
[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 973 973–979

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 7 2011, pages 973–979
doi:10.1093/bioinformatics/btr048

Systems biology Advance Access publication February 4, 2011

Model annotation for synthetic biology: automating model to
nucleotide sequence conversion
Goksel Misirli1, Jennifer S. Hallinan1, Tommy Yu2, James R. Lawson2,
Sarala M. Wimalaratne3, Michael T. Cooling2 and Anil Wipat1,∗
1School of Computing Science, Newcastle University, Newcastle upon Tyne, UK, 2Auckland Bioengineering Institute,
The University of Auckland, New Zealand and 3European Bioinformatics Institute, Hinxton, UK
Associate Editor: Jonathan Wren

ABSTRACT

Motivation: The need for the automated computational design of
genetic circuits is becoming increasingly apparent with the advent
of ever more complex and ambitious synthetic biology projects.
Currently, most circuits are designed through the assembly of models
of individual parts such as promoters, ribosome binding sites and
coding sequences. These low level models are combined to produce
a dynamic model of a larger device that exhibits a desired behaviour.
The larger model then acts as a blueprint for physical implementation
at the DNA level. However, the conversion of models of complex
genetic circuits into DNA sequences is a non-trivial undertaking
due to the complexity of mapping the model parts to their physical
manifestation. Automating this process is further hampered by the
lack of computationally tractable information in most models.
Results: We describe a method for automatically generating
DNA sequences from dynamic models implemented in CellML
and Systems Biology Markup Language (SBML). We also identify
the metadata needed to annotate models to facilitate automated
conversion, and propose and demonstrate a method for the markup
of these models using RDF. Our algorithm has been implemented in
a software tool called MoSeC.
Availability: The software is available from the authors’ web site
http://research.ncl.ac.uk/synthetic_biology/downloads.html.
Contact: anil.wipat@ncl.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on November 6, 2010; revised on January 18, 2011;
accepted on January 21, 2011

1 INTRODUCTION
Synthetic biology involves the design and implementation of
genetic circuits to enable organisms to perform novel, desirable
functions for biotechnology applications. Such applications include
the production of medically relevant biomolecules (Anderson et al.,
2006; Ro et al., 2006), environmental bioremediation (Sinha et al.,
2010) and biofuel production (Lee et al., 2008).

Most genetic systems are currently designed manually by a
domain expert with a deep understanding of the system to be
engineered. However, as the aims of synthetic biologists become

∗To whom correspondence should be addressed.

more ambitious, and designs correspondingly more complex, the
manual design of systems at a genetic level becomes more
challenging. Consequently, interest in the computational design
of genetic circuits has grown rapidly over the last few years
(Andrianantoandro et al., 2006; Bolouri and Davidson, 2002; Endler
et al., 2009; Goldbeter, 2002; Hasty et al., 2002; Weiss et al., 2003).

Genetic circuits are usually designed and simulated in silico as
abstract models. Computational models of genetic systems, such
as Biobricks (Knight, 2003), are valuable because they allow rapid
simulation of a system and verification of its behaviour under a
range of circumstances. In synthetic biology, in silico models of
modular components are typically assembled in a bottom-up fashion
to produce a larger computational model of the desired system. Such
models are usually constructed using abstract modelling formalisms
such as Systems Biology Markup Language (SBML; Hucka et al.,
2003) and CellML (Cuellar et al., 2003).

Once a suitable model for a system has been designed, the
conceptual model must be transformed into a DNA sequence. This
sequence encodes the necessary genetic features required for a
designed circuit to be implemented in vitro or in vivo.

At first glance this transformation appears to be a relatively
straightforward task to complete manually: components are selected
and their DNA sequences are concatenated. Appropriate restriction
sites can then be added, a cloning vector selected and the entire
sequence synthesized or cloned, as appropriate.

