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Abstract 18 

The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate large-19 
scale monitoring of Anopheles species diversity. Combining information from the 62 nuclear 20 
amplicons present in the ANOSPP panel allows for a more nuanced species assignment than 21 
single gene (e.g. COI) barcoding, which is desirable in the light of permeable species 22 
boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and 23 
Variational Autoencoders (VAE), which we apply to k-mers resulting from the ANOSPP 24 
amplicon sequences in order to hierarchically assign species identity. The NN step assigns a 25 
sample to a species-group by comparing the k-mers arising from each haplotype’s amplicon 26 
sequence to a reference database. The VAE step is required to distinguish between closely 27 
related species, and also has sufficient resolution to reveal population structure within species. 28 
In tests on independent samples with over 80% amplicon coverage, NNoVAE correctly 29 
classifies to species level 98% of samples within the An. gambiae complex and 89% of samples 30 
outside the complex. We apply NNoVAE to over two thousand new samples from Burkina Faso 31 
and Gabon, identifying unexpected species in Gabon. NNoVAE presents an approach that may 32 
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be of value to other targeted sequencing panels, and is a method that will be used to survey 33 
Anopheles species diversity and Plasmodium transmission patterns through space and time on 34 
a large scale, with plans to analyse half a million mosquitoes in the next five years.  35 

Introduction 36 

The Anopheles genus contains dozens of mosquito species that are the vectors for the 37 
Plasmodium parasites which cause human malaria, and are thus of global public health interest. 38 
The genus contains nearly 500 formally described species (Harbach and Kitching 2016), which 39 
span more than 100 million years of evolution (Marinotti et al. 2013). Only a subset of these 40 
species has the ability to transmit human malaria; however this vectorial capacity is not limited 41 
to a specific part of the species tree, but found throughout the genus phylogeny. Many species 42 
are members of closely related species complexes or groups, which are morphologically 43 
indistinguishable and share large amounts of genetic variation due to their ability to hybridise in 44 
areas of sympatry (Anopheles gambiae 1000 Genomes Consortium et al. 2017; Harbach and 45 
Kitching 2016). Accurate species identification of Anopheles mosquitoes is difficult yet of crucial 46 
importance. This is because even closely related species may differ in vectorial capacity, 47 
insecticide resistance status and behavioural traits, all of which can influence the efficacy of 48 
malaria control efforts (White, Collins, and Besansky 2011). Novel control efforts like gene drive 49 
are likely to be implemented this decade for An. gambiae, and the success of these efforts will 50 
need to be closely monitored. A thorough understanding of the geographic and temporal 51 
distribution of different Anopheles species and the potential extent of gene flow between 52 
species within the same complex is a necessary condition to implement gene drive technology 53 
as a malaria control tool.    54 

Currently, the typical process of species identification for Anopheles mosquitoes starts by 55 
assigning them to species complexes or groups using morphological keys (Gillies and De 56 
Meillon 1968; Gillies and Coetzee 1987; Rattanarithikul and Panthusiri 1994; Coetzee 2020; 57 
Irish et al. 2020). These morphological keys are usually specific to geographical regions and 58 
hence require in-depth and up-to-date knowledge of the species ranges. Moreover, the keys are 59 
specific to certain life-stages and may require one to grow larvae to a later stage or even 60 
adulthood. Because the morphological features distinguishing one group of species from 61 
another can be very nuanced, the accuracy of morphological classification depends on the level 62 
of experience and expertise of the person carrying out the identification. Species inside species 63 
complexes can be morphologically indistinguishable from each other at the adult stage and 64 
hence molecular assays are required for precise species identification. The most commonly 65 
used method is a PCR-based species diagnostic assay, targeting the highly variable internal 66 
transcribed spacer (ITS2) or similarly variable genomic regions (Cohuet et al. 2003; Scott, 67 
Brogdon, and Collins 1993; Fanello, Santolamazza, and della Torre 2002; Wilkins, Howell, and 68 
Benedict 2006), although other approaches exist, for example based on mass spectrometry 69 
(Nabet et al. 2021). The PCR assays require the use of primers specific to the species complex 70 
or group, hence higher level morphological misclassification can lead to failure to generate PCR 71 
product or even erroneous species classification (Erlank, Koekemoer, and Coetzee 2018). 72 
Mutations in primer or restriction sites can also lead to PCR failures. Moreover, in the case of 73 
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hybrids or cryptic species, species identification based on a single marker can result in 74 
overconfident assignment to a single species, lacking the nuance that is desirable in this case. 75 
There exist panels targeting multiple loci, however, these are also specifically designed to work 76 
on a single species complex (Rongnoparut et al. 1996; Lanzaro et al. 1995; Wang-Sattler et al. 77 
2007; Santolamazza et al. 2008). 78 

To help overcome these challenges, a multilocus amplicon panel called ANOSPP (for 79 
“ANOpheles SPecies and Plasmodium”) was previously designed to amplify loci from any 80 
individual from any Anopheline species (Makunin et al. 2022). In brief, the panel targets 62 loci 81 
in the generic Anopheles nuclear genome, spread over all chromosome arms, including exonic, 82 
intronic as well as intergenic regions. Additionally, it targets two conserved loci on the generic 83 
Plasmodium mitochondrial genome, to simultaneously evaluate Plasmodium presence and 84 
species for each individual mosquito. Sequence data from up to 62 nuclear loci targeted by the 85 
ANOSPP panel for each sequenced specimen increases the resolution to distinguish closely 86 
related species, and to flag potential hybrid or contaminated samples as well as cryptic species. 87 
Moreover, the multilocus approach opens the possibility of population genetic and structure 88 
analyses for single or closely related species.  89 

The ANOSPP panel has been developed to improve accuracy and depth of information as well 90 
as to drive down costs and time required to carry out vector species surveillance (Makunin et al. 91 
2022). Accordingly, all that is required is to identify the individual mosquito as an Anopheline (as 92 
opposed to a Culicine), which requires minimal expertise as it is based on the length of the 93 
maxillary palps. Furthermore, the panel can use an extremely small aliquot of DNA (<1% of 94 
whole mosquito extraction) extracted from each mosquito using a cheap, nondestructive, high-95 
throughput workflow (Makunin et al. 2022). Each mosquito is stored in the well of a 96 well plate 96 
in ethanol, the non-destructive lysis buffer is added, incubated overnight, and then removed. 97 
Ethanol is then added again to the mosquito carcass to preserve the mosquito and enable 98 
morphological evaluation  of any individual post-sequencing. A dilution of the lysate is made, 99 
which is then PCR amplified with a cocktail of 64 primer pairs in a single well through a two-step 100 
process (Makunin et al. 2022). A single Illumina library is generated containing amplified and 101 
bar-coded material pooled from 768 samples, then sequenced on a single Illumina MiSeq lane. 102 

The ANOSPP panel originally used a species assignment method based on alignment 103 
distances, using static sequence similarity thresholds fitted per target (Makunin et al. 2022). 104 
Using this method, amplicons contain sufficient information to distinguish between the majority 105 
of the 56 species represented in the original dataset; only samples within some species 106 
complexes could not be accurately assigned. However, this method was only tested on a small 107 
dataset and the test set was also used as the training set to form the haplotype clusters. 108 
Additionally, some targets were extremely divergent between different groups of samples in the 109 
dataset and the distances for these targets appear to be sensitive to the choice of alignment 110 
algorithm. Here we present a new species assignment method that we call NNoVAE, which is a 111 
k-mer based method consisting of an initial step using Nearest Neighbours (NN) that identifies 112 
samples down to a species or, in some cases, a species complex, and a second step using a 113 
Variational Autoencoder (VAE) for species identification within a species complex. The VAE in 114 
the second step is specifically trained on the species complex to which test samples get 115 
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assigned by the NN step. The complex-specific VAE is required because the similarity between 116 
closely related species is too close to detect with a general purpose method like the NN step. 117 
Both assignment steps in NNoVAE work on the same k-mer tables. 118 

NCBI GenBank’s BLAST (Altschul et al. 1997) can be used to assess the similarity of any 119 
sequence to those within any INSDC database such as NCBI GenBank (Benson et al. 2018). 120 
BLAST works on a single query at a time, and does not assign species directly, but rather 121 
reports the best hits of the query sequence alongside p-values based on the alignment score 122 
corrected for the size of the database. Similarly, the standard search methods for BOLD 123 
(Ratnasingham and Hebert 2007) performs species assignment based on a threshold of percent 124 
identity between the test sample and the samples in the reference database. The threshold is 125 
informed by extensive knowledge of the divergence of the single marker cytochrome oxidase 126 
subunit I (COI) between different species. In addition, the BOLD analysis toolkit contains a NN 127 
method to explore the relationship between multiple species in the database. Like BLAST and 128 
the BOLD toolkit, the NN step of NNoVAE uses sequence-based distances between the 129 
haplotypes of test samples and samples in a reference database; however this is performed 130 
across all amplicons and uses k-mer distances instead of alignments. By using k-mers, we 131 
avoid the issues associated with alignment of highly divergent sequences and moreover are 132 
able in a natural way to use short indels and small structural variants as well as SNPs. NNoVAE 133 
aims to assign species identity and simultaneously collect information about the relationship of 134 
the test sample to different species or species-groups in the database, which is particularly 135 
useful when the test sample is of a species not represented in the database. Moreover, 136 
NNoVAE combines the information from the 62 different target regions in ANOSPP to build 137 
confidence in the species assignments, or reflect uncertainty in the species assignments where 138 
appropriate.  139 

NNoVAE resolves species identity within the An. gambiae complex using a VAE trained on 140 
samples from this complex. A variational autoencoder is a machine learning method that learns 141 
structure in high-dimensional data by encoding it into a low-dimensional space and 142 
subsequently generating simulated data from the low-dimensional encodings (Kingma and 143 
Welling 2013). VAEs have previously been used for species delineation in spiders 144 
(Derkarabetian et al. 2019) and visualisation of population structure in Anopheles and humans 145 
(Battey, Coffing, and Kern 2021). Both these studies used sequence alignments containing 146 
much more genomic sequence than the amplicon panel provides. In contrast, NNoVAE is k-mer 147 
based, making it robust to alignment ambiguity and enabling it to efficiently make use of all the 148 
available sequencing data. 149 

With the application of the NNoVAE method to data resulting from the ANOSPP panel, we aim 150 
to create a robust and efficient platform for molecular species identification within the entire 151 
Anopheles genus. We present a method that can assign individuals to any of the 62 species 152 
currently represented in the reference database as well as taxonomically place species not yet 153 
represented. We will include more samples from more species in the reference database as 154 
they are sequenced by the amplicon panel, so as to represent the full diversity of the Anopheles 155 
genus. NNoVAE also indicates the uncertainty of the assignment and provides information on 156 
other closely related species in the dataset, so in particular can flag potential hybrids. It can also 157 
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be applied to whole genome shotgun (WGS) data by computationally extracting the amplicon 158 
target regions, allowing to integrate WGS reference panels with amplicon-sequenced field 159 
samples. 160 

Results 161 

Reference database construction 162 

Species assignment methods commonly work by comparing a query sequence to a reference 163 
database (Ratnasingham and Hebert 2007; Benson et al. 2018). The completeness and quality 164 
of the reference database heavily influence the accuracy of the assignment method. The 165 
reference database we constructed consists of well-curated samples sequenced with the panel, 166 
in silico extracted reference genomes, and in silico extracted whole genome short read data. As 167 
we expect that the reference database will expand to include additional species and populations 168 
over time, we assign a version number to the database. The reference database described 169 
here, which we call NNv1, contains 186 samples, representing 62 species spread over 4 170 
subgenera. The dataset from (Makunin et al. 2022) forms the backbone of the reference panel. 171 
In addition, six species in the An. gambiae complex have been included from publicly available 172 
whole genome data (The Anopheles gambiae 1000 Genomes Consortium 2021; Fontaine et al. 173 
2015) in order to increase the resolution in a group of hard to distinguish species. To maintain 174 
the advantages of multi-locus assignment, we required samples to have at least 10 targets 175 
amplified to be included in the reference database. Ideally, the database would contain several 176 
specimens per species to represent within species variation. This is particularly important for 177 
species with a wide geographical range. 178 

The amplicon panel is designed to improve accuracy of species assignments over 179 
morphological or single-marker methods. However, the species labels supplied by our sample 180 
partners were in most cases obtained by the latter methods, hence it was necessary to 181 
reconfirm them. All label information for the reference database NNv1 is listed in Supplementary 182 
file 1, and the assignment of species labels is discussed in more detail in Appendix 1, but we 183 
present an outline of the principles we used here. For most samples sequenced by the amplicon 184 
panel, two molecular barcodes (COI and ITS2) were also sequenced and compared to the 185 
sequences available in BOLD (Ratnasingham and Hebert 2007) and NCBI (Benson et al. 2018). 186 
Here, we used the barcode information as well as the pairwise k-mer distances between 187 
samples in the reference database NNv1 to generate a consensus species label for each 188 
sample. A few samples show inconsistencies between their partner labels, molecular barcodes 189 
and amplicon assignments; these samples were also removed or flagged as overly diverged in 190 
Makunin et al. (2022). For these samples the distances to samples of the same species label is 191 
much larger than the distance to some other samples in the database, suggesting they were 192 
mislabelled. In some cases there is additional evidence from molecular barcodes and it was 193 
possible to relabel them to the species they match. Other samples are clearly different from 194 
samples with the same species label, but do not clearly belong to any other species in the 195 
database. These are labelled as the species-group they belong to appended by ‘_sp1’, ‘_sp2’, 196 
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etc. Hopefully, by extending the reference database in the future, we can get a better 197 
understanding of which species such samples represent. For some closely related species, the 198 
different species labels were supported neither by the pairwise-distances nor by the barcodes. 199 
Samples from these species are assigned to a group of closely related species and their 200 
consensus labels end in ‘_c’ to notify that they are part of a complex of species that cannot be 201 
distinguished by the nearest neighbour method. None of the in silico extracted samples showed 202 
inconsistencies with pair-wise k-mer distances and hence all retained their published labels. 203 

