.2 Intensive Variables

Magmatic Skarn Xenolith Thermobarometry

The abundance of glass and common mineral phases (clinopyroxene, plagioclase) allows for the

application of thermobarometric models to the xenoliths. On the basis of the uncertainty in

mineral-melt equilibrium testing previously discussed and the results of testing thermobaro-

metric models with experimental carbonate assimilation data (see Appendix B.5 and Appendix

Figure B.8) we apply the glass-only equation 34 (Putirka, 2008) to the clinopyroxene-saturated

interstitial glasses of the magmatic skarn xenoliths, with water contents estimated by difference

from 100 wt% (Anderson, 1973, 1974; Devine et al., 1995), provide a temperature of 829 ±

45°C (n=89)(Figure 3.12). Melt inclusions, in turn, reflect a slightly higher temperature of 876

± 49°C (n=88). These temperatures are consistent with the presence of ferrobustamite over-

growths on the coexisting wollastonite, which is thought stable between ~800-880°C (Rutstein,

1971). A pressure of 50 MPa was assumed for thermometry, consistent with the results of fluid

inclusion barometry (our results: 34-92 MPa, and those of Clocchiatti et al. (1982): 67-109

MPa), and the results of equation 32b (27 ± 244 MPa). Temperature estimates are lowered by

a negligible 5°C per 100 MPa. Temperatures estimated for glasses within any lava attached to

the xenolith, and lava interstitial glasses from the literature (with an assumed pressure of 200

MPa: Preece et al., 2014; Erdmann et al., 2016) are higher than that of the xenolith glasses,

at 937 ± 43°C. Phase equilibria estimates of pre-eruptive temperatures for Merapi are 925-

950°C (Erdmann et al., 2016), which supports the higher lava glass temperature from our glass

thermometry.
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Figure 3.12: Stacked histogram results of thermometry estimates for the magmatic
skarn xenoliths and host lava glasses using Putirka (2008) equation 34. Xenolith glasses
produce temperatures of 829 ± 45°C (n=89). Melt inclusions have a slightly higher tem-
perature of 876 ± 49°C (n=89). These temperatures are slightly below the thermometry
estimates for published lava glass analyses, at 937 ± 43°C

Additional constraints can be gained from comparison with experimental phase equilibria.

The small interstitial patches of garnet, plagioclase and wollastonite in sample MX1 are sta-

ble between ~510-890°C, with an XCO2 < 0.6 at 100 to 200 MPa (Gordon and Greenwood,

1971; Tracy and Frost, 1991), consistent with temperatures from the glass thermometry. The

R3b zone in sample MX1, comprising coexisting grossular-andradite garnet (Adr0.3) and CaTs-

clinopyroxene (CaTs0.23) indicates temperatures of 900-950°C based on experimental phase equi-

libria (Huckenholz et al., 1974; Gustafson, 1974).

Exoskarn T-XCO2

Although the exoskarn xenoliths lack glass, many phases and assemblages in the exoskarn

xenoliths can help constrain temperatures by comparison with experimental data and thermo-

dynamic modelling. Spurrite + cuspidine ± larnite-bearing reaction rims between calcite and

wollastonite + grossular + anorthite in samples CS11 and MXCS-0 allow temperature con-

straints, while additionally demonstrating the progressive interaction along a CaO-SiO2-CO2
system (e.g. Zharikov, 1969). The presence of spurrite and absence of evidence for lower tem-

perature tilleyite-forming reactions indicate spurrite formation by either interaction between

wollastonite and calcite
calcite

3CaCO3 +
wollastonite

2CaSiO3 =
spurrite

Ca5(SiO4)2CO3 +2CO2

or calcite directly with SiO2
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calcite

5CaCO3 +
silica

2SiO2=
spurrite

Ca5(SiO4)2CO3 +4CO2

The former reaction indicates temperatures of ~700-1000°C (Tuttle and Harker, 1957).

Spurrite is stable as low as 430°C at low CO2 partial pressure (Henmi and Henmi, 1978),

but the proximity of tens of microns to a decarbonating calcite crystal and a significant pro-

portion of voids suggests a high CO2 partial pressure. The latter reaction occurs at 910°C at

1 atm when in the presence of chlorine or fluorine (Bolio-Arceo and Glasser, 1990). Cuspidine

and fluorite are found within tens of microns of the spurrite, confirming a reaction occurred

with a fluorine-bearing fluid.

Larnite forms further from the calcite near the wollastonite contact (Deegan et al., 2010

Figure 10b) in sample MXCS-0, indicating temperatures of >850°C (Wyllie and Haas Jr, 1965;

Joesten, 1974; Treiman and Essene, 1983), following the potential reactions:
wollastonite

CaSiO3 +
spurrite

Ca5(SiO4)2CO3=
larnite

3Ca2(SiO4) +CO2
spurrite

Ca5(SiO4)2CO3=
larnite

2Ca2(SiO4) +CaO + CO2
calcite

2CaCO3 +
silica

SiO2=
larnite

2Ca2(SiO4) +CO2

The dominant mineral assemblage in these large calcite-bearing xenoliths can be described in

the SiO2-Al2O3-CaO system, comprising grossular garnet (Grs78-96), wollastonite and anorthite.

This assemblage is stable between ~510-890°C at 50-200 MPa, with an increasingly restricted

XCO2 with pressure, varying from > ~0.2 to 1 at 50 MPa, and from ~0.2 to 0.4 at 200 MPa

(Gordon and Greenwood, 1971; Tracy and Frost, 1991). Grossular with inclusions of calcite,

wollastonite and anorthite is additionally found in the CaTs-clinopyroxene bearing xenoliths,

suggesting the following reaction has occured:
calcite

CaCO3 +
wollastonite

CaSiO3 +
anorthite

CaAl2Si2O8=
grossular

Ca3Al2Si3O12 +CO2

The equilibration temperature of CaTs-clinopyroxene and grossular-andradite-bearing ex-

oskarn xenoliths is estimated as 900-950°C based on experimental data (Huckenholz et al.,

1974). Reactions involving these phases were further investigated using Theriak-Domino soft-

ware (build date 3-1-2012, de Capitani and Petrakakis, 2010) using calculated whole-rock com-

positions in the system Si-Al-Fe-Mg-Ca-C. An upper limit of temperature for the exoskarn

xenoliths is ~910°C at 100 MPa, which represents the limit of garnet stability (Figure 3.13).

Garnet reacts out just after melilite becomes stable at ~900°C. Exoskarn type A xenoliths

contain abundant garnet and trace amounts of gehlenite, constraining the temperature to this

narrow field between 900 and 910°C. The calculated high (30 mol%) CaTs contents at the

melilite-in boundary are in agreement with the high (up to 38 mol%) CaTs contents observed

in these xenoliths, as are modelled gehlenite contents (>70 mol%) compared to the observed
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ones (74-94 mol%). The mineral assemblage of the exoskarn type B xenolith is constrained by

a slightly lower maximum temperature as garnet becomes unstable at 860°C (Figure (3.13). A

minimum temperature estimate is given as ~780°C from high clinopyroxene CaTs component

(22-39 mol%). Conditions are further constrained to aCO2 < 0.5 for both xenolith types by the

absence of meionite and calcite. The results closely match the temperatures from previously

cited experimental studies. These temperature estimates are similar to those estimated for the

magmatic skarn xenoliths by thermobarometry.

In summary, the comparison with experimental studies and results from modelling indicate

exoskarn formation temperatures up to ~910°C, with a lower limit at around 780°C for xeno-

liths with CaTs clinopyroxene and 510°C for xenoliths without CaTs clinopyroxene. There is

no evidence for low temperature retrograde overprint, and these temperatures overlap the tem-

peratures estimates for the magmatic skarn xenoliths (~850°C). These temperature estimates

extending to as low as 510°C, combined with the petrological differences described above, indi-

cates a metasomatic origin for the exoskarn xenoliths instead of a magmatic crystallisation for

the magmatic skarn/endoskarn xenoliths.
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Figure 3.13: Theriak-Domino (de Capitani and Petrakakis, 2010) T-XCO2 modelling
of exoskarn xenoliths. Isobaric sections at 100 MPa. Green contours show the gehlenite
mole fraction. Red contours show the CaTs mole fractions. The exoskarn A xenolith
(MX99-5s) formed in a narrow temperature range between ~900 to 910°C, and XCO2
< 0.5. The exoskarn B xenolith (MX99-3s) mineral assemblage records temperatures
between 680 and 860°C at a XCO2 <~ 0.5. Abbreviations as in Table 3.2. Additional
abbreviations: Grt - garnet (andradite-grossular), Me - meionite, Ol - olivine
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Oxygen Fugacity

Estimates of oxygen fugacity (fO2) are difficult due to the lack of mineral assemblages com-

monly used to determine this variable. A first order estimate is obtained from the presence

of magnetite in magmatic skarn xenoliths compared to hematite in the exoskarn xenoliths,

indicating more oxidising conditions in the latter. Two single crystal clinopyroxene oxybarom-

eters exist that use Fe3+ concentrations in clinopyroxene to estimate oxygen fugacity (Cortés

et al., 2006; Simakin et al., 2012). Although Fe3+ concentrations in clinopyroxenes calculated

by stoichiometry (e.g. Lindsley, 1983; Droop, 1987) have been shown in some studies to have

a weak correlation to measured clinopyroxene Fe3+ concentrations (e.g. Sobolev et al., 1999),

a positive correlation between clinopyroxene Fe3+/Fetotal and fO2 has been demonstrated from

experimental data by Cortés et al. (2006) and Simakin et al. (2012). When taking a much

larger dataset (the Library of Experimental Phase Relations, Hirschmann et al., 2008), with

high fO2 experiments such as those from Mollo and Vona (2014) and Sugawara (2001) and

normalise in the data to the NNO (nickel-nickel oxide) buffer (c.f. Cortés et al., 2006) using

buffer equations from Frost (1991), then a broad positive correlation is still observed, although

with a large scatter (R2=0.44). Fe3+/Fetotal falls short of unity at an fO2 of air, and all Fe

is Fe2+ at ~ΔNNO-2. When applied to this large experimental dataset, the oxybarometer of

Cortés et al. (2006) strongly overestimates fO2 conditions, whilst Simakin et al. (2012) fails to

recover experiments performed in air (Figure 3.14).

We use a selection of data from experiments that span a wide fO2 range to calibrate a

new oxybarometer that recovers high fO2 conditions more accurately. We use the datasets of

Whitaker et al. (2007), Freise et al. (2009), Feig et al. (2006), Feig et al. (2010), and Mollo

and Vona (2014) (excluding Mollo and Vona’s relatively high Fe3+/Fetotal ΔNNO experiments).

This calibration dataset spans a fO2 between ΔNNO-5 to air, temperatures between 900 to

1280°C, 0 to 5 wt% H2O, and 50-68 wt% SiO2 and has a high coefficient of determination (R2

= 0.80). Although the dataset of Sugawara (2001) spans the widest fO2 range known to the

authors (~13 log units), calculated Fe3/Fetotal values have larger scatter than those from other

datasets, therefore we exclude these from the regression. Additionally, although AlIV increases

in clinopyroxene with increasing fO2 (e.g. Mollo and Vona, 2014), adding AlIV to the models

shows no significant improvement on the model, therefore we only use Fe3/Fetotal for prediction.

There is also no significant improvement in R2 or the standard error when using a polynomial

fit over a linear model, however we use a polynomial fit to marginally improve the estimates

at low fO2, as was shown by Simakin et al. (2012). We additionally considered constructing a
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similar oxybarometer based on Fe3+ in garnet as Fe3+ can be estimated accurately for garnet

(Arai, 2010), however there is an insufficient range of oxygen fugacity controlled experiments

in the Library of Experimental Phase Relations (LEPR Hirschmann et al., 2008) database to

attempt building a similar single crystal oxybarometer for garnet.

For testing, we filtered the entire experimental database to clinopyroxenes equilibrated <

1 GPa, with Si a.p.f.u. < 2, Ca > 0.5 a.p.f.u., cation totals between 3.98 and 4.1, and Na2O

< 1 wt%. Our models recover the calibration dataset with a residual standard error of 1.5 log

units, the global database and additional experimental data to 1.8 log units, compared to 2.1

for Cortés et al. (2006) and Simakin et al. (2012). The improvements in the error are small, in

part due to a lack of high fO2 experiments and potential variable data quality of the individual

experiments in the LEPR database. However, the accuracy at high fO2 is improved, which is

most relevant to our Merapi xenoliths. We obtain the following equation:

∆NNO = 22.705
(

F e3+∑
F e

)3
− 32.400

(
F e3+∑

F e

)2
+ 21.799

(
F e3+∑

F e

)
− 3.066

where Fe3+ and
∑
Fe are Fe a.p.f.u. estimated from stoichiometry (e.g. Lindsley, 1983;

Droop, 1987) and ΔNNO is the deviation from the nickel nickel oxide oxygen fugacity buffer in

log units.

Application of our oxybarometric model shows a wide spread of fO2 values for the xenoliths

(Figure 3.15A). Magmatic skarn xenolith clinopyroxenes at the lava contact zone R1 and in

zones R2, R3 and R4, have values similar to the magmatic values both predicted by our model

and published estimates (ΔNNO-0.2 to +1.6 Gertisser, 2001; Erdmann et al., 2014). Touching

pyrrhotite and anhydrite crystals in zone R2 in a small subset of magmatic skarn xenolith

samples additionally indicate a near-magmatic fO2 range between ΔNNO+0.5 to +2.5 (Luhr,

2008; Parat et al., 2011), consistent with other estimates. The R3b zone in sample MX1 records

higher oxygen fugacity conditions than the CaTs clinopyroxene + garnet absent samples, at

ΔNNO > +5. Xenolith core clinopyroxenes are formed through a large range of oxygen fugacity

conditions. The higher values come from the CaTs-rich clinopyroxene cores of sample CS16

(Figure 3.15B). Anhydrite crystals within these clinopyroxene cores (stable at > ΔNNO+1

Carroll and Rutherford, 1987) provide further evidence for a relatively high fO2 during early

clinopyroxene formation. Exoskarn xenolith clinopyroxene indicates formation under higher

fO2 than magmatic skarn xenoliths, approaching that of air (~ΔNNO + 8). While exoskarn

type A xenoliths record a large range from ΔNNO -1 to +8, the exoskarn type B xenolith

uniquely records conditions of exclusively > ΔNNO + 5. The high fO2 conditions recorded in

the exoskarns are similar to that recorded in zone R3b of magmatic skarn xenolith MX1.
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High fO2 in skarn systems is a result of CO2 release from carbonate, and this CO2 can

impose a fO2 equal to or greater than the HM buffer (e.g. Nicholls, 1971b; Wenzel et al.,

2002). The magnitude of fO2 increase is proportional to the freedom CO2 has to leave the

system. An open system continuous flux of CO2 increases fO2 higher than that of a closed

system (Ganino et al., 2008). The generally higher fO2 observed in the exoskarn xenoliths may

thus be a result of prolonged open system flux of CO2, whereas the syn-magmatic magmatic

skarn xenoliths were rapidly processed within the magma. Magmatic skarn xenolith zone R3b

however records a high fO2, comparable to the exoskarns, and additionally mineral phases in

there, such as clinopyroxene, compositionally overlap exoskarn mineral compositions (Figure

3.8). These compositions may be in part due to a lack of glass in this region of the magmatic

skarn xenolith, restricting SiO2 availability, and producing as a result silica-undersaturated

mineral compositions such as CaTs clinopyroxene.

3.6.3 Xenolith Petrogenesis

Protolith

An absence of Mg-rich skarn minerals within the xenoliths (olivine, periclase, merwenite, åk-

ermanite) and the abundance of wollastonite instead suggests a calcite-limestone protolith for

the xenoliths. The Merapi xenoliths do not match any mineral assemblages produced during

magma-dolomite interaction experiments, instead they closely resemble the results of magma-

limestone experiments (e.g Zarayskiy et al., 1987: wollastonite, clinopyroxene, garnet). Electron

microprobe analyses of calcites [Whitley et al. (2019); Chapter 4] are pure calcites with <0.2

wt% MgO + FeO + SrO, which additionally indicates a pure limestone protolith in the absence

of Mg-rich skarn minerals. Furthermore, local carbonate sampled from Parangtritis (50 km

south of Merapi) is limestone. The progressive chemical zonation within the xenoliths from

“magmatic” to calcic compositions (Figure 3.6) shows that the Mg-Fe-Al-bearing phases source

these elements from the host magma, not from a dolomite or marl.
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Figure 3.14: Clinopyroxene-only single crystal oxybarometer model testing. Experiments
used for the calibration of the new oxybarometer are highlighted (Feig et al., 2006, 2010;
Berndt et al., 2005; Whitaker et al., 2007; Mollo and Vona, 2014). Sugawara (2001)’s
experiments which cover 13 log units, and the results of applying the oxybarometers to
the filtered Library of Experimental Phase Relations (LEPR Hirschmann et al., 2008)
are also shown. A) Results of the Cortés et al. (2006) oxybarometer applied to the
experimental clinopyroxenes. B) Results of the Simakin et al. (2012) oxybarometer
applied to the experimental clinopyroxenes. C) Results of the model calibrated in this
study applied to the experimental clinopyroxenes. The model error is shown in the top
left.
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Figure 3.15: fO2 estimates from clinopyroxenes across all zones and traverses. A)
Violin density plots of oxygen fugacity estimates for xenolith clinopyroxenes. The model
error has been applied as the smoothing bandwidth. The light grey field shows published
estimates of Merapi magma fO2 from other independent methods (ΔNNO -0.2 to 1.6.
Gertisser, 2001; Erdmann et al., 2014). Application of our model to the literature
clinopyroxene dataset detailed in Figure 3.8 is shown for comparison to past literature
estimates. The solid dashed line is the magnetite-hematite oxygen fugacity buffer. The
results show xenolith rims (zones R1-3) formed in fO2 similar to magmatic conditions,
whilst the cores and exoskarn xenoliths formed at much higher fO2, up to that of air.
B) Results of application of the oxybarometer to the core to rim calculated fO2 traverse
of the same clinopyroxene from sample CS16 as shown in Figure 3.8E. The results
show an initial period of high fO2 during initial clinopyroxene formation and vigorous
carbonate-magma interaction, then a progressive decline as the carbonate-contaminated
melt precipitates mineral phases and CO2 migrates from the reaction zone.

Magmatic Skarn Xenoliths

The abundance of Ca-rich melt inclusions and Ca-rich groundmass glass (Figure 3.4) indicate

crystallisation of the main skarn mineralogy of clinopyroxene, plagioclase and wollastonite from

a Ca-contaminated magmatic melt, produced from dissolution of the carbonate protolith (Figure

3.10) (c.f. Deegan et al., 2010). Calcic melt inclusions and matrix glasses were also described

from volcanic products of the 2010 eruption of Merapi (Borisova et al., 2013). Thermodynamic

modelling suggests formation of Ca-rich melts via a peritectic reaction of grossular-bearing

calc-silicate material with the magma (Borisova et al., 2016). These Ca-rich melt inclusions are

spread randomly throughout their host crystals, or less commonly, along crystal growth zones,

showing a primary origin (Roedder, 1984; Goldstein, 2003). Clinopyroxene compositions in

these xenoliths are compositionally distinct from those in the exoskarn xenoliths, most notably

those from the glass zone R4 (Figure 3.8), supporting formation from the Ca-rich melt instead

of an origin as incorporated xenocrysts from partially melted exoskarns. Fe-rich ferro-bustamite

growths on some wollastonite crystals is also consistent with crystallisation from this melt, as the
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glass and core zones are characterised by FeO-enrichment (Figures 3.7, 3.8). Melt inclusions in

wollastonite are not exclusively comprising CaO and SiO2, but also contain other major element

oxides such as K2O, which can only be derived from the magmatic melt as there no K-bearing

phases found in any of the xenoliths studied. The composition of these melt inclusions cannot

be explained by dissolution of wollastonite but supports the idea that wollastonite crystallized

from a Ca-enriched melt. Experimental work at Merapi has shown the contaminated melt takes

up Sr and B from the carbonate protolith (Chadwick et al., 2007; Deegan et al., 2016a).

The arrows in Figure 3.10 show the addition of 10% CaO to the melt, indicating that the

melt inclusions record crystallisation from a melt with up to 20% CaO added. The groundmass

glasses retain evidence for up to 10% added CaO, after crystallisation of wollastonite and other

minerals. Although whole-rock compositions at Merapi are basaltic to basaltic-andesite, the

lava groundmass glasses, the melt compositions in contact with the carbonate, and xenolith

glasses, are distinctly more felsic (60-76 wt% SiO2). The melt inclusion CaO concentrations

observed in our study (Figure 3.10) far exceed (up to 11.3 wt% CaO) those observed in glasses

from calcite-saturated dacite-carbonate experiments of Carter and Dasgupta (2016) (<4.3 wt%),

confirming their hypothesis that natural systems may be able to assimilate more carbonate than

their closed system experiments indicated.

Skarn minerals that contain melt inclusions and show evidence for crystallisation from a

carbonate contaminated magmatic melt, instead of through metasomatic transfer, is a rare but

increasingly recognised phenomenon (e.g. Fulignati et al., 2001; Gaeta et al., 2009; Di Rocco

et al., 2012; Bin and Jin-song, 2016). Homogenisation temperatures of these melt inclusions

in the literature (Fulignati et al., 2001; Bin and Jin-song, 2016) indicate temperatures of 860-

1200°C, which are in excess of those typically experienced during metasomatic skarn formation in

contact metamorphic aureoles (<=800°C; Meinert, 1992), indicating direct interaction between

a magmatic melt and carbonate. Trapping of melt inclusions in skarn minerals precipitated

from a calcite contaminated quartz diorite melt has been experimentally confirmed (Bin and

Jin-song, 2016), and dacite-carbonate interaction experiments (Carter and Dasgupta, 2016)

have been shown to crystallise wollastonite, in contrast to producing dominantly Ca-rich melt

in experiments with mafic melt compositions (Deegan et al., 2010; Carter and Dasgupta, 2015).

