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Abstract

Fire hazards cause huge ecological, social and economical losses in day to day life. Due to the rapid increase in the prevalence of fire
accidents, it has become vital to equip the assets with fire prevention systems. There have been numerous researches to build a fire
detection model in order to avert such accidents, with recent approaches leveraging the enormous improvements in computer vision
deep learning models. However, most deep learning models have to compromise with their performance and accurate detection to
maintain a reasonable inference time and parameter count. In this paper, we present a customized lightweight convolution neural
network for early detection of fire. By virtue of low parameter count, the proposed model is amenable to embedded applications
in real-time fire monitoring equipment, and even upcoming fire monitoring approaches such as unmanned aerial vehicles (drones).
The fire detection results show marked improvement over the predecessor low-parameter-count models, while further reducing the
number of trainable parameters. The overall accuracy of FireNet-v2, which has only 318,460 parameters, was found to be 98.43%
when tested over Foggia’s dataset.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the International Conference on Machine Learning and Data Engineering

Keywords: Fire Detection; Convolution Neural Network; FireNet; Deep learning.

1. Introduction

Fire is one among the several hazards which puts up human life at risks and destroy properties [15]. Early detection
of fire is as important than ever to prevent from irreparable fire hazards. There are existing methods like traditional fire
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detectors based on thermal approaches, photometry and chemical detection which raise alarm to prevent fire accident
to happen. However, the main drawback of these methods is it requires a sufficient amount of smoke or fire to sense
and trigger. Moreover, it can not be deployed for outdoor detection such as forest, streets, playgrounds, industries etc.
and have high rate of false triggering. With advancement of technologies researchers have contributed with image
processing, computer vision and artificial intelligence (AI) techniques which get the better of issue faced by previous
methods. Using these state-of-art technologies in fire detectors leads to more robust, fast, and reliable fire detection
performance. Furthermore, such detectors are also capable of performing in outdoor environments with less false
triggering and faster response times (as the build up of smoke is not an essential requirement for such a detector).

Considering that these days almost every place is under cameras and closed circuit television (CCTV) surveillance,
and that the infrastructure like streets, industries, shopping malls, parks, buildings etc. have complete interlinked
networking from visualizing the objects and activities through cameras and CCTVs to monitoring with the help of
Internet of Things (IoT), the visual-based fire detectors have made it possible to integrate the state of art of vision
based fire detectors with the existing technology of video surveillance [13], thereby eliminating the cost and materials
used in traditional fire detectors by just utilizing a software (the deep learning model) in video based fire detectors.

The development in digital camera and computer vision technologies, coupled with intelligent video methods is
being increasingly used in fire detectors by replacing the hand designed detectors. Initially, hand-designed features
for identifying smoke and fire in image and video classification were extracted using colour and form properties of
smoke. As we meet a non-stop growth in electronics together with evolution of graphical processing units (GPUs) and
high performance processors great enough to provide large amount of computation, we witness increasing advances
in artificial intelligence. Deep learning [25] models are constantly used for fire detectors at this age of time which
eliminate the need for manual feature extraction and brings an automatic extraction of features directly from images
[47]. Also the deep leaning (DL) visual based fire detectors are more accurate, show lower false trigger, are more
robust and more reliable.

Contribution and Novelty: In this work we present an improved version of FireNet [19], with less false triggering
and significantly lesser number of trainable parameters in the model. The novelty lies in the fact that the proposed
lightweight model is tailored from scratch for the specific purpose of fire detection only. We go on to show that even
with the significantly reduced parameter count, the proposed model is able to provide better performance than its
predecessor, thereby making the proposed model a viable contender for modern day computer vision based embedded
fire detectors.

The following is a breakdown of the paper’s structure. The second section highlights previous research in the
areas of by-hand (manual) feature engineering and deep learning for fire detection models. Section III describes our
complete architecture and motivation of using FireNet-v2 over FireNet, followed by Section IV which includes a
detailed description of the datasets and comparison of results with other existing works. This is then followed by
Section V which contains a short discussion. Finally, in Section VI, there are some closing observations.