In practice, the situation is far more complex, and for large models
is time consuming and difficult to complete by hand. A typical
computational model will contain numerous species or components
that do not have a physical representation at the DNAsequence level.
Examples include entities representing proteins, protein and RNA
degradation, information flow, environmental inputs and chassis-
related factors. In this article, we refer to model components
representing biological parts with a DNA sequence as ‘DNA-based
parts’.

It is not always immediately obvious which entities in the model
map directly to the genes and sequence features necessary to encode
the system represented by the model. The fact that the mapping
between component abstractions and sequence-based features is not
necessarily one-to-one adds additional complexity. Other factors
such as the spacing and ordering of physical features and the genetic
elements used to ensure their replication, can also impact on a
system’s behaviour and must be considered.

As models for computationally designed systems increase in size
and complexity, automatically deriving the physical DNA sequence

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 974 973–979

G.Misirli et al.

necessary to encode a system designed as an in silico model becomes
highly desirable, if not essential. However, carrying out the model-
to-sequence conversion process automatically is even more difficult
than manual conversion. The move from an abstract concept such
as ‘pSpac promoter’ or ‘gfp_CDS’ to a sequence of nucleotide
bases involves accessing and integrating theoretical and practical
domain knowledge that must be captured and made available in a
computationally amenable format.

This mapping is not one-to-one. A single model component may
represent a whole set of biological concepts (e.g. there are numerous
processes involved in protein degradation, which is generally
modelled as a single entity), while one biological process may
require multiple model components (protein production involves
transcription, translation and mRNA degradation components). The
need for expert domain knowledge to elucidate this mapping
constrains the size, complexity and novelty of the systems that can
be developed.

When the sequences are manually designed this knowledge comes
from a human brain, aided by manual lookup of literature and
databases. When the task is automated such knowledge must be
incorporated into the model itself; the model requires metadata.
Metadata is data about data that is information about the format,
organization and meaning of the fundamental data, which in this
case are the model components.

In this article, we present an algorithm for the automated
conversion of an abstract computational model into a synthesizable
DNA sequence. In order to perform this task, model components
or species must be marked up with metadata. We therefore also
propose a generic method to facilitate this model annotation,
incorporating existing standards wherever possible. The algorithm
presented is applicable to models constructed using either of the
XML-based modelling languages CellML or SBML. We provide a
use case that demonstrates our approach and describe a software
application, MoSeC, which implements the model-to-sequence
conversion algorithm.

1.1 Synthetic biology models and metadata
Computational modelling can be performed in one of two ways:
bottom-up or top-down. Top-down modelling involves the breaking
up of a high-level overview of a system into a number of modules,
and then further reduction of the modules into submodules until all of
the components of the system are specified at an elemental level. This
approach is valuable for applications where the biological system
under study already exists.

Bottom-up modelling, in contrast, involves constructing a model
from well-defined, fine-grained components. In the context of
synthetic biology, such components may be, for example, promoters,
terminators and coding sequences (CDSs). At a higher level of
abstraction, models can be constructed from entire devices with
clearly defined and more complex functions. Recently, an approach
to the definition of fine-grained model components, known as
standard virtual parts (SVPs) has been developed. SVPs are virtual
representations of components with clear biological counterparts
(Cooling et al., 2008, 2010).

There are a number of modelling formalisms in use, but two
in particular are rapidly becoming standards in the systems and
synthetic biology communities; SBML and CellML. SBML has
been under development since 2003, and is widely used among

the systems biology community. SBML was the first widely used
machine-readable format for representing models, and offers a
common intermediate format for models developed using different
approaches and software.

