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ABSTRACT

Transplantation of bone marrow stem cells into spinal
cord lesions enhances axonal regeneration and promotes
functional recovery in animal studies. There are two types
of adult bone marrow stem cell; hematopoietic stem cells
(HSCs), and mesenchymal stem cells (MSCs). The mecha-
nisms by which HSCs and MSCs might promote
spinal cord repair following transplantation have been
extensively investigated. The objective of this review is to
discuss these mechanisms; we briefly consider the contro-

versial topic of HSC and MSC transdifferentiation into
central nervous system cells but focus on the neurotrophic,
tissue sparing, and reparative action of MSC grafts in the
context of the spinal cord injury (SCI) milieu. We then
discuss some of the specific issues related to the translation
of HSC and MSC therapies for patients with SCI and
present a comprehensive critique of the current bone mar-
row cell clinical trials for the treatment of SCI to date.
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SpINAL CoRrp INJURY
AND THE INTRINSIC RESPONSE

When axons in the central nervous system (CNS) are damaged
they mount a poor regenerative response due to a combination
of inflammation, resulting in extensive neuronal and glial cell
death and glial cell activation and hypertrophy, which contrib-
utes to the formation of the glial scar. These intrinsic responses
to tissue injury both contribute to an environment that is inhibi-
tory to axonal regrowth [1].

Inflammation

Following spinal cord injury (SCI), the blood-brain barrier is
disrupted and an influx of inflammatory cells occurs, which is
facilitated by their expression of matrix metalloproteinases
(MMPs) [2]. MMPs, other proteolytic and oxidative enzymes,
and proinflammatory cytokines that are produced by infiltrat-
ing neutrophils and macrophages, along with resident micro-
glia, induce a reactive process of secondary cell death in the
tissue that surrounds the original injury site [2-4]. This
secondary damage continues in the days and weeks following
SCI, which may lead to an increase in cavitation and cyst
formation at the center of the lesion, exacerbating neurologi-
cal dysfunction [5].

Some evidence suggests that inflammation may be a bene-
ficial response to SCI. For example, macrophages phagocytose
the myelin debris present in the injured spinal cord, which is

known to inhibit axonal regeneration [6, 7], and increase in
the number of macrophages in a CNS injury can promote
nerve regrowth [8]. In addition, macrophages may also release
protective cytokines such as basic fibroblast growth factor,
nerve growth factor (NGF), and neurotrophin 3, which pro-
mote neuronal regeneration and tissue repair [9].

Glial Scarring

Glial scarring involves astrocytes, which are activated in an
effort to restore the blood-brain barrier, and oligodendrocytes.
The extracellular matrix produced by these scar-associated
cells contains a number of molecules that inhibit axonal
regrowth [10] of which chondroitin-sulfated (CS) proteogly-
cans (PG) are the major inhibitory molecules synthesized by
reactive astrocytes. CSPGs consist of a protein core to which
glycosaminoglycan (GAG) side chains are attached. Much of
the evidence suggests that the inhibitory activity of CSPGs is
derived from their CS GAG side chains, as treatments with
chondroitinase ABC (which cleaves these chains) reduces
CSPG inhibition to neurites in vitro [11] and regenerating
axons in vivo [12].

Other inhibitory molecules present within the glial scar
include myelin-associated proteins, such as myelin-associated
glycoprotein  (MAG), Nogo-A, and oligodendrocyte-myelin
glycoprotein (OMgp) [6, 7]. MAG is a potent inhibitor of
neurite outgrowth when used as a culture substrate [6], which
is expressed by oligodendrocytes and Schwann cells. MAG
signals through the Nogo-66 receptor complex (NgR), but
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there are several other neuronal receptors, which interact with
the NgR complex and MAG to influence downstream signal-
ing [13]. Nogo-A and OMgp are also derived from oligoden-
drocytes and act as inhibitors of axonal growth [14]. A num-
ber of different regions of Nogo-A contribute to its inhibitory
activity, and it is probable that these different regions bind to
not only the NgR complex but also to unidentified Nogo-A
receptors in the CNS [14]. In contrast, OMgp appears to be
dependent on the NgR complex, as cleavage of NgR renders
axons insensitive to OMgp-induced growth inhibition [15].