As well as this rare and unique evidence for skarn mineral formation from carbonate contam-

inated melts, and therefore exoskarn formation by this process, the magmatic skarn xenoliths

also provide insights into the morphology and cumulate-forming processes at the wall-rock
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contact at Merapi. Carbonate assimilation has been shown to form and/or influence the miner-

alogy of cumulate assemblages; for example, changes to the mineral chemistry of dunites at the

Ioko-Dovyren Intrusion, Russia (Wenzel et al., 2002), formation of clinopyroxenite xenoliths at

Nisyros, Greece (Spandler et al., 2012), and olivine+clinopyroxene+spinel cumulate xenoliths

at Colli Albani (Gaeta et al., 2009; Di Rocco et al., 2012). Reaction between carbonate and

magmatic melt increases the stability of clinopyroxene and in more evolved melts, plagioclase

also (e.g. Mollo et al., 2010b). This results in a wallrock grading from a cumulate zone adjacent

to the magma body (endoskarn), to skarn assemblages at the limestone contact (exoskarn).

Skarn-derived Ca-rich melts are inferred (Wenzel et al., 2002; Gaeta et al., 2009) to be the

main source of carbonate components contaminating the magmatic melt. Our magmatic skarn

xenoliths are perfect examples of these processes. Zones R1 to R3 comprise the cumulate zone

formed under the influence of carbonate assimilation. Similar to the cumulates at Ioko-Dovyren

(Wenzel et al., 2002) and Colli Albani (Gaeta et al., 2009), clinopyroxenes and plagioclase in

these zones only show relatively subtle variations in mineral chemistry from magmatic-derived

mineral compositions that reveal their carbonate contamination origin. The CaO-enriched

glass-rich zone R4 captures the carbonate process of the magmatic melt contamination, and

the xenolith cores in some samples preserve very rare instances of the actual calcite carbonate

melt [see Whitley et al. (2019); Chapter 4]. This carbonate melt has since only been inferred to

occur during other instances of carbonate assimilation (Wenzel et al., 2002; Barnes et al., 2005;

Gaeta et al., 2009), whilst the magmatic skarns at Merapi preserve and demonstrate direct

evidence for its existance.

A syn-magmatic origin for these xenoliths, i.e. formation by direct magma-carbonate contact

during magmatic events such as eruptive periods, is consistent with the presence of glass and

additionally the low pressures of 37-93 MPa (corresponding to <3.5 km) estimated from fluid

inclusion barometry. These pressures are similar to some pressure estimates derived from re-

equilibrated melt inclusions in magmatic clinopyroxenes at Merapi (Nadeau et al., 2013b; Preece

et al., 2014), and they are lower than pressures estimated for the main pre-eruptive magma

chamber or reservoir at Merapi (100-400 MPa, corresponding to depths of ~4-15 km; Commer

et al., 2006; Chadwick et al., 2013; Costa et al., 2013; Preece et al., 2014; Erdmann et al.,

2016; Deegan et al., 2016b). This indicates that the fluid inclusions have re-equilibrated during

ascent, or have been formed at very shallow crustal pressures. A lack of ‘re-equilibration tail’

(Hansteen and Klügel, 2008) and no evidence for pressures > 100 MPa in our fluid inclusion

dataset suggests re-equilibration is unlikely, and instead suggests formation in small ephemeral
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pre-eruptive reservoirs or during magmatic ascent during eruptive periods.

Patchy zoned clinopyroxenes with prominent irregular resorption surfaces (Figure 3.8) show

that this syn-magmatic carbonate interaction is a dynamic process, under temporarily variable

imposed oxygen fugacity conditions caused by rapid CO2 release (Figure 3.15) (c.f. Mollo et al.,

2010b). Variations in the ability of this CO2 to migrate from the reaction site (Ganino et al.,

2008; Blythe et al., 2015) may cause the variation in oxygen fugacity across texturally similar

samples, and even within xenolith zones. Al, Fe3+-rich clinopyroxene cores and andraditic-rich

garnet indicate high initial oxygen fugacity conditions (Figures 3.8,3.15; Meinert, 2005; Mollo

and Vona, 2014), whilst diopside-rich cores indicate high initial carbonate-derived Ca activity in

the melt (Zarayskiy et al., 1987). Increasing CO2 release causes clinopyroxene Fe-enrichment in

the mantle and rims (Zarayskiy et al., 1987) to higher than observed in magmatic clinopyroxenes

in later stages of xenolith formation (Figure 3.8). Fe is additionally concentrated in plagioclase

as An concentrations decrease (Figure 3.7).

Although we propose the magmatic skarn xenoliths reflect crystallisation from a Ca-contaminated

melt, it is interesting to note that their mineralogical zonation still bears strong resemblance to

contact metamorphic zoned bimetasomatic skarns and experimental reconstructions of these,

such as produced during granodiorite-calcite interaction experiments (Zarayskiy et al., 1987).

Magmatic skarn xenolith samples with a garnet + CaTs clinopyroxene zone (zone R3b in Figure

3.2) represent the exo/endoskarn transition in natural skarns, where carbonate-derived elements

are transferred to the magmatic system (clinopyroxene + plagioclase endoskarns, zones R1-R3).

In turn, certain magma-derived elements are transferred to the carbonate protolith forming gar-

net + wollastonite + Di-Hd/CaTs clinopyroxene exoskarns (zone R3b and the xenolith cores),

reflected also in the chemistry of the individual zones (Figure 3.6).

Dissolution of carbonate in high temperature mafic magmatic melts has been experimen-

tally confirmed to operate on the order of hours (Deegan et al., 2010; Jolis et al., 2013), but

mineral equilibration is slower (c.f. Carter and Dasgupta, 2016). First order constraints on

the timescales of carbonate interaction at Merapi can be tentiatively placed using the growth

rate of xenolith mineral phases such as clinopyroxenes. Experimental and measured growth

rates for euhedral clinopyroxenes in basaltic to andesitic magmatic systems are in the order of

109 to 107 cm/s (e.g. Kouchi et al., 1983; Simakin et al., 2003; Orlando et al., 2008; Kilgour

et al., 2014). Assuming similar growth rates for the clinopyroxenes in the xenoliths, a typical

300 µm clinopyroxene in zone R4, which has an entirely different composition to the Merapi

magmatic clinopyroxenes (Figure 3.8) and therefore formed uniquely during magma-carbonate
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interaction, could have formed in 3.5 to 347 days. Measurements of the growth rate of skarn

formation between granodiorite and calcite, and quartz and brucite marble, in experiments of

Zarayskiy et al. (1987) indicate similar timescales. Although clinopyroxene growth rates are

poorly constrained, especially in magma-carbonate systems, it is conceivable that the xenoliths

could have formed on shorter timescales, e.g. in the lead up to and during eruptive periods, such

as perhaps the ~ 1 month duration prior to the 2010 eruption (Komorowski et al., 2013; Surono

et al., 2012). The associated CO2 release may then be able to influence eruption dynamics

(c.f. Troll et al., 2012). Future work utilising diffusive timescales would potentially increase the

accuracy of these timescale estimates and aid risk assessment at Merapi.

In summary, we propose that the magmatic skarn xenoliths are syn-magmatic in origin,

forming as a result of limestone dissolution into a magmatic melt, from which skarn minerals

precipitate (Figure 3.16). Localised changes in oxygen fugacity caused by the CO2 released to

the fluid phase influenced the composition of the minerals formed. Variable transfer of Ca from

limestone, and magma-derived elements, form zonations similar to those observed in metaso-

matic skarns, but at above solidus temperatures. The composition of the zones is controlled by

element transfer between magma and limestone and the stability and abundance of the major

minerals that form in the respective zones. Our evidence of syn-magmatic magma-carbonate

interaction is in agreement with previous studies on Merapi magma-carbonate interaction (Dee-

gan et al., 2010, 2016a; Troll et al., 2012), at Vesuvius (Blythe et al., 2015; Jolis et al., 2015)

and at Colli Albani (Iacono-Marziano et al., 2007; Freda et al., 2011), which all note the likely

very rapid, syn-eruptive timescales of carbonate dissolution and CO2 liberation. If correct, this

process has the potential to enhance eruption explosivity due to external CO2 additions.

Exoskarn Xenoliths

Exoskarn xenoliths contain dominantly Al+Si+Ca-bearing phases, and < 10 wt% FeO+MgO

based on calculated whole rock compositions. Although the high Al could be indicative of

a marl protolith, we believe these samples come from a calcite-bearing protolith with input

from magmatically derived elements, on the basis of calcite oxygen isotopes showing evidence

of interaction with magmatic fluids [Whitley et al. (2019); Chapter 4], and the presence of

F-Cl-S-rich phases most likely derived from magmatic volatiles.

The exoskarn xenoliths lack the interstitial glass, melt inclusions and mineralogical zonation

of the magmatic skarn xenoliths, with only a clinopyroxene ± plagioclase reaction rim at the lava

contact. Melt inclusion compositions within these rim clinopyroxenes are indistinguishable from
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the lava groundmass glasses (Figure 3.10). The core assemblage (garnet + CaTs clinopyroxene +

wollastonite + anorthite ± gehlenite) is distinct from the magmatic skarn xenoliths (wollastonite

± glass ± DiHd clinopyroxene ± garnet ± anorthite). The much higher fO2 conditions recorded

in the clinopyroxenes (Figure 3.15) indicate that these xenoliths experienced a longer period of

CO2 flushing than the magmatic skarn xenoliths (c.f. Ganino et al., 2008). This, coupled with

the distinct mineralogy, a lack of glass and a lack of mineralogical zonation, suggests that the

exoskarn xenoliths originate from a contact metamorphic aureole (exoskarn) around the upper

crustal Merapi magma reservoir system (Figure 3.16). The dominance of high temperature

anhydrous mineral assemblages indicates that they are sourced proximal to the magma reservoir.

Contact metamorphic aureoles can be extensive in size (Aarnes et al., 2010), therefore we expect

low-temperature distal skarn assemblages to be present at Merapi, but these may not have been

frequently sampled during this study, possibly because of the high temperature ‘skarn shell’ (c.f.

Fulignati et al., 2001; Jolis et al., 2015) being overrepresented in our dataset.

The presence of spinel, as observed in one of our samples (MX99-3s), has been noted in

several case studies on magma-carbonate interaction (e.g. Wenzel et al., 2002; Gaeta et al.,

2009; Spandler et al., 2012). For instance, hercynitic spinel is widespread in skarns from the

Italian volcanic provinces. Skarns from the Colli Albani Volcanic District (Italy) contain Al-

rich spinel in textural equilibrium with glass, which was interpreted to reflect melting of calcite

and mixing of this melt with the host magma (Gaeta et al., 2009). Metasomatic development

through leaching was invoked to explain the occurrence of banded forsterite-spinel skarns in

ejecta from the 1631 Vesuvius eruption (Pascal et al., 2009). Experimental work on magma-

carbonate interaction with andesitic (Carter and Dasgupta, 2016) and basanitic (Conte et al.,

2009) magmas also produced aluminous spinel. Clearly, the presence of aluminous spinel is

a common characteristic of carbonate assimilation. None of these studies, however, shows the

unique texture and association with gehlenite as in sample MX99-3s, and we classify this sample

as exoskarn (type B) based on the lack of glass and the mineralogical differences to the more

common magmatic skarns at Merapi.

3.6.4 Volatiles and Metal Transport

The numerous F-Cl-S phases identified in the xenoliths record evidence of interaction with a

magmatic-derived volatile phase (MVP; c.f. Nadeau et al., 2010; Preece et al., 2014) during

formation of the xenoliths. Although F-Cl-S-bearing phases indicate the presence of an aqueous

fluid, there is no clear evidence of the role of H2O during xenolith formation. Silicate magma
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has a limited capacity to dissolve the excess liberated crustal-derived CO2 and any increase

in melt CO2 would strongly reduce the solubility of H2O [e.g. Tamic2001], increasing the free

H2O available during magma-carbonate interaction. The xenoliths however contain anhydrous

mineral assemblages, and fluid inclusions within are two phase liquid CO2 + vapour CO2
(Figure B.2) with only very rare small fluid inclusions containing unidentified daughter crystals.

Nonetheless, the presence of water will promote skarn mineral formation (in place of or coupled

with CO2 migration from the reaction site), even if not hydrous mineral formation, as excess

CO2 in the magma causes the typical wollastonite-forming reaction SiO2 + CaCO3 -> CaSiO3
+ CO2 to favour the reactants.

F-Cl-S-bearing phases are found within both magmatic and exoskarn xenoliths, however

they are not found in every magmatic skarn xenolith sample. In the magmatic skarn xenoliths,

they are found in zone R2 (anhydrite surrounding pyrrhotite ± cubanite), zone R3b (ellestadite)

and as interstitial patches the wollastonite-dominant cores. These patches contain cuspidine,

fluorite and the wadalite-like mineral, whilst anhydrite, apatite, and cotunnite (PbCl2) are

found as accessory phases elsewhere in the cores. Pyrrhotite, cubanite, Fe-oxides and apatite

are sometimes found as daughter crystals in melt inclusions. The presence of fluorine-bearing

phases in sample MX1 is closely related to calcite with a melt-like texture, consistent with

fluorine lowering the melting temperature of calcite (Jago and Gittins, 1991; Gorzkowska et al.,

1988a, 1988b; see Whitley et al., 2019 and Chapter 4 for more detail). Chlorine and limited

data for F in the Ca-rich xenolith core interstitial glass and melt inclusions do not show elevated

concentrations compared to the lavas. This suggests that the volatile-rich minerals are unlikely

to have precipitated directly from the melt, like the wollastonite, clinopyroxene and plagioclase,

but are instead the result of interaction with this magmatic-derived volatile phase. In sample

MX1, the melt-like calcite is in places replaced by the wadalite-like mineral, which retains the

calcite texture (Figure 3.4). Instances where garnet is replaced by this wadalite-like phase

may be from reaction with magmatic HCl (e.g. Fujita et al., 2001). Calcite additionally reacts

with fluorine to form fluorite as distinct crystal phases, and as radial growths around a vesicle

touching calcite (Figure 3.4A-B), suggesting fluorine is a key component of the vapour phase.

The exoskarn xenoliths additionally contain phases enriched in magmatic-derived volatiles.

For instance, ellestadite is found throughout the xenoliths, and rare pyrrhotite and anhydrite

are present in some samples, but the majority of volatile-rich phases (cuspidine, anhydrite,

ellestadite, fluorite, spurrite) are concentrated in the reaction rims around residual large calcite

crystals. A magmatic fluid source for these mineral phases is evidenced by calcite oxygen
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isotopic shifts towards magmatic values [Whitley et al. (2019); Chapter 4] and elevated trace

element LREE/HREE in these calcites compared to marine limestone (Appendix Figure B.7,

Appendix Table B.2).

The presence of the magmatic-derived volatile phase within the xenoliths indicates potential

for economic metal mineralisation beneath Merapi and similar carbonate-hosted arc volcanoes in

the region. Oxidised silicic calc-alkaline arc intrusions are frequently associated with porphyry

Cu, Zn, Pb and Fe deposits (Meinert, 2005). Ubiquitous calc-silicate xenoliths at Merapi

evidence skarn formation, and garnet and clinopyroxene compositions in these xenoliths overlap

those characteristic of Cu, Zn and Fe skarns (Meinert, 1992). Although these economic metals

are rare in our studied xenoliths, our data suggest that ongoing mineralisation may occur at

depth beneath Merapi within the upper part of the plumbing system, during the later stages

of magmatic evolution at Merapi.

Sulphur-bearing arc magmas are important sources of Cu, and Cu transport has been noted

across the Sunda arc (Nadeau et al., 2010, 2013a; Agangi and Reddy, 2016). Globules of Cu-

rich sulphide melt are found in the Merapi lavas recording evidence of Cu-rich sulphide melts

exsolving from primitive magma, which are later dissolved in the magmatic-derived volatile

phase and distributed through more evolved magmas, and potentially into the host-rock sys-

tem (Nadeau et al., 2010, 2013a). As previously discussed, the xenoliths evidence interaction

between this Cu-S-enriched fluid phase and carbonate. In the magmatic skarn xenoliths, Cu

is found as cubanite and as a minor constituent in pyrrhotite in zone R2, which are generally

surrounded by anhydrite. Disproportionation of SO2 into sulphide and sulphate is a potential

mineralisation process in carbonate and calcium-bearing rocks, and can occur in the timescale

of hours (Mavrogenes and Blundy, 2017), and may have formed the coexisting pyrrhotite +

cubanite + anhydrite in the xenoliths. Within the magmatic skarn xenolith cores, Cu is rare,

only found as a cubanite inclusion in a plagioclase hosted melt inclusion, and as a minor con-

stituent in pyrrhotite inclusions within CaTs-rich clinopyroxene cores. The relative abundance

of Cu in zone R2 compared to the core (and exoskarn xenoliths) shows limited transfer of the

magmatic-derived volatile phase into the xenolith cores, and/or conditions unfavourable for Cu

deposition. Oxygen fugacity is estimated to be similar to typical oxidised arc magma conditions

in zone R2 (~ΔNNO + 1), producing favourable conditions for sulphur transport and deposi-

tion (e.g. Hattori, 2018). The higher oxygen fugacity estimated in some xenolith cores by the

presence of anhydrite and CaTs clinopyroxene cores (<= ΔNNO + 4) is potentially too high

for Cu transfer, as an upper limit to mineralisation at the hematite-magnetite (~ΔNNO + 4)
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buffer may exist for porphyry copper deposition (Sun et al., 2013). The large volumes of CO2
released during decarbonation of the original carbonate which causes this fO2 increase, com-

bined with magmatic CO2, strongly reduces Cu solubility in the fluid phase (van Hinsberg et

al., 2016; Kokh et al., 2017). Vesicles are found within zones proximal to the host lava and the

core, suggesting that a high XCO2 in zone R2 may promote the deposition of Cu before it can

be transferred fully into the xenolith core. Xenolith formation temperatures are additionally

higher than those estimated for the bulk of Cu and Au deposition in copper porphyry sys-

tems (starting < 700°C and dominantly < 400°C) where fluid immiscibility produces coexisting

vapour-rich and saline fluid inclusions (Sillitoe, 2010), which are not observed in the xenoliths

studied here.

Our model, where carbonate is assimilated into a melt from which skarn minerals precipitate

(magmatic skarns), has been discussed as a process occurring in many Chinese Cu-Fe-Au-

deposits (e.g. Bin and Jin-song, 2016). The xenoliths of this study demonstrate that Cu-Fe

sulphides can be formed during this process, and may be capable, at least in part, of producing

metal sulphide deposits. Magnetite, hematite and Fe-enrichment in some silicate phases may

additionally indicate iron oxide ore potential. Whilst we only have xenoliths that show Cu

deposition proximal to the Merapi magma reservoir (no low temperature hydrous skarn phases

observed), Cu deposition may occur at greater distances into the contact aureole. Percolation

of a Cu-bearing magmatic volatile phase through the carbonate over a longer period of time, on

cooling when large amounts of magmatic fluids are released, has potential to promote sulphide

and Fe-oxide deposition, enhancing ore forming potential such as observed in copper porphyry

systems (e.g. Landtwing et al., 2005; Sillitoe, 2010).

3.6.5 Implications of Carbonate Interaction for the Merapi Mag-
matic System

Xenocryst Cargo

Calc-silicate xenoliths are ubiquitous in Merapi eruptive deposits, showing that magma-carbonate

interaction is an on-going process at Merapi. The amount of interaction is debated in the liter-

ature, with estimates of mixing up to 40% in some samples on the basis of isotopic modelling

(Troll et al., 2013; Borisova et al., 2013, 2016). Although our study cannot elaborate on es-

timating the volume of carbonate that interacts with Merapi magmas, our data suggests that

calc-silicate derived crystals (xenocrysts) may be more difficult to recognise in erupted mag-

matic deposits than previously appreciated, as we discuss below.
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Incorporation of skarn-derived minerals into the Merapi magmatic system has been shown

previously (Chadwick et al., 2007; Deegan et al., 2010, 2016b; Borisova et al., 2013, 2016).

Chadwick et al. (2007) suggested that 6 to 12 % of crystalline material at Merapi may be

crustal derived based on elevated 87Sr/86Sr plagioclase compositions and distinct major element

plagioclase chemistry. Similarly, thermodynamic-geochemical models for the 2010 Merapi erup-

tion are consistent with the incorporation of 18% of crustal calc-silicate material (Borisova et

al., 2016). Based on a detailed oxygen isotope study, Borisova et al. (2016) were even able to

distinguish two stages of magma-crust interaction, resulting in distinct xenocryst plagioclase

δ18O values related to either high-T altered crustal rocks depleted in 18O or 18O-enriched assim-

ilated carbonate material. Our data show that both plagioclase and clinopyroxene compositions

are produced during magma carbonate interaction in zones R1 and R2 that completely overlap

magmatic compositions in respect to major elements (Figures 3.8, 3.7). These minerals are

formed as a result of Ca transfer from carbonate to the melt, such as occurs within endoskarns.

Increased stability of clinopyroxene and plagioclase in carbonate contaminated melts has been

experimentally confirmed across a range of magmatic compositions (e.g. Iacono-Marziano et al.,

2007; Mollo et al., 2010b; Carter and Dasgupta, 2016), and with rhyoliteMELTS (version 1.2;

Gualda et al., 2012; Ghiorso, 2016) which successfully reproduced Ca-contaminated xenolith

glass and basaltic andesite compositions. Mineral compositions that are distinct from those

found in the magma occur from zone R3 to the xenolith core, but to our knowledge, no highly

CaTs-enriched, skarn derived clinopyroxenes have yet been detected in the magmatic products.

