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Abstract

This thesis presents the development and implementation of a machine learning classifi-

cation of massive Young Stellar Objects (YSOs) in two Local Group galaxies, NGC 6822

and M 33. Using archival near- and far-IR data, point sources in both galaxies are clas-

sified into multiple stellar classes using a Probabilistic Random Forest classifier (PRF)

trained on objects of known types. The spatial distributions of all classes are discussed.

YSOs are classified with a high level of confidence (up to 97 per cent) in both galax-

ies. In NGC 6822, 125 YSOs are confirmed and 199 are newly identified. All major

star forming regions (SFRs) in NGC 6822 are recovered and, additionally smaller SFRs

are newly identified. In M 33 4985 YSOs were identified across the disk of M 33 and,

applying a density-based clustering analysis 68 SFRs were identified primarily in the

galaxy’s spiral arms. SFRs associated with known H ii regions were recovered, with

∼ 91 per cent of SFRs spatially coincident with giant molecular clouds identified in the

literature. Using photometric measurements, as well as SFRs in NGC 6822 with an

established evolutionary sequence as a benchmark, I employed a novel approach com-

bining, into one metric, ratios of [Hα]/[24µm] and [250µm]/[500µm] to estimate the

relative evolutionary status of all M 33 SFRs. By comparing the YSOs identified in

M 33 with model grids for mass determination, a star formation rate is estimated for

the first time from direct YSO counts; (1.42± 0.16 M⊙ yr−1) that is lower than that

of the more massive Milky Way as expected. This project for the first time identifies

massive YSOs on galactic scales in a Local Group spiral galaxy, extending such anal-

ysis beyond the nearby star-forming dwarf galaxies (LMC, SMC and NGC 6822). The

techniques developed offer an invaluable tool for classifying large data sets.
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1 Introduction

The formation of massive stars plays a significant role in shaping their environment,

with feedback from ionising UV radiation, strong winds and outflows acting to sculpt

the interstellar medium (ISM). Massive stars are the factories in which heavy elements,

up to iron, are produced. As these stars evolve, they enrich the ISM with these heavy

elements. Whilst star formation in the low mass regime is well understood (see for

example Shu et al., 1987, for a classical review), the mechanisms of high mass star

formation are less well understood. Star formation has been extensively studied in our

Galaxy and its satellites the Magellanic Clouds (MCs). Whilst our location within the

Milky Way (MW) means that much of our understanding of massive star formation

and its impact has been shaped in a spiral galaxy, this position within the MW means

a complete census and an overall view of the spiral arms is not possible. To fully

understand massive star formation and its impact on the evolution of the host galaxy

we must probe different environments by studying galaxies at greater distances.

It has long been established that the dusty environment of star formation leads

to an infrared emission excess which can be detected observationally (Lynden-Bell

& Pringle, 1974). The surrounding dust envelopes act to block radiation at visible

wavelengths, making observations in that regime difficult, as Young Stellar Objects

(YSOs) are often heavily embedded, especially at early evolutionary stages. Hence

studying in the infrared and longer wavelengths, able to pierce the nebulous obscuration

and where their emission spectrum peaks, affords the best window into the processes

these objects are undergoing. The availability of archival infrared surveys of Local

Group galaxies therefore offers an excellent avenue by which to study high mass star

formation across the entirety of a galaxy.
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1.1 Star formation

In this section the general process of forming a star will be outlined before proceeding

to consider factors specific to the high mass regime.

1.1.1 Collapsing clouds

The Kennicut-Schmidt law (Schmidt, 1959; Kennicutt, 1989) empirically shows that

on large scales the star formation rate in a region is proportional to the gas density.

The densest regions in the ISM, molecular clouds or giant molecular clouds (GMCs),

have long been known to be the predominant sites of star formation both in the MW

(Zuckerman & Palmer, 1974; Mooney & Solomon, 1988), and nearby galaxies (e.g.

Engargiola et al., 2003; Blitz et al., 2007). GMCs range in size from 10− 100 pc with

typical masses of orders 104− 106 M⊙ (e.g. Chevance et al., 2022).

Star formation in a GMC is governed by the balance of gravitational collapse

against several mechanisms supporting the cloud. The virial theorem describes this

balance of energies as shown below, following the method of Ward-Thompson & Whit-

worth (2015).

An isolated cloud can be described as a spherical collection of particles each with

mass mi, radial position ri, and velocity vi moving in their collective gravitational

field. The moment of inertia I of the cloud is given by

I =
∑
i

(mi ri · ri). (1.1)

Setting the criterion that the cloud is in equilibrium, the derivative of I with

respect to time must be zero. Given that ṁ= 0 and ṙi=vi, İ can be expressed as

İ = 2
∑
i

(mi ri · vi) = 0. (1.2)

Equilibrium further demands that Ï = 0. Using Newton’s second law Fi =miv̇i,

to describe the force on the ith particle, Ï is
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Ï = 2
∑
i

(miv̇i · ṙi) +
∑
i

(mivi · vi) = 0

= 2
∑
i

Fi · ri + 4K,
(1.3)

where K = 1
2

∑
i(mi v

2
i ) is the total kinetic energy of the cloud. Clouds are

supported by energies from multiple sources, K encompasses the contributions from

turbulence, rotation and thermal motions. For the isolated cloud model Fi represents

the net force acting on particle i from all other cloud particles j, i.e.

Fi =
∑
j ̸=i

(Fij). (1.4)

Combining Eqs. 1.3 and 1.4 gives,

Ï = 2
∑
i

∑
j ̸=i

(Fij · ri) + 4K

=
∑
i

∑
j ̸=i

(Fij · ri + Fji · rj) + 4K.
(1.5)

Newton’s third law tells us that Fij =−Fji and hence Eq. 1.5 becomes

Ï =
∑
i

∑
j ̸=i

(Fij · [ri − rj]) + 4K. (1.6)

Neglecting short range forces that act when ri− rj ≪ 1, Fij is

Fij = − Gmimj

|ri − rj|3
(ri − rj). (1.7)

Substituting Eq. 1.7 into Eq. 1.6 gives,

Ï =
∑
i

∑
j ̸=i

(
Gmimj

|ri − rj|3
(ri − rj) + 4K

= 2ϕG + 4K,

(1.8)

where ϕG is the self-gravitational potential energy of the cloud. The factor of 2

arises from the summation of every particle pairing twice in Eq. 1.6.
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Taking the condition that in equilibrium Ï = 0 and Eq. 1.8 the virial condition

for equilibrium is

0 = ϕG + 2K. (1.9)

In an isolated, stable case where bulk motions due to rotation turbulence are not

present, there are no additional external pressures and neglecting support contributions

from magnetic fields, K simply becomes the thermal energy, U . The cloud of N many

particles can be treated as an ideal monatomic gas with pressure P , volume V and,

temperature T such that,

U =
3

2
PV =

3

2
NkBT. (1.10)

The gravitation potential ϕG for the cloud, assuming uniform density, is given as

ϕG = −3

5

GM2

R
, (1.11)

where M and R are the total mass and radius of the cloud respectively. Setting

N = M
µmH

, with µ the mean molecular weight, mH the atomic mass of hydrogen and

defining the average cloud density as ρ the condition to trigger cloud collapse can be

expressed as,

M > MJ =

(
5kbT

GµmH

) 3
2
(

3

4πρ

) 1
2

. (1.12)

MJ is the Jeans Mass, the critical mass at which a self-gravitating cloud will

undergo collapse (Jeans, 1902). An approximation for the Jeans mass can be found

by substituting ρ = nµmH , the isothermal sound speed cs =
(

kbT
µ

) 1
2

and evaluating

known constants such as mH , G and kB. Doing so gives

MJ ≈ T
3
2

n
1
2

M⊙. (1.13)

Typical GMC values for T and n (∼ 30 K and 103 cm−3, Schulz 2012) in units

of 10 K and 104 cm−3 respectively lead to a typical Jeans mass of ∼ 102 M⊙. Com-



5

paring this to the typical GMC masses of 104− 106 M⊙ (e.g. Chevance et al., 2022),

a difference of several orders of magnitude is seen suggesting that all GMCs should

be collapsing. The time taken for an unsupported cloud to collapse under self-gravity

can be found using the free-fall timescale (tff). It is estimated by considering a mass

element collapsing from the surface to the centre

d2r

dt2
= −GMr

r2
, (1.14)

as,

tff =

√
3π

32Gρ
. (1.15)

Using again typical GMC values gives tff ∼ 105 yrs and comparing this to typical

GMC lifetimes (∼ 106 yrs, Chevance et al., 2020) it becomes clear that additional sup-

port mechanisms are necessary to explain the process of cloud collapse. The additional

support can be explained by considering magnetic fields as well as turbulence.

Turbulence contributes to the energy supporting a cloud (e.g. Dobbs et al., 2014;

Burkhart, 2018). While generically included in the K term in Eq. 1.18, it is not consid-

ered in the stationary, isolated model described here. Whilst at large scales the ISM

turbulence and gravity are roughly balanced (e.g. Kim & Ostriker, 2017), observational

evidence of turbulence in GMCs from line broadening suggests that the thermal kinetic

motion alone is not sufficient to balance against the gravitational attraction (Shu et al.,

1987). Furthermore, as the turbulent dissipation timescale is comparable to the cross-

ing time (Stone et al., 1998; Mac Low, 1999), for clouds massive enough to overcome

the magnetic component of support, collapse still occurs on timescales comparable to

tff (Chevance et al., 2022, and references therein). Given the expected rapid decay

of turbulence (Goldreich & Kwan, 1974), external sources of energy are required to

maintain it. In the rotating disk of a spiral galaxy turbulence can be generated, and

energy is thus imparted to a GMC, from instabilities and fragmentation in the spiral

arm (e.g. Inoue & Yoshida, 2018; Ramı́rez-Galeano et al., 2022).

Assessment of the magnetic field strength in GMCs suggests that they are not
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the dominant support process (Crutcher, 2012). Nevertheless, they contribute to the

energy balance of the cloud and can significantly affect the motion of charged particles

which are bound to the magnetic field lines. The pressure exerted by a magnetic field

is given by

PM =
B2

8π
, (1.16)

where B is the magnetic field strength. Integrating this expression over a volume

gives the total magnetic energy in that volume,

M =
1

8π

∫
V

B2dV. (1.17)

This energy contribution can be incorporated into the virial equilibrium in Eq. 1.9

to give

0 = ϕG + 2K + M. (1.18)

Given that Eq. 1.17 is independent of cloud radius, the energy contribution from

M is expected to remain constant throughout the collapse process. Clouds with masses

less than that which can be magnetically supported (magnetically subcritical) are not

typically observed (Crutcher, 2012), however during the collapse of a magnetically

supercritical cloud as ϕG decreases, ϕG ≲ M can occur. This raises the problem

of how collapse can continue, that can be solved if magnetic field is decreasing due to

ambipolar diffusion. Charged particles in a cloud are bound to magnetic field lines, and

in doing so collide with non-charged particles which move freely across the magnetic

field. These collisions between neutral and charged particles in the cloud allow magnetic

field energy to be kinetically dissipated, weakening the M term in Eq. 1.18. The rate

at which ambipolar diffusion takes place is linked to the ratio of ionised to neutral

particles, with a small nionised/nneutral beneficial. Such conditions are observed in GMCs

(e.g. Schulz, 2012), hence M can decrease and gravitational collapse continue as ϕG also

decreases. The problem of GMC support and collapse remains under active discussion,

and a comprehensive review is found in Chevance et al. (2022).
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1.1.2 From molecular clouds to YSOs

In the previous section gravitational collapse was treated as an isothermal process, the

cloud densities being sufficiently low for energy released from gravitational collapse to

be radiated away. In the isothermal case any region of the cloud with M > MJ can

independently collapse. This leads to fragmentation wherein the collapsing regions of

a cloud form over-densities known as cloud cores. In this section the process of turning

a core into a star is detailed.

As the average density of the cloud (ρ̄) rises to ∼ 10−13 g cm−3 the internal ther-

mal pressure becomes significant (e.g. Schulz, 2012). At this point the opacity of the

cloud (κR) is sufficient to trap its own radiation and cooling mechanisms become inef-

ficient. This leads to rising temperature which in turn increases the critical mass MJ

(see Eq. 1.12) halting further fragmentation. Cloud opacity is reduced in clouds with

low metallicities (Elsender & Bate, 2021). The balance of thermal pressure against

gravitational collapse leads to the creation of the first hydrostatic core.

With an initial thermal core formed and fragmentation ended, the core continues

to accrete surrounding material from its envelope. This material free-falls onto the core

at a velocity vff

vff =

√
2GM

r
, (1.19)

which follows from Eq. 1.15. At the boundary between the core and the in-falling

material a shock front of radius r is formed, where excess kinetic energy is dissipated

via emission of photons. The associated luminosity of these shock front photons is

called the accretion luminosity (Lacc) and is given by

Lacc ∼
1

2
Ṁv2ff ∼ GMṀ

r
, (1.20)

where Ṁ is the mass accretion rate. Once an initial thermal core has been es-

tablished the timescale for collapse changes (Larson, 1973). This new timescale known

as the Kelvin-Helmholtz or thermal timescale (tKH) is dependent on the luminosity of
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the core (LR) and ϕG

tKH =
|ϕG|
LR

≈ 7 × 10−5κR
M2

R

R3T 4
. (1.21)

Given typical solar neighbourhood values for GMC densities and metallicity it can

be shown that the time taken for thermal adjustment in the core exceeds the free-fall

timescale by two orders of magnitude (Schulz, 2012) with tff ∼ 105yrs and tKH ∼ 107yrs

(Ward-Thompson & Whitworth, 2015). The free-fall timescale tff is dependent only on

the core density not the mass, hence it is comparable across mass regimes. tKH however

is dependent on T 4 and thus it becomes much shorter as T increases implying that for

high mass star formation tKH can be very short. This presents particular challenges

that will be described in Sect. 1.1.4.

The initial core mass is a fraction of its eventual mass (M ∼ 10−3− 10−2 M⊙,

R ∼ 1−10 AU, Bhandare et al. 2018). The core is however luminous enough (T ∼ 1000 K)

for molecular hydrogen to become excited in both vibrational and rotational modes.

This excitation leads to H2 molecular dissociation at T∼ 2000 K, dissipating some en-

ergy which otherwise would contribute to further heating. This dissipation of energy

allows for a second collapse to occur until hydrostatic equilibrium is re-established at

a smaller core radius. This process can repeat cyclically as the mass and temperature

of the core increases, ionising heavier elements with each cycle. As this progresses

the core will become optically thick and begin to accrete from a disk of surrounding

material (see phases b & c in Fig. 1.1).

During the collapse of a cloud fragment of radius R down to a second hydrostatic

core of radius r conservation of angular momentum implies that where R > r then the

angular velocity Ω must increase i.e. Ωr > ΩR. Rotation generates a centrifugal force

which is proportional to the square of angular velocity

FC = mΩ2
rr. (1.22)

From the conservation of angular momentum it can be seen that Ω ∝ r−2; using

this relation and Eq. 1.22 then FC ∝ r−3. Comparing this to the force due to gravity,
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a)                                b)                             c)                                d)                          e)

Figure 1.1: Phases of YSO formation in low mass regimes. a) A GMC in which dense
cores form, b) gravitational collapse into a hydrostatic core, c) an embedded YSO
accreting from a disk with bipolar outflows, d) the YSO had cleared most surrounding
envelope and continues to accrete from its disk, observed as a strong lined T-Tauri
star, e) the YSO’s disk dissipates, detected as a weak lined T-Tauri star.

FG ∝ r−2, clearly even small initial values of Ω can lead to significant outwards support,

sufficient to prevent collapse in the rotational plane. The force however offers no

support along the rotational axis and this leads to the formation of disk structures

(see c & d in Fig. 1.1). These disks provide a mechanism by which angular momentum

can be removed from the central core, via either friction and outwards transference

of momentum (Schulz, 2012) or magnetic braking (e.g. Ireland et al., 2021). Removal

of angular momentum is necessary to allow further accretion onto the core and to

match observed rotation velocities of young main sequence stars (e.g. Gallet & Bouvier,

2013). Rotationally braked material is then further accreted from the disk onto the

protostar. This process can be highly variable (e.g. Vorobyov, 2009; Meyer et al., 2017),

with Ṁ ∼10−4−10−7 M⊙yr−1 (e.g. Schulz, 2012). Clumpiness in the disk may be an

explanation for variability in accretion rates and is thought to be a key factor in the

formation of planetary systems (e.g. Janson et al., 2012).

Circumstellar disks drive bipolar outflows along the rotational axis of the YSO

(e.g. Krumholz, 2015a). These outflows provide a mechanism by which angular mo-

mentum from the disk can be removed and envelopes dissipated (Frank et al., 2014).

Outflows can also drive the formation of ionised H ii regions where they interact with

their environments, this is especially notable in massive stars which are key in sculpting
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their wider environments (see Sect. 1.1.4).

When the circumstellar disks are mostly dissipated (see e in Fig. 1.1) accretion

ceases, marking the beginning of the transition on to the main sequence. As the YSO

continues to contract hydrogen burning for sources with M ≳ 0.075M⊙ begins (e.g.

Dantona & Mazzitelli, 1985).

1.1.3 Observing YSOs

The process of low-mass star formation described above can be subdivided into four

stages as per Shu et al. (1987) and Lada & Shu (1990),

• the formation of a dense core in a cloud as gravitational attraction overcomes

support mechanisms;

• forming a YSO at the centre of the collapsing core;

• a rotational disk and bipolar outflows are formed;

• cessation of infall as the YSO moves onto the main sequence.

Linking these stages to observed properties allows sources to be categorised re-

flecting their evolutionary stage. As previously noted, optical observations of YSOs

can be inhibited by the thick envelopes from which they form. Short wavelength emis-

sion radiated from the central source is reprocessed by the surrounding dust and is

re-emitted at infra-red (IR) wavelengths. Using IR fluxes between 2− 20µm Lada

(1987) defines the spectral index (α) as,

α =
d log(λFλ)

d log λ
, (1.23)

which allows YSOs to be separated into three classes,

• Class I: α ⩾ 0.3;

• Class II: −1.6⩽ α ⩽ −0.3;
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• Class III: α < −1.6.

Andre et al. (1993) add a fourth class, Class 0, for the least evolved and therefore

most heavily embedded YSOs which are not detectable at 20µm. The progression

from Class 0 to III therefore covers the full range from initial core (Class 0), through

an in-falling envelope onto a core with an accretion disk (Class I), the dissipation of

the outer envelope leaving an accreting core and disk (Class II), to a YSO with a weak

disk contracting onto the main sequence (Class III). In the low mass regime (M≲ 2 M⊙)

Classes II and III are observed as classical and weak-lined T Tauri stars respectively. At

intermediate masses (2− 8 M⊙) Class II and III sources are identified as Herbig Ae/Be

stars (Herbig, 1960). Class II and III YSOs are not observed at masses higher than

∼ 8 M⊙, as these sources evolve rapidly onto the main sequence effectively bypassing

these stages (see Sect. 1.1.4 for more details).

1.1.4 High mass star formation

While the process of star formation in the low mass regime is fairly well understood,

at high masses (M≳ 8 M⊙) our understanding is less well developed.

To form a high mass star requires the collapse of an equivalently massive cloud or

region of a cloud. As shown in Sect. 1.1.1 any region of a cloud with M>MJ will col-

lapse if unsupported. Collapsing a massive reservoir of material would therefore form

multiple low mass cores (Krumholz, 2015b). This behaviour is also seen in simulations

which generally fail to produce massive stars (e.g. Dobbs et al., 2005), and has been

called “fragmentation-induced starvation” (Peters et al., 2010; Girichidis et al., 2012;

Prole et al., 2022). These simulations however are mostly dependent on gravity and

hydrodynamics, and do not consider contributions from magnetic fields and radiation

pressure. The effects of magnetic fields in supporting a cloud against collapse and re-

moving angular momentum from circumstellar material, allowing faster accretion rates,

have previously been discussed (see Sects. 1.1.1 and 1.1.2) and play an equally impor-

tant role in the high mass regime (Tan et al., 2014). Luminosity scales as L ∝ Mn,
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and for stars with masses between 10−100 M⊙ n ranges between 3.1− 1.6, therefore

radiation pressure becomes a significant factor for massive YSOs. In turn T relates to

L following the Stephan-Boltzmann law for blackbodies,

L = 4πσBR
2T 4. (1.24)

Hence for massive stars the radiation heating of surrounding material may con-

siderably raise the local Jeans mass (see Eq. 1.12). This effect has been reproduced in

simulations (e.g. Krumholz et al., 2011; Bate, 2012; Matsukoba et al., 2022), however

whether it alone can account for observed massive star rates is not certain. These

models of monolithic collapse are grouped into “turbulent core” models (McKee &

Tan, 2003). The problems caused by fragmentation are circumvented in models of

competitive accretion (Bonnell et al., 2001; Bonnell & Bate, 2006).

Competitive accretion models propose a funnelling of material from large reser-

voirs along filamentary structures. Indeed cores have been observed along filamentary

structures (e.g. Könyves et al., 2015). In this model those cores at the centre of the

structure are able to accrete inflowing material at higher rates (illustrated in steps 1−3

of Fig. 1.2). The high rate of mass inflow to the centre floods those cores with mate-

rial before fragmentation effects can dominate. Cores outside the centre are limited

in mass by fragmentary processes whilst those in the centre become high mass stars.

This, by necessity, creates a scenario in which massive stars lie in the centre of a region,

surrounded by low mass stars. This mass segregated arrangement is observed in some

regions (Evans & Oh, 2022; Zhang et al., 2022), but is not ubiquitous with some mas-

sive stars forming in less dense regions (e.g. Wright et al., 2016). Furthermore evidence

from observations (Dib et al., 2018) and simulations (Spera et al., 2016; Guszejnov

et al., 2022) suggest that mass segregation can rapidly take place from less segregated

natal arrangements.

As mentioned in Sect. 1.1.3, high mass sources evolve rapidly. By adopting typical

values of luminosity (∼ 10,000 L ⊙), radius (∼ 4 R⊙) and mass (∼10 M⊙) for a B0
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Figure 1.2: A diagram of the stages of massive star formation showing the inflow of
material onto the central core in a cluster as proposed in competitive accretion models.
Adopted from figure 5 of Louvet (2018).
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star (Pecaut & Mamajek, 2013, updated in 2022 1) and using Eq. 1.21, a value of

tKH ∼ 105yrs is found. This is comparable to the time necessary to accrete ∼ 10 M⊙ of

material assuming a generous Ṁ⊙ ∼ 10−4 M⊙yr−1. Comparing these timescales for a

YSO which will continue to contract as it evolves massive YSOs must begin hydrogen

burning, and hence arrive on the main sequence, whilst still accreting. This accounts

for why Class II and III low mass YSOs do not have analogues above M∼ 8 M⊙.

Given the above, and that massive stars (OB-types) are typically embedded for

a significant fraction of their lifetimes (∼15 per cent, Churchwell, 2002; Lumsden et al.,

2013) it is necessary to accrete material onto already very luminous sources. Comparing

the outwards pressure due to radiation with the force due to gravity gives a limit mass

at which accretion is prevented,

GM

r2
>

κRL

4πr2c
. (1.25)

Rearranging, with units of κR = 10 cm2g−1 and solar units the point at which the

forces balance is,

(
L

M

)
= 1300

(
L⊙

M⊙

)
κ−1
R , (1.26)

which occurs for stars with M∼ 20 M⊙. This would represent the maximum

possible stellar mass. However observed stars with initial masses an order of mag-

nitude higher than this are known in both the MW and MCs (e.g. Kashi & Soker,

2010; Crowther et al., 2016). The limiting mass given by Eq. 1.26 assumes spherically

symmetric accretion, which is unrealistic given the effects of angular momentum conser-

vation described by Eq. 1.22. Opacity in the disk shields material at greater radii from

the energetic photons from the central source (Fig. 1.3). With the envelope collapsed

towards the equatorial plane energetic jets can escape at both poles. The escape of

radiation pressure parallel to the poles shown in the right-hand panel of Fig. 1.3 allows

for increased accretion flows from the envelope onto the heated dusty disk. The dusty

1http://www.pas.rochester.edu/∼emamajek/EEM dwarf UBVIJHK colors Teff.txt
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disks produced via the conservation of angular momentum are therefore a necessity

for, rather than a consequence of, high mass star formation.

Using this geometry, simulations have shown mass accretion can continue up

to 40− 140 M⊙ (e.g. Kuiper et al., 2010). The theoretical upper mass limit for star

formation is highly dependent on cloud opacity and therefore metallicity (Jeřábková

et al., 2018; Vink, 2018), with lower values of metallicity enabling higher mass star

formation (Eq. 1.25). Stars with masses ≳ 150 M⊙ are extremely rare (Weidner &

Kroupa, 2004) hence only a few examples have been reported in distant MW star

forming regions (SFR) and nearby galaxies (Martins et al., 2008; Crowther et al.,

2010).

Evidence for disks around massive YSOs in the MW has been found as double-

peaked velocity dispersions in narrow-band Brγ and spectroscopic observations (Blum

et al., 2004; Kaper et al., 2011; Navarete et al., 2015; Van Gelder et al., 2020) and from

direct imaging using high resolution millimeter observations (Ginsburg et al., 2018; Ilee

et al., 2018; Maud et al., 2019). Simulations of circumstellar disks show varying levels

of fragmentation within the disk (see section 9 of Oliva & Kuiper, 2020, for a review of

disk fragmentation). Fragmentation in the disk has been linked to observed variations

in accretion rates (Caratti o Garatti et al., 2017; Oliva & Kuiper, 2020).

Bipolar outflows or jets have been observed for over a century (Burnham, 1890).

Where they interact with the surrounding interstellar medium ionised fronts are formed,

these optically bright structures are known as Herbig-Haro objects (Reipurth & Heath-

cote, 1997). As previously noted outflows provide a mechanism by which angular mo-

mentum is removed from the YSO and help dissipate the circumstellar envelope. For

massive YSOs the outflows can be highly energetic driven by accretion and magnetic

fields (e.g. Commerçon et al., 2022), in turn causing material they interact with to ex-

ibit maser emission (e.g. Felli & Palagi, 1995; Cyganowski et al., 2009). Some types of

maser emission are solely driven by the radiative excitation of material by high energy

photons, i.e. radiatively pumped rather than via kinetic excitation (Gray, 2012). The

detection of radiatively pumped OH and CH3OH (methanol) masers associated with

outflows (De Buizer, 2003) can therefore provide confirmation of an energetic driver
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Figure 1.3: A diagram of the radiative forces on accretion in a spherical (left) and disk
(right) system geometry. Adopted from figure 4 of Louvet (2018).

and for YSOs thereby confirm a high mass nature (De Villiers et al., 2015).

Massive YSOs which have begun hydrogen burning emit short wavelength pho-

tons capable of ionising their environments. This occurs around each YSO in a

Strömgren sphere (Kuiper et al., 1937; Strömgren, 1939), where atomic hydrogen is

stripped of electrons to form an ultra-compact (r ⩽ 0.1 pc, Beuther et al., 2007; Hoare

et al., 2007) region of H ii plasma (UCH ii, see stage 6 in Fig. 1.2). The initial UCH ii

forms rapidly (e.g. Mottram et al., 2011) and slowly expands outwards. In regions

where multiple massive YSOs are found these expanding H ii regions can become very

large and merge leading to photodissociation regions where they interact with surround-

ing material (Hollenbach & Tielens, 1997, 1999). This interaction can impart external

forces onto otherwise quiescent molecular gas triggering further star formation (e.g.

Hester & Desch, 2005; Tosaki et al., 2007, see also Fig. 1.4).

1.2 Massive YSO surveys

Early IR surveys identified massive YSOs in the MW from O-type star populations

associated with UCH ii regions which exhibited an IR excess. Using this methodology

Wood & Churchwell (1989) identified 1646 embedded massive stars in the MW and 71
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Figure 1.4: A diagram of the evolution of a H ii region, showing the progression from
initial formation of a population of massive stars through to the expansion of the H ii
region triggering another generation of star formation. Taken from figure 8 of Hester
& Desch (2005).
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in the MCs using InfraRed Astronomical Satellite (IRAS) all sky data. Their selection

criteria required that sources had already begun to form a UCH ii region, thus excluding

YSOs at an earlier stage of formation. By using the same IR excess criteria as Wood &

Churchwell (1989) but without the UCH ii region association, Sridharan et al. (2002)

expanded the earlier sample to include 69 less evolved sources within the MW. Whilst

Prusti et al. (1992) utilise IRAS photometry to identify 5086 candidate YSOs within

the MW, many of these are low mass sources.

