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Abstract

We introduce a new type of object characterisation, which is capable of accurately describing small iso-
lated inclusions for potential field inverse problems such as in electrostatics, magnetostatics and related
low frequency Maxwell problems. Relevant applications include characterising ferrous unexploded ordnance
(UXO) from magnetostatic field measurements in magnetometry, describing small conducting inclusions
for medical imaging using electrical impedance tomography (EIT), performing geological ground surveys
using electrical resistivity imaging (ERT), characterising objects by electrosensing fish to navigate and
identify food as well as describing the effective properties of dilute composites. Our object characterisa-
tion builds on the generalised polarizability tensor (GPT) object characterisation concept and provides an
alternative to the compacted GPT (CGPT). We call the new characterisations harmonic GPTs (HGPTs)
as their coefficients correspond to products of harmonic polynomials. Then, we show that the number of
independent coefficients of HGPTs needed to characterise objects can be significantly reduced by consider-
ing the symmetry group of the object and propose a systematic approach for determining the subspace of
symmetric harmonic polynomials that is fixed by the group and its dimension. This enable us to determine
the independent HGPT coefficients for different symmetry groups.
Keywords: Inverse problems, generalised polarizability tensor, object characterisation, symmetry groups,
magnetometry, electrical impedance tomography.
MSC Classification: 35R30; 35B30; 20C30

1 Introduction

The purpose of this paper is to introduce a new type of object characterisation, which is capable of ac-
curately describing small isolated inclusions for potential field inverse problems such as in electrostatics,
magnetostatics and related low frequency Maxwell problems. This is important for magnetometry, which
uses variations in the earth’s magnetic field caused by the presence of hidden ferrous objects to distinguish
between unexploded ordnance (UXOs) and metallic shrapnel as well as identify archaeological features.
Further applications include: finding ferrous objects from metal detection measurements at very low fre-
quencies (where only the magnetic part of the characterisation can be recorded); describing the effective
properties of dilute composites and characterising small conducting inclusions for applications in electrical
impedance tomography (EIT) [19] and electrical resistivity imaging (ERT) [17] as well as characterising
objects by electrosensing fish in order to navigate and identify food [8]. EIT offers possibilities for low-cost
non-invasive medical imaging such as in lung monitoring. Here, the electrical conductivity, permittivity,
and impedance of a part of the body is inferred from surface electrode measurements and used to form a
tomographic image. Related to EIT is ERT, which is a geophysical technique for imaging sub-surface struc-
tures from electrical resistivity measurements made at the surface. In a similar way, weakly electric fish
generate electric current and use hundreds of voltage sensors on the surface of their body to navigate and
locate food. Experiments have shown that they can discriminate between differently shaped conducting or
insulating objects by using electrosensing [18].
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Our object characterisation builds on the generalized polarizability tensor (GPT) object characterisation
concept developed by Ammari and Kang [4] and their coworkers. The simplest form of GPT is a rank
2 (Póyla-Szegö) tensor, which describes the shape and material contrast of the object by the best fitting
ellipsoid, while the complete set of GPTs uniquely defines both the shape and material contrast of the
object [4][pg. 90]. However, the additional information provided by higher order GPTs remains open. To
help to address this, we provide an alternative to their compacted GPT (CGPT) object description in
two dimensions [1] and three dimensions [3], in which perturbed field measurements are expressed as sums
of products of CGPT coefficients and spherical harmonics. We propose an alternative object description
called a harmonic GPT (HGPT) where the perturbed field can be described in terms of expansion involving
HGPT coefficients and products of harmonic polynomials. HGPTs have the same dimension of CGPTs
and they both provide a significant reduction in the number of coefficients needed to describe an object
compared to GPTs of the same degree. For objects with rotational or reflectional symmetries, the number
of independent coefficients is much smaller in all cases.

By grouping an object according to their symmetry group class, we show that a systematic approach can
be developed for determining the subspace of symmetric harmonic polynomials that are fixed by the group,
and its dimension. This allows us to deduce the HGPT coefficients, of a given degree, which are invariant
under the action of the set of orthogonal matrices making up the symmetry group. Then, by considering
HGPTs upto a certain order, we can find objects of a certain cyclic (or dihedral) group, hence, contributing
to understanding the additional information that higher order (H)GPTs provide. Furthermore, by fixing
classes associated with different symmetry groups, the sets of invariant HGPT coefficients offer alternative
features to the shape invariant descriptors based on CGPTs proposed by Ammari, Chung, Kang and
Wang [3] for dictionary based object classification. We also review the related work of Meyer [13] who
describes an alternative approach to the one advocated in this paper for determining the subspace of
harmonic polynomials that are fixed by a symmetry group. We make the historical note that Burnett
Meyer acknowledged in [13] that George Pólya, his PhD advisor at Stanford, suggested the problem of
invariant harmonic polynomials. The first term in the GPT, the rank-2 tensor, was first introduced by
Pólya and Szegö in their 1951 book [16]. Historians of mathematics may be interested to investigate if the
connection was accidental or points to a deeper insight.

The paper is organised as follows: In Section 2 we define the mathematical problem that will be
our focus in this paper and collect together some observations about spherical harmonics and harmonic
polynomials. Then, in Section 3, we review the concepts of GPTs and CGPTs and introduce our new
HGPTs. Section 4 presents transformation formulae for HGPTs. Next, in Section 5, we describe how
knowledge of the symmetry group of an object can be used to determine the subspace of symmetric
harmonic polynomials that is fixed by the group and its dimension. This, in turn, allows us to determine
the independent coefficients of HGPTs for objects associated with different symmetry groups. In this
section, we also review the related work of Meyer on determining the subspace of harmonic polynomials
that are fixed by a symmetry group as well as providing tables of symmetric harmonic polynomials fixed
by different groups. Finally, some examples of our approach are included for different groups.

2 Preliminaries

2.1 Problem Definition

The problem of interest in this work is that described in Section 4.1 of [4], which we briefly summarise
below. We let B be a bounded Lipschitz domain in R3, and the material contrast of B be k. In the case of
magnetostatics, and in magnetometry, k can be understood as a real valued contrast involving the magnetic
susceptibility and permeability, while in electrostatics, and in related low frequency Maxwell problems such
as in EIT [19], ERT [17] and electrosensing [8], k is a complex contrast involving the permittivity, frequency
and conductivity. For simplicity, we consider the case of real valued k, with 0 ă k ‰ 1 ă `8, and use
λ :“ pk ` 1q{p2pk ´ 1qq in the following. We suppose that the origin O P B and let U be a harmonic
(background) field in R3 and let u be the solution to

∇ ¨ pppk ´ 1qχpBqq∇uq “ 0 in R3, (1a)

pu´ Uqpxq “ Op|x|´2q as |x| Ñ 8, (1b)

where χpBq is 1 in B and 0 outside. Our interest lies in describing pu ´ Uqpxq for the purpose of object
characterisations. In magnetostatics, ∇xpu ´ Uqpxq corresponds to the perturbation in magnetic field
caused by the presence of the inclusion, while in electrostatics, ∇xpu´Uqpxq corresponds to the perturbed
electric field.
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2.2 Spherical harmonics and harmonic polynomials

This section summarise some key results about spherical harmonics and harmonic polynomials that are
relevant for what follows. For further details see [3, 15]. Given a direction pθ, ψq in spherical coordinates,
the (complex) spherical harmonics of homogeneous degree n and order m, with ´n ď m ď n, are given by

Y mn pθ, ψq “ p´1qm
„

2n` 1

4π

pn´mq!

pn`mq!

