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metallicity
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We present a new set of stellar yields obtained from rotating stellar models at solar
metallicity covering the massive star range (9–120 M⊙). The stellar models were calcu-
lated with the latest version of the Geneva stellar evolution code described in [ 1]. Evolu-
tion and nucleosynthesis are in general followed up to Silicon burning. The contributions
from stellar winds and from supernova explosions to the stellar yields were calculated
separately. The two contributions were then added to compute the total stellar yields [
2].
The effects of rotation on pre–supernova models are significant between 15 and 30 M⊙.

Above 20 M⊙, rotation may change the radius or colour of the supernova progenitors
(blue instead of red supergiant) and the supernova type (IIb or Ib instead of II). Rotation
increases the α and CO core sizes by a factor ∼ 1.5. Thus, rotation increases the

yields for heavy elements and in particular for carbon and oxygen by a factor

1.5–2.5. Rotating models produce larger yields for 12C and 16O in the mass range between
9 and about 35 M⊙ compared to the 1992 calculations [ 3].
For Wolf-Rayet stars (M & 30M⊙), the pre–supernova structures are mostly affected

by the intensities of the stellar winds and less by rotation [ 4]. In this mass range,
rotation increases the yields of helium and other hydrogen burning products but does not
significantly affect the yields of elements produced in more advanced evolutionary stages.
Note that the final masses of the most massive stellar models (∼ 120M⊙) are similar to
the final masses of less massive stars (∼ 40M⊙) due to the use of revised mass loss rates
from Nugis and Lamers 2000 [ 5]. The most massive stars are therefore also expected to
form black holes.

1. Introduction

Over the last ten years, the development of the Geneva stellar evolution code has
allowed the study of the evolution of rotating stars until carbon burning. The models can
reproduce many observational features at various metallicities, like surface enrichments [
9], ratios between red and blue supergiants [ 10] and the population of Wolf–Rayet (WR
hereinafter) stars [ 4]. In [ 1], we describe the recent modifications made to the Geneva
code and the evolution of our rotating models until silicon burning. In this contribution,
we briefly present the stellar yields for rotating stars at solar metallicity with a large
initial mass range (9–120 M⊙).
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2. Computer model

The computer model used to calculate the stellar models is described in detail in [ 1].
Convective stability is determined by the Schwarzschild criterion. Convection is treated as
a diffusive process from oxygen burning onwards. The overshooting parameter is 0.1 HP for
H and He–burning cores and 0 otherwise. On top of the meridional circulation and secular
shear, an additional instability induced by rotation, dynamical shear, was introduced in
the model. The reaction rates are taken from the NACRE [ 11] compilation for the
experimental rates and from the NACRE website (http://pntpm.ulb.ac.be/nacre.htm)
for the theoretical ones. The mass loss rates used are described in [ 4]. In particular,
during the Wolf–Rayet phase, we use the mass loss rates by Nugis and Lamers 2000 [ 5].
These mass loss rates, which account for clumping effects in the winds, are smaller by a
factor 2–3 than the mass loss rates used in our previous non–rotating, “enhanced mass
loss rate” stellar grids [ 12].
We calculated stellar models with initial masses of 9, 12, 15, 20, 25, 40, 60, 85 and 120

M⊙ at solar metallicity, with initial rotation velocities of 0 and 300 km s−1. The value of
300 km s−1 corresponds to an average velocity of about 220 km s−1 on the Main Sequence
(MS) which is very close to the observed average value [ 13]. The calculations start at the
ZAMS. The rotating 15, 20, 25, 40 and 60 M⊙ models were computed until the end of
core silicon (Si) burning. Their non–rotating counterparts were computed until the end of
shell Si–burning. For the rotating 12 M⊙ star, the model ends after oxygen (O) burning.
For the non–rotating 12 M⊙ star, neon (Ne) burning starts at a fraction of a solar mass
away from the centre but does not reach the centre and the calculations stop there. The
evolution of the models with initial masses between 12 and 60 M⊙ is described in [ 1]. The
9, 85 and 120 M⊙ models are presented in [ 4] and their evolution was followed until the
end of the core He–burning (the SN yields calculation for these last models is described
in [ 2] and follows the method used in [ 3].

3. Results

3.1. Contributions to yields from stellar winds and SN explosions

Before we discuss the stellar yields, it is useful to recall the influence of rotation on the
final mass of the different models (presented in [ 4, 2]). Below 30 M⊙, rotating models
lose significantly more mass than non–rotating models [ 14]. For WR stars (M & 30M⊙),
the new mass loss prescription [ 5], including the effects of clumping in the winds, results
in mass loss rates that are a factor of two to three smaller than the rates from [ 15]. As a
result, the final mass of WR stars in the present calculation are noticeably larger than in
1992 [ 3]. There is no clear difference between the final mass of rotating and non–rotating
models. For a model with an initial mass larger than 30 M⊙, the final mass is always
between 11 and 17 M⊙. Black hole formation is therefore expected for all the very massive
stars at solar metallicity.
What is the relative importance of the wind and SN contributions? Figure 1 displays

the total stellar yields divided by the initial mass of the star as a function of its initial
mass, m, for the non–rotating (left) and rotating (right) models. The different total yields
(divided by m) are piled up. 4He yields are delimited by the top solid and long dashed
lines (top shaded area), 12C yields by the long dashed and short–long dashed lines, 16O
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Figure 1. Stellar yields divided by the initial mass as a function of the initial mass for
the non–rotating (left) and rotating (right) models at solar metallicity.