Using the mid-IR Midcourse Space Experiment (MSX) point source catalogue

(Egan et al., 2003) alongside near-IR Two Micron All Sky Survey (2MASS) data,

Lumsden et al. (2013) created the Red MSX Survey (RMS survey), the largest survey

of massive YSOs at that time. The RMS survey is estimated to be complete for YSOs

more luminous than a B0 star at the distance of the Galactic centre (∼ 8.5 kpc, Lumsden

et al., 2013; Miville-Deschênes et al., 2017). In total ∼ 2000 candidate YSOs were

identified, of which later observations including near-IR spectroscopy have confirmed

∼ 600 as massive YSOs and ∼ 500 as UCH ii regions (Cooper et al., 2013).

Extragalactic surveys of massive YSOs have become possible in recent years with

both the Large and Small MCs (LMC and SMC respectively) the ideal initial targets

due to their proximity (dLMC ∼ 50 kpc, Pietrzyński et al. 2013 and dSMC ∼ 62 kpc,

De Grijs & Bono 2015). Using Spitzer (Werner et al., 2004) photometry, Whitney

et al. (2008) first identified ∼ 1000 candidate YSOs across the LMC, 458 of which are

assigned high probability. Using new selection criteria on the same data, Gruendl &

Chu (2009) recover an additional 1172 candidate YSOs, with 855 definitely categorised.

The sources identified in Gruendl & Chu (2009) were rejected in the analysis of Whitney

et al. (2008) due to their complex environments, causing them to fail their strict point

source criteria. They further suggest that 20−30 per cent of YSO candidates from

Whitney et al. (2008) are in fact unresolved background galaxies. Carlson et al. (2012)

recover 127 YSOs from earlier studies and identify a further 918 YSOs in the LMC

not identified in previous works located in nine LMC H ii regions, many of which are

of lower mass. Similar photometric YSO surveys of the SMC have been conducted.

Building on the techniques applied by Whitney et al. (2008) in the LMC, Sewi lo et al.
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(2013) identified 1007 candidate SMC YSOs.

A fraction of these photometric YSO candidates from MC studies were selected

for IR spectroscopic follow-up to confirm their nature. This process is time intensive

and so spectroscopic confirmation is rarely performed for all candidates from an earlier

work. Follow up spectroscopy was performed with Spitzer-InfraRed Spectrograph (IRS,

Houck et al., 2004) at mid-IR wavelengths. Mid-IR features of YSO spectra used to

confirm the nature of candidate YSOs vary as the YSO evolves. At early, embedded

stages (Class 0 or phases a and b in Fig. 1.1), YSO spectra display absorption features

due to ice molecules such as H2O, CO and, CO2 (e.g. Oliveira et al., 2011). As the still

embedded YSO begins to increase its temperature (Class I or phase c in Fig. 1.1), ices

are destroyed and silicate absorption becomes the characteristic spectral feature (e.g.

Jones et al., 2017). Once feedback from the YSO begins to disperse the circumstellar

envelope the YSO is able ionise its surroundings (Class II or phase c in Fig. 1.1). As

this occurs silicate absorption features become less clear as emission from polycyclic

aromatic hydrocarbons (PAHs) becomes apparent (phase d in Fig. 1.1; see also, Jones

et al., 2017). For YSOs of intermediate mass which are analogues of Galactic Herbig

Ae/Be objects silicate emission can be detected (Oliveira et al., 2013; Jones et al.,

2017).

Oliveira et al. (2009) and Seale et al. (2009) present Spitzer-IRS observations of

LMC YSOs; a compilation of the classifications of all LMC point sources is presented in

Jones et al. (2017). Using a combination of Spitzer-IRS spectroscopy and photometry,

alongside optical spectroscopy and radio data, Oliveira et al. (2013) confirm the YSO

nature for ∼ 30 high mass SMC sources; a compilation of SMC Spitzer classifications

is presented by Ruffle et al. (2015). Near-IR spectroscopy, also used in the MW by

Cooper et al. (2013), was used to further characterise massive YSOs in the MCs (Ward

et al., 2016, 2017; Reiter et al., 2019; Jones et al., 2022).

Beyond the MC, studies to identify YSOs in NGC 6822 and M 33 has been recently

performed, discussed in Sects. 1.4.1 and 1.4.2 respectively. Spectroscopically confirmed

MC YSOs are used to train the machine learning algorithm as detailed in Sects. 3.3,

4.2 and 5.1.
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1.3 Star formation on galactic scales

The energetic processes at the birth and death of high mass stars are significant drivers

of change in their environments (Russeil, 2003; Louvet, 2018; Zari et al., 2021; Chevance

et al., 2022). By identifying sites of star formation in relation to the structure of the

host galaxy theories linking galaxy structure and interactions with star formation can

be constrained. As briefly mentioned, star formation is known to correlate with the

available gas on kiloparsec scales, following the Kennicutt-Schmidt relation (Schmidt,

1959; Kennicutt, 1989). The locations of star formation activity are therefore often

inferred at large scales via tracers such as the gas required for star formation or other

features associated with young populations such as H ii regions. In Fig. 1.5 the distri-

butions of H2 gas surface density and H ii regions in the MW are shown in relation to

the MW spiral arms. Whilst as previously noted due to our location within the MW’s

disk a full survey of it is difficult, where data is available a strong correlation between

arm structure and these tracers of star formation is seen.

1.3.1 Spiral galaxies

Since redshift z∼ 2 most stars have formed in the disk of spiral galaxies (Casey et al.,

2014; Dobbs & Baba, 2014). The most apparent feature of a spiral galaxy are its

eponymous spiral arms. Spiral galaxies can have a few distinct arms (grand design

spirals) or multiple, less distinct arms (flocculant spirals), and can be with or without

a central bar. Whilst it is often observed in grand design spiral galaxies that the arms

begin at the ends of the central bar, and grand design spirals are more frequently

observed in barred galaxies (Elmegreen et al., 2011), the connection between bar and

spiral arms is not fully understood (e.g. Mo et al., 2010; Dobbs & Baba, 2014).

Analysis of stellar populations shows that spiral structure is only weakly repre-

sented in older populations and is strongest in gas and young stars (e.g. Elmegreen,

2011, see also Fig. 1.5). The process of star formation however is complex and the

relation to this disk structure is not fully understood (Baba et al., 2016) and is being
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Figure 1.5: Distributions of MW H2 surface density (top, figure 10 from Miville-
Deschênes et al. 2017), and H ii regions (bottom, figure 5 of Hou & Han 2014). Both
diagrams show the major MW spiral arm structure in overlays, the location of which
correlate strongly with gas and young population distributions.
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actively explored (e.g. Dobbs et al., 2022). The two dominant mechanisms proposed for

generating spiral structure in galaxies are quasi-static spirals or density wave theories

(hereafter QSS, Lin & Shu, 1964), and transient or dynamic spiral formation (DSF,

Goldreich & Lynden-Bell, 1965; Dobbs & Baba, 2014). Whilst these models are not

strictly mutually exclusive, each describes behaviour on different timescales and appear

to be favoured by different types of spiral galaxy (Dobbs & Baba, 2014).

QSS models predict spiral structure to be long lived (≳ 1 Gyr), longer than the

typical rotation period of the disk (e.g. Bertin & Lin, 1996). Therefore, material in

the disk will overtake multiple spiral arms and interact with the shock fronts along the

arms (Roberts, 1969; Shu et al., 1972; Lee & Shu, 2012; Lee, 2014) within two arm

transits (Woodward, 1975; Wada & Koda, 2004; Wada, 2008). The shock front arises

from a piling up of upstream material in the potential minimum of the arm (Toomre,

1977) akin motorway traffic jams (Dobbs & Baba, 2014) in which the braking of the

first vehicle causes a progressing tailback in those following. In QSS it is expected that

the gas velocity changes suddenly along the shock front, as has long been observed in

nearby spiral galaxies M 51 (e.g. Tully, 1974) and M 81 (e.g. Visser, 1980). Another

prediction of QSS is the transition, across the width of an arm, from the precursors

of star formation ahead of the arm, via active star formation to older populations

in the wake of the arm. QSS simulations predict monotonic progression of the shock

upstream in relation to the arm with increased galactocentric radius (Gittins & Clarke,

2004; Baba et al., 2015); this progressive offset may also be observed in the stellar and

pre-stellar populations. Whilst QSS is most easily considered in grand design spirals,

by invoking shorter timescales, density standing waves have been reproduced which

more closely match multi-armed, flocculent spiral galaxies (Bertin et al., 1989).

Contrary to the long lived spirals in QSS, DSF predicts spiral structures that

change on timescales of a few hundred Myrs in all spiral types (Sellwood, 2011; Baba,

2015; Kumamoto & Noguchi, 2016). Rather than a model in which material is rotat-

ing at different rates to spiral structure and is therefore swept through an arm, DSF

proposes that material falls onto the arms from both what in QSS would be up and

downstream directions (Dobbs & Bonnell, 2008; Wada et al., 2011). There is there-
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fore no offset of star formation to the potential minimum of an arm in DSF (Baba

et al., 2015), and no systematic progression of star formation across the arm. DSF

is typically used to explain flocculant spirals which emerge more readily from DSF

simulations than grand design spirals (Dobbs & Baba, 2014). Using gas velocities as a

tracer, Baba et al. (2016) predict observational patterns in simulations which can be

used to differentiate between QSS and DSF models.

Other theories such as self-propagating stochasic star-formation (SPSSF, Mueller

& Arnett, 1976; Gerola & Seiden, 1978) and star formation linked to tidal interactions

(Holmberg, 1941) have also been proposed as mechanisms of spiral formation, however

these are not currently thought to be the primary drivers of spiral structure. Both

SPSSF and tidal interactions may however play a more significant role in dwarf galaxies.

1.3.2 Irregular dwarf galaxies

SPSSF may explain the progression of star formation in irregular dwarf galaxies or lo-

calised regions of sequentially triggered star formation such as very large and multigen-

erational H ii regions (Tosaki et al., 2007; Dobbs et al., 2011; Gusev & Shimanovskaya,

2019). In dwarf galaxies a few large H ii regions may represent a significant fraction

of the total sites of star formation activity in the galaxy (e.g. Jones et al., 2019). Un-

derstanding star formation in these regions can therefore give a reasonably complete

overview of star formation in low mass galaxies. For an isolated dwarf galaxy, SPSSF

therefore offers a mechanism by which sites of star formation can be traced back over

multiple generations of star formation. However, in practice, this idealised model is

often complicated by external factors such as interactions with other galaxies.

One of the best studied occurrences of dwarf galaxy interactions is that of the

MC, with current consensus pointing towards a direct collision, widely accepted to

have occurred ∼ 0.2 Gyr ago (Oey et al., 2018; Zivick et al., 2019; Schmidt et al., 2020).

Interactions between galaxies impart tidal forces upon the ISM within each galaxy and

can transfer new material into an otherwise quiescent galaxy. The two most active

sites of high-mass star formation in the MC, the large H ii regions 30 Doradus and N 44
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Table 1.1: Properties of the galaxies discussed in this work. Values are taken from:
(1) De Grijs & Bono (2014), (2) Braine et al. (2018), (3) Corbelli et al. (2014), (4) Lee et al.
(1993), (5) Richer & McCall (2007), (6) Madden et al. (2014), (7) De Grijs & Bono (2015),
(8) Skillman et al. (1989), (9) Besla (2015b), (10) Pietrzyński et al. (2013), (11) Williams
et al. (2021), (12) Van der Marel (2006).

Galaxy Distance Distance modulus Metallicity Stellar Mass
name (kpc) (µ, mag) (Z⊙) (M⊙)

M 33 850(1) 24.67(1) 0.5(2) 5.5× 109 (3)

NGC 6822 490(4) 23.34(4) 0.2(5) 1.5× 108 (6)

SMC 62(7) 18.97(7) 0.2(8) 3.1× 108 (9)

LMC 50(10) 18.49(10) 0.4(11) 2.7× 109 (12)

(both within the LMC) have been suggested to be tidally triggered (Fukui et al., 2017;

Tsuge et al., 2019) by SMC gas slamming onto the LMC’s disk. 30 Dor itself is one

of the largest H ii regions in the Local Group (e.g. Lebouteiller et al., 2008). Tidal

forces and flows transferring material between the MCs have also been proposed as the

drivers of star formation in the SMC regions NGC 602 (Fukui et al., 2020), N 83 and

N 84 (Ohno et al., 2020).

1.4 The Galaxies

The main goal of this project is to characterise star formation across a whole spiral

galaxy, by identifying individual YSOs and star forming regions. M 33 was chosen for

this analysis due to its relatively face-on inclination (i= 54◦, De Vaucouleurs et al.

1991) making it a more favourable target over the similarly distant M 31 which is seen

nearly edge on (e.g. Ma, 2001). NGC 6822, a dwarf-irregular galaxy, was used to develop

the analysis techniques, owing to its convenient intermediate distance between the MC

and M 33 and the fact that individual YSOs have been characterised there previously.

In this section I describe properties of NGC 6822 and M 33. Selected properties of both

NGC 6822, M 33 and the MC are provided in Table. 1.1 for reference.
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1.4.1 NGC6822

As noted in the previous section, resolved star formation has been extensively studied

on large scales in both the MW and MCs. Stepping out to a distance of ∼ 490 kpc

(Lee et al., 1993; Mateo, 1998) NGC 6822 is the closest star-forming dwarf irregular

galaxy to the MW beyond the MCs. With no known companions (see for example De

Blok & Walter, 2000), and no interactions with large Local Group spiral galaxies (e.g.

McConnachie et al., 2021), NGC 6822 presents itself as a non-tidally disrupted analogue

to the SMC. By understanding how star formation progresses in NGC 6822 the impact

of tidal interactions on triggering star formation can be better constrained. NGC 6822

has a metallicity approximately equal to that of the SMC (∼0.2 Z⊙, e.g. Skillman et al.,

1989; Richer & McCall, 2007). Understanding massive star formation in a metal poor

environment has implications for studies of the early universe, NGC 6822 and the SMC

are analogues for typical star forming galaxies at z∼ 2 (Hirschauer et al., 2020).

NGC 6822 is relatively gas-rich, with very conspicuous large scale East-West

‘wings’ of H i gas (Volders & Högbom, 1961). The total H i mass is estimated to

be 1.38× 108 M⊙ (Mateo, 1998), and the molecular and dust masses are respectively

Mmol < 1× 107 M⊙ (Gratier et al., 2010a) and Mdust= 2.9+2.8
−0.8× 105 M⊙ (Rémy-Ruyer

et al., 2015). Using these mass estimates, Schruba et al. (2017) find a gas-to-dust

ratio of 480 +170
−240. The total stellar mass is 1.5× 108 M⊙ (Madden et al., 2014), giving

an observed baryonic mass of ∼ 2.9× 108M⊙. Weldrake et al. (2003) find a total dark

matter mass to 5 kpc (the extent of the H i disk) of ∼ 3.2× 109 M⊙, implying that NGC

6822 is heavily dark-matter-dominated.

The H i gas distribution in NGC 6822 has a very intricate structure. It is dom-

inated by a large under-density or cavity seen to the South-East of the main galaxy

body (e.g. Gottesman & Weliachew, 1977; De Blok & Walter, 2000, see also Figs. 1.6

and 4.1). The inner rim of this cavity is edged by optical emission that could be linked

to its origin in large-scale stellar feedback (Cannon et al., 2012), although no agreement

exists on the mechanism responsible (De Blok & Walter, 2000). Opposing this feature

on the North-West wing of the main H i distribution there is a large over-density of
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gas. It has been suggested that this over-density is due to the presence of a putative

interacting companion (e.g. De Blok & Walter, 2000, 2003). However this hypothesis

is not supported by stellar population studies across NGC 6822 (Cannon et al., 2012).

A likely explanation for the complex extended H i structure in NGC 6822 is a warped

disk inclined with respect to the line of sight (e.g. Cannon et al., 2012).

Clearly apparent in NGC 6822 is the central bar which runs nearly perpendicular

to the H i gas distribution in a North-South direction for ∼ 1.4 kpc (∼ 10 arcmin; see

Fig. 1.6). This central bar is host to the young stellar component of the galaxy, with

older populations more elliptically distributed (e.g. Letarte et al., 2002; Hirschauer

et al., 2020). The central bar is boxed at either end by bright SFRs first identified by

Hubble (1925) with ages up to 10 Myr (Efremova et al., 2011; Bianchi et al., 2012).

Attempts to find sites of star formation beyond the bar, namely in the H i over-dense

region, have so far been unsuccessful (Schruba et al., 2017) despite promising indicators

in the distribution of H i gas (De Blok & Walter, 2000, 2003).

CO emission is often used as a proxy for molecular hydrogen (which does not

emit at radio wavelengths) due to their general spatial coincidence. No CO maps of the

entirety of the central bar of NGC 6822 have yet been produced, with published studies

focusing on the brightest SFRs (Gratier et al., 2010a; Schruba et al., 2017). Schruba

et al. (2017) produced ALMA high-resolution maps of several small (110× 110 arcsec2)

fields in CO (2−1), four of which are centred on the most prominent SFRs: Hubble

I/III, IV, V and X. They find CO cores with typical sizes of ∼ 2.3 pc and propose that

such small scales could be the cause of the low levels of CO emission seen in many

dwarf galaxies, due to poor beam filling at lower resolutions.

Previous studies of resolved YSO populations in NGC 6822 on a galaxy wide basis

have used established colour-cuts (Jones et al., 2019) or basic statistical (Hirschauer

et al., 2020) classification criteria. In Jones et al. (2019) candidate YSOs were found

using a series of mid-infrared (mid-IR) colour-magnitude diagram (CMD) cuts devel-

oped by Whitney et al. (2008) and Sewi lo et al. (2013) for the MCs. The spectral

energy distributions (SEDs) of those candidates were fitted initially using stellar atmo-

sphere models (Castelli & Kurucz, 2003) in order to remove contaminant objects. The
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Figure 1.6: A European Southern Observatory (ESO) composite image of NGC 6822
comprised of Atacama Large Milimeter/submilimetre Array (ALMA), Very Large Ar-
ray (VLA) and 2.2−metre ESO telescope WFI optical images. WFI optical B, V, R, Hα
are blue, green, yellow and red respectively. H i gas detected by VLA is shown by dif-
fused blue halo extending beyond the central bar of the galaxy. ALMA CO observations
are shown in orange and together with Hα emission reveal the locations of major star
forming regions. This image covers an area of approximately 23× 26 arc min2.
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sources remaining were then compared to YSO model grids (Robitaille et al., 2006;

Robitaille, 2017). Sources were assigned to one of three confidence levels based on the

goodness-of-the-fit to the best-fit model and colour-cut criteria.

In addition to the four well-known SFRs already mentioned (Hubble I/III, IV, V

and X), Jones et al. (2019) studied in detail three other significant SFRs, which they

label Spitzer I, II and III (their table 9 provides the positions and sizes). To the South of

Spitzer I lie regions identified in Hubble (1925): Hubble VI and VII, a young open star

cluster (Chandar et al., 2000) and a globular cluster (Huxor et al., 2013) respectively,

while Spitzer II borders Hubble IX, a cluster of undetermined age (Huxor et al., 2013).

Jones et al. (2019) remove from their YSO candidate lists any sources within the half-

light radius of the globular cluster Hubble VII. Spitzer I is particularly prominent with

an infrared excess noted by Cannon et al. (2006) and CO (2−1) emission identified by

Gratier et al. (2010a). This region seems to be more active in terms of star formation

than the other optically brighter Hubble regions (Jones et al., 2019).

Using the same near-infrared (near-IR) and mid-IR catalogues, Hirschauer et al.

(2020) applied colour cuts developed using kernel density estimate techniques to sepa-

rate different stellar populations. YSO candidates were identified based on consistent

CMD positions as well as being located within one of the SFRs discussed in Jones et al.

(2019). The major SFRs were all recovered in the resulting YSO distribution, however

fewer YSOs were identified compared to Jones et al. (2019) due to different limiting

magnitude cuts applied to the classifications. My own work, described in Kinson et al.

(2021) and Chap. 4, identified YSOs in all the SFR detailed above.

1.4.2 M33

Studies of M 33 and its stellar populations began with Hubble (1926) yet nearly 100

years hence a comprehensive study of resolved star formation across the galaxy is still

unavailable. M 33 is the third largest galaxy in the Local Group (Mgas∼ 3× 109 M⊙,

Corbelli 2003; M∗∼ 5.5× 109 M⊙, Corbelli et al. 2014; Kam et al. 2017), after the

Milky Way and M 31. M 33 lies at a distance of ∼ 850 kpc (µ
M33

= 24.67 mag, De Grijs
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& Bono 2014) and extends to an apparent size of approximately 60 arcmin× 35 arcmin

(Paturel et al., 2003).

The metallicity of M 33 is around half-solar (e.g. Braine et al., 2018), similar to

that of the LMC (see figure 1 of Williams et al., 2021, and Table. 1.1). The metallicity

of M 33 varies across the disk, with a negative gradient with increasing galactocentric

radius well documented (e.g. Searle, 1971; Cioni, 2009; Magrini et al., 2010; Alexeeva &

Zhao, 2022); however its steepness is debated, with recent results favouring a shallower

slope (Alexeeva & Zhao, 2022). A negative gradient is consistent with an inside-out

model of disk formation (Cioni, 2009; Williams et al., 2009), supported by the observed

M 33 star formation history radial profiles (Williams et al., 2009; Javadi et al., 2017).

The radial stellar age profile has been reported to reverse at radii larger than 9 kpc

beyond the break in optical brightness of the disk (Williams et al., 2009; Barker et al.,

2011; Mostoghiu et al., 2018). A similar break in the gas velocity profiles is observed

(e.g. Corbelli et al., 2014; Kam et al., 2015), however a link between these has not been

definitively made.

Whilst the outer gas distribution of M 33 is warped (Rogstad et al., 1976; Corbelli

et al., 2014), likely by a previous minor interaction with M 31 (Semczuk et al., 2018),

the disk within 9 kpc appears relatively undisturbed (Quirk et al., 2022). M 33 is a

flocculent spiral, with two primary spiral arms plus four additional fragmentary arms

either side of the centre branching from, and filling in between, the primary arms

(Humphreys & Sandage, 1980). M 33 is generally not categorised as a barred galaxy,

however recent observations suggest the presence of a weak bar within the bright central

region (Williams et al., 2021; Lazzarini et al., 2022). Whilst there is no strong central

bulge in M 33 (e.g. Van den Bergh, 1991) a nuclear star cluster is present, with star

formation thought to have occurred there within the last 40 Myrs (Long et al., 2002;

Javadi et al., 2011).

The spiral arms of M 33 can be traced in the distributions of H i (Gratier et al.,

2010b) and CO (Druard et al., 2014; Braine et al., 2018) emission, giant molecular

clouds (GMCs, Corbelli et al., 2017) and bright young clusters (Humphreys & Sandage,

1980; Williams et al., 2021). GMCs studied in M 33 show an evolutionary progression
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Figure 1.7: An optical RGB (g, r, Hα respectively) ESO VLT Survey Telescope (VST)
image of M 33. Sites of Hα emission, including regions of star formation are revealed
in red. This image covers an area of approximately 57× 68 arc mins2.
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which is associated with quasi-static arm models (Corbelli et al., 2017), more suggestive

of QSS than DSF typically associated with flocculant spirals (see Sect. 1.3.1).

The arm structure is also well traced by the distribution of H ii regions (Humphreys

& Sandage, 1980; Alexeeva & Zhao, 2022). M 33 contains many prominent H ii regions

which have have been studied widely alongside GMCs (Gratier et al., 2010b; Miura

et al., 2012; Corbelli et al., 2017; Alexeeva & Zhao, 2022). Resolved IR observations of

ongoing star formation, i.e. of massive YSOs in M 33 however have not been extended

beyond NGC 604 (e.g. Fariña et al., 2012).

NGC 604 is the second most luminous H ii region in the Local Group behind only

30 Dor in the LMC (Relaño & Kennicutt, 2009; Mart́ınez-Galarza et al., 2012). Star

formation in NGC 604 has been well studied at many wavelengths (e.g. Churchwell &

Goss, 1999; Tabatabaei et al., 2007) including both near-IR studies of individual mas-

sive YSOs (Fariña et al., 2012) and integrated mid-IR properties (Relaño & Kennicutt,

2009; Mart́ınez-Galarza et al., 2012). Triggered star formation events have been theo-

rised in NGC 604 (Tabatabaei et al., 2007; Tachihara et al., 2018), possibly driven by

feedback from a population of around 200 O-type stars (Hunter et al., 1996). Using

GEMINI Near Infrared Imaging and Spectrometer (NIRI) JHKs images with excel-

lent seeing (FWHM∼ 0.35 arcsec) Fariña et al. (2012) identified 68 massive YSO and

11 Wolf-Rayet (WR) candidates within NGC 604. My own work, described in Kinson

et al. (2022) and Chap. 5, identified YSOs across M 33 including NGC 604.

1.5 Project Objectives

My project aims to meet the following goals:

• To develop a machine learning technique to identify YSOs from wide-

scale IR survey data

Previously discussed surveys of entire galaxies to identify YSOs have employed

a piece-wise approach based on individual magnitudes and colours, or are bi-

ased to known regions of star formation. Machine learning techniques provide
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a more holistic method to classify YSOs, which does not rely on, and takes

into account, interdependancies and degeneracies between observable features.

To achieve a machine learning classification of YSOs a combination of near-IR

and far-IR features is used in order to classify point sources via a Probabilis-

tic Random Forest (PRF, see Sect. 2.2.2). Near-IR colours and magnitudes

provide information on individual sources, whilst far-IR surface brightnesses

sampled across the surrounding area inform the classifier about the environ-

ment in which the source lies. This will enable separation of Galactic fore-

ground sources, background galaxies and different stellar populations in the

target galaxy. Machine learning techniques are scalable and therefore offer an

invaluable tool for disentangling and classifying large data sets. They can be

applied across whole galaxies, avoiding bias towards only known sites of star

formation.

• To apply and validate machine learning techniques to NGC6822, a

galaxy with well-studied star formation activity

NGC 6822 offers a perfect laboratory in which to validate the machine learn-

ing techniques I developed. At around half the distance to M 33, it bridges

the ∼ 17 factor in distance between the MC, the furthest distance at which

large numbers of confirmed YSOs are available, and M 33. Massive YSOs have

recently been identified in several major star forming regions across the cen-

tre of NGC 6822 (see Sect. 1.4.1). By applying a non-spatially biased machine

learning technique I was able to classify YSOs across NGC 6822. Through the

recovery of known star forming regions and individual literature YSOs, the

reliability of this technique was assessed.

• To identify YSOs across the whole disk of M33

Applying the machine learning techniques across the disk of M 33, where a

galaxy-wide study of resolved ongoing star-formation has not yet been per-

formed, allows me to classify YSOs and identify regions of star formation by
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examining the spatial clustering of classified sources. Using YSO model grids,

mass estimates for each YSO are found and a star formation rate is estimated

from direct YSO counts, the first such estimate for M 33. The spatial distribu-

tions of all stellar classes in M 33 are compared to the literature and models of

spiral structure formation (described in Sect. 1.3.1). I also compare properties

of SFRs identified in NGC 6822 and M 33, to infer their relative evolutionary

status and context in terms of their large-scale galaxy structure.
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2 Machine Learning Techniques

As discussed in Sects. 1.4.1 and 1.4.2, identification of YSOs has been performed in

NGC 6822 and M 33 on the basis of piece-wise colour cuts and theoretical YSO models

(e.g. Fariña et al., 2012; Jones et al., 2019; Hirschauer et al., 2020). These methods do

not take into account interdependancies and degeneracies between observable proper-

ties (features) and, in the case of fitting models to spectral energy distributions, may be

computationally expensive when scaled to large data-sets. Machine learning techniques

provide a solution to both of these limitations.

Machine learning techniques can be separated into supervised− requiring human

labelling of sources or other intervention, and unsupervised− purely data driven with

little to no user direction. Both sets of techniques can be used for a variety of purposes

including what machine learning terminology calls ‘classification’ problems. These are

scenarios in which a data-set is organised into two or more discrete classes using feature

information from each source. Both supervised and unsupervised methods are used in

this project to classify the sources from their observed properties, this section outlines

the basic principles of the methods employed.

2.1 Unsupervised Machine Learning

The absence of human intervention in unsupervised machine learning allows previously

unknown relations in data to be found, and can also be useful in classification of data

where labels may be unreliable. Any relations found by such unsupervised methods

arise entirely from properties inherent to the data and therefore avoid potentially in-

troduced biases which can be present in supervised machine learning.

There are many unsupervised machine learning approaches to data classification.

One category of unsupervised methods are ‘self organising maps’, wherein unlabelled

data is arranged by similarity allowing classifications to be made. One such method

which has been applied previously to identify different stellar populations in astronomy
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(e.g. Pennock et al., 2022b; Rim et al., 2022; Santiago et al., 2022) is t-distributed

Stochastic Neighbour Embedding (t-SNE) (Van der Maaten & Hinton, 2008).

