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Abstract

Heparin and heparan sulphate (H/HS) are important members of the glycosaminoglycan family of 

sugars that regulate a substantial number of biological processes. Such biological promiscuity is 

underpinned by hetereogeneity in their molecular structure. The degree of O-sulfation, particularly 

at the 6-position of constituent D-GlcN units, is believed to play a role in modulating the effects of 

such sequences. Synthetic chemistry is essential to be able to extend the diversity of HS-like 

fragments with defined molecular structure, and particularly to deconvolute the biological 

significance of modifications at O6. Here we report a synthetic approach to a small matrix of 

protected heparin-type oligosaccharides, containing orthogonal D-GlcN O-6 protecting groups at 

programmed positions along the chain, facilitating access towards programmed modifications at 

specific sites, relevant to sulfation or future mimetics.
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1. Introduction

Heparin and heparan sulphate (H/HS) are ubiquitous biological oligosaccharides which 

regulate many important signalling processes, especially within the extracellular matrix [1–

5]. H/HS oligosaccharides consist of repeating glucosamine and uronic acid monomers and 

are highly polydisperse, varying not only in the backbone constitution (L-iduronic and/or D-

glucuronic acid residues) and length (including the biologically effective region), but also in 

a variety of sulfation patterns. Sulfation is obligatory on O-2, where L-IdoA is installed, but 

can be present on combinations of glucosamine N and O-6 sites. In native sequences, 

sulfation is typically organized into high- or lower-sulfation domains, and, along with the 

ratio of L-IdoA/D-GlcA, correlates to the heparin/heparan sulfate designation. Sequences 

which contain L-iduronic acid have attracted particular interest due to the evidence of many 

key bio-effector sequences being L-IdoA enriched (higher-sulphated, L-idoA heparin-like 

structure shown in Figure 1). Understanding structure/function relationships of H/HS chains 

that modulate such processes is a major challenge in chemical biology.

The extensive microhetereogeneity of these oligosaccharides ensures that methods for 

synthesis of diverse, defined H/HS fragments are central to revealing structure-functional 

information in their chemical biology [6,7] and synthetic interest in solution, solid phase and 

utilizing enzymatic methods has been expanding [8–21].

Homogenous synthetic O-6-sulfation levels have been shown to affect the binding 

preferences of GAGs to target proteins [7,22,23], and recent examples have evidenced that 

even disaccharides can exhibit differential recognition based on sulfation patterns [24,25]. It 

is not yet clear how such binding effects translate to biological effects, nor how biological 

effects may be affected by defined regioselectivity of O-6 sulfation. There is, however, 

significant evidence that the overall level of glucosamine-6-O-sulfation, or de-6-O-sulfation, 

of D-GlcN, (Figure 1) is of central importance to effecting differential H/HS biological 

signalling events mediated by several HS-dependent cytokines (including CXCL8 [26,27], 

CXCL12 [28], FGF2 [29–31] and VEGF [28,30,31]). Many biological studies have 

employed enzymatically-generated heterogeneous materials as such native isolation only 

provides access to heterogeneous mixtures, differentiated by average sulfation levels. 

Interest in medium length structurally-defined heparanoids has been emboldened by the 

success of fondaparinux and activity of recently-reported longer synthetic mixed heparins 

[32]. This strongly suggests that evaluating programmed site-specific sulfation diversity is a 

high value target area. More ready availability of O-6 regiochemically differentiated 

fragments to underpin access towards such systems is required, and of particular utility 

would be medium length targets where terminal sulfate clustering or separation could be 

delivered (Figure 2).

To access such a series of mono or bis-terminus-modified oligosaccharides requires 

application of two types of disaccharide donor module, bearing orthogonal protections of 
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O-6 groups to provide correlation to sites for ultimate 6-O-de-sulfation or 6-O-sulfation 

respectively, in any target H/HS sequences (Figure 3).

This, combined with a single reducing terminal disaccharide module could then be 

employed to access a ladder of all mono- and bis-terminal unit differentiated 

oligosaccharides.

2. Results and Discussion

As part of a program to develop efficient and scalable access to a variety of H/HS 

oligosaccharide fragments, we have developed effective methods to access heparin-like 

per-6-O-sufated [33] and per-6-O-desulfated [30,34,35] species. These syntheses underscore 

the efficacy of D-GlcN-L-IdoA-SPh donors 1 and 2 as efficient glycosyl building blocks in 

the construction of homogeneously O-6-derivatized oligomers up to dodecasaccharide. The 

D-GlcN 6-OH protecting groups (OBn or OAc) determine the fate of O-6 (either OBn = 6-

OH or OAc = 6-OS), through common sulfation and deprotection steps (Figure 4). Here we 

extend this work to employ a modular approach to prepare protected H/HS-like precursor 

fragments containing regio-differentiated protections of sequence-specific O-6 sites, relevant 

to different H/HS fragments with programmed site-specific sulfations, or for the 

introduction of other region-defined mimetics. We demonstrate application of this to deliver 

five novel single-terminal and double-terminal differentiated tetra-, hexa- and 

octasaccharides across this matrix.