How Micar BoNE MARROW STEM CELL
TRANSPLANTATION HELP HEAL
THE INJURED SPINAL CORD?

There are two types of bone marrow stem cell, hematopoietic
stem cells (HSCs) and mesenchymal stem cells (MSCs),
which are known to differentiate into hematopoietic and mes-
enchymal cell lineages, respectively (supporting information
Fig. 1). For clinical transplantation, HSCs and MSCs repre-
sent attractive cell sources as they can be easily and reprodu-
cibly isolated from bone marrow aspirates and reintroduced
into patients as autografts. In animal models of SCI, their
transplantation has promoted remyelination [16—18], axonal
sparing, and functional recovery [19-31]. Many studies have
documented successful engraftment of HSCs and MSCs into
the injured spinal cord [19-31].

HSC and MSC Isolation, Culture,
and Characterization

HSCs are defined by their lifelong ability to reconstitute all of
the hematopoietic lineages in transplanted hosts [32]. Although
HSCs have been shown to proliferate in vivo, there are as yet
no definitive in vitro assays to detect and expand purified
HSCs, as HSCs in long-term culture form progenitor popula-
tions that differentiate along the hematopoietic lineages.
Researchers have yet to find a single molecular marker that is
exclusively expressed by HSCs. However, HSCs can be distin-
guished and isolated from mature blood cells by their lack of
lineage-specific markers and presence of other cell surface anti-
gens such as CD34 and CD133 [33]. CD34 has been used rou-
tinely to enrich freshly isolated hematopoietic cell populations,
which include HSC, for clinical transplantation in patients [34].
MSCs are a population of cells that differentiate along various
mesenchymal lineages, for example, to form osteoblasts, adipo-
cytes, and chondrocytes [35]. These multipotent cells have
received considerable interest as possible donor cells for cell
transplantation therapies because MSCs can be isolated from
bone marrow with relative ease. Adherent stromal cells
(MSCs) will outgrow any fully differentiated and nonproliferat-
ing cells, which might also adhere to bone marrow mononu-
clear cell seeded-culture plates. Unlike HSCs, MSCs can be
culture expanded to generate large numbers [36]. Similar to
HSCs, a single molecular marker that is exclusively expressed
by MSCs is yet to be found, although the International Society
for Cellular Therapy has stated that MSCs must express
CD105, CD73, and CD90 and lack expression of CD45, CD34,
CD14, CD11b, CD79a, or CD19, and human leukocyte anti-
gen-DR (HLA-DR) surface molecules [37].

HSCs and MSCs As Replacements for
Lost Glial Cells and Neurons

Some evidence has suggested that HSCs and MSCs may
transdifferentiate along glial and neuronal pathways [23, 27,
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38—41]. The topic of MSC neural transdifferentiation in
particular has been extensively reviewed elsewhere [38—41].
In brief, many of these studies have reported that HSCs and
MSCs have the ability to form cells of a glial and neuronal
lineage in response to various types of genetic, chemical, and/
or physiological induction. In most cases, the characterization
of cell phenotype was limited to the detection of lineage-spe-
cific markers with no glial or neuronal cell function apparent,
that is, myelin synthesis or electrophysiological activity.
There is some controversy regarding the capacity of MSCs to
transdifferentiate into neural cells in vitro and in vivo. The
differentiation of stem cells toward a neuronal lineage in
development is a complex and gradual progression. In con-
trast, in vitro studies have described neuronal differentiation
in a matter of hours following the treatment of MSC with
chemical agents (e.g., § mercaptoethanol, dimethyl sulfoxide,
and butilated hydroxyanisole), which is highly questionable.
Such chemically induced transdifferentiation of various cell
types including primary rat fibroblasts, rat PC-12 cells (a cell
line that is used to model neuronal differentiation), and MSCs
has previously been tested [42]. On application of induction
medium, all cell types altered morphologically and appeared
to possess fine neurite-like extensions. However, time lapse
analysis indicated that these structures were due to cellular
shrinkage and not to neurite extension proper. These research-
ers went on to introduce various other known cell stressors,
including detergents, sodium chloride, and extreme pH levels,
which also produced a similar morphological change to give
the appearance of neuronal differentiation. Cellular shrinkage
could also explain the apparent increase in immunoreactivity
of neuronal markers (e.g., f III tubulin) exhibited in these dif-
ferentiation protocols, as immunolocalization in cells, which
had retracted cell processes, would appear to be more intense
than in spread cells, which had received no treatment [42].
Doubts were also raised regarding the interpretation of in
vivo studies that have reported transdifferentiation of MSCs
[43, 44], where it has been suggested that the supposed MSC
differentiation into neuronal phenotypes were rather a result
of fusion between donor MSCs and host neural cells, which
lead to false immunopositive characterization [45]. However,
some studies have demonstrated phenotypic functions in
transplanted HSC and MSC, that is, nerve myelination and
electrophysiological activity for evident glial and neuronal
phenotypic function [27, 46-48]. Interestingly, neuronal
induction of MSCs prior to their transplantation into SCI
lesions was not necessary to promote axonal regeneration
when induced and noninduced MSC grafts were directly com-
pared [49]. In addition, the glial or neuronal differentiation of
HSCs and MSCs prior to their transplantation into CNS injury
sites was not necessary to promote the remyelination, axonal
regeneration, and functional recovery noted by the majority of
investigators in the field [16-31]. Therefore, there is a clear
possibility that HSCs and MSCs may have beneficial effects
that extend beyond their potential to differentiate in vitro to
form replacement cells of a glial or neuronal lineage.