Although Al-rich clinopyroxenes (up to 8 wt%) are discussed in Costa et al. (2013), and were

attributed to higher pressure magmatic crystallisation, we have found none in our literature

data synthesis that compositionally match our specific skarn clinopyroxenes. Clinopyroxene

compositions matching zones R3 and R4, which lie on the DiHd join and are volumetrically

more abundant, are also exceedingly rare in the lavas, with only 3 out of 431 analyses reported

in Preece (2014) overlapping these compositions. A lack of these compositions may be due

to a combination of a volumetrically smaller amount of ‘exotic’ compositions in the xenolith

cores compared to magmatic-type compositions in the xenolith endoskarn rims. Alternatively,

dissolution into the magma, and/or re-equilibration with the magma might also be an option.

Indeed, Carter and Dasgupta (2016) showed that in carbonate assimilation experiments, within

48 hours, initially compositionally variable clinopyroxenes had equilibrated to a diopsidic com-

position. Some crystals that are a result of magma-carbonate interaction may therefore be

‘cryptic’ and distinguishable from magmatic crystals only on the basis of their isotope or trace
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element chemistry. Another consequence of this finding is that clinopyroxene thermobarometry

may include carbonate-interaction pressures and temperatures in their output. Although oxy-

gen isotope evidence for magma-carbonate interaction in clinopyroxene shows limited crustal

additions to the bulk of the crystals (Deegan et al., 2016b), analyses of other in situ isotopic

systems such as Sr (Chadwick et al., 2007) and oxygen in plagioclase (Borisova et al., 2016)

have demonstrated the presence of xenocrysts and contaminated zones, consistent with the usu-

ally shallow crystallisation of intermediate plagioclase (e.g. Chadwick et al., 2013). Whilst our

plagioclase data for the glass-rich zone R4 have high-FeO that overlaps some literature values

for plagioclase in lavas, and therefore may suggest that high-FeO plagioclase in lavas might be

xenocrystic, this is more likely to be a result of disequilibria due to quenching of the xenolith

glass. For example, FeO in plagioclase increases with cooling rate, producing plagioclase with

up to 2.33 wt% FeO in 15°C/min experiments (Mollo et al., 2011). The zone R4 plagioclase

crystals contain up to 1.7 wt% FeO, and similarly wollastonite crystals in zone R4 have thin Fe-

rich ferro-bustamite overgrowths, indicating that cooling rate may have the more pronounced

impact on Fe-rich mineral rims in the xenoliths.

Magma Composition

Much of the experimental work on magma-carbonate interaction focuses on reproducing the

highly potassic, silica-undersaturated compositions erupted at e.g. Vesuvius and Colli Albani

(e.g. Iacono-Marziano et al., 2007; Mollo et al., 2010b; Jolis et al., 2013). High-K compositions

are observed at Merapi, and there is some variation in K between the Javanese volcanoes

that may be attributed to carbonate assimilation, however this does not have a dominant

control on major element evolution (Handley et al., 2014). Strong silica-undersaturation from

carbonate assimilation in Italian volcanoes is a result of the increased stability of clinopyroxene

taking up SiO2, coupled with the redissolution of olivine, which drives melts towards silica

undersaturation (e.g. Mollo et al., 2010b). Recent Merapi lava whole rock compositions range

from ~50 to 68 wt% SiO2, and the interstitial glasses within these record pre-eruptive melts

with 60-75 wt% SiO2 (Figure 3.10). These would not be driven to silica-undersaturation by an

increase in clinopyroxene or plagioclase precipitation due to these minerals containing lower SiO2
concentrations. Whole-rock compositions instead traverse a differentiation vector defined by

that of the typical arc magma plagioclase and clinopyroxene differentiation assemblage (Figure

3.10, c.f. Handley et al., 2014), although at a slightly elevated CaO. It is interesting to note

however, that while the overall major element chemistry at Merapi is not dominated by a
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carbonate assimilation signature, very rare, highly localised phonolitic leucite-bearing silica-

undersaturated melts have been identified in some Merapi calc-silicate xenoliths by Brouwer

(1928, 1945). These demonstrate that these exotic compositions can be formed at Merapi during

very localised periods of extremely high levels of carbonate interaction, but the quantities of

melt generated are volumetrically negligible.

In addition to the effects of crystal fractionation on the major element chemistry, lower tem-

perature, high-SiO2 melts such as those represented by the groundmass lava glass compositions

at Merapi have a lower capacity to assimilate material than hotter mafic melts (e.g. Wenzel et

al., 2002; Barnes et al., 2005; Gaeta et al., 2009; Jolis et al., 2015), and instead favour formation

of skarn minerals (e.g. wollastonite) that cause only small apparent changes to melt composi-

tions (Spandler et al., 2012; Carter and Dasgupta, 2016). These minerals may become trapped

as a cumulate or exoskarn layer (see above, e.g. Gaeta et al., 2009; Di Rocco et al., 2012) at the

wall rock contact, and only have a small impact on the melt composition during skarn recycling

and xenocryst incorporation (e.g. Di Rocco et al., 2012; Jolis et al., 2015). A discrepancy be-

tween limited whole-rock major element evidence for magma-carbonate interaction (c.f. Costa

et al., 2013; Handley et al., 2014) and high levels of interaction recorded in multiple isotope

systems (Chadwick et al., 2007; Troll et al., 2013; Borisova et al., 2013, 2016), may thus be due

a combination of the lower capacity of the magmatic melt to incorporate carbonate material,

and a relatively limited mobility of Ca in these relatively low temperature, high SiO2 Merapi

pre-eruptive melts compared to the higher mobilities usually displayed by isotopes of trace ele-

ments (e.g. Sr, B). This decoupling has been observed in high temperature (1200°C) carbonate

interaction experiments (Deegan et al., 2010, 2016a; Blythe et al., 2015). Moreover, quantitative

modelling of magma-carbonate interaction demonstrated that low-to-moderate amounts of car-

bonate assimilation cause only limited changes to the major element chemistry of the magma

(Spandler et al., 2012). Whereas there is no doubt that magma-carbonate interaction is an

important petrogenetic process at Merapi, the degree of major element compositional change

may not be prominent enough to distinguish the modified magma from the overall spectrum of

Merapi magmas (c.f. Spandler et al., 2012).

Merapi Volatile Budget

Carbonate assimilation at Merapi has been shown to have a strong impact on the composition

of the gases released to the atmosphere. Release of crustal derived CO2 has been proposed

by identification of elevated δ13C and He isotopes in fumarole gases (Troll et al., 2012, 2013
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and references therein). An increase in these isotopic tracers has additionally been observed

during eruptive periods, attributed to a positive feedback loop of wall rock fracturing during

eruption, and increased CO2 liberation from magma-carbonate interaction on this increased

surface area (Deegan et al., 2011; Troll et al., 2012; Carr et al., 2018). Our work shows that

the magmatic skarn xenoliths may represent snapshots of this syn-magmatic carbonate inter-

action, and therefore eruptive flare-ups could potentially be influenced by temporal increases

in carbonate interaction (c.f. Troll et al., 2012; Carr et al., 2018). The 2010 eruption was

preceeded by an influx of hotter volatile-rich magma that exceeded the capacity of the shallow

storage system (Costa et al., 2013; Carr et al., 2020). This increased heat and volume would

cause both increased thermal decarbonation, and fracturing, that could penetrate deeper into

the bedrock. A positive feedback occurs, where increased decarbonation promotes a decrease in

water solubility, producing bubbles and more explosive behaviour, promoting more fracturing,

resulting in temporal increases in carbonate interaction (Troll et al., 2012, p.:@Carr2018; Carr

et al., 2020). Dome instability from weakened fractured/altered wall-rock could also produce

magmatic overpressure, increasing fracturing and surface area of the carbonate available to

react (Mollo et al., 2012). In the magmatic skarn xenoliths, residual calcite is only present in

trace quantities, and the δ13C composition of these calcites are exceptionally negative (down

to -29 ‰), demonstrating extremely efficient decarbonation in the magmatic skarn xenoliths

[Whitley et al. (2019); Chapter 4]. It is unlikely that this is exclusive to Merapi, and indeed,

temporal increases in carbonate assimilation increasing explosivity has been proposed elsewhere

e.g. at Colli Albani (Freda et al., 2011) and Vesuvius (Jolis et al., 2015). CO2 release is not

restricted to just syn-magmatic carbonate interaction, and decarbonation reactions in the ex-

oskarn additionally add to the CO2 budget. The current CO2 output at Merapi compared to

estimated contact metamorphic aureole volumes around a Merapi reservoir demonstrate that

this CO2 release is rapid, on the timescales of just thousands of years [Whitley et al. (2019);

Chapter 4]. When considering volcanoes that interacted with crustal carbonate, at present and

in the geological past (c.f. Mason et al., 2017; Carter and Dasgupta, 2018; Chu et al., 2019),

CO2 release such as evidenced at Merapi may have the potential to modify long term climatic

trends.
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Figure 3.16: Summary of the processes occurring during magma carbonate interaction
at Merapi. Carbonate is rapidly digested forming a Ca-rich contaminated melt, from
which wollastonite and other phases precipitate, forming the magmatic skarn xenoliths.
Proximal to the magmatic melt, clinopyroxene and plagioclase form from Ca transfer
to the melt from the carbonate. The abundance of melt in the xenoliths allows disag-
gregation and disperses xenolith crystals into the magma (e.g. Deegan et al., 2010).
The magmatic volatile phase (MVP c.f. Nadeau et al., 2010; Preece et al., 2014) infil-
trates the xenoliths forming rare halogen and sulphur-bearing minerals. At the wall-rock
contact, abundant clinopyroxene forms, partially insulating the carbonate and skarn.
Magma-derived elements are transferred to the wall-rock, influenced by the increasing
oxygen fugacity caused by CO2 flushing, forming the exoskarn mineralogy. Regions of
main magma crystallisation from Chadwick et al. (2013), Preece et al. (2014) and
Erdmann et al. (2016). Moho from Wölbern and Rümpker (2016). Description of the
lower crust from van Bemmelen (1949).

3.7 Conclusions

A detailed mineralogical, petrological and geochemical study of a range of calc-silicate (skarn-

type) xenoliths from Merapi volcano shows that two distinct types of xenoliths are present:

1) magmatic skarns, that are formed from eruptive timescale syn-magmatic magma-carbonate

interaction that preserves abundant CaO-rich glass, and 2) fragments of the metasomatic ex-

oskarn aureole around the Merapi magma reservoir. Thermobarometry indicates that the CaO-

rich glass-bearing magmatic skarn xenoliths formed at ~850°C. Fluid inclusions record shallow

pressures of < 100 MPa, corresponding to depths < 3.7 km. These xenoliths are the physi-

cal representation of carbonate entrained during eruptive events, which we interpret to increase

eruption intensity during rapid decarbonation. The disaggregated nature of some of these xeno-

liths, and the similarity in the geochemistry of lava and some xenolith minerals, indicate that
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skarn-derived xenocrysts may be difficult to recognise at Merapi. Experimental comparisons

and thermodynamic modelling indicates formation temperatures of 510 to 910°C for the range

of mineralogies shown in the metasomatic exoskarn xenoliths. A newly developed oxybaro-

metric model indicates a wide range of fO2 conditions during xenolith formation. Magmatic

skarn xenoliths are predominantly formed around the NNO buffer, similar to magmatic values,

whilst the cores of these xenoliths can reach values above the HM buffer in the presence of an

increased amount of newly released CO2. Protracted periods of CO2 flushing caused predomi-

nantly conditions above the NNO buffer during exoskarn formation, possibly approaching the

oxygen fugacity of air. High fO2 in both xenolith types promoted formation of andradite garnet

and highly aluminous clinopyroxene compositions. A magmatic volatile phase present at Merapi

reacts with the xenoliths to form rare Ca-Al-Si-F-Cl phases such as cuspidine, ellestadite and

wadalite-like phases. Evidence of xenolith formation during eruptive timescales demonstrates

that magma-carbonate interaction and subsequent CO2 release could affect eruption intensity,

as recently suggested for Merapi and similar carbonate-hosted volcanoes elsewhere. In addi-

tion, copper and occasionally Fe (and likely other associated elements of economic value such

as Zn) are carried within this fluid and are found concentrated in the outer shells of some of the

xenoliths, indicating potential for ongoing skarn-type mineralisation at depth beneath Merapi

and similar volcanoes within carbonate basement worldwide.
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Chapter 4

Crustal CO2 degassing recorded
in stable isotopes of calcites in
Merapi calc-silicate xenoliths.

This chapter has been published in its entirety in Nature Scientific reports.
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4.1 Introduction

Crustal magma-carbonate interaction has been suggested as a process that may dominate the

CO2 output in several volcanic arcs (Aiuppa et al., 2017; Mason et al., 2017) and a possible

source of magmatic carbonate melts (Lentz, 1999; Fulignati et al., 2001; Gozzi et al., 2014).

Direct evidence for this process often remains elusive, but the occurrence of calc-silicate (skarn)

xenoliths in the eruptive products of some active volcanoes (e.g. Vesuvius, Nisyros; Colli Albani,

Merapi Fulignati et al., 2004; Chadwick et al., 2007; Di Rocco et al., 2012; Spandler et al.,

2012) provide a unique opportunity to study high temperature magma-carbonate interaction,

and the subsequent effects on the host magmatic system. Recent work on such xenoliths has

additionally linked magma-carbonate interaction to influencing eruptive dynamics via volatile

exsolution (Goff et al., 2001; Chadwick et al., 2007; Deegan et al., 2010; Troll et al., 2012), and

driving magmatic differentiation trends towards highly desilicated potassic compositions (Daly,

1910; Iacono-Marziano et al., 2008).

Carbon and oxygen isotopes are powerful tracers of fluid-rock interaction processes during

contact metamorphism of carbonates, where skarn rocks form via reactions between magmatic

fluids and carbonate country rocks (Valley, 1986; Bowman, 1998; Matthews et al., 1996; Fulig-

nati et al., 2005). Sedimentary carbonates are isotopically distinct from mantle-derived igneous

rocks (Valley, 1986), allowing for quantification of chemical exchange during magma-carbonate

interaction. Decarbonation reactions release CO2 that is enriched in 13C and 18O into the

magmatic system (Chacko et al., 1991), depleting the carbonate protolith in these isotopes,

following batch or Rayleigh fractionation trends (Valley, 1986). However, some skarns show

additional isotopic modifications that cannot result from equilibrium decarbonation reactions

alone, but instead require mixing with magmatic fluids to produce values in near-exchange

equilibrium with the adjacent magmatic system (Taylor and Bucher-Nurminen, 1986; Bowman,

1998; Shin and Lee, 2003; Jolis et al., 2015). The degree of decarbonation and CO2 released

into the magmatic system and ultimately the atmosphere, and the extent of fluid modification

of the isotopic signature, can be quantified utilising coupled carbon and oxygen isotopes. In

addition, interaction with meteoric water and secondary alteration can usually be distinguished

using this approach (Bowman, 1998).

Merapi is Indonesia’s most active volcano, characterised by periods of lava dome growth

punctuated by dome failure producing pyroclastic density currents, and intermittent explosive

events (Gertisser et al., 2012). Compositionally the eruptive products are restricted to high-K

basalt to basaltic andesite (Gertisser et al., 2012). The upper crust underlying Merapi consists
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of a 8-11 km thick unit of Cretaceous to Cenozoic limestones, marls and volcaniclastic deposits

(van Bemmelen, 1949, Appendix Figure C.1), and is found as thermally metamorphosed xeno-

liths within the eruptive deposits (Gertisser and Keller, 2003b; Chadwick et al., 2007; Troll et

al., 2012, 2013). These xenoliths testify to prevalent magma-carbonate interaction (Chadwick

et al., 2007; Troll et al., 2013), a process that is ongoing and occurs at rapid syn-magmatic

timescales (Deegan et al., 2010; Troll et al., 2012). Previous work at Merapi has focused on

radiogenic (87Sr/86Sr) and stable (δ13C, δ18O) isotope analysis of bulk xenoliths and mineral

separates of the most abundant calc-silicate mineral phases (wollastonite, diopside)(Gertisser

and Keller, 2003b; Chadwick et al., 2007; Troll et al., 2012, 2013), highlighting the significance

of crustal contamination in the genesis of Merapi magmas, and a role of magma-carbonate

interaction for enhancing eruption explosivity (Troll et al., 2012, 2013; Borisova et al., 2013;

Carr et al., 2018). Some of these Merapi xenoliths retain remnant calcite with distinct textu-

ral types, which provide an exceptional opportunity to gain novel insights into magma-crustal

interaction processes. Our micro-analytical approach allows, for the first time, a detailed as-

sessment of the roles of decarbonation, interaction between carbonates and magmatic fluids,

carbonate melt generation, and crustal volatile release. We demonstrate that highly efficient

decarbonation of carbonate wallrock at Merapi produces extremely negative calcite δ13C values

during skarn formation in some xenoliths, whereas others bear contrasting evidence of interac-

tion between carbonate and magmatic fluids. This combination of documents fast and highly

efficient liberation of crustal CO2 into the atmosphere.

4.2 Methods

4.2.1 Secondary Ion Mass Spectrometry (SIMS) Analysis

Sample preparation and in-situ isotopic data were acquired at the Edinburgh Ion Microprobe

Facility at the University of Edinburgh. The samples were prepared as 3mm micro-drilled thin

section cores pressed into indium, preserving their original textural configuration. A calcite

standard (UWC-1) was mounted in epoxy and pressed into the centre of each mount. Thin

section MX1 was cut into a 1 inch diameter section with the calcite standard mounted into a

hole drilled into the centre of the section. To minimise instrumental bias relative to sample

position, each core was mounted to ensure all analyses were within 5 mm of the centre of the

mount. All samples were polished after pressing and gold coated.

Oxygen isotope data were acquired with a Cameca ims 1270 ion microprobe, using a ~4 nA
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primary 133Cs+ beam. Secondary ions were extracted at 10 kV, and 16O- (~4.0 x109 cps) and
18O- (~7.0 x106 cps) were monitored simultaneously on dual Faraday cups (L’2 and H’2). Each

analysis involved a pre-sputtering time of 60 seconds, followed by automatic secondary beam

and entrance slit centering and finally data collection in 10 cycles, amounting to a total count

time of 40 seconds.

Carbon isotope data were acquired using a ~4 nA beam. Secondary ions were extracted at

10 kV, and 12C- (~1.0 x107 cps) and 13C- (~1.0 x105 cps) were monitored on Faraday cup (L’1)

and electron multiplier (EMO). Each analysis involved a pre-sputtering time of 60 seconds,

followed by automatic secondary beam and entrance slit centering and finally data collection in

40 cycles, amounting to a total count time of 160 seconds.

To correct for instrumental mass fractionation (IMF), all data were normalised to an inter-

nal standard (UWC-1 δ18OSMOW 23.3 ‰, δ13CPDB -2.14 ‰), which was repeatedly measured

throughout the analytical sessions. Analyses were made in blocks of 10 followed by 3 to 5

analyses of the standard. The internal precision of each analysis is +/- 0.02 ‰. The average

precision for a typical standard bracket is 0.26 ‰ for oxygen, and 0.70 ‰ for carbon (2σ).

Each pit was imaged using a scanning electron microscope at Keele University following analy-

sis. Analyses from pits that showed irregularities such as fractures, cavities and mineral overlap

were discarded. Instrumental bias due to variations in calcite composition were not considered

important as calcite non-CaO concentrations of all samples were < 0.30 wt%. All data are

reported in standard δ-notation ( = 1000( Rsample

Rstandard
− 1) where for example R =

18O
16O ) relative

to SMOW for oxygen and PDB for carbon. 69 paired carbon and oxygen isotope analyses were

made, and 8 carbon or oxygen isotope analyses where the calcite was too small for two spots.

75 oxygen and 56 carbon isotope standard analyses were made.

4.3 Results

4.3.1 Petrography of calc-silicate xenoliths and calcite types

Calc-silicate xenoliths are ubiquitous in the studied 1994 to 2010 Merapi dome lavas and can

be divided into two groups on the basis of distinct textures and mineralogical assemblages:

magmatic skarns and metamorphic exoskarns (c.f. Fulignati et al., 2004); Table 4.1). These

xenolith types are discussed in detail in Chapter 3, and are summarised again here. Magmatic

skarn xenoliths contain abundant glass that is CaO-enriched (1 to 12 wt%) relative to host lava

dacite groundmass glasses, and dominantly comprise wollastonite which contains numerous
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CaO-enriched melt inclusions compositionally similar to the contaminated groundmass glass.

These wollastonite-hosted melt inclusions and additional Fe-rich growth rims on wollastonite

crystals testify to crystallisation from a melt that has assimilated a significant quantity of CaO

(c.f. Bin and Jin-song, 2016). These xenoliths typically show a general rim-core zoning sequence

(idealised): lava - clinopyroxene - plagioclase + clinopyroxene - clinopyroxene - glass - wollas-

tonite core, with additional glass found in varying quantities in each zone. Vapour-rich CO2
fluid inclusions are common within wollastonite crystals. Metamorphic exoskarn xenoliths are

holocrystalline, granular, and primarily composed of Ca-Tschermak’s component (CaAlAlSiO6)

enriched clinopyroxene (fassaite), wollastonite, plagioclase and grossular-andradite garnet, re-

sembling typical skarn assemblages associated with metasomatic alteration (Meinert, 1992).

They lack the magmatic xenolith zoning sequence, having only a rim of clinopyroxene at the

lava contact.
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Table 4.1: Phases identified within the magmatic and exoskarn xenoliths at Merapi.
See Chapter 3 for more details.