2. Related Works

A lot of study has gone into developing potent and efficient fire detection systems to defend against fire dangers.
Both handcrafted techniques and automated fire recognition have been acknowledged by the researchers as a key
factors in fire detection methods.

Recent technological breakthroughs have resulted in a range of sensors for various purposes. For viewing of the
human body’s interior they used wireless capsule sensors [26], obstacle detection sensors for vehicles [4], and sensors
that detect fire [22]. Most fire detection sensors used in modern-day solutions, such as ion-based, infrared, and optical
sensors, must be in close proximity to the site/source of heat, radiation (infra-red), fire, and/or smoke to activate,
making them unsuitable for critical settings. Such approaches also pose the issues related to false triggering [23].
Vision-based sensors are a popular alternative to these sensors because they offer many benefits over conventional
sensors, such as reduced costs, faster reaction times, wider surveillance coverage, and little (or none) human interven-
tion, which eliminates the requirement to get to the site where the fire alarm was sounded [11]. Despite the fact that
vision-based sensors offer a number of promising characteristics, they do have significant drawbacks, such as depen-
dence on scene complexity & changing lighting conditions, and poor camera image quality because of network issues.
Early on, the researchers focused on the flame detection’s motion and colour features to build customised algorithms
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for fire detection. Thou-Ho et al [9] showed real flame identification requires both chromatic and dynamic aspects
of flames and smoke. Authors in [8] used two separate colour schemes to identify fire scenarios from only-smoke
situations, and to make the categorization more reliable, they used fuzzy logic concepts to distinguish fire scenes
from other fire-like scenes and images. In [40], the authors explored the YCbCr colour model created new criteria
for separating luminance and chrominance components, resulting in rule-based flame pixel classification. Authors in
[14] looked into another colour model viz. YUV, with motion for pixel categorization into fire or non-fire potential.
In certain publications, in addition to the colour feature, motion has been used as a criteria for detecting fire. The fire
and smoke have both static and dynamic characteristics which were employed by Rafiee et al [32]. However, owing
to the existence of additional background items with comparable colour attributes to the fire pixels, the false negative
rate remains an issue. Aside from colour models, particular low-level fire zone features such as skewness, colour,
roughness, and area size, and so on, have been utilised to determine frame-to-frame variations, which may be used
in conjunction with a Bayes classifier to classify fire [7]. [31] presents another approach that uses a lookup table to
locate fire zones and validate them using temporal variation. This approach uses heuristic characteristics to reduce the
likelihood of returning the same outcomes when the input data is changed.

These manually-engineered fire detection algorithms are computationally inexpensive and may readily be imple-
mented on resource-constrained embedded hardware such as the Raspberry Pi with a reasonable performance in terms
of frame rates, but they have the disadvantage of requiring human extraction of features from raw fire-scene images.
This flaw makes manual feature-engineering time-consuming and quite often inefficient, especially when the dataset
contains a large number of images. In light of this, handcrafted vision-based fire detection systems are being replaced
by DL-based techniques which have increasingly replaced alternatives with lesser accuracy and a higher rate of false
triggering, and perform better across a range of parameters. This improved performance can be credited to the abil-
ity of DL models to automatically extract characteristics from raw images of fire scenes. The handmade procedures,
on the other hand, need greater attention because the characteristics from the incoming images must be manually
extracted. Thus, combining these more accurate vision-based fire detection technologies might result in significantly
more potent and effective fire alarm systems when compared with traditional sensor-based techniques.

Deep learning approaches offer the benefit of automatically extracting meaningful features from the data presented,
thereby making the overall process more efficient and less operator-oriented, and significantly enhancing the state-of-
art (SoA) in image classification and object recognition procedures [24, 47]. More recently, there has been a significant
amount of research efforts directed towards the development of lightweight deep learning models targeted towards
deployment on resource-constrained edge devices [43]. Typical examples of such lightweight deep learning models
can be seen in the areas of automated disease detection [41], image forgery detection [1], vehicle trajectory prediction
[21], and a variety of other real-life applications [43].