The homologation matrix for all oligosaccharides thus began with OMe-capped disaccharide 

3, the gram scale synthesis of which we have previously reported [36]. Ceric ammonium 

nitrate mediated removal of the PMB group provided the required novel disaccharide 

acceptor 4 in high yield (Scheme 1).

This material embeds O-6 protection in the reducing terminal disaccharide unit and thus 

allies deprotection and sulfation of D-GlcN O-6 in any derived oligosaccharide targets (in 

addition to the obligatory O-2 sulfation of the L-iduronic acid residue), whilst enabling 

potential controlled modification for new regiodefined mimetics.

Disaccharide 4 was then employed to illustrate parallel synthesis of tetra- and 

hexasaccharides, towards a target octasaccharide with double terminal O-6 acylated units. 

The first cycle of iteration illustrated use of acceptor 4 in two separate glycosylation 

reactions, firstly with donor module 1 (to install a second 6-OAc group) and secondly with 

donor 2 (to install a 6-OBn protecting group). Both glycosylations proceeded in good to 

excellent yields, affording the two new alpha-linked tetrasaccharides 5 and 6 in 82% and 

77% yields, respectively.

To progress towards the next homologation targets with the same alternatives of non-

reducing 6-OAc or 6-OBn units, tetrasaccharide 5 was subjected to the same two parallel 

glycosylations, again using either of the two disaccharide donor modules, 1 or 2. Thus, 5 
was first deprotected at the non-reducing end 4-position with CAN and then separately 

glycosylated with 1 and 2 to yield hexasaccharides 7 and 8 in very good to excellent yields 

(70% for 7, 96% for 8). This afforded the second tier of species with different O-6 
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protecting group patterns, encoding accessibility to H/HS species with D-GlcN 

6OS-6OH-6OS or 6OH-6OH-6OS sulfations.

Finally, the mono-6-OAc hexasaccharide 8 was elaborated by a further cycle of iteration to 

octasaccharide 9, providing a third oligosaccharide length with differentiated O-6 protecting 

groups encoding for ultimate sulfation at both the non-reducing and reducing termini. This 

iteration proceeded with similar efficiency to the prior cycles, with 8 deprotected via the 

established conditions in 78% yield and the resulting acceptor hexasaccharide glycosylated 

with iterative donor 1 to afford 9 in 66% yield (Scheme 2).

Of note during this final iteration was the need to raise the number of molar equivalents of 

glycosylation activator, NIS, from 5 (in prior iterations), to 7 for formation of 9. This 

resulted in effective glycosylation, but also a concomitant iodination of the electron rich 

PMB ring, as observed by ESI-MS (m/z = 1612.0377, 100%, z = 2 and no evidence of the 

non-iodinated species). This is a useful methodological note for SPh/NIS mediated 

glycosylations of substrates containing electron rich aromatic rings, but does not detract 

from the overall utility of the method, as the iodinated PMB group would necessarily be 

subsequently removed, either for any further iteration, or under final oligosaccharide 

deprotection procedures.

During these iterative steps both the disaccharide donors 1 or 2, delivered glycosylation 

yields close to or above 70%, though in general the 6-OAc systems performed to give 

slightly lower yields than the 6-OBn analogues. This result is in keeping with our [33,35] 

and others [19,20] previously established routes using 6-O-ether/acetal vs. 6-O-ester type 

disaccharide building blocks to effect oligosaccharide syntheses.

For hexa- and octasacccharide systems 7 and 9, 1H-NMR data indicated that all the L-

iduronate unit conformations are dependent on location in the sequence. The 3JH1-H2 

coupling constants are <6.0 Hz for all L-IdoA residues of 7 and 9 (Figure 5). Figure 5 

illustrates a clear resolution of each constituent L-IdoA H1 signal allowing the result of an 

iterative oligosaccharide homologation process (i.e., transformation of 7 to 9) to be readily 

correlated with such clear spectral dispersion. This dispersion also facilitates conformational 

analysis, the differential couplings for the reducing terminal L-IdoA H1 compared to the 

internal and non-reducing terminal L-IdoA H1 signals is consistent with the former being 

predominantly 1C4, whilst the larger couplings for the remaining L-IdoA units would be 

consistent with more significantly contributions from the 2So skew-boat [14,37].