2.1.1 t-Stochastic Neighbour Embedding

A t-SNE implementation produces a 2D map of higher dimensional data in which

sources of similar properties are often clustered. This is achieved by calculating the

joint probability that any two data entries lie beneath a Student’s t-distribution of

one another in high dimensional space. The technique then attempts to minimise the

divergence between the two-dimensional positions of the pair of entries and their higher

dimensional counterparts. This results in a 2D map in which each source is located

nearby to those with similar higher dimensional characteristics. t-SNE maps have been

shown to be effective in separating unlabelled photometric sources in catalogue data

(e.g. Steinhardt et al., 2020).

A consequence of the higher dimensionality pairing of probabilities is that t-

SNE analysis requires all features to be present for a source to be mapped. Other

limitations of the t-SNE method are the prohibitive run times for large catalogues

and corresponding memory limitations of the system to hold the large volume of high

dimensional information during the calculation process. Consequently t-SNE run times

scale non-linearly with the increase in data set size and modest increases in data set size

can lead to prohibitively long computation times. Whilst other unsupervised methods

such as Principal Component Analysis (PCA, Hotelling, 1936) scale better for large

data-sets, t-SNE offers significant advantages over PCA. PCA is inferior in maintaining

the small scale structure of the data (i.e. clusters) and is more easily affected by outlier

data as it preserves the global structure (variance) unlike t-SNE. Furthermore, unlike

PCA, t-SNE does not assume linear relations between features, which is important

in this case given the features used (see Sect. 4.1). Given these limitations, for any

data-set a ‘sweet spot’ exists where good separation of the data is achieved without

excessive run time.

A t-SNE implementation relies on several fine tuning parameters which can affect
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the outcome of the map and run time including the number of iterations in the calcu-

lations and the number of neighbouring sources compared to in each calculation of the

divergence difference, known as the perplexity value. This project uses the sklearn

t-SNE implementation for Python (Pedregosa et al., 2011) to create t-SNE maps as

this allows for simple control of the iteration and perplexity parameters. Application

of t-SNE maps in NGC 6822 are discussed in Sect. 4.7.

2.2 Supervised Machine Learning

Supervised machine learning is a useful tool in situations where a relationship in one set

of data with a priori labels can be applied to a second set with the same measurements

but unknown classification. Often in astronomy supervised machine learning involves

training on a set of sources with previously confirmed properties and applying this to

another set of data in which a specific object class is of interest, e.g. evolved stars

in Hernandez et al. (2021b) or YSOs in Cornu & Montillaud (2020). One of the best

established supervised classifiers is the Random Forest Classifier (RF, Breiman, 2001).

2.2.1 Random Forest Classifiers

An RF classifier in its simplest form is a set of randomised decision trees each of which

return a classification for each source in the data. At each node in the tree a threshold

value for a set of features is implemented which splits the decision path for the data

input. This is repeated over a large number of randomly generated trees. The majority

decision amongst all the trees is then given as the RF classification for each object.

The RF is trained on a subset of “known” sources against which its classification

accuracy can be estimated. This is done by splitting the training data set into a sample

for training and a sample against which the trained classifier is tested. Most commonly

this is done randomly/pseudo-randomly with a random seed; the latter is the method

used in this work (Sect. 4.3). The accuracy of the classifier on the test set is taken as
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an estimate of the classification accuracy on the unlabelled data. Splitting is done on

a 75 per cent training, 25 per cent test basis, with the splitting applied globally to the

training set rather than per each individual class. This random splitting can lead to

some stochastic effects in the training data selection; these are mitigated by repeating

the splitting over many runs with different random seeds. Where one class in the

training set is disproportionately large, such that it dominates the randomly selected

training sample, the accuracy of the classifier is negatively affected. I took steps to

counteract this effect as described in Section 5.2.

One method to visualise these estimates on a class-wise basis is to employ confu-

sion matrices, a standard tool in supervised machine learning. Each matrix shows the

statistics of the actual and predicted labels for the test sample sources. A confusion

matrix for a perfect classifier will show a diagonal of 100 per cent accurate classifica-

tions. In practice however some classes may perform better than others; the matrices

identify those classifications that are the most significant cause of confusion. Example

matrices are presented in Sects. 4.3.1 and 5.3.

The accuracy of the classifier is inherently linked to the quality of the training

data in both the extent of the feature parameter space covered by the objects in

each class in the training set and the similarity of the training set to the data to be

classified. Another consideration is the reliability of the classifications in the training

set. The more sources with incorrect target classes in the training set the worse the

RF will perform in classification. This can be minimised via conservative construction

of the training set samples (Sects. 4.2 and 5.1) and using a random forest classifier

which can account for uncertainties in the training data target class labelling. A

probabilistic random forest classifier offers this capability, as well as being able to

account for uncertainties in feature data and missing data.

2.2.2 Probabilistic Random Forest

A probabilistic random forest is a variation on the traditional RF approach which takes

uncertainties into account in the features. For a source (i) in feature (j) with a mea-



38

surement (x) and associated uncertainty (∆x), a normal (N ) probability distribution

(X) is generated such that:

X i,j ∼ N (xi,j,∆x2
i,j) (2.1)

The combined probability distribution in the relevant features is taken into ac-

count at each node of the randomised decision trees in the forest. The probability that

source i propagates down either path (Ps) is split at each node based on X i,j, rather

than using a threshold condition against which each source is judged; an illustration

of this is shown in Fig. 2.1.

Unlike a traditional RF model, which requires all feature data to be present, if

feature information is missing in the data for a given node a PRF can propagate to

the next nodes on an even split basis, i.e. Ps = 0.5 for both paths. In this way a source

with incomplete data can be classified with the caveat that such a classification is less

reliable.

Figure 2.2 illustrates how an RF propagates only one path per source (yellow

branches), whereas a PRF propagates all branches and finds a probability (p) at the

end of each path (labelled ‘Ideal PRF’). The probabilities calculated are such that for

the theoretical PRF Σ p = 1. The path with the highest probability is then given

as the most likely classification. To aid computation time the PRF implementation

of Reis et al. (2019), utilised in this project, does not propagate probabilities further

down branches which fall below a threshold p value (branches with red crosses in the

‘Approx. PRF’ diagram of Fig. 2.2). In the numerical tests of Reis et al. (2019) no

reduction in classification accuracy was seen with a threshold value up to 5 per cent,

the default value in their implementation and the one used in this project.

Reis et al. (2019) showed that their PRF implementation offers an increase in

classification accuracy over a RF in a toy data-set. Furthermore they show a PRF is

able to outperform a RF in classification accuracy where class labels may be impure.

The benefits of a PRF over a RF in the context of this project are explored in the

following section using data from NGC 6822.
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Figure 2.1: A diagram showing the different approach to path splitting at each decision
node in an RF and PRF classifier. Whereas in an RF only the path which meets the
threshold criteria ‘X> a’ is propagated, in a PRF the probability distribution for that
source and feature is used to assign a likelihood of propagation down each branch from
the node. This figure is reproduced from fig. 1 of Reis et al. (2019).
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Figure 2.2: An example decision tree shown for an RF (top), an ideal− theoretical PRF
(centre) and approximated− implemented PRF (bottom). In the latter case branches
with probabilities below a threshold value are discounted from further propagation to
aid computation time, see text for details. This figure is adapted from fig. 2 of Reis
et al. (2019).
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2.2.3 RF vs PRF comparisons

Both RF and PRF classifiers were run on a selection of the most important classes

using the data from NGC 6822. This reduction in complexity was made to aid rapid

comparison of the classifiers without replicating the full analysis performed in Chap. 4.

The RF and PRF test runs were conducted multiple times with pseudo-randomly

selected train/test splits to ensure any stochastic effects were accounted for.

In testing, no general improvement in average classifier accuracy over all classes

was found by implementing a PRF rather than a RF, with both achieving ∼ 89 per cent

estimated accuracy. There was however a minor improvement in classes with fewer

available training sources such as YSOs, the main goal of the classification. The use of

a PRF over a RF improved the average classification accuracy of YSOs from 89 per cent

to 92 per cent.

As previously discussed one benefit of employing a PRF over a RF is the ability

to handle missing feature information. In NGC 6822 there are several sources with one

missing feature due to the properties of the near-IR catalogue, hence a PRF increases

the number of sources available to be classified from ∼ 8000 to ∼ 12,000 (for further

details of the data see Chap. 3). In M 33 the near-IR catalogue does not have similar

issues. Given, that the near-IR data in M 33 is taken from average catalogues (see

Chap. 3), the inclusion of uncertainties with measurements is of increased importance.

This is a key benefit of a PRF over a RF in the context of this project.

For the reasons of increased accuracy in the main class of interest, the ability

to handle uncertainties, and the larger volume of data available for classification in

NGC 6822, a PRF is the classifier chosen. The PRF implementation developed by Reis

et al. (2019) is used as the main classifier for this project.
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3 Data

This chapter describes the images and catalogues used in the analysis of the young

stellar populations in NGC 6822 and M 33, as well as ancillary data used for the PRF

classification of point sources and scientific interpretation.

3.1 NGC6822 data

3.1.1 Near-IR images and point-source catalogues

3.1.1.1 Near-IR catalogues

The aperture photometry catalogue from Sibbons et al. (2012) is used in the NGC 6822

analysis. It was constructed using images obtained on the United Kingdom Infrared

Telescope (UKIRT) using the Wide Field Camera (WFCAM, Casali et al., 2007). The

focal plane array of WFCAM is comprised of four Rockwell Hawaii-II detectors (Casali

et al., 2007). To fill in the gaps between the detectors four exposures are required,

resulting in a tile image covering ∼ 0.89 deg2 (see Fig. 3.2) at a resolution of 0.4 arcsec

per pixel. Several tiled images were used to construct the catalogue of Sibbons et al.

(2012).

The catalogue contains ∼ 375,000 sources over an area of 3 deg2 centred on

NGC 6822. The catalogue is estimated to be complete to depths of J= 19.5 mag and

Ks = 18.7 mag (Sibbons et al., 2012). Full details on the data acquisition, reduction

and catalogue generation can be found in Sibbons et al. (2012).

Star formation activity in NGC 6822 occurs in an area approximately 14×16 kpc

(e.g. Letarte et al., 2002; Jones et al., 2019; Hirschauer et al., 2020). This area contains

several significant star forming regions (see Fig. 4.1). The analysis in this project is not

restricted only to these regions, but rather uses their recovery as a means of technique

validation (see Chap. 4). A total area of approximately 0.07 deg2, covered by a single

WFCAM detector, is considered in NGC 6822 (the yellow dashed region in Fig. 4.1).
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Figure 3.1: A photograph of WFCAM mounted on UKIRT, reproduced from fig. 1 of
Casali et al. (2007). The telescope is pointed towards the zenith and the camera is the
dark cylindrical element rising from the centre of the primary mirror.
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Figure 3.2: A representation of the layout of the four Rockwell Hawaii-II detectors on
the WFCAM focal plane (left) and how four exposures are combined to achieve one
tiled image (right). The colours on the right illustrate those portions of the tile imaged
simultaneously.
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The Sibbons et al. (2012) near-IR catalogues contains ∼ 15,000 point sources in this

area.

3.1.1.2 Additional near-IR aperture photometry

Upon close inspection of both the catalogue and images it was apparent that the cata-

logue did not include aperture photometry of point-sources towards the central regions

of the bright SFRs. In particular several Spitzer sources identified as YSOs in Jones

et al. (2019) were seen in the images but did not have entries in the Sibbons et al.

(2012) near-IR catalogue. It was thus necessary to extract additional aperture pho-

tometry in these regions. The JHKs images were retrieved from the WFCAM Science

Archive (WSA), fully processed using the standard WFCAM pipeline by CASU 2.

Aperture photometry was performed using the PhotUtils package for Python

(Bradley et al., 2020). Using the WSA standard radius of 3.57 pixels, apertures were

placed at the position of known Spitzer sources from Jones et al. (2019). In addition,

to calibrate the new photometry apertures were placed on ∼ 9000 sources with near-IR

photometry in the Sibbons et al. (2012) catalogue. A 1-σ dispersion of 0.055 mag or

less was found in each band between the new photometry and that in the published

catalogue for these calibration sources.

This process recovered near-IR magnitudes for an additional 54 sources located

in bright SFRs which were added to the photometric catalogue. Magnitudes and un-

certainties of the final catalogue are shown in Fig. 3.3. The photometric uncertainties

for the added sources are at the higher end of the range of values seen in the extant

near-IR data, reflecting the high background levels generally present in bright SFR.

In Fig. 3.4 the final near-IR catalogue, containing 11,341 sources, used in the

analysis of NGC 6822 is presented as a Hess diagram in CMD space.

2https://research.ast.cam.ac.uk/vdfs/documentation.html#wsystem
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Figure 3.3: Magnitudes and uncertainties of the new aperture photometry (red circles)
compared to those in the catalogue of Sibbons et al. (2012, grey circles). The reader
is referred to the source paper for any data issues in that catalogue.
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Figure 3.4: The near-IR catalogue for NGC 6822 shown as a Hess diagram in CMD
space. Average error bars are shown.
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3.1.2 Far-IR images and measurements

Light emitted by young stars at UV wavelengths is reprocessed by surrounding dust

and re-emitted at far-IR wavelength (e.g. Bianchi et al., 2012). To provide additional

environmental information for each near-IR source the neighbourhood far-IR brightness

is used as an indicator of proximity to star-formation activity.

Galametz et al. (2010) obtained far-IR images of NGC 6822 using the Photodetec-

tor Array Camera & Spectrometer (PACS, Poglitsch et al., 2010) on the ESA Herschel

Space Observatory (Pilbratt et al., 2010). The fully reduced PACS images at 70 and

160µm were retrieved from the ESA Herschel Science Archive3.

At the position of each Ks-band source, apertures were placed on the far-IR

images using a large radius. The average count value is measured an aperture in

both images using the same aperture radius. A radius equivalent to 30 pc (12.7 arcsec)

around each source was chosen based on the typical scales from theoretical predictions

of IR dark cloud sizes (Tan et al., 2014), and comparison with the CO emission tracing

dust in NGC 6822 (Schruba et al., 2017).

3.2 M33 data

3.2.1 Near-IR images and point-source catalogue

The near-IR catalogue for M 33 was constructed by Javadi et al. (2015) also using WF-

CAM data. A single tile of four separate pointing observations was obtained to cover

a ∼ 0.89 deg2 sky area (∼ 13 kpc× 13 kpc at a distance of ∼ 850 kpc, De Grijs & Bono

2014). Multi-epoch observations were made as part of a monitoring programme, from

September 2005 to October 2007. More details on the data reduction can be found in

Javadi et al. (2015). They retrieved the photometric catalogues for each individual tile

and epoch from the public WFCAM Science Archive (WSA) 4 and performed absolute

3http://archives.esac.esa.int/hsa/whsa/
4http://wsa.roe.ac.uk/
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and relative photometric calibration. In my analysis, I used their catalogue of mean

magnitudes of point sources towards M 33 for source classification (see Sect. 5.4). The

catalogue contains ∼ 245,000 sources. I set the additional requirement that a source

must be detected in all three JHKs-bands, reducing the number of near-IR sources

to ∼ 163,000 sources. The JHKs, 5σ limiting magnitudes are 21.5, 20.6 and 20.5 mag

respectively. Source density is shown in Fig. 3.5 and basic photometric properties are

shown in a CMD in Fig. 3.6.

Since data was taken over multiple epochs and detector pointings, different re-

gions of the science field-of-view reach varying depths. As shown in Fig. 3.5, the cata-

logue is uniform to depths of Ks = 19.2 mag, beyond which the varying depth between

detectors becomes apparent. Whilst these artefacts in the catalogue construction do

not affect the accuracy of classification for individual sources, they become impor-

tant when analysing the spatial distribution of sources of different types in M 33 (see

Sect. 5.5).

3.2.2 Far-IR images and measurements

Far-IR brightness is used in M 33 as an indicator of proximity to star-formation activity.

To this end, Herschel-PACS images at 70 and 160µm obtained as part of the HERschel

M33 Extended Survey (HERM33ES, Kramer et al., 2010) were used, as retrieved from

the ESA Herschel Science Archive5.

At the position of each Ks-band source in M 33, an aperture of 30 parsec radius

(7.2 arcsec) was used to measure an average brightness. Photometry was once again

performed using the PhotUtils package for Python (Bradley et al., 2020).

5http://archives.esac.esa.int/hsa/whsa/
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Figure 3.5: Hess diagrams of source density in M 33, brighter (top) and fainter (bottom)
than Ks = 19.2 mag. The effects of variable depth in the catalogue across the field-of-
view is clear at fainter magnitudes.
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Figure 3.6: The M 33 near-IR catalogue presented in a CMD Hess diagram. Average
error bars are shown. The dashed line at Ks = 19.2 mag indicates the magnitude at
which the catalogue depth becomes very patchy (Fig. 3.5).
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3.3 Magellanic Cloud data

My approach to designing the PRF training sets relies on samples of sources whose

nature is constrained by methods other than photometric cuts. As a consequence

there are not enough confirmed YSOs in NGC 6822 and M 33 to sample the YSO

parameter space. It was therefore necessary to include additional confirmed YSO

sources in the training data. I considered the Galactic YSO catalogue from the RMS

Survey (Lumsden et al., 2013) of which a subsample have been confirmed as YSOs

using near-IR spectroscopy (Cooper et al., 2013). Considering this latter sample, only

a small fraction (< 20 per cent) of sources occupy the same magnitude range as the

near-IR catalogue of the target galaxies (see Sects. 4.2.6 and 5.1.7). Furthermore the

majority of those brighter RMS YSOs are extremely red (80 per cent of sources have

J − Ks > 4). Systematically higher extinction is measured towards Galactic YSOs

compared to e.g. Magellanic YSOs (Ward et al., 2017), likely due to differences in

metallicity and dust properties (e.g. Jones et al., 2022). Consequently, I used instead

the reasonably numerous sample of spectroscopically confirmed YSOs in the MCs,

described below.

3.3.1 The Magellanic YSO sample

Whilst YSOs have previously been identified in NGC 6822 (Jones et al., 2019; Hirschauer

et al., 2020) and in NGC 604 within M 33 (Fariña et al., 2012), these analyses rely on

Spitzer colour cuts and/or SED fitting. To ensure classifier accuracy maintaining the

purity of training set data is paramount. Hence the requirement for additional con-

firmation of their YSO status, beyond those based on broadband photometry, are set

(see Sect. 4.2 and 5.1 for more details).

Instead the YSO training set was constructed from spectroscopically confirmed

YSOs in the SMC (Oliveira et al., 2013) and LMC (Jones et al., 2017): massive YSOs

from embedded Stage I sources to more evolved ultracompact H ii regions. The spec-

troscopic classification of these YSOs relies mostly on Spitzer-IRS (Houck et al., 2004)
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spectra, and uses a variety of spectral features in the 5− 20µm range, see Sect. 1.2.

3.3.2 Near-IR catalogues

Near-IR (JHKs) photometric data for sources in or behind the MC was obtained as

part of the MCs survey conducted using the SIRIUS camera on the InfraRed Survey

Facility (IRSF) at the South African Astronomical Observatory; full details of the data

acquisition and reduction, as well as catalogue construction are reported in Kato et al.

(2007). IRSF magnitudes were converted to the WFCAM photometric system.

The transformations applied to convert from the IRSF photometric system to

the WFCAM system are:

KWFCAM = KIRSF − 0.014

(J −H)WFCAM = 0.923 × (J −H)IRSF + 0.036

(H −K)WFCAM = (H −K)IRSF + 0.055 × (J −K)IRSF − 0.04

These were obtained by using the conversions from IRSF to 2MASS and WFCAM

to 2MASS available respectively in Kato et al. (2007) and Hodgkin et al. (2009).

3.3.3 Far-IR images and measurements

The MC sources required far-IR measurements similar to those performed in the target

galaxies described in Sect .3.1.2 and 3.2.2. To obtain these measurements, 70µm images

from the Multiband Imaging Photometer for Spitzer (MIPS, Rieke et al., 2004) onboard

the Spitzer Space Telescope (Spitzer, Werner et al. 2004) and 160µm Herschel-PACS

images of the SMC and LMC (Meixner et al., 2006; Gordon et al., 2011; Meixner et al.,

2013) were used.

Distance modulii of µ= 23.34 mag for NGC 6822 (Jones et al., 2019) and of 18.49

and 18.90 mag are adopted for the LMC and the SMC respectively (see Table. 1.1,

Pietrzyński et al., 2013; Hilditch et al., 2005). The same 30 pc radius used in NGC 6822
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and M 33 results in apertures sizes equivalent to ∼ 103 and 124 arcsec respectively at

the distances of the SMC and the LMC.

The 160µm images of the MCs, obtained with Hercshel-PACS have residual (non-

astrophysical) bias levels that needed to be corrected for before the large aperture

brightness measurements can be performed. Such offsets result from the complexity

and challenges of processing these datasets obtained very early in the Herschel mission

(see Meixner et al. 2013 for full details, and more recently Clark et al. 2021). These

zero-level corrections were taken from pixel value histograms for each image which are

shown in Figs. 3.7 and 3.8. The 160µm images required offsets of +4.50 and +8.25

MJy sr−1 in each pixel for the SMC and LMC respectively.

For consistency, the 70µm Spitzer MIPS images of the SMC and LMC were

checked and accordingly very small correction of −0.14 and −0.05 MJy sr−1 were ap-

plied respectively. The NGC 6822 and M 33 images did not require any such corrections.

3.4 Ancillary data

In order to compare the evolutionary status of star forming regions in NGC 6822 and

M 33, archival Hα, 24µm Spitzer-MIPS, and 250/500µm Herschel-Spectral and Pho-

tometric Imaging Receiver (SPIRE, Griffin et al. 2010) images are used. These wave-

lengths trace levels of emission from unobscured massive stars (Hα) in the oldest regions

to cold dust in the least evolved (500µm) (Sect. 5.7 describes the full methodology).

The Hα images of both M 33 and NGC 6822, retrieved from the NASA/IPAC

Extragalactic Database (NED) 6, were taken as part of a survey of Local Group galaxies

(Massey et al., 2006); as described in Massey et al. (2007a) the images were reduced

and calibrated in a similar way and are therefore directly comparable with one another

(see their tables 1 and 2).

The Spitzer-MIPS 24µm mosaic images of both galaxies were retrieved from

the Spitzer Heritage Archive (NGC 6822: Kennicutt et al. 2003; M 33: Engelbracht

6https://ned.ipac.caltech.edu
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Figure 3.7: Histograms of the pixel values for the far-IR image of the SMC. Ver-
tical dashed lines show the correction value applied. Corrections of −0.14 and
+4.50 MJy sr−1 were applied in 70 and 160µm images respectively.

Figure 3.8: Histograms of the pixel values for the far-IR image of the LMC. Ver-
tical dashed lines show the correction value applied. Corrections of −0.05 and
+8.25 MJy sr−1 were applied in 70 and 160µm images respectively.
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et al. 2004). The Herschel Science Archive provided the 250/500µm SPIRE images,

originally described in Kramer et al. (2010) for M 33 and Galametz et al. (2010) for

NGC 6822.
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4 NGC6822

The work presented in this Chapter has been published in Kinson et al. (2021), with

tables available on the VizieR database. Some minor adjustments were necessary to

incorporate the paper into this document. These changes do not affect the methods or

results presented.

NGC 6822 is a dwarf-irregular galaxy which lies at a distance approximately half-

way between the MC and M 33 (see Table. 1.1). YSOs have been identified in several

key star forming regions in NGC 6822 (Jones et al., 2019; Hirschauer et al., 2020).

Applying the machine learning techniques described in Chap. 3 enables classification

of point sources across NGC 6822 in a spatially unbiased way. YSOs identified in this

process can be compared with those in the literature, providing a method by which

the effectiveness of the selected machine learning techniques can be assessed. These

techniques use a selection of measurements to classify each source, which are referred

to as features.

4.1 Classification features

Both machine learning methods used in this analysis (supervised and unsupervised,

see Chap. 3) were trained on six features: near-IR Ks-band magnitude, three near-IR

colours (J−H, H−Ks and J−Ks) and two far-IR brightnesses at 70 and 160µm (see

Sect. 3.1).

Sources were classified using the PRF on a minimum of two out of four near-IR

features. This allows for one missing band from the near-IR JHKs data, for example

a missing H-band value would affect two near-IR features J−H and H−Ks. Those

sources which lack the sufficient features were removed from the catalogue. Sources

which presented clear issues in many features such as un-physical colours (e.g. J −
Ks≪ 0) or excessive error bars (e.g. (J −Ks)err > 1 mag) were also removed. In total
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5’

Figure 4.1: An RGB image of NGC 6822 showing H i gas emission (red, Schruba et al.,
2017), 8µm Spitzer IRAC (green, Kennicutt et al., 2003) and 2MASS K-band(blue,
Skrutskie et al., 2006) images. The area covered by this study is shown by the dashed
yellow line. The coverage of the far-IR Herschel PACS images is given by the white
dashed line. CO (2−1) coverage from Gratier et al. (2010a) is shown by the blue dashed
rectangle. Major SFRs are identified. The cavity in NGC 6822’s H i distribution can
be seen in the lower left of the image. Note the H i coverage extends far beyond the
area of the main image, see inset upper right. The off-galaxy fields used for Galactic
foreground comparison in Sects. 4.2.3 and 4.4.2 are indicated by the red outlines in the
inset H i image.
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Table 4.1: Positions, measurements and their uncertainties (where available) as well
as source classification for the training set sources. A single row for each training set
class is shown here, the full version is available in the online supplementary material of
Kinson et al. (2021). Near-IR magnitudes are presented in the WFCAM photometric
system.
RA (J2000) Dec (J2000) J Jerr H Herr Ks Ks err [70] [160] Target

h:m:s deg:m:s mag mag mag mag mag mag MJy sr−1 MJy sr−1 Class
05:04:51.69 −66:38:07.4 18.83 0.043 18.02 0.040 17.07 0.034 21578.2 138989.8 YSO
19:44:34.63 −14:55:52.0 17.52 0.036 16.61 0.024 16.41 0.026 1818.6 22382.3 OAGB
19:44:32.41 −14:56:30.8 17.86 0.047 16.85 0.029 16.27 0.023 12720.6 600.6 CAGB
00:37:04.67 −73:22:29.6 18.05 0.050 17.29 0.070 16.47 0.060 405.8 837.7 AGN
19:44:26.62 −14:56:38.2 16.90 0.022 16.55 0.022 16.43 0.028 0 0 FG
19:44:47.45 −14:54:28.9 19.09 0.131 18.21 0.094 18.10 0.107 5316.9 35.2 RGB
19:44:55.70 −14:51:55.9 13.26 0.003 12.58 0.002 12.36 0.002 9917.9 44576.6 RSG
19:45:03.02 −14:54:27.1 18.00 0.053 17.95 0.075 18.21 0.117 401.7 7192.1 MMS

∼ 2.5 per cent of the sources in the original near-IR catalogue were removed. This left

a catalogue of 11,341 sources remaining.

PRF classification relies upon both measurement and uncertainty information in

each feature (see Sect. 2.2.2). This information was included for all intrinsic source

features (i.e. all near-IR colours and Ks-band magnitude), however uncertainty values

were not included for the far-IR features which provide only environmental informa-

tion for each source. The far-IR apertures sample the same astrophysical scale (see

Sects. 3.1.2, 3.2.2 and 3.3.3) but the number of pixels within the aperture can vary by

a factor of 103 between the MCs and target galaxies. Due to this variation the sub-

sequent error function considered by the PRF (see Sect. 2.2.2) may be distorted and

significantly different for the different galaxies. Furthermore, given that all features

are given the same weight, this choice also keeps the appropriate balance between four

intrinsic features and two environmental features.
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4.2 Sources in the training set

The training set for the PRF was constructed from various extant catalogues containing

sources in eight target classes: YSOs, Oxygen-rich Asymptotic Giant Branch stars

(OAGBs), Carbon Asymptotic Giant Branch stars (CAGBs), Red Giant Branch stars

(RGBs), Red Super-Giant stars (RSGs), Active-Galactic Nuclei (AGNs), Massive Main

Sequence stars (MMSs) and Galactic Foreground stars (FGs). The observed properties

of sources in each of these classes are shown in the CMD, colour-colour diagram (CCD)

and far-IR brightness plots in Fig. 4.2.

As previously noted in Chap. 3, the performance of the classifier is linked to

the numerical size of the data set, how much parameter space each class samples and

the labelling accuracy of the training data. To ensure the highest reliability of test

sample target labels I included only sources identified in the literature using methods

in addition to broad-band photometry, e.g. spectroscopy, narrow-band indices or Gaia

proper motions. The training set sources in NGC 6822 are matched to the near-IR

catalogue of Sibbons et al. (2012) using a 1 arcsec search radius. A summary of the

information for each training set class is provided in Table 4.2. For some classes the

number of sources is relatively small, however the parameter space occupied by that

class is often small and thus the sampling remains good (see Fig. 4.2). It is important to

note that given that there is not an ‘unknown’ class, all sources in the catalogue must

be assigned to one of the training set classes. This will inevitably lead to classification

contamination, which is discussed in Sect. 4.4.2. The individual classes in the training

set are described in detail below.