1{2

eimψPmn pcos θq, (2)

where Pmn are the associated Legendre polynomials of degree n and order m. The result

Pnpcos γq “
4π

2n` 1

n
ÿ

m“´n

Y mn pθ, φqY
m
n pθ

1, φ1q, (3)

is known as the addition formula, where cos γ “ cos θ cos θ1` sin θ sin θ1 cospφ´φ1q, Pnpxq are the Legendre
polynomials of degree n and the overbar denotes the complex conjugate. Note that Pmn pxq is related to
Pnpxq by Pmn pxq “ p´1qmp1´ x2qm{2 dm

dxm pPnpxqq. It is well known that

Hm
n pxq “ rnY mn pθ, ψq, (4)

are homogenous harmonic functions where pr, θ, ψq, with r “ |x|, is the description of x in spherical
coordinates. As well as being harmonic, these functions are smooth at the origin and tend to infinity at
infinity. Interestingly, the functions

Km
n pxq “

1

rn`1
Y mn pθ, ψq “

1

r2n`1
Hm
n pxq, (5)

are also harmonic, but are discontinuous at the origin and tend to zero at infinity [15][pg. 40]. The
2n` 1 harmonic functions Hm

n pxq of degree n can be expressed in terms of a basis of real valued harmonic
polynomials I`npxq using

Hm
n pxq “

n
ÿ

`“´n

aIH`mI
`
npxq, (6)

which has 2n` 1 terms, an expansion that is smaller than the dimension pn` 1qpn` 2q{2 of the standard
monomial expansion

ř

β,|β|“n aβx
β of the same degree for n ě 2. Here, β “ pβ1, β2, β3q denotes a multi-

index with xβ “ xβ1

1 x
β2

2 x
β3

3 , β! “ β1!β2!β3! and Bβxp¨q “ B
β1
x1
Bβ2
x2
Bβ3
x3
p¨q. The harmonic functions Hm

n pxq can
be expressed as linear combinations of xβ using

Hm
n pxq “

ÿ

β,|β|“n

aMH
βmx

β . (7)

Normalising Hm
n pxq such that the orthogonality property

〈
Hm
n pxq, H

k
npxq

〉
S
“ δmk holds, where δmk is

the Kronecker delta and 〈u, v〉S “
ş

S
uvdx is the L2 inner product over the surface of the unit sphere, and

fixing Imn pxq so that
〈
Imn pxq, I

k
npxq

〉
S
“ δmk, it follows that

řn
`“´n a

IH
`ma

IH
`k “ δmk and, hence, the map

from Im` pxq to Hm
n pxq is injective with

I`npxq “
n
ÿ

m“´n

aIH`mH
m
n pxq. (8)

On the other hand, the map from xβ to Hm
n pxq is not injective. Illustrative choices of I`npxq for different

degrees n are presented in Table 1. The basis in this table does not satisfy
〈
Imn pxq, I

k
npxq

〉
S
“ δmk, but

for the practical computations we will consider in Section 5, this will not be required. An alternative basis
satisfying

〈
Imn pxq, I

k
npxq

〉
S
“ δmk is provided in Table 2 and a general approach for determining such a

basis is presented by Karachik [7].
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n 2n` 1 I`npxq
0 1 1
1 3 x1, x2, x3
2 5 x21 ´ x

2
2, x21 ´ x

2
3,

x1x2, x1x3,
x2x3

3 7 x31 ´ 3x1x
2
2, x32 ´ 3x21x2,

x31 ´ 3x1x
2
3, x33 ´ 3x21x3,

x32 ´ 3x2x
2
3, x33 ´ 3x22x3,

x1x2x3
4 9 x41 ´ 6x21x

2
2 ` x

4
2, x41 ´ 6x21x

2
3 ` x

4
3,

x42 ´ 6x22x
2
3 ` x

4
3 , x31x2 ´ x1x

3
2,

x31x3 ´ x1x
3
3, x32x3 ´ x2x

3
3,

3x21x2x3 ´ x2x
3
3, 3x1x

2
2x3 ´ x1x

3
3,

3x1x2x
2
3 ´ x2x

3
1

Table 1: Illustrative harmonic polynomials I`npxq of different degrees n. Note that for this
choice of basis

〈
Imn pxq, I

k
npxq

〉
S
‰ δmk.

n 2n` 1 I`npxq
0 1 1

2
?
π

1 3 1
2

b

3
πx1, 1

2

b

3
πx2, 1

2

b

3
πx3

2 5 1
2

b

15
π x1x2, 1

2

b

15
π x2x3,

1
2

b

15
π x1x3, 1

4

b

5
π px

2
1 ´ 2x22 ` x

2
3q,

1
4

b

15
π px

2
1 ´ x

2
3q

3 7 1
4

b

35
2π px

3
1 ´ 3x1x

2
2q,

1
4

b

35
2π p´3x21x2 ` x

3
2q,

1
4

b

21
2πx1px

2
1 ` x

2
2 ´ 4x23q,

1
4

b

35
2π p´3x21x3 ` x

3
3q,

1
4

b

21
2πx2px

2
1 ` x

2
2 ´ 4x23q,

1
4

b

21
2πx3px

2
1 ´ 4x22 ` x

2
3q,

1
2

b

105
π x1x2x3

4 9 3
16

b

35
π px

4
1 ´ 6x21x

2
2 ` x

4
2q,

1
16

b

5
π p7x

4
1 ´ x

4
2 ` 8x43 ` 6x21px

2
2 ´ 8x23qq,

1
4
?
π
p´x41 ` 4x42 ´ 27x22x

2
3 ` 4x43 ` 3x21px

2
2 ` x

2
3qq,

3
4

b

35
π x1x2px

2
1 ´ x

2
2q,

3
4

b

35
π x1x3px

2
1 ´ x

2
3q , 3

4

b

35
π x2x3px

2
2 ´ x

2
3q,

´ 3
4

b

5
πx2x3p´6x21 ` x

2
2 ` x

2
3q , ´ 3

4

b

5
πx1x3px

2
1 ´ 6x22 ` x

2
3q ,

´ 3
4

b

5
πx1x2px

2
1 ` x

2
2 ´ 6x23q

Table 2: Illustrative harmonic polynomials I`npxq of different degrees n, which satisify〈
Imn pxq, I

k
npxq

〉
S
“ δmk.
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3 Object Characterisation using GPTs, CGPTs and HGPTs

3.1 Spherical and Taylor series expansions of Gpx,x1q

By the addition formula for spherical harmonics (3), it can be shown that the Laplace free space Green’s
function Gpx,x1q :“ 1{p4π|x´ x1|q can be expressed as

Gpx,x1q “
8
ÿ

n“0

|x1|n

|x|n`1

1

2n` 1

n
ÿ

m“´n

Y mn pθ, φqY
m
n pθ

1, φ1q

“

8
ÿ

n“0

1

2n` 1

n
ÿ

m“´n

Km
n pxqH

m
n px

1q, (9)

for |x1| ă |x|. From the properties of Hm
n px

1q and Km
n pxq, we observe this expression is harmonic with

respect to x1 and x, respectively. Furthermore, Gpx,x1q can be expressed in terms of real valued harmonic
polynomials as

Gpx,x1q “
8
ÿ

n“0

1

2n` 1

1

|x|2n`1

n
ÿ

m“´n

n
ÿ

`1“´n

n
ÿ

`“´n

aIH`1mI
`1

n px
1qaIH`mI

`
npxq

“

8
ÿ

n“0

1

2n` 1

1

|x|2n`1

n
ÿ

`“´n

I`npx
1qI`npxq,

since
řn
m“´n a

IH
`1ma

IH
`m “ δ`1`.

