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Abstract – Objective: The human microbiome is essential in maintaining healthy physiology; compositional 
changes have been implicated in numerous physical and mental diseases. Thus far, COVID-19 microbiome re-
search has focused primarily upon gut and lung bacterial communities. However, the early stages of COVID-19 
infection and immune response occur in the nasal epithelium. Therefore, investigating nasal microbiome changes 
in early-stage COVID-19 may yield key insights into the immune system mechanisms involved in progression 
from mild/no symptoms to systemic organ failure/death, why this occurs in certain individuals, and how it may 
be prevented with early warning.
Patients and Methods: Here we repurposed existing RNA-seq data to characterise the human nasal microbi-
ome in COVID-19 infected samples and compared the taxonomic profile to healthy control and influenza-infected 
control samples, to identify COVID-19 specific nasal microbiome changes and attempt to rationalise these in the 
context of what is already known regarding mechanisms of the immune response to COVID-19. 
Results: We demonstrate that existing RNA-seq reads from human nasal swabs can be repurposed to charac-
terise the human nasal microbiome robustly and accurately in health, early-stage COVID-19, and influenza. We 
observe that nasal microbiome composition (presence and abundance of phyla, genera, and species) significantly 
differs between health and disease, and between COVID-19 and influenza.
Conclusions: Our observed healthy nasal microbial profiles match the findings of previous research, demon-
strating that repurposing existing RNA-seq data is as accurate as targeted methods for taxonomic classification.  
We also observed many differential changes in the nasal microbiome profile to be disease specific. This will be 
key to enabling the potential for differential diagnosis based upon nasal microbiome profiles in the future.
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INTRODUCTION

Background 

Research has thoroughly characterised the human microbiome and its role in health and disease1. 
Microbiome research in COVID-19 vs. health has primarily focused on gut and lung communities. 
There is a strong rationale for this in the gut-lung axis, where gut microbiome composition affects 
lung infection susceptibility, and respiratory infection can alter gut microbiome composition to-
wards proinflammatory dysbiosis2. However, early-stage COVID-19 groundwork is laid in the nasal 
epithelium; SARS-CoV-2 enters the body via nasal epithelial cells, and infection begins with viral 
upper airway penetration; the highest viral load is found in nasal swabs3. Disease escalation results 
from a loss of immune regulation between protective and altered responses due to an exacerbation 
of inflammatory components4. Identifying indicators of this during early-stage disease would be 
beneficial so that preventative de-escalation measures could be taken.

We propose that investigating nasal microbiome changes in early-stage COVID-19 will generate 
key insight into microbiome and immune system interplay, how this influences disease progression, 
why it occurs in certain patients, and whether it can be prevented.

To date, limited COVID-19 nasal microbiome research has been conducted. Targeted 16S rR-
NA-seq methods have observed that nasal/oropharyngeal (NOP) microbiome composition in 21 
COVID-19 patients (paucisymptomatic or admitted to ICU) was altered compared to 10 negative 
control participants and 8 participants with a different human coronavirus (HKU/NL63/OC43). Sev-
eral taxa were differentially expressed in disease vs. health. The phylum Deinococcus-Thermus 
was only observed in health. Candidatus Saccharibacteria was significantly decreased in ICU 
COVID-19 patients compared to paucisymptomatic patients and healthy controls. A complete de-
pletion of the genera Bifidobacterium and Clostridium was observed in ICU patients, while Salmo-
nella, Scardovia, Serratia and Pectobacteriaceae were observed only in this condition5.

The rationale for examining the nasal microbiome in COVID-19 is clear; nasal cavity samples 
are more easily obtained than lung samples, benefiting both researchers and participants. Further-
more, the localised initial immune response (pre-systemic disease), means that nasal swab data 
enables investigation into microbiome changes in the earliest detectable disease stages.

Traditionally, targeted microbiome characterisation methods (microbial culture, 16S amplicon se-
quencing etc.) have been used. However, by repurposing existing RNA-sequencing (RNA-seq) data 
deposited in online databases such as the Sequence Read Archive (SRA), the human microbiome 
can be easily and inexpensively characterised as accurately as with targeted methods. Source studies 
typically focus on host reads, with the unmapped fraction considered a by-product and discarded, but 
research has begun to demonstrate RNA-seq data repurposing for microbiome characterisation6.

Here, we characterised the nasal microbiome in COVID-19, health, and influenza by reusing ex-
isting RNA-seq data. We have compared COVID-19 nasal samples to those from healthy controls, 
and from influenza patients. Including influenza data enabled us to ascertain whether composi-
tional deviations from the healthy profile are COVID-19-specific or are part of a more generalised 
inflammatory response.

Microbial communities were successfully identified using existing RNA-seq data, following read 
sample quality assessment and mapping to the human reference genome. We taxonomically clas-
sified the unmapped reads to characterise the microbiome in each state at phylum, genus, and 
species levels. As expected, we observed a distinct and characteristic taxonomic profile in each 
state, and our most abundant taxa in the healthy samples are ‘expected’ according to previous 
nasal microbiome studies.

