
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Measuring and Testing the Scalability of Cloud-

based Software Services 
 

Amro Al-Said Ahmad  
School of Computing and Mathmatics   

Keele University, UK 
a.m.k.al-said.ahmad@keele.ac.uk 

Peter Andras 
School of Computing and Mathmatics   

Keele University, UK 
p.andras@keele.ac.uk 

Abstract—Performance and scalability testing and 

measurements of cloud-based software services are critically 

important in the context of rapid growth of cloud computing 

and supporting the delivery of these services. Cloud-based 

software services performance aspects are interrelated, both 

elasticity and efficiency are depending on the delivery of a 

sufficient level of scalability performance. In this work, we 

focused on testing and measuring the scalability of cloud-based 

software services in technical terms. This paper uses technical 

scalability metrics that address both volume and quality 

scaling, that inspired by earlier technical metrics of elasticity. 

We show how our technical scalability metrics can be 

integrated into an earlier utility oriented metric of scalability. 

We demonstrate the application of the metrics using a practical 
example and discuss the importance of them. 

Keywords— Measurement, Performance, Testing, Scalability, 

Software-as-a-Service (SaaS), Metrics  

I. INTRODUCTION  

In any software system, scalability and performance 
assessments provide an important basis for future 
optimizations, and for developing new opportunities aimed 
to maximize scalability and performance [1]. The 
performance assessment and testing of cloud-based software 
services is critically important in order to support the Service 
Level Agreement (SLA) compliant quality of delivery of 
these services, especially in the context of rapidly expanding 
the quantity of service delivery [2]. There are three cloud-
specific performance aspects that are key determinants of 
service quality delivery in the context of variable service 
demand: scalability, elasticity and efficiency [3, 4]. 

Following [5] we adopt the following definitions of these 
three performance aspects. Scalability is the ability of the 
cloud layer to increase the capacity of the software service 
delivery by expanding the quantity of the software service 
that is provided. Elasticity is the level of autonomous 
adaptation provided by the cloud layer in response to 
variable demand for the software service. Efficiency is the 
measure of matching the quantity of software service 
available for delivery with the quantity of demand for the 
software service. These definitions focus on the technical 
side of cloud-based software services, however we note that 
alternative, utility oriented (i.e. economic cost/benefit 
focused), approaches are also used in the literature [6, 7]. 

Cloud-based applications should be scalable, and with 
auto-scaling and load-balancing features such applications 
should be able to deal with sudden workload by adding more 
of the application instance(s). Furthermore, as cloud-based 
applications been offered as Software as a Services (SaaS), 
and the use of multi-tenancy architectures [8], emphasizes 
the need for scalability that supports the availability and 
productivity of the services and on-demand resources.      

Recently a series of papers has been published addressing 
the topic of measuring elasticity of cloud-based provision of 
software services [9, 10]. There have been also works on 
scalability of cloud-based software services from the utility 
perspective [6, 7, 9, 11]. However, relevant recent systematic 
reviews report only a very small number of works (mainly in 
the grey literature, e.g. project reports, MSc theses) which try 
to address the assessment of scalability of cloud-based 
software services from the technical perspective [5]. 

Measuring and testing scalability of cloud-based software 
services from a technical perspective are key for the 
assessment and testing of performance [1,12]. Both elasticity 
and efficiency performance depend on the delivery of a 
sufficient level of scalability performance. Understanding 
how components of the cloud-based software service system 
contribute to the scalability performance of the system helps 
in designing appropriate test scenarios and identifying 
options for changes and upgrades that can improve the 
scalability performance of the system.  

Utility oriented assessment of scalability [6] i.e. 
measuring the scalability from an economic and cost 
perspective, is insufficient for the above purpose, since it 
measures scalability from a perspective that is abstract 
relative to the technical components and features of the 
system.  Thus it becomes very difficult and possibly even 
practically impossible to associate specific technical 
components and features with specific impact on the utility 
oriented scalability performance. This is due to the potential 
multiple impacts of such technical components and features 
on utility features of the system that get integrated into the 
utility oriented scalability measurement of the system. 

Here we follow ideas proposed in the context of 
measurements and metrics for cloud elasticity [13–15] to 
propose technical measurement and metrics for scalability of 
cloud-based software services. To sum up, the main 
contributions of this paper:  

 The work uses metrics [16] that address both volume 
and quality scaling for evaluating cloud-based 
software services scalability performance. This work 
provides an extension to the previous work [16] 
which offers explanation in further detail, introduce 
the demand scenarios, and demonstrate a practical 
example of the metrics.     