4.2.1 Asymptotic giant branch stars

It is important to include a well defined AGB training set as these stars can have

similar near-IR colours and magnitudes to massive YSOs (see Fig. 4.2). The AGB

training samples consist solely of previously classified sources in NGC 6822. Most of

the AGB sources originate from Sibbons et al. (2012) identified initially with near-IR
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Figure 4.2: CMD plot for the sources in the initial training set.
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Figure 4.3: CCD (top) and far-IR brightness (bottom) plot for the sources in the initial
training set. The reddening line shown in the CCD is calculated from the values given
in Rieke & Lebofsky (1985).
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Table 4.2: Information on the eight target classes included in the training set. The
classification method and reference are given, as well as the number of sources in each
class. The AGN sample are identified using a variety of methods. More details of all
these classes are provided in Sect. 4.2.

Class Number of Sources Identification Method
YSO 43 Spitzer-IRS spectra

OAGB 99 VIS/NIR spectra, narrowband indices
CAGB 461 VIS/NIR spectra, narrowband indices
AGN 89 Various
FG 500 Gaia proper motions

RGB 124 Spitzer-IRS spectra
RSG 192 Optical & Spitzer-IRS spectra
MMS 18 Gaia proper motions

photometry and further confirmed with spectroscopy (Sibbons et al., 2015). Additional

AGB sources come from the four-band catalogue (R, I, CN and TiO) from Letarte et al.

(2002) and the spectroscopic catalogue from Kacharov et al. (2012), which utilises low-

resolution VIMOS spectroscopy to confirm AGB nature. I distinguish between O- and

C-rich AGBs which present different colours due to their distinct atmospheric molecular

composition. These classifications are used to create two AGB target classes in the

training set. The training data includes 560 AGBs, split between 461 CAGBs and 99

OAGBs; this difference in class size does not significantly affect the PRF’s training since

they occupy distinct and reasonably compact regions of parameter space, as shown in

Fig. 4.2.

4.2.2 Red giant and supergiant stars

Red giant and supergiant stars are two different populations which contaminate YSO

samples at opposite ends in terms of magnitude. Red supergiants are a bright, dusty

(similar to AGBs) and young population (∼ 10− 30 Myrs, Britavskiy et al., 2019) which

may be located close to sites of recent star formation. Red giant branch (RGB) stars

are an older, more dynamically evolved population that tends to be more smoothly



64

distributed over the body of a galaxy (see for example Cioni et al. 2000 in the SMC

and Hirschauer et al. 2020 in NGC 6822) and therefore are less likely to be tightly

correlated with sites of far-IR emission. Whilst RGB stars are rarely dusty (Van Loon,

2008) they will likely contribute significantly to the YSO contaminants towards the

sensitivity limit which is ∼ 2 mag below the tip of the RGB (TRGB, Ks = 17.36 mag,

Hirschauer et al., 2020).

The training sample RGBs come from three spectroscopic catalogues. A sample

of RGBs in Local Group dwarf galaxies are used in Kirby et al. (2013) to constrain

the galaxies’ metallicities, by determining the Fe/H ratio from spectroscopy; I include

the NGC6822 RGBs into the training set. The catalogues of Tolstoy et al. (2001) and

Swan et al. (2016) both use spectra containing the Ca ii triplet centred at 850 nm to

quantify the metallicity ratios in RGB stars. This training class contains 124 sources.

The RSG class for the training set is drawn from catalogues in NGC 6822 and

the LMC. In NGC 6822 the spectroscopically confirmed samples of Massey (1998) and

Massey et al. (2007a) include 22 sources. Given this small number, it is augmented

by including LMC RSG sources, from the catalogues of Jones et al. (2017) which are

based on Spitzer-IRS spectroscopy, as well as some additional sources from Neugent

et al. (2020) identified with spectroscopy focused on Balmer and TiO lines from 340 nm

to 1µm. The training class contains a total of 170 LMC RSGs, giving a total of 192

sources.

4.2.3 Foreground Galactic sources

To define a training class of foreground Galactic contaminants I began by crossmatch-

ing the Gaia EDR3 catalogue1 (Gaia Collaboration et al., 2020) with the near-IR data

(1 arcsec matching radius). This recovered 5007 near-IR sources with Gaia counter-

parts. Subsequently proper motion (PM) measurements were employed to identify

high-reliability Galactic contaminants (see also Sect. 4.2.4 for similar analysis for MMS

1https://www.cosmos.esa.int/web/gaia/earlydr3
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stars) with sources in the MW displaying higher proper motions than those within

NGC 6822.

The distribution of PMs were analysed in both right ascension (RA) and decli-

nation (Dec) components separately in order to disentangle sources in NGC 6822 from

Galactic foreground objects. Using individual PM components rather than a combined

velocity allows for a better identification of Galactic sources, with a high proper motion

in either component incompatible with a source in the target galaxies. To achieve this

I placed conservative limits on the PM component values as shown in Fig. 4.4; these

limits are intended to obtain clean samples of FG (and MMS) sources rather than

complete samples. I also compared the PM distributions of sources in the direction

of NGC 6822 with those of two neighbouring off-galaxy areas with the same size, to

the North and South (see Fig. 4.1). The two off-field regions extend from 19:44:21 to

19:45:26 in right ascension; in declination the Northern field runs from −14:20:00 to

−14:39:30 and the Southern from −14:59:00 to −15:17:50. Using the PM histograms

(Fig. 4.4), I set limits for inclusion in the FG training set that the measurement with

associated uncertainty must be outside the range of −3 and 3 mas/yr in RA and −5

and 3 mas/yr in Dec. A sample of 500 foreground sources is identified and included

in the training set; any remaining foreground sources without reliable Gaia PMs will

be classified by the machine learning processes. I discuss the foreground training and

recovered sets further in Sect. 4.4.2.

4.2.4 Massive main-sequence stars

Massive main-sequence stars in NGC 6822 come from the catalogue of Bianchi et al.

(2001). I took the bluest sources (B − V < 0.4 mag) as suggested by these authors.

I further applied a near-IR cut (J − Ks< 0.2 mag), based on the intrinsic colours of

O- and B-type stars (Zombeck, 2006) and the average reddening estimates of E(B −
V ) = 0.35 mag (Bianchi et al., 2001). This sample was then matched to the Gaia

EDR3 catalogue to obtain PMs in a similar process as for the FG class above. Using

the PM histograms (Fig. 4.4) I set limits for inclusion into the MMS training set of the
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Figure 4.4: Histograms of proper motion components in RA (top) and Dec (bottom)
with the limits for training set inclusion for MMS and FG classes shown. Off-galaxy
comparison fields to the North (N) and South (S) are shown by the blue and red
histograms respectively.
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measurement with uncertainty laying between −2 and 2 mas/yr in both RA and Dec.

These limits ensure that only sources with PMs consistent with NGC 6822 membership

are included in the training set.

The near-IR catalogue samples the brightest main-sequence sources, therefore

only nineteen sources for this class were identified. This is the smallest class in the

training set; Sect. 4.4.1 shows the effect this has on the training process.

4.2.5 Active galactic nuclei

Active Galactic Nuclei (AGN) are also known contaminants of YSO samples (e.g.

Whitney et al., 2008; Sewi lo et al., 2013; Jones et al., 2017) and their near-IR colours

show considerable overlap (see Figs. 4.2 and 4.3). The large aperture far-IR measure-

ments are thus crucial to differentiate between YSOs which are strongly correlated

with nearby far-IR emission and AGN which as background objects have no such pref-

erential correlation on large scales. The recent update of the MILLIQUAS compilation

(the Million Quasars Catalog, version 7.2, Flesch, 2021) does not include any spectro-

scopically confirmed AGNs in my field of analysis. Therefore I choose for the training

set AGNs located behind the SMC; this sample is analysed in detail in Pennock et al.

(2021). It was compiled from a variety of surveys employing different methods includ-

ing: Magellanic Quasars Survey (Koz lowski et al., 2011); MACHO Spectroscopy (Geha

et al., 2003), Chandra observations and OGLE optical to near-IR photometry (Dobrzy-

cki et al., 2003), XMM-Newton and WISE mid-IR photometry (Maitra et al., 2018)

as well as VLT/FORS2 spectra (Ivanov et al., 2016). Near-IR photometry for these

sources originates from the IRSF catalogue of Kato et al. (2007) and was converted to

the WFCAM system using the transformations given in Sect. 3.3.2. There are a total

of 89 sources with sufficient feature data which are taken into the training set.
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4.2.6 Young stellar objects

As previously discussed YSO candidates have been identified within SFRs in the cen-

tral bar of NGC 6822 (Jones et al., 2019; Hirschauer et al., 2020). These analyses

were based on Spitzer colour cuts and/or SED fitting. To maintain the purity of the

training set therefore required additional confirmation of an object’s nature and as

such these samples are not automatically included into the training set. Furthermore,

to validate my approach I aim to independently classify YSOs in these samples. The

initial YSO training set was constructed from spectroscopically confirmed YSOs in the

SMC (Oliveira et al., 2013) and LMC (Jones et al., 2017): these include sources from

embedded Stage I sources through to ultracompact H ii regions unresolved in Spitzer

observations. Spectroscopic classification of these YSOs relies mostly on Spitzer-IRS

spectra, using spectral features in the 5− 20µm range. For further detail of the spectral

features used for each classification see Chap. 3.

After conversion to the WFCAM photometric system (see Sect. 3.3.2), the mag-

nitudes of the Magellanic YSOs were scaled to the distance of NGC 6822. Furthermore

these sources were selected such that they are brighter than the detection threshold

for the NGC 6822 data of Ks ∼ 19.5 mag. In total 43 MC YSOs are included in the

training set, 39 from the LMC and four from the SMC. These MC YSOs are by design

amongst the most massive, but are well-matched to the sample that can be identified

with the present near-IR survey.

4.2.7 Exclusion of planetary nebulae from classification

YSO samples can also be contaminated by planetary nebulae (PN). I considered the

PN candidates from the analysis of Leisy et al. (2005) which surveyed a large area

in NGC 6822, a seventeen-strong sample that the authors state is complete down to

3.5 mag below the brightest PN. However, only one PN candidate has a counterpart in

the near-IR catalogue. Therefore the Sibbons et al. (2012) near-IR catalogue seems in

fact too shallow to detect all but the very brightest PN in NGC 6822.
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Nevertheless, I further considered the samples of Leisy et al. (1997) and Jones

et al. (2017) in the LMC. This resulted in 29 PN which would be detectable in the

near-IR catalogue when shifted to the distance of NGC 6822. Upon closer inspection

it was found that these LMC PN are of rare types (e.g. proto-PN), or their PN

nature is questionable or ambiguous. Introducing these sources into the training set

would lead to a significant bias in the classifier towards potentially rarer or uncertain

types. Furthermore, taking into account the stellar mass of the LMC and NGC 6822,

respectively 2.7× 109 M⊙ (Besla, 2015a) and 1.5× 108 M⊙ (Madden et al., 2014) few

such objects would be expected in NGC 6822. This reinforces the conclusion above

that very few if any PN are present in the near-IR catalogue, and therefore a PN

class is not needed in the training set and in fact including it would adversely affect

classification accuracy for other classes. For completeness I note that the single PN

with a near-IR counterpart in NGC 6822 is classified as an AGN by the PRF classifier.

4.3 Initial PRF outcomes

With the training set defined for each of the eight target classes I ran the PRF on the

remaining catalogue data. The classifier was run twenty times with different random

seeds for the train/test splitting to eliminate any stochastic effects in training data

selection. This splitting is done on a global rather than class-wise basis, leading to

some unevenness in testing data class sizes (see Sect. 4.3.1). It was done on a 75 per cent

training, 25 per cent test split, which provides a robust sample to train on in all target

classes even those with a low total number of sources in the training set data.

This method is somewhat similar to a k-fold cross-validation approach to training

classifiers (for a theoretical introduction see Mosteller & Tukey, 1968). However here

all features are included in each PRF run rather than excluding one per fold as a

way of estimating feature importance and classifier performance. This was done since

the classification uses a relatively small number of features, all equally important as

established from testing with t-SNE maps with individual features removed (Sect. 4.7).
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Figure 4.5: A histogram of the PRF classifications across the eight classes and
twenty runs. Most sources (∼ 79 per cent) are consistently classified in the same class
(nclass = 20).

Applying the PRF in multiple runs risks encountering issues associated with overfitting

of the data especially in small target classes. However given the accuracies returned

(Sect. 4.3.1) for each class overfitting is not thought to be an issue in this application.

For each PRF run a list of source classifications as well as a set of confusion

matrices (Sect. 4.3.1) are generated. Using the accuracy score function in sklearn

each run returns an estimated accuracy of correct classification across all classes. For

the twenty runs of the PRF this varies from 84 to 91 per cent.

For every source a value nclass for each class is obtained: the number of runs a

source is classified into that class. This nclass value allows me to assess the confidence

for the object to belong to each particular class. For the training data, most test

sources are consistently classified into the same (correct) class. Due to the random

nature of the train/test sampling, each source in the training set is effectively classified
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a different number of times, and therefore it is not meaningful to assign them global

nclass values. For the classification of the rest of the catalogue ∼ 79 per cent of sources

are identified consistently into the same target class over all twenty runs (Fig. 4.5). This

is indicative of a robust classification system which is independent of biases induced

by random sampling effects and the sources included in the training set. It also shows

that the classifier is able to effectively distinguish between target classes.

4.3.1 Confusion matrices

For each run of the classifier two matrices are generated: one with the raw number of

sources for each class and one which is normalised by the variable number of sources

in each test class (Fig. 4.6). The un-normalised matrices allows me to track any poten-

tial imbalances between the number of sources in each training set classes, while the

normalised matrices provide an easy to interpret measure of classification accuracy for

each target class.

In the normalised confusion matrices a high rate of correct identification is seen

for most classes. Issues arise only between sources of similar observed properties such

as OAGBs and CAGBs: for instance some OAGBs (presumably the dustiest) are some-

times classed as CAGBs due to the similarities in their colours. Additionally for both

AGB classes there is some confusion with RSGs and AGNs due to the fact that fainter

RSGs can have similar features to massive AGB stars (Fig. 4.2). Some AGNs have

SEDs that peak at mid-IR wavelengths and thus can exhibit IR colours similar to

AGB stars (Hony et al., 2011; Van Loon & Sansom, 2015), and spatially are also un-

correlated with large-scale far-IR emission; therefore some classifier confusion between

these classes is not unexpected.

The highest degree of misclassification of any class occurs for the MMSs that

are classed as FG, a likely consequence of the similarities in near-IR colours. Such

misidentifications are not seen in reverse (i.e. FG to MMS) suggesting that this effect

is exacerbated by the small number of MMS sources in the test portion of the training

set (Fig. 4.2).
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Figure 4.6: A non-normalised (top) and normalised (bottom) confusion matrix for
a single run of the PRF classifier using the initial training set. Both matrices were
generated from the run with random seed = 14.
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FG sources are well recovered, with a small level of confusion into the RGB class.

A greater number of RGBs are incorrectly identified as FG sources. This occurs at

fainter magnitudes beyond the depth at which Gaia counterparts could be found (see

Sect. 4.4.2 for further discussion).

The YSO class does not suffer from any contamination from other classes (see

first column of the matrices in Fig. 4.6). YSO misclassifications occur into the CAGB

and AGN classes (top row of the matrices in Fig. 4.6). Fig. 4.2 shows that these classes

overlap significantly in near-IR features with YSOs. The inclusion of the far-IR features

in the classification scheme clearly added discriminating power, reducing any confusion

to low levels, ∼ 11 per cent for both classes. The matrix values shown in Fig. 4.6 are

representative of all seeds, with significant variations occurring only for runs in which

the sampling of a particular class is poor.

4.3.2 Extending the YSO training set

The promising results from the initial PRF runs, with very successful classification for

MC YSOs (Fig. 4.6), motivated the application of the PRF classifier to the near-IR

counterparts of YSO candidates in the catalogues of Jones et al. (2019) and Hirschauer

et al. (2020), with the intention of confirming their nature and expanding the YSO

training set.

An initial description of the YSO identification in Jones et al. (2019) and Hirschauer

et al. (2020) is presented in Sect. 1.4.1. These YSOs are split into three confidence

tiers, which properties summarised below. Using a series of CMDs and CCDs indi-

vidual YSOs are assigned scores based against their position relative to colour and

magnitude cuts. All selected YSO sources have high CMD scores, suggesting that

their colours are consistent with a YSO nature. The 105 high-confidence YSOs further

have low reduced-χ2 fits to YSO models (Robitaille et al., 2006; Robitaille, 2017). The

88 medium-confidence YSOs have SEDs relatively poorly fit by YSO models. Finally

there are 555 lower-confidence YSOs classified in Jones et al. (2019). These sources

were excluded from their SED fitting analysis due to insufficient mid-IR data points, a
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disjointed SED or indication of a stellar photosphere; some of these sources may still

be bona-fide YSO candidates but their nature could not be appropriately constrained.

Of these three types, respectively 23, 18 and 195 have counterparts in my near-IR

catalogue.

Hirschauer et al. (2020) focuses on identifying a variety of dusty stellar popula-

tions in NGC 6822 and therefore does not provide YSO confidence levels in the same

way as Jones et al. (2019). Hirschauer et al. (2020) identify 310 YSO candidates, 59

of which are distinct from those classified in Jones et al. (2019). Of these 59 unique

sources 41 have a near-IR counterpart.

Whilst the PRF is capable of classifying a source with missing features, as de-

scribed in Sect. 4.1, the quality of these classifications will be reduced owing to the

increased number of nodes in each tree at which an even split rather than a probabilis-

tic decision is made. From the YSO candidates of all confidence levels in the Jones

et al. (2019) and Hirschauer et al. (2020) catalogues there were 277 sources out of

807 for which enough features for the PRF to make a meaningful classification were

available.

The PRF classifies many of these 277 sources with a high level of certainty:

as shown in Fig. 4.7 the nclass ⩾ 19 bins contain 40 per cent of the sources. Of the

277 sources, 82 were classified as YSOs for some of the PRF runs, 55 of which have

nYSO ⩾ 19. Of these 55 sources, 47 are from the tables of Jones et al. (2019) with 10, 4

and 33 coming from their high, medium and lower reliability classifications respectively.

This represents 43 per cent of the highest confidence YSOs from Jones et al. (2019) used

in my analysis. The remaining eight are sources unique to the YSO classifications of

Hirschauer et al. (2020). These 55 sources are added to the training set, boosting the

number of YSOs from 43 to 98. The PRF classifier was retrained on this extended

training set for its application across the full NGC 6822 catalogue. The remaining 222

literature YSO candidates which do not meet the threshold of nYSO ⩾ 19 are included

in the catalogue for the PRF classification; their final classifications are discussed in

Sect. 4.8.1.

The YSOs originating from the MCs are on average redder than those from
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Figure 4.7: A histogram of the nclass values across all eight target classes for the
literature YSOs from Jones et al. (2019) and Hirschauer et al. (2020) considered for
extension of the training set.
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Figure 4.8: CMD of the YSOs considered for the training set extension. The YSOs
from Jones et al. (2019, J19) and Hirschauer et al. (2020, H20) are shown in grey. The
sources identified for inclusion in the extension of the YSO training set are shown in
blue. Training set YSOs from the MCs (red circles) have been scaled to the distance
of NGC 6822.
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Figure 4.9: CCD (top) and far-IR brightness plot (bottom) of the YSOs considered
for the training set extension. Colour-coding as is Fig. 4.8. The reddening line in the
CCD is the same as that in Fig. 4.3. In the far-IR brightness plot (bottom) theoretical
loci for dusty blackbodies at various temperatures are shown.
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NGC 6822 (Figs. 4.8 and 4.9). This is unsurprising given that the MC sample was

selected for 5− 30µm Spitzer-IRS spectroscopy, from which their classification is de-

rived. The bottom panel of Fig. 4.9 shows the far-IR brightnesses for the YSOs in both

NGC 6822 and the MCs. The plot includes the loci of dusty sources at various temper-

atures (adopting a dust emissivity coefficient β = 1.5), generated using 1D blackbody

models in Astropy (Price-Whelan et al., 2018). All YSOs generally follow the locus

for a dust temperature of T ∼ 25 K. There may be a slight hint that the MC YSO far-IR

brightnesses could be consistent with a marginally lower dust temperature. This would

be expected given the differences in metallicity between the LMC (from which most

MC YSOs originate) and NGC 6822 (see Table. 1.1), as metallicity and dust temper-

ature have been shown to be anti-correlated (Van Loon et al., 2010). However, such

effect if present seems modest. As already mentioned (see Sect. 3.3) most Galactic

RMS YSOs are fainter than the detection threshold of the near-IR catalogue and, due

to the observed much higher extinction, are even redder than the MC sample. Such

red sources are not present in the NIR catalogue.

This enhanced YSO training set covers a wider region in parameter space for

all the used features; furthermore it provides a training set that is now dominated by

sources in NGC 6822, mitigating any potential issues relating to differing YSO proper-

ties in these galaxies. Given the goal of characterising the YSO population in NGC 6822

and M 33 (see Chap. 5) with a range of sub-solar metallicities (see Table. 1.1) this en-

hanced training set is more robust to modest variations in dust properties associated

with metallicity.

4.4 Enhanced PRF classifier

The PRF classifier with the extended YSO training set was trained and applied twenty

times for the classification of the full catalogue. This was done with the same twenty

seeds to determine the split in train/test data as used for the original PRF runs,

allowing me to assess the improvement in classification directly. The range of accuracy
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scores for these new runs is between 87 and 92 per cent. This is a minor improvement

overall, however by comparing the normalised confusion matrices it is clear that for

some classes (including YSOs) the improvement is more pronounced.

4.4.1 New confusion matrices

In the same manner as the initial runs, confusion matrices were generated for each

PRF run. The example normalised confusion matrix in Fig. 4.10 shows that the PRF

identifies well all classes except AGN and MMS in the training data. A clear boost in

the rate of correctly classified YSOs can be seen by comparing the values in Figs. 4.6

and 4.10: an increase from 78 per cent to 95 per cent. Some misclassification of AGN

sources remains. FG sources are confused for sources in NGC 6822 only in a very

small number of cases. The asymmetric confusion between FG and RGB classes is still

present (further discussion in Sect. 4.4.2).

All confusion matrices both normalised and non-normalised generated in the PRF

runs using the extended training set in Figs. A.3 and A.6 for completeness. Across all

classes and runs the PRF has a predicted average accuracy of 90 per cent, with class to

class variations, exceeding 96 per cent for YSOs.

4.4.2 Galactic foreground estimation

As previously discussed both for the initial and improved runs of the PRF, a confusion

between FG and RGB sources is seen in the training/test data. This confusion is

investigated in the final classification and is compared to simulated foreground models.

Simulations of Galactic populations using TRILEGAL (Girardi et al., 2005)

were used to estimate the predicted number of foreground sources for the same area on

the sky as covered by the near-IR catalogue, using the detection limit at Ks = 19.5 mag.

The modelled foreground suggests that there should be ∼ 2978 Galactic sources above

this threshold.
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Figure 4.10: A non-normalised (top) and normalised (bottom) confusion matrix for a
run of the PRF classifier using the extended training set. The random seed used is the
same as that for the matrices in Fig. 4.6.
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The PRF runs classify a total of 3082 sources as Galactic foreground in one or

more runs, with 2511 classified with nFG = 20. Taking only the most certain Galactic

sources, those from the training set and those classified with nFG = 20, 3011 foreground

contaminants are obtained compared to the 2978 predicted by TRILEGAL.

Due to the limiting depth of the Gaia data (that corresponds to Ks∼ 18.6 mag),

the FG training set is restricted to brighter magnitudes. This limitation is reflected

in the FG classifications by the PRF which drop off rapidly below Ks∼ 17.5 mag

(Fig. 4.11). As seen from the confusion matrices, misclassified FG sources are often

classed as RGB. I compared the number of output FG and RGB sources to the TRI-

LEGAL model and a Northern off-field region of equal area to the target field (more

details in Sect. 4.2.3) in Fig. 4.11. I focus on a range of colours centred on the vertical

CMD sequence in the foreground data in which the confusion with RGBs is expected to

be more prevalent, 0.6⩽ J−Ks⩽ 0.9 mag (Fig. 4.12). There are 1537 nRGB = 20 sources

and 1237 nFG = 20 sources within this colour range.

The number of nFG = 20 sources closely matches what is seen in the off-field

data (with a slight excess compared to the TRILEGAL model predictions) down to

Ks∼ 17.5 mag. At fainter magnitudes, the number of model sources continues to grow,

overtaking the detected sources as the completeness limit is reached. Below 17.5 mag,

as the number of FG sources drops off sharply, the RGB class indeed begins to dominate

below the TRGB at Ks = 17.36 mag (Hirschauer et al., 2020).

The comparison above confirms that in this colour range a significant number

of faint FG sources are misclassified as RGB sources. Using Fig. 4.11, I estimate that

the contamination in this colour and magnitude range of the RGB class by Galactic

sources is ∼ 54 per cent. Taking 54 per cent of the nRGB = 20 sources within the colour

range 0.6⩽ J−Ks⩽ 0.9 mag in addition to the most certain FG sources gives a total

estimate of 3840 Galactic foreground sources.

In the off-target field in the colour range where FG sources are classified by

the PRF (0.2⩽ J−Ks⩽ 0.9 mag, see Figs. 4.12 and 4.13), there are 3877 sources. This

agrees remarkably closely with the estimated Galactic foreground from the classification

once the RGB class contamination is accounted for. The estimated foreground, while
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Figure 4.11: A histogram of Ks-band magnitudes for nclass = 20 FG and RGB sources
in the colour interval 0.6⩽ J−Ks⩽ 0.9 mag. Foreground estimates from the Northern
off-target field and TRILEGAL are indicated.

higher, is consistent with the TRILEGAL simulation which uses an approximate

parameterised model for the Galaxy (Girardi et al., 2005).

4.5 Comparing classifier outputs to the training set

In this section I compare the properties of the PRF classified sources and the training

data. Figs. 4.12 and 4.13 shows the CMD, CCD and far-IR brightness plots for the

sources which are always classified in the same class in all runs (nclass = 20); these

figures can be directly compared to Figs. 4.2 and 4.3 for the training set.

Even though all classes occupy similar positions in the individual diagrams for

the training and output data sets, there are however some differences. The RGB class,

whilst fairly sparsely populated in the training set plots (Figs. 4.2 and 4.3), is the most
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Figure 4.12: CMD plot of the nclass = 20 sources from the improved PRF classification.
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Figure 4.13: CCD (top) and far-IR brightness (bottom) plots of the nclass = 20 sources
from the improved PRF classification.
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numerous class in the PRF’s output (Figs. 4.12 and 4.13). As discussed in the previous

section, all faint FG sources are misclassified into this class.

Furthermore, as discussed in Sect. 4.2 each source must be classified into one of

the eight target classes. In the training set, RGB sources occupy a region of near-IR

parameter space shared by the bulk of sources in the NGC 6822 catalogue with no

strong relation to far-IR emission. Hence a source with no extreme features is likely to

be classified by the PRF classifier as an RGB star.

The bottom panel in Fig. 4.13 shows which classes have the strongest association

with the far-IR emission. YSOs dominate for very high far-IR values. RSG are also

relatively young and as such are still expected to be spatially associated with far-

IR emission; indeed the RSGs’ brightnesses extend to higher than average values.

Confusion between these two classes is however unlikely, since RSGs are bright and

well separated in the CCD from the YSOs (see also the matrices in Fig. 4.10).

4.6 Spatial distributions

In Figs. 4.14 and 4.15 I show the spatial distribution of sources for each target class:

sources with nclass = 20 and those for which the given class is the largest but nclass< 20

are colour coded. I highlight a few salient qualitative points below, however a detailed

study of the spatial distribution of classes other than YSOs and young RSGs is beyond

the scope of this work.

The AGB sources show a decrease in number with increasing galactocentric ra-

dius and, while globally correlated with the known galactic structure, appear less con-

strained to the central bar compared to classes of younger stellar populations (RSG

and YSO). This is consistent with the roughly spheroidal distribution of AGB stars

described by Letarte et al. (2002) and seen in Hirschauer et al. (2020).

RGB sources are fairly evenly distributed across the field, the source density

gradient between central and outer regions apparently consistent with a population

older and more dynamically evolved than the AGB classes (as seen also in e.g. SMC,
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Cioni et al., 2000). Very few RGB sources are identified inside the major SFRs, likely

due to increased crowding that makes such regions less complete to faint RGB stars.