Magmatic Skarns Exoskarns
Rock-Forming Phases
Wollastonite Wollastonite
Clinopyroxene (diopside-hedenbergite) Clinopyroxene (Ca-Tschermaks)
Anorthite Anorthite
Glass Grossular-Andradite Garnet

± Gehlenite
± Spinel
± Quartz
± Calcite

Accessory Phases
Calcite
Clinopyroxene (Ca-Tschermaks) Anhydrite
Grossular-andradite-schorlomite garnet Pyrrhotite
Wadalite-like phase Ellestadite
Cuspidine Cuspidine
Gehlenite Spurrite
Pyrrhotite Larnite
Cubanite Xenotime
Baryte Hematite
Anhydrite Monazite
Apatite
Ellestadite
Ferro-bustamite
Titanite
Perovskite
Magnetite

We distinguish five textural types of calcite across both of these xenolith groups (Figure

4.1). Each textural type represents a specific process, or combination of processes, operating

during magma-carbonate interaction, which C-O isotopes provide a means to quantify. Four

calcite types are found within the magmatic skarn xenoliths (types A, B, C, D), and two within

the exoskarn xenoliths (types D, E). Type D calcites were only analysed in wollastonite in the

magmatic skarn xenoliths due to crystal size constraints. Type A calcites consist of rounded

globular calcite grains within the glass-rich xenolith textural zone (Figure 4.1A). Type B calcites

occur as subhedral crystals (50-100 µm in size) that are found interstitial to wollastonite, and

as fractured crystals at vesicle borders within wollastonite-dominant cores (Figure 4.1B). Type

C calcites are anhedral interstitial crystals (50-100 µm in size) exhibiting a melt-like, infiltrative

texture between wollastonite crystals. They are found as thin interconnected veins with a rim

of quartz at the wollastonite contact (Figure 4.1C-D). These veins form rare ~50 µm pools

166



CHAPTER 4. CRUSTAL CO2 DEGASSING RECORDED IN STABLE ISO-
TOPES OF CALCITES IN MERAPI CALC-SILICATE XENOLITHS.

167

of calcite, with occasional fluorite crystals nucleating at the edges and around calcite-hosted

vesicles. Type D calcites occur as rounded inclusions (<50 µm) in wollastonite and garnet

(Figure 4.1E). Type E calcites occur exclusively within exoskarn xenoliths as millimetre-sized

crystals with vesiculated reaction rims containing spurrite and sulphur and fluorine-enriched

phases (Figure 4.1F). These calcites contain occasional vesicles and trace amounts of phosphates.

The rims are anhedral and intermingle with the void-rich reaction rim.

4.3.2 Geochemistry of calcite types

The calcites analysed in this study are almost pure CaCO3, with MnO, FeO and MgO <

0.17 wt% across all xenoliths (Table 4.2). By contrast, calcite isotopic compositions cover a

large range in δ13C-δ18O values (Table 4.3, Figure 4.2), with different textural groups being

compositionally distinct. Assuming a typical marine carbonate protolith (δ13C -3 to +3 ‰,

δ18O >25 ‰ (Veizer and Hoefs, 1976)) or local Merapi limestone (δ13C -5 to -1 ‰, δ18O +18 to

+25 ‰ (Gertisser and Keller, 2003b; Troll et al., 2012, 2013)) as the starting composition, two

compositional trends are defined: (1) a trend towards low δ13C-δ18O compositions, approaching

those of bulk xenolith core/rim mineral separates (Troll et al., 2012, 2013), and (2) a trend

towards low δ13C with little δ18O variation (Figure 4.2). The highest δ13C-δ18O calcites are

type A glass-hosted calcites, forming a compositionally tight cluster with δ13C between -4.2

and +1.8 ‰, and δ18O ranging from +21.4 to +24 ‰. Type B interstitial calcites have the

largest δ13C variation, but a restricted δ18O range (δ13C -29.3 to -0.6 ‰, δ18O +20.5 to +25.6

‰). Type C melt-like calcites have the widest δ18O variation, between +9.9 and +23.1 ‰,

and a large δ13C variation, ranging from -18.5 to +3.5 ‰. Data for Type D calcite inclusions

within wollastonite are few, but show a similar compositional range of δ13C (-14.9 to -4.4 ‰),

and δ18O (+14.6 to +17.9 ‰) to the type E calcites. Type E-residual calcites in the exoskarn

xenoliths, define a tight compositional cluster between δ13C of -14 to -4.6 ‰ and δ18O of +13.9

to +19 ‰.
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Figure 4.1: Calcite textural types. Types A-D are from magmatic xenoliths, type E is
from exoskarn xenoliths. A) Type A calcites found within the glass band of magmatic
skarn xenoliths. Yellow lines highlight the glass-calcite boundary due to poor backscatter
contrast. B) Type B interstitial calcite; small crystals within a decussate wollastonite-
dominant xenolith core. C) Type C calcite showing pools of calcite joined by veinlets,
with garnet and a phase compositionally similar to wadalite (Ca12Al10Si4O32Cl6) closely
associated. D) Type C calcites showing the close association with F bearing phases flu-
orite, cuspidine (Ca4Si2O7F2) and the wadalite-like phase. E) Type D calcite inclusions
within wollastonite. Note the presence of melt inclusions (M.I.) in wollastonite. F) Type
E residual calcite showing the zoned reaction rim, with disaggregated calcite and voids,
spurrite, then cuspidine and the wollastonite + anorthite + grossular garnet xenolith
assemblage. Accessory fluorite is present at some calcite contacts, and very rare micron-
sized xenotime and monazite crystals are present within the calcite. Abbreviations: An
- anorthite, Cal - calcite, Cusp - cuspidine, Fl - fluorite, Geh - gehlenite, Gls - glass,
Mgt - magnetite, M.I. - melt inclusion, Qtz - quartz, Spu - spurrite, Wad - wadalite-like
phase, Wo - wollastonite.
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Table 4.2: Electron microprobe major element analyses of texturally distinct calcite
types within the calc-silicate xenoliths. Type A - glass-hosted calcites were not analysed
by microprobe, but show negligible concentrations of major elements excluding CaO
in SEM-EDS analysis. Results are reported as averages with standard deviation in
parentheses.

Type B-Interstitial Type C-Melt-like Type D-Inclusions Type E-Residual
wt% (n=1) (n=5) (n=2) (n=10)
FeO 0.02 0.06 (0.04) 0.17 (0.08) 0.07 (0.06)
MnO 0 0.12 (0.08) 0.08 (0.18) 0.12 (0.09)
MgO 0.05 0.06 (0.03) 0.05 (0.01) 0.05 (0.02)
CaO 58.68 55.1 (0.59) 54.54 (0.17) 55.48 (0.64)
SrO n.d 0.02 (0.01) 0 (0) 0.06 (0.01)
BaO n.d 0.01 (0.02) 0.02 (0.03) 0.01 (0.01)
Total 58.75 55.37 (0.52) 54.76 (0.25) 55.79 (0.53)

Table 4.3: Summary of C-O isotopic data for the calcite textural types. The full dataset
can be found in Appendix Table C.1. 2σ errors are typically 0.4 ‰ for oxygen and 0.8
‰ for carbon.

Calcite Type Xenolith Type δ18O (‰) δ13C (‰)
A – Glass-hosted Magmatic +21.4 to +24.0 -4.2 to +1.8
B – Interstitial Magmatic +20.5 to +25.6 -29.3 to -0.6
C – Melt-like Magmatic +9.9 to +23.1 -18.5 to +3.5
D – Inclusions Magmatic +14.6 to +17.9 -14.9 to -4.4
E – Residual Exoskarn +13.9 to +19.0 -14 to -4.6
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Figure 4.2: Calcite C-O isotopic compositions. Extra data: Primary ‘igneous’ calcite
(calcite in equilibrium with the mantle) field (Taylor, 1967). Cretaceous to Cenozoic
marine limestone (Merapi limestone)(van Bemmelen, 1949; Veizer and Hoefs, 1976).
Bulk calc-silicate and basaltic andesite (Troll et al., 2012, 2013). Local limestone field
(Gertisser and Keller, 2003b; Troll et al., 2012, 2013). Typical error is 2σ

4.4 Discussion

4.4.1 Origin of the calcite

Calcite is a common secondary alteration product in a range of rock types, therefore we first

consider the origin of the calcite. We consider the xenolith calcite to be primary relics of calcite,

as opposed to secondary hydrothermal calcites, for the following reasons:

Firstly, the analysed xenoliths are exceptionally fresh, with minor red oxidation of Fe-Ti

oxides observed in sample CS11 only. Hydrous phases, either primary or as secondary replace-

ment, are not observed in any of the samples studied, implying that fluid overprint was not a

factor. Glass within the xenoliths is optically clear, lacking any devitrification or alteration.

Typically void-filling, low-temperature secondary phases such as zeolites are not observed. Cal-

cite is, in turn, only found within the xenolith cores, except for type A calcites in sample

170



CHAPTER 4. CRUSTAL CO2 DEGASSING RECORDED IN STABLE ISO-
TOPES OF CALCITES IN MERAPI CALC-SILICATE XENOLITHS.

171

CS17 where calcite can be present in glass-hosted vesicles surrounding the wollastonite domi-

nated core zone. These latter calcite crystals do not demonstrate a geode-like internally zoned

texture that would suggest secondary infill of vesicles (e.g. Lavoie, 1995), but instead have a

globular habit, more indicative of a quenched previously molten calcite (c.f. Lucido et al., 1980;

Bailey and Kearns, 2012). In addition, secondary calcite precipitation would be expected to

distribute calcite throughout the sample, wherever there may be vesicles or fractures. Type

C-melt like calcite does not follow fractures or cleavage, and does not crosscut minerals, but

follows the crystal boundaries.

The mineral assemblages in the xenoliths exclusively indicate high magmatic or metamorphic

temperatures (>400°C) and are inconsistent with a low-temperature or hydrothermal overprint.

Wollastonite is unstable below ~400°C (Greenwood, 1967), therefore interaction with meteoric

water or hydrothermal fluids would be expected to cause alteration, which is not observed.

Melt-like calcite (Type C) is consistent with a high temperature origin due to the equilibrium

assemblage containing fluorite and cuspidine (Ca4Si2O7F2). Fluorine and fluorite can increase

the stability of molten calcite down to 880°C (Jago and Gittins, 1991), similar to temperatures

estimated from the interstitial xenolith glass (755-917°C) using the glass thermometer equation

34 (Putirka, 2008). Type E calcites are surrounded by a prominent reaction rim containing

high temperature mineral assemblages; Spurrite (Ca5(SiO4)2CO3) is stable above 430°C at low

CO2 partial pressures (Henmi and Henmi, 1978), and 700-1000°C at higher XCO2 (Tuttle and

Harker, 1957). Wollastonite, grossular and plagioclase found on the outer edge of the reaction

rim are stable between ~510-890°C (Tracy and Frost, 1991).

Chemically, significant δ13C depletions can occur from contamination by organic material,

as has likely occurred on the surface of some Merapi basaltic andesite whole-rock samples that

interacted with burning surface vegetation (Donoghue et al., 2009; Troll et al., 2012). Measuring

these fresh calcites in-situ avoids possible surface contamination.

Finally, the remote possibility that the investigated calcites represent a carbonatite magma

(i.e. mantle derived carbonate melt) is also unlikely due to the high δ18O values greatly ex-

ceeding mantle values, instead overlapping marine carbonate values. They additionally lack
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the high SrO interpreted to represent primary carbonatite calcite (Barker, 2007), having SrO

concentrations (<=0.08 wt%) closer to local limestone near to Merapi (0.01 wt%; (Chadwick,

2008)). We therefore conclude the calcites to be derived from sedimentary carbonate in the

direct basement to Merapi volcano.

4.4.2 Oxygen isotope diversity in the calcites

We focus this remainder of the discussion on the processes that produce the compositionally and

texturally diverse calcites, and the implications for the Merapi magmatic system and subsequent

crustal CO2 liberation to the atmosphere. To explain the C-O isotopic variations in calcite from

the investigated xenoliths, we consider two distinct end-member processes: (1) decarbonation

(devolatilisation) of the originally sedimentary carbonate and/or (2) magmatic fluid-carbonate

interaction. We have performed Rayleigh fractionation and fluid mixing modelling, detailed

below.

Decarbonation Reactions

Decarbonation of carbonates produces a decrease in δ18O and δ13C in the restitic carbonate as

heavier isotopes are preferentially removed in the released CO2, following the Rayleigh fraction-

ation law (Valley, 1986):

δf − δi = 1000(F (α−1) − 1)

where δf and δi are final and initial isotopic values, F is the fraction of calcite remaining,

and α is the calcite-CO2 fractionation factor.

The δ13C decrease can be significant, covering more than 10 δ units, but the effect on δ18O

is less pronounced due to the ‘calc-silicate limit’ (Valley, 1986), a result of newly created sil-

icate minerals representing the major oxygen reservoir. All carbon is released as CO2 whilst

only ~40% of the oxygen is removed (therefore Foxygen ≈ 0.4Fcarbon + 0.6). A typical reac-

tion that exemplifies this is
calcite

CaCO3 +
silica

SiO2=
wollastonite

CaSiO3 +CO2. A Rayleigh decarbonation

curve following calc-silicate decarbonation at 850°C is shown in Figure 4.3A. This temperature

is consistent with the clinopyroxene saturation temperatures calculated from the magmatic
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xenolith glasses (755-917°C, Equation 34 (Putirka, 2008)). This thermometer reproduces ex-

perimental low temperature 900°C carbonate assimilation data (Carter and Dasgupta, 2016)

within the published error of 45°C. Varying temperatures (e.g. ± 200°C) produces a negligi-

ble 1 ‰ variation on the calculated δ18O fractionation curves, and a 3 ‰ difference δ13C

at 99% decarbonation (F=0.01). At 850°C, the carbon and oxygen isotopic composition of

the released CO2 are ~3 and 3.5‰ higher than the calcite (Chacko et al., 1991), resulting in

lowering of calcite isotopic values with increasing decarbonation. The initial calcite C-O iso-

topic composition is chosen as the highest δ13C and δ18O values for local limestone (Gertisser

and Keller, 2003b; Troll et al., 2012, 2013) and additionally an average of the type A calcite

compositions, which likely represent unmodified calcite. Decarbonation can alternatively occur

via the silicate-absent reaction
calcite

CaCO3=
lime

CaO +CO2 (Figure 4.3A) which we have additionally

modelled (where Foxygen ≈ 0.67Fcarbon + 0.33).

Type A - glass-hosted calcites have the highest δ13C and δ18O values (Figure 4.2), over-

lapping marine carbonate compositions, and therefore are the most likely calcites to represent

unmodified carbonate compositions at Merapi. The limestones sampled local to Merapi (Ger-

tisser and Keller, 2003b; Troll et al., 2012) have a slightly lighter δ13C composition, therefore

we modelled two Rayleigh fractionation curves with both these starting compositions (Figure

4.3A). Type B interstitial calcites from two of the magmatic skarn xenoliths (samples MX3 and

MX5) follow the decarbonation model closely, showing very high levels of decarbonation (Figure

4.3A). The fraction of calcite remaining falls between 0.01 and 0.0001 (Figure 4.3A), consistent

with the very low (<1 vol%) modal calcite content in these xenoliths. All interstitial type B

calcites are in close association with a wollastonite-dominant mineral assemblage (Figure 4.1),

indicating that the formation of wollastonite by the reaction
calcite

CaCO3 +
silica

SiO2=
wollastonite

CaSiO3 +CO2

is likely to be the key process causing the observed depletions in δ13C. Decarbonation can also

occur via the silicate-absent reaction
calcite

CaCO3=
lime

CaO +CO2. No lime is observed, but the CaO

may have transferred to the melt (c.f. Deegan et al., 2010), producing the CaO-enriched xeno-

lith glass from which wollastonite precipitated, trapping the observed abundant melt inclusions.

The modelled curve for silicate-absent decarbonation (Figure 4.3A) is approximately two δ18O
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units lower than most of the values for the interstitial calcite in the magmatic skarns. However,

if a higher δ18O for the protolith is chosen, this curve could equally well reproduce the calcite

C-O isotope compositions in samples MX5 and MX3. A protolith with a higher δ18O is not

observed in the local literature limestone data, but it is plausible based on marine carbonate

rocks having a wide range of δ18O values (Veizer and Hoefs, 1976), exceeding +30 ‰ in some

limestones (e.g. Matthews et al., 1996; Jolis et al., 2015). Therefore, we cannot conclusively

distinguish between the two processes given the potential isotopic variability in the marine

carbonate protolith. The degree of decarbonation is however shown to be extremely high inde-

pendent of the exact process, as demonstrated by the very low δ13C values down to -29.3 ‰,

more than 20 δ13C units below the presumed protolith. Hence, the fraction of calcite remaining

in these xenoliths is less than 1% and possibly as small as 0.01%. This, in turn, shows that

decarbonation is very efficient in the Merapi magmas.

Fluid Mixing Processes

The remaining calcites (Types C, D, E) show significant deviation from modelled decarbona-

tion curves (Figure 4.3A). Various studies have shown that the C-O isotopic compositions of

carbonates in skarns typically cannot be explained fully by decarbonation, and often requires

interaction with magmatic fluids, causing shifts towards magmatic C-O isotopic values (Valley,

1986).

This trend is modelled in Figure 4.3B, using the mass balance equation of Taylor and

Bucher-Nurminen (1986):

Figure 4.3 (following page): Calcite C-O isotopic variations. A) Calcite types dominated
by decarbonation. B) Calcite types dominated by fluid interaction and decarbonation.
C) Literature calcite and skarn data. Fields for primary ‘igneous’ calcite (calcite in
equilibrium with the mantle) from Taylor (1967). Field of Cretaceous to Cenozoic marine
limestone (van Bemmelen, 1949) from Veizer and Hoefs (1976). Isotope fractionation
factors from Chacko et al. (1991) and Zheng (2011). Wollastonite oxygen isotope data
from Troll et al. (2013) and Borisova et al. (2016). Data from skarn xenoliths from
Matthews et al. (1996), Gilg et al. (2001), Fulignati et al. (2005), Di Rocco et al.
(2012), Gozzi et al. (2014) and Jolis et al. (2015). Skarn data from Shimazaki et
al. (1986), Bowman et al. (1994), Shin and Lee (2003), Taylor and Bucher-Nurminen
(1986) and unpublished data from Dunn and Bowman (2003).
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XCO2 · w/r = ln

(
13Ci

CO2
+(∆−13Ci

cc)
13Ci

CO2
−(13Cf

cc−∆)

)
where XCO2 is the mole fraction of CO2 and H2O in the fluid phase, w/r is the fluid/rock

ratio, 13Ci
CO2

is the initial fluid composition, 13Ci
cc is the initial calcite composition, 13Cf

cc is the

final calcite composition, and ∆ is the equilibrium isotope fraction between calcite and CO2.

Oxygen is modelled using the equivalent formula that lacks the XCO2 term.

The assumed fluid composition is based on the carbon isotope composition of the baseline

Merapi fumarole gases (-4.1‰, (Troll et al., 2012)), and oxygen isotopic composition from the

estimated primary Merapi magma composition (+6.1‰ (Deegan et al., 2016b)), coupled with

the basalt rock-water fractionation factor of α = 0.9988114 (Zhao and Zheng, 2003). Although

this baseline value may reflect ongoing carbonate interaction at Merapi, using estimated carbon

isotope Indonesian mantle values from Krakatau of -6.72 and -6.4 ‰ (Blythe et al., 2012), or

elevated values during eruptive periods of -2.2 to -2.6‰, does not change the overall interpre-

tation of a magmatic fluid presence. We used a XCO2 of 0.4, which affects the curvature of the

models (concave to straight at unity). We chose this value because of the presence of CO2 fluid

inclusions and the highly vesicular nature of the xenoliths which is evidence of a strong presence

of CO2. Interstitial xenolith glasses are Ca-contaminated magmatic glasses, representing a melt

that originally contained up to 6 wt % H2O (Preece et al., 2014; Weis et al., 2016), allowing for

a reduction in XCO2. Additionally, the mineral assemblage wollastonite + garnet + anorthite,

found in both magmatic skarn sample MX1 and exoskarn sample CS11, require an XCO2 <~0.6

at 100 MPa (Tracy and Frost, 1991). This pressure is consistent with the pressure estimated

from microthermometry of wollastonite-hosted fluid inclusions (34-94 MPa, see Chapter 3.5.4).

Regardless of the exact modelling parameters used, a simple magma-carbonate fluid mixing

curve cannot reproduce the bulk of our data, in contrast to many worldwide skarns (Valley,

1986; Jolis et al., 2015, Figure 4.3B-C). The Type C melt-like calcites (Figure 4.3B) have a sig-

nificant spread of data, and show a complex mixing-decarbonation history. A magmatic fluid

is required to produce the strong δ18O depletions, which is evidenced directly in this sample by

the presence of localised areas containing calcite, the F-bearing phases fluorite and cuspidine,

and a Cl-bearing phase compositionally similar to wadalite. The presence of a high temperature
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magmatic brine at Merapi has been previously identified (Nadeau et al., 2013b; Preece et al.,

2014), which has interacted with some of the xenoliths. Depletion in 13C requires decarbon-

ation, which may occur during carbonate melting, releasing CO2 whilst producing a Ca-rich

melt (Durand et al., 2015), and/or during the formation of wollastonite via decarbonation re-

actions. The entire spectrum of type C calcite compositions can then be modelled by a single

decarbonation curve and subsequent mixing with a magmatic fluid, or vice versa (Figure 4.3B).

Type D wollastonite-hosted calcite inclusions in samples MX5 and MX1 (Figure 4.3A,B)

can be modelled by a combination of decarbonation followed by interaction with either a fluid,

or diffusive equilibration between the calcite inclusion and the host wollastonite crystal. Host

wollastonites have δ18O values of +10 to +14 ‰ (Troll et al., 2013; Borisova et al., 2016), and

any equilibration between wollastonite and calcite would cause a large reduction in calcite δ18O

values (Δ18Ocalcite-wollastonite at 850°C = 2.2 (Zheng, 1993)).