For fire detection, a sizeable number of deep learning algorithms have been offered in the technical literature.
In their work on forest fire detection, Zhang et al. [48] used a appropriately-tuned pre-trained CNN, referred to as
‘AlexNet’ [24], to detect fire patches, whereas researchers in [36] proposed a CNN-based technique that used baseline
architectures VGG16 [37] and Resnet50 [16]. However, both the research models are inappropriate for in-the-field fire
detection applications where low-cost, resource-constrained hardware is usually the only hardware available. Different
CNN variations, such as AlexNet [27], SqueezeNet [28], GoogleNet [29], and MobileNetV2 [30] were fine-tuned by
Muhammad et al. They utilised Foggia’s dataset [12] as the training dataset in works based on [27, 28, 29], whereas
the training dataset in [30] was a combination of [10] and [12].

Prominent designs for semantic segmentation is encoder—decoder (ED) model architectures, which have lately been
emerging as the most fitting choice. In this types of models, initially the encoder is employed to create a feature map
(high-dimensional entity) from the input pictures using convolution and interspersed layers performing the ‘pooling’
operation. Second, the decoder is supposed to provide a decoding of the provided features (generated by the encoder)
and thereby defines a mask for the object of interest [44], which is made up of unpooling and deconvolution layers.
Numerous research based on the ED structure to segment different objects have been undertaken as a result of the
successful completion of various tasks, such as image segmentation. Zhang et al.[18], for example, established an
effective DL model for fire detection in forest scenes, and identification utilizing the popular U-Net and lightweight
SqueezeNet DL architectures. Researchers in [2] integrated the ED with a DL- based fire detection model because
of its strong performance in forest fire detection and segmentation tasks. Using a limited dataset (only 419 images
from the CorsicanFire dataset), this model earned an FM-score of more than 97 percent during the training process,
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and 91 percent in the test phase. Authors in [6] presented the UUNet deep concatenative architecture as a refinement
of U-Net. In this method, binary and multiclass U-Net techniques were integrated. The work in [45] proposed a fire
detection method for forest scenes utilizing CNNs and a general meta approach (ensemble learning). In other works,
two independent DL-based object detectors, the recently introduced YOLOVS [20] and high-performance EfficientDet
[39], as well as an EfficientNet [38]-based classifier, are integrated to accurately localise and identify fires in varied
situations.

3. Proposed Model

Since the previous decade, the majority of research has concentrated on classic feature identification/extraction
approaches for fire detection in different settings (forest videos, CCTV footage, etc.). The main drawbacks of such
approaches are their lengthy feature engineering process and limited fire detection performance. Such approaches
also produce a large amount of false alarms, especially when using shadows, variable illumination, and recolored
objects in surveillance. There are numerous deep learning architectures for early fire detection extensively to deal
with such challenges. The success of these deep learning techniques can be attributed to their inherently nature, which
imparts the capability to learn extremely strong characteristics from raw/unprocessed data automatically. The three
well-known processing layers that make up a standard CNN architecture are: 1) a convolution layer, in which different
kernels are used on the input data to produce various activation maps (commonly known as feature maps); 2) a layer
performing the pooling operation, that selects maximal activation based on a small neighbourhood of activation maps
acquired from the preceding layer performing the convolution operation — the purpose is to obtain the dual objectives
of dimensionality reduction and translation invariance; and finally 3) a fully-connected (dense) layer, that generates
a global representation of the incoming data by modelling high-level information. We have witnessed a number of
CNN variants being employed to increase the accuracy of the fire detection operation, and reduce the percentage of
false/incorrect alerts, inspired by recent developments in edge computing capabilities and the promise of deep feature
extraction [48, 37, 16, 27, 28, 29, 30, 12]. However, due to the heavyweight architecture of these CNN models they are
difficult to deploy on low cost hardware. For this purpose, we present a lightweight neural network FireNet-v2 which
while having a significantly low parameter count than its predecessor (i.e. FireNet [19]) maintains its fire detection
performance.