3. Experimental Section

General Information

Reagents and solvents were purchased from Sigma-Aldrich (Gillingham, UK) or Alfa Aesar 

(Heysham, UK). All reactions were carried out under an atmosphere of dry nitrogen, unless 

mentioned otherwise. 1H-NMR spectra were recorded on a Bruker Advance Ultrashield 

DPX 400 (400 MHz) and 13C-NMR spectra were recorded at 100 MHz on Bruker 300 and 

400 DPX spectrometer. Melting points were obtained using a Stuart Scientific SMP1 

melting point apparatus. Low-resolution mass spectra were recorded on a Micro Mass Trio 
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200 spectrometer (Wilmslow, UK) while high-resolution mass spectra were measured on a 

Kratos Concept IS spectrometer (Manchester, UK). Elemental analyses were performed 

using a Thermo Flash 2000 Organic Elemental Analyzer (ThermoFisher scientific, 

Warrington, UK) for CHN analysis. Flash chromatography was conducted using Merck 

(Nottingham, UK) silica gel 60 (particle size 40–60 μm). Analytical TLC were performed on 

Merck 60 F254 aluminium-backed plates containing a 254 nm fluorescent indicator. Optical 

rotations were measured at 589 nm in a 1 dm cell using an Optical Activity AA1000 

polarimeter.

Methyl 6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-

benzoyl-3-O-benzyl-α-L-idopyranoside) uronate (4). Ceric (IV) ammonium nitrate (770 mg, 

1.4 mmol) was added to a solution of 3 (600 mg, 0.7 mmol) in acetonitrile and water (17 

mL, 8:1, v/v). The mixture was stirred for 1 h at ambient temperature and then diluted with 

DCM (150 mL), washed with saturated aq. NaHCO3 (100 mL) and saturated aqueous NaCl 

(50 mL). The organic phase was then dried over MgSO4 and solvent removed in vacuo. The 

product was purified by column chromatography (EtOAc/hexane 1:3), yielding 4 (470 mg, 

0.64 mmol, 91%) as a foam. Rf 0.31 (EtOAc/hexane 2:3);  (c = 0.26, 

CH2Cl2); 1H-NMR (400 MHz; CDCl3) δ 8.18–8.15 (m, 2H, ArH), 7.52–7.17 (m, 13H, 

ArH), 5.14–5.13 (brs, 1H, H2IdoA), 5.11–5.10 (brs, 1H, H1IdoA), 4.94 (d, 1H, J = 11.9 Hz, 

CH2Ph), 4.86 (d, J = 2.0 Hz, 1H, H 5IdoA), 4.77 (d, 1H, J = 11.9 Hz, CH2Ph), 4.67 (d, J = 

3.4 Hz, 1H, H1GlcN), 4.64 (dd, J = 12.6, 2.8 Hz, 1H, H6aGlcN), 4.29 (d, 1H, J = 10.6 Hz, 

CH2Ph), 4.17 (dd, J = 12.5, 2.2 Hz, 1H, H6bGlcN), 4.16–4.12 (m, 1H, H4IdoA), 4.03–4.00 (m, 

3H, CH2Ph, H3IdoA), 3.46 (dt, J = 10.0, 2.4 Hz, 1H, H5GlcN), 3.81 (s, 3H, C(O)OCH3), 3.51 

(s, 3H, OCH3), 3.45 (dd, J = 10.0, 8.8 Hz, 1H, H4GlcN), 3.33 (dd, J = 10.0, 9.0 Hz, 1H, 

H3GlcN), 3.18 (dd, J = 10.1, 3.6 Hz, 1H, H2GlcN), 2.10 (s, 3H, C(O)CH3); 13C-NMR (100 

MHz; CDCl3) δ 172.3, 169.8, 165.6, 137.9, 137.5, 133.5, 130.1, 129.7, 128.9, 128.6, 128.6, 

128.3, 128.1, 128.0, 100.5, 99.7, 79.3, 76.0, 75.0, 72.8, 72.6, 71.3, 70.4, 67.9, 67.1, 63.3, 

62.7, 56.4, 52.5, 21.0; HRMS (FT MS NSI+) m/z calcd for C37H45N4O13 [M+NH4]+ 

753.2978, found 753.2980.

Methyl (2-azido-3,6-di-O-benzyl-2-deoxy-4-O-p-methoxybenzyl-α-D-glucopyranosyl-

(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-(1→4)-6-O-acetyl-2-

azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-

L-idopyranoside) uronate (5). Acceptor 4 (770 mg, 1.05 mmol) and donor 2 (1.4 g, 1.42 

mmol) were mixed together, evaporated from dry toluene (3 × 20 mL) and dried under high 

vacuum for 1 h. The foam was dissolved in dry DCM (20 mL) and powdered molecular 

sieves (4 Å, 650 mg) added. The mixture was cooled to 0 °C and NIS (1.18 g, 5.25 mmol) 

added. The mixture was stirred for a further 15 min at this temperature and a catalytic 

amount (small spatula tip) of AgOTf was then added. The mixture was kept under nitrogen 

at 0 °C for another 30 min and was then quenched by addition of saturated aqueous 

Na2S2O3 and saturated aqueous NaHCO3 (10 mL, 1:1, v/v). The suspension was filtered 

through Celite®, the phases separated and the organic layer washed with saturated aqueous 