CellML has been under development since 2000 and also aims to
store and facilitate the exchange of computer-based mathematical
models (Lloyd et al., 2008). Recently, a CellML repository has
been created to provide a repository of SVPs for the composition
of synthetic biology models (Cooling et al., 2010). CellML has
a modular structure, in which equations and their variables are
encapsulated inside components, while SBML uses explicit model
elements to describe the reactions, their inputs, modifiers and
outputs. Both of these modelling formalisms are encoded in
XML. They have different strengths and weaknesses, making them
complementary rather than competitive for synthetic biology. Both
are popular enough that we consider it essential to provide model-
to-sequence conversion for both formalisms, despite their somewhat
different approaches to modelling systems of ordinary differential
equations (ODEs).

1.2 Annotation of synthetic biology models
Perhaps the greatest challenge in automating the process of
converting a dynamic model to the specification for a synthesizable
DNA sequence is the availability of informative model metadata.
To automate the model-to-sequence conversion process, information
about entities and relationships must be represented in the model in
a computationally amenable format.

Wherever possible this metadata should draw on existing
standards, such as those laid down by the W3C, and employ defined
terms that are backed by an ontology. For CellML and SBML
models, appropriate metadata must be added both to the species
or components and to their relationships.

Annotations are used to add metadata to models in order
to incorporate computationally tractable information about their
constituents. A number of approaches for the annotation of systems
biology models have already been described and can be extended
for use in synthetic biology (Endler et al., 2009). For example, the
MIRIAM project proposes a standard for the minimal information
required to annotate systems biology models (Novere et al., 2005).
In this work, we annotate models in a similar fashion, embedding
ontology terms, or links to ontology terms in the model as fragments
of resource description framework (RDF) data. A number of
examples of this approach to model annotation is presented in the
Supplementary Material.

1.3 Bottom-up vs top-down model annotations
There are large repositories of models in both CellML and SBML.
Our annotation approach can be applied to these existing models.
However, there is considerable recent interest in the bottom-up
composition of dynamic models using SVPs (Cooling et al., 2010;
Marchisio and Stelling, 2008). For bottom-up composition, it is
both easier and more efficient to apply the annotation approach to
individual SVPs. Therefore, for the work presented here, annotations
are applied to virtual parts prior to model assembly, extending the
approach defined by Cooling et al. (2010).

974



[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 975 973–979

Model annotation for synthetic biology

2 METHODS
A typical dynamic model contains entities such as species and reactions
(in the case of SBML), or components and connections (in the case of
CellML). The process of converting SBML or CellML dynamic models to
a specification for a DNA sequence, in the form of a GenBank record for
instance, requires that those constituents which represent sequence-based
features such as coding sequences, ribosome binding sites and promoters,
and the interactions between them, are distinguished from other elements of
the model. These constituents must then be arranged in an appropriate order.

If the sequence construction process is to be carried out automatically then
the information to guide the arrangement process must be derived from the
model. The virtual parts used to build models are annotated with additional
annotations that are not normally associated with synthetic biology model
annotation. The addition of these annotations, while necessary to facilitate
the automation of the model-to-sequence conversion may also be applicable
to other model-based problems in the computational design of biological
systems. These specific annotations and the issues they address are discussed
below.

2.1 Genomic context
Both cis and trans relationships are an inherent part of any synthetic biology
model. Ultimately, genetic features must be ordered and represented at
a physical level in a DNA sequence of a genetic element (chromosome,
plasmid, etc.). It is therefore necessary to consider the nature of the
interactions between the elements in a model since the type of relationship
may constrain the ordering of the physical representations of the model
components. For example, cis interactions must be distinguished from non-
cis since cis interactions require sequence-based features to be co-localized
on a nucleotide sequence. The direction of a cis interaction between entities in
a model can be used to derive ordering information, for example, specifying
that a promoter should be placed upstream of a coding sequence. Conversely,
some non-cis elements represent macromolecules or cellular components
that operate in trans, and are not directly relevant to DNA sequence feature
organization. A model also contains abstract elements, and connections
between those elements, that allow the model to operate mathematically.
These elements do not directly represent physical biological entities and are
therefore neither cis nor trans in their behaviour.