It is important to note that contamination between YSO and RGB classes is not seen

in the confusion matrices (Fig. 4.10).

The distribution of MMS sources is difficult to comment on due to the low number

of sources in this class. As expected FG and AGN sources are evenly distributed across

the field. The FG distribution shows a weak hint of the galaxy bar; as shown also

from the confusion matrices (see Sect. 4.4.1 and Fig. 4.10) the FG is expected to be

contaminated by RSGs and RGBs at the brighter end. The spatial distribution of

RSGs is discussed in Sect. 4.6.1 and the distribution of the YSOs in Sect. 4.8.2.

4.6.1 RSG distribution

The RSGs classified by the PRF represent a young (∼ 10− 30 Myrs, Britavskiy et al.,

2019) population in NGC 6822. The locations of the most certain RSGs (nRSG = 20)

to some extent trace past star formation in the galaxy.

The RSGs occupy the bar of the galaxy filling in between the major SFRs indi-

cated by the YSOs (Fig. 4.16). This is in agreement with existing models of the star

formation history in NGC 6822 which suggest a bar-centric burst of star formation in

the last 200 Myr (De Blok & Walter, 2000). The current SFRs could be evolutionar-

ily linked to this slightly older population, I discuss the relative ages of the SFRs in

Sect. 4.9.

An additional spur in the RSG distribution is seen to the South-East of the bar;

this feature is present but not discussed in fig. 12 of Hirschauer et al. (2020). This

region borders the large cavity in the H i emission (e.g. De Blok & Walter, 2000) and

has been linked to both far-UV (Bianchi et al., 2012) and Hα (Massey et al., 2007a)

emission suggesting young populations are present. The far-IR emission is modest,

suggesting lack of short-wavelength emission reprocessed by dust, and furthermore no

YSOs are classified in this region. The detection of RSGs could help tighten estimates

of the age of this H i feature, if as discussed in De Blok & Walter (2000) its origin is
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Figure 4.14: Spatial distributions on the sky of AGN, FG, CAGB and, OAGB target
classes from the enhanced classification. Sources with nclass = 20 and 10<nclass< 20
are shown in filled red and open blue diamonds respectively.



88

Figure 4.15: Spatial distributions on the sky of RSG, MMS, YSO and, RGB target
classes from the enhanced classification. Sources with nclass = 20 and 10<nclass< 20
are shown in filled red and open blue diamonds respectively.
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Figure 4.16: The spatial distribution on the sky of YSO and RSG sources. YSOs
and RSGs with nclass = 20 are shown in red and gold respectively; sources with
10<nclass< 20 are shown in blue and grey, respectively.
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linked to a burst of previous star formation.

4.7 t-SNE maps

Using all features in the PRF catalogue, a t-SNE map of the data was created to

compare the class separations in a purely data driven, unsupervised machine learning

application. Including both far-IR brightnesses, which trace different temperature dust,

improves the separation of target classes in parameter space. A worsening in the class

separations was observed when any of the near-IR colours or the Ks-band magnitude

were removed. In this analysis the perplexity and number of iterations parameters are

set to 200 and 500 respectively; these values were selected to maximise visual separation

of classes in the output plots whilst maintaining a run-time which is not excessive.

Figure 4.17 shows the t-SNE maps from the training set and catalogue classified

by the PRF. The training set sources and PRF classification outputs with nclass = 20

are shown respectively on the left- and right-hand panels, colour-coded according to

the target class. In both maps it can be seen that some classes are tightly grouped (e.g.

CAGB) and others are spread over large areas (e.g. RGB). Whilst the area covered

by the RGB class is similar in both maps the sparseness of the training set over its

parameter space is clear when compared to the similarly sized training class for OAGB

sources which are distributed over a smaller map area. The AGB classes occupy a

spur to the bottom of the diagram in both the training and output classifications. The

CAGB class in particular is very well separated from other classes, suggesting that the

use of a t-SNE map with these features could be a useful tool for future studies of

evolved stars.

The RSG sources in the training set are tightly packed in a spur off the lobe

occupied by the FG sources (see below) and are well separated from AGB sources in

the training set. However, there are some newly classified OAGB sources in the same

area in the output map. This reflects the inherent difficulties in separating faint RSGs

and bright OAGBs in regions of the parameter space where these classes naturally
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Figure 4.17: t-SNE maps for the training set data (top) and PRF classification outputs
with nclass = 20 (bottom), colour-coded as Figs. 4.2, 4.3, 4.12 and 4.13. Note that the
axes for a t-SNE plot are unitless.
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overlap (Figs. 4.12 and 4.13); in fact even the spectra of such sources are often similar

(see sect. 5.2 of Jones et al., 2017, and references therein).

YSOs are located in several tightly defined clumps. In the training set the vast

majority of YSOs occupy an island at the bottom-right of the map, the remaining

YSOs are scattered outside of the lobe dominated by FG sources, with some sources

seen at the tip of the AGB spur. In the nclass = 20 map, the main island of YSOs from

the training set map is partially recovered, and smaller groupings of YSOs are also

co-located with scattered YSOs in the training set map. The YSOs seen at the tip of

the AGB spur in the training set map are not present in the nclass = 20 map. CAGBs

are some of the reddest sources in the catalogue, and the YSO training set contains

objects that are redder than the vast majority of YSOs recovered by the PRF (see

Figs. 4.2, 4.3, 4.12 and, 4.13). The lack of YSO sources in this area in the nclass = 20

map could be a reflection of this difference.

FG sources in the training set occupy the lobe to the lower left. In this same

area of the output map (Fig. 4.17, right) the vast majority of sources are classified as

nFG = 20 sources. It can also be seen that nFG = 20 exist outside of the lobe dominated

by FG in the training set map. The area dominated by nRGB = 20 sources blends into

the region in which nFG = 20 sources appear due to the contamination between these

classes (Sect. 4.4.2). AGN occupy several locations within the extra-galactic regions

of the t-SNE map for the training set, perhaps unsurprising given their wide range of

physical properties, however most AGN are concentrated on an island above the tip of

the AGB spur. In the t-SNE map for classified sources however the nAGN = 20 sources

are tightly concentrated on that same location with no scattered points; this is a likely

consequence of the PRF classification methodology since here only nAGN = 20 sources

are plotted and these are more likely to be those which match the bulk of the training

set in parameter space.

Based on Fig. 4.17, it is clear that an unsupervised machine learning method like

the t-SNE using near-IR and far-IR features can be used to identify some classes of

objects like RSG, OAGB and CAGB. Even though YSOs do cluster in such diagrams,

such clusters are distributed across the map. Therefore, using the t-SNE maps to
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Table 4.3: Catalogue of YSOs and YSO candidates in NGC 6822 classified using the
PRF analysis. For sources previously identified as YSOs, the reference is provided
in the last column, either Jones et al. (2019, J19) or Hirschauer et al. (2020, H20).
Sources included in the training set extension are marked with ∗. A sample of the
table is provided here, the full catalogue is available in the online material of Kinson
et al. (2021).
RA (J2000) Dec (J2000) J Jerr H Herr Ks Kserr YSO Previous

h:m:s deg:m:s mag mag mag mag mag mag status Identification
19:45:04.36 −14:43:04.9 18.41 0.070 17.84 0.052 17.55 0.059 YSO
19:44:49.22 −14:52:26.7 20.02 0.452 18.78 0.271 19.62 0.660 YSO H20
19:44:54.21 −14:43:18.2 18.70 0.240 18.14 0.226 17.64 0.180 YSO* J19/H20
19:45:00.39 −14:47:40.1 17.65 0.075 16.74 0.051 16.54 0.050 YSO candidate J19

identify YSOs would be more difficult without any additional information and thus

inherently less reliable. Due to the nature of t-SNE maps the positions of classes

shown here apply within the constraints of this data set and the input parameters used

(Sect. 2.1.1).

4.8 The YSO population of NGC 6822

The PRF identifies 368 sources with nYSO > 0; of these 269 have nYSO as their largest

nclass value. These sources are broken down into two categories based on the number

of PRF runs in which they are identified as a YSO. There are 182 sources identified

as YSOs in all the PRF runs (nYSO = 20); these are classified as highest probability

YSOs. A further 87 sources have 20>nYSO > 10, and are classed as (probable) YSO

candidates.

The catalogue of 324 YSOs and YSO candidates (including the 55 NGC 6822

sources from the training set extension) is provided in Table 4.3; 173 sources were

identified for the first time using my PRF methodology, 111 YSOs and 62 YSO can-

didates, as described below. Next, I compare this YSO catalogue to those in previous

works and comment on the physical properties of the sources.
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4.8.1 The classifications of known YSOs

The YSO candidates from the catalogues of Jones et al. (2019) and Hirschauer et al.

(2020) with near-IR counterparts not included in the extended training set were in-

cluded in the catalogue of sources to be classified. For these 222 sources, their output

classifications are examined in greater detail; 126 sources have nclass = 20 and the re-

maining 96 sources have nclass< 20.

For the 126 nclass = 20 sources, over a third are classified by the PRF as YSOs

(Fig. 4.18, upper panel). This is followed by RGB, CAGB and FG classifications that

together account for another third of the classifications. The lowest reliability YSOs

from Jones et al. (2019) dominate most classes in Fig.4.18 (shown in grey), unsurpris-

ing given that such sources vastly outnumber higher confidence YSOs. The highest

reliability sources from Jones et al. (2019) with nclass = 20 are classified mainly into

the YSO class, with a smaller number in the RGB, FG and AGN classes. Of the 126

nclass = 20 sources, 7, 7, and 91 come from the high, medium and low reliability tables

of Jones et al. (2019) respectively, the remainder are sources from Hirschauer et al.

(2020). Overall ∼ 38 per cent of the sources identified as YSOs in either Jones et al.

(2019) and Hirschauer et al. (2020) with near-IR counterparts are classified by the PRF

into another class with high confidence, i.e. nclass = 20.

The remaining 96 sources, with 10<nclass< 20, are classified into more than one

class across the 20 PRF runs but have a majority consensus classification. The lower

panel of Fig. 4.18 shows the target class with the greatest number of classifications for

each source. As above, sources from the low confidence table in Jones et al. (2019) are

the most numerous. Most sources are classified as YSOs, followed by CAGBs and FGs.

Sources from the highest confidence table of Jones et al. (2019) are categorised into

YSO, CAGB, and AGN classes. The YSO candidates from Hirschauer et al. (2020) are

classified as RGBs and FGs less often than those from Jones et al. (2019), however the

opposite is true for the CAGB class.

From a total of 807 YSO candidates from Jones et al. (2019) and Hirschauer et al.

(2020) there is sufficient feature information to classify 277 sources. The YSO nature
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Figure 4.18: PRF classifications for previously known YSO candidates from Jones
et al. (2019) and Hirschauer et al. (2020) with nclass = 20 (top) and 10<nclass< 20
(bottom, showing the majority consensus classification). The reliability levels from
Jones et al. (2019, J19) and YSO candidates unique to Hirschauer et al. (2020, H20)
are colour-coded.
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for 125 of these is confirmed (77 as YSOs and 48 as candidates) with 55 included in the

training set extension and the remainder classified by the subsequent PRF runs: in de-

tail 15/23 high-, 6/18 mid- and 76/195 low-reliability sources from Jones et al. (2019),

and 28/41 sources from Hirschauer et al. (2020). Overall the confirmation rate of pre-

viously known YSO candidates is ∼ 44 per cent, ∼ 65 per cent for the higher-reliability

sample. Furthermore 82 out of the 277 literature YSO candidates are classified with

high degree of confidence (nclass = 20) in the following PRF classes: seventeen FGs,

twenty eight RGBs, eleven AGNs, seventeen CAGBs and nine OAGBs. There are a

further two literature sources with no majority classification (no class has nclass > 10).

Of the 215 unique YSOs identified with the PRF (including training set extension

sources), 76 and 31 sources were previously classified as YSOs respectively by Jones

et al. (2019) and Hirschauer et al. (2020); of the 87 YSO candidates 42 and 15 were also

identified in those papers. This accounts for ∼ 40 per cent of the YSOs and candidates

classified. Therefore I classify for the first time 199 sources, 136 of which are YSOs

and 63 are candidates.

4.8.2 YSO properties

Jones et al. (2019) provide YSO masses and evolutionary stages derived using the SED

models of Robitaille et al. (2006) and Robitaille (2017) for their high-confidence sample.

All YSOs in common with my sample are best fitted by Stage I models (i.e. still rela-

tively embedded). By comparing the Ks-band magnitude range of the PRF-identified

YSOs with that of the YSO candidates from Jones et al. (2019) with mass determina-

tions, I estimate a mass range for the newly identified YSOs between 15− 50 M⊙. These

massive YSOs are more likely the dominant source in an unresolved cluster (Oliveira

et al., 2013; Ward et al., 2016; Stephens et al., 2017; Ward et al., 2017). Indeed Jones

et al. (2019) note the effect of multiplicity on a comparable YSO model fitting analysis

from Chen et al. (2010a) and hence present their mass estimates as overestimated for

the dominant source but underestimated for the total unresolved cluster.

The CO (2−1) map of Gratier et al. (2010a) covers the Northern section of the
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Figure 4.19: A normalised histogram of CO brightness for YSOs, candidates and non-
YSO sources. The median value for each group (24.66, 17.58 and 11.25 respectively)
is shown by the vertical dashed line of the same colour.
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galaxy’s bar (Fig. 4.1), with significant gaps in the coverage between the major SFRs.

To explore the potential use of CO emission as a feature in the PRF identification of

YSOs I performed large aperture photometry in the same way as described in Sect. 3.1.2

for the far-IR data.

CO brightnesses were measured for 1061 sources, 71 of which are YSOs and

30 YSO candidates (Fig. 4.19). YSOs exhibit on average higher CO brightness, with

slightly lower average values seen for candidate YSOs. CO brightnesses for non-YSO

sources are on average even lower: the median CO brightness values for YSOs and

candidates are higher than that for non-YSOs by factors ∼ 2 and ∼ 1.5 respectively. I

conclude that unresolved CO brightness can be a powerful discriminant between YSOs

and other stellar populations over large areas. In this project however I do not use CO

brightness as a classification feature for M 33 (Chap. 5) due to the spatial similarities

to far-IR emission already included as features.

4.9 The star formation environment in NGC 6822

I classified YSOs and YSO candidates in all the major (known) SFRs identified in

Fig. 4.1 as well as outside these regions in smaller numbers (Figs. 4.16 and 4.20). The

number of YSOs and candidates classified in each of the SFRs is provided in Table 4.4.

None of the YSOs or YSO candidates are coincident with the globular or young clusters

in the region (see Sect. 1.4.1).

The ratio of Hα emission from less embedded young stars to mid-IR emission from

warm dust surrounding embedded sources is greater in older, more evolved regions as

radiative feedback from massive young stars clears the interstellar medium. Using

a comparison of CO and Hα morphologies as well as the Hα/24µm emission ratio,

Schruba et al. (2017) suggest a more embedded stage of star formation for Hubble

IV and V indicative of a younger age, while Hubble I/III and X, that present fewer

signatures of embedded star formation (more dispersed morphologies and a higher

Hα/24µm) are more evolved.
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5’

Figure 4.20: RGB image of NGC 6822 (respectively Herschel PACS 160µm, Spitzer
IRAC 8µm and WFCAM J-band) with nYSO = 20 sources identified (magenta squares).
The seven SFRs are shown with the radii given by Jones et al. (2019). The regions
BHD 9/10, 18, 27 and Hubble IV−N are newly identified in this work as star formation
sites. The region marked with an upright triangle shows the position of the single YSO
discussed in the final paragraph of Sect.4.9.
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Using a similar methodology as Schruba et al. (2017), Jones et al. (2019) sug-

gest an evolutionary stage for Spitzer II and Spitzer III (newly identified in their work)

similar to that of Hubble IV and V, even though the former two look relatively in-

conspicuous in their fig. 10. They propose that Spitzer I is the youngest region due to

faint Hα and UV emission and strong mid-IR emission. Since many embedded YSOs

are identified in this region they conclude that the rate of star formation is near its

peak. Spitzer I is also the region with the highest number of YSOs in my catalogue. In

Fig. 4.20 the green glow of 8µm emission tracing warm dust is far greater compared to,

for example, Hubble I/III which is thought to be the more evolved SFR in NGC 6822.

Since I find a low number of YSOs and candidates in Spitzer II (see Table. 4.4),

I discuss this region in a little more detail. In Spitzer II there are 30 literature YSO

candidates of which all but four originate from the low reliability sample of Jones et al.

(2019); the remainder are one high and one medium reliability sources from Jones

et al. (2019) and two YSO candidates from Hirschauer et al. (2020). I find near-IR

counterparts for eighteen literature YSO candidates in this region, of which fifteen are

classified with nclass = 20 by the PRF analysis, but only two are classified as YSOs

(counterparts to one high- and one low-reliability YSO candidates, Jones et al., 2019).

In addition I identity a further three YSO candidates (10<nY SO < 20), two of which

are in the low-reliability sample. The remaining nclass = 20 sources in Spitzer II are

classified as five RGBs, four OAGBs, two CAGBs and two FGs. Therefore, given

that most literature YSO candidates were considered to be of low-reliability, it is not

surprising that I only find two YSOs and three candidates in Spitzer II.

Using Herschel far-IR and Spitzer mid-IR data Galametz et al. (2010) found that

region-integrated SEDs between 10− 100µm show signatures of evolution for some of

the H ii regions in NGC 6822. They propose that the 250µm/500µm emission ratio in

particular correlates with the 24µm emission and thus traces star formation activity.

According to that ratio (see their figure 3b), Hubble V would be the most active region

followed by Hubble IV, Spitzer I and Hubble X. These are the regions with the largest

number of YSOs both in my analysis and that of Jones et al. (2019). Given that

Hubble X and V have strong Hα emission, they would have evolved past the peak of
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star formation activity. Spitzer I and Hubble IV on the other hand would be at their

peak; for Spitzer I this is supported by the largest number of YSOs, however this is

less clear for Hubble IV.

Looking at the positions within the SFRs of the PRF-classified YSOs, in Hub-

ble IV and V the literature YSOs are more centrally concentrated. This is likely due

to limitations in recovering point sources within the centre of these bright SFR in the

near-IR images (see Sect. 3.1). In the other regions there is no significant difference

in the locations of the YSOs within SFRs. In Hubble I/III the PRF classifies YSOs

primarily in Hubble I and at the interface of the regions, in agreement with Jones et al.

(2019) who suggest that Hubble I is more actively forming stars.

One of the two unnamed clusterings of YSOs noted (but not discussed in detail)

in Jones et al. (2019) and recovered in my classification is coincident with a pair

of H ii regions; the first was designated Kα (Kinman et al., 1979) and the second

HK1 (Hodge et al., 1988). These regions are listed in the catalogue of Brunthaler

et al. (2006) as BHD 9 and 10; they are located around 19:44:32, −14:47:26, almost

directly South of Hubble I/III and to the West of the bar, away from the bulk of

star formation activity (Fig. 4.20). The other unnamed region is found to the North-

East of Spitzer III (at 19:44:42, −14:50:39) within 10 arcsec of the H ii region BDH 27

(Brunthaler et al., 2006), in which only a single YSO and two candidates are identified.

In a region in the bar approximately equidistant from Spitzer I and Hubble IV (at

19:44:55, −14:50:24) I find three YSOs and one candidate. This area is bright at 8µm

and in H i emission. The candidate YSO is coincident with a very bright Hα point

source or small bubble (BHD 18, Brunthaler et al., 2006). These three regions are

clearly seen in the 250µm/500µm ratio map of Galametz et al. (2010), suggesting star

formation activity is present. I label these newly identified regions of star formation

using the Brunthaler et al. (2006) denominations (BHD 9/10, 18, and 27) in Fig. 4.20

and list the number of YSOs in each region in Table 4.4.

I classify three YSOs and six candidates directly North of Hubble IV but outside

the SFR radius defined by Jones et al. (2019). The YSOs trace a line at the centre of this

region which I name as Hubble IV-N (located at 19:44:50.00 −14:51:31.0). Hubble IV-N
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is bright in both 8 and 160µm emission (see Fig. 4.20) but comparatively faint at 24

and 70µm. This region has no visible large-scale Hα emission and it is also relatively

bright in the 250µm/500µm ratio map of Galametz et al. (2010). The location of these

newly identified sources along with that of those found in BHD 18 are very suggestive of

additional star-formation activity in the bar of NGC 6822 between the major regions

Hubble IV and Spitzer I. Given that this analysis deals only with the most massive

YSOs (15− 50 M⊙, see Sect. 4.8.2) there is potential for more, lower-mass, YSOs to be

found in this bar region.

There is a YSO to the South-West of my field with nY SO = 20. At this location,

there is no UV emission in the images of Hunter et al. (2010), but the Hα image from

Massey et al. (2007a) shows a point source. Mid-infrared emission is also unremarkable

with a point-source source visible at 3.6µm but not at 8µm. Far-IR emission is not

prominent but this location is close to the edge of these images. This source is identified

with △ in Fig. 4.20 (located at 19:44:23.64, −14:54:07.9). This source could represent

an isolated YSO, perhaps at the lower mass limit of the current detection range.

In addition, there are a further thirteen isolated YSO candidates located outside

the SFRs in Fig. 4.20. These candidates are less certain (nYSO< 15), and thus I do not

discuss them further.

4.10 NGC6822 Summary

With a combination of near-IR and far-IR features I have used machine learning al-

gorithms based on a probabilistic random forest classifier (PRF) and t-distributed

stochastic neighbour embedding (t-SNE) to classify stellar populations in the main bar

of NGC 6822, covering all prominent SFRs.

The PRF was trained using three near-IR colours (J−H, H−Ks and J−Ks), Ks-

band magnitude and two far-IR brightnesses (at 70 and 160µm) and classifies sources

into eight target classes (YSO, OAGB, CAGB, RGB, RSG, MMS, FG and AGN) with

an estimated accuracy of 91 per cent across all classes rising to 96 per cent for YSOs



103

Table 4.4: The number of YSOs (nY SO = 20), candidate YSOs (10<nY SO < 20), and
training set extension YSO sources (see Sect. 4.3.2) classified in each of the previously
known SFRs in NGC 6822, as well as in newly identified YSO groupings (see discussion
in the text).

SFR YSO YSO candidate Training Set
number number Extension YSOs

Hubble I/III 9 4 1
Hubble IV 35 14 6
Hubble V 36 11 13
Hubble X 29 5 5
Spitzer I 90 49 26
Spitzer II 2 3 0
Spitzer III 2 0 1
BHD 9/10 4 1 2
BHD 18 3 0 1
BHD 27 1 2 0

Hubble IV-N 3 6 0

(based on the PRF confusion matrices of the test sample).

I used the same near- and far-IR features to construct (unsupervised) t-SNE maps

to identify stellar populations. Such maps are very effective in picking AGB stars (with

a clear differentiation between OAGBs and CAGBs), AGN and RSG stars. Without

additional information, the t-SNE maps seem however less powerful in identifying other

classes of sources, including YSOs.

The spatial distributions of most stellar populations are essentially as expected.

RSG stars, that trace the recent star formation history, occupy the bar of NGC 6822,

linking the more conspicuous SFRs. An extension of the bar to the South-East, into a

region which has indicators of youth (e.g. De Blok & Walter, 2000) is seen in the RSG

distribution, however no YSOs or candidates are classified there.

I classify a total of 324 YSOs and candidates. I confirm the nature of 125 out

of 277 literature YSO candidates with enough feature information. Additionally 136

YSOs and 63 YSO candidates are classified for the first time in my analysis. There was

no requirement imposed that YSOs and candidates need to be located in main SFRs
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(as was done in previous works), and have detected YSOs in the bar of NGC 6822

between the major SFRs. YSOs classified by the PRF have mass estimates between

∼ 15− 50 M⊙, representing the most massive YSO population in NGC 6822. Another

82 out of 277 literature YSO candidates are definitively classified as non-YSOs by the

PRF analysis.

I have identified YSOs in all known major star formation complexes in NGC 6822

(Hubble I/III, Hubble IV, Hubble V, Spitzer I, Spitzer II and Hubble X), but also in

smaller star formation sites: the Hii regions BHD 9/10 and 27 (Jones et al., 2019), as

well as new regions of star formation BHD 18 and a region to the North but physically

distinct from Hubble IV, that I name Hubble IV−N. The detection of massive YSOs in

new regions, especially in BHD 18 and Hubble IV−N, is very suggestive of additional

star formation occurring in the bar of NGC 6822 between the major previously known

SFRs. The prospect of detecting further YSOs in the bar region in the mass regime

below the sensitivity of this analysis remains to be explored.
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5 M33

The work presented in this Chapter has been published in Kinson et al. (2022), with

tables available on the VizieR database. Some minor adjustments were necessary to

incorporate the paper into this document. These changes do not affect the methods or

results presented.

M 33 is the third largest spiral galaxy in the Local Group, its favourable inclina-

tion (i= 54◦, De Vaucouleurs et al. 1991) makes M 33 a more favourable target over

the similarly distant but near edge on M 31 (e.g. Ma, 2001). M 33 contains several

prominent H ii regions and GMCs which have have been studied widely (Gratier et al.,

2010b; Miura et al., 2012; Corbelli et al., 2017; Alexeeva & Zhao, 2022). Using near-IR

photometry massive YSOs have been identified in the largest of these regions, NGC 604

(Fariña et al., 2012). I apply a PRF classifier (Chap. 2) using a methodology tested in

NGC 6822 (Chap. 4), to classify point sources across M 33. This allows me to identify

massive YSOs across the whole disk of a spiral galaxy outside the MW for the first

time.

The PRF methodology was applied to M 33 point sources, using a set of six

features: the near-IR Ks-band magnitude, three near-IR colours (J −H, H −Ks and

J −Ks) and two far-IR brightnesses at 70 and 160µm. The following section details

the sources selected for PRF training.

5.1 Sources in the training set

The training set for the PRF consists of sources from nine target classes. These are

Galactic foreground stars (FG), blue stars and yellow supergiant stars (BS), red super-

giant stars (RSG), oxygen and carbon rich asymptotic giant branch stars (OAGB and

CAGB), red giant branch stars (RGB), Wolf-Rayet stars (WR), massive young stellar

objects (YSOs) and finally unresolved background galaxies (AGN). Other classes of ob-

jects are present in the M 33 stellar population, but they are either dissimilar enough
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Figure 5.1: An RGB image of M 33, showing VLA H i (red, Gratier et al., 2010b),
250µm Herschel-SPIRE (green, Kramer et al., 2010), 24µm Spitzer-MIPS (blue, En-
gelbracht et al., 2004). The figure covers the same footprint as the near-IR WF-
CAM catalogue of Javadi et al. (2015). The spiral arm identifications, adapted from
Humphreys & Sandage (1980), are shown in white.
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from YSOs that their misclassification will not contaminate the YSO sample or are rare

(e.g. planetary nebulae) and so will not significantly impact the purity of the classified

YSO sample. Spectroscopically confirmed PN in M 33 from the catalogues of Magrini

et al. (2009) and Bresolin et al. (2010) were compiled (see also Delgado-Inglada et al.

2020). Crossmatching the PN to the near-IR catalogue gave only four sources with a

counterpart within a radius of 0.5 arcsec; hence insufficient sources were available to

construct a training set for a PN class. WR are included in the classification for M 33

which are not considered in NGC 6822 (Sect. 4.2) due to their rarity; including classes

of rare objects would however adversely affect the accuracy of the PRF classifier (see

Sect. 5.2). The BS class is analogous to the MMS class in Chap. 4, including additional

stellar types not numerous enough to warrant a separate class (Sect. 5.1.5).

The detailed selection criteria for each class is given in what follows. To main-

tain the purity of the training set stringent selection criteria are set, requiring sources

identified in the literature to have been classified on the basis of methods other than

broad-band photometry, e.g. spectroscopy, narrow-band indices or Gaia proper mo-

tions. In most instances, however, the catalogues from which training set sources are

drawn do not completely cover the area of the near-IR catalogue. The M 33 sources

in the training sample were crossmatched to the near-IR catalogue using a radius of

0.5 arcsec.

Most classes include exclusively sources in M 33, with the exception of the AGN

and RGB, that also include sources behind the MCs and in NGC 6822. Training set

YSOs come exclusively from the MCs and NGC 6822. The near-IR data for NGC 6822

and M 33 are however comparable. Therefore, it is the case that whilst the near-IR

catalogue to be classified may be affected by source blending, such effects are on the

whole also present in the training set data, providing the PRF with effective examples

on which to learn.
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5.1.1 Foreground Galactic sources

The training set of Galactic foreground contaminants includes sources from Massey

et al. (2016) with optical spectra consistent with Galactic dwarfs. They separate fore-

ground dwarfs from B-, A-, F- and G-type supergiants by the shape and strength

of their Balmer series lines, and the differing strengths of metallic lines (Si, Ca, K,

Ti, Mg and Sr). Additionally, using a similar PM histogram analysis as described in

Sect. 4.2.3 for NGC 6822, I include near-IR sources with a Gaia EDR31 (Gaia Col-

laboration et al., 2020) counterpart if their proper motion and associated error is

greater than 0.5 mas yr−1 in both RA and Dec components. Near-IR colour cuts at

0.3< J −Ks< 0.9 mag, defined using TRILEGAL foreground simulations (Girardi

et al., 2005) towards M 33, are then applied to remove spurious chance matches be-

tween the Gaia and near-IR catalogues. Whilst Galactic sources may be found outside

these cuts, to ensure purity of the FG training set I select only sources in the conspic-

uous vertical foreground sequences (see Fig. 5.3).