Species-groups construction 204 

The species-groups are defined based on the pairwise k-mer distances between samples in the 205 
reference database NNv1 and make use of the consensus species labels discussed above. The 206 
k-mer distance between two samples, s1 and s2, is defined as 207 𝑑௦,௞(𝑠ଵ,  𝑠ଶ) = ଵ| భ்∩ మ்| ∑௧∈ భ்∩ మ் ∑௤భ∈ொభ,೟ ∑௤మ∈ொమ,೟ ௗೖ(௤భ,௤మ)หொభ,೟หหொమ,೟ห, where Ti  is the set of targets 208 

amplified in sample i and Qi,t is the set of unique haplotypes of sample i at target t and by |S| we 209 
mean the number of elements in set S. So in words, for a given target the k-mer distance 210 
between two samples is the mean k-mer distance between all pairs of haplotypes from the two 211 
samples; e.g. if sample s1 is homozygous and s2 heterozygous at target t, then the k-mer 212 
distance at target t between these samples is the mean of the k-mer distance of the haplotype 213 
from s1 compared to the first haplotype from s2 and the k-mer distance of the haplotype from s1 214 
compared to the second haplotype from s2. If a sample has more than two alleles at a single 215 
target, we take into account all haplotypes according to the above definition. The k-mer distance 216 
between two samples is defined as the average of the k-mer distance between these samples 217 
at all the targets that were amplified in both samples. 218 
 219 
Figure 1 shows the pairwise k-mer distances between all samples in the reference database. 220 
The samples are ordered roughly by phylogeny (as in the tree in Figure 2) and this results in a 221 
visible structure in the distance plot. One can observe dark triangles below the diagonal, 222 
reflecting that samples of the same or closely related species have a smaller 8-mer distance to 223 
each other than to other samples. This effect repeats itself on different scales, mirroring the 224 
multi-level structure in the phylogenetic tree. 225 
 226 
 227 
Figure 1: Lower triangle: heatmap of 8-mer distances between pairs of samples in the reference database. Samples 228 
are on the x- and y-axis, roughly ordered by phylogeny and labelled with their consensus species label. Dark colours 229 
correspond to small 8-mer distances and light colours to larger 8-mer distances. Upper triangle: species-groups at 230 
fine, intermediate and coarse levels (see main text for definitions of these). 231 
 232 
Figure 1 - figure supplement 1: Thresholds used to define species-groups. From top to bottom, the thresholds are 233 
0.1, 0.3 and 0.51 and they are used to define the fine, intermediate, and coarse level species groups, respectively. 234 
The samples from the reference database are along the x- and y-axis in the same order as in Figure 1. The entries in 235 
the heatmap are coloured peach if the 8-mer distance between the corresponding samples is less than the threshold 236 
and black if it is greater or equal the threshold. The orange squares in all three panels correspond to fine level 237 
species-groups, the yellow squares in the middle and lower panel to intermediate level species-groups and the olive 238 
squares in the lower panel to coarse level species-groups. 239 
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 240 
 241 
We identify clusters of samples in the reference database NNv1 and we will refer to those as 242 
species-groups. It is important to emphasise that the way we use the term ‘species-groups’ 243 
does not refer to a taxonomic classification, but to the clusters of samples defined by thresholds 244 
on the 8-mer distances between samples. Ideally, a threshold would partition the samples in the 245 
reference database NNv1 into species-groups, such that the 8-mer distance between each pair 246 
of samples within the group is smaller than the threshold and the 8-mer distance from any 247 
sample within the group to any sample outside the group is larger than the threshold. The 248 
motivating assumption is that the samples in the same species-group share more recent 249 
ancestry with each other than with samples that are members of different species-groups. While 250 
several thresholds satisfy the partitioning condition, they are most useful for the purpose of 251 
species classification when they generate species-groups that (approximately) correspond to 252 
classification at an established taxonomic level. Not surprisingly, there are no thresholds that 253 
perfectly satisfy the partitioning condition and are completely concordant with current taxonomy, 254 
but several thresholds give groups that are close to taxonomic entities and given the paucity of 255 
molecular data for some of these species, it may be that the taxonomic entities are less 256 
phylogenetically accurate than the k-mer based groupings. In exploring different thresholds 257 
(Figure 1 - figure supplement 1), we selected three levels that best matched described 258 
taxonomic entities. The species-groups at each of the threshold levels we’ve selected are listed 259 
in Supplementary file 1. 260 
 261 
For very low thresholds, each sample will form its own species-group, which is not informative. 262 
For a threshold of 0.1 on the sample 8-mer distance, most species-groups satisfy or nearly 263 
satisfy the partitioning condition, and each species-group contains a single species or multiple 264 
species from a known species complex or group, e.g. An. gambiae and An. coluzzii form a fine-265 
level species-group together. We refer to the species-groups at the 0.1 level as the fine level 266 
species-groups and they are most useful for species assignment, because they provide the 267 
highest resolution. A threshold of 0.3 merges samples representing species from some well-268 
known complexes, like the entire An. gambiae complex, into a single species-group. Similarly, 269 
many of the species for which we currently only have a single representative in the reference 270 
database NNv1, are merged into larger species-groups. We refer to this level of species-groups 271 
as the intermediate level, which provides insight into the degree of similarity between different 272 
fine level species-groups. Additionally, the intermediate level species-groups can be informative 273 
when we sequence a sample whose species is not represented in the database because the 274 
species assignment at the intermediate level places the sample within its most closely related 275 
species-group in the database. Thresholds higher than 0.3 tend to violate the partitioning 276 
condition to a greater extent, but it is desirable to include a coarse level classification to get an 277 
approximate taxonomic position of unrepresented species and of more diverged species. We 278 
selected 0.51 as a threshold for the coarse level classification because this gives reasonably 279 
clear species-groups that roughly correspond to taxonomic series. However, it is not perfect, as 280 
it groups together the Myzomyia and Neocellia series in the Cellia subgenus and it splits the 281 
Neomyzomyia series into three distinct species-groups. A similar effect was observed in 282 
Makunin et al. (2022), where the Neomyzomyia series did not form a monophyletic clade. 283 
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 284 
At the fine level, most species-groups contain all samples from a single species, but there are 285 
some exceptions. For some species, e.g. An. nili and An. hyrcanus, the samples are split into 286 
multiple fine-level species-groups, because they appear much more distinct from each other 287 
than you would expect in a single species (see Appendix 1 and Figure 1 - figure supplement 1 288 
for more detailed discussion). In our assignment, these will be treated as distinct species, 289 
highlighting to entomologists and taxonomists that further work to refine species in these groups 290 
is needed. Conversely, there are also species-groups that contain samples from multiple 291 
different species. These do not represent a single species, but instead they represent a complex 292 
of closely related species. Species inside species complexes often share a lot of genetic 293 
variation and the k-mer distance based method that we discuss here does not have sufficient 294 
resolution to reliably distinguish between them. The species-groups at the fine level that contain 295 
more than a single species are the An. marshallii group (contains An. hancocki, An. brohieri and 296 
An. demeilloni), An. gambiae/coluzzii, the An. sundaicus complex (contains An. sundaicus and 297 
An. epiroticus) and the An. coustani group (contains An. coustani, An. ziemanni, An. tenebrosus 298 
and An. paludis). 299 