 The metrics can be useful in order to support effective 
measurement and testing of scalability performance 
of those services from technical perspective. 

 The paper proposed how those technical metrics can 
be integrated with earlier utility oriented scalability 
metrics proposed by [11]. 



 We demonstrate the application of the metrics to a 
concrete cloud-based software service (OrangeHRM) 
run through the Amazon EC2 Cloud. 

 We show how the metrics can be used to identify 
differences in the behaviour of the assessed system in 
the context of different usage scenarios. 

The rest of the paper is structured as follows. First we 
review briefly the relevant recent literature. Next we present 
our approach to measure and quantify scalability of cloud-
based software services and explain the metrics based on the 
measurement approach. Next we present an application 
example using two different usage scenarios to demonstrate 
the measurement approach and metrics. Next we discuss the 
implications and importance of the approach and metrics. 
Finally, the paper is closed by the conclusions section. 

II. RELATED WORKS 

A recent review [17] on provisioning of cloud resources 
and related research challenges, identify, among others 
predictable performance and scalable resource management 
as promising challenges. Gao et al. [18] reviewed testing in 
relation with cloud-based software services. They highlight 
scalability and performance testing as key research 
directions. Other similar recent surveys [19, 20] focus 
primarily on cloud service elasticity. The systematic 
literature review by Lehrig et al. [5] provides very useful 
definitions of key cloud performance concepts such as 
capacity, scalability, elasticity and efficiency, which we 
adopt in this paper.  

 

Fig. 1. Key concepts for measuring elasticity 

There is a considerable number of recent papers that 
address the issue of measuring elasticity of cloud services in 
technical terms [4, 9, 15, 21–25]. Herbst et al. [4] define a 
useful set of key concepts that allow technical measurement 
of cloud service elasticity (see Fig. 1) such as the quantity 
and time extents for periods of time when the service 
provision is either below or above what is required by the 
service demand. They [4, 21] define as elasticity measures: 
the time shares and average time lengths in under-
provisioned and over-provisioned states; the amounts of 
excess (over-provisioned) and lacking (under-provisioned) 
resources per time unit; the averages of the excess and 
lacking resources; and the jitter, which is the number of 
resource adaptations during a given time period of 
provisioning the service. The up-elasticity metric is defined 
as the reciprocal value of the product of the average under-
provisioned time length and average lack of resource. The 
down-elasticity is defined similarly. Further elaboration on 

these metrics is provided by [22], who introduced further 
components and ways of considering the above factors (e.g. 
scalability, functions of resource inaccuracy and 
reconfiguration time). 

In terms of measuring and quantifying scalability we note 
the work of Hwang et al. [7, 11], which uses a utility oriented 
definition of scalability. Their production-driven scalability 
measure includes the consideration of a quality-of-service 
measure and the cost of service, in addition to a more 
technically oriented performance metric [7, 11]. While this 
approach is likely to be useful from the perspective of utility, 
because of its reliance of multiple facets of the system 
(including cost measures), it is unlikely to be able to provide 
sufficiently specific and useful information in terms of 
contribution of system components to system scalability in a 
technical sense. Thus the usefulness of the utility oriented 
scalability metric is limited in the context of testing and 
technical improvement of the cloud-based provision of the 
software service. 

Attempts to provide a more technically oriented measure 
or metric for cloud-based software service scalability are also 
limited.  For example, Herbst et al. [4] provide a technical 
scalability metric, however, this is a rather elasticity driven 
metric (sum of over- and under-provisioned resources over 
the total length of time of service provision). Jamal et al. [26] 
describe practical measurements of throughput in systems 
with and without multiple virtual machines, without clearly 
formulating a specific measure or metric of scalability. 
Similarly, Jayasinghe et al. [13, 14] is provide a technical 
scalability measure practically the system scalability in terms 
of throughput and CPU utilization of a set of virtual machine 
system settings, but does not provide a generic metric or 
measure. Gao et al. [15] evaluates SaaS performance and 
scalability from the system capacity perspective, using the 
system load and capacity as measurements for scalability. 
Another recent work [27] focuses on building a model to 
help measuring and comparing different deployment 
configurations in terms of capacity, elasticity and costs.  

III. SCALABILITY PERFORMANCE MEASUREMENT 

While this as noted in the Introduction, we define 
scalability as the ability of the cloud-based system to 
increase the capacity of the software service delivery by 
expanding the quantity of the software service that is 
provided when such increase is required by increased 
demand for the service [5]. We are not concerned with the 
short-term flexible provision of the resources, which we term 
elasticity of the service provision [21]. Our focus is whether 
the system can expand the quantity of the service when this 
expansion is required by demand over a sustained period of 
service provision. 