Alternatively, using (7) in (9) gives

Gpx,x1q “
8
ÿ

β,|β|“0

1

2|β| ` 1

|β|
ÿ

m“´|β|

Km
|β|pxqa

MH
βm px

1qβ , (10)

and, by comparing with the Taylor’s series expansion

Gpx,x1q “
8
ÿ

β,|β|“0

p´1q|β|

β!
B
β
xGpx,0qpx

1qβ , (11)

for |x1| in a compact set and as |x| Ñ 8, then

1

2|β| ` 1

|β|
ÿ

m“´|β|

Km
|β|pxqa

MH
βm “

p´1q|β|

β!
B
β
xGpx,0q. (12)

3.2 Asymptotic expansion, GPTs and CGPTs

For the problem stated in (1), an asymptotic expansion of pu ´ Uqpxq as |x| Ñ 8, has been derived by
Ammari and Kang in their Definition 4.1 [4][pg 77] and takes the form

pu´ Uqpxq “
8
ÿ

α,β,|α|“|β|“1

p´1q|α|

α!β!
BαxGpx,0qMαβB

βUp0q, (13)

for positions x away from an inclusion B where the generalised polarizability/polarisation tensor (GPT)
coefficients that characterise B are given by

Mαβ :“

ż

BB

yαφβpyqdy, φβpyq :“ pλI ´K˚Bq
´1pνx ¨∇pxqβqpyq, y P BB, (14)

where K˚B denotes the L2-adjoint of the Neumann-Poincaré operator KB [4][(2.20), pg. 18].
Consider the situation where the background field can be modelled as a point source located at the

position xs, so that Upxq “ Gpx,xsq, and let pu´ Uqpxq be evaluated at position xr, far from the object.
In this case, the measurements Vsr, corresponding to pairs of different sources and receivers, given by

Vsr “
8
ÿ

α,β,|α|“|β|“1

p´1q|α|`|β|

α!β!
pBαxGpx,0qqpx

rqMαβpB
β
xGpx,0qqpx

sq, (15)
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are of interest. Then, using (12),

Vsr “
8
ÿ

α,β,|α|“|β|“1

1

p2|α| ` 1qp2|β| ` 1q

|α|
ÿ

m“´|α|

|β|
ÿ

n“´|β|

Km
|α|px

rqaMH
αmMαβa

MH
βn K

n
|β|px

sq

“

8
ÿ

p,q“1

p
ÿ

m“´p

q
ÿ

n“´q

Km
p px

rqMC
qnpmK

n
q px

sq, (16)

where, since right hand side of (12) is real, the complex conjugate of both sides can be taken and is applied

to pBβxGpx,0qqpx
sq. In the above,

MC
qnpm “

ÿ

α,|α|“p

ÿ

β,|β|“q

1

p2|α| ` 1qp2|β| ` 1q
aMH
αmMαβa

MH
βn , (17)

are equivalent to the contracted GPT (CGPT) coefficients defined by Ammari, Chung, Kang and Wang
[2] and are expressed in terms of linear combinations of the GPT coefficients Mαβ .

Following Ammari et al [2], the matrices

pMpqqmn :“MC
qnpm, ´p ď m ď p,´q ď n ď q, (18)

are introduced, which are of dimension p2p`1qˆp2q`1q. We also introduce the p2p`1qˆ1 and p2q`1qˆ1
matrices Yrp and Ysq with entries

pYrpqm :“Km
p px

rq, ´p ď m ď p,

pYsqqn :“Kn
q px

sq, ´q ď n ď q.

Then, after truncating (16) according to p ą N and q ą N ,

Vsr “
N
ÿ

p,q“1

YrpMpqpYsqq
˚, (19)

where ˚ denotes the complex conjugate transpose p¨q
t
. Still further, Ammari et al introduce the block

matrices M and Y with elements Mln and Yrp. In their Proposition 3.1 they show that M is hermitian
and Mnn invertible for n ě 1.

3.3 Harmonic GPTs (HGPTs)

A further alternative description of Vsr is offered by using (6) so that

Vsr “
8
ÿ

p,q“1

1

|xr|2p`1|xs|2q`1

p
ÿ

m“´p

q
ÿ

n“´q

Hm
p px

rqMC
qnpmH

n
q px

sq

“

8
ÿ

p,q“1

1

|xr|2p`1|xs|2q`1

p
ÿ

i“´p

q
ÿ

j“´q

Iippx
rqMH

qjpiI
j
q px

sq, (20)

where

MH
qjpi “

p
ÿ

m“´p

q
ÿ

n“´q

aIHimM
C
qnpma

IH
jn (21a)

“

p
ÿ

m“´p

q
ÿ

n“´q

ÿ

α,|α|“p

ÿ

β,|β|“q

1

p2|α| ` 1qp2|β| ` 1q
aIHima

MH
αmMαβa

MH
βn a

IH
jn, (21b)

are the coefficients of what we call Harmonic GPTs (HGPTs). Note that since Ijq px
sq “ Ijq pxsq the

coefficients MH
qjpi are real for real k. The HGPTs have p2p ` 1qp2q ` 1q coefficients, the same number as

the CGPTs, but, as we will see, the HGPTs allow significant reductions in the number of independent
coefficients for objects associated with a particular symmetry group.

In a similar way to Mpq, the matrices Npq with coefficients

pNpqqmn :“MH
qnpm, ´p ď m ď p,´q ď n ď q, (22)
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are introduced, which are of dimension p2p ` 1q ˆ p2q ` 1q, and we call HGPT matrices. We define the
coefficients of Irp and Isq as

pIrpqm :“Imp px
rq, ´p ď m ď p,

pIsqqn :“Inq px
sq, ´q ď n ď q,

so that, after truncating (20) corresponding to p ą N and q ą N ,

Vsr “
N
ÿ

p,q“1

1

|xr|2p`1|xs|2q`1
IrpNpqpIsqq

t. (23)

Block matrices N and I can also be introduced, with entries Npq and Irp, in a similar way to M and Y.
Then, in a similar manner to Proposition 3.1 in [2], we prove the following

Proposition 3.1. The HGPT matrix N satisfies N “ N˚ “ Nt. Furthermore, the matrices Npp are
invertible for p ě 1.

Proof. Given, pNpqqij :“MH
qjpi then

MH
qjpi “

p
ÿ

m“´p

q
ÿ

n“´q

aIHimM
C
qnpma

IH
jn

“

p
ÿ

m“´p

q
ÿ

n“´q

ÿ

α,|α|“p

ÿ

β,|β|“q

1

p2|α| ` 1qp2|β| ` 1q
aIHima

MH
αmMαβa

MH
βn a

IH
jn

“

p
ÿ

m“´p

q
ÿ

n“´q

ÿ

α,|α|“p

ÿ

β,|β|“q

1

p2|α| ` 1qp2|β| ` 1q
aIHima

MH
αmMβαaMH

βn a
IH
jn “MH

piqj

“MH
piqj , (24)

which follows from using the symmetry property of Mαβ on the coefficients of harmonic polynomials [4],
Thm. 4.10], and noting that the coefficients of MH

qjpi are real for real k. Thus, N˚ “ Nt.
Again following [2], to show the invertibility of Npp, it suffices to show that vtNppv ‰ 0 for any vector

v P R2p`1, v ‰ 0. Noting that we only need to consider the case of real v as Npp is real we get

vtNppv “
p
ÿ

i“´p

p
ÿ

j“´p

vi`p`1M
H
pjpivj`p`1

“

p
ÿ

i“´p

p
ÿ

j“´p

vi`p`1

p
ÿ

m“´p

p
ÿ

n“´p

ÿ

α,|α|“p

ÿ

β,|β|“p

1

p2|α| ` 1qp2|β| ` 1q
aIHima

MH
αmMαβa

MH
βn a

IH
jnvj`p`1

“

p
ÿ

i“´p

p
ÿ

j“´p

vi`p`1
1

p2p` 1q2

p
ÿ

m“´p

p
ÿ

n“´p

ÿ

α,|α|“p

ÿ

β,|β|“p

aIHima
MH
αm

ż

BB

yαφβpyqdya
MH
βn a

IH
jnvj`p`1

“

p
ÿ

i“´p

p
ÿ

j“´p

vi`p`1
1

p2p` 1q2

p
ÿ

m“´p

p
ÿ

n“´p

aIHim

¨

ż

BB

Hm
p pyqpλI ´K

˚
Bq
´1pνx ¨∇pHn

p pxqpyqqdya
IH
jnvj`p`1

“

p
ÿ

i“´p

p
ÿ

j“´p

vi`p`1
1

p2p` 1q2

ż

BB

IippyqpλI ´K
˚
Bq
´1pνx ¨∇pIjppxqpyqqdyvj`p`1,

where vi`p`1I
i
ppyq is a harmonic polynomial. Then, proceeding in a similar manner to Proposition 3.1

in [2], we find vtNppv ą 0 if λ ą 1{2 and vtNppv ă 0 if λ ď 1{2, completing the proof.