Nearest neighbour assignment 300 

The first step of the hierarchical assignment method performs nearest neighbour assignments to 301 
samples in the reference database at the three different levels of species-groups introduced 302 
above. The assignment is initially done independently at each target, for each sample, 303 
computing assignment proportions for the species-groups at the chosen level, normalised such 304 
that they sum up to one over all species-groups. The resulting per-target assignment 305 
proportions are then averaged over all targets, resulting in the overall sample assignment 306 
proportions at the chosen level. If the sample assignment proportion is at least 0.8 for one 307 
species-group, the sample is classified as a member of that group. If the classification threshold 308 
of 0.8 is not met at the chosen level, the sample remains unassigned at that level. 309 
 310 
For example, to assign a sample s at the coarse level, we translate its target sequence 311 
corresponding to target 1 to an 8-mer count table, denoted as qs,1. Next, we compute its 8-mer 312 
distance, 𝑑଼൫𝑞௦,ଵ, 𝑞௥,ଵ൯,  to every target sequence in the reference database corresponding to 313 
target 1, i.e. to every 𝑞௥,ଵ. The nearest neighbours of the test sequence qs,1 are those 314 
sequences in the database that minimise the 8-mer distance between themselves and qs,1. In 315 
other words, the nearest neighbour sequences of qs,1 are the target 1 sequences in the 316 
database with the highest percentage of matching 8-mers. The nearest neighbour sequence of 317 
qs,1 can be a sequence that occurs in a single sample in the reference database, or the nearest 318 
neighbour sequences can be the same sequence occurring in multiple samples in the database, 319 
or the nearest neighbour sequences can be distinct sequences that have the same distance to 320 
qs,1. 321 
 322 
Now we bring in the species-groups. For each species-group we record the frequency of 323 
nearest neighbour sequences. This can be thought of as an ‘allele-frequency’ when we classify 324 
each target sequence as either a ‘nearest neighbour allele’ or not a ‘nearest neighbour allele’. 325 
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But just like allele frequency, it takes into account the zygosity of the samples. The nearest 326 
neighbour frequencies are normalised, such that they are equal to one when summed over all 327 
species-groups. These quantities are the per-target assignment proportions.  328 
 329 
This procedure is repeated for every amplified target in the test sample. Finally the per-target 330 
assignment proportions are averaged over all successfully amplified targets to give the overall 331 
assignment proportions for sample s at the coarse level. If there is a species-group with an 332 
assignment proportion of at least 0.8, the sample is classified as a member of this group, 333 
otherwise it remains unassigned at this level. Assignments to the intermediate and fine levels 334 
are made in the same fashion, starting from the same nearest neighbour assignments, but 335 
based on the relevant species-group memberships.  336 
 337 
The per-target assignment proportions are based on the frequency of nearest neighbour 338 
sequences in the species-groups and not simply on the count of nearest neighbour sequences. 339 
The use of frequencies corrects for the different sizes of the species-groups. Suppose a nearest 340 
neighbour sequence occurs in 2 out of 10 samples of species-group A and in 1 out of 2 samples 341 
in species-group B (and assume all samples are homozygous). By using counts, we would 342 
attribute 2/(2+1) = 0.67 and 1/(2+1) = 0.33 assignment proportion to species-group A and B, 343 
respectively. But if we did this, species-group A would only have a higher assignment proportion 344 
because it contains more samples. What we are really interested in, is how similar the target 345 
sequence of the test sample is to the target sequences in the species-groups. So by using the 346 
nearest neighbour frequencies, the assignment proportions are (2/10)/(2/10+1/2) = 0.29 and 347 
(1/2)/(2/10+1/2) = 0.71 for species-group A and B, respectively. 348 
 349 
The nearest neighbour frequencies observed for a given target of a given sample at a given 350 
assignment level are normalised to obtain the per-target assignment proportions. This 351 
normalisation ensures that every target is weighted equally. Without the normalisation, the 352 
weight of a target would be determined by a combination of the overall frequency of the nearest 353 
neighbour sequences and their distribution amongst the species-groups, whilst we are more 354 
interested in the distribution than the total frequency.  355 
 356 
Targets that did not amplify in the sample are simply ignored. There are different reasons why a 357 
certain target does not get amplified in a sample. It might be that the primer binding sites for the 358 
target are too diverged or altogether absent in the test sample’s genome. Or the target might not 359 
be amplified due to technical reasons like poor DNA quality. In the former case, we are implicitly 360 
using the information contained in the missingness, because we restrict our attention to the 361 
targets that did amplify in the sample, which should be the same targets that amplified in the 362 
samples of the same species contained in the reference database. In the latter case, as long as 363 
the missingness is randomly affecting the targets, ignoring missing targets does not bias the 364 
assignment proportions. 365 
 366 
So far we have assumed that the test sample was homozygous at each target. To generalise to 367 
the heterozygous case, we compute the per-target assignment proportions separately for both 368 
target sequences and average them for the final per-target assignment proportions. It does 369 
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occasionally happen that a sample has more than two different target sequences. This can be 370 
due to errors in the PCR amplification or sequencing, contamination by other samples, or a 371 
certain target region might be duplicated in the genome of some species. In the NNv1 reference 372 
database on average 1.2% of targets per sample have more than two different sequences; in 373 
the query datasets discussed later in this article this percentage ranged from 0.3% to 2.3%. We 374 
deemed this small enough to simply extend the per-target assignment proportion computation to 375 
include targets with more than two different sequences, by taking the average assignment 376 
proportions over different sequences as for the heterozygous case. 377 
 378 
Figure 2 shows two examples of the nearest neighbour assignment of a test sample. The test  379 
samples are Amou-3-2 and Agam-35, an An. moucheti and An. gambiae individual, 380 
respectively. For Amou-3-2 we see that for most targets, the nearest neighbour sequence is 381 
found in all four An. moucheti samples in the reference database NNv1. For some targets, the 382 
nearest neighbour sequence is only carried by a subset of the An. moucheti samples in the 383 
database, whilst for other targets the nearest neighbour sequence is also carried by individuals 384 
of other species. For Agam-35 the heatmap shows that, for many targets, the nearest neighbour 385 
sequences are not only found in An_gambiae_coluzzii samples, but also in samples from other 386 
species in the An. gambiae complex. There are only two matches to samples outside the 387 
Pyretophorus series, not shown here. This results in a high-confidence assignment to the 388 
Pyretophorus series at the coarse level as well as a high-confidence assignment to the An. 389 
gambiae complex at the intermediate level. At the fine level, the largest assignment proportion is 390 
to the An_gambiae_coluzzii species-group, but it does not meet the 0.8 classification threshold 391 
because of the relatively high assignment proportions to other species-groups within the An. 392 
gambiae complex. So at the fine level, this sample cannot be classified with sufficient 393 
confidence to a single species. Later, we will present a method to resolve the species identities 394 
of samples within the An. gambiae complex. 395 
 396 
 397 
Figure 2: Nearest neighbour assignment example. Left panel: The heatmap shows the nearest neighbours of 398 
sample Amou-2-3, an An. moucheti specimen, at its different targets. For clarity, not all samples in the reference 399 
database have been displayed, only those in the Myzomyia and Neocellia series (except Amou-2-3). The samples 400 
from the reference database are arranged along the x-axis and the targets along the y-axis. An entry is coloured pink 401 
if the corresponding sample from the reference database has a nearest neighbour sequence at the corresponding 402 
target. Peach entries indicate that the corresponding sample from the reference database does not carry a nearest 403 
neighbour sequence at the corresponding target. If either the test sample or the reference sample did not amplify at 404 
the corresponding target, the entry is white. The bars at the bottom show the overall assignment proportions for the 405 
displayed species-groups, only assignment proportions of at least 1% are shown. From top to bottom the assignment 406 
proportions are for the fine, intermediate and coarse level. For the three-letter code abbreviations of species-groups, 407 
see Supplementary file 1. The numeric abbreviations stand for 1: An. marshallii complex sp1, 2: Myzomyia sp1, 3: 408 
An. gabonensis, 4: An. culicifacies, 5: An. maculatus B; none of these species-groups represent more than 1% of the 409 
assignment. Right panel: The heatmap showing the nearest neighbours of sample Agam-35, an An. gambiae 410 
specimen. Not all samples in the reference database are displayed, only those in the Pyretophorus series (except 411 
Agam-35) as well as five samples from the Neocellia series. The numeric abbreviations stand for 6: An. gambiae 412 
complex sp1 (0.06 assignment proportion), 7: An. christyi and MNs stands for Myzomyia_Neocellia_series. 413 
 414 
The species-group assignment has been tested on the reference database itself, by dropping 415 
out one sample at a time. The majority of samples could be assigned to the correct species-416 
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group at the fine level when using a threshold of 0.8 assignment proportion, see Figure 3, 417 
Figure 3 - figure supplement 1 and Supplementary files 2-4. To provide context, we have 418 
included a phylogenetic tree constructed from pairwise 8-mer distances using FastME (Lefort, 419 
Desper, and Gascuel 2015) and displayed using TreeViewer (Bianchini, n.d.). If we ignore the 420 
samples that form a species-group on their own, because we do not yet have sufficient 421 
representation for those species, 61.8% of samples are assigned correctly at the fine level, and 422 
98.8% and 100% at the intermediate and coarse level respectively. In most cases, the fine level 423 
species-groups consist of a single species, although in some cases they comprise multiple 424 
species. The jump in assignment success from the fine to the intermediate level is mostly 425 
caused by the An. gambiae complex, which is well-represented in the reference database. Most 426 
samples within the complex can be assigned to the correct fine level species-group to some 427 
extent, but they only meet the assignment threshold at the intermediate level species-group 428 
assignment, where all samples in the An. gambiae complex are grouped together. This effect is 429 
seen in a few other groups as well, and motivates the VAE part of our assignment procedure 430 
(described below). 431 
 432 
 433 
Figure 3: Species-group assignment accuracy on reference database NNv1. Samples were dropped out of the 434 
database one at a time to test the assignment accuracy. Left: phylogenetic tree of the samples in the reference 435 
database NNv1 constructed from pairwise 8-mer distances using fastme. Samples are labelled by their fine level 436 
species-group label. Dark-shaded clades are instances of species-groups that contain more than one species. Right: 437 
Samples are placed along the vertical axis, ordered by the species tree. The bars represent the assignment 438 
proportion to the correct species-group and the colours indicate the species-group level. As an example, the first 439 
sample is assigned to the correct species-group with a proportion of 0.88 at the fine level, with a proportion of 0.91 at 440 
the intermediate level and with a proportion of 0.99 at the coarse level. The thin horizontal lines indicate the different 441 
species-groups at the fine level and the thick horizontal lines at the coarse level. The separation of the species-442 
groups at the intermediate level has not been displayed for clarity. The vertical line represents the assignment 443 
threshold of 0.8. 444 
 445 
Figure 3 - figure supplement 1: Species-group assignment proportions. From top to bottom at the coarse, 446 
intermediate and fine level. Samples are ordered along the x-axis in the same order as the tree in figure 3. For each 447 
sample, the overall assignment proportions are plotted as a bar, with colours indicating the species-groups. A sample 448 
has to have an assignment proportion of at least 0.8 for a certain species-group to be classified as a member of that 449 
species-group, else it remains unassigned. Vertical bars separate the different species-groups. The horizontal bar 450 
represents the 0.8 assignment threshold (but note that the assignment proportions are plotted in the same order for 451 
every sample, not from largest to smallest). 452 
 453 
For the same group of samples, the average correct assignment proportion per sample at the 454 
coarse level is 99.4%. This shows that for samples of species that are well-represented in the 455 
reference database, there is a near perfect assignment at the coarse level. And in fact, the 456 
average correct assignment proportion of 95.8% at the intermediate level shows that these 457 
assignments are also generally with high confidence. At the fine level the confidence starts to 458 
break down for some samples, in particular the An. gambiae complex, which is responsible for 459 
many samples in the reference database. Then the average correct assignment per sample is 460 
81.3%. This shows that an additional classification method for species complexes is desirable. 461 
 462 
In NNv1, 21 species-groups at the fine level consist of a single sample. These cannot be 463 
assigned to the correct species-group in the drop-out assignment experiment. 12 of these 464 
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samples are members of a larger species-group at the intermediate level and 11 of them can be 465 
assigned at the intermediate level, the other sample is not assigned at the intermediate, nor at 466 
the coarse level. The remaining nine samples only become a member of a larger species group 467 
at the coarse level. Six of them can be classified at this level, the other three remain 468 
unclassified. 469 
 470 
The four unclassified samples are An. christyi, An. atroparvus, An. oryzalimnetes and An. cruzii. 471 
All of these are quite diverged from everything else in the reference database and as such do 472 
not exhibit a strong matching to any of the coarse level species-groups. In particular, the 473 
Kerteszia and Nyssorhynchus subgenus are underrepresented, both in number of species and 474 
number of samples, but also the basal species in for instance the Pyretophorus series are not 475 
well represented and are too diverged from the other species in this series to exhibit strong 476 
similarity to the other samples from this series. In the case of An. cruzii in the Kerteszia 477 
subgenus it is actually impossible to assign it to its coarse level species group with the current 478 
threshold of 0.8, because of its 26 amplified targets, only 15 are also amplified in the single 479 
other sample in the reference database from the Kerteszia subgenus, which results in a 480 
theoretical maximum assignment to the correct species-group of 0.58. Note, this is the only 481 
species-group at the coarse level for which the theoretical maximum correct assignment for a 482 
sample in the reference database is smaller than the threshold. But it again underlines the 483 
necessity to extend the reference database, both in number of species and number of samples 484 
per species. 485 
 486 
When a sample is of a species not represented in the reference database, three things can 487 
happen. If its species is much more closely related to a single species in the database than to 488 
all the others, it will likely be assigned to the species it is related to. Alternatively, if the database 489 
contains multiple closely related species, it will be assigned at a higher level to the group that 490 
contains all these closely related species. If the sample is highly diverged from all species 491 
represented in the database, its nearest neighbours will essentially be chosen at random, and 492 
the assignment threshold will not be met. This emphasises the importance of extending the 493 
reference database, both by increasing the number of species represented and by increasing 494 
the number of samples per species, with a particular focus on capturing the within-species 495 
diversity (e.g. representing the geographic species range, representing all karyotypes when 496 
polymorphic chromosomal inversions are present). 497 
 498 
The species-groups with a single representative can be used to explore the three possible 499 
scenarios for when the test sample belongs to a species not present in the reference database: 500 
assignment to a closely related species, assignment to a group of species at the intermediate or 501 
coarse level, or no assignment. 502 
 503 
The first scenario is represented by An.bellator. The only other representative of the Kerteszia 504 
subgenus in our reference dataset is a sample representing An. cruzii. At the fine level species-505 
groups, the An. bellator sample is assigned for 0.875 to An. cruzii and hence meets the 506 
threshold to be classified at the fine level. So it can happen that a sample is classified to the 507 
wrong species, if this species is the only reasonably close species in the database. This 508 
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scenario is more likely for diverged groups of species with little representation in the database, 509 
for example the Nyssorhynchus and Kerteszia subgenera.  510 
 511 
An example of the second scenario is the sample Amar-3-1, in the Myzomyia series. At the fine 512 
level it has an assignment proportion of 0.474 to the An_marshallii_complex and 0.378 to the 513 
An. theileri species-group. All other species-groups have an assignment proportion of less than 514 
0.06. So this sample is more related to these two species-groups than to anything else in the 515 
reference database, but it does not belong to either of them. At the intermediate level it has an 516 
assignment proportion of 0.850 to the An_marshallii_group species-group, which is the 517 
An_marshallii_complex and An. theileri species-group combined. Now it meets the threshold 518 
and it will be classified as a member of the An_marshallii_group species-group. 519 
 520 
An. christyi is an example of a sufficiently diverged sample that does not reach high assignment 521 
proportions for a single species-group at any level. At the coarse level, it is assigned to the 522 
Pyretophorus_series with 0.506 and the Myzomyia_Neocellia_series with 0.392 and other 523 
species-groups have much lower assignment proportions. Hence, it is not possible to classify 524 
this sample as a member of any species-group. Adding more samples from this and other 525 
underrepresented species to the database, would increase its power to classify samples from 526 
those species. 527 

Gambiae complex classifier datasets 528 

The nearest neighbour approach is not able to confidently distinguish between closely related 529 
species that share a lot of genetic variation, but it does identify samples of those species as 530 
members of a species complex at the intermediate assignment level. To resolve the species 531 
identity inside these species complexes, we use a variational autoencoder approach specifically 532 
trained for the complex under consideration. We demonstrate this method for the An. gambiae 533 
complex, both because many of our samples fall within this complex and it is medically relevant 534 
to be able to distinguish them, and also more practically, because we have access to a large 535 
dataset of species-labelled samples. The classifier we present here contains 7 out of 8 formally 536 
named species in the complex (Coetzee et al. 2013), as well as two putative cryptic species 537 
(Tennessen et al. 2021; Barrón et al. 2019). Compared to NNv1, three additional species are 538 
represented in this classifier to present as much of the diversity of the An. gambiae complex as 539 
possible. We expect that this method can be applied to other species complexes for which large 540 
species-labelled datasets are available. 541 
 542 
The An. gambiae complex classifier has been constructed using a training set (GCref v1) and a 543 
validation set (GCval v1) of species-labelled samples. We included as many described species 544 
in the An. gambiae complex as we could find or generate sequence data for. For species with 545 
wide geographic ranges and a large amount of genomic data available, we also aimed to 546 
represent the diverse geography where possible. 547 