In principle the increase of capacity could happen either 
by increasing the volume of service requests served by a 
single instance of the service provision software or by 
deploying multiple software instances, or by a combination 
of these two approaches. In general, we expect that if a 
service scales up ideally then the increase in demand for 
service should be matched by proportional increase in the 
provision of the service such that the quality of the service 
does not change. Here quality of the service may be seen for 
example in terms of average response time. This ideal 
scaling behaviour of the system should be valid over a 
sufficiently long time scale, i.e. short-term mismatches 
between provision and demand, which are the subject of 



elasticity, are not relevant from the perspective of scalability. 
If the system does not scale according to the ideal manner, it 
recruits insufficient resources to deliver the increased volume 
of service without change in the quality of the service. In 
general, real systems are expected to operate below the level 
of the ideal scaling behaviour and the aim of measuring 
scalability is to quantify the extent to which the real system 
behaviour differs from the ideal behaviour. 

To deliver the ideal scaling, we expect that the system 
increases the number of instances of the software 
proportionally with the increase in demand for software 
services, i.e. if the demand increases by 50% we would 
ideally expect the base number of software instances to 
increase by 50%. We expect also that the system maintains 
the quality of service in terms of maintaining the same 
average response time irrespective of the volume of service 
requests, i.e. an increase of 50% of demand we would ideally 
expect no increase in average response time. Formally, let us 
assume that D and D’ are two service demand volumes, D’ > 
D. Let I and I’ be the corresponding number of software 
instances that are deployed to deliver the service, and let tr 
and t’r be the corresponding average response times. If the 
system scales ideally we expect that for any levels of service 
demand D and D’. 

 D’ / D = I’ / I 

 tr = t’r   

Equation (1) expresses that the volume of software 
instances providing the service scales up with the demand for 
the service. Equation (2) expresses that the quality of service, 
in terms of average response time, remains unchanged for 
any level of service demand. 

To measure the values of I and tr the system must 
perform the delivery of the service over some sustained time, 
such that short-term variations, due to elastic response of the 
system, do not influence the system measurements. In 
practice this means that the number of software instances and 
the average response time should be calculated by averaging 
over a number of measurements during the execution of a 
demand scenario (e.g. every second), and a number of 
repeated applications of the same demand scenario, i.e. a 
pattern of demand presentation, which may include variation 
in the demand. 

Demand scenarios may follow certain patterns expected 
to test the scalability of the system in specific ways. Two 
kinds of demand patterns that appear as natural and typical 
choices are the steady increase followed by steady decrease 
of the demand with a set level of the peak, and the stepped 
increase and decrease, again with a set peak level of demand. 
These two demand scenarios are shown in Fig.2. Other 
demand scenarios may reflect prior knowledge about the 
system or its service market (e.g. the market may be 
characterized by spikes of demand or by seasonal variation 
of the demand). Any demand scenario has to be 
characterized by a summary measure of the demand level, 
which may be the peak level or the average or total demand 
level. This characteristic demand of a demand scenario is 
represented by D. 

Naturally, real world cloud systems are unlikely to 
deliver the ideal scaling behaviour. The difference between 

the ideal and the actual scaling behaviour of the system 
offers the possibility of defining technical scalability metrics 
for cloud-based software services. 

In terms of provision of software instances for the 
delivery of the services the scaling is deficient if the number 
of instances is lower than the ideally expected number of 
software instances. 

 

Fig. 2. Demand scenarios: A) steady rise and fall of demand; B) stepped 

rise and fall of demand. 

To quantify the level of deficiency we pick a demand 
scenario and start with a low level of demand D0 and 
measure the corresponding volume of software instances I0. 
Then measuring the number of software instances Ik 
corresponding to a number (n) of demand levels Dk 
following the same demand scenario, we can calculate how 
close are the Ik values to the ideal I*k values (Ik < I*k). 
Following the ideal scalability assumption of equation (1) we 
get for the ideal I*k values: 

 I*
k = (Dk / D0) I0 

Considering the ratio between the area defined by the 
(Dk, Ik) values, k = 0,…,n, and the area defined by the (Dk, 
I*

k) values we get a metric of service volume scalability of 
the system: 

 A* = k=1,…,n (Dk – Dk-1)  (I*
k + I*

k-1) / 2 

 A = k=1,…,n (Dk – Dk-1)  (Ik + Ik-1) / 2 

 I  = A / A* 

where A and A* are the areas under the curves calculated 

for actual and ideal I values and I is the volume scalability 

performance metric of the system. If I is close to 1 the 
system is close to ideal volume scalability, if it is close to 0, 



then the volume scalability of the system is much less than 
ideal. 