In our annotation approach, SVPs contain a term indicating whether they
are physical parts (possess a DNA sequence). Interactions between two
physical parts are considered to be cis interactions.

2.2 Shims
A major confounding factor in both automated and manual model-to-
sequence conversion is the need for the insertion of spacer DNA between
components. Spacers may be necessary for biophysical reasons, for example
to permit space for protein complexes to bind to the DNA. In this respect,
they perform the same function as ‘shims’ in automotive engineering. The
Compact Oxford English Dictionary defines a shim as ‘a washer or thin strip
of material used to align parts, make them fit or reduce wear’; a definition
which appears entirely appropriate to spacer DNA in a biological construct.
We therefore introduce the term shim as a spacer component for the assembly
of genetic constructs for synthetic biology. It has long been recognized that
shims are not always passive construction elements; mutations in the length
and composition of these regions can dramatically affect the dynamics of the
system under consideration (Grosschedl and Birnstiel, 1980), and hence the
kinetic parameters of the corresponding model.

Shims do not function in isolation; their effect depends upon the
components that they link, and model metadata must reflect this dependency.
The precise length and sequence of shims is therefore likely to be of critical
importance to the performance of a genetic system and therefore shims may
have behaviour beyond that of simple inert spacer components. For example,
a shim between a promoter and CDS can have a modifying effect on the
transmission of transcriptional flux units from the promoter to the CDS. For

these reasons we include shims as annotated virtual parts during the bottom
up construction of the models. However, for the sake of simplicity, in the
work presented here, we model shims as inert physical parts that possess a
DNA sequence but do not alter the dynamics of the model.

2.3 Transcriptional and translational flux
Deriving a DNA specification from a model also requires that the fluxes
between SVPs in a model are analysed. These fluxes reflect the way in
which SVPs operate together to shape the transcriptional and translational
behaviour of the system. The BioBricks Foundation has suggested that the
standard way to measure the inputs and outputs of a BioBrick should be
Polymerases per Second (PoPS). The equivalent metric for the translational
activity of an mRNA molecule is Ribosomes per Second (RiPS). We have
adopted these standards.

Flux analysis is complicated by a number of factors, which are taken
into account by the model-to-sequence conversion algorithm. In a physical
DNA sequence, a CDS upstream in an operon is likely to be exposed to a
higher rate of transcription than those further downstream due to occasional
premature termination or RNA processing. In our algorithm, we assume a
uniform rate of transcription throughout an operon. The flow of information
through parts of the graph corresponding to transcriptional units is therefore
split after the promoter, flowing through several coding sequences in parallel.
We also assume that terminators are 100% effective. While this assumption
is valid for the majority of existing models, it would be possible to extend
the algorithm to handle terminators with different degrees of read-through.

We add metadata to models to identify and describe the nature of these
fluxes in order to direct the ordering of the genetic elements that ultimately
encode the virtual system in vitro or in vivo.

2.4 Conversions of CellML and SBML models to
graphs

In CellML models degradation, activation and production fluxes are
connected through model components that act as a common interface. In
SBML each flux is represented as an individual reaction, and these reactions
do not need be explicitly connected in the model, since the species serve as
a common interface to collect the fluxes.

Tracing the path of fluxes through the components of a model is
difficult when the model is represented in XML. A more computationally
amenable representation is a network, in which the nodes represent model
components and the edges interactions between the components. A network
representation also facilitates visual inspection of the model for completeness
and topological consistency. Therefore, the first step in our approach to
deriving the specification for a genetic system from a model is to convert the
model to a graph-based representation.

Because of the differences between their XML representations, CellML
and SBML models require slightly different approaches to convert the XML
representation into a graph. Also, models of the same process in SBML
or CellML may not produce identical graphs. After the XML to graph
conversion step, however, the same algorithms can be applied to graphs
derived from both SBML and CellML models.