Both GCref v1 and GCval v1 consist of amplicon sequences and in silico extracted published 548 
samples (Fontaine et al. 2015; Neafsey et al. 2015; Tennessen et al. 2021; The Anopheles 549 
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gambiae 1000 Genomes Consortium 2021). The samples from Nigeria and Madagascar were 550 
not species-labelled, but they were unambiguously classified by an earlier version of this 551 
classifier and we included these samples because Nigeria and Madagascar fill geographic gaps 552 
in our sampling dataset. The species represented in GCref v1 are An. gambiae (406), An. 553 
coluzzii (222), An. arabiensis (94), An. quadriannulatus (11), An. melas (3), An.merus (6), An. 554 
bwambae (3), An. tengrela (38) and putatively An. fontenillei (4). These samples are generally 555 
high coverage: 97% of samples have at least 55 of 62 targets amplified. The average number of 556 
targets tends to be lower for the samples representing species other than An. gambiae, An. 557 
coluzzii or An. arabiensis, which are also those species represented by fewer samples, but the 558 
geographic ranges of these other species are also much more restricted so the samples we do 559 
have are likely good representatives of the species. The species represented in GCval v1 are 560 
An. gambiae (80), An. coluzzii (15), An. arabiensis (30), An. melas (1), An. merus (5) and An. 561 
tengrela (12). The average number of amplicons for the species other than An. gambiae, An. 562 
coluzzii or An. arabiensis is lower than in GCref v1 set. Given that for those species, there is 563 
only a small number of samples available, we decided to use ones with at least 45 targets 564 
amplified in GCref v1 and the ones with at least 30 targets in GCval v1. Sample information for 565 
these datasets can be found in Supplementary files 5 and 6. 566 
 567 
The input for the VAE is one 8-mer count table per sample, summed over all targets. If a test 568 
sample is heterozygous at a given target, we translate each of its haplotypes to an 8-mer count 569 
table and sum them to get the test sample’s 8-mer count table for the corresponding target. If a 570 
test sample is homozygous at a given target, we translate its haplotype to an 8-mer count table 571 
and double the counts to obtain its 8-mer count table at the corresponding target. The counts 572 
are doubled in order to represent the target sequences as diploid sequences, and not introduce 573 
artificial differences in the total number of 8-mers between homozygous and heterozygous 574 
target sites. If the test sample has more than two different haplotypes at a given target, two 575 
haplotypes are chosen at random and the sample is treated as a heterozygote. It happens on 576 
average in less than 1% of the amplified targets that there are more than two different 577 
sequences, so we expect that this inexact way of dealing with those cases does not have a 578 
major impact on the results. Because we model the 8-mer counts as the observations of a 579 
Poisson distribution, the counts have to be integers, hence we cannot average over all observed 580 
alleles as in the nearest neighbour method. If a given target did not amplify in the test sample, 581 
the associated 8-mer count table will just contain zeroes, equivalent to simply ignoring missing 582 
data. To obtain the VAE input, we sum the 8-mer tables over all 62 targets. This results in a 583 
single table per sample, with 65,536(=48) integer entries, roughly summing to twice the number 584 
of basepairs covered by the amplified targets, so a little under 20,000 for a sample in which all 585 
targets amplified. 586 

Variational Autoencoder 587 

The within-complex assignment is based around a variational auto-encoder. We considered two 588 
other non-linear dimension reduction methods to perform the projection step: UMAP(McInnes, 589 
Healy, and Melville 2018) and t-SNE(Van Maaten and Hinton 2008). t-SNE does not have the 590 
ability to embed new samples onto an already existing projection. This means that the 591 
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distribution of the training set samples depends on the test set we are projecting, which is not 592 
desirable for a classification problem. UMAP can distinguish between most species in the An. 593 
gambiae complex. The projections have a distinctly different quality from the VAE: the clusters 594 
are much tighter and well separated, there are no ‘fuzzy’ boundaries as in the VAE. However, 595 
these tight and well separated clusters come at the cost of containing some hard 596 
misclassifications; i.e. samples of one species, which lie well inside the cluster of a different 597 
species, which makes it hard to attach any measure of uncertainty to the assignments. For a full 598 
description of the UMAP projections and their comparisons with the VAE projection, see 599 
Appendix 2. We also ran ADMIXTURE on our data, but it did not separate the species in GCref 600 
v1 by assigning them to a unique ancestral population, see Appendix 3. 601 
 602 
The VAE consists of an encoder, a latent space projection and a decoder. The specific design 603 
we used was inspired by popVAE (Battey, Coffing, and Kern 2021). The encoder is a fully-604 
connected neural network that takes high-dimensional data as input and encodes that as a point 605 
in a latent space of much lower dimension. The decoder is also a fully-connected neural 606 
network, and it takes as input a point in the latent space and outputs ‘simulated’ data of the 607 
same dimensions as the input data. The VAE learns a ‘good’ encoding by adjusting the weights 608 
in the encoder and decoder to obtain an output similar to the original input. To prevent 609 
overfitting, the input of the decoder is not the exact output of the encoder, but a nearby point in 610 
latent space. Furthermore, the loss function used to update the encoder and decoder weights 611 
contains a regularisation term on the latent space, in addition to the term measuring the 612 
similarity of the decoder output and the original input. Because of the introduced sampling noise 613 
and the regularisation constraint, the most efficient way to encode the data is to represent 614 
samples that are similar in the high-dimensional data by nearby points in the low-dimensional 615 
latent space. In summary, we expect that species identity shapes the structure in the 8-mer 616 
count tables and that the VAE projects this structure to the low-dimensional latent space, 617 
resulting in clustering by species in the latent space. 618 
 619 
In our case the encoder input is the 8-mer count table of the training set, so a table of dimension 620 
n x 65536 with non-negative integer entries, where n is the number of samples in the training 621 
set. The output of the encoder is a set of 2d parameters for each sample, where d is the 622 
dimension of the latent space. For each dimension, one parameter corresponds to the mean 623 
position in latent space and one parameter corresponds to the variance of the position in latent 624 
space. In our case we use a three-dimensional latent space (d = 3). The input of the decoder is 625 
a position in latent space for each sample, sampled from the distribution determined by the 626 
encoder output. The decoder output is an n x 65536 dimensional table of strictly positive entries, 627 
however, unlike the input table, the entries are not necessarily integers. 628 
 629 
The loss function is the sum of two terms: one measuring the difference between the input and 630 
output data and one acting as a regulariser on the latent space. The relative weight of these 631 
terms can be adjusted. If we model the count tables as observations of independent Poisson 632 
variables, the difference between the input and output can be measured as the Kullback-Leibler 633 
divergence (KL divergence) of the Poisson distribution with the means given by the output from 634 
the Poisson distribution with the means given by the input. The KL divergence is the same up to 635 
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a constant as the negative of the Poisson loglikelihood with the input as the observed counts 636 
and the output as the means. So minimising the KL divergence is equivalent to maximising the 637 
loglikelihood with respect to the output. The difference term of the loss function is obtained by 638 
summing over all unique 8-mers. The theoretical minimum of the difference term of the loss 639 
function is zero, and this is attained if the output is exactly the same as the input. However, this 640 
theoretical minimum cannot be attained in practice, because the sparsity of the input implies 641 
that there will be entries equalling zero and the activation function of the decoder generating the 642 
output results in strictly positive entries.  643 
 644 
The regularisation term of the loss function is based on the KL divergence of the normal 645 
distribution parameterised by the encoder output from a standard normal distribution, i.e. 𝑁(0,1). 646 
The regulariser is computed for each latent space dimension separately. Again, the theoretical 647 
minimum equals zero and is attained when the mean outputted by the encoder is zero and the 648 
variance outputted by the encoder is one. The regularisation term of the loss function is defined 649 
as the KL divergence summed over the latent space dimensions. This effectively enforces the 650 
distribution specified by the encoder output to look like a multi-dimensional Gaussian distribution 651 
with mean zero, variance one and covariance zero. In layman's terms, it pulls the projected 652 
positions of the samples in latent space towards the origin and establishes a natural scale for 653 
them. The regulariser prevents overfitting by making it expensive for the encoder to place 654 
samples far away from the origin. The loss function used to train the VAE is the weighted sum of 655 
the similarity term and the regularisation term described above, with a parameter w that controls 656 
the relative strength of the two terms. 657 
 658 
We set most of the parameters involved in training the VAE by comparing the latent-space 659 
projections for different parameter values, using a subset of GCref v1 containing only samples 660 
from An. gambiae, An. coluzzii and An. arabiensis. The criteria we used to pick parameter 661 
values were species classification accuracy of the reference set and the validation set, using 662 
assignments based on convex hulls (described below), visible within-species structure, and, as 663 
a secondary criterion, useful visualisation. Further detail on the choice of parameter values is 664 
provided in Appendix 4. The latent space projection is also affected by the training dataset. We 665 
observed that the presence or absence of most countries does not affect the classification, 666 
except for the Gambia and Guinea-Bissau. When these countries are removed, the accuracy to 667 
distinguish between An. gambiae and An. coluzzii considerably reduces. This is not surprising, 668 
since these samples lie on the boundary of the An. gambiae and An. coluzzii clusters and as 669 
such are crucial for assigning those species. The complete results can be found in Appendix 5. 670 

Within-complex species classification 671 

We use the trained and tuned VAE to assign species as follows. We input the summed 8-mer 672 
table of the test samples into the encoder of the VAE. The encoder outputs a position in latent 673 
space for each sample. Importantly, the VAE is agnostic to species labels; the species 674 
assignment happens based on the position in latent space of the test samples in relation to the 675 
latent space positions of the species-labelled reference dataset GCVAEv1.  676 
 677 
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The top two panels of Figure 4 show the latent space projection of GCVAEv1. While most 678 
species form nicely isolated clusters, An. gambiae and An. coluzzii border each other closely. 679 
Interestingly, the boundary is formed by mosquitoes from The Gambia and Guinea-Bissau. 680 
These mosquitoes are labelled as An. gambiae by conventional molecular barcoding, but they 681 
cannot be confidently assigned to either An. gambiae or An. coluzzii using over 500 ancestry 682 
informative markers (AIMs) or whole genome PCA (Anopheles gambiae 1000 Genomes 683 
Consortium et al. 2017; Clarkson et al. 2020). The clusters containing An. bwambae and the 684 
putative new species An. fontenillei are placed very close to each other, and can also not be 685 
reliably distinguished. These species are closely related, but up until now they have only been 686 
discovered in Uganda and Gabon, respectively, and so, since they do not seem to have 687 
overlapping geographic species ranges (Barrón, 2019), the species identity of samples falling 688 
into either of these two clusters can be resolved by their geographic origin. 689 
 690 
 691 
Figure 4: VAE projection of the gambiae complex reference dataset. Top panels: the samples are represented by 692 
dots at the inferred mean position in three-dimensional latent space and coloured by their species label. The left 693 
panel shows latent dimension 1 versus latent dimension 2 and the right panel shows latent dimension 1 versus latent 694 
dimension 3. Bottom panel: the same projection as above, but here the samples are coloured by the country of 695 
collection revealing structure related to geography.  696 
 697 
We perform species classification using the convex hulls of species clusters. A convex hull is 698 
the mathematical notion of the smallest convex set containing all points of interest. A nice 699 
metaphor is to imagine that you are wrapping all points corresponding to samples of a single 700 
species together in such a way that requires the minimal amount of wrapping paper. We 701 
constructed one convex hull for each species represented in the dataset, using latent space 702 
positions of the samples from GCref v1 as well as of 363 additional species-labelled samples 703 
that were not used in training the VAE, to account for possible effects caused by projecting the 704 
samples to the latent space (sample information to be found in Supplementary file 7). For our 705 
classification procedure it is important that the convex hulls of different species do not overlap. 706 
When constructing convex hulls from the full sample set, only the convex hulls corresponding to 707 
An. gambiae and An. coluzzii overlap. We trimmed these hulls by iteratively removing samples 708 
from the set of points used to construct them until they didn’t overlap. In total we removed 17 709 
An. gambiae and 6 An. coluzzii samples. The samples from An. bwambae and An. fontenillei 710 
are combined in one convex hull because they are so close together in latent space.  711 
 712 
The classification of new samples happens as follows. If the latent space position of the test 713 
sample falls inside a convex hull, the sample is classified as that species. If the latent space 714 
position of the test sample falls outside all convex hulls, there are two options. If the sample is 715 
much closer to one convex hull than to all others, it is classified as the species corresponding to 716 
the hull it is closest to. To be precise, this happens if the euclidean distance to the closest 717 
convex hull is at least 7 times smaller than the distance to all other convex hulls. This allows for 718 
‘fuzzy’ boundaries of the convex hulls that are proportional to the separation between the 719 
different hulls. We fitted the parameter value 7 on the dataset from Gabon to reflect the 720 
assumption that An. tengrela is not believed to be found in Gabon. If the latent space position of 721 
the test sample falls outside all convex hulls and outside their fuzzy boundaries, the sample is 722 
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assigned ‘uncertain’ followed by the labels of all the species whose convex hulls are within a 723 
radius of 7 times the distance to the closest convex hull, in order of proximity. This assignment 724 
reflects the uncertainty in our classification of samples that fall in an area in latent space where 725 
no species-labelled samples fall. At the same time it gives information on our best guess or 726 
guesses for the species identity and leaves open the possibility to modify the assignments 727 
based on prior knowledge, e.g. species ranges or habitat restrictions. 728 
 729 
There is one exception to the above assignment procedure: if the closest two convex hulls are 730 
from An. gambiae and An. coluzzii and the euclidean distance to both of these hulls is less than 731 
14 then the test sample is classified as uncertain_gambiae_coluzzii or 732 
uncertain_coluzzii_gambiae, depending on which convex hull is closer, because we cannot 733 
reliably distinguish between these species in this part of the latent space. 734 
 735 
In addition to structure driven by species, the latent space projection of GCref v1 also exhibits 736 
geographical structure. Within the An. gambiae species cluster, there is a distinct subcluster of 737 
samples from Madagascar. Similarly, there is a distinct subcluster of samples from Madagascar 738 
in the An. arabiensis species cluster. As mentioned before, the boundary between the An. 739 
gambiae and An. coluzzii species clusters is formed by samples from the far West of Africa. 740 
These samples also stand out as a separate group in a study on whole genome data (Caputo et 741 
al. 2021; Clarkson et al. 2020). There also appears to be a cluster of East African An. gambiae 742 
samples that are distinct from the main cluster of An. gambiae as well as the Madagascar 743 
samples. It is promising to see signatures of geographic structure within species from the 744 
amplicon panel data, because this suggests that the panel can also be useful to explore 745 
population structure within species. 746 

