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Abstract

Mesenchymal stem cells (MSCs) are non-haematopoeitic, stromal cells that are capable of differentiating into mesenchymal
tissues such as bone and cartilage. They are rare in bone marrow, but have the ability to expand many-fold in culture, and retain
their growth and multi-lineage potential. The properties of MSCs make them ideal candidates for tissue engineering. It has been
shown that MSCs, when transplanted systemically, can home to sites of injury, suggesting that MSCs possess migratory capacity;
however, mechanisms underlying migration of these cells remain unclear. Chemokine receptors and their ligands play an
important role in tissue-specific homing of leukocytes. Here we define the cell surface chemokine receptor repertoire of murine
MSCs from bone marrow, with a view to determining their migratory activity. We also define the chemokine receptor repertoire
of human MSCs from bone marrow as a comparison. We isolated murine MSCs from the long bones of Balb/c mice by density
gradient centrifugation and adherent cell culture. Human MSCs were isolated from the bone marrow of patients undergoing hip
replacement by density gradient centrifugation and adherent cell culture. The expression of chemokine receptors on the surface
of MSCs was studied using flow cytometry. Primary murine MSCs expressed CCR6, CCR9, CXCR3 and CXCR6 on a large
proportion of cells (73611%, 44625%, 55618% and 9662% respectively). Chemotaxis assays were used to verify functionality
of these chemokine receptors. We have also demonstrated expression of these receptors on human MSCs, revealing some
similarity in chemokine receptor expression between the two species. Consequently, these murine MSCs would be a useful
model to further study the role of chemokine receptors in in vivo models of disease and injury, for example in recruitment of
MSCs to inflamed tissues for repair or immunosupression.
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Introduction

Mesenchymal stem cells (MSCs) are non-haematopoeitic, stromal

cells that are capable of differentiating into, and contribute to the

regeneration of, mesenchymal tissues such as bone, cartilage, muscle,

ligament, tendon, adipose and stroma [1,2]. It has also been

documented that MSCs can express cardio-myogenic phenotypes

[3] as well as being able to differentiate into neural elements in vitro

[4]. MSCs have the ability to expand many-fold in culture, whilst

retaining their growth and multilineage potential. They are also

reported to have immunosuppressive properties [5] and are regarded

as non-immunogenic, therefore transplantation into an allogenic

host may not require immunosupression [6].

These properties of MSCs make the cells ideal candidates for

tissue engineering, and cellular and gene therapy. It has been

shown that MSCs, when transplanted systemically, are able to

migrate into damaged or diseased tissues [7,8], such as ischemic

brain [9,10], infarcted myocardium [11] and injured lung [12],

where they can show clinical benefit. These findings suggest that

MSCs possess migratory capacity; however the mechanisms

underlying the migration of these cells remain unclear.

Chemokine receptors and their ligands, and adhesion molecules

play an important role in tissue-specific homing of leukocytes [13],

and have also been implicated in trafficking of haematopoietic

precursors into and through tissue [14]. Chemokines presented on

endothelial cells trigger integrin activation and arrest of those

leukocytes that carry the corresponding receptors [15]. The blood

vessel at which a leukocyte undergoes extravasation is tightly

controlled by the range of chemokine receptors and adhesion

molecules expressed on the leukocyte cell surface, often referred to

as the cell’s address code [16].

Several studies have reported the functional expression of

various chemokine receptors on human MSCs [17–22]; some of

the results are inconsistent between research groups, and many

studies have not looked at the full panel of chemokine receptors.

Various adhesion molecules are also known to be expressed on

human MSCs [23,24], some of which may be functionally

important in the adhesion of MSCs to the endothelium [25].

However, little is known about the mechanism of MSC

transendothelial migration, and which chemokine receptors may

be involved [7,8].

To our knowledge, no one has reported which chemokine

receptors are functionally expressed on murine bone marrow

derived MSCs, and compared them to those expressed by human

MSCs. In this study, we have demonstrated the functional

presence of chemokine receptors on murine MSCs, and have
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shown that their expression profile exhibits similarities to that of

human MSCs. This information can be used to further study the

mechanism of transmigration of MSCs into tissues, specifically in a

mouse model, and may allow the development of therapeutic

strategies to enhance the recruitment of ex-vivo cultured MSCs to

damaged or diseased tissues.