2.5 An algorithm for graph to sequence conversion
The nodes of the graph that contribute to the final DNA sequence are first
identified. Information on the order and spacing of sequence features must
also be derived from the model. This information is inherent in the structure
of the graph. The model-to-sequence algorithm is based upon an analysis of
the flow of information through the model, as represented by its graph.

The first step is to identify the starting node that represents the beginning
of the flow of information in the model: that component which will be placed
first in the resulting DNA sequence. The starting component is identified via
annotation, or it can be derived from the model by analyzing the network
topology. Components which do not have an incoming edge from any other
component are candidate starting points.

975



[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 976 973–979

G.Misirli et al.

Fig. 1. Flow of information through the model at both the DNA and
RNA/protein level in parallel.

To produce a linear DNA sequence specification, models are first turned
into tree-like structures. This conversion is achieved by removing non-
sequence-based components and any interactions forming loops that make it
difficult to disentangle the flow of information through the system.

The analysis of information flow through the model is relatively
straightforward for CellML, in which the representation of components
as nodes and interactions as edges is inherent. SBML, however, is more
challenging, and the model requires the following preprocessing:

• Assignment rules, rate rules, species and reactions are represented as
nodes.

• If one assignment rule is used in another assignment rule, an edge is
created between them.

• If a species is used in an assignment rule, an edge is created from the
species to the assignment rule.

• If an SBML assignment rule is used in a reaction, an edge is created
from one to the other.

• If a species is a reactant or modifier of a reaction, an edge is created
from the species to the reaction.

• If a species is an output of a reaction, an edge is created from the
reaction to the species.

The model-to-sequence converter algorithm involves the following steps,
starting with either a CellML or an SBML file:

(1) Convert the XML representation to a graph representation.

(2) Identify nodes that correspond to DNA-based parts.

(3) Remove all non-cis interactions (interactions between RNA-based
components count as cis interactions, and so are not removed).

(4) Identify the start node.

(5) Join the DNA-based parts in the direction specified by the edges. (The
direction of flow of PoPS and the RiPS are derived from the relations
of parts in the model.)

(6) Identify the subgraphs of physical components joined by mRNAs.
Branches from an mRNA entity represent operon structures with more
than one gene.

(7) Join the branches to form the operon structures. (At present, this is
done by taking the left branch first.)

(8) Add terminators to the end of each transcriptional unit.

(9) Concatenate the sequences of the transcriptional units to form a linear
DNA structure.

The algorithm uses the models built with SVPs to track the activity at the
DNA level (PoPS) and at the RNA/protein level (RiPS) in parallel. In these
models, PoPS are converted into RiPS through mRNA molecules (Fig. 1).

Table 1. Annotations required for DNA-based parts for the model-to-
sequence conversion process

Attribute Mandatory?

VisualName No
IsDNABased Yes
Type If IsDNABased is TRUE
Sequence If IsDNABased is TRUE and SequenceURI

is empty
SequenceURI If IsDNABased is TRUE and Sequence is

empty
IsDNABasedPartTemplate Yes
IsTemplate No

3 RESULTS

3.1 Implementation
The model-to-sequence conversion algorithm has been implemented
as an application called MoSeC. MoSeC is written in Java, and so
will run on any platform.

MoSeC produces EMBL-Genbank formatted DNA sequences
from both CellML and SBML models marked up with RDF
according to the guidelines outlined above. MoSeC works optimally
with models composed from sets of virtual parts in CellML or SBML
in the format described by Cooling et al. (2010).

A standard set of annotations is required for our SVP annotation
approach (Table 1).