Similarly, we can define the quality scalability of the 
system by measuring the service average response times tk 
corresponding to the demand levels Dk. We approximating 
the ideal average response time as t0, following the ideal 
assumption of equation (2). The quality scalability of the 
system is less than ideal if the average response times for 
increasing demand levels increase, i.e. tk > t0. By considering 
the ratio between the areas defined by the (Dk, tk) values, k = 
0,…,n, and the area defined by the (Dk, t0) values we get a 
ratio that defines a metric of service quality scalability for the 
system: 

 B* = k=1,…,n (Dk – Dk-1)  t0 = (Dn – D0)  t0  

 B = k=1,…,n (Dk – Dk-1)  (tk + tk-1) / 2 

 t  = B* / B 

where B and B* are the areas under the curves calculated 

for actual and ideal t values and t is the quality scalability 

performance metric of the system. If t close to 1 the system 
is close to ideal quality scalability, if it is close to 0 the 
quality scalability of the system is much less than ideal.  

 

Fig. 3. The calculation of the scalability performance metrics: A) the 

volume scalability metric is I, which is the ratio between the areas A and 

A* – see equation (6); B) the quality scalability metric is t, which is the 

ratio between the areas B* and B – see equation (9). The red lines indicate 

the ideal scaling behaviour and the blue curves show the actual scaling 
behaviour. 

The calculation of the two scalability performance 
metrics is illustrated in Fig. 3. In Fig. 3A, A* is the area 
under the red line showing the ideal expectation about the 
scaling behaviour (see equation (1)) and A is the shaded area 

under the blue curve. The blue curve is under the ideal red 
line, indicating that the volume scaling is less efficient than 
the ideal scaling. In Fig. 3B, B* is the shaded area under the 
red line indicating the expected ideal behaviour (see equation 
(2)) and B is the area under the blue curve. The blue curve is 
above the ideal red line, indicating that the quality scaling is 
less than ideal. We chose nonlinear curves for the examples 
of actual scaling behaviour to indicate that the practical 
scaling of the system is likely to respond in a nonlinear 
manner to changing demand. 

These scalability metrics allow the effective 
measurement of technical scalability of cloud-based software 
services. These metrics do not depend on other utility 
considerations (e.g. price of service, non-technical quality 
aspects), which makes them appropriate for testing the 
technical scalability of the system. This makes possible the 
use of these metrics in scalability tests that aim to identify 
parts of the system that have significant impact on the 
technical scalability, and also the testing of the impact of any 
change made to the system on the technical scalability of the 
system. 

Applying the scalability metrics to different demand 
patterns allows the testing and tuning of the system for 
particular usage scenarios and the understanding of how 
system performance can be expected to change as the pattern 
of demand varies. Such application of these metrics may 
highlight trade-offs between volume scaling and quality 
scaling of the system that characterize certain kinds of 
demand pattern variation (e.g. the impact of transition from 
low frequency peak demands to high frequency peak 
demands or to seasonal change of the demand). 
Understanding such trade-offs can help in tailoring the 
system to its expected or actual usage. 

The scalability metrics can be integrated into the utility 
oriented scalability metric proposed by Hwang et al. [9], by 
considering a combination of our metrics as the performance 
and/or quality components of the utility oriented scalability 
metric. In [9] the utility oriented scalability of the system is 
defined as the ratio of two utility oriented productivity metric 
values associated with two different configurations of the 
system (i.e. one configuration is a scaled-up version of the 

other). The utility oriented productivity metric (P()) is 
given as [9]: 

 P() = p()  () / c() 

Where  is the system configuration, p() is the 

performance component of the metric, () is the quality 

component of the metric and c() is the cost component of 
the metric. A natural way of integrating our technical metrics 
into this utility oriented framework is to use our volume and 
quality scaling metrics for the performance and quality 
components in (10) and thus re-define the productivity 
metric as 

 P() = I ()  t () / c() 

by adopting  pand

As important as measuring and testing scalability is, so is 
collecting the right measurements, in order to interpret those 
measurements by the right metrics. This will develop a 
consistent interpretation of the fine grained performance 



measurement data through the lenses of externally relevant 
scalability performance metrics. This interpretation will 
allow understanding better the factors that influence 
performance metrics of the scalability of cloud-based 
systems and will support software engineers to fine-tune 
such systems to achieve better performance. 