VAE classification accuracy 747 

We applied the species assignment procedure to GCval v1 (Figure 5). 134 out of 142 samples 748 
(94.4%) samples are assigned to a single species and 132 of those (98.5%) are assigned to the 749 
species concordant with their species label. One sample labelled as An. coluzzii is classified as 750 
An. gambiae and one sample labelled as An. gambiae is classified as An. coluzzii. For all eight 751 
samples classified as uncertain, the reference species label is among the set of assigned labels. 752 
Seven of the samples classified as uncertain had fewer than 45 targets and we know that the 753 
proportion of missing targets affects the position in latent space of the projected samples. The 754 
other sample classified as uncertain falls in the space between An. gambiae and An. coluzzii. 755 
Further information can be found in Supplementary file 6. 756 

Case studies 757 

Ag1000G whole genome sequenced samples that are too diverged from the reference 758 
genome 759 
 760 
The Ag1000G project removes samples from its analysis that appear not to be An. gambiae, An. 761 
coluzzii or An. arabiensis based on their divergence from the PEST (An. gambiae) reference 762 
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genome. We ran NNoVAE on all samples that fail the divergence filter from data releases v3 763 
and v3.1 through v3.5. In these datasets, 212 of nearly 10,000 samples were filtered due to high 764 
divergence from the PEST reference genome; we assign 166 of those to An. funestus at the fine 765 
level and 17 to the An. gambiae complex at the intermediate level. Furthermore, we assign one 766 
sample to An. nili gp sp3 and one to An. jebudensis at the fine level, and one to An. marshallii 767 
group at the intermediate level. There are 20 samples that get assigned only at the coarse level 768 
to the Myzomyia Neocellia series and six samples do not get assigned at any level. See 769 
Supplementary file 8 for all sample and assignment information. 770 
 771 
All 17 samples that are assigned to the An. gambiae complex had at least 50 targets. We 772 
assigned 5 samples to An. merus, 11 to An. melas and 1 to Uncertain_melas_quadriannulatus 773 
(Figure 5). The geographic origin of the samples assigned to An. merus and An. melas is 774 
compatible with the known ranges of these species (Wiebe et al. 2017). 775 
 776 
Two of the unassigned samples stand out by their assignments: one sample appears to be from 777 
the An. gambiae complex but contaminated by an An. funestus sample; the second appears to 778 
be a member of the Culex genus rather than the Anopheles genus, based on mitochondrial 779 
analysis (data not provided). For this sample we extracted only 13 targets. The remaining 780 
unassigned samples and those only assigned at the coarse level have at least 42 targets. They 781 
can be split into four groups of samples that are similar to each other in assignment proportions 782 
and mitochondrially. Because of the high amplicon recovery rate and the similarity of 783 
assignment proportions, often found in different countries, we believe that these samples 784 
represent species that are not present in NNv1. We aim to confirm the species identity for these 785 
groups by morphology and genomic comparison to publicly available data and, assuming this is 786 
successful, to include them in the next update of the reference database.  787 
 788 
 789 
Burkina Faso 790 
 791 
We collected 950 mosquitoes from three different locations in Burkina Faso. All individuals were 792 
morphologically assigned to the An. gambiae complex. For 905 individuals (95.3%) we obtained 793 
at least 10 amplified targets, the minimum number required for NN assignment. 901 samples 794 
are indeed assigned to the An.gambiae complex at the intermediate level, 2 samples are 795 
assigned to An. nili group sp3 at the fine level, one sample could only be assigned at the coarse 796 
level to the Myzomyia Neocellia series and one sample could not be assigned at any level. The 797 
latter two samples require more detailed morphological investigation, which is made possible by 798 
the non-destructive extraction approach we used on these mosquitoes. 799 
 800 
For 770 of the samples assigned to the An. gambiae complex (85.5%) we obtain at least 50 801 
amplified targets, the minimum number required for VAE assignment. We find three species in 802 
this dataset: An. gambiae, An. coluzzii and An. arabiensis (Figure 5). Most samples (91.6%) 803 
could be assigned to a single species, but we also find some samples labelled as uncertain 804 
shared between An. gambiae and one other species. The two samples that fall in the space 805 
between the An. gambiae and An. arabiensis reference samples are remarkably far away from 806 
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all other samples. We cannot exclude the possibility that contamination between samples plays 807 
a role here, especially because these samples were stored with 10 individuals in ethanol in a 808 
single 1.5 mL tube in the years before sequencing. All metadata and assignment information 809 
can be found in Supplementary file 9. 810 
 811 
Gabon 812 
 813 
We collected 1,056 mosquitoes by human landing catch from different locations in Lopé village 814 
in Gabon. All individuals were morphologically identified as members of the An. gambiae 815 
complex. 11 mosquitoes were identified as An. fontenillei by a species diagnostic PCR (Fanello, 816 
Santolamazza, and della Torre 2002) and those clustered with the An. fontenillei and An. 817 
bwambae samples in the VAE projection as expected. Those samples were used to construct 818 
the convex hulls. For 1002 (95.9%) of the unidentified samples we obtain at least 10 targets and 819 
these are classified by the NN step of NNoVAE. The vast majority (993 samples; 99.1%) is 820 
assigned to the An. gambiae complex. The other species we find in this dataset are An. 821 
funestus (2 individuals) and An. coustani complex (2 individuals), plus 5 individuals that could 822 
not be assigned at any level. The 5 unassigned individuals had a high proportion of multi-allelic 823 
targets, suggesting contamination may have occurred at some point in the process. 824 
 825 
Of the 993 mosquitoes assigned to the An. gambiae complex, 890 (89.6%) have sufficiently 826 
many targets to be run through the VAE (Figure 5). Most of these are assigned to a single 827 
species: 632 to An. coluzzii, 130 An. gambiae and 1 An. fontenillei (the latter is actually 828 
assigned to the combined convex hull of An. fontenillei and An. bwambae, but are assumed to 829 
be An. fontenillei because of the non-overlapping species ranges). An. fontenillei was first 830 
discovered in the forest of La Lopé National Park, 10-15km south of the sampling locations 831 
presented in this study (Barrón et al. 2019). Although the species strongly prefers forested 832 
habitats, it is not surprising to find one of them in the village given the small distance. It is 833 
noticeable that a large number of samples fall in between the An. coluzzii and An. tengrela 834 
clusters. Judging from the projection, we suspect that the whole cluster is An. coluzzii, but it 835 
may be interesting to explore what drives the variation within this large cluster and why so many 836 
samples are projected to an area where none of our reference samples are. Four other samples 837 
are projected close to the An. arabiensis cluster, although they are assigned to a large set of 838 
species labels. Independent PCR species diagnostics confirmed these four samples as An. 839 
arabiensis (Fanello, Santolamazza, and della Torre 2002). This was surprising because An. 840 
arabiensis has not been observed in Gabon before, despite extensive sampling efforts. The fact 841 
that we see only four such specimens in this set of more than 1,000 with sufficient data, 842 
demonstrates that whatever species these mosquitoes are, they are probably quite rare or less 843 
likely to be caught by human landing catches. We plan to generate whole genome sequencing 844 
data for these individuals to investigate their species and their relationship to An. arabiensis 845 
from other geographic locations and to other sympatric species. All sample information and 846 
assignment results are listed in Supplementary file 10. 847 
 848 
 849 
Figure 5: VAE projections of A) validation set GCval v1 B) diverged samples from Ag1000G C) sample set from 850 
Burkina Faso D) sample set from Gabon. The samples from the reference set GCref v1 are displayed as half 851 
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transparent circles, coloured by species as in Figure 4. The samples from each of the projected sample sets are 852 
coloured by their assigned labels. The numbers behind each label corresponds to the number of samples in that 853 
category. Samples with more than 3 species-labels are listed as ‘other’. The two samples from GCval v1 for which the 854 
species label does not match the assigned species are marked with a red cross. 855 
 856 

Discussion 857 

In this paper we presented NNoVAE, a method for robust species identification for the entire 858 
Anopheles genus from multilocus targeted amplicon sequencing data. This integrated approach 859 
removes the need for sorting the specimens into species groups or complexes based on 860 
morphology, which is labour intensive and error prone, particularly in the case of damaged 861 
mosquitoes, for instance when collected with CDC light traps. The NN step can distinguish 862 
between most species in our reference database. But equally importantly, it gives an indication 863 
of the uncertainty of the assignment, using the same thresholds for the entire genus, enabling 864 
us to quantify confidence in assignment in a meaningful way allowing for comparison between 865 
all species groups. For individuals from species not yet represented in the reference dataset, we 866 
can often assign to a species-group at the intermediate level (corresponding to taxonomic 867 
species groups or complexes) or at the coarse level (corresponding to taxonomic series or 868 
subgenera). A few samples did not meet the threshold to be assigned at the coarse level, but 869 
the assignment results do give an indication of the position of these samples in the phylogeny. 870 
Initial explorations of the mitochondrial sequences for those samples do not indicate a close 871 
match to publicly available mitochondrial data of any Anopheles species. We hope to resolve 872 
the species identity of these samples by extending our reference database and collaborating 873 
with morphological experts, but until then we retain the groups of unresolved species to 874 
compare future samples against them. 875 
 876 
The NN step alone struggles to differentiate closely related species within species complexes. 877 
For the An. gambiae complex we developed a high resolution species identification method 878 
based on a variational autoencoder. This VAE step should be easily extendable to other species 879 
complexes for which a sufficient amount of species-labelled data is available, which we expect 880 
to be the case soon for An. funestus and An. coustani. The VAE can accurately distinguish 881 
between eight species in the An. gambiae complex; only An. bwambae and An. fontenillei are 882 
too close together in the projection to reliably separate them, but geographic origin helps with 883 
this. The species assignments for the VAE are currently quite conservative; only if the VAE 884 
projection of the test sample falls within the cloud of training samples from a single species, or 885 
much more close to it than to any other cluster, is it assigned to that species. Otherwise it gets 886 
assigned all the species labels of nearby clusters. This way, we flag potential outliers or 887 
unexpected species, as for the An. arabiensis in Gabon, but entomologists can still decide to 888 
exclude certain species labels if they are sure that they are not appropriate for their collection 889 
location and time, for instance the An. tengrela label in Gabon. 890 
 891 
The VAE projection of the An. gambiae complex also shows some population structure within 892 
species clusters. Some of the structure reflects the geography of the collection locations, e.g. 893 
Madagascar stands out as a separate subcluster both for An. gambiae and An. arabiensis. 894 
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However, the sample sets from Burkina Faso and Gabon show that samples from the same 895 
location can be projected to different positions in latent space and it would be interesting to 896 
investigate what is driving this observed diversity.  897 
 898 
NNoVAE relies on a reference database and therefore the accuracy of the species assignments 899 
also depends on the quality and completeness of the reference database. We expect that 900 
version 2 of the reference database will contain approximately fifty additional species, as well as 901 
more individuals of species that are underrepresented in NNv1 and we are seeking further well-902 
characterised samples. 903 
 904 
Our goal over the next two years is to adapt the ANOSPP protocol, which currently uses high 905 
throughput robotics equipment at Sanger, to run it in any basic molecular laboratory. We plan to 906 
build an accompanying website where sequence data will be automatically accessible and data 907 
analyses can be run interactively and openly (if desired). We hope that the combination of the 908 
complete end-to-end protocol from sample to sequence interpretation together with a one stop 909 
shop for data interpretation will help connect vector control initiatives across the globe.  910 
 911 
We believe that this genomic species identification tool for the entire genus is extremely 912 
valuable to monitor Anopheles populations at large scale. We think that similar tools could 913 
benefit researchers studying other genera with morphologically similar species, in particular 914 
when knowing the species identity is of medical importance. We hope that the methods outlined 915 
in (Makunin et al. 2022) and in this manuscript can be of help in developing a targeted amplicon 916 
panel for other important vector genera such as Aedes and Culex and that by extending 917 
NNoVAE as described here will be straightforward to analyse data from such future panels. 918 
 919 
NNoVAE can characterise vector populations in a uniform way across the Anopheles genus and 920 
as such contributes to our understanding of Anopheles species composition, population 921 
structure, species ranges, and transmission potential. We believe that large scale monitoring of 922 
Anopheles populations of all species is of pivotal importance for successful implementation of 923 
malaria control strategies. ANOSPP and NNoVAE enable us to catalogue species ranges and 924 
distributions and identify and record which species are found to carry Plasmodium. It has been 925 
shown that by successfully targeting a single vector species, a different species can become the 926 
main transmitter of malaria (Okumu and Finda 2021). An. stephensi, an efficient vector species 927 
originally found in South East Asia and the Arabian peninsula, has been reported to spread in 928 
the Horn of Africa and was implicated in malaria outbreaks in Djibouti (Faulde, Rueda, and 929 
Khaireh 2014; Seyfarth et al. 2019; Ahmed et al. 2021). These examples underscore the 930 
importance of monitoring species and their transmission potential agnostically. ANOSPP and 931 
NNoVAE also provide an opportunity to study changes in species composition, for instance by 932 
comparing catches before and after implementing a malaria control intervention, or by 933 
comparing catches collected in different seasons or in areas undergoing land use changes. 934 
Lastly, ANOSPP and NNoVAE provide a quick and cheap way to select interesting samples 935 
(e.g. unexpected species for the collection area or season, or simply balanced numbers of 936 
different species) for whole genome sequencing to study important genomic features, such as 937 
evidence of population bottlenecks or spread of strongly selected putative insecticide resistance 938 
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alleles . In conclusion, the combination of ANOSPP and NNoVAE offers a cheaper, more 939 
robust, more informative, and more reliable way to carry out malaria vector surveillance that we 940 
hope will be embraced over the coming years by the medical entomology community and 941 
National Malaria Control Programs. 942 
 943 