The VisualName attribute holds the name that is used when the
model is visualized in MoSeC. If this attribute is not present, the
name assigned within the XML file is used. The IsDNABased
attribute establishes whether an SVP is a physical part; that is,
whether it has an associated DNA sequence. If this attribute is TRUE
either Sequence or SequenceURI must have a value. The Sequence
attribute holds the actual sequence information; if the sequence is
long enough to be unwieldy, the SequenceURI may be used instead,
to point to the URI at which the sequence data can be found. The
Type attribute must also be set for DNA-based part. Part types
currently supported are; Promoter, Shine_Dalgarno_Sequence,
CDS, Shim, Signal_Carrier and Chassis. The final two attributes,
IsTemplate and IsDNABasedPartTemplate, are used to indicate that
a model is used as a template for SVPs. These attributes apply to
CellML Version 1.1 only.

A step-by-step guide to the annotation of virtual parts and
their relationships to support the automatic model-to-sequence
conversion process is presented in the Supplementary Material.

3.2 Application
We applied our approach to the derivation of a DNA sequence for
the subtilin receiver model described in detail by Cooling et al.
(2010). The subtilin receiver model was built from annotated SVPs,
assembled into a model and then used to generate a DNA sequence.
The model was based upon that used to design a subtilin receiver
device Biobrick by the 2008 Newcastle University iGEM team (part
No. BBa_K104001) (Fig. 2). The device encodes a construct which
responds to the lantibiotic subtilin by producing green fluorescent
protein (GFP). The specification for the virtual parts used in the
model was derived from the subtilin sensing and regulatory system

976



[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 977 973–979

Model annotation for synthetic biology

Fig. 2. The final subtilin receiver device BioBrick.

from Bacillus subtilis strain ATCC 6633, which uses subtilin for
quorum sensing.

This construct contains a promoter that transcribes an operon
containing the CDS for spaR and spaK that encode the response
regulator and sensor kinase, respectively, of the subtilin two-
component system. The SpaR regulated promoter, PspaS, is included
downstream of the operon separated by a transcription terminator.
Upon sensing the subtilin signal peptide, the SpaK subtilin sensor
activates the SpaR regulatory protein by phosphorylation. The
activated SpaR can then activate the PspaS promoter.

The subtilin receiver BioBrick was modelled in CellML Versions
1 and 1.1 and SBMLVersion 2 (Fig. 3). We annotated the virtual parts
used to build this model according to the approach described above
and used the model-to-sequence algorithm to automatically derive
a DNA sequence specification. The essential steps of the model-to-
sequence conversion algorithm are illustrated, using this model, in
Figure 4. The annotated SVPs, the complete model and the output
of the model-to-sequence conversion process are available in the
Supplementary Material accompanying this article. The nucleotide
sequence produced from this model is currently being biologically
validated.

4 DISCUSSION
Many tools have already been developed to aid biologists with the
manual design, simulation and construction of synthetic biological
systems (Chandran et al., 2009; Rodrigo et al., 2007a, b). These tools
are useful when the system under design is limited in size and the
user possesses enough knowledge about the system to provide initial
insights into the formulation of a preliminary design. However,
manual, visually guided assembly of representations of sequence-
based parts is unlikely to be scalable for large-scale computational
design, especially where the detailed structure of the system to be
designed is poorly understood.

Computational approaches, particularly those based on
evolutionary computation (EC), are particularly promising for
automating large-scale biological system design. Evolutionary
algorithms were developed for applications in complex problem
domains where the desired behaviour of the system is known,
but the details of the system itself may be poorly understood. As
such, it can produce novel, non-intuitive circuits (Macia and Sole,
2009). Indeed, there is increasing evidence that complex systems
constructed manually are less robust than those constructed using
an evolutionary approach (Yan et al., 2010).

In order to have a completely automated circuit design process
models must be constructed, their behaviour assessed via simulation,
modified if necessary and then converted to a DNA sequence
specification without the need for human intervention. However, the
computational assembly of parts that directly represent the molecular
entities that comprise biochemical systems is problematical due to

Fig. 3. An overview of the complete CellML model of the subtilin receiver
BioBrick assembled from virtual parts.

977



[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 978 973–979

G.Misirli et al.