The COVID-19 Pandemic

The COVID-19 pandemic began in Wuhan, China, in December 2019. It has since spread to ~200 
countries and had a devastating effect due to its contagiousness and the high proportion of pa-
tients requiring ICU care. Viral RNA is detectable in infected individuals 1-3 days before symptom 
onset; viral load peaks at symptom onset, gradually decreasing over 1-2 weeks7. Clinical manifesta-
tion ranges from an unnoticed asymptomatic infection to severe pneumonia, multiple organ failure, 
and death3. The global death toll has exceeded 6.4 million people.
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The Immune System and COVID-19

COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), an enveloped 
RNA virus (diameter 60-140 nm), spherical with a fatty outer layer and a surface crown (“corona”) of club-
shaped spikes with a large binding surface area. The spike S1 protein has high affinity with the N-terminal 
helix of angiotensin-converting enzyme 2 (ACE2), an enzyme attached to cell membranes in the lungs, 
arteries, heart, kidney, and intestines that has been identified as a key cell entry point8. Viral particles infect 
the lungs by binding to and entering respiratory epithelial cells (type II alveolar pneumocytes)7. Upon viral 
spike protein binding to host cell ACE2 receptors, the enzyme furin enables the virus to enter the host cell; 
the spike protein must be cleaved by furin or furin-like proteases to become fully functional9.

Viral propagation in the host cell induces a limited innate immune response, now detectable 
with nasal swabs3. The virus proliferates in the respiratory tract, where a more forceful immune 
response leads to clinical manifestation. Subsequent disease development and severity can be 
predicted by innate response cytokines; high cytokine (IL-6, IL-10) serum levels can indicate great-
er disease severity10. In >85% of COVID-19 cases, a proportionate immune response eradicates 
the virus, and the patient has mild/no symptoms, but in 10-15% of cases, the immune response is 
disproportionately forceful: an immunopathological phase occurs and the patient develops more 
severe disease requiring hospitalisation, typically due to hypoxic pneumonia7.

The Complement System and COVID-19

The complement system (part of the innate immune system) enhances antibodies’ and phagocytic 
cells’ ability to eradicate pathogens and damaged host cells, instigate inflammation, and attack 
pathogen cell membranes11. It is a bridge between innate and acquired immunity, comprising >30 
proteins (e.g., serum proteins, cell membrane receptors) synthesised by the liver and circulating in 
the blood as inactive precursors11. However, excessive complement activation can contribute to de-
structive host cell/tissue inflammation and COVID-19 pathogenesis12. There is therapeutic promise 
in immunotherapies during the immunopathological phase of COVID-19; C5a-C5aR axis blockade 
may prevent acute respiratory distress syndrome (ARDS) from worsening or causing death7.

COVID-19 Nasal Epithelium Immune Response

The mucosal immune response, incorporating innate and adaptive immune system components, 
is a key disease defence. Central to the cranial pharyngeal mucosal immune response is the nasal 
cavity and nasopharynx-associated lymphoid tissue (NALT), which helps maintain immune homeo-
stasis between commensal microbiota and pathogenic invaders13. The NALT contains dendritic cells, 
macrophages, and lymphocytes, of which ~50% are immunoglobulin-producing B-lymphocytes13. 
Lymphoid tissues harbour M cells: these use trans-epithelial transport to relocate micro-organisms 
from the apical surface toward immune cells at the basolateral site13. NALT-associated cells (sinona-
sal solitary chemosensory cells) release chemokines and cytokines, activating downstream immune 
cascades13. The nose and NALT generate Th1- and Th2- polarised lymphocytes and IgA-committed 
B cells13. Nasal epithelial ciliated and goblet cells, alongside dendritic cells, microfold cells and mac-
rophages, form a gateway to local and systemic immune response initiation13. Nasal epithelial cells 
express the highest levels of ACE2 and the cellular serine protease TMPRSS213.

If the immune system cannot eliminate localised SARS-CoV-2 from the epithelial barrier, the 
virus progresses to the endothelium. The resulting inflammation is associated with microthrombo-
ses, macrovascular thromboses, and pulmonary embolism in COVID-1914.

The Healthy Nasal Microbiome

The human microbiome contains the collective genomes of commensal, symbiotic, and pathogenic mi-
croorganisms at multiple body habitats, each harbouring a distinctive taxonomic profile15. The nose is a 
transition zone between dry skin and moist mucoid airways, typically with a similar microbial pattern to 
the skin; prominent genera include Propionibacterium, Corynebacterium, and Staphylococcus16.
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Healthy nasal microbiome signature data is well-documented; in The Human Microbiome Project 
(HMP)17, healthy nasal swab samples underwent 16S rRNA sequencing and taxonomic classifica-
tion. Examination of the anterior nares microbiome observed a broad distribution and near-ubiquity 
of opportunistic pathogens, including S. aureus, Escherichia coli, S. epidermidis, Propionibacterium 
acnes, and Klebsiella pneumoniae. The most abundant healthy nasal microbiome species were P. 
acnes (42.5%), S. epidermidis (12.7%) and S. aureus (5.0%). Koskinen et al18 characterised the hu-
man nasal microbiome with Illumina MiSeq next generation sequencing, identifying 23 bacterial phy-
la. Abundant phyla were Actinobacteria (50% abundance), Firmicutes (28%), Proteobacteria (14%), 
and Bacteroidetes (1.5%). Abundant genera were Corynebacterium (43%), a human skin bacterium 
found frequently in the nose; Staphylococcus (15%), known nasal microbiome inhabitants; Dolosig-
ranulum (4%), commensal upper respiratory tract inhabitants associated with infection and health; 
and Peptoniphilus (4%), a known abundant nasal, gut and vaginal inhabitant18.