Results

Assays were performed on primary murine cells from passage 7–

9. All primary murine MSC cultures were shown to be CD342,

CD452, and CD105+ (Figure 1A), as well as demonstrating

osteogenic and adipogenic differentiation potential (Figure 1B).

The murine MSC cell line C3H/10T1/2 has already been shown

to differentiate down the osteogenic, adipogenic and chondrogenic

pathways [26] as well as having the same immunosuppressive

properties as bone marrow-derived primary human MSCs [27].

All human MSC cultures were shown to be CD342, CD452, and

CD105+ (Figure 1A), and were used between passages 2 and 5.

The cell surface expression of chemokine receptors (CCR3-9 and

CXCR2-6) was assessed in primary murine MSC cultures at

passages 7–9 by flow cytometry (Figure 2) as described. C3H/10T1/

2 cells were also assessed for chemokine receptor expression (Figure 2)

at passage 12–14. We could not examine expression of CCR1,

CCR2 or CXCR1 as antibodies to the murine form of these

molecules could not be found. The cell surface expression of

chemokine receptors (CCR1-10 and CXCR1-6) was also assessed in

primary human MSC cultures by flow cytometry, however, it was

found that the trypsin used to remove cells from the flask was

removing a large proportion of chemokine receptors from the

surface of the cells. Therefore chemokine receptor expression was

assessed by flow cytometry in three more patients’ MSC cultures

comparing the use of trypsin-EDTA to remove cells or EDTA alone

(Figure 3). With EDTA alone a greatly increased number of human

MSCs showed expression of all the chemokine receptors tested. This

was not a problem with the murine cells as these came off the flasks

within 30 seconds using trypsin, and furthermore, using EDTA alone

did not show significantly higher expression of chemokine receptors

than with trypsin (data not shown). Cells were considered to be

positive for a marker if the fluorescence intensity was higher than

95% of the cells stained with the relevant isotype control.

A high percentage of both the primary murine MSCs and the

C3H/10T1/2 cells were shown to express CXCR6 on the cell

surface (9662% and 9861% respectively) (Figure 2); interestingly,

this chemokine receptor was also expressed on a high proportion

(9561%) of human bone-marrow-derived MSCs (Figure 3). The

receptors CCR6, CXCR3 and CCR9 were also expressed on the

cell surface of a high proportion of both the primary murine MSCs

(73611%, 55618% and 44625% respectively) and C3H/10T1/

2 cells (8368%, 65614% and 37610% respectively) (Figure 2). A

smaller proportion of both murine cell types were also shown to

express CXCR2 (26614% of primary cells, 861% of C3H/

10T1/2 cells). We also detected expression of these receptors on

human MSCs by flow cytometry (Fogure 3): CCR6 (on 2068% of

cells), CXCR3 (on 5468% of cells), CCR9 (6461% of cells) and

CXCR2 (on 3061% of cells). We detected expression of every

other receptor bar CCR3, but only on a negligible proportion of

murine cells (Figure 2), whereas some of these receptors were

expressed on a large proportion of the human MSCs (CCR3

(9861%), CCR5 (7867%), CCR7 (2964%), CXCR4 (9662%),

and CXCR5 (9463%)), as well as those receptors not tested for on

the murine cells (CCR1 (43610%), CCR2 (40610%), CCR10

(48622%) and CXCR1(55621%)).

Next, the response of the CXCR6, CXCR3, CCR6 and CCR9

receptors to their corresponding ligands (CXCL16 (SR-PSOX),

CXCL9 (MIG), CCL20 (MIP-3a/LARC) and CCL25 (TECK)

respectively) was tested on the murine MSCs using chemotaxis

assays (Figure 4) as a large proportion of the cells expressed these

receptors. As the murine MSCs showed little or no cell-surface

expression of CXCR4 by flow cytometry, the chemokine CXCL12

(SDF-1a) (the ligand for CXCR4) was also used as a negative

control. The chemokines CXCL16, CXCL9, CCL20 and CCL25

all induced significant migration of murine MSCs in a dose-

dependent manner compared to media alone (Figure 4), whereas

CXCL12 did not induce migration, indicating that the receptors

detected on these cells by flow cytometry are functional.