Fig. 4. The model-to-sequence converter algorithm applied to the subtilin receiver device model. (A) An XML file encoding the model is converted to a
graph representation; (B) non-cis interactions between model species or components are removed, together with any entities that lie between these edges;
(C) DNA-based parts only are retained; (D) the final sequence. The virtual parts used to build this model were annotated according to the approach outlined
above, facilitating its automatic conversion into a DNA sequence specification.

the complexities of mapping DNA-based parts to the models that
encode them.

Once a system has been successfully designed and simulated,
the next logical step is to test the design by implementing it in the
target chassis or organism. The nucleic acid sequences required to
encode the system in vivo must be specified and ordered to give the
correct genomic context, a process that is guided by information in
the model. In other words, the model representing the system must
be interpreted to identify the nucleic acid molecules necessary to
implement the system in vitro or in vivo.

In order to automatically specify the genetic system at a
sequence level, two types of information must be present in
the model: information specifying the nucleic acid sequences
necessary to encode the system at a genetic level; and connectivity
information that allows the correct ordering and spacing of
sequences of genetic parts to be interpreted to ensure the correct cis-
based interactions between these genetic parts. Currently, dynamic

models generated for systems or synthetic biology in SBML and
CellML, are not usually annotated with this information. In this
article, we have described an approach to SBML and CellML
model annotation that allows the information to automatically
specify genetic systems at the nucleotide sequence level to be
derived.

CellML and SBML have proven pedigrees in systems biology,
and many complete models of synthetic systems already exist. It is
possible to manually add the annotations necessary for the model-
to-sequence conversion process after model composition. However,
our annotation system has been designed with a bottom-up model
assembly process in mind. By marking up the virtual parts prior to
model composition, composite models may be directly converted to
nucleotide sequences with no further manual intervention. It is our
intention to provide repositories of SVPs already marked up using
the MoSeC specification as a standard, to support design tools that
operate in a bottom up fashion.

978



[13:11 17/3/2011 Bioinformatics-btr048.tex] Page: 979 973–979

Model annotation for synthetic biology

Typically, the annotation of virtual parts is done manually by
reference to bioinformatics databases. Although this is a time-
consuming step, the fact that SVPs are, by definition, re-usable (and
CellML has templates that can be used to instantiate SVPs) mean that
it is a once-off investment for each part. The practical requirements
for annotation reinforces the benefits of using modular parts, rather
than annotation of entire models, and of maintaining repositories of
already-annotated SVPs. However, in the future it may be possible
to automate the annotation process itself through data integration
strategies that combine information from remote data sources, such
as genome or transcription factor databases, with experimentally
derived information about a particular part (Lister et al., 2009).

The MoSeC system as described is rich enough to produce
the specifications for complete sequences suitable for synthesis.
However, there are further improvements that could be incorporated
into the model-to-sequence conversion process. We do not currently
include information about the physical location of the final sequence
in the genome of the intended chassis organism. Furthermore,
sequences could be codon optimized for the intended host organism
as part of the conversion process.

Synthetic biology is rapidly becoming an iterative,
computationally dependent discipline, in which the outputs of
models and in vivo implementations feed back to each other to
continually improve our ability to understand and predict the
behaviour of synthetic genetic systems. The annotation of designs
for synthetic systems will play a critical role in the automation
of the bio-design lifecycle. The use of annotations in automating
model-to-sequence conversion is a small but vital step towards
the computational design of useful, predictable synthetic genetic
systems.

ACKNOWLEDGEMENTS
We acknowledge Poul F. Nielsen for helpful discussions relating to
this work.

Funding: Research Councils UK (to J.S.H.); Engineering and
Physical Sciences Research Council/National Science Foundation
grant number: EP/H019162/1 (to G.M.); University of Auckland
Faculty Research Development Fund New Staff grant (to M.T.C.).

Conflict of Interest: none declared.