IV. APPLICATION EXAMPLE AND RESULT 

To demonstrate the applicability of the scalability metrics 
we used the Amazon AWS cloud environment, and the 
OrangeHRM1 open source human resource software system 
as the cloud-based software service. To measure the 
scalability we simulate the user demand scenarios using the 
Apache JMeter script2, and run through Redline133 services 
after connecting our Amazon account to the service. To 
provide the scaling of the service we relied on the Auto-
Scaling and Load-Balancer services provided by the Amazon 
AWS cloud.  

We set-up and configured an EC2 instance to host the 
targeted application through the Amazon EC2 management 
console. Both Auto-Scaling and Load-Balancer services have 
been connected to the application instance, and we set up the 
CloudWatch service to monitor the scaling performance and 
parameters. The experimental data has been collected 
through both Redline13 and Amazon’s CloudWatch services. 
In this study, the system average response time was 
measured as the average amount of time that the application 
takes to process a HTTP request after it has received one. 
The parameters of the Amazon EC2 virtual machines, and 
Auto-scaling polices that have been used for the experiments 
are given in Table I. The service requests consisted of a 
HTTP request to the main page of software with gaining 
login access by the following steps using the Apache JMeter:  

 Path = /. 

 Method = GET. 

 Parameters = username, password and login button.  

We used the Redline13 services by uploading the test 
script into our account; which allows us to easily deploy 
JMeter test plans inside our Amazon AWS domain and 
repeat the tests without the need to reset the test parameters 
again, this allows efficient extraction of the data. 

TABLE I.  AMAZON AWS EC2 VIRTUAL MACHINE PARAMETERS 

Virtual Machine Parameters 

Instance type: t2.micro 
vCPUs RAM (GiB) CPU Credits/hr Storage (GB) 

1 1.0 6 10 

Auto Scaling Policies 

Add Instance When 80% <= CPUUtilization < +infinity 

Remove Instance When 30% >= CPUUtilization > -infinity 
 

We used two demand scenarios. The first scenario 
follows the steady rise and fall of demand pattern shown in 
Fig. 2A. The second scenario consists of a series of stepwise 
increases and falls in demand, conceptually similar to the 
demand pattern shown in Fig. 2B. Examples of the two kinds 
of experimental demand patterns are shown in Fig. 4. We 
varied the volume of demand and experimented with four 
volume settings: 100, 200, 400 and 800 service requests in 
total. 

                                                        
1  https://www.orangehrm.com/ 
2  http://jmeter.apache.org/ 
3  https://www.redline13.com 

We ran all experimental settings (i.e. demand pattern and 
demand volume combinations) 20 times, in total 160 
experimental runs. We calculated the average number of 
simultaneously active software instances and the average 
response time for all service requests for each experimental 
run. We also calculated the averages and standard deviations 
of simultaneously active software instances and average 
response times over the 20 experimental runs. We note that 
the standard deviations are small relative to the averages over 
the 20 runs. The average number of software instances for 
both scenarios and for the four demand levels are shown in 
Fig. 5. The average response times for the two scenarios and 
four demand levels are shown in Fig. 6. 

 

Fig. 4. Typical experimental demand patterns: A) steady rise and fall of 

demand; B) series of step-wise increases and decreases of demand 

 

 
Fig. 5. The average number of software instances: A) steady rise and fall of 

demand; B) series of step-wise increases and decreases of demand.  

https://www.orangehrm.com/
http://jmeter.apache.org/
https://www.redline13.com/


 

 

Fig. 6. The average response times: A) steady rise and fall of demand; B) 

series of step-wise increases and decreases of demand.  

We note that the application performs similarly in term of 
volume (instances) scaling, while the observed average 
response time values for the stepped rise and fall of demand 
scenario are shown in Fig. 6b, starting from demand size of 
200 the average response time increases significantly. In 
contrast, average response time values for the first scenario 
which shown in Fig. 6a, have increased gradually from 
demand size of 400 with less variation between values of 
average response times.  

We calculated the scalability metrics I and t for the two 
demand scenarios that we considered. The values of the 
scalability metrics are shown in Table II. The calculated 
metrics show that in terms of volume scalability the two 
scenarios are similar, the scaling being slightly better in the 
context of the scenario with step-wise increase and decrease 
of demand. In terms of quality scalability, the system scales 
much better in the context of the first scenario, steady rise 
and fall of demand, than in the case of the second scenario 
with step-wise increase and decrease of demand. 