The Human Microbiome in COVID-19

COVID-19 microbiome research has focused primarily on the gut and lung. Alteration of gut micro-
bial metabolites and related species can incur lung inflammation responses and disease develop-
ment19. In viral infections, intestinal injury is caused by lymphocyte migration via the CCL25-CCR9 
axis from the respiratory tract to the intestinal mucosa20. The link between gut microbiome dysbio-
sis and lung health is clear. The gut/lung communication mechanism remains unclear, but microbi-
ome/dysbiosis regulation suggests that metabolites (short chain fatty acids), colonisation-induced 
immunity, and other protective functions, influence viral invasion and lung colonisation21. Gut and 
lung microbiome profiles have been found to be significantly altered in COVID-19, impacting dis-
ease severity. Understanding the “gut-lung axis” is vital for addressing COVID-19 disease progres-
sion, the relevance of pre-existing conditions, and complication risk.

Some uncommon COVID-19 symptoms are gastro-intestinal (GI): Schmulson et al22 found that 
GI symptom frequency in 2,800 COVID-19 patients ranged from 3.0% to 39.6%, concluding that 
COVID-19 can manifest initially with GI symptoms. SARS-CoV-2 is detectable in faeces; intestinal 
epithelial cells, particularly small intestine enterocytes, express ACE2 receptors. SARS-CoV-2 also 
uses receptors for transmembrane protease serine 2 (TMRPSS2), an enzyme expressed in the 
small intestinal epithelial cells, to enter cells23. SARS-CoV-2 activity may cause gut ACE2 modifica-
tions leading to increased intestinal inflammation and diarrhea susceptibility. ACE2 and TMPRSS2 
have high co-expression in enterocytes, the oesophagus, and lungs, greatest in the small intestine; 
20% expressed in enterocytes and 5% in colon cells23. ACE2 has a significant role in intestinal 
inflammation and microbiome composition; a link has been established between ACE2 amino acid 
transport and gut microbial ecology during SARS-COV-2 infection23.

COVID-19 significantly decreases gut microbiome diversity, incurs higher relative abundance of 
certain taxa (Streptococcus, Rothia, Veillonella, Actinomyces) vs. healthy controls, and lowers ben-
eficial symbiont abundance24. Several potentially immunomodulatory commensal gut species (Fae-
calibacterium prausnitzii, Eubacterium rectale, Bifidobacteria) are under-represented in COVID-19 
patients, with abundances remaining low up to 30 days post-recovery5. There is also a link between 
gut microbiome composition and healthy individuals’ COVID-19 susceptibility; increased Lactobacil-
lus abundance correlated with raised anti-inflammatory IL-10 levels and improved disease prognosis, 
while increased proinflammatory bacteria (Klebsiella, Streptococcus, Ruminococcus gnavus) abun-
dance correlated with raised proinflammatory cytokine levels and increased disease severity25.

SARS-CoV-2 infection also results in lung bacterial dysbiosis; COVID-19 patients’ lung taxono-
my differs from healthy control samples (p = .001)26. The most abundant lung bacterial genera in 
COVID-19 patients are Acinetobacter (80.70% of total sequences), Chryseobacterium (2.68%), Burk-
holderia (2.00%), Brevundimonas (1.18%), Sphingobium (0.93%), and Enterobacteriaceae (0.68%)27.

The Human Microbiome in Influenza

Research has investigated human respiratory microbiome changes during influenza infection. US 
adults with influenza had increased Streptococcus pneumoniae and Staphylococcus aureus in the 
nose and throat microbiomes28. The first human population study to investigate the relationship 
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between the nose/throat microbiome and influenza hypothesised that the nose/throat microbiome 
is a factor in influenza susceptibility, observing taxonomic associations between the nose/throat 
microbiome and influenza; relative abundances of Alloprevotella, Prevotella and Bacteroides oligo-
types were differentially expressed in influenza compared to healthy controls29.

Moving from Targeted to Non-Targeted Microbiome Characterisation Methods

Traditional microbiome characterisation studies implement targeted classification methods such as 
microbial culture, shotgun sequencing, and 16S rRNA sequencing. The advent of widely available, 
comprehensive microbial reference genomes has led to research into repurposing unmapped se-
quencing reads (RNA-seq/DNA-seq data) for analysing human microbiome communities in healthy 
and diseased human tissues; Mangul et al6 proposed the “lost and found pipeline”, a process of 
taxonomically classifying RNA-seq reads that do not map to the human genome (the microbial 
read fraction). We previously repurposed SRA-derived RNA-seq reads to demonstrate that this 
non-targeted approach can characterise the human gut, lung, skin, and blood microbiome as ef-
fectively as targeted methods [under review at time of publication]. This principle underpins our 
current research, in which we implement our non-targeted microbiome characterisation workflow to 
investigate the human nasal microbiome in COVID-19 compared to healthy and influenza samples.

PATIENTS AND METHODS

Sample Criteria

We identified a suitable set of data to demonstrate distinct bacterial signatures from the human 
nasal microbiome in COVID-19 infection, healthy controls, and influenza-infected controls. We con-
sidered several criteria to determine the samples’ read suitability. Reads must:
1. Not map to human reference genome hg38.
2. Not be low quality (low quality reads/errors would account for a lack of mapping to hg38).
3. Not contain artificial sequences (e.g., sequence adapters).
4. Not be repetitive (this would hinder identification).
5. Be of sufficient length (short reads decrease classification accuracy).

We identified the following variables for consideration:
1. Origin: All RNA-seq datasets must be single-species origin (Homo sapiens) and from the nose/

nasal cavity.
2. Health/disease: We included healthy controls to demonstrate that COVID-19 alters the nasal 

microbiome, and influenza controls to demonstrate that this alteration is disease specific, not a 
generic inflammation response.