Residual type E calcites (Figure 4.3B) within the exoskarn xenoliths can be modelled by

fluid mixing followed by decarbonation from a local limestone initial composition. Due to

the absence of glass, the relatively lower temperatures compared to the magmatic xenoliths

constrained from the phase assemblage (<800°C, Tracy and Frost, 1991), and the presence

of magmatic volatile-bearing phases (apatite-ellestadite, cuspidine, fluorite, anhydrite), these

xenoliths likely represent samples from a greater distance into a zoned carbonate alteration zone

around the magma (e.g. Matthews et al., 1996; Fulignati et al., 2004). This scenario is similar

to zoned contact metamorphic aureoles and exoskarns, where interaction with fluid released

from a cooling magma may have a stronger influence than the dominant thermal metamorphic

influence adjacent to the magma. Our xenoliths must, however, still be close enough to the

magma contact to prevent the formation of hydrous skarn minerals (such as vesuvianite). The

second stage decarbonation trend may have been produced as the sample is entrained in the

melt during ascent, as decarbonation is shown to be dominant in the syn-magmatic xenolith

samples MX3 and MX5.

In summary, the isotopic variations between calcite types can be attributed to whether a

magmatic fluid phase was present during xenolith formation. Type A calcites represent nearly

177



178 4.4. DISCUSSION

unmodified calcite compositions. C-O isotope systematics of interstitial calcites (type B) in

magmatic skarn samples can be explained by decarbonation reactions alone (Figure 4.3A).

The calcites were affected dominantly by the heat of the magmatic melt. The liberated CaO

from decarbonation reacted with the melt SiO2 to produce wollastonite, containing abundant

melt inclusions and CO2-rich fluid inclusions. Type C melt-like calcites show evidence for

the presence of a F+Cl-bearing magmatic fluid phase. This magmatic fluid facilitated calcite

melting and oxygen isotope exchange. Simultaneous decarbonation reactions occurred forming

wollastonite, similar to Type B calcites (Figure 4.3A). Wollastonite-hosted calcite inclusions

(type D) represent equilibration with their host phase, lowering their δ18O values. Type E

calcites in the exoskarn xenoliths (samples CS11 and M13-02) lack a silicate glass phase, and

have a distinct mineral assemblage, indicating they are located from within an aureole alteration

zone around the magma body. Pure thermal decarbonation is likely a less prominent isotopic

modification process, and instead a stronger influence of magmatic fluid interaction is recorded

(as in skarns (Valley, 1986)). These exoskarns therefore record a pronounced lowering in their

calcite δ18O values (+13.9 to +19 ‰) and only moderate changes in their δ13C values (Figure

4.3B).

4.4.3 Comparison with other worldwide skarn xenoliths and skarns

This variety of processes at Merapi contrasts with other reported skarn and skarn xenoliths.

Figure 4.3C shows a selection of oxygen and carbon isotope data from skarn deposits and skarn

xenolith suites. Skarns that form in carbonate country rocks adjacent to granitoid intrusions

typically show dominantly fluid mixing trends (Figure 4.3C, Valley, 1986 Figure 6; Bowman,

1998 Figure 13), with variation in δ13C attributed to a smaller degree of decarbonation. Signif-

icant depletions in δ13C to below mantle values are often attributed to interaction with organic

material such as graphite-bearing wall rocks or a CH4-rich fluid (e.g. Shimazaki et al., 1986;

Bowman, 1998). Skarn xenoliths from active volcanoes and volcanic areas often exhibit two

distinct trends in C-O isotope space. Calcite from Vesuvius (Gilg et al., 2001; Fulignati et al.,

2005; Jolis et al., 2015) and Bushveld (Buick et al., 2000) skarn xenoliths follow the typical
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skarn trend, with compositions defining a trajectory towards mantle and carbonatite C-O iso-

tope compositions. Xenoliths and groundmass calcite within lavas from Colli Albani (Di Rocco

et al., 2012; Gozzi et al., 2014), however, show a pure decarbonation trend, with negligible

magmatic influence. At Merapi, our type B interstitial calcites show a dominant decarbonation

trend, similar to Colli Albani (Figure 4.3C), however the extremely low δ13C values observed

at Merapi (down to δ13C = -29.3 ‰) suggest more extreme degrees of decarbonation. To the

best of our knowledge, these calcites record the lowest carbonate δ13C values reported from

skarns, approaching that of organic carbon. Our data, and the literature whole-rock data (Troll

et al., 2012), show that low δ13C values can be achieved by high temperature decarbonation

reactions alone. In the absence of other geological evidence for organic material interaction,

this could indicate that other depleted skarns in the literature may reflect similar processes,

without the need to involve organic carbon sources. The exoskarn xenoliths from Merapi lack

the definitive skarn-like trend shown by Vesuvius and the various skarns associated with gran-

itoid intrusions. Instead, they demonstrate a combination of both trends, lowering δ13C values

to below typical igneous values, which we interpret as the combined action of decarbonation

and interaction with magmatic fluids. Contrasting processes of pure decarbonation and fluid

infiltrative isotopic modification have been only rarely described from individual contact meta-

morphic aureoles, such as the Bufa Del Diente alkali syenite intrusion (Heinrich et al., 1995)

and Quérigut magmatic complex (Durand et al., 2006). Merapi is now the first case where

the contrasting processes of near-complete decarbonation and carbonate-magmatic fluid inter-

action can be demonstrated in xenoliths from an active volcano. This may be due to the rapid

timescales of carbonate assimilation (e.g. Deegan et al., 2010; Jolis et al., 2013) which would

hinder preservation of high temperature thermal decarbonation in typical contact aureoles,

but are preserved in the xenoliths that record transient snapshots of magma-crust interaction

processes. These xenoliths additionally lack evidence for slow cooling and overprint by low-T

assemblages, which is commmon in in situ contact aureoles. Granitic intrusions typically in-

trude at lower temperatures than basaltic-andesite magmas, therefore the country rock is likely
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to experience less intense thermal effects, and therefore less decarbonation, compared to Mer-

api country rock xenoliths that experience temperatures upwards of 925°C (Erdmann et al.,

2016). Furthermore, a cooling granitic body would release large quantities of fluid as magmatic

crystallisation progresses, producing a fluid-dominant isotopic signal in the aureole. Indeed, in

the Merapi xenoliths, samples that exhibit evidence for a brine phase during formation (i.e. F,

Cl and S-rich mineral phases), are the samples that show a shift towards magmatic isotopic

values, confirming the presence of a fluid that influenced the xenolith’s isotopic composition.

In addition to modifying the isotopic composition of the calcites, the fluids facilitated car-

bonate melting, and therefore our xenolith samples provide new evidence that carbonate melts

can be produced by interaction between magmas and crustal carbonate (c.f. Lentz, 1999; Fulig-

nati et al., 2001; Gozzi et al., 2014). Our textural evidence shows calcite with typical melt-like

structures that we interpret as having formed from a carbonate melt. A crustal source is ev-

idenced by the calcite isotopic compositions overlapping those of marine carbonates. Some of

the analysed melt-like calcites approach the C-O isotope values typical of magmatic mantle de-

rived carbonates, which demonstrates interaction of the crustal carbonate with magmatic fluids

(Figure 4.3B). The carbonate melts formed in the xenoliths are volumetrically small, as forma-

tion of skarn minerals via decarbonation reactions is the dominant process of magma-carbonate

interaction at Merapi, and the carbonate melts require a F-rich fluid (Jago and Gittins, 1991)

and a Ca-rich contaminated magmatic melt to stabilise the carbonate melt within the xenoliths.

This restricts the melt locally to the xenoliths as to our knowledge, no carbonate is found within

the basaltic-andesite lavas. This is in contrast to examples such as Colli Albani (Di Rocco et

al., 2012; Gozzi et al., 2014) and the Hortavær igneous complex in central Norway (Barnes

et al., 2005), where carbonate derived from country rock assimilation is frequently found in

the igneous materials. The xenolith Ca-rich melts are isolated from the host magma by a rim

of clinopyroxene and plagioclase, however the low viscosity of carbonate and Ca-contaminated

melts (e.g. Genge et al., 1995; Deegan et al., 2010) may allow release from the xenoliths into

the Merapi magma via filter pressing or through xenolith disaggregation. These melts alone

are likely to have a limited effect on the bulk magmatic composition due to the small volumes
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of carbonate melt produced, relative to usage of magmatic elements to form the skarn min-

eral assemblages. Regardless of the exact mechanism of magma-carbonate interaction (mixing

with carbonate melts, skarnification, bulk dissolution), a strong magma-crustal carbonate in-

teraction signature at Merapi is demonstrated by isotopic (C, O, Sr, He, Gertisser and Keller,

2003b; Chadwick et al., 2007; Troll et al., 2012, 2013; Borisova et al., 2013, 2016) and trace

element (CO2/S Aiuppa et al., 2017) studies, indicating up to 30% contamination with crustal

carbonate components.

4.4.4 Implications for Crustal Volatile Release

Our modelling results, and the general paucity of relict calcite in the xenoliths, demonstrate

that magma-carbonate interaction at Merapi is very efficient at remobilising crustal CO2 into

the magmatic system and ultimately the atmosphere. Crustal carbonate assimilation has been

shown to be an important contributor to CO2 output at Merapi (e.g. Deegan et al., 2010; Troll

et al., 2012; Carter and Dasgupta, 2016) and a widespread occurrence in arc volcanoes, which

may even dwarf contributions from source contamination (Aiuppa et al., 2017; Mason et al.,

2017).

We have used a mass balance model (Iacono-Marziano et al., 2009) to place constraints on

the amount of crustal CO2 produced at Merapi:

%carbonate = 100 δ13Cfumarole−δ13Cmantle

δ13Ccarbonate−δ13Cmantle

A mantle carbon isotope value of δ13C = -6.5 ‰ is chosen, based on measurements from

nearby Krakatau (-6.7 and 6.4 ‰) which likely represents a primary Indonesian mantle value

(Blythe et al., 2012). To constrain the crustal carbon output at Merapi, both the averaged

Merapi baseline and the 2006 syn-eruptive fumarole δ13C values (-4.1‰ and -2.4‰ respectively

(Troll et al., 2012)) are employed in our modelling. Although a δ13C value of -4.1 is within

some commonly used uncontaminated MORB mantle ranges (e.g. -6 ± 2 Mason et al., 2017),

gas He isotopes indicate that the Merapi gas baseline during quiescence has a crustal carbonate

overprint (Troll et al., 2013). For this reason, we use -6.5 ‰ as the primary mantle δ13C value.

To approximate the δ13C values of the carbonate crust underlying Merapi, a range of values
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are utilised, from -2.2 ‰ (Troll et al., 2012) to +3.5 ‰ (this study). The source of the CO2

is assumed to be dominantly crustal and not from subducted sediment on the basis of elevated

CO2/ST measurements (Aiuppa et al., 2017). From this modelling, we find that 24-56% of CO2

emissions are crustal derived during periods of volcanic quiescence, and 41-95% during eruptive

periods.

Contributions to crustal CO2 release come from direct carbonate assimilation into magma,

thermal carbonate breakdown, and metasomatic alteration of the wall rock. To calculate the

mass of CO2 released by a magma reservoir below Merapi, we followed the calculations of

Jolis et al. (2015), which estimate the amount of CO2 released from the aureole around a

magma reservoir for a specified reservoir volume, aureole thickness, and decarbonation effi-

ciency. The size of the pre-eruptive magma reservoir below Merapi is poorly constrained, but is

known to reside within the carbonate substrata (Preece et al., 2014; Erdmann et al., 2016, see

Chapter 3.5.4). Using the erupted volume from the 2010 paroxysmal eruption of 0.02 to 0.05

km3 (Surono et al., 2012) and an average intrusive:extrusive ratio of 5:1 (White et al., 2006; c.f.

Carter and Dasgupta, 2018), we assume an estimated reservoir size of 0.1 to 0.25 km3. Thermal

and metasomatic aureoles can be extensive in size (e.g. Aarnes et al., 2010), so we calculate

a range of aureole thicknesses from 5 to 30% of the reservoir width. Aureoles are thermally

and chemically gradational, with proximal thermally-affected fully decarbonated and/or assim-

ilated rocks, through metasomatic rocks, to distal marbles, therefore we use a conservative 50%

decarbonation efficiency as an average for our aureole calculations. This is in line with a lack

of olivine, periclase and other magnesian phases in the xenoliths, which implies the carbonate

protolith at Merapi is highly likely to be limestone, which has a lower decarbonation efficiency

than dolomite (c.f. Carter and Dasgupta, 2018).

Modelling the CO2 released from the contact aureole outlined above indicates that 9.5 x 109

to 1.8 x 1011 kg of crustal CO2 could be released from the limestone surrounding the reservoir.

Merapi degases approximately 4-4.6 x 105 kg of CO2 per day (Toutain et al., 2009), of which

we calculate 24-56% may be crustal derived during quiescence (see above). This means that

the total CO2 that could be released from the aureole of a reservoir similar in size to that of
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the 2010 eruption could occur rapidly over 119 to 4960 years. This timescale may be shortened

by punctuated periods of eruptive activity that increase magma-carbonate interaction [Troll

et al. (2012);Carr et al. (2018); Chapter 3]. To simulate a maximum CO2 output over the

lifespan of Merapi, we can consider multiple reservoirs intruded into the carbonate at variable

depths, which will cause much larger volumes of CO2 to be released. Fully decarbonating

a vertical limestone cylinder from the surface to the base of the limestone at ~10 km (van

Bemmelen, 1949) with a 1 km radius, corresponding to the estimated 2010 eruption reservoir

width +50%, shows that up to 3.8 x 1013kg of CO2 could be released. Although Merapi is

currently considered a relatively low global CO2 emitter (Burton et al., 2013), our calculations,

and documented strongly degassed syn-magmatic xenoliths, show that crustal CO2 liberation

can be temporarily variable with potentially large amounts released during eruptive episodes

compared to periods of overall quiescence (c.f. Deegan et al., 2010; Troll et al., 2012). We

assume that carbonate-interacting arc systems follow similar patterns worldwide, and probably

over geological time too.

Periods of global warming in the Earth’s past, such as the Cretaceous hothouse and the

Paleocene-Eocene Thermal Maximum (PETM) have been discussed in the context of excess

atmospheric carbon originating from either organic carbon release (Svensen et al., 2004), in-

tense volcanism (Gutjahr et al., 2017) and/or increased magma-crustal carbonate interaction

at volcanic arcs (Carter and Dasgupta, 2018; Chu et al., 2019). Some periods of global warming

in the Earth’s past, notably the PETM, are accompanied by negative δ13C excursions of several

per mil in the rock record, which could be explained by either massive volcanism (Gutjahr et

al., 2017) and/or organic carbon release (permafrost and/or methane hydrates) (Svensen et al.,

2004). Although our data show highly negative calcite δ13C values, and therefore imply the

release of CO2 with commensurate highly negative δ13C, the bulk gas released from carbonate

interaction will always range between the initial carbonate value and the initial carbonate +

the CO2-calcite fractionation factor (e.g. Δ13CCO2-calcite = 3.7 to 2.7 ‰ at 500-1000°C, (Chacko

et al., 1991)), thus driving the δ13C of released CO2 at volcanoes to relatively high values. A

183



184 4.5. CONCLUSIONS

suggested increased volume of crustal carbonate CO2 release during PETM (Carter and Das-

gupta, 2018) would therefore increase the δ13C composition of the global volcanic CO2 output

above typical mantle values (c.f. Lee et al., 2013; Mason et al., 2017). Accepting carbonate

assimilation in arcs as a contributing factor during past climate perturbations, carbon cycling

models would require a much higher input of light carbon than previously thought to balance

the isotopically heavier limestone-derived volcanic volatiles and still explain past negative car-

bon isotope excursions. Although further discussion of carbon cycling modelling is beyond the

scope of this paper, we note that the increasingly recognised contribution of limestone-derived

carbon to volcanic carbon budgets warrants consideration in carbon cycling models throughout

Earth history.

4.5 Conclusions

We present the first in-situ carbon and oxygen isotope study of five texturally distinct calcite

types within Merapi skarn xenoliths. The calcites encompass a wide range of C-O isotope

compositional space (δ13C –29.3 to +3.5 ‰, δ18O +9.9 to +25.6 ‰), distinct from xenolith

bulk-rock analyses presented in the literature (δ13C -22.4 to -24.9 ‰, δ18O 10.4 to 14.1 ‰).

The different calcite types can be attributed to distinct C-O isotopic trends. Interstitial and

glass-hosted calcites show a dominant influence of decarbonation, leading to extremely negative

δ13C values (up to -29.3 ‰). By contrast, melt-like and residual calcites show a mixed influence

of magmatic isotopic exchange and decarbonation. Magmatic isotopic exchange is facilitated

by the presence of a magmatic fluid phase percolating during xenolith metasomatism, demon-

strated by the presence of F and Cl bearing-phases, which are present in the samples with

decarbonation-dominant interstitial calcite. This fluid phase further contributed to carbonate

melting and mobilisation. The observed melt-like calcites with clear isotopic evidence for a

crustal origin show that carbonate melts can be produced by interaction of magmatic fluids

with crustal carbonate. Our modelling results combined with the general paucity of remnant

calcite in the xenoliths, demonstrate that magma-carbonate interaction at Merapi is very effi-

cient at remobilising crustal CO2. 24-95% of the CO2 released at Merapi may be crustal derived,
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and release of this additional crustal CO2 from the aureoles around magma reservoirs occurs

rapidly over geologically short timescales of only thousands of years. Magma-crustal carbonate

interaction processes throughout Earth’s past likely follow similar patterns, with the potential

to release large volumes of CO2 rapidly, and may require additional consideration in carbon

cycling models.
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Chapter 5

Xenoliths as Tracers of
Processes in Volcanic Arcs

The preceding chapters presented a detailed study of two types of xenoliths from two case study

locations. Xenoliths however are found worldwide and span a vast range of lithologies, there-

fore this chapter discusses how these results fit into the wider understanding of the magmatic

differentiation and crustal contamination processes occurring at volcanic arcs.

5.1 Magma Differentiation at Volcanic Arcs

From primitive magma genesis to the production of andesite and silicic evolved products, there

is still debate as to the best model to produce the complex magmas found at volcanic arcs.

The high MgO, basaltic partial melts of the peridotite mantle wedge are not commonly found

in arcs, and instead the volcanic products are dominated by more evolved magmas, requiring

significant differentiation to occur within the crust (Taylor and McLennan, 1985; Carmichael,

2002; Lee and Bachmann, 2014; Melekhova et al., 2015; Müntener and Ulmer, 2018).

5.1.1 Transcrustal Differentiation

Recent advances in our understanding of magmatic arcs focus on the concept of transcrustal

magma differentiation, where differentiation occurs at various stages throughout the crust,

and not occurring entirely in geophysically implausible large aphyric shallow magma reservoirs

(Cashman et al., 2017). Melt within this transcrustal system is found within, and percolates

through, vertically extensive crystal mushes (crystal-rich systems kept at super-solidus con-

ditions). Melts can be extracted and segregate (Bachmann and Huber, 2018; Gualda et al.,

2019), erupt (Marsh, 1996; Bachmann and Huber, 2018), react with crystals to form different
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mineral phases (Davidson et al., 2007; Smith, 2014; Cooper et al., 2016; Otamendi et al., 2016),

replenish and remobilise parts of the mush system (Nakamura, 1995; Murphy et al., 2000; Szy-

manowski et al., 2017; Bachmann and Huber, 2018), and also become trapped and crystallise

along paths out of equilibrium with the main magmatic system (Bernstein, 2006; Borghini and

Rampone, 2007; Krause et al., 2007). Plutonic xenoliths record processes occurring at steps

within this mush column (e.g. Foden and Green, 1992; Upton et al., 2000; Smith, 2014; Forni

et al., 2015; Perinelli et al., 2016; Bertolett et al., 2019).

This work has shown that at Santorini, magmatic differentiation of mafic to silicic melts

occurs in the upper to mid crust. The plutonic xenoliths record melt compositions spanning the

entirety of those observed in the volcanic rocks, showing evolution of Santorini magmas domi-

nantly by fractional crystallisation, consistent with results from the volcanic rocks (e.g. Druitt

et al., 1999, 2016; Cadoux et al., 2014; Andújar et al., 2016) and arc systems in general (e.g. An-

nen et al., 2006; Cashman et al., 2017). Although our mineral-melt barometry has inherent

large uncertainty, the broad shallowing trend with differentiation is consistent with arc magma

genesis models showing that mafic and andesitic melts are generated at deeper depths, and

fractionate to dacite and rhyolitic compositions and pond in the shallower crust. Our oxygen

isotope results, and prior radiogenic isotope work at Santorini (e.g. Druitt et al., 1999) show

the role of ~10 to 20% crustal assimilation influencing the geochemical signature of the magmas

during differentiation, which is a typical characteristic of arc magmas (see section 5.2 below,

section 1.4 and chapters 3 and 4).

Cumulates, and cumulate xenoliths, provide insights into crystal mush processes occuring

(e.g. Holness et al., 2005a; Borghini and Rampone, 2007; Smith, 2014; Cooper et al., 2016;

Sliwinski et al., 2015; Wolff et al., 2015; Forni et al., 2015). Xenoliths from this study show

both sampling from the crystallising mush of the silicic eruptions, and record frozen mush and

the closed system differentiation occuring in trapped melt pockets. Cumulate remobilisation

is evidenced in the Lower Pumice 2 eruption, with texturally distinct corroded plagioclase

from the cumulate found in the pyroclastic deposits. Cumulate remobilisation from magma

replenishment is likely not restricted to this eruption, being a common process in forming
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large silicic eruptions (Wolff et al., 2015; Sliwinski et al., 2017; Bachmann and Huber, 2018;

Forni et al., 2018), and replenishment and mixing events are identified in several Santorini

eruptions (Druitt et al., 1999, 2012; Fabbro et al., 2018) indicating mixing of mush (Fabbro

et al., 2018). Future work is needed to assess the origin of phenocrysts across the eruptive

sequence (e.g. Kinman and Neal, 2006; Druitt et al., 2012; Fabbro et al., 2018).