Discussion

Many recent studies have reported the functional expression of

various different chemokine receptors on human MSCs [17–22];

Figure 1. Characterisation of primary MSCs by flow cytometry
and differentiation assays. A. Flow cytometry analysis of all primary
murine MSC cultures (upper panel) and human MSC (lower panel) cultures
showed they were CD34 and CD45 negative, and CD105 positive. CD
molecule antibody staining is represented by the filled histogram; isotype
control staining is represented by the green line. B. Murine MSCs (CD452,
CD342, CD105+) incubated in osteogenic medium for 21 days stained
positive for alkaline phosphatase activity (top right), whereas murine
MSCs incubated in culture medium alone did not stain positive (top left).
Murine MSCs incubated in adipogenic medium for 21 days showed fat
droplets in the cells stained with Oil Red O (bottom right), whereas murine
MSCs incubated in culture medium alone showed no positive staining
(bottom left). The black bar represents 200 mm in the top panels and
100 mm in the bottom two panels.
doi:10.1371/journal.pone.0002934.g001
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however, results have been contradictory in many cases. We have

shown here that the reason for this may be due in part to the use of

differing concentrations of trypsin, for various lengths of time, to

remove cells from the tissue culture flask (Figure 3B). Human MSCs

show a vast increase in the proportion of cells expressing chemokine

receptors on their surface when removed with EDTA alone rather

than trypsin, indicating the sensitivity of some or possibly all

chemokine receptors to trypsin digestion. We did not see this with

the murine cells as the trypsin was left on the cells for such a short

time, however, we would not recommend the use of trypsin to

remove any species’ cells in this type of study as chemokine receptors

and possibly many other molecules expressed on the cell surface are

sensitive to trypsin digestion. The current investigation showed

abundant expression of CXCR4 on human MSCs in agreement

with several other studies [17,19–21] who also showed chemotactic

responses to CXCL12. However others have reported little or no

expression of this receptor on human MSCs [18,22]. This may have

been due to variable use of trypsin or other experimental conditions.

We have demonstrated functional expression of CCR6, CCR9,

CXCR3 and CXCR6 on a large proportion of murine MSCs and

interestingly, shown expression of all four of these receptors on a

proportion of human MSCs. Other groups have also demonstrat-

ed functional expression of one or more of these receptors on

human MSCs [17–21].

All four of these receptors (CCR6, CCR9, CXCR3 and

CXCR6) have been shown to be involved in recruitment of

Figure 2. Analysis of chemokine receptor expression on murine MSCs. A Flow cytometry analysis of chemokine receptor expression on the
surface of primary murine MSCs and the C3H/10T1/2 cell line. Chemokine receptor antibody staining is represented by the filled histogram; isotype
control staining is represented by the green line. Histograms are representative of three independent experiments, performed at three different
passages. B Mean percentage positive MSCs is shown for each receptor (6SE, n = 3) detected by flow cytometry on the surface of primary murine
MSCs (white bars) and the C3H/10T1/2 cell line (grey bars).
doi:10.1371/journal.pone.0002934.g002
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immune cells to areas of inflammation. CCR6 is involved in

mucosal humoral immunity and intestinal T cell homing [28], and

it has recently been reported that Th17 cells expressing CCR6 are

preferentially recruited to inflamed joints via its ligand CCL20 in

an animal model of rheumatoid arthritis [29]. In fact, both

CXCR3 and CXCR6 have also been implicated in the

recruitment of T cells to inflamed tissues in autoimmune arthritis

[30,31], as well as other inflammatory conditions. CCR9 is known

to be involved in homing of T cells and plasma cells to the intestine

[28], and plays a role in inflammatory diseases of the gut such as

Crohn’s disease [32]. Considering the known functions of these

receptors in relation to recruitment and homing of immune cells to

inflamed tissues, it is reasonable to hypothesize that these receptors

may also be involved in the recruitment and homing of murine

and human MSCs to inflamed tissues, either for the purpose of

tissue regeneration or in an immunosuppressive capacity.