Remark 3.2. Proposition 3.1 also implies that for the case of p “ q the number of independent coefficients
of HGPTs and CGPTs reduce to pp2p ` 1q2 ` p2p ` 1qq{2 “ p2p ` 1qpp ` 1q, which is clearly less than
p2p` 1q2.
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4 Transformation formulae for the HGPT matrix

Following the results derived by [2], we present results for the scaling, shifting and rotation of the HGPT
matrices. It is useful to introduce the pp` 1q ˆ pp` 1q matrix with entries

pAIH
p qmn :“ aIHnm, ´p ď n ď p,´p ď m ď p, (25)

which, by the results in Section 2.2, is unitary if Hm
n pxq is chosen such that

〈
Hm
n pxq, H

k
npxq

〉
S
“ δmk and

we fix Imn pxq so that
〈
Imn pxq, I

k
npxq

〉
S
“ δmk, so that we can write

Mpq “ pA
IH
p qpNpqqpA

IH
q q

˚, (26)

and

Npq “ pA
IH
p q

˚pMpqqpA
IH
q q. (27)

If a different choice of Hm
n pxq is made then pAIH

q q
˚ should be replaced by pAIH

q q
´1.

4.1 Scaling

Lemma 4.1. For any positive integers `, n and the scaling parameter s ą 0, the following holds:

N`npsBq “ s``n`1N`npBq.

Proof. The result follows immediately from Lemma 4.1 in [2] and (21a).

4.2 Shifting

The shifting result in Lemma 4.2 of Ammari et al. [2], which we repeat below, concerns the shifting of
CGPTs:

Lemma 4.2 (Ammari et al [2]). For any positive integers `, n, and the shifting parameter z, the following
result holds:

M`npBzq “
ÿ̀

i“1

n
ÿ

ν“1

G`ipzqMiνGnνpzq
t, (28)

where Gnνpzq is defined in (4.4) of Ammari et al. [2].

By using (26) and (27), the above result can be applied to understand the shifting of HGPTs.

4.3 Rotation

Defining a general rotation matrix R in terms of the Euler angles γ, β, α for rotations about the x1, x2
and x3 axes, respectively, as

R “

¨

˝

cos γ ´ sin γ 0
sin γ cos γ 0

0 0 1

˛

‚

¨

˝

cosβ 0 ´ sinβ
0 1 0

sinβ 0 cosβ

˛

‚

¨

˝

cosα ´ sinα 0
sinα cosα 0

0 0 1

˛

‚. (29)

Ammari et al. [2] in their in Lemma 4.3, repeated below, describe how their CGPT transform under
object rotation.

Lemma 4.3 (Ammari et al [2]). For a orthogonal matrix R, the following relation holds

M`npBRq “ Q`pRqM`npBqQnpRq
t,

where QnpRq is called a Wigner D-matrix. QnpRq is defined in (4.11) of [2].

By combining the above with expressions (26) and (27) the transformation of HGPTs under object
rotation can be understood.
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5 Object characterisation and symmetry groups

As remarked in the introduction, the simplest form of a GPT is a rank 2 (Póyla-Szegö) tensor, which
characterises an object’s shape B and its contrast k upto the best fitting ellipsoid. On the other hand,
the complete set of GPTs uniquely defines both the shape and material contrast of the object [4][pg.
90]. In practice, many of the physical objects that we wish to characterise have rotational or reflectional
symmetries. For example, if an object B is invariant under the action of a rotation matrix R, this means
that M`npBRq “ M`npBq in Lemma 4.3 with a similar result for the matrix of HGPT coefficents N`n. If
an object has symmetries, many of the p2` ` 1qp2n ` 1q coefficients of N`n will be zero and only a small
number of independent coefficients will remain. In our earlier work, we have shown how the number of
independent coefficients of a rank 2 polarizability tensor characterisation can be reduced if an object has
rotational or reflectional symmetries [10]. This raises the question: What are the equivalent class of objects
that an (H)GPT of a given order describes? To help to address this, we describe how knowing an object’s
symmetry group offers an effective way to deduce the independent coefficients of HGPT descriptions of
different orders. Beforehand, we recall how different symmetry groups can be distinguished and review the
work of Meyer [13] on finding invariant harmonic polynomials under the action of a group.

5.1 Types of finite groups

Following Meyer [13], we distinguish between different types of groups G. We consider those consisting of
rotations only and those consisting of rotary inversions. A rotary inversion being a rotation followed by
central symmetry with respect to a point on the axis of rotation. By choosing the fixed point to be the
origin, the rotatory inversion is given by JR where

J “

¨

˝

´1 0 0
0 ´1 0
0 0 ´1

˛

‚,

and R is the rotation.

5.1.1 Groups consisting of rotations only (Type 1)

There are five classes of groups of this type and we indicate in the following how the rotational axes of
each group are to be placed with respect to the x1, x2 and x3 axes.

• Cn Cyclic group, where the n-fold axis is taken to be the x3-axis.

• Dn Dihedral group, where the n-fold axis is taken to be the x3-axis and one of the 2-fold axes is
taken to be the x1-axis.

• T Tetrahedral group, which consists of rotations that transform a regular tetrahedron to itself. We
follow Meyer who assumes the tetrahedron is placed so that its 3-fold axes coincide with the 3-fold
axes of O (below), and the 2-fold axes are taken as the coordinate axes.

• O Octahedral group, which consists of the rotations that transform a cube (or a regular octahedron)
onto itself. We follow Meyer who assumes the cube is placed with its centre at the origin and with
its faces parallel to the coordinate axes.

• I Icosahedral group, which consist of the rotations that transform a regular icosahedron (or regular
dodecahedron) into itself. Again, we follow Meyer who assumes the icosahedron is placed with its
centre at the origin, and the coordinate axes pass through the midpoint of opposite edges such that
the edges through which the x1 axis passes are parallel to the x2 axis.

5.2 Groups containing rotary-inversions

There are two groups containing rotary inversions:

• Type 2 are those with centre of symmetry, which are obtained by adjoing J to a group of type 1. The
order of these groups is twice that of the corresponding rotational group. The groups of this type are
denoted by Cn,i, Dn,i, Ti, Oi and Ii.

• Type 3 are derived from a rotational group G2, which has a subgroup, G1, of index 2.

9



3

x

x

x

1

2

Figure 1: Illustration of an object B, which has the symmetry group D4.

5.3 Harmonic polynomials invariant under the action of a group

Meyer describes an approach for determining all the harmonic polynomials Ii,Gm pxq of degree m that are
invariant under the action of a given symmetry group G where we expect far few than 2m ` 1 invariant
polynomials. He explains that the number of elements gm of an invariant basis of degree m for a group G
of order n of orthogonal matrices can be obtained from the generating function using a result of Molien [14]
as

gptq “
8
ÿ

m“0

gmt
m. (30)

However, the interest lies in an invariant harmonic basis. Meyer’s main theorem addresses this question:

Theorem 5.1 (Meyer [13]). Let G be a finite group of orthogonal linear transformations in x1, x2 and x3.
Let

hptq “
8
ÿ

m“0

hmt
m, (31)

in which hm is the number of elements in an invariant harmonic basis for G of degree m. Then

hptq “ p1´ t2qgptq, (32)

where gptq is the generating function of Molien.

Remark 5.2. Some of these sequences hm are listed in the online encyclopedia of integer sequences [11].

The invariant harmonic polynomials can be obtained by applying another result of Meyer:

Theorem 5.3 (Meyer [13]). Let

Q1px1, x2, x3q, . . . , Qhm
px1, x2, x3q,

be hm homogeneous harmonic (operating) polynomials of degree m, which are invariants of G and which
are linearly independent mod r2 “ mod px21 ` x

2
2 ` x

2
3q then the hm harmonic functions

r2m`1Qj

ˆ

B

Bx1
,
B

Bx2
,
B

Bx3

˙

1

r
, j “ 1, . . . , hm, (33)

form an invariant harmonic basis of degree m for G.