Reactive melt flow through a lower crustal mush can produce large volumes of amphibole,

which modifies the geochemical signature of fractionating magmas and can produce large vol-

umes of silicic melt in the deep crust (Davidson et al., 2007; Klaver et al., 2018). This has been

evidenced in plutonic xenoliths from many arcs (e.g. Foden and Green, 1992; Costa et al., 2002;

Smith, 2014; Tiepolo et al., 2012; Cooper et al., 2016) including the Aegean (Elburg et al., 2014;

Klaver et al., 2017, 2018). In Santorini however, amphibole is only found as a late stage inter-

cumulus phase, or as hydrothermal alteration of clinopyroxene. This reflects shallower crustal

differentiation at Santorini, compared to rhyodacitic magmas from Nisyros in the west end of

the South Aegean Volcanic Arc. The Nisyros rhyodacites in contrast to Santorini lack evidence

for shallow crustal differentiation and mixing processes, formed entirely by lower crustal dif-

ferentiation (Klaver et al., 2017, 2018), but the later andesitic Nisyros eruptive units are more

comparable to Santorini, showing only shallow crustal differentiation processes (Klaver et al.,

2017). This highlights the complexity of arc magma genesis, where distinct batches of magma

can form at individual volcanic centres (e.g. Akrotiri vs post 530-ka magma at Santorini, older

rhyodacitic vs newer andesitic magma at Nisyros), and also along arcs (e.g. Aegean: Elburg

et al., 2014; Sunda: Handley et al., 2014; Aeolian: Pe-Piper and Piper, 2005; Lesser Antilles:

Melekhova et al., 2019; Aleutians: Kelemen et al., 2004; Mariana: Parman et al., 2010).

Future work at Santorini should focus on the plutonic xenoliths from the lava sequences.

Rare gabbroic xenoliths were sampled from the Skaros and Therassia lavas during this study, but

proved too altered or small to study. The xenoliths in this study can be considered the cumulate

to the explosive silicic eruptions, which although the most hazardous eruptive style, are only a

part of the full magmatic evolution at Santorini. The lava flows of Nea Kameni are considered

potentially the start of a third eruptive cycle (Druitt et al., 2016), therefore understanding the
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full magmatic history is crucial for understanding the risk posed in the future.

5.2 Crustal Contribution to Arc Magmas

Magmas passing from the mantle through the crust in arc settings rarely occurs without mass

transfer and crustal contamination (e.g. Arculus and Johnson, 1981; Pyle and Ivanovich, 1988;

Thirlwall et al., 1996; Davidson et al., 2005). The thermal influence of this melt causes chemical

transfer between magma and wall rock via many different processes including diffusion, meta-

somatism, bulk assimilation, and recycling of metamorphosed crust (e.g. Patchett, 1980; Beard

et al., 1993; Reiners et al., 1995; Ducea and Saleeby, 1998; Dungan and Davidson, 2004; Jolis

et al., 2015). This section discusses the mechanisms of crustal contamination elucidated from

skarn xenolith studies, and the role this study has on advancing the understanding of these

processes.

5.2.1 Prograde Skarn Forming Processes

Elemental transfer between wall-rock and magma produces strong chemical gradients, forming

mineralogical and chemical zonation (Kerrick, 1977; Zarayskiy et al., 1987). This occurs at

all scales, from fine grained rapidly quenched contacts to metres long zonation across slow-

cooled pluton contact aureoles. In carbonates skarn systems, two environments are identified,

the endoskarn/magmatic skarn, where carbonate elements have transferred to the magma, and

exoskarn, where magmatic elements have modified the original carbonate. This is identified both

in studies of skarn deposits and reconstruction of skarns below active volcanoes (Kerrick, 1977;

Zarayskiy et al., 1987; Matthews et al., 1996; Gaeta et al., 2009; Di Rocco et al., 2012). The

endoskarns can be difficult to recognise, sometimes resembling a magmatic cumulate, requiring

geochemical tracers to reveal their origin, and a piecemeal approach using different lithologies

to reconstruct the skarn system morphology (Wenzel et al., 2002; Barnes et al., 2005; Fulignati

et al., 2005; Gaeta et al., 2009; Di Rocco et al., 2012; Spandler et al., 2012). The work in

Chapter 3 clearly reveals that these cumulate rocks can be formed from magma-carbonate

interaction, validating interpretations of previous workers, and provide natural analogues to

190



CHAPTER 5. XENOLITHS AS TRACERS OF PROCESSES IN VOLCANIC
ARCS

191

experiments (e.g. Zarayskiy et al., 1987). The Merapi magmatic skarn samples especially show

remarkably well the effects of the chemical gradient from endo to exoskarn at thin section scale,

with a cumulate-like assemblage of clinopyroxene and plagioclase at the magma contact, to

wollastonite and garnet skarn assemblages towards the limestone-derived xenolith core. The

geochemical compositions of the cumulate-like clinopyroxene and plagioclase overlap that of

magmatic clinopyroxene and plagioclase, therefore this ‘gabbroic’ assemblage, if found without

coexisting obvious evidence for carbonate assimilation, could be overlooked at volcanoes where

carbonate assimilation is not as pervasive or apparent as at Merapi.

Our work additionally shows a rarely recognised mechanism of skarn formation, by which

dissolution of carbonate into the host magma occurs followed by precipitation of calc-silicate

skarn minerals from the Ca-enriched melt. This is in contrast to typical skarn formation by

thermal metamorphism and metasomatism from magmatic fluids and/or diffusion (Kerrick,

1977; Zarayskiy et al., 1987; Meinert, 1992). Although the zonation in the Merapi magmatic

skarn xenoliths resembles metasomatic skarns, the xenoliths contain the Ca-enriched glass,

skarn minerals with Ca-rich melt inclusions, and irregular zonation indicating crystallisation

from a Ca-contaminated magmatic melt. Occurrences of this process of skarn formation are

rare, for example identified at Vesuvius (e.g. Fulignati et al., 2001) and in some skarn deposits at

locations across China (Bin and Jin-song, 2016 and references therein). It likely this mechanism

produces skarn rocks elsewhere, and this work at Merapi can help aid recognition elsewhere.

Liberated CO2 from decarbonation reactions increases the oxygen fugacity, influencing the

mineral phases produced and compositions of these (Nicholls, 1971b; Wenzel et al., 2002; Mollo

and Vona, 2014). Clinopyroxene increases in Ca-Tschermak (CaAlAlSiO6), Ca-Fe-Tschermak

(‘esseneite’ CaFe3+AlSiO6), and Ca-Ti-Tschermak (CaTiAl2O6) components due to the oxida-

tion of Fe to Fe3+ (Mollo and Vona, 2014). Oxygen fugacity is difficult to constrain in many

skarn systems, due to the lack of coexisting Fe-Ti oxides. In this work, we built upon the exist-

ing single crystal oxybarometers of Cortés et al. (2006) and Simakin et al. (2012), to expand the

calibration to oxygen fugacities and clinopyroxene compositions found in skarns. Estimation

of clinopyroxene Fe3+ from electron microprobe data uses calculation schemes (Droop, 1987;
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Lindsley, 1983) that are prone to large uncertainty when determinations of the other cations

are inaccurate. For this reason, calibration of oxybarometers based on measurement of Fe3+

from methods such as Mössbauer spectroscopy may be able to improve the accuracy. Fe3+ can

be reasonably accurately estimated in garnets with the microprobe (Arai, 2010), and Fe3+ is

strongly incorporated into the crystal structure via the andradite component, therefore calibra-

tion of a garnet oxybarometer may be possible with more high-fO2 experiments. High oxygen

fugacity during skarn formation causing Fe3+ incorporation into clinopyroxene drives Al2O3

enrichment. This is additionally promoted at higher temperatures (Huckenholz et al., 1974;

Pascal et al., 2005) producing extremely enriched compositions with up to 24 wt% Al2O3. Our

study provides another natural example of extreme Al enrichment, with up 22.3 wt% Al2O3.

As well as the exotic clinopyroxene compositions, many other rare minerals have been iden-

tified in this study. More work is required on the wadalite-like and other similar Ca-Al-Si±Cl,F

phases for identification. Detailed microanalytical work on skarn xenoliths such as those from

the Upper Chegem caldera, Russia, have found an abundance of new minerals in recent years

(e.g. Galuskin et al., 2013), and this may additionally be the case at Merapi.

5.2.2 Interaction with Non-Carbonate Crust

Whilst this study focused dominantly on the readily assimilated carbonate crust at Merapi, the

other xenoliths found both at Merapi and other volcanoes may provide insights into mechanisms

of elemental transfer from wall rock to magma. At Merapi, volcaniclastic xenoliths are also

present, which are unlikely to have been entrained without some modification to their chemistry.

Quartz-rich partially melted xenoliths additionally identified in this study at Merapi (Section

3.4.3, Appendix Figure B.1) indicate that crustal melting and assimilation of other crustal

lithologies is ongoing at Merapi, and requires study. Work on similar xenoliths at the Aeolian

Islands and Etna have been used to rule out these crustal melts in influencing the major element

geochemistry of the magmas (Frezzotti et al., 2004), constrained the effects of trace element

mineral-melt partitioning during assimilation, and have additionally used these xenoliths as
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geobarometers for magma stagnation depths (Zanon et al., 2003). This study also found quartz-

rich xenoliths in the deposits of Nea Kameni at Santorini. A rim of clinopyroxene shows they

are not in equilibrium with the host dacite, and likely also represent partially melted crust. The

processes and affects of assimilation of other non-carbonate lithologies requires further study.

5.2.3 Composition of Contaminated Magmas

Carbonate interaction has long been proposed (e.g Daly, 1910) as a process that can influence

the composition of magma, notably increasing the alkalis and depleting melts in silica. This has

been experimentally verified recently (e.g. Iacono-Marziano et al., 2007; Mollo et al., 2010b).

While true for mafic melts interacting with carbonate, the effects of this are less apparent when

the magmas are more evolved and cooler (Spandler et al., 2012; Carter and Dasgupta, 2016,

2018). Merapi can be considered an example of this, that while producing basaltic to basaltic

andesite lavas, the melts (interstitial glasses) in the system are dacitic to rhyolitic, compared

to the basaltic glasses in the K-rich silica undersaturated Italian volcanic rocks (e.g. Gaeta

et al., 2006). As the Merapi xenoliths have shown, much of the mineralogy produced during

magma-carbonate interaction at Merapi, and therefore more differentiated systems, produces

clinopyroxene and plagioclase similar to the phenocryst assemblage. This is in contrast to

mafic systems where clinopyroxene forms at the expense of olivine, which results in a stronger

influence on the melt geochemistry (Iacono-Marziano et al., 2007; Mollo et al., 2010b). Merapi

is similar to Nisyros (Spandler et al., 2012) where carbonate assimilation does not have a strong

control on major element geochemistry (Handley et al., 2014). Isotopic evidence for carbonate

assimilation is stronger, and shows that either the bulk major element chemistry changes little

with carbonate assimilation due to the phases produced as discussed above, or a decoupling of

isotopic element transfer and major element transfer during carbonate interaction (Deegan et

al., 2010), producing a strong isotopic signal for assimilation at only small amounts of actual

bulk assimilation. Further work is needed to assess this properly.
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5.2.4 Volatile Budgets

Magma-carbonate interaction releases CO2 as the carbonate is progressively changed into a

calc-silicate mineral assemblage. This study presents the first in situ study of texturally dis-

tinct remant calcites from the carbonate protolith using carbon and oxygen isotopes. The five

distinct textural types show distinct chemistry as a result of mixed processes: 1) highly efficient

decarbonation, and 2) influx of magmatic volatiles that facilitated carbonate melting. Carbon-

ate melt is rarely observed (Lentz, 1999; Fulignati et al., 2001; Gozzi et al., 2014) and often

attributed to carbonatites (e.g. Barker, 2007), but conclusively shown to be derivable from

crustal rocks in magma-carbonate systems in this study.

The extremely low calcite δ13C and paucity of residual calcite in the xenoliths shows highly

efficient decarbonation. The low solubility of CO2 in silicate melts (Holloway and Blank, 1994;

Botcharnikov et al., 2005) means that this CO2 is unlikely to be retained in the magma, and will

either passively escape through fractures or cause overpressurisation of the magmatic system

depending on the rate of CO2 release (Freda et al., 2011; Troll et al., 2012; Ghiorso, 2016;

Carr et al., 2018). At Merapi, this extra CO2 is thought to potentially increase the pressure

and enhance the explosivity of some eruptions, even occurring at syn-magmatic timescales

(Troll et al., 2012; Carr et al., 2018). This work further supports that this may be possible.

Experimental work has shown decarbonation is rapid in high temperature basaltic melts at

Merapi and Vesuvius (Deegan et al., 2010; Jolis et al., 2013). The experiments were performed

at higher temperatures than those estimated from the intercumulus glass and melt inclusions

in this study, but this work also shows rapid, syn-eruptive carbonate interaction occurring at

lower ~850°C temperatures. The magmatic skarn xenoliths are by definition products of rapid

carbonate interaction, before the Ca-enriched melts can mingle into the magmatic system and

the disaggregated crystals can be dissolved and/or re-equilibrated with the Merapi magmas.

Timescales of magmatic skarn xenolith formation estimated in this study show that additional

crustal CO2 can be released in the time frames up to and during eruptions, potentially increasing

explosivity. The timescales in this work are based on crystal growth rates, but these timescales

could be much more accurately constrained by utilising diffusion modelling of the strongly zoned
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xenolith clinopyroxene and plagioclase crystals.

Decarbonation occurs in the metamorphic aureole around the magma reservoir (Jolis et al.,

2015; Carter and Dasgupta, 2018), and in this study we have shown that this decarbonation is

additionally rapid, in the order of 100 to a few thousand years at Merapi. In systems where the

magmatic plumbing is considered a series of small reservoirs throughout the crust (e.g. Chadwick

et al., 2013; Cashman et al., 2017), this has potential to release large volumes of crustal CO2 to

the atmosphere. Crustal carbonate CO2 output at volcanic arcs is an increasingly widespread

recognised occurrence, which may dwarf contributions from subducted source contamination

(Lee et al., 2013; Carter and Dasgupta, 2016, 2018; Aiuppa et al., 2017; Mason et al., 2017;

Chu et al., 2019). Resolving the impact of this CO2 release on modern and past climate budgets

is a key area of work that needs more research.

5.3 Concluding Remarks

This thesis has used detailed petrography and analytical methods to study crustal xenoliths

found at Merapi, and plutonic xenoliths found at Santorini. This work, and the referenced

work within, has shown the value of using xenoliths to understand the individual processes that

collectively produce complex arc magmas. Future work on these xenoliths from other locations

will inevitably benefit our understanding of arc magma petrogenesis. During this study we also

sampled from across the Aeolian islands, where a wide variety of both crustal (calc-silicates,

quartzites, basement) and plutonic (ultramafics, gabbros, diorites) xenoliths can be found. The

island of Salina for example hosts both crustal and plutonic xenoliths within the same eruptive

deposits, potentially allowing for the roles of crustal contamination vs differentiation processes

on a single eruption to be established. The rich variety of xenoliths, coupled with the hazards

posed by populations on the flanks of the Aeolian island volcanoes, makes them a desirable

target for future research.
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5.4 Main Thesis Conclusions

Plutonic xenoliths from Santorini are dominated by anhydrous gabbroic assemblages represent-

ing shallow to mid crustal (<400 MPa) storage and differentiation. Whole-rock and mineral

geochemistry shows they are the complementary cumulate to the silicic eruptions, however not

necessarily cogenetic to the eruption deposits that they are found within. The xenolith mineral

chemistry overlaps that of the volcanic phenocrysts but also extends to differentiation indices

that demonstrate a higher degree of differentiation (low Fo, An, Mg#) in intercumulus phases.

This is also shown by low estimated crystallisation temperatures, and strong trace element

enrichment in some samples, showing either post-cumulus growth from a heavily fractionated

melt or equilibration of cumulus phases with this melt.

Cabonate assimilation at Merapi occurs by two dominant processes: 1) Dissolution of car-

bonate into the host magma and subsequent precipitation of calc-silicate skarn minerals, and

2) in situ metasomatic modification of the wall-rock. Clinopyroxene and plagioclase produced

from the former precipitation process can be indistinguishable from the magmatic mineral

phases on the basis of major element geochemistry, and may affect geochemical models based

on mineral-melt equilibria of ‘magmatic’ mineral phases. Magma-carbonate interaction at Mer-

api can occur in the presence of a magmatic volatile-rich brine. This facilitates formation of rare

halogen and metal-bearing minerals that show the initial stages of economic mineral deposit

formation, which is of interest to economic geologists that often study rocks where the prograde

stage of ore formation is overprinted by retrograde processes.

Significant CO2 release is demonstrated by the paucity of calcite in the xenoliths, and the

extremely low δ13C of the texturally and geochemically distinct residual calcites. Timescales

of magma carbonate interaction at Merapi are extremely rapid, capable of releasing additional

CO2 during eruptive periods and influencing explosivity, and fully decarbonating the wall-rock

around the magma reservoir in only hundreds to a few thousand years. In systems where the

plumbing is considered a series of small reservoirs throughout the crust, this has potential to

release large volumes of crustal CO2 to the atmosphere.
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Appendix A

Chapter 2 - Plutonic Xenoliths
from Santorini Appendix

A.1 Melt Inclusion Post-entrapment Modification

The effects of post entrapment crystallisation along the sidewalls of the melt inclusion and dif-

fusive equilibration between the trapped melt and host crystal are well established (e.g. Danyu-

shevsky et al., 2000; Kent, 2008; Nielsen, 2011), and therefore care is required in establishing

whether they represent representative melt compositions of the host magmatic system. In the

following section we will assess the compositions of the melt inclusions relative to the liquid

line of descent and apply corrections where needed to melt inclusions that appear to have been

modified. These corrections assume the trapped melt was originally in equilibrium with the

host mineral, and plot within the liquid line of descent for Santorini magmas (Figure 2.16).

A.1.1 Olivine-hosted inclusions

Variation diagrams (FeO vs SiO2, FeO vs MgO, CaO/Al2O3 vs MgO) show olivine hosted melt

inclusions fall outside the liquid line of descent for Santorini, showing a strong elevation in

CaO/Al2O3 and depletion in Fe (Fe loss: Danyushevsky et al., 2000) (Figure A.1), coupled

with KDolivine−melt
F e−Mg values below the equilibrium range of 0.3 ± 0.03 (Toplis, 2005; Putirka,

2008). These melt inclusions were corrected for post entrapment modification using Petrolog

(Danyushevsky and Plechov, 2011). The original melt FeO* is estimated based on the amount

of FeO* required to bring the inclusions to back to the liquid line of descent, and comparision

with clinopyroxene and plagioclase hosted melt inclusion compositions. Ford et al. (1983) was

used as the olivine-melt model and fugacity was set at QFM (Gertisser et al., 2009). PEC

259



260 A.1. MELT INCLUSION POST-ENTRAPMENT MODIFICATION

corrections required 0.5 to 17.9% olivine addition.
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Figure A.1: Melt inclusion compositions and corrections for post entrapment crystalli-
sation (PEC). Fractionation vectors show the effect of 10% crystallisation of the host
crystal on the melt inclusion composition, and the effect of olivine, clinopyroxene and
plagioclase crystallisation in modal proportions similar to the olivine gabbro.

260



APPENDIX A. CHAPTER 2 - PLUTONIC XENOLITHS FROM SANTORINI
APPENDIX

261

A.1.2 Clinopyroxene and Orthopyroxene Hosted Inclusions

There is no universally accepted method of correcting clinopyroxene-hosted melt inclusion com-

positions. A selection of methods were attempted (discussed below), which lead to heavily

Al2O3 depleted compositions that lie far outside the liquid line of descent for Santorini. As the

effect of post entrapment modification cannot be ruled out for these analyses, and methods to

account for this produce exotic melt compositions, they are not used as potential liquids for

thermobarometry.