MSCs Can Modify the SCI Milieu to
Support Axonal Regeneration

The precise mechanisms by which transplantation of HSCs
and MSCs promote functional recovery after SCI is still
unclear. HSCs secrete some neurotrophic growth factors, such
as angiopoietin-1 and have been suggested to encourage vas-
cularization [50] and hence encourage wound healing in SCIL.
However, the majority of data available describes how MSC
grafts can influence the SCI milieu, and therefore, this review
has focused on MSC mechanisms (supporting information
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Fig. 2). There is increasing evidence that MSCs may be
immunosuppressive [51-54]. These immunosuppressive pro-
perties may combine to reduce the acute inflammatory
response to SCI and hence reduce cavity formation as well as
decrease astrocyte and microglia/macrophage reactivity [26,
30, 55]. MSC transplantation has been shown not only to
enhance tissue preservation after SCI but also to associate
with a reduction in injury-induced sensitivity to mechanical
stimuli in an experimental SCI model, which is functionally
indicative of anti-inflammatory activity [55]. Overall, these
findings indicate that MSC transplantation into SCI lesions
attenuates acute inflammation and that this is beneficial to the
recovery of function following SCI. However, SCI initiates an
innate immune response that participates not only in second-
ary pathogenesis but also in wound healing [56], therefore
further research into the use of MSC as modulators of the
immune system is required.

Transplanted MSCs might bring about CNS functional
recovery by modifying the SCI milieu directly. MSCs may
promote axonal regeneration or encourage functional plasticity
by establishing an environment, which supports axonal
growth, for example, by abrogating the inhibitory influence of
the glial scar. MSCs synthesize a number of neurotrophic
cytokines that stimulate nerve growth, including brain-derived
neurotrophic factor, NGF, and vascular endothelial growth
factor (VEGF) [26, 57], and we, and others, have shown
that MSC conditioned media (MSC CM) stimulates neurite
outgrowth in vitro [26, 58]. However, we have also demon-
strated that the stimulus of MSC CM was insufficient to
promote nerve growth over inhibitory molecules that are pres-
ent in the glial scar, that is, CSPGs, MAG, and Nogo-A [56].
An important interpretation of this finding is that the neuro-
trophic factors secreted by MSCs may have limited effect in
the context of the SCI milieu.

It has been proposed that MSCs act as “guiding strands”
for regenerating axons across the lesion site in the injured
cord and along spinal cord tracts in vivo [20]. Transplanted
MSCs were seen to form bundles that bridged the lesion,
which were also populated with immature astrocytes and
nerve fiber outgrowths [20]. In coculture experiments, we
used time lapse microscopy to demonstrate that MSCs can act
directly both to provide contact guidance and cellular bridges
over nerve-inhibitory matrices [58]. Human MSCs express
various cell adhesion molecules and receptors [57] that may
function in MSC: neuronal interactions and hence axonal
regeneration. These include ninjurin 1 and 2, Netrin 4, neuro-
nal cell adhesion molecule [57], Robol, and Robo4, which
are all known to regulate neuronal cell migration and axon
guidance in development [59]. Alternatively, MSCs might
degrade nerve-inhibitory molecules present in the SCI milieu.
Human MSCs express membrane type I matrix metalloprotei-
nase and MMP2, which degrade CSPGs [60-62]. Another
interesting possibility is that transplanted MSCs synthesize
nerve-permissive matrix components within the lesion that
may contribute to the decrease in cavitation noted in some
studies [21, 22], for example, laminin, fibronectin, and
collagen [22]. Evidence that MSCs provide a supportive envi-
ronment for neurite elongation has been shown in vitro, where
a feeder layer of MSC enhanced the development of neural
networks from neurospheres isolated from fetal rat spinal
cords [21].