NaCl (10 mL). The organic phase was then dried over MgSO4 and solvent removed in 

vacuo. The mixture was purified by column chromatography (EtOAc/hexane, 1:4→2:3), 

yielding 5 (1.3 g, 0.81 mmol, 77%). Rf 0.31 (EtOAc/hexane 1:2); 1H-NMR (400 MHz; 
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CDCl3) δ 8.14–8.09 (m, 4H, Bz-ArH), 7.47–7.13 (m, 33H, ArH), 7.07 (d, 1H, J = 8.7 Hz, 

PMB), 6.84 (d, 1H, J = 8.7 Hz, PMB), 5.46 (d, 1H, J = 4.8 Hz, H1′IdoA), 5.18–5.16 (m, 1H, 

H2′IdoA), 5.07 (brs, 1H, H1IdoA), 5.05 (brs, 1H, H2IdoA), 4.99 (d, 1H, J = 3.5 Hz, H1GlcN), 

4.91 (d, 1H, J = 11.8 Hz, CH2Ph), 4.78–4.74 (m, 4H, H5′IdoA, H5IdoA, 2 × CH2Ph), 4.67–

4.36 (m, 10H, H1GlcN, H4′IdoA, H4′IdoA, 7 × CH2Ph), 4.29–4.27 (m, 2H, CH2Ph), 4.13–4.06 

(m, 2H, H3′IdoA, H3IdoA), 3.93–3.92 (m, 1H, H5′GlcN), 3.88–3.80 (s, 3H, PMBOCH3), 3.76–

3.59 (m, 12H, H3′GlcN, H3′GlcN, H4′GlcN, H4′GlcN, H5GlcN, 2 × H6′GlcN, 2 × H6GlcN, OCH3), 

3.47 (s, 6H, C(O)OCH3), 3.24 (dd, 1H, J = 10.1, 3.6 Hz, H2′GlcN), 3.19–3.15 (m, 1H, 

H2GlcN), 2.09 (s, 3H, C(O)CH3); 13C-NMR (100 MHz; CDCl3) δ 170.8, 169.7, 169.6, 169.5, 

165.7, 165.3, 159.4, 137.9, 137.4, 133.5, 132.5, 130.5, 130.1, 130.0, 129.6, 128.9, 128.8, 

128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.5, 113.8, 100.4, 99.4, 99.0, 98.6, 

79.9, 78.7, 76.1, 75.8, 75.0, 74.8, 74.4, 74.1, 73.6, 72.6, 69.8, 68.2, 67.1, 63.6, 63.5, 56.3, 

55.4, 52.3, 52.0, 20.8; HRMS (FT MS NSI+) m/z calcd for C86H94N7O25 [M+NH4]+ 

1624.6294, found 1624.6299.

Methyl (6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-4-O-p-methoxybenzyl-α-D-

glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-

(1→4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-

benzoyl-3-O-benzyl-α-L-idopyranoside) uronate (6). Acceptor 4 (167 mg, 0.23 mmol) and 

donor 1 (286 mg, 0.31 mmol) were mixed together, evaporated from dry toluene (3 × 5 mL) 

and dried under high vacuum for 1 h. The foam was dissolved in dry DCM (5 mL) and 

powdered molecular sieves (4 Å, 125 mg) added. The mixture was cooled to 0 °C and NIS 

(255 mg, 1.14 mmol) added. The mixture was stirred for a further 15 min at this temperature 

and a catalytic amount (small spatula tip) of AgOTf was then added. The mixture was kept 

under nitrogen at 0 °C for another 30 min and was then quenched by addition of saturated 

aqueous Na2S2O3 and saturated aqueous NaHCO3 (15 mL, 1:1, v/v). The suspension was 

filtered through Celite®, the phases separated and the organic layer washed with saturated 

aqueous NaCl (10 mL). The organic phase was then dried over MgSO4 and solvent removed 

in vacuo. The mixture was purified by column chromatography (DCM/EtOAc 7:1), yielding 

6 (270 mg, 0.23 mmol, 77%) as a foam. Rf 0.13 (EtOAc/hexane 1:2);  (c = 0.31, 

CH2Cl2); 1H-NMR (400 MHz; CDCl3) δ 8.10–8.05 (m, 4H, Bz-ArH), 7.46–7.14 (m, 28H, 

ArH), 6.84 (d, J = 8.7 Hz, 1H, PMB), 5.43 (d, J = 4.4 Hz, 1H, H1′IdoA), 5.11 (t, J = 4.8 Hz, 

1H, H2′IdoA), 5.03–5.02 (brs, 1H, H2IdoA), 5.02–5.01 (brs, 1H, H1IdoA), 4.89–4.86 (m, 3H, 

H1GlcN, 2 × CH2Ph), 4.75 (d, J = 2.0 Hz, 1H, H5IdoA), 4.73–4.21 (m, 15H, H1′GlcN, H5′IdoA, 

H5′GlcN, H6a’GlcN, H6aGlcN, H3′IdoA, H4′IdoA, 8 × CH2Ph), 4.09–3.43 (m, 11H, H3GlcN, 

H3′GlcN, H4GlcN, H4′GlcN, H5GlcN, H6b’GlcN, H6bGlcN, H3IdoA, H4IdoA, 2 × CH2Ph), 3.77 (s, 