1) Motivation for FireNet-v2

Model selection has always been an important task for different types of applications. For such cases where minor
delays can result in significant human and economic losses, a fast and accurate model is imperative. FireNet [19] was
initially devised as an improvement over other available CNN models. The biggest advantage was its shallowness
in contrast to prior DL-based fire detection methods which are typically large convolutional neural networks that
can detect fire in real time at the rate of atleast 24 fps (or possibly higher). It was also appropriate for mobile and
embedded applications, and performed well in real-time (continuous) fire detection applications. The model operates
at a quite high frame rate of >24 frames per second on resource-constrained, economically inexpensive, single-board
computing platforms (one pertinent example is the Raspberry Pi 3B). The motivation of devising FireNet-v2 compared
to FireNet is its decreased model size both in terms of (i) number of computations required, and (ii) number of trainable
parameters, with the advantage of better accuracy. As will be explained in detail in this paper, FireNet-v2 outperforms
the original FireNet while having a reduced parameter count (by approximately half). Concretely, the modifications
in our work from FireNet is as follows:

e Number of filters in first, second and third convolutional layer are 15, 20 and 30 respectively whereas in FireNet,
it was 16, 32 and 64 respectively — this results in a significant reduction of the trainable parameters.

e Activation funtion used in last convolutional layer and both the inner Dense layers are ‘Sigmoid’. In contrast,
‘ReL U’ was used in FireNet.

o Instead of 70% percent and 30% percent, we chose a 90% percent and 10% split across the train—testing sets —
this enabled the proposed FireNet-v2 model to learn on a larger assortment of the fire data.
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ig. 1. Training and test phases of the proposed FireNet-v2, on the two datasets (Foggia’s dataset and FireNet dataset)
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Fig. 2. Architecture of the proposed FireNet-v2
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2) FireNet-v2 Architecture

In our proposed model, we used the first (input) layer taking image dimensions of 64x64x3 as first convolution
layer. Cascade of convolution, dropout, and average pooling layers are among the intermediate layers with ReLU
(rectified linear unit) and Sigmoid being the most used activation functions. All the three convolutional layers are
coupled with average pooling. We have used 15 filters in the initial layer, 20 filters in the subsequent (second) layer,
30 filters in the third layer and dropout of value 0.5 with all the three convolutional layers while maintaining a
constant kernel size i.e 3%3. Image input features were mapped using convolution layers. The filter dimensions for
the convolutional layers are set at [3x3]. A Flatten layer and two Dense layers with 256 and 128 neurons each appear
after the convolutional layers, having ‘Sigmoid’ as activation function. Also, a dropout of value 0.2 is used after the
initial Dense layer. The fully-connected Dense layer with the ‘Softmax’ output has 2 neurons and is the prediction
layer outputting ‘Fire’ and ‘Non-Fire’ signals (only one of these will be high at any given time). The train and test
phases of the approach are presented in Fig. 1, and the complete DL model architecture diagram is shown in Fig. 2
which is comprised of 14 layers. There are 318,460 trainable parameters in total.

4. Results
This section offers information on the dataset utilised, the experiments carried out, and the results.
4.1. Dataset

Although deep learning models for computer vision applications have excelled over the last decade for a consider-
able number of real-world use-cases, the performance is dependent to a significant extent upon the quality and quantity
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Table 1. Specifications of the trained FireNet-v2 model

(a) Details of Parameters (b) Activation Functions
Parameter Value Layer Activation
Number of parameters 318,460 1st conv layer Relu
Batch size 32 2nd conv layer Relu
Epoch 100 3rd conv layer Sigmoid
Validation split 0.1 Dense layer Sigmoid
optimizer Adam Output layer Softmax

of data available for the model training. For fire detection DL models, there is a dearth of high quality datasets. One
commonly used dataset in the research works on fire detection models is the Foggia’s dataset', which contains 31 fire
and non-fire videos. From the video clips available in the dataset, we extracted 363 images with fire and 3021 images
without fire (non-fire images) for training and testing of FireNet-v2 model.