Methods 944 

Data processing 945 

Panel sequences 946 

The amplicon sequencing data are processed as described previously (Makunin et al. 2022). In 947 
brief, the fastq files containing the reads are split into one file per target by cutadapt v2.5 (Martin 948 
2011), which uses the primer sequences to do so. Cutadapt also filters for read pairs where 949 
both the forward and reverse read match the appropriate primer and trims the primers. Next, 950 
DADA2 v1.10 (Callahan et al. 2016) is used to reconstruct sample haplotypes from these read 951 
pairs and they are filtered using a custom script to include only haplotypes supported by at least 952 
10 read pairs and with at least 0.1 haplotype frequency per sample-amplicon pair. 953 

Reference genomes 954 

In silico amplicon extraction from reference genomes is done as described previously (Makunin 955 
et al. 2022). Targets are extracted by matching the primer sequences in the reference genome 956 
using SeekDeep v2.6 command ‘genTargetInfoFromGenomes’ (Hathaway et al. 2018). 957 

Publicly available data 958 

Where short read whole genome sequence data are publicly available for Anopheles 959 
mosquitoes, we use these data to pull out target haplotypes to add to our reference index. If the 960 
genomic coordinates of the primers are known (e.g. the reads are aligned to a publicly available 961 
reference genome), we extract the reads overlapping the primer or target sites for each 962 
amplicon separately from BAM files and convert these to fastq files, using samtools v1.9 (Li et 963 
al. 2009). These are used as input for fermi-lite (Li 2015), which creates an assembly graph. 964 
The unitigs from the assembly graph are cleaned up by cutadapt v3.1 (Martin 2011): the 965 
sequences outside the primer sites are trimmed, while the sequences matching the primers are 966 
retained and the unitigs are oriented according to the primers. Next, the unitigs are merged 967 
using the information from the assembly graph with a custom python script, which relies on 968 
MAFFT v7.475 (Katoh and Standley 2013) for sequence alignment. In the final step, the primers 969 
are trimmed from the resulting haplotypes by cutadapt and any haplotypes that do not have 970 
primer sequences on both ends are removed, which helps to get rid of contamination. If the 971 
genomic coordinates of the primers are not known, we align the samples to the most 972 
appropriate reference genome, identify the genomic coordinates of the primer sites if not yet 973 
known and follow the steps above.This pipeline is implemented in Snakemake 5.30.2 (Mölder et 974 
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al. 2021). Snakefile and scripts are available on GitHub.  975 

Data structure 976 

The resulting haplotypes are stored in a table with columns recording the sample name, target, 977 
haplotype sequence, read count of supporting reads (for amplicon data only), fraction of 978 
supporting reads (for amplicon data only). So each row corresponds to a unique haplotype for a 979 
sample target combination, hence samples that are heterozygous at a certain target will have 980 
two rows for the same target.  981 

Implementation 982 

Species labels are assessed and species-groups constructed using custom Python scripts 983 
implemented in python 3.8 (Van Rossum and Drake 2009). The VAE is implemented in keras 984 
2.3 (Chollet and Others 2015) using a custom python script. Convex hull construction and 985 
distance computations rely on scipy 1.6 (Virtanen et al. 2020) and pygel3d 0.2 (Bærentzen 986 
2018). Plots are created with matplotlib 3.3 (Hunter 2007) and seaborn 0.11 (Waskom 2021). All 987 
scripts and environments are available on GitHub. 988 

K-mers 989 

Alignments of amplicon target sequences from highly diverged species are often poor and it is 990 
difficult to define a ‘fair’ distance metric based on these alignments. Moreover, there is not a 991 
straightforward way to account for small indels and structural variants with alignment based 992 
distances. K-mer based distances naturally incorporate indels and structural variation and 993 
account for highly diverged sequences in an objective way and provide a solution to the 994 
problems arising from relying on alignments. Therefore, our species assignment method uses k-995 
mers to support better comparisons between the sequences in the database and the sequences 996 
of the test sample.  997 

There is a trade-off in the choice of k. For large k there is little tolerance for errors, while for 998 
small k there is a high chance that the same k-mer is found in multiple locations in the 999 
sequence. For example, in a 149bp sequence, 5 evenly spread SNPs result in no 25-mers 1000 
matching the reference. On the other hand, the chance that all 4-mers are unique in a sequence 1001 
of the same length is incredibly small (<10-22).  Based on these trade-offs, we selected 8-mers 1002 
as a reasonable length. The total sequence length of the amplicon panel targets for the current 1003 
An. gambiae PEST reference genome sequence AgamP4 is 9928 bp, with a mean target length 1004 
of 160 bp. There are 65536 unique 8-mers, so the chance that all 8-mers within a target are 1005 
unique is 84% on average. Across the nearly 10 kb of amplified sequence, the chance that all 8-1006 
mers are unique is vanishingly small, but the expected number of unique 8-mers is 1007 
approximately 8533 (sd 46) and the expected number of non-unique 8-mers is approximately 1008 
680 (sd 22).  1009 
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The methods we present here work with k-mer tables created from each haplotype from each 1010 
target. A k-mer table consists of 4k columns, each corresponding to a unique k-mer. To translate 1011 
a sequence to a k-mer table, we record in each column how often the corresponding k-mer 1012 
occurs in the sequence. This results in a sparse table (the sparsity of course depends on the 1013 
choice of k) with non-negative integer entries. As an example, the 2-mer table for the sequences 1014 
AACTACTCT (first row) and AGCTACTT (second row) is shown below. Note that all possible k-1015 
mers are represented in the table, even when they do not appear in any sequence. 1016 

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT 

1 2 0 0 0 0 0 3 0 0 0 0 1 1 0 0 

0 1 1 0 0 0 0 2 0 1 0 0 1 0 0 1 
 1017 

The k-mer distance between two sequences is defined as follows. Translate both sequences to 1018 
k-mer tables as described above and call these q1 and q2. Then the k-mer distance between 1019 
them is given by 𝑑௞(𝑞ଵ, 𝑞ଶ) = ఀ|௤భି௤మ|ఀ|௤భା௤మ|, i.e.  the number of non-matching k-mers divided by the 1020 

total number of k-mers in both sequences. The normalisation is required to correct for a bias 1021 
attributing smaller distances to shorter sequences. In the nearest neighbour method we use this 1022 
k-mer distance to compare one haplotype sequence of a test individual against one haplotype 1023 
sequence from the reference database. Note that this definition relies on the k-mer counts, not 1024 
simply on the presence or absence of each k-mer. Using this definition, the 2-mer distance 1025 
between AACTACTCT and AGCTACTT is 7/15. 1026 
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Appendices 1195 

Appendix 1: Species labels 1196 

The wild-caught mosquitoes in the reference database were labelled either morphologically or 1197 
confirmed with species diagnostic PCR. Species identities were further determined by Sanger 1198 
sequencing the molecular barcodes Cytochrome c oxidase I (COI) and Internal transcribed 1199 
spacer 2 (ITS2). Both markers were compared to the NCBI database to assess species identity, 1200 
and COI was also compared to the BOLD database. (See (Makunin et al. 2022) for more 1201 
information). 1202 
Some partner labels were revised when distances between the samples in the reference 1203 
dataset suggested mislabelling. Preferably the relabelling was further supported by molecular 1204 
barcodes. Relabelled samples are: 1205 

● Amar-5: An. marshallii → An. gambiae. The average distance to samples in the An. 1206 
marshallii complex is 0.54 (0.52-0.58), while the average distance to samples in An. 1207 
gambiae/coluzzii is 0.09 (0.07-0.13). Additionally, both COI and ITS2 have An. gambiae 1208 
as best hit. 1209 

● Amar-42: An. marshallii → An. jebudensis. The average distance to samples in the An. 1210 
marshallii complex is 0.38 (0.35-0.42), while the distance to An. jebudensis is 0.05. 1211 
Unfortunately, neither An. marshallii nor An. jebudensis is present in the barcode 1212 
databases. 1213 

● Amar-3-1: An. marshallii → An_marshallii_cp_sp1. It has the lowest distances to samples 1214 
of An. hancocki, An. brohieri, An. demeilloni, An. theileri, on average 0.26 (0.22-0.29), 1215 
while the distances of An. hancocki, An. brohieri and An. demeilloni samples to each 1216 
other is on average 0.03 (0.02-0.04) and the distances of the An. theileri samples is 0.07 1217 
(0.05-0.08). The average distance between the group containing An. hancocki, An. 1218 
brohieri and An. demeilloni and the An. theileri is 0.29 (0.25-0.33). So it seems like 1219 
Amar-3-1 does not belong to either of these two groups, but it is as related to these 1220 
groups as they are to each other. Unfortunately it does not have any informative 1221 
matches on the molecular barcodes. Therefore this sample is labelled as an unnamed 1222 
species in the An. marshallii complex. 1223 

● Adem-15: An. demeilloni → Myzomyia_sp1. Its lowest distance to another sample in the 1224 
database is 0.39, to an An. funestus. This is a much higher distance than a sample 1225 
usually has to other samples of the same or of a closely related species. In particular, 1226 
the distance of An. hancocki, An. brohieri and An. demeilloni samples to each other is 1227 
0.03 (0.02-0.04), while the average distance of Adem-15 to these samples is 0.41 (0.39-1228 
0.44). As it does not show similarity to any of the samples in the database, but it is closer 1229 
to almost all samples in the Myzomyia series than to almost all samples outside the 1230 
Myzomyia series, it is labelled as an unnamed species in the Myzomyia series. 1231 

● Acol-645: An. coluzzii → An_gambiae_cp_sp1. This sample is different from other An. 1232 
coluzzii and An. gambiae, this was found both in the sample-pair differences and in the 1233 
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subsequent VAE method which is tailored at the An. gambiae complex. The molecular 1234 
barcodes also suggest that this sample is not An. coluzzii or An. gambiae, but that it is a 1235 
member of the complex. Therefore it is labelled as an unnamed species in the An. 1236 
gambiae complex. 1237 

● Apal-257: An. paludis → An_coustani_cp_cl3. Its smallest distances are to samples of 1238 
An. tenebrosus, An. ziemanni, An. coustani and An. paludis, on average 0.29 (0.28-1239 
0.32). We found that the samples of these species split into two clades and the distance 1240 
of Apal-257 to either of these clades was much higher than the distances between 1241 
samples in the same clade. Additionally, the average distances between the two clades 1242 
is 0.18 (0.14-0.21), so Apal-257 is also further away from the two clades than they are 1243 
from each other. Yet, it is closer to these two clades than it is to An. sinensis and An. 1244 
hyrcanus, which are the next closest species. Regarding the molecular barcodes, Apal-1245 
257 matches to An. coustani on COI, like most samples in the An. coustani complex. On 1246 
ITS2 it matches to An. junlianensis and An. yatsushiroensis, species in the hyrcanus 1247 
group. We therefore decided to relabel it to a third clade in the An. coustani group. 1248 

● An. nili samples. Anils-7: An. nili s.s. → An_nili_gp_sp1. Anil-237 & Anil-239: An. nili → 1249 

An_nili_gp_sp2. Anil-233, Anil-236 & Anil-238: An. nili → An_nili_gp_sp3. Both the 1250 
distances and alignment of the molecular barcodes support this split. It is possible that 1251 
some of these samples represent different member species of the An. nili group, which 1252 
have been shown from cytogenetic analysis to differ substantially (Sharakhova et al. 1253 
2013), but molecular barcodes are not yet available in public databases for all member 1254 
species. 1255 
dist An_nili_gp_sp2 An_nili_gp_sp3 

An_nili_gp_sp1 0.19 (0.19-0.20) 0.24 (0.23-0.26) 

An_nili_gp_sp2 0.02 0.24 (0.24-0.26) 

An_nili_gp_sp3  0.04 (0.03-0.05) 

 1256 
● An. hyrcanus samples. VBS00085 & VBS00086: An. hyrcanus → An_hyrcanus_gp_sp1. 1257 

VBS00082 & VBS00083: An. hyrcanus → An_hyrcanus_gp_sp2. The distances within 1258 
these pairs are 0.08 for both pairs. The distances between the pairs are 0.35 (0.34-1259 
0.36). The molecular barcode matches support the split. Even though hyrcanus is 1260 
present in all databases, there are few matches to it. On COI in both BOLD and NCBI, 1261 
the first pair matches to nitidus and the second pair to crawfordi; these species are in 1262 
two distinct subgroups of the hyrcanus group. On ITS2 the first pair matches to hyrcanus 1263 
and then nitidus, and the second pair matches to sinensis (sinensis is in the main 1264 
hyrcanus group, not in either of the aforementioned subgroups). The alignments of COI 1265 
and ITS2 sequences for these four samples also clearly support the split into pairs. 1266 