The harmonic polynomials Ii,Gm pxq, i “ 1, . . . , hm of degree m that are invariant under the action of
the group G produced by the above will be linear combinations of I`mpxq so that

Ii,Gm pxq “
m
ÿ

`“´m

aI,G`i I`mpxq, i “ 1, . . . , hm. (34)

We illustrate Meyer’s approach by considering the object shown in Figure 1. This object has a 4-fold
rotational symmetry about x3 and 2-fold rotational symmetries about the x1 and x2 axes. This means the
appropriate symmetry group for the object is G “ D4. In his Table I, Meyer presents hptq for different
groups, with D4 being of the form

hptq “ p1´ t2qgptq “
1

p1´ t2q

1` t5

1´ t4
“ 1` t2 ` 2t4 ` t5 ` . . . , (35)
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m hm Qjpx1, x2, x3q, j “ 1, . . . , hm Ij,D4
m pxq “ r2m`1Qj

´

B
Bx1

, B
Bx2

, B
Bx3

¯

1
r

0 1 1 1
1 0 - -
2 1 x23 2x23 ´ x

2
1 ´ x

2
2

3 0 - -
4 2 x43 24x43 ` 9px41 ` x

4
2q ´ 72px21x

2
3 ` x

2
2x

2
3q ` 18x21x

2
2

C4 “ x41 ´ 6x21x
2
2 105px41 ` x

4
2q ´ 630x21x

2
2

Table 3: Illustration of harmonic polynomials Ij,Gm pxq, j “ 1, . . . , hm, of degrees m “

0, 1, 2, 3, 4, which are invariant under the symmetry group G “ D4.

which tells us hm “ 1 for m “ 0, 2, 5, so there is just a single invariant harmonic polynomial, I1,D4
m pxq for

these degrees, while hm “ 2 for m “ 2, and so we have Ij,D4
m pxq, j “ 1, 2, for this degree, and hm “ 0 for

m “ 1, 3, and so we have no invariant harmonic polynomials for these degrees.
To construct the Ij,Gm pxq for each degree m, we refer to Table III in Meyer’s article where he describes

how to construct the operating polynomial for each group G. In our case, the operating polynomials
Q1px1, x2, x3q, . . . , Qhm

px1, x2, x3q for G “ D4 are constructed from x23, Cun, x3C
1
un, Cvn, x3C

1
un, u “

1, 3, 5, . . ., v “ 2, 4, 6, . . ., where

Cn “x
n
1 ´

ˆ

n
2

˙

xn´2
1 x22 `

ˆ

n
4

˙

xn´4
1 x42 ´ . . . ,

C 1n “

ˆ

n
1

˙

xn´1
1 x2 ´

ˆ

n
3

˙

xn´3
1 x32 `

ˆ

n
5

˙

xn´5
1 x52 ´ . . . ,

In Table 3 we summarise the results of the calculation for different m and the group D4. Observe that the
results Ij,D4

m pxq, j “ 1, . . . , hm, are linear combinations of the I`mpxq, ` “ ´m, . . . ,m of the same degree
m presented in Table 1, as expected.

5.4 Symmetric products of harmonic polynomials invariant under the action
of a symmetry group

From (14) and (21a) we see that the coefficients of the HGPTs have the form

MH
qjpi “ Cpp, qq

ż

BB

IippyqpλI ´K
˚
Bq
´1pνx ¨∇xIjq pxqqpyqdy,

where Cpp, qq depends on p and q. Now consider the HGPT characterisation of B under the action of a
rotation matrix R as

MH
qjpipRpBqq “Cpp, qq

ż

BRpBq

IippyqpλI ´K
˚
Bq
´1pνx ¨∇xIjq pxqqpyqdy

“Cpp, qq

ż

BB

IippRyqpλI ´K
˚
Bq
´1pνx ¨∇xIjq pxqqpRyqdy

“Cpp, qq

ż

BB

IippRyqpλI ´K
˚
Bq
´1pνx ¨∇xIjq pRxqqpyqdy,

which follows since pλI ´K˚Bq is invariant under the rotation map [1]Prop. 4.1].
Furthermore, since the HGPT coefficients MH

qjpi appear together with products of harmonic polynomi-
als, as expressed in (20), an object rotation is equivalent to a rotation of the coordinate system for both
the excitation and measurement so that

p
ÿ

i“´p

q
ÿ

j“´q

IippRxqM
H
qjpiI

j
q pRyq ”

p
ÿ

i“´p

q
ÿ

j“´q

IippxqM
H
qjpipRpBqqI

j
q pyq. (36)

In addition, given the symmetry property of HGPTs described in Proposition 3.1, determining those HGPT
coefficients MH

qjpi that are invariant under the action of a symmetry group reduces to finding symmetric
products of harmonic polynomials Ipxq, Jpxq (of possibly different degrees p and q) in the form

Spx,yq “ Spy,xq “ IpxqJpyq ` IpyqJpxq,
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that have the property that

SpRx,Ryq “ Spx,yq, (37)

for all matrix representations R that make up the group G. Applying the terminology of representation
theory (see Appendix A for a brief summary of the key results we require), we say (37) means that Spx,yq
is fixed by G.

Meyer’s results in Theorems 5.1 and 5.3 determine the number of invariant harmonic polynomials that
are fixed by G and he provides a methodology to determine a basis for these. However, for HGPTs, we
need to find the number of symmetric harmonic polynomials Spx,yq that are fixed by G and, also, to
establish a methodology to determine a basis for these invariant products. Therefore, we follow a different
approach to Meyer.

We introduce

Spq :“ tIippxqI
j
q pyq ` I

i
ppyqI

j
q pxq,´p ď i ď p,´q ď j ď q,x P R3,y P R3u,

for the vector space provided by the symmetric products of harmonic polynomials of degree p and q and
denote by

SG
pq :“ tS P Spq : πpRqpSq “ S @R P Gu Ď Spq,

the subspace corresponding to those elements of Spq, which are fixed G, with G having the representation
pπ,Spqq where π is a homomorphism from G to the group of invertible linear transformations of Spq.

Based on the results in Appendix A, we provide Algorithm 1 for determining the dimension of SG
pq and

a basis for SG
pq

1.

Algorithm 1 Algorithm for determining the dimension and a basis for SG
pq.

Require: Spq containing symmetric products of harmonic polynomials of degrees p and q, from Table 1,
and rotation matrices Ri, i “ 1, . . . , n, describing the group G of order n.

Ensure: The dimension of SG
pq and a basis for SG

pq.

1: Determine Mπ “
1
n

řn
i“1 πpRiq.

2: The dimension of SG
pq is m “ trpMπq.

3: A basis for SG
pq is the first m independent elements of MπSpq.

In the case of a dihedral group Dn of order n, one could apply Algorithm 1 first for Cn (for rotations

about x3) to obtain SCn
pq and then again for C2 (for rotations about x1) to generate SC

x1
2
pq . Determining

a basis for Dn then reduces to determining a basis for the intersection SCn
pq X S

C
x1
2
pq . Alternatives for

determining the intersection of these subspaces include Algorithm 12.4.3 provided by Golub and van Loan
in [6][pg. 604], part of the Zassenhaus algorithm [12] or alternatively Algorithm 2 could be applied to
determine the intersection between two subspaces of a vector space.

Algorithm 2 Algorithm for determining the intersection of two-subspaces of a linear vector space.

Require: Two subspaces with given basis for Rn provided in A P Rnˆp and B P Rnˆq with p, q ď n.
Ensure: A basis for intersection of the subspaces.

1: Create C “
`

A B
˘

P Rnˆpp`qq.
2: Determine the null space N of C.
3: Then the rows of either Np:, 1 : pqAT or Np:, p`1 : p`qqBT provide a basis for the intersection, where

: indicates the complete set of row (or column) elements and 1 : p the elements between 1 and p.

Remark 5.4. Once SG
pq is identified, the invariant HGPT coefficients are immediate.