Foreground sources identified spectroscopically or with Gaia proper motions ex-

tend only to Ks∼ 16.5 mag; in order to accurately train the PRF, foreground sources at

magnitudes down to the limit of the near-IR catalogue (Ks∼ 20.5 mag) are needed. For

this purpose, I used the foreground population simulated with TRILEGAL already

mentioned. The simulated foreground source magnitudes were perturbed in J-,H- and

Ks by an amount sampled from a Gaussian distribution based on the average error bar

in the near-IR catalogue at similar magnitudes. Foreground stars have no preferen-

tial location in the field of view, therefore, to generate far-IR measurements for these

sources, apertures were placed randomly in the far-IR images and measurements taken

as described in Section 3.2.2.

1https://www.cosmos.esa.int/web/gaia/earlydr3
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5.1.2 Active galaxies

AGN have been shown to be significant contaminants in near-IR YSO samples due to

their colour similarities (e.g. Sewi lo et al., 2013; Jones et al., 2017). The strength of

the far-IR emission as a measure of the proximity to star formation activity can help

differentiate YSOs from contaminants such as AGN, as shown by Kinson et al. (2021).

I start from the AGN training sample from Kinson et al. (2021), which is comprised

of 89 background galaxies behind the SMC. This sample is classified using a variety

of data across multiple wavelengths including X-Ray, UV, near-IR and radio (Pennock

et al., 2021). This AGN sample was augmented with 36 sources behind M 33 taken

from the latest update of the MILLIQUAS compilation (the Million Quasars Catalog,

version 7.2, Flesch, 2021).

5.1.3 Asymptotic giant branch stars

AGB stars can display near-IR colours and magnitudes similar to bright massive YSOs.

OAGBs and CAGBs have distinct magnitude and colour properties due to the com-

position of their circumstellar dust envelopes (see Fig. 5.3) and thus are classified in-

dependently. The AGB sample is based on the catalogue of V and I broadband and

TiO and CN narrowband photometry towards M 33 (Rowe et al., 2005). Using V − I

and CN−TiO colour cuts defined by Rowe et al. (2005) I identified both OAGBs and

CAGBs from their catalogue. Both classes of AGB have V − I > 1.8 mag, with OAGBs

having colours of CN−TiO<−0.2 mag and CAGBs CN−TiO> 0.3 mag. From this

sample any sources with Gaia proper motions consistent with a Galactic foreground

dwarf (see Sect.5.1.1) were removed. Sources with a different classification in the spec-

troscopic samples of Massey et al. (2016) are also removed.

Ren et al. (2021) define near-IR colour and magnitude boundaries for both OAGB

and CAGB sources in M 33 (see their figure 10) which are adopted to refine the samples

from Rowe et al. (2005). These cuts are shown in Fig. 5.3. I also select only sources

brighter than the M 33 TRGB magnitude, Ks = 18.11 mag (Ren et al., 2021). Finally
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for the OAGBs I apply an upper magnitude limit at Ks = 14.8 mag, which includes

all variable AGB sources identified in Javadi et al. (2015) and thermally pulsing AGB

models from Ren et al. (2021), to separate from RSGs.

5.1.4 Red giants and supergiants

RGB stars are a significant population that exhibit similar colours and magnitudes to

faint YSOs. I began with M-type stars identified in Rowe et al. (2005) as described

in subsection Sect. 5.1.3. Sources were rejected from the RGB sample if their Ks-band

magnitude was brighter than the TRGB magnitude (Ks = 18.11 mag, Ren et al., 2021).

Since RGBs and Galactic foreground sources overlap in colour-space at fainter magni-

tudes (e.g. Kinson et al., 2021), any source with a Gaia proper motion consistent with a

Galactic star (see Sect.5.1.1) were rejected. A colour cut was made at J −Ks> 0.8 mag

to remove spurious near-IR matches; this value was selected based on the TRILEGAL

(Girardi et al., 2005) Galactic foreground simulation mentioned in Sect.5.1.1.

The Rowe et al. (2005) sample includes only RGBs brighter than K ∼ 18.9 mag.

Therefore the sample was augmented with additional spectroscopically confirmed fainter

RGB sources from NGC 6822 (scaled to M 33 distance, see table. 1.1), using the RGB

training set compiled in Kinson et al. (2021). The process by which RGBs from both

galaxies are combined to form the training class is discussed further in Section 5.2.

RSG stars are a young population (∼ 10− 30 Myrs, Britavskiy et al., 2019) which

may contaminate the brighter end of a YSO sample. They can be dusty and due to

their relative youth are located near sites of star formation (e.g. Hirschauer et al.,

2020; Kinson et al., 2021). RSGs were identified from optical and IR photometry using

machine learning techniques in Maravelias et al. (2022), however as these sources lack

further confirmation, such as spectroscopy, they are not included in the training set

in order to maintain its purity. I adopt spectroscopically confirmed RSGs from the

catalogue of Massey et al. (2016), confirmed based on their radial velocities and the

presence of a strong Ca ii triplet in their spectra. Using the RSG training set employed

in NGC 6822 (Kinson et al., 2021) as a guide, colour cuts at 0.4<J −Ks< 2.5 mag
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were made to remove a small number of spurious near-IR matches.

5.1.5 Blue stars

I include a class for bright and bluer stellar sources in M 33. These include bright main-

sequence stars as well as other classes not numerous enough to warrant a separate class;

these are labelled collectively as ‘blue stars’ (BS) in my classification scheme. These

stars represent a younger population in M 33 compared to e.g., AGB or RGB classes. A

machine learning based, photometric identification of these populations is presented in

Maravelias et al. (2022) however as with RSGs (see Sect. 5.1.4) their catalogues cannot

be used to populate the BS class due to the lack of higher level classification.

The BS class is populated with spectroscopically confirmed O-, B- and A-type

main-sequence stars from the catalogues of Massey et al. (2016). Main-sequence stars

were sorted into their spectral types based on the relative strengths of Balmer lines

(Hδ, Hγ and Hβ) and the presence and ratio of He lines. Additionally included are

sources they classified as Luminous Blue Variables (LBV), yellow super giant stars

(YSGs) and H ii regions. Massey et al. (2016) separate LBVs from unresolved H ii

regions based on the presence of strong Fe ii lines (Massey et al., 2007b). YSGs were

identified using radial velocities and the presence of the O i triplet at λ∼ 777.4 nm, to

separate YSGs from foreground yellow dwarfs (Drout et al., 2012). Further colour cuts

are set at −0.5<J −Ks< 0.3 mag.

5.1.6 Wolf-Rayet stars

Wolf-Rayet (WR) stars are a relatively rare population with only ∼ 200 confirmed

across the disk of M 33 (Neugent & Massey, 2011); they can present near-IR colours

similar to those of YSOs and are often located close to regions of ongoing star formation

(Massey et al., 2007b; Fariña et al., 2012). Therefore, WR stars can contaminate YSO

samples and are included in my classification scheme. The WR training set is comprised
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of spectroscopically confirmed sources from the catalogues of Massey et al. (2016) and

Neugent & Massey (2011).

5.1.7 Young stellar objects

The training sample of YSOs contains sources from both the Magellanic Clouds and

NGC 6822. YSOs with scaled near-IR magnitudes brighter than the detection thresh-

olds in Sect. 3.2.1 were selected from catalogues of spectroscopically confirmed YSOs,

Oliveira et al. (2013) for the SMC and Jones et al. (2017) for the LMC. Near-IR data

for these sources were transformed from the IRSF photometric system (Kato et al.,

2007) to the WFCAM photometric system as detailed in Kinson et al. (2021). This

resulted in 69 LMC and 26 SMC sources for the YSO training class. I further include

55 YSOs in NGC 6822. These YSOs were first identified in Jones et al. (2019) and

Hirschauer et al. (2020) using mid-IR photometry and SED fitting with evolutionary

models (Robitaille et al., 2006; Robitaille, 2017), and confirmed using machine learning

techniques (Kinson et al., 2021, see Sect. 4.3.2).

5.2 Down-sampling of large training classes

When one or more particularly numerous classes dominate the training set, the clas-

sifier training is faced with many more examples of those classes to the detriment of

sparser classes. Hence the balance of class sizes in the training set affects classifier

performance (e.g. Khoshgoftaar et al., 2007; More & Rana, 2017). Due to real astro-

physical population differences as well as the varied selection methods, the number

of sources available for each class vary from 85 for WR to ∼ 7000 for FG. To ensure

the PRF has the highest possible accuracy across all classes it was necessary to down-

sample the four most numerous training set classes, FG, RGB, OAGB and CAGB. The

positive effect of the down-sampling on classifier accuracy is shown in Sect. 5.3.

The RGB training sources come from two sets of data, one in M 33 and an-
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Table 5.1: Number of sources for each class for the five training sets (see Sect. 5.1) after
down-sampling of large training classes (see Sect. 5.2).

PRF class Number TS Sources
YSO 150
OAGB 172
CAGB 91
AGN 125
FG 283
RGB 200
RSG 180
BS 347
WR 85
Total Sources 1631

other from NGC 6822 (see Sect. 5.1.4). Given the very different properties of these

two galaxies (namely in terms of total stellar mass: MNGC6822∼ 1.5× 108 M⊙, Madden

et al. 2014; MM33∼ 5.5× 109 M⊙, Corbelli et al. 2014; Kam et al. 2017), and vastly

different source density in CMD/CCD parameter space, these two RGB populations

cannot just be added without introducing non-astrophysical biases that would affect

the classifier performance. It was therefore necessary to down-sample the RGB sample

from M 33 to be more comparable with that of RGBs from NGC 6822. This was done

by comparing the fraction of NGC 6822 RGBs above and below the M 33 sample cut-off

when scaled to the same distance (see Sect. 5.1.4). Reducing the M 33 RGB sub-sample

by a factor of 1 in 24 provides homogeneity in the combined NGC 6822 and M 33 RGB

sub-samples across the M 33 RGB cut off. For simplicity, the same down-sampling

factor was applied to the other large classes (FG, OAGB and CAGB).

In total I performed the down-sampling of the four larger classes randomly five

times to create different training sets for the PRF. This number was selected based

on achieving a stable number of YSOs recovered in common with each down-sampled

training set. The selection of sources in each training class was checked to ensure that

the parameter space for each class was fully represented in each down-sampling (e.g.

Fig. 5.3). Nevertheless it is somewhat inevitable that down-sampling of the large classes
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Figure 5.2: The number of nYSO = 20 sources classified in common for increasing down-
sampled training set selections.

will introduce some stochastic selection effects. Such effects, as well as those resulting

from the train/test splitting of the sample, are counteracted by repeating both down-

sampling and train/test splitting multiple times. If the stochastic effects from the

selection of training data dominate, then the number of sources in common classified

for a particular class will decrease with each additional down-sampling selection.

Each down-sampled training set was used for 20 PRF runs, hence a maximum

score of nclass = 20 is available for a source per down-sampled training set. Figure. 5.2

shows the number of sources which achieve nYSO = 20 for distinct down-sampling se-

lections; beyond four selections the number of YSOs returned in common between the

runs does not decrease significantly. This indicated that five distinct down-sampling

selections were sufficient to robustly account for any stochastic effects.

The number of sources in each training set class are given in Table 5.1. Each

training set was used to train a PRF classifier which was run 20 times with different

random seeds for the train/test split, totalling 100 runs. With the training set in
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M 33 defined above, the PRF classifier was applied 100 times to the remaining 162,746

sources with all three J H Ks bands in the catalogue.

5.3 Confusion matrices

Confusion matrices provide a helpful visualisation of the classifier’s accuracy. Each

matrix shows the PRF classification of the 25 per cent of sources in the test set clas-

sified using the remaining 75 per cent of training set sources. In Fig. 5.4 the confusion

matrices, both non-normalised and normalised, show the accuracy of a PRF classifier

using the training set without any down-sampling applied. High classification accu-

racy is achieved for the large classes to the detriment of all other classes: sources

from the smaller classes are often misclassified into the four large classes. In particu-

lar for YSOs, without down-sampling the PRF achieves accuracies ranging from 55 to

75 per cent across the 100 runs with a median value of 66.5 per cent.

Figure. 5.5 shows the PRF matrices, using the same random seed as those shown

in Fig. 5.4, with down-sampling applied as described in Sect. 5.2. In general an im-

provement in the overall PRF classification accuracy, exemplified by the strong diag-

onal feature in the normalised matrix, is evident. In particular the YSO classification

accuracy significantly improves, ranging from 62 to 97 per cent, with a median value of

82 per cent across all runs. Across the 100 PRF runs the median class-averaged accu-

racy is 87 per cent. The estimated accuracy per PRF is skewed by the WR class which

performs significantly worse than all others by a large margin (see Fig. 5.5); source

misclassification and contamination are discussed in the following section.

5.3.1 Potential misclassifications and class contamination

As already mentioned, YSOs in the training set are recovered with high accuracy (me-

dian accuracy of 82 per cent). More specifically 67 PRF runs achieve an YSO accuracy

of over 80 per cent, and only 4 runs have accuracy below 70 per cent. Misclassified
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Figure 5.3: A CMD showing the four large classes, with the full set of data shown
by open symbols and the down-sampled data by filled symbols. The parameter space
for each class is well represented by the down-sampled data. The TRGB magnitude
(Ks = 18.11 mag) and AGB colour-cuts adapted from Ren et al. (2021) are shown by
the red and black lines respectively.
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Figure 5.4: Non-normalised (top) and normalised (bottom) confusion matrices for an
example PRF run with no class down-sampling (see text). The large classes achieve
high accuracy, however for the smaller classes high levels of confusion are evident.
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Figure 5.5: Non-normalised and normalised confusion matrices (respectively top and
bottom) for the PRF run using the same random seed as those shown in Fig.5.4, but
here with class down-sampling (see text). The misclassifications for the smaller classes
are very effectively reduced.
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training set YSOs are most often placed into the OAGB, RGB and WR classes. Some

OAGB, RGB and dusty WR stars have similar near-IR colours and magnitude to YSOs

which is the likely cause for the confusion in the PRF’s classification. Additionally WR

stars are likely to be associated with sites of bright far-IR emission (e.g. Fariña et al.,

2012) similar to YSOs.

The YSO class suffers from very low levels of contamination from other classes;

the highest fraction of incorrectly classified YSOs in the test sample are WRs due

to the similarities noted above. Dusty WRs are however relatively rare therefore the

absolute contamination of YSOs remains very low. The opposite happens for the RGB

class: their fractional contamination to the YSO class is low however they are very

numerous, meaning RGBs can still be important contaminants of the YSO sample. I

use training set sources that after down-sampling are returned to the main catalogue

to further investigate YSO contamination in the final classifier output (Sect. 5.4).

There are eight classified sources which have counterparts in the PN catalogue

mentioned in Sect. 5.1 (see also Delgado-Inglada et al., 2020), within ∼ 1 arc sec. Of

these sources two are classified as YSOs, with the remainder three RGBs, one OAGB,

one CAGB and one FG. Due to the larger separations (∼ 1 arc sec), it is unclear whether

these are the correct counterparts. To investigate this further, I compared the scaled

brightnesses of LMC PN taken from Reid (2014) with the M 33 classified catalogue.

Both YSOs coincident with PN have Ks ∼ 17.5 mag equivalent to the most extreme

LMC PN. Furthermore the majority of PN would be expected to lie below the magni-

tude range of the classified YSOs (see Fig. 5.7). Based on this comparison, contamina-

tion of YSOs by unidentified PN is not expected to be significant.

As noted previously, WR is the worse performing class. This class has the fewest

training sources available (85 sources), and is misclassified into AGN, BS, FG, RGB

and YSO classes. Of these the BS class is the dominant misclassification, in some runs

even out-scoring the correct classification (see Fig. 5.5). The lower performance of the

PRF in WR classification is a consequence of previously discussed similarities to other

classes and the small training set size for this class.

RSGs are consistently correctly classified in many PRF runs (up to 100 per cent
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as shown in Fig. 5.5). These sources occupy a region of parameter space distinct from

other classes: RSGs are as bright as the upper vertical FG sequences but much red-

der. Coupled with above average far-IR brightnesses, this allows the PRF to easily

distinguish between RSG and FG sources.

For the AGNs some confusion with the OAGB and CAGB classes is seen, likely

due to the fact that AGN can have near-IR colours similar to those of the AGB pop-

ulations (Hony et al., 2011; Pennock et al., 2022a). A similar effect was also seen in

AGN classifications behind NGC 6822 (Kinson et al., 2021).

5.4 Final classifier outputs

Each of the individual 100 PRF runs provides a classification for all sources not

included in the training/testing sets. These 100 classifications provide a score be-

tween 0 and 100 for each source and for each class, nclass with class = YSO, FG,

etc. The PRF classifies 41 per cent of sources consistently into the same class (i.e.

max(nclass) = 100), more specifically between 30 per cent in the central region affected

by crowding and 42 per cent in the outer disk (see Sect. 5.5). Figure 5.6 shows the

distribution of nclass values (see Sect. 4.2) for all non-training set sources. The two

smaller peaks at nclass = 20 and 80 arise from the five down-sampling runs. They occur

when the 20 PRF runs for a particular down-sampled training set attribute nclass = 0

or nclass = 20 to a source, in a class distinct from the classification of the four other

down-samplings sets. This is a consequence of high classifier confidence across multiple

runs with the same training set data and highlights the importance of using multiple

down-samplings to account for such stochastic effects (see Sect. 5.2).

The nclass = 100 sources are included in my subsequent analysis, and are hence-

forth referred to as classified. The breakdown of the 66,378 classified sources into the

different PRF classes is given in Table 5.2.

In Fig. 5.7, I present a CMD, colour-colour diagram (CCD) and far-IR brightness

plot for both training/testing set data and classified sources. The plots show that,
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Figure 5.6: The distribution of the number of PRF classifications for each source across
all classes. The most common classification is nclass = 100. Smaller peaks at nclass = 20
and 80 can be seen where sources with nclass = 0 or 20 in a single down-sampling affect
the overall distribution (see text). The very large peak at nclass = 0 is omitted from the
histogram for clarity.

Table 5.2: Number of sources in M 33 classified into each PRF class and total number
sources including those from the training set after down-sampling of the largest classes
(see Sect. 5.2).

PRF Class Classified Training & classified
sources sources

YSO 4985
OAGB 18214 18387
CAGB 2086 2177
AGN 3757 3793
FG 5294 5577
RGB 27422 27498
RSG 1424 1604
BS 3111 3458
WR 82 167
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Figure 5.7: CMD, CCD and far-IR brightness plots of the training set sources (left) and
for the classified sources (right). Colour-coding is given in the legend. The reddening
line shown in the CCD plots is derived using the coefficients from Rieke & Lebofsky
(1985).
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for every class, training and classified sources occupy a similar position in parameter

space. Whilst both training and classified YSOs cover a similar range of J −Ks colours

from 0.5 to 5 mag, and Ks-band magnitudes from 16 to 21 mag, at magnitudes fainter

than Ks = 19.5 mag classified YSOs are seldom redder than J −Ks = 2.5 mag. This is

primarily due to fact that some training set YSOs can have J- and H-band magnitudes

fainter than the near-IR catalogue’s detection thresholds (see Sect. 3.2.1). This arises

from practical considerations in the design of the near-IR observations, with shorter

wavelength images not deep enough to characterise the redder sources, being these

YSOs or AGBs. Therefore the faintest YSOs identified are not particularly red, and,

as expected, no classified YSOs are found outside the colour and magnitude ranges

described by the training set YSOs. Rather than a bias of the PRF algorithm this is

instead evidence of the completeness issues in the near-IR catalogue.

Figure 5.7 also shows that whereas in the training set there is a region of the

CMD occupied by both OAGBs and CAGBs brighter than Ks = 16 mag, in the classi-

fied sources this region is dominated by AGN classifications. These sources are likely

missclassified due to the confusion between these classes commented upon in Sect. 5.3.1.

I discussed potential YSO contamination in Sect. 5.3.1. The confidence matrices

however only provide the likelihood of contamination for a single PRF run; for a source

to effectively become a contaminant of the YSO class, it needs to be consistently

classified in that class 100 times. In total 655 sources are excluded from the RGB, FG,

OAGB and CAGB training sets after down-sampling (see Sect. 5.2). These sources

from the training set that are returned to the catalogue with known classification are

used to provide an additional estimate of class contamination alongside the statistics

provided by the confusion matrices (Sect. 5.3). Of these 655 sources, 358 (∼ 55 per cent)

are classified by the PRF (i.e. achieve nclass = 100), with 330 assigned to the correct

literature class (i.e. 92 per cent of classified sources are correctly classified). The 28

incorrectly classified sources (seventeen OAGBs, three CAGBs and twelve FGs) are

misclassified as sixteen RSGs, eight AGNs and four BSs. None of these sources are

classified as a YSO. Noteworthy is the fact that despite the considerations discussed

in Sect. 5.3.1, none of the RGBs are misclassified, as YSO or any other class.
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5.5 Spatial distributions

As noted in Sect. 3.2.1 sensitivity issues become apparent for Ks> 19.2 mag. The ef-

fects of source crowding increase significantly towards the centre of the galaxy (central

∼ 7× 7 arcmin2 region), since evolved star density profiles decrease as a function of ra-

dial distance (e.g. Rowe et al., 2005; Williams et al., 2021). Due to crowding the PRF’s

classifications are less certain in the central region, with a larger fraction of sources be-

ing assigned nclass< 100, effectively remaining unclassified by the PRF. While crowding

affects the identification for all classes, classes dominated by fainter sources are more

severely affected.

In Figs. 5.8, 5.9 and 5.10 the spatial distributions of classified sources for each

class are shown. Figures 5.11, 5.12 and 5.13 show the spatial distributions of classified

sources in the central region of M 33, to highlight the complex environment. Some

salient features of non-YSO distributions are briefly described, however a thorough

discussion is beyond the scope of this project. The YSO distribution are discussed in

Sect. 5.7.

AGN and FG sources are fairly evenly distributed across the field as expected.

AGNs are less frequently identified in the crowded central region of M 33, since the

increased point-source density and brighter completeness limit there make it very diffi-

cult to identify background sources. Furthermore, as noted in Sects. 5.3.1 and 5.4 there

is some confusion between the AGN and AGB classes. These effects are most apparent

in the centre of M 33 where the AGN distribution appears less uniform than in the

outer regions. The FG class shows some correlation with the overall catalogue source

density outside the centre of M 33 especially at fainter magnitudes. This behaviour is

reversed in the central region where FG sources are seldom classified, consequence of

the crowding and associated completeness issue.

The AGB and RGB classes show distributions throughout the disk of M 33 in

agreement with the source density distributions previously reported (Javadi et al., 2015;

Williams et al., 2021). The faint two arm morphology seen in the RGB and combined

OAGB and CAGB distributions in the inner ∼ 20× 10 arcmin2 region (Williams et al.,
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Figure 5.8: Spatial distributions for the AGN, FG, BS and WR classes. Sources with
Ks< 19.2 mag and Ks⩾ 19.2 mag are shown respectively in red and blue. The full
catalogue is shown in the background.
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Figure 5.9: Spatial distributions for the RSG, OAGB, CAGB and RGB classes. Colour-
coding as in Fig. 5.8.



127

Figure 5.10: Spatial distributions for the YSO class. Colour-coding as in Fig. 5.8.

2021) is recovered. The CAGB class does not exhibit a source density increase towards

to the centre of M 33, as is seen in the OAGBs, in agreement with the density profiles

observed by Rowe et al. (2005). The strong ring-like CAGB structures (at ∼ 3.5 kpc

from the centre of M 33, Block et al. 2004, 2007) are not seen in my analysis. As

already mentioned, in the central region, crowding affects the PRF classification, with

fewer classified faint sources present, as seen in particular for the RGB distribution.

The BS and RSG classes represent stellar populations younger than AGB and

RGB classes. Their distributions are highly structured, more closely associated with

the spiral arms. For the BS class this morphology is in general agreement with the dis-

tribution of the young main-sequence population in the central region of M 33 (Williams

et al., 2021, MS distribution in their figure 22). The RSG distribution closely resembles

that found by Massey et al. (2021, see their figure 11) and Ren et al. (2021, see their

figure 11). The WR source distribution, even though very sparse, loosely follows the

distribution of YSOs (Sect. 5.7).
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Figure 5.11: Spatial distributions of classified CAGB, OAGB, RGB and BS sources (red
circles) in the central region of M 33, overlaid on an RGB image: VLA H i (red, Gratier
et al., 2010b), 250µm Herschel-SPIRE (green, Kramer et al., 2010), 24µm Spitzer-
MIPS (blue, Engelbracht et al., 2004). SFRs identified by the DBSCAN analysis
(Sect. 5.6) are shown by the white circles.
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Figure 5.12: Spatial distributions of classified AGN, FG, WR and RSG sources. Images
and symbols as in Fig. 5.11.
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Figure 5.13: Spatial distributions of classified YSO sources.Images and symbols as in
Fig. 5.11.

5.6 YSO distribution and clustering

The PRF identifies 4985 YSOs across the disk of M 33; their properties are listed in

Table 5.3 and their distribution is shown in Fig. 5.14. As already discussed, the PRF

classifies ∼ 30 to ∼ 42 per cent of sources in the catalogue; therefore this YSO sample

is robust but unlikely to be complete. The YSO sources are found mostly in the

central region of the galaxy and on the two major spiral arms of M 33, I-N and I-S (see

Fig. 5.1). Arms I-N and I-S contain ∼ 300 YSOs each, with a similar total YSO mass

(see Sect. 5.8 for details on YSO mass estimates). The area adjacent to the base of I-S

in which many YSOs are found is the base of arm IV-S (Humphreys & Sandage, 1980).

A small number of YSOs lie further along the other spiral arms.

I identify SFRs in M 33 by examining the spatial clustering of classified YSOs.

These YSO clusters were identified using a Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN, Ester et al., 1996). DBSCAN is a clustering algorithm
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Figure 5.14: YSO distribution in M 33, with the spiral structure adapted from
Humphreys & Sandage (1980) overlaid (colour-coding as in Fig. 5.8).
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which finds density-based associations in spatial data. This process was performed us-

ing deprojected coordinates (see Appendix C, for details).

DBSCAN requires two parameters that can be tuned to the data: a minimum

number of YSOs in a cluster and a distance parameter ϵ, the furthest distance at which

a neighbour is selected. The minimum YSO number is set to eight, selected to avoid

splitting the most apparent clusters and consistent with the value used in a similar

analysis in NGC 6822 (Jones et al., 2019). I optimised the choice of ϵ using a k-nearest

neighbours (k-NN) method. It analyses the distances between individual YSOs and

finds the “elbow-point” in the distance distribution which is the optimal value for ϵ

(Rahmah & Sitanggang, 2016).

The initial run of DBSCAN (ϵ= 0.1551 kpc) identified 23 spatial associations

or “clusters” but was unable to identify clusters in the central region of M 33 where

the source density is much higher. To recover additional clusters, the process was

repeated with progressively smaller ϵ values using those YSO sources that remained

unassigned (see Table. 5.4). This process was repeated five times, after which the ϵ

distance returned by the k-NN analysis effectively plateaued. This methodology of

varying ϵ in successive runs was compared with Hierarchical-DBSCAN (HDBSCAN,

McInnes et al., 2017), which employs a singular, automated ϵ selection method. Across

the disk of M 33, HDBSCAN is significantly more biased towards larger cluster radii

compared to DBSCAN. Furthermore HDBSCAN performs significantly worse in the

outer regions of the disk allocating seemingly isolated YSOs at very large distances

(∼ 500 pc) to clusters, whereas using DBSCAN over multiple runs selecting decreas-

ing ϵ values gives a tighter spatial association. These unrealistic larger cluster radii

would negatively affect later analysis of SFRs (Sect. 5.7), and hence using DBSCAN

with multiple ϵ values was selected as the preferable clustering algorithm. Overall,

DBSCAN identifies 62 YSO clusters.