3. Sequencing technology: We used samples sequenced with Illumina here; we may consider the 
suitability/mapping rates of different platforms in future experiments.

4. Mapping tool: We compared TopHat and HISAT2 and found that HISAT2 maps RNA-seq reads 
to hg38 more comprehensively, so we used HISAT2 here. 

Identification of Suitable Samples

We focused on the nasal microbiome, to investigate changes in early-stage COVID-19 before the 
virus proliferates in the respiratory tract and manifests clinically. The healthy nasal microbiome has 
well-documented signature data18. By including healthy samples, we can check for the expected 
taxonomic profile by comparing our results to those from previous research, further demonstrat-
ing our non-targeted microbiome classification technique [under review] is robust. We can then 
compare our healthy profile to our COVID-19 profile to ascertain COVID-19’s effect on the nasal 
microbiome. Similarly, we included influenza-infected samples to demonstrate that the differen-
tial COVID-19 microbiome profile is COVID-19 specific, not a generic inflammation response. We 
demonstrate this by observing different profiles in COVID-19 and influenza samples. We compiled 
a set of SRA data to include each state (COVID-19, healthy, influenza). Study metadata was re-
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corded to ensure the key variables were sufficiently represented where possible. We imported a 
maximum of 10 read samples per state from the SRA into Galaxy. The imported samples were then 
quality assessed with FastQC prior to mapping. The original researchers obtained the relevant 
ethics approval, so further approval need not be sought.

Selecting the Most Effective Mapping Method

We mapped the reads to the human reference genome hg38, ensuring that the highest possible 
percentage of host reads was identified and removed before classifying the unmapped fraction. 
We mapped the samples to hg38 using the mapping tool HISAT2; justification for choosing this 
mapping tool is as follows. We compared the mapping tools HISAT2 and TopHat; existing RNA-seq 
data (12 human blood control samples from 4 studies) was FastQC quality assessed then mapped 
to hg38 with TopHat30 and HISAT231. We achieved mean mapping rates of 77.25% with TopHat and 
89.45% with HISAT2. Therefore, HISAT2 was the chosen mapping tool moving forward.

Quality Assessment of the Unaligned Reads

The unmapped reads output by HISAT2 were quality assessed using FastQC. For paired-end 
data, forward and reverse reads were quality assessed. We recorded each sample’s per sequence 
quality score; this reports the probability an incorrect base call has occurred. The FastQC per base 
sequence content graphs were checked to verify the samples were biological reads, not long re-
peating base sequences (errors). The FastQC adapter content graphs were checked to ensure that 
human reads with sequencing adapters were not contaminating the unmapped read pool, which 
would lower the mapping rate and contaminate the “unmapped” samples, reducing taxonomic 
classification accuracy. The results of the HISAT2 mapping and FASTQC quality assessment are 
in Table 1.

In summary, quality assessing unmapped reads was important, to verify that reads failed to map 
to hg38 because they were not human, not because of poor quality. Quality assessing twice (total 
reads then unmapped reads) ensured that high read quality remained so following mapping.

Taxonomic Classification and Data Analysis

The unmapped read samples were then subsampled to 1 million reads to allow Kraken32 classifica-
tion to run quickly and efficiently, while ensuring a sufficiently large, classified read pool to analyse. 
We conducted Kraken classification on the subsampled unmapped reads to assign taxonomic 
labels, using the Kraken bacterial database to ensure Kraken only identified bacterial RNA in the 
samples. One Kraken-mpa-report was conducted on all Kraken classification outputs and the tax-
onomic data was recorded and compiled for statistical analysis. 

The dataset was filtered to phylum, genus, and species, then normalised by calculating each 
taxon’s percentage out of the total data. Normalisation corrects the bias from varying library sizes 
and is essential in microbiome sequencing experiments33. Each taxon’s average percentage was 
used to identify the 20 most abundant phyla, genera, and species in each state. Prior research into 
the human nasal microbiome in health, COVID-19, and influenza was reviewed, to verify that we 
observed the ‘expected’ taxa.

RESULTS

Mapping and Quality Assessment

On the SRA, we identified 9 suitable COVID-19 infected human nasal samples, then selected 10 
healthy samples and 10 influenza samples. Each study’s means and standard deviations (SD) for 
mapping rate, read count, sequence length and phred score are in Table 1, from which we have 
two conclusions. 
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TABLE 1. A SUMMARY (MEAN & SD) OF THE GALAXY RESULTS (10 HEALTHY, 9 COVID-19 AND 10  INFLUENZA SAMPLES), 
FOLLOWING HISAT2 MAPPING AND FASTQC UNMAPPED READ ANALYSIS.

Study Accession:	                       Total Reads:	                                               Unmapped Reads:

PRJNA… (no. of samples)	 Phred Score	 HISAT2 Mapping Rate	 Unmapped Read Count 	 Sequence Length 	 Phred Score

Nasal RNA Illumina, Healthy:
  637909 (6 single)	 38 (0)	 96.71% (0.82%)	 1,274,990 (311,542.63)	 100 (0)	 37.5 (0.55)
  430406 (4 paired)	 38 (0)	 97.56% (0.55%)	 6,777,450.5 (3,277,334.11)	 100 (0)	 37 (0)

Nasal RNA Illumina, COVID-19:
  691164 (4 paired)	 38.88 (0.25)	 29.94% (1.32%)	 863,123,848.5 (69,847,160.48)	 151 (0)	 38.88 (0.25)
  648499 (1 single)	 40 (N/A)	 89.38% (N/A)	 37,888,644 (N/A)	 91 (N/A)	 40 (N/A)
  645534 (4 paired)	 34.25 (0.29)	 72.07% (16.67%)	 5,297,584.5 (2,632,099.01)	 35-151 (N/A)	 34.25 (0.29)

Nasal RNA Illumina, Flu:
  482564 (10 paired)	 40 (0)	 97.62% (0.17%)	 2,080,771.8 (491,180.99)	 100 (0)	 40 (0)
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First, all reads are sufficient quality; although there is no formally defined lower limit, a phred 
score of ≥33 should be aimed for34. All studies have a mean phred score >33 before and after 
mapping. Second, mean mapping rates range from 29.94% to 97.62%, visualised in Figure 1, a bar 
graph of each study’s mean HISAT2 mapping rates, with SDs included as error bars.