● Samples in the An. coustani complex. This complex contains the species An. 1267 
tenebrosus, An. ziemanni, An. coustani and An. paludis. The between sample distances 1268 
indicate a split into two clades (disregarding sample Apal-257, discussed above), 1269 
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however, the split is not correlated with the species labels. The proposed clades are 1270 
An_coustani_cp_cl1 containing Aten-191, Aten-185, Azie-334, Acou-956, Acou-959, 1271 
Acou-962 and An_coustani_cp_cl2 containing Aten-333, Aten-79, Aten-954, Azie-1032, 1272 
Azie-1055, Azie-70, Azie-77, Acou-71, Acou-80, Apal-81. The average distances 1273 
between members of the same clade is 0.07 (0.05-0.09) and 0.07 (0.05-0.10) 1274 
respectively, while the distance between members of different clades is 0.18 (0.14-0.21). 1275 
The barcode matches are to An. coustani for the vast majority of the samples, even 1276 
though COI sequences for An. ziemanni and An. tenebrosus are present in both BOLD 1277 
and NCBI database. Alignment of the COI sequences shows extremely little variation. 1278 
Alignment of ITS2 does support a split into the two proposed clades. 1279 
 1280 

All labels and groupings are displayed in Supplementary file 1. In the majority of cases, the fine 1281 
species-groups are supported by at least one molecular marker and not contradicted by 1282 
different species labels. Some species are not present in one or both databases, so for these a 1283 
match to a closely related species is allowed. The exceptions are: 1284 

● An. jebudensis: one sample was labelled as An. jebudensis, the other one originally as 1285 
An. marshallii, but showed sufficient evidence for relabelling. Neither An. jebudensis nor 1286 
An. marshallii is present in either database. On ITS2 they both match to An. moucheti, 1287 
which is the closest species in the dataset, neither has a match in BOLD, and on COI in 1288 
the NCBI database the best matches are to An. lindesayi and An. sawyeri, which are in 1289 
the Anopheles and Nyssorhynchus subgenus respectively. However, it has to be noted 1290 
that the NCBI database does not contain an An. moucheti COI sequence and the best 1291 
hits are based on 81% and 91% identity respectively. 1292 

● An. rhodesiensis: All samples match to uninformative ‘Anopheles_sp’; even though a 1293 
COI sequence is available in BOLD and NCBI. The best hit to a named species in the 1294 
dataset is to An. funestus for COI and An. aconitus for ITS2. 1295 

● An. jamesii: Is predicted for BOLD and ITS2, but not for COI in the NCBI database, even 1296 
though an An. jamesii COI sequence is present there. 1297 

● An. maculatus A: has a few matches to An. sawadwongporni, which is also a member of 1298 
the maculatus group, even though sequence of An. maculatus A is present in all 1299 
databases. 1300 

● An. rampae: the four different samples match to An. rampae(2x), An. 1301 
sawadwongporni(1x) and An. maculatus(1x) in the BOLD database; all these are in the 1302 
same species group. In the NCBI database, all COI hits are for An. maculatus (An. 1303 
rampae COI not present in database), and all ITS2 hits are An. rampae and the 1304 
uninformative Anopheles_sp. 1305 

● An. balabacensis: matches to An. introlatus on COI in both databases, even though An. 1306 
balabacensis sequence is present. The two species are in the same complex. 1307 

● An. carnevalei: all samples match to An. carnevalei on BOLD and ITS2. An. carnevalei 1308 
sequence is not present in NCBI database for COI; 4 out of 5 samples match to An. nili, 1309 
one to An. darlingi, which is in a different subgenus. 1310 

● An. dureni: sequence not present in either database; on ITS2 one sample matches to 1311 
An. minimus and one to An. leesoni, which are both in different groups; but placement of 1312 
An. dureni is not very clear on the species tree. 1313 
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● An. vinckei: sequence not present in either database; on COI there are distant matches 1314 
to An. gambiae and An. maculatus, which are both in different groups; but placement of 1315 
An. vinckei is not very clear on the species tree (seems to be close to An. dureni). 1316 

● An. coustani group: we have samples of four species, An. coustani (present in all 1317 
databases), An. paludis (present in no databases), An. ziemanni (COI present in both 1318 
databases)  and An. tenebrosus (COI present in both databases). In BOLD, all samples 1319 
match to An. coustani. In the NCBI database, on COI most matches are to An. coustani, 1320 
there is one match to An. ziemanni, and a few matches to Anopheles_cf. On ITS2 there 1321 
are many matches to Anopheles_sp. and Anopheles_cf., and the remaining matches are 1322 
to An. coustani and one sample to An. junlianensis and An. yatsushiroensis in the 1323 
hyrcanus group (this is the An. paludis sample, that is further removed from all other 1324 
samples in this complex). These samples also show a ‘checkerboard’ pattern, which 1325 
splits them into two clades, which are not correlated with species labels. 1326 

● An. barbirostris: there are matches to An. barbirostris and to the closely related An. 1327 
dissidens. However, the samples do not form two separate groups based on the 1328 
distances. 1329 

● An. oryzalimnetes: no Sanger sequencing done. 1330 
● An. cruzii: no Sanger sequencing done. 1331 
● An. bellator: no Sanger sequencing done. 1332 

 1333 
Lastly, there are samples which are further than 0.10 distance away from other samples in the 1334 
reference database representing the same species. Above we have discussed some samples 1335 
where there was good evidence to adjust the species label, but there are also some for which 1336 
there is good reason to retain the partner label. Those are: 1337 

● VBS00001: An. annularis. It is a bit more diverged from the other three An. annularis 1338 
samples, which causes it to fall just above the threshold. However, the distances are not 1339 
very different from the distance between the other An. annularis, the next closest sample 1340 
in the reference set are much further away and the molecular barcodes support the 1341 
partner label. 1342 

● Agam-37: An. gambiae. It is a bit more diverged from the other An. gambiae that were 1343 
sequenced by the panel, which causes it to fall just above the threshold. But is it closer 1344 
to An. gambiae than to other samples in the reference dataset. The molecular barcodes 1345 
also support the partner label. 1346 

● VBS00149 & VBS00150: An. tessellatus. They are 0.11 distance from each other, but for 1347 
both the molecular barcodes match to An. tessellatus and the next closest sample in the 1348 
database is at 0.44 distance. 1349 

● anopheles-sinensis-chinascaffoldsasinc2 & anopheles-sinensis-sinensisscaffoldsasinc2: 1350 
An. sinensis. They are 0.11 distance from each other and that is still clearly closer than 1351 
the next best match in their sister species An. hyrcanus (namely An_hyrcanus_gp_sp2). 1352 

 1353 
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Appendix 2: Comparison UMAP and VAE 1354 

We projected the An. gambiae complex training set (GCref v1) with UMAP, using the same 8-1355 
mer count tables as for the VAE as input. Using the default UMAP parameters does a very poor 1356 
job at distinguishing species (Appendix 2 - figure 1). By experimenting with different parameter 1357 
values and different metrics, the three best-performing projections (judging by eye after 1358 
colouring samples by their species label, see Appendix 2 - figure 1) are: 1359 

● metric = hamming, n_neighbors = 3, min_dist = 0, n_components = 2 1360 
● metric = canberra, n_neighbors = 3, min_dist = 0.1, n_components 1361 

= 3 1362 
● metric = braycurtis, n_neighbors = 3, min_dist = 0.99, 1363 

n_components = 3  1364 
We have two species that are only represented by three samples and by setting the parameter 1365 
n_neighbours higher than 3, these species will not split out as separate clusters. Although 1366 
most of the species form distinct clusters in these three projections, there is still significant 1367 
overlap between An. gambiae, An. coluzzii and An. tengrela.  1368 
 1369 
 1370 
Appendix 2 - figure 1: UMAP run on 8-mer count table of An. gambiae complex dataset GCref v1. Left top is using 1371 
the default UMAP settings, for the other three projections, the settings are specified in the title. UMAP was run 1372 
unsupervised; the samples are coloured by their species labels after projecting them. 1373 
 1374 
 1375 
It is noticeable that UMAP tends to generate tighter clusters than the VAE (see figure 4 in the 1376 
main text); there are less fuzzy boundaries, but it comes at the cost of some samples being 1377 
placed in the wrong cluster. The convex hull assignment we used with the VAE projection is 1378 
specifically aimed to deal with the fuzzy boundaries and it doesn’t cope well with outlier 1379 
samples. Therefore, we use a different classification method, namely support vector machines, 1380 
to perform species assignment using the UMAP projections. We trained an SVM with the default 1381 
parameters on the reference dataset GCref v1. The accuracy results and comparison are shown 1382 
in the table below.  1383 
 1384 
 1385 

 UMAP hamming UMAP canberra UMAP braycurtis VAE 

GCref v1 - 
correct 

93.3% 94.6% 96.3% 98.5% 

GCref v1 - 
uncertain 

0% 0% 0% 2.4%* 

GCref v1 - 
incorrect 

6.7% 5.4% 3.7% 0.0% 

GCval v1 - 97.9% 97.9% 97.9% 93.0% 
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correct 

GCval v1 - 
uncertain 

0% 0% 0% 5.6% 

GCval v1 - 
incorrect 

2.1% 2.1% 2.1% 1.4% 

*this includes 0.9% of samples assigned to Anopheles_bwambae_fontenillei, which forms a 1386 
combined assignment category in the VAE classification, and hence cannot be assigned to a 1387 
single species. 1388 
 1389 
We suspected we could improve the results by treating separate clusters of the same species 1390 
as their own assignment category, e.g. relabel the samples in the separate An. arabiensis 1391 
cluster as An_arabiensis-2. However, this did not improve the accuracy, neither for the 1392 
reference set GCref v1 nor for the validation set GCval v1. 1393 
Overall the VAE has a lower misclassification score, although this comes at the cost of a larger 1394 
percentage of samples assigned to multiple species. We have consciously decided for a more 1395 
conservative classifier and we intend to resolve the samples which cannot be assigned to a 1396 
single species on an ad hoc basis; either by more in depth analysis of specific amplicons (to be 1397 
developed), by considering carefully documented species ranges where available (e.g. to 1398 
distinguish between An. bwambae and An. fontenillei, both of which have very specific 1399 
geographical areas where they occur) or by performing whole genome shotgun sequencing if 1400 
the identity of the samples is of greater interest. 1401 
The UMAP projections can probably be tuned better to achieve similar assignment performance 1402 
to the VAE, but UMAP does not outperform the VAE. 1403 

Appendix 3: ADMIXTURE in the An. gambiae complex 1404 

To assess the amount of population differentiation between the different species in the An. 1405 
gambiae complex, we ran ADMIXTURE on the reference dataset GCref v1. We ran 1406 
ADMIXTURE on the 8-mer count tables; first we filtered for variable 8-mers which take count 1407 
values in {0,1,2} for all samples; there are 25,301 such 8-mers. We treated these 8-mers 1408 
essentially as unlinked SNPs. We are aware that these input data do not exactly follow the 1409 
assumptions behind the probabilistic model used by ADMIXTURE, but using only unlinked 1410 
SNPs would allow for at most one SNP per amplicon, so 62 in total and it would be quite 1411 
challenging to select one without bias to a certain species or group of species. Despite not 1412 
following the model assumptions, we believe that ADMIXTURE used on k-mers should allow us 1413 
to judge whether ADMIXTURE constitutes a useful approach to differentiate between species in 1414 
the An. gambiae complex. 1415 
 1416 
The inferred ADMIXTURE proportions for different values of K can be found in Appendix 3 - 1417 
figure 1. At K=3 and K=4, ADMIXTURE does a good job at distinguishing the well-represented 1418 
species: An. gambiae, An. coluzzii and An. arabiensis. However, it struggles to differentiate 1419 
between the species represented by a smaller number of samples, even though many of these 1420 
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species are much more diverged from each other than An. gambiae and An. coluzzii are 1421 
(Fontaine et al. 2015). 1422 
 1423 
For the higher values of K, ADMIXTURE reveals substructure and mixed ancestry in the An. 1424 
gambiae and An. coluzzii samples. The first glimpse of substructure we see already at K=3, 1425 
where the An. gambiae samples from Guinea-Bissau and the Gambia are modelled as a 1426 
mixture of An. gambiae and An. coluzzii. This substructure is also found in the VAE projection. 1427 
 1428 
While the An. arabiensis from Madagascar split out as a separate cluster in the VAE and in the 1429 
three UMAP projections discussed in the next section, ADMIXTURE only identifies them as a 1430 
separate group at K=11. So similarly as for the species represented by few samples, it seems 1431 
like ADMIXTURE is hesitant to assign a unique ancestry to a small group of samples. 1432 
 1433 
 1434 
Appendix 3 - figure 1: Admixture fractions of the GCref v1 samples for K from 2 to 14. The samples are ordered by 1435 
species, from left to right An. gambiae, Agamp4 reference genome, An. coluzzii, An. tengrela, An. arabiensis, An. 1436 
melas, An. merus, An. quadriannulatus, An. bwambae and An. fontenillei. The samples within a species are ordered 1437 
by ancestry fraction and the within species ordering is not the same between rows. 1438 
 1439 
 1440 
ADMIXTURE identifies some structure in the An. gambiae complex when treating variable 8-1441 
mers as SNPs. It is particularly good at differentiating between groups represented by a larger 1442 
number of samples and additionally finds some substructure within these groups. It is 1443 
pronouncedly worse than the VAE at differentiating between species for which we have fewer 1444 
samples. This is a shortcoming given that a major aim of applying ANOSPP widely to samples 1445 
from across the globe is to identify novel species that may or may not be contributing to 1446 
transmission.  1447 
 1448 
To assess which values of K are most informative, we recorded the cross-validation error for 1449 
these runs, see Appendix 3 - figure 2. There are 9 species represented in the dataset GCref v1, 1450 
so ideally we would find a minimal cross-validation error around K=9. The cross validation plot 1451 
indicates that we need a minimum of about 9 populations, but it does not unambiguously 1452 
indicate a suitable value of K. To properly assess the cross validation error, we’d have to run 1453 
multiple replicates. 1454 
 1455 
 1456 
Appendix 3 - figure 2: Cross-validation error for different values of K. Only one replicate shown. 1457 
 1458 
 1459 
Although ADMIXTURE does find structure in the An. gambiae complex, it is principally a method 1460 
for assessing population differentiation, not for species assignment. It is possible to build an 1461 
assignment method around it, but given that it performs worse than the VAE at differentiating 1462 
between all species in the An. gambiae complex, we prefer using the VAE based method for 1463 
assignments. 1464 
 1465 
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Appendix 4: Parameter choices for the VAE 1466 