A recent study has focused on the ability of MSCs to
respond to the environmental stimuli in the injured spinal
cord. MSCs that were administered with extracts from injured
spinal cord tissue responded by increasing their synthesis of
various cytokines, including IL-6, IL-7, and VEGF [63]. The
biological significance of the elevated secretion of these cyto-

www.StemCells.com

171

kines is difficult to interpret as each factor could play a func-
tional role in wound repair as well as a detrimental role in
secondary tissue damage. However, this study demonstrated
that there was a dynamic relationship between the trans-
planted MSCs and the host SCI environment. Elucidating and
manipulating these interactions will provide an extremely
complex area for future scientific research.

THE TRANSLATION OF BONE MARROW CELL
TRANSPLANTATION TO THE CLINIC

HSC and MSC Populations in Humans with SCI

A preliminary question for the application of autologous
HSCs or MSCs for human SCI cell therapy is whether these
cells are available in individuals who have been injured. Early
work demonstrated marked and significant changes in the
composition of iliac crest tissue in individuals with complete
paralysis compared with non-SCI donors [64]. In the 12-25
weeks after SCI, trabecular bone volume decreases by 30%,
whereas the volume of bone marrow adipose tissue increases.
The loss of mechanical loading following SCI is suggested to
be a crucial stimulus for bone resorption [65]. However, sur-
gical and chemical denervation in animal models leads to
bone loss in both loaded and unloaded bones [66], which
suggests that denervation in itself can contribute to the skele-
tal pathology observed following SCI. It is intuitive that such
changes in the bone marrow microenvironment will have an
impact on cells resident within marrow, although there is little
data on whether this does occur. HSC populations are affected
by SCI, where a reduced presence of long-term colony-form-
ing dendritic cells has been determined. This loss of hemato-
poietic potential may have a role to play in the depressed nat-
ural and adaptive immunity seen in patients with SCI [67].
For MSCs, one study has reported successfully isolating
“fibroblast-like mesenchymal cells” in just 75% of bone
marrow aspirates tested from patients with SCI [68], which
may suggest that the MSC population is also affected.
However, more recently, we have shown that MSCs were
generated from all SCI donor bone marrow samples that we
have examined and that these MSCs were little if at all differ-
ent to those isolated from non-SCI donors [69]. Importantly,
we also found that MSCs from SCI donors were able to pro-
mote nerve growth, at least in vitro [69]. These findings bode
well for the future development of bone marrow cell therapies
for the treatment of SCL

Clinical Applications of Bone Marrow Cell: Cell
Type and Number, Mode, and Time of Delivery

In practice, most clinical applications of bone marrow cells
for the treatment of SCI have involved the use of whole
mononuclear cells preparations (MCPs) [70-75] and two
have used culture expanded MSCs [76, 77]. MCPs constitute
hematopoietic cells of various stages of differentiation and
endothelial cells as well HSCs and MSCs. No studies have
directly compared the efficacy of these various bone marrow
cell preparations in the clinic, although a direct comparison
was recently made between human MCPs and culture
expanded MSCs transplanted into a SCI model in rats,
where no differences were reported with regard to graft effi-
ciency, spinal cord tissue sparing, or glial scar reduction
[78].