Some differences were apparent between the spectra of

chemokine receptors expressed by human and murine MSCs.

CCR3, CCR5, CXCR4 and CXCR5 were present abundantly on

human cells whereas low levels of these receptors occurred on

murine cells. Therefore in instances where these receptors are

shown to be important in the recruitment of MSCs in humans,

murine MSCs may not provide a useful model.

We have reported that murine MSCs demonstrate selective

expression of functional chemokine receptors, with similarities to

human MSCs as well as differences. Thus these murine MSCs

would be a useful model to further study the role of particular

chemokine receptors in in vivo models of disease and injury, for

example in recruitment of MSCs to inflamed tissues.

Materials and Methods

Isolation and Expansion of Murine MSCs
Primary murine MSCs were obtained from BALB/c mice, 6–10

weeks old. MSCs were isolated as previously described [33].

Briefly, marrow was removed from the long bones and cells plated

out in cell isolation media (CIM) (RPMI-1640 (Lonza, UK) with

9% FBS, 9% horse serum (both Gibco, UK)) at 37uC, 5% CO2.

After 24 hours, non-adherent cells were removed. After 4 weeks

cells were re-plated at 100 cells per cm2 in complete expansion

media (CEM) (Iscove Modified Dulbecco Medium (Lonza) with

9% FBS, 9% horse serum) to expand MSCs.

Figure 3. Analysis of chemokine receptor expression on human MSCs. A Flow cytometry analysis of chemokine receptor expression on the
cell surface of human MSCs. Chemokine receptor antibody staining is represented by the filled histogram; isotype control staining is represented by
the green line. Histograms are representative of three different patients’ cells, all removed from flasks by EDTA alone. B Mean percentage positive
MSCs is shown for each receptor (6SE, n = 3) detected by flow cytometry on the surface of human MSCs removed from the flask by trypsin-EDTA
(white bars), or by EDTA alone (grey bars).
doi:10.1371/journal.pone.0002934.g003
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The murine cell line C3H/10T1/2 was purchased from LGC

Promochem, a distributor for the American Tissue Culture

Collection. Cells were cultured in Basal Medium Eagles (Lonza)

with 10% FBS.

Isolation and Expansion of Human MSCs
Human MSCs were obtained from patients with osteoarthritis

undergoing total hip replacement, as described previously [25].

Briefly, marrow from femoral head cancellous bone was obtained

from osteoarthritis patients after informed consent. The mononu-

clear cell fraction was prepared by density gradient centrifugation,

and then seeded at a density of approximately 206106 cells per T75

flask, in DMEM-F12 medium (Lonza,) with 10% FBS. After

24 hours incubation at 37uC, 5% CO2, non-adherent cells were

removed and the remaining cells were cultured until reaching 70–

80% confluence. Cells were then passaged and then re-plated at a

density of approximately 26103 cells per cm2 for further expansion.

Flow Cytometric Analysis
Murine and human MSCs were analysed for membrane

receptor expression using a three-step labeling procedure. Cells

were incubated at 4uC for 30 minutes with the relevant primary

anti-mouse or anti-human antibodies, then after washing, cells

were subsequently incubated with a biotinylated anti-rat Ig, anti-

mouse Ig, anti-rabbit Ig or anti-goat Ig antibody, and then with

Streptavidin-PE conjugate. As a negative control, cells were

incubated with the same species isotype controls as the primary

antibodies. A minimum of 10,000 events were recorded for each

analysis, using a FACScan flow cytometer and analysed using cell

quest software (BD Biosciences, UK).