5.5 Application of Algorithm 1 for S11 and C4

We consider an illustration of Algorithm 1 for S11, which, using Table 1, explicitly has the form

S11 “ tx1y1, x1y2 ` x2y1, x1y3 ` x3y1, x2y2, x2y3 ` x3y2, x3y3u,

1We have implemented Algorithm 1 in Mathematica. Our implementation available at
https://github.com/pdledger/HGPTSymmetries (will be made public on publication) follows these steps, but it is
considerably more involved (given in part our limited knowledge of Mathematica’s functionality)
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and the C4 group, which is described by the rotation matrices

R1 “

¨

˝

1 0 0
0 1 1
0 0 1

˛

‚, R2 “

¨

˝

0 ´1 0
1 0 0
0 0 1

˛

‚, R3 “

¨

˝

´1 0 0
0 ´1 0
0 0 1

˛

‚, R4 “

¨

˝

0 1 0
´1 0 0

0 0 1

˛

‚.

Then, by following the ordering in S11, πpR1q “ I6ˆ6 is just the 6ˆ 6 identity matrix and

πpR2q “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0
0 ´1 0 0 0 0
0 0 0 0 ´1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

, πpR3q “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 ´1 0 0 0
0 0 0 1 0 0
0 0 0 0 ´1 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

,

πpR4q “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1 0 0
0 ´1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 ´1 0 0 0
0 0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

,

are obtained by applying R2,R3 and R4 to each element of S11. Their average is

Mπ “
1

4

¨

˚

˚

˚

˚

˚

˚

˝

2 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 4

˛

‹

‹

‹

‹

‹

‹

‚

,

and, hence, it follows that the dimension of SC4
11 is m “ trpMπq “ 2 and a basis for SC4

11 are the 2
independent elements of

MπSpq “
1

2

¨

˚

˚

˚

˚

˚

˚

˝

x1y1 ` x2y2
0
0

x1y1 ` x2y2
0

2x3y3

˛

‹

‹

‹

‹

‹

‹

‚

. (38)

Thus, by removing unnecessary constants, SC4
11 “ tx1y1 ` x2y2, x3y3u. Note that Table 2 could be equiva-

lently used to define S11, and this will result in different HGPT coefficients, but will result in an equivalent
reduction in dimensions.

Remark 5.5. In a similar way to the example above, the sets of SG
pq for the groups G “ Cn, n “ 2, 3, 4, 5, 6,

together with their dimensions, can be obtained from Algorithm 1 and the results for different p, q are
presented in Tables 5, 6, 7, 8 and 9. The corresponding sets of SG

pq for the groups G “ Dn, n “ 2, 3, 4, 5, 6,
G “ I, T and O can be obtained using our software https://github.com/pdledger/HGPTSymmetries.
In the case of the cyclic and dihedral groups, and the considered polynomial degrees, there is no change in
SG
pq for n ě 6. This indicates that to distinguish a particular order cyclic (or dihedral) group and its lower

counterparts we need to have HGPTs of sufficient degree.

5.6 Examples of SG
pq for different groups G

Considering magnetostatic measurements using magnetometry (or metal detection measurements at very
low frequencies, where only the magnetic part of the characterisation can be recorded), one potential
application is to discriminate between unexploded ordnance (UXO) and shrapnel buried in the ground in
regions of former conflict. While shrapnel will be random in shape and, hence, lack geometrical symmetries,
common forms of UXO are likely to have cyclic symmetries. To illustrate this, some images of decommis-
sioned mortar bomb shell casings and hand (fragmentation) grenades, which were taken during a visit to
the Cambodia War Remnant Museum by one of the authors, are shown in Figure 2. In this figure, the
exterior shape of the objects shown can be characterised by the cyclic group of different orders including
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Figure 2: A collection of decommissioned UXO (including both mortar bomb shell casings
and hand (fragmentation) grenades) that are housed at the Cambodia War Remnant Museum,
with artefacts being characterised by different cyclic symmetry groups including C4, C5, C6,
C8, C10.

Figure 3: A CAD drawing and associated rendered image of a BLU-61 submunition with a
mirror symmetry as well as a 4–fold rotational symmetry and, hence, when suitably orientated,
is characterised by the dihedral D4 group.

C4, C6, C8, C10, but there may be internal structures or damage that breaks the symmetry. The sketches
of a BLU-61 submunition shown in Figure 3 illustrate the object’s mirror symmetry as well as its 4–fold
rotational symmetry and, hence, when suitably orientated, the object’s exterior shape is characterised by
the D4 group. While this figure illustrates that the dihedral group may also be useful for describing some
UXO components, the tetrahedral, octahedral and icosahedral symmetry groups are less likely to be so,
but may still be useful for other forms of object detection (e.g. in crystallography or in other forms of
detection that the authors are yet to consider). Further applications include in the characterisation of
conducting objects in EIT, ERT and by electrosensing fish, as described in the introduction.

The results in the aforementioned tables described in Remark 5.5 can be used to easily identify the
invariant HGPT coefficients. For example, considering SG

pq for p “ q “ 1 and the C2 group, we can identify
that

SC2
11 “ tx1y1, x1y2 ` x2y1, x2y2, x3y3u ,

so this means that the non-zero independent HGPT coefficients are

MH
1,´1,1,´1,M

H
1,´1,1,0 “MH

1,0,1,´1,M
H
1,0,1,0,M

H
1,1,1,1. (39)

Similarly, for SC4
11 considered in Section 5.5, the non-zero independent HGPT coefficients are

MH
1,´1,1,´1 “MH

1,0,1,0,M
H
1,1,1,1. (40)
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p q GPT Symmetric CGPT / HGPT Reduced dimension HGPT

Mαβ MC
qjpi “MC

piqj , M
H
qjpi “MH

piqj dimSC2
pq

|α| “ p, |β| “ q ´p ď i ď p,´q ď j ď q
1 1 9 (6) 6 4
1 2 18 15 7
1 3 30 21 11
2 2 36 15 9

Table 4: Comparison of the number of non-zero independent coefficients: GPTs without
assuming object symmetries (using a standard monomial basis); CGPTs/HGPTs including
tensor symmetries, but without assuming object symmetries (using a basis of harmonic func-
tions and polynomials, respectively), and reduced dimension HGPTs, obtained by additionally
taking account of the object symmetries, assuming the object is characterised by the C2 group.
The results are quoted for different orders p and q. Note that for p “ q “ 1 the standard mono-
mial basis agrees with the harmonic polynomial basis (up to some possible scaling) leading to
the reduced dimension quoted in brackets in this case.

Based on Section 2.2 we can compare the number of independent coefficients of GPTs, HGPTs and
CGPTs. Without assuming any object symmetries, a GPT, with orders p, q, has pp ` 1qpp ` 2qpq `
1qpq ` 2q{4 independent coefficients for a standard monomial basis. However, the case of p “ q “ 1 is
special as the monomial basis agrees (up to some possible scaling) with a harmonic basis in this case. If a
harmonic polynomial basis is used, we have a symmetric HGPT with p2p ` 1qp2q ` 1q coefficients (again
without assuming object symmetries) and, in the case of p “ q, by using Remark 3.2, the symmetry of
the HGPT implies p2p ` 1qpp ` 1q, which is fewer than p2p ` 1q2. The CGPT, which uses a harmonic
function basis, has the same number of independent coefficients as the HGPT. The advantage of the
HGPT is that, if we know that the object is characterised by a particular symmetry group, we can use
Algorithm 2 to automatically reduce the number of independent coefficients required for a HGPT. Once
this has been achieved, the non-zero independent HGPT coefficients can be transformed to coefficients
of another basis (for example the coefficients of CGPTs using (21a)). Following this transformation, the
reduced number of independent coefficients will remain the same. As an example, we compare in Table 4 the
number of independent coefficients of GPTs without assuming object symmetries (using a basis of standard
monomials); CGPTs/HGPTs including tensor symmetries, but without assuming object symmetries (using
a basis of harmonic functions and polynomials, respectively), and the reduced dimension HGPTs, obtained
by additionally taking account a cyclic C2 group symmetry group. Similar reductions also apply for other
symmetry groups.