The issue of scaling up potential therapeutics is an area in
SCI research that is not well documented but has important
implications in the clinical setting when the lesion size in
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animal models and humans differ greatly. A typical injury in
rat models of SCI is 1-3 mm in length into which, generally,
1-5 x 10° cells are grafted (summarized in Table 1). In
humans, it is perhaps intuitive to consider that more cells may
be needed for larger lesions. In addition, if the acute stage of
SCI proves a window of opportunity where grafting has bene-
ficial effects then this large cell number must be generated
rapidly. Seeding MSCs at low densities significantly reduces
the MSC culture doubling time and greatly increased the
overall MSC yield [69, 80], which has important implications
clinically if MSC number is critical to the success of an MSC
graft.

The delivery of HSCs and MSCs into animal CNS injury
models varies considerably (Table 1). The method of cell
delivery is of great importance to the clinic as injections
directly into the spinal cord tissue may cause further damage.
However, MSCs exhibit trophism for sites of tissue damage
[81] and this may negate the need to inject cells directly into
the injury site. Intravenous (IV) applications of MSCs in
rodent models of SCI and brain trauma have shown that
labeled MSCs can migrate toward and integrate into damaged
CNS tissues up to 3 months post-transplantation [82]. MSCs
have also been injected directly into the cerebrospinal fluid by
lumbar puncture (LP) in animal models of SCI, where they
migrated into injured spinal tissue and reduced cyst size and
increased functional recovery [24, 79, 83, 84]. A direct
comparison between the efficacy of these modes of delivery
(IV vs. LP) and their effects on the host has previously been
made [79]. In this study, human MSC engraftment into the
injured spinal cord tissue in rats was determined as a percent-
age of total cord volume at 4 and 21 days after MSC delivery.
When MSCs were injected intravenously, MSC engraftment
was reported at 2.3% and 1.6%, whereas LP delivery
increased MSC engraftment to 4.1% and 3.4% after 4 and 21
days, respectively. In addition, the increased engraftment of
LP-delivered cells was associated with a decreased host
immune response, increased tissue sparing, and decreased
glial scarring compared with animal, which were injected
intravenously [79]. This study highlights the importance of
cell number in determining the outcome of cell transplanta-
tion; furthermore, the study represents a promising advance to
the clinical use of MSC in SCI treatment as IV and LP
colony-stimulating factor (CSF) infusion are minimally inva-
sive delivery techniques.

The majority of HSC and MSC transplantations in animal
models of SCI occur in the acute injury phase [19-24, 26—
30]. However, there are a number of studies using chronic
models of SCI in animals that have reported increased func-
tional recovery following MSC transplantation 6-12 weeks
after injuries were induced, which is considered chronic in
these model systems [25, 31]. This literature indicates that
both the acute, subacute, and chronic injury may well be a
therapeutic target for MSC grafting. The acute or subacute
milieu of the damaged spinal cord may influence the mecha-
nism by which HSC or MSC graft might induce tissue protec-
tion/repair in a manner that differs to the chronic setting (e.g.,
in the acute setting for anti-inflammatory purposes or in the
subacute/chronic setting for neurostimulatory and cell bridg-
ing effects and possibly glial or neuronal cell replacement).
No physical therapy following HSC or MSC transplantation
has been reported in any of the animal models reviewed in
this article. It will be important to study these effects in future
studies using HSCs and MSCs, as locomotor training activity
when combined with other types of cell transplant has previ-
ously been reported to improve functional recovery in animal
models of SCI [85].