Antibodies used in this study were as follows: anti-human CCR1

(used at 1 in 100 dilution), CCR2 (1 in 200), CCR3 (1 in 100),

CCR5 (1 in 200), CCR6 (1 in 200), CCR7 (1 in 200), CCR8 (1 in

20), CCR9 (1 in 20), CXCR1 (1 in 100), CXCR2 (1 in 100),

CXCR3 (1 in 200), CXCR4 (1 in 50), CXCR5 (1 in 50), and

CXCR6 (1 in 50), anti-mouse CCR6 (1 in 50), CCR9 (1 in 50),

CXCR2 (1 in 50), CXCR3 (1 in 50), and CXCR6 (1 in 50) and

anti-mouse CD105 (all from R&D Systems, UK), anti-human

CCR4 (1 in 100), anti-mouse CCR3 (1 in 50), CCR5 (1 in 50),

CXCR4 (1 in 50), CXCR5 (1 in 50) and CD45 PE/Cy5 (all from

BD Pharmingen, UK), anti-human CCR10 and anti-mouse

CCR4 (1 in 50) and CCR8 (1 in 50) (Abcam, UK), anti-human

CD105 FITC (1 in 50), CD34 PE (1 in 100), CD45 PE/Cy5 (1 in

Figure 4. Analysis of murine chemokine receptor function by chemotaxis. Chemotaxis assays were performed on murine MSCs at passage
7. Each chemokine concentration was performed in triplicate per assay, and each assay was repeated three times. Results are expressed as the mean
number of migrated cells over control cells (basal migration without chemotactic stimulus) (mean6SE; n = 3), counted in five microscope fields of
view at x130 magnification. *Denotes significant difference compared to negative control with no chemokine. The mean number of cells that
migrated in the absence of chemokine, per field of view, was 12.163.2.
doi:10.1371/journal.pone.0002934.g004
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100) and anti-mouse CD34 PE (1 in 100) (Immunotools,

Germany), and anti-mouse CCR7 (BioLegend, UK).

Secondary and negative control and blocking antibodies used in

this study were: goat IgG, rat IgG2a, rat IgG2b, rat IgG2a PE (all

from R&D Systems, UK), mouse IgG1, mouse IgG2a, mouse

IgG2b, and rabbit Ig (all from DakoCytomation, Denmark),

streptavidin-PE conjugate (1 in 200), biotin anti-rat Ig (1 in 200),

biotin anti-mouse Ig (1 in 200), rat IgG2c, rat IgG2b PE, mouse FC

block (all from BD Pharmingen, UK), mouse IgG1 PE, mouse

IgG2a PE/Cy5, mouse IgG2a FITC (all from Immunotools,

Germany), biotin anti-goat IgG (1 in 200) and biotin anti-rabbit

IgG (1 in 200) (both from Abcam, UK).

Differentiation Assays
For osteogenic differentiation, murine MSCs were incubated in

CEM with ascorbate-2-phosphate (88 ng/ml), dexamethasone

(1028M, Sigma-Aldrich, UK) and b-glycerophosphate (10mM,

Sigma-Aldrich). For adipogenic differentiation, mMSCs were

incubated in CEM with ITS (Insulin, Transferrin, Selenium)+-
Premix (Gibco, UK), dexamethasone (1026M), 3-isobutyl-1-

methylxanthine (0.5 mM, Sigma-Aldrich) and indomethacin

(100 mM, Sigma-Aldrich). After three weeks, cells were fixed and

stained with Fast Red TR/napthol (Sigma-Aldrich) for alkaline

phosphatase activity (osteoblastic differentiation), or with Oil Red-

O for adipogenic differentiation.

Migration Assays
Murine MSC chemotaxis was determined in a 48-well modified

Boyden chamber (Neuroprobe, Receptor Technologies, UK).

Serial dilutions of chemokine in FCS-free media were placed in

the lower wells. A polycarbonate membrane with 12 mm pores

(Neuroprobe) was used, and MSCs (105 cells/ml) were placed in

the upper wells, and incubated at 37uC for 4 hours. Filters were

removed, wiped off on the upper side, air-dried and stained with

haemacolor (Merck, UK). Migrated MSCs were counted in 5

fields of view (x130 magnification). Where appropriate, two-tailed

T-tests were performed on cell counts at optimum chemokine

concentration for chemotaxis, to determine significance as

compared to no chemokine.
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