Preece et al. (2014) corrected clinopyroxene melt inclusions by incrementally adding calu-

lated equilibrium clinopyroxene compositions to the melt inclusion until the equilibrium clinopy-

roxene Mg# matched the host composition. Attempting this using the Nielsen and Drake (1979)

equilibrium model used by Preece et al. (2014) produces unnatural clinopyroxene compositions,

and additional testing using Danyushevsky (2001) both lead to strongly FeO and Al2O3 depleted

melts relative to the liquid line of descent. Using the predicted component models of Putirka

(1999), Mollo et al. (2013) and Neave and Putirka (2017) (new DiHd model found in the

supplementary spreadsheet) with a fixed KDcpx−melt
F e−Mg = 0.28 (Putirka, 2008) to produce a pre-

dicted clinopyroxene compositions in equilibrium with the melt inclusion incrementally require

significant >50% clinopyroxene addition to reach DiHd and EnFs equilibrium between melt

inclusion and host, and to reach KDcpx−melt
F e−Mg = 0.28 equilibrium. A final attempt following

Bali et al. (2018) by adding host clinopyroxene to the melt inclusion until KDcpx−melt
F e−Mg = 0.28

is achieved required plausible correction percentages (<20%) and Al2O3 concentrations at over-

lap the literature volcanic data and intercumulus glasses analysed in this study. Therefore

this is the correction method used in this study. Orthopyroxene were corrected by adding the

host orthopyroxene back to the inclusion until KDopx−melt
F e−Mg = 0.29 ± 0.06 (Putirka, 2008) is

approached, which produced plausible melt compositions that follow the liquid line of descent,

overlapping interstitial glass analyses. This required less than 8% orthopyroxene addition.
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A.1.3 Plagioclase

PEC of plagioclase-hosted melt inclusions is evidenced by a fine micron-scale rim of lower

An plagioclase around melt inclusion rims, and elements strongly compatible in plagioclase

such as Al2O3 diverging from the liquid line of descent along a plagioclase crystallisation vector

(Figure A.1), mirroring PEC trends identified by Nielsen (2011). These inclusions were corrected

following the approach of Neave et al. (2017) and Bali et al. (2018), where the original melt

inclusion composition is assumed to lie on the liquid line of decent. Host plagioclase composition

is added back to the inclusion until the Al2O3 vs MgO concentration in the melt inclusion

approximates that predicted by a linear regression through the literature volcanic whole rock

and glass dataset used in Chapter 2. This results in 9 to 19% plagioclase addition. The

corrected compositions all fall within the KDpl−liq
Ab−An = 0.1 ± 0.05 equilibrium test of Putirka

(2008) for systems <1050°C, and are at the lower end of that predicted by the plagioclase-

liquid equilibrium test derived in this study (Appendix section A.2.2). Comparison between

temperatures predicted by plagioclase-liquid thermometry and liquid plagioclase saturation

temperature (Putirka, 2008 equations 24a and 26) are <11°C, within the 36°C SEE of the

thermometers, indicating equilibrium (c.f Putirka, 2008; Bali et al., 2018). These corrections

increase temperatures estimated by thermobarometric models of Putirka (2008) by 19-36°C,

which are lower than the 36°C SEE of the Putirka (2008) thermometer.

A.2 Thermobarometry model justification

A.2.1 H2O estimates for thermobarometry

Most thermobarometric equations are H2O sensitive but most potential liquids in the database

used for mineral melt thermobarometry lack water measurements. To address this, published

FTIR and SIMS measured water contents (FTIR: Cottrell et al., 1999; Gertisser et al., 2009;

SIMS: Panienka, 2012; Cadoux et al., 2014; Druitt et al., 2016) were used to develop a simple

linear model to estimate water contents in the melt as a function of SiO2 (Figure A.2). Although

K2O is incompatible at Santorini and has been used as a differentiation index in previous studies
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(e.g. Druitt et al., 2016), Cadoux et al. (2014) does not report K2O values, therefore we use the

larger SiO2 dataset. Groundmass glass H2O measurements are not included in the regression

due to potential H2O loss during degassing (c.f. Panienka, 2012). Water contents estimated by

difference from 100 wt% (Anderson, 1973, 1974; Devine et al., 1995) are additionally not used

in the regression due to their inherent larger uncertainty, and systematically higher estimated

H2O concentrations. Melt inclusions can rapidly lose H2O (e.g. Gaetani et al., 2012), therefore

melt inclusion measurements may represent minimum original H2O estimates. To mitigate

this, we use a fit that by eye fits the majority of the higher H2O estimates. Compared to a

calculated linear fit, using higher H2O estimates raises pressure estimates by 0.2-0.7 kbar for the

clinopyroxene-only model (Putirka, 2008 equation 32b), and < 0.1 kbar for clinopyroxene-melt

models (Putirka, 2008 equations 30 and 31, @Neave2017), both of which are far lower than

reported model uncertainty of ~2.5 kbar (Putirka, 2008). Temperature estimates are reduced

by <14°C, also lower than published model uncertainty of 35°C.
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Figure A.2: Linear regression (dashed) and high H2O fit by eye (solid) regression lines
of published measured water contents used for thermobarometry. H2O values estimated
by difference from 100 wt% are shown for comparison to the SIMS/FTIR measured data.
Data from Cadoux et al. (2014), Michaud et al. (2000); Vaggelli et al. (2009), Cottrell
et al. (1999), Druitt et al. (2016). Gertisser et al. (2009), Panienka (2012).
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A.2.2 Equilibrium tests

Before applying any thermobarometric models to the Santorini data, mineral and liquid pairs

need testing for chemical equilibrium. This section assesses mineral-liquid equilibrium tests to

find the most accurate model for the Santorini data. In this section, and the following ther-

mobarometric testing section, we show three experimental datasets. The LEPR dataset is the

Library of Experimental Phase Relations (Hirschmann et al., 2008) which provides the main

dataset used to calibrate many of the equilibrium tests and thermobarometric models. The

‘Additional experiments’ dataset are a selection of experimental data for mostly arc volcanoes

published after 2008 not found in the LEPR database, which additionally will not have been

used to calibrate the Putirka (2008) models and the Neave and Putirka (2017) barometer. The

final dataset are the Santorini experiments of Cadoux et al. (2014), Andújar et al. (2015) and

Andújar et al. (2016), which are the most important for testing the validity of equilibrium

testing models and thermobarometric models. These datasets are also not found in the cali-

bration datasets for the equilibrium and thermobarometric models. All models in the following

sections are performed iteratively, where a barometer is paired to a thermometer and solved

simultaneously, to recreate the approach applied to the Santorini xenoliths.

Clinopyroxene

There are two different clinopyroxene equilibrium tests. First, tests based on partitioning

of Fe and Mg between clinopyroxene and liquid (Putirka et al., 1996; Putirka, 1999, 2008;

Bédard, 2010), and secondly, comparing calculated clinopyroxene chemical components, such

as DiHd, EnFs, CaTs, against the measured clinopyroxene components (Putirka, 1999, 2008;

Mollo et al., 2013; Neave and Putirka, 2017). As the former KDF e−Mg
cpx−melt models have been

shown to perform poorly compared to the component based tests when cooling rate varies

(Putirka, 2008; Mollo et al., 2012; Mollo and Masotta, 2014), we only consider the component

based equilibrium tests for our thermobarometric assessment of the Santorini plutonic xenolith

pressure and temperature conditions. Figure A.3 shows that the equilbrium model presented in

the appendix spreadsheet of Neave and Putirka (2017) paired with the barometer of Neave and
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Putirka (2017) and thermometer of Putirka (2008) equation 33 is the most accurate at predicting

equilibrium clinopyroxene-liquid pairs. The barometer of Neave and Putirka (2017) itself is not

the most accurate at predicting clinopyroxene crystallisation pressures for the datasets we have

tested it with however and is not used for pressure estimates (Figures A.6, A.7).
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Figure A.3: Clinopyroxene equilibrium tests tested with experimental data. All models
are paired to Putirka (2008) equation 33 thermometer, and tested with three barometers:
Putirka (2008) equations 31,32b and Neave and Putirka (2017). The lines represent the
1:1 line, +10% and +20% uncertainty. Published model uncertainties are around 0.07

Orthopyroxene

We next assess the accuracy of the two orthopyroxene-melt equilibrium tests of Bédard (2007)

and Putirka (2008). Putirka (2008) showed that KDopx−melt
F e−Mg = 0.29 ± 0.06, weakly correlated

to XMelt
Si . This melt dependent regression struggles to recover the KDopx−melt

F e−Mg values at high

XMelt
Si , where many Santorini experimental data lie (R2 = 0.1, SEE=0.08). The multiple
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regression based on melt and orthopyroxene composition equation 7b of Bédard (2007) recovers

the Santorini experimental data and global dataset more accurately (R2=0.25, SEE=0.07).
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Figure A.4: Orthopyroxene equilibrium tests, showing that the multiple linear regression
model equation 7b of Bédard (2007) recovers the Santorini experimental data best. Axes
are truncrated omitting some extreme outliers. Lines show the 1:1 line and reported
model uncertainty (0.06) A) Putirka (2008). B) Bédard (2007) equation 7b.

New plagioclase equilibrium test

Putirka (2008) suggested a temperature sensitive equilibrium test for plagioclase based on

albite-anorthite partitioning between plagioclase and liquid, where at T < 1050°C equilibrium

KDAb−An
P lagioclase−melt is 0.1 ± 0.05 and T > 1050°C KDAb−An

P lagioclase−melt 0.25 ± 0.11. The post-

2008 experimental dataset, including Santorini experiments (Cadoux et al., 2014; Andújar et

al., 2015, 2016) help fill the temperature gap in the LEPR database (Hirschmann et al., 2008)

which defined the two temperature bracketsin the Putirka (2008) equilibrium test. Here we

derive a model based on XSi
liquid (Figure A.5) to avoid the circularity of requiring a temperature

to predict an equilibrium KD value for calculating temperatures. This model is calibrated on

the global dataset, including Santorini experimnental data, and is therefore widely applica-

ble to igneous systems. XSi
liquid is correlated with the natural logarithm of KDAb−An

P lagioclase−melt

(R2=0.51 SEE=0.45), producing the following equation.

ln(KDAb−An
P lagioclase−Liquid) ± 0.4541 = 1.26954 − 5.38702XSi

liquid
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Figure A.5: New plagioclase equilibrium test. Dashed lines show one standard deviation
uncertainty.

A.2.3 Thermobarometer testing

Thermobarometric models (Nimis, 1995; Nimis and Taylor, 2000; Loucks, 1996; Putirka, 2008;

Neave and Putirka, 2017) were tested using the LEPR database and additional experimen-

tal data from mostly arc volcanoes published post publication of Putirka (2008), including

Santorini experiments (Cadoux et al., 2014; Andújar et al., 2015, 2016), to check their accu-

racy when calculated iteratively, and assess any systematic errors in temperature or pressure.

The clinopyroxene-olivine thermometer of Loucks (1996) had no correlation to experimental

temperature with the data of Stamper et al. (2014) and Andújar et al. (2015), and no improve-

ment with an attempt at recalibration, therefore is not discussed further. The widely applied

clinopyroxene-only barometer of Nimis (1995) and thermometer of Nimis and Taylor (2000) are

additionally not considered due to their restricted calibration ranges, and not being suitable for

calk-alkaline and hydrous systems.

The most accurate thermometer and barometer combination from the following tests is

Putirka (2008) equation 33 (temperature) paired with 32b (pressure). This results in a R2 of 0.93
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with a SEE of 19°C for pressures <10 kbar when comparing averaged predicted temperatures

for each experimental temperature (c.f. Putirka, 2008).

Clinopyroxene thermometers paired with barometers

Clinopyroxene barometers paired with thermometer Putirka (2008) equation 33

Overall the Putirka (2008) equation 32b barometer performs the most accurately, although

with a small pressure overestimation for the Santorini data, not observed in the rest of the

LEPR and post-2008 experimental datasets. Putirka (2008) equation 31 requires a pressure

correction at low < 5kbar pressure. The Neave and Putirka (2017) barometer performs well at

low pressures but has the largest pressure residual spread of the three barometers, reflecting the

more restricted calibration dataset used. In this thesis, we apply a 2 kbar pressure correction

to equation 31 to compensate for the overestimation.
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Figure A.6: Clinopyroxene-melt iterative paired thermometer tests. Equation 33
(Putirka, 2008) is paired with three barometers. Thick black crosses are averages of
Santorini experiments. Solid line is 1:1, dashed is published model error of 45°C. Inset
shows results averaged by experimental temperatures rounded to nearest 25°C. Light grey
points are the results from the LEPR database.
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Figure A.7: Clinopyroxene barometers. Experimental data are filtered for the top residual
plot row between 800-1150°C and P < 10 kbar. Overall the Putirka (2008) equation 32b
barometer performs the most accurate, although with a small pressure overestimation
for the Santorini data, not seen in the rest of the LEPR (light grey) and post-2008
(red) experimental datasets. Putirka (2008) equation 31 requires a pressure correction
at low < 5kbar pressure. The Neave and Putirka (2017) barometer performs well at low
pressures but has the largest pressure residual spread of the three barometers, reflecting
the smaller calibration dataset used.
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Orthopyroxene thermobarometers

Orthopyroxene thermobarometers (Putirka, 2008 equations 28, 29a, 29b) are shown in Figure

A.8. Generally the thermometer performs well for experiments with Santorini compositions, but

the barometer overestimates pressures in the < 5 kbar pressure range applicable to Santorini.

A 2 kbar pressure correction is therefore applied to results from this barometer in the main

text. For Santorini experiments, temperature estimates are within model error.
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Figure A.8: Orthopyroxene thermobarometer testing. Experimental data are filtered for
the top residual plot row between 800-1150°C and P < 10 kbar.
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Plagioclase-melt thermobarometry and hygrometry

Plagioclase thermobarometers (Putirka, 2008) are shown in Figure A.9. Putirka (2008) noted

that the barometer equation 25 should be used with caution, and the uncertainty with this

barometer can be seen in Figure A.9. When the barometer and thermometer are paired using

experimental H2O contents, the error in thermometry is substantial for the Santorini exper-

iments. When the experimental conditions are used as pressure and temperature inputs the

thermometry results have much smaller uncertainty, but the pressure estimates are not sig-

nificantly improved. H2O estimates are within model uncertainty when using experimental

conditions, and have larger uncertainty when the barometer is paired to the thermometer (Fig-

ure A.10). For this reason, we use the results from plagioclase thermometry and hygrometry

paired with a constant value of 2 kbar, which is the average of results of barometry from

clinopyroxene and orthopyroxene-melt calculations. Temperatures vary <10°C for each 1 kbar,

which is insignificant compared to the published model uncertainty, and the 1-4 kbar range of

pressures (Druitt et al., 2016 and references therein).
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Figure A.9: Plagioclase pressure and temperature model evaluation. Experimental T is
filtered between 700-1150°C and P < 10kbar.

274



APPENDIX A. CHAPTER 2 - PLUTONIC XENOLITHS FROM SANTORINI
APPENDIX

275

+
+ + + + + + +

All: R2=0.64 SEE=1.8

All avg: R2=0.59 SEE=0.62
>2008 exp: R2=0.45 SEE=1.3

Santorini: R2=0.2 SEE=0.82

Santorini avg: R2=0.59 SEE=0.62

++++++++++++++++
+

++
++

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Experimental H2O

C
al

cu
la

te
d 

H
2O

Santorini Experiments
Andujar 2015
Andujar 2016
Cadoux 2014

Additional Literature
Andujar et al. (2017)
Blatter et al. (2017)
Caricchi et al. (2017)
Erdmann et al. (2016)
Melekhova et al. (2015)
Melekhova et al. (2017)
Pichavant et al. (2009)
Tatsumi et al. (2017)

Eqn25b Experimental T−PA

+

+ + + + + +
+

All: R2=0.094 SEE=4.6

All avg: R2=0.0019 SEE=1.8
>2008 exp: R2=0.21 SEE=1.4

Santorini: R2=0.028 SEE=2

Santorini avg: R2=0.0019 SEE=1.8

+++++++++++++++++
+

+
+

+
0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
Experimental H2O

C
al

cu
la

te
d 

H
2O

Santorini Experiments
Andujar 2015
Andujar 2016
Cadoux 2014

Additional Literature
Andujar et al. (2017)
Blatter et al. (2017)
Caricchi et al. (2017)
Erdmann et al. (2016)
Melekhova et al. (2015)
Melekhova et al. (2017)
Pichavant et al. (2009)
Tatsumi et al. (2017)

Eqn25b Calculated T−P from Equation 24a and 25B

Figure A.10: Plagioclase hygrometry using Putirka (2008) models. Both the results
from the experimental conditions used as an input (a) and the thermometer and barom-
eters equation 24 and 25 paired (b). Crosses show data averaged to the nearest 1 wt%
experimental H2O.
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A.3 Mineral Partition Coefficients
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Figure A.11: Partition coefficients used in this study. Calculated using the models
described in section 2.3.4
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A.4 Xenolith mineral compositions by eruption
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Figure A.12: Xenolith clinopyroxene compared to volcanic clinopyroxene on an eruption
by eruption basis. Literature data from Druitt (1983), Huijsmans (1985), Barton and
Huijsmans (1986), Cottrell et al. (1999), Cabato (2007), Gertisser et al. (2009),
Vaggelli et al. (2009), Panienka (2012), Cadoux et al. (2014), Andújar et al. (2015)
and Druitt et al. (2016).
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Figure A.13: Xenolith orthopyroxene compared to volcanic clinopyroxene on an eruption
by eruption basis. Literature data from Druitt (1983), Huijsmans (1985), Cabato (2007),
Gertisser et al. (2009), Panienka (2012) and Druitt et al. (2016).
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A.5 Sample List

Table A.1: Sample list. Remaining sizes are VS very small (~5g), S small etc, VL:
very large >1kg. Freshness VF: very fresh, essentially no alteration observable

Sample Remaining Unit Type Freshness Probed Laser
2-8-3 M Akrotiri

Lavas
Enclave

2-8-6 M Akrotiri
Lavas

Enclave

8-1-1 L Akrotiri
Lavas

Enclave

8-1-7-1 M ? Akrotiri
Lavas

Enclave

8-1-7-1 M ? Akrotiri
Lavas

Enclave

2-6 ML Akrotiri
Phreato

syeno granite

2-6-1 VS Akrotiri
Phreato

Enclave

2-6-5 SM Akrotiri
Phreato

Lava

12-1-1 L CR Crustal
12-1-3 S CR Gabbro
12-1-3-2 CR Crustal
12-1-5 L CR Gabbronorite M Y Y
13-1-3-2 M CR
5-3-1 S CR Gabbro
5-3-10 ML CR Gabbro
5-3-15 S CR Gabbro
5-3-2 (1) S CR Gabbro
5-3-2 (2) VS CR Gabbro
5-3-22 VL CR qtz gabbro LM
5-3-3 M CR Gabbro
5-3-4 ? CR Gabbro

5-3-4 (3) VS CR Gabbro Y Y
6-3-1 VL CT3 Gabbro MH Y Y
6-3-3 SM CT3 Gabbro LM
6-3-5-1 VL CT3 Gabbro LM
6-3-6-1 M CT3 Crustal
6-3-6-2 S CT3 Gabbro
6-3-6-3 SM CT3 Gabbro
6-3-7 VL CT3 Gabbro LM
6-4-1-1 S LP1 Gabbro L
6-4-1-2 M LP1 Granite F
6-4-2 M LP1-C Gabbro Y Y
13-1-2-1 M LP2 Gabbro MH N N
13-1-2-2 ML LP2 Gabbro M
13-1-2c S LP2 crustal
13-2-1 S LP2 Gabbro
13-2-2 S LP2 granite
13-2-3 S LP2 granite
8-3-1 S LP2 Gabbro M
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Sample Remaining Unit Type Freshness Probed Laser
8-3-3 S LP2 Gabbro
9-1-8-1 S LP2 Olivine gabbro F
9-1-8-2 S LP2 Olivine gabbro
9-1-8-3 S LP2 Gabbro VF Y Y
13-1-1c Y LP2-A3 Crustal
9-1-1-2 VS LP2-A3 Gabbro LM
9-1-1-3 VS LP2-A3 Gabbronorite Y Y
9-1-1-4 VS LP2-A3 Marble
9-1-1-5 SM LP2-A3 Gabbro
9-1-1-c S LP2-A3 Marble-CS?
9-1-2 S LP2-A3 Olivine gabbro VF
9-1-3 L LP2-A3 Gabbro
9-1-4 ML LP2-A3 Gabbro F
9-1-5 L LP2-A3 Gabbro
9-1-6 L LP2-A3 Gabbro F
8-3-5-1 S LP2-B2 schist
6-7 S LP2-D Crustal
6-7-2 S LP2-D Gabbro
3-5-1 S Minoan A Gabbronorite
3-5-2 S Minoan A Gabbronorite VF
9-3 M Minoan A Gabbronorite F N N
9-3-1 S Minoan A Gabbronorite F N N
9-3-2 L Minoan A Gabbronorite H Y Y
13-6-2 M Minoan A

P1b
Gabbro

1-2-3 S Minoan B P-rich pumice Y N
10-6 M Minoan C Lava
10-6-6 ? Minoan C Granite+carbonate
10-6-C1 VS Minoan C Gabbro M
10-6-C2 VS Minoan C Gabbro
13-6-3 C M Minoan C Qtz Gabbro F
14-1-2 L Minoan C Gabbronorite
4-4 C S Minoan C Gabbro M Y Y
1-5-C VS Minoan D Marble
12-3-1 S Minoan D altered lava?
12-3-2 S Minoan D Crustal
12-3-t M Minoan D altered lava?
16-1-C VS Minoan D Granite
11-1-1 S MP-A Gabbronorite F
11-1-2 S MP-A Gabbronorite MH
15-1- 3 L MP-A Gabbro
15-1-1-1 M MP-A Gabbro L
6-5-2-1 SM MP-A Olivine gabbro F Y Y
6-5-2-2 SM MP-A Melilite
6-5-3 SM MP-A Gabbronorite Y Y
9-2-2 L MP-A Gabbro MF Y Y
9-2-3 L MP-A Gabbro

(dolerite?)
F

9-2-4-1 M MP-A Gabbro M
11-2-1 (1) ? NK Troctolite cluster
11-2-1 (2) ? NK Troctolite cluster
11-2-1 (3) ? NK Troctolite cluster
11-2-1 (4) ? NK Troctolite cluster
11-2-1 (5) Y NK CS (Basement?)
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Sample Remaining Unit Type Freshness Probed Laser
11-2-1 (6) Y NK Gabbronorite Y N
11-2-1 (7) ? NK Pl pheno
11-2-1 (8) ? NK CS (enclave?)
11-2-1 (9) ? NK Enclave?
11-2-1 U (1) Y NK Gabbro
11-2-1 U (2) Y NK Pl pheno
11-2-2 U Y NK Quartz