Bone Marrow Cell Therapy for SCI

Current Bone Marrow Cell Clinical Trials
for the Treatment of SCI

The current bone marrow cell clinical trials for the treatment
of SCI are summarized in Table 2. There are no definitive
rules for the classification of SCI as acute, subacute, or
chronic. In general, provided there are no life-threatening-
associated injuries or complications, the acute stage is likely
to last up to the end of the period of spinal shock during
which the patient is at the highest risk of developing compli-
cations. However, the presence of life-threatening-associated
injuries or complications can prolong the acute stage until
such conditions no longer pose a threat. The subacute stage
can be described as the period during which all systems of
the body that are affected by the SCI are managed and
retrained to function as safely and as conveniently as possible.
This usually lasts up to 6 months, occasionally longer. The
International Campaign for Cures of SCI Paralysis (ICCP)
have stated that “based on the available data, it might be sug-
gested that the chronic state is only attained 12 months after
SCI (where the preceding 6 months have indicated no change
in functional capacity, thereby providing a stable baseline).”
[86]. However, the criteria for acute, subacute, and chronic
SCI are disputable and vary greatly among the clinics
reviewed in this article. Therefore, we have described each
trial according to their respective clinical classification, while
also including the actual times of injury onset. In two of these
studies, MCPs have been trialed in conjunction with granulo-
cyte-macrophage colony-stimulating factor (GM-CSF) admin-
istration. GM-CSF has previously been shown to mobilize
MCPs into the injured spinal cord and promote functional
recovery from SCI in mice [87]. For these clinical trials, it
was hypothesized that GM-CSF would not only promote the
migration of MCPs into the lesioned spinal cord but also
would have a direct effect on the transplanted cells by
enhancing their survival and activating them to secrete neuro-
trophic cytokines [70, 73]. The first trial used a combination
of MCPs with administration of GM-CSF in the acute setting,
that is, within 7 days of injury with cells injected directly into
the lesion site [70]. Of the six patients who were treated, five
showed slightly improved neurological function. This same
group of researchers have now gone on to treat a further
17 patients with SCI at 2 weeks postinjury (i.e., still acute),
6 patients between 14 days to 8 weeks postinjury (subacute),
and 12 patients at >8 weeks postinjury (chronic) [73]. A con-
trol group of 13 patients were also included; these patients
were treated only with conventional decompression and fusion
surgery. In this latter study, 29.5% of the acute, 33.3% of the
subacute, 0% of the chronic, and 7.7% of the control patients
demonstrated an increase in neurological function at
10 months post-transplantation. However, as few patients
have been treated at this stage, it is not clear whether the
neurological improvements noted were directly attributable to
the treatment and were not due to an intrinsic repair process
and natural recovery.

A preliminary safety study on the use of MCPs delivered
via LP also with administration of GM-CSF for the treatment
of SCI has been reported [71]. Ten patients with SCI were
treated 4 hours after the bone marrow was aspirated and 100
million MCPs were injected. This brief study reported that no
serious adverse effects were observed at 12 weeks follow-up,
although no detailed neurological assessments were performed
[71]. Another trial safely treated 20 patients with SCI ranging
from 10 to 467 days postinjury with MCPs injected intra-arte-
rially or by IV within 5 hours of harvesting [72]. The
improved neurological outcome reported in one chronic
patient who was neurologically stable for several months prior
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to cell implantation is promising. A case report on SCI treat-
ment via LP delivery of cultured MSCs, where the patient
was treated 13 days after SCI, reported that no adverse effects
were noted in the 6 months follow-up to the treatment and
both motor and sensory neurological scores gradually
improved [76]. However, as with previous solely acute stud-
ies, these improvements are difficult to separate from an
intrinsic repair process. Indeed, in a recent study using LP
MSC transplantation for SCI repair in a more extensive cohort
of patients, only the acute patient group demonstrated any
improvement in quality of life score and patients with chronic
injuries failed to show any improvements [77]. In contrast,
increased functional recovery and improved quality of life
was reported after treating four acute and four patients with
chronic SCI with ~800 million MCPs via multiple routes,
~200 million cells were injected directly into the injury site
after the removal of glial scar tissue and ~300 million cells
were delivered by both LP and IV administration [75]. Simi-
lar functional improvements have been reported in nine
chronic patients following transplantation directly into the
spinal cord tissue with MCPs, which had been subjected to a
freeze-thaw cycle, suggesting that cryopreserved MCPs do not
lose the ability to promote functional recovery [74]. There-
fore, harvested cells could be cryopreserved and stored for
future use. The improved neurological outcome reported in
these chronic patients is exciting, although a control group
was again not included in either study for comparison [74,
75]. Inclusion of a control group is of particular importance
for the former study to access the effects of scar removal in
the absence of MCP transplantation for comparison.

Larger patient cohorts would be required to determine the
significance of any functional improvements in these patient
trials and to assess any associated risks of MCP/MSC or GM-
CSF treatments. It is noteworthy that no details of physical
rehabilitation were reported in any of these clinical trials
other than that “all patients underwent standard physical
therapy prior to and after transplantation” [75]. For future
reporting of clinical trials it will be important to include the
details of any physical rehabilitation programs, which have
previously been demonstrated to impact significantly on SCI
recovery [88]. It is currently unclear whether cell transplanta-
tion in future SCI treatments should be limited to the acute,
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CONCLUSION
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