Figure 1. Mean % mapping rates for each study following HISAT2 mapping to hg38. The SDs for each mean % 
mapping rate are included as error bars.

We FastQC quality assessed the total and unmapped samples. We checked the per base se-
quence content graphs to verify that the samples were human genome reads, not sequences of 
repeated bases; each total sample had approximately 25% of each base, the expected biological 
read distribution. We also checked the adapter content graphs to ensure that sequencing adapters 
were not contaminating the unmapped read pool.

In summary, FastQC quality assessment demonstrates our unmapped read samples are of suf-
ficient phred quality, are genuine human genome reads, and are not contaminated with sequence 
read adapters.

Taxonomic Classification with Kraken

We conducted Kraken taxonomic classification then exported and normalised the dataset. Table 
2 shows the 5 most abundant phyla (top section), genera (middle section), and species (bottom 
section) respectively, as a percentage of the total classified bacterial reads in each state (more 
than 5 taxa at each level were identified, but only the most abundant taxa are presented, for 
conciseness).
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Phylum-level observations

The phylum classification data is shown in Table 2 (top section) and as stacked bars in Figure 2, 
which includes the full list of 23 phyla, sorted in order of most abundant phyla based on average 
abundance in the healthy samples. Each state has a characteristic microbiome signature, though 
Proteobacteria dominates all three; 43.87% abundance in healthy samples, decreasing to 19.92% 
in COVID-19 and 31.52% in influenza. Further noticeable differential phylum abundances depend-
ing on health/disease states are as follows:

TABLE 2. THE 5 MOST ABUNDANT PHYLA, GENERA, AND SPECIES BY PERCENTAGE OF 
TOTAL BACTERIAL READS IN EACH OF THE 3 CONDITIONS – MEAN (M) AND 

STANDARD DEVIATION (SD) VALUES ARE GIVEN.

	                         Healthy (%)		                       COVID-19 (%)		                        Flu (%)

	 M	 SD	 M	 SD	 M	 SD

1. Phylum
Proteobacteria	 43.87	 24.73	 19.92	 6.21	 31.52	 2.04
Tenericutes	 12.64	 6.08	 16.09	 15.74	 19.62	 1.78
Actinobacteria	 9.32	 15.97	 10.28	 14.39	 3.80	 0.76
Firmicutes	 7.87	 4.04	 18.04	 11.56	 7.33	 0.35
Bacteroidetes	 6.11	 2.99	 8.40	 8.16	 7.12	 0.73

2. Genus
Healthy:
    Alteromonas	 25.46	 30.30	 0.42	 0.76	 0.86	 0.94
    Mycoplasma	 12.49	 6.04	 15.60	 15.33	 18.28	 1.57
    Mycobacterium	 5.37	 16.67	 0.43	 0.49	 1.55	 0.63
    Ehrlichia	 2.13	 1.27	 1.26	 1.34	 2.35	 0.35
    Propionibacterium	 2.01	 2.32	 0.26	 0.37	 0.35	 0.15
COVID-19:
    Mycoplasma	 12.49	 6.04	 15.60	 15.33	 18.28	 1.57
    Thermoanaerobacter	 1.47	 0.57	 4.13	 4.69	 1.36	 0.13
    Corynebacterium	 0.38	 0.35	 3.85	 10.02	 0.14	 0.06
    Streptococcus	 0.73	 0.41	 3.59	 4.31	 1.73	 0.30
    Shigella	 0.49	 0.24	 2.59	 2.97	 1.52	 0.27
Influenza:
    Mycoplasma	 12.49	 6.04	 15.60	 15.33	 18.28	 1.57
    Salmonella	 0.34	 0.33	 0.30	 0.85	 3.57	 0.96
    Escherichia	 1.19	 0.40	 1.55	 1.42	 2.81	 0.14
    Candidatus Carsonella	 1.26	 0.44	 1.23	 1.23	 2.55	 0.23
    Ehrlichia	 2.13	 1.27	 1.26	 1.34	 2.35	 0.35