TABLE II.  SCALABILITY METRICS 

Scenario 
Metric 

I t 

Steady rise and fall 0.5687 0.9041 

Step-wise increase and decrease 0.5882 0.5201 
 

The values of the metrics indicate that in the context of 
variable demand, which is likely to be the more realistic 
demand scenario for many cloud-based software services, the 
quality scaling performance drops considerably in 
comparison with the simpler demand scenario, while the 
volume scaling performance is retained (and even slightly 
improved). 

V. DISCUSSION AND LIMITATIONS 

The proposed scalability metrics address both volume 
and quality scaling of cloud-based software services, and 
provide a practical measure of these features of such 
systems. The works do not yet integrate aspects of non-
technical features [11] and also are distinct from elasticity 
oriented metrics [4]. This is important in order to support 
effective measurement and testing of scalability performance 
of the system. 

Having an effective measure of the volume and quality 
scalability of the system allows exploring the contribution of 
various system components to the scalability performance of 
the system. For example, using mutation testing [28] we can 
test the impact of small changes to particular components on 
the scalability performance. Alternatively, by instrumenting 
the whole code of the system [29] and then measuring its 
scalability through a range of demand scenarios we can 
identify the components of the system at various resolutions 
(e.g. units, classes, functions, methods) that contribute 
critically to variations in scalability performance. Such 
identification of scalability-critical components can drive the 
design of scalability tests, system revision and upgrade 
focused on improvement of scalability, or development of 
fine-grained monitoring of system scalability performance. 

In this paper the quality scaling is considered through 
measurement of average response time of the system. Other 
aspects of quality scaling could be also used to define further 
similar but functionally distinct quality scaling metrics. For 
example, system throughput (i.e. the rate of successful 
delivery of service provision in response to service demand), 
or slowdown, or recovery rate [11] can be used for 
alternative quality scaling metrics. Expanding the range of 
quality scaling metrics provides a multi-factor view of 
quality scaling supporting the identification and definition of 
trade-off options in the context of quality-of-service 
offerings in terms of service scaling. The equations of the 
quality metric can be amended based on the nature of the 
quality factor that could replace or combine with the current 
quality scaling feature. 

The authors also note that over-provision of cloud service 
instances that exceed the ideal scaling behavior is as much of 
an issue as under-provision, which been taken into account in 
future research. On the other hand, the volume metric can be 
considered for extension to a larger volume.  

Here we used two demand scenarios to demonstrate the 
effect of demands patterns on the scaling metrics. In 
principle, various demand scenarios may be used to fine-tune 
the cloud-based software service to fit particular demand 
scenario expectations. Similarly, considering a set of demand 
scenarios can also be used to identify changes in such 
scenarios that trigger interventions in terms of software 
upgrade or maintenance or direct investment of software 
engineering resources in development of focused upgrades 
for the system. Demand scenarios combined with multiple 
versions of quality scaling metrics can also be sued to 
determine reasonable quality-of-service expectations and 
likely variations of such expectations depending on changes 
in demand scenarios. We note the review [30] which 
concerns the study of the current practice of cloud service 
performance evaluation from system modelling perspective. 
It can be useful to adopt another demand scenario that 
already been used in the field, in order to track the impact of 
such scenarios.    



The limitations of the results presented here stem from 
the limited nature of the experimental investigation. We used 
only one cloud platform (Amazon AWS) and only one 
cloud-based software service (OrangeHRM) to demonstrate 
the application and usefulness of the proposed scalability 
metrics. Naturally, expanding the experiments to cover 
multiple cloud platforms and multiple cloud-based software 
services would provide a fuller picture of the application of 
the proposed metrics. We also used only two demand 
scenarios, while a wider range of these would offer a deeper 
understanding of how the proposed metrics vary depending 
on demand scenarios. Finally, we used one particular setting 
of the cloud service (i.e. virtual machine specification), one 
load generator and one auto-scaler to implement the demand 
scenarios and the scaling of the investigates cloud-based 
software service. Alternative load generators and auto-scalers 
might have an impact on the values of the calculated metrics 
due to their implementation details, although in principle we 
would not expect major impact of these on the reported 
results. 

VI. CONCLUSIONS  

In this paper we present two scalability metrics for cloud-
based software services. One of these addresses the volume 
scalability of the service, while the other the quality 
scalability of the service. The metrics are based on simple 
principles of proportional scaling of the service volume and 
constant provision of the service quality, and are defined 
using the differences between the real and ideal scaling 
curves for both the volume and quality scalability. The 
proposed metrics can be used alone or integrated into utility 
oriented metrics of cloud-based service scalability [11].  