3H, C(O)OCH3), 3.59 (s, 3H, PMBOCH3), 3.56 (s, 3H, OCH3), 3.41 (s, 3H, C(O)OCH3), 

3.17 (dd, J = 10.2, 3.5 Hz, 1H, H2GlcN), 3.13 (dd, J = 10.2, 3.6 Hz, 1H, H2′GlcN), 2.06 (s, 

3H, C(O)CH3), 1.94 (s, 3H, C(O)CH3); 13C-NMR (100 MHz; CDCl3) δ 170.8, 170.6, 169.6, 

169.5, 165.6, 165.2, 159.5, 137.7, 137.6, 137.4, 137.2, 133.5, 133.5, 129.9, 128.5, 128.5, 

128.4, 128.3, 128.2, 128.1, 127.9, 113.9, 100.4, 99.2, 99.1, 98.4, 80.0, 78.7, 77.4, 77.0, 75.9, 

75.6, 75.4, 75.0, 74.7, 74.7, 74.6, 74.0, 72.4, 72.1, 70.4, 70.2, 70.1, 69.6, 68.0, 67.0, 63.6, 

63.4, 62.2, 61.8, 56.2, 55.3, 52.3, 52.1, 20.9, 20.8; FT MS NSI+ m/z calcd for C81H90N7O26 

[M+NH4]+ 1576.5930, found 1576.5906.

Baráth et al. Page 6

Molecules. Author manuscript; available in PMC 2015 May 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Methyl (6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-4-O-p-methoxybenzyl-α-D-

glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-

(1→4)-2-azido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-

benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-(1→4)-6-O-acetyl-2-azido-3-O-benzyl-2-

deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranoside) 

uronate (7). Ceric (IV) ammonium nitrate (818 mg, 1.50 mmol) was added to a solution of 5 
(1.2 g, 0.75 mmol) in acetonitrile and water (22 mL, 8:1, v/v). The mixture was stirred for 1 

h at ambient temperature, whereupon TLC (EtOAc/hexane, 1:2) showed the reaction to be 

complete. The solution was diluted with DCM (150 mL), washed with saturated aqueous 

NaHCO3 (100 mL) and saturated aqueous NaCl (50 mL). The organic phase was then dried 

over MgSO4 and solvent removed in vacuo. The product was purified by column 

chromatography (DCM/EtOAc, 30:1), yielding the desired acceptor tetrasaccharide (600 

mg, 0.40 mmol, 56%) which was used immediately in the next step. Rf = 0.21 (EtOAc/

hexane 1:2); HRMS (FT MS NSI+) m/z calcd for C78H82N6O24 [M+NH4]+ 1504.5719, 

found 1504.5714. The above acceptor (238 mg, 0.16 mmol) and donor 1 (202 mg, 0.35 

mmol) were mixed together, evaporated from dry toluene (3 × 5 mL) and dried under high 

vacuum for 1 h. The foam was dissolved in dry DCM (4 mL) and powdered molecular 

sieves (4 Å, 200 mg) added. The mixture was cooled to 0 °C and NIS (180 mg, 0.80 mmol) 

added. The mixture was stirred for a further 15 min at this temperature and a catalytic 

amount (small spatula tip) of AgOTf was then added. The mixture was kept under nitrogen 

at 0 °C for another 30 min and was then quenched by addition of saturated aqueous 

Na2S2O3 and saturated aqueous NaHCO3 (15 mL, 1:1, v/v). The suspension was filtered 

through Celite®, the phases separated and the organic layer washed with saturated aqueous 

NaCl (10 mL). The organic phase was then dried over MgSO4 and solvent removed in 

vacuo. The crude mixture was purified by column chromatography (EtOAc/hexane, 7:13) to 

yield 7 (260 mg, 0.11 mmol, 70%). Rf = 0.1 (EtOAc/hexane 1:2); 1H-NMR (400 MHz; 

CDCl3) δ 8.08–8.02 (m, 4H, Bz-ArH), 7.89–7.86 (m, 2H, ArH), 7.50–6.94 (m, 46H, ArH), 

6.81–6.79 (m, 2H, ArH), 5.44 (d, 1H, J = 3.9 Hz, H1IdoA), 5.40 (d, 1H, J = 5.8 Hz, H1IdoA), 

5.12–5.08 (m, 2H, H2IdoA), 4.99 (brs, 1H, H2IdoA), 4.95 (brs, 1H, H1IdoA), 4.89 (d, 1H, J = 

3.8 Hz, H1GlcN), 4.84–4.82 (m, 2H, H1GlcN, CH2Ar), 4.74–4.66 (m, 7H, H5IdoA, 6 × 

CH2Ar), 4.63–4.59 (m, 3H, CH2Ar, 2 × H5IdoA), 4.47–4.46 (m, 3H, 2 × CH2Ar, H1GlcN), 

4.41 (d, 1H, J = 2.5 Hz, H4IdoA), 4.38–4.37 (m, 1H, H4IdoA), 4.34 (s, 1H, H4IdoA), 4.29–3.87 