Our VAE architecture is inspired by popVAE (Battey, Coffing, and Kern 2021). We used their 1467 
default parameter choices for learning rate, training iterations and validation proportion as well 1468 
as the ‘elu’ propagation between the layers of the neural network and the ‘linear’ activation 1469 
function to transform the output from the encoder to the latent space variables. Because we 1470 
model k-mer counts as independent Poisson variables, we use the ‘softplus’ activation function 1471 
to transform the output from the last layer of the decoder. 1472 

To set the width and depth of the encoder and decoder, we ran a grid search over a 1473 
combination of widths and depths. We kept the width and depth the same for the decoder and 1474 
the encoder and we trained the VAE with three different seeds for each width-depth 1475 
combination. For high width values (more than 500 nodes) the run time required to train the 1476 
VAE was very long and the process would often crash when conducted on a desktop. For very 1477 
small networks (width 32, depth 4) the resolution was poor, but in the middle range the visible 1478 
structure was not severely affected by the choice of width and depth, so we went with width 128 1479 
and depth 6, which gave a good resolution and reasonable run time.  1480 

As mentioned in the main text, the loss function contains a parameter, w, that controls the 1481 
relative importance of the data driven term and the regularisation term. We ran a grid search 1482 
ranging over four orders of magnitude, training with three different seeds for each search point. 1483 
For small values of w, which gives higher weight to regularisation term, the resulting latent 1484 
space dimension shows a strong correlation between the latent space dimensions, suggesting 1485 
that only highly differentiated samples can overpower the effect from the regularisation term. For 1486 
high values of w, the training process of the VAE becomes more unstable: it crashes sometimes 1487 
and the resulting latent space projections look less similar to those obtained with the same w 1488 
value, but a different seed. We chose w equal to 1000, which resulted in reasonably stable 1489 
projections, with good visible structure. 1490 

To assess the effect of using 8-mers over k-mers of other length, we ran the VAE with 6-mers 1491 
and with 10-mers as input, see Appendix 4 - figure 1. The projections using 6-mers, in both two 1492 
and three dimensions, show less tight and more overlapping clusters by species compared to 1493 
the 8-mer projection. There are only 4,096 unique 6-mers, compared to >65,000 unique 8-mers, 1494 
and with almost 10kB of sequence, there will be much fewer unique 6-mers than unique 8-mers. 1495 
Although the VAE loss function is based on counts rather than presence/absence of k-mers, it 1496 
probably is more sensitive to the difference between 0 and 1 than to the difference between 2 1497 
and 3. The VAE based on 10-mers shows clusters quite similar to those found in the 8-mer 1498 
projection, although An. quadriannulatus is much closer to An. bwambae and An. fontenillei. It 1499 
took much longer to train the 10-mer projection (5.5 hours compared to 20 minutes for the 8-1500 
mers), which is not a major drawback, because the training has to happen only once, but it does 1501 
make it harder to tweak the parameters for the 10-mer projection. 1502 

 1503 

Appendix 4 - figure 1: VAE projection of GCref v1 in two dimensions (top) using 6-mers (left) and 10-mers (right) 1504 
and in three dimensions using 6-mers (bottom).  1505 
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 1506 

To determine the number of latent space dimensions, we ran a grid search over 2, 3 and 4 1507 
latent space dimensions. In fact, the grid search for w and the number of latent space 1508 
dimensions was run simultaneously, but there seemed to be little interaction between w and the 1509 
number of latent space dimensions. For the training set containing only An. gambiae, An. 1510 
coluzzii and An. arabiensis, adding a third or fourth dimension did not add to the visible 1511 
structure, so in this case we opted for two latent space dimensions for visualisation purposes. 1512 
However, for the full training set GCref v1, in the two-dimensional projection, several species 1513 
clusters are very close to each other, making this hard to use for species assignment. Adding a 1514 
third dimension resolves this problem, even though the second and third dimensions are 1515 
strongly correlated (see Figure 4). The benefit of the strong correlation is that we can visualise 1516 
the structure in two dimensions. 1517 

Appendix 5: Geographic stability 1518 

Here we test the robustness of our VAE projection by removing all samples collected in one 1519 
geographic location from the training set and then projecting those samples and the validation 1520 
set and comparing these results to those obtained using the VAE trained on the full training set. 1521 
In particular, we will pay attention to the separation of the species clusters, the classification 1522 
accuracy of the validation set and the visible structure within the species clusters.  1523 
 1524 
For this analysis, we use a subset of the reference dataset GCref v1 and the validation set 1525 
GCval v1, containing only the species An. coluzzii, An. gambiae and An. arabiensis, because for 1526 
the other species in the An. gambiae complex we have very few samples, the samples in this 1527 
dataset are collected at only one or two locations and the species have more limited geographic 1528 
ranges than An. coluzzii, An. gambiae and An. arabiensis. With only these species, two latent 1529 
space dimensions are sufficient to exhibit the relevant structure, so that is what we will use here. 1530 
We have performed these drop-outs for a subset of the geographic locations, selecting for those 1531 
we thought would be most likely to affect the structure of the projection.  1532 
 1533 
Below, we discuss the drop-out experiments in more detail, but to summarise: overall, the 1534 
separation of the species clusters remained intact and the ability to classify species of the 1535 
samples in the training set and and in the validation set was not significantly affected. Samples 1536 
from The Gambia and Guinea-Bissau could be less accurately classified when no samples from 1537 
this geographic region were included in training the VAE, but for all other locations we tested, 1538 
the ability to classify species remained the same. The degree to which geographic structure is 1539 
visible within the species clusters was somewhat affected for certain collection countries. 1540 
However, the visible structure never completely disappeared, nor did we see a considerably 1541 
different geographic structure, it was merely that the structure became a bit more blurred or 1542 
more condensed than in the original projection.  1543 
 1544 
Angola 1545 
 1546 
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We removed 10 An. coluzzii samples from the training set, see Appendix 5 - figure 1. The 1547 
separability of species clusters is similar compared to the projection of the VAE trained on the 1548 
full dataset. The geographic structure within the An. gambiae and An. arabiensis clusters 1549 
remains intact, but the An. coluzzii cluster loses some of its visible structure. Angola is on the 1550 
edge of the geographical range of the An. coluzzii samples in this dataset and these samples 1551 
are also on the very top of the VAE projection, suggesting that they are responsible for a 1552 
considerable amount of the structure within An. coluzzii. 1553 
 1554 
 1555 
Appendix 5 - figure 1: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1556 
locations. Left: samples from Angola included in VAE training. Right: samples from Angola excluded from VAE 1557 
training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), 1558 
triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. 1559 
Samples from Angola are highlighted with a blue edge, all other validation samples have a black edge. 1560 
 1561 
Cameroon 1562 
 1563 
We removed 10 An. coluzzii and 66 An. gambiae from the training set, see Appendix 5 - figure 1564 
2. The separability of the species clusters is similar compared to the projection of the VAE 1565 
trained on the full dataset. The geographic structure within the An. coluzzii and An. arabiensis 1566 
clusters remains intact, but the An. gambiae cluster loses some visible structure in its main 1567 
subcluster, while the structure in the other four subclusters (formed by samples from The 1568 
Gambia and Guinea-Bissau; by samples from Nigeria and Gabon; by samples from Madagascar 1569 
and by samples from various East African countries respectively) remains largely intact. This is 1570 
probably due to the fact that the samples from Cameroon form a large proportion of the samples 1571 
in the main An. gambiae cluster.  1572 
 1573 
 1574 
Appendix 5 - figure 2: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1575 
locations. Left: samples from Cameroon included in VAE training. Right: samples from Cameroon excluded from 1576 
VAE training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE 1577 
training), triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis 1578 
individuals. Samples from Cameroon are highlighted with a blue edge, all other validation samples have a black 1579 
edge. 1580 
 1581 
The Gambia and Guinea-Bissau 1582 
 1583 
We removed 33 An. coluzzii and 19 An. gambiae from The Gambia and 24 An. gambia from 1584 
Guinea-Bissau from the training set, see Appendix 5 - figure 3. Considering the training 1585 
samples, the separability of the species clusters is very clear. However, the classification 1586 
accuracy of the projected samples from The Gambia and Guinea-Bissau is only 70%. This is 1587 
probably due to the fact that these samples form the border between the An. coluzzii and An. 1588 
gambiae clusters in the projection of the VAE trained on the complete dataset. So by leaving 1589 
those samples out, we miss the important label information necessary to classify the edge 1590 
cases. The subclusters of the An. gambiae cluster are arguably more pronounced than in the 1591 
original projection, but the structure within the subclusters of the An. gambiae cluster and in the 1592 
entire An. coluzii cluster reduces. 1593 
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 1594 
 1595 
Appendix 5 - figure 3: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1596 
locations. Left: samples from The Gambia and Guinea-Bissau included in VAE training. Right: samples from The 1597 
Gambia and Guinea-Bissau excluded from VAE training. Samples are coloured by country of collection. Squares are 1598 
validation samples (not used in VAE training), triangles are An. coluzzii individuals, circles are An. gambiae 1599 
individuals and crosses are An. arabiensis individuals. Samples from The Gambia and Guinea-Bissau are highlighted 1600 
with a blue edge, all other validation samples have a black edge. 1601 
 1602 
Madagascar 1603 
 1604 
We removed 20 An. arabiensis and 18 An. gambiae from the training set, see Appendix 5 - 1605 
figure 4. The separability of the species clusters is similar compared to the projection of the VAE 1606 
trained on the full dataset and the geographic structure within the three species clusters remains 1607 
largely intact. When the Madagascar samples are included in training the VAE, they form a tight 1608 
subcluster, both for An. gambiae and An. arabiensis. When they are not included in training, 1609 
these clusters stand out less, due to the fact that the VAE does not recognise the features that 1610 
make them stand out. 1611 
 1612 
 1613 
Appendix 5 - figure 4: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1614 
locations. Left: samples from Madagascar included in VAE training. Right: samples from Madagascar excluded from 1615 
VAE training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE 1616 
training), triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis 1617 
individuals. Samples from Madagascar are highlighted with a blue edge, all other validation samples have a black 1618 
edge. 1619 
 1620 
Mali 1621 
 1622 
We removed 57 An. coluzzii and 43 An. gambiae from the training set, see Appendix 5 - figure 1623 
5. The separability of the species clusters is similar compared to the projection of the VAE 1624 
trained on the full dataset. The visible geographic structure within the three species clusters 1625 
reduces a bit. This could be because we removed such a large number of samples. 1626 
 1627 
 1628 
Appendix 5 - figure 5: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1629 
locations. Left: samples from Mali included in VAE training. Right: samples from Mali excluded from VAE training. 1630 
Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), triangles 1631 
are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. Samples 1632 
from Mali are highlighted with a blue edge, all other validation samples have a black edge. 1633 
 1634 
Nigeria 1635 
 1636 
We removed 6 An. coluzzii and 20 An. gambiae from the training set, see Appendix 5 - figure 6. 1637 
The separability of the species clusters is similar compared to the projection of the VAE trained 1638 
on the full dataset and the geographic structure within the three species clusters remains largely 1639 
intact. When the Nigerian samples are included in training the VAE, the An. gambiae individuals 1640 
are more separated from the main An. gambiae cluster than when they are projected using the 1641 
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VAE excluding them from training. This is because the VAE has not been trained to recognise 1642 
the features that distinguish these Nigerian An. gambiae individuals from the other samples. 1643 
 1644 
 1645 
Appendix 5 - figure 6: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1646 
locations. Left: samples from Nigeria included in VAE training. Right: samples from Nigeria excluded from VAE 1647 
training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), 1648 
triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. 1649 
Samples from Nigeria are highlighted with a blue edge, all other validation samples have a black edge. 1650 
 1651 
Tanzania 1652 
 1653 
We removed 37 An. arabiensis and 20 An. gambiae from the training set, see Appendix 5 - 1654 
figure 7. The separability of the species clusters is similar compared to the projection of the VAE 1655 
trained on the full dataset. The subclusters of An. gambiae and An. arabiensis remain well 1656 
separated, but the visible geographic structure within the (sub)clusters reduces a bit. 1657 
 1658 
Appendix 5 - figure 7: VAE projections of An. arabiensis, An. coluzzii and An. gambiae from different geographic 1659 
locations. Left: samples from Tanzania included in VAE training. Right: samples from Tanzania excluded from VAE 1660 
training. Samples are coloured by country of collection. Squares are validation samples (not used in VAE training), 1661 
triangles are An. coluzzii individuals, circles are An. gambiae individuals and crosses are An. arabiensis individuals. 1662 
Samples from Tanzania are highlighted with a blue edge, all other validation samples have a black edge. 1663 
 1664 
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