3. Species
Healthy:
    A. macleodii	 25.46	 30.30	 0.42	 0.76	 0.86	 0.94
    M. hyopneumoniae	 8.77	 4.12	 10.89	 10.66	 13.12	 1.05
    M. tuberculosis	 5.32	 16.68	 0.32	 0.45	 1.48	 0.63
    E. canis	 1.90	 1.21	 1.12	 1.23	 2.14	 0.35
    P. acnes	 1.79	 2.07	 0.11	 0.16	 0.33	 0.14
COVID-19:
    M. hyopneumoniae	 8.77	 4.12	 10.89	 10.66	 13.12	 1.05
    T. wiegelii	 1.09	 0.36	 3.82	 4.89	 1.17	 0.11
    S. flexneri	 0.40	 0.20	 2.55	 2.94	 1.48	 0.28
    M. pulmonis	 1.59	 0.95	 2.01	 2.25	 1.84	 0.21
    M. hyorhinis	 1.51	 0.67	 1.96	 1.97	 2.43	 0.18
Influenza:
    M. hyopneumoniae	 8.77	 4.12	 10.89	 10.66	 13.12	 1.05
    S. enterica	 0.34	 0.33	 0.30	 0.85	 3.57	 0.96
    E. coli	 1.19	 0.40	 1.55	 1.42	 2.81	 0.14
    C. Carsonella ruddii	 1.26	 0.44	 1.23	 1.23	 2.55	 0.23
    M. hyorhinis	 1.51	 0.67	 1.96	 1.97	 2.43	 0.18
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•	 Significantly increased abundance of Firmicutes in COVID-19 (18.04%) but slightly decreased in 
influenza (7.33%) compared to healthy (7.87%).

•	 Slightly increased Actinobacteria in COVID-19 (10.28%) and significantly decreased in influenza 
(3.80%) compared to healthy (9.32%).

•	 Increased Tenericutes in COVID-19 (16.09%) and influenza (19.62%) compared to healthy sam-
ples (12.64%).

•	 Increased Bacteroidetes in COVID-19 (8.40%) and influenza (7.12%) compared to healthy (6.11%).

Genus-level observations

Our genera results are shown in Table 2 (middle section) and in Figure 3, by compiling the three 
lists of 20 most abundant genera into one list of 34 and sorting it into the order of most abundant 
genera based on each genus’ average abundance within the healthy samples.

We observe disease-dependent differential expression of numerous nasal microbiome genera 
– this section summarises the headline results. Firstly, several genera decreased in one or both 
diseases compared to healthy samples:
•	 Alteromonas is dominant in healthy samples (25.46%), but strikingly diminished in COVID-19 

(0.42%) and influenza (0.86%).
•	 Mycobacterium abundance was diminished in both diseases (more significantly in COVID-19 

(0.43%) than in influenza (1.55%)) compared to healthy samples (5.37%).
•	 Propionibacterium was reduced in COVID-19 (0.26%) and influenza (0.35%) compared to 

healthy (2.01%).
Meanwhile, several genera increased in abundance in COVID-19 compared to both healthy and 

influenza samples:

Figure 2. The percentage of each microbiome condition occupied by each of the 23 classified phyla, with each 
colour representing a different phylum.
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•	 Thermoanaerobacter was significantly increased in COVID-19 (4.13%), but slightly decreased in 
influenza (1.36%), compared to healthy (1.47%).

•	 Corynebacterium was increased in COVID-19 (3.85%) and slightly decreased in influenza 
(0.14%) compared to healthy (0.38%).

•	 Lactobacillus was slightly increased in COVID-19 (0.74%) and decreased in influenza (0.38%) 
compared to healthy (0.65%).

•	 Streptococcus was increased in COVID-19 (3.59%) and increased less so in influenza (1.73%), 
compared to healthy (0.73%).

•	 Prevotella had raised abundance of 2.44% in COVID-19, compared to 0.20% in influenza and 
0.12% in healthy.

•	 Salmonella abundance was raised in influenza (3.57%) but not in COVID-19 (0.30%) compared 
to healthy (0.34%).

•	 Escherichia was raised in influenza (2.81%) compared to COVID-19 (1.55%) and healthy 
(1.19%), as was Candidatus Carsonella (2.55% in influenza, vs. 1.23% in COVID-19 and 1.26% 
in healthy).

Species-level observations

Our species results are shown in Table 2 (bottom section) and in Figure 4, by compiling the three lists 
of 20 most abundant species into one list of 32 and sorting it into the order of most abundant species 
based on the average abundance of each species within the healthy samples. 

Figure 3. The percentage of each condition occupied by each of the 34 most abundant genera (compiled from 
the 20 most abundant genera from each microbiome condition), with each colour representing a different genus.
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The following species were diminished in both diseases, all more significantly so in COVID-19 
than in influenza:
•	 Alteromonas macleodii was the most abundant species in healthy samples (25.46%); this sig-

nificantly decreased to 0.42% in COVID-19, and 0.86% in influenza.
•	 Decreased Propionibacterium acnes abundance was observed in both diseases. Mean healthy 

abundance was 1.79%, decreasing to 0.11% in COVID-19 and 0.33% in influenza.
•	 The third most abundant species in healthy samples, Mycobacterium tuberculosis (5.32%), also 

decreased more significantly in COVID-19 (0.32%) than in influenza (1.48%).
In contrast, some species demonstrated increased abundance in both diseases:

•	 Mycoplasma hyopneumoniae had 8.77% abundance in healthy samples, slightly increasing to 
10.89% in COVID-19 and 13.12% in influenza.

•	 Shigella flexneri increased from 0.40% (healthy) to 2.55% (COVID-19) and 1.48% (influenza).
Finally, some species’ abundances were increased in just one disease:

•	 Compared to 1.09% healthy abundance, Thermoanaerobacter wiegelii was significantly in-
creased in COVID-19 (3.82%) but not influenza (1.17%).

•	 Staphylococcus aureus abundance was 0.01% (healthy and influenza), increasing to 0.20% (COVID-19).