(m, 11H, 6 × H6GlcN, 5 × CH2Ar), 3.84–3.81 (m, 3H, H3doA), 3.74 (s, 3H, OCH3), 3.72–3.66 

(m, 4H, CH2Ar, H5GlcN × 3), 3.62–3.52 (m, 5H, 3 × H4GlcN, 2 × H3GlcN), 3.48 (s, 3H, 

OCH3), 3.42 (s, 3H, OCH3), 3.38 (s, 3H, OCH3), 3.37–3.35 (m, 4H, OCH3, H3GlcN), 3.24 

(dd, 1H, J = 10.3, 3.7 Hz, H2-GlcN), 3.15 (dd, 1H, J = 10.3, 3.4 Hz, H2-GlcN), 3.09 (dd, 1H, J 

= 10.2, 3.6 Hz, H2-GlcN), 2.02 (s, 3H, C(O)CH3), 1.90 (s, 3H, C(O)CH3); 13C-NMR (100 

MHz; CDCl3) δ 170.8, 170.6, 169.7, 169.5, 169.2, 165.6, 165.3, 165.2, 159.5, 137.8, 137.7, 

137.6, 137.4, 137.3, 137.3, 133.6, 133.5, 130.0, 129.9, 129.8, 129.6, 129.3, 129.2, 128.9, 

128.8, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8 127.6, 127.5, 127.4, 113.9, 100.4, 

99.5, 99.2, 98.7, 98.3, 98.0, 80.0, 78.3, 78.2, 77.4, 77.2, 77.0, 76.4, 75.9, 75.8, 75.4, 75.3, 

75.2, 75.0, 74.6, 74.4, 74.3, 74.2, 73.7, 73.6, 72.4, 72.3, 71.7, 71.5, 71.2, 70.4, 70.1, 70.0, 

69.7, 67.9, 67.5, 67.0, 63.5, 63.4, 63.1, 62.3, 61.7, 56.5, 56.2, 55.4, 52.2, 52.1, 51.7, 29.7, 

29.7, 20.9, 20.8; HRMS (FT MS NSI+) m/z calcd for C122H132N11O37 [M+2NH4]2+ 

1173.4522, found 1173.4522.
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Methyl (2-azido-3,6-di-O-benzyl-2-deoxy-4-O-p-methoxybenzyl-α-D-glucopyranosyl-

(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-L-idopyranosyl) uronate)-(1→4)-2-azido-3,6-di-O-

benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-

idopyranosyl) uronate)-(1→4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl-

(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranoside) uronate (8). See 7 for PMB 

deprotection of 5. Acceptor (320 mg, 0.22 mmol) and donor 2 (295 mg, 0.30 mmol) were 

mixed together, evaporated from dry toluene (3 × 5 mL) and dried under high vacuum for 1 

h. The foam was dissolved in dry DCM (6 mL) and powdered molecular sieves (4 Å, 250 

mg) added. The mixture was cooled to 0 °C and NIS (240 mg, 1.07 mmol) added. The 

mixture was stirred for a further 15 min at this temperature and a catalytic amount (small 

spatula tip) of AgOTf was then added. The mixture was kept under nitrogen at 0 °C for 

another 30 min and was then quenched by addition of saturated aqueous Na2S2O3 and 

saturated aqueous NaHCO3 (15 mL, 1:1, v/v). The suspension was filtered through Celite®, 

the phases separated and the organic layer washed with saturated aqueous NaCl (10 mL). 

The organic phase was then dried over MgSO4 and solvent removed in vacuo. The crude 

mixture was purified by column chromatography (EtOAc/hexane, 3:7), to yield 8 (487 mg, 

0.21 mmol, 96%). Rf = 0.48 (EtOAc/hexane 2:3); 1H-NMR (400 MHz; CDCl3) δ 8.15–8.09 

(m, 4H, Bz-ArH), 7.95–7.93 (m, 2H, Bz-ArH), 7.58–7.27 (m, 33H, ArH), 7.23–7.19 (m, 

12H, ArH), 7.10–7.03 (m, 6H, ArH), 6.84–6.82 (m, 2H, PMB), 5.52–5.51 (m, 1H, H1IdoA), 

5.47 (d, 1H, J = 6.0 Hz, H1IdoA), 5.20–5.17 (m, 2H, H2IdoA), 5.07 (brs, 1H, H1IdoA), 5.02 

(brs, 1H, H2IdoA), 4.98–4.95 (m, 2H, H1GlcN), 4.90 (d, 1H, J = 11.9 Hz, CH2Ph), 4.81–4.20 

(m, 24H, H1GlcN, 3 ×H5IdoA, H3IdoA, 6 × H6GlcN, 11 × CH2Ph), 4.08–4.01 (m, 4H, 3 × 