Remark 5.6. Related to the question of finding the equivalent class of objects that an (H)GPT of a given
order describes, raised in the introductory remarks of Section 5, a further practical problem is to be able
to find objects (e.g UXO such as mortar bombs) with a given symmetry. In practical measurements, the
measured Vsr will contain errors and unavoidable noise that are associated with measurements, which are
not included in (23). Still further, buried objects are often dented and deformed as a result of falling from
a height to the ground so that a hidden object’s symmetries may only hold approximately in practice, as
Figure 2 illustrates. With (machine learning) object classification in mind, the sets of non-zero independent
HGPT coefficients for different symmetry groups offer a possible alternative to object classification based
on shape invariant descriptors proposed in [2]. Here, it is envisaged that a classifier could be developed
based on classifying objects according to their symmetry groups with the non-zero features being those
independent HGPT coefficients for the symmetry group under consideration. Thus, offering the potential
to detect objects of a certain cyclic (or dihedral) group up to the measurement error and errors in the
object symmetry as well as contributing to understanding the additional information that higher order
(H)GPTs provide.
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p q dimSC2
pq SC2

pq

1 1 4 tx1y1,
x2y1 ` x1y2,
x2y2,
x3y3u

1 2 7 tx1x3y1 ` x1y1y3,
x2x3y1 ` x1y2y3,
x1x3y2 ` x2y1y3,
x2x3y2 ` x2y2y3,
x3py

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qy3,

px21 ´ x
2
3qy3 ` x3py

2
1 ´ y

2
3q,

x3y1y2 ` x1x2y3u
1 3 11 tpx31 ´ 3x1x

2
2qy1 ` x1py

3
1 ´ 3y1y

2
2q,

p´3x21x2 ` x
3
2qy1 ` x1p´3y21y2 ` y

3
2q,

px31 ´ 3x1x
2
3qy1 ` x1py

3
1 ´ 3y1y

2
3q,

px32 ´ 3x2x
2
3qy1 ` x1py

3
2 ´ 3y2y

2
3q,

px31 ´ 3x1x
2
2qy2 ` x2py

3
1 ´ 3y1y

2
2q,

p´3x21x2 ` x
3
2qy2 ` x2p´3y21y2 ` y

3
2q,

px31 ´ 3x1x
2
3qy2 ` x2py

3
1 ´ 3y1y

2
3q,

px32 ´ 3x2x
2
3qy2 ` x2py

3
2 ´ 3y2y

2
3q,

p´3x21x3 ` x
3
3qy3 ` x3p´3y21y3 ` y

3
3q,

p´3x22x3 ` x
3
3qy3 ` x3p´3y22y3 ` y

3
3q,

x1x2x3y3 ` x3y1y2y3u
2 2 9 tpx21 ´ x

2
2qpy

2
1 ´ y

2
2q,

px21 ´ x
2
3qpy

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qpy

2
1 ´ y

2
3q,

px21 ´ x
2
2qy1y2 ` x1x2py

2
1 ´ y

2
2q,

px21 ´ x
2
3qpy

2
1 ´ y

2
3q,

px21 ´ x
2
3qy1y2 ` x1x2py

2
1 ´ y

2
3q,

x1x2y1y2,
x1x3y1y3,
x2x3y1y3 ` x1x3y2y3,
x2x3y2y3u

Table 5: The dimension and set of symmetric product harmonic polynomials SG
pq fixed by the

G “ C2 group.
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p q dimSC3
pq SC3

pq

1 1 2 tx1y1 ` x2y2,
x3y3u

1 2 5 t´px1x2y2 ` x2y1y2q ` 1{2ppx21 ´ x
2
2qy1 ` x1py

2
1 ´ y

2
2qq,

px1x2y1 ` x1y1y2q ` 1{2ppx21 ´ x
2
2qy2 ` x2py

2
1 ´ y

2
2qq,

px1x3y1 ` x1y1y3q ` px2x3y2 ` x2y2y3q,
´px1x3y2 ` x2y1y3q ` px2x3y1 ` x1y2y3q,
´p1{2qpx3py

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qy3q ` ppx

2
1 ´ x

2
3qy3 ` x3py

2
1 ´ y

2
3qqu

1 3 7 t1{6p´ppx31 ´ 3x1x
2
2qy1q ´ x1py

3
1 ´ 3y1y

2
2qq`

1{6p´pp´3x21x2 ` x
3
2qy2q ´ x2p´3y21y2 ` y

3
2qq`

2{3ppx31 ´ 3x1x
2
3qy1 ` x1py

3
1 ´ 3y1y

2
3qq`

2{3ppx32 ´ 3x2x
2
3qy2 ` x2py

3
2 ´ 3y2y

2
3qq,

x1x2x3y2 ` x2y1y2y3`
1{6pp´3x21x3 ` x

3
3qy1 ` x1p´3y21y3 ` y

3
3qq`

1{6p´pp´3x22x3 ` x
3
3qy1q ´ x1p´3y22y3 ` y

3
3qq,

3{8ppx31 ´ 3x1x
2
2qy2 ` x2py

3
1 ´ 3y1y

2
2qq´

3{8pp´3x21x2 ` x
3
2qy1 ` x1p´3y21y2 ` y

3
2qq´

3{2ppx31 ´ 3x1x
2
3qy2 ` x2py

3
1 ´ 3y1y

2
3qq`

3{2ppx32 ´ 3x2x
2
3qy1 ` x1py

3
2 ´ 3y2y

2
3qq,

x1x2x3y1 ` x1y1y2y3`
1{6p´pp´3x21x3 ` x

3
3qy2q ´ x2p´3y21y3 ` y

3
3qq`

1{6pp´3x22x3 ` x
3
3qy2 ` x2p´3y22y3 ` y

3
3qq,

x3py
3
1 ´ 3y1y

2
2q ` px

3
1 ´ 3x1x

2
2qy3,

x3p´3y21y2 ` y
3
2q ` p´3x21x2 ` x

3
2qy3,

1{2pp´3x21x3 ` x
3
3qy3 ` x3p´3y21y3 ` y

3
3qq`

1{2pp´3x22x3 ` x
3
3qy3 ` x3p´3y22y3 ` y

3
3qqu

2 2 5 t12x1x2y1y2 ` 3px21 ´ x
2
2qpy

2
1 ´ y

2
2q,

1{2px1x3py
2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qy1y3q ´ px2x3y1y2 ` x1x2y2y3q,

px1x3y1y2 ` x1x2y1y3q ` 1{2px2x3py
2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qy2y3q,

x1x2y1y2 ` 3{4px21 ´ x
2
2qpy

2
1 ´ y

2
2q`

2px21 ´ x
2
3qpy

2
1 ´ y

2
3q ´ ppx

2
1 ´ x

2
3qpy

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qpy

2
1 ´ y

2
3qq,

x1x3y1y3 ` x2x3y2y3u

Table 6: The dimension and set of symmetric product harmonic polynomials SG
pq fixed by the

G “ C3 group.
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p q dimSC4
pq SC4

pq

1 1 2 tx1y1 ` x2y2,
x3y3u

1 2 3 tpx1x3y1 ` x1y1y3q ` px2x3y2 ` x2y2y3q,
´px1x3y2 ` x2y1y3q ` px2x3y1 ` x1y2y3q,
´px3py