11-2-2 U (2) ? NK Troctolite cluster
11-2-2 U (3) ? NK Troctolite cluster
11-2-3 (1) Y NK Enclave
11-2-3 (2) Y NK Enclave, banded
11-2-3 U (3) SM NK Lava
11-2-3 U (4) ? NK ?
11-2-3 U (5) ? NK Troctolite cluster
11-2-3 U (6) VS NK Quartz
11-2-3U (1) ? NK ?
11-2-3U (2) VS NK Quartz
5-2-1 U Y NK Troctolite cluster Y N
5-2-2 U Y NK Quartz
5-2-3 U Y NK ?
5-2-5 U Y NK Quartz
14-5 VS SKAROS Gabbro F
12-2-1 ML US1 Gabbro (possible

enclave though?)
12-2-2 S US1 Gabbronorite F Y Y
13-5-1 M US1 Gabbro L
13-5-2 VS US1 Gabbro L N N
12-1-6-1 S US2 Gabbro L
12-1-6-2 M US2 Gabbro L
12-1-8-1 VS US2 Gabbro L
12-1-8-2 M US2 Gabbronorite F Y Y
14-1-1-3 S US2 Gabbronorite VF Y Y
10-7-1-1 VS US2-D Gabbro
10-7-1-2 S US2-D Gabbro
10-7-1-3 S US2-D Gabbro
10-7-2 S US2-D enclave/old lava?
10-7-3 S US2-D Lava
14-1-3-1 Y US2-D schist
14-1-3-2 S US2-D gabbro
14-1-3-4 M US2-D Gabbro M
14-1-3-5 S US2-D gabbro M
14-1-3-c VS US2-D lava
14-2 ? US2-D gabbro

14-20 (probably
14-2)

L US2-D ? prob crustal

14-3-1 S US2-D gabbro
21D LP2 Olivine gabbro F
23D LP2 Olivine gabbro F
24D LP2 Olivine gabbro F Y Y
25D LP2 Olivine gabbro F
27D LP2 Olivine gabbro F
28D LP2 Gabbro Y Y
29D LP2 Olivine gabbro F
2-1 MIN Pumice Y N
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Sample Remaining Unit Type Freshness Probed Laser
1-2 MIN Bleb Y N
20 LP2 Pumice Y N
30D LP2
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284 B.1. SAMPLE LIST

B.1 Sample List

Table B.1: Merapi xenolith sample list and general mineralogy. M: magmatic xenolith.
E: exoskarn xenolith. E-B: exoskarn B xenolith. O: major phase, X: abundant, +:
minor phase

Sample AssemblageCpx
CaTs
cpx Gn Gh

Ti-Fe
ox Sp Tit Cal Wo Qtz Plg Ap/El Amp Gls Anh Zones

CS-1 M O X + O X X R2, R3, R4
CS-2 M X X + X + X X R1, R2, R3, R4
CS 3 M X + X X X N
CS-4 - X O + X N
CS-5 M X O O R2
CS-6 M X X O R2
CS-7 M X + X X X R2, R3, R4
CS-8 M X X X X R2
CS-9 M X + + X X X + R2, R3, R4
CS-10 B X + X O X + R1
CS-11 E X X X X + X R2
CS-12 - X x X + NA
CS-13
(not cs)

- O O x O

CS 14 B X X O X
CS-15 - X X X R1,R2
CS-16 M X + + X X X + R1, R2, R3,R4
CS-17 M O X O + O X X R2, R3, R4
CS-18 M X X + + O + X X R1, R2, R3, R4
CS-19 M X X X ? + X X X Homogeneous

glass, R2, R3b
(gn)

MX-1 M X X X + X + O X + + X R1, R2, R3,
R3b,R4

MX-2 - X X O X R1
MX-3 M X X + + O + + + X R2, R3,R4
MX-4 M X X + O O X R1, R2, R3, R4
MX-5 M O + O X X + X R1, R2, R3, R4
MX-6 E O P X + O + ? NA
mx99-
3s

E-B X O O O + X + + + X R1

MX99-4 M X X + O X + X R1-R4
MX99-
5s

E X X X + X X X x X R1,R2

M13-
24G

M O X O + + + O O X + Homogeneous
glass at contact

M13-
24G
1

M O X O + X + X X X + Homogeneous
glass at contac

M13-
04C

B + X O x

M13-30 M + + O + X
M13-10 M X X + O + NA, R2, R3(gn)
M11-34 M X O X NA, R2, R3
M13-02 E X O X X +
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B.2 Supplementary Petrography

Figure B.1: Photomicrograph of the buchite xenolith textures. Rounded quartz with
interstitial glass in buchite sample CS14. Qtz = quartz, Wo = wollastonite, Cpx =
clinopyroxene, Gls = glass.
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Figure B.2: Photomicrograph of fluid + vapour CO2 fluid inclusions in sample MX3.
Th: homogenisation temperature.
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B.3 Supplementary Results

Figure B.3: Ca, Al and Si chemical element maps of magmatic skarn xenolith sample
MXCS-3

287



288 B.3. SUPPLEMENTARY RESULTS

Figure B.4: Fe, Mg, Na and K chemical element maps of magmatic skarn xenolith
sample MXCS-3
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Figure B.5: Raman spectra for the wadalite-like mineral in sample MX1. This trace
mineral (< 50um crystal size) is in close association with wollastonite, garnet and
calcite, therefore an analysis without overlap with these minerals was difficult.
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Figure B.6: Harker diagrams of Merapi xenolith and lava glasses for major elements
not shown in the main text

B.4 Preliminary Calcite LA-ICP-MS Trace Element Data

Trace elements in calcite were analysed at the GEOMAR Helmholtz Centre for Ocean Research

Kiel using a Nu Instruments ATTOM HR-ICP-MS connected to a Coherent Lambda Physics

GEOLAS pro 193 nm excimer laser ablation system. Measurements were made using a 2
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mJ/cm 2 energy density for 300 pulses at a laser repetition rate of 10Hz with a 44 µm spot

size, and a 50 s flush time. Measurements were made on the same polished sections used for

EMPA to provide a robust internal standard using the sum of 29Si and 43Ca for normalisation.

Calibration was undertaken on a NIST 610 reference glass and repeat measurements of basaltic

glasses USGS BCR-2G and USGS BHVO-2G as secondary standards were repeated throughout

each analytical session to check accuracy and precision. Measurements were made in blocks of

8 to minimise the effects of drift. Full details of the instrument setup is provided in Fietzke and

Frische (2016).
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Figure B.7: Preliminary calcite rare earth element data for Type E residual calcites
in exoskarn sample CS11 (see Whitley et al., 2019 for details). Data are normalised
to primitive mantle using Palme et al. (2014). The local limestone is sampled from
Parangtritis, ~60km from Merapi (see Figure C.1, Whitley et al., 2019 supplementary
figure). Light grey literature data for marine limestones from SEDDB (https://www.
earthchem.org/seddb)
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Table B.2: Trace element data for 4 calcites in sample CS11. These are Type E calcites
in the main thesis text and Whitley et al. (2019).

Rock/Mineral Limestone Limestone Limestone Limestone Cal Cal Cal Cal

Sample LMST-3 LMST-3 LMST-3 LMST-3 CS11 CS11 CS11 CS11
ppm
7Li 0.75 <LOD <LOD 1.54 <LOD <LOD <LOD <LOD
23Na 58.90 62.18 49.99 41.12 12.86 19.12 6.75 6.64
24Mg 1989.38 1777.17 1546.24 1875.14 249.21 305.23 242.54 246.23
27Al 12.26 265.73 23.84 50.78 1.74 5.82 1.69 <LOD
45Sc 0.48 0.29 0.71 0.40 <LOD <LOD <LOD 0.24
49Ti 6.30 <LOD <LOD <LOD <LOD 3.83 <LOD <LOD
51V 1.27 1.37 0.78 0.73 <LOD <LOD <LOD <LOD
53Cr 12.59 11.09 6.39 7.92 <LOD <LOD <LOD 1.12
55Mn 4.83 15.41 6.98 11.05 246.90 278.30 1106.10 1109.40
59Co <LOD <LOD <LOD <LOD 0.17 <LOD <LOD <LOD
61Ni <LOD <LOD <LOD <LOD 28.73 <LOD 18.18 14.59
65Cu <LOD <LOD <LOD <LOD <LOD <LOD <LOD 1.39
66Zn 1.65 1.98 2.74 1.17 1.87 1.41 <LOD <LOD
85Rb <LOD <LOD <LOD 0.42 <LOD <LOD <LOD <LOD
86Sr 368.68 268.45 340.17 339.77 724.04 842.75 485.25 483.63
88Sr 351.52 262.33 339.39 342.97 743.63 815.18 482.60 484.08
89Y 1.18 1.33 1.66 1.29 4.77 1.45 8.00 8.02
90Zr 0.36 <LOD <LOD 0.29 <LOD <LOD 0.33 <LOD
93Nb 0.28 <LOD 0.32 <LOD <LOD <LOD <LOD <LOD
133Cs <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
137Ba 1.58 3.13 1.16 2.11 93.35 138.64 74.46 79.66
139La 0.50 0.58 0.43 0.50 153.55 115.52 110.27 110.65
140Ce 0.36 0.57 0.52 0.48 164.87 119.25 115.56 122.42
141Pr 0.12 0.12 0.10 0.09 10.82 8.59 8.80 8.27
146Nd 0.38 0.56 0.49 0.51 34.58 24.43 25.57 25.89
147Sm 0.08 <LOD <LOD 0.08 3.23 2.16 2.33 3.18
153Eu 0.11 0.04 <LOD 0.05 1.58 1.15 1.39 1.58
157Gd 0.14 <LOD <LOD <LOD 2.25 1.36 2.05 1.95
159Tb 0.01 0.05 0.02 0.02 0.26 0.06 0.28 0.26
163Dy 0.07 0.07 0.11 0.08 0.87 0.51 1.13 1.18
165Ho 0.03 0.07 0.02 0.04 0.21 0.03 0.18 0.25
166Er 0.02 0.08 0.09 0.06 0.30 <LOD <LOD 0.42
169Tm <LOD <LOD <LOD <LOD <LOD 0.03 <LOD <LOD
172Yb <LOD 0.05 <LOD 0.09 0.21 0.09 0.29 0.13
175Lu <LOD <LOD <LOD <LOD <LOD <LOD 0.04 <LOD
178Hf <LOD 0.05 <LOD <LOD <LOD <LOD <LOD 0.03
181Ta <LOD <LOD 0.14 <LOD 0.08 <LOD <LOD 0.09
208Pb 0.38 0.12 0.20 0.16 0.93 1.22 2.36 2.36
232Th 0.09 0.10 0.07 0.08 0.06 0.01 0.01 0.03
238U 0.73 1.52 0.80 0.71 <LOD <LOD <LOD <LOD

B.5 Supplementary Discussion: Thermobarometric Model
Testing

The abundance of glass and common mineral phases (clinopyroxene, plagioclase) in the mag-

matic skarn xenoliths allows application of mineral-melt and melt-only thermobarometric mod-

els (e.g. Putirka, 2008; Neave and Putirka, 2017). Testing of these models on carbonate-bearing

systems was first performed by Mollo et al. (2010b) on their experimental dataset covering a

limited temperature range (1150-1300°C) and a fixed pressure of 500 MPa. We have collated

data from eight carbonate assimilation experimental studies (see Figure B.8 for references)

covering a wide range of P-T-fO2 conditions (0-1000 MPa, 900-1200°C, NNO to air), variable

proportions and compositions (calcite to dolomite) of carbonate and variable silicate magma
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compositions (basalt to dacite) to further test the equilibrium and thermobarometric models of

Putirka et al. (1996), Putirka et al. (2003), Putirka (2008) and Neave and Putirka (2017). We

have focused on clinopyroxene-based thermobarometric models, as clinopyroxene is the second

most abundant mineral phase in the xenoliths after wollastonite, has the most experimental

data available, and can provide both temperature and pressure estimates (Figure B.8). This

assessment has uncertainties due to authors’ variable preferences for reporting data precision,

H2O contents estimated ‘by-difference’ (Anderson, 1973, 1974; Devine et al., 1995), and a due

bias towards studies based on high temperature Italian potassic melts. We however believe our

approach provides a first-order approximation of the accuracy of thermobarometric models over

a wide range of carbonate-assimilating systems. We tested the models using reported experi-

mental conditions, and iteratively solving thermometers paired with barometers, as would be

undertaken on natural unknown samples.

Results from Putirka et al. (1996) (not shown) perform very poorly and are not considered

further (R2 < 0.20, residual standard error (RSE) > 100°C and 3 kbar respectively). The

most accurate and precise temperatures derived from published models are from the models

of Putirka (2008): glass-only clinopyroxene saturation thermometer (equation 34: R2 = 0.53,

RSE = ±46°C, Figures B.8A-B), clinopyroxene-melt thermometer (equation 33: R2 = 0.58,

RSE = ±59°C, Figures B.8C-E), and the clinopyroxene only barometer (equation 32b: R2 =

0.1, RSE = ±2.6 kbar, Figures B.8F-H), both when tested with experimental conditions and

iteratively calculated (Figures B.8). The low R2 values for equation 32b are due to 1 atm

experimental overestimates (discussed below). Our assessment of the most accurate models has

similar results to that of Mollo et al. (2010b) testing these models on their dataset, however

based on our larger collated dataset, we can not also recommend the use of the models of Putirka

et al. (1996) and Putirka (2008) equation 32a. Mineral-melt thermometer equation 33 (Putirka,

2008) iteratively paired with clinopyroxene-only barometer 32b (Putirka, 2008) (Figure B.8D)

and the clinopyroxene-melt barometer of Neave and Putirka (2017) (Figure B.8E) produces large

temperature overestimations with increasing carbonate assimilation in higher temperature mafic

melts. Most of these overestimations are related to the experiments of Mollo and Vona (2014),

which produced highly aluminous clinopyroxenes (up to 12.24 wt% Al2O3) from equilibration

at very high oxygen fugacities (up to air). The best barometric model is clinopyroxene-only

equation 32b of Putirka (2008) paired with the clinopyroxene thermometer equation 34 (Figure

B.8H), recovering a relative sense of pressure at lower pressures when taking the average of

the experimental pressures, tending towards slight pressure underestimation. There is a large
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pressure overestimation in 1 atm experiments, which is a known issue with some barometric

models and some experimental setups (Putirka, 2008; Neave and Putirka, 2017). However,

these are predominantly due to the inclusion of the experiments of Mollo and Vona (2014)

which equilibrated clinopyroxenes at up to air oxygen fugacity conditions. This overestimation

is much more exaggerated when equation 32b is paired with clinopyroxene-melt thermometer

equation 33 (Figure B.8G), due to the higher temperature overestimates. Both the equation

32c (Figure B.8J) and the barometer of Neave and Putirka (2017) (Figure B.8I) produce severe

pressure overestimates at pressures <500 MPa. Putirka (2008) equation 31 performs well when

calculated with known experimental temperatures, but loses the relative sense of pressure below

5 kbar when iteratively calculated with a thermometer (Figure B.8K-L).

On the basis of this investigation, and clinopyroxene-interstitial glass pairs indicating dis-

equilibrium (KDcpx−melt
F e−Mg « 0.28), we have only used equations 34 (glass only) and 32b (cpx

only) of Putirka (2008) for thermometry and barometry calculations, respectively.

Attempts were made to recalibrate the Putirka (2008) thermobarometers and additionally

produce new models using the collated carbonate assimilation experimental dataset. A small

improvement was made in thermometry of the > 1000°C experimental data, however the data

below 1000°C strongly overestimate temperatures by > 100°C, which is likely a result of very

few published experimental data existing in that temperature range. As this is the temperature

region expected for our xenoliths (see discussion) we do not use the new model, although it is

presented below for completeness. Recalibration of the barometers was not possible due to the

limited experimental dataset not showing any correlated variables.

A new glass-only thermometer recovers the carbonate assimilation experimental dataset to

± 32°C, R2 = 0.64, applicable to > 1000°C systems.

T (C) = 1279.55 + 38.44ln(X liq
CaOX liq

MgO) + 137.946X liq
SiO2
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Figure B.8: Selected thermobarometric model testing results. The axis labels are read as
follows: P08 refers to equations from Putirka (2008), N17 refers to the barometric for-
mulation from Neave and Putirka (2017). For instance, N17_P08_E33 is the barometer
from Neave and Putirka (2017) paired with Putirka (2008) equation 33. Light grey sym-
bols are modelling results for comparison derived from a global non-carbonate assimila-
tion experimental dataset (Library of Experimental Phase Relations (LEPR Hirschmann
et al., 2008), and additional experimental data (Snyder et al., 1993; Sugawara, 2001;
Berndt et al., 2005; Hammer, 2006; Whitaker et al., 2007; Botcharnikov et al., 2008;
Freise et al., 2009; Feig et al., 2010; Jégo et al., 2010; Jégo and Pichavant, 2012;
Mollo and Vona, 2014; Cadoux et al., 2014; Andújar et al., 2015). Thermometer equa-
tion 34 and barometer 32b (Putirka, 2008) produce the most accurate estimates of the
experimental conditions.
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Appendix C

Chapter 4 - Crustal volatile
release at Merapi Appendix

Table C.1: C and O isotopic compositions of calcite in calc-silicate xenoliths of Merapi
volcano. 2σ errors are typically 0.4 ‰ for oxygen and 0.8 ‰ for carbon.

Sample Calcite Type* Rock Type δ18O (‰) δ13C (‰)
CS17 A Magmatic +23.8 -3.7
CS17 A Magmatic +22.7 -4.2
CS17 A Magmatic +24 +1.8
CS17 A Magmatic +21.4 +1.8
CS17 A Magmatic +22.3 +0.4
CS17 B Magmatic +21.6 -6.8
CS17 B Magmatic +21.3 -0.6
CS17 B Magmatic +20.5 -6.4
CS17 B Magmatic +20.5 -6.5
CS17 B Magmatic +24.3 -13.5
MX3 B Magmatic +24.2 -29.3
MX3 B Magmatic +23.5 -29.1
MX3 B Magmatic +23.6 -28.3
MX3 B Magmatic +24.1 -28.3
MX3 B Magmatic n.a. n.a.
MX3 B Magmatic n.a. n.a.
MX3 B Magmatic +25.6 -22.6
MX3 B Magmatic n.a. n.a.
MX3 B Magmatic n.a. n.a.
MX3 B Magmatic n.a. n.a.
MX3 B Magmatic n.a. n.a.
MX3 B Magmatic n.a. n.a.
MX5 B Magmatic +23.8 -22.5
MX5 B Magmatic +20.5 -14.9
MX5 B Magmatic +24.9 -19.3
MX5 B Magmatic +24 -18.8
MX5 B Magmatic +24 -19.7
MX5 B Magmatic +23.5 -21.5
MX5 B Magmatic +23.1 -25.1
MX5 B Magmatic +22.9 -22.5
MX5 B Magmatic +23.8 -22.7
MX1 C Magmatic +20.1 -13.6
MX1 C Magmatic +14 -12.4
MX1 C Magmatic +21.5 -8.1
MX1 C Magmatic +22 -6.3
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Sample Calcite Type* Rock Type δ18O (‰) δ13C (‰)
MX1 C Magmatic +23 -0.1
MX1 C Magmatic +23.1 -2.7
MX1 C Magmatic +19.3 -3.5
MX1 C Magmatic +23 -0.8
MX1 C Magmatic +19.9 -8.7
MX1 C Magmatic +17.9 -18.5
MX1 C Magmatic +19.6 -0.1
MX1 C Magmatic +17.8 +3.3
MX1 C Magmatic +18.9 +3.5
MX1 C Magmatic +9.9 -15.9
MX1 D Magmatic +17.9 -4.4
MX1 D Magmatic +14.6 -6.4
MX1 D Magmatic n.a. n.a.
MX5 D Magmatic +17.6 -13.8
MX5 D Magmatic +17 -14.9
CS11 E Exoskarn +15.7 -12.9
CS11 E Exoskarn +15.5 -14
CS11 E Exoskarn +19 -8.3
CS11 E Exoskarn +18.6 -8.4
CS11 E Exoskarn +18.6 -7.8
CS11 E Exoskarn +18.6 -7.8
CS11 E Exoskarn +18.7 -7.4
CS11 E Exoskarn +15 -9
CS11 E Exoskarn +15 -11
CS11 E Exoskarn +14.9 -8.5
CS11 E Exoskarn +15.2 -9.8
CS11 E Exoskarn +15.1 -9.1
M13-02 E Exoskarn +14 -12.1
M13-02 E Exoskarn +13.9 -11.7
M13-02 E Exoskarn +14 -12.1
M13-02 E Exoskarn +14.3 -11.8
M13-02 E Exoskarn +14.3 -10.5
M13-02 E Exoskarn +16.5 -4.9
M13-02 E Exoskarn +16.7 -4.9
M13-02 E Exoskarn +16.5 -4.6
M13-02 E Exoskarn +16.6 -5
M13-02 E Exoskarn +16.8 -4.7
M13-02 E Exoskarn +17 -5.5
M13-02 E Exoskarn +17.2 -5.1
M13-02 E Exoskarn +17 -5.9
M13-02 E Exoskarn +18.4 -5.6
M13-02 E Exoskarn +15.8 -5.7

* Calcite type: A = Glass hosted; B = Interstitial; C = Melt-like; D = Inclusion; E = Residual
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Figure C.1: Local limestone sampled from Parangtritis. Thin section imaged in trans-
mitted light. This limestone is from the Late Miocene to Early Pliocene Wonosari forma-
tion which comprises tidal-algal packstone, reef crest/front coral boundstone, upper-slope
orbitoid-algal packstone and lower-slope packstone-wackestone (Siregar, 1996; Praptisih
and Siregar, 2002).
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Appendix D

Chemical Datasets
All data produced within this thesis and collated from literature data to produce the figures is

provided on an online supplement to this thesis and the associated published papers from this

work.
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