yields by the short–long dashed and dotted–dashed lines and the rest of metals by the
dotted–dashed and bottom solid lines. The bottom solid line also represents the fraction
of the star locked in the remnant (Mrem/m). The corresponding SN explosion type is also
given. The wind contributions are superimposed on the total yields for the same elements
between their bottom limit and the dotted line above it. Dotted areas help quantify the
fraction of the yields due to winds. Note that for 4He, the total yields are smaller than
the wind yields due to negative SN yields for 4He.
For 4He (and other H–burning products like 14N), the wind contribution increases with

mass and dominates forM & 22M⊙ for rotating stars and forM & 35M⊙ for non–rotating
stars. These mass limits correspond to the lower mass limits for WR star formation. For
very massive stars, the SN contribution for 4He is negative (this is possible because, in
the yield calculation, the initial composition is deducted from the final one) and this is
why the wind contribution is higher than the total one. For 12C, the wind contributions
only start to be significant above the mass limits for WR star formation (22 and 35 M⊙

for rotating and non–rotating models respectively). This is expected because a star must
have ejected most of its helium before it can eject carbon. Above these mass limits, the
contribution from the wind and the SN are of similar importance. For 16O, the wind
contribution remains very small because with the new mass loss prescription, the oxygen
rich layers are not uncovered.

3.2. Total stellar yields

Our non–rotating models were compared to the literature [ 6, 7, 8] and are consistent
with other calculations. Differences can be understood in the light of the treatment of
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convection and the rate used for 12C(α, γ)16O [ 2]. This verifies the accuracy of our
calculations and gives a safe basis for studying the effects of rotation on the yields.
For H–burning products, the yields of the rotating models are usually higher than

those of non–rotating models. This is due to larger cores and larger mass loss. However,
between about 15 and 25 M⊙, the rotating yields are lower. This is due to the fact that
the winds do not expel much H–burning products yet, and more of these products are
burned later in the pre–supernova evolution (giving negative SN yields). For very massive
stars (M & 60M⊙), rotating stars enter into the WR regime in the course of the MS.
In particular, the long time spent in the WNL phase (WN star showing hydrogen at its
surface [ 4]) results in the ejection of large amounts of H–burning products. Rotation
therefore increases the H–burning product yields in this mass range.
Concerning He–burning products, below 40 M⊙, most of the 12C comes from the SN

contribution. In this mass range, rotating models, having larger cores, also have larger
yields (factor 1.5–2.5). For very massive stars (M & 60M⊙), the situation is reversed for
He–burning products because of the different mass loss history. As said above, rotating
stars enter into the WR regime in the course of the MS. The long time spent in the WNL
phase [ 4] results in a large mass loss. Therefore, very massive rotating stars have a small
total mass early in their evolution and end up with smaller cores. Compared to 1992 [ 3],
the 12C yields are larger in the present rotating models for masses lower than 30 M⊙ and
smaller for masses higher than 30 M⊙. Since very massive stars are much less numerous,
we expect the overall 12C yield of rotating models to be larger than those of 1992 [ 3].
The situation for 16O and the total metallic yields is similar to carbon. Therefore 16O
and metallic yields are usually larger for our rotating models than for our non–rotating
ones by a factor 1.5–2.5.

REFERENCES

1. Hirschi, R., Meynet, G., & Maeder, A. 2004, astro–ph0406552, accepted for publica-
tion in A&A

2. Hirschi, R., Meynet, G., & Maeder, A. 2004, “Yields of rotating stars at solar metal-
licity”, submitted to A&A

3. Maeder, A. 1992, A&A, 264, 105
4. Meynet, G. & Maeder, A. 2003, A&A, 404, 975
5. Nugis, T. & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
6. Rauscher, T., Heger, A., Hoffman, R. D., & Woosley, S. E. 2002, ApJ, 576, 323
7. Limongi, M. & Chieffi, A. 2003, ApJ, 592, 404
8. Thielemann, F., Nomoto, K., & Hashimoto, M. 1996, ApJ, 460, 408
9. Meynet, G. & Maeder, A. 2002, A&A, 381, L25
10. Maeder, A. & Meynet, G. 2001, A&A, 373, 555
11. Angulo, C., Arnould, M., Rayet, M., et al. 1999, Nuclear Physics A, 656, 3
12. Meynet, G., Maeder, A., Schaller, et al. 1994, A&AS, 103, 97
13. Fukuda, I. 1982, PASP, 94, 271
14. Maeder, A. & Meynet, G. 2000, ARA&A, 38, 143
15. Langer, N. 1989, A&A, 220, 135

http://arxiv.org/abs/astro--ph/0406552

	Introduction
	Computer model
	Results
	Contributions to yields from stellar winds and SN explosions
	Total stellar yields