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qy3q ` 2ppx21 ´ x

2
3qy3 ` x3py

2
1 ´ y

2
3qqu

1 3 5 tppx31 ´ 3x1x
2
2qy1 ` x1py

3
1 ´ 3y1y

2
2qq`

pp´3x21x2 ` x
3
2qy2 ` x2p´3y21y2 ` y

3
2qq,

´ppx31 ´ 3x1x
2
2qy2 ` x2py

3
1 ´ 3y1y

2
2qq`

pp´3x21x2 ` x
3
2qy1 ` x1p´3y21y2 ` y

3
2qq,

ppx31 ´ 3x1x
2
3qy1 ` x1py

3
1 ´ 3y1y

2
3qq`

ppx32 ´ 3x2x
2
3qy2 ` x2py

3
2 ´ 3y2y

2
3qq,

´ppx31 ´ 3x1x
2
3qy2 ` x2py

3
1 ´ 3y1y

2
3qq`

ppx32 ´ 3x2x
2
3qy1 ` x1py

3
2 ´ 3y2y

2
3qq,

pp´3x21x3 ` x
3
3qy3 ` x3p´3y21y3 ` y

3
3qq`

pp´3x22x3 ` x
3
3qy3 ` x3p´3y22y3 ` y

3
3qu

2 2 5 tpx21 ´ x
2
2qpy

2
1 ´ y

2
2q,

ppx21 ´ x
2
2qy1y2 ` x1x2py

2
1 ´ y

2
2qq,

px21 ´ x
2
2qpy

2
1 ´ y

2
2q ` 2px21 ´ x

2
3qpy

2
1 ´ y

2
3q´

ppx21 ´ x
2
3qpy

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qpy

2
1 ´ y

2
3qq,

x1x2y1y2,
x1x3y1y3 ` x2x3y2y3u

Table 7: The dimension and set of symmetric product harmonic polynomials SG
pq fixed by the

G “ C4 group.

p q dimSC5
pq SC5

pq

1 1 2 tx1y1 ` x2y2,
x3y3u

1 2 2 t1{2px1x3y1 ` x1y1y3q ` 1{2px2x3y2 ` x2y2y3q,
´p5{2qpx1x3y2 ` x2y1y3q ` 5{2px2x3y1 ` x1y2y3q,
´x3py

2
1 ´ y

2
2q ´ px

2
1 ´ x

2
2qy3 ` 2ppx21 ´ x

2
3qy3 ` x3py

2
1 ´ y

2
3qqu

1 3 3 t1{6p´ppx31 ´ 3x1x
2
2qy1q ´ x1py

3
1 ´ 3y1y

2
2qq`

1{6p´pp´3x21x2 ` x
3
2qy2q ´ x2p´3y21y2 ` y

3
2qq`

2{3ppx31 ´ 3x1x
2
3qy1 ` x1py

3
1 ´ 3y1y

2
3qq`

2{3ppx32 ´ 3x2x
2
3qy2 ` x2py

3
2 ´ 3y2y

2
3qq,

5{8ppx31 ´ 3x1x
2
2qy2 ` x2py

3
1 ´ 3y1y

2
2qq´

5{8pp´3x21x2 ` x
3
2qy1 ` x1p´3y21y2 ` y

3
2qq´

5{2ppx31 ´ 3x1x
2
3qy2 ` x2py

3
1 ´ 3y1y

2
3qq`

5{2ppx32 ´ 3x2x
2
3qy1 ` x1py

3
2 ´ 3y2y

2
3qq,

1{2pp´3x21x3 ` x
3
3qy3 ` x3p´3y21y3 ` y

3
3qq`

1{2pp´3x22x3 ` x
3
3qy3 ` x3p´3y22y3 ` y

3
3qqu

2 2 3 t8{5x1x2y1y2 ` 2{5px21 ´ x
2
2qpy

2
1 ´ y

2
2q,

8{7x1x2y1y2 ` 6{7px21 ´ x
2
2qpy

2
1 ´ y

2
2q ` 16{7px21 ´ x

2
3qpy

2
1 ´ y

2
3q´

8{7ppx21 ´ x
2
3qpy

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qpy

2
1 ´ y

2
3qq,

x1x3y1y3 ` x2x3y2y3u

Table 8: The dimension and set of symmetric product harmonic polynomials SG
pq fixed by the

G “ C5 group.
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p q dimSC6
pq SC6

pq

1 1 2 tx1y1 ` x2y2,
x3y3u

1 2 3 t1{2px1x3y1 ` x1y1y3q ` 1{2px2x3y2 ` x2y2y3q,
´3px1x3y2 ` x2y1y3q ` 3px2x3y1 ` x1y2y3q,
´x3py

2
1 ´ y

2
2q ´ px

2
1 ´ x

2
2qy3 ` 2ppx21 ´ x

2
3qy3 ` x3py

2
1 ´ y

2
3qqu

1 3 3 t1{6p´ppx31 ´ 3x1x
2
2qy1q ´ x1py

3
1 ´ 3y1y

2
2qq`

1{6p´pp´3x21x2 ` x
3
2qy2q ´ x2p´3y21y2 ` y

3
2qq`

2{3ppx31 ´ 3x1x
2
3qy1 ` x1py

3
1 ´ 3y1y

2
3qq`

2{3ppx32 ´ 3x2x
2
3qy2 ` x2py

3
2 ´ 3y2y

2
3qq,

3{4ppx31 ´ 3x1x
2
2qy2 ` x2py

3
1 ´ 3y1y

2
2qq´

3{4pp´3x21x2 ` x
3
2qy1 ` x1p´3y21y2 ` y

3
2qq´

3ppx31 ´ 3x1x
2
3qy2 ` x2py

3
1 ´ 3y1y

2
3qq`

3ppx32 ´ 3x2x
2
3qy1 ` x1py

3
2 ´ 3y2y

2
3qq,

1{2pp´3x21x3 ` x
3
3qy3 ` x3p´3y21y3 ` y

3
3qq`

1{2pp´3x22x3 ` x
3
3qy3 ` x3p´3y22y3 ` y

3
3qqu

2 2 3 t8{5x1x2y1y2 ` 2{5px21 ´ x
2
2qpy

2
1 ´ y

2
2q,

8{7x1x2y1y2 ` 6{7px21 ´ x
2
2qpy

2
1 ´ y

2
2q`

16{7px21 ´ x
2
3qpy

2
1 ´ y

2
3q´

8{7ppx21 ´ x
2
3qpy

2
1 ´ y

2
2q ` px

2
1 ´ x

2
2qpy

2
1 ´ y

2
3qq,

x1x3y1y3 ` x2x3y2y3u

Table 9: The dimension and set of symmetric product harmonic polynomials SG
pq fixed by the

G “ C6 group.

A Results from Representation Theory

For those unfamiliar with representation theory, some key results that are relevant for our work and
accompanying references are provided below.

Let G be a finite group with representation pπ,V q where V is a vector space of dimension n with field
K, K having characteristic R or C, and π is a homomorphism from G to the group of invertible linear
transformations of V . We say v P V is fixed by G if

πpGqpvq “ v @G P G.

The set of all elements fixed by G is

V G
“ tv P V : πpGqpvq “ v @G P Gu ,

which is a subspace of V .
We denote by

Mπ :“
1

|G|

ÿ

GPG

πpGq, (41)

the average matrix in the representation.
From the definition (41) it follows that πpGqMπ “ Mπ for all G P G, as multiplying all the elements of

a group by a fixed element simply reorders the element. Hence, M2
π “ Mπ and Mπ is a projection [9][pg.

30, pg. 84] on to V G. This clearly means that the eigenvalues of Mπ can only be 1 or 0, but we can
diagonalise the matrix Mπ using the following change of basis. Let v1, . . . ,vm be a basis for V G so that
Mπvi “ vi. Now let vm`1, . . . ,vn be a basis for the null space of Mπ so that Mπvi “ 0 for i ą m. So
the matrix of Mπ in this new basis is

M̃π “

ˆ

Imˆm 0mˆpn´mq
0pn´mqˆm 0pn´mqˆpn´mq

˙

. (42)

Let yi, i “ 1, . . . , n be any basis for V and wi “ Mπyi. As the range of Mπ is exactly V G it follows that

Lemma A.1. V G is spanned by wi, i “ 1, . . . , n.

Also, as the trace of matrix is invariant under a change of basis trpMπq “ trpM̃πq [9][Thm. 9, pg. 56]
and we have

19



Lemma A.2.
m “ dimV G

“ trpMπq.

The proof is immediate from taking the trace of (42), but is a standard result in representation theory,
see for example Fulton and Harris [5][Prop. 2.8, pg. 15-16].
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[14] T. Molien. Über die Invairianten der linearen Substitutionsgruppen. S.B. Akad. Wies. Berin, 2:1152–
1156, 1897.
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