The proposed metrics are demonstrated using a cloud-
based software service run on the Amazon AWS cloud 
platform and considering two demand scenarios. Our results 
show that the proposed metrics quantify explicitly the 
technical scalability performance of the system and also that 
they allow the clear assessment of the impact of demand 
scenarios on the cloud-based software service. 

We believe that the proposed technical scalability metrics 
can be used to perform and design scalability testing of 
cloud-based software systems with the aim to identify system 
components that critically contribute to the technical 
scalability performance. Furthermore, the proposed metrics 
can be extended, by considering alternative service quality 
features, and combined with a range of demand scenarios to 
support the fine-tuning of the system, the identification of 
quality-of-service trade-offs, and estimation of realistic 
scalability performance expectations about the system 
depending on demand scenarios.  

Future work will include the consideration of other cloud 
platforms (e.g. Microsoft Azure, Google Cloud, and IBM), 
demand workload generators and auto-scalers, and other 
cloud-based software services, so we get a wider range of 
measurements of the proposed metrics, extending the 
practical validity of the work. We also aim to consider 
further demand patterns (e.g. variable width sudden peaks in 
demand, seasonal demand) to show how these impact on the 
scalability performance of cloud-based software services. 

ACKNOWLEDGMENT 

This research is supported by a PhD scholarship from 
Philadelphia University – Jordan for Amro Al-Said Ahmad. 

We thank our colleagues, Fiona Polack and Pearl Brereton, 
for useful comments and suggestions. 

REFERENCES 

[1] H. H. Liu, Software Performance and Scalability: A Quantitative 

Approach. Hoboken, N.J: Wiley Publishing, 2009. 

[2] T. Atmaca, T. Begin, A. Brandwajn, and H. Castel-Taleb, 
“Performance Evaluation of Cloud Computing Centers with General 

Arrivals and Service,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 
8, pp. 2341–2348, 2016. 

[3] M. Becker, S. Lehrig, and S. Becker, “Systematically Deriving 

Quality Metrics for Cloud Computing Systems,” in Proceedings of the 
6th ACM/SPEC International Conference on Performance 

Engineering, 2015, pp. 169–174. 

[4] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud 

Computing: What It Is, and What It Is Not,” in Proceedings of the 
10th International Conference on Autonomic Computing ({ICAC} 

13), 2013, pp. 23–27. 

[5] S. Lehrig, H. Eikerling, and S. Becker, “Scalability, elasticity, and 
efficiency in cloud computing: A systematic literature review of 

definitions and metrics,” in 2015 11th International ACM SIGSOFT 
Conference on Quality of Software Architectures (QoSA), 2015, pp. 

83–92. 

[6] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for Scaling of 

Application Services,” in Algorithms and Architectures for Parallel 
Processing, 2010, pp. 13–31. 

[7] K. Hwang, Y. Shi, and X. Bai, “Scale-Out vs. Scale-Up Techniques 

for Cloud Performance and Productivity,” in 2014 IEEE 6th 
International Conference on Cloud Computing Technology and 

Science, 2014, pp. 763–768. 

[8] H. AlJahdali, A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. 
Xu, “Multi-tenancy in Cloud Computing,” in 2014 IEEE 8th 

International Symposium on Service Oriented System Engineering, 
2014, pp. 344–351. 

[9] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a Consumer Can 

Measure Elasticity for Cloud Platforms,” in Proceedings of the 3rd 
ACM/SPEC International Conference on Performance Engineering, 

2012, pp. 85–96. 

[10] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A Cost-Aware 

Elasticity Provisioning System for the Cloud,” in Proceedings of the 
2011 31st International Conference on Distributed Computing 

Systems, 2011, pp. 559–570. 

[11] K. Hwang, X. Bai, Y. Shi, M. Li, W. G. Chen, and Y. Wu, “Cloud 
Performance Modeling with Benchmark Evaluation of Elastic Scaling 

Strategies,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1, pp. 
130–143, 2016. 

[12] K. Blokland, J. Mengerink, and M. Pol, Testing Cloud Services: How 

to Test SaaS, PaaS & IaaS. Rocky Nook, 2013. 

[13] D. Jayasinghe, S. Malkowski, J. Li, Q. Wang, Z. Wang, and C. Pu, 
“Variations in Performance and Scalability : An Experimental Study 

in IaaS Clouds Using Multi-Tier Workloads,” IEEE Trans. Serv. 
Comput., vol. 7, no. 2, pp. 293–306, 2014. 