Furthermore, the FireNet-v2 model was also trained and tested on the dataset compiled for FireNet[19], which was
a very realistic dataset made up of 46 videos of fire scenes and 16 videos where fire was not in the scene (non-fire). We
extracted 1118 images of fire and 1301 images without fire (non-fire images) from the video clips in the dataset used
in FireNet[19]. It needs to be mentioned here that although the training images extracted from the FireNet dataset are
lesser in number (as compared to the Foggia dataset images), they contains very diverse and realistic images, and are
therefore harder to train the model on. This observation shall be validated subsequently in a later section, where it is
shown that the accuracy obtained from the FireNet-v2 model is higher for the samples in Foggia’s dataset as compared
to the FireNet dataset.

4.2. Training Details

The model is trained over 100 training epochs with a low learning rate to ensure that the majority of previously
learned information is preserved in the network. The learning parameters are moderately updated by the pre-trained
model in order to get optimal performance on the target dataset. Table 1 lists the many hyperparameters and activation
functions we employed for FireNet-v2. The choice of the Softmax activation instead of the Sigmoid for the last layer
was made because of the fact that the model is designed to have outputs in the form of ‘one-hot’ encoding i.e. there are
2 outputs and only one of them is high for any given test image (fire/non-fire). The Softmax activation will ensure that
the sum of the assigned probabilities for the 2 output classes is equal to unity, and therefore, in order to increase the
estimated probability of a particular class, the model is forced to correspondingly decrease the estimated probabilities
of the other classes (and vice-versa). Therefore, using this approach, there is a clearer fire/non-fire classification. If a
Sigmoid was used, there would be only 1 output, which would have shown the probability that the given image was
fire/non-fire. Lastly, since in binary classification both Sigmoid and Softmax functions are essentially the same, there
is no ‘performance degradation’ using Softmax over Sigmoid. We utilised the Adaptive Moment Estimation (Adam)
optimizer” with a batch size of 32. The most significant benefit is the shallow network and, as a result, the minimal
number of trainable parameters (318,460). The configuration of the system used for the training was quite modest
with an Intel® Corer™ 17-7700HQ CPU@2.80GHz processor coupled with 16 GB RAM and an Nvidia GeForce
GTX 1050 GPU running Windows 10 Home Single Language. Model training, and testing, were performed using
Python 3.9 and Keras 2.4.0 running in a 64-Bit Anaconda Navigator environment.

! https://mivia.unisa.it/datasets/video-analysis-datasets/fire-detection-dataset/

2 The choice of the Adam optimizer was inspired by the following observation: Adam adds momentum and bias-correction to the conventional
RMSprop optimizer. To a certain extent, Adadelta, RMSprop, and Adam are very comparable algorithms with somewhat similar performance in
most circumstances. However, the inlusion of bias-correction tends to help the Adam algorithm to marginally outperform RMSprop towards the
close of the optimization process (when the gradients tend to get meager). Therefore, Adam may prove be the best overall candidate in most
use-cases [33].
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Fig. 3. Confusion Matrix for the FireNet-v2 model over Foggia’s dataset (left), and FireNet dataset (right)

Fig. 4. Sample results of FireNet-v2 model over both datasets. The images shown above were correctly classified as either fire or non-fire images.

4.3. Model Performance

The FireNet-v2 model was trained and tested on the two datasets mentioned above, in separate instances. The
predictions are classified into False Positives (FP), True Positives (TP), False Negatives (FN), and True Negatives
(TN). In Fig. 3, we have shown confusion matrix of Foggia’s dataset and dataset-v2 respectively. This matrix shows
the number of true and false prediction of fire and without-fire images. As can be seen from Fig. 3, FireNet-v2 performs
well on both the datasets, with the percentages of the FNs and FPs both being low. The percentage of FNs is slightly
higher in the case of the FireNet-v2 model being used for FireNet dataset. This is in agreement with the observation
mentioned heretofore — the images in FireNet dataset are more challenging than the images contained in Foggia’s
dataset. The accuracy of DL model for the predictions can be estimated as in (1):

TP+TN 0
TP+TN+FP+FN
Fig. 4 presents some samples of images from the two datasets that are correctly classified by FireNet-v2. Samples of

both ‘fire” and ‘no-fire’ images are included. Similarly, Fig. 5 presents some samples of images from the two datasets
that are correctly classified by FireNet-v2.