DISCUSSION

Mapping and Quality Assessment

Mean mapping rates to hg38 range from 29.94% to 97.62%. We have previously demonstrated more 
complete hg38 mapping in Illumina-sequenced datasets than Ion Torrent-sequenced [under review 

Figure 4. The percentage of each condition occupied by each of the 32 most abundant species (compiled from 
the 20 most abundant species from each microbiome condition), with each colour representing a different species.
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at time of publication]. Here we used Illumina datasets, observing varied mean mapping rates. PRJ-
NA691164 (COVID-19) deviates from the other studies (29.94%). PRJNA645534 (COVID-19) has the 
greatest SD (16.67%). The nasal microbiome is considered low microbial biomass35, so high mapping 
rates were expected. Our COVID-19 studies had the lowest mean and greatest SD; this may indicate 
that COVID-19 increases nasal microbial biomass, causing lower mapping rates in COVID-19 samples.

Phylum-Level Observations

Although each state has a characteristic microbiome signature, Proteobacteria dominates all three; 
43.87% abundance in healthy samples, decreasing to 19.92% in COVID-19 and 31.52% in influenza. 
According to research, Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria are the basis of 
the healthy human nasal microbiome18; all were among our 5 most abundant healthy phyla, demon-
strating that our microbiome characterisation method yields the ‘expected’ nasal microbiome taxa. 
Previously, chronic rhinosinusitis (CRS) patients had increased nasal Proteobacteria and decreased 
Bacteroidetes36, while nasal Proteobacteria abundance was significantly higher in asthma patients 
who had ≥1 asthma-related ER visit compared to those who did not37. This suggests that increased 
Proteobacteria is observed in infection and inflammatory states. We observe significantly increased 
abundance of Firmicutes (a known prominent nasal phylum19) in COVID-19 (18.04%) but slightly de-
creased in influenza (7.33%) compared to healthy (7.87%). We observe slightly increased Actinobac-
teria in COVID-19 (10.28%) and significantly decreased in influenza (3.80%) compared to healthy 
(9.32%). Previously, chronic rhinosinusitis (CRS) patients showed significantly lower Actinobacteria 
abundance than healthy controls36. We observe increased Tenericutes in COVID-19 (16.09%) and 
influenza (19.62%) compared to healthy samples (12.64%). Tenericutes was previously observed as 
the 2nd most abundant phylum in COVID-19 (18.09%) but not in healthy38. We observe increased 
Bacteroidetes in COVID-19 (8.40%) and influenza (7.12%) compared to healthy (6.11%). Previously, 
4 Bacteroidetes species (B. dorei, B. thetaiotaomicron, B. massilensis and B. ovatus) were inversely 
correlated with faecal SARS-CoV-2 load (Spearman Rho<-0.2, p<.05)39. These species are associ-
ated with murine colon ACE2 downregulation40, suggesting that Bacteroidetes abundance correlates 
to COVID-19 severity and can hinder SARS-CoV-2 host entry.

Genus-Level Observations

We observe disease-dependent differential expression of several nasal microbiome genera. Alter-
omonas is dominant in healthy samples (25.46%), but strikingly diminished in COVID-19 (0.42%) 
and influenza (0.86%). Significant Alteromonas depletion in both diseases suggests that this is 
not disease-specific, but a generalised immune/inflammatory response. There are two potential 
explanations for Alteromonas eradication in disease. First, inflammation creates a hostile nasal 
microbiome environment for Alteromonas. Second, inflammation creates a favourable environment 
for a competitor whose growth impedes Alteromonas. Many microorganisms depend on the activity 
of others to grow and reproduce successfully41.

Several other genera decreased in one/both diseases compared to healthy samples. Mycobac-
terium abundance was diminished in both diseases, more significantly in COVID-19 (0.43%) than 
in influenza (1.55%) compared to healthy samples (5.37%). Propionibacterium was also reduced in 
COVID-19 (0.26%) and influenza (0.35%) compared to healthy (2.01%). Meanwhile, several gen-
era increased in abundance in COVID-19 compared to both healthy and influenza. Thermoan-
aerobacter was significantly increased in COVID-19 (4.13%), but slightly decreased in influenza 
(1.36%), compared to healthy (1.47%). Corynebacterium was also increased in COVID-19 (3.85%) 
and slightly decreased in influenza (0.14%) compared to healthy (0.38%). Lactobacillus was slightly 
increased in COVID-19 (0.74%) and decreased in influenza (0.38%) compared to healthy (0.65%). 
Streptococcus was increased in COVID-19 (3.59%) and increased less so in influenza (1.73%), 
compared to healthy (0.73%). Prevotella had raised abundance of 2.44% in COVID-19, compared 
to 0.20% in influenza and 0.12% in healthy. In contrast, Salmonella abundance was raised in in-
fluenza (3.57%) but not in COVID-19 (0.30%) compared to healthy (0.34%). Escherichia was also 
raised in influenza (2.81%) compared to COVID-19 (1.55%) and healthy (1.19%), as was Candidatus 
Carsonella (2.55% in influenza vs. 1.23% in COVID-19 and 1.26% in healthy).
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The differential expression of genera in both diseases compared to healthy controls (Altero-
monas, Mycobacterium and Propionibacterium) suggests that some nasal microbiome changes 
occur due to a generalised (not disease specific) inflammatory response. Meanwhile, the differen-
tial expression of other genera in just one disease indicates that other nasal microbiome changes 
are disease specific.