[14] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong, and C. Pu, 

“Variations in Performance and Scalability when Migrating n-Tier 
Applications to Different Clouds,” in IEEE 4th International 

Conference on Cloud Computing, 2011. 

[15] J. Gao, P. Pattabhiraman, X. Bai, and W. T. Tsai, “SaaS performance 
and scalability evaluation in clouds,” in Proceedings of 2011 IEEE 

6th International Symposium on Service Oriented System (SOSE), 
2011, pp. 61–71. 

[16] A. A.-S. Ahmad and P. Andras, “Measuring the Scalability of Cloud-
based Software Services,” in 2018 IEEE World Congress on Services 

(SERVICES), 2018. 

[17] B. Jennings and R. Stadler, “Resource Management in Clouds: 
Survey and Research Challenges,” J. Netw. Syst. Manag., vol. 23, no. 

3, pp. 567–619, Jul. 2015. 

[18] J. Gao, X. Bai, W. T. Tsai, and T. Uehara, “SaaS Testing on Clouds - 
Issues, Challenges and Needs,” in 2013 IEEE Seventh International 

Symposium on Service-Oriented System Engineering, 2013, pp. 409–
415. 

[19] E. F. Coutinho, F. R. de C. Sousa, P. A. L. Rego, D. G. Gomes, and J. 

N. de Souza, “Elasticity in cloud computing: a survey.,” Ann. des 
Télécommunications, vol. 70, no. 7–8, pp. 289–309, 2015. 



[20] Y. Hu, B. Deng, F. Peng, B. Hong, Y. Zhang, and D. Wang, “A 

survey on evaluating elasticity of cloud computing platform,” in 2016 
World Automation Congress (WAC), 2016, pp. 1–4. 

[21] N. R. Herbst, S. Kounev, A. Weber, and H. Groenda, “BUNGEE: An 

Elasticity Benchmark for Self-Adaptive IaaS Cloud Environments,” 
in 2015 IEEE/ACM 10th International Symposium on Software 

Engineering for Adaptive and Self-Managing Systems, 2015, pp. 46–
56. 

[22] A. Bauer, N. Herbst, and S. Kounev, “Design and Evaluation of a 

Proactive, Application-Aware Auto-Scaler: Tutorial Paper,” in 
Proceedings of the 8th ACM/SPEC on International Conference on 

Performance Engineering, 2017, pp. 425–428. 

[23] M. Beltran, “Defining an Elasticity Metric for Cloud Computing 
Environments,” in Proceedings of the 9th EAI International 

Conference on Performance Evaluation Methodologies and Tools, 
2016, pp. 172–179. 

[24] J. Kuhlenkamp, M. Klems, and O. Röss, “Benchmarking Scalability 
and Elasticity of Distributed Database Systems,” Proc. VLDB 

Endow., vol. 7, no. 12, pp. 1219–1230, Aug. 2014. 

[25] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V Papadopoulos, B. Ghit, D. 
Epema, and A. Iosup, “An Experimental Performance Evaluation of 

Autoscaling Policies for Complex Workflows,” in Proceedings of the 
8th ACM/SPEC on International Conference on Performance 

Engineering, 2017, pp. 75–86. 

[26] M. H. Jamal, A. Qadeer, W. Mahmood, A. Waheed, and J. J. Ding, 
“Virtual Machine Scalability on Multi-Core Processors Based Servers 

for Cloud Computing Workloads,” in 2009 IEEE International 
Conference on Networking, Architecture, and Storage, 2009, pp. 90–

97. 

[27] S. Lehrig, R. Sanders, G. Brataas, M. Cecowski, S. Ivanšek, and J. 
Polutnik, “CloudStore — towards scalability, elasticity, and 

efficiency benchmarking and analysis in Cloud computing,” Futur. 
Gener. Comput. Syst., vol. 78, pp. 115–126, 2018. 

[28] I. Saleh and K. Nagi, “HadoopMutator: A Cloud-Based Mutation 

Testing Framework,” in Software Reuse for Dynamic Systems in the 
Cloud and Beyond, 2014, pp. 172–187. 

[29] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance Monitoring 

and Root Cause Analysis for Cloud-hosted Web Applications,” in 
Proceedings of the 26th International Conference on World Wide 

Web, 2017, pp. 469–478. 

[30] Q. Duan, “Cloud service performance evaluation : status , challenges , 

and opportunities – a survey from the system modeling perspective,” 
Digit. Commun. Networks, vol. 3, no. 2, pp. 101–111, 2017. 

 