H4IdoA, CH2Ph), 3.96–3.55 (m, 18H, 5 × CH2Ph, H3GlcN, 3 × H4GlcN, 3 × H5GlcN, 

C(O)OCH3, PMBOCH3), 3.46–3.37 (m, 11H, 2 × C(O)OCH3, OCH3, 2 × H3GlcN), 3.33–

3.29 (m, 1H, H2GlcN), 3.27–3.23 (m, 1H, H2GlcN), 3.16 (dd, 1H, J = 10.2, 3.6 Hz, H2GlcN), 

2.10–2.07 (s, 3H, C(O)CH3); 13C-NMR (100 MHz; CDCl3) δ 170.7, 169.7, 169.5, 169.2, 

165.6, 165.2, 137.9, 137.8, 137.7, 137.4, 137.3, 137.2, 133.5, 130.0, 129.9, 129.8, 129.5, 

129.4, 129.3, 129.2, 128.8, 128.7, 128.4, 128.4, 128.3, 128.1, 128.0, 128.0, 127.9, 127.8, 

127.7, 127.6, 127.4, 127.3, 113.7, 100.3, 99.6, 99.1, 98.7, 98.2, 98.0, 79.8, 78.3, 75.9, 75.7, 

75.2, 74.9, 74.6, 74.5, 74.4, 74.3, 74.2, 73.6, 73.5, 72.4, 71.8, 71.7, 71.4, 71.3, 70.7, 69.7, 

67.9, 67.7, 67.1, 63.4, 63.3, 61.6, 56.2, 55.3, 52.1, 51.9, 51.7, 20.9; HRMS (FT MS NSI+) 

m/z calcd for C127H139N11O36 [M+2NH4]2+ 1197.4704, found 1197.4706.

Methyl (6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-4-O-p-methoxy-m-iodobenzyl-α-D-

glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-

(1→4)-2-azido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-

benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-(1→4)-2-azido-3,6-di-O-benzyl-2-deoxy-α-

D-glucopyranosyl-(1→4)-(methyl 2-O-benzoyl-3-O-benzyl-α-L-idopyranosyl) uronate)-

(1→4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl-(1→4)-(methyl 2-O-

benzoyl-3-O-benzyl-α-L-idopyranoside) uronate (9). Ceric (IV) ammonium nitrate (210 mg, 

0.38 mmol) was added to a solution of 8 (450 mg, 0.19 mmol) in acetonitrile and water (4 

mL, 8:1, v/v). The mixture was stirred for 1 h at ambient temperature, whereupon TLC 

(EtOAc/hexane, 2:3) showed the reaction to be complete. The solution was diluted with 

DCM (100 mL), washed with saturated aqueous NaHCO3 (50 mL) and saturated aqueous 

NaCl (50 mL). The organic phase was then dried over MgSO4 and solvent removed in 
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vacuo. The product was purified by column chromatography (DCM/EtOAc, 12:1), yielding 

the desired acceptor hexasaccharide (330 mg, 0.35 mmol, 78%) which was used 

immediately in the next step. Rf = 0.38 (EtOAc/hexane, 2:3); HRMS (FT MS NSI+) m/z 

calcd for C119H131N11O35 [M+2NH4]2+ 1137.4416, found 1137.4416. The above acceptor 

(294 mg, 0.13 mmol) and donor 1 (166 mg, 0.18 mmol) were mixed together, evaporated 

from dry toluene (3 × 5 mL) and dried under high vacuum for 1 h. The foam was dissolved 

in dry DCM (4 mL) and powdered molecular sieves (4 Å, 200 mg) added. The mixture was 

cooled to 0 °C and NIS (200 mg, 0.89 mmol) added. The mixture was stirred for a further 15 

min at this temperature and a catalytic amount (small spatula tip) of AgOTf was then added. 

The mixture was kept under nitrogen at 0 °C for another 30 min and was then quenched by 

addition of saturated aqueous Na2S2O3 and saturated aqueous NaHCO3 (15 mL, 1:1, v/v). 

The suspension was filtered through Celite®, the phases separated and the organic layer 

washed with saturated aqueous NaCl (10 mL). The organic phase was then dried over 

MgSO4 and solvent removed in vacuo. The crude product was purified by column 

chromatography (EtOAc/hexane, 2:7), to yield 9 (265 mg, 0.09 mmol, 66%). Rf = 0.40 

(EtOAc/hexane 2:3); 1H-NMR (400 MHz; CDCl3) δ 8.07 (d, J = 7.2 Hz, 2H, ArH), 8.02 (d, 

J = 6.6 Hz, 2H, ArH), 7.89 (d, J = 7.3 Hz, 2H, ArH), 7.84 (d, J = 7.3 Hz, 2H, ArH), 7.56 (d, 

J = 2.0 Hz, 1H, ArH), 7.52–6.88 (m, 68H, ArH), 6.68 (d, J = 8.5 Hz, 1H, ArH), 5.47 (d, J = 