Accuracy =

5. Discussion

This section compares the proposed FireNet-v2 to existing SoA high performance fire identification systems and
also the details of the training performed. The most significant benefit is the significantly shallow architecture and, as
aresult, the minimal count of trainable parameters (318,460). There exist superior performance fire detection methods
which are readily accessible in the literature, and this must be acknowledged. However, by virtue of the heavyweight
architecture there arise limitations to deploy from the respective technical paper into actual commercial use. Detailed
comparative results are presented next.
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Fig. 5. Sample of incorrect results from FireNet-v2 model over both datasets. The images shown above were incorrectly classified.
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Fig. 6. Comparison of accuracy and number of parameters of FireNet-v2 with available counterparts over: (a) Foggia’s dataset; (b) FireNet dataset

5.1. Comparative Results

The results of quantitative comparisons between the available approaches and the one proposed in this work are
contained in this section. Table 2 and Table 3 compare the accuracy and number of parameters of the various tech-
niques in both the datasets. The comparison methods that are now available are carefully chosen underlying the dataset,
publication year, and features utilised. Existing approaches, for instance, are based on various deep learning architec-
tures with recent literature models. From the given results of Table 2, our accuracy is 98.43%, which is better than
most of the counterparts, and is only less than one existing method [42], and has the least number of parameters among
all. In fact, although the model in [42] has a better accuracy, it is able to do so at the cost of approximately 9 million
parameters. FireNet-v2 on the other hand, provides an almost similar accuracy with only approximately 300K param-
eters. Another comparable contender is the model in [46], as they have architect lightweight neural network and also
compared their model with famous networks like AlexNet [27], VGG16 [37], ResNet50 [16], MobileNetV1 [17], and
NASNetMobile [49]. The suggested model produces more accurate results according to the observations. However,
our model has outperformed [46] in terms of (higher) accuracy and (reduced) number of trainable parameters.

The second dataset, FireNet dataset, is smaller but more challenging. There are 871 images in this collection, 593
of which feature fire and 278 of which are fire-resembling images featuring sunsets, lights which appear to be fire-like,
and so on. Table 3 shows the outcomes of our technique on this dataset, as well as comparisons to other methods. Also
included in Table 3 are all recent publications pertinent to fire detection in which the same data is utilised, to the best
of our knowledge [35, 5, 34, 3].

Furthermore, the performance comparison of FireNet-v2 with the available counterparts, on both the Foggia’s
dataset and FireNet dataset, is depicted in Fig. 6(a) and Fig. 6(b) respectively. It can be readily observed from Fig. 6(a)
that FireNet-v2 is able to provide a higher accuracy compared to all counterparts (except [42] which provides a better
accuracy but at the expense of approximately 28x the parameter count).
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Table 2. Comparison of testing accuracy of FireNet-v2 with other existing works on Foggia’s dataset

Works Accuracy(%) | Number of parameters
FireNet-v2 98.43 318,460
FireNet [19] 96.53 646,818
Hikmat [46] 97.15 3.31 million
Abdullah [3] 97.50 515,202
Yakhyokhuja [42] 99.53 9,089,794
Muhammad [28] 94.50 421,098
Muhammad [29] 94.43 7 million

Table 3. Comparison of testing accuracy of FireNet-v2 model with other existing works on FireNet dataset

Work Accuracy(%) | Number of parameters
FireNet-v2 94.95 318,460
FireNet [19] 93.91 646,818
Saponara [35] 96.58 >171,296

Ayala [5] 96.33 956,226
Elhanashi [34] 93.60 23,482

6. Conclusion

This paper presented a lightweight deep learning model for categorising fire and without-fire images. The proposed
FireNet-v2 is an improved version of FireNet [19], and contains a significantly lesser number of trainable parameters
as compared to its predecessor. The prposed model was tested on two different datasets (Foggia’s dataset and FireNet
dataset), and the prediction accuracy of the proposed model was found to be better than existing low-parameter-count
models. For instance, FireNet-v2 provided an accuracy of 98.43% using only 318,460 parameters as compared to
96.53% accuracy of FireNet[19] using 646,818 parameters.
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