Species-Level Observations

We observed several species with differential expression in health/disease. Most differentially ex-
pressed species’ abundances increased in one/both diseases compared to healthy samples, although 
there were exceptions. For example, Alteromonas macleodii was the most abundant species in healthy 
samples (25.46%); this significantly decreased to 0.42% in COVID-19, and 0.86% in influenza. Previ-
ously, Vaziri et al42 compared microbial DNA from stool samples of end-stage renal disease (ESRD) 
patients to healthy participants, finding that in healthy control samples, average A. macleodii intensity 
was 6,602, increasing to 7,674 in ESRD samples. We previously observed significant A. macleodii 
dominance in the gut, lung, and blood microbiomes of healthy human participants [under review at 
time of publication]. However, this dominance was mitigated following an experimental trial of the effect 
of metaSPAdes assembly of the read samples prior to taxonomic classification. This suggests that 
metaSPAdes assembly may mitigate single taxa dominating samples, which potentially arises from the 
misassignment of some short (unassembled) fragments due to taxonomic similarities between species, 
and the short fragments being insufficiently long to be unique to a single taxon. Thus, moving forward, 
we will consider the possibility of assembling read samples before classification.

We also observed decreased Propionibacterium acnes in both diseases. Mean healthy abun-
dance was 1.79%, decreasing to 0.11% in COVID-19 and 0.33% in influenza. Previously, P. acnes 
was one of the most abundant microorganisms in samples from healthy middle meatus swabs, 
alongside Staphylococcus aureus and Staphylococcus epidermidis43. Our third most abundant 
species in healthy samples was Mycobacterium tuberculosis (5.32%), decreasing more significant-
ly in COVID-19 (0.32%) than in influenza (1.48%). Two unusual cases in which a patient had triple 
infections of SARS-CoV-2, M. tuberculosis and HIV were reported, although this co-infection did 
not appear to worsen COVID-19 outcomes44. A report from Liaoning Province, China, suggested 
that 36% of COVID-19 cases were infected with tuberculosis, or had been previously45.

We observe that all 3 species with decreased abundance in both diseases decreased more 
greatly in COVID-19 than influenza. However, some species demonstrated increased abundance 
in both diseases. Mycoplasma hyopneumoniae had 8.77% abundance in healthy samples, slightly 
increasing to 10.89% in COVID-19 and 13.12% in influenza. Shigella flexneri increased from 0.40% 
(healthy) to 2.55% (COVID-19) and 1.48% (influenza). This human faecal microbiome species has 
been implicated as an infection-causing pathogen in a compromised gut microbiome46.

Some species were increased in just one disease. Compared to 1.09% healthy abundance, 
Thermoanaerobacter wiegelii was significantly increased in COVID-19 (3.82%) but not influenza 
(1.17%). Meanwhile, our S. aureus abundance was 0.01% (healthy and influenza), increasing to 
0.20% (COVID-19). Prior research associates S. aureus with the human nasal microbiome; the re-
gion between the anterior nasal vestibule and the posterior nasopharyngeal cavity is the favoured 
S. aureus colonization site. Furthermore, although it is commensal to the healthy nasal microbiome 
in ~30% of humans, it can also be a dangerous and life-threatening pathogen16.

We observed the most disease-specific species increases in influenza. Salmonella enterica abun-
dance was 0.34% in healthy samples and 0.30% in COVID-19, increasing to 3.57% in influenza. 
Escherichia coli increased from 1.19% in healthy samples and 1.55% in COVID-19 to 2.81% in influen-
za. Candidatus Carsonella ruddii abundance was 1.26% in healthy samples and 1.23% in COVID-19, 
increasing to 2.55% in influenza. S. enterica serotypes are associated with bacteriaemia47, but a 
COVID-19 link has not yet been made. Likewise, to date no research has implicated Ca. C. ruddii in 
COVID-19. However, E. coli was differentially abundant in healthy and COVID-19 samples in both 
bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cell (PBMC) tissues48.

Our graphs enable nasal microbiome compositional differentiation between diseases, at several 
taxonomic levels. Taxonomic abundances are less differential at the phylum level but are still sig-
nificant, demonstrating that a change in health status can be observed in the nasal microbiome’s 
compositional profile, as expected from previous research.
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We have demonstrated that RNA-seq data from prior studies can be repurposed for the sec-
ondary use of characterising the human nasal microbiome in health, COVID-19, and influenza, and 
that the results from these characterisations concur with disease-specific microbiome analyses 
reported in the literature.

CONCLUSIONS

In conclusion, we demonstrate that existing RNA-seq reads from human nasal swabs can be re-
purposed to characterise the human nasal microbiome in health, COVID-19 and influenza, by tax-
onomically classifying the reads that remain unmapped to human reference genome hg38. Our 
results show that human nasal microbiome composition (relative abundances) differs between 
health/disease, and COVID-19/influenza. This was expected, based on prior human microbiome 
research in COVID-1926 and influenza28. Furthermore, our results concur with those from previous 
microbiome characterisation studies, confirming the validity of our hypothesis that accurate micro-
biome composition data can be generated by the repurposing and secondary analysis of RNA-seq 
data.

Our research further demonstrates that our non-targeted microbiome characterisation tech-
nique can be implemented as accurately and effectively as the established targeted methods. This 
benefits future human microbiome research, demonstrating that findings can be generated from 
pre-existing RNA-seq datasets, which can be exploited with a fraction of the resources and costs 
of targeted, sequencing-based methodologies. In the context of COVID-19, our research is ben-
eficial as it demonstrates that the early-stage COVID-19 nasal microbiome can be taxonomically 
differentiated firstly from the healthy microbiome, which may indicate a potential method of early 
warning in the disease, and secondly from the influenza-infected microbiome, indicating that these 
compositional changes are disease-specific, as opposed to a generalised inflammatory response; 
this is key in terms of differential diagnosis.
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