REFERENCES
Anderson,J.C. et al. (2006) Environmentally controlled invasion of cancer cells by

engineered bacteria. J. Mol. Biol., 355, 619–627.

Andrianantoandro,E. et al. (2006) Synthetic biology: new engineering rules for an
emerging discipline. Mol. Syst. Biol., 2, 2006.0028.

Bolouri,H. and Davidson,E.H. (2002) Modeling transcriptional regulatory networks.
BioEssays, 24, 1118–1129.

Chandran,D. et al. (2009) Athena: modular CAM/CAD software for synthetic biology.
arXiv:0902.2598v1 [q-bio.QM]. Downloaded 7 May 2010.

Cooling,M.T. et al. (2008) Modelling biological modularity with CellML. IET Syst.
Biol., 2, 73–79.

Cooling,M.T. et al. (2010) Standard virtual biological parts: a repository of modular
modeling components for synthetic biology. Bioinformatics, 26, 925–931.

Cuellar,A.A. et al. (2003) An Overview of CellML 1.1, a Biological Model Description
Language. SIMULATION, 79, 740–747.

Endler,L. et al. (2009) Designing and encoding models for synthetic biology. J. R. Soc.
Interface, 6(Suppl. 4), S405–S417.

Goldbeter,A. (2002) Computational approaches to cellular rhythms. Nature, 420,
238–245.

Grosschedl,R. and Birnstiel,M.L. (1980) Spacer DNA sequences upstream of the T-A-T-
A-A-A-T-A sequence are essential for promotion of H2A histone gene transcription
in vivo. Proc. Natl Acad. Sci. USA, 77, 7102–7106.

Hasty,J. et al. (2002) Synthetic gene network for entraining and amplifying cellular
oscillations. Phys. Rev. Lett., 88, 148101.

Hucka,M. et al. (2003) The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics, 19,
524–531.

Knight,T. (2003) Idempotent vector design for standard assembly of biobricks.
Synthetic Biology Working Group Technical Reports, MIT. Available at
http://dspace.mit.edu/handle/1721.1/21168 (last accessed date February 15, 2011).

Lee,S.K. et al. (2008) Metabolic engineering of microorganisms for biofuels production:
from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol., 19, 556–563.

Lister,A.L. et al. (2009) Saint: a lightweight integration environment for model
annotation. Bioinformatics, 25, 3026–3027.

Lloyd,C.M. et al. (2008) The CellML model repository. Bioinformatics, 24, 2122–2123.
Macia,J. and Sole,R.V. (2009) Distributed robustness in cellular networks: insights from

synthetic evolved circuits. J. R. Soc. Interface, 6, 393–400.
Marchisio,M.A. and Stelling,J. (2008) Computational design of synthetic gene circuits

with composable parts. Bioinformatics, 24, 1903–1910.
Novere,N.L. et al. (2005) Minimum information requested in the annotation of

biochemical models (MIRIAM). Nat. Biotechnol., 23, 1509–1515.
Ro,D.-K. et al. (2006) Production of the antimalarial drug precursor artemisinic acid in

engineered yeast. Nature, 440, 940–943.
Rodrigo,G. et al. (2007a) Automatic model-based design of genetic circuits. In

Proceedings of the 2007 Conference on Machine Learning in Systems Biology,
Evry, France.

Rodrigo,G. et al. (2007b) Genetdes: automatic design of transcriptional networks.
Bioinformatics, 23, 1857–1858.

Sinha,J. et al. (2010) Reprogramming bacteria to seek and destroy an herbicide. Nat.
Chem. Biol., 6, 464–470.

Weiss,R. et al. (2003) Genetic circuit building blocks for cellular computation,
communications, and signal processing. Nat. Comput., 2, 47–84.

Yan,K.-K. et al. (2010) Comparing genomes to computer operating systems in terms of
the topology and evolution of their regulatory control networks. Proc. Natl Acad.
Sci. USA, 107, 9186–9191.

979