5.1 Hz, 1H, H1IdoA), 5.43 (d, J = 3.5 Hz, 1H, H1IdoA), 5.38 (d, J = 5.9 Hz, 1H, H1IdoA), 

5.12–5.07 (m, 3H, H2IdoA), 4.98 (s, 1H, H2IdoA), 4.94 (s, 1H, H1IdoA), 4.88–4.80 (m, 4H, 3 × 

H1GlcN, CH2Ar), 4.73–4.58 (m, 12H, 11 × CH2Ar, H5IdoA), 4.51–4.11 (m, 18H, H1GlcN, 4 × 

H4IdoA, 3 × H5IdoA, 10 × CH2Ar), 3.99–3.93 (m, 6H, 2 × H6-GlcN 4 × H3IdoA), 3.86–3.66 (m, 

9H, 6 × H6-GlcN, OCH3), 3.56–3.21 (m, 29H, 4 × H5-GlcN, 4 × H3-GlcN, 4 × H4-GlcN, 5 × 

OCH3, 2 × H2-GlcN), 3.14 (dd, J = 10.2, 3.4 Hz, 1H, H2-GlcN), 3.07 (dd, J = 10.2, 3.5 Hz, 1H, 

H2-GlcN), 2.01 (s, 3H, C(O)CH3), 1.90 (s, 3H, C(O)CH3); 13C-NMR (100 MHz; CDCl3) δ 

177.3, 170.8, 170.5, 169.7, 169.5, 169.3, 169.2, 165.5, 165.2, 165.2, 157.9, 139.3, 137.8, 

137.8, 137.7, 137.6, 137.5, 137.3, 133.6, 133.5, 131.9, 130.0, 129.9, 129.9, 129.8, 129.7, 

129.6, 129.5, 129.3, 129.2, 129.2, 128.8, 128.7, 128.5, 128.5, 128.4, 128.4, 128.4, 128.3, 

128.2, 128.2, 128.1, 128.1, 128.0, 127.9, 127.9, 127.9, 127.8, 127.8, 127.6, 127.5, 127.5, 

127.4, 127.3, 127.2, 110.7, 100.3, 99.5, 99.1, 98.7, 98.3, 98.0, 97.9, 80.0, 78.2, 78.02, 77.4, 

77.0, 76.5, 75.9, 75.9, 75.7, 75.4, 75.2, 75.0, 74.9, 74.6, 74.5, 74.4, 74.2, 73.7, 73.6, 73.6, 

72.4, 72.2, 71.8, 71.4, 70.6, 70.0, 69.7, 69.4, 67.8, 67.5, 67.3, 66.9, 63.5, 63.3, 63.2, 62.8, 

62.1, 61.6, 56.4, 56.3, 56.2, 55.3, 52.2, 52.1, 51.7, 51.6, 29.8, 29.6; HRMS (FT MS NSI+) 

m/z calcd for C163H175N14O48I [M+2NH4]2+ 1,612.0375, found 1,612.0377.

4. Conclusions

A modular synthetic access to differentially protected H/HS-like oligosaccharides is 

demonstrated using two D-GlcN-L-IdoA modules with differentiated D-GlcN O-6 protecting 

groups, suitable for ultimate installation of either a 6-OH or 6-OS moiety. This is applied to 

generate a ladder of tetrasaccharide, hexasaccharide and octasaccharide systems which 

retain a common reducing end 6-OAc, either as the only acylated O-6, or combined with 

double-terminal units to provide oligosaccharides withterminal D-GlcN units both bearing 

O-6 acylations. High stereochemical integrity in synthesis is evidenced by NMR spectra, 

which allow ready comparisons of differentiated L-IdoA H-1 across the series. This approach 
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should facilitate wider access to medium length heparin-like oligosaccharides with ready 

programming of site-specific changes at O-6 sites along different backbones.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Higher sulfation heparin-type region with varying levels of GlcN O-6 sulfation.
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Figure 2. 
Strategic sequences with reducing terminus 6-O-sulfated (6-OS), central sequence de-6-O-

sulfated (6-OH) and non-reducing terminus programmable for 6-OS or 6-OH.
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Figure 3. 
Strategy with fixed reducing terminal O6 protection to provide a matrix of oligosaccharides 

with single programmed reducing terminal unit or both terminal units programmed for 6-OS 

by choice of protecting group (D = glycosyl donor group).
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Figure 4. 
Disaccharide modules 1 and 2 with alternate D-GlcN 6-position protecting groups, 

programmed for access to 6-OH/6-OS final compounds.
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Figure 5. 
1H-NMR signals (400 MHz) for iduronate anomeric regions of hexasaccharide 7 and 

octasaccharide 9.
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Scheme 1. 
Synthesis of terminally-differentiated tetrasaccharides. (a) Ceric ammonium nitrate (CAN), 

MeCN/H2O; (b) N-iodosuccinimide (NIS), AgOTf, DCM.
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Scheme 2. 
Synthesis of ladder of mono- or bis-terminally-differentiated hexasaccharides 7 and 8 and 

octasaccharide 9. (a) CAN, MeCN/H2O; (b) NIS, AgOTf, DCM.
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