A visual inspection of the YSO source distribution revealed a small number of

additional YSO clusters that did not meet the DBSCAN criteria. One example is the

H ii region IC 133, which has many indicators of massive star formation such as H2O

and OH maser emission (respectively Churchwell et al., 1977; Staveley-Smith et al.,
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Figure 5.15: Clusters of YSOs identified by DBSCAN, displayed in deprojected co-
ordinates. The central region (see text) without identified clusters is shown in light
grey colour. This projection is rotated by 90 degree clockwise with respect to the sky
coordinates shown in Fig. 5.14.
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1987), but was not identified by DBSCAN due to its nine YSOs being spread across a

larger area (131 pc or 32 arcsec). Six more clusters were identified by eye. A total of 68

YSO clusters (henceforth referred to as SFRs) were identified across the disk of M 33,

ranging in size from 31 to 550 pc (7.5 to 132 arcsec) and containing between 3 and 211

YSOs. The radii of the SFRs are broadly consistent, albeit at the higher end, with the

distribution of GMC sizes in M 33 analysed by Corbelli et al. (2017); the relationship

between SFRs and GMCs is discussed in Sect. 5.7.3. The SFR spatial distribution in

deprojected coordinates is shown in Fig. 5.15. The centre of each SFR is defined as

the average of the members’ positions and its radius is the largest distance from this

average position. This definition of SFR size is consistent with that used by Jones

et al. (2017) in NGC 6822, allowing for a direct comparison of SFR properties in both

galaxies (see Sect. 5.7). SFR properties are listed in Table 5.5.

As discussed previously, in the central dense region of M 33 DBSCAN was un-

able to recover YSO clusters. In total 1986 YSOs were assigned to a SFR listed in

Table 5.5, 562 were unclustered and 2437 were left in the central dense “remnant”

(∼ 11.6× 10.4 arcmin2 or 2.8× 2.5 kpc2 in size, light grey in Fig. 5.15). In general, the

PRF works less well in this central region, with only 30 per cent of sources classified

as opposed to 41 per cent in the arms. As already discussed, fewer than expected

RGB sources are identified in this region (see Figs. 5.9, 5.11 and Sect. 5.5). Given

their expected centrally peaking distribution in the M 33 disk and strong overlap in

colour-magnitude space with YSOs (see Fig. 5.7), RGBs are an important contami-

nant class (see Sect 5.3.1), even if no known RGBs are misclassified as YSOs by the

PRF (Sect. 5.4). Nevertheless, assuming in extremis that all 811 YSOs overlapping the

RGB region of the CMD space are contaminants, I estimate that at most 30 per cent

of YSOs in this region could be wrongly classified as RGBs. I take this into account in

the analysis in Sect. 5.8.

In Fig. 5.16 the number of YSOs per SFR and the size of each SFR are shown

against the deprojected radial distance to the centre of M 33: the largest and more

numerous clusters are found closer to the central region. Figure 5.17 shows the distri-

bution of number of YSOs and radii for the 68 SFR regions identified with DBSCAN.
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Figure 5.16: Number of YSOs (top) and radius (bottom) for each SFR identified by
DBSCAN as a function of radial distance. A decrease in size with increasing distance
from the centre is seen in both panels.
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Figure 5.17: Histograms showing the distribution of number of YSOs and radii for the
68 YSO clusters identified with DBSCAN.



137

Table 5.3: Catalogue of YSOs in M 33 classified using the PRF analysis. For YSOs
assigned to a SFR by the DBSCAN analysis, the SFR ID is given. YSO mass estimates
are discussed in Sect. 5.8. A sample of the table is provided here, the full catalogue is
available in the online material of Kinson et al. (2022).
RA (J2000) Dec (J2000) J Jerr H Herr K Kerr SFR mass

h:m:s deg:m:s mag mag mag mag mag mag ID M⊙
01:33:49.16 +30:40:17.7 18.48 0.066 17.89 0.047 16.99 0.051 13.9
01:34:10.32 +30:36:40.7 19.17 0.061 18.28 0.078 17.28 0.057 26 12.9
01:34:06.18 +30:37:47.3 19.03 0.054 17.77 0.050 16.35 0.039 39 19.8
01:33:48.66 +30:44:48.3 19.48 0.143 18.55 0.107 18.04 0.087 48 20.1
01:33:37.54 +30:36:02.1 21.13 0.260 20.25 0.306 19.85 0.318 56 9.4

Table 5.4: ϵ distances used in the DBSCAN clustering analysis and the cumulative
number of clusters recovered after each step (see text).

ϵ Identified
(kpc) clusters
0.1551 23
0.1064 41
0.0885 50
0.0852 58
0.0824 62
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5.7 The star forming regions in M33

In this section I discuss the observed properties of SFRs in M 33 and discuss their

evolutionary status, using SFRs in NGC 6822 (analysed using similar methods) as a

benchmark.

5.7.1 SFR observed properties

Integrated optical to far-IR brightnesses can be used to characterise and probe the

star formation activity in SFRs. Hα emission in SFRs arises from unobscured massive

YSOs and young massive stars, whilst emission at 24µm traces warm dust associated

with recent star formation activity (e.g. Kennicutt & Evans, 2012). In order for Hα

emission arising from massive young stars to be observed, sufficient time for the ionising

radiation and winds of those stars to clear the surrounding, obscuring dust must have

passed. Hence the ratio of Hα to 24µm provides a measure of the levels of exposed

to embedded star formation respectively (e.g. Schruba et al., 2017) and from this the

relative ages of SFRs can be estimated (Jones et al., 2019). Recently, both Hα and

24-µm emission have been used as indicators of youth in age estimations of stellar

clusters (with ages > 2 Myr) across the disk of M 33 (Moeller & Calzetti, 2022).

The ratio of far-IR emission has been shown to spatially correlate with other

shorter wavelength tracers of star formation across many nearby galaxies (Boselli et al.,

2010) including in M 33 (Tabatabaei et al., 2007; Kramer et al., 2010). Specifically, the

ratio of 250-µm to 500-µm emission in H ii regions across NGC 6822 correlates well

with other tracers of ongoing star formation (Galametz et al., 2010), pinpointing SFRs

analysed in detail in more recent studies (Jones et al., 2019; Kinson et al., 2021).

Longer wavelength emission is especially valuable at tracing the earliest stages of star

formation, in which light emitted at shorter wavelengths is either obscured by dust

(e.g., Hα) or the dust has not been sufficiently heated to become bright at mid-IR

wavelengths.

Thus optical to far-IR emission can be expected to peak at different stages of



140

the evolution of a SFR. A higher flux at longer wavelengths compared to Hα suggests

rising star formation activity (e.g. Jones et al., 2019); the opposite behaviour is ex-

pected for regions in which star formation is ending and exposed massive stars begin

to move onto the main sequence (e.g. Lada & Lada, 2003; Portegies Zwart et al., 2010).

Hence by comparing the ratios of Hα to 24µm and 250µm to 500µm ([Hα]/[24µm] and

[250µm]/[500µm] respectively) for several SFRs it is possible to establish their evolu-

tionary sequence.

For each SFR identified by the DBSCAN analysis background subtracted aper-

ture photometry was performed in Hα, 24-µm Spitzer-MIPS, 250- and 500-µm Herschel-

SPIRE images (see Sect. 3.4 for image details) to measure an average brightness within

each aperture. The position and size of the apertures were set to the SFR centre and

radius (see Table 5.5). In order to calibrate the properties and evolutionary status of

SFRs in M 33 I used regions in NGC 6822 that have been well-characterised in the

literature (Schruba et al., 2017; Jones et al., 2019; Kinson et al., 2021) as a benchmark.

Positions and radii for NGC 6822 SFRs were taken from table 9 of Jones et al. (2019).

These seven regions are the complete census of significant sites of star formation in

NGC 6822. I do not include in this analysis the smaller SFRs newly identified in Kin-

son et al. (2021) since they are significantly smaller and an established evolutionary

sequence is not available for these regions.

Figure 5.18 shows SFR measurements in M 33 and NGC 6822: Hα brightness

against 24-µm brightness (upper panel), the far-IR 250- and 500-µm brightnesses

(lower panel). Fig. 5.19 shows the ratio of [Hα]/[24µm] against [250µm]/[500µm]. The

Hα and 24-µm brightnesses appear loosely correlated while the 250-µm and 500-µm

brightnesses show a much tighter correlation (for M 33 SFRs, rpearson∼ 0.24 and 0.95

respectively). The 24-µm brightnesses for the SFRs in the two galaxies appear broadly

consistent; the Hα brightnesses for SFRs in NGC 6822 are higher than those in M 33,

with none falling below ∼ 20 counts per pixel. As noted in Sect. 3.4, the two Hα images

are taken with similar instruments and are calibrated in a consistent way (see tables

1 and 2 of Massey et al., 2007b), hence counts can be confidently compared between

images.
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Figure 5.18: Photometric measurements for each SFR in M 33 and NGC 6822 (red and
blue symbols respectively): Hα and 24µm (upper), 250 and 500µm (lower). The sym-
bol size is proportional to the number of YSOs in each region (crosses mark particularly
small regions); YSOs numbers for each SFR in M 33 and NGC 6822 are respectively
from my analysis and from Kinson et al. (2021). In the lower panel loci for modi-
fied blackbodies of different temperatures (colour-coded) and β = 2 and 1.5 (solid and
dashed lines respectively) are shown. Significant SFRs are labelled (see text).
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Figure 5.19: The ratio of photometric measurements [Hα]/[24µm] and
[250µm]/[500µm] for each SFR in M 33 and NGC 6822. Symbol sizes and colours are
as in Fig. 5.18.

The higher Hα brightnesses for SFRs in NGC 6822 may be a consequence of its

lower metallicity (∼0.2 Z⊙, e.g. Skillman et al., 1989; Richer & McCall, 2007). At low

metallicity, the interstellar medium (ISM) is more porous allowing for increased leakage

of ionising radiation (Madden et al., 2006; Dimaratos et al., 2015). This effect has been

used to explain the observed ISM properties in many dwarf galaxies (Cormier et al.,

2015, 2019). The resulting increased mean free path for far-UV photons could therefore

make Hα-emitting regions in NGC 6822 larger and brighter, compared to those in M 33.

In Fig. 5.18 (lower panel) the loci of theoretical modified blackbody emission, for

dust temperatures 20, 25 and 30 K (colour-coded) and values of the dust emissivity

index β (β = 2 and 1.5, solid and dashed lines respectively) are shown. β represents

the frequency dependence of the dust emissivity which modifies the blackbody emission

of dusty sources (Hildebrand, 1983). In NGC 6822 values of β adopted previously lie

within this range (e.g. Israel et al., 1996). Tabatabaei et al. (2014) find that β varies
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from β = 2 in the central regions of M 33 to β = 1.3 in the outer disk; for SFRs however,

a value of β = 2 seems to be more appropriate (Braine et al., 2010; Tabatabaei et al.,

2014). The position in Fig. 5.18 of the NGC 6822 SFRs is broadly consistent with those

in M 33, with a slight offset to higher 250-µm values. This offset roughly corresponds to

an increase in temperature of ∼ 2 K or a variation in β of ∼ 0.4. This offset could be due

to the difference in dust properties: the ISM in NGC 6822 is dominated by smaller grain

sizes than that in M 33 (Wang et al., 2022). Smaller grain sizes have been shown to

correlate with higher grain equilibrium temperatures (Zelko & Finkbeiner, 2020). Dust

temperatures have been found to be higher in the lower-metallicity SMC compared to

LMC (Van Loon et al., 2010). Higher dust temperatures in dwarf galaxies can also lead

to stronger far-IR emission per dust mass unit than in larger galaxies (Henkel et al.,

2022). With the available information it is not possible to postulate whether variations

in temperature or β are more likely to be the cause of this offset.

The symbol sizes in Figs. 5.18 and 5.19 are proportional to the number of YSOs

in the SFR; YSO numbers come from the DBSCAN analysis in Sect. 5.6 for M 33,

and from table 4 of Kinson et al. (2021) for NGC 6822 (these values are used instead

of those reported by Jones et al. (2019), since PRF identification is also used). For the

most populous regions in M 33, measurements other than Hα tend towards the ranges’

averages (Fig. 5.18). This could be expected if the largest SFRs identified by DBSCAN

are in fact comprised of multiple smaller regions of differing properties that even out

when integrated. For instance in the Milky Way the Orion-Eridanus superbubble

contains several stellar subgroups, sites of ongoing star formation (e.g. Bally et al.,

2009; Lim et al., 2021) alongside structures with older populations (e.g. Bally, 2008).

As the individual subgroups evolve they expand into and interact with one another

(Ochsendorf et al., 2015), creating large-scale substructures that have been mapped

in free-streaming Hα emission (Ochsendorf et al., 2015; Ha et al., 2022). The Orion-

Eridanus superbubble when scaled to the distance of M 33 would be approximately

254 pc (61 arcsec) in size, which would place it well within the range of M 33 SFRs (see

Figs. 5.16 and 5.17). This may explain why the largest SFRs in M 33 have the brightest

Hα emission but unremarkable overall mid- and far-IR brightness, appearing relatively
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evolved (see next section).

5.7.2 SFR evolutionary status

As previously mentioned I utilise SFRs in NGC 6822 for which there is an established

evolutionary sequence as a guide for the SFRs I identify in M 33. Given the previously

discussed differences between SFRs in M 33 and NGC 6822 and the very different sample

sizes, I compared the SFRs in the two galaxies using the regions’ rank order in each

ratio.

The upper panel of Fig. 5.20 shows the rank sequence for the SFRs in NGC 6822.

Using a combination of [Hα]/[24µm] ratio and CO morphologies, Schruba et al. (2017)

suggest that Hubble I/III and Hubble X are likely more evolved than Hubble IV and

Hubble V. Jones et al. (2019) use similar tracers to propose that the most evolved SFR

is likely Hubble I/III, Spitzer I and Hubble V are the least evolved and regions Hubble IV

and X, Spitzer II and III are intermediate (see Sect. 4.9). This is broadly consistent with

the position of the regions in Fig. 5.20: the least evolved regions are found towards the

lower left and most evolved towards the upper right; the blue arrow indicates the

sequence of evolution. While this generally agrees with the relative evolution stages

from Schruba et al. (2017) and Jones et al. (2019), the exception is Hubble X which

would appear less evolved in this analysis. Whilst the intermediate regions in NGC 6822

appear quite distant from the locus of parity between the ranked ratios (shown by the

black diagonal lines in Fig. 5.20), this is due to the low number of SFR present. Indeed,

this effect is not seen in the rank order of the SFRs in M 33 (lower panel of Fig. 5.20).

Some of the most prominent H ii regions and SFR in M 33 are discussed further in

Sect. 5.7.4.

In order to compare the evolution stage of SFRs in M 33 and NGC 6822, I convert

the distance from the locus of rank parity in Fig. 5.20 into a measure of evolution,

normalised to the number of sources in each sample. I call this the evolution score.

A negative evolution score represents a less evolved, more embedded region in which

the [250µm]/[500µm] ratio dominates over the [Hα]/[24µm] ratio. A positive value of
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Figure 5.20: SFRs in NGC 6822 (upper) and M 33 (lower) shown by their relative ranks
in the [Hα]/[24µm] and [250µm]/[500µm] ratios. The diagonal line indicates the locus
of equal rank in both ratios. In the top panel the direction of SFR evolution is indicated
by the arrow; significant SFRs are labelled (see text for more detail).
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the normalised evolution score reflects a region in which the ISM is being cleared by

bright young massive stars and neutral gas is ionising forming H ii regions, allowing

shorter-wavelength photons to freely propagate.

To characterise star formation activity across the disk of M 33 I investigate the

relation between galactic location and evolution score. In Fig. 5.21 the location of each

SFR in M 33 is shown superposed on spiral arm structure; region size and evolution

score are indicated by symbol size and colour respectively. The largest regions, that

are also generally the most evolved, lie at the base of the two primary spiral arms I-N

and I-S; the least evolved SFRs mainly lie immediately surrounding the central region

of the galaxy. In Fig. 5.22 I explore in more detail the effect of radial distance on the

evolution scores of the SFRs. At radii larger than ∼ 4.5 kpc most SFRs have positive

evolution scores (i.e. are more evolved); outliers to this trend are IC 133 in arm V-N

and NGC 588 which are discussed further in Sect. 5.7.4.

I compare the relation between the number of YSOs in a SFR to its evolution

score in both M 33 and NGC 6822 in Fig. 5.23. The SFRs in NGC 6822 show a de-

creasing number of YSOs with increasing evolution score (rpearson∼−0.71). For M 33

the opposite trend is seen, albeit less strong (rpearson∼ 0.21), that could suggest that

larger regions appear more evolved. In order to assess the similarity of the two SFR

samples I used a 2-Dimensional KS test (Peacock, 1983; Fasano & Franceschini, 1987).

I find a low probability (p∼ 0.29) that the two samples are drawn from distinct parent

samples, with the caveat that the low number of SFRs analysed in NGC 6822 is not an

effect of sampling, since these are all the significant SFRs in this galaxy. Whilst the

[Hα]/[24µm] ratio (Fig. 5.19) suggests that larger regions should correlate to higher

evolution scores, this is in fact not seen in Fig. 5.23, with the exception of the very

largest regions (nYSOs⩾ 50); as discussed in Sect. 5.7.1 these regions likely result from

the combination of multiple smaller SFRs.
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Figure 5.21: Galactic location of SFRs in M 33 shown with a schematic labelled spiral
structure. Symbol size is proportional to the number of YSOs, colour shows the evo-
lution score (the smallest regions are marked with a cross). The least evolved regions
(purple hues) ring the centre of the galaxy with more evolved regions (red hues) located
further out in the disk (see also Fig. 5.22). SFRs discussed in Sect. 5.7.4 are labelled.



148

Figure 5.22: Normalised evolution score against radial distance for SFRs in M 33.
Symbol size is proportional to the radius of each cluster. Counterparts to regions of
star formation known in literature are labelled.

Figure 5.23: Number of YSOs against normalised evolution scores for SFRs in M 33
and NGC 6822. The number of YSOs for SFRs in M 33 and NGC 6822 are respectively
from this analysis and from Kinson et al. (2021). There seems to be a slight tendency
(rpearson∼ 0.21) for larger SFRs to appear more evolved in M 33.
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5.7.3 SFRs in the context of GMCs

I checked the positions of the 68 SFRs identified in this analysis against existing giant

molecular cloud (GMC) catalogues. Corbelli et al. (2017) identified 566 GMCs using

CO (2–1) observations and classify these according to their emission characteristics: the

types A, B and C correspond respectively to inactive GMCs, clouds with embedded or

low-mass star formation and clouds with massive or exposed star formation, the latter

associated with Hα and 24-µm emission. I find 17 type A, 16 type B, and 54 type C

GMCs that have a positional overlap with 62 out of 68 SFRs (∼ 91 per cent), using the

SFR median radii provided in Table 5.5 and the GMC deconvolved effective radii (see

table 5 of Corbelli et al., 2017). Since significant 24µm emission (strongly correlated

with star formation, e.g. Williams et al., 2018) is required for a type C classification,

most SFRs are indeed matched to this GMC type; furthermore as discussed in Sect. 5.8

my analysis allows only for the identification of the most massive YSOs. Type A

matches occur mostly for the largest SFRs that in fact include multiple GMCs of

different types. Corbelli et al. (2017) find that type-B GMCs are rarely found close

to the spiral arms of M 33, whereas types A and C are more closely aligned to H i

filaments in the arms. I do not find an overall correlation between GMC type and SFR

evolution score.

Star formation in the two primary spiral arms of M 33 has been previously studied

to differing degrees. Arm I-N contains several well studied GMCs along its extension as

well as the prominent H ii region NGC 604. I find counterparts to GMCs also identified

in the CO (3–2) observations of M 33 by Miura et al. (2012): SFRs 11 and 36 (GMC 16

and 8 respectively in their nomenclature) as well as two additional CO peaks in between

these (see figure 1 of Kondo et al. 2021), which correspond to SFRs 25 and 35. These

regions in I-N were studied in detail with recent ALMA observations (Tokuda et al.,

2020; Muraoka et al., 2020; Kondo et al., 2021). All the SFRs in arm I-N are associated

with Type-C GMCs, SFR 36 also contains a Type-B GMC. SFR 11/GMC 16 contains

filamentary structure (Tokuda et al., 2020), which is not present in the comparatively

inactive SFR 36/GMC 8 (Kondo et al., 2021). The lack of filamentary structure, and
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the presence of a Type-B GMC in SFR 36/GMC 8 would suggest it is less evolved

compared to SFR 11/GMC 16, as supported by the evolution scores, −0.11 and −0.03

respectively. NGC 604 is recovered in this analysis as two SFRs discussed further in

Sect. 5.7.4.

Arm I-S is less disturbed than arm I-N and it seems to exhibit a clear progression

from Type-A to Type-C GMCs through the arm (Corbelli et al., 2017). Due to the few

SFR matches to Type-A GMCs I cannot confirm this observation. The progression

across arm I-S, as well as spatial offsets between filamentary structures and H i gas

(e.g., in SFR 11/GMC 16, Tokuda et al. 2020), are consistent with the “quasi-stationary

spiral structure” model of Lin & Shu (1964, see also Sect. 1.3.1). Whilst Kondo et al.

(2021) find H i gas velocities in SFR 36/GMC 8 which are consistent with “dynamic

spiral” theory (Dobbs & Baba, 2014), they cannot rule out an external source for the

gas such as tidal interactions with M 31 (Tachihara et al., 2018).

5.7.4 Comments on individual M33 SFRs

NGC 604 is one of the largest and brightest H ii regions in the Local Group (e.g.

Bosch et al., 2002). Located around 4.8 kpc from the centre of M 33 in arm I-N, star

formation has been studied there at many wavelengths (e.g. Heidmann, 1983; Fariña

et al., 2012; Miura et al., 2012; Tachihara et al., 2018; Leitherer, 2020; Muraoka et al.,

2020). NGC 604 has undergone multiple star formation events (Eldridge & Relaño,

2011), with earlier star formation episodes suggested to trigger the subsequent episodes

(Tosaki et al., 2007; Tachihara et al., 2018).

Using GEMINI-NIRI photometry with excellent seeing conditions (∼ 0.35 arcsec),

Fariña et al. (2012) identified 68 massive YSOs in the central region of NGC 604 (see left

panel of Fig. 5.24). Whilst all the YSOs identified by Fariña et al. (2012) are brighter

than the near-IR catalogue sensitivity limits (see Sect. 3.2.1), none of these sources

have a counterpart within 1 arcsec in the near-IR catalogue of Javadi et al. (2015). In

fact within 30 arcsec of the centre of NGC 604 (01:34:32.1, +30:47:01; Montiel et al.,

2015), the near-IR catalogue contains only 27 sources, of which five are classified by
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the PRF analysis as WRs, consistent with the young nature of the region. Likewise

the Spitzer-IRS pointings described in Mart́ınez-Galarza et al. (2012) are all located in

this region of sparse near-IR point sources. This is a limitation of the catalogue used

in my analysis in this region of extremely bright ambient emission; the YSOs I identify

in this analysis are found instead at its periphery.

The DBSCAN analysis divides NGC 604 into two SFRs, North and South of

the centre of brightest emission (see Fig. 5.24). The two SFRs (3 and 17 in Table 5.5),

which I refer to as NGC 604-N and -S, contain 20 and 28 YSOs respectively. The

separation of NGC 604 into two SFRs may be in part driven by the paucity of near-IR

data described above. Alternatively this separation is supported astrophysically by the

decomposition of NGC 604 into multiple components in CO (1–0) and (2–1) emission

(Druard et al., 2014; Muraoka et al., 2020) and the South-East and North-West CO

lobes of Wilson & Scoville (1992) which are coincident with the SFRs identified in this

project. I record different evolution scores respectively 0.01 and −0.09 for NGC 604-N

and -S, indicative of star formation propagating from North to South in agreement

with the Tosaki et al. (2007) and Muraoka et al. (2020) scenarios of triggered star

formation in NGC 604. I note however that my analysis probes larger scales and in fact

NGC 604-N lies outside the region discussed in those literature analyses. It is therefore

more relevant to consider the larger scale H i gas interactions discussed in Tachihara

et al. (2018). They identified two components of H i gas separated by ∼ 20 km s−1;

NGC 604-N is co-spatial with a peak in the redshifted component whilst NGC 604-S

is co-spatial with the blue-shifted component (see their figure 11). The collision of

these two large H i gas components is suggested to have triggered the star forming

activity and growth of NGC 604 (Tachihara et al., 2018); such a scenario has also been

proposed for other regions in arm I-N, namely SFR 11/GMC 16 and SFR 36/GMC 8

(Kondo et al., 2021). The origin of the infalling gas is not clear, however the presence

of a H i stream between M 33 and M 31 (Bekki, 2008; Lockman et al., 2012) due to

a previous interaction between these two galaxies (Semczuk et al., 2018) offers one

possible explanation (Tachihara et al., 2018).

NGC 595 (SFR 47), in which eight YSOs are identified, is the second most lumi-
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nous H ii region in M 33 after NGC 604 (Relaño & Kennicutt, 2009) and is compara-

tively understudied. It lies to the North-West of the centre of M 33 towards the base of

arm IV-N. Its evolution score of −0.4 suggests that NGC 595 is yet to reach peak star

formation and may be amongst the youngest sites of star formation in the galaxy. The

YSOs are located North-West of the bright 24-µm and 250-µm emission (see Fig. 5.24).

As noted in Sect. 5.7.2 and Fig. 5.22, the H ii region IC 133 (SFR 62) has a low

evolution score (−0.28) for its large radial distance (∼7.5 kpc). IC 133 is located in

arm V-N and contains nine YSOs, and a source of H2O maser (Huchtmeier et al.,

1988; Greenhill et al., 1993) and OH maser (Staveley-Smith et al., 1987) emission.

I identify a bright (Ks = 14.4 mag) and red (J − Ks = 1.5 mag) source as the likely

near-IR counterpart of the maser emission (at a distance of ∼ 0.′′28) at coordinates

01:33:16.54, +30:52:49.7 which the PRF classifies into several classes across the 100

runs: nRSG = 74, nCAGB = 18, nYSO = 5, nAGN = 3. This suggests that a RSG classifi-

cation is the most likely, since such sources are also known to harbour water maser

emission (e.g. Van Loon et al., 1998). The presence of an RSG source in an SFR is

more likely if the H ii region is more mature (>10 Myr), such that stars can evolve

sufficiently to become RSGs, which is not reflected by the evolution score for IC 133.

This could indicate that star formation in IC 133 is restarting after a period of hiatus.

Directly West of the centre of M 33 and not obviously linked with any spiral arm,

is the prominent H ii region NGC 592. This is SFR 18 that contains ten YSOs. This

H ii region is thought to be young, with age estimates from far-UV SED fitting of 4

and 5.6 Myr (respectively Pellerin, 2006; Úbeda & Drissen, 2009). Relaño & Kennicutt

(2009) find compact knots of Hα coincident with the brightest 24µm sources. I assign

NGC 592 an evolution score of −0.08, reflective of some indicators of youth.

NGC 588, another large H ii region in which star formation has been studied (e.g.

Relaño & Kennicutt, 2009; Monreal-Ibero et al., 2011) lies almost directly West of

NGC 592, between the tips of arms I-S and III/IV-S as indicated in Fig. 5.21. Only 4

YSOs are classified within its extent (SFR 68). Alongside IC 133, NGC 588 is notable

for its low evolution score (−0.12) at high radial distance (∼7.8 kpc) from the centre

of M 33 (see Fig. 5.22).
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Figure 5.24: RGB image (250µm Herschel-SPIRE, 24µm Spitzer-MIPS, Hα respectively
− see Sect. 3.4 for image details) of NGC 604, IC 133, NGC 588, NGC 592 and NGC 595.
YSOs identified in this work are shown by white circles, the extent of each SFR is
shown by the green circles, in NGC 604 cyan circles show YSOs identified in Fariña
et al. (2012), in IC 133 the magenta circle shows the location of the maser counterpart
(see text).
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5.8 YSO masses and star formation rate

The properties of the YSO sources analysed here are likely dominated by the most

massive source in an unresolved proto-cluster (see also discussions in Oliveira et al.,

2013; Ward et al., 2016, 2017). This effect on YSO model fitting analysis is discussed in

Chen et al. (2010a), and accordingly Jones et al. (2019) present their mass estimates for

YSOs in NGC 6822 as overestimated for the dominant source but underestimated for

the total unresolved cluster. Furthermore it is also widely accepted that most massive

stars are found in binaries or multiple systems (e.g. Sana et al., 2008, 2012; Kobulnicky

et al., 2014), implying that the dominant source is in turn an unresolved binary. These

important caveats affect similar analyses in the literature (e.g. Sewi lo et al. 2013; Jones

et al. 2019 respectively in the SMC and NGC 6822) and are impossible to account for

properly, and thus the mass estimates discussed below should be taken with some

caution.

Since the YSOs identified in this analysis only have photometry in the three

near-IR bands, it is not feasible to obtain their masses using individual SED fitting

as seen in e.g., Whitney et al. (2008); Sewi lo et al. (2013); Jones et al. (2019). I

therefore use predicted near-IR Ks-band magnitudes (scaled to the distance of M 33)

and J − K colours estimated from the model grid of Robitaille et al. (2006) and the

YSOs’ positions in the CMD to assign them a model mass. For each of the 4985 YSOs

identified by the PRF I thus obtained a mass estimate as described below. Due to the

depth of the near-IR catalogue (see Sect. 3.2.1) my analysis is likely sensitive to only

the most massive YSOs. Given these sources evolve rapidly onto the main sequence

once they leave their embedded stages, I use only models in the grid corresponding

to Stage 0/I YSOs. I note that this model grid does not represent a realistic mass

distribution in an Initial Mass Function (IMF) sense.

Each YSO is compared to models within a 0.5 mag distance in CMD space. For

YSOs with at least three models in this range the median mass for the models is

adopted; for YSOs with fewer models within 0.5 mag distance the closest three models

are used to compute the median model mass. This latter group of YSOs accounts for
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∼ 11 per cent of all YSOs and ∼ 10 per cent of YSOs assigned to clusters; I consider

these mass estimates more uncertain. YSO mass estimates range from 6− 27 M⊙ with

a median value of 13 M⊙.

The mass distribution of the YSOs assigned to SFRs is shown in Fig. 5.25, with a

total mass of 2.5 × 104 M⊙. Using the commonly adopted functional form for the IMF

by Kroupa (2002), scaled to match the observed mass distribution, and integrated

over the range 0.08− 100 M⊙, I estimate the total mass of YSOs in SFRs as 1.5 ×
105 M⊙. Adopting a Stage 0/I lifetime of 0.2 Myr (e.g. Jones et al., 2019, and references

therein) I estimate a star formation rate of 0.63 M⊙ yr−1 in M 33’s SFRs (green line in

Fig. 5.25). Due to the effects of crowding, the lower PRF classification certainty, and

potential contamination (see Sect. 5.6), I estimate the star formation rate separately

for the unclustered YSOs in the central region: it ranges between 0.63 M⊙ yr−1 in the

case of maximum contamination by RGBs (see Sect. 5.6) and 0.95 M⊙ yr−1 for no such

contamination. This range is represented by the grey shaded region in Fig. 5.25. The

lower value is consistent with that estimated for the SFRs throughout the disk of M 33.

Considering all YSOs, the total star formation rate is 1.42± 0.16 M⊙ yr−1 (gold shaded

region in Fig. 5.25).

There are numerous determinations of global star formation rates in the MW,

as compiled in table 1 of Chomiuk & Povich (2011) for a range of methods (ionisation

rates, supernovae rates, near-IR to far-IR dust-heating ratios, nucleosynthesis rates

and YSO counts), re-scaled to a Kroupa (2002) IMF; typical values are in the range

∼ 1.9± 0.4 M⊙ yr−1 (see also Xiang et al., 2018). More recent work that uses Bayesian

statistics to compare the rates compiled by Chomiuk & Povich (2011) favours a rate

of 1.65± 0.19 M⊙ yr−1 as the best fit to the data (Licquia & Newman, 2015). Using

direct YSO counts, Davies et al. (2011) find a rate of 1.75± 0.25 M⊙ yr−1 (shown as

the red line in Fig. 5.25). The rate of star formation in star forming galaxies is strongly

correlated to the mass of available gas (Kennicutt & Evans, 2012). It is therefore

expected that M 33 (Mgas∼ 3× 109 M⊙, Corbelli 2003) has a lower star formation rate

than the MW (Mgas∼ 5× 1010 M⊙, Licquia & Newman 2015) as seen in Fig. 5.25.

Star formation rates estimated from direct YSO counts tend to be higher than
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those calculated with other methods that are sensitive to different star formation

timescales, as documented in the MCs (e.g. Chen et al., 2010b; Carlson et al., 2012)

and NGC 6822 (Jones et al., 2019), but are generally consistent (Sewi lo et al., 2013).

My estimates are higher than the values calculated using the 24µm (0.2 M⊙ yr−1), Hα

(0.35 M⊙ yr−1) and far-UV (0.55 M⊙ yr−1) emission maps by Verley et al. (2009), that

adopted an average value of 0.45 M⊙ yr−1. More recently far-UV Hubble Space Tele-

scope observations of M 33 were used by Lazzarini et al. (2022) to find a star formation

rate of 0.74 M⊙ yr−1 over the last 100 Myr. The Long-Period Variable (LPV) popu-

lation gives an estimated star formation rate of 0.42 M⊙ yr−1 over the last 100 Myr

(Javadi et al., 2017). Elson et al. (2019) explored star formation in M 33 at multiple

scales from 49 pc to 782 pc at mid and far-IR wavelengths and estimated star formation

rates of 0.44± 0.1 M⊙ yr−1 (at 100µm) and 0.34+0.42
−0.27 M⊙ yr−1 (at 12µm). Using CO and

HCN relations, Blitz & Rosolowsky (2006) inferred an integrated star formation rate

in M 33 of 0.7 M⊙ yr−1. My estimates for the star formation rate of M 33 are broadly

consistent with these estimates, towards the upper end as expected from other galaxies.

5.9 M33 summary

In this work, I identified and described the YSO population across the whole disk of the

flocculent spiral galaxy M 33 for the first time. I adapted the PRF classification tech-

nique which was successfully applied in NGC 6822 (Kinson et al., 2021) to better reflect

the stellar populations in M 33. The PRF classifier was trained using a combination of

near-IR and far-IR feature information to identify nine target classes.

In total the PRF was applied to 162,746 sources of which 66,378 are consistently

assigned to the same class across a total of 100 PRF runs. The PRF classifies with a

median estimated accuracy of 86 per cent (the accuracy is based on the PRF’s confusion

matrices for the individual test runs). A total of 4985 YSOs were identified. The

classifier cannot and should not classify outside the training parameter space. The

WFCAM near-IR catalogues suffer from completeness issues for faint and very red
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Figure 5.25: The mass distribution of the 1986 YSOs assigned to M 33 SFRs, with
scaled Kroupa (2002) IMFs overlain, see text for details. Poisson errors are indicated
for each histogram bin.
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sources (see Sects. 3.2.1, 3.3 and 4.3.2); the classification of YSOs as red as the reddest

training set sources is limited by the availability of such sources in the near-IR catalogue

and not by the PRFs performance or any bias of the training set. This is a limitation

of the catalogue completeness rather than an introduced classification bias.

A DBSCAN clustering analysis of the YSO population was used to identify 68

SFRs, mostly previously unknown, across the disk of M 33, containing 1986 YSOs.

Most of these SFRs are located in the spiral arms. 2437 YSOs are found in the central

∼ 11.6× 10.4 arcmin2 region, that is too crowded for the clustering algorithm to be

effective. The remainder 562 YSOs are seemingly isolated based on my analysis.

In total 62 out of the 68 identified SFRs (∼ 91 per cent) are co-spatial with GMCs

identified by Corbelli et al. (2017), mainly Type-C clouds (∼ 87 per cent) with tracers

of massive or exposed star formation. I identify SFR counterparts to the prominent H ii

regions IC 133, NGC 588, NGC 592, NGC 595 and NGC 604. A novel approach com-

bining [Hα]/[24µm] and [250µm]/[500µm] ratios was used to constrain the comparative

evolutionary status of the M 33 SFRs, using regions in NGC 6822 as a benchmark sam-

ple. These ratios was converted into a common metric for ease of comparison. This

evolution score was used to compare SFRs in the context of radial distance in the

galaxy, number of YSOs and the relation to M 33’s spiral structure. The SFRs with

the lowest evolution scores tend to lie just outside the central region of the galaxy.

With the exception of well known SFRs (Sect. 5.7.4) those beyond ∼ 4.5 kpc present as

more evolved.

I resolve the wider NGC 604 environment into two SFRs with different evolu-

tionary status; these are co-spatial with two different H i gas components identified by

Tachihara et al. (2018). The collision of these components may explain the triggering

of initial star formation and progression from North to South (Tosaki et al., 2007),

for which some evidence is seen in the evolution score analysis. In this scenario the

in-falling H i gas is responsible for feeding the growth of NGC 604 into one of the most

luminous H ii regions in the Local Group. This gas component may originate from a

stream connecting M 33 and M 31 arising from an earlier interaction with M 31.

Using model grids for Stage 0/I YSOs (Robitaille et al., 2006) I estimated the
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mass of each of the 4985 YSOs. Given that a SED fitting analysis is not feasible

with just three near-IR bands, masses are derived from the models that are closest

to each YSO in the colour-magnitude diagram. Estimated YSO masses range from

6− 27 M⊙ with a median value of 13 M⊙. The total mass of YSOs assigned to SFRs

is 2.5 × 104 M⊙. Using a Stage 0/I lifetime of 0.2 Myr, I estimate a star formation

rate of 0.63 M⊙ yr−1 for M 33 spiral arms’ SFRs. In the central region of M 33 I find a

higher value of 0.79± 0.16 M⊙ yr−1 with the caveat of less certain source classifications

for this crowded region. These estimates give a total M 33 star formation rate of

1.42± 0.16 M⊙ yr−1 determined from direct YSO counts. As expected from gas mass

scaling relations, the star formation rate for M 33 is lower than that of the more massive

MW (1.75± 0.25 M⊙ yr−1, Davies et al. 2011, also computed from YSO counts).

I have for the first time identified massive YSOs and discussed their spatial dis-

tribution on galactic scales in a Local Group spiral galaxy, extending such analysis

beyond the nearby star-forming dwarf galaxies (LMC, SMC and NGC 6822).



160

6 Conclusions, summary and prospects

In this thesis, a machine learning technique for the classification of point sources in

archival near-IR data has been developed and applied in two Local Group galaxies,

NGC 6822 and M 33 to identify massive YSOs. The method was validated in NGC 6822

before the technique was then adapted for application across M 33, classifying YSOs

across the entire disk of a spiral galaxy for the first time.

In this final chapter I will discuss the methods developed in and results of this

thesis in the context of the aims stated in Sect. 1.5. This is followed by a view to further

studies which may soon be possible using the techniques and results of this project.

6.1 Machine learning techniques

Previous work to identify YSOs in photometric IR data has relied on a series of colour

and magnitude cuts (e.g. Jones et al., 2019; Hirschauer et al., 2020). This approach

considers colours and magnitudes in a piece-wise fashion, and assesses sources based

on their positions relative to established cuts. This does not however take into ac-

count interdependancies and degeneracies between observable properties. Using ma-

chine learning it is possible to classify sources based on an ensemble of all colour and

magnitude and measurement uncertainties.

A combination of near-IR Ks-band magnitude, three near-IR colours (J−H,

H−Ks and J−Ks) and two far-IR brightnesses at 70 and 160µm, were used as features

for both supervised and unsupervised machine learning methods. Unsupervised t-SNE

maps were used to establish the need for all features included. Near-IR colours and

magnitudes provide information on individual point source properties whilst far-IR

measurements are used to contextualise each source. CO measurements were tested

as a potential feature to separate YSOs (Sect. 4.8.2); whilst integrated CO brightness

does appear to differentiate YSOs from other classes (Fig. 4.19), it was not adopted

as a feature for two reasons. Firstly, peaks of CO brightness are co-spatial with the
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brightest regions of the far-IR features in both galaxies to a high degree, secondly the

spatial coverage of CO data for each galaxy is worse than for both far-IR wavelengths.

Supervised machine learning techniques such as those used in this project rely

upon a set of data of known types on which the classifier is trained. The quality of

these data is therefore of paramount importance to obtain good classifier performance.

The ideal scenario would be to have a series of spectroscopically confirmed sources

for each class within the same galaxy, however in practice training sources for certain

stellar types were not available in each target galaxy (e.g. YSOs). In these cases train-

ing sources are drawn from the MC in which spectroscopically confirmed examples

are available. Whilst these sources originate from environments of similar metallicity

(see Table. 1.1) and were shown to be comparable with those in NGC 6822 and M 33

(Sects. 4.5 and 5.4), using training sources external to the galaxy being studied is a

recognised limitation imposed by the available data.

Many supervised machine learning techniques are available; a series of tests were

performed using a reduced number of classes and data from NGC 6822 to classify both

with a PRF and classical RF (Sect. 2.2.3). An improvement was seen by using a PRF

rather than an RF in classes with fewer available training sources such as YSOs, which

rose from 89 per cent to 92 per cent. A benefit afforded by a PRF, not possible with

an RF, is the ability to handle missing feature information. The near-IR catalogue

for NGC 6822 contains several sources with one missing feature due to the way in

which observations were performed and the near-IR catalogue constructed; therefore

in NGC 6822 a PRF increases the number of sources available for classification from

∼ 8000 to ∼ 12,000 (see further details of the data in Chap. 3). Another key benefit of

a PRF over a RF is that it deals with feature uncertainties therefore I selected a PRF

over a classical RF as the primary classifier for this project.

In M 33 the PRF was used to classify 162,746 sources of which 66,378 are con-

sistently assigned to the same class across a total of 100 PRF runs, with a median

estimated accuracy of 86 per cent across all classes. For YSOs the estimated accuracy

ranged from 62 to 97 per cent, with a median value of 82 per cent across all 100 runs.

This wider range of accuracies is affected by a small number of runs (< 3) in which
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classifier performance is affected by stochastic effects in training/test source collection.

Using a greater number of PRF runs allowed me to implement multiple down sam-

plings of large training set classes to mitigate the effect of large classes dominating the

training data. Using multiple different down samplings also accounts for any additional

stochasticity in training and test data selection with varying training sets. Train-test

splitting is done on a global 75/25 per cent split rather than class-wise basis, leading to

some unevenness in testing data class sizes. In M 33 additional steps were necessary to

account for random down-sampling of especially large training set classes (Sect. 5.2).

Having training set classes of sizes which are somewhat balanced against one another

was seen to greatly improve classifier performance compared to trials in which few large

classes dominated the training set (Sect. 5.2).

For every source a value nclass for each class is obtained: the number of runs a

source is classified into that class. This nclass value allows me to assess the confidence

for the object to belong to each particular class. As shown in Figs. 4.12, 4.13 and

5.7, target classes overlap with one another in feature parameter space. Correctly

separating sources into the target classes is a non-trivial exercise precisely because of

these intrinsic class overlaps. In these regions of overlapping classes it is likely that the

PRF returned mixed classifications for many sources (i.e. nclass is split amongst multiple

classes). By setting restrictions on nclass for inclusion in the subsequent astrophysics

analysis cleanness of the identified samples can be achieved, with mixed nclass sources

being treated as candidates. Running the classifier multiple times mimics a k-fold

cross-validation approach without the removal of one feature per run (see Sect. 4.3).

To test the PRF classifications as well as the feature selection I used unsupervised

t-SNE maps on sources with maximum nclass scores in NGC 6822 (see Sect. 4.7). Similar

comparison of the PRF’s classification in M 33 was not possible due to the much greater

number of sources, making t-SNE calculation prohibitively computationally expensive.

Nevertheless, in NGC 6822 t-SNE maps show a good separation of several target classes

including Galactic foreground, RSG and both O- and C- AGB stars, but it is not able

to identify YSOs as a distinct grouping.
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6.2 YSO Identification

The PRF classifier sorts sources into eight target classes (YSO, OAGB, CAGB, RGB,

RSG, MMS, FG and AGN) in NGC 6822 with an additional class (WR) included

for M 33. In M 33 the BS class effectively replicates the MMS class for NGC 6822

but further includes other stellar types such as luminous blue variables. The PRF

must assign a classification to each source, hence having multiple non-YSO classes

decreases the probability of a false YSO classification and allows for comparison of

spatial distributions for each class.

The PRF classifier was first applied in NGC 6822 in which massive YSOs have

previously been identified in major SFRs. The PRF achieved an estimated accuracy of

91 per cent across all classes rising to 96 per cent for YSOs. A total of 324 YSOs (nclass =

20) and candidates (nclass < 20) are classified (Kinson et al., 2021). I confirm the

nature of 125 out of 277 literature YSO candidates with sufficient feature information.

Additionally 136 YSOs and 63 YSO candidates are classified for the first time in my

analysis.

The spatial distributions of most stellar populations are essentially as expected,

older populations are more dispersed with young populations more tightly structured

(Sect. 4.6). RSG stars, that trace the recent star formation history, occupy the bar of

NGC 6822, linking the more conspicuous SFRs. An extension of the bar to the South-

East, into a region which has indicators of youth (e.g. De Blok & Walter, 2000) is seen

in the RSG distribution, however no YSOs or candidates are classified there.

The identification of YSOs was used as a method of locating major regions of

star formation. In NGC 6822 the recovery of known SFR provided confidence in the

machine learning methodology. YSOs were identified in all known major star formation

complexes in NGC 6822 (Hubble I/III, Hubble IV, Hubble V, Spitzer I, Spitzer II and

Hubble X). Furthermore YSOs in smaller star formation sites were identified: the Hii

regions BHD 9/10 and 27, as well as new regions of star formation BHD 18 and a region

to the North but physically distinct from Hubble IV, that I named Hubble IV−N. The

detection of massive YSOs in new regions, especially in BHD 18 and Hubble IV−N, is
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very suggestive of additional star formation occurring in the bar of NGC 6822 between

the major previously known SFRs. The prospect of detecting further YSOs in the bar

region below the mass sensitivity of my analysis (M∼ 15 M⊙) remains to be explored.

A region of over-dense H i gas to the North-West of the bar (studied in Schruba et al.,

2017), where star formation is possible, is beyond the coverage of the far-IR data and

hence not investigated in this project.

I identified and described the YSO population across the whole disk of the floccu-

lent spiral galaxy M 33 for the first time. The PRF classification technique which was

successfully applied in NGC 6822 (Kinson et al., 2021) was adapted to better reflect

the stellar populations in M 33. In M 33 the requirement was set that sources achieve

nclass = 100 in order to be carried forwards into the astrophysical analysis. This cri-

terion was set more strictly than in NGC 6822 as there were no literature benchmarks

against which YSO candidates could be assessed. A total of 4985 YSOs in M 33 were

identified (Kinson et al., 2022).

Using model grids for Stage 0/I YSOs (Robitaille et al., 2006) I estimated the

mass of each of the M 33 YSOs. Given that a SED fitting analysis is not feasible with

just three near-IR bands, masses are derived from the models that are closest to each

YSO in the colour-magnitude diagram. Estimated YSO masses range from 6− 27 M⊙

with a median value of 13 M⊙. The total mass of M 33 YSOs assigned to SFRs is

2.5 × 104 M⊙. Using a Stage 0/I lifetime of 0.2 Myr, I estimate a star formation rate

of 0.63 M⊙ yr−1 for the M 33 spiral arm SFRs. In the central region of M 33 I find a

higher value of 0.79± 0.16 M⊙ yr−1 with the caveat of less certain source classifications

for this crowded region (Sect. 5.4). These estimates give a total M 33 star formation

rate of 1.42± 0.16 M⊙ yr−1 determined for the first time from direct YSO counts. As

expected from gas mass scaling relations, the star formation rate for M 33 is lower than

that of the more massive MW (1.75± 0.25 M⊙ yr−1, Davies et al. 2011, also computed

from YSO counts).

A DBSCAN clustering analysis of the M 33 YSO population was used to identify

68 SFRs, mostly previously unknown, across the disk of M 33, containing 1986 YSOs.

The majority of these SFRs are located in the spiral arms. 2437 YSOs are found in the
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central ∼ 11.6× 10.4 arcmin2 region, that is too crowded for the clustering algorithm to

be effective. The remainder 562 YSOs are seemingly isolated based on our analysis. In

total 62 out of 68 identified SFRs (∼ 91 per cent) are co-spatial with GMCs identified by

Corbelli et al. (2017), mainly Type-C clouds (∼ 87 per cent) with tracers of massive or

exposed star formation. SFR counterparts are identified to the prominent H ii regions

IC 133, NGC 588, NGC 592, NGC 595 and NGC 604.

A novel approach combining [Hα]/[24µm] and [250µm]/[500µm] ratios was used

to constrain the comparative evolutionary status of the M 33 SFRs, using major regions

in NGC 6822 for which a literature evolutionary sequence exists as a benchmark sample.

These ratios were converted into a common metric for ease of comparison (Sect. 5.7.2).

This evolution score was used to compare SFRs in the context of radial distance in

the galaxy, number of YSOs and the relation to M 33’s spiral structure on a galaxy-

wide scale. The largest SFRs, which lie at the base of the two primary spiral arms, are

generally more evolved but do not have very large evolution scores; this may be an effect

of merging multiple smaller regions with an averaging out of properties occurring. The

least evolved SFRs mainly lie immediately outside the central region of the galaxy.

At radii larger than ∼ 4.5 kpc most SFRs appear more evolved with outliers to this

tending to be well known SFRs (Sect. 5.7.2). This metric presents a useful strategy for

comparing evolutionary stages of SFR within a galaxy, in isolated galaxies these scores

could inform star formation theories such as SPSSF (Sect. 1.3).

6.3 Future studies

This project presents non-spatially biased surveys of the most massive YSOs across

both NGC 6822 and M 33. Given the shape of the IMF (e.g. Kroupa, 2002) many more

YSOs remain in these target galaxies to be identified below the sensitivity limits of the

data used in this work.The next generation of near-IR capable observatories such as the

James Webb Space Telescope (hereafter JWST), Extremely Large Telescope (formerly

European-Extremely Large Telescope) and Roman Space Telescope (formerly known
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as WFIRST) will transform the volume, sensitivity and resolution of available data.

As noted in Sects. 4.8.2 and 5.8 the point sources classified in this thesis are likely the

dominant source in an unresolved proto-cluster and future observations may be able

to resolve the less massive and hence less luminous members of these clusters. The

new generation of infrared instrumentation will aid in overcoming the issues of source

crowding at the limits of WFCAM’s resolution encountered in this project’s study of

the centre of M 33. JWST observations of the centre and arm I-S in M 33 are proposed

(Lee et al., 2021; Rosolowsky et al., 2021), covering ∼ 2500 of the YSOs and ∼ 20 SFRs

I identify. Bespoke observations aiming to identify fainter, less massive YSOs rather

than catalogues resulting from an evolved star monitoring programme will mitigate the

issues of sensitivity in the M 33 near-IR catalogues (Sect. 3.2.1). Observations extending

to fainter magnitudes will also allow the identification of PN which were excluded from

the analysis in this project as they lie below the sensitivity of the WFCAM near-IR

data (see Sects. 4.2.7 and 5.1).

In order to survey YSOs across the entire disk of a spiral galaxy it was necessary

to look outside the MW, with M 33 presenting the ideal first target due to its proximity

and favourable inclination. The next generation of near-IR instrumentation will extend

the range of galaxies in which similar study as in this project can be performed. These

more distant galaxies include spirals of both flocculant, like M 33, and grand-design

types. Two face on spiral galaxies in which the preliminary works for such study have

been conducted are the multi-armed NGC 300 (∼ 1.9 Mpc, Rizzi et al., 2006) and grand-

design M 83 (∼ 4.5 Mpc, Tully et al., 2016). JWST’s NIRCam instrument (Rieke et al.,

2005) will be able to produce observations of both these galaxies with similar resolution

to that of WFCAM in M 33. In NGC 300 a comparison of the relation of CO(1-0)

and GMCs has been performed (Kruijssen et al., 2019), and sites of potential star

formation identified (Semenov et al., 2021). JWST NIRCam observations across the

disk of NGC 300 (Lee et al., 2021) and surveying for molecular gas in M 83 (Hernandez

et al., 2021a) await implementation. Using this new instrumentation to locate YSOs

and GMCs in relation to spiral structure in these galaxies as well as in M 33 will provide

insight into models of QSS and DSF (see Sect. 1.3.1).
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Whilst the Extreme Large Telescope’s MICADO instrument (Davies et al., 2010)

will be able to produce JHKs observations, filter selection for the Roman Space Tele-

scope’s near-IR instrumentation has not yet been finalised (e.g. inclusion of a Ks filter

Chary, 2021) and JWST uses an alternative filter system (Rieke et al., 2005, 2015).

Therefore to conduct a study similar to this project using these instruments a train-

ing set in the corresponding filter set is necessary. Given that it may take some time

for such observations to be conducted, especially when the increasing number of ob-

ject types able to be included in classification is considered, alternative methods for

training set construction may need to be considered. One approach to this could be

using an off target field including SFRs to obtain training set sources of many classes

which can then be used as a training set for wider classification. Finally it is important

to consider inclusion of feature information from JWST’s Mid-IR Instrument (MIRI,

Rieke et al., 2015) which increases the wavelength range accessible at high resolution

and offers a potential for greater discrimination power between stellar types.

Machine learning approaches, as I have demonstrated, offer an invaluable tool for

disentangling and classifying large data sets. The analysis of large data sets is becoming

an important factor in many settings outside of astronomy. Classification problems are

prevalent in almost all data-driven fields, with the application of e.g. PRF or t-SNE

maps offering valuable tools for such analysis. Whilst for very large data sets t-SNE

mapping and other similar algorithms become prohibitively computationally expensive,

for data sets on the order of 104 sources and ten or so features this is achievable on

most current personal computers. As previously noted the performance of a supervised

classifier is strongly linked to the quality of the training data, however labelled data is

readily available in most potential academic or industrial applications and should not

present a significant limitation to the implementation of a PRF.
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A NGC6822 Confusion Matrices

The full set of confusion matrices for all extended PRF runs are shown here. A rep-

resentative example from a single PRF run for both normalised and un-normalised

matrices was shown in Fig. 4.10. The accuracy scores returned by sklearn for these

runs vary between 87 and 92 per cent with an average of 91 per cent.

By comparing between runs with different random seeds in the un-normalised

confusion matrices, the variations arising from the random selection of training and

test samples can be seen, e.g. in their raw numerical values (Fig. A.3). The strong

diagonal seen in the normalised confusion matrices (Fig. A.6) is weaker in the un-

normalised matrices (Fig. A.3) as a result of the different sizes of each target class.

These un-normalised matrices do however show how many sources of each class are

included in the testing data for each PRF run.

The normalised matrices allow for a better assessment of the success of the classi-

fications, by evening out different class sizes. Fig. A.6 shows these normalised confusion

matrices. A good recovery rate can be seen in all classes with the exception of RGB

stars which have a significant level of confusion with Galactic contaminants due to

how the FG training set is constructed (see Sect.4.4.2). The AGN class suffers from

confusion with CAGB and FG classes in many runs. This is due in part to their sim-

ilarities in near-IR colour, but also because of the limited number of available AGN

training sources for a class with a large range of possible parameter space, as discussed

in Sect. 4.3.1.
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Figure A.1: Normalised confusion matrices for the 20 PRF runs using different random
seeds to overcome any stochastic effects in train/test splitting.
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Figure A.2: Cont.
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Figure A.3: Cont.

B Coordinate de-projection

In Sect. 5.6 I apply a DBSCAN clustering algorithm to the distribution of classified

YSOs in deprojected coordinates. In order to transform from coordinates on the sky

(α, δ) to a deprojected plane (x, y) I adapt standard spherical geometry techniques

(as described e.g. Van der Marel & Cioni, 2001).

In what follows I adopt as the centre of M 33 the position α0 = 01:33:50.89,

δ0 = + 30:39:36.63 (Gaia Collaboration, 2020). For a point on the sky with right ascen-

sion and declination (α, δ) I define the angular coordinates with respect to the centre

(α0, δ0) as (ρ, ϕ): ρ is the angular distance and ϕ is the position angle. Standard



173

Figure A.4: Confusion matrices of the same runs shown in Fig.A.3.
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Figure A.5: Cont.
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Figure A.6: Cont.

spherical trigonometry transformations lead to three equations:

cos ρ = cos δ cos δ0 cos(α − α0) + sin δ sin δ0

sin ρ cosϕ = − cos δ sin(α − α0)

sin ρ sinϕ = sin δ cos δ0 − cos δ sin δ0 cos(α − α0).

A Cartesian coordinate system (x, y) is defined such that the x-axis is anti-

parallel to the α-axis and y-axis is parallel to the δ-axis. For this purpose the thickness

of the disk is ignored, i.e. z = 0. The transformations used are:

x = D sin ρ cosϕ

y = D sin ρ sinϕ,

where D is the distance to M 33 (850 kpc, De Grijs & Bono, 2014). To correct
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for M 33’s position angle PA the (x, y) coordinates are rotated as follows:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ.

The angle θ is defined with respect to the x-axis, while the PA is defined with

respect to the y-axis. Therefore θ=PA+ 90◦ (adopting PA= 23◦, De Vaucouleurs et al.

1991).

The inclination i of M 33 disk with respect to the line of sight of the observer

affects only the y′-axis. Therefore,

y′′ =
y′

cos i
.

Per Sect. 1.4.2 in this project I adopt i= 54◦ (De Vaucouleurs et al., 1991). The

Cartesian coordinate system (x′, y′′) is the deprojected coordinate system that is used

in Sect